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Abstract 

 
        The extracellular human pathogens enterohemorrhagic and enteropathogenic 

Escherichia coli (EHEC and EPEC) and the related mouse pathogen Citrobacter 

rodentium inject type III secretion system (T3SS) effector proteins to promote their 

replication, survival and transmission. The mechanisms of action and the host targets of 

T3SS effectors are under active investigation because of their importance to bacterial 

virulence. The non-locus of enterocyte effacement (LEE)-encoded protein F, NleF, 

contributes to E. coli and Citrobacter colonization of animals through an unclear 

mechanism. Here we sought to characterize the host binding partners of NleF. Using a 

yeast two-hybrid screen, we identified a set of mammalian proteins as NleF-binding 

partners including Tmp21, a type-I integral membrane protein and COPI-vesicle 

receptor involved in trans-Golgi network function. We confirmed this interaction using 

bacterial two-hybrid, immunoprecipitation and bimolecular fluorescence 

complementation (BiFC). To consider the effects of NleF on protein trafficking, we 

expressed a temperature-sensitive vesicular stomatitis virus glycoprotein (VSVG) with 

temperature dependent localization and monitored protein trafficking. We determined 

that NleF does not block, but rather slows the intracellular trafficking of VSVG from 

endoplasmic reticulum to Golgi. 
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1.1 Scope of this study 

Enterohemorrhagic Escherichia coli (EHEC) is one of the leading causes of foodborne 

illness globally. Strains linked to human disease survive within other species 

harmlessly. Only upon discharge into the environment within manure, as crop fertilizer 

or run off, or via contamination of food sources, such as improperly processed beef, do 

these strains find their way into humans. Infections connected to EHEC represent a 

significant financial burden to both the beef and health care industries. The beef 

industry has experienced losses of millions of pounds of ground beef within a single 

outbreak and health care institutions suffer the expense of treatment of EHEC, which 

represents the 5th most common cause of foodborne infection hospitalization in the 

United States [1].  With no prophylaxis or specific treatment available for EHEC 

infections, understanding the many ways employed by EHEC, and other similar E. coli 

pathotypes, such as Enteropathogenic E. coli, to productively infect its host is essential 

to prevention of future outbreaks and development of improved therapies.  	
  

 	
  

The capacity of E. coli to cause infection depends on its numerous virulence factors, the 

best-understood of which include those involved in bacterial adherence to host cells (Tir 

an Intimin) and the Type III Secretion System injectisome. A substantial number of 

virulence factors known as translocated effector proteins also exist, which the bacterium 

introduces into the host cell by injecting them through the injectisome effectively 

delivering them directly into the host cells cytoplasm. Effectors with known function have 

been found to target host proteins and pathways in order to hijack or subvert function 

and permit successful infection. However, many of the effectors identified have as yet 
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unknown function. NleF belongs to the latter group of effectors, but it has demonstrated 

to play a role in colonization and virulence [2].  As such, delineation of NleF specific 

host targets and the mechanisms by which it enables infection would provide additional 

therapeutic targets. The goal of this study was to verify mammalian Tmp21 as an NleF 

host target and to dissect the mechanism by which this interaction plays a role in E. coli 

colonization and virulence. Our study provides the first evidence of NleF alteration in 

protein trafficking of the secretory pathway via interaction with the COPI binding p24 

family member Tmp21. 

 

1.2 Foodborne illness and diseases caused by Escherichia coli 

Escherichia coli is a major etiological agent of foodborne disease. Gastroenteritis is 

commonly found with E. coli infections and progression to more serious illnesses, such 

as Hemorrhagic Colitis and Hemolytic Uremic Syndrome, increases when Shiga Toxin-

Producing E. coli (STEC) are the source.  

 

1.2.a Foodborne Illness 

Foodborne illness is a continuing problem in the developed world. The typical source of 

illness originates from improper storage and handling or contamination of food products 

prior to use [3].  The Centers for Disease Control and Prevention (CDC) 2011 estimates 

indicate 1 in every 6 Americans (48 million) become ill as a result of contaminated food 

sources. Health costs are high for treatment of those that are hospitalized (128,000) and 

death occurs in less than 1 % (3,000). While the hospitalizations and deaths seem to 

comprise a small percentage of cases, these are representative of only those reported. 
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Illnesses are categorized into two groups: known foodborne pathogens or unspecified 

agents. Roughly 20 % of all reported cases originate from infection by one of 31 known 

pathogens and 18 % overall are linked to the major 7 which include Salmonella, 

Campylobacter, and E. coli O157:H7.  At 2 %, E coli ranks in the top 5 of these 

pathogens for resulting hospitalizations [4].  

 

1.2.b Bacterial Gastroenteritis 

Bacterial gastroenteritis is an inflammation of the stomach and intestines resulting from 

infection by a pathogenic strain of bacteria [5-7].  The range of symptoms is variable 

dependent on the source organism [8]. However, diarrhea is found in all forms of 

foodborne Illness and additional symptoms can include abdominal cramping and pain, 

reduced appetite, nausea and vomiting [5-11].  Treatment begins after identification of 

the infecting organism and mainly involves rest, hydration maintenance, and control of 

nausea and vomiting [8]. Source identification is crucial as it is necessary to avoid 

antibiotic treatment in the case of infections by STEC to prevent more severe symptoms 

and outcomes [12-16]. 

 

1.2.c Hemorrhagic Colitis and Hemolytic Uremic Syndrome 

A specific form of gastroenteritis, Hemorrhagic Colitis (HC), is caused by infection of the 

large intestines and toxin production by STEC. E. coli O157:H7 is the most common 

source of HC causing infection in the US and sometimes results in bloody diarrhea in 

the young and elderly populations due to toxin damage of the intestinal epithelium [17-

20]. As with general gastroenteritis, abdominal cramping coincides with production of 

watery diarrhea. Diarrhea may become bloody within 1-3 days [21]. Resolution of 
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diarrhea typically occurs within the following week [9-11]. Importantly, patients are often 

afebrile, a hallmark of infection with STEC [22]. Approximately 10 % of those who 

progress to HC will subsequently develop a severe condition known as Hemolytic 

Uremic Syndrome (HUS) in the second week of infection (7-10 days) preceded by 

increased fever [9, 11, 23-26]. E. coli is the most common cause of documented HUS 

(90 %), which is characterized by hemolytic anemia and thrombocytopenia resulting in 

fatigue and lightheadedness due to red blood cell lysis, uremia, and oliguria [9, 27]. 

Further complications of the CNS can develop with nerve and brain damage leading to 

seizures or strokes [28]. There is no targeted treatment available so care is focused on 

providing ample hydration to counter dehydration as a consequence of the severe and 

prolonged diarrhea [29]. Many recover fully but, despite treatment, some develop 

chronic kidney disease and mortality occurs in 5-10 % of patients [21].  

 

1.3 Attaching and effacing Escherichia coli 

E. coli are gram-negative, rod shaped enteric bacteria with numerous species residing 

in the human gastrointestinal tract  [20]. The commensal strains of the GI microbiota are 

innocuous and provide host health benefits, such as protection against infection and 

nutrient acquisition [30]. However, certain groups of E. coli strains have evolved into 

pathogens now linked to human diarrheal diseases through assimilation of virulence 

genes via transfer of mobile genetic elements [31, 32]. Most infections are a product of 

ingestion of contaminated or improperly handled food sources, though some may be 

transmitted by direct contact with infected individuals and animals [3, 23, 33]. There are 

approximately 9 pathogenic groups recognized, which are organized based on their 
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virulence traits or factors. These groups include: enteropathogenic E. coli (EPEC), 

enterohemorrhagic E. coli (EHEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. 

coli (EIEC), enteroaggregative E. coli (EAEC), and diffusely adherent E. coli (DAEC) 

[26]. The attaching and effacing (A/E) strains of E. coli are extracellular pathogens and 

are characterized by their capacity to destroy the intestinal microvilli (brush border) and 

induce formation of a pedestal through manipulation of the host cell cytoskeleton [26, 

34-36].  

 
 

1.3.a Enteropathogenic E. coli 

EPEC was the first described pathotype of E. coli in 1945 after an infant diarrheal 

outbreak in the UK. The occurrence of similar outbreaks has diminished in recent years 

and mortality rates have fallen significantly from the 25-50 % noted prior to improved 

treatments [37, 38]. Regardless, EPEC continues as a significant source of diarrheal 

outbreaks in the developing world in children under 2 years of age  [37, 39]. Onset of 

the main symptom, diarrhea, occurs within 4 hours of infection and advances to addition 

of vomiting and low-grade fevers in some cases [38]. Correction of fluid loss must occur 

quickly to avoid dehydration. Duration of infant diarrhea is protracted and can persist 

from 22 days to 120 days in severe cases. The primary route of infection is oral, 

however this pathotype is linked with considerable transmission by contact with infected 

individuals, rather than by ingestion of contaminated food, as evidenced by the sporadic 

nature of foodborne outbreaks [38]. Diagnosis is accomplished through tissue culture 

infection analysis to assess whether characteristic pathology associated with attaching 

and effacing pathotypes is observed. Positive isolates cause typical intimate intestinal 
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epithelial attachment, microvilli destruction, and cytoskeletal polymerization producing 

pedestal protrusions from the epithelial surface. PCR detection of the locus of 

enterocyte effacement (LEE) pathogenicity island genes responsible for these 

processes is also employed, but is not sufficient as many of these genes are 

homologous to genes found in other A/E pathotypes, including EHEC and Citrobacter 

rodentium. Verification of shiga toxin absence is necessary for ultimate identification of 

non-toxigenic EPEC.  

 

1.3.b Enterohemorrhagic E. coli 

The EHEC pathotype is foremost associated with production of Shiga toxin (Stx), which 

classifies them as STEC. The number of STEC serotypes recognized varies between 

sources, but reaches numbers upwards of 200 including strains not linked to illness. 

Strain O157:H7 is responsible for ~75 % of worldwide E. coli infections and is the model 

for the EHEC subset, which includes only strains proven to cause severe disease. Other 

strains in this subset have caused major outbreaks including the O104:H4 strain 2011 

outbreak in Germany. However, though a producer of Stx this strain may not be 

correctly classified as EHEC based on high genetic homology with an EAEC strain [4, 

38].  

 

The major reservoir for EHEC is the bovine intestinal tract with high colonization of the 

rectal-anal junction found in super-shedders, which are responsible for >90 % of EHEC 

spread [13, 40, 41]. Foodborne transmission through ingestion of foods contaminated 

with infectious manure is the typical route of infection. EHEC, like EPEC, possess the 
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locus for enterocyte effacement pathogenicity island (LEE), encoding more than 20 

proteins including factors involved in virulence mechanisms, such as attachment to host 

epithelium (intimin, Tir) and delivery of virulence factors into host cells (T3SS) [42]. 

O157:H7 do not ferment sorbital, unlike commensal strains, and this can be used for 

detection by culturing on sorbitol MacConkey agar and screening for non-fermenting 

strains [11]. Serotyping of the O and Flagellar antigens, PCR, and Stx detection 

methods are also employed for identification. The infective dose is as low as 10 

organisms, while other strains are thought to require higher doses. Symptoms appear 

as early as 3 days post infection, but can sometimes require longer incubations 

extending 9 days post infection.  Infection may be asymptomatic in some hosts, 

however diarrhea presents in the majority of infected individuals. Additionally, a small 

percentage of the infected develop acute Hemorrhagic Colitis followed by severe 

Hemolytic Uremic Syndrome in serious cases. The populations most susceptible to 

EHEC infection are the young and elderly and the immune-compromised [38] 

1.3.c Citrobacter rodentium 

Citrobacter rodentium targets mice as a natural host and infection causes high mortality 

transmissible murine colonic hyperplasia in some mouse strains, detectable within 5-14 

days post infection [43]. Infection is not limited to the intestines and the pathogen may 

sometimes cause opportunistic effects in other organs and tissues. Colonization of the 

caecum is observed within a few hours of high dose infection (108 - 109) progressing to 

the distal colon within a few days and clearance in 21-28 days [44]. Due to the ability to 

easily modify the strain genetically, it is employed in mice as an in vivo model for A/E 

pathogens to consider infection from the perspective of both the pathogen and of the 
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host immune response [43, 45-50].  More importantly, the strain is ideal model for EPEC 

and EHEC as the A/E genes encoded on the conserved LEE pathogenicity island of C. 

rodentium are highly homologous with the EPEC and EHEC genes [51]. 

 

1.4 Virulence factors and traits of Enterohemorrhagic Escherichia coli 

E. coli possess a sizeable collection of virulence factors/traits and the numerous 

strategies they employ to permit successful infection and survival in the host have not 

been fully elucidated. This is particularly true in the case of the dozens of identified 

effector proteins with currently undetermined roles. Classification of those effectors on 

the basis of known functions and properties can be very broad and includes, but is not 

limited to, categories encompassing cell surface adhesion/lesion formation, effector 

delivery/translocation (T3SS), gene regulation, and toxins. Account of some 

representative factors in these categories, their attributes, and involvement in 

pathogenesis follows. 

 

1.4.a Adhesion, Type III Secretion System, and lesion formation 

Colonization for A/E pathogens is dependent on adhesion to the surface of intestinal 

mucosae to overcome mechanical host defense barriers. As the bacterium is propelled 

through the host by peritrichous flagella, environmental cues, such as temperature and 

bacterial signaling, prompt E. coli to present adhesins in the form of surface fimbriae. 

These fimbriae are threadlike protein polymers, which come into contact with the 

intestinal epithelium [52]. Processes involved in A/E lesion formation follow and are 

similar for EPEC and EHEC, though they do not share all of the same adhesin genes. 

The EAF (E. coli adherence factor) plasmid is carried by some EPEC strains, but not 
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EHEC, and encodes a type IV BFP (Bundle forming pilus) [53]. The pilus is required to 

cause diarrhea, yet its role is more significant in the late infection stage for EPEC 

aggregate formation than in initial interaction between the bacterium and host [54-59]. 

EHEC instead encode two fimbrial operons analogous to the LPF (long polar fimbriae) 

of salmonella, lpf and lpfA, which are also not present in EPEC [60].  

 

Contact with the host cell provides the stimulus to induce synthesis of Type III Secretion 

System (T3SS) components. The T3SS is a molecular syringe, structurally similar to 

flagella, found in many gram-negative bacteria and all of the A/E strains [36, 61]. This 

secretion apparatus delivers cytoplasmic bacterial effector proteins directly into the host 

cells [62]. The basal structure of the injectisome consists of two rings creating pores in 

the interior and exterior bacterial membrane [63]. The rings are comprised of over 20 

identified proteins and serve as the foundation for the flexible syringe filament, 

composed of the protein EspA, which extends as a hollow sheath from the bacterium to 

come in direct contact with the host cell [64]. Contact facilitates formation of a pore in 

the host membrane through the action of other translocated proteins including EspB, 

and permits translocation of bacterial effector proteins into the host cell [65, 66]. Tir is 

next delivered through the EspA filament whereupon it embeds into the host membrane 

and acts as a receptor to the Intimin adhesin expressed on the bacterial surface [67]. 

Interaction between Tir and Intimin prompts a shortening of the EspA filament, 

ultimately drawing the E. coli into intimate contact with the host cell [68, 69]. Signal 

transduction pathways are correspondingly activated leading to host cytoskeleton 

rearrangement and brush border destruction. The cytoskeletal alterations bring about 
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formation of a pedestal-like protrusion from the host cell surface, on which the 

bacterium rests. Delivery of effector proteins continues via translocation through the 

T3SS syringe. Of note, EspB and EspD translocated proteins both function in and are 

required for subsequent A/E lesion formation [70-72]. 

 

1.4.b Regulation 

Expression of all virulence-associated genes in E. coli is not constitutive, making 

regulation of gene expression crucial to proper production and coordination of virulence 

factors. The LEE encoded regulator (Ler/orf1), is a DNA binding protein homologous to 

members of the histone-like H-NS family of proteins known for their ability to repress 

gene expression [57, 58, 73, 74]. Ler is responsible for regulation of all genes central to 

formation of A/E lesions [74, 75]. In the absence of activating signals, H-NS is bound to 

the promoter regions of the LEE operons and silences or blocks transcription of 

virulence genes.  The bacterium receives environmental cues that lead to induction of 

Ler transcription. Once sufficient levels of Ler are available it displaces H-NS, thus 

freeing the promoters for ribosome binding and protein transcription [75-79]. Direct 

regulation of Ler is maintained by two other LEE encoded proteins of opposing function: 

GrlA and GrlR.  GrlA is a positive regulator of Ler transcription and is unbound during 

the stationary phase when induction of LEE encoded genes is necessary [2, 80, 81]. 

During the growth phase GrlR levels rise when it acts as a negative regulator of Ler 

transcription by binding to GrlA and preventing upregulation of LEE expression [81-83].  
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1.4.c Toxins 

Hemolysin is an example of an incompletely characterized, but well conserved, toxin 

found in a population of enterohemorraghic E. coli serotypes [84]. The EHEC hemolysin 

is structurally similar to the prototypical RTX pore-forming toxins found in Gram-

negative microorganisms and thought to increase iron availability through lysis of host 

red blood cells [85-87]. Stx is a notably more significant E. coli virulence factor, as 

shiga-like toxin production is a required characteristic of STEC E. coli pathotypes. 

Shigella dysentariae produces the “true” shiga toxin, whereas E. coli strains produce 

one of the highly homologous bacteriophage encoded forms Stx-1 or Stx-2 [9, 88]. The 

Stx receptor in humans is the glycolipid globotriaosylceramide (Gb3), which is 

concentrated primarily on renal epithelium, but is also found in the CNS on both 

neurons and endothelial cells [88-90]. Both locations seem to correlate well with 

associated symptoms of HC and HUS (renal) and the accompanying neurological 

symptoms in severe cases [90]. The ability of Stx-2 to increase the Gb3 receptor in the 

CNS is an additional means of increasing the observed neurotoxicity in such cases [91]. 

Stx, an AB5 toxin, is composed of a single A subunit and B subunit pentamer. The B 

pentamer binds Gb3 and the A subunit is internalized by pinocytosis where it is cleaved 

in two. The A subunit acts as N-glycosidase and, similarly to the ricin toxins function, 

host protein synthesis is halted as a result of cleavage of an adenine from the 28S RNA 

of the 60S ribosome  [92-95]. Asymptomatic carriage and shedding of E. coli by 

reservoir species is therefore likely due to the absence of this receptor in those 

organisms [96]. 
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1.4.d NleF 

Non-LEE encoded effector F (NleF) was discovered in a proteomic screen of EHEC and 

C. rodentium targeted at identification of novel secreted proteins [2].  NleF is found 

more prevalently in E. coli outbreak lineages and those leading more frequently to 

human disease and development of HUS [97]. In the EHEC screen more than 20 

proteins were distinguished as likely T3SS substrates [2]. Nles are not found in the 

locus of enterocyte effacement pathogenicity island, but rather are encoded in alternate 

PAIs and cryptic prophages. NleF is an 189 amino acid (21.4 kDa) protein encoded on 

the same PAI, O-island 71, as the previously characterized effector NleA. Sequencing 

demonstrated that homology to proteins of known function is absent, but sequence 

similarity was found with some uncharacterized proteins from Yersinia 

pseudotuberculosis (27 %, YPTB2540 and YpseI_02001372) and Shigella dysenteriae 

(58 %, hypothetical protein SDY_P223). NleF amino acid identity of 100 % is shared 

between O157:H7 and other strains including EHEC Sakai and EPEC E2348/96, while 

an 85 % homology exists with the Citrobacter rodentium [98].  

 

Much work has already been done to begin exploring the role played by NleF in 

infection. Initial recognition of NleF in the secreted proteins fraction of a super secreting 

sepL deletion mutant, combined with additional verification by comparative Western Blot 

of wild-type and T3SS mutant infection of host cells, identifies it as a secreted and 

T3SS-dependent translocated effector protein [2, 98, 99]. Validation through a TEM-1 

based assay confirmed this translocation occurs. Previous studies determined amino 

acids 1-60 were sufficient to foster translocation and have also established NleF does 

not influence adherence to host cells or pedestal formation, nor was it found to disrupt 
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protein secretion or trafficking in the same manner as NleA [42, 98, 100]. Nonetheless, 

a contribution to colonization was evident in both competitive co-infection of mouse 

models with C. rodentium and gnotobiotic piglet infection with EHEC [98]. However, 

though all of this together maintains NleF is an effector protein playing a role in 

virulence, the host targets and specific function in pathogenesis have yet to be 

identified.  

 

1.5 The mammalian protein secretory pathway: processes, components, and 

subversion. 

Many points throughout the host protein trafficking/secretory pathways involving transit 

and processing have been targeted and exploited by bacterial pathogens, making this 

an area of great interest in the study of host-microbe interactions. Salmonella, for 

instance, alter recruitment of exocytic transport vesicles to Salmonella-containing 

vacuoles presumably to restrict antigen presentation and immune recognition [101]. 

Legionella spp. provide a nutrient source through recruitment of ER-derived vesicles to 

phagosomal membranes [102]. Interaction with host endocytic machinery by S. enterica 

effectors provides a modified phagosome-like vacuole wherein the survival and 

replication are protected from host defenses [103, 104]. Intracellular replication is 

manipulated by Brucella abortus use of the ER GTPase SarI [105]. Of particular interest 

in E. coli research, binding of Sec24 by NleA results in inhibition of COPII-dependent 

ER protein export [100].  

 

1.5.a From protein synthesis to secretion and pathogen manipulation 

The secretory pathway is an integral part of newly synthesized protein transit to either 
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target destinations within the cell or release from the cell through secretion. Proteins are 

generally synthesized in the cytoplasm and incorporated 20-30 amino acid hydrophobic 

signal sequences target them to the ER. Entry into the ER lumen may occur either co-

translationally or post-translationally [106, 107]. Co-translational ER entry depends on 

recognition and binding of the N-terminal signal sequence hydrophobic core soon after 

translation commences. This is achieved by the signal recognition particle (SRP), which 

then targets the newly synthesized protein through binding to the SRP receptor 

embedded in the ER membrane and threads the peptide through the translocon co-

translationally [108, 109]. For post-translational delivery this occurs after the complete 

peptide has been synthesized and released from the ribosome. Upon entry into the ER 

lumen, folding of the proteins begins and, as maturation proceeds, they are further 

altered co- and post-translationally through addition of modifications [110-113]. 

Modifications include formation of di-sulfide bridges, hydroxylation of prolines, and 

attachment to the peptide of molecules such as hydrophilic sugar moieties (N-linked 

glycosylation) [114]. Once properly folded, proteins continue on to their target locations. 

This involves packaging into COPII-coated transport vesicles and budding from the ER 

at exit sites (ERES) [110-113, 115-117]. Transport vesicles travel anterograde along 

microtubule networks to the Golgi [117]. In the Golgi additional post-translational 

modifications, such as sulfation and phosphorylation, may be incorporated into the 

mature proteins [118]. Moving in a cis-to-trans direction as cisternae are formed and 

travel to the trans side for release/dissolution, cargo proteins are gradually delivered to 

the Trans Golgi Network (TGN).  There they are packaged into new vesicles targeted to 

their final post-Golgi destinations whether they be intracellular (lysosome/endosome) or 
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extracellular (PM or extracellular space) [119-122].  

 

1.5.b The p24 protein family: structure and function. 

Members of the p24 protein family are involved in early processes of the secretory 

pathway at the ER-Golgi interface [110-113]. The family is comprised of ~24 kDa type-I 

transmembrane proteins divided into four subfamilies: α - δ [123]. Shared structural 

characteristics of the family including an extracellular or lumenal N-terminus, an N-

terminal disulfide bridge containing a Golgi dynamics domain (GOLD), a single 

transmembrane domain, a coiled-coiled region and a 13-20 residue cytoplasmic tail 

[123-125]. Functionally, members are thought to act principally as bidirectional transport 

cargo receptors between the ER and Golgi. Other functions and localization to later 

compartments have also been proposed including a role in COPI vesicle 

biogenesis/anterograde transport, intracellular membrane organization and protein 

quality control [110-113, 123, 126-130]. COPI and COPII binding motifs are found in the 

cytoplasmic tail region and are highly conserved [125]. Family members occur primarily 

as monomers or as dimers through interaction between the coiled-coil regions and 

dimerization dependent movement of heteromeric complexes between secretory 

pathway subcompartments has been shown to occur continuously [123, 126, 131-143]. 

As plentiful constituents of transport vesicles and ER/Golgi membranes, p24 proteins 

are widely distributed in the cell and are therefore potential targets for sabotage by 

pathogens. 
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1.5.c Tmp21 

Tmp21 (p23/TMED10), a 219 amino acid integral type I transmembrane protein, is an 

integral receptor for the COPI-vesicle coat and member of the p24 family of proteins 

[144]. The 12 amino acid cytoplasmic tail contains a conserved ER export FF motif near 

the Transmembrane Domain (TD) and a C-terminal KKLIE motif.  Similarity of this motif 

to the KKXX ER retention and retrieval motif, also known to bind COPI, indicates Tmp21 

as a probable COPI receptor [125, 135, 136, 143, 145-152]. KKLIE motif mutation 

results in loss of COPI binding, but no alteration in Tmp21 function. Localization is 

altered by KK to SS substitution resulting in abrogation of PM localization. Interaction 

with other p24 family members plays an additional role in localization as evidenced by 

variation in localization when Tmp21 is co-expressed with different members [141]. 

Functions are believed to include p24 family characteristic involvement in vesicle 

formation, cargo transport, and quality control [123, 126, 134-136, 153-156]. 

Localization is found mainly in the Vesicular Tubular Clusters, which comprise the 

intermediate compartment of from the ER to the Golgi [115, 157-159]. Trafficking of 

Tmp21 from the Intermediate Compartment (IC) to the Golgi is accomplished through 

use of microtubule-dependent vesicular tubular transport complexes [157, 160, 161]. 

However, additional studies have identified other Tmp21 localizations and more 

extensive functional roles, such as PM localized regulation of gamma secretase 

cleavage as a compent of the presenilin complex and strong induction of apoptosis 

through association with PCK-δ in the LNCap prostate cancer cell line [162, 163].  

  



 

 18 

 

 

 

 

 

 

 

 

Chapter 2   

MATERIALS AND METHODS 



 

 19 

2.1 Bacterial Strains, Cell Culture, and Infection 

The bacterial strains and plasmids used in this study are described in Table 1 and Table 

2. Oligonucleotide sequences for plasmids constructed for this study are in Table 3. 

HeLa cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10 % fetal bovine serum (FBS). Cells were transfected using 

TransPass HeLa (England Biolabs). Bacteria were cultured in Luria-Bertani broth (LB) 

at 37 °C either overnight with shaking for all cultures except those intended for infection, 

which were incubated 18 h without shaking. Overnight LB cultures were diluted 1:10 into 

DMEM, followed by a further incubation for 3 h at 37 °C, 5 % CO2. Cell culture media 

was replaced with DMEM prior to infection and bacteria were added at a multiplicity of 

infection of 25-50. 

 

2.2 Protein Purification 

NleF and Tmp21 were cloned into pFLAG-CTC and pET28a, respectively, and 

expressed in E. coli BL21(DE3). Bacterial cultures were grown to an OD600 of 0.2~0.5 

and then induced with 1 mM IPTG for 2 h. Cells were pelleted for 10 minutes 5,000 g at 

4 ˚C. NleF-FLAG pellets were resuspended in 10 ml 1X STE per 500 ml induced culture 

then lysed by sonication on ice 5X at 50 % for 30 seconds pulses with 30 second holds 

between each pulse. Lysate was transferred to 1.5 ml microcentrifugue tubes in 0.9 ml 

aliquots and kept on ice.  To each tube 100 µl of detergent solubilization buffer, diluted 

1:1 in 1X STE, was added and mixed by gentle inversion followed by a 1 hr incubation 

with inversion every 15 minutes. Lysates were pelleted for 15 minutes at 12,000 g in a 4 

˚C  microcentrifuge. Supernatants were transferred to fresh 1.5 ml microcentrifuge tubes 
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and 100 µl detergent neutralization buffer added to each followed by an addition 1 hour 

incubation with mixing by inversion every 15 minutes. Treated lysates were combined 

and to 200 µl of ANTI-FLAG M2 resin for every 500 ml original culture then incubated at 

4 ˚C overnight. Loaded resin was pelleted for 5 minutes 2,000 g at 4 ˚C the washed 5X 

with 1X STE. Protein was eluted with 500 µL 0.1M glycine HCl pH 3.5 per elution by 

nutation at room temperature for 10 minutes for 3 consecutive elutions. Elutions were 

stored at -20 ˚C and concentrations verified by Bradford assay and SDS-PAGE gel.  

Tmp21-His pellets were resuspended in 10 ml His-tag denaturing lysis buffer (100 mM 

NaCl, 20 mM Tris-Hcl pH 8.0, 6 M guanidine) per 100 ml induced culture then lysed by 

sonication on ice 5X at 50 % for 30 seconds pulses with 30 second holds between each 

pulse. Lysate was clarified by centrifugation for 15 minutes at 12,000 g in a 4 ˚C 

centrifuge. Supernatant was transferred to fresh pre-chilled tube containing 500 µl per 

250 ml original culture of pre-washed Ni-NTA agarose and incubated at 4 ˚C overnight. 

Agarose was pelleted for 5 minutes 2,000 g at 4 ˚C the washed 3X with His-Tag 

Denaturing Wash Buffer (100 mM NaCl, 20 mM Tris-Hcl pH 8.0, 6 M guanidine, 10 mM 

imidazole). Protein was eluted with 1.5 ml Elution Buffer 1 (100 mM NaCl, 20 mM Tris-

Hcl pH 8.0, 6 M guanidine, 100 mM imidazole) by nutation at room temperature for 10 

minutes. Agarose was pelleted for 5 minutes 2,000 g at 4 ˚C and the supernatant 

retained as elution 1. Two additional elutions for 10 minutes at room temperature using 

increasing concentration of imadazole (300 mM and 500 mM) were retained as elutions 

2 and 3. Elutions were dialyzed overnight at 4 ˚C  in sodium phosphate buffer  

(25 mM sodium phosphate pH 7.5, 1 mM DTT, 5 % glycerol) then stored at -80 ˚C. 

Elution concentrations were verified by Bradford assay and SDS-PAGE gel.  
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TABLE 1. STRAINS USED IN THIS STUDY. 
Strain or plasmid Genotype or description Reference    
Yeast strains      
AH109  S. cerevisiae MATa,trp1-901,leu2-

3,112,ura3-52,his3-
200,gal4D,gal80D,LYS2::GAL1UAS-
GAL1TATA-HIS3,GAL2UAS-GAL2TATA-
ADE2,URA3::MEL1UAS-MEL1TATA-lacZ 

Clontech    

Y187 S. cerevisiae MATa, ura3-52,his3-
200,ade2-101,trp1-901,leu2-
3,112,gal4D,met-
,gal80D,URA3::GAL1UAS-GAL1TATA-lacZ 

Clontech    

yPRH-5 HeLa cDNA library in Y187 Clontech    
yPRH-11 AH109/ nleF-Gal4DBD-Myc This study    
Bacterial strains      
EHEC EDL933 wt E. coli O157:H7 isolate Centers for 

Disease 
Control 

   

BL21(DE3) E. coli F- ompT hsdSB (rB
-mB

-) gal dcm 
(DE3) 

Novagen    

BL21(DE3)/NleF-FLAG NleF-FLAG This study    
BL21(DE3)/Tmp21-His Tmp21-His This study    
BL21(DE3)/NleF-
FLAG/Tmp21-His 

NleF-FLAG + Tmp21-His coexpression     

XL1-Blue MRF’ Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 
endA1 supE44 thi-1 recA1 gyrA96 relA1 
lac   [F′ proAB lacIqZΔM15 Tn10 (Tetr)] 

Stratagene    
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TABLE 2. PLASMIDS USED IN THIS STUDY. 
Plasmid Genotype or description Reference    
pGBKT7 Yeast Two-hybrid bait plasmid Clontech    
pGADT7 Yeast Two-hybrid library plasmid Clontech    
nleF-Gal4DBD-Myc NleF-Gal4-Myc bait plasmid This study    
pBT Bacterial Two-hybrid bait plasmid Stratagene    
pTRG Bacterial Two-hybrd target plasmid Stratagene    
sepL-pBT pBT λ–cl fused to sepL     
NleF-pBT pBT λ–cl fused to NleF     
sepD-pTRG pTRG RNAPα fused to sepD     
Tmp21-pTRG pTRG RNAPα fused to Tmp21     
CD151-pTRG pTRG RNAPα fused to CD151     
PAIP2a-pTRG pTRG RNAPα fused to PAIP2     
IFITM1-pTRG pTRG RNAPα fused toIFITM1     
pFLAG-CTC Bacterial FLAG fusion protein expression Sigma    
NleF-pFLAG-CTC NleF-FLAG  [98]    
pET28a Bacterial hexahistidine fusion protein 

expression 
Novagen    

Tmp21-pET28a Tmp21-His This study    
VN Venus fluorescence protein (AAs 1-173) This study    
VC Venus fluorescence protein (AAs 155-238) This study    
VN-actin Venus 1-173 fused to human actin This study    
VC-actin Venus 155-238 fused to human actin This study    
VN-NleH1 Venus 1-173 fused to NleH1     
VN-NleF Venus 1-173 fused to NleF This study    
VC-NleF Venus 155-238 fused to NleF This study    
VC-NleF (1-162) Venus 155-238 fused to NleF (AAs 1-162) This study    
VC-NleF (1-117) Venus 155-238 fused to NleF (AAs 1-117) This study    
VC-NleF (1-84) Venus 155-238 fused to NleF (AAs 1-84) This study    
VC-NleF (1-65) Venus 155-238 fused to NleF (AAs 1-65) This study    
VN-Tmp21 Venus 1-173 fused to Tmp21 This study    
VC-Tmp21 Venus 155-238 fused to Tmp21 This study    
VC-Tmp21 (1-180) Venus 155-238 fused to Tmp21 (AAs 1-180) This study    
VC-Tmp21 (1-150) Venus 155-238 fused to Tmp21 (AAs 1-150) This study    
VC-Tmp21 (1-124) Venus 155-238 fused to Tmp21 (AAs 1-124) This study    
VC-Tmp21 (1-63) Venus 155-238 fused to Tmp21 (AAs 1-63) This study     
pEGFP-VSVG VSVG in pEGFP-N1  [164]    
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TABLE 3. OLIGONUCLEOTIDES USED IN THIS STUDY. 
Primer Sequence (5’-3’) 

NleF XhoI-f -FLAG GC2TCGAGATGT2AC2A2CA2GTG2T2C 

NleF KpnI-r-FLAG C2GCG2C2GCTC2ACAT2GTA3GATC2  

NleF EcoRI-f-BT GATCGA2T2CGATGT2AC2A2CA2GTG2 

NleF XhoI-r-BT GATC2TCGAGTCATC2ACAT2GTA3G 

NleF NdeI-f-pGBKT7 G2C3ATATGATGT2AC2A2CA2GTG2 

NleF EcoRI-r-pGBKT7 G2C2GA2T2CTCATC2ACAT2GTA3GATC2 

NleF XhoI-f-HA GC2TCGAGATGT2AC2A2CA2GTG2T2C 

NleF NotI-r-HA C2GCG2C2GCTC2ACAT2GTA3GATC2 

NleF 1-162 NotI-r-HA C2GCG2C2GCT2C2ACGAG2CAT3CAT2G 

NleF 1-117 NotI-r-HA CGCG2C2GC2AGA8GATC3TGATATA2C 

NleF 1-84 NotI-r-HA C2GCG2C2GCA3TACACTAT3CTCT2ATC2 

NleF 1-65 NotI-r-HA C2GCG2C2GCA2T3C2TCA2GCTCAT2AT2AT3C 

NleF 1-33 NotI-r-HA C2GCG2C2GCAT2A2GCTCACT2ACTGAT2C3G2 

SepL EcoRI-f-BT GATCGA2T2CGATG2CTA2TG2TAT2G 

SepL EcoRI-r-BT GATC2TCGAGTCACATA2CATC2TC2 

Tmp21 BamHI-f-His G4ATC2ATGTCTG2T3GTCTG2C 

Tmp21 XhoI-r-His G2CTCGAGCTCA2TCA2T3CT2G2C2 

Tmp21 XhoI-f-HA GC2TCGAGATGTCTG2T3GTCTG2C3 

Tmp21 NotI-r-HA C2GCG2C2GC2TCA2TCA2T3CT2G2C2 

Tmp21 1-180 NotI-r-HA C2GCG2C2GC2TCGT2G2TATCACGCATCTC2 

Tmp21 1-150 NotI-r-HA C2GCG2C2GC2TCTAC2TCTA2TG2T3GAGC 

Tmp21 1-124 NotI-r-HA C2GCG2C2GCTAG2ATCACGAGT2G2TCAG 

Tmp21 1-63 NotI-r-HA C2GCG2C2GC2TG2TCG2AGATCTCGTACG 
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2.3 Protein Pull Down Assay.  

Purified NleF-FLAG and Tmp21-His (~20 µg), brought up to a final volume of 250 µl with 

RIPA buffer (150 mM NaCl, 50 mM Tris pH 8.0, 0.4 mM EDTA, 10 % glycerol, 1 % 

Nonident P-40 (NP-40)), were applied to 50 µl ANTI-FLAG M2 resin and incubated with 

rotation for 5 h at 4 °C. Resins were washed for 10 minutes three times with cold 1X 

PBS pelleting the resin for 5 minutes of 2,000 g at 4 ˚C between each  wash. Washed 

resin was resuspended in 30 µl SDS-PAGE buffer. The samples were separated by 

SDS-PAGE on a 12 % gel and transferred to nitrocelllulose membrane for 1 hour at 100 

V. Membranes were blocked with LiCor Odyssey blocking buffer for 1 hour then 

interrogated for the presence of His-tag with mouse-α-FLAG and rabbit-α-His 1° 

antibodies (1:1000) overnight at 4 ˚C. Membranes were washed for 10 minutes 3X at 

room temperature in PBS-tween then incubated for 30′ with Alexa Fluor 680/800 goat-α-

rabbit and goat-α-mouse 2° antibodies (1:10000) at room temperature. After a final 

PBS-tween wash for 20’, membranes were imaged with an Odyssey infrared imaging 

system (Li-Cor). 
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  2.4 Yeast Two-Hybrid Screen.  

NleF was cloned into the yeast two-hybrid GAL4 DNA binding domain vector pGBKT7 

to generate the ‘bait’ plasmid. The NleF bait was used to screen a pre-transformed 

human HeLa cDNA library for proteins interacting with NleF according to the BD 

Matchmaker Pre-transformed Libraries User Manual (Clontech).  

To begin, 50 ml of SD/-Trp broth is inoculated with a fresh 2-3mm colony of the bait 

strain and incubated at 30 °C to an OD600 of 0.8. The cells are pelleted at 1000 x g for 

5 min and the pellet resuspended in 4-5 ml of SD/-Trp to a concentration of  > 1x108  

cells per ml. Then 1 ml of library strain is combined with 5 ml of the bait strain in a 2 L 

flask to which 45 ml of 2X YPDA liquid medium containing 50 ug/ml kanamycin is 

added. The culture is incubated at 30 °C for 20–24 hr. at 30–50 rpm. The culture is 

monitored and pelleted at 1000 x g for 10 minutes once the presence of zygotes is 

confirmed. The pellet is washed in 50 ml 0.5X YPDA containing 50 µg/ml kanamycin 

then pelleted again at 1000 x g for 10 min then resuspended in 10 ml of 0.5xYPDA/Ken 

medium. From the mated culture 100 µl of 1/10, 1/100, 1/1,000, 1/10,000 dilutions on 

are spread on SD/-Trp, SD/-Leo, and SD/-Leo/-Trp (DDO) plates then incubated at 30 

°C for 3–5 days. The remaining culture is plated on SD/-Ade/-His/-Leo/-Trp/X-α-Gal 

(QDO+X-α-Gal) plates and incubated at 30 °C for 3–8 days.  

Mating efficiency is calculated as  

 

 

Positive interactions are further analyzed to verify that the interactions are genuine. 
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Yeast clones, containing library plasmids encoding human proteins interacting with 

NleF, were purified by restreaking single colonies on QDO/+X-α-Gal plates. Positive 

blue colonies grow in 2-4 days and are retested for growth phenotypes. Streaking 

should be performed 2–3 times on DDO/X-α-Gal, each time picking a single blue 

colony, to increase chances of rescuing the prey plasmid. Yeast cells grown on QDO 

were used for plasmid rescue to identify the gene responsible for the positive 

interaction. Since the bait is cloned in pGBKT7, the prey plasmid is selected in LB plus 

100 µg/ml kanamycin. Protein interactions in yeast are verified by cotransformation of 

100 ng of each of the following pairs of vectors: 

pGBKT7/Bait + Prey in pGADT7 
Empty pGBKT7 + Prey pGADT7 

and selection on  DDO + X-α-Gal and QDO + X-α-Gal plates with incubation for 3–5 

days at 30 °C. 

Genuine Positives were indicated when blue color was only generated on both selection 

mediums with bait and candidate prey present. Empty bait vector cotransformed with 

target preys results in white colonies (DDO + X-α-Gal) or no growth (QDO + X-α-Gal) 

when bait is not required for reporter gene activation. 

Proteins responsible for the interaction were sequenced for identification and β-

galactosidase activity was calculated using equation 1:

, where t refers to the incubation time  [165] and v 

refers to the concentration factor.  
€ 

β − gal = (1000*OD420) /(t *v *OD600)
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2.5 Bacterial Two-Hybrid Assay.  

To verify the proteins identified as interacting partners of the EHEC EDL933 protein 

NleF subunit, the BacterioMatch two-hybrid system assay was performed with the 

constructed pBT-NleF. The interactions were evaluated based on the transcriptional 

activation of the ampicillin resistance reporter gene. Firstly, we transformed 100 µl of 

XL1-Blue MRF’ reporter strain with 200 ng of pBT-NleF plus 200 ng of a pTRG 

mammalian target plasmid containing Tmp21, CD151, IFITM1, or PAIP2α. 

Transformations were first plated on dual selective screening plates containing 12.5 

mg/ml tetracycline and 25 mg/ml chloramphenicol to verify successful co-transformation 

with both bait and target plasmids. As an interaction positive control, a known 

interacting protein pair pBT-sepL and pTRG-sepD were used to cotransform the 

reporter strain and transformation of NleH1-HA-VN was included as a positive control 

for carbenicillin resistance. pTRG empty vector and recombinant pBT cotransformation 

served as a negative control. All transformants were selected on 200 mg/ml carbenicillin 

plates and incubated at 37 °C for 24 h. Growth on carbenicillin plates indicates protein–

protein interaction. A schematic of the procedure is presented in Figure 1. 
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Figure 1. Bacterial Two-Hybrid Assay Schematic. 

In pBT the first protein ('bait') is fused to full-length  repressor ( cI), which binds 

upstream of a weak promoter to the  operator. The second plasmid fuses the other 

protein (‘target’) to the RNA polymerase -subunit  N-terminal domain (RNAP ). Upon 

transfection into Xl1-Blue MRF’ E. coli, interaction between bait and target proteins will 

permit RNA polymerase binding to the weak promoter and subsequent transcription of 

the reporter gene conferring new resistance to carbenicillin. 
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2.6 Immunofluorescent detection of co-localization. 

HeLa cells were seeded in 24-well cell culture plates (TPP) onto 12 mm glass cover 

slips and cultured with in RPMI-1640 supplemented with 10 % FBS to a confluence of 

40-50 %. Cells were transfected with 1 µg Tmp21-HA using Transpass HeLa 

transfection reagent (New England Biolabs). Plasmids was mixed with 50 µl Opti-MEM 

and 1 µl TransPass HeLa then incubated at room temperature for 20-30 minutes. 

Reaction mixtures were added drop wise to cells and plates were gently swirled. 

Transfections were incubated for 1 hour at 37 °C in 5 % CO2 then 500 µl of complete 

medium was added to each well and plates were returned to the incubator. Cells were 

infected with induced Citrobacter/pNleF-FLAG 24 hours post-transfection for 4 hours. 

Cover slips were washed and cells permeabilized with permabilization buffer (1 % goat 

serum, 0.2 % saponin, 1X PBS) for 10 minutes at room temperature. Samples were 

incubated with rabbit-α-NleF (1:250) and mouse-α-HA (1:1000) for 2 h at room 

temperature. Cells were washed 3X 10 minutes with 1X PBS then probed with Alexa 

Fluor-conjugated secondary antibodies, goat-α-rabbit 488 and goat-α-mouse 568, for 1 

h. Coverslips were mounted in Mowiol and samples were visualized using Eclipse 80i 

fluorescence or Eclipse C1Si confocal microscopes (Nikon).  
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2.7 Bimolecular Fluorescence Complementation Plasmid construction and Assay. 

HeLa cells were seeded in 24-well cell culture plates (TPP) onto 12 mm glass cover 

slips and cultured with in RPMI-1640 supplemented with 10 % FBS to a confluence of 

40-50 %. Cells were co-transfected with two BiFC plasmids (250-500 ng each) 

representing NleF and Tmp21 truncations cloned as fusions to the N- or C-terminus of 

Venus eYFP (designated VN and VC) using Transpass HeLa transfection reagent (New 

England Biolabs). To this end, plasmids were mixed with 50 µl Opti-MEM and 1 µL 

TransPass HeLa then incubated at room temperature for 20-30 minutes. Reaction 

mixtures were added drop wise to cells and plates were gently swirled. Transfections 

were incubated for 1 hour at 37 °C in 5 % CO2 then 500 µl of complete medium was 

added to each well and plates were returned to the incubator. Cover slips were washed 

24 hours post transfection and cells permeabilized with permabilization buffer (1 % goat 

serum, 0.2 % saponin, 1X PBS) for 10 minutes at room temperature. Cover slips were 

mounted onto glass slides with mowiol 4-88 mounting medium. The fluorescence 

derived from BiFC (due to effector-host protein binding) was visualized using the 

Eclipse 80i fluorescence microscope (Nikon) and quantified using a fluorescence plate 

reader with appropriate filters (excitation: 500/20 nm; emission: 535/30 nm). A 

schematic of the procedure is presented in Figure 2. 
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Figure 2. Bimolecular Fluorescence Complementation Assay Schematic. 

The proteins of interests are attached to either N-terminal or C-terminal fusions with the 

split Venus fragments, referred to as VN and VC respectively, with a flexible linker 

region. Here VC is shown fused to the first protein ('bait') and VN to the second protein 

(‘target’). Upon transfection into HeLa cells, association between bait and target 

proteins will permit reconstitution of the complete Venus protein and subsequent 

emission of fluorescence.  

HeLa

Fluorescence indicates interaction by venus protein reconstitution.

VC Bait VN

Bait

VNVC
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2.8 Immunoblotting.  

HeLa cells were cultured in DMEM supplemented with 10 % FBS and co-transfected 

with 500–1000 ng plasmid. Cells were lysed in RIPA buffer (150 mM NaCl, 50 mM Tris 

pH 8.0, 0.5 % sodium deoxycholate, 0.1 % SDS, 1 % Nonident P-40) and incubated on 

ice for 30’. Lysates were clarified in a 4 ˚C centrifuge for 5 minutes at 2000 x g. 

Supernatants were retained for analysis. Samples were resolved on 12 % gels by SDS-

PAGE for 1 hour at 200 V. Proteins were transferred to nitrocellulose membranes for 1 

hour at 100 V and blocked with Li-Cor Odyssey blocking buffer for 1 hour then 

interrogated for the presence of HA-tag with mouse-α-HA 1° antibodies (1:1000) 

overnight at 4 ˚C to indicate HA-tagged VN or VC expression. Membranes were washed 

for 10 minutes 3X at room temperature in PBS-tween then incubated for 30′ with Ride 

680 goat-α-mouse 2° antibody (1:10000) at room temperature. After a final PBS-tween 

wash for 20’, membranes were imaged with an Odyssey infrared imaging system (Li-

Cor). 
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2.9 VSVG Protein Trafficking Assay.  

HeLa cells were grown on 12 mm glass coverslips in 24-well tissue culture plates (TPP) 

to a confluence of 40 % then transfected with Transpass HeLa (New England Biolabs). 

For transfection only experiments, cells were transfected in 4 replicates with 750 ng 

VSVG-ts045-YFP alone or co-transfected with 1 µg NleF-HA-VN. After 24 h, one 

replicate was left at 37 ˚C while the other replicates were transferred to 19 ˚C, 32 ˚C, or 

40 ˚C incubators. Three hours after temperature shift, cells were rinsed 3 times for 10 

minutes with 1X cold PBS then fixed in 3.7 % formaldehyde for 5 minutes at room 

temperature. Cells were then permeabilized in PBS supplemented with 0.2 % saponin 

and 1 % goat serum. Samples were blocked with 10 % goat serum in 1X PBS and 

incubated with primary antibodies for 1 h at room temperature. Cells were washed 3X 

10 minutes with 1X PBS then probed with Alexa Fluor-conjugated secondary antibodies 

for 1 h. Coverslips were mounted in Mowiol and samples were visualized using Eclipse 

80i fluorescence or Eclipse C1Si confocal microscopes (Nikon). A schematic of the 

procedure is presented in Figure 3. 
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Figure 3. VSVG Trafficking Schematic. 

The ts045VSVG (VSVG) follows a known localization pattern based on temperature 

induced conformational changes. Under physiological conditions (37 °C), ts045VSVG 

trafficks through the cell moving from Endoplasmic Reticulum to the Golgi and Trans 

Golgi Network, ultimately reaching the Plasma Membrane. (A) When maintained at 40 

°C, the protein is reversibly misfolded resulting in retention in the ER. (B) Temperature 

shift to 19 °C permits refolding and transit to the TGN. (C) Final temperature shift to 32 

°C allows the ultimate transfer to the PM. 
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2.10 Apoptosis Assay. 

Human colorectal adenocarcinoma SW480 cells were seeded on 6-well culture plates 

for 24 hours for a final confluence of 40 %. To test for the influence of NleF presence on 

induction of apoptosis, a subset of samples were transfected with 2 µg/well NleF-HA 

and incubated for an additional 48 hrs. The cells were then trypsinized in 100 µl 

Trypsin/EDTA (0.25 % (w/v) trypsin, 0.2 % (w/v) EDTA), 10 µl of each sample was 

retained for immunoblot verification of NleF expression and the remaining sample 

brought up to 1 ml in SFM and counted.  For staining 1×106 cells of each sample were 

centrifuged down at 2000 x g for 4 minutes. The cells were washed with 1X Annexin V 

Binding Buffer (0.01 M HEPES, pH 7.4; 1.4 M NaCl; 2.5 mM CaCl2) and centrifuged 

again at 2000 x g for 4 minutes, and this was repeated three times. The cell pellets were 

resuspended in 100 µl Annexin V binding buffer, and 5 µl Annexin V-PE solution (BD 

Pharmingen, CA, USA) was added. The cells were incubated at room temperature for 

15 minutes in the dark then washed 2X and resuspended in 400 µl binding buffer. The 

cells were analyzed using a BD LSR II flow cytometer (Becton Dickinson). The signal 

was detected in the 488 nm channel and data analysis was conducted by using the 

program FACSDiva (Version 6.1.2, Becton Dickinson). 
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3.1 Yeast-Two Hybrid Screen and of NleF Mammalian Binding Partners. 

To seek targeted mammalian host proteins, we performed a yeast two-hybrid library 

screen to identify NleF-associated proteins. Using a Gal4-DNA-binding domain (BD)-

fused to NleF as bait, we identified a collection of mammalian proteins as NleF binding 

partners. Yeast harboring the NleF bait and the host protein Tmp21/TMED10 grew 

under restrictive growth conditions and expressed β-galactosidase (Fig. 4). Additional 

host proteins were identified as NleF-associated including CD151, IFITM1, and PAIP2α 

(data  not shown), but we chose to focus on Tmp21 for this study. 

 

3.2 Bacterial-Two Hybrid Verification of NleF Mammalian Binding Partners.  

We conducted a bacterial two-hybrid screening assay to verify the potential NleF 

interactions identified by the yeast two-hybrid screen. In the bacterial two-hybrid 

screening, we verified interaction with four of the proteins identified in the earlier screen, 

including NleF/Tmp21, NleF/CD151, NleF/IFITM1 and NleF/PAIP2α. All interactions and 

controls are indicated in Table 4.  



 

 38 

 
 

 
Figure 4: Measurement of NleF binding to Tmp21 with the β–galactosidase assay.  

NleF was expressed in yeast in the presence or absence of human Tmp21 and β–

galactosidase activity was quantified. Asterisks indicate significantly different β–

galactosidase activity as compared with untransformed yeast (p < 0.05 t-test). 
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TABLE 4. BACTERIAL TWO-HYBRID ANALYSIS OF POTENTIAL PROTEIN-PROTEIN INTERACTION 
BETWEEN NLEF AND IDENTIFIED MAMMALIAN PROTEINS. 

Target Protein 
(pTRG) 

      

 pTRG sepD Tmp21/TMED10 CD151 IFITM1 PAIP2a 
Bait Protein (pBT) empty 2348/69 (human) ORF (human) ORF human ORF) (human ORF) 
pBT - - - - - - 
sepL 2348/69 - + - - - - 
NleF EDL933 - - + + + + 

E. coli XL-1 Blue MRF′ containing the indicated plasmid combinations were assessed 

for positive interactions (+) or no interaction (–). 
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3.3 Co-immunoprecipitation of NleF and Tmp21. 

We expressed and purified recombinant forms of NleF-FLAG and Tmp21-His in E. coli 

BL21(DE3). We then used the purified proteins in pull-down assays, which confirmed 

that IP of NleF-FLAG also pulls down Tmp21-His, indicating the proteins interact directly 

in vitro (Fig. 5).  

 

3.4 NleF and Tmp21 Co-localize. 

To explore an interaction between NleF and Tmp21, we first verified effective detection 

of NleF after translocation into HeLa cells during E. coli infection using an antibody we 

generated against NleF protein in rabbits [98]. The specificity of the polyclonal antibody 

was tested on HeLa cells infected with Citrobacter/pNleF-FLAG. The antiserum 

detected NleF in infected HeLa cells but not uninfected controls (Fig. 6A), indicating 

both specific labeling and successful translocation of NleF.  

HA-tagged Tmp21 was then transfected in HeLa cells cultured in serum-supplemented 

RPMI-1640. After 24 h, cells were infected with induced Citrobacter/pNleF-FLAG for 4 

hours. The intracellular co-localization of NleF and HA-tagged Tmp21 were determined 

by confocal immunofluorescence microscopy. Co-staining for Tmp21 revealed that both 

proteins were detected and colocalized in a perinuclear location, likely the ER/TGN (Fig. 

6B). 
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Figure 5: Tmp21 is immunoprecipitated with NleF.       

Tmp21 was cloned into pET28a to generate His-Tmp21 and was co-expressed with 

NleF-FLAG in E. coli BL21(DE3). NleF was immunoprecipitated and binding of His-

Tmp21 was assessed using immunoblotting.  
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Figure 7: NleF and Tmp21 co-localize in HeLa Cells.      

(A) HeLa cells were infected with Citrobacter/pNleF-FLAG and stained with α-NleF (red) 

to detect NleF translocation.  (B) HeLa cells were transfected with Tmp21-HA then 

infected with Citrobacter/pNleF-FLAG.  Cells were stained with both an α-NleF (green) 

and α-HA (red). 
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3.5 Bimolecular Fluorescent Complementation Analysis supports interaction of 

Nlef and Tmp21. 

We used bimolecular fluorescence complementation (BiFC) assays to ascertain if NleF 

and Tmp21 interact in mammalian cells when co-expressed. Plasmids fusing NleF and 

Tmp21 with eYFP N- and C-terminal fragments VN and VC were constructed and 

expression verified (Fig 7A). N and C-terminal chimeras of actin were included as a 

positive control. Interaction of the proteins was indicated by reconstitution of YFP 

fluorescence upon co-expression. Comparable intensity of fluorescence signal between 

the actin control and the NleF/Tmp21 combinations further corroborates NleF binds to 

Tmp21 in mammalian cells (Fig. 7B). Mapping of the binding domain through co-

expression of NleF and Tmp21 truncation combinations demonstrated amino acids 1-84 

of NleF and 63-180 of Tmp21 are required for interaction. Loss of fluorescence supports 

NleF C-terminal association with the C-terminal region of Tmp21 (Fig 9). 
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Figure 7: Full Length NleF and Tmp21 Expression and Fluorescence Quantification.      

(A) NleF and Tmp21 were cloned into eYFP-VN and eYFP-VC vectors and protein 

expression was verified by immunoblotting. (B) Relative fluorescent intensity after 

cotransfection indicated NleF- and Tmp21-eYFP plasmid combinations (n=3).  Asterisks 

indicate significantly different fluorescence intensity as compared with transfected 

samples (p < 0.05, ANOVA). 
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Figure 8: NleF and Tmp21 Truncation Expression and interaction verification.                   

NleF truncations (A) and Tmp21 truncations (B) were cloned into eYFP-VC vectors 

protein expression was verified by immunoblotting and immunofluorescence. Binding to 

Tmp21-eYFP-VN (A) and NleF-eYFP-VN (B) were measured using BiFC and scored as 

positive (+) or negative (-) in the respective columns.  
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3.6 NleF Alters VSVG-GFP trafficking. 

HeLa cells were transfected with pVSVG-EGFP and VSVG localization determined by 

immunofluorescence microscopy. HA staining revealed cytosolic or PM localization in 

controls, verifying NleF, and not the HA-tag, was responsible for the observed 

localization in samples (Fig 9). As expected, when cells were shifted from 37 ˚C to 40 

˚C, VSVG-GFP fluorescence became localized primarily in the ER, as revealed by its 

colocalization with the ER protein calnexin (Fig. 10). As described in previous studies, 

when cells were subsequently shifted to 19 ˚C, VSVG localization with calnexin was lost 

and VSVG was primarily redistributed to the Golgi as signified by its colocalization with 

the Golgi protein golgin-97 (Fig. 11)  [164]. Incubating cells at 32 ˚C also resulted in the 

expected subsequent shift of VSVG from the Golgi to the PM (data not shown). 

 
After transfecting (Fig. 10) or infecting (Fig. 12) HeLa cells with NleF and performing 

temperature shift experiments, we observed VSVG mislocalization to the ER rather than 

the Golgi at 19 ˚C in 74 % of cells examined (p < 0.05, Fisher’s exact test, Fig. 10). 

Similarly, NleF presence resulted in VSVG being mislocalized to the Golgi at 32 ˚C in 58 

% of cells examined (p < 0.05, Fisher’s exact test, Fig. 11).  
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Figure 9: Verification of HA control staining in HeLa Cells. 

HeLa cells were transfected with VSVG-GFP and HA-VN then shifted to 19 °C, 32 °C, 

or 40 °C. Cells were stained with both an α-golgin-97 (red) and α-HA (blue). 
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Figure 10: NleF alters VSVF-GFP trafficking in reference to the endoplasmic 

reticulum when delivered by transfection.      

HeLa cells were transfected with VSVG-GFP alone (controls) or with NleF-HA-VN 

(+NleF) then incubated at 37 °C or shifted to 19 °C, 32 °C, or 40 °C for 3 hours. Cells 

were stained with both α-Calnexin (red) and α-HA (blue). 
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Figure 11: NleF alters VSVF-GFP trafficking in reference to the Golgi when 

delivered by transfection.       

HeLa cells were transfected with VSVG-GFP alone (controls) or with NleF-HA-VN 

(+NleF) then incubated at 37 °C or shifted to 19 °C, 32 °C, or 40 °C for 3 hours. Cells 

were stained with both α-golgin-97 (red) and α-HA (blue). 
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Figure 12: NleF alters VSVF-GFP trafficking when delivered by infection.       

HeLa cells were transfected with VSVG-GFP and incubated overnight. Citrobacter 

rodentium harboring an NleF-FLAG vector were cultured overnight, subcultured 1:100, 

and protein expression was induced with 1 mM IPTG. After initiation of induction, 

transfected HeLa cells were infected with the culture then shifted to 19 °C, 32 °C, or 40 

°C and incubated for 2 hours. Cells were washed to remove adherent bacteria then 

fixed and stained with both α-Calnexin (red) and α-HA (blue). 
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3.7 NleF does not Induce Apoptosis in Mamalian Colorectal Cancer Cells. 

Wang et. al. demonstrated Tmp21 is involved in induction of apoptosis through 

interaction with the C1b domain of protein kinase C delta (PKCδ). RNAi knock down of 

Tmp21 and mutational disruption of the interaction in LNCaP prostate cancer cells 

resulted in enhanced PKCδ-dependent apoptosis and activation of down stream 

effectors ROCK and JNK.  Depletion of Tmp21 also led to an increase in PKCδ. 

translocation to the PM. Taken together, Wang et. al. identify Tmp21 as an anchoring 

protein that blocks PKCδ activation of apoptosis through perinuclear retention away 

from stimuli [163]. As we have established NleF binds Tmp21, we sought to determine if 

that interaction altered the ability of Tmp21 to block induction of apoptosis. To this end, 

we considered the influence of NleF presence on cell death in cancer cells, which have 

a natural resistance to apoptosis. We measured Annexin-V binding of 

phosphatidylserine (PS) as an established indicator of apoptosis. Exposure of PS 

occurs early in apoptosis onset and Annexin V has strong binding affinity for PS when 

calcium is present. SW480 cells were transfected with NleF-HA and cells were stained 

with Annexin V-PE to assess the effect of NleF on induction of apoptosis in a colorectal 

cancer cell line under normal conditions (Fig. 13). Annexin V antibody binding revealed 

that basal apoptosis in the untreated culture was 4.4 %, which increased to a mere 8 % 

with expression of NleF. Based on this data, NleF did not visibly alter apoptosis levels, 

suggesting NleF does not influence the typical Tmp21 association with PKCδ.   
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Figure 13: NleF does not induce apoptosis in colorectal adenocarcinoma cells. 

Human SW480 cells were transfected, harvested and labeled with Annexin V-PE, and 

analyzed by flow cytometer. Histograms present Annexin-V binding (PE+) of 4.4 % 

transfection-treated control cells (A), 8.0 % cells transfected with 2 µg NleF-HA (B) and 

cells treated with MeOH prior to flow analysis as a positive control (MeOH = 100 %). 

Flow analysis results indicate apoptosis is not induced by the presence of NleF-HA. 

Values are percentage PE+ cells.   
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 We conducted a yeast two-hybrid (Y2H) screen to determine the mammalian binding 

partners of NleF. We identified several mammalian proteins as putative NleF binding 

partners. We also performed a bacterial two-hybrid assay, which also verified the 

ineractions identified in the Y2H assay. Here we chose to focus on Tmp21 (also named 

p23/p24d/TMED10) and confirmed the interaction using direct Y2H assays and by 

quantifying β-galactosidase activity resulting from NleF-Tmp21 co-expression. As NleF 

demonstrates the ability to associate with numerous other mammalian proteins, further 

investigation will be required for those supposed interactions. Here we focused on 

verification of Tmp21/TMED10 interaction and elucidation of the consequences of this 

interaction in the host. 

 
Tmp21 is a 219 amino acid integral type I transmembrane protein that functions as an 

integral receptor for the COPI-vesicle coat [144]. Tmp21 is a member of the p24 

(p24/gp25L/emp24/Erp) protein family. These proteins provide cargo receptors to 

proteins and regulate protein packaging into COPI vesicles in concert with a small 

GTPase, the ADP-ribosylation factor 1 (Arf1)  [166]. p24 proteins are assembled into 

heteromeric complexes that cycle between the ER and the Golgi and recruit Arf1 in 

early stages of vesicle formation  [167]. p24 proteins thus play active roles in retrograde 

protein transport from Golgi to ER by facilitating the formation of COPI-coated vesicles  

[168].  

 
By expressing and purifying recombinant forms of NleF and Tmp21 in E. coli BL21(DE3) 

and then using these proteins in pull-down assays, we were also able to confirm that 

NleF and Tmp21 interact directly in vitro. Additionally, we used immunofluorescence 
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microscopy to determine the extent of NleF-Tmp21 colocalization by generating a 

polyclonal α-NleF antibody and using this antibody to detect NleF after its translocation 

into HeLa cells during E. coli infection [169]. Co-staining for Tmp21 revealed that both 

proteins were detected and colocalized in a perinuclear location. 

 

To determine whether NleF and Tmp21 interact when they are co-expressed in 

mammalian cells, we used bimolecular fluorescence complementation (BiFC) assays. 

We generated protein chimeras with split N- and C-terminal fragments (VN and VC, 

respectively), of eYFP fused to either NleF or Tmp21. Co-expressing eYFP chimeras of 

Tmp21 and NleF reconstituted YFP fluorescence, to a similar magnitude as the actin 

positive control, whereas transfecting individual plasmids did not reconstitute YFP 

fluorescence, suggesting that NleF binds to Tmp21 in mammalian cells. 

 
 
The N-terminal luminal domain of Tmp21 mediates cargo uptake into transport vesicles, 

whereas the KKLIE cytoplasmic tail at the Tmp21 carboxy-terminus mediates COPI-

dependent transport vesicle formation  [170]. To map the binding domain of NleF on 

Tmp21, we carried out a structure-function study with C-terminal deletions of NleF. BiFC 

experiments revealed that deleting the NleF C-terminus beyond amino acid 84 

eliminated NleF binding to full length Tmp21, indicated by loss of fluorescence with 

sequential truncated constructs. A similar IP analysis revealed that the C-terminal 

region of Tmp21, amino acids 63-180, was required for binding to NleF. Thus, the data 

support association of the C-terminal regions of NleF and Tmp21. 
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We tested the hypothesis that NleF binding to Tmp21 causes protein trafficking defects 

by characterizing the localization of a temperature-sensitive vesicular stomatitis virus 

glycoprotein (VSVG) as a function of NleF presence and temperature. VSVG 

localization is commonly used to study mammalian protein trafficking  [171]. This 

glycoprotein is essential for viral envelope fusion with the host PM and traffics 

intracellularly via the ER and Golgi  [172]. This system has been employed successfully 

in studies of Salmonella-mediated disruption of host exocytic transport  [101].  

 
Immunofluorescence microscopy evaluation of pVSVG-EGFP localization in transfected 

HeLa cells was employed. The transport of a temperature-sensitive VSVG-GFP mutant, 

VSVG-ts045, can be synchronized through exposure to different temperatures [98]. 

Sub-cellular position in controls matched the VSVG-ts045 trafficking model previously 

established with localization in the ER at 40 ˚C the Golgi at 19 ˚C, and the PM at 32 ˚C. 

If incubated at 40 ˚C, VSVG-ts045 becomes reversibly misfolded and retained in the 

ER. If shifted to 19 ˚C, VSVG-ts045 refolds and can be transported to the TGN. A 

further temperature shift to 32 ˚C allows subsequent VSVG-ts045 trafficking to the PM.  

 
NleA is known to block anterograde transport by COPII inclusive vesicles through 

binding to sec24, a component of the COPII heterodimer, and disrupting interactions 

required for anterograde trafficking. As Tmp21 binds COPI, we predicted that NleF 

interaction with Tmp21 would similarly result in disruption of COPI-mediated transport 

leading to a delay or block in retrograde trafficking (Fig. 15). Colocalization of VSVG-

EGFP and the ER at 19 ˚C indicates retrograde vesicle trafficking or reduction in 

anterograde trafficking occurs in the presence of NleF (Fig. 11). Further evidence of 
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altered trafficking was found by visible colocalization of VSVG-EGFP and the Golgi at 

32 ˚C and 40 ˚C with golgin-97 staining (Fig. 12). These results support continued 

trafficking in both the anterograde and retrograde directions with NleF present.  

 
One of the known binding partners of Tmp21 is mammalian PKCδ. As mentioned 

previously, the consequences of this interaction have been shown to result in reduced 

or blocked cellular apoptosis [163]. If interaction between Tmp21 and NleF occurs in the 

same region as Tmp21 interaction with PKCδ, we predicted NleF presence could 

impede Tmp21 perinuclear anchoring of PKCδ resulting in induction of apoptosis. As a 

preliminary enquiry into the effects of the NleF and Tmp21 interaction on apoptosis 

levels, we considered the outcome of NleF presence on the induction of cell death in 

colorectal cancer cells. Since the uncontrolled growth of cancer cells is partially 

dependent on their ability to resist apoptosis, we anticipated an increase in apoptosis as 

a result of NleF expression would support interference in the demonstrated interaction 

between Tmp21 and PKCδ. Conversely, apoptosis remained at levels comparable to 

controls regardless of NleF presence. This would suggest the association with Tmp21 is 

not sufficient to alter cell death in the cancer line. There are numerous explanations for 

the lack of apoptosis induction if this were the case. The location of NleF-Tmp21 

interaction may be in a position that does not obstruct the interface and orientation 

between Tmp21-PKCδ. NleF may only hinder a pool of the total cellular Tmp21, thus 

allowing sufficient unbound Tmp21 to reach PKCδ. Just as likely, the continued 

resistance to apoptosis could be dependent on a completely unrelated pathway or 

protein that is too substantial to be overcome by our interaction. However, it is important 

to consider the significance of our data is limited. Determining statistical relevance is not 
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possible as the assay was performed only once (n=1) and additional replicates would be 

required to verify significance. Furthermore, the MeOH positive control does not induce 

apoptosis, but rather permeabilizes the cells. This exposes PS and permits Annexin-V 

binding, as indicated by the intense PE+ signal (Figure 13), but does not imply 

apoptosis is occurring. Therefore, the level of induction assumed by the MeOH control 

is not an accurate indicator of real levels observed upon induction of apoptosis. Use of a 

known inducer of apoptosis, such as etoposide, would be a superior choice for a 

positive control. Finally, the NleF+ sample was not tested for transfection efficiency. 

Though immunoblot verified expression of NleF in the SW480 cells after transfection 

and prior to processing for the Annexin-V assay (data not shown), the percentage of the 

population expressing NleF and the level of expression was not determined. For this 

reason, the observed intensity could be indicative of a significant induction of apoptosis 

by NleF if only a small percentage of the cells were expressing NleF. As a result, 

interpretation of the data could be underestimating the influence of NleF. Further 

investigation into the potential role of NleF in apoptosis with improved controls and 

expression verification should be performed to eliminate these issues. 
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Figure 14: EHEC effector protein alteration of trafficking.    

The early steps in the mammalian protein secretion pathway are based on membrane 

composition. COPII (anterograde) or COPI (retrograde) membrane coats dictate the 

direction of vesicle movement (A). NleA obstructs anterograde transit through 

interaction with COPII coat member Sec24 resulting in block of vesicle budding (B). 

VSVG assay data reveal NleF influences COPI transit through interaction with Tmp21, 

by an unknown mechanism, leading to slowed anterograde trafficking (C). 
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Overall, our data support an interaction between NleF and Tmp21 by yeast two-hybrid 

verification, bacterial two-hybrid, immunoprecipitation, and BiFC analysis. However, 

further characterization of the regions involved in this interaction is necessary. 

Furthermore, our results indicate NleF binding causes altered vesicular trafficking in the 

context of the tsVSVG trafficking model system. While these results point to a role for 

NleF in altering typical vesicle trafficking patterns, they do not consider such effects 

from the perspective of the NleF interaction with Tmp21. Additional experiments 

measuring NleF influence specifically on Tmp21 localization should be carried out to 

fully characterize the outcome of this interaction in the host. Lastly, while we expected 

the interaction between Tmp21 and PKCδ might be sufficiently altered by NleF-Tmp21 

binding leading to an increase in induction of apoptosis, our results did not support 

increased cell death. Further inquiry into the consequences in relation to cell death 

should be pursued in order to determine if our identified interaction represents the most 

crucial host target by NleF, or if another target is more pertinent to virulence.   
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