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ABSTRACT  
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 The ovary is a dynamic organ that is charged with the responsibility of producing 

a viable gamete so that the circle of life can be reproduced for future generations.  The 

ovary is also responsible for producing, secreting, and maintaining the proper hormone 

milieu of estrogens and progesterone for maintenance of pregnancy and the overall 

fitness of a woman’s health.  Understanding the mechanisms that regulate the interplay 

between hormone action and biological function is critical for furthering our knowledge 

of fertility and reproductive health.  For decades, research has been conducted on 

understanding the transcriptional regulation of ovarian gene expression and how this 

relates to reproductive function.  Recently, attention has turned to alternative forms of 

gene regulation, including post-transcriptional gene regulation.  One mechanism of post-

transcriptional gene regulation is the expression and function of microRNA (miRNA).  

These highly conserved, short, non-coding RNA molecules primarily silence gene 

expression by directly interfering with protein translation or causing the degradation of 

messenger RNA.  The focus of these studies was to first determine if miRNA are 

necessary for female fertility.  Conditional deletion of Dicer, a key processing enzyme in 

miRNA biogenesis, in ovarian granulosa cells, the oviduct, and uterus, led to a drastic 

decrease in ovulation rate and complete infertility in female mice.  To further investigate 

the role of miRNA in ovulation, we next investigated miRNA-212 and -132.  While these 

two co-transcribed miRNA were highly induced by the luteinizing hormone surge 

immediately prior to ovulation, they did not appear to have an effect on female fertility in 

the mouse.  In a second series of studies, we analyzed the regulation of miRNA by 

hormones in two in vivo models.  We found that miRNA expression was altered in theca 

cells from women suffering from polycystic ovarian syndrome (PCOS) and that 
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expression of miRNA was altered in the fetal ovaries of sheep exposed to an excess of 

prenatal androgens.  Taken together, these studies provide evidence that miRNA are 

crucial for female fertility and ovarian function and that hormones influence the 

expression of ovarian miRNA in diseased states.  These studies support the need for 

further study to understand the mechanisms through which these post-transcriptional 

regulators affect ovarian function, so that we can potentially use them as a therapeutic 

target to help overcome infertility and/or disease.  
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1. The structure and development of the ovary 

The ovary is a highly dynamic and functional organ that is responsible for the 

perpetuation of life.  Beginning prior to birth, it houses, nurtures, and protects the 

female’s eggs as they prepare to leave the ovary through ovulation, undergo fertilization, 

and provide the mother’s genetic contribution that will ultimately define her offspring.  

From fetal development through the end of a woman’s life, the ovary is the primary 

provider of estrogens and other hormones that are critical for not only reproduction, but 

numerous aspects of her health.  The following is a review of literature that describes the 

development and multiple functions of the ovary as well as regulatory mechanisms of the 

ovarian cycle. 

 

Structure of the Ovary 

The adult mammalian ovary is divided into two main regions: the cortex and 

medulla.  In humans, mice, rats, sheep, cows, and nearly all other mammals, the cortex 

contains the follicles, the functional unit of the ovary that encloses the oocyte. The 

exterior of the ovary is lined by a single, continuous layer of cuboidal or columnar 

epithelial cells known as the germinal or surface epithelium, derived from the coelomic 

epithelium during ovarian development (Harrison and Weir 1977).  In the adult ovary, the 

tunica albuginea is a thin layer of connective tissue that lies directly adjacent to the 

ovarian surface epithelium. Throughout the cortex, follicles at different stages of 

development are embedded in the stroma, a layer of connective cells, secretory cells, and 

capillaries that support the follicle. The medullary region of the ovary is the most central 

portion of the ovary and is largely a loose core of connective tissue consisting of a 



 
4 

 

heterogeneous population of cells.  The ovary is connected to the rest of the body 

vascularly, nervously, and physically through the hilum.  This ‘stalk’, is the entry point of 

the vascular system, as well as containing the ligaments that connect the ovary to the 

mesovarium.  Arteries from the hilum empty into the medulla, where a system of smaller 

blood vessels branch throughout the ovary and into the cortex to maintain and support 

follicles while serving as a means to transport ovarian hormones systemically. 

 

Development of the Ovary 

 During fetal development, an undifferentiated, bi-potential gonad forms from the 

coelomic epithelium.  Proliferation of this epithelial layer causes a thickening of the 

tissue to form the genital ridge.  The primordial germ cells originate extra-gonadally in 

the endoderm of the yolk sac and migrate to the bilateral genital ridge (Zuckerman and 

Baker 1977).  Once there, the primordial germ cells begin to undergo mitotic 

proliferation as the surrounding somatic epithelium cells continue to proliferate and form 

a thickening around the gametes.  The sexually undifferentiated gonad then begins to re-

organize into the outer cortex and inner medullary regions divided by a tunica albuginea.  

At the same time, a series of sex cords begin to surround the primordial germ cells.   

Differentiation of the biopotential gonad occurs when the cortex of the ovary continues to 

proliferate while the medulla region recesses (Zuckerman and Baker 1977). The 

primordial germ cells are primarily situated in the cortex region and the previous cord 

like structure regresses, leaving nests of germ cells that are surrounded by epithelial cells.  

In the ovary, the primordial germ cells will stop proliferating and go into meiotic arrest 

until they are activated later in life.  The epithelial cells that surround the nests will 
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transition into pre-granulosa cells, associate with an individual primordial germ cell and 

become a primordial follicle (Zuckerman and Baker 1977).  

In mammals, sexual determination is initiated by the sex-determining region of 

the Y chromosome (SRY) gene (Gubbay, et al. 1990, Koopman, et al. 1991, Lovell-

Badge and Robertson 1990).  Expression of this transcription factor in the developing 

male gonad sets off a cascade of genes that will in turn drive testis formation and inhibit 

pathways that lead to ovarian formation.  Formation of the female gonad is considered be 

a passive genetic process that occurs when SRY is not expressed.  Wnt4 is a primary 

factor in ovarian development and is believed to inhibit testis development while possibly 

feeding forward to promote ovarian development (Vainio, et al. 1999).  Likewise, 

follistatin is regulated by Wnt4 and further antagonizes testis formation and is important 

for germ cell survival (Yao, et al. 2004).  Intensive work has been dedicated to this field, 

for a more detailed review please see (Brennan and Capel 2004, Yao 2005).    

The oviduct, uterus, and vagina, or secondary sex organs all develop from the 

Mullerian ducts, while the secondary sex organs of the male are formed from the 

Wolffian ducts.  Both duct systems develop in the fetus; however one set will undergo 

regression while the other undergoes differentiation into a functional organ system.  In 

the male, anti-Mullerian hormone (AMH, also referred to as Mullerian inhibiting 

substance, MIS) is produced by the developing testes, leading to apoptosis and 

degeneration of the Mullerian ducts.  Testosterone, also produced by the testes, stimulates 

development of the Wolffian ducts and masculinizes the fetus.  In the developing ovary, 

no AMH is produced, thus the Mullerian ducts undergo differentiation and form the 
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oviduct, uterus, and anterior region of the vagina.  Without testosterone the Wolffian duct 

undergoes regression.   

    

2. The ovarian cycle 

Each reproductive cycle, the mammalian ovary releases one or more mature 

oocytes (the egg) into the reproductive tract.  The ovarian cycle is divided into two 

phases: the follicular phase and the luteal phase. The follicular phase involves the 

formation, growth, and maturation of follicles through a process termed folliculogenesis.  

Upon follicular maturation, ovulation occurs and the mature gamete is released from the 

ovary for potential fertilization.  Following ovulation, the luteal phase begins as the 

ruptured follicular tissue differentiates into luteal tissue.  These cellular changes and 

tissue remodeling lead to a shift in cellular function from aiding in the development of a 

mature gamete, to providing an environment conducive to the establishment and 

maintenance of pregnancy should the oocyte be fertilized.  If fertilization does not occur, 

the luteal tissue regresses, allowing for a new follicle to mature, and the cycle starts over 

again.  While in humans and other monovulatory species (i.e. cow, sheep, non-human 

primate) only one egg is released, and in litter bearing species such as the mouse, rat, or 

pig, multiple eggs are ovulated, the process of producing the mature gamete requires 

selection from thousands of eggs and can take a timeframe of up to several months.  

Great variance is observed in the processes of folliculogenesis and ovulation between 

mammalian species.   
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Folliculogenesis 

The process of folliculogenesis, or the formation and maturation of the ovarian 

follicle that is responsible for protecting and nurturing the maturing oocyte, begins before 

birth in most mammalian species.  Following the process of oocyte formation, and 

continuing through oogenesis, a thin layer of flattened pre-granulosa cells associates with 

and surrounds the oocyte to form a primordial follicle (Pedersen and Peters 1968).  This 

process, termed primordial follicle assembly, begins during fetal development and is 

completed by birth in higher mammals, thus providing females with their full 

complement of gametes at the time of birth.  In rodents, follicle assembly begins at 

embryonic day 17.5 and is completed by post-natal day 5 (Borum 1967).  Prior to this 

point, oogonia are undergoing proliferation through mitotic division and are not 

associated with any somatic cells (Pepling and Spradling 2001).  The primordial follicle, 

including the oocyte, is non-growing and remains quiescent in the resting follicular pool 

until later in life when it undergoes primordial follicle activation and enters the follicular 

pool as a primary follicle.  At birth, women are estimated to have 400,000 follicles 

remaining out of the 6 to 7 million oogonia present at the peak of mitotic proliferation 

during gestation (Rajkovic, et al. 2006).  The large number of oogonia and follicles lost is 

attributed to follicular atresia, a process that will continue to deplete follicular reserves 

throughout life.   
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Figure VI-1. Schematic diagram depicting the structure of the ovary. Figure adapted 

from Ojeda, 2004. 
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Figure V1-1 
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Primordial follicle activation, or the transition from primordial to primary follicle, 

is an irreversible process that begins the growth and maturation process of follicle 

development. The granulosa cells of the primary follicle have transitioned to a cuboidal 

or columnar shape and form a distinct layer around the oocyte, which has begun to 

increase in size (Harrison and Weir 1977).  A basement membrane, termed the basal 

lamina, forms adjacent to the outer most layer of granulosa cells and will act as a blood 

barrier to keep the avascular granulosa cell and oocyte distinct from the blood supply that 

will soon form around the follicle.  Following proliferation of the granulosa cells to form 

a second, concentric circle around the oocyte and the formation of a thick, glycoprotein 

rich layer known as the zona pellucida around the oocyte, the follicle is classified as a 

secondary follicle.  The oocyte of the secondary follicle continues to grow and the total 

volume of the follicle increases.  During the latter stage of the secondary follicle, a layer 

of somatic/ mesenchymal cells originated from the ovarian interstitium and termed theca 

cells will associate tightly with the outside of the basement membrane (Magoffin 2005).  

Theca cells are embedded with capillaries, act as an important source of nutrients (i.e. 

glucose and amino acids), growth factors, and hormones for the growing follicle and 

oocyte, and will eventually become a key component in the production of steroids in the 

ovarian follicle.  Continued proliferation of granulosa cells will result in multiple layers 

of cells around the oocyte and the eventual formation of a fluid filled cavity known as the 

antrum.  The follicular fluid that comprises the antrum is thought to be a combination of 

liquid from the serum on the outside of the follicle combined with secreted factors from 

the granulosa cells.  Numerous factors have been isolated from follicular fluid and 

include: gonadotropins, growth hormone, prolactin, steroid hormones, corticoids, 
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members of the TGFβ superfamily, insulin-like growth factors (IGFs), amino-acids, 

RNAs, sugars, as well as other compounds and is thought to be primary source of 

nutrition and signaling for the oocyte (Revelli, et al. 2009).  As more fluid begins to fill 

the follicle it will coalescence into a large fluid filled cavity that will push the oocyte, 

surrounded by one or two layers of specialized granulosa cells referred to as cumulus 

cells to one side.  The cumulus granulosa cell is specifically defined as the layer of cells 

that line the ring of the oocyte.  They are crucial for communication between the rest of 

the follicle (and thus, the rest of the organism) and the oocyte (Diaz, et al. 2006).  The 

cumulus cells appear to be biochemically and molecularly different in both enzyme and 

receptor expression when compared to the mural granulosa cells, or the cells that line the 

follicular wall and previously referred to as granulosa cells.  Mural granulosa cells are 

largely steroidogenic and communicate with the theca, cumulus granulosa cells, and rest 

of the organism systemically.  Granulosa cell differentiation appears to be due to a 

gradient of follicle stimulated hormone (FSH) exposure, as mural granulosa cells are 

closer to the vasculature outside of the follicle wall and have greater response to the 

hormone (Diaz, et al. 2007).  At this point, the follicle has reached the antral stage of 

development and a ‘stalk’ of granulosa cells connects the cumulus-oocyte complex to the 

wall of the follicle, while allowing it to be bathed in follicular fluid.  During the tertiary 

follicle transition, the layer of theca cells on the exterior of the basal lamina divide into 

the theca interna and theca externa.  Theca interna cells are nearest the basement 

membrane, have large numbers of mitochondria, smooth endoplasmic reticulum, and 

lipid vesicles, and thus are primarily responsible for steroid synthesis and transport of 

signals into the follicle (Magoffin 2005).  The external layer of theca cells is critical for 
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preparing the follicle for ovulation and is embedded with macrophages, fibroblasts, and 

smooth muscle cells (Hirshfield 1991).  The antral follicle will continue to increase in 

total volume, both from continued granulosa cell proliferation and increased volume of 

follicular fluid.  The pre-ovulatory follicle produces large amounts of estradiol and if 

selected for ovulation, will ovulate in response to a surge of luteinizing hormone (LH).  

While the stages of follicular development are easy to classify and identify, the 

endocrine and molecular mechanisms that regulate this process and the ovarian cycle are 

very complex.  The early stages of follicular development, including the formation of 

primordial follicles and subsequent transition to the primary follicular phase are generally 

thought to occur independent of the pituitary gonadotropins, FSH and LH (Eppig and 

O'Brien 1996, O'Shaughnessy, et al. 1997, Sokka and Huhtaniemi 1990).  The factors 

responsible for signaling the primordial follicle to enter the growing pool and transition 

to the primary follicle are not completely understood, but it appears to be a balance 

between inhibitory and activating factors.  Culture of fetal bovine ovaries in serum-free 

media led to the induction of follicular growth, thus suggesting the theory that an extra-

ovarian factor must be responsible for keeping primordial follicles arrested (Wandji, et al. 

1996).  Recently, the transcription factor Foxo3 along with the PI3K signaling pathway 

was also implicated in inhibiting primordial follicle growth (John, et al. 2008, John, et al. 

2007).  A handful of genes and growth factors were identified to play a role in the 

transition from primordial follicle to primary follicle, including Kit ligand and its cognate 

receptor c-Kit, which were first hypothesized as a key regulator in primordial follicle 

activation (Parrott and Skinner 1999).  Likewise, Nobox (newborn ovarian homeobox) 

and Sohlh1 and 2 are important transcription factors in the activation of primordial 
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follicles (Choi, et al. 2008, Choi, et al. 2007, Pangas, et al. 2006, Qin, et al. 2007).  While 

these mechanisms appear to be involved in the processes linked to the resumption of 

oocyte growth, the actual upstream signal that regulates these mechanisms remains to be 

elucidated. 

The transition from primary to pre-antral follicle also appears to be gonadotropin 

independent, as mice lacking the FSH receptor (FSHR) or the β-subunit of FSH exhibit 

normal follicular growth through the pre-antral stage (Abel, et al. 2000, Kumar, et al. 

1997).  Instead, the follicle appears to respond to paracrine cues from the oocyte as 

evidenced by the inability of ovaries lacking the oocyte derived growth factor GDF9 to 

progress past the primary stage of development (Dong, et al. 1996).  The primary defect 

in these mice appears to be a decrease in granulosa cell proliferation (Elvin, et al. 1999) 

and lack of formation of the theca cell layer (Dong, et al. 1996).  The formation of the 

follicular antrum appears to be the first point under control of the pituitary gonadotropin 

FSH (Kumar, et al. 1997).  Following this stage of development, follicular growth or 

regression by atresia appears to be largely regulated by the gonadotropin hormones.  

 During each ovarian cycle, a cohort of antral follicles begins to grow in a process 

named recruitment (Ginther, et al. 1996). Follicles that have been recruited either 

undergo atresia or continue to grow into medium sized antral follicles.  As the cohort of 

follicles grow, a single follicle (in monovular species) or multiple follicles (in litter 

bearing species) will emerge from the cohort, gaining a distinct growth advantage over 

the other follicles.  The morphologically larger follicle is termed the dominant follicle 

and is capable of developing into an ovulatory follicle with proper hormonal stimulation, 

while the other smaller follicles (subordinate follicles) regress (Fortune, et al. 2001).  
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This larger follicle exerts ‘dominance’ over the smaller, subordinate follicles by 

producing hormones that change the endocrine environment to one that does not support 

further growth of the smaller follicles. Therefore, the subordinate follicles will undergo 

degeneration through a process termed atresia through apoptosis (Fortune 1994, Ginther, 

et al. 1996, Richards 1994). 

 

Follicular Atresia 

 Throughout the lifespan of the female, the vast majority of follicles will undergo 

atresia.  The process of atresia is an important mechanism to ensure that only the best and 

most healthy follicles and oocytes with the greatest chance at becoming successfully 

fertilized will be ovulated.  The primary mechanism of atresia is through regulated and 

programmed cell death through apoptosis (Quirk, et al. 2004).  During apoptosis, the 

nucleus of the cell containing the DNA condenses, fractures, and eventually will 

fragment.  The cytoplasm begins to aggregate, the organelles disintegrate, and 

neighboring macrophages will phagocytize the apoptotic cell.  Atresia can be initiated in 

either the oocyte or somatic cells of the follicle (Matsuda, et al. 2012).  A large 

percentage of atresia occurs during follicular assembly, as oocytes that do not assemble 

with pre-granulosa cells will undergo apoptosis.  Atresia of follicles that have assembled 

correctly will typically occur at the antral stage of development due to the lack of 

exposure/production of survival factors (i.e. the subordinate follicle).  FSH is the most 

critical of survival factors and expression of its receptor (FSHR) is necessary to escape 

atresia.  Thus, the signaling pathways set in motion by FSH, namely the production of 

cyclic AMP (cAMP) in the granulosa cell, turn on anti-apoptotic factors.  Estrogens, 
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insulin-like growth factor I (IGF-1), interleukin-1 (IL-1), epidermal growth factor (EGF), 

and basic fibroblast like factor (bFGF) have all been identified as pro-survival factors in 

follicular growth and development (Matsuda, et al. 2012).   

 

 

Ovulation 

 Ovulation is the culmination of growth, development, and selection of a healthy 

follicle that is needed for oocyte release into the Fallopian tube (human) or oviduct (other 

mammals). In most mammals, including the human, primate, sheep, and rodent, ovulation 

is induced by a surge of LH.  The molecular basis of ovulation begins with events 

occurring in the peri-ovulatory follicle in the period leading up to the ovulatory event.  

The peri-ovulatory follicle produces large quantities of estradiol (the primary estrogen 

produced by the follicle).  It is estimated that the human peri-ovulatory follicle produces 

approximate 400 to 800 ng of estradiol a day (Tagatz and Curpide 1973).   Granulosa cell 

expression of steroidogenic enzymes such as Cyp19 (also named Aromatase) are high, to 

ensure synthesis and secretion of estradiol is great enough to enter circulation and 

stimulate the anterior pituitary in a feed forward mechanism to release a bolus of LH 

known as the LH surge.  Upon binding to its cognate receptors on the peri-ovulatory 

follicle, this ovulatory dose of LH activates a number of signaling cascades  (i.e. cAMP 

signaling) and the programming that drives estradiol synthesis, granulosa cell 

proliferation, and other factors necessary for follicular development is shut off.  The LH 

surge also stimulates gene expression, turning on genes necessary for ovulation, cumulus 

expansion, and preparing the follicular tissue to undergo luteinization following ovulation 
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(Richards, et al. 2002).  These changes that occur are both temporal and spatial, affecting 

the cumulus granulosa cells, mural granulosa cells, theca cells, and endothelial cells. 

 The event of ovulation occurs approximately 13-15 hours post-LH in the mouse 

(Runner and Gates 1954) and 32 to 36 hours post-LH in the human (Espey, et al. 2004).  

For ovulation to occur, the actual follicular wall and corresponding layers of the ovary 

must undergo rupture.  The specific site of rupture is termed the stigma, and the tunica 

albuginea and surface epithelium of the ovary must be breached at this particular 

location.  In addition to stimulating the expression of numerous genes, the LH surge 

causes an increase of blood flow at the site of the ovulatory follicle.  This leads to 

increased dilation and permeability of the capillaries embedded in the layer of theca 

externa cells in the follicle, priming the follicular wall for rupture.      

In the mural granulosa cells, LH rapidly induces expression of a number of genes 

necessary for ovulation, including progesterone receptor (PR), cyclooxygenase-2 (COX-2 

or PTGS2), hyaluronan synthase (HA), CCAAT/enhancer binding protein β (C/EBPβ), 

early growth response protein-1 (Egr-1), as well as others (Richards 2005).  Eight hours 

following the LH surge several other important genes including a disintegrin-like and 

metallopeptidase with thrombosopondin type 1 motif (ADAMTS-1) followed by matrix 

metallopeptidase 14 (MMP14), exhibit increased expression (Richards 2005).   Cumulus 

granulosa cells do not express receptors for LH, so expression of factors such as the EGF 

ligands and associated receptors as well as Cox-2 are particularly important to mediate 

the LH signal from mural to cumulus granulosa cell.    
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Luteal Phase 

Following ovulation, granulosa and theca cells differentiate into large and small 

luteal cells, respectively.  In the days following ovulation, the corpus luteum (CL) 

increases in size by increasing the cytoplasmic:nuclear ratio of large lutein cells. This 

increase in cellular cytoplasm is accompanied by an increase in the cellular organelles 

associated with steroid production, such as mitochondria, smooth endoplasmic reticulum, 

and Golgi apparati (Smith, et al. 1994).  Expression of mRNA for steroidogenic enzymes 

switches from that necessary for estradiol production to that needed for progesterone 

production.  Progesterone is secreted by the CL and is required to establish and maintain 

pregnancy, if the ovulated oocyte becomes fertilized (Niswender, et al. 2000).  Blood 

flow to the CL also increases shortly after ovulation (Schams and Berisha 2004). The CL 

goes through a period of intensive angiogenesis until nearly every luteal cell is in contact 

with one or more capillaries (Redmer and Reynolds 1996). 

If fertilization does not occur, the CL undergoes a process called luteolysis in 

which the CL regresses.  Luteolysis, or the demise of the corpus luteum, occurs in two 

stages (Niswender, et al. 2000).  First, functional demise occurs resulting in decreased 

capacity for progesterone production and secretion.  A decrease in progesterone coupled 

with other factors then leads to the second stage, or structural demise of luteal tissue 

(Niswender, et al. 1994). In most mammalian models of luteolysis, regression is 

dependent upon synthesis and release of prostaglandin F2α (PGF2α) from the uterus. If no 

embryo is present, PGF2α is released from the uterus and induces luteolysis. In the 

presence of an embryo, the release of PGF2α is inhibited to prevent luteal regression and 

maintain pregnancy. Structural demise is characterized by a decrease in luteal cell 
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number and size. Apoptosis is dramatically increased in the endothelial cells of 

capillaries in the corpus luteum, resulting in the degradation of vascular tissue and the 

accompanied decrease in blood flow.  As less blood reaches the luteal tissue, a reduction 

in oxygen and nutrient delivery to luteal cells facilitates corpus luteum regression 

(Niswender, et al. 2000, Smith, et al. 1994). 

 

Gonadotropin signaling and the regulation of ovarian function  

Regulation of folliculogenesis is largely controlled by communication between 

the ovary, pituitary and hypothalamus - the hypothalamic-pituitary-gonadal axis.  Two 

critical hormones, released from the anterior pituitary in response to gonadotropin 

releasing hormone (GnRH) from the hypothalamus, are LH and FSH.  These 

gonadotropic polypeptide hormones bind to the appropriate G protein-coupled receptor 

and affect follicular development and steroid production by modulating the cAMP and/or 

the protein kinase A (PKA) second messenger systems.  The mechanism of cAMP 

activity begins with FSH/LH binding to its receptor, leading to a conformation change 

and activation of the Gs subunit.  The Gs subunit is released from the complex and 

activates adenylate cyclase which catalyzes conversion of ATP to 3’-5’-cyclic AMP 

(cAMP).  The process of cAMP formation is often mimicked experimentally by use of 

the pharmacological agent forskolin, a compound that activates adenylate cyclase and 

increases cAMP formation.  Alternatively, the non-degradable and easily permeable 

compound, 8-Bromo-cAMP can be used to mimic the LH surge.  The primary effector of 

cAMP is the PKA pathway, a tetrameric complex consisting of two regulatory subunits 

and two catalytic subunits. Upon formation, cAMP molecules bind to the regulatory 
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subunits, allowing for release of the catalytic subunits.  The primary PKA substrate 

appears to be cAMP response-element binding protein (CREB), a transcription factor that 

when phosphorylated by PKA regulates gene expression.  CREB binds to cAMP 

response elements (CRE) sites in the promoter regions of genes.  Numerous genes 

involved in ovarian function are regulated by cAMP/CREB, including Cyp19 and 

progesterone receptor.  In addition to transcriptional regulation, PKA can also directly 

affect the phosphorylation of proteins, as evidenced by the phosphorylation of StAR and 

associated increase in steroidogenic activity (Arakane, 1997).  A primary regulatory 

factor in cAMP signaling is the enzyme family of phosphodiesterases (PDEs) that 

degrade cAMP molecules.  LH and FSH can also signal independently of cAMP via Gi 

subunit activation of phospholipase C (PLC) and subsequent activation of IP3 and 

diacylglycerol (DAG) (Hsieh, et al. 2011). Granulosa cells become responsive to FSH 

when the FSH receptor begins to be expressed in the secondary follicle.  LH receptors are 

expressed in theca cells, as well as in granulosa cells of selected antral follicles (Fortune, 

et al. 2001). Estradiol production is the result of cooperation between theca and granulosa 

cells (Magoffin 2005).  Throughout the follicular stage of the ovarian cycle, the 

increasing levels of estradiol secreted by the growing follicle stimulates the 

hypothalamus in a feed-forward mechanism to increase the release of GnRH and 

subsequent secretion of FSH and LH from the pituitary (Fortune 2003). Activated 

estrogen receptors in the anterior pituitary stimulate an increase in the release of 

gonadotropins.  FSH and LH in turn, stimulate granulosa and theca cell steroid 

production.  This positive feed-forward mechanism causes greater estrogen production.  

As a result, more estrogen is produced and released as the follicles mature.  When the 
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dominant follicle reaches ovulatory size, the increased production of estradiol triggers the 

hypothalamus to increase pulse frequency and amplitude of GnRH pulses so that 

ultimately a large pulse of LH and FSH to be released from the pituitary. This 

gonadotropin surge, often called the LH surge because it is released in a greater 

concentration relative to FSH, causes the follicle to rupture and release the oocyte. The 

remaining follicular tissue involutes and begins to undergo luteinization. Progesterone 

produced from the CL exerts negative feedback on hypothalamic activity, keeping the 

GnRH pulse amplitude and frequency low and slow, thus inhibiting the surge release of 

gonadotropins from the pituitary, preventing ovulation from occurring. As the CL 

regresses, progesterone production decreases and allows hypothalamic and gonadotropin 

secretion to increase. Follicular growth and maturation marks the beginning of the next 

ovarian cycle. 

 

3. Steroidogenesis 

The primary hormone products of the ovary are 17β-estradiol from dominant 

follicles and progesterone from the corpus luteum, however several intermediates 

including androstenedione and testosterone are secreted in lesser quantities from the 

ovary.  In addition to the many previously described functions of estradiol in the ovary 

and female reproductive system, it also has important roles throughout the female body 

(i.e. bone strength).   Progesterone is similarly important, as it is critical in regulating the 

uterus for a successful pregnancy. 

Cholesterol is the precursor of all ovarian steroids hormones.  Steroid producing 

cells in the ovary can synthesize cholesterol de novo or uptake cholesterol from 
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circulating serum lipoproteins or cholesterol esters (Strauss and Miller 1991).  If 

cholesterol levels are low in steroidogenic cells, de novo synthesis of cholesterol begins 

with the formation of 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) from acetyl-CoA 

and acetoacetyl-CoA by the HMG-CoA synthase enzyme (Ho, et al. 2004).  HMG-CoA 

reductase then uses the HMG-CoA substrate to produce mevalonic acid and a series of 

enzymatic reactions will create the 30 carbon intermediate squalene molecule.  Following 

cyclization, the 26 carbon cholesterol molecule is formed (Ho, et al. 2004).  However, as 

expression of HMG-CoA, the rate-limiting step of cholesterol synthesis is low in ovarian 

steroidogenic cells, most cholesterol reaches the ovary via serum lipoproteins that have 

been digested from dietary sources (Christenson and Devoto 2003).  Ovarian 

steroidogenic cells can uptake cholesterol bound to low-density lipoproteins (LDL) or 

high-density lipoproteins (HDL).  LDL molecules contain cholesterol in the form of 

cholesterol esters, which cannot be used directly for steroidogenesis due to their 

esterification (Ho, et al. 2004).  Cholesterol esters are stored in lipid droplets, and must 

be hydrolyzed to free cholesterol by neutral cholesterol hydrolase. In humans, LDL is the 

primary transporter of cellular cholesterol, while in cows, sheep, rats, and mice, HDL is 

the primary form of cholesterol.  LDL enters the cell through multiple methods, including 

binding to the plasma membrane of the cell and undergoing endocytosis to form a 

clathrin coated pit in the interior of the cell (Christenson and Devoto 2003).  A lysosome 

will then bind the vesicle, release a lipase that will dissociate the cholesterol ester from 

the lipoprotein and both will be released into the cytosol.  The primary mechanism of 

HDL entry into the cell is through scavenger receptor B1 (SRB1) (Ho, et al. 2004).  This 

receptor can also transport LDL into the cell and causes the freeing and movement of the 
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cholesterol ester into the cell, while the lipoprotein stays on the exterior of the cell.  

Following conversion of cholesterol ester to free cholesterol, the molecule can be 

transferred to the mitochondria for steroid synthesis.  

Two types of enzymes are primarily responsible for a series of cleavages and 

oxidations that ultimately turn cholesterol into a number of steroid hormone derivatives.  

Cytochrome P450 enzymes (abbreviated CYP) are a large class of proteins involved in 

steroid biosynthesis in endocrine glands including the ovary, testis, and adrenals.  P450 

enzymes are bound to the membrane of the mitochondria or endoplasmic reticulum and 

catalyze the hydroxylation and cleavage of a steroid substrate (Payne and Hales 2004). 

They are named for the shift in absorbance peak from 420nm to 450nm upon catalytic 

reduction (Hall 1986) and have a heme iron group that requires oxygen and reducing 

agents derived from NADPH for catalytic activity (Strauss and Miller 1991).  The second 

major class of enzymes involved in ovarian steroidogenesis is the hydroxysteroid 

dehydrogenases (abbreviated HSD).  These proteins carry out a series of reactions that 

catalyze the interconversion of steroidal alcohols and carbonyls (Strauss and Miller 

1991).  

The critical rate limiting step in production of steroid hormones in the ovary is the 

transport of cholesterol from the outer to the inner membranes of the mitochondria by 

steroidogenic acute regulating protein (StAR)  (Strauss, et al. 1999).  Delivery of 

cholesterol to the inner membrane of the mitochondrial allows for the first committed 

step of steroidogenesis to occur by the cytochrome P450-side change cleavage (Cyp11a1) 

enzyme.  This series of irreversible cleavage reactions removes the side chain of the 26 

carbon cholesterol to form the 21 carbon steroid pregnenolone.  From this point forward, 
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all steroid metabolism is conducted in the endoplasmic reticulum.  Following the 

synthesis of pregnenolone and ending with the formation of androstenedione, 

steroidogenesis can proceed through the Δ4 or Δ5 pathways, so named for the location of 

the double bond in the A ring of the steroid (Conley and Bird 1997).  Conversion of 

pregnenolone to progesterone with the 3βHSD enzyme will cause future reactions to go 

through the Δ4 pathway, due to the Δ4-5 isomerase activity of the enzyme.  Alternatively, 

the enzyme Cyp17, will cause steroidogenesis to progress through the Δ5 pathway, with 

dual hydroxylase and desmolase activity that will convert pregnenolone into 17α-

hydroxy-pregnenolone and subsequently the 19 carbon androgen, 

dehydroepiandrosterone (DHEA) (Rice and Savard 1966).  3βHSD can then catalyze 

DHEA into androstenedione, at which point all steroids are considered Δ4.  Cyp17 can 

also catalyze the Δ4 hydroxylation of progesterone to 17α-hydroxy-progesterone and 

subsequent desmolation to androstenedione.  The decision of which pathway to follow 

for steroidogenesis is largely species dependent, as the affinity of Cyp17 for 17α-

hydroxy-progesterone in humans, primates, sheep, and cattle is low, thus leading 

primarily to the Δ5 pathway (Conley and Bird 1997).  However, in other species such as 

the pig, rat, and mouse, such inefficiency is not observed, and either the Δ4 or Δ5 

pathways can be used (Conley and Bird 1997).  Metabolism of androstenedione can lead 

to synthesis of testosterone via 17βHSD (Labrie, et al. 1997).  Estradiol, the primary 

estrogen (18 carbons) produced by the ovary, is synthesized by aromatization of 

testosterone by the enzyme Cyp19, also referred to as aromatase (Brodie, et al. 1976). 

Ovarian steroid hormone synthesis of the follicle is an intricate interplay and 

compartmentalization between the granulosa and theca cells.  In an elegant experiment 
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where theca, granulosa, or luteal cells alone or combined where transplanted into eye of a 

rat, it was found that theca or granulosa cells alone were not sufficient to produce 

estrogen (Falck 1959).  The combination of theca and granulosa cells or the presence of 

luteal cells did produce an estrogenic effect (Falck 1959).  These early observations as to 

the necessity of both major cellular components of the follicle were the initial basis of the 

‘two-cell, two-gonadotropin’ hypothesis of estrogen synthesis in the ovary.  Following 

several decades of research, we now better understand the compartmentalization of 

steroidogenesis in the ovarian follicle.  Theca cells, on the exterior of the follicle, express 

receptors for LH (Magoffin 2005).  Upon LH stimulation, expression of Cyp17 is turned 

on in the theca cell and steroidogenesis through androstenedione will proceed.  In the 

early antral follicle, granulosa cells only express receptors for FSH (Erickson, et al. 

1979), thus preventing transcriptional up regulation of enzymes regulated by LH and 

necessary for steroidogenesis through androgen synthesis.  Instead, FSH signaling 

increases expression of Cyp19 (aromatase) in granulosa cells of small antral follicles, so 

that androgens that diffuse across the basement membrane from the theca cell can act as 

substrate for estradiol synthesis (Liu and Hsueh 1986).  However, upon acquiring 

dominance, and reaching the pre-ovulatory stage, granulosa cells will begin to express 

LH receptors and thus turn on expression of Cyp17 and allow synthesis of estradiol from 

cholesterol (Fortune, et al. 2001).  This compartmentalization of steroid production 

allows for suppression of estradiol production during the luteal phase of the ovarian 

cycle, thus keeping feedback on the hypothalamus/pituitary low.  The ability of granulosa 

cells of the dominant follicle to express LH receptors and produce estradiol from 

cholesterol allows for the increased synthesis and release of estradiol during the follicular 
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phase.  This furthers allows for the feed forward activity of estradiol on the 

hypothalamus/pituitary and ultimately initiate the subsequent LH surge.  Alternatively, 

luteal cells express high levels of Cyp11, allowing for large levels of progesterone to be 

secreted from the corpus luteum (Doody, et al. 1990).  

 

4. Regulation of gene expression in the ovary 

 Transcriptional regulation of gene expression is a primary and well-defined 

method of controlling cellular and biological function.  Numerous examples exist of the 

regulation of genes in the ovary, including the regulation of Cyp19 or progesterone 

receptor in response to LH signaling as described above.  Transcriptional regulation 

allows for a stimulus, such as LH, to rapidly turn off and on gene expression of mRNA 

that is necessary for a cell to respond to and carryout a specified function.  However, 

changes in mRNA expression levels are not always reliable predictors of protein 

expression levels (Waters, et al. 2006).  Comparisons of transcriptomes and associated 

proteomes have suggested that only 20 to 40% of changes in the proteome are due to 

transcriptional regulation (Brockmann, et al. 2007, Seliger, et al. 2009).  The lack of 

direct correlation between transcriptome and proteome suggests that another mechanism 

of gene regulation is at play.  One potential mechanism is post-transcriptional gene 

regulation, which encompasses any event that affects the mRNA between the time of 

transcription and the end of translation.  Post-transcriptional gene regulation involves a 

broad number of mechanisms, including the 5’capping and 3’poly-adenylation of the 

mRNA, alternative splicing, regulation of mRNA half-life, and inhibition of translation.  

In the ovary, several examples of these mechanisms have been identified.  For instance, 
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in granulosa cells the LH receptor has been reported to undergo accelerated degradation 

due to the binding of a RNA binding protein named LRBP (LHR RNA binding protein 

and later identified as mevalonate kinase) (Kash and Menon 1999, Lu, et al. 1993, Nair, 

et al. 2002, Nair and Menon 2004).  LRBP binds to the LHR mRNA, thus preventing 

translation by interacting with the ribosome complex and also increasing the rate of LHR 

mRNA decay (Menon, et al. 2009). 

 Another example of post-transcriptional gene regulation in the ovary involves 

theca cells collected from ovaries of women suffering from polycystic ovarian syndrome 

(PCOS).  This condition is largely defined by the presence of excess androgen production 

and synthesis, and numerous laboratories have attempted to elucidate the cause.  One 

laboratory has reported that the transcriptome of PCOS theca cells exhibits altered gene 

expression compared to theca cells from non-polycystic ovaries (Wood, et al. 2004). 

Furthermore, the mRNA half-life of Cyp17 is increased nearly two fold in theca cells 

isolated from PCOS women vs. normal women (Wickenheisser, et al. 2005).  Several 

post-transcriptional mechanisms including altered mRNA stability or 5’capping could be 

involved, although the authors state that the reason for this change in Cyp17 half-life is 

unknown.  One potential mechanism for altering mRNA half-life is post-transcriptional 

gene regulation by microRNA, a class of short, non-coding RNA molecules further 

discussed in the next chapter.  
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1. Discovery and nomenclature of miRNA 

MicroRNA (miRNA) are a class of small, non-coding RNA molecules, 

approximately 22 nucleotides (nt) long, that are involved in the post-transcriptional 

regulation of gene expression.  The initial discovery of miRNA occurred in 1993 by the 

Victor Ambros laboratory, when it was hypothesized that the C. elegans gene lin-4 was 

not coding a protein, but rather two short RNA molecules (Lee, et al. 1993).  Upon 

further examination, it was determined that one RNA was a 22nt long molecule and the 

other was a longer RNA that was predicted to form a stem loop structure encompassing 

the same 22nt sequence.  Analysis of the 22nt sequence revealed that it was 

complementary to a region in the 3’untranslated region (3’UTR) of the lin-14 gene, 

which had previously been hypothesized to be negatively regulated by lin-4 (Lee, et al. 

1993, Wightman, et al. 1991, Wightman, et al. 1993).  At the time, it was thought that 

this mechanism was specific to C. elegans, and so even though multiple groups continued 

to study these ‘tiny’ RNAs, they were not reported again in the literature for several 

years.   

The first miRNA found to be conserved across species was let-7 in 2000 by the 

laboratory of Gary Ruvkun when he established that the sequence was evolutionarily 

conserved in Drosophila, zebrafish, annelids, and mollusks, and humans (Pasquinelli, et 

al. 2000).  Since then, research on the identification, mechanism, and function of miRNA 

in all biological processes has increased exponentially, with over 21,000 miRNA 

identified in dozens of species (Kozomara and Griffiths-Jones 2011).  The number of 

publications on miRNA has grown from the single digits in the early 2000s to over 5,000 

publications in the year 2011 alone.  
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MicroRNA nomenclature 

To provide structure in naming and characterizing the thousands of recently 

identified miRNA, the Sanger Institute miRNA Registry was established 

(http://microrna.sanger.ac.uk/) (Griffiths-Jones, et al. 2008). The current nomenclature 

for animal miRNA is described below and is diagramed in the Figure VII-1.  The names 

of miRNA consist of four components, each conveying a specialized piece of information 

about the given miRNA: species, form (precursor or mature), identification number and 

origin of miRNA (either processing origin or chromosomal origin).  Each component is 

separated by dashes and is represented by the following template: xxx-miR-#- suffix.  

The xxx signifies the species (e.g. ‘hsa’ indicates human and ‘mmu’ indicates mouse).  

To distinguish between the precursor and mature forms of miRNA, a lowercase ‘r’ 

(‘mir’) represents the precursor form of the miRNA, and an uppercase ‘R’ (‘miR’) 

represents the mature form of the miRNA.  Generally, an identification number is 

assigned in sequential order of discovery; thus, recently identified miRNA have larger 

numbers.  The suffix identifier (which might or might not be separated by a dash 

depending on the suffix) denotes either the processing or the chromosomal origin of the 

miRNA. For the processing origin, opposite arms from a single pre-miRNA are denoted 

‘5p’ and ‘3p’.  After one arm is experimentally identified as the predominant arm, the 

less predominant arm is labeled with an asterisk suffix.  For genomic origin, miRNA that 

arise from different genomic loci but have identical mature sequences are labeled with 

numbered suffixes, and if they arise from paralogous genomic loci and have highly 

similar mature sequences, they are labeled with lettered suffixes. In a few cases, miRNA 

genes have been identified at the same chromosomal location and are found on opposing 
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DNA strands (sense versus antisense) and, thus, have unique mature miRNA sequences.  

The miRNA on the antisense chromosome used to be identified with an ‘as’ suffix and 

that on the sense chromosome with an ‘s’ suffix.  However, as of April of 2011, miRNA 

on the antisense strand are given a new number if they are not deemed similar.  A given 

miRNA can have several suffixes.  For example, hsa-miR-19b-1, which originates from 

chromosome 13, is identical to hsa-miR-19b-2, which originates from chromosome X, 

and is paralogous (shares 70% of mature sequence) to hsa-miR-19a, which originates 

from chromosome 13. 
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Figure VII-1.  MicroRNA nomenclature.  
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Figure VII-1 
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2. MicroRNA structure and biogenesis 

MicroRNA are transcribed from diverse regions of the genome.  Based on 

computational as well as experimental evidence, miRNA have been identified in introns 

and exons of non-coding RNA, introns and exons of coding RNA, and from discrete 

intergenic regions (Sayed and Abdellatif 2011).  There appears to be no definitive set of 

characteristics to mark miRNA genes, however most intergenic miRNA have promoter 

regions similar to protein-coding RNAs and are thus transcriptionally regulated in a 

similar matter (i.e. nuclear hormone receptors, etc) (Jegga, et al. 2007).  Some miRNA 

are clustered together in regions of the genome.  For example, the miR-17-92 cluster is a 

group of six miRNA (miR-17, -18a, -19a, -19b, -20a, and -92a) that are co-transcribed as 

one poly-cistronic transcript.  

The majority of miRNA are transcribed by RNA polymerase II in a manner 

similar to transcription of protein-coding genes (Lee, et al. 2004).  However, a handful of 

miRNA genes have been found to have a high number of Alu repeats and are thus 

transcribed by RNA polymerase III (Borchert, et al. 2006).  As RNA pol II is the primary 

mechanism of miRNA transcription, a long, primary RNA transcript (pri-miRNA) that 

undergoes 5’methyl capping and 3’poly adenylation is formed (Cai, et al. 2004).  The pri-

miRNA will form a secondary structure that includes at least one, but possibly several, 

hairpins loops, which will be cleaved by the RNA endonuclease (RNAse) III enzyme 

Drosha in the nucleus to form the pre-miRNA (Figure VII-2) (Lee, et al. 2003).  RNase 

III endonucleases are a family of multi-domain enzymes that bind and cleave double 

stranded RNA with tandem RNase III domains adjacent to a double stranded RNA 

binding domain (Blaszczyk, et al. 2001).  The cofactor DiGeroge syndrome critical 
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region 8 (DGCR8) is necessary for Drosha cleavage of pri-miRNA due to two double 

stranded RNA binding domains that recognize the single stranded RNA-double stranded 

RNA junction that exists where the hairpin begins (Han, et al. 2004).  Together, the 

Drosha-DGCR8 complex forms what is termed the Microprocessor complex that is 

responsible for cleaving the pre-miRNA stem loop(s) from the pri-miRNA transcript 

(Denli, et al. 2004, Gregory, et al. 2004).  Pre-miRNA are approximately 70 nucleotides 

long with an approximately 33bp stem loop composing the majority of the structure.  

Following processing of pre-miRNA, Exportin 5 (EXP5) transports pre-miRNA from the 

nucleus to cytoplasm (Bohnsack, et al. 2004, Lund, et al. 2004, Yi, et al. 2005).  The 

cofactor RanGTPase is necessary for transport and release of the pre-miRNA into the 

cytoplasm, following the hydrolysis of GTP (Bohnsack, et al. 2004).  Once in the 

cytoplasm, the pre-miRNA is cleaved by the RNAse III enzyme Dicer to produce the 

mature, 17-23 nucleotide long miRNA (Bernstein, et al. 2001, Hutvagner, et al. 2001).  

Dicer is similar in structure and function to Drosha in that it has RNase III domains and a 

double stranded DNA binding domain, however, it also includes DEAD-box (Asp-Glu-

Ala-Asp) and RNA helicase domains and a PAZ (Piwi Argonaute Zwille) domain 

(Fortin, et al. 2002).  The PAZ domain acts as a sort of measuring stick to cleave the 

mature miRNA to the correct length, as it binds the 3’end of the dsRNA hairpin, thus 

allowing the RNAase III domains to cleave approximately 22 nucleotides away (Macrae, 

et al. 2006).  Following production of the mature miRNA by Dicer cleavage, the double 

stranded complex is loaded onto an Argonaute (Ago) protein for formation of the RNA 

induced silencing complex (RISC), which ultimately regulates gene expression (Pillai, et 

al. 2004).  In mammals, the Argonautes are a family of four proteins (Ago1-4) which are 
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the key effectors of miRNA mediated post-transcriptional gene regulation (Ender and 

Meister 2010).  All Ago proteins are ubiquitously expressed and contain a PIWI domain 

and a PAZ domain, similar to that found in Dicer, however, only Ago2 has RNA 

endonuclelytic or ‘slicer’ activity that causes target mRNA degradation (Miyoshi, et al. 

2005).  Other members of the Ago family, as well as Dicer, GW182, and TAR RNA-

binding protein (TRBP) compose the RISC and are involved in the mediation of 

translational repression (Kawamata and Tomari 2010).   
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Figure VII-2.  MicroRNA biogenesis.  
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Figure VII-2 
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While it was thought for well over a decade that all processing of miRNA went 

through the canonical biogenesis pathway described above, it was recently described that 

miRNA maturation can be Drosha and/or Dicer independent (Yang and Lai 2011).  

Examples of Drosha/DGCR8 independent biogenesis include the formation of pre-

miRNA from introns.  These molecules, termed miRtrons, are short hairpins formed from 

intronic regions that have been spliced from primary mRNA transcripts (Berezikov, et al. 

2007).  As they exist as a short, double stranded, RNA hairpin molecule, they are able to 

undergo Dicer cleavage as normal, and be loaded onto the RISC and function as a 

normal, canonical miRNA.  Many of these miRNA, for example miR-62, have been 

identified by the cloning of small RNA from Drosha or DGCR8 knockout mice (Barbiarz 

2008, Chong 2010, Yi 2009).  Deletion of Drosha or DGCR8 led to embryonic lethality 

in the mouse due to the loss of canonical miRNA processing (Fukuda, et al. 2007, 

Gregory, et al. 2004, Wang, et al. 2007), however a number of these miRtrons were 

observed even in the absence of Drosha or DGCR8.  To date, one example of a Dicer 

independent miRNA has been identified in vertebrates.  Processing of miR-451 is 

believed to progress directly from Drosha cleavage to loading onto the Argonaute 2 

(Ago2) protein.  Ago2 is unique because it is has ‘slicing’, or RNA cleavage ability, and 

it is believed to cleave the loop from pre-miR-451 (Cheloufi, et al. 2010, Cifuentes, et al. 

2010, Yang, et al. 2010).  

 

3. Mechanisms of action 

Sequence complementary between the mature miRNA and the target mRNA is 

the key component of miRNA mediated gene regulation.  The first miRNA to be 
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identified, lin-4, targeted the mRNA lin-14 in the 3’UTR (Lee, et al. 1993, Wightman, et 

al. 1993).  The majority of miRNA:mRNA target interactions are believed to occur in the 

3’UTR region, however recent evidence suggest that targeting can sometimes occur in 

the 5’UTR or actual coding region of the mRNA (Lee, et al. 2009, Younger, et al. 2009).   

It is believed that the amount of homology between the mature miRNA and target mRNA 

is the key factor in determining the actual mechanism employed by the RISC to prohibit 

translation.  When there is exact homology between miRNA and target it is believed that 

RISC causes degradation of the target message via Ago2 endonucleolytic slicing 

capabilities (Miyoshi, et al. 2005).  

In most cases, however, it is thought that there is only partial complementarity 

between miRNA and target and mechanisms that directly interfere or inhibit translation 

occur.  The critical region of the miRNA that is needed for targeting mRNA is the seed 

sequence, or the 2 through 8 nucleotides from the 5’ edge of the miRNA (Lewis, et al. 

2005).  For miRNA mediated regulation to occur, these sequences must be homologous 

with the mRNA target.  Multiple miRNA that share the same seed sequence are referred 

to as miRNA families and together target the same group of mRNA targets.  Multiple 

miRNA families have been identified (i.e. the highly expressed let-7s) and often are 

found to play important roles in mediating disease states (Jerome, et al. 2007).  The 

presence of the seed sequence has allowed for the development of multiple target 

prediction algorithms that provide researchers insight and help into figuring out the 

function of specific miRNA.  The most common and reputable algorithms are available 

online and include Targetscan (www.targetscan.com (Lewis, et al. 2005)), PicTar ((Krek, 

http://www.targetscan.com/
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et al. 2005), http://pictar.mdc-berlin.de/), and miRanda 

(http://www.microrna.org/microrna/home.do (Betel, et al. 2008).   

Anti-sense homology of the miRNA seed sequence aligns the RISC with the 

target mRNA and allows for this effector protein complex to inhibit translation through 

three proposed mechanisms. The hypothesized mechanisms include mRNA 

deadenylation, inhibition of translation initiation and inhibition of translation elongation 

(Sayed and Abdellatif 2011).  In all proposed models, the RISC binds to the mRNA 

target and interferes with or prevents translational machinery from binding to the 5’ end 

of the transcript.  However, depending on the mode of repression, additional proteins may 

associate with the RISC to act as effector molecules.  In the case of mRNA 

deadenylation, several other proteins bind to the RISC, including chromatin assembly 

factor 1 (CAF1) which interacts with Ago2 to recruit the deadenylase protein complex 

CCR4-NOT to the 5’ end of the mRNA (Fabian, et al. 2009).  Deadenylation of the 

mRNA transcript leads to its de-stability, which will in turn decrease its half-life and thus 

the amount of protein that is translated.  Inhibition of the initiation of translation occurs 

when eIF6 is part of the RISC and prevents the 80S ribosomal subunit from joining the 

translation machinery (Chendrimada, et al. 2007).  Ago2 is also believed to contain a cap-

binding domain that prevents eIF4E, a member of the translation complex, from binding 

to the initiation complex, thus preventing translation from occurring (Kiriakidou, et al. 

2007).  The final mechanism of miRNA action is hypothesized to be the premature 

termination of protein translation.  It is thought that translation of the target mRNA 

initiates normally, however the RISC interferes with elongation of protein synthesis by 
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slowed ribosome movement or ribosome ‘drop-off’ from the target mRNA (Filipowicz, et 

al. 2008). 

Regardless of the multiple potential mechanisms proposed for miRNA post-

transcriptional gene regulation, it appears that miRNA are not a molecular switch that can 

simply turn protein synthesis of a particular mRNA on or off.  A study looking at global 

protein synthesis in response to loss of a miRNA found that the repressive effect on 

proteins was relatively small and rarely exceeded more than a four-fold change in 

expression (Selbach, et al. 2008).  However, the same study also found that loss of an 

individual miRNA can down regulate expression levels of hundreds of proteins.  Other 

studies have demonstrated that over 60% of human genes are under the control of 

miRNA (Friedman, et al. 2009).  Taken together, this suggests that even minor tweaking 

or ‘fine-tuning’ of protein expression by miRNA will collectively make a large scale 

difference.   

 

4. Functional significance of miRNA mediated gene expression 

MicroRNA are critical for nearly every biological function examined.  Genetic 

deletion studies of key miRNA biogenesis processing enzymes (Drosha and Dicer) render 

mice embryonic lethal due to developmental defects (Bernstein, et al. 2003, Chong, et al. 

2010, Fukuda, et al. 2007, Gregory, et al. 2004).  Conditional deletion studies of Drosha 

and Dicer have found that global loss of miRNA influences nearly every physiological 

system examined, including: vascular development (Bernstein, et al. 2003, da Costa 

Martins, et al. 2008, Pan, et al. 2011), lung (Harris, et al. 2006), embryonic development 

(Zhang, et al. 2011), kidneys (Sequeira-Lopez, et al. 2010), inner ear development 
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(Soukup, et al. 2009), neural development (Cuellar, et al. 2008, Davis, et al. 2008), 

spermatogenesis (Papaioannou, et al. 2009), female reproductive function (Luense, et al. 

2009) and many others (for a more inclusive review, (Sayed and Abdellatif 2011). 

Not surprisingly, aberrant miRNA expression and/or function can lead to 

innumerable disease states, including lack of proper development, immune function, and 

nearly every cancer (Hermeking 2012, Osman 2012, Sayed and Abdellatif 2011).  

MicroRNA have been identified as serum or local biomarkers in several of these 

conditions and have tremendous potential use as clinical markers for disease (Ajit 2012).  

Furthermore, targeting miRNA or using miRNA mimics have great potential as 

therapeutic means to treat disease states (Elmen, et al. 2008, Iorio and Croce 2012). 
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1. Abstract 

 

Dicer is an RNAse III endonuclease that is essential for the biogenesis of 

microRNAs and small interfering RNAs.  These small RNAs post-transcriptionally 

regulate mRNA gene expression through several mechanisms to affect key cellular events 

including proliferation, differentiation and apoptosis.  Recently, the role of Dicer function 

in female reproductive tissues has begun to be elucidated through the use of knockout 

mouse models.  Loss of Dicer within ovarian granulosa cells, luteal tissue, 

oocyte, oviduct and, potentially, the uterus renders females infertile.  This review 

discusses these early studies and other data describing the current understanding of 

microRNAs and small interfering RNAs in female reproduction. 
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2. Dicer-mediated post-transcriptional gene regulation  

 

Regulation of fertility in the female is a dynamic and highly regulated process that 

requires the coordinated actions of multiple tissues and organ systems (e.g. 

hypothalamus, pituitary, ovary and reproductive tract) to develop a fertilizable gamete, as 

well as provide a suitable environment for fertilization and subsequent fetal development.  

To attain this optimal environment, the female reproductive system must be highly 

responsive to subtle changes in hormones and other external cues.  A large body of 

evidence supports a role for transcriptional regulation in mediating these changes, and 

recent evidence suggests a hereto underappreciated role for post-transcriptional gene 

regulation in reproductive tissue and organ function (Carletti and Christenson 2009).  

Post-transcriptional gene regulation encompasses all aspects of messenger RNA (mRNA) 

turnover, processing, storage and translation, and provides cells with additional 

mechanisms to regulate protein content after transcription events.  Recently, study of 

post-transcriptional gene regulation has surged because of the discovery of small non-

coding RNAs, including microRNAs (miRNA) and small interfering RNAs (siRNAs) 

(Ruvkun 2008).  Incorporation of miRNA and siRNA into RNA-induced silencing 

complexes (RISCs) enables the targeting of specific mRNA transcripts, ultimately 

providing cells with a post-transcriptional regulatory mechanism to either induce or 

inhibit protein production in response to stimuli, independent of commencement or 

cessation of mRNA transcription (for reviews, see Refs (Filipowicz, et al. 2008, van den 

Berg, et al. 2008)).  This review focuses on the RNA endonuclease III (RNAse III) Dicer 
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and its enzymatic products, miRNA and siRNA, which elicit post-transcriptional 

regulatory responses.   

Dicer is a cytosolic multidomain protein comprising an RNA helicase, a domain 

of unknown function (DUF283), a Piwi Argonaute Zwille (PAZ) domain, two RNAse III 

domains and a double-stranded-RNA-binding domain (dsRBD) (Macrae, et al. 2006, 

Provost, et al. 2002).  The RNA helicase unwinds long double stranded RNA (dsRNA) 

precursors, whereas the dsRBD and PAZ domains are essential for Dicer binding to 

dsRNA and for determining the length of the siRNA or miRNA products, respectively.  

Cleavage of miRNA or siRNA precursors is dependent on the two RNAse III domains 

within the Dicer protein.  Dicer is essential in miRNA and siRNA biogenesis (Figure VIII 

1), and its function is crucial to the cell; general knockout of Dicer1 (hereafter referred to 

as ‘Dicer’) in the mouse causes morphologic abnormalities and stunted growth in 

embryonic day (E)7.5 embryos and lethality by E11.5 (Bernstein, et al. 2003).  To further 

explore Dicer function, multiple groups developed Dicer alleles with the second RNAse 

III domain flanked by loxP sites (Dicer
fl/fl

) to facilitate conditional knockdown (cKO) of 

Dicer
fl/fl 

via tissue-specific recombination by Cre recombinase (Andl, et al. 2006, Harfe, 

et al. 2005, Mattiske, et al. 2009, Mudhasani, et al. 2008, Yi, et al. 2006).  Although 

miRNA are abundant in mammalian somatic tissues and, thus, most affected by the loss 

of Dicer, several reports using deep sequencing methods have suggested that siRNAs 

might also have an important role or roles in both somatic tissues and germ cells (Tam, et 

al. 2008, Watanabe, et al. 2008).  Therefore, whereas loss of Dicer within somatic tissues 

has typically been linked to altered miRNA biogenesis, changes observed in conditional 

Dicer
fl/fl

 knockout mice might be due to a combined loss of miRNA and siRNA.   
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Figure VIII-1 Biogenesis of miRNA and siRNA. (a) (i) MicroRNAs (miRNA) are 

transcribed by RNA polymerase II from intragenic or intergenic regions of the genome. 

(ii)  This transcript, the primary miRNA (pri-miRNA), can range from 100 to 1000 

nucleotides in length and shares many properties of mRNA transcripts, including a 7-

methylguanasine (m7G) 50-cap and poly-A tail.  Within pri-miRNA, ~70 bp stem loops 

are recognized and cleaved by the complex of DiGeorge syndrome critical region gene 8 

(DGCR8) and the RNAse III endonuclease enzyme Drosha to produce the precursor 

miRNA (pre-miRNA).  (iii) Exportin 5 then transports the pre-miRNA from the nucleus 

to the cytoplasm, where (iv) the RNAse III endonuclease Dicer cleaves the stem away 

from the loop of the pre-miRNA to produce the (v) mature miRNA duplex. (vi). One 

strand of this ~21 nt long duplex is incorporated into the RNA-induced silencing complex 

(RISC) to regulate the translation and/or degradation of target mRNAs.  (b) Whereas 

exogenous addition of double-stranded RNA, or dsRNA (siRNA), to the cell is a 

common experimental manipulation, recent evidence suggests that endogenous forms of 

siRNA also exist in animals.  (vii) Endogenous siRNA forms when long complementary 

strands of RNA bind to form dsRNA. The individual strands of these dsRNA are 

products of pseudogenes, transposable elements or protein-coding genes and are the 

result of complementary transcriptional products from cis or trans loci (the same or 

different chromosomes, respectively) or the result of inverted repeat sequences that have 

folded to form a hairpin structure.  (viii) Within the cytoplasm, dsRNA is cleaved into 

multiple ~21 nt fragments by Dicer. (ix) One strand from these duplexes is incorporated 

into a siRNA-induced silencing complex (siRISC) to bind target mRNA and facilitate 

siRNA-mediated transcript degradation.   
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Figure VIII-1 
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MicroRNAs are derived from highly conserved genes that bind partially 

complementary sequences in the 3`untranslated region and/or coding regions of target 

mRNA transcripts to regulate gene expression (for a review, see Refs (Filipowicz, et al. 

2008, van den Berg, et al. 2008)).  To date, 706 and 547 miRNA have been identified in 

the human and mouse, respectively (http://microrna.sanger.ac.uk/) (Griffiths-Jones, et al. 

2008).  Because each miRNA is derived from a specific pre-miRNA hairpin loop and 

represents a specific gene product, a standardized nomenclature for mammalian miRNA 

has been established (see Figure XX-1).  The functions of miRNA are diverse and play a 

part in numerous processes, including cellular proliferation and differentiation, 

embryonic development, and apoptosis (for a review, see Refs (Bushati and Cohen 2007, 

Stefani and Slack 2008, Williams 2008)).  Exogenous siRNAs injected into cells have 

been widely used to knockdown gene expression (for a review, see Ref. (Svoboda 2008)).  

Endogenous siRNAs are derived from dsRNA (i.e. pseudogenes, transposable elements 

or protein-coding genes).  Because of the nature of their biogenesis, siRNAs are typically 

thought to be fully complementary to their target transcripts, and a standardized 

nomenclature or estimate of the number of mammalian siRNAs has yet to be established 

(Figure VIII-1).  It remains possible that siRNAs associated with RISCs could also act 

like miRNA and not require full complementation to affect post-transcription gene 

regulation. Endogenous siRNAs derived from pseudogenes have been shown to target 

specific mRNA transcripts and regulate transposable elements in the mammalian oocyte 

(Tam, et al. 2008, Watanabe, et al. 2006, Watanabe, et al. 2008).  The biological 

significance of siRNA retrotransposon silencing is, thus far, unique to the oocyte, and its 

exact role has yet to be defined (Watanabe, et al. 2006).   

http://microrna.sanger.ac.uk/
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Limited examples of post-transcriptional gene regulation exist within the somatic 

cells of the reproductive system (Dell'Aquila, et al. 2004, Menon, et al. 2006).  However, 

as the function of Dicer and its products (miRNA and siRNAs) are studied in the female 

reproductive tract, vital roles for such post-transcriptional gene regulation in female 

fertility are becoming evident (Carletti and Christenson 2009).  In addition, because of 

the involvement of miRNA in these crucial biological pathways, it is not surprising that 

they have been implicated in a number of reproductive diseases and cancers of the 

reproductive system (for a review, see Refs (Luo and Chegini 2008, Pan and Chegini 

2008, Wei and Soteropoulos 2008)).  Gaining a better understanding of Dicer generated 

miRNA and siRNAs will provide important insight into regulation of the female 

reproductive system and perhaps the mechanisms that regulate fertility and etiology of 

reproductive diseases. 

 

3. Dicer in the oocyte and early embryo 

 

Female germ cells (oocytes) enclosed in layers of somatic cells (granulosa and 

theca) form ovarian follicles.  The somatic cells support the growth and development of 

the oocyte and ultimately release (ovulate) a mature, transcriptionally quiescent oocyte 

that can be fertilized by sperm in the oviduct to form the developing zygote.  The zygote 

undergoes a series of reductive cell divisions and eventually becomes an embryonic 

blastocyst.  In the mouse, the embryo is dependent upon maternal transcripts produced 

during oocyte development until the two-cell stage when transcription of the embryonic 

genome begins.  Oocytes and fertilized eggs contain 10–15-fold higher levels of Dicer 
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transcripts than any other cells and/or tissues (BioGPS; http://biogps.gnf.org/) (Su, et al. 

2002) and are one of few known mammalian cells and/or tissues in which Dicer 

expression is regulated (Nicholson and Nicholson 2002).  Expression of the Dicer 

transcript remains steady in the growing mouse oocyte during folliculogenesis 

(Watanabe, et al. 2008) and through the germinal vesicle and metaphase II stages (Cui, et 

al. 2007, Murchison, et al. 2007).  After fertilization, the amount of Dicer mRNA 

decreases by approximately half and remains low in the two-cell embryo through the 

blastocyst stage (Cui, et al. 2007, Murchison, et al. 2007).  Expression of total miRNA 

during this same period is highest in the mature oocyte and one-cell zygote before 

decreasing by half in the two-cell embryo (Tang, et al. 2007).  Increased miRNA 

expression observed in the four-cell embryo (Tang, et al. 2007) could result from the 

resumption of transcription of the embryonic genome, post-transcriptional regulation of 

Dicer or increases in other miRNA-processing factors, such as Drosha or Exportin 5 

(Figure VIII-1)   

To examine Dicer function within the oocyte and early embryo, Dicer
fl/fl 

mice 

were crossed with mice expressing Cre recombinase driven by the oocyte-specific zona 

pellucida 3 (ZP3) promoter (Dicer ZP3-cKO) or alkaline phosphatase, liver/bone/kidney 

(Alpl) promoter (Dicer Alpl-cKO) (Mattiske, et al. 2009, Murchison, et al. 2007, Tang, et 

al. 2007).  In the Dicer ZP3-cKO model, Cre expression is turned on shortly after 

initiation of oocyte growth (Mattiske, et al. 2009, Murchison, et al. 2007, Tang, et al. 

2007), whereas in the Dicer Alpl-cKO model, Cre expression is turned on as early as the 

primordial germ cell (Mattiske, et al. 2009).  Early folliculogenesis and oocyte 

development in Dicer ZP3-cKO mice seemed normal, evidenced by normal ovulation 
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rates and oocytes indistinguishable from wild type littermates (Murchison, et al. 2007).  

The importance of communication between the oocyte and cumulus granulosa cells in 

follicular and oocyte development is well documented (Dong, et al. 1996).  Therefore, the 

lack of a somatic cell phenotype in follicles with oocytes lacking Dicer suggests that 

oocyte miRNA- or siRNA-mediated post-transcriptional gene regulation does not play a 

crucial part in regulating somatic cells during folliculogenesis.   

Although early development and growth of oocytes from Dicer ZP3-cKO females 

was unaffected, these oocytes were less likely to extrude a polar body after mating, and 

immunostaining indicated multiple spindles and chromatin condensation defects 

(Mattiske, et al. 2009, Murchison, et al. 2007, Tang, et al. 2007).  Similar spindle defects 

were observed in oocytes derived from Dicer Alp1-cKO mice (Mattiske, et al. 2009).  

Further analysis of cultured oocytes collected from Dicer ZP3-cKO mice found that 

meiosis proceeds normally until metaphase II, when abnormal spindle formation was 

observed (Mattiske, et al. 2009).  Transplantation of wild-type germinal vesicles (nucleus 

of oocyte) into enucleated oocytes from Dicer ZP3-cKO mice resulted in defective 

spindle formation, whereas reciprocal transplantation of mutant germinal vesicles into 

enucleated wild-type oocytes resulted in normal spindle formation in 74% of oocytes 

(Mattiske, et al. 2009).  These data suggest that meiotic defects arise from the ooplasm of 

the oocyte and not the germinal vesicle (Mattiske, et al. 2009).  Furthermore, expression 

analysis of oocytes indicated an overabundance of mRNA transcripts in Dicer ZP3-cKO 

oocytes, consistent with a loss in miRNA inhibition of translation or mRNA degradation 

(Tang, et al. 2007).   
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The roles of individual miRNA and siRNAs in the oocyte are largely unknown, 

with a few recent exceptions (Murchison, et al. 2007, Tang, et al. 2007).  Loss of Dicer 

within oocytes was shown to decrease siRNA levels, whereas corresponding siRNA 

target transcripts, protein phosphatase 4 regulatory subunit 1 and retrotransposon long 

terminal repeat 10, increased 1.5-fold and 5-fold, respectively (Tam, et al. 2008, 

Watanabe, et al. 2008).  The biological role of siRNA retrotransposon silencing is unique 

to the oocyte, thus far, and its exact role has yet to be defined (see Ref. (Svoboda 2008) 

for more information on RNA silencing in oocytes and early embryos). 

 

4. Dicer within somatic cells of the ovary 

 

The granulosa and thecal cells of the ovarian follicle support oocyte growth and 

produce key endocrine hormones (steroids and proteins) that regulate the reproductive 

system.  In response to an ovulatory surge of luteinizing hormone (LH), the mature 

oocyte is released (ovulation), and with the exception of a few cells that exit the ovary 

with the oocyte, the remaining somatic tissue that comprised the follicle undergoes 

luteinization (hypertrophy and vascularization) to form the corpus luteum.  These LH-

mediated ovarian events are essential for female fertility.  Consistent with other 

observations showing that Dicer is not dynamically regulated (Nicholson and Nicholson 

2002), levels of Dicer in granulosa cells before and after the LH surge did not change 

(Fiedler, et al. 2008).  Dicer expression in other somatic tissues of the ovary (thecal cells, 

corpus luteum and interstitium) has not been examined directly but is not anticipated to 

change (BioGPS) (Su, et al. 2002).  In disease states, however, recent studies examining 
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ovarian cancer cells found that Dicer and Drosha levels decrease in tumor cells (Merritt, 

et al. 2008).  Functional deletion studies of Dicer point to a clear and important role for 

miRNA and/or siRNA in ovarian function and female fertility (Gonzalez and Behringer 

2009, Hong, et al. 2008, Nagaraja, et al. 2008, Otsuka, et al. 2008, Pastorelli, et al. 2009).   

Otsuka et al. created a general hypomorphic mutation (Dicer
hypo

;  ~75% reduction 

in Dicer protein) using a gene-trap method and observed that Dicer
hypo

 females were 

infertile because of luteal deficiency.  Transplantation of wild-type ovaries into Dicer
hypo

 

females restored fertility, indicating that loss of fertility was due to an ovarian defect 

(Otsuka, et al. 2008).  Serum progesterone levels in Dicer
hypo

 mice remained low after 

mating, and histological analyses of ovaries revealed a lack of luteal tissue 

vascularization.  In these mice, the global reduction of Dicer would be predicted to 

decrease all miRNA; however, selective ovarian bursal replacement of two known 

angiogenic miRNA, miR-17-5p and let-7b, was sufficient to partially restore luteal 

vascular development and progesterone production through day 5.5 post-coitus, although 

pregnancy was not maintained (Otsuka, et al. 2008).  The inability to restore fertility 

could be due to an insufficient amount of exogenous miRNA, clearance of exogenous 

miRNA or the need for additional miRNA in other processes necessary for fertility (e.g. 

oviductal and uterine function and implantation) (Otsuka, et al. 2008).  Alternatively, 

because Dicer was reduced in all cells in this model, the fertility defect could be due to a 

loss of function of non-reproductive cells (i.e. endothelial cells) within the ovary.   

Mice with targeted deletion of Dicer within ovarian granulosa cells of developing 

follicles were generated by crossing Dicer
fl/fl 

mice with mice expressing Cre recombinase 

driven by the anti-Mullerian hormone receptor 2 promoter (Dicer Amhr2-cKO) 
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(Gonzalez and Behringer 2009, Hong, et al. 2008, Nagaraja, et al. 2008, Pastorelli, et al. 

2009).  Within the ovary, Amhr2-Cre recombinase is expressed in granulosa cells of pre-

antral and antral follicles (Jamin, et al. 2002b, Jorgez, et al. 2004).  Studies by our group 

(Hong, et al. 2008) and others (Gonzalez and Behringer 2009, Pastorelli, et al. 2009) 

crossed the Amhr2-Cre mice to the same Dicer-floxed mouse line (Harfe, et al. 2005), 

whereas Nagaraja et al. (Nagaraja, et al. 2008) used a different Dicer-floxed line (Yi, et 

al. 2006).  Both lines of Dicer mice exhibited defects in ovarian function (Hong, et al. 

2008, Nagaraja, et al. 2008).  The loss of Dicer expression in ovarian granulosa cells 

reduced natural (Hong, et al. 2008) and equine chorionic gonadotropin (eCG)- and human 

chorionic gonadotropin (hCG)-stimulated ovulation rates when compared with wild-type 

mice (Hong, et al. 2008, Nagaraja, et al. 2008).  Increased numbers of atretic follicles 

(Nagaraja, et al. 2008) and trapped oocytes in luteinizing follicles were observed in Dicer 

Amhr2-cKO mice (Hong, et al. 2008, Nagaraja, et al. 2008).  Both studies found that loss 

of Dicer did not impact serum estrogen levels or mating behavior (Hong, et al. 2008, 

Nagaraja, et al. 2008).  Collectively, these studies indicate that Dicer affects ovulation 

rate, probably by influencing the total number of pre-ovulatory follicles that achieve 

proper development and/or by affecting the ability of follicles to ovulate.  Interestingly, 

evidence for trapped oocytes in luteinized follicles was not reported in the general 

Dicer
hypo

 mouse model (Otsuka, et al. 2008).  Discrepancies between the Dicer
hypo

 and 

Dicer Amhr2-cKO models could be due to the steroidogenic cell-specific deletion of 

Dicer in the Amhr2-cKO model and total cell deletion in the Dicer
hypo

 model.  Detailed 

studies of the different stages of follicular development (especially during the peri-

ovulatory period), paired with Dicer-expression analyses, are needed to elucidate how 
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and when loss of Dicer impacts follicular development, ovulation and/or luteinization.  It 

is possible that Dicer is necessary for proper recruitment of follicular waves and loss of 

Dicer leads to fewer follicles available for growth, maturation and ovulation.   

In contrast to the clear evidence regarding ovulation rate, the two lines of Dicer 

Amhr2-cKO mice present conflicting evidence regarding whether loss of Dicer in ovarian 

granulosa cells impacts oocyte function (Hong, et al. 2008, Nagaraja, et al. 2008).  

Nagaraja et al. reported that cultured, fertilized oocytes collected from the oviduct of 

stimulated Dicer Amhr2-cKO females failed to progress to the two-cell embryonic stage 

at the same rate (29.0%) as fertilized oocytes collected from wild type females (82.8%).  

Conversely, Hong et al. reported that 97% and 100% of fertilized oocytes collected from 

Dicer Amhr2-cKO and wild-type females, respectively, one day after mating (no 

pharmacologic stimulation), progressed to the two-cell stage.  The differences between 

these studies might have resulted from pharmacologic stimulation versus natural 

follicular cycle or because of different Dicer-floxed strains (Harfe, et al. 2005, Yi, et al. 

2006). 

Functional analyses of Dicer in the ovary implicate miRNA in ovarian function, 

and the individual miRNA involved in specific functions are now beginning to be 

determined.  Laboratories have identified as many as 177 miRNA in whole ovaries of 

newborn, two-week-old and adult mice (Choi, et al. 2007, Mishima, et al. 2008, Ro, et al. 

2007).  Several of these miRNA (let-7a, miR-143, miR-21, miR-125, let-7b and let-7c) 

have also been described in granulosa cells of primary, secondary and antral follicles 

(Yao, et al. 2009).  Human granulosa cell-culture studies have implicated a number of 

miRNA in the inhibition of steroid production, with 36, 51 and 57 specific miRNA 
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decreasing progesterone, estradiol and testosterone synthesis, respectively (Sirotkin, et al. 

2009).  Conversely, 10, 0 and 1 miRNA were found to stimulate human granulosa cell 

production of progesterone, estradiol and testosterone, respectively (Sirotkin, et al. 2009).  

Whether these miRNA are expressed and exhibit similar function within ovarian 

follicular or luteal tissues remains to be tested. In a cell-specific study, Fiedler et al. 

(Fiedler, et al. 2008) identified 212 known miRNA within granulosa cells isolated from 

peri-ovulatory follicles, 13 of which were regulated by the LH surge (Fiedler, et al. 

2008).  Two of these LH-regulated miRNA (miR-132 and miR-212) were found to post-

transcriptionally regulate C-terminal-binding protein 1 (Fiedler, et al. 2008), a protein 

that was shown recently to repress the expression of steroidogenic factor-1 (Dammer and 

Sewer 2008), a nuclear receptor involved in ovarian, adrenal and testis function 

development and function (e.g. steroidogenesis (Lala, et al. 1992)).  In addition to the 

Otsuka et al. study, these are the only studies linking specific miRNA to biological 

endpoints in the ovary, illustrating the need for additional research. 

 

5. Dicer in the oviduct and uterus 

 

Oocyte fertilization and early pre-implantation embryonic development occurs 

within the oviduct.  Subsequently, the developing embryo passes through the utero-tubal 

junction and enters the uterus, where implantation, placentation and embryonic and fetal 

development occur.  In addition to granulosa cells, Amhr2-Cre is expressed in the 

oviduct, uterus, cervix and anterior portion of the vagina (Jamin, et al. 2002b).  Loss of 

Dicer in mouse oviducts results in a dramatic phenotype consisting of shortened tubule 
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length, loss of oviductal coils and large fluid-filled sacs (Gonzalez and Behringer 2009, 

Hong, et al. 2008, Nagaraja, et al. 2008, Pastorelli, et al. 2009).  Histological analysis of 

oviducts from Dicer Amhr2-cKO females revealed loss of the smooth muscle layer and 

disorganization of the epithelium in the oviduct, particularly in the isthmus (region near 

the uterus) of the oviduct (Gonzalez and Behringer 2009, Hong, et al. 2008, Nagaraja, et 

al. 2008).  Collection of embryos on day 4 post-mating found all embryos retained in the 

oviduct of Dicer Amhr2-cKO females, whereas embryos in wild-type females had all 

traversed the utero-tubal junction and resided within the uterus (Hong, et al. 2008).  

Similarly, affinity chromatography beads similar in size to pre-implantation embryos that 

were injected into oviducts were unable to enter the uterus in Dicer Amhr2-cKO mice 

(Gonzalez and Behringer 2009).  Because ovulated Dicer Amhr2-cKO oocytes were 

fertilized after mating (Hong, et al. 2008), this would argue that the block is 

unidirectional and/or caused by an effect on smooth muscle contractility, cilia or oocyte 

size that prevents transport.  Nagaraja et al., identified 28 down regulated miRNA in 

oviducts from the Dicer Amhr2-cKO mouse model, 23 of which were predicted to target 

at least one member of the Wnt or Hox family of genes (Nagaraja, et al. 2008).  In fact, 

the defect in oviductal transport of the Dicer Amhr2-cKO mouse phenocopies that seen in 

mice deficient in Wnt/β-catenin signaling (Arango, et al. 2005, Deutscher and Hung-

Chang Yao 2007).  Indeed, b-catenin levels were reduced in oviducts and uteri of Dicer 

Amhr2-cKO females (Hong, et al. 2008).  In addition to developmental effects, it seems 

that loss of miRNA in the oviduct might also influence factors secreted into the oviductal 

lumen; embryos collected three days after mating from the oviducts of Dicer Amhr2-cKO 
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females were developmentally delayed compared to those collected from wild-type 

animals (Hong, et al. 2008). 

Like the oviductal phenotype, the uteri of Dicer Amhr2- cKO animals were also 

developmentally compromised (with three of four reports noting severe defects 

(Gonzalez and Behringer 2009, Hong, et al. 2008, Nagaraja, et al. 2008).  The lengths, 

diameters and weights of uteri collected from eCG-stimulated juvenile Dicer Amhr2-cKO 

females were smaller than those of uteri from wild-type littermates (Hong, et al. 2008, 

Nagaraja, et al. 2008).  Histological analysis revealed the presence of all tissue layers 

within the uterus (Gonzalez and Behringer 2009, Hong, et al. 2008, Nagaraja, et al. 

2008), although reduced numbers of uterine glands and a thinner myometrial layer were 

observed in one Dicer Amhr2-cKO mouse model (Gonzalez and Behringer 2009, Hong, 

et al. 2008).  Gonzalez et al. further noted that the uterine glands reside in close proximity 

to the myometrial layer, mimicking a human condition referred to as adenomyosis 

(Parrott, et al. 2001).  The uteri of these mice (n = 3) were not able to sustain pregnancy 

after embryo transfer.  Interestingly, histological analysis failed to observe any defect in 

the other Dicer floxed mouse line (Nagaraja, et al. 2008), and adenogenesis (i.e. gland 

formation and location), estrogen responsiveness and stimulus-induced decidualization 

reaction all seemed normal (Nagaraja, et al. 2008).   

Expression of Dicer mRNA and protein, as well as the Argonaute proteins, is 

abundant in the mouse uterus on days 4 through 8 of pregnancy (day 1 = presence of 

vaginal plug), suggesting that miRNA synthesis is ongoing (Chakrabarty, et al. 2007).  

Furthermore, microarray analysis of miRNA present in the uterus on day 4 of pregnancy 

(receptive phase) and at implantation sites suggests that miRNA are important for 
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establishing pregnancy (Chakrabarty, et al. 2007, Hu, et al. 2008).  Comparison of 

miRNA expression within uterine tissues collected on days 1 and 4 of pregnancy 

identified 32 miRNA up regulated on day 4 (Chakrabarty, et al. 2007).  Expression of 

miR-101 and miR-199* were stimulated by estradiol and found to post-transcriptionally 

regulate prostaglandin synthase-2, an enzyme necessary for implantation in mice.  

Further analysis of the pregnant uterus found 13 miRNA up regulated in implantation 

sites compared to inter-implantation sites (Chakrabarty, et al. 2007).  Analysis of miR-21, 

one of the up regulated miRNA, found that expression was dependent upon the presence 

of an activated embryo (Chakrabarty, et al. 2007).  Uterine miRNA also seem to be 

regulated by estrogen; 49 miRNA were found to be differentially regulated in response to 

estradiol (Nothnick 2008).  Taken together, these studies suggest a role for uterine 

miRNA in implantation and pregnancy. 

 

6. Future directions 

 

To date, the study of Dicer function in female reproductive tissues is limited to a 

few reports (Figure VIII-2).  However, these studies all clearly demonstrate that Dicer 

and its enzymatic products are crucial for female fertility.  Conditional deletion of Dicer 

in the oocyte, ovary, oviduct and uterus provide convincing evidence that miRNA and/or 

siRNAs are necessary for the overall development and function of the female 

reproductive system.  Recent studies have demonstrated that expression of Amhr2-Cre 

recombinase is leaky and that recombination occurs in the brain, pituitary, heart and tail, 

in addition to the known tissues expressing Amhr2 (Hernandez Gifford, et al. 2009, 
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Pastorelli, et al. 2009).  Additional studies using more refined temporal and cell-specific 

Cre-recombinases are needed to further our understanding of post-transcriptional gene 

regulation in the female reproductive system (Figure VIII-2).  Identification of individual 

miRNA or siRNAs in each female reproductive organ will enable researchers to better 

understand the mechanisms of gene regulation that allow successful reproduction.  Thus 

far, little is known about the role of siRNAs in somatic cells of the reproductive system, 

although they seem to be highly abundant (Tam, et al. 2008, Watanabe, et al. 2008).  

Additional research is needed to determine the functional role siRNA molecules exert on 

tissue and organ function.  Recently, antagomirs and locked nucleic acid oligonucleotides 

have been used to down regulate specific miRNA expression in a variety of cells in vitro 

and tissues in vivo (Elmen, et al. 2008, Krutzfeldt, et al. 2005).  It is anticipated that 

establishing the spatiotemporal expression patterns of miRNA in the female reproductive 

tract will provide targets for drug and therapeutic treatments for reproductive diseases 

such as endometriosis, uterine leiomyoma and ovarian, uterine and cervical cancers.  

Moreover, understanding the role that post-transcriptional gene regulation has in 

reproduction will facilitate the elucidation of the etiologies leading to reproductive failure 

and, we hope, provide methods and targets for treatment of infertility and provide new 

means of contraception. 
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Figure VIII-2. Effects of Dicer deletion on female fertility.  The function of Dicer and 

its products (siRNA and miRNA) in female fertility have been investigated in Dicer1-

floxed mouse lines expressing Cre-recombinase in female reproductive tissues.  The 

descriptions of phenotypes caused by Dicer deletion are listed for each tissue.  Additional 

female reproductive tissue Cre-recombinases are available.  It is anticipated their use will 

further refine the temporal and cellular importance that Dicer (i.e. miRNA/siRNA) has on 

female fertility.  Lastly, a number of expression analysis studies have linked human 

reproductive diseases to altered miRNA or siRNA profiles they are listed.  Presently, 

most of these studies are biomarker studies because specific miRNA/siRNAs have not yet 

been demonstrated to be causative.  Dicer
fl/fl

;Amhr2-Cre is referred to as Dicer Amhr2-

cKO, Dicer
fl/fl

;ZP3-Cre is referred to as Dicer ZP3-cKO and Dicer
fl/fl

;Alpl-Cre is referred 

to as Dicer Alpl-cKO in the text of this review. Gene abbreviations: Alpl, alkaline 

phosphatase (liver/bone/kidney); Amhr2, anti-Mullerian hormone receptor 2; Cre, cre 

recombinase; CYP17, cytochrome P450 subfamily 17; CYP19, cytochrome P450 

subfamily 19; hypo, hypomorph; ZP3, zona pellucida 3; PR, progesterone receptor. 
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Figure VIII-2 
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1. Abstract 

The ribonuclease III endonuclease, Dicer1 (also known as Dicer), is essential for 

the synthesis of the 19–25 nucleotide noncoding RNAs known as micro-RNAs (miRNA). 

These miRNA associate with the RNA-induced silencing complex to regulate gene 

expression post-transcriptionally by base pairing with 3’untranslated regions of 

complementary mRNA targets. Although it is established that miRNA are expressed in 

the reproductive tract, their functional role and effect on reproductive disease remain 

unknown. The studies herein establish for the first time the reproductive phenotype of 

mice with loxP insertions in the Dicer1 gene (Dicer1
fl/fl

) when crossed with mice 

expressing Cre-recombinase driven by the anti-Mullerian hormone receptor 2 promoter 

(Amhr2
Cre/+). 

Adult female Dicer1
fl/fl

;Amhr2
Cre/+

 mice displayed normal mating behavior 

but failed to produce offspring when exposed to fertile males during a 5-month breeding 

trial. Morphological and histological assessments of the reproductive tracts of immature 

and adult mice indicated that the uterus and oviduct were hypotrophic, and the oviduct 

was highly disorganized. Natural mating of Dicer1
fl/fl

;Amhr2
Cre/+ 

females resulted in 

successful fertilization as evidenced by the recovery of fertilized oocytes on d1 of 

pregnancy, which developed normally to blastocysts in culture. Developmentally delayed 

embryos were collected from Dicer1
fl/fl

; Amhr2
Cre/+ 

mice on d3 of pregnancy when 

compared with controls. Oviductal transport was disrupted in the Dicer1
fl/fl

;Amhr2
Cre/+ 

mouse as evidenced by the failure of embryos to enter the uterus on d4 of pregnancy. 

These studies implicate Dicer1/miRNA mediated post-transcriptional gene regulation in 

reproductive somatic tissues as critical for the normal development and function of these 

tissues and for female fertility. (Endocrinology 149: 6207–6212, 2008). 
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2. Introduction 

Sustained reproductive function requires that the female reproductive tract, 

including the uterus, oviduct, cervix, and ovary, correctly develops and functions 

together.  To obtain the precise temporospatial control over cellular protein expression 

that is necessary for organogenesis, a myriad of gene transcription, translation, and 

posttranslational regulatory mechanisms are invoked.  Despite the general importance of 

the female reproductive system, our understanding of organogenesis and the molecular 

mechanisms that regulate the development and differentiation of these tissues lags behind 

other organ systems.  Moreover, recent observations suggest that in addition to 

transcription, translation, and posttranslational modifications, posttranscriptional gene 

regulation may play a more pronounced role in cell, tissue, and organ function.  Recently, 

micro-RNAs (miRNA) have been demonstrated to play a novel, yet not thoroughly 

defined role in post-transcriptional regulation of gene expression. 

MicroRNAs are a recently described class of small non-coding regulatory RNAs 

that regulate gene expression post-transcriptionally (Bartel 2004).  MicroRNAs are 

proposed to be involved in diverse developmental and pathological processes (Wienholds 

and Plasterk 2005).  Biogenesis of miRNA is a multistep process that culminates with the 

ribonuclease (RNase) III endonuclease, Dicer1, cleaving the 70- to 110-bp hairpin 

precursor miRNA and forming 19–25 nucleotides long double-stranded miRNA 

(Murchison and Hannon 2004).  Subsequently, one strand of this pair associates with the 

Argonaute proteins to form the RNA-induced silencing complex, which can then affect 

posttranscriptional gene regulation.  In mammals the miRNA-RNA-induced silencing 

complex primarily binds the 3`untranslated regions of target mRNAs, with partial 
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complementarity to either repress or enhance translation (Bushati and Cohen 2007, 

Filipowicz, et al. 2008, Vasudevan, et al. 2007).   

Dicer1 (through the generation of miRNA and subsequent post-transcriptional 

regulation of specific gene products) has been proposed to play a role in the normal 

development of the lung (Harris, et al. 2006), limbs (Harfe, et al. 2005), and skeletal 

muscle (O'Rourke, et al. 2007), as well as the female germ line (Murchison, et al. 2007).  

Recently, post-transcriptional regulation and miRNA have been proposed to play a role in 

embryo implantation (Chakrabarty, et al. 2007), as well as in the human endometrium 

and the pathophysiology of endometriosis (Pan, et al. 2007).  Collectively, these studies 

suggest that Dicer1 and its miRNA products play a pivotal role in the molecular 

regulation of multiple organ systems, which may include reproductive functions such as 

oocyte maturation, embryo implantation, and uterine pathophysiological conditions.  To 

date, there is no information on the role of Dicer1 and miRNA in the development and 

subsequent function of the female reproductive organs. As such, the objective of the 

current study was to examine the phenotypical consequences of conditional deletion of 

the Dicer1 gene product from the developing female reproductive system and its impact 

on female fertility.   
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3. Materials and Methods 

Generation of conditional Dicer1 knockdown 

The University of Kansas Medical Center’s Institutional Animal Care and Use 

Committee approved all procedures involving mice before use.  Mice homozygous for 

loxP insertions flanking the second RNase III domain in the Dicer1 gene (Dicer1
fl/fl

; 

generously provided by Dr. Clifford Tabin, Harvard Medical School) were crossed with 

mice heterozygous for Cre recombinase knocked into the anti-Mullerian hormone 

receptor 2 locus (Amhr2
Cre/+

; generously donated by Dr. Richard Behringer, Baylor 

College of Medicine) to produce mice that exhibit knocked-down expression of Dicer1 in 

the ovarian granulosa cells and the derivatives of the Mullerian duct (i.e. oviduct, uterus, 

and cervix).  The resulting progeny were genotyped as previously described (Harfe, et al. 

2005, Jamin, et al. 2002b). 

Breeding studies 

To assess fertility of these mice, female Dicer1
fl/fl

;Amhr2
Cre/+ 

mice (42 d of age, 

n=8) were mated with adult wild-type males of known fertility. Dicer1
fl/fl

;Amhr2
Cre/+ 

females were continually exposed to males for a minimum of 5 months.  Female mice 

were checked daily for the presence of a seminal plug to confirm mating.  To characterize 

the general morphology of the Dicer1
fl/fl

;Amhr2
Cre/+

 female reproductive tract, mice at 

several developmental ages, after natural mating or after a follicular stimulation protocol, 

were killed, and ovarian, oviductal and uterine function, and morphology were evaluated. 

To assess ovarian and uterine function and examine fertility, adult littermate 

females (42 d of age) of Dicer1
fl/fl

;Amhr2
Cre/+ 

and wild-type control (i.e. 



 
70 

 

Dicer1
fl/+

;Amhr2
+/+

 or Dicer1
fl/fl

;Amhr2
+/+

) genotypes were naturally mated, and killed on 

d 1, 3, 4, 6–7 post-coitus (d1=day seminal plug observed; n= 9, 6, 8, and 7 for wild-types, 

and n=8, 6, 8, and 6 for Dicer1
fl/fl

;Amhr2
Cre/+ 

on each respective day of pregnancy).  

Ovulation and fertilization rates were determined by counting the oocytes recovered from 

cumulus-oocyte complexes expressed from the oviducts of mice killed on d1 of 

pregnancy.  After collection the fertilized embryos were cultured for 5 d as previously 

described to assess embryonic development (Biggers, et al. 2000, Summers, et al. 2005).  

Total body, ovarian, and uterine weights were recorded for d1 pregnant mice. 

In vivo embryonic development, oviductal transport, and implantation rates were 

assessed on d3, 4, 6–7 pregnancy, respectively.  Embryos collected on d3 and 4 

pregnancy were classified for developmental stage as previously described (Biggers, et 

al. 2000, Summers, et al. 2005).  Oviductal transport was assessed by determining the 

location of the embryos within the oviducts on d4.  The oviducts and uterine horns were 

carefully bisected immediately below the utero-tubal junction, and the oviduct and uteri 

flushed independently into separate collection dishes.  It was found that oviducts of 

Dicer1
fl/fl

;Amhr2
Cre/+ 

females could not be flushed, therefore, the oviducts were dissected 

along their entire length to release embryos.  The embryos were counted, and the stage of 

development was recorded.  On d6–7 pregnancy, the number of implantation sites was 

determined by injection of Chicago Sky Blue dye into the tail vein 1 min before 

euthanization (Paria, et al. 1993). 

Ovarian, oviductal, and uterine tissues from all mice were fixed and embedded in 

paraffin or flash frozen for Western blot analysis.  To examine uterine and ovarian 

function under controlled conditions, immature littermate females (22 d of age) of 
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Dicer1
fl/fl

;Amhr2
Cre/+ 

(n=6) and control wild-type (i.e. Dicer1
fl/+ 

or Dicer1
fl/fl 

lacking the 

Amhr2
Cre/+

; n=12) genotypes were administered 2 IU equine chorionic gonadotropin 

(eCG) for 46 h, followed by 2 IU human chorionic gonadotropin (hCG) for 16–17 h.  

Ovulation rates were determined by counting the oocytes recovered. Uterine and 

oviductal tissues were collected from the eCG plus hCG-treated mice, as well as from 

untreated immature d 10 and 26 female Dicer1
fl/fl

;Amhr2
Cre/+ 

and littermate control mice 

for Western blot analysis and histological analyses.  Serum blood samples were obtained 

from all adult and treated immature (d 25) mice for subsequent determination of 

progesterone and estrogen concentrations by RIA (Terranova and Garza 1983). 

Western blot analysis 

Combined uterine and oviductal tissues (d 10) or pooled oviductal tissues alone (d 

25 immature eCG plus hCG treated mice) were homogenized in lysis buffer (Cell 

Signaling Technology, Inc., Danvers, MA).  The resulting protein lysates were 

centrifuged at 16,000 g for 5 min to pellet the cellular membrane debris.  Supernatants 

were transferred to new tubes and stored at 80 C until use. Protein samples (10µg), as 

determined by Bio-Rad Protein Assay (Bio-Rad Laboratories, Inc., Hercules, CA), were 

loaded onto 12% SDS-PAGE gels and transferred to polyvinylidene fluoride membranes 

using standard methods. Immunoblots were blocked with 5% milk solution and incubated 

overnight at 4 C with antibodies to β-catenin (BD Biosciences, San Jose, CA) and α-actin 

(Santa Cruz Biotechnology, Inc., Santa Cruz, CA).  After washing, protein-antibody 

complexes were visualized using West Pico Chemiluminescent Substrate (Pierce, 

Rockford, IL) following the manufacturer’s protocol.  ODs for the immunoblots were 

determined on a Gel-Pro Analyzer (Media Cybernetics, Inc., Bethesda, MD). 
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Histological analysis 

Ovaries, oviducts, and uteri collected for histology were immediately fixed in 

either 4% paraformaldehyde or Bouin’s solution, before embedding in paraffin.  Sections 

from the midregion of the uterus, and serial tissue sections (8 µm) from ovarian and 

oviductal tissues were stained with hematoxylin and eosin. 

Statistical analysis 

Statistical analysis was performed with GraphPad Prism (version 4;GraphPad 

Software Inc., San Diego, CA).  Uterine and ovarian weights, ovulation rates, percentage 

of embryonic development, and progesterone levels were analyzed by the Student’s t test.  
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4. Results 

Female Dicer1
fl/fl

;Amhr2
Cre/+ 

mice (n=8) are infertile, as evidenced by the failure 

to produce offspring over a 5-month breeding study.  The mating behavior of female 

Dicer1
fl/fl

; Amhr2
Cre/+ 

mice appeared normal, as shown by the presence of seminal plugs 

after exposure to male mice.  Moreover, several mice (not exposed to males) exhibited 

normal 4- to 5-d estrous cycles as detected by vaginal smears.  Female wild-type mice 

used as controls (e.g. Dicer1
fl/fl 

or 
fl/+ 

lacking Amhr2
Cre/+) 

showed evidence of a pending 

pregnancy within 14 d of male exposure, whereas Dicer1
fl/fl

;Amhr2
Cre/+ 

females failed to 

exhibit visible signs of pregnancy.  Male Dicer1
fl/fl

;Amhr2
Cre/+ 

mice (n=5) were fertile, as 

evidenced by their ability to sire multiple litters with wild-type females. 

To establish whether the cause of female infertility is related to a gross 

developmental defect, the reproductive tracts of untreated immature (d25) 

Dicer1
fl/fl

;Amhr2
Cre/+ 

and littermate control mice were examined (Fig. IX-1A).  The 

length and diameter of the Dicer1
fl/fl

;Amhr2
Cre/+ 

uterine horn was remarkably shorter 

compared with control uteri.  Similar to the uterus, the oviducts of Dicer1
fl/fl

;Amhr2
Cre/+

 

mice were truncated in length (less than one half the length), and both tissues appeared 

more transparent when observed through a dissecting microscope than corresponding 

tissues from control mice (compare Fig IX-1, B and C). In addition, sac-like structures 

were observed within the oviduct of Dicer1
fl/fl

;Amhr2
Cre/+

 mice (Fig IX-1C).  Similar 

oviductal and uterine morphological findings for the eCG plus hCG-treated immature (d 

25) and for the adult d1 pregnant Dicer1
fl/fl

;Amhr2
Cre/+

 mice were observed (data not 

shown).  The uterine weights of the d1 pregnant Dicer1
fl/fl

;Amhr2
Cre/+

 mice (1.61±0.20 

mg/g; uterine weight/total body weight) were (P<0.05) reduced compared with age-
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matched mice (5.00±0.28 mg/g).  Again, distended sac-like structures filled with clear 

fluid (Fig. 1C) were concentrated at the end of the oviduct nearest the utero-tubal 

junction, in contrast to the typical mucosal folding characteristic of oviducts from control 

mice. 

The oviducts of the immature and pregnant Dicer1
fl/fl

;Amhr2
Cre/+

 mice were 

extremely fragile and did not appear patent, as evidenced by unsuccessful attempts to 

flush the oviduct.  Oviducts ruptured easily; thus, to collect embryos, oviducts were 

manually dissected rather than flushed.  However, naked oocytes/embryos could be 

visualized through the transparent wall of the oviduct, implicating that the oviduct was 

capable of early gamete collection and transport.  In contrast, wild-type control mice 

were readily flushed and contained a large number (10 –15) of oocytes or embryos in 

immature and adult mice, respectively. 
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Figure IX-1.  Morphological changes in the female reproductive tract of mice with 

anti-Mullerian hormone receptor-2-Cre recombinase targeted deletion of Dicer1.  

A, Immature female reproductive tracts (magnification, x1.5) from wild-type (WT) and 

Dicer1
fl/fl

;Amhr2
Cre/+

 [knockout (KO)] mice.  The uteri of the Dicer1
fl/fl

;Amhr2
Cre/+ 

mice 

are roughly two thirds the length of the wild-type mice. B and C, Magnified view (x6) of 

the oviduct and ovary from control (B) and Dicer1
fl/fl

;Amhr2
Cre/+

 mice (C).  Note the 

extensive coiling of the wild-type oviduct (white arrow) and the lack of such coiling in 

the Dicer1
fl/fl

;Amhr2
Cre/+ 

knockout oviduct, and the presence of fluid-filled sacs near the 

utero-tubal junction (white arrowhead). 
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Figure IX-1 
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The uteri of Dicer1
fl/fl

;Amhr2
Cre/+

 mice did not appear to lack primary cell types 

because uterine glands, and stromal and myometrial tissues all appeared to be present 

(Fig IX-2, A and B).  However, the uteri of immature eCG plus hCG treated 

Dicer1
fl/fl

;Amhr2
Cre/+

 mice did appear to have a thinner myometrial layer and reduced 

numbers of uterine glands than that observed in control littermates.  Similar findings were 

observed for pregnant mice.  However, the differences in uterine morphology and 

weights between the Dicer1
fl/fl

;Amhr2
Cre/+

 and wild-type mice were not attributable to 

changes in progesterone (d1 pregnant mice; See Fig IX-5) or estrogen levels (eCG plus 

hCG treated mice; data not shown).  Similarly, the isthmus of the oviduct, the portion 

with the greatest musculature, exhibited an almost complete loss of smooth muscle tissue, 

and the characteristic mucosal folds were replaced by distended sac-like structures (Fig. 

IX-2, C–E).  Histological evaluation of the oviduct also showed a generally disorganized 

epithelial cell layer (Fig.IX-2F).   
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Figure IX-2. Histological analysis of the uterus and oviduct of immature 

Dicer1
fl/fl

;Amhr2
Cre/+ 

and littermate wild-type control mice.  A and C,  Uteri and 

oviduct of wild-type mouse. B and D–F, Dicer1
fl/fl

;Amhr2
Cre/+ 

uteri and oviductal tissue.  

Immature 25-d-old mice were sequentially administered eCG (46 h), followed by hCG 

(16 h) before tissue harvesting.  Tissues were fixed in Bouin’s solution, paraffin 

embedded, sectioned (8 _M), and hematoxylin and eosin stained.  The uteri (B) of the 

Dicer1
fl/fl

;Amhr2
Cre/+ 

were reduced in size and appeared to contain much less smooth 

muscle [lateral and transverse smooth muscle are marked with brackets when compared 

with the wild-type (A)].  Uterine glands were prevalent in the wild-type uteri (A) and 

sparse in the Dicer1
fl/fl

;Amhr2
Cre/+ 

uteri (arrowhead).  The oviducts of wild-type mice 

were highly coiled, and the smooth muscle around the isthmus region was well developed 

(C, arrow).  Similar regions in the Dicer1
fl/fl

;Amhr2
Cre/+ 

were not observed because this 

region of the oviduct was populated with sac-like structures.  D shows a region of the 

oviduct that is transitioning from a tubule-like structure to the sac-like structures seen 

more anterior in E, which resided near the utero-tubal junction; arrowheads denote 

several of the saclike structures.  F shows a magnified view of epithelium from 

Dicer1
fl/fl

;Amhr2
Cre/+ 

mice. Bars, 500 µm for A and B. Bars, 200 µm for C–F. 
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Figure IX.2 
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In addition to the gross morphological changes in the uterus and oviduct, ovarian 

weight was also reduced (P <0.05) in the d1 pregnant  Dicer1
fl/fl

;Amhr2
Cre/+

 (0.22±0.009 

mg/g; ovarian weight/total body weight) mouse compared with control mice (0.27±0.014 

mg/g).  Moreover, numbers of naturally ovulated cumulus-oocyte complexes were less 

(P<0.05) in the Dicer1
fl/fl

;Amhr2
Cre/+

 mice (7.0±1.1; mean±sem) than control mice 

(10.7±0.9).  Similar to the naturally mated animals, the ovulation rate for the immature 

eCG plus hCG-treated wild-type females (n=12) was significantly greater (P<0.05) than 

that of Dicer1
fl/fl

;Amhr2
Cre/+

 females [(n=6) 16.2±1.4 vs. 3.67±1.50, respectively].  

However, gross morphological and histological examination of the pregnant ovaries from 

both genotypes showed no marked differences (data not shown).  However, examination 

of immature Dicer1
fl/fl

;Amhr2
Cre/+

 mice given eCG alone (46 h) indicated that these 

ovaries contained fewer large antral follicles (data not shown).  Overall, the reduced 

ovulation rates and ovarian weights, as well as histological observations, suggest that 

fewer pre-ovulatory follicles developed in the Dicer1
fl/fl

;Amhr2
Cre/+

.  However, in depth 

analyses of follicular dynamics and characterization of Dicer1 will be necessary to further 

address ovarian Dicer1 function. 

Culture of the d1 (pronuclear stage) embryos indicated that embryos from 

Dicer1
fl/fl

;Amhr2
Cre/+

 mice were capable of normal in vitro development (Table 1X-1). 

Embryonic development through blastocyst formation and the percentage of hatching was 

not different across genotypes.  In contrast, in vivo embryonic development assessed on d 

3 pregnancy indicated that embryos from Dicer1
fl/fl

;Amhr2
Cre/+ 

females were markedly 

delayed when compared with wild-type mice (Fig.1X-3 and Table1X-2).  Moreover, the 

incidence of fragmentation and degeneration of these embryos increased in 
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Dicer1
fl/fl

;Amhr2
Cre/+

 derived embryos after 1d culture compared with wild-type derived 

embryos (Fig. 3).  Embryos collected from Dicer1
fl/fl

;Amhr2
Cre/+

 mice on d4 pregnancy 

also displayed increased fragmentation and degeneration (data not shown). 

To further evaluate oviductal function, the location of embryos within the 

reproductive tract was examined on d4 of pregnancy.  All embryos in wild-type females 

(n=9) were located in the uterus, whereas no embryos were found in the uterus of 

Dicer1
fl/fl

;Amhr2
Cre/+

 mice (n=8; Table1X-3).  The majority of the embryos within the 

oviduct of Dicer1
fl/fl

;Amhr2
Cre/+

 mice were found in the upper one third of the oviduct.  

The few embryos that had progressed through the oviduct to the isthmus were mostly 

fragmented, and some zonae pellucidae had been lost (data not shown).  Implantation was 

assessed in another group of mice at d6 and 7 of pregnancy.  All wild-type mice exhibited 

implantation sites (9.8±0.4 implantation sites per dam), whereas no evidence of 

implantation was observed in Dicer1
fl/fl

;Amhr2
Cre/+

 mice. 
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Table IX-1.  In vitro embryonic development of embryos collected from d1 pregnant 

Dicer1
fl/fl

;Amhr2
Cre/+ 

and wild-type females. 

 

Percentage of two or more cell embryos was calculated from total numbers of fertilized oocytes (n = 75 and 

37) for each genotype. Percentages of four or more cell embryos and all subsequent groups were calculated 

from the number of two or more cell embryos present on d 2 culture. 
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Figure IX.3. Embryos from d3 pregnant Dicer1
fl/fl

;Amhr2
Cre/+ 

and wild type female 

mice. A and C,  Embryos from wild-type mice immediately after collection (A) and after 

24 h culture (C).  B and D,  Embryos from Dicer1
fl/fl

;Amhr2
Cre/+ 

mice immediately after 

collection (B) and after 24 h culture (D).  Increased fragmentation and degeneration were 

observed in embryos collected from Dicer1
fl/fl

;Amhr2
Cre/+ 

females compared with wild-

type controls after 24 h culture. Bars, 100 µm. 
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Figure IX.3 
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Table IX.2. In vivo embryonic development in d3 pregnant Dicer1
fl/fl

;Amhr2
Cre/+ 

and 

wild type female mice 

 

Numbers of embryos found in each region of oviduct and uterus from a wild-type (n = 7) 

and Dicer1
fl/fl

;Amhr2
Cre/+ 

(n  8) mice. 
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Table IX.3. Location of embryos on d4 of pregnancy in Dicer1
fl/fl

;Amhr2
Cre/+ 

and wild 

type female mice. 

 

Numbers of embryos found in each region of oviduct and uterus from a total of nine mice 

of each genotype. 
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Serum progesterone concentrations indicated that Dicer1
fl/fl

;Amhr2
Cre/+ 

and 

control mice had similar levels through d4 of pregnancy (Fig 1X-4).  On d6 of pregnancy, 

Dicer1
fl/fl

;Amhr2
Cre/+

 mice exhibited a (P<0.05) minor (24%) decline in progesterone 

levels compared with the controls.  In a single embryo transfer experiment, in vitro 

fertilized oocytes derived from Dicer1
fl/fl

;Amhr2
Cre/+

 mice were able to establish 

pregnancy in recipient females with normal fetal development to at least embryonic d15 

(E15) (data not shown). 

To determine whether the loss of Dicer1 affects Wnt signaling, we examined β-

catenin expression.  We observed reduced levels of β-catenin in combined 

uterine/oviductal tissues of immature d10 Dicer1
fl/fl

;Amhr2
Cre/+

 mice compared with wild-

type mice (Fig.1X-5).  In addition, oviductal tissues from d26 eCG plus hCG-treated 

Dicer1
fl/fl

;Amhr2
Cre/+

 mice also showed a loss in β-catenin protein expression.  β-catenin 

levels were 53 and 31% lower in the Dicer1 mice on d10 and 26, respectively, after 

normalization with the loading control, α-actin. 

  



 
88 

 

Figure IX-4. Serum progesterone concentrations in pregnant Dicer1
fl/fl

;Amhr2
Cre/+ 

(KO) and wild-type (WT) mice.  Serum collected on d1, 3, 4, and 6 of pregnancy was 

analyzed for the concentration of progesterone by RIA.  Data are presented4 as mean 

concentration of progesterone±SEM. 
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Figure IX.4 

 

 

  



 
90 

 

Figure IX-5. Oviductal and uterine β-catenin levels in Dicer1
fl/fl

;Amhr2
Cre/+ 

(KO) and 

wild-type (WT) female mice.  Oviductal and uterine tissue pooled together from d10 or 

oviductal tissue alone from d26 mice was analyzed by Western blot for β-catenin protein 

levels  .α-Actin was used as a loading control. 
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Figure IX-5 
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5. Discussion 

Conditional knockdown of the miRNA-processing enzyme, Dicer1, using the 

Amhr2-driven Cre-recombinase yielded female mice sterile, whereas having no effect on 

male fertility.  A previous study using a similar approach to delete Dicer1 specifically in 

the oocyte via ZP3-driven Cre-recombinase, also rendered female mice infertile 

(Murchison, et al. 2007).  In these later mice, oocyte development and folliculogenesis 

appeared normal until the resumption of meiosis, at which point defects in spindle 

formation and chromatin separation in the oocytes were observed.  Female mice were 

also found to be infertile in a recent study in which Dicer1 expression was globally 

knocked down using a gene-trap method (Otsuka, et al. 2008).  In this study a defect in 

vascularization of luteal tissue was observed, leading to insufficient progesterone 

secretion and a failure to maintain pregnancy.  Global knockdown of Dicer1 had no effect 

on ovulation rate, suggesting that granulosa cell function was not compromised in their 

model (Otsuka, et al. 2008).  Conversely, granulosa cell gene expression is modulated in 

the Amhr2-Cre recombinase model (Boerboom, et al. 2005, Boerboom, et al. 2006, 

Deutscher and Hung-Chang Yao 2007, Jamin, et al. 2002a, Jeyasuria, et al. 2004, Jorgez, 

et al. 2004), and we observed reduced ovulation rates and pre-ovulatory follicular 

development in our mice.  Nevertheless, the infertile phenotype we observed in 

Dicer1
fl/fl

;Amhr2
Cre/+

 could not be attributed to reduced luteal function because 

progesterone levels were similar through the early stages of embryonic development (d4) 

and only showed a minor decline on d6 pregnancy.  Our data instead point to a loss in 

oviductal development and function as the primary cause of Dicer1 mediated infertility in 

our model. 
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The marked gross morphological changes in the uterus and oviduct observed in 

our model of Dicer1 deletion suggest that either disruption of tissue development and/or 

function leads to female infertility.  The Amhr2 promoter driving Cre recombinase 

expression has been used extensively to knock down gene expression in tissues derived 

from the Mullerian duct (i.e. oviductal, uterine, and cervical tissues) (Deutscher and 

Hung-Chang Yao 2007, Jamin, et al. 2002a).  The Amhr2-driven Cre-recombinase 

activity has been detected in the Mullerian duct mesenchyme as early as E12.5 in ROSA 

reporter mice (Jamin, et al. 2002a) and as late as E15.5 in mice using a fluorescent 

reporter (Deutscher and Hung-Chang Yao 2007).  Moreover, the mesenchymal 

expression of the fluorescent reporter was also not uniform within the embryonic 

Mullerian duct (Arango, et al. 2005, Deutscher and Hung-Chang Yao 2007).  

Furthermore, postnatal Amhr2-lacZ and Amhr2-Cre expression was also greater in the 

circular smooth muscle cells of the myometrium (Arango, et al. 2008, Arango, et al. 

2005).  However, histological observations of the uteri and oviduct from 

Dicer1
fl/fl

;Amhr2
Cre/+

 mice suggest that the cellular layers normally comprising these 

tissues are present at decreased levels compared with wild-type mice. 

This was particularly true for the smooth muscle that is present in the isthmus of 

the oviduct and myometrium. Indeed, the isthmus region of the oviduct was not readily 

identifiable in the Dicer1
fl/fl

;Amhr2
Cre/+

 female mice.  Therefore, the loss of smooth 

musculature in these tissues is consistent with elevated Amhr2 expression.  Consistent 

with the loss and disruption of oviductal cell layers, the oviduct of the 

Dicer1
fl/fl

;Amhr2
Cre/+

 mouse was not able to support normal embryonic development, nor 

was it able to facilitate transport of embryos to the uterus.  The ability of in vitro cultured 
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pronuclear (d1) embryos collected from Dicer1
fl/fl

;Amhr2
Cre/+

 donors to develop at a 

similar rate as those derived from wild-type females offers further support that oviductal 

function is disrupted.  Finally, the ability of in vitro fertilized oocytes derived from 

Dicer1
fl/fl

;Amhr2
Cre/+

 donor mice to establish a pregnancy when transferred to wild-type 

recipients provides conclusive proof that the ovary is not the primary cause of infertility 

in this mouse. 

Collectively, these observations suggest that Dicer1 and its product (miRNA) play 

key roles in uterine and oviductal development.  Disruptions of oviductal and uterine 

morphology have previously been seen in mice with deletions of the homeobox genes, 

Hoxa9, 10, 11, and 13, as well as genes in the Wnt pathway, including Wnt-7a and β-

catenin (Branford, et al. 2000, Miller and Sassoon 1998, Post and Innis 1999).  The loss 

of uterine musculature, lack of uterine glands, and failure of the oviduct to undergo 

coiling phenocopies some of the observations seen when Wnt-7a was knocked out (Carta 

and Sassoon 2004, Miller, et al. 1998, Miller and Sassoon 1998) or when -catenin was 

knocked out using Amhr2-Cre (Arango, et al. 2005, Deutscher and Hung-Chang Yao 

2007).  However, both Wnt-7a and β-catenin had additional reproductive tract 

phenotypes that were not mimicked by the deletion of Dicer1.  In these models, combined 

uterine and oviductal disruptions have been shown to occur mostly in early development.  

To determine whether the loss of Dicer1 might lead to disrupted Wnt signaling, 

immunoblot analysis of oviductal tissues from age-matched d25 immature mice, and 

combined uterine/oviductal tissues from 10d old mice were analyzed.  β-catenin levels 

were lower in the Dicer1
fl/fl

;Amhr2
Cre/+

 uteri and oviducts.  Ongoing studies are 

examining whether the loss of miRNA is affecting the posttranscriptional gene regulation 
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of this specific transcription factor within developing reproductive tracts.  In conclusion, 

these studies indicate that posttranscriptional gene regulation in somatic tissues of the 

female reproductive system as regulated by Dicer1, and its product, miRNA, plays an 

essential role in female fertility.  The loss of Dicer1 resulted in developmental and 

functional consequences at both the reproductive tract and gonadal level.  Ongoing 

studies are underway to identify the specific miRNA and their target genes that affect 

both the development and function of these tissues. 
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X: CHAPTER 5 

 

Conditional deletion of the LH regulated miR-132/212 in granulosa cells does not 

affect female fertility 
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1. Abstract 

 

Our laboratory has recently identified two miRNA, miR-212 and miR-132, which 

are highly induced by the luteinizing hormone (LH) surge in the ovary.  These miRNA 

are co-transcribed and share an identical seed sequence that targets the 3’UTR of 

complementary mRNAs. Furthermore, these miRNA are regulated by cAMP/CREB, the 

primary mechanism of LH signaling in the ovary.  Interestingly, miR-132 and miR-212 

have been shown to amplify CREB signaling (a downstream component of cAMP 

activation) in a feed-forward mechanism in neuronal cells.  Thus, we have hypothesized 

that miR-132 and miR-212 might be involved in mediation of cAMP/CREB signaling in 

ovarian somatic cells.  The aim of this study was to determine if miR-212/132 are 

involved in cAMP/CREB signaling and ovarian function.  Bioinformatic analysis of 

potential targets of miR-132/212 (Targetscan) revealed a number of members involved in 

the regulation of Raf signaling, a key component in CREB signaling, including: SMAD4, 

RASA1 (RAS p21 protein activator 1), SPRED1 (sprout-related, EVH1 domain-

containing protein 1), DACH1 (dachshund homolog 1), ERBIN (ERBB2 interacting 

protein), APC (adenomatous polyposis coli), and SLK (STE20-like kinase).  Conditional 

deletion of miR-212/132 in ovarian granulosa cells using the Amhr2-Cre and Aromatase-

Cre promoters did not appear to have an effect on ovarian function or female fertility.  

Based on these findings, we believe that even though miR-212/132 are highly induced by 

LH, they do not appear to play a critical or non-redundant role in ovarian function, 

specifically ovulation. 
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2. Introduction 

Each reproductive cycle, an ovulatory dose of luteinizing hormone (LH) initiates 

several ovarian events, including: ovulation, luteinization, cumulus cell expansion, and 

oocyte maturation.  These events are critical and necessary for the proper release of the 

mature egg cell from the ovary, fertilization, and maintenance of pregnancy.  

Understanding the cellular events and associated regulatory mechanisms involved in 

mediation of the LH surge provides potential opportunities for regulation of the 

reproductive cycle and new methods of contraception.  

LH is released from the anterior pituitary gland and binds to the transmembrane, 

G-protein coupled LH receptor on thecal and granulosa cells of ovarian follicles.   

Binding of LH causes a rapid increase in intracellular levels of the second messenger 

cyclic-AMP (cAMP), which in turn activates a number of cellular signaling cascades, 

including the PKA system (Richards 2001).  These signaling cascades in turn regulate 

transcription of genes essential for ovulation, luteinization, and other processes, as well 

as regulation of post-transcriptional regulatory events, such as microRNA (miRNA) 

expression.  MicroRNAs are a recently identified class of small, non-coding RNAs that 

regulate post-transcriptional gene expression through inhibition of translation or mRNA 

degradation by complementary pairing with the 3’-untranslated region (3’UTR) of the 

target mRNA (Filipowicz, et al. 2008, Lee and Ambros 2001).  Our laboratory, and 

others, have recently reported that decreased global expression of miRNA specifically in 

ovarian granulosa cells results in a dramatic decrease in ovulation rate in mice (Hong, et 

al. 2008, Nagaraja, et al. 2008, Pastorelli, et al. 2009).  Furthermore, our laboratory has 

recently identified 3 miRNA (miR-212, miR-132, miR-21) that are rapidly increased in 
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response to the LH surge (Fiedler, et al. 2008).  Inhibition of miR-21 function in 

granulosa cells blocked ovulation and increased cellular apoptosis (Carletti, et al. 2010).  

Further studies of miRs-132 and 212 found a rapid and robust increase in expression of 

these transcripts increasing 17- and 21-fold, respectively, within 2 hours of hCG 

administration (Fiedler, et al. 2008).  Our laboratory has also found that bovine granulosa 

cells collected from peri-ovulatory follicles 16hrs post-hCG administration exhibited 

~300 and ~90-fold induction of miR-132 and miR-212 expression, respectively, 

compared to 0hr hCG (unpublished data) indicating that this increase in miR-212/132 

expression occurs in a possibly conserved manner in species other than the mouse.  

Additionally, we have previously reported the rapid increase of miR-132 and miR-212 in 

response to cAMP in granulosa cells in vivo (Fiedler, et al. 2008).  Taken together, these 

studies suggest that LH regulates miRNA expression and that this may play a critical role 

in mediation of LH signaling in the ovary.  Recently, studies in neuronal cells have 

described that miR-212 and miR-132 increase cAMP signaling via a feed-forward 

mechanism (Hollander, et al. 2010, Im, et al. 2010, Magill, et al. 2010, Remenyi, et al. 

2010).  Interestingly, miR-212 and miR-132 are co-transcribed from a single promoter to 

form a single primary transcript.  This transcript is then further processed to form 

individual, mature miR-132 and miR-212.  Furthermore, mature miR-132 and miR-212 

share an identical seed sequence, or the region of the mature miRNA that binds to the 

complementary sequence of the 3’UTR of the target mRNA.  Taken together, this 

suggests similar functional roles for miR-132 and miR-212 in regulation of post-

transcriptional gene expression.  Our laboratory has previously shown a rapid increase in 

miR-212 and 132 following LH, however the mechanism or downstream function of 
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these miRNA have yet to be explored.  Thus, we hypothesized that miRs-212 and 132 are 

involved in a feed forward loop of LH/cAMP signaling.  The aim of this study was to 

determine if miR212 and 132 are involved in cAMP/CREB signaling in the ovary and to 

determine if miR-212 and 132 have a functional role in ovulation/luteinization and 

overall ovarian function.  
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3. Methods 

In vitro miR212/132 inhibition 

 Granulosa cells were collected and subsequently cultured from unstimulated, 

immature CF-1 mice (d25) as previously described (Carletti, et al. 2010).  Briefly, 25 day 

old mice were sacrificed by cervical dislocation and ovaries removed and placed in M199 

collection media (Sigma, St. Louis).  Ovaries were subsequently treated with a 0.5M 

sucrose solution for 15 mins, rinsed with collection media, and granulosa cells collected 

by puncturing large, antral follicles with a 26 gauge insulin needle.  The resulting cellular 

material was centrifuged at 1,000xg for 5 min, counted for number of live and dead cells, 

and plated at 2x10^6 cells per 10cm dish in granulosa cell culture media (DMEM:F12 

(Sigma) with 10% fetal bovine serum (Sigma) and 50ng/ml gentamycin (Invitrogen, 

Carlsbad, CA)).  Twenty four hours after plating, media was changed to fresh culture 

media and 24hrs later cells exposed to serum free DMEM:F12 media.  After 24hrs of 

serum starvation, cells were transfected with Lipofectamine 2000 (Invitrogen) and locked 

nucleic acids (LNAs, Exiqon, Norway) specific to miR-212 (LNA-212) and miR-132 

(LNA-132) or a non-specific control (LNA-NS).  Cells were exposed to transfection 

complexes for 4 hrs and then treated with 1mM 8-Br-cAMP (Sigma) for 1, 2, 12, or 

24hrs.  Cells were collected in cell lysis buffer for protein isolation. 

Bioinformatic analysis for miR212/132 targets 

 To identify putative targets of miR212/132 several bioinformatic approaches were 

used.  The miRGator functional analysis online tool 

(http://genome.ewha.ac.kr/miRGator/, (Nam, et al. 2008)) was used to predict gene 

http://genome.ewha.ac.kr/miRGator/
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ontology classes enriched for putative miR212/132 targets.  Specific putative targets were 

obtained by using the Targetscan algorithm (www.targetscan.com (Lewis, et al. 2005)) 

with focus on targets important to ovarian function (Luense, et al. 2011).   

Generation of conditional miR212/132 knockdown 

The University of Kansas Medical Center’s Institutional Animal Care and Use 

Committee approved all procedures involving mice before use.  Mice homozygous for 

loxP insertions flanking the miR212/132 gene (miR212/132
fl/fl

; generously provided by 

Dr. Richard Goodman, Oregon Health and Science Center) were crossed with mice 

heterozygous for Cre recombinase knocked into the anti-mullerian hormone receptor 2 

locus (Amhr2
Cre/+

; generously donated by Dr. Richard Behringer, Baylor College of 

Medicine) or mice expressing Cre recombinase driven by the Cyp19 (aromatase) 

promoter (Cyp19
Cre/+

; generously donated by Dr. Jan Gossen, Schering Plough 

Corporation).  The Amhr2-Cre promoter is expressed in ovarian granulosa cells of the 

pre-antral follicle and other derivatives of the Mullerian duct (i.e. oviduct, uterus, and 

cervix) (Hong, et al. 2008, Jorgez, et al. 2004), while Cyp19-Cre expression is restricted 

to granulosa cells of antral follicles and the corpus luteum as evidenced by breeding of 

Cyp19-Cre mice to the Rosa26 reporter line (Fan, et al. 2008a, Fan, et al. 2008b).  The 

resulting progeny were genotyped as previously described (Fan, et al. 2008b, Jorgez, et 

al. 2004, Magill, et al. 2010). 

Validation of miR212/132 knock-down 

To validate that miR-212 and 132 were deleted from granulosa cells of 

conditional knock-down mice, immature mice (d22) were stimulated with 2 IU of eCG 

http://www.targetscan.com/
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(Calbiochem, Billerica, MA) for 48hrs.  Mice were sacrificed by cervical dislocation and 

ovaries removed and placed in Dulbecco’s PBS (Sigma).  Granulosa cells were expressed 

from the ovaries by inserting a needle into antral follicles and releasing the cells as 

previously described (Carletti, et al. 2010).  To remove any oocytes, the resulting cellular 

material was passed over a filter and subsequently centrifuged at 1,000xg to pellet any 

cellular material.  Total RNA was isolated from the resulting cellular pellet by TRIZOL 

extraction (Sigma) per manufacturer’s protocol.  To synthesis cDNA, 50ng of total RNA 

was reverse transcribed using the miRCURY Universal RT Kit (Exiqon, Denmark) as 

described by the manufacture.  Quantitative RT-PCR was performed using the 

miRCURY LNA primer assays for miR-212 and miR-132 in combination with the 

SybrGreen amplification kit (Exiqon).  The small RNA U6 was used as a normalizer 

(Exiqon).    

Breeding studies 

To assess fertility of these mice, female miR212/132
fl/fl

;Amhr2
Cre/+ 

mice and 

miR212/132
fl/fl

;Cyp19
Cre/+ 

(42 d of age, n=2 and n=5, respectively) were mated with adult 

wild-type males of known fertility. miR212/132
fl/fl

;Amhr2
Cre/+ 

and 

miR212/132
fl/fl

;Cyp19
Cre/+  

females were continually exposed to males for a minimum of 

2 months. Female mice were checked daily for the presence of a seminal plug to confirm 

mating.  

Ovulation studies 

 To determine if mice lacking the miR212/132 gene were capable of ovulation, 

immature littermate females (22 d of age) of miR212/132
fl/fl

;Amhr2
Cre/+ 

(n=6) and control 
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wild-type (i.e. miR212/132
fl/+ 

or miR212/132
fl/fl 

lacking the Amhr2
Cre/+

; n=5) genotypes 

or miR212/132
fl/fl

;Cyp19
Cre/+

 (n=6) and control wild-types (n=6) were administered 2 IU 

equine chorionic gonadotropin (eCG) for 46 h, followed by 2 IU human chorionic 

gonadotropin (hCG, Sigma) for 16–17 h.  Animals were euthanized by cervical 

dislocation followed by collection of cumulus-ooycte-complexes from the oviduct. 

Ovulation rates were determined by counting the oocytes recovered. 

 

Western blot analysis 

Granulosa cells from LNA treated cell culture were collected in lysis buffer (Cell 

Signaling Technology, Inc., Danvers, MA) and the resulting protein lysates were 

centrifuged at 16,000x g for 5 min to pellet the cellular membrane debris. Supernatants 

were transferred to new tubes and stored at 80 C until use. Protein samples (10µg), as 

determined by Bio-Rad Protein Assay (Bio-Rad Laboratories, Inc., Hercules, CA), were 

loaded onto 12% SDS-PAGE gels and transferred to polyvinylidene fluoride membranes 

using standard methods. Immunoblots were blocked with 5% milk solution and incubated 

overnight at 4 C with antibodies to phospho-CREB (Millipore) and α-actin (Santa Cruz 

Biotechnology, Inc., Santa Cruz, CA). After washing, protein-antibody complexes were 

visualized using West Pico Chemiluminescent Substrate (Pierce, Rockford, IL) following 

the manufacturer’s protocol.  
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Statistical analysis 

Statistical analysis was performed with GraphPad Prism (version 4;GraphPad 

Software Inc., San Diego, CA). Litter size and ovulation rates were analyzed by the 

Student’s t-test. P values less than 0.05 were considered significant. 
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4. Results 

Bioinformatic analysis of miR-212/132 targets 

 To identify putative mRNA targets of miR-212/132, two different bioinformatics 

approaches were utilized.  First, miRGator, an online bioinformatic tool to categorize and 

determine enrichment of gene ontologies represented in putative mRNA targets, was 

utilized.  Gene ontologies that were most represented in putative miR212/132 targets 

included nucleotide binding, receptor activity, cell communication, and signal 

transduction (Figure X-1C).  Next, individual targets of miR-212/132 were obtained from 

the miRNA target prediction algorithm Targetscan and analyzed for targets of interest.  A 

total of 235 mRNAs were predicted to be targeted by miR-212/132 (Figure X-1D).  Of 

these targets, several appeared to be involved in cAMP/CREB signaling (SMAD4, 

RASA1 (RAS p21 protein activator 1), SPRED1 (sprout-related, EVH1 domain-

containing protein 1), DACH1 (dachshund homolog 1), ERBIN (ERBB2 interacting 

protein), APC (adenomatous polyposis coli), and SLK (STE20-like kinase), the key 

signaling pathway involved in transcription of miR-212/132.   
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FigureX-1. Structure and putative function of miR212/132.   A) Schematic 

representation of miR212/132 genomic locus. Cre sites represent location of cAMP 

response binding elements.  B) Seed sequences of miR212 and miR132.  Bases colored in 

red represent the seed sequence and are essential for miRNA:mRNA targeting. C) Gene 

ontology functional classes enriched in miR212/132 targets using the miRGator 

functional analysis tool. D) Putative miR212/132 targets in the CREB signaling pathway 

using Targetscan algorithm. 
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Figure X-1 
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Inhibition of miR212/132 in vitro appears to decrease CREB phosphorylation 

 As phosphorylation of CREB is the key component in initiation transcriptional 

regulation in response to LH/cAMP/CREB signaling, levels of phosphor-CREB were 

measured in granulosa cells with miR-212/132 inhibited by locked-nucleic acid 

molecules (LNAs).  No differences were observed in CREB phosphorylation at 0 hours, 

however by 1hr phospho-CREB levels appeared to decrease compared to non-specific 

treated control cells (Figure X-2).  CREB phosphorylation appeared to remain low at 

12hr compared to non-specific treated controls. 
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Figure X-2. Phospho-CREB protein levels in ovarian granulosa cells.  Western blot of 

granulosa cell protein extracts transfected with LNA-212 and 132 or LNA-NS probed for 

phospho-CREB (pCREB) or actin.  The time above each set of lanes represents the length 

of 8-Br-cAMP treatment after 4hr transfection of LNA.    
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Figure X-2 
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Generation of miR-212/132 conditional knock-out mice 

 To determine if miR-212/132 is necessary for fertility, two conditional knock out 

mouse lines were generated to knock-out miR-212/132 at two different points of ovarian 

function.  Deletion of miR-212/132 with the Amhr2-Cre promoter decreased expression 

of miR-132 in conditional knock-out (cKO) mice compared to wild-type mice (Figure X 

3A).  However, expression of miR-212 was non-detectable in both cKO and control mice.  

Similar deletion of miR-212/132 with the Cyp19-Cre promoter resulted in nearly non-

detectable levels of miR-132 in cKO mice (Figure X.3B).  Expression of miR-212 was 

also non-detectable in both cKO and control mice.  
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Figure X-3.  Experimental design and validation of generation of conditional 

miR212/132 knock-out mice.  Mice with loxP insertions flanking the miR212/132 gene 

were crossed with Cre expression promoters for Amhr2 (n=2 per genotype) (A) and 

Cyp19 (n=5 per genotype) (B) to generate cell specific conditional knock-out (cKO) of 

miR212/132.  Bar graphs represent expression levels of miR-132 in granulosa cells 

collected from mice 48hr after eCG stimulation.  Levels of miR-212 were not detectable 

in control or cKO mice. 
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Figure X-3 

 

 

  



 
115 

 

miR-212/132 conditional knock-out mice are fertile 

 Amhr2-cKO and Cyp19-cKO mice bred to males of known fertility appeared to 

normal mating behavior, as evidenced by the presence of a copulatory vaginal plug.  All 

Amhr2-cKO (Figure X-4A) and Cyp19-cKO (Figure X-4B) mice delivered live pups that 

were of same size and approximate weight of control mice.  There were no obvious 

physical defects or problems with pups from cKO dams and both male and female pups 

were present. 
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Figure X-4.  Conditional knock-out of miR212/132 does not affect fertility.   Mean 

size of litters from female conditional knock out mice (cKO) using the Amhr2-Cre 

promoter (n=2 per genotype) (A) or Cyp19-Cre promoter (n=5 per genotype) (B) 

compared to wild type (Control) mice.  The number under the X axis represents the 1
st
 

and subsequent litter number.  
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Figure X-4 
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miR-212/132 conditional knock-out mice undergo normal ovulation 

 Amhr2-cKO and Cyp19-cKO mice stimulated with a low dose of eCG and hCG 

underwent ovulation on a normal timeframe, as evidenced by the presence of cumulus-

oocyte-complexes in the oviduct 16hrs post-hCG.  The mean number of oocytes collected 

from Amhr2-cKO (Figure X-5A) and Arom-cKO (Figure X-5B) mice were the same as 

collected from wild-type littermate controls.  
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Figure X-5.  Conditional knock-out of miR212/132 does not affect ovulation rate.   

Mean number of oocytes retrieved from oviduct of female conditional knock out mice 

(cKO) using the Amhr2-Cre promoter (n=6 per genotype) (A) or Cyp19-Cre promoter 

(n=6 per genotype) (B) compared to wild type (Control) mice.   
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Figure X-5 
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5. Discussion  

 Bioinformatic analysis of putative targets of the LH regulated miR-212/132 

reveals several proteins associated with CREB signaling.  As CREB signaling is a major 

downstream effector of LH/cAMP signaling in ovarian granulosa cells, and due to the 

reports of several other groups that miR-212/132 appeared to form a feed forward loop to 

amplify CREB signaling, (Hollander, et al. 2010, Im, et al. 2010, Magill, et al. 2010, 

Nudelman, et al. 2010) we hypothesized that miR-212/132 was involved in cAMP/CREB 

signaling mediation and that it was involved in ovarian function (i.e. 

ovulation/luteinization).  However, conditional deletion of miR212/132 in ovarian 

granulosa cells appears to have no effect on female fertility or ovulation rate. 

 Due to the rapid increase in miR-212/132 expression in response to LH in 

granulosa cells, (Fiedler, et al. 2008), their co-transcription as one primary-miRNA, and 

the sharing of a seed sequence, we anticipated they played a functional role in ovarian 

biology.  Functional analysis of miR-21, another miRNA found to be highly induced by 

LH in granulosa cells was shown to impact ovulation, as inhibition of ovarian miR-21 

with locked nucleic acids (LNA) blocked ovulation and caused the formation of 

luteinized follicles (Carletti, et al. 2010).  This phenotype was strikingly similar to what 

our laboratory previously observed in conditional deletion of the miRNA processing 

enzyme Dicer (Hong, et al. 2008).  Based on these findings, we expected to uncover a 

similar phenotype of altered ovarian function when miR-212/132 was deleted in ovarian 

granulosa cells.  
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 We expected to observe a defect in the Cyp19-cKO mice, as Cre expression, and 

thus miR-212/132 deletion would occur in the antral follicle.  The Cyp19-Cre mouse has 

been previously used with much success to delete Kras, Pten, (Fan, et al. 2008a, Fan, et 

al. 2008b) , β-catenin (Fan, et al. 2010), and EGFR (Hsieh, et al. 2011).  Crossing of the 

Cyp19-Cre mouse with the Rosa26 reporter line indicated genetic recombination in 

granulosa cells of antral follicles and the corpus luteum, but no leaky expression in other 

tissues (Fan, et al. 2008a).  Taken together, these studies suggest that the Cyp19-Cre is a 

suitable mouse line to conditionally delete target genes in the peri-ovulatory period.  We 

additionally crossed the miR212/132
fl/fl

 mouse line with the Amhr2-Cre delete mouse line 

to delete the miR-212/132 gene much earlier in follicle development.  The Amhr2-Cre is 

a widely used mouse line that has been previously used by our laboratory to delete Dicer 

(Hong, et al. 2008) and dozens of other laboratories to delete a number of genes involved 

in ovarian function (Jamin, et al. 2002b).  While the Amhr2-Cre mouse has been widely 

used in laboratories and numerous publications have denoted its activity, there has been 

much discussion for several years about the inefficient expression of the Cre recombinase 

in Amhr2 expressing cells.  The promoter has also been described to be ‘leaky’, or 

ectopically expressed in cells that do not usually express Amhr2.  Recently, a study 

investigating the conditional deletion of β-catenin published many of these long-known 

anecdotal observations (Hernandez Gifford, et al. 2009).  Still, we did observe a decrease 

in expression of miR-132 in both Cyp19-Cre and Amhr2-Cre, thus suggesting that 

recombination and deletion is occurring.  It is unclear why the expression levels of miR-

212 were nearly non-detectable in wild-type transgenic animals.  One possible reason is 

that miR-132 is preferentially regulated during miRNA biogenesis, i.e. Drosha, thus 



 
123 

 

releasing pre-mir-132, while leaving mir-212 in the primary transcript. Furthermore, our 

transgenic Amhr2-cKO and Cyp19-cKO mice were both maintained on C57B6 

backgrounds, while our previous studies investigating the in vivo and in vitro 

upregulation of miR-212/132 in response to LH was conducted using CF-1 mice (Fiedler, 

et al. 2008).  It is conceivable that these differences in expression patterns could be due to 

strain variation.  

 One potential explanation for a lack of phenotype could be that loss of these 

miRNA simply does not make enough of a difference in protein expression to alter 

ovarian function.  It has been reported that the effect of miRNA regulation on protein 

expression is relatively small, never more than a 4-fold change, and often much less 

(Selbach, et al. 2008).  Furthermore, over 60% of mRNA are anticipated to be targeted by 

miRNA (Friedman, et al. 2009) and each individual miRNA can potentially target 

thousands of mRNA (Lewis, et al. 2005).  It is also entirely possible that another 

unknown or undiscovered miRNA is highly regulated by LH and is compensating for loss 

of miR-212/132.  The original study when our laboratory identified LH regulated miRNA 

was conducted in 2007 and included only 357 miRNA (Fiedler, et al. 2008).   Today, 

over a 1000 individual miRNA have been identified and the number continues to 

increase.  Taken together, it is highly possible that miRNA function is more of fine-

tuning or gene network wide regulatory mechanism and deletion of a single miRNA may 

not be enough to observe a phenotype.  
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SECTION III 

 

Hormonal regulation of miRNA in the ovary 
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XI: CHAPTER 6 

 

Hormonal regulation of ovarian disease 
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1. Androgen excess 

Androgen excess is an endocrine disorder affecting approximately 6-8% of 

women of reproductive age (Azziz 2004, Azziz, et al. 2004).  This disorder is most 

commonly caused by non-classical adrenal hyperplasia (NCAH), androgen secreting 

neoplasms, severe insulin resistance, and ovarian thecal cell androgen hypersecretion.  

Additionally, some women are exposed to excess androgens through anabolic steroids 

and other environmental sources.  Women suffering from excess androgen 

production/exposure exhibit hirsutism, androgenic alopecia, acne, ovulatory dysfunction, 

and fertility problems.  Many of these presenting symptoms can be treated successfully 

and assisted reproductive technologies (ART) can be utilized to help overcome fertility 

problems, however, the in utero environment of the womb is still susceptible to exposure 

to excess androgens.  For example, in the sheep, fetal exposure to excess maternal 

androgens leads to reproductive dysfunction upon sexual maturity (Clarke, et al. 1977, 

Padmanabhan, et al. 2006, Wood, et al. 1991).  Similar evidence in the monkey and 

rodent has led to the hypothesis that fetal tissue exposed to excess testosterone during 

gestation may undergo altered developmental programming leading to adult onset of 

disease (Abbott, et al. 2005, Demissie, et al. 2008).  Based on these observations, we 

have chosen to use the prenatally androgenized ewe as a model to investigate the effects 

of excess maternal testosterone on the health of the offspring, thus allowing us to link 

fetal developmental programming with adult phenotypes.   This model is an excellent 

choice for the study of adult onset of reproductive disease because of similar ovarian 

development and physiology with humans, ease of manipulating in utero conditions, a 

well characterized phenotype, and it is an economically viable research animal.  
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2. Developmental Programming and Ovarian Development 

The in utero environment of the womb is critical for normal fetal development.  

Insults to this environment can cause abnormal fetal programming leading to adult onset 

of disease (Barker 1990).  Studies conducted by David Barker in the 1980s and 1990s 

describe the correlation between maternal health and nutrition and cardiovascular disease 

in adult offspring (Barker 1990).  This work led to the formation of the developmental 

origin of adult disease hypothesis, also known as the Barker hypothesis, which states that 

‘adverse influences early in development, and particularly during intrauterine life, can 

result in permanent changes in physiology and metabolism, which result in increased 

disease risk in adulthood’ (de Boo and Harding 2006).  The Barker hypothesis not only 

describes the importance of the in utero environment to the health of the adult offspring, 

but also highlights the malleability of the developing fetus to stimuli.  The fetal gonad is 

highly susceptible to hormonal stimuli during development, as proper development is 

dependent upon specific and precise exposure to steroids (Kezele and Skinner 2003, 

Nilsson and Skinner 2009).  Hormones regulate gene expression by binding to steroid 

hormone receptors, members of the nuclear hormone receptor superfamily of 

transcription factors, which in turn bind to DNA response elements to transcriptionally 

activate/inactivate genes (Whitfield, et al. 1999).  Additionally, steroid hormones can also 

exert non-genomic effects on target cells (Simoncini and Genazzani 2003). 

In the sheep, gonadal differentiation begins around gestational day 30 (Quirke, et 

al. 2001), with primordial germ cells undergoing meiosis from d55 to d100 (term = 147 

days) (Juengel, et al. 2006).  By d75 the maximum number of primordial germ cells is 

established due to sustained loss via apoptosis (Juengel, et al. 2006).  Primary follicles 
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are first observed around d90, secondary and pre-antral follicles by d120, and antral 

follicles are observed by d135 (Juengel, et al. 2006).  The developing ovine ovary gains 

capacity for steroid production by d35 when StAR, Cyp11a1, Cyp17, and Cyp19 

expression is observed in the innermost regions of the ovarian cortex (Quirke, et al. 2001) 

and estrogen is synthesized (Lun, et al. 1998).  Ovarian development in the human and 

primate mirrors that observed in the sheep, particularly in regards to timing of gonadal 

differentiation during the 1
st
 trimester of gestation and to the establishment of the 

follicular pool prior to birth.  In the mouse, primordial germ cells are first observed as 

early as d7.25 (Ginsburg, et al. 1990), gonad differentiation begins prenatally (10.5d) 

(Gubbay, et al. 1990), however follicle assembly begins shortly after birth (Pepling 2012, 

Skinner 2005).  Since ovarian formation and development largely occurs during fetal life, 

especially in the human and sheep, insults to the in utero environment during gestation 

can affect ovarian function after birth as observed in the rodent (Sloboda, et al. 2009), 

sheep (Padmanabhan, et al. 2006), and monkey (Dumesic, et al. 2007).  

 

Prenatal androgenized sheep model 

Administration of testosterone to pregnant ewes effects fetal development.  

Studies conducted by Clarke et al describe developmental, behavioral, and reproductive 

consequences to prenatal testosterone exposure in sheep (Clarke, et al. 1976, 1977).  

Pregnant ewes implanted with 1 mg capsules of testosterone from days 30 to 80 of 

pregnancy produced female offspring with complete masculinization of the external 

genitalia and exhibition of aggressive behavior (Clarke, et al. 1976).  Half of the 

prenatally testosterone treated animals failed to ovulate and none underwent a normal 
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estrus cycle.  The timing of testosterone administration appears to be critical as ewes 

treated with testosterone from d50 to d100 of pregnancy produced offspring with a less 

severe masculinization of external genitalia, and only 25% of animals failed to ovulate 

(Clarke, et al. 1976, 1977).  Animals that received prenatal testosterone administration 

from days 70 to 120 and 90 to 140 of pregnancy showed little to no effects on 

development and reproduction (Clarke, et al. 1976, 1977).  Similar phenotypic effects are 

observed in the rhesus monkey, as exogenous testosterone administration beginning 

before day 60 of pregnancy (term = 167 days) causes masculinization of the external 

genitalia (Dumesic, et al. 2007).   

More recent studies conducted by the V. Padmanabhan laboratory (University of 

Michigan), have further investigated the effects of prenatal androgen exposure on the 

fetus while comprehensively studying the developmental, metabolic, and reproductive 

consequences (Padmanabhan 2007, Padmanabhan, et al. 2010a).  In this model, pregnant 

ewes are administered 100 mg of testosterone propionate twice weekly from days 30 to 

90 of pregnancy (West, et al. 2001).  Because testosterone can act through the androgen 

receptor or undergo aromatization to estrogen and act through estrogen receptors, an 

additional group of ewes were injected with dihydrotestosterone (DHT), a non-

aromatizeable androgen, from d30 to 90 of pregnancy to determine if observed effects 

were due to androgen or estrogen actions.  Offspring born from ewes that were exposed 

to excess testosterone during gestation suffered from low birth weight (Manikkam, et al. 

2004) and intrauterine growth retardation (Steckler, et al. 2005).  Prenatal testosterone 

exposure did not alter the age of attaining puberty in female sheep (Sharma, et al. 2002).  

Sexually mature female sheep prenatally treated with testosterone exhibit neuroendocrine 
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feedback defects, including reduced hypothalamic sensitivity to progesterone and 

estrogen positive and negative feedback which in turn causes hypersecretion of LH 

(Sharma, et al. 2002, Veiga-Lopez, et al. 2009, Veiga-Lopez, et al. 2008).   

Ovarian function is also severely disrupted in prenatally testosterone treated adult 

sheep.  The ovaries of testosterone treated females are multi-follicular due to increased 

follicular recruitment and follicular persistence, exhibiting a polycystic ovarian 

phenotype similar in appearance to the ovaries of women who suffer from PCOS 

(Manikkam, et al. 2006, Steckler, et al. 2005, West, et al. 2001).  Similar polyfollicular 

phenotypes are observed in rhesus monkeys prenatally exposed to testosterone (Dumesic, 

et al. 2007).  Both sheep and monkeys exposed to excess gestational testosterone exhibit 

increased anovulation compared to control treated animals (Dumesic, et al. 2007, 

Manikkam, et al. 2006).  Additionally, protein expression of PPARγ and adiponectin, 

components of the insulin signaling pathway which plays an important role in mediation 

of folliculogenesis and steroidogenesis in the ovary, are altered in testosterone treated 

fetal d90 and 10 month old (postnatal) ovaries, respectively (Ortega, et al. 2010).  Ewes 

exposed to excess prenatal testosterone exhibit insulin resistance (Padmanabhan, et al. 

2010b) and altered expression of the insulin like growth factor (IGF) system (Recabarren, 

et al. 2005).  Similar association of hyperandrogenemia and hyperinsulinemia has also 

observed in prenatally androgenized primate models (Dumesic, et al. 2005) and women 

suffering from PCOS (Burghen, et al. 1980).  
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3. Ovarian Steroid Receptor Expression 

 

 In the prenatally androgenized ewe model, exogenous testosterone treatment can 

act directly through the androgen receptor (AR) or undergo aromatization into estradiol 

and act through estrogen receptor alpha (ERα) or beta (ERβ).  AR, ERα, ERβ, 

progesterone receptor (PR), and other steroid hormone receptors are members of the 

nuclear hormone receptor superfamily of transcription factors (Couse and Korach 1999).  

Upon steroid hormone binding, the ligand activated receptor complex transcriptionally 

regulates gene expression by binding an associated response element in the promoter 

region of the target gene (Whitfield, et al. 1999).  Steroid hormone receptors regulate 

numerous genes and provide a mechanism for rapid mediation of hormonal stimuli.  

Expression of steroid hormone receptors is species and spatial-temporal specific.  In the 

fetal ovine ovary, ERα expression is limited to the surface epithelium while ERβ is 

ubiquitously expressed in all cell types in all follicles regardless of size (Juengel, et al. 

2006).  AR is first expressed in the connective tissue of the fetal ovine ovary on d55 and 

throughout the ovary on d75 (Juengel, et al. 2006).  Expression of PR was not observed 

in ovine ovaries prior to d75 of gestation (Juengel, et al. 2006).  In the adult sheep, ERα 

is expressed only in the granulosa cells of early antral and antral follicles, ERβ is 

expressed in the oocyte, granulosa, and theca cell of all follicles, AR is expressed in the 

granulosa and theca cells in follicles starting at the secondary stage, and PR is expressed 

in the granulosa and theca of early antral and antral follicles (Juengel, et al. 2006).   In the 

mouse, steroid hormone receptors appear to play little role in ovarian development as ER- 

and PR-null mice appear to undergo normal ovarian development (Couse and Korach 

1999, Lydon, et al. 1996).  However, in the adult, expression of ERβ is primarily in 
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granulosa cells of growing follicles while ERα is predominantly expressed in thecal and 

interstitial cells (Britt and Findlay 2003). Steroid hormones play an important role in 

regulating intraovarian function.  Androgens are important for initiation of follicular 

development and promote granulosa cell survival and follicular growth through the early 

antral stage (Walters, et al. 2008).  In antral follicles androgens function as inhibitors of 

follicular development and promote granulosa cell apoptosis (Billig, et al. 1993).  

Estrogens are necessary for proper folliculogenesis (Goldenberg, et al. 1972), 

steroidogenesis (Fortune and Hansel 1979), and protecting granulosa cells from 

undergoing atresia (Billig, et al. 1993).  Taken together, steroid hormones and their 

associated receptors play important roles in controlling ovarian function. 

 

4. Polycystic Ovarian Syndrome 

Polycystic ovarian syndrome (PCOS) is a condition of excess androgen synthesis and 

secretion that affects roughly 5-7% of women of reproductive age and is a leading cause 

of infertility (Azziz, et al. 2004).  Women with PCOS also exhibit a number of different 

conditions including: hypersecretion of LH, hirsutism, alopecia, acne, the presence of 

polycystic ovaries, an- or oligo-ovulation, obesity, insulin resistance, type 2 diabetes, and 

metabolic disease.  Due to the large and varied number of characteristics observed in 

women with PCOS, diagnosis is often difficult.  Currently, two guidelines exist to 

diagnose PCOS, the Rotterdam criteria and the NIH/NICHD guidelines.  The Rotterdam 

criteria requires women to exhibit 2 of the 3 following symptoms: oligo- or anovulation, 

excess androgen activity, and the presence of polycystic ovaries (Rotterdam 2004) while 

the NIH criteria requires women to exhibit oligo-ovulation and signs of excess androgen 
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that are not due to other factors that PCOS (Zawadski and Dunaif 1992).  Thus far, 

successful treatment of the disease relies on management of the symptoms (i.e. infertility 

treatment, hormonal contraceptives, management of obesity and/or type 2 diabetes) 

(Carlsen and Vanky 2010).  Although intensive study has been done on this disease that 

was first described by Stein and Leventhal in 1935 (Leventhal and Cohen 1951), the 

actual cause remains to be elucidated.  Numerous studies have attempted to link genetic 

loci to this condition, however no candidate gene or single nucleotide polymorphism has 

been able to explain the condition (Strauss, et al. 2012).   

The hallmark feature of PCOS is the synthesis of excess androgen production.  The 

primary cause of this abnormal hormone profile is believed to be the excess synthesis of 

androgens by theca cells (Gilling-Smith, et al. 1997).  The increased production of 

androgens is believed to be due to ovarian thecal cell hyperplasia and sensitivity to 

gonadotropins, thus increasing cellular steroidogenic potential (Magoffin 2006).  Ovaries 

of women suffering from PCOS often have the presence of multiple, persistent follicular 

cysts on the ovary that are unable to undergo ovulation, yet do not undergo atresia to 

allow the beginning of another ovarian cycle (Chang 2007).  Women with PCOS often 

have increased serum levels of the gonadotropin luteinizing hormone (LH; (Rebar, et al. 

1976)), which binds directly to the thecal cell membrane and promotes increased 

androgen production. 

Few mechanisms aside from genetic linkage or transcriptional regulation have been 

investigated with regards to PCOS.  Interestingly, a previous study using theca cells has 

identified that Cyp17 mRNA half-life is increased in PCOS cells compared to normal 

cells (Wickenheisser, et al. 2005).  One potential mechanism regulating mRNA half is 
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through miRNA mediated post-transcriptional gene regulation, thus suggesting that 

further study in this regulatory mechanism is warranted.   
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1. Abstract 

 

Prenatal testosterone (T) treatment leads to polycystic ovarian morphology, 

enhanced follicular recruitment/depletion, and increased estradiol secretion.  This study 

addresses whether expression of key ovarian genes and microRNA are altered by prenatal 

T excess and whether changes are mediated by androgenic or estrogenic actions of T. 

Pregnant Suffolk ewes were treated with T or T plus the androgen receptor antagonist, 

flutamide (T+F) from d30 to 90 of gestation.  Expression of steroidogenic enzymes, 

steroid/gonadotropin receptors, and key ovarian regulators were measured by RT-PCR 

using RNA obtained from fetal ovaries collected on d65 [n=4, 5, and 5 for T, T+F, and 

control groups, respectively] and d90 (n = 5, 7, 4) of gestation.  Additionally, fetal d90 

RNA were hybridized to multispecies microRNA microarrays.  Prenatal T decreased (P < 

0.05) Cyp11a1 expression (3.7-fold) in d90 ovaries and increased Cyp19 (3.9-fold) and 

5α-reductase (1.8-fold) expression in d65 ovaries.  Flutamide prevented the T-induced 

decrease in Cyp11a1 mRNA at d90 but not the Cyp19 and 5α-reductase increase in d65 

ovaries. Cotreatment with T+F increased Cyp11a1 (3.0-fold) expression in d65 ovaries, 

relative to control and T-treated ovaries.  Prenatal T altered fetal ovarian microRNA 

expression, including miR-497 and miR-15b, members of the same family that have been 

implicated in insulin signaling.  These studies demonstrate that maternal T treatment 

alters fetal ovarian steroidogenic gene and microRNA expression and implicate direct 

actions of estrogens in addition to androgens in the reprogramming of ovarian 

developmental trajectory leading up to adult reproductive pathologies.  
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2. Introduction 

 

Adverse in utero environment, including exposure to abnormal nutritional, 

environmental, metabolic, and hormonal insults, can alter the developmental trajectory of 

the fetus and lead to the adult onset of disease (Barker 1990).  Developmental insults 

have been documented to disrupt cardiovascular, metabolic, and reproductive systems in 

numerous species (i.e. human, monkey, sheep, rodent) (Barker 1990, Nijland, et al. 2008, 

Simmons 2007).  For example, female sheep fetuses exposed to excess testosterone (T) 

manifest low birth weight (Manikkam, et al. 2004), intrauterine growth restriction 

(Steckler, et al. 2005), postnatal catch-up growth (Manikkam, et al. 2004), reproductive 

neuroendocrine defects (Robinson, et al. 1999, Sarma, et al. 2005, Sharma, et al. 2002, 

Veiga-Lopez, et al. 2009, Veiga-Lopez, et al. 2008, Wood and Foster 1998), ovarian 

defects (Manikkam, et al. 2006, Ortega, et al. 2009, Smith, et al. 2009, Steckler, et al. 

2007, Steckler, et al. 2005, West, et al. 2001), oligo/anovulation (Manikkam, et al. 2006, 

Veiga-Lopez, et al. 2008), luteal compromise (Manikkam, et al. 2006, Steckler, et al. 

2007), insulin resistance (Padmanabhan, et al. 2010a, Padmanabhan, et al. 2010b), and 

hypertension (King, et al. 2007), with many of these characteristics being similar to those 

observed in women with polycystic ovarian syndrome (Chang 2007).   

The metabolic and reproductive dysfunctions observed in adult female sheep in 

response to excess fetal T exposure demonstrate the important role steroid hormones play 

in reprogramming of fetal organ differentiation.  At the ovarian level, prenatal T 

treatment leads to polycystic ovaries (West, et al. 2001) and increases follicular 

recruitment (Smith, et al. 2009, Steckler, et al. 2005) and persistence (Manikkam, et al. 
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2006, Steckler, et al. 2007).  Sheep prenatally treated with the nonaromatizable androgen, 

dihydrotestosterone (DHT) fail to produce a multifollicular phenotype (West, et al. 2001) 

or follicular persistence (Steckler, et al. 2007), thus suggesting these outcomes are 

programmed via aromatization of T to estrogen.  A comprehensive understanding of the 

early perturbations underlying reprogramming of the adult phenotype in response to 

excess gestational T is essential to develop interventions aimed toward prevention.  

Immunohistochemical studies focusing on few select proteins have found that phenotypic 

changes are preceded by increased expression of proteins for androgen receptor [AR 

(Ortega, et al. 2009)] and peroxisome proliferator-activated receptor γ [PPARγ (Ortega, 

et al. 2010)] as early as fetal d90 in prenatal T-treated sheep, thus pointing to 

involvement of steroidogenic and metabolic signaling pathways.  These predictions are 

also supported by findings of elevated estradiol and insulin levels in prenatal T-treated 

females (Padmanabhan, et al. 2010b, Veiga-Lopez, et al. 2008).   

Recent studies implicate microRNA (miRNA) as key regulators in changing gene 

expression in developing tissues and organs (for review, see (Stefani and Slack 2008)), 

with an abundance of miRNA in newborn and adult mice ovaries (Ahn, et al. 2010, Choi, 

et al. 2007, Fiedler, et al. 2008, Hossain, et al. 2009, Ro, et al. 2007, Tripurani, et al. 

2011).  Our recent studies have found that miRNA play key roles in gonadotropin-

mediated regulation of ovarian function (Carletti, et al. 2010, Hong, et al. 2008).  The aim 

of this study therefore was to gain an understanding of early perturbations in the ovarian 

transcriptome, specifically the expression of steroidogenic enzymes, steroid hormone 

receptors, gonadotropin receptors, and key ovarian regulators and identify changes in 

fetal ovarian miRNA expression in response to prenatal T treatment. 
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3. Materials and Methods 

 

Animals, prenatal treatments, and tissue collection 

All procedures were approved by the University Animal Care and Use Committee 

at the University of Michigan.  Two-to 3-yr-old Suffolk ewes were purchased locally and 

group fed 0.5 kg of shelled corn and 1.0–1.5 kg of alfalfa hay/ewe per day (2.31 Mcal/kg 

of digestible energy).  The day of mating was determined by visual confirmation of paint 

markings left on the rumps of ewes by the raddled rams.  The diet meets the nutrient 

requirements for sheep defined by the National Research Council (Committee on the 

Nutrient Requirements of Small Ruminants National Research Council, Nutrient 

Requirements of Small Ruminants, Sheep, Goats, Cervids, and New World Camelids, 

Washington, DC) (Manikkam, et al. 2004).  Aureomycin crumbles (chlortetracycline: 250 

mg per ewe per day) were administered to reduce abortion from diseases such as 

Campylobacter and Chlamydia. Breeder animals assigned to generate control, T-treated, 

and T plus AR antagonist (i.e. flutamide)-treated fetuses were blocked by maternal 

weight, body score, age, and animal providers.  Details of T and flutamide treatments and 

descriptions of phenotypic effects on offspring (i.e. ovarian phenotype, neuroendocrine 

defects, intrauterine growth restriction, and masculinization of external genitalia) have 

been published previously (Manikkam, et al. 2004).  Gestational T treatment consisted of 

twice-weekly im injections of 100 mg T propionate (Sigma-Aldrich Corp., St. Louis,MO) 

in cottonseed oil (2 ml volume) from d30 to d90 of gestation (term = 147 d) (Manikkam, 

et al. 2004).  AR antagonist treatment consisted of daily sc injections of 15 mg/kg 

flutamide [Sigma-Aldrich]. Control ewes received the same volume of vehicle.  The 
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concentrations of T achieved in the mother and female fetus during gestational T 

treatment are comparable with that of the adult males and the early T rise seen in male 

fetuses, respectively (Veiga-Lopez, et al. 2011).  T treatment also increased fetal levels of 

estradiol (Veiga-Lopez, et al. 2011), suggestive of the potential for the involvement of 

both androgenic and estrogenic pathways in programming adult dysfunction. 

 

Collection of fetal ovaries 

Fetal ovaries were collected from control and T-treated dams on d 64–66 and d 

87–90 (range) of gestation (referred as d 65 and d 90, respectively, hereafter).  All dams 

were sedated with 20–30 ml pentobarbital iv (Nembutol Na solution; 50 mg/ml; Abbott 

Laboratories, Chicago, IL) and subsequently maintained under general anesthesia (1–2% 

halothane; Halocarbon Laboratories, River Edge, NJ).  The gravid uterus was exposed 

through a midline incision and the uterine wall incised.  Dams were administered a 

barbiturate overdose (Fatal Plus; Vortech Pharmaceuticals, Dearborn, MI) and fetuses 

removed for tissue harvest.  Fetal ovaries were removed from d65 and d90 control, 

prenatal T and T plus flutamide fetuses, weighed, washed with PBS, quick frozen, and 

stored at -80 C until processing.  One ovary from one female offspring of each dam (the 

mother was the experimental unit) from d65 and d90 control (n = 5 and 4, respectively), 

prenatal T (d65, n = 4; d90, n = 5) and T plus flutamide (d65, n = 5; d90, n = 7)-treated 

animals were used for gene expression studies. 
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Quantitative RT-PCR 

mRNA analysis 

Fetal ovarian RNA was isolated with Trizol, per the manufacturer’s instruction 

and assessed for quality using the Agilent Bioanalyzer Nano Chip (Agilent Technologies, 

Santa Clara, CA).  All RNA samples had sharp 18S and 28S peaks and RNA integrity 

numbers greater than 8.0, indicating high-quality RNA.  Total RNA(250 ng) isolated 

from whole ovarian fetal tissue was reverse transcribed (QIAGEN miScript System, 

Valencia, CA) per the manufacturer’s instruction.  The resulting cDNA was amplified by 

quantitative RT-PCR using forward and reverse primers designed to ovine or bovine 

sequences (Table XII-1, published on The Endocrine Society’s Journals Online website at 

http://endo.endojournals.org) and Power Sybr Green (Applied Biosystems, Carlsbad, CA) 

with the Applied Biosystems 7900HT real-time system.  Analysis of genes included 

enzymes in steroidogenic pathway [steroidogenic acute regulatory protein (StAR), 

cholesterol side chain cleavage enzyme (Cyp11a1), 3β1-hydroxysteroid dehydrogenase 

(3β1HSD), 3β2HSD, Cyp17, 17β-HSD, Cyp19, steroid-5-α-reductase (SRD5A1), and 

ferredoxin- 1 (FDX1)], steroid receptors [AR, estrogen receptors [estrogen receptor α 

(ESR1); estrogen receptor β (ESR2)], progesterone receptor (PGR)], gonadotropin 

receptors [FSH receptor (FSHR) and LH receptor (LHR)], and key regulators of ovarian 

development and function [growth differentiation factor 9 (GDF9) and cyclin D2 

(CCND2)].  Analysis of expression of insulin-related signaling genes included IGF-I 

(IGFI), IGF-I receptor (IGFR1), insulin receptor (IR), insulin receptor substrate 1 (IRS1), 

IRS2, mammalian target of rapamycin (mTOR), protein kinase B (Akt), 

phosphoionositide-3-kinase (PI3K), glucose transporter type 4 (Glut4), and peroxisome 
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proliferator-activated receptor γ (PPARγ).  All assays used the standard cycling 

conditions (50C for 2 min, 95C for 10 min, followed by 40 cycles of 95C for 15 sec and 

60 C for 1 min) in addition to a dissociation curve to determine product melting 

temperature insuring presence of a single amplicon.  The small RNA U6 was used for 

normalization and a relative standard curve was analyzed for each specific gene target.  

All data were analyzed by comparing the relative amount of gene product to the relative 

amount of U6. 
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miRNA analysis 

 

To identify miRNA expressed in fetal ovarian tissue, total RNA from fetal d 90 

sheep was hybridized to the multispecies Affymetrix GeneChip miRNA Array 

(Affymetrix, Santa Clara, CA).  The Affymetrix miRNA arrays were background 

corrected, normalized, and gene level summarized using the robust multichip average 

procedure (33).  Fold change statistics for miRNA were calculated by taking the linear 

contrast between the least square means of the (log) treatment and (log) control groups 

and backtransforming the result to a linear scale (this is the ratio of the geometric mean of 

the treatment samples to the geometric mean of the control samples).  Corresponding 

significance scores (P values) were calculated based on the t statistic of the linear 

contrast. The tissues were assayed in biological quadruplicates.  For confirming changes 

in specific miRNA expression from array data, total RNA (25 ng) was reverse transcribed 

(miRCURY LNA universal reverse transcriptase; Exiqon, Vedback, Denmark) per the 

manufacturer’s instruction.  The resulting cDNA was amplified and quantified for miR-

497, miR-10a, miR-150, miR-29a, and miR-15b using LNA primer assays (Exiqon) and 

Sybr Green (Exiqon).  All assays were performed on the Applied Biosystems 7900HT 

real-time system with the following cycling conditions: 95 C for 10 min, 40 cycles of 95 

C for 10 sec, and 60 Cf or 1 min and a dissociation curve to determine product melting 

temperature.  The U6 primer assay (Exiqon) was used for normalization and a relative 

standard curve was analyzed for each miRNA. All data were analyzed by comparing the 

relative amount of gene product to the relative amount of U6.   
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Bioinformatic analysis was conducted on all miRNA differentially expressed 

between control and T or control and T+flutamide treated animals using TargetScan 5.1 

(www. targetscan.org) to identify putative mRNA targets.  Analysis of mRNA targets 

focused on insulin signaling molecules, steroid receptors/enzymes, and lipid metabolic 

hormones as well as key known ovarian regulatory genes.  A comprehensive literature 

based analysis was also conducted on all differentially expressed miRNA.  Those miRNA 

that were linked to diabetes, insulin signaling, steroid receptor action, steroidogenesis, 

ovarian function, sexual differentiation, and lipid metabolism were selected from the 

inclusive lists. 

 

Statistical analysis 

All hormone receptor and steroidogenic enzyme mRNA expression data 

generated by quantitative RT-PCR was log transformed and analyzed by two-way 

ANOVA followed by Bonferroni post hoc test (Prism, version 4; GraphPad Software, La 

Jolla, CA).  Quantitative RT-PCR data relating to expression of miRNA was log 

transformed and analyzed by ANOVA followed by Dunnett’s post hoc test (Prism).  A P 

< 0.05 was considered significant, unless otherwise noted. 
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4. Results 

 

Steroidogenic enzymes and related genes 

 

An age-dependent increase in 3β1HSD (P < 0.05) and FDX-1, and a decrease in 

17β1HSD (P<0.001) was evident between fetal d65 and d90 (Figure. XII-1).  There was 

no age effect in mRNA expression levels for 3β2HSD, Cyp17, Cyp19, 5α-reductase, or 

StAR (data not shown).  Gestational T treatment had a fetal age-specific effect on 

expression of Cyp11a1 mRNA, the enzymatic rate-limiting step of steroidogenesis 

(Figure XII-2).  Prenatal T treatment decreased Cyp11a1 expression in fetal d90 but not 

fetal d65.  In contrast, co-treatment with T plus AR antagonist increased expression of 

Cyp11a1 in fetal d 65 ovaries, relative to age-matched T-treated and control fetuses.  

Furthermore, the AR antagonist cotreatment prevented the decrease in expression 

associated with T treatment alone in the d 90 fetal ovaries.  Maternal T as well as T plus 

AR antagonist treatment increased expression of mRNA for Cyp19 in d65 but not d90 

ovaries (P < 0.05; Figure XII-2), relative to controls.  Maternal T and T plus AR 

antagonist treatment also tended (P<0.0785) to increase expression of mRNA for 5α-

reductase, which converts T to DHT, on fetal d65 but not d90.  Prenatal T or T plus AR 

antagonist did not alter the expression of mRNA for StAR and other steroidogenic 

enzymes (3β1HSD, 3β2HSD, 17β1HSD, or Cyp17) at either time points. 
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Figure XII-1. Fetal ovarian genes (mRNA) that exhibit changes in expression between 

d65 (white bars) and d90 (black bars) of gestation as determined by quantitative RT-PCR 

of mRNA from whole ovarian tissue of control, T-treated, and T plus AR antagonist-

treated (TF), female fetuses.  Because no treatment effects were observed, the data for all 

treatment groups were pooled by age.  Results are expressed as mean ± SEM.  Asterisks 

denotes an age effect (*, P < 0.05; **, P < 0.01). with respect to age (not shown). 

Maternal T treatment, with and without AR antagonist treatment, did not alter expression 

of any of the insulin-related regulatory genes. 

 

 

  



 
148 

 

Figure XII-1 
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Figure XII-2. Fetal ovarian steroidogenic enzyme genes (mRNA) that are altered by 

prenatal T (T) and T plus AR antagonist (TF) treatment as determined by quantitative 

RT-PCR of mRNA from fetal d65 (white bars) and fetal d90 (black bars) whole ovarian 

tissue.  Treatment effects on mRNA expression were determined by two-way ANOVA 

followed by Bonferroni post hoc tests.  Differing superscripts indicate significant 

differences (P < 0.05).  Note for 5α-reductase, the T and TF females showed a tendency 

to be higher compared with controls (P = 0.0795). 
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Figure XII-2 

 

  



 
151 

 

Hormone receptors 

 

An age-related increase (P < 0.01; ~2-fold) in expression of AR, ESR1 (ERα), and 

PGR mRNA was evident between d65 and d90 (Figure XII-1).  In contrast, ESR2 

expression was similar between fetal d 65 and d 90.  Maternal T or T plus AR antagonist 

failed to alter expression of any of the steroid hormone receptor mRNA (AR, PGR, ESR1, 

and ESR2).  In terms of the gonadotropin receptors, there was a decrease in expression of 

LHR (P<0.01) from fetal d65 to d90 (Figure XIII-1), whereas FSHR levels tended (P 

<0.057, 1.74-fold) to increase between d65 and d90 (data not shown).  Gestational T or T 

plus AR antagonist treatment failed to alter expression pattern of the gonadotropin 

receptors, LHR, and FSHR. 

 

Ovarian regulatory factors 

Increased expression between fetal d 65 and d 90 was observed for GDF9 

(P<0.01, Figure.XII-1), whereas cyclin D2 did not change in response to age (not shown).  

Maternal T treatment, with and without AR antagonist treatment, did not alter expression 

of any of the ovarian regulatory genes examined. 

 

Insulin-related genes 

Age-dependent increase in expression of IGF-I receptor (P < 0.01), IR, 

mammalian target of rapamycin, and PPARγ, and PI3K were observed between d65 and 

d90 of gestation (Figure XII-1).  Conversely, IGF-I, IRS1, IRS2, Akt, and glucose 

transporter exhibited no change in expression  
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MicroRNA 

 

Comparison of control vs. T-treated ovaries using a multispecies miRNA 

microarray identified 31 up-regulated (>1.5-fold) and 18 down-regulated (>1.5-fold) 

miRNA (Table XII-2) in d90 fetal ovaries.  Comparison of control vs.T plus AR 

antagonist treated ovaries identified 21 miRNA up-regulated (>1.5-fold) and 16 miRNA 

down-regulated (>1.5-fold; Table XIII-2).  A total of 35 miRNA were differentially 

expressed between T and T plus AR antagonist-treated fetal d 90 ovaries (Table XII-2) 

compared with controls.  Examination of the mRNA predicted (TargetScan) to be targets 

of the differentially expressed miRNA indicated a large number (25) of miRNA had 

putative insulin-signaling target transcripts (Table XII-3).  Of these 25 miRNA with 

predicted insulin-signaling target mRNAs, 15 have been associated with insulin 

signaling/diabetes in cited papers (Table XII-3).  Four additional miRNA were included 

in Table XII-3, based on their prior association (literature based) with ovarian tissue.  

Interestingly, of the 29 miRNA included in Table 1 that were differentially expressed in 

control, T and T+F treated animals, 20 miRNA have previously been linked (literature) to 

steroid expression, ovarian regulation, sexual differentiation, or fetal programming (Table 

XII-3).  Increased expression of miR-15b and miR-497 in fetal d90 ovaries in response to 

gestational T treatment was validated by quantitative RT-PCR (Figure XII-3).  

Additionally, miR-29a tended to increase (P = 0.0613) in the T (2.38 ± 0.71, mean ± 

SEM) compared with control (0.54 ± 0.20) ovaries. 
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Table XII-2. microRNA differentially expressed in control vs testosterone, control vs 

testosterone plus flutamide, and testosterone vs testosterone plus flutamide treated 

fetal ovine ovaries. 

 

miRNA C vs. T FC C vs TF FC T vs TF FC 

miR-497 3.83  3.71     – 

miR-29a 2.98     –     – 

miR-193 2.68     –     – 

miR-128 2.44  1.91  -2.67 

miR-495 2.39     –     – 

miR-452 2.34     –     – 

miR-141* 2.29     –     – 

miR-329 2.27     –     – 

miR-192 2.19     –     – 

miR-150 2.14     –     – 

miR-24-2* 2.12     –  -2.06 

miR-15b 2.06  2.93     – 

miR-135b 1.96     –     – 

miR-455 1.90  2.23     – 

miR-101 1.90     –     – 

miR-212 1.87     –     – 

miR-451 1.85     –     – 

miR-186 1.82     –     – 

miR-672 1.82     –     – 

miR-661 1.80     –  -1.77 

miR-376c 1.75     –     – 

miR-7  1.67     –     – 

miR-376b 1.65  1.71     – 

miR-712 1.63     –     – 

miR-30b-5p 1.58     –     – 

miR-381 1.57     –     – 

miR-380-5p 1.55     –  -1.84 

miR-496 1.54     –  -1.65 

miR-540-3p 1.53     –     – 

miR-557 1.53     –  -1.65 

miR-554 1.53     –     – 

miR-142b-5p 1.53     –     – 

miR-22* 1.52     –     – 

miR-460 1.52     –     – 

miR-206 1.52  -1.56  -1.73 

miR-203 1.51     –     – 

miR-548f 1.51     –  -1.56 

miR-934 1.51     –  -1.61 

miR-378 -4.13     –  4.29 

miR-193a-5p -2.86     –     – 

miR-760 -2.80     –     – 

miR-10a -2.76  -3.36     – 

miR-541* -2.71     –     – 

miR-182 -2.71     –     – 
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miRNA C vs. T FC C vs TF FC T vs TF FC 

miR-132 -2.49     –     – 

miR-129* -2.22     –     – 

miR-727* -2.12     –     – 

miR-532-3p -1.99     –     – 

miR-1247 -1.93     –     – 

miR-138 -1.85     –     – 

miR-325 -1.76     –     – 

miR-138* -1.75     –     – 

miR-1224* -1.69     –     – 

miR-223 -1.69     –     – 

miR-667 -1.66     –     – 

miR-759 -1.64     –     – 

miR-423-5p -1.60     –     – 

miR-939 -1.58     –     – 

miR-513b -1.51     –     – 

miR-219-5p -1.50     –     – 

miR-363     –  4.50     – 

miR-20b     –  3.24     – 

miR-374b     –  2.07     – 

miR-736     –  1.98     – 

miR-27e     –  1.94     – 

miR-365     –  1.88     – 

miR-124     –  1.78     – 

miR-1181     –  1.74     – 

miR-330     –  1.71     – 

miR-27c     –  1.71     – 

miR-29c     –  1.64     – 

miR-29b     –  1.62     – 

miR-519*     –  1.61     – 

miR-891b     –  1.60  1.54 

miR-338-3p     –  1.59     – 

miR-886-3p     –  1.59     – 

miR-454     –  1.57     – 

miR-191*     –  1.56  1.69 

miR-218-1*     –  1.56     – 

miR-101a*     –  1.53     – 

miR-467d     –  1.53     – 

miR-105     –  1.52     – 

miR-1308     –  -2.89     – 

miR-182     –  -2.82     – 

miR-1230     –  -2.48  -2.41 

miR-450a     –  -1.90     – 

miR-133a     –  -1.85     – 

miR-1235     –  -1.75     – 

miR-1202     –  -1.66     – 

miR-471     –  -1.65     – 

miR-431     –  -1.63     – 

miR-183      –  -1.62     – 

miR-568     –  -1.60     – 
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miR-135a     –  -1.57     – 

miRNA C vs. T FC C vs TF FC T vs TF FC 

miR-93*     –  -1.55     – 

miR-144     –  -1.54     – 

miR-23a*     –  -1.51     – 

miR-383     –      –  3.27 

miR-467e*     –      –  2.05 

miR-21      –      –  1.91 

miR-302b*     –      –  1.88 

miR-518d     –      –  1.63 

miR-721     –      –  1.62 

miR-330-5p     –      –  1.58 

miR-96      –      –  1.58 

miR-502-5p     –      –  1.54 

miR-208a     –      –  1.51 

miR-714     –      –  -2.33 

miR-451     –      –  -2.22 

miR-148b*     –      –  -2.10 

miR-200a*     –      –  -2.05 

miR-715     –      –  -2.01 

miR-1305     –      –  -1.85 

miR-196b     –      –  -1.75 

miR-466j     –      –  -1.66 

miR-1191     –      –  -1.65 

miR-660     –      –  -1.58 

miR-379     –      –  -1.53 

miR-146a*     –      –  -1.51 

 



 
156 

 

 

 

 

 

 

 

T
a

b
le

 X
II

-3
. 

 m
ic

ro
R

N
A

 d
if

fe
re

n
ti

a
ll

y
 e

x
p

re
ss

e
d

 i
n

 c
o

n
tr

o
l 

v
s 

te
st

o
st

er
o

n
e 

o
r 

te
st

o
st

er
o

n
e 

p
lu

s 
fl

u
ta

m
id

e 
tr

ea
te

d
 f

et
a

l 
o

v
in

e 
o

v
a
ri

es
 

m
iR

N
A

 
C

 v
s.

 T
 F

C
 

C
 v

s 
T

F
 F

C
 

F
u

n
ct

io
n

a
l 

A
n

a
ly

si
s-

L
it

er
a

tu
re

 B
a
se

d
$
 

P
re

d
ic

te
d

 T
a
rg

et
s 

(T
a

rg
et

sc
a

n
) 

m
iR

-4
9

7
 

3
.8

3
 

 
3

.7
1
 

 
T

y
p

e 
2

 d
ia

b
et

es
 r

at
 [

m
iR

-1
5

b
/4

9
7

 f
am

il
y
 (

1
) 

 
P

A
P

P
A

, 
IN

S
R

, 
G

H
R

, 
IG

F
2

R
, 

IR
S

2
, 

 

IG
F

1
R

, 
F

u
ri

n
 

m
iR

-2
9

a
 

2
.9

8
 

 
–

 
 

D
ia

b
et

es
/i

n
su

li
n

 s
ig

n
al

in
g
 (

1
-5

),
 F

S
H

 r
eg

u
la

te
d

 (
6

) 
IG

F
1

, 
IN

S
IG

1
, 

L
ep

ti
n

  

m
iR

-1
9

2
 

2
.1

9
 

 
–

 
 

D
ia

b
et

ic
 n

eu
ro

p
at

h
y
 (

4
, 

7
, 
8

) 
 

 
 

 
IG

F
1

 

m
iR

-2
4

-2
*

 
2

.1
2
 

 
–

 
 

D
ia

b
et

es
 (

9
),

 I
n

su
li

n
 s

ig
n

al
in

g
 (

1
0

),
 b

o
v
in

e 
o

v
ar

y
 (

1
1

) 
In

si
g
1

, 
P

P
A

R
a,

 F
u

ri
n

, 
IG

F
B

P
5

, 
 

IG
F

2
B

P
2

 

m
iR

-1
5

b
 

2
.0

6
 

 
2

.9
3
 

 
T

y
p

e 
2

 d
ia

b
et

es
 r

at
 F

S
H

 (
1

),
 r

eg
u

la
te

d
 i

n
 o

v
ar

y
 (

6
) 

P
A

P
P

A
, 

IN
S

R
, 

G
H

R
, 

IG
F

2
R

, 
IR

S
2

, 
 

IG
F

1
R

, 
F

u
ri

n
 

m
iR

-1
0

1
 

1
.9

0
 

 
–

 
 

A
R

 r
eg

u
la

te
d

 (
1
2

) 
 

 
 

 
P

G
R

M
C

2
, 

P
P

A
R

a 

m
iR

-2
1

2
 

1
.8

7
 

 
–

 
 

L
H

 r
eg

u
la

te
d

 i
n

 o
v
ar

y
 (

1
3

) 
 

m
iR

-4
5

1
 

1
.8

5
 

 
–

 
 

S
ex

 d
ep

en
d

en
t 

in
 l

iv
er

 (
1
4

) 
 

m
iR

-1
8

6
 

1
.8

2
 

 
–

 
 

T
y
p

e 
1

 d
ia

b
et

es
 (

1
5
) 

 
 

 
 

IN
S

M
1

, 
L

E
P

R
, 

IG
F

1
, 

IG
F

1
R

 

m
iR

-6
7

2
 

1
.8

2
 

 
–

 
 

M
o

u
se

 o
v
ar

y
 (

1
6

) 
 

 
 

 
IG

F
1

R
 

m
iR

-7
 

 
1

.6
7
 

 
–

 
 

In
su

li
n

 s
ig

n
al

in
g
 (

1
7

, 
1

8
) 

 
 

 
IR

S
2

, 
IR

S
1

, 
IG

F
1

R
, 

P
A

P
P

A
 

m
iR

-3
0

b
-5

p
 

1
.5

8
 

 
–

 
 

E
st

ro
g
en

 r
eg

u
la

te
d

 (
1

9
) 

 
 

 
 

L
E

P
R

, 
IG

F
2

R
, 

IN
S

IG
2

, 
IR

S
1

, 
IR

S
2

, 
 

L
D

L
R

, 
IG

F
1

R
, 

IG
F

1
 

m
iR

-2
2

*
 

1
.5

2
 

 
–

 
 

F
et

al
 o

v
in

e 
g
o

n
ad

 (
2

0
),

 A
n
d

ro
g
en

 r
eg

u
la

te
d
 (

2
1
),

  
E

S
R

1
, 

G
H

R
H

R
, 

P
T

G
S

1
, 

IG
F

2
B

P
1

, 
 

R
ep

re
ss

es
 E

R
α

 (
2

2
) 

 
 

 
 

F
u

ri
n
 

m
iR

-3
7

8
 

-4
.1

3
 

 
–

 
 

L
ip

id
/f

at
ty

 a
ci

d
 m

et
ab

o
li

sm
 (

2
3

),
  

 
 

 
 

 
 

R
eg

u
la

te
s 

es
tr

o
g
en

 p
ro

d
u
ct

io
n

 (
2

4
) 

m
iR

-7
6

0
 

-2
.8

0
 

 
–

 
 

E
st

ro
g
en

 r
eg

u
la

te
d

 (
2

5
) 

 
 

 
 

IN
S

R
 

m
iR

-1
0

a
 

-2
.7

6
 

 
-3

.3
6

 
 

A
n

d
ro

g
en

 r
eg

u
la

te
d
 (

2
6
),

 O
v
ar

y
 (

2
7

) 
 

  
P

P
A

R
a 

m
iR

-1
8

2
 

-2
.7

1
 

 
–

 
 

In
su

li
n

 s
ig

n
al

in
g
 (

1
0
),

 O
v
ar

y
 (

2
7

) 
 

 
IN

S
IG

1
, 

IG
F

2
B

P
1

 

m
iR

-1
2

9
*

 
-2

.2
2

 
 

–
 

 
D

ia
b

et
es

 (
2

8
) 

 
 

 
 

 
IG

F
1

, 
G

H
R

, 
E

R
al

p
h

a,
 I

N
S

IG
2

 

m
iR

-1
3

2
 

-1
.8

2
 

 
–

 
 

L
H

 r
eg

u
la

te
d

 i
n

 o
v
ar

y
 (

1
3

) 
 

 

m
iR

-2
2

3
 

-1
.6

9
 

 
–

 
 

D
ia

b
et

es
 (

9
) 

 
 

 
 

 
IG

F
1

R
 

m
iR

-3
6

3
 

  
  

–
 

 
4

.5
0
 

 
S

ex
 d

if
fe

re
n
ti

at
io

n
 (

2
9
) 

 
 

 
 

P
T

G
E

R
4

, 
IR

S
2

, 
IN

S
IG

1
 

m
iR

-2
0

b
 

  
  

–
 

 
3

.2
4
 

 
D

ia
b

et
es

 (
9

),
 E

R
α

 r
eg

u
la

te
d

 (
3

0
) 

 
 

P
P

A
R

a,
 L

D
L

R
, 

IG
F

2
B

P
1

, 
A

D
IP

O
R

2
, 

 

P
P

A
R

d
 

m
iR

-3
3

0
 

  
  

–
 

 
1

.7
1
 

 
F

et
al

 p
ro

g
ra

m
m

in
g
 (

3
1

) 
 

 
 

 
IG

F
2

B
P

1
 

m
iR

-2
9

c
 

  
  

–
 

 
1

.6
4
 

 
D

ia
b

et
ic

 n
eu

ro
p

at
h

y
 (

3
2
),

 D
ia

b
et

es
 (

2
) 

 
 

IG
F

1
, 

IN
S

IG
1

, 
L

ep
ti

n
 

m
iR

-2
9

b
 

  
  

–
 

 
1

.6
2
 

 
D

ia
b

et
es

 (
2

, 
9
),

 S
ex

 d
ep

en
d
en

t 
in

 l
iv

er
 (

1
4

) 
 

IG
F

1
, 

IN
S

IG
1

, 
L

ep
ti

n
  

m
iR

-1
9

1
*

 
  

  
–

 
 

1
.5

6
 

 
D

ia
b

et
es

 (
9

) 
 

m
iR

-1
0

1
a*

 
  

  
–

 
 

1
.5

3
 

 
A

R
 r

eg
u

la
te

d
 (

1
2

) 
 

 
 

 
P

G
R

M
C

2
, 

P
P

A
R

a 

m
iR

-1
0

5
 

  
  

–
 

 
1

.5
2
 

 
H

u
m

an
 o

v
ar

y
 (

2
7

) 
 

 

m
iR

-1
3

3
a
 

  
  

–
 

 
-1

.8
5

 
 

In
su

li
n

 s
ig

n
al

in
g
  

(3
3

, 
3

4
) 

 
 

 
IN

S
R

, 
IG

F
1

R
  

  
  

  
  

  
  

  
 

  
  

  
  

  
  

  
  

  
  

  
  

  
 .
 

$
 R

ef
er

en
ce

s 
fo

r 
T

ab
le

 a
re

 i
n

cl
u

d
ed

 i
n

 n
u

m
b

er
ed

 f
o

rm
at

 b
el

o
w

. 
  



 
157 

 

Table XIII-3 References  

 

 

1. Herrera BM, Lockstone HE, Taylor JM, Ria M, Barrett A, Collins S, Kaisaki P, 

Argoud K, Fernandez C, Travers ME, Grew JP, Randall JC, Gloyn AL, Gauguier 

D, McCarthy MI, Lindgren CM 2010 Global microRNA expression profiles in insulin 

target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia 53:1099-1109 

2. He A, Zhu L, Gupta N, Chang Y, Fang F 2007 Overexpression of micro ribonucleic 

acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 

adipocytes. Mol Endocrinol 21:2785-2794 

3. Herrera BM, Lockstone HE, Taylor JM, Wills QF, Kaisaki PJ, Barrett A, Camps C, 

Fernandez C, Ragoussis J, Gauguier D, McCarthy MI, Lindgren CM 2009 

MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of 

Type 2 Diabetes. BMC Med Genomics 2:54 

4. Kong L, Zhu J, Han W, Jiang X, Xu M, Zhao Y, Dong Q, Pang Z, Guan Q, Gao L, 

Zhao J, Zhao L 2011 Significance of serum microRNAs in pre-diabetes and newly 

diagnosed type 2 diabetes: a clinical study. Acta Diabetol 48:61-69 

5. Pandey AK, Verma G, Vig S, Srivastava S, Srivastava AK, Datta M 2011 miR-29a 

levels are elevated in the db/db mice liver and its overexpression leads to attenuation of 

insulin action on PEPCK gene expression in HepG2 cells. Mol Cell Endocrinol 332:125-

133 

6. Yao N, Lu CL, Zhao JJ, Xia HF, Sun DG, Shi XQ, Wang C, Li D, Cui Y, Ma X 2009 

A network of miRNAs expressed in the ovary are regulated by FSH. Front Biosci 

14:3239-3245 

7. Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ, Natarajan R 2007 

MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced 

collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A 

104:3432-3437 

8. Krupa A, Jenkins R, Luo DD, Lewis A, Phillips A, Fraser D 2010 Loss of 

MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am Soc Nephrol 

21:438-447 

9. Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, Mayr A, Weger 

S, Oberhollenzer F, Bonora E, Shah A, Willeit J, Mayr M 2010 Plasma microRNA 

profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. 

Circ Res 107:810-817 

10. Melkman-Zehavi T, Oren R, Kredo-Russo S, Shapira T, Mandelbaum AD, Rivkin 

N, Nir T, Lennox KA, Behlke MA, Dor Y, Hornstein E 2011 miRNAs control insulin 

content in pancreatic beta-cells via downregulation of transcriptional repressors. EMBO J 

30:835-845 

11. Hossain MM, Ghanem N, Hoelker M, Rings F, Phatsara C, Tholen E, Schellander 

K, Tesfaye D 2009 Identification and characterization of miRNAs expressed in the 

bovine ovary. BMC Genomics 10:443 

12. Cao P, Deng Z, Wan M, Huang W, Cramer SD, Xu J, Lei M, Sui G MicroRNA-101 

negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-

1alpha/HIF-1beta. Mol Cancer 9:108 

13. Fiedler SD, Carletti MZ, Hong X, Christenson LK 2008 Hormonal regulation of 

MicroRNA expression in periovulatory mouse mural granulosa cells. Biol Reprod 

79:1030-1037 



 
158 

 

14. Cheung L, Gustavsson C, Norstedt G, Tollet-Egnell P 2009 Sex-different and growth 

hormone-regulated expression of microRNA in rat liver. BMC Mol Biol 10:13 

15. Chen BZ, Yu SL, Singh S, Kao LP, Tsai ZY, Yang PC, Chen BH, Shoei-Lung Li S 

2011 Identification of microRNAs expressed highly in pancreatic islet-like cell clusters 

differentiated from human embryonic stem cells. Cell Biol Int 35:29-37 

16. Ahn HW, Morin RD, Zhao H, Harris RA, Coarfa C, Chen ZJ, Milosavljevic A, 

Marra MA, Rajkovic A 2010 MicroRNA transcriptome in the newborn mouse ovaries 

determined by massive parallel sequencing. Mol Hum Reprod 16:463-471 

17. Jiang L, Liu X, Chen Z, Jin Y, Heidbreder CE, Kolokythas A, Wang A, Dai Y, Zhou 

X 2010 MicroRNA-7 targets IGF1R (insulin-like growth factor 1 receptor) in tongue 

squamous cell carcinoma cells. Biochem J 432:199-205 

18. Yu JY, Reynolds SH, Hatfield SD, Shcherbata HR, Fischer KA, Ward EJ, Long D, 

Ding Y, Ruohola-Baker H 2009 Dicer-1-dependent Dacapo suppression acts 

downstream of Insulin receptor in regulating cell division of Drosophila germline stem 

cells. Development 136:1497-1507 

19. Mellios N, Galdzicka M, Ginns E, Baker SP, Rogaev E, Xu J, Akbarian S 2010 

Gender-Specific Reduction of Estrogen-Sensitive Small RNA, miR-30b, in Subjects With 

Schizophrenia. Schizophr Bull Epub 

20. Torley KJ, da Silveira JC, Smith P, Anthony RV, Veeramachaneni DN, Winger QA, 

Bouma GJ 2011 Expression of miRNAs in ovine fetal gonads: potential role in gonadal 

differentiation. Reprod Biol Endocrinol 9:2 

21. Delic D, Grosser C, Dkhil M, Al-Quraishy S, Wunderlich F 2010 Testosterone-

induced upregulation of miRNAs in the female mouse liver. Steroids 75:998-1004 

22. Pandey DP, Picard D 2009 miR-22 inhibits estrogen signaling by directly targeting the 

estrogen receptor alpha mRNA. Mol Cell Biol 29:3783-3790 

23. Fernandez-Hernando C, Suarez Y, Rayner KJ, Moore KJ 2011 MicroRNAs in lipid 

metabolism. Curr Opin Lipidol 22:86-92 

24. Xu S, Linher-Melville K, Yang B, Wu D, Li J 2011 Micro-RNA378 (miR-378) 

Regulates Ovarian Estradiol Production by Targeting Aromatase. Endocrinology 152 

25. Cicatiello L, Mutarelli M, Grober OM, Paris O, Ferraro L, Ravo M, Tarallo R, Luo 

S, Schroth GP, Seifert M, Zinser C, Chiusano ML, Traini A, De Bortoli M, Weisz A 
2010 Estrogen receptor alpha controls a gene network in luminal-like breast cancer cells 

comprising multiple transcription factors and microRNAs. Am J Pathol 176:2113-2130 

26. Waltering KK, Porkka KP, Jalava SE, Urbanucci A, Kohonen PJ, Latonen LM, 

Kallioniemi OP, Jenster G, Visakorpi T 2011 Androgen regulation of micro-RNAs in 

prostate cancer. Prostate 71:604-614 

27. Sirotkin AV, Laukova M, Ovcharenko D, Brenaut P, Mlyncek M 2010 Identification 

of microRNAs controlling human ovarian cell proliferation and apoptosis. J Cell Physiol 

223:49-56 

28. Wang XH, Qian RZ, Zhang W, Chen SF, Jin HM, Hu RM 2009 MicroRNA-320 

expression in myocardial microvascular endothelial cells and its relationship with insulin-

like growth factor-1 in type 2 diabetic rats. Clin Exp Pharmacol Physiol 36:181-188 

29. Huang P, Gong Y, Peng X, Li S, Yang Y, Feng Y 2010 Cloning, identification, and 

expression analysis at the stage of gonadal sex differentiation of chicken miR-363 and 

363*. Acta Biochim Biophys Sin (Shanghai) 42:522-529 

30. Castellano L, Giamas G, Jacob J, Coombes RC, Lucchesi W, Thiruchelvam P, 

Barton G, Jiao LR, Wait R, Waxman J, Hannon GJ, Stebbing J 2009 The estrogen 

receptor-alpha-induced microRNA signature regulates itself and its transcriptional 

response. Proc Natl Acad Sci U S A 106:15732-15737 



 
159 

 

31. Goyal R, Goyal D, Leitzke A, Gheorghe CP, Longo LD 2010 Brain renin-angiotensin 

system: fetal epigenetic programming by maternal protein restriction during pregnancy. 

Reprod Sci 17:227-238 

32. Long J, Wang Y, Wang W, Chang BH, Danesh FR 2011 MicroRNA-29c is a signature 

MicroRNA under high glucose conditions which targets sprouty homolog 1, and its in 

vivo knockdown prevents progression of diabetic nephropathy. J Biol Chem 286:11837-

11848 

33. Fred RG, Bang-Berthelsen CH, Mandrup-Poulsen T, Grunnet LG, Welsh N 2010 

High glucose suppresses human islet insulin biosynthesis by inducing miR-133a leading 

to decreased polypyrimidine tract binding protein-expression. PLoS One 5:e10843 

34. Granjon A, Gustin MP, Rieusset J, Lefai E, Meugnier E, Guller I, Cerutti C, 

Paultre C, Disse E, Rabasa-Lhoret R, Laville M, Vidal H, Rome S 2009 The 

microRNA signature in response to insulin reveals its implication in the transcriptional 

action of insulin in human skeletal muscle and the role of a sterol regulatory element-

binding protein-1c/myocyte enhancer factor 2C pathway. Diabetes 58:2555-2564 

 

  



 
160 

 

Figure XII-3. Fetal ovarian miRNA expression affected by prenatal T (T) and T plus AR 

antagonist (TF) treatment as determined by quantitative RT-PCR of miRNA from whole 

ovarian tissue from fetal d90.  Treatment effects on expression of miRNA were 

determined by one-way ANOVA followed by Dunnett’s post hoc tests.  Asterisks indicate 

significant differences from control (P < 0.05).  Note for miR-29a (bottom panel) the T 

group showed a tendency to be higher than controls (P = 0.0613). 
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Figure XII-3 
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5. Discussion 

 

Findings from this study demonstrate that prenatal T treatment alters the 

developmental expression of key ovarian steroidogenic enzymes and miRNA during fetal 

life. These early developmental changes likely contribute toward the ovarian disruption 

and increased estradiol release seen in the adult prenatal T-treated females.  Comparison 

of mRNA and miRNA expression data between prenatal T and prenatal T plus AR 

antagonist treated females provide evidence that some of the regulation is mediated via 

androgenic programming and others likely by estrogenic programming. 

 

Key ovarian genes expressed by fetal d65 ovary 

 

Our studies show that expression of 3βHSD, essential for the biosynthesis of 

steroids, namely progesterone, androgens, and estrogens, is evident before primordial 

follicular differentiation (Sawyer, et al. 2002).  Earlier studies have found cells within 

cell streams and rete cell tubules contain 3βHSD (Quirke, et al. 2001), suggesting that 

somatic cells destined to differentiate into granulosa/theca cells are likely the sites of this 

expression (Conley, et al. 1995).  The findings that d65 fetal ovary expresses Cyp19 

(aromatase) and Cyp11a1 are also in agreement with earlier findings (Quirke, et al. 

2001).  In addition, for the first time, our findings document that fetal d65 sheep ovary 

expresses 5α-reductase and 17βHSD.  Expression of gonadotropin receptors (LHR and 

FSHR), steroid receptors (AR,ESR1, and ESR2), and GDF9 mRNA in the d65 fetal ovary 

is also consistent with previous findings (Hogg, et al. 2011, Juengel, et al. 2006, Mandon-
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Pepin, et al. 2003).  Expression of PGR in our study at d65 and not until d75 in an earlier 

study (Juengel, et al. 2006) may relate to differences in sensitivity of the approaches 

used. 

 

Changes in expression of ovarian genes from fetal d65 to d90 

 

The increase in expression of 3βHSD, a new finding, and decrease in 17βHSD in 

d90 fetal ovary relative to fetal d65 ovary corresponds to the time when primordial 

follicular differentiation occurs.  The decrease in 17βHSD seen in d90 ovary is expected 

because overexpression would lead to masculinization of external and internal genitalia 

in female fetuses (Saloniemi, et al. 2009).  The direction of change in AR, PGR, and 

ESR1 (increase) seen between d65 and d90 parallels previous findings (Saloniemi, et al. 

2009).  The dichotomy in ESR1 and ESR2 expression with ESR1 increasing, but not 

ESR2, likely reflects the roles they play at this developmental stage.  The increase in 

ESR1 between d65 and d90 coincides with continued formation of ovigerous cords and 

ovarian tissue remodeling (Sawyer, et al. 2002).  The increase in mRNA expression from 

d65 to d90 of FDX1, a key step in P450 enzymes activity including Cyp11a1, Cyp17, and 

Cyp19 (Miller 2005), supports increased steroidogenic ability of the ovary.  The increase 

in expression of GDF9 and IGF-I receptor between d65 and d90 likely plays a role in 

advancing follicular differentiation and establishing oocyte somatic cell communication. 
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Effects of gestational T treatment on fetal ovarian gene expression 

 

Prenatal T treatment had fetal age-specific but opposing effects on the expression 

of Cyp11a1 and Cyp19, with the effect on Cyp11a1 evident at fetal d90, and Cyp19 at 

fetal d65.  Prenatal T-induced increase in Cyp19 is in line with increased estradiol levels 

seen in fetal circulation (Veiga-Lopez, et al. 2011).  This suggests that the fetal ovary also 

contributes toward the aromatization of T to estradiol during the T treatment period.  

These changes differ from those of the Scottish Greyface sheep (Hogg, et al. 2011), 

which may reflect timing of exposure to T (starting d30 in present study and d60 in the 

Hogg et al. study) or breed differences.  A trend for an increase in 5α-reductase was also 

evident in d65 T-treated fetuses, a time point when a significant increase in Cyp19 was 

evident, supporting the possibility of conversion of T to both estradiol [increased in d 65 

female fetuses (Veiga-Lopez, et al. 2011)] and DHT.  These changes appear to be 

mediated by estrogenic actions stemming from aromatization of T because cotreatment 

with T and an AR antagonist resulted in similar changes in Cyp19 (significant increase) 

and 5α-reductase (tendency for an increase) expression.  The finding that such changes 

are evident only at d65 but not at d90 suggests vulnerable periods for susceptibility to 

reprogramming ovarian function; prenatal T treatment from d30 to d90 but not from d60 

to d90 leads to polycystic ovarian phenotype (Padmanabhan, et al. 2010a).  The decrease 

in Cyp11a1 mRNA expression at d90 also occurred in Scottish Greyface sheep (d60–90 

of gestation) (Hogg, et al. 2011).  This reduction in Cyp11a1 mRNA expression in the T 

group, if evident at protein level, would reduce conversion of cholesterol to the steroid 

precursor pregnenolone and consequent downsteam effect on steroid production. A recent 
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study found mutation in Cyp11a1 gene resulted in phenotypes ranging from classic lipoid 

congenital adrenal hyperplasia to a nonclassic phenotype (Sahakitrungruang, et al. 2011).  

The paradoxical increase in Cyp11a1 only in T plus AR antagonist-treated but not T-

treated d65 ovaries suggests that the AR antagonist, flutamide, may have direct effects, 

such as previously reported for rats (Kubota, et al. 2003).  Alternatively, these findings 

support the need for a threshold level of endogenous androgen action, which flutamide 

cotreatment overcomes.  Failure of AR antagonist cotreatment to overcome the effects of 

T treatment on Cyp11a1 at fetal d90 supports estrogenic mediation.  The lack of effect of 

T treatment on mRNA expression of AR does not parallel our findings of increased AR 

protein expression in the stroma and granulosa cells of fetal d90 ovaries (Ortega, et al. 

2009).  Such differences may relate to differences in the impact of T at the mRNA and 

protein level or alternatively that monitoring changes in whole ovary dilutes detection of 

cell-specific changes. The lack of changes in ESR2 and PGR mRNA expression parallel 

findings with immunocytochemical approaches (Ortega, et al. 2009). 

 

Effects of gestational T treatment on fetal ovarian miRNA expression 

MicroRNA, short noncoding RNA that mediate gene expression post-

transcriptionally, regulate gene expression important in cellular differentiation and tissue 

development (Bernstein, et al. 2003, Hong, et al. 2008).  They have been identified in the 

fetal ovary of the sheep (Torley, et al. 2011) and cow (Tripurani, et al. 2010) as well as 

shortly after birth in the mouse (Choi, et al. 2007, Ro, et al. 2007).  Evidence exists in 

support of T-regulating expression of distinct miRNA via genotropic and nongenotropic 

mechanisms in the mouse liver (Delic, et al. 2010, Narayanan, et al. 2010).  Our finding 
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of 31 up-regulated and 18 down-regulated miRNA in the d90 gestational T-treated 

ovaries is consistent with this premise.  The finding that 35 miRNA were differentially 

expressed between T and T plus AR antagonist-treated fetal d90 ovaries indicate some of 

the mediation occurs via androgenic and others estrogenic pathways.  A recent study 

found several miRNA to be differentially expressed in fetal d42 and d75 ovary and testes 

(Torley, et al. 2011).  Importantly, several of these expressed miRNA are predicted to 

target genes such as ESR1, CYP19, and Sry-related-HMG Box (SOX), which are known 

to be important in gonadal development.  Several of the miRNA differentially expressed 

in our gestational T-treated ovaries (see Table XIII.3) have been shown to be estrogen or 

androgen regulated in other studies (see references associated with Table XIII.3).  In our 

study miR-378 exhibited the greatest decrease in expression in response to the prenatal T 

treatment; interestingly, this miRNA was recently shown to posttranscriptionally regulate 

granulosa cell aromatase levels (Xu, et al. 2011).  Furthermore, down-regulation of miR-

378 is consistent with the increase in aromatase mRNA expression observed in the d65 

ovaries from T-treated dams. 

A common theme identified from comprehensive literature and bioinformatic 

analysis was that many of the differentially expressed miRNA are linked to regulation of 

insulin signaling and metabolism (Table XIII.3).  Interestingly, two miRNA up-regulated 

by T, miR-497 and miR-15b, share similar seed sequences, or bases 2–9 of the miRNA 

that are thought to be the primary bases that interact with the 3’untranslated region of the 

mRNA target.  Bioinformatic analysis of putative targets for family members, miR-497 

and miR-15b identified a number of members of the insulin signaling pathway including 

insulin receptor, IRS2, IGF1R, IGF2R, and pregnancy-associated plasma protein 
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A/pappalysin1, which cleaves IGF binding protein to regulate insulin signaling.  miRNA-

15b was previously identified as being regulated by FSH in the ovary (Yao, et al. 2009) 

and differentially expressed in rat models of diabetes (Herrera, et al. 2009).  Thus far, 

none of the putative targets of miR-497 have been validated functionally, and further 

study is needed to elucidate whether it impacts insulin signaling.  Prediction of potential 

targets for miR-29a also revealed members of the insulin signaling pathway (IGF-I, 

insulin induced gene 1, INSIG1), and miR-29a is up-regulated in patients with diabetes 

(Kong, et al. 2011).  Moreover, miR-29a was recently shown to regulate the expression of 

p85 subunit of and PI3K, preventing insulin-mediated activation of Akt and downstream 

genes involved in gluconeogenesis (He, et al. 2007, Herrera, et al. 2009, Pandey, et al. 

2011)). 

Examination of mRNA expression of several of these genes in fetal ovarian 

tissues failed to detect loss or gain in mRNA expression for this entire class of insulin 

regulated genes.  Our studies, however, examined only mRNA expression, and although 

evidence exists that miRNA decrease levels of their specific target transcripts 

approximately 20% (Guo, et al. 2010), a large number of studies implicate blockade of 

translation as the predominant miRNA mediated posttranscriptional regulatory 

mechanism in animals (Kiriakidou, et al. 2007, Petersen, et al. 2006).  In-depth analyses 

of protein levels within fetal ovarian tissues of T-treated ewes will address whether any 

of the putative miRNA-regulated, insulin-related genes are regulated by the differentially 

expressed miRNA.  Although the targets of the specific miRNA remains to be determined 

at the ovarian level, the predicted targets are consistent with steroidal and metabolic 

perturbations in the gestational T-treated fetuses. 
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Functional significance 

Because the sheep genome is not completely characterized and annotated 

information is not available, a global screen using arrays is not optimal to get a more 

comprehensive assessment of changes in transcriptome.  As such, we chose to target our 

investigation to several critical regulatory genes implicated in ovarian differentiation.  

Identified changes are biologically relevant and link well with subsequently observed 

functional changes.  The increase in Cyp19 seen during fetal life and the increase in 

estradiol found in adult prenatal T-treated females substantiate programming of adult 

phenotype early in life.  Similarly, the increase in 5α-reductase activity seen in T fetuses 

may form the basis for the increased expression in 5α-reductase in granulosa cells of 

polycystic ovarian syndrome ovaries (Jakimiuk, et al. 1999), the reproductive and 

metabolic phenotype of whom the prenatal T-treated sheep recapitulates.  Because the 

mechanisms regulating ovarian differentiation and follicular 

activation/recruitment/persistence are poorly understood, defining the relative role of 

early changes in 5α-reductase, Cyp19, and Cyp11a1 in reprogramming ovarian 

dysfunction and identifying additional mediators is an exciting avenue for future 

research.  Changes in miRNA expression after prenatal T exposure, in concert with their 

reported involvement in cellular differentiation and tissue development, suggest that 

miRNA are likely to play a role in ovarian remodeling.  Similarly, linkage of several of 

the differentially regulated miRNA to insulin signaling and ovarian steroidogenesis bring 

functional relevance to these findings in view of the functional hyperandrogenism and 

insulin resistance manifested by the adult prenatal T-treated females (Padmanabhan, et al. 

2010a).  Furthermore, given the general importance of this gene regulatory system and its 
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disruption in type 2 diabetes (Ferland-McCollough, et al. 2010), these miRNA may be 

involved in long-term alteration of insulin sensitivity at the ovarian level in prenatal T-

treated females due to reprogramming of the fetal ovary.  Establishment of specific 

function attributed to each miRNA impacted by prenatal T excess would require site-

specific targeted knockdown or functional testing in vitro using ovaries generated from 

control and prenatal T-treated females, a goal for the future.  Nonetheless, considering 

that studies relative to miRNA are in their infancy, the findings that prenatal T excess 

modulates expression of miRNA implicated in insulin and steroidogenic pathway very 

early during fetal life are novel, in view of the modulatory role insulin and steroids play 

in establishing ovarian sensitivity and differentiation, respectively. 
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XIII: CHAPTER 8 

 

Expression of microRNA in human theca cells is altered in polycystic ovarian 

syndrome and by forskolin treatment.  
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1. Abstract   

 Polycystic ovarian syndrome (PCOS) is a heterogenous syndrome with origins 

that are poorly understood, yet appears to be a heritable disease.  Numerous genetic 

studies have attempted to identify candidate genes that may be involved in the 

manifestation of this syndrome, yet have yielded no gene or loci that can definitely 

describe the underlying genetic cause.  A potential alternative mechanism is microRNA 

(miRNA) mediated post-transcriptional gene regulation.  The aim of this study was to 

identify miRNA expressed in human theca cells in basal and forskolin treated conditions 

and to then determine if miRNA expression is aberrantly expressed in PCOS.  Using a 

qRT-PCR miRNA profiling platform, we identified 191 miRNA expressed in human 

theca cells.  We further identified 13 miRNA differentially expressed in PCOS theca cells 

compared to normal theca cells.  Two of these miRNA, mir-181a and -181b, are clustered 

together and share similar seed sequences.  Bioinformatic analysis indicates that potential 

targets include members of the insulin/IGF signaling pathway and steroid hormone 

receptors.  Future studies will inhibit and over-express these miRNA in normal and 

PCOS theca cells, as well as attempt to validate potential targets to determine what 

function they may play in this syndrome and determine if they can be used as non-

invasive biomarkers for easier or more thorough diagnosis.  
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2. Introduction 

Polycystic ovarian syndrome (PCOS) is the most prevalent endocrine disorder 

affecting women and is one of the leading causes of female infertility (Teede, et al. 

2010).  The most common and defining features of PCOS are unexplained, chronic 

hyperandrogenism, oligo/anovulation, and the presence of polycystic ovaries 

(Rotterdamn Criteria (Rotterdam 2004)).  The increased production of androgens is 

believed to be due to ovarian thecal cell hyperplasia and sensitivity to gonadotropins, thus 

increasing cellular steroidogenic potential (Magoffin 2006).  Ovaries of women suffering 

from PCOS often have the presence of multiple, persistent follicular cysts on the ovary 

that are unable to undergo ovulation, yet do not undergo atresia to allow the beginning of 

another ovarian cycle (Chang 2007).  Women with PCOS often have increased serum 

levels of the gonadotropin luteinizing hormone (LH; (Rebar, et al. 1976)), which binds 

directly to the thecal cell membrane and promotes increased androgen production. 

Diagnosis of PCOS is often associated with obesity, type 2 diabetes, insulin resistance, 

and/or metabolic syndrome (Azziz 2006).  The underlying cause of PCOS remains 

unknown, however numerous association studies suggest that it is an inherited disorder 

that is genetic in origin (Azziz, et al. 2011, Kosova and Urbanek 2012).    

Excess steroid production in women with PCOS is largely attributed to the hyper-

synthesis and secretion of androgens from ovarian theca cells (Gilling-Smith, et al. 1997).  

Freshly isolated primary and long-term passaged cultured human PCOS theca cells 

exhibit increased basal and LH/cAMP-stimulated steroidogenic capacity, producing 

elevated levels of testosterone, progesterone, and other intermediaries compared to 

normal theca cells on a per cell basis (Gilling-Smith, et al. 1994, Nelson, et al. 1999).   
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Expression of the steroidogenic enzymes necessary for androgen production, CYP17, 

CYP11A1, HSD3B2, and 20α-HSD, are elevated in cultured PCOS theca cells (Nelson, 

et al. 1999, Nelson, et al. 2001).  Microarray expression profiling of messenger RNA 

(mRNA) has further verified the distinct molecular phenotype of cultured PCOS theca 

cells compared to cultured normal theca cells (Wood, et al. 2003).  These stable and 

consistent changes in the transcriptome of theca cells obtained from women suffering 

from PCOS, even after long-term passage in the absence of any effectors, suggests an 

intrinsic change in the cellular programming that is responsible for the altered cellular 

function (Wood, et al. 2004).   

One mechanism to change cellular programming is via post-transcriptional 

regulation of gene expression.  Multiple mechanisms of post-transcriptional gene 

regulation have been identified and broadly include the regulation of mRNA degradation 

and subsequent translation (Halbeisen, et al. 2008). Previous studies have reported that 

post-transcriptional gene regulation is altered in PCOS theca cells (Wickenheisser, et al. 

2005).  Stability of CYP17 mRNA is increased in PCOS theca cells, exhibiting a two-fold 

longer half-life compared to normal theca cells (Wickenheisser, et al. 2005).  This 

increase in mRNA stability appears to be specific to CYP17, as the half-life of 

steroidogenic acute regulatory protein (StAR) mRNA was not altered in thecal PCOS 

cells.  The reason for this selective regulation of specific mRNA degradation following 

transcription, rather than a global change in mRNA half-lives (i.e. increased expression 

of mRNA endo- or exo-nucleases) remains unknown.  One potential mechanism that 

could explain this transcript-specific regulation is microRNA (miRNA) mediated mRNA 

degradation.  MicroRNA are short ~22 nucleotide long non-coding RNA molecules that 
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post-transcriptionally regulate gene expression by base-pairing with complementary 

sequences in the 3’untranslated region (3’UTR) and facilitating mRNA degradation or 

inhibition of translation (Filipowicz, et al. 2008).  The majority of miRNA are transcribed 

by RNA polymerase II into primary transcripts that can be several kilobases long and 

share properties similar to protein coding RNAs (Lee, et al. 2004).  A series of RNAse 

endonucleases, Drosha and Dicer, then cleave the primary miRNA into the mature 

miRNA (Hutvagner, et al. 2001, Lee, et al. 2004).  To date, over 2000 mature miRNA 

have been identified in the human (mirBase V19) and it is believed that over 60% of 

protein coding genes are targeted by miRNA (Friedman, et al. 2009).  Because most 

miRNA are transcribed by RNA polymerase II similar to mRNA encoding genes, they 

have canonical transcriptional start sites and promoter elements that allow for rapid and 

specific spatial-temporal induction of expression (Bushati and Cohen 2007).  

Functionally, miRNA are involved in the regulation of nearly every cellular and 

biological process, including cell proliferation and differentiation, apoptosis, steroid 

synthesis, and intra- and extra-cellular signaling (Bushati and Cohen 2007, Huang, et al. 

2011).  Aberrant miRNA expression and function has been implicated in numerous 

diseases including hormone dependent cancers of the prostrate and breast (Tessel, et al. 

2010), ovarian cancer (Dahiya and Morin 2010), metabolic disorders (Rottiers and Naar 

2012), type 2 diabetes mellitus (Ali, et al. 2011, Shantikumar, et al. 2012), and cardiac 

disease (Dorn 2011).  MicroRNA are present in serum and other bodily fluids, thus 

allowing the systemic transport of these molecules and also providing clinicians valuable 

biomarkers (Reid, et al. 2011).   
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In the ovary, miRNA expression has previously been reported to be hormonally 

regulated by gonadotropins (Carletti, et al. 2010, Fiedler, et al. 2008, Yao, et al. 2009, 

Yao, et al. 2010) and steroid hormones (Klinge 2012, Luense, et al. 2011).  Conditional 

loss of miRNA in murine ovarian granulosa cells resulted in altered folliculogenesis (Lei, 

et al. 2010), decreased ovulation rate (Carletti, et al. 2010, Hong, et al. 2008) and 

increased trapped oocytes in luteinized follicles (Carletti, et al. 2010, Hong, et al. 2008, 

Nagaraja, et al. 2008) thus suggesting an important role for miRNA in ovulation and 

other facets of ovarian function.  Loss of miRNA in the murine ovary also prevented the 

formation of a functional corpus luteum due to impaired angiogenesis (Otsuka, et al. 

2008).  To date, no reported studies have examined the expression or possible function of 

miRNA in ovarian theca cells or their possible role in the pathobiology of PCOS.  

Therefore, this study compares miRNA expression in thecal cells from PCOS versus 

normal (control) patients.   Given that miRNA can be hormonally regulated, this study 

additionally investigates whether expression of miRNA in human theca cells (both PCOS 

and normal) is regulated by the cAMP pathway (ie, forskolin) which mediates much of 

LH/LH receptor cell signaling activity within these cells.    
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3. Materials and Methods    

Human theca interna tissue was obtained from follicles of women undergoing 

hysterectomy, after informed consent, under a protocol approved by the Institutional 

Review Board of the Pennsylvania State University College of Medicine. Individual 

follicles were dissected away from ovarian stroma. The isolated follicles were size 

selected for diameters ranging from 3 to 5 mm so that theca cells derived from follicles of 

similar size from normal and PCOS subjects could be compared. The dissected follicles 

were placed into serum-containing medium and bisected. Under a dissecting microscope, 

the theca interna was stripped from the follicle wall, and the granulosa cells were 

removed with a platinum loop. The cleaned theca cell layers were dispersed with 0.05% 

collagenase I, 0.05% collagenase IA, and 0.01% deoxyribonuclease in medium 

containing 10% fetal bovine serum (FBS; (McAllister, et al. 1994) . Dispersed cells were 

placed in culture dishes that had been precoated with fibronectin by incubation at 37 C 

with culture medium containing 5 μg/ml human fibronectin. The growth medium used 

was a 1:1 mixture of Dulbecco’s Eagle’s Medium (DME) and Ham’s F-12 medium 

containing 10% FBS, 10% horse serum, 2% UltroSer G, 20 nm insulin, 20 nm selenium, 

1 μm vitamin E, and antibiotics. From each follicle, 12 35-mm dishes of primary theca 

interna cells were grown until confluent, removed from the dish with neutral protease 

(pronase-E; protease type XXIV; Sigma, St. Louis, MO) in DME-F12 (1:1), frozen, and 

stored in liquid nitrogen (one 35-mm dish per vial) in culture medium that contained 20% 

FBS and 10% dimethylsulfoxide. In all experiments cells were thawed and propagated in 

the growth medium described above. To obtain successive passages of normal and PCOS 

theca cells, cells were thawed, propagated, and frozen at consecutive passages. The cells 
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were grown in 5% O2, 90% N2, and 5% CO2. Reduced oxygen tension and supplemental 

antioxidants (vitamin E and selenium) were used to prevent oxidative damage.  

The PCOS and normal ovarian tissue came from age-matched women, 38–40 yr 

old. The diagnosis of PCOS was made according to established guidelines (Rotterdam 

2004)), including hyperandrogenemia; oligoovulation; and the exclusion of 21-

hydroxylase deficiency, Cushing’s syndrome, and hyperprolactinemia. All of the PCOS 

theca cell preparations studied came from ovaries of women with fewer than six menses 

per year and elevated serum total testosterone or bioavailable testosterone levels, as 

previously described (Legro, et al. 1998, Nelson, et al. 1999).  Each of the PCOS ovaries 

contained multiple subcortical follicles of less than 10 mm in diameter. The control 

(normal) theca cell preparations came from ovaries of fertile women with normal 

menstrual histories, menstrual cycles of 21–35 d, and no clinical signs of 

hyperandrogenism. Neither PCOS nor normal subjects were receiving hormonal 

medications at the time of surgery. Indications for surgery were dysfunctional uterine 

bleeding, endometrial cancer, and pelvic pain. The passage conditions and split ratios for 

all normal and PCOS cells were identical. Experiments comparing PCOS and normal 

theca were performed using fourth-passage (31–38 population doublings) theca cells 

isolated from size-matched follicles obtained from age-matched subjects. The theca cells 

examined in these experiments included stocks of cells isolated and propagated from 

PCOS and normal women that we have previously examined (Nelson-DeGrave, et al. 

2004)) as well as stocks of cells that we have recently generated from newly 

characterized patients. Sera and growth factors were obtained from the following sources: 

FBS and DME/F12 were obtained from Irvine Scientific (Irvine, CA); horse serum was 
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obtained from HyClone (Logan, UT); UltroSer G was from Reactifs IBF (Villeneuve-la-

Garenne, France).  

 

Isolation and analysis of miRNA 

Total RNA was isolated with Trizol (Sigma-Aldrich, St. Louis, MO) per 

manufacturer’s instruction from fourth passaged theca cells that were grown to 

subconfluence, transferred into serum-free media, and treated with 20µM forskolin 

(Sigma-Aldrich) or vehicle control.  MicroRNA were reverse transcribed from 50ng of 

total RNA using the miRCURY LNA universal RT kit (Exiqon, Denmark).  The reverse 

transcribed miRNA products were diluted 1:110, added to an equal volume of SybrGreen 

MasterMix (Exiqon, Denmark) and loaded onto miRCURY LNA microRNA PCR panels 

containing a total of 742 miRNA based on human miRBase 16 (Human Panels I and II, 

V2.M, Exiqon, Denmark). Quantitative RT-PCR was performed using the ABI 7900HT 

Fast Real Time System with an initial polymerase activation/denaturation step at 95 °C 

for 10 min followed by 40 cycles at 95 °C for 10 sec and 60 °C for 60 sec. Following 

product amplification, a melting curve analysis was performed to insure amplification of 

a sole miRNA product.  

Statistical Analysis 

To analyze data obtained from qRT-PCR panels the threshold (Ct) levels for each 

sample was set at log1 in the SDS V4.0 software (Applied Biosystems, Foster City, CA).  

Threshold values greater than 37 were considered non-detectable and miRNA with Cts 

greater than 37 in more than 1 patient per group were omitted from further analysis.  Data 
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were analyzed by the ΔΔ Ct method using the global mean of each plate as the normalizer 

(ΔCt).  Comparisons were then made between patient and treatment groups (ΔΔCt) 

followed by calculation of the fold change (2^ΔΔCt).  To determine if any expression 

changes occurred, a nested ANOVA statistical test was performed (Matlab, MathWorks, 

Natick, MA).  

Bioinformatic analysis of predicted miRNA targets 

To identify putative mRNA targets, bioinformatic analysis was conducted on all 

differentially expressed miRNA using TargetScan 6.2 (www.targetscan.org). The focus 

of these analyses was on steroid receptors/enzymes, ovarian regulatory molecules, insulin 

signaling molecules, and lipid metabolic hormones. A comprehensive literature based 

analysis was also undertaken for all differentially expressed miRNA linked to steroid 

receptor action, steroidogenesis, ovarian function, sexual differentiation, insulin-

signaling, diabetes, and lipid metabolism (Luense, et al. 2011).  Gene ontology analysis 

of putative mRNA targets of differentially expressed miRNA was conducted by using 

miRGator Functional Analysis (http://genome.ewha.ac.kr/miRGator).   

 

  

http://genome.ewha.ac.kr/miRGator
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4. Results 

Expression of miRNA in human thecal cells 

To identify and quantify human theca cell miRNA, quantitative RT-PCR panels 

pre-loaded with locked nucleic acid (LNA) primers for 742 human miRNA sequences 

obtained from miRbase V.16 were used.  A total of 191 miRNA were found to be 

expressed (Ct < 37) in normal, untreated human theca cells (Table XIII-1).   A total of 

184 miRNA were found to be expressed (Ct < 37) in un-stimulated, PCOS theca cells 

(Table XIII-1). 
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Table XIII-1. MicroRNA expressed in human theca cells   

miRNA expressed in normal and PCOS theca cells 

hsa-let-7a hsa-mir-140-3p hsa-mir-193a-5p hsa-mir-27a 

hsa-let-7b hsa-mir-140-5p hsa-mir-193b hsa-mir-27b 

hsa-let-7c hsa-mir-142-3p hsa-mir-195 hsa-mir-28-5p 

hsa-let-7d hsa-mir-143 hsa-mir-197 hsa-mir-299-5p 

hsa-let-7d* hsa-mir-145 hsa-mir-1979 hsa-mir-29a 

hsa-let-7e hsa-mir-146b-5p hsa-mir-199a-3p hsa-mir-29b 

hsa-let-7f hsa-mir-148b hsa-mir-199a-5p hsa-mir-29c 

hsa-let-7g hsa-mir-149 hsa-mir-199b-5p hsa-mir-301a 

hsa-let-7i hsa-mir-151-3p hsa-mir-19a hsa-mir-30a 

hsa-mir-100 hsa-mir-151-5p hsa-mir-19b hsa-mir-30b 

hsa-mir-103 hsa-mir-152 hsa-mir-20a hsa-mir-30c 

hsa-mir-106a hsa-mir-154 hsa-mir-20b hsa-mir-30d 

hsa-mir-106b hsa-mir-154* hsa-mir-21 hsa-mir-30e 

hsa-mir-107 hsa-mir-155 hsa-mir-21* hsa-mir-30e* 

hsa-mir-10a hsa-mir-15a hsa-mir-210 hsa-mir-31 

hsa-mir-10b hsa-mir-15b hsa-mir-212 hsa-mir-31* 

hsa-mir-125a-5p hsa-mir-16 hsa-mir-214 hsa-mir-320a 

hsa-mir-125b hsa-mir-17 hsa-mir-218 hsa-mir-323-3p 

hsa-mir-126 hsa-mir-181a hsa-mir-22 hsa-mir-324-3p 

hsa-mir-126* hsa-mir-181b hsa-mir-22* hsa-mir-324-5p 

hsa-mir-127-3p hsa-mir-181d hsa-mir-221 hsa-mir-328 

hsa-mir-128 hsa-mir-185 hsa-mir-222 hsa-mir-329 

hsa-mir-130a hsa-mir-186 hsa-mir-23a hsa-mir-331-3p 

hsa-mir-130b hsa-mir-18a hsa-mir-23b hsa-mir-335 

hsa-mir-132 hsa-mir-18a* hsa-mir-24 hsa-mir-337-3p 

hsa-mir-134 hsa-mir-18b hsa-mir-25 hsa-mir-338-3p 

hsa-mir-135a hsa-mir-191 hsa-mir-26a hsa-mir-339-5p 
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miRNA expressed in normal and PCOS theca cells 

hsa-mir-135b hsa-mir-192 hsa-mir-26b hsa-mir-33a 

hsa-mir-342-3p hsa-mir-382 hsa-mir-490-3p hsa-mir-671-5p 

hsa-mir-345 hsa-mir-409-3p hsa-mir-491-5p hsa-mir-708 

hsa-mir-346 hsa-mir-410 hsa-mir-493 hsa-mir-720 

hsa-mir-34a hsa-mir-411 hsa-mir-494 hsa-mir-744 

hsa-mir-34c-3p hsa-mir-421 hsa-mir-495 hsa-mir-886-3p 

hsa-mir-361-3p hsa-mir-423-3p hsa-mir-497 hsa-mir-886-5p 

hsa-mir-365 hsa-mir-423-5p hsa-mir-501-5p hsa-mir-92a 

hsa-mir-369-5p hsa-mir-424 hsa-mir-502-5p hsa-mir-92b 

hsa-mir-370 hsa-mir-425 hsa-mir-503 hsa-mir-93 

hsa-mir-374b hsa-mir-425* hsa-mir-505 hsa-mir-934 

hsa-mir-342-3p hsa-mir-431 hsa-mir-532-5p hsa-mir-940 

hsa-mir-347 hsa-mir-433 hsa-mir-542-5p hsa-mir-98 

hsa-mir-348 hsa-mir-450a hsa-mir-574-3p hsa-mir-99a 

hsa-mir-34a hsa-mir-455-5p hsa-mir-590-5p hsa-mir-99b 

hsa-mir-34c-3p hsa-mir-483-3p hsa-mir-615-3p snord38b 

hsa-mir-379 hsa-mir-484 hsa-mir-652 snord49a 

hsa-mir-381 hsa-mir-487b hsa-mir-660 u6 

 

Only Normal Only PCOS 

hsa-mir-137 hsa-mir-330-3p hsa-mir-454 hsa-mir-148b 

hsa-mir-181a* hsa-mir-337-5p hsa-mir-625* hsa-mir-500 

hsa-mir-204 hsa-mir-34c-5p hsa-mir-99a* hsa-mir-539 

hsa-mir-301b hsa-mir-362-5p 

 

hsa-mir-654-5p 
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Differential expression of thecal miRNA in normal versus PCOS ovaries 

To identify miRNA that are aberrantly expressed in PCOS theca cells, expression 

levels of miRNA in normal thecal cells were compared to PCOS theca cells.  A total of 

13 miRNA were found to exhibit altered expression in PCOS theca cells compared to 

theca cells from normal ovaries (Table XIII-2).  The three miRNA that were up regulated 

in PCOS theca cells ranged from 1.36 to 2.84-fold increased expression, while the 10 

miRNA down-regulated in cultured theca cells from polycystic ovaries ranged from -1.40 

to -5.06.   Bioinformatic analysis revealed multiple differentially expressed miRNA had 

complementary sequences in the 3’UTR of mRNA coding for numerous receptors and 

factors involved in insulin signaling, lipid metabolism, steroid receptors, and other factors 

important to ovarian function and development (i.e. β-catenin, matrix-metalloproteinase, 

etc) (Table XIII-2).  

Interestingly, two miRNA, which exhibited decreased expression in PCOS theca 

cells (miR-181a and -181b) are co-transcribed as one primary transcript and share a 

similar seed sequence (i.e., likely target similar mRNA targets; Figure XIII-2).  A 

thorough review of the literature identified numerous published studies linking miR-

181a/b to obesity, metabolic syndrome, coronary artery disease insulin sensitivity, 

endometrial cancer, as well as many others. 
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Figure XIII-1.  Sequence alignment of mature hsa-miR-181a and b. Bases 

highlighted in red are different between 181a and 181b. 
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Figure XIII-1 
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Another miRNA, miR-204, which exhibited the greatest decrease expression in 

PCOS thecal cells (-5.1) also has a number of interesting putative target genes (Table 

XIII-2).  Several factors involved in insulin signaling (IGF2R, IGFBP5, PPARGC1A, 

IGF2BP3), estrogen signaling and steroidogenesis (ESR1, ESRRG, HSD17B2, SP1), 

cAMP/CREB signaling (CREB1, CREB5, ADCY6), and a number of other ovarian 

factors or related family members (SPRY3, NPTX1, NRG3, BDNF, WNT4, CCND1, 

TGFPR1, NRP1). A literature search for miR-204 provided no previous publications for a 

role in ovarian function, however there appears to be a possible link to obesity and 

diabetes. 

 

Hormonal stimulation of microRNA in normal and PCOS theca cells 

Upon treatment with forskolin, the adenylate cyclase activator used to mimic LH 

and thus cAMP signaling, 13 miRNA were found to be differentially expressed in normal 

thecal cells when using a paired t-test (Table XIII-3).   Nine miRNA exhibited increased 

expression in response to forskolin, ranging from 1.27 to 2.0 fold greater expression than 

in non-treated theca cells.  The expression of the four miRNA that decreased expression 

following forskolin treatment ranged from -1.34 to -3.07.   
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Table XIII-3. Forskolin regulated miRNA in normal human theca cells 

miRNA 

Fold 

Change p-value Genomic Location 

hsa-mir-34a 2.0052 0.006033 chr1: 9211727-9211836 [-] 

hsa-mir-542-5p 1.7726 0.04827 chrX: 133675371-133675467 [-] 

hsa-mir-134 1.7522 0.043736 chr14: 101521024-101521096 [+] 

hsa-mir-148b 1.5407 0.03327 chr12: 54731000-54731098 [+] 

hsa-mir-484 1.5072 0.000502 chr16: 15737151-15737229 [+] 

hsa-mir-365 1.3638 0.047706 chr16: 14403142-14403228 [+] 

hsa-mir-382 1.3493 0.028936 chr14: 101520643-101520718 [+] 

hsa-mir-320a 1.3049 0.000333 chr8: 22102475-22102556 [-] 

hsa-mir-125a-5p 1.2718 0.023999 chr19: 52196507-52196592 [+] 

hsa-mir-27a -1.3383 0.012155 chr19: 13947254-13947331 [-] 

hsa-mir-27b -1.8868 0.010257 chr9: 97847727-97847823 [+] 

hsa-mir-483-3p -1.9863 0.037736 chr11: 2155364-2155439 [-] 

hsa-mir-337-3p -3.0654 0.00339 chr14: 101340830-101340922 [+] 
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Analysis of forskolin effects on miRNA expression in PCOS theca cells indicated 

that, a total of 25 miRNA were differentially expressed in PCOS thecal cells (Table XIII-

4).  Expression of 11 miRNA increased in response to forskolin treatment, ranging from 

1.20 to 5.24-fold greater, while 14 miRNA had decreased expression, which ranged from 

-1.19 to -2.49-fold.  Surprisingly only two miRNA, miR-125a-5p and miR-34a exhibited 

increased expression following forskolin treatment in both normal and PCOS thecal cells.  
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Table XIII-4. Forskolin regulated miRNA in human PCOS theca cells 

miRNA 

Fold 

Change p-value Genomic location 

hsa-mir-99a* 5.2418 0.023291 chr21: 17911409-17911489 [+] 

hsa-mir-132 1.7082 0.026774 chr17: 1953202-1953302 [-] 

hsa-mir-328 1.5031 0.003344 chr16: 67236224-67236298 [-] 

hsa-mir-154 1.4296 0.022894 chr14: 101526092-101526175 [+] 

hsa-mir-28-5p 1.4157 0.033191 chr3: 188406569-188406654 [+] 

hsa-mir-409-3p 1.3952 0.043925 chr14: 101531637-101531715 [+] 

hsa-mir-34a 1.3812 0.043305 chr1: 9211727-9211836 [-] 

hsa-mir-125a-5p 1.3148 0.028831 chr19: 52196507-52196592 [+] 

hsa-mir-99a 1.2747 0.033282 chr21: 17911409-17911489 [+] 

hsa-mir-652 1.2666 0.019034 chrX: 109298557-109298654 [+] 

hsa-mir-30b 1.1992 0.025256 chr8: 135812763-135812850 [-] 

hsa-mir-431 -1.1867 0.025844 chr14: 101347344-101347457 [+] 

hsa-mir-16 -1.2381 0.039249 chr13: 50623109-50623197 [-] 

hsa-mir-199a-5p -1.2823 0.035704 chr19: 10928102-10928172 [-] 

hsa-mir-379 -1.2861 0.022787 chr14: 101488403-101488469 [+] 

hsa-mir-25 -1.3453 0.048742 chr7: 99691183-99691266 [-] 

hsa-mir-425 -1.356 0.037014 chr3: 49057581-49057667 [-] 

hsa-mir-100 -1.4464 0.021109 chr11: 122022937-122023016 [-] 

hsa-mir-181b -1.6284 0.008198 

chr1: 198828173-198828282 [-] 

chr9: 127455989-127456077 [+] 

hsa-mir-503 -1.6607 0.047851 chrX: 133680358-133680428 [-] 

hsa-mir-199a-3p -1.6684 0.030844 chr19: 10928102-10928172 [-] 

hsa-mir-376b -1.9075 0.020373 chr14: 101506773-101506872 [+] 

hsa-mir-130b -1.937 0.030724 chr22: 22007593-22007674 [+] 

hsa-mir-214 -2.1399 0.000421 chr1: 172107938-172108047 [-] 

hsa-mir-20b -2.492 0.030058 chrX: 133303839-133303907 [-] 
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5. Discussion 

These experiments characterize the expression profile of miRNA in human theca 

cells.  Additionally, it identifies miRNA aberrantly expressed in PCOS theca cells and 

miRNA that are regulated by cAMP (forskolin treatment) in theca cells. To the best of 

our knowledge, this is the first report of a human theca cell miRNA profile and also the 

first study to look at expression of miRNA in cells from women with PCOS.  Numerous 

genetic studies have identified candidate genes responsible for development of PCOS, 

however none of these candidates fully explains the heterogenous nature of this disorder 

(Kosova and Urbanek 2012).  The aim of this study was to characterize miRNA, a 

mechanism of post-transcriptional gene regulation, in normal and PCOS theca cells in an 

attempt to determine if a factor other than transcriptional regulation of protein-coding 

genes is involved in the PCOS etiology.  

Of the 191 miRNA identified as expressed in normal theca cells, 13 (6.8%) were 

found to be differentially expressed in theca cells from PCOS ovaries.  This low 

percentage of miRNA changing could reflect the ability of a single miRNA to be able to 

regulate a large number of mRNA targets (Lewis, et al. 2005).  MicroRNA post-

transcriptionally regulate gene expression by base-pairing with complementary sequences 

in the 3’UTR of the target mRNA and initiating RNA degradation or inhibition of 

translation (Filipowicz, et al. 2008).  Bases 2 through 7 of the miRNA, known as the seed 

sequence, are critical for targeting the RNA-induced silencing complex (RISC) to the 

target mRNA and regulating expression levels (Lewis, et al. 2005).  The shortness of this 

sequence allows for miRNA to potentially regulate the protein expression of  thousands 

of mRNA targets (Selbach, et al. 2008).  Likewise,  an individual mRNA may be targeted 
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by multiple miRNA, thus allowing for the downstream effects of miRNA regulation to be 

the culmination of multiple small changes (less than 4-fold decrease in protein 

expression) rather than an individual miRNA:mRNA interaction (Selbach, et al. 2008).  

Using a bioinformatics algorithm (Targetscan) thousands of putative mRNA targets were 

identified for the miRNA differentially expressed in this study.  While it is unlikely that 

the majority of these putative targets will be bonafide targets, even if only a few hundred 

genes are targeted the overall cumulative effect is likely to alter theca cell function. 

Interestingly, the percentage of miRNA changing in PCOS theca cells compared to 

normal cells is greater than the number of mRNA transcripts differentially expressed 

using the same experimental paradigm (2.3% (Wood, et al. 2003). The overall low 

percentage of change in transcriptionally regulated genes (mRNA and miRNA) may 

suggest the importance of mechanisms such as post-transcriptional gene regulation.  

Of the miRNA differentially expressed in PCOS theca cells compared to normal 

cells, miR-181a and b are of particular interest.  The co-transcription and identical seed 

sequence of these miRNA make them a particularly interesting family of miRNA as they 

share a similar set of mRNA targets.  Furthermore, they have been reported to be 

regulated by estrogen and progesterone in the uterus (Pan, et al. 2008) and by estrogen in 

breast cancer (Maillot, et al. 2009).  Expression of miR-181a has been identified in 

bovine oocytes ((Lingenfelter, et al. 2011) and has been identified in women suffering 

from preeclampsia (Mayor-Lynn, et al. 2011, Wu, et al. 2012). Micro-RNA-181a has 

previously been reported to be linked to obesity, metabolic syndrome, and coronary 

artery disease (Hulsmans, et al. 2012).  Multiple studies have also validated the anti-

apoptotic factor Bcl-2 as a direct target of both miR-181a and b (Chen, et al. 2010, Li, et 
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al. 2012, Ouyang, et al. 2012, Zhu, et al. 2012). This could be of particular interest in 

PCOS theca cells as persistent follicles in polycystic ovaries tend to not undergo atresia 

as follicles from normal ovaries do.  Another interesting validated target of miR-181b is 

CREB1, a major component in the LH signaling pathway that is critical to regulation of 

gene programming in thecal cells (Chen, et al. 2012).   

Bioinformatic analysis of miR-204 also resulted in the identification of numerous 

targets of interest to ovarian function.  Several members of the insulin signaling pathway 

were identified as putative targets and a previous study found that expression of miR-204 

was down in adipose tissue after exposure to a high fat diet (Chartoumpekis, et al. 2012). 

While insulin resistance and type 2 diabetes are not necessary for diagnosis of PCOS, 

they are often observed in women suffering from PCOS (Azziz 2006).  

In summary, PCOS is a condition that affects 5 to 7% of women of reproductive 

age (Guo 2012) and is a major factor in infertility and a diminished quality of life for 

those affected (Cronin 1998).  Even though the cause of this disorder remains unknown, 

numerous research groups are investigating the molecular changes local to the ovary as 

well as those of a more systemic origin.  The aim of this study was to characterize the 

expression of miRNA in human theca cells from both normal and PCOS ovaries in basal 

and hormonally stimulated conditions and identify miRNA that are aberrantly expressed 

in PCOS theca cells.  Future experiments will increase and decrease levels  of miR-181a 

and -181b in our thecal cell culture and attempt to determine what functional significance 

they have with regards to this syndrome.  Putative targets will attempt to be validated.  

There is much potential for the use of these differentially expressed miRNA to be used as 
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non-invasive biomarkers and to ideally be used as a therapeutic approach to help treat and 

understand the basis of PCOS.   
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Concluding Remarks 
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CHAPTER 12 

 

Concluding Remarks 
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 Until recently, our understanding of regulation of ovarian gene expression and 

how this relates to its ultimate function has largely been focused on a transcriptional or 

translational level.  With the recent identification of miRNA, a new avenue of potential 

regulatory networks has opened.  The focus of the studies presented here begin to 

investigate what role, if any, miRNA play in ovarian function and development, and to 

further determine if they are hormonally regulated.  We have approached these questions 

in a multi-species approach, beginning with the mouse to perform conditional genetic 

deletion experiments to allow us to narrow our focus on miRNA expression and function 

specifically to the somatic cells of the ovary.  Next, we investigated hormonal regulation 

of miRNA expression and subsequent function in sheep, a model with many similarities 

to the human.  These experiments were designed to allow us to look at the regulation and 

role of miRNA in a physiologically relevant model and question (pre-natal androgen 

exposure).  Finally, we used our previous experimental findings and techniques to study 

miRNA expression and potential function in human theca cell in both normal and 

diseased conditions.     

 

 Through these experiments we determined the following: 

 

1. Dicer, and thus miRNA, are essential for female fertility, as loss of these 

factors lead to complete female sterility.  Although the primary reason for 

this loss of female fertility is believed to be due to the formation of large, fluid 

filled cysts in the oviduct, thus preventing entry of fertilized embryos into the 

uterus, a drastic decrease in ovulation rate was observed.  Use of conditional 
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deletion mice suggested that ovarian development was perturbed due to the 

smaller sized ovaries.  However, as no defect in folliculogenesis was 

observed, this suggests that the functional relevance of these miRNA occurs 

during the LH-regulated peri-ovulatory period.    

 

2. The LH regulated miRNA-212/132 do not appear to be have a functional 

role in ovulation or follicular development. Although these two miRNA are 

co-transcribed in response to LH and share a similar seed sequence, thus 

presumably targeting the same mRNA, conditional deletion of these miRNA 

in ovarian granulosa cells does not appear to have any effect on ovarian 

function.  To ensure that we deleted miR-212/132 at the correct time point, we 

used two different Cre-driven promoters that would delete miR-212/132 

expression during early follicular development or in the antral stage of 

development.   

 

3. Expression of steroidogenic enzymes in the fetal sheep ovary are altered 

in response to prenatal androgen exposure.  The prenatal androgenized 

sheep model has been proposed as an excellent mechanism to study the 

possible developmental origins of PCOS.  Although much is known about the 

phenotypes of sheep exposed to excess androgens during gestation, little is 

known about the changes in fetal ovarian gene expression.  This study, for the 

first time, identified changes in fetal ovarian mRNA gene expression—both 

with regards to age (d65 vs. d90) and with hormone.  The increased 



 
199 

 

expression of Cyp19 and 5α-reductase corresponds with the need to convert 

testosterone to subsequent metabolites estradiol or DHT.  This finding further 

supports the theory that the effects of excess testosterone observed in fetal 

ovaries may also be due to estrogenic, as well as androgenic effects.   

 

4. Fetal ovarian miRNA are hormonally regulated.  Use of the prenatal 

androgenized sheep model allowed us to create a profile of miRNA expressed 

in fetal development—something that would be nearly impossible to acquire 

in human.  Although fetal mouse miRNA profiles have been generated, use of 

the sheep provides us with the first look at a system more physiological 

similar to the human.  Furthermore, we identified miRNA that were 

hormonally regulated by excess androgen exposure.  Several of these miRNA 

appear to putatively target genes involved in sex differentiation and the 

insulin/IGF pathway.   

 

5. Generation of a profile of miRNA expressed in human theca cells under 

basal and hormone stimulated conditions.  To our knowledge, this is the 

first time miRNA have been isolated or characterized from human theca cells.  

We have generated a profile of miRNA that were expressed in human theca 

cells under normal conditions (non-treated) and LH stimulated (forskolin 

treated).  These miRNA will provide us important information and insight into 

potential post-transcriptional regulatory networks in human theca cells.  
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Comparison of expression profiles of non-treated and forskolin treated cells 

again provides evidence of hormone mediate miRNA regulation.   

 

6. miRNA are aberrantly expressed in PCOS theca cells.  Identification of 13 

miRNA differentially expressed in human PCOS theca cells compared to 

normal theca cells provides evidence that miRNA expression are altered in 

this diseased state.  While the actual functions of these miRNA remain to be 

elucidated, the identification of these miRNA provide us an opportunity to 

determine if post-transcriptional gene regulation plays a role in the PCOS 

etiology.  Because PCOS remains an enigma, these findings may be a crucial 

link in us understanding the causes of this condition.  

 

Numerous studies have investigated RNA and protein expression in the ovary, 

however, these findings, for the first time, implicate miRNA as being important 

functional mediators of post-transcriptional gene regulation in the somatic cells of ovary.  

Previous work has established that Dicer is critical for proper oocyte function 

(Murchison, et al. 2007, Watanabe, et al. 2006), however our conditional deletion of 

Dicer in the female reproductive tract has established that miRNA are necessary for 

proper development and function of the oviduct (Hong, et al. 2008).  Furthermore, we 

have established for the first time that miRNA are necessary for ovulation (Hong, et al. 

2008).  These findings have been the basis for further study of miRNA in relation to 

female fertility (Carletti and Christenson 2009, Luense, et al. 2009, Nothnick 2012).  

Combined with a parallel study from our laboratory that identified miRNA up-regulated 
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by the LH surge and the study by Otsuka et al. that established miRNA are necessary for 

luteal formation and function, it is clear that miRNA play an important role in modulating 

gene regulation during the peri-ovulatory period.   

We have also demonstrated that beginning with fetal ovarian development, the 

expression of miRNA are regulated temporally and by steroid hormone receptors 

(Luense, et al. 2011).  These findings correspond with other studies that have identified 

miRNA in the fetal ovary (Torley, et al. 2011, Tripurani, et al. 2010) and the regulation 

of miRNA by steroid hormones (Cochrane, et al. 2011), but is the first to establish their 

aberrant expression in response to an abnormal hormone environment.  It remains unclear 

if altered expression of miRNA during fetal development potentiates a change in the 

developmental trajectory of the ovary that results in an adult disease state. It is 

conceivable, however, to hypothesize that the altered miRNA expression from such an 

early time point can trigger slight alterations in gene expression that perpetuate 

throughout development and into adulthood.   

Perhaps most importantly, the study involving PCOS theca cells suggests a 

potentially game changing role for miRNA in this disease state.  This is the first study, to 

our knowledge, to identify miRNA aberrantly expressed in theca cells from polycystic 

ovaries.  These findings complement the identification of the transcriptome from PCOS 

theca cells (Wood, et al. 2004, Wood, et al. 2003) and provides a potential mechanism for 

what is causing the mis-expression of these genes.  Furthermore, the abnormal expression 

of these miRNA provides further evidence that the molecular programming of PCOS 

theca cells are intrinsically altered (Gilling-Smith, et al. 1997).  Further study is needed to 

determine how exactly these miRNA identified in PCOS theca cells may be regulating 
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gene expression.  Specifically, identification of validated mRNA targets are necessary so 

that we can further understand the role they play in this disease etiology.  If specific 

miRNA with bonafide targets are identified, great potential exists for the development of 

assays to identify non-invasive biomarkers or therapeutic targets.   
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