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Abstract

This dissertation defines what it means for a Cohen-Macaulay ring to to be super-

stretched. In particular, a super-stretched Cohen-Macaulay ring of positive dimension

has h-vector (1), (1,n), or (1,n,1). It is shown that Cohen-Macaulay rings of graded

countable Cohen-Macaulay type are super-stretched. Further, one dimensional stan-

dard graded Gorenstein rings of graded countable type are shown to be hypersurfaces;

this result is not known in higher dimensions.

In Chapter 1, some background material is given along with some preliminary def-

initions. This chapter defines what it means to be stretched and super-stretched. The

chapter ends by showing a couple of scenarios when these two notions coincide.

Chapter 2 deals with super-stretched rings that are standard graded. We begin the

chapter by exploring the graded category and defining what it means to be graded

countable Cohen-Macaulay type. Equivalent characterizations of super-stretched are

discovered and it is shown that rings of graded countable Cohen-Macaulay type are

super-stretched. The chapter ends by analyzing standard graded rings that are super-

stretched with minimal multiplicity. In Chapter 3, we examine what it means for a local

ring to be super-stretched.

Finally, Chapter 4 uses the previous results to give a partial answer to the follow-

ing question: Let R be a standard graded Cohen-Macaulay ring of graded countable

Cohen-Macaulay representation type, and assume that R has an isolated singularity. Is
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R then necessarily of graded finite Cohen-Macaulay representation type? In particular,

it is shown there is a positive answer when the ring is not Gorenstein. Throughout the

chapter, many different cases of graded countable Cohen-Macaulay type are classified.

Further, the Gorenstein case is studied is shown to be helpful in giving support to the

following folklore conjecture: a Gorenstein ring of countable Cohen-Macaulay repre-

sentation type is a hypersurface. It is shown that the conjecture holds for one dimen-

sional standard graded Cohen-Macaulay rings of graded countable Cohen-Macaulay

type.
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Chapter 1

Introduction

According to I. Burban and Y. Drozd [9], the study of maximal Cohen-Macaulay mod-

ules can be traced back to the theory of integral representations of finite groups in

the nineteenth century. In particular, it originated from the classification of crystallo-

graphic groups which is generalized in Hilbert’s 18th problem [15]. There has been

much progress on the subject over the years and the theory has taken many directions.

The study of maximal Cohen-Macaulay modules in this dissertation is motivated by the

following question of C. Huneke and G. Leuschke [17]:

Question 1.0.1. Let R be a complete local Cohen-Macaulay ring of countable Cohen-

Macaulay representation type, and assume that R has an isolated singularity. Is R then

necessarily of finite Cohen-Macaulay representation type?

Here, a local Cohen-Macaulay ring is said to have finite Cohen-Macaulay type

(respectively, countable Cohen-Macaulay type) if it has only finitely (respectively,

countably) many isomorphism classes of indecomposable maximal Cohen-Macaulay

modules. In the case of countable Cohen-Macaulay type, it is sometimes nice to distin-

guish between rings of finite Cohen-Macaulay type and rings that are countable Cohen-

Macaulay type but actually have infinitely many indecomposables up to isomorphism.

We call such rings of countably infinite Cohen-Macaulay type.
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1.1 Current Results and Background

Question 1.0.1 has a positive answer if the ring is a hypersurface. In particular, it was

shown in [19, 8] that if R is a complete hypersurface containing an algebraically closed

field k (of characteristic different from 2), then R is of finite Cohen-Macaulay type if

and only if R is the local ring of a simple hypersurface singularity in the sense of [1].

For example, if we let k = C, then R is one of the complete ADE singularities over

C. That is, R is isomorphic to kJx,y,z2, . . . ,zrK/( f ), where f is one of the following

polynomials rings:

(An) : xn+1 + y2 + z2
2 + · · ·+ z2

r , n > 1;

(Dn) : xn−1 + xy2 + z2
2 + · · ·+ z2

r , n > 4;

(E6) : x4 + y3 + z2
2 + · · ·+ z2

r ;

(E7) : x3y+ y3 + z2
2 + · · ·+ z2

r ;

(E8) : x5 + y3 + z2
2 + · · ·+ z2

r .

It was further shown in [8] that a complete hypersurface singularity over an alge-

braically closed uncountable field k has (infinite) countable Cohen-Macaulay type if

and only if it is isomorphic to one of the following

(A∞) : kJx,y,z2, . . . ,zrK/(y2 + z2
2 + · · ·+ z2

r ); (1.1)

(D∞) : kJx,y,z2, . . . ,zrK/(xy2 + z2
2 + · · ·+ z2

r ). (1.2)

As both of the above rings are non-isolated singularities, if a hypersurface has an iso-

lated singularity and is countable type then it must have finite type. In 2011, R. Karr
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and R. Wiegand [18, Theorem 1.4] showed the one dimensional case as well; assuming

that the integral closure S of the ring R is finitely generated as an R-module.

Other classes of rings that have been classified are scrolls of type (a1, . . . ,ar) and

are defined below.

Definition 1.1.1. Let a1 > a2 > · · · > ar > 0 be given integers and let {xi j | 0 6 j 6

ai,1 6 i 6 r} be a set of variables over a field k. Then, take the ideal I of the polynomial

ring S1 = k[xi j | 0 6 j 6 ai,1 6 i 6 r] generated by all the 2×2-minors of the matrix:

x10 x11 · · · x1a1−1 | · · · | xr0 xr1 · · · xrar−1

x11 x12 · · · x1a1 | · · · | xr1 xr2 · · · xrar

 .

Define the graded ring R1 to be quotient S1/I with deg(xi j) = 1 for all i, j, and call R

the scroll of type (a1, . . . ,ar). It is known that R is a domain of dimension r+1

Example 1.1.2. Let us consider the scroll of type (2,1). As shown by M. Auslander

and I. Reiten [5, Theorem 2.1], this ring has graded finite Cohen-Macaulay type. Here

r = 2 and

S1 = k[x10,x11,x12,x20,x21].

The ideal I is defined by

I = det2

x10 x11 x20

x11 x12 x21

= (x10x12− x2
11,x10x21− x11x20,x11x21− x12x20)

and hence the scroll of type (2,1) is

R1 =
k[x10,x11,x12,x20,x21]

(x10x12− x2
11,x10x21− x11x20,x11x21− x12x20)

.
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Scrolls where studied extensively by M. Auslander and I. Reiten in both the local

and graded case. In particular, they were able to determine when exactly when a scroll

was of finite Cohen-Macaulay type.

Theorem 1.1.3 ([5, Theorem 3.2]). Let R be a scroll of type (a1, . . . ,ar) over an infinite

field k. Then R is of finite Cohen-Macaulay type if and only if R is of type (m), (1,1),

or (2,1).

It was also shown by M. Auslander that finite Cohen-Macaulay type implies the

ring has an isolated singularity. A fact that has been used several times over by many

different authors.

Theorem 1.1.4 ([2]). Let (R,m,k) be a complete local Cohen-Macaulay ring. If R is of

finite Cohen-Macaulay type, then R has an isolated singularity.

In [11], D. Eisenbud and J. Herzog completely classify the standard graded Cohen-

Macaulay rings of graded finite representation type in the category of graded maximal

Cohen-Macaulay modules over a ring R and degree-preserving homomorphisms. In

doing this, they show that such rings are stretched as introduced by J. Sally [23] (see

Definition 1.2.4):

In researching Question 1.0.1, we have developed the stronger notion of super-

stretched (see Definition 1.2.7) and were able to obtain the following property of rings

with graded countable Cohen-Macaulay type.

Theorem 2.4.4. Let (R,m,k) be a standard graded Cohen-Macaulay ring with un-

countable residue field k. If R is of graded countable Cohen-Macaulay type then it is

super-stretched.

As Proposition 1.2.9 points out, it is not hard to show that super-stretched im-

plies stretched. It turns out, the ADE singularities, along with the two hypersurfaces
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(1.1) and (1.2) of countable type, are super-stretched. On the other hand, the ring

R = C[x,y]/(x3y− xy3), which is of uncountable Cohen-Macaulay type, is stretched

but not super-stretched (see Example 1.2.10).

The main tool in the proof of Theorem 2.4.4 is the ability to recover an ideal from

its dth syzygy. That is, given a free resolution of a carefully chosen m-primary ideal

J, we are able to regain the ideal from the dth syzygy of the resolution. With this

mechanism, we construct uncountably many non-isomorphic, indecomposable maxi-

mal Cohen-Macaulay modules; thus arriving at a contradiction.

It would be nice if the super-stretched condition implied finite type. However, as

mentioned above, (1.1) and (1.2) are super-stretched but are not finite type.

In Section 1.2 we give some preliminary definitions and define what it means to be

stretched and super-stretched. The section ends by showing a couple scenarios when

these two notions coincide. Chapter 2 deals with super-stretched rings that are standard

graded. We begin the chapter by exploring the graded category and defining what it

means to be graded countable Cohen-Macaulay type. Equivalent characterizations of

super-stretched are discovered and it is shown that rings of graded countable Cohen-

Macaulay type are super-stretched. The chapter ends by analyzing standard graded

rings that are super-stretched with minimal multiplicity. In Chapter 3, we examine

what it means for a local ring to be super-stretched.

Chapter 4 uses the previous results to give a partial answer to the graded version

of Question 1.0.1. In particular, it is shown there is a positive answer to the following

question when the ring is not Gorenstein.

Question 1.1.5. Let R be a standard graded Cohen-Macaulay ring of graded countable

Cohen-Macaulay representation type, and assume that R has an isolated singularity. Is

R then necessarily of graded finite Cohen-Macaulay representation type?
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In attempting to answer Question 1.1.5, many different cases of graded countable

Cohen-Macaulay type are classified. Further, the Gorenstein case is studied and Theo-

rem 2.4.4 is shown to be helpful in giving support to the following folklore conjecture.

Conjecture 1.1.6. A Gorenstein ring of countable Cohen-Macaulay representation

type is a hypersurface.

Using Theorem 2.4.4 we show that the conjecture holds for one dimensional stan-

dard graded Cohen-Macaulay rings of graded countable Cohen-Macaulay type.

1.2 Preliminary Definitions

For simplicity, we will always assume residue fields are uncountable of characteristic

0. This is not really necessary, but will make the statements and proofs more readable.

Given a local Cohen-Macaulay ring (R,m,k) of dimension d and an ideal I in R,

recall that the associated graded ring, grIR, is defined by

grIR := R/I ⊕ I/I2 ⊕ I2/I3⊕ ·· · .

If f ∈R, we denote by f ∗ ∈ grIR the leading form of f in grIR. Namely, f ∗ is the image

of f in In/In+1, where f ∈ In, and f /∈ In+1. In the case where R is a local Noetherian

ring, ∩In = 0, so such an n exists.

The Hilbert function, HR(n), is the vector space dimension of the nth summand of

grmR; that is,

HR(n) := dimk(m
n/mn+1).

If k is an infinite field, then D. Northcott and D. Rees [21] showed there exists x1, . . . ,xd

in m such that mn+1 = (x1, . . . ,xd)m
n. The sequence x1, . . . ,xd is called a minimal
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reduction of m. A fact that will be used constantly is that in a Cohen-Macaulay ring,

minimal reductions are regular sequences. Factoring out such a reduction yields an

Artinian ring R, and thus there exists an s such that for n > s, the Hilbert function

HR(n) = 0 and HR(s) 6= 0. We call the sequence of integers

(HR(0),HR(1), . . . ,HR(s))

the h-vector of R and denote it by h(R). In general, the Hilbert function can be repre-

sented as a reduced rational function

HR(t) =
f (t)

(1− t)d−1 ,

where f (t)∈Z[t]. When R is not Cohen-Macaulay, we define the h-vector as the vector

of coefficients of f (t).

The notion of a stretched Cohen-Macaulay ring was first given in 1979 by J. Sally

and is defined as follows.

Definition 1.2.1 ([23]). Let (R,m,k) be a d dimensional local Cohen-Macaulay ring

with embedding dimension v. Let l := e+d−v where e := e(R) is the multiplicity of the

ring R. Then R is stretched in the sense of Sally if there exists a minimal reduction

(x1, . . . ,xd) of m such that l is the minimal integer i such that mi+1 ⊆ (x1, . . . ,xd)R.

It is worth noting that, according to this definition, regular local rings are not

stretched. Indeed, if (R,m) is a regular local ring, then m= (x1, . . . ,xd) is generated by

a minimal reduction and the embedding dimension of R is d. As the multiplicity of R

is e = 1, we must have that l = 1 as well. However, in order for R to be stretched we

need l = 0.

The concepts of the next proposition are contained in [23].
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Proposition 1.2.2. Let (R,m,k) be local Cohen-Macaulay ring of dimension d and

infinite residue field k. The following are equivalent:

(1) R is either stretched in the sense of Sally or a regular local ring;

(2) there exists a minimal reduction x = (x1, . . . ,xd) of m such that

dimk

(
grm

x

(
R
x

))
i
6 1

for all i > 2.

Proof. Assume that (1) holds. If R is regular then x =m and we have that

grm
x

(
R
x

)
=

R
m
.

Thus (2) holds. If R is stretched in the sense of Sally with embedding dimension e−

l +d, then there exists a minimal reduction x = (x1, . . . ,xd) of m such that ml+1 ⊆ xR

and ml * xR. Consider the ring

G := grm
x

(
R
x

)
=

R
m
⊕ m

m2 +x
⊕·· ·⊕ ml +x

ml+1 +x
⊕ ml+1 +x

ml+2 +x
⊕·· · .

As x is a reduction of m, we have that

dimk

(
m

m2 +x

)
= e− l.

Claim. For G as above, dimk Gl 6= 0.

If the claim is true, then the fact that λ (G) = e(R) implies that dimk Gi = 1 for

2 6 i 6 l. Here λ (G) is the length of G. To see the claim, notice that if dimk Gl = 0,
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then ml+1 +x =ml +x. Hence

ml ⊆ x+ml+1. (1.3)

By Nakayama’s lemma, this forces ml ⊆ xR, a contradiction.

For the converse assume that R is not regular and that e− l + d be the embedding

dimension. Define

G := grm
x

(
R
x

)
=

R
m
⊕ m

m2 +x
⊕·· ·⊕ ml +x

ml+1 +x
⊕ ml+1 +x

ml+2 +x
⊕·· · .

As λ (G) = e(R), condition (2) forces

dimk Gi = dimk

(
mi +x
mi+1 +x

)
=



1 i = 0

e− l i = 1

1 2 6 i 6 l

0 i > l

Since dimk Gl = 1, we have that ml + x 6= ml+1 + x. This forces ml * xR. To see that

ml+1 ⊆ xR, notice that dimk Gl+1 = 0 and hence ml+2 + x = ml+1 + x. As in (1.3)

intersect with ml+1 and use Nakayama’s lemma to see that ml+1 ⊆ xR.

Remark 1.2.3. The notion of a Cohen-Macaulay ring R being “stretched” can be viewed

as a condition on the h-vector. As such, it is sometimes convenient to allow regular

local rings to be considered as stretched. As J. Sally’s notion of stretched Cohen-

Macaulay ring omits regular local rings, for the results in this manuscript, we shall use

the following definition.
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Definition 1.2.4. Let (R,m,k) be a local Cohen-Macaulay ring of dimension d. We say

that R is stretched if any of the conditions in Proposition 1.2.2 are satisfied.

If R is a standard graded ring (see page 16), we only need to consider condition (2)

of Proposition 1.2.2 for the definition of stretched.

Definition 1.2.5. Let (R,m,k) be a standard graded Cohen-Macaulay ring of dimen-

sion d. We say R is stretched if there exists a homogeneous minimal reduction

x = (x1, . . . ,xd) of m such that

dimk

(
R
x

)
i
6 1

for all i > 2.

In particular, if a ring R is stretched, then there exists a minimal reduction (x1, . . . ,xd)

of the maximal ideal m such that the h-vector is (1,a,1,1, . . . ,1). Here,

a = dimk

(
m+(x1, . . . ,xd)

m2 +(x1, . . . ,xd)

)
= dimk

( m

m2

)
−d.

In 1988, D. Eisenbud and J. Herzog were able to relate the stretched condition to

finite Cohen-Macaulay type with the following theorem.

Theorem 1.2.6 ([11, Theorem A]). Standard graded Cohen-Macaulay rings of graded

finite Cohen-Macaulay type are stretched.

We discovered that a stronger condition holds which we call super-stretched. Even

more, we are able to prove graded countable Cohen-Macaulay type implies super-

stretched when the ring in question is standard graded. We define this stronger notion of

stretched by considering the Hilbert series of the quotient of any system of parameters.

In particular, we introduce the following definition.

10



Definition 1.2.7. A local Cohen-Macaulay ring (R,m,k) of dimension d is said to be

super-stretched if for all homogeneous system of parameters x∗1, . . . ,x
∗
d in grmR,

dimk

(
grmR

(x∗1, . . . ,x
∗
d)

)
i
6 1 (1.4)

for all i >
d

∑
j=1

deg(x∗j)−d +2.

Similarly, we define what is meant for a standard graded Cohen-Macaulay ring to

be super-stretched.

Definition 1.2.8. A standard graded Cohen-Macaulay ring (R,m,k) of dimension d is

said to be super-stretched if for all homogeneous systems of parameters x1, . . . ,xd ,

dimk

(
R

(x1, . . . ,xd)

)
i
6 1 (1.5)

for all i≥ ∑deg(x j)−d +2.

If a Cohen-Macaulay ring R is super-stretched, then for any homogenous system

of parameters (x1, . . . ,xd), the h-vector is (1,a1,a2, . . . ,aD−1,1, . . . ,1). Here, D =

∑deg(xi)−d +2 and

a j = dimk

(
m j +(x1, . . . ,xd)

m j+1 +(x1, . . . ,xd)

)
.

Proposition 1.2.9. If a ring (R,m,k) is super-stretched with an infinite residue field k,

then it is also stretched.

Proof. To see this in the standard graded case, choose a homogeneous minimal reduc-

tion x1, . . . ,xd of degree one. Then Equation (1.5) holds for all i>∑deg(x j)−d+2= 2;

i.e. R is stretched. For the local case, consider a homogeneous minimal reduction

11



x∗1, . . . ,x
∗
d of ⊕i>0Gi in G := grmR. Let x := (x1, . . . ,xd)R. As x∩mi ⊇ xmi−1, we

always have that

dimk

(
grm

x

(
R
x

))
i
= dimk

mi

mi+1 +x∩mi 6 dimk
mi

mi+1 +xmi−1 = dimk

(
grmR

x

)
i
.

Therefore, if the local ring R is super-stretched, we have that

dimk

(
grm

x

(
R
x

))
i
6 dimk

(
grmR

x

)
i
6 1,

and hence R is stretched as well.

As we see in the next example, if a ring is stretched, it is not necessarily super-

stretched.

Example 1.2.10. The standard graded Cohen-Macaulay ring R =C[x,y]/(x3y−xy3) is

stretched but not super-stretched. To see this, notice that x+2y is a regular element. As

a vector space over C,

dimC

(
R

(x+2y)

)
2
= dimC

(
R

(x+2y)

)
3
= 1

and

dimC

(
R

(x+2y)

)
i
= 0

for all i > 4. In order for R to be super-stretched, dimCRi 6 1 for all

i > deg((x+2y)2)−1+2 = 3.
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However, going modulo (x+2y)2 yields

dimC

(
R

(x+2y)2

)
3
= 2.

and thus R is not super-stretched.

It turns out that there are a few instances when stretched and super-stretched coin-

cide. In particular, this happens when the ring in question is zero dimensional or when

the ring is a complete intersection that is not a hypersurface.

A zero dimensional ring does not have any system of parameters. Hence, we see

that the expression ∑deg(xi)− d + 2 in the definition of super-stretched becomes just

2. From here it is easy to see that the two definitions are equivalent. A little more work

is needed to see this for complete intersections.

Proposition 1.2.11. Let (R,m,k) be a standard graded complete intersection that is

stretched with k an infinite field. Then R is a hypersurface or defined by two quadrics.

Proof. Let S = k[y1, . . . ,yn] and R = S/( f1, . . . , fm) with dim(R) = d and deg( fi) = di.

Further, let x = (x1, . . . ,xd) be a minimal reduction of the maximal ideal m. Given that

R is a complete intersection, we know that the Hilbert function of R/x is

H S
( f1,..., fm,x1,...,xd )

(t) =
(1− td1) · · ·(1− tdm) · (1− t)d

(1− t)n

= (1+ t + · · ·+ td1−1) · · ·(1+ t + · · ·+ tdm−1). (1.6)

As R is Gorenstein and stretched, we know that the h-vector is of the form (1,1) or

(1,N,1) for some N > 0. It is enough to only consider the h-vector (1,N,1).

13



If the h-vector is (1,N,1), then (1.6) is of the form 1+Nt + t2. In particular, the

only case to consider is when N = 2. In this case, (1.6) is (1+ t)(1+ t) and thus the

ideal I is generated by two quadrics.

Example 1.2.10 showed that a hypersurface can be stretched but not super-stretched.

As it turns out, this is not the case when the ring is a complete intersection defined by

2 quadrics. Before we move on to the next result, we need the following definition.

Definition 1.2.12. Let R be a Cohen-Macaulay ring with h-vector

(HR(0),HR(1), . . . ,HR(s)).

The socle degree of R is defined to be SocDeg(R) = s.

Corollary 1.2.13. Let (R,m,k) be a standard graded complete intersection that is not

a hypersurface. Then R is stretched if and only if R is super-stretched.

Proof. It is enough to show that stretched implies super-stretched. To do this we show

that the socle degree of R modulo a homogeneous system of parameters is not too large.

Since R is not a hypersurface, Proposition 1.2.11 implies that R = k[y1, . . . ,yn]/( f1, fg),

dim(R) = d, and deg( fi) = 2. Let x = (x1, . . . ,xd) be an ideal generated by a homo-

geneous system of parameters. As the h-vector of R is (1,2,1), we have that the socle

degree of R/x is

SocDeg(R/x) = deg( f1)+deg( f2)+∑degx j− (2+d) = ∑degx j−d +2.
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Thus for i > ∑degx j−d +2,

dimk

(
R
x

)
i
=


1 if i = ∑degx j−d +2,

0 if i > ∑degx j−d +2

for any homogeneous system of parameters x of R. Therefore R is super-stretched as

well.
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Chapter 2

Super-Stretched Graded Rings

In 1988, D. Eisenbud and J.Herzog [11] were able to show that standard graded rings

of finite Cohen-Macaulay type are stretched. In this chapter, standard graded rings

of countable Cohen-Macaulay type are shown to be stretched. In particular, we are

able to show that a standard graded ring of graded countable Cohen-Macaulay type

is super-stretched. Before this concept is developed, the graded category is examined

and explained. The chapter ends with some applications to standard graded rings with

minimal multiplicity.

We say that a ring R is standard graded if, as an abelian group, it has a decompo-

sition R =
⊕
i>0

Ri such that RiR j ⊆ Ri+ j for all i, j > 0, R = R0[R1], and R0 is a field. For

the remainder of this section, we will denote (R,m,k) by the standard graded ring with

m being the irrelevant maximal ideal, that is, m = ∑
∞
i=1 Ri, and k := R0 = R/m being

an uncountable field of characteristic 0. Further, we will always assume that a standard

graded ring is Noetherian.

As is, the definition of super-stretched (see Definition 1.2.8) is difficult to check;

one needs to check every homogenous system of parameters against condition (1.5).

Our goal is to find equivalent conditions (Theorem 2.2.9) that will allow us to find

examples, and be useful in proving results about super-stretched rings.
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2.1 The Graded Category

All of the results in Chapter 2 will be considered in the “graded category” of finitely

generated graded R-modules. The objects of the category are the obvious choices,

but there is a bit of ambiguity as to what the maps are. As such, we give a precise

definition of what this category is. We also explore alternate ways of defining rings of

graded finite (and countable) Cohen-Macaulay type. Understanding the nomenclature

will help us avoid various snares along the way. An illustration of such a pitfall can be

found in Example 2.4.1.

For a local Noetherian ring R, let Mod(R) denote the category of finitely generated

R-modules. Here the objects are defined as finitely generated R-modules and the mor-

phisms are R-module homomorphisms. The full and faithful subcategory MCM(R)

is the category of maximal Cohen-Macaulay modules whose morphisms are defined

by R-module homomorphisms between maximal Cohen-Macaulay modules. If R is a

standard graded ring, we define a subcategory of Mod(R) that respects the grading. In

particular, we let Modgr(R) be the category whose objects are finitely generated graded

modules. The morphisms of Modgr(R) are graded R-module homomorphisms of de-

gree zero. As with MCM(R), we define the full and faithful subcategory of graded

maximal Cohen-Macaulay modules by MCMgr(R) where the morphisms are graded

degree zero R-module homomorphisms.

We say that a result P holds in the graded category of a ring R if P holds for all

modules and morphisms in Modgr(R). If M is an object of Modgr(R) we denote the

shift of M by n by M(n)i = Mi+n. Further, we say two modules M and N in Modgr(R)

are isomorphic up to shift in degree if there exists an integer n such that M ' N(n)

in the graded category.
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We are now ready to define what is meant by a graded Cohen-Macaulay type of a

standard graded ring.

Definition 2.1.1. A standard graded Cohen-Macaulay ring (R,m,k) ring is said to

have graded finite Cohen-Macaulay type (respectively, graded countable Cohen-

Macaulay type) if it has only finitely (respectively, countably) many indecomposable

modules in MCMgr(R) up to a shift in degree.

It is worth pointing out that there are a few possible choices in the definition of

graded finite Cohen-Macaulay type of a standard graded ring R. For example, one could

use any of the following characterizations for graded finite Cohen-Macaulay type:

(A) there are finitely many graded indecomposable modules up to isomorphism in

MCMgr(R);

(B) there are finitely many graded indecomposable modules in MCMgr(R) up to

shifts in degrees;

(C) there are finitely many graded indecomposable modules up to isomorphism in

MCM(R);

(D) there are finitely many indecomposable modules up to isomorphism in MCM(R̂).

Here and throughout the rest of the thesis, we denote the completion with respect to

the m-adic topology by ∗̂. As it turns out, using (A) as the definition would not be

very helpful, since in general {R(n)} is an infinite family of non-isomorphic graded

indecomposable maximal Cohen-Macaulay modules. In short, only the zero ring would

have graded finite Cohen-Macaulay type. Thus we can safely remove (A) from the list

of possible definitions. Since we have adopted (B) as the definition, the question is,

how do (C) and (D) fit into the picture? In Corollary 2.1.7, we see that (B), (C) and (D)
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are equivalent definitions, which follows as consequence of the work of M. Auslander

and I. Reiten.

Proposition 2.1.2 ([4, Proposition 8 and 9]). Let A,B be objects in MCMgr(R) where

(R,m,k) is a standard graded Cohen-Macaulay ring.

(1) The graded module A is indecomposable in MCMgr(R) if and only if Â is inde-

composable in the MCM(R̂);

(2) If A and B are indecomposable, then Â ' B̂ in MCM(R̂) if and only if there is

some integer n such that A' B(n) in MCMgr(R).

Corollary 2.1.3. Let (R,m,k) be a standard graded Cohen-Macaulay ring and M,N be

indecomposable objects in MCMgr(R). Then, M ' N in MCM(R) if an only if there

is some integer n such that M ' N(n) in MCMgr(R).

Proof. This follows from the fact that completion is faithfully flat and Proposition 2.1.2

part (2).

Another immediate corollary of Proposition 2.1.2 is the fact that the completion

“bounds” the Cohen-Macaulay type.

Corollary 2.1.4. Let (R,m,k) be a standard graded Cohen-Macaulay ring and R̂ the

m-adic completion. If R̂ is of finite (respectively countable) Cohen-Macaulay type, then

R is of graded finite (respectively graded countable) Cohen-Macaulay type.

The next proposition shows the equivalence of (B) and (C) for rings of finite Cohen-

Macaulay type.

Proposition 2.1.5. Let (R,m,k) be a standard graded Cohen-Macaulay ring. Then (B)

and (C) are equivalent statements. In particular, either statement could be used as the

definition of graded finite Cohen-Macaulay type.
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Proof. To see that (B) implies (C), notice that condition (C) has more isomorphisms

in each class of indecomposable maximal Cohen-Macaulay modules than there are in

each class satisfying condition (C). Thus, if (B) holds true, then (C) must be also be

fulfilled.

It is left to show that (C) implies (B). By contradiction, assume there are infinitely

many graded indecomposable modules in MCMgr(R) up to shits in degree. We let

{Mα}α∈Λ be a family of representatives, one from each isomorphism class. Let α,β ∈

Λ and assume that Mα 'Mβ in MCM(R). By Corollary 2.1.3, there exists an n such

that Mα 'Mβ (n) in MCMgr(R). In other words, Mα and Mβ are in the same isomor-

phism class up to shift. Therefore we must have that α = β . This forces infinitely many

graded indecomposable modules up to isomorphism in MCM(R), a contradiction.

When considering indecomposable maximal Cohen-Macaulay modules M,N in the

graded category, if there is an isomorphism between M and N, then Corollary 2.1.3 says

there exists a graded isomorphism between the two modules. Another nice result about

the graded category is that the “finiteness” of MCMgr(R) and MCM(R̂) are the same.

Theorem 2.1.6 ([4, Theorem 5]). Let (R,m,k) be a standard graded Cohen-Macaulay

ring and R̂ the completion with respect to the maximal ideal m. Then R is of finite

graded Cohen-Macaulay type if and only if R̂ is of finite Cohen-Macaulay type.

With Theorem 2.1.6 in hand, we are able to combine it with Proposition 2.1.5 to

obtain the following immediate corollary.

Corollary 2.1.7. Let (R,m,k) be a standard graded Cohen-Macaulay ring and R̂ the

completion with respect to the maximal ideal m. Then conditions (B), (C), and (D) are

equivalent.
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As with graded finite Cohen-Macaulay type, there are a few possible choices for the

definition of graded countable Cohen-Macaulay type of a standard graded ring R. As

described above, we could use any of the following for the definition:

(A’) there are countably many graded indecomposable modules up to isomorphism in

MCMgr(R);

(B’) there are countably many graded indecomposable modules in MCMgr(R) up to

shifts in degrees;

(C’) there are countably many graded indecomposable modules up to isomorphism in

MCM(R);

(D’) there are countably many indecomposable modules up to isomorphism in the

category MCM(R̂).

Unlike the finite case, using (A’) as the definition has potential. Notice that condition

(A’) is just removing the shifts and only allowing degree zero homomorphism between

the modules. By removing the shifts, we are only adding up to countably many new

isomorphism classes with condition (A’). Hence (A’) does not really add anything new.

In Proposition 2.1.8, we see that conditions (A’), (B’), and (C’) are equivalent. Further,

Corollary 2.1.10 describes the relation of (D’) with the other statements.

Proposition 2.1.8. Let (R,m,k) be a standard graded Cohen-Macaulay ring. Then (A’),

(B’), and (C’) are equivalent statements. In particular, any of the statements could be

used as the definition of graded countable Cohen-Macaulay type.

Proof. To show that (A’) implies (B’), notice that by removing the shifts we are adding

more isomorphism classes. Therefore (B’) follows. A similar argument as in Proposi-

tion 2.1.5 shows that (B’) implies (C’).
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To see that (B’) implies (A’), assume by contradiction that there exists uncountably

many graded indecomposable maximal Cohen-Macaulay modules up to isomorphism

in MCMgr(R). Let {Mα}α∈Λ be a family of representatives, one from each indecom-

posable class. Consider the isomorphism classes up to shifts in degrees. That is for

each α ∈ Λ, there exists a subset I ⊆ Λ, with the property that for each β ∈ I, there

exists an integer n such that Mα 'Mβ (n). Let β ,γ ∈ I and assume that there exist an

integer n such that

Mγ(n)'Mα 'Mβ (n).

As all of the isomorphisms above are degree zero, we have that Mβ = Mγ (i.e. β =

γ). Hence, when we include the shifts to our assumption, for each α ∈ Λ we only

associate countably many indecomposables up to shifts. Hence there are uncountably

many graded indecomposable modules in MCMgr(R) that are isomorphic up to shifts

in degrees, a contradiction.

It is left to show that (C’) implies (B’). By contradiction, assume there are uncount-

ably many graded indecomposable modules in MCMgr(R) up to shits in degree. Let

{Mα}α∈Λ be an uncountable family of representatives from each isomorphism class.

We wish to form the isomorphism classes described in (C’). Let α,β ∈ Λ and as-

sume that Mα 'Mβ in MCM(R). Thus by Corollary 2.1.3, there exists an n such that

Mα 'Mβ (n) in MCMgr(R). In other words, Mα and Mβ are in the same isomorphism

class up to shift. Therefore we must have that α = β . This forces uncountably many

graded indecomposable modules up to isomorphism in MCM(R), a contradiction.

Remark 2.1.9. If a standard graded ring R is of graded finite Cohen-Macaulay type

then it is also of graded countable Cohen-Macaulay type. This does not mean that there

are finitely many isomorphism classes as defined in conditions (A’), (B’), and (C’). By
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Proposition 2.1.5, the ring being of finite type only says that there are finitely many

isomorphism classes as defined in the conditions (B’) and (C’).

Corollary 2.1.10. Let (R,m,k) be a standard graded Cohen-Macaulay ring. If condi-

tion (D’) holds, then so do the statements (A’), (B’), and (C’).

Proof. This is a direct application of Corollary 2.1.4 and Proposition 2.1.8.

As a further extension to countable type, we would like to modify Theorem 2.1.6

to the case when R is of graded countable Cohen-Macaulay type (see Question 2.1.16).

But first, we need to clarify what it means for a graded ring to have isolated singularity

in the graded category.

2.1.1 The Graded Singular Locus

Let (R,m,k) be a standard graded ring and p a homogeneous prime ideal in R. We

define the graded localization of R at p to be

R(p) =
{x

a
| x ∈ R, a is homogeneous in R\p

}
.

Remark 2.1.11. Notice that for a homogeneous prime ideal p in the standard graded

ring R, R(p) is graded but not necessarily standard graded. In particular, if x ∈ R is a

homogeneous element, we define the deg(x/a) := deg(x)−deg(a) for x/a∈ R(p). Thus

the grading on R(p) is defined by

(
R(p)

)
i := {x/a ∈ R(p) | x is homogeneous, deg(x/a) = i}.

Hence R(p) =⊕i∈Z(R(p))i where (R(p))i = 0 if and only if (R(p))−i = 0. Further notice

that, unlike R, the units of R(p) are not necessarily centralized in (R(p))0.
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As in Y. Yoshino’s book [25, Chapter 15], we define the graded singular locus of

R to be

Singgr(R) = {p ∈ Spec(R) | p is homogeneous and R(p) is not regular }

and say that R is a graded isolated singularity if Singgr(R) = m. In the definition of

Singgr(R), we say that R(p) is not regular if there is a maximal ideal η (not necessarily

homogeneous) such that (R(p))η is not a regular local ring.

It turns out that a distinction between the graded singular locus in the graded cate-

gory and the usual singular locus is not necessary. We see why in Propositions 2.1.12

and 2.1.13 below.

For an ideal I in a graded ring R, let I∗ denote the ideal generated by all of the

homogeneous elements of I. To help understand the situation, we have the following

known results from [7].

Proposition 2.1.12. Let (R,m,k) be a standard graded ring and p be a prime ideal in

R, not necessarily homogeneous.

(1) p∗ is a homogeneous prime ideal;

(2) Rp is a regular local ring if and only if Rp∗ is a regular local ring.

Proof. The proof of (1) can be found in [7, Lemma 1.5.6 (a)]. Part (2) is an exercise in

[7, Exercise 2.2.24 (a)].

Proposition 2.1.13. Let (R,m,k) be a standard graded ring and p be a homogeneous

prime ideal in R. Then R(p) is regular if and only if Rp is a regular local ring.

Proof. First assume that R(p) is regular. Thus the localization of any prime ideal in R(p)

is also regular. Notice that pR(p) is a prime ideal and that (R(p))pR(p)
= Rp. Therefore

Rp is a regular local ring.
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Conversely, assume that R(p) is not regular. Notice that by definition of R(p), if η

was maximal ideal in R(p), we must have that η ⊇ pR(p). As η \pR(p) does not contain

any homogeneous elements, we know that η∗ = pR(p).

Since R(p) is not regular, there exists a maximal ideal η in R(p) such that (R(p))η

is not a regular local ring. However, by Proposition 2.1.12 (2), Rp = (R(p))η∗ is not a

regular local ring.

Corollary 2.1.14. Let (R,m,k) be a standard graded ring and p be a ideal in R. Then

p ∈ Sing(R) if and only if p∗ ∈ Singgr(R).

Proof. This is a straight forward application of Propositions 2.1.12 and 2.1.13.

Although it is consistent to the graded category to speak of Singgr(R), it is compu-

tationally easier to deal with Sing(R). Thus, when dealing with the singular locus of a

standard graded ring, Corollary 2.1.14 allows us to switch between the two concepts.

With this language, we are also able to state the graded version of Theorem 1.1.4.

Theorem 2.1.15 ([4, Proposition 4]). Let (R,m,k) be a Cohen-Macaulay standard

graded ring. If R is of graded finite Cohen-Macaulay type then R is an isolated sin-

gularity.

Given Theorem 2.1.15, it is worth reconsidering the relation of condition (D’) on

page 21 with conditions (A’), (B’) and (C’). In Corollary 2.1.10, we saw that (D’) im-

plies the other conditions. As a standard graded ring of graded finite Cohen-Macaulay

type always has an isolated singularity, it might be possible to extend Theorem 2.1.6

to the countable case if we assume isolated singularity. In particular, we would like

to know when (D’) is actually equivalent to the other conditions; we leave this as a

question.
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Question 2.1.16. Let (R,m,k) be a standard graded Cohen-Macaulay ring and R̂ the

completion with respect to the maximal ideal m. If R has an isolated singularity and

is of countable graded Cohen-Macaulay type, then is R̂ of countable Cohen-Macaulay

type?

2.2 Graded super-stretched

Before we can show equivalent characterizations of super-stretched (Theorem 2.2.9),

we need to build up the theory of super-stretched standard graded rings. For the next

results, we will use the following notation. Let y1, . . . ,yn and x1, . . . ,xm be sequences

in a ring R such that (y1, . . . ,yn) ⊆ (x1, . . . ,xm). We let y = Ax represent the relations

yi = ∑
m
j=1 ai jx j and denote the containment of (y1, . . . ,yn) in (x1, . . . ,xm) by (y)

A
⊆ (x).

Further, we define (y1, . . . ,yn)
[t] := (yt

1, . . . ,y
t
n).

Lemma 2.2.1. Let (R,m,k) be a standard graded ring and x1, . . . ,xn a homogeneous

regular sequence in R. Then for all t > 1,

(x1, . . . ,xn)
[t] : (x1 · · ·xn)

t−1 = (x1, . . . ,xn).

Proof. It is enough to show that (x1, . . . ,xn)
[t] : (x1 · · ·xn)

t−1 ⊆ (x1, . . . ,xn). To prove

this we will induct on n. For n = 1, we need to show that (xt
1) : (xt−1

1 )⊆ (x1). Let r ∈ R

such that rxt−1
1 = axt

1 where a is an element of R. As x1 is a non-zero divisor on R, we

have that r = ax1.

Assume the result holds for all homogeneous regular sequences of length n−1 and

let

r(x1 · · ·xn)
t−1 = a1xt

1 + · · ·+anxt
n
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where the ai’s are elements of R. Subtracting anxt
n from each side gives us that

xt−1
n
(
r(x1 · · ·xn−1)

t−1−anxn
)
= a1xt

1 + · · ·+an−1xt
n−1.

Note that xt
1, . . . ,x

t
n−1,xn is a regular sequence as x1, . . . ,xn is a regular sequence. This

forces r(x1 · · ·xn−1)
t−1 ∈ (xt

1, . . . ,x
t
n−1,xn). Further, as R is a standard graded ring, a

graded version of Nakayama’s lemma holds and we have that every permutation of the

sequence x1, . . . ,xn is also a regular sequence. Thus, the image of the regular sequence

xt
1, . . . ,x

t
n−1,xn in R modulo xn is also a regular sequence. We can write

r(x1 · · ·xn−1)
t−1 = b1xt

1 + · · ·+bn−1xt
n−1 +bnxn

where bi are elements of R. Let ∗ denote the image of an element in R/xnR. Modulo

xn, the above relation becomes

r(x1 · · ·xn−1)
t−1 = b1xt

1 + · · ·+bn−1xt
n−1.

Since xt
1,x

t
2, . . . ,x

t
n−1 is a regular sequence, we may use the induction hypothesis to

show that r ∈ (x1, . . . ,xn−1). Lifting back to R shows us that r ∈ (x1, . . . ,xn).

The next lemma is needed for Proposition 2.2.3 and is stated without proof.

Lemma 2.2.2 ([12, Corollary 2.5]). Let R be a commutative ring with identity, d =

dim(R) and let (y1, . . . ,yd) ⊂ (x1, . . . ,xd). Suppose that there exist two matrices A =

(ai j) and B = (bi j) such that yi =
d
∑
j=1

ai jx j =
d
∑
j=1

bi jx j. Then (y1 · · ·yd)
d(detA−detB)∈

(yd+1
1 , . . . ,yd+1

d ).

Proposition 2.2.3. Let (R,m,k) be a standard graded Cohen-Macaulay ring of dimen-

sion d and assume that (y1, . . . ,yd) ⊆ (x1, . . . ,xd) are ideals generated by a homoge-
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neous system of parameters. Let A = (ai j) such that yi = ∑
d
j=1 ai jx j for i = 1, . . . ,d. If

∆ = det A, then the map R/(x1, . . . ,xd)
· ∆−→ R/(y1, . . . ,yd) is injective.

Proof. Notice that the above map is well-defined as ∆(x1, . . . ,xd)⊂ (y1, . . . ,yd). Let r ∈

R such that r ·∆∈ (y1, . . . ,yd). Since y1, . . . ,yd is a homogeneous system of parameters,

there exists a positive integer t and a matrix B such that (x1, . . . ,xd)
[t]

B
⊆ (y1, . . . ,yd).

Hence we have the following inclusions:

(x1, . . . ,xd)
[t] B
⊆ (y1, . . . ,yd)

A
⊆ (x1, . . . ,xd)

(x1, . . . ,xd)
[t] D
⊆ (x1, . . . ,xd),

where D is the diagonal matrix with entries xt−1
i . Let E = AB. By Lemma 2.2.2 we

obtain

(x1 · · ·xd)
td(det E−det D) ∈ (x1, . . . ,xd)

[td+t].

As det D = (x1 · · ·xd)
t−1, we have

(x1 · · ·xd)
td(det B)∆− (x1 · · ·xd)

td(x1 · · ·xd)
t−1 ∈ (x1, . . . ,xd)

[td+t]

and thus multiplication by r yields

r(x1 · · ·xd)
td(det B)∆− r(x1 · · ·xd)

td(x1 · · ·xd)
t−1 ∈ (x1, . . . ,xd)

[td+t]. (2.1)

Since r∆ ∈ (y1, . . . ,yd), we have that

r · (x1 · · ·xd)
td ·detB ·∆ ∈ (x1 · · ·xd)

td ·detB · (y1, . . . ,yd). (2.2)
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By definition of B, (y1, . . . ,yd) ·det B⊆ (x1, . . . ,xd)
[t] and hence

(x1 · · ·xd)
td ·detB · (y1, . . . ,yd)⊆ (x1 · · ·xd)

td(x1, . . . ,xd)
[t] ⊂ (x1, . . . ,xd)

[td+t]. (2.3)

Combining (2.2) and (2.3) we see that r ·(x1 · · ·xd)
td ·detB ·∆∈ (x1, . . . ,xd)

[td+t]. There-

fore, (2.1) gives r(x1 · · ·xd)
td(x1 · · ·xd)

t−1 ∈ (x)[td+t] and thus

r(x1 · · ·xd)
td+t−1 ∈ (x)[td+t].

Since R is Cohen-Macaulay, we have that our sequence (x1, . . . ,xd) is actually a ho-

mogeneous regular sequence. Applying Lemma 2.2.1 shows that r ∈ (x1, . . . ,xd) and

hence multiplication by ∆ is injective.

Proposition 2.2.4. Let (R,m,k) be a graded Cohen-Macaulay ring of dimension d. If

y1, . . . ,yd is a homogeneous system of parameters satisfying (1.5), and x1, . . . ,xd is a

homogeneous system of parameters such that (y1, . . . ,yd)⊆ (x1, . . . ,xd), then x1, . . . ,xd

satisfies (1.5) as well.

Proof. Since (y1, . . . ,yd) ⊆ (x1, . . . ,xd), we can write yi = ∑
d
j=1 ai jx j and let A = (ai j)

be a d× d matrix of elements in R. Let the deg(yi) = fi and deg(xi) = ei. This forces

the deg(ai j) = fi− e j. Now let ∆ = det(A) and notice that deg(∆) = ∑
d
i=1 fi−∑

d
i=1 ei.

Since R is Cohen-Macaulay, y1, . . . ,yd and x1, . . . ,xd are regular sequences. Let c =

∑
d
i=1 ei−d +2. By Lemma 2.2.3, multiplication by ∆ is an injection, in particular,

(
R

(x1,...,xd)

)
c

� � ∆ //
(

R
(y1,...,yd)

)
c+deg(∆)
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is a graded homomorphism. Thus, if

dimk(R/(x1, . . . ,xd))c > 2,

so is dimk(R/(y1, . . . ,yd))c+deg(∆). But y1, . . . ,yd satisfies (1.5), thus we must have that

x1, . . . ,xd satisfies the same property.

This next lemma is a basic fact that we will use multiple times and we state it here

without proof.

Lemma 2.2.5. Let R be a commutative ring with identity. For ideals I,J,K ⊆ R with

K ⊆ I, we have the following:

I + J
K + J

' I
(I∩ J)+K

.

This next proposition distinguishes super-stretched rings from that of stretched rings

as not all stretched rings have this property. Further, when R is a zero dimensional

super-stretched ring, this proposition fails as can be seen by the ring k[x]/(x4).

Proposition 2.2.6. If (R,m,k) is a standard graded Cohen-Macaulay ring of dimension

d > 0 that is super-stretched, then for all homogeneous minimal reductions (x1, . . . ,xd)

of the maximal ideal m, we have m3 = (x1, . . . ,xd)m
2.

Proof. Induct on d. For the dimension one case let x be a minimal reduction. (Note that

deg(x) = 1.) Because R is super stretched, we have that dimk(R/xR)2 = 1. By Lemma

2.2.5 we have

dimk
m2 +(x)
m3 +(x)

= dimk
m2

m3 +((x)∩m2)
= dimk

m2

m3 + xm
= 1.
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Note that the second equality is always true as (x)∩m2 = xm if x /∈m2. The displayed

equality says that there is a y ∈ m2− (xm+m3) such that m2 = xm+(y)+m3. By

Nakayama’s lemma we have m2 = xm+(y).

By the super-stretched hypothesis we can also consider R modulo x2. Due to the

grading we have that (x2)∩m3 = x2m. This gives us

dimk
m3

m4 + x2m
= 1.

Thus, as before, there exists z ∈ m3 − (x2m+m4) such that m3 = x2m+ (z) +m4.

Nakayama’s lemma shows that m3 = x2m+(z).

Notice that we can choose z to be anything in m3− (x2m+m4). We would like to

choose z = xy, but first we must show

Claim. The element xy is not in x2m+m4.

If the claim holds, then we have

m3 = x2m+(z)

= x2m+(xy)

= x(xm+(y))

= xm2.

This is the desired result for dimension one.

To show the claim, let n be minimally chosen such that mn = xmn−1 and suppose

xy ∈ x2m+m4. Since m2 = xm+ (y), we have that xm2 ⊆ x2m+m4. Assume that

n > 3 and multiply by mn−3. As R is Cohen-Macaulay, we have that x is a non-zero

divisor. Cancel the x’s to observe that mn−1 ⊆ xmn−2+mn. This forces mn−1 = xmn−2,

a contradiction since n was chose to be minimal. Thus xy /∈ (x2m+m4).
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For higher dimensions we may assume that

m3 +(xd)

(xd)
=

(x1, . . . ,xd−1)m
2 +(xd)

(xd)
.

Lifting gives us the inclusion

m3 ⊆ (x1, . . . ,xd−1)m
2 +(xd).

Notice by the grading, and the regularity of xd , we have that m2 = (m3 : xd) and hence

m3 = (x1, . . . ,xd−1)m
2 + xd(m

3 : xd)

= (x1, . . . ,xd)m
2.

The next lemma is well known and is useful in proving Proposition 2.2.8

Lemma 2.2.7. Let a1, . . . ,ak be elements of a ring R. Then for every positive integer m,

(am
1 , . . . ,a

m
k )(a1, . . . ,ak)

(k−1)(m−1) = (a1, . . . ,ak)
(m−1)k+1.

Proof. Page 152 of [24].

The next proposition is helpful in obtaining a converse to Proposition 2.2.6.

Proposition 2.2.8. Let (R,m,k) be a d-dimensional standard graded ring and let the

ideal (x1, . . . ,xd) be a homogeneous reduction of m such that (x1, . . . ,xd)m
2 =m3. If R

is stretched, then (xt
1, . . . ,x

t
d) satisfies (1.5) for all t > 0.
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Proof. We would like to show that for all t > 0,

dimk

(
R

(xt
1, . . . ,x

t
d)

)
i
< 2

for each i > dt−d +2. In particular, we need that

dimk

(
mdt−d+2

mdt−d+3 +(xt
1, . . . ,x

t
d)∩mdt−d+2

)
< 2.

To show this, we need to first show the equality

dimk

(
mdt−d+2

mdt−d+3 +(xt
1, . . . ,x

t
d)∩mdt−d+2

)
= dimk

(
mdt−d+2

(xt
1, . . . ,x

t
d)m

dt−d+2−t

)
. (2.4)

In order to see equation (2.4), notice that

mdt−d+3 +(xt
1, . . . ,x

t
d)∩m

dt−d+2 =mdt−d+3 +(xt
1, . . . ,x

t
d)m

dt−d+2−t . (2.5)

As (x1, . . . ,xd)m
2 = m3, we have that for any positive integer N, (x1, . . . ,xd)

Nm2 =

mN+2. Further, if we consider mdt−d+3 and let N = d(t−1)+1, we have that

mdt−d+3 =md(t−1)+3 = (x1, . . . ,xd)
d(t−1)+1m2.

By Lemma 2.2.7 we have that (x1, . . . ,xd)
d(t−1)+1 = (xt

1, . . . ,x
t
d)(x1, . . . ,xd)

(d−1)(t−1).

Therefore we have that

mdt−d+3 = (xt
1, . . . ,x

t
d)(x1, . . . ,xd)

(d−1)(t−1)m2

= (xt
1, . . . ,x

t
d)m

(d−1)(t−1)+2

⊆ (xt
1, . . . ,x

t
d)m

(d−1)(t−1)+1 = (xt
1, . . . ,x

t
d)m

dt−d+2−t .
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Applying this fact to Equation (2.5) allows us to write

mdt−d+3 +(xt
1, . . . ,x

t
d)∩m

dt−d+2 = (xt
1, . . . ,x

t
d)m

dt−d+2−t ,

and hence equality holds in Equation (2.4).

The next step is to show that

(x1, . . . ,xd)
dt−d = (xt

1, . . . ,x
t
d)(x1, . . . ,xd)

dt−d−t +(x1x2 · · ·xd)
t−1. (2.6)

Notice that the generators of (x1, . . . ,xd)
dt−d−t are all the monomials in x1, . . . ,xd of

degree dt−d− t. Thus the generators of the product (xt
1, . . . ,x

t
d)(x1, . . . ,xd)

dt−d−t are

monomials m in x1, . . . ,xd of degree d(t − 1) such that xt
j|m for some j = 1,2, . . .d.

Call the set of these monomials M. The monomials in M are also a part of a minimal

generating set of the ideal (x1, . . . ,xd)
dt−d . In fact, the set N = {xn1

1 xn2
2 · · ·x

nd
d | ∑ni =

dt−d} is a generating set for the ideal (x1, . . . ,xd)
dt−d . Hence, the elements in M that

are not in N are

N \M = {m = xn1
1 xn2

2 · · ·x
nd
d | ∑ni = d(t−1) and such that xt

j 6 |m for all j}.

This implies that m ∈ N \M is an element of the ideal (x1x2 · · ·xd)
t−1 as deg(m) =

d(t−1) and xt
j does not divide m. We therefore have the equality in Equation (2.6).

34



Since x1, . . . ,xd is a reduction, we can write mdt−d+2 = m2(x1, . . . ,xd)
dt−d . Com-

bining this with Equation (2.6) yields

mdt−d+2 =m2(x1, . . . ,xd)
dt−d

=m2((xt
1, . . . ,x

t
d)(x1, . . . ,xd)

dt−d−t +(x1x2 · · ·xd)
t−1)

= (xt
1, . . . ,x

t
d)(x1, . . . ,xd)

dt−d−tm2 +(x1x2 · · ·xd)
t−1m2

= (xt
1, . . . ,x

t
d)m

dt−d−t+2 +(x1x2 · · ·xd)
t−1m2.

Because R is stretched, we may proceed as in Proposition 2.2.6 and choose a y ∈m2−

((x1, . . . ,xd)m+m3) such that m2 = (x1, . . . ,xd)m+(y). Substituting into the above

relation yields

mdt−d+2 = (xt
1, . . . ,x

t
d)m

dt−d−t+2 +(x1x2 · · ·xd)
t−1((x1, . . . ,xd)m+(y))

= (xt
1, . . . ,x

t
d)m

dt−d−t+2 +(y(x1x2 · · ·xd)
t−1).

Thus, modulo (xt
1, . . . ,x

t
d)m

dt−d−t+2, we have that mdt−d+2 is one dimensional.

We are now ready to state and prove an equivalent definition of super-stretched; this

is also the main result of this section and is used to better understand what rings of

graded countable Cohen-Macaulay type.

Theorem 2.2.9. Let (R,m,k) be a standard graded Cohen-Macaulay ring of dimension

d > 0. The following are equivalent:

(1) R is super-stretched;

(2) R is stretched and Jm2 =m3 for every homogeneous reduction J of the maximal

ideal;
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(3) R is stretched and Jm2 = m3 for some homogeneous reduction J of the maximal

ideal.

Proof. (1)⇒ (2): This is an application of Proposition 2.2.6.

(2)⇒ (3): This is straightforward.

(3)⇒ (1): Assume that J is as in (3) and is generated by x1, . . . ,xd . Let (y1, . . . ,yd)

be an ideal of R generated by a homogeneous system of parameters. We have that

there exists a t such that mt ⊆ (y1, . . . ,yd). In particular, (xt
1, . . . ,x

t
d)⊆ (y1, . . . ,yd). By

proposition 2.2.4, (y1, . . . ,yd) satisfies (1.5) since (xt
1, . . . ,x

t
d) satisfies (1.5) by proposi-

tion 2.2.8. Therefore, R is super-stretched.

The next two propositions are immediate corollaries of Theorem 2.2.9 that describe

the h-vector of a super-stretched ring.

Proposition 2.2.10. Assume that (R,m,k) is a standard graded super-stretched ring of

dimension d > 0 with infinite residue field k. Then the h-vector of R is of one of the

following forms: (1), (1,n), or (1,n,1) for some non-zero positive integer n.

Proof. Let J be a minimal reduction of the maximal ideal m. Since R is super-stretched,

we have by Theorem 2.2.9 that Jm2 =m3. Let R = R/J and notice that by Lemma 2.2.5

we have

HR(3) = dimk

(
m3

m4 + J∩m3

)
= dimk

(
m3

m4 + Jm2

)
= dimk

(
m3

m4 +m3

)
= 0.

This forces HR(n) = 0 for all n > 2. The fact that R is stretched forces HR(2) 6 1.

Therefore, the only possible h-vectors are (1), (1,n), or (1,n,1) where n is a non-zero

positive integer.

Proposition 2.2.11. A standard graded hypersurface with multiplicity at most 3 is

super-stretched.
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Proof. Let R be a hypersurface with multiplicity e 6 3. As the sum of the h-vector is

the multiplicity, the only possible h-vectors are (1), (1,1), and (1,1,1). All of these

satisfy condition 3 of Theorem 2.2.9.

2.3 Examples of super-stretched

Given Theorem 2.2.9, we are able to give some examples of a standard graded ring that

is super-stretched. We list several examples in Tables 2.3 and 2.3 without exposition.

Many of these examples are straight forward computations and can be checked by hand

or with the computer algebra software Macaulay2 [13]. References are giving when

appropriate and the following key is used in interpreting the tables. Further, we let k be

an algebraically closed uncountable field of characteristic 0.

Acronym Meaning

GFT Graded finite Cohen-Macaulay type

GCT Graded Countable Cohen-Macaulay type

NGFT Not GFT but maybe GCT

NGCT Not GCT

FT Finite Cohen-Macaulay type

CT Countable Cohen-Macaulay type

NFT Not FT but maybe CT

NCT Not CT

DR Drozd-Roı̆ter conditions, Proposition 4.2.3
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2.4 Super-Stretched and Graded Countable Type

Given Theorem 2.2.9, we are now able to generalize D. Eisenbud and J. Herzog’s result

to standard graded rings of countable Cohen-Macaulay type. We restate it here for

convenience.

Theorem 1.2.6 ([11, Theorem A]). Let (R,m,k) be a standard graded Cohen-Macaulay

ring with infinite residue field k. If R is of graded finite Cohen-Macaulay type, then R

is stretched.

It is worth noting that Theorem 1.2.6 is only known to be true in the graded cat-

egory and the classification of rings of finite Cohen-Macaulay type (not graded finite

Cohen-Macaulay type) is still open. However, by Proposition 2.1.5 we are able to drop

the restriction of graded isomorphisms and look at any isomorphism between graded

indecomposibles when considering graded finite type. The proof of D. Eisenbud and J.

Herzog assumes the ring is not stretched and then constructs an infinite family {Mα}α∈k

of non-isomorphic (in the graded category) graded maximal Cohen-Macaulay modules

to form a contradiction. Unfortunately, as written the proof is not correct. The authors

of [11] assume that since the family {Mα} has a uniform bound on the rank, there

must be infinitely many, non-isomorphic up to shifts in degree, graded, indecompos-

able maximal Cohen-Macaulay modules. As shown by the following example, this is

not the case.

Example 2.4.1. Let (R,m,k) be a standard graded Cohen-Macaulay ring. Note that R

is a graded indecomposable maximal Cohen-Macaulay module and consider the family

of graded maximal Cohen-Macaulay modules {R⊕R(−i)}i∈Z>0 . There is not a graded

isomorphism between any two modules in the family and each module is of rank 2.

Thus we have an infinite family of non-isomorphic (in the graded category) maximal
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Cohen-Macaulay modules of bounded rank. However, up to isomorphism in shifts of

degree, there is only one indecomposable maximal Cohen-Macaulay module.

Even though the proof is not quite correct, a slight modification (as shown by Y.

Yoshino [25, Theorem 17.7]) fixes the error and shows Theorem 1.2.6 to be true. In-

stead of using a rank argument, Y. Yoshino reduces the family of maximal Cohen-

Macaulay modules to a family of non-isomorphic (in the graded category) indecom-

posable maximal Cohen-Macaulay modules. In essence, he directly shows that if the

ring is not stretched, then there are infinitely many non-isomorphic (in the graded cate-

gory) indecomposable maximal Cohen-Macaulay modules.

For the countable case (and hence the finite case), we are able to show the stronger

notion of super-stretched. The proof of Theorem 2.4.4 is an extension of D. Eisenbud

and J. Herzog’s proof. However, we have chosen to be a little more explicit by directly

showing the existence of an uncountable family of non-isomorphic indecomposable

modules in MCMgr(R) for a standard graded ring R that is not super-stretched.

The following lemmata a helpful in proving Theorem 2.4.4. The proof of Lemma

2.4.2 is straight forward, however, we write out the statement here as it is used multiple

times in the proof of Theorem 2.4.4.

Lemma 2.4.2. Let (R,m,k) be a standard graded ring and M, N be finitely generated

graded R-modules such that N = Rx1+ · · ·+Rxs, M = Ry1+ · · ·+Ryt with deg(xi) = ni,

deg(y j) = m j and t = max{ni}< min{m j}. Let φ and ψ be a graded presentations of

N and N +M (respectively) sending R(−ni) to xi and R(−m j) to y j. Consider the

following commutative diagram defined by the canonical injection:

0 // K � _
��

//⊕R(−ni)� _

h ��

φ // N � _
��

// 0

0 // L //⊕R(−ni)⊕
⊕

R(−m j)
ψ // N +M // 0
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where K and L are the respective kernels. If z∈ L is such that deg(z)6 t, then z∈ im(h).

In other words, any syzygy of N +M with degree less than t +1 comes from a syzygy of

N.

Proof. By choice of z ∈ L, we know that z is also in
⊕

R(−ni) since max{ni} <

min{m j}. Since φ is ψ restricted
⊕

R(−ni), we see that z is indeed in the image of

h.

Lemma 2.4.3. If (R,m,k) is a standard graded ring such that dimk(Ri) > 1 for some

i > 0, then there exists |k| many distinct homogeneous ideals in R.

Proof. Let x,y be distinct basis elements of Ri and let α,β ∈ k. Assume that

(x+αy) = (x+βy).

Since R is graded, there exist γ ∈ k such that x+αy = γ(x+βy) in Ri. Hence

(1− γ)x+(α−βγ)y = 0 (2.7)

in R. In particular, this relation holds in the vector space Ri as α,β ,γ ∈ k. Thus the

coefficients of x and y are zero and we have that γ = 1 and α = β . Therefore the

conclusion follows.

We are now ready to prove the generalization of D. Eisenbud and J. Herzog’s result

(Theorem 1.2.6).

Theorem 2.4.4. Let (R,m,k) be a standard graded Cohen-Macaulay ring of dimension

d > 0 with uncountable residue field k. If R is of graded countable Cohen-Macaulay

type then it is super-stretched.
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Proof. Let R be as above with dim(R) = d. Assume R is not super-stretched and let

x1, . . . ,xd be a homogeneous system of parameters such that

dimk(R/(x1, . . . ,xd))c > 2

for some

c >
d

∑
j=1

deg(x j)−d +2. (2.8)

If we have that dimk(R/(x1, . . . ,xd))c > 2, then dimk(R/(x1, . . . ,xd))l > 2 for all 2 6

l 6 c. Therefore, without losing any generality, we can assume equality in (2.8). Let

R = R/(x1, . . . ,xd) and consider y ∈ (R)c. Define Iy ⊆ R to be a preimage of (y). For

each y ∈ Rc, we shall associate a graded maximal Cohen-Macaulay module My such

that the family {My}y∈Rc
has the following properties:

(1) Let (My)i be the graded components of My. We have that dimk(My)<t = 0 and

dimk(My)t = 1 where t = ∑deg(x j).

(2) There is a unique indecomposable summand Ny of My such that (Ny)t = (My)t .

(3) If My = My/(x1, . . . ,xd)My, then annR(My)t = Iy where t is as in (1).

Assuming these three claims, we show there exists uncountably many graded indecom-

posable maximal Cohen-Macaulay modules up to isomorphism in MCMgr(R). Hence

by Proposition 2.1.8, R cannot be of graded countable Cohen-Macaulay type.

As in (2), let Ny and Ny′ be the unique indecomposable summands of My and My′ for

y,y′ ∈ Rc. Suppose that there is an isomorphism Ny 'Ny′ in MCMgr(R). Thus we have

that Re 7→ Re′ where e and e′ are generators of (Ny)t and (Ny′)t (respectively). This

implies

Ny/(x1, . . . ,xd)Ny ' Ny′/(x1, . . . ,xd)Ny′.
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Once again, under this isomorphism, Re 7→ Re′. From (3), we have that annR(e) = Iy

and annR(e′) = Iy′ , which forces Iy = Iy′ . Thus (y) = (y′). Note that dimk(Rc) > 2, so

by Lemma 2.4.3 there exists uncountably many ideals (y), where y ∈ Rc. As such there

must be uncountably many graded indecomposable maximal Cohen-Macaulay modules

up to isomorphism in MCMgr(R) and we are finished by Proposition 2.1.8.

To show property (1), consider the Koszul complex K. of the homogeneous system

of parameters x1, . . . ,xd ,

K· : 0 // Kd // · · · // K1 // R // R/(x1, . . . ,xd)R // 0.

Note that for J ⊆ {1,2, . . . ,d}, Ki '
⊕
|J|=i R(−∑ j∈J degx j). Let Ωi be the ith syzygy

of K. and fix y ∈ (R)c. Further, let Iy = (x1, . . . ,xd,y) be a preimage of (y) and consider

the minimal resolution F. of R/Iy. From F., we have the short exact sequence

0 // M2 //⊕R(−deg(xi))⊕R(−c) // (x1, . . . ,xd,y) // 0

where M2 is the second syzygy of R/Iy. Notice that

c =
d

∑
j=1

deg(x j)−d +2 > max{degxi}.

Therefore by Lemma 2.4.2, we have the commutative diagram

0 // Ω2 //
� _

��

K1 //
� _

��

(x1, . . . ,xd) //
� _

��

0

0 // M2 //⊕R(−deg(x j))⊕R(−c) // (x1, . . . ,xd,y) // 0

with the minimal graded components of M2 coming from the image of Ω2.
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In the resolution F., any shift coming from y will be bounded below by c+ i. Since

c+ i =
d

∑
j=1

deg(x j)− (d− (i+1))+2 > max{ ∑
|J|=i+1

j∈J

degx j},

we have that

shift from y > c+ i > max{ ∑
|J|=i+1

j∈J

degx j}.

Thus, we for each i we have the commutative diagram

0 // Ωi //
� _

��

Ki−1 //
� _

��

Ωi−1 //
� _

��

0

0 // Mi //
⊕
|J|=i−1

R(−∑
j∈J

deg(x j))⊕
⊕

R(−di−1, j) // Mi−1 // 0

and each minimal graded component of Mi is an image of a minimal generator of Ωi.

When i = d, we have that Kd ↪→ Md and any minimal graded generator of Md is of

degree t = ∑
d
j=1 degx j. The injection shows this is unique. Thus these modules satisfy

property (1). We denote Md by My.

Property (2) is a straight forward consequence of (1). As there is a unique mini-

mal element in My, say Re = (My)t , it must be contained in a unique indecomposable

summand Ny of My. Therefore (Ny)t = (My)t .

To prove (3), let F . = F.⊗R/(x1, . . . ,xd)R and consider TorR
d (R/(x1, . . . ,xd),R/Iy).

Since R is Cohen-Macaulay, any system of parameters is a regular sequence. Therefore,

TorR
d (R/(x1, . . . ,xd),R/Iy)' Hd(x1, . . . ,xd;R/Iy),
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where Hd(x1, . . . ,xd;R/Iy) is the dth homology of the Koszul complex of the homoge-

neous system of parameters x1, . . . ,xd with values in R/Iy. Since the xi annihilate R/Iy,

we have

Hd(x1, . . . ,xd;R/Iy)' R/Iy(−t).

Apply ·⊗R R/(x1, . . . ,xd) to the short exact sequence

0 // My // Fd−1 // Md−1 // 0

to get

0 // Tor1(R/(x1, . . . ,xd),Md−1) // My/(x1, . . . ,xd)My // Fd−1.

Since Tor1(R/(x1, . . . ,xd),Md−1)' Tord(R/x1, . . . ,xd,R/Iy), we have

0 // R/Iy(−t) // My/(x1, . . . ,xd)My
α // Fd−1.

Since e ∈My corresponds to the generator of Kd , it is clear that e 7→ 0, and it follows

from the exact sequence that Re' R/Iy(−t).

Remark 2.4.5. It is worth noting that as for Theorem 1.2.6, we are able to lift the restric-

tion of the isomorphism classes in the definition of graded countable Cohen-Macaulay

type by way of Proposition 2.1.8. Thus Theorem 2.4.4 holds if we have countably

many graded indecomposable modules up to isomorphism in MCM(R). This is a much

stronger statement as we do not require graded isomorphisms.

It would be nice if super-stretched implied finite Cohen-Macaulay type. Unfortu-

nately this is not the case. Consider the complete hypersurface singularity kJx,yK/(y2)

found on page 2. This ring is not finite Cohen-Macaulay type but is super-stretched.
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However, this ring is not an isolated singularity, so there is still hope to show that given

an isolated singularity, super-stretched implies finite Cohen-Macaulay type.

Next we have a couple of immediate corollaries. The first one is interpreting The-

orem 2.4.4 in terms of graded finite Cohen-Macaulay type while the second is attribut-

ing properties of super-stretched to standard graded rings of graded countable Cohen-

Macaulay type.

Corollary 2.4.6. Let (R,m,k) be a standard graded Cohen-Macaulay ring with un-

countable residue field k. If R is of graded finite Cohen-Macaulay type then it is super-

stretched.

Corollary 2.4.7. Let (R,m,k) be a standard graded Cohen-Macaulay ring with graded

countable Cohen-Macaulay type. Then the possible h-vectors are (1), (1,n), or (1,n,1)

for some integer n.

Proof. Combine Theorem 2.4.4 and proposition 2.2.10.

2.5 Minimal Multiplicity and Graded Countable Type

Throughout this sub-section we will continue the assumption we are working in the

graded category Modgr(R) where (R,m,k) is a standard graded ring. In particular, we

will be considering graded maximal Cohen-Macaulay modules in MCMgr(R).

In [11], D. Eisenbud and J. Herzog showed that standard graded rings of graded

finite Cohen-Macaulay type and dim(R)> 1 have minimal multiplicity. Using Theorem

2.4.4, we are able to extend this result to graded countable Cohen-Macaulay type with

dim(R)> 2.
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Definition 2.5.1. Let (R,m,k) be a d-dimensional standard graded Cohen-Macaulay

ring and e(R) be the multiplicity of R. If e(R) = dimk(m/m2)−dimR+1 then R is said

to have minimal multiplicity.

An immediate result is the following proposition.

Proposition 2.5.2. Let (R,m,k) be a d-dimensional standard graded Cohen-Macaulay

ring. If k is infinite, the following are equivalent:

(1) R has minimal multiplicity;

(2) there exists a regular sequence x1, . . . ,xd such that m2 = (x1, . . . ,xd)m;

(3) the h-vector of R is of the form (1,n).

The proofs of the results below use the well known Serre conditions and Normality.

We state the definitions here for convenience.

Definition 2.5.3. A Noetherian ring R satisfies Serre’s condition (Sn) (respectively

(Rn)) of the following holds:

(Sn): If p ∈ Spec(R), then depth(Rp)> min{n,dim(Rp)};

(Rn): If p ∈ Spec(R) and dim(Rp)6 n, then Rp is a regular local ring.

Definition 2.5.4. A ring is normal if all localizations at prime ideals are integrally

closed domains.

Further, we state a popular criterion for determining if a Noetherian ring is normal.

Theorem 2.5.5 (Serre’s Criterion, [24, Theorem 4.5.3]). A Noetherian ring is normal

if and only if the ring satisfies (R1) and (S2).
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The next theorem is used in [11] to classify the rings of graded finite Cohen-

Macaulay type and is essential in proving Proposition 2.5.7. We will also use this

theorem in showing the countable analog so we state it here without proof.

Theorem 2.5.6 ([11, Theorem B]). Let B be a standard graded Cohen-Macaulay do-

main, and let R be the graded Artinian ring obtained by reducing modulo a maximal

regular sequence of elements of degree 1. If there exists a degree 1 element of R which

is in the socle of R, then the square of the maximal ideal of R is 0 (that is, R has minimal

multiplicity).

Proposition 2.5.7 is a result of D. Eisenbud and J. Herzog that is embedded in the

proof the classification of standard graded rings of graded finite Cohen-Macaulay type.

Proposition 2.5.7 ([11]). Let (R,m,k) be a standard graded Cohen-Macaulay ring of

graded finite Cohen-Macaulay type and dimR > 2. Then R must have minimal multi-

plicity.

Proof. If R is Gorenstein, then R = k[x1, . . . ,xn]/(x2
1 + · · ·+ x2

n) as shown in the proof

of the main theorem in [11]. Since x1, . . . ,xn−1 is a minimal reduction of (x1, . . . ,xn)R,

we see that the h-vector of R is (1,1). Thus R has minimal multiplicity.

If R is not Gorenstein, then Auslander’s results (Theorem 2.1.15) says that (R1)

holds. As R is Cohen-Macaulay, we have that R is also (S2). Thus by Serre’s Criterion

(Theorem 2.5.5) we have that R is a normal domain . As R is stretched, we know the

h-vector is of the form (1,n,1, . . . ,1). Since R is not Gorenstein, we know that there

is an element of the socle in degree 1. Theorem B above forces R to be of minimal

multiplicity.

Before we can reproduce Proposition 2.5.7 for the graded countable Cohen-Macaulay

type, we need a standard result of chains of homogeneous prime ideals in a standard

graded ring. It is stated here without proof.
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Lemma 2.5.8. Let (R,m,k) be a standard graded ring and p a homogeneous prime

ideal of height n. Then there exists a chain of distinct homogeneous prime ideals

p0 ( p1 ( · · ·( pn = p.

The next theorem is a graded version of Theorem 1.3 in [17] and is used as a replace-

ment of Auslander’s result in Proposition 2.5.7. The proof below is a straight forward

translation form the local case to the graded case and we place it here for completeness.

Even though Theorem 2.5.9 is stated in the graded category, by Corollary 2.1.14 we are

able to consider all prime ideals in the singular locus, not just the homogeneous prime

ideals.

Theorem 2.5.9 (Graded version of [17, Theorem 1.3]). Let (R,m,k) be a Cohen-

Macaulay standard graded ring of dimension d such that k is uncountable. If R has

graded countable Cohen-Macaulay type, then the singular locus of R has dimension at

most one.

Proof. Assume that the dim(Sing(R)) > 2. Since R is standard graded, we have that

the singular locus is defined by a homogeneous ideal J such that ht(J) < d− 1. Let

{Mi}∞
i=1 be a complete list of representatives for the isomorphism classes of graded

indecomposable MCM R-modules. Consider the set Λ of homogeneous prime ideals

defined as follows:

Λ = {p ∈ Spec(R) | p= ann(Ext1R(Mi,M j)), for some i, j, and dim(R/p) = 1}.

We know that Ext1R(Mi,M j) is a graded object and the annihilator of a graded module

is homogeneous. Thus the set Λ is well defined. Notice that Λ is at most countable. It

is also true that J is contained in each p ∈ Λ. To see this, assume p ∈ Λ and that Rp
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is regular. As p ∈ Λ, there exists Mi,M j such that p = ann(Ext1R(Mi,M j)) and hence

p ⊇ ann(Mi). This forces (Mi)p to be a maximal Cohen-Macaulay module over Rp,

hence free. Therefore Ext1R(Mi,M j)p = 0, a contradiction as p= ann(Ext1R(Mi,M j)).

Notice that the k-vector space R1 is not contained in the countable union of all

the subspaces R1 ∩ p, where p is a prime ideal in Λ. So, there exists an element f ∈

R1\
⋃
p∈Λ (R1∩p). By Lemma 2.5.8, we can choose a homogeneous prime q containing

f and J such that dim(R/q) = 1; then of course q 6∈ Λ.

Let X (resp. Y ) be a (d−1)th (resp. dth) syzygy coming from a graded free resolu-

tion of R/q. Then X and Y are both graded maximal Cohen-Macaulay R-modules and

we have a non-split graded short exact sequence

0 // Y // ⊕R(−di) // X // 0, (2.9)

where ⊕R(−di) is a direct sum of R with shifts. We claim that ann(Ext1R(X ,Y )) = q. It

is clear that q kills Ext1R(X ,Y )' Extd+1
r (R/q,Y ). To see the opposite containment, note

that since q contains J, R(q) is not regular and hence Rq is not regular. The resolution of

the residue field of R/q is thus infinite, and neither Xq nor Yq is free, so (2.9) is non-split

when localized at q. Thus ann(Ext1R(X ,Y )) = q.

We can write both X and Y as direct sums of copies of the indecomposables Mi, and

further write

Ext1R(X ,Y )∼=
⊕
i, j

Ext1R(Mi,M j)
ai j

with all but finitely many of the ai j equal to zero. Then q is the intersection of the

annihilators of the nonzero Ext modules appearing in the above decomposition. Since

q is prime, it must equal one of these annihilators, and then q ∈ Λ, a contradiction.
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Using the above results, we are now able to expand D. Eisenbud and J. Herzog’s

result (Proposition 2.5.7) to the graded countable case. In the case that R is of graded

finite Cohen-Macaulay type, Theorem 2.1.15 shows that R has an isolated singularity.

Unfortunately this is not known to be true for graded countable Cohen-Macaulay type.

However, we do have (Theorem 2.5.9) that the singular locus is of dimension at most

one. Therefore, for rings with dimension larger than two we have the following result.

Proposition 2.5.10. Let (R,m,k) be a standard graded Cohen-Macaulay ring of count-

able Cohen-Macaulay type that is not Gorenstein and dimR > 3. Then R must be a

domain and have minimal multiplicity.

Proof. By Theorem 2.5.9, we know that the dimension of the singular locus is at most

one. Since dim(R)> 3, we have that R satisfies Serre’s condition (R1). Further, as R is

Cohen-Macaulay, we know that R also satisfies Serre’s condition (S2). Thus by Serre’s

criterion (Theorem 2.5.5), R must be a normal. Because R normal, we can write it as a

finite direct product of integrally closed domains [24, Lemma 2.1.15]. As R is standard

graded, we have that R0 = k and thus there is only one term in the direct product. Hence

R is also a domain.

By Corollary 2.4.7, we know that R is either of minimal multiplicity or has h-vector

(1,n,1) for some positive integer n. Since R is not Gorenstein, there must be a socle

element in degree one. However, by Theorem 2.5.6 this forces R to have minimal

multiplicity.

Remark 2.5.11. It is worth noting that standard graded Cohen-Macaulay rings of count-

able Cohen-Macaulay type and dimension at least 3 are normal domains. Even though

Proposition 2.5.10 assumed the ring was not Gorenstein, the argument to show that the

ring was a normal domain still holds.
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Chapter 3

Super-Stretched Local Rings

Throughout this chapter, we will explore the concept of super-stretched in the local

case. Changing notation, let (R,m,k) be a local ring of dimension d with maximal ideal

m, and uncountable residue field k of characteristic 0. Further, we will let G := grmR

and M = ⊕i>0m
i/mi+1. Note that dim(G) = dim(R) [24, Proposition 5.1.6]. Recall

the following definition.

Definition 1.2.7. A local Cohen-Macaulay ring (R,m,k) of dimension d is said to be

super-stretched if for all homogeneous system of parameters x∗1, . . . ,x
∗
d in grmR,

dimk

(
grmR

(x∗1, . . . ,x
∗
d)

)
i
6 1

for all i >
d

∑
j=1

deg(x∗j)−d +2.

As in the graded case, we will be considering minimal reductions of the maximal

ideal. It is well known that minimal reductions of length d = dim(R) exist if R/m is

infinite [24]. Further, a minimal reduction of the maximal ideal is the preimage in R

of a degree one homogeneous system of parameters in grmR. Thus, if x1, . . . ,xd is a

minimal reduction of m, we have that deg(x∗i ) = 1.

53



The next theorem is a nice result of T. Puthenpurakal and shows that the length of

m3/Jm is invariant of the minimal reduction J of m.

Theorem 3.0.12 ([22, Theorem 1]). Let (R,m,k) be a Cohen-Macaulay local ring of

dimension d > 1 with infinite residue field k. If J is a minimal reduction of m then we

have an equality

λ (m3/Jm2) = e(R)+µ(m)(d−1)−µ(m2)−
(

d−1
2

)

where e(R) is the multiplicity of R and µ(I) is the minimal number of generators of an

ideal I in R.

Using Theorem 3.0.12, we establish the one dimensional local analog to Proposition

2.2.6.

Lemma 3.0.13. If (R,m,k) is a local Cohen-Macaulay ring of dimension 1 that is

super-stretched, then for all minimal reductions (x) of the maximal ideal m, we have

m3 = xm2.

Proof. By Theorem 3.0.12, it is enough to consider a fixed minimal reduction (x) of

m such that deg(x∗) = 1. Notice that x∗Mn−1 =Mn for some integer n. Hence x∗ is a

homogeneous parameter. Because R is super-stretched, we have that dimk(G/x∗G)2 =

1. By Lemma 2.2.5 we have

dimk
m2 +(x)
m3 +(x)

= dimk
m2

m3 +((x)∩m2)
= dimk

m2

m3 + xm
= 1.

Note that the second equality is always true as (x)∩m2 = xm if x /∈m2. The displayed

equality says that there is a y ∈ m2− (xm+m3) such that m2 = xm+(y)+m3. By

Nakayama’s lemma we have m2 = xm+(y).

54



By the super-stretched hypothesis we can also consider G modulo (x∗)2. Due to the

choice of x, we have that (x2)∩m3 = x2m. This gives us

dimk
m3

m4 + x2m
= 1.

Thus, as before, there exists z ∈ m3 − (x2m+m4) such that m3 = x2m+ (z) +m4.

Nakayama’s lemma shows that m3 = x2m+(z).

Notice that we can choose z to be anything in m3− (x2m+m4). We would like to

choose z = xy, but first we must show

Claim. The element xy is not in x2m+m4.

If the claim holds, then we have

m3 = x2m+(z)

= x2m+(xy)

= x(xm+(y))

= xm2.

This is the desired result for dimension one.

To show the claim, let n be minimally chosen such that mn = xmn−1 and suppose

xy ∈ x2m+m4. Since m2 = xm+ (y), we have that xm2 ⊆ x2m+m4. Assume that

n > 3 and multiply by mn−3. As R is Cohen-Macaulay, we have that x is a non-zero

divisor. Cancel the x’s to observe that mn−1 ⊆ xmn−2+mn. This forces mn−1 = xmn−2,

a contradiction since n was chose to be minimal. Thus xy /∈ (x2m+m4).

Before we move on, we need a couple of known results to help us. Theorem 3.0.16

is known in the folklore as Sally’s machine and is named after Judy Sally who used it
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extensively in many of her papers. Although the theorem was not formally written down

until S. Huckaba and T. Marley [16] proved the general case in 1997. For completeness,

we offer a proof of Sally’s machine.

Definition 3.0.14. Let R be a ring and I an ideal in R. We say that x ∈ I is a superficial

element of I if there exists c ∈ N such that for all n > c, (In+1 : x)∩ Ic = In. Further, a

sequence x1, . . . ,xs ∈ I is said to be a superficial sequence for I if for all i = 1, . . . ,s,

the image of xi in I/(x1, . . . ,xi−1) is a superficial element of I/(x1, . . . ,xi−1).

Lemma 3.0.15. Suppose (R,m,k) be a local Noetherian ring. Let x be a superficial

element for an ideal I contained in R, and define ∗ as the image of the quotient with xR.

If depth(grIR)> 0, then x∗ is a non-zero divisor in grIR and

grIR'
grIR

x∗grIR
.

Proof. Let G := grIR and M :=⊕n>0In/In+1. Since x is a superficial element of I, we

have that for N >> 0, (0 :G x∗)N = 0. Therefore, for N large enough, MN(0 :G x∗) = 0.

However, MN contains a non-zero divisor as depth(grIR) > 0. Hence we have that

(0 :G x∗) = 0 and x∗ is a non-zero divisor on G. From here we have that In∩ x = xIn−1

for all n > 0. Thus by Corollary 8.6.2 [24], we have that

grIR'
grIR

x∗grIR
.

Theorem 3.0.16 ([24, Theorem 6.5, “Sally’s Machine”]). Let (R,m,k) be a Noetherian

local ring. Let (x1, . . . ,xn) ⊂ I be a minimal reduction of I generated by a superficial

sequence of length n. Fix r 6 n, and set x = (x1, . . . ,xr). Then depth(grIR) > r+ 1 if

and only if depth(grI/xR/x)> 1.
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Proof. First assume that r = 1. If depth(grIR)> 2 > 1, then by Lemma 3.0.15, x∗1 is a

non-zero divisor and

depth(gr I
x1
(

R
x1
)) = depth(

grIR
x∗1grIR

)> 1.

Conversely, we need to show that x∗1 is a non-zero divisor. As the depth(grIR)> 1,

we know there exists y ∈ It \ It+1 such that y is a non-zero divisor in grIR and hence yp

is a non-zero divisor for all p > 1. This means that

Ipt+n : y⊆ (In,x1)

for all n, p > 1. For convenience, define x := x1. As x is superficial, we know that for

all j > 1 that x j is superficial as well. Hence there exists an integer c such that

(In+1 : x j)∩ Ic = In+1− j

for all n+ 1− j > c. Fix p > c/t and let n > 1 such that j 6 n+ 1. These conditions

force

yp(In+1 : x j)⊆ (In+pt+1 : x j)∩ Ic = In+pt+1− j.

Therefore

In+1 : x j ⊆ Ipt+n+1− j : yp ⊆ (In+1− j,x). (3.1)

When j = 1 in (3.1), we have that

In+1 : x⊆ (In,x)∩ (In+1 : x)⊆ In +(x)∩ (In+1 : x) = In + x(In+1 : x2). (3.2)

57



Likewise, when j = 2 notice that

In+1 : x2 ⊆ (In−1,x)∩(In+1 : x2)⊆ In−1+(x)∩(In+1 : x2) = In−1+x(In+1 : x3). (3.3)

This process stops when j = n in (3.1), that is, when

In+1 : xn ⊆ (I,xn−1)∩ (In+1 : xn)⊆ I+(x)∩ (In+1 : xn) = I+x(In+1 : xn+1) = I. (3.4)

Combining the above conditions for j = 1,2, . . . ,n, we see that

In ⊆ In+1 : x⊆ In + xIn−1 + x2In−2 + · · ·+ xn−1I + xn ⊆ In.

Therefore x∗ is a non-zero divisor and

depth(grIR) = depth(
grIR

x∗grIR
)+1 = depth(grIR)+1 > 1+1 = 2.

Now assume that r > 1. If we assume that depth(grIR) > r + 1, then iterating

Lemma 3.0.15 shows that

depth(grIR) = depth(
grIR

(x∗1, . . . ,x
∗
r )grIR

)> 1.

Conversely, proceed by induction on r and assume that depth(grIR) > 1. By the

induction hypothesis we know that

depth
(

gr I
(x1)

R
(x1)

)
> r−1+1 = r > 1.
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Once again, by induction, we have that a := depth(grIR) > 2 > 0. By Lemma 3.0.15

we know that x∗1 is a non-zero divisor on grIR and that

r 6 depth
(

gr I
(x1)

R
(x1)

)
= depth

(
grIR

x∗1grIR

)
= a−1.

Hence r+1 6 a = depth(grIR).

Here is another lemma that is useful proving Theorem 2.2.9.

Lemma 3.0.17. Let (R,m,k) be a local super-stretched ring of dimension d with infinite

residue field k. Let x1, . . . ,x j be a superficial sequence in R such that the initial forms

x∗1, . . . ,x
∗
j , for some 1 6 j 6 d−1, is a part of a homogeneous system of parameters in

grmR with deg(x∗i ) = 1, then R/(x1, . . . ,x j) is super-stretched.

Proof. To prove this induct on j. For j = 1, consider the natural graded surjection

grmR
(x∗1)

// gr m
(x1)

R
(x1)

. (3.5)

From here choose a sequence x∗2,x
∗
3, . . . ,x

∗
d that is a homogeneous system of parameters

for both rings defined in (3.5). We now have the following surjection

grmR
(x∗1, . . . ,x

∗
d)

//
gr m

(x1)

R
(x1)

(x∗2,x
∗
3, . . . ,x

∗
d)
.

In particular, we have that

dimk

 gr m
(x1)

R
(x1)

(x∗2,x
∗
3, . . . ,x

∗
d)


i

6 dimk

(
grmR

(x∗1, . . . ,x
∗
d)

)
i
6 1

for i > ∑
d
j=1 deg(x j)− d + 2 = ∑

d
j=2 deg(x j)− (d− 1)+ 2. This shows that R/x1R is

indeed super-stretched.
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Now assume the results holds for 1 6 j 6 d− 2 and let x∗1, . . . ,x
∗
d−1 be a homo-

geneous system of parameters of grmR with deg(x∗i ) = 1. By induction we know that

R := R/(x1, . . . ,xd−2) is super-stretched. Further, notice that x∗d−1 is part of a homoge-

neous system of parameters in grmR of degree one. Applying the induction hypothesis

once again shows that R/xd−1R' R/(x1, . . . ,xd−1) is super-stretched.

We are now ready to show the local analog of Theorem 2.2.9.

Theorem 3.0.18. Let (R,m,k) be a local Cohen-Macaulay ring of dimension d > 0

with uncountable residue field k. The following are equivalent:

(1) R is super-stretched;

(2) grmR is super-stretched as a graded ring;

(3) R is stretched and Jm2 =m3 for every minimal reduction J of the maximal ideal;

(4) R is stretched and Jm2 =m3 for some minimal reduction J of the maximal ideal.

Proof. First assume that dim(R) = 1 and notice that Theorem 3.0.12 shows the equiva-

lence of (3) and (4). Further, by Lemma 3.0.13 and Proposition 1.2.9, we know that (1)

implies (3). Also, if we assume (2), then a straight forward application of the definition

of the graded version of super-stretched shows that the local ring R is super-stretched

as well. To show the dimension one case, we only need to prove that (3) implies (2).

Claim. If dim(R) = 1, then condition (3) implies that grmR is Cohen-Macaulay.

To prove the claim, assume (3) and let x be a minimal reduction of m coming from a

homogeneous degree one element x∗ ∈ grmR. As 1 = dim(R) = dim(grmR), we will be

finished if we can show that x∗ is a non-zero divisor on grmR. We know that xm2 =m3

and that x is a non-zero divisor. Consider the image x∗ in grmR and assume there is a

y∗ in grmR such that x∗y∗ = 0. With out loss of generality we may assume that y∗ is
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an element of mn/mn+1 for some n. Thus there is a y in m such that xy ∈ mn+2. Since

n > 1, xy ∈ mn+2 = xmn+1. So, xy = xr for r ∈ mn+1. But x is a non-zero divisor, so y

is an element of mn+1; forcing y∗ = 0 and grmR is Cohen-Macaulay.

Since grmR is Cohen-Macaulay and let x be a superficial minimal reduction of m

coming from a homogeneous degree one element x∗ ∈ grmR. In particular, we have that

xm2 = m3. This implies that x∗M2 = M3 where M = ⊕i>0(grmR)i is the irrelevant

maximal ideal in grmR. Further, as R is stretched, Lemma 3.0.15 shows that grmR is

stretched as well. Applying Theorem 2.2.9 shows us that grmR is super-stretched as

well. Hence (3) implies (2) and the theorem is true for dim(R) = 1.

Assume that dim(R) > 1. As R is Cohen-Macaulay, it is easy to check that (2)

implies that R is super-stretched. Conversely, assume that R is super-stretched. It is

enough to show that grmR is Cohen-Macaulay. Let x1, . . . ,xd−1 be a superficial se-

quence in R such that the initial forms x∗1, . . . ,x
∗
d−1 are part of a minimal reduction

of M with deg(x∗i ) = 1. By Lemma 3.0.17 we know that R := R/(x1, . . . ,xd−1) is

super-stretched of dimension one. As Theorem 3.0.18 holds for dimension one, we

know that grmR is Cohen-Macaulay and hence depth(grmR) = 1. By Sally’s machine

(Theorem 3.0.16) we know that depth(grmR) > d−1+1 = d. This forces grmR to be

Cohen-Macaulay and thus super-stretched as a a graded ring. We now have that (1) is

equivalent to (2).

To see the equivalence of (2), (3), and (4), we can apply Theorem 2.2.9 to grmR

along with the fact that minimal reduction of m in R come from homogeneous system

of parameters of degree one in the associated graded ring.

An immediate result is the fact that grmR is Cohen-Macaulay for local super-stretched

rings.
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Remark 3.0.19. Let (R,m,k) be a local Cohen-Macaulay ring of dimension d > 0 with

uncountable residue field k. If R is super-stretched, then grmR is Cohen-Macaulay.

Proof. As R is super-stretched, Theorem 3.0.18 implies that grmR is super-stretched as

well. In order for a standard graded ring to be super-stretched, in must also be Cohen-

Macaulay.

As Theorem 2.2.9 was used to show that graded countable Cohen-Macaulay type

implies super-stretched, one has the following natural question.

Question 3.0.20. Let (R,m,k) be a local Cohen-Macaulay ring of dimension d > 0

with uncountable residue field k. If R is of countable Cohen-Macaulay type, does this

necessarily imply R is super-stretched?
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Chapter 4

Partial Classification of Graded Countable

Cohen-Macaulay Type

In this chapter we use the results in the previous chapters to classify various instances

of graded countable Cohen-Macaulay type. The sections are broken into cases and the

summary of partial classification can be found in Section 4.5. Throughout this chapter,

(R,m,k) is considered as a standard graded (Noetherian) ring with k an algebraically

closed, uncountable field of characteristic 0.

4.1 Zero Dimensional Rings

It is well known that a zero dimensional local ring R is a hypersurface if and only if R

is of finite Cohen-Macaulay type. To be more precise,

Theorem 4.1.1 ([14, Satz 1.5]). Let (R,m,k) be a zero dimensional equicharacteristic

local ring. The following are equivalent:

(1) R is an abstract hypersurface;

(2) R is of finite Cohen-Macaulay type.
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We show the graded countable analog to this statement in Proposition 4.1.2, and

prove the graded version of Theorem 4.1.1 along the way.

Proposition 4.1.2. Let (R,m,k) be a 0-dimensional standard graded Cohen-Macaulay

ring. Further assume that k is an uncountable field. Then the following are equivalent:

(1) R is of graded finite Cohen-Macaulay type;

(2) R is of graded countable Cohen-Macaulay type;

(3) R is a hypersurface ring.

Proof. The implication (1) implies (2) is straight forward. To show (2) implies (3), as-

sume that R is not a hypersurface. Thus there must be two linear forms a,b∈m\m2 that

are basis elements of m/m2. By Lemma 2.4.3, there are uncountably many distinct ho-

mogeneous ideals {Iα}α∈k in R. In this context, we have that Iα = (a+αb)R. Consider

the graded indecomposable maximal Cohen-Macaulay modules {R/Iα}α∈k. As each

of these modules have different annihilators, we know that they are not isomorphic. A

contradiction as we assumed that R was of graded countable type.

To prove that (3) implies (1), we consider the m-adic completion of R and then

apply Theorem 4.1.1 to see that the completion is of finite Cohen-Macaulay type. By

Theorem 2.1.6, we know that R also has graded finite Cohen-Macaulay type.

We thus have a complete classification of graded countable Cohen-Macaulay type

for zero dimensional standard graded rings. Further, Proposition 4.1.2 gives a positive

answer to Question 1.1.5 for zero dimensional rings with uncountable residue field.
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4.2 One Dimensional Rings

In the one-dimensional case, Question 1.1.5 has a positive answer as shown by R. Karr

and R. Wiegand [18, Theorem 1.4]. In this section, we examine the Drozd-Roı̆ter

conditions and give a partial classification of one dimensional graded countable Cohen-

Macaulay type.

4.2.1 Finite Type and the Drozd-Roı̆ter conditions

As detailed by N. Cimen, R. Wiegand, and S. Wiegand [10], if (R,m,k) is a one di-

mensional, reduced, local, Noetherian ring such that the integral closure of R, say S, is

finitely generated as an R-module, then we know precisely when R has finite Cohen-

Macaulay type. This happens when the following conditions occur:

DR1 S is generated by 3 elements as an R-module;

DR2 the intersection of the maximal R-submodules of S/R is cyclic as an R-module.

These are called the Drozd-Roı̆ter conditions.

Proposition 4.2.1 ([10, Prop 1.12]). The Drozd-Roı̆ter conditions are equivalent to the

following:

dimk(S/mS)6 3; (dr1)

dimk

(
R+mS
R+m2S

)
6 1. (dr2)

Using the above equivalent conditions, along with the theory of Artinian pairs, R.

Karr and R. Wiegand were able to show the following theorem.
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Theorem 4.2.2 ([18, Theorem 1.4]). Let (R,m,k) be a one-dimensional, reduced, local

Noetherian ring with finite integral closure. Assume that either DR1 or DR2 fails. Let

n be an arbitrary positive integer.

(1) There exists an indecomposable maximal Cohen-Macaulay R-module of constant

rank n.

(2) If the residue field k is infinite, there exist |k| pairwise non-isomorphic indecom-

posable maximal Cohen-Macaulay modules of constant rank n.

In particular, assume that (R,m,k) is a one-dimensional local ring which satisfies

the hypothesis of Theorem 4.2.2. If k is an uncountable field, then under the conditions

of Theorem 4.2.2, R is either finite Cohen-Macaulay type or of uncountable Cohen-

Macaulay type. That is, there does not exist a one-dimensional Cohen-Macaulay ring

with an uncountable residue field that is infinite countable Cohen-Macaulay type. As

reduced is equivalent to isolated singularity for one dimensional rings, this gives a

positive answer to Question 1.0.1. Further, by Theorem 2.1.6, we have a positive answer

to Question 1.1.5 as well.

In order to have a better grasp of what it means to satisfy the Drozd-Roı̆ter condi-

tions, we have found another set of equivalent conditions. This result is stated in the

next proposition where e(R) is the multiplicity of the maximal ideal m, λ represents

length as an R-module, and ∗ is the integral closure of ideals.

Proposition 4.2.3. Let (R,m,k) be a one-dimensional, reduced, local Noetherian ring

with finite integral closure and uncountable residue field k. Let x be a minimal reduction

of the maximal ideal m. The Drozd-Roı̆ter conditions are equivalent to the following:

e(R)6 3; (4.1)

λ (m2/xm)6 1. (4.2)
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Proof. To show that (4.1) holds, we will show that e(R) = dimk(S/mS) where S is the

integral closure of R. As x is a reduction of m, we know that xS is also a reduction of

mS. But this holds if and only if mS ⊆ xS. As principal ideals are integrally closed in

S, we have that

xS⊆mS⊆ xS = xS,

and hence xS =mS. By assumption, S is finitely generated as an R-module. Therefore

we have that the map S→ S defined by multiplication by x is an injection. Hence, we

have the following commutative diagram:

0
��

0

��

0

��

K

��
0 // R ·x //

��

R //

��

R/xR //

��

0

0 // S ·x //

��

S //

��

S/xS //

��

0

C′

��

C′

��

C

��
0 0 0

where K, C′, and C are the respective kernel and cokernels. Consider the exact sequence

0 // K // R/xR // S/xS //C // 0. (4.3)

Notice by the Snake Lemma applied to (4.3) that λ (K) = λ (C); here λ represents

length as R-modules. Further we have that

λ (R/xR)+λ (C) = λ (S/xS)+λ (K).
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As C and K have the same length, we see that R/xR and S/xS also have the same length.

Since x is a minimal reduction of the maximal ideal, we know that e(R) = λ (R/xR).

Therefore,

e(R) = λ (R/xR) = λ (S/xS) = λ (S/mS) = dimk(S/mS).

In order to show (4.2), first notice that

R+mS
R+m2S

' mS
m2S+(R∩mS)

' mS
m2S+m

' xS
x2S+m

. (4.4)

For simplicity, we define B as follows,

B := dimk

(
R+mS
R+m2S

)
= λ

(
xS

x2S+m

)
.

We now consider the short exact sequence

0 // m
2S+m

m2S
// mS
m2S

// mS
m2S+m

// 0.

Rewriting the two terms on the left gives us

m2S+m

m2S
' m

m2S∩m
'm/m2; (4.5)

mS
m2S

' S
mS
' S

xS
. (4.6)

Combining (4.5) and (4.6) with the above short exact sequence yields

λ

(
S
xS

)
= λ

(
m/m2

)
+B. (4.7)
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On the other hand, consider the following short exact sequence

0 // m
2 + xR
xR

// R
xR

// R

m2 + xR
// 0, (4.8)

along with the isomorphisms

m2 + xR
xR

' m2

xR∩m2
=

m2

xm
. (4.9)

Note that the equality in (4.9) can be justified as follows. Since xS = mS, we know

that m2 = m2S∩R = x2S∩R. If y ∈ xR∩m2, then y = xr ∈ m2 = x2S∩R. This forces

r ∈ xS∩R =m. Hence y ∈ xm. Equality follows as xm⊆ xR∩m.

Computing length in (4.8) gives us

λ

(
R
xR

)
= λ

(
m2

xm

)
+λ

(
R

m2 + xR

)
.

We can repeat the above steps with the following short exact sequence and isomor-

phisms:

0 // m
2 + xR

m2
// R

m2
// R

m2 + xR
// 0;

m2 + xR

m2
' xR

m2∩ xR
' xR

mxR
' R

m
.

Once again, if we compute the length, we have that

λ

(
R

m2

)
= 1+λ

(
R

m2 + xR

)
(4.10)
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Combining (4.7) and (4.10) with the fact that λ
( R

xR

)
= λ

( S
xS

)
and λ

(
m

m2

)
= λ

(
R
m2

)
−

1, we have

λ

(
m2

xm

)
+λ

(
R

m2 + xR

)
= λ

(
m

m2

)
+B

= λ

(
R

m2

)
−1+B

= 1+λ

(
R

m2 + xR

)
−1+B.

Simplifying we see that λ

(
m2

xm

)
= B. We now have that

e(R) = dimk(S/mS)

λ

(
m2

xm

)
= dimk

(
R+mS
R+m2S

)
.

Hence by Proposition 4.2.1, we have the desired result.

Given Proposition 4.2.3, we can construct a couple of examples.

Example 4.2.4. Consider the ring R = kJt3, t7K. This is a one-dimensional domain with

e(R) = 3. The element t3 is a minimal reduction of the maximal ideal (t3, t7)R. If we

compute the length, we see that λ (m2/t3m) = 2. Hence, by Proposition 4.2.3, we have

that R is not of finite type.

Example 4.2.5. Let R = kJx,yK/(x3y−xy3). This ring is one-dimensional and reduced.

If we compute the multiplicity, we find that e(R) = 4. Thus, we immediately have from

Proposition 4.2.3 that R is not of finite type. Computing the length none-the-less, we

find that λ (m2/(x+2y)m) = 1.
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Example 4.2.6. With Proposition 4.2.3 in mind, it would be nice if we could generalize

to higher dimensions. However, as the next example will show, any generalization of

the Drozd-Roı̆ter conditions must not have a bound on multiplicity. The ring

R = k[x1, . . . ,xn+1]/det2

x1 . . . xn

x2 . . . xn+1

 , n > 2

is a two-dimensional ring of finite type (see [11]) and e(R) = n.

4.2.2 Graded Countable Type

We wish to obtain the results of R. Karr and R. Weigand for rings of graded countable

Cohen-Macaulay type. Note that by considering the completion, Theorem 2.1.6 and

Corollary 2.1.4 allow us to safely apply the results discussed above to standard graded

rings.

Theorem 4.2.7. Let (R,m,k) be a standard graded one dimensional Cohen-Macaulay

ring with uncountable residue field k. If R is not of minimal multiplicity and not a

hypersurface, then R is not of graded countable Cohen-Macaulay type.

Proof. Let x ∈ m be a homogeneous minimal reduction of the maximal ideal m. As

R is not a hypersurface, we know that HR/xR(1) > 2. Further, since R does not have

minimal multiplicity, we know by Proposition 2.5.2 that xm 6= m2. So let a,b ∈ m

be distinct elements of a minimal generating set of m such that a2 /∈ xm or ab /∈ xm.

Notice that any ideal of the form (x,a+αb), where α ∈ k, is a graded indecomposable

maximal Cohen-Macaulay module. By Proposition 2.1.8, it is enough to show there are

uncountably many such ideals up to isomorphism in MCMgr(R).

Consider the ideals Iα := (x,a + αb) and Iβ := (x,a + βb) where α,β ∈ k and

view them as objects in MCMgr(R). Let ϕ be an isomorphism between Iα and Iβ in
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MCMgr(R). As such, ϕ is a graded degree zero map

Iα = (x,a+αb)
ϕ

' (x,a+βb) = Iβ

given by

x � // d1x+d2(a+βb)

a+αb � // d3x+d4(a+βb).

Hence we see that the di’s are elements of k for i = 1,2,3,4. Consider the relation

xϕ(a+αb)− (a+αb)ϕ(x) = 0.

Hence we have

d3x2 +d4x(a+βb)−d1x(a+αb)−d2(a2 +(α +β )ab+αβb2) = 0. (4.11)

From here we can focus on d2. If d2 = 0, then we have the relation

d3x2 +d4x(a+βb)−d1x(a+αb) = 0. (4.12)

Since x is a non-zero divisor, we can cancel x and rearrange (4.12) as a k-linear combi-

nation of x,a,b

d3x+(d4−d1)a+(βd4−αd1)b = 0.

As x,a,b are independent over k, we have that the coefficients are zero. In particular

d4− d1 = 0. Since d1d4− d2d3 6= 0, we know that d1 = d4 6= 0. Thus the fact that

βd4−αd1 = 0 implies that α = β . Hence there are uncountably many ideals Iα up to

isomorphism in MCMgr(R).
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If we assume that d2 6= 0, then (4.11) modulo xm, shows that

a2 +(α +β )ab+αβb2 ≡ 0.

If a2 /∈ xm, notice that R2 = (a2,xR1). Thus, there exists a fixed γ,σ ∈ k such that

modulo xm we have

ab≡ γa2;

b2 ≡ σa2.

Therefore

a2 · (1+ γ(α +β )+σαβ )≡ 0 (mod xm). (4.13)

As a2 is non-zero modulo xm and 1+ γ(α +β )+σαβ is a degree zero element, the

grading forces

1+ γ(α +β )+σαβ = 0

in the field k. In particular, every α,β such that Iα ' Iβ is a solution to

f (X ,Y ) = 1+ γ(X +Y )+σXY ∈ k[X ,Y ].

This forces f (X ,Y ) to be identically zero, a contradiction.

Similarly, if ab /∈ xm then there exists a fixed γ ′,σ ′ ∈ k such that modulo xm we

have

a2 ≡ γ
′a2;

b2 ≡ σ
′a2.
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Therefore

ab · (γ ′+(α +β )+σ
′
αβ )≡ 0 (mod xm) (4.14)

and we recover a similar contradiction as we did from Equation (4.13).

Applying this Theorem 4.2.7 to rings of graded countable Cohen-Macaulay type

brings to light some very useful structure. In particular, if the ring is Gorenstein, then

we have a hypersurface.

Corollary 4.2.8. Let (R,m,k) be a standard graded one dimensional Gorenstein ring

with uncountable residue field k. If R is of graded countable Cohen-Macaulay type,

then R is a hypersurface ring.

Proof. By Corollary 2.4.7 and the fact that R is Gorenstein, we know that the possible

h-vectors are (1), (1,1), or (1,n,1). Thus if R has minimal multiplicity, then R is a

hypersurface. If R is not of minimal multiplicity, Theorem 4.2.7 forces that e(R) 6 3.

Thus n = 1 and R is a hypersurface.

Turning to the case of minimal multiplicity, we find some more structure to the ring.

Theorem 4.2.9. Let (R,m,k) be a standard graded one dimensional Cohen-Macaulay

ring with uncountable residue field k. If the h-vector of R is (1,n) with n > 3, then R is

not of graded countable Cohen-Macaulay type.

Proof. Let x be a minimal homogeneous reduction of the maximal ideal m, and let

x,u,v,w,c4, · · · ,cn ∈ m be elements of a minimal k-basis of m/m2. By assumption

n > 3, so we are guaranteed at least four elements in the basis of m/m2. Without losing

any generality, we assume that w is the fourth basis element. Assume that there is a

graded isomorphism

Iα = (x,u+αv)' (x,u+βv) = Iβ
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where α,β are elements of k. As dim(R) = 1, these ideals are graded indecomposable

maximal Cohen-Macaulay modules. Since this isomorphism is graded of degree 0, we

have that

x 7→ δ1x+δ2(u+βv)

u+αv 7→ δ3x+δ4(u+βv)

where det(δi) is a unit and δi are elements of k. We have that

0 = δ3x2 +δ4x(u+βv)−δ1x(u+αv)−δ2(u+αv)(u+βv). (4.15)

Notice that (u+αv)(u+ βv) is an element of m2. As R is of minimal multiplicity,

by Proposition 2.5.2 we have that xm = m2. Hence we can view elements of m2 as

elements of xm. In particular we view u2,uv,v2 in the following way


u2

uv

v2

=


x(a10x+a11u+a12v+a13w+a15c4 + · · ·+a1ncn)

x(a20x+a21u+a22v+a23w+a25c4 + · · ·+a2ncn)

x(a30x+a31u+a32v+a33w+a35c4 + · · ·+a3ncn)

= x ·A ·



x

u

v

w

c4

...

cn


where the matrix A = (ai j), 1 6 i 6 3, 0 6 j 6 n. Since u2,uv,v2 are homogeneous

elements, the grading forces the entries of A to be elements of k. Further, if we let

Φ =

(
1 α +β αβ

)
and b =

(
x u v w c4 · · · cn

)t

,
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then we can use matrix notation to write

(u+αv)(u+βv) = u2 +(α +β )uv+αβv2 = x ·Φ ·A ·b.

We can now cancel the x in equation (4.15) and rewrite it as

0 =



δ3−ΦA0δ2

δ4−δ1−ΦA1δ2

βδ4−αδ1−ΦA2δ2

−ΦA3δ2

−ΦA4δ2

...

−ΦAnδ2



t

·b (4.16)

where Ai are the columns of the matrix A. All of the elements in the coefficient matrix

of (4.16) are elements of k and hence equal zero as x,u,v,w,c4, . . . ,cn form a k-basis.

At this point we focus on δ2. If δ2 6= 0, then the fact that ΦA3δ2 = 0 implies that

a13 +(α +β )a23 +αβa33 = 0 (4.17)

in the field k. As the ai j are independent of our choice of α and β , Equation (4.17)

shows that every α,β such that Iα ' Iβ is a solution to

f (X ,Y ) = a13 +(X +Y )a23 +XYa33 ∈ k[X ,Y ].

This forces f (X ,Y ) to be identically zero, a contradiction. Hence there are uncountably

many Iα that are not isomorphic.
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If we let δ2 = 0, then Equation (4.17) becomes the relation

δ3x+(δ4−δ1)u+(βδ4−αδ1)v = 0. (4.18)

As x,u,v are independent over k, we have that the coefficients are zero. In particular

δ4− δ1 = 0. Since δ1δ4− δ2δ3 6= 0, we know that δ1 = δ4 6= 0. Thus the fact that

βδ4−αδ1 = 0 implies that α = β . Hence there are uncountably many non-isomrophic

ideals Iα .

Given the above results, we are now ready to characterize one dimension standard

graded rings of graded countable Cohen-Macaulay type.

Corollary 4.2.10. Let (R,m,k) be a one-dimensional standard graded Cohen-Macaulay

ring with uncountable residue field k. If R is of graded countable Cohen-Macaulay type,

then R is either of minimal multiplicity with h-vector (1,2), or is isomorphic to one of

the following hypersurfaces:

(1) k[x];

(2) k[x,y]/(xy);

(3) k[x,y]/(xy(x+ y));

(4) k[x,y]/(xy2);

(5) k[x,y]/(y2).

Proof. A direct application of Theorem 4.2.7 and Theorem 4.2.9 show that R is either

a hypersurface ring, or has minimal multiplicity with h-vector (1,2).

Concerning the hypersurfaces, items (1)-(3) have graded finite Cohen-Macaulay

type as can be seen from [8] or [11]. The hypersurfaces (4) and (5) are not graded finite
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Cohen-Macaulay type, but their completions are the one dimensional (A∞) and (D∞)

hypersurface singularities shown in (1.1) and (1.2). It was shown by R. Buchweitz, G.

Greuel, and F. Schreyer in [8] that these are the only hypersurfaces that are countable

but not finite Cohen-Macaulay type. Hence by Corollary 2.1.4, the rings (4) and (5) are

of graded countable Cohen-Macaulay type.

Corollary 4.2.11. Let (R,m,k) be a one-dimensional standard graded Cohen-Macaulay

ring with uncountable residue field k. If R is of graded countable Cohen-Macaulay type

then e(R)6 3.

Proof. Combining Corollaries 2.4.7 and 4.2.10, we know that the possible h-vectors of

R are the following:

(1), (1,1), (1,2), (1,1,1).

Hence we have that e(R)6 3.

An obvious improvement to Corollary 4.2.10 would be to classify the rings of min-

imal multiplicity. As it is, we leave it as a question.

Question 4.2.12. Given a one-dimensional standard graded Cohen-Macaulay (R,m,k)

with uncountable residue field k, if R is of graded countable Cohen-Macaulay type, and

minimal multiplicity, then is R isomorphic to

k[x,y,z]/det2

x y z

y z x

?

It is worth noting that a positive answer to Question 1.1.5, independent of Theorem

4.2.2, can be given using the above results.
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Corollary 4.2.13. Let (R,m,k) be a one-dimensional, reduced, standard graded Cohen-

Macaulay ring with uncountable residue field k. If R is of graded countable Cohen-

Macaulay type, then R is of graded finite type and isomorphic to one of the following:

(1) k[x];

(2) k[x,y]/(x2 + y2);

(3) k[x,y]/(xy);

(4) k[x,y]/(xy(x+ y));

(5) k[x,y,z]/det2

x y z

y z x

 .

Proof. Since standard graded rings of minimal multiplicity with h-vector (1,2) have

λ (m2/xm) 6 1, we can apply Proposition 4.2.3 and Corollary 4.2.10 to obtain the de-

sired result.

4.3 Non-Gorenstein Rings of Dimension at least 3

Let (R,m,k) be a standard graded Cohen-Macaulay ring of graded countable Cohen-

Macaulay type, that is not Gorenstein and dimR > 3. By Proposition 2.5.10, we know

that R must be a domain and have minimal multiplicity. As can be seen in Y. Yoshino’s

book [25, Page 166], standard graded Cohen-Macaulay domains of minimal multiplic-

ity have the following classification:

(i) hypersurfaces k[x1, . . . ,xn]/( f ) for some quadratic polynomial f .

(ii) the ring k[x1, . . . ,x6]/det2(sym 3×3)

(iii) the scrolls defined in Definition 1.1.1.
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The ring defined in (i) is Gorenstein and is discussed in section 4.4. The ring in (ii) is

of graded finite (hence countable) Cohen-Macaulay type as can be seen in [11] or [25,

Example 17.6.1]. So, we only need to consider the rings given in (iii).

As mentioned earlier, Theorem 1.1.3 classifies the scrolls of finite type. In the

same paper, M. Auslander and I. Reiten show the following result for graded Cohen-

Macaulay type.

Theorem 4.3.1 ([5, Theorem 3.1]). Let (R,m,k) be a standard graded scroll of type

(a1, . . . ,ar). If r > 2 and R is not of type (1,1) or (2,1), then R has |k| many indecom-

posable graded Cohen-Macaulay modules, up to shifts.

As it is, the graded scrolls of type (1,1) and (2,1) are the only graded scrolls of

dimension at least 3 that have graded countable Cohen-Macaulay type. Hence, given

Theorem 4.3.1, we have a nice corollary to Proposition 2.5.10.

Corollary 4.3.2. Let (R,m,k) be a standard graded Cohen-Macaulay ring with un-

countable residue field k. Further assume that R is not Gorenstein and dimR > 3. If

R is of graded countable Cohen-Macaulay type, then R is of graded finite type and is

isomorphic one of the following rings:

(1) k[x1, . . . ,x5]/det2

x1 x2 x4

x2 x3 x5

;

(2) k[x1, . . . ,x6]/det2(sym 3×3).

Proof. Notice that a scroll of type (1,1) is Gorenstein and is omitted. Thus combining

Proposition 2.5.10 and the above discussion yields the desired result.

Corollary 4.3.2 shows that for standard graded Cohen-Macaulay rings of dimension

at least three, graded countable Cohen-Macaulay type is the same as graded finite type
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when the ring is not Gorenstein. Hence we have another case where Question 1.1.5 has

a positive answer.

4.4 Dimension Two and Gorenstein Rings

It seems the two main difficulties in classifying rings of graded countable Cohen-

Macaulay type lie in rings of dimension two and Gorenstein rings. These cases are

still open, but some partial results are given below.

4.4.1 Non-Gorenstein Rings of Dimension Two

In [11], D. Eisenbud and J. Herzog exploit the fact that graded finite Cohen-Macaulay

type implies the ring is an isolated singularity (see Proposition 2.5.7). As Theorem 2.5.9

articulates, rings of graded countable Cohen-Macaulay type do not have the luxury

of an isolated singularity. However, if we assume an isolated singularity, we have a

positive answer to Question 1.1.5 in the two dimensional non-Gorenstein case.

Proposition 4.4.1. Let (R,m,k) be a standard graded Cohen-Macaulay ring that is not

Gorenstein and dim(R) = 2. Further assume that R has an isolated singularity and that

k is an uncountable field. If R is of graded countable Cohen-Macaulay type, then R is

of graded finite type and is isomorphic to

k[x1, . . . ,xn+1]/det2

x1 . . . xn

x2 . . . xn+1

 ,

where n > 2.

Proof. First notice that two dimensional ring with isolated singularity satisfies (R1)

and (S2). Hence by Serre’s criterion (Theorem 2.5.5), we have that R is normal and is
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therefore a domain. As discussed in Section 4.3, we know that R must be isomorphic

to one of the following rings:

(i) hypersurfaces k[x1, . . . ,xn]/( f ) for some quadratic polynomial f .

(ii) the ring k[x1, . . . ,x6]/det2(sym 3×3)

(iii) the scrolls defined in Definition 1.1.1.

As (i) is Gorenstein and (ii) is three dimensional, we only need to concern ourselves

with two dimensional scrolls. The only non-Gorenstein scrolls of dimension two are of

type (m) where m > 2 and are the ones listed in the statement. It is known that these

rings are of graded finite Cohen-Macaulay type (see [11] or [3, Theorem 2.3]).

Proposition 4.4.1 gives a partial (positive) answer to Question 1.1.5. Ideally though,

we would like to remove the isolated singularity condition from the hypothesis of

Proposition 4.4.1. Doing so would show that graded countable Cohen-Macaulay type

implies graded finite Cohen-Macaulay type for non-Gorenstein two dimensional rings.

4.4.2 Gorenstein Rings

It is well known that standard graded Gorenstein rings of graded finite Cohen-Macaulay

type are hypersurfaces [14, Satz 1.2]. This fact is heavily exploited in the classification

of standard graded Cohen-Macaulay rings of graded finite Cohen-Macaulay type [11].

The countable analog of this fact is still unknown.

Conjecture 1.1.6. A Gorenstein ring of countable Cohen-Macaulay type is a hypersur-

face.

Using the concept of super-stretched, Theorem 4.4.2 shows this conjecture to be true

for standard graded rings of dimension at most one, but the Conjecture 1.1.6 remains

open for higher dimensions.
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Theorem 4.4.2. Let (R,m,k) be a standard graded Gorenstein ring with dim(R) 6 1.

If R is of graded countable Cohen-Macaulay type, then R is a hypersurface.

Proof. This is a combination of Proposition 4.1.2 and Corollary 4.2.8.

Not much is known about two dimensional Gorenstein rings of graded countable

Cohen-Macaulay type. However, if we restrict to a domain of minimal multiplicity,

then we have the following proposition.

Proposition 4.4.3. Let (R,m,k) is a standard graded Gorenstein domain of minimal

multiplicity and dim(R)> 2. If R is of graded countable Cohen-Macaulay type, then R

is a hypersurface k[x1, . . . ,xn]/( f ) for some quadratic polynomial f .

Proof. As discussed in Section 4.3, Cohen-Macaulay domains of minimal multiplicity

are classified. The only Gorenstein domains are hypersurfaces k[x1, . . . ,xn]/( f ) for

some quadratic polynomial f .

According to Serre’s criterion (Theorem 2.5.5), if we assume isolated singularity,

then we have that a two dimensional standard graded ring is a normal domain. Hence

we have an immediate corollary.

Corollary 4.4.4. Let (R,m,k) is a standard graded Gorenstein ring of minimal multi-

plicity and dim(R) = 2. Further assume that R has an isolated singularity. If R is of

graded countable Cohen-Macaulay type, then R is a hypersurface k[x1,x2,x3]/( f ) for

some quadratic polynomial f .

It was also shown in Remark 2.5.11 that standard graded rings of graded countable

Cohen-Macaulay type and dimension at least three are normal domains. Hence we have

the following result for Gorenstein domains of minimal multiplicity.
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Corollary 4.4.5. Let (R,m,k) is a standard graded Gorenstein ring of minimal mul-

tiplicity and dim(R) > 2. Further assume that R has an isolated singularity. If R is

of graded countable Cohen-Macaulay type, then R is of graded finite Cohen-Macaulay

type and is isomorphic to a hypersurface k[x1, . . . ,xn]/( f ) for some quadratic polyno-

mial f .

Proof. By Corollary 4.4.4 and Remark 2.5.11, we know that R is isomorphic to a hy-

persurface k[x1, . . . ,xn]/( f ) for some quadratic polynomial f . Since R has an isolated

singularity, we can let f = x2
1 + · · ·+ x2

n. By [11], this ring is of graded finite Cohen-

Macaulay type.

These results beg the following questions.

Question 4.4.6. If (R,m,k) is a standard graded Gorenstein ring of graded countable

Cohen-Macaulay type and dim(R)> 2, is R necessarily of minimal multiplicity?

A positive answer to Question 4.4.6 would ultimately force the ring to be a hy-

persurface. Further it would show that Question 1.1.5 has an affirmative answer for

Gorenstein rings of graded countable Cohen-Macaulay type. A slightly weaker, but

interesting, question is the following.

Question 4.4.7. If (R,m,k) is a standard graded Gorenstein hypersurface ring of graded

countable Cohen-Macaulay type and dim(R)> 2, is R necessarily of minimal multiplic-

ity?

Since Conjecture 1.1.6 is still open, the natural place to look are rings of complete

intersection. According to Proposition 1.2.11, we know that standard graded complete

intersection that are stretched are either a hypersurface or defined by two quadrics.

According to Theorem 2.4.4, graded countable Cohen-Macaulay type implies super-

stretched; in particular stretched. Thus we have the following corollary.
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Corollary 4.4.8. Let (R,m,k) be a standard graded complete intersection of graded

countable Cohen-Macaulay type with k an uncountable field. Then R is a hypersurface

or defined by two quadrics.

Remark 4.4.9. The natural desire is to somehow show that R can only be a hypersurface.

Using the results of L. Avramov an S. Iyengar [6, Theorem 7.4], one is able to show

that standard graded rings of graded countable type are indeed hypersurfaces. These

results are in the local case, thus in order to apply them we must pass to the completion.

4.5 Isolated Singularity and Graded Countable Type

Although a complete classification of the standard graded rings of graded countable

Cohen-Macaulay type was not obtained in this thesis, we have found some interesting

results. In this section we summarize the results of Chapter 4 as they relate to Question

1.1.5.

In the non-Gorenstein case, Question 1.1.5 is found to have a positive answer. How-

ever there is still work to be done in the Gorenstein case. Below is a table summarizing

the results in the graded case. Let (R,m,k) be a standard graded Cohen-Macaulay ring

of graded countable Cohen-Macaulay type with an isolated singularity. The following

table represents when R is of graded finite Cohen-Macaulay type (GFT).

Dimension of R R non-Gorenstein R Gorenstein

0 GFT; Prop 4.1.2 GFT; Prop 4.1.2

1 GFT; Thm 4.2.2 or Cor 4.2.13 GFT; Thm 4.2.2 or Cor 4.2.13

2 GFT; Prop 4.4.1 If Min. Mult. then GFT; Cor 4.4.5

d > 3 GFT; Cor 4.3.2 If Min. Mult. then GFT; Cor 4.4.5
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As discussed above, a positive answer to Question 4.4.6 shows Question 1.1.5 to be

true for standard graded rings.
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Chapter 5

Conclusion and Further Directions

This dissertation was centered around the following question of C. Huneke and G.

Leuschke [17]:

Question 1.0.1. Let R be a complete local Cohen-Macaulay ring of countable Cohen-

Macaulay representation type, and assume that R has an isolated singularity. Is R then

necessarily of finite Cohen-Macaulay representation type?

In order to better understand Question 1.0.1, the standard graded case was analyzed.

In doing so, a new class of rings was discovered and defined as being super-stretched.

To avoid confusion, Chapter 2 began with an explanation of what it means for a standard

graded ring to be of graded Cohen-Macaulay type and the graded version of Question

1.0.1 was stated. What it means for a Cohen-Macaulay ring to be super-stretched was

then explored as detailed in the latter part of Chapter 2. One of the main results is

that standard graded Cohen-Macaulay rings of graded countable Cohen-Macaulay type

are super-stretched (see Theorem 2.4.4). With this fact, we are able to give a partial

classification of standard graded rings of graded countable Cohen-Macaulay type (see

Section 4.5), and thus a partial answer to the graded version of Question 1.0.1.

Further, we have defined what it means for a local ring to be super-stretched, and

have given different characterizations of this definition (see Theorem 3.0.18). It was
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also noticed that the associated graded ring of a super-stretched local ring is always

Cohen-Macaulay. As this phenomenon is not the norm, it is interesting to find new

classes of rings with this property. Now that the definition of a super-stretched local

ring has been established, it is natural to extend the graded results to the local case.

This direction of study is not contained in this thesis and was left as a question.

Question 3.0.20. Let (R,m,k) be a local Cohen-Macaulay ring of dimension d > 0

with uncountable residue field k. If R is of countable Cohen-Macaulay type, does this

necessarily imply R is super-stretched?

As described in Section 4.4.2, standard graded Gorenstein rings of graded finite

Cohen-Macaulay type are hypersurfaces. This result is not known for the Gorenstein

rings of graded countable Cohen-Macaulay type and was stated as a conjecture.

Conjecture 1.1.6. A Gorenstein ring of countable Cohen-Macaulay type is a hypersur-

face.

We have shown that the conjecture holds for one dimensional standard graded

Gorenstein rings (see Theorem 4.4.2). Is it possible to extend this result to higher

dimensions?

In [11], D. Eisenbud and J. Herzog completely classify the standard graded Cohen-

Macaulay rings of graded finite Cohen-Macaulay type. In doing so, they show that

such rings have minimal multiplicity if the dimension is two or larger. For the non-

Gorenstein case, we are able to show that standard graded rings of dimension three or

larger are of minimal multiplicity, if the ring is of graded countable Cohen-Macaulay

type. Further, if we assume the ring has an isolated singularity (and non-Gorenstein),

we are able to reduce the dimension from three to two (see Chapter 4). With these

results we are able to classify the non-Gorenstein rings with isolated singularity and of

graded countable Cohen-Macaulay type.
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As described in Chapter 4, the Gorenstein case is all that is missing from a classi-

fication of rings of graded countable Cohen-Macaulay type and of isolated singularity.

We leave these questions here for future consideration.

Question 4.4.6. If (R,m,k) is a standard graded Gorenstein ring of graded countable

Cohen-Macaulay type and dim(R)> 2, is R necessarily of minimal multiplicity?

Question 4.4.7. If (R,m,k) is a standard graded Gorenstein hypersurface ring of graded

countable Cohen-Macaulay type and dim(R)> 2, is R necessarily of minimal multiplic-

ity?

A positive answer to Question 4.4.6 would ultimately force the ring to be a hyper-

surface and thus show Conjecture 1.1.6 to be true. Further it would show the graded

version of Question 1.0.1 has an affirmative answer. Question 4.4.7 is slightly weaker,

but interesting none-the-less.
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