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ABSTRACT 

 

Proteins, such as immunoglobulins, are inherently dynamic molecules with unique 

biological functions. The intra- and intermolecular interactions that govern the dynamic nature 

and function of immunoglobulins may also influence their stability. A molecular understanding 

of interrelationship between dynamics, function and conformational stability of 

immunoglobulins, both in solution and in presence of co-solutes, can be important for their 

pharmaceutical development. In addition, it is important to understand the differences in any 

such correlations between closely related immunoglobulins. Furthermore, molecular interactions 

in immunoglobulins can be unique at low and high concentrations, which necessitate newer 

complementary approaches to investigate such complex systems. Therefore, a better 

understanding of interactions that govern protein structure, dynamics and conformational 

stability at low and high concentrations and in presence of excipients should aid in designing, 

optimizing and developing rational formulation conditions for protein based therapeutics.  

A variety of experimental methods sensitive to structure, dynamics and conformational 

stability of proteins in solution were employed in these studies. External perturbations such a 

change in pH, ionic strength and temperature were used to probe the response of proteins, both at 

low and high concentrations. Different monoclonal antibodies within IgG1 isotype were used to 

investigate interrelationships between protein dynamics and conformational stability in absence 

and presence of co-solutes. In addition, an ultraviolet spectroscopy based approach was 

developed to understand interactions modulating solution viscosity in high concentration 

immunoglobulin solutions. 
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These studies provide evidence that immunoglobulins belonging to the same IgG1 

subtype can have notable differences in their conformational stability, dynamics, aggregation 

propensity, hydration properties and their response to co-solutes. In addition, alterations in 

protein dynamics (at a global protein level and in local regions with differences in solvent 

exposures) by stabilizing or destabilizing excipients were found to modulate the conformational 

stability of a monoclonal antibody. Furthermore, it was determined that potential interactions and 

factors modulating solution viscosity at high protein concentrations may also result in changes in 

their extinction coefficients. The work presented in this dissertation provides evidence that 

factors modulating protein dynamics and those governing intra- and intermolecular interactions 

can influence the conformational stability, aggregation and viscosity of proteins in solution.  
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1.1 Overview 

1.1.1 Understanding protein structure, folding, dynamics and stability 

 Most biologically active proteins adopt a characteristic three-dimensional native structure 

from an ensemble of unstructured or partially structured polypeptide chains
1
.  Recently, a class 

of proteins known as “natively unfolded” has been identified
2
 and is being investigated.  Folded 

polypeptides chains have large accessible conformational space; yet, these structural elements 

have a natural propensity to lower their free energy and fold into highly ordered native 

structures.  The rationale for  protein folding has evolved on the basis of a number of different 

fundamental concepts; i.e., non-random interactions within the unfolded state of proteins are 

thought to limit the conformational space available for the initiation of a folding reaction
3
.  

Secondly, folding intermediates are considered as ubiquitous stepping stones, in which even the 

smallest proteins are stabilized by native and non-native interactions involving such 

intermediates en route to the native state
4
.  Thirdly, a rugged, funneled energy landscape model 

describes protein folding as a consequence for unstructured polypeptide chains which lowers 

their free energy to form ensembles of native three-dimensional structures that increase their 

stability
5
.  Protein folding energy landscapes are rugged due to the fact that numerous weak 

stabilizing interactions necessary for protein folding cannot simultaneously exist at any given 

time during a folding process.  This leads to ‘frustration’ in the energy landscape
6,7

.  In addition, 

such ruggedness can be considered as mechanisms which counteract evolutionary pressures, thus 

enabling protein sequences to fold reliably into biologically active proteins, thus preventing their 

aggregation
6,7

.  An arsenal of highly sensitive methods such as fluorescence spectroscopy
8-10

, 

circular dichroism
11

, vibrational spectroscopy
12,13

, small-angle X-ray scattering
14

, real-time 
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NMR
15

, native-state hydrogen exchange
16

, pulsed H/D exchange by NMR/mass spectrometry
16,17

 

and protein engineering
18

 have been employed to study the non-native unfolded or partially 

folded intermediate species that are involved in the process of protein folding into their stable 

functional forms.  These techniques provide highly sensitive tools for monitoring of structural 

transitions on the timescales of picosecond to seconds (or even longer) and spatial order of 0.01 

to > 5 Å.  Newer advances in single-molecule techniques
10,19

 can potentially map the folding 

events of individual molecules, thus enabling characterization of intermediate species that are 

less populated and those that are difficult to detect by the inherent averaging of ensemble-based 

experimental approaches
20

. 

 The stability of the native structure of proteins results from contributions from covalent 

bonds within the peptide backbone and also between cysteine residues as well as non-covalent 

interactions comprised of apolar interactions, intra-peptide and/or peptide-water hydrogen bonds 

and entropic contribution from configurational degrees of freedom
21,22

.  Attractive or repulsive 

electrostatic interactions involving charges and both static and transient dipoles within a protein 

molecule and with the surrounding solvent further contribute to the overall structural stability of 

proteins
21,23

.  The surface characteristics of proteins determine the structure and organization of 

hydration water, which in turn also modulates the stability and molecular (intra- and inter-) 

interactions of individual protein molecules
24,25

.  In addition, the packing of the apolar protein 

core is primarily governed by short-ranged van der Waals repulsions and attractive dispersion 

forces
21

.  The complex interplay of these contributions plays an important role not only in 

determining the conformational stability of proteins
22

 but also in modulating their functional 

characteristics.  Despite the propensity of proteins to fold by lowering their free energy (and thus 

increase stability), they are generally only marginally stable with ~ 20 – 40 kJ mol
-1

 of unfolding 
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free energy
26

.  It is postulated that the limited stability of proteins help retain their inherent 

flexibility which is necessary for biological roles such as transport across membranes, binding of 

substrates and ligands, natural turnover within cells and for processes such as allostery and signal 

transduction
27

.  The roles of protein flexibility have been extensively debated with evidence, for 

example, to support inter-relationships between flexibility and conformational stability of 

enzymes in the ground state and the highly dynamic nature of their transition states necessary for 

enzyme catalysis
28-30

.  The dynamic nature of proteins arises from statistical fluctuations in 

thermodynamic parameters such as enthalpy and volume changes of different conformational 

ensembles.  These fluctuations can be studied by evaluating thermal expansivity, compressibility 

and changes in heat capacity
31,32

 of proteins.  The challenge, however, in studying such 

thermodynamic parameters is that similar fluctuations between individual molecules may not be 

coordinated and the experimental observable will result in averaging and non-fluctuating 

thermodynamic parameters.  Modern biophysical tools including time-resolved and single-

molecule analysis have addressed these challenges
10,12

 with limited success.  Techniques 

involving amide hydrogen/deuterium exchange coupled with infrared spectroscopy
33

, NMR
34

 

and mass spectrometry
35

 are promising alternative approaches to investigate changes in local and 

regional flexibility in proteins.  Thus, the connection between flexibility/dynamics, function and 

stability continue to evolve in the literature
29,36-41

. 

1.1.2 Biological water and hydration: Influence on the folding, dynamics and stability 

of proteins 

 Biological water, defined as water associated with tissues and cells, is a critical substance 

which plays a key role in the control of different processes within biological systems.  Both 

excesses and deficiencies in hydration may result in loss of protein activity and may trigger cell 
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malfunctioning and eventually cell death
42

.  Water, despite its simple chemical structure has 

unusual thermodynamic behavior.  For example, the melting/boiling points or heat of fusion and 

vaporization are higher than other liquids that are composed of hydrogen and oxygen.  Biological 

water that forms a hydration shell around proteins exists in highly confined environments and 

usually only a few molecular layers thick.  The characteristics of this hydration water are 

strikingly different than that of bulk water.  The high dielectric constant of water is believed to 

play a critical role in protein folding, in which water serves as an excellent solvent which screens 

electrical charges preventing non-functional interactions.  The conflicting properties of apolar 

sidechains in amino acids and the polar nature of water are believed to result in the hydrophobic 

collapse of polypeptide chains into natively folded structures in which the tightly packed core of 

a typical protein primarily contains nonpolar sidechains.  Such “hydrophobic effects” are 

considered to be central to protein folding mechanisms
43,44

.  

 It is now well accepted that water is not an inert environment for biomolecules; its role is 

well recognized in defining the structural and dynamic characteristics of various other 

biomolecular
44,45

 and pharmaceutical systems
46,47

.  The dynamics of protein-solvent interactions, 

especially water in hydration layers, are therefore important to characterize.  Techniques such as 

dielectric relaxation, X-ray diffraction, neutron scattering, ultrafast laser spectroscopy and NMR 

can be employed to study them
48

.  A few of the findings from these studies are summarized here.  

It was determined that the dielectric properties of hydrating and bulk water properties are 

different.  For instance, relaxation times of 8.3 ps, 40 ps, 10 ns and 80 ns were measured for the 

hydration water of myoglobin in contrast to 8.2 ps for bulk water at 298 K
49

.  These results 

suggest that the residence time of water at a protein’s surface is different than the characteristics 

of the bulk water.  These distinct properties reflect differences in the behavior of hydration water 
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potentially due to its interaction with the surface of a protein.  X-ray diffraction studies illustrate 

both static view of buried bound water and have also elucidated the solvation layer of proteins 

containing both ordered and partially disordered water in solvent shells
50

.  It was determined 

using high-resolution protein NMR that a small number of water molecules with residence times 

on the order of 10
-2

 to 10
-8

 seconds are located in identical positions in the interior of proteins, 

both in crystals and in solution
51

.  In contrast, the water molecules hydrating the surface of a 

protein were found to have residence times in the range of sub-nanoseconds (~ 300 – 500 ps)
52

.  

The above examples all illustrate that biological water, hydration water in particular, has a 

profound effect on the physics and functional properties of biological molecules.  A 

comprehensive knowledge of the design of proteins and macromolecules and their interaction 

with water is therefore necessary to understand the folding, dynamics and stability of 

biologically and pharmaceutically relevant proteins.  A protein’s conformational stability, 

dynamics and function are often coupled to the properties of its surrounding environment
53-55

.  

The stability of proteins is determined by a marginal preference of a plethora of counteracting 

enthalpic and entropic contributions for the folded over unfolded states of proteins.  In addition, 

native states of proteins contain a large number of energetically nearly equivalent microstates 

that can rapidly interconvert, giving rise to a protein’s dynamic behavior.  Interconversions of 

microstates originate from any number of different sources, including the movement of 

secondary structure elements relative to each other, alterations in loop conformations and/or 

reorientations of amino acids side chains
56

.  The variability of such dynamically interconvertible 

conformers has been extensively studied to better understand their role in biological functions 

such as ligand recognition and enzyme catalysis
57-61

.  In solution, conformational flexibility and 

dynamics are often accompanied by a wide range of hydration states unlike the situation in 
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crystals
44

.  These fast conformational fluctuations in proteins are a consequence of constantly 

changing patterns of hydrogen-bonding networks due at least partially to the dynamic nature of 

associated hydration states
62,63

.  It has therefore been suggested that the intimate coupling of 

solvent and protein dynamics can result in “slaving” of protein dynamics to solvent 

fluctuations
53,55

, which eventually affect the function of proteins
64-67

.  Solvent fluctuations are 

thought to originate from changes in the dielectric relaxations rate coefficients of solvent 

molecules resulting in alterations in their average tumbling time
53

.  Temperature, among other 

factors, is known to modulate solvent fluctuations and any coupled motions in proteins
53

.  

1.2 Cosolvents and osmolytes: Effect on protein stability and dynamics 

 Since proteins are marginally stable in solution and the surrounding aqueous solvent 

plays a dominant role in determining folding, dynamics and stability, it is important to 

understand the effects of changes in solvent properties induced by the presence of cosolvents and 

osmolytes (naturally occurring or those used as pharmaceutical excipients) on the behavior of 

proteins.  For instance, changes in the chemical potential of the solvent due to the presence of 

different cosolvents may have a profound effect on protein dynamics, stability and protein-

solvent interactions
68

.  In addition, changes in solution pH may influence the stability and 

dynamics of proteins by influencing the ionization state of various amino acid side chains in 

different conformational states (folded, dynamic microstates and/or unfolded).  Such changes in 

the nature of the solvent may eventually lead to alterations in intramolecular interactions in 

proteins, restructuring of the solvent around the surface and its solvation energy.   

 At a molecular level, potential mechanisms for solvent effect on proteins can be broadly 

categorized as following: (a) a direct interaction between the protein’s surface and cosolvents, 
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(b) an indirect effect due to alterations in the water of hydration, both on the protein’s surface 

and its interior and, (c) changes in the structuring and/or ordering of water molecules in the 

hydration shell such that it enables interaction of cosolvent with the protein surface.  Based on 

these potential mechanisms, cosolvents can be categorized into ‘compatible’ and ‘non-

compatible’ cosolvents.  Compatible cosolvents, such as osmolytes and kosmotropes (water 

structure-making), are those that help retain the structure and functional properties of proteins, 

potentially by influencing the surrounding water.  Non-compatible cosolvents (e.g., urea, 

guanidinium hydrochloride) are those which disrupt protein structure and hence their 

functionality.  The latter includes chaotropes (water structure-breaking) that disrupts the structure 

of hydration water as well as bind directly to the proteins.  The chemical properties of the 

solvent, in both the absence and presence of cosolvents, are therefore critical determinants of a 

protein’s structure, stability, function and dynamics.  Nevertheless, these effects at a molecular 

level should influence the forces that are involved in maintaining folding, stability and dynamics 

of proteins in both solution and in the dried state.  Some of these dominant forces
22

 in the context 

of protein stability and dynamics are reviewed in the following section.  

1.2.1 Molecular factors governing stability and dynamics of proteins in the presence 

of solvent
21,22,38,43,69,70

 

1.2.1.1 Intra- and inter- molecular interactions 

 A majority of the intramolecular interactions that modulate the stability and dynamics of 

proteins are comprised of, but not limited to, long-ranged electrostatics, hydrogen bonding and 

van der Waals interactions, apolar interactions and entropic contributions.  All of the forces (with 

some weaker and others more dominant) mentioned above have positive contributions to protein 
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folding except for conformational entropy, which opposes protein folding and negatively 

contributes to stability.  These forces are responsible not only for overall protein folding but also 

are critical in determining the internal organization of irregular and regular structures such as 

helices, sheets and turns within globular proteins.  The dependence of protein structure and 

stability on pH and ionic strength highlights the importance of electrostatic contributions to the 

proper folding of unstructured polypeptides.  Electrostatic contributions to protein stability and 

dynamics can be influenced by specific charge interactions such as ion pairing (salt bridges) or 

non-specific repulsive interactions that are prominent at extreme solution pHs and away from the 

isoelectric point of the protein.  

 Hydrogen bonding is a pseudo-linear arrangement of a shared hydrogen atom between a 

donor – acceptor pair.  The electronegativity, distance and orientation of these atoms along with 

their electrostatic, charge-transfer, steric-repulsive and dispersive interactions eventually 

determine the number and strength of hydrogen bonds.  On other hand, Van der Waals 

interactions arise between fluctuating induced dipoles.  Hydrogen bonding and van der Waals 

forces are arguably considered weak forces in protein folding and stability.  These forces can, 

however, be critically involved in the conformational changes of proteins because some amino 

acid side chains comprised in proteins are dipolar in nature and can readily be involved in 

hydrogen bonding.  Secondly, the stability of secondary structure elements such as helices and 

sheets in a protein’s architecture, as well as their transitions, may largely be governed by 

fluctuations in local hydrogen bonding networks within these elements.  In contrast, some 

unfolded proteins are known to possess residual secondary structure.  Solvent unfolding studies 

indicate that both hydrogen bonding and van der Waals forces may be weak forces contributing 

to protein folding and may not be critical determinants of overall protein stability.  A significant 



10 

 

role for these forces, however, has been well recognized as being involved in determining the 

internal architecture of proteins including the formation and spatial distribution of turns, which 

do not generally depend on the packing forces alone as described later in the text for overall 

globular stability.  The dynamics of hydrogen bond formation and/or breaking is believed to be a 

critical determinant in the inherent dynamic nature of proteins, in which several interconvertible 

conformational microstates with small differences in energy are in equilibrium with each other.  

The intermolecular bond angle between water molecules, the dynamics of H-bond formation 

(generally are < 1 ps timescale) and the interactions of water molecules with a protein’s surface 

and other neighboring water molecules potentially govern the stability and interconversion of the 

microstates and thus play a key role in governing the dynamics and function of proteins
56,71

.   

 Apolar interactions, often called hydrophobic interactions, are considered to be one of the 

dominant forces contributing to protein folding and stability.  Their role in protein folding stems 

from the fact that apolar amino acid sidechains in unstructured polypeptides coalesce away from 

polar water molecules which results in ‘hydrophobic collapse’ into natively folded structures.  

The impact of these interactions to protein stability is unique due to their complex dependences 

on temperature.  The transfer of non-polar solutes into water is accompanied by large and 

positive change in heat capacity
72,73

.  At low temperatures (~ 25 
o
C), the structure of water 

around apolar residues is more ordered and water prefers to form hydrogen bonds with other 

water molecules.  These low temperature interactions are driven mainly by entropic 

contributions.  At higher temperatures, the aversion of nonpolar residues for water is 

accompanied by a maximum free energy of transfer and in these conditions, the entropy is close 

to zero.  Therefore in such a system, enthalpic contributions become more prominent in 

governing the overall interactions of nonpolar solutes in solution.  Similar phenomena are also 
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present for apolar amino acid side chains in proteins.  Both temperature and changes in solution 

conditions therefore become critically important in determining apolar contributions to the 

stability and dynamics of proteins, with potentially distinct effects at low and high temperatures.  

 Finally, a dominant force that opposes protein folding and stability is entropy.  Local 

entropy that opposes formation of helices is an important contributor to the overall entropic 

contributions to the system.  In addition, non-local or configurational entropy originates from 

steric constraints or excluded volume effects.  These are temperature dependent effects 

associated with changes in thermodynamic parameters due to solute concentration, their 

colligative properties, compressibility and expansibility and various non-ideality effects.  

Proteins undergoing unfolding are known to gain considerable entropy.  Conversely, during 

hydrophobic collapse and protein folding, there is a considerable loss of non-local entropy in 

converting from the large volume of unfolded states of polypeptide chains to the smaller 

collapsed volumes of native states.  These resulting native structures are known to have lower 

compressibilities and their configurational freedom is severely restricted, similar to those found 

in crystals or glasses.  Since these contributions are intimately linked to temperature and solution 

properties, it is possible that conditions which destabilize proteins in solution may have a 

profound influence on such interactions and thus modulate the overall stability and dynamics of 

proteins.  

 Protein solutions containing additives such as osmolytes or pharmaceutical excipients or 

at high protein concentrations, such as in cells or high concentration biopharmaceuticals, also 

experience intermolecular interactions between proteins or between proteins and solute 

molecules.  Osmolytes are natural compounds which stabilize cells against dehydrating stress in 

vivo and maintain their osmotic equilibrium.  These compounds are also employed exogenously 
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to stabilize proteins and macromolecules in both the solution and dried state against various 

external stress conditions.  These include changes in temperature and pH of solutions, alterations 

in the moisture content of dried solids and the presence of salts and other additives.  At a 

molecular level, osmolytes and/or other additives are believed to influence proteins by either 

being attracted or repelled from the surface of the protein
74-77

.  This is in turn related to their 

differential interactions with the surrounding water
78

.  

 Overall, the mechanisms of such intermolecular interactions, primarily involving the 

protein surface and surrounding solvent, were categorized by Ohtake S et al.
78

 into four different 

categories: the cohesive force of water, unfavorable interactions with peptide backbones, steric 

or excluded volume effects and preferential interactions (both exclusion and binding).  

Stabilizing cosolvents are known to increase the surface tension of water and thus exert a 

cohesive force or attraction pressure
79,80

 on water.  Even though protein surface – additive 

interactions continues to be a field of active research, the seminal work by Traube provided the 

mechanistic knowledge necessary to understand the correlations between attraction pressure and 

protein stability.  Solutes that are larger than water are generally excluded from a protein’s 

surface.  Such a repulsive process is thermodynamically unfavorable.  It is therefore assumed 

that due to such effects, stabilizing excipients that are excluded from a protein’s surface 

commonly result in a lowering of the protein’s surface area, eventually making the native 

structure more compact.  An unfavorable interaction of solutes with the peptide backbone is also 

proposed as a potential stabilizing mechanism.  Such interactions are related to excluded volume 

effects in which the stabilizing excipient remains in the bulk solvent more than the hydration 

layer near the protein’s surface.  Finally, probably the most widely accepted mechanism involves 

‘preferential interaction’ or ‘preferential exclusion’ of cosolvent from the protein surface.  In this 
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situation, the cosolvent/solute concentration in the local region near a protein’s surface varies.  

Such an effect is known to influence the thermodynamic properties of proteins which in turn 

influence their solubility and conformational stability.  

 These interactions are routinely quantified using a parameter known as the preferential 

interaction coefficient (Γ23), the magnitude and sign of which are related to the propensity of a 

solute to either preferentially bind to or be excluded by a protein’s surface.  A positive Γ23 value 

indicates that the additive concentration in the protein’s hydration shell is higher than bulk water 

due to the preferential binding to a protein’s surface.  A negative Γ23 value is indicative of 

preferential exclusion (also called preferential hydration) of additive from the protein surface.  In 

this case, the hydration shell around the protein is usually more structured and ordered in the 

presence of such excluded solutes.  These interactions not only influence the chemical potential 

of a protein but also result in volume exclusion (repulsive) interactions and alteration of surface 

free energy.  Specific interactions such as hydrogen bonding
81

, electrostatic interactions
82

, apolar 

interactions
81

 and cation-π interactions
83

 have also been reported between proteins and solutes.  

Kosmotropes (structure-making) and chaotropes (structure-breaking) are known to alter the 

structure and ordering of bulk water.  Such an effect also, arguably, causes an indirect effect on 

protein-water interactions and thus influences their stability
84,85

.  Finally, intra-solvent 

interactions have recently garnered significant attention in which additive-additive interactions in 

solution influence protein stability.  The Hofmeister Series of ions have been extensively studied 

to better understand whether such intra-solvent interactions can explain the unique serial 

behavior and ranking of these ions in solution.  

 It is evident that the effects of cosolvent or solute interactions on protein stability have 

been and continue to be exhaustively studied.  Studies evaluating the effect of solutes on protein 
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dynamics, however, are rather limited
38,86-97

.  Attempts to address this void are therefore 

presented in the current studies and an effort is made to obtain molecular insights into excipient 

effects on global and local protein dynamics, conformational stability, intra- and inter-molecular 

interactions, and potential correlations that may exist among them.   

1.2.1.2 Fluctuations in thermodynamics parameters 

  Protein dynamics is associated with fluctuations in thermodynamic parameters such as 

the volume and enthalpy of different conformational microstates of native proteins.  The 

fluctuations in volume can be related to changes in the compressibility of a protein.  Alterations 

in specific heat can explain enthalpy fluctuations.  The coefficient of thermal expansion 

correlates with both volume and enthalpy fluctuations.  Compressibility, the coefficient of 

thermal expansion and specific heats can all be obtained experimentally in the presence of 

various solvents and solutes enabling an investigation of cosolvent effects on the dynamics of 

proteins.  Isothermal compressibility represents the relative change in volume of proteins with 

infinitesimal changes in pressure and can be experimentally obtained using ultrasonic 

spectroscopy
38,98-101

.  The relationship between isothermal compressibility and volume 

fluctuations can be given as,  

 

               and,            
  

  
   

 

Where kB is the Boltzmann constant, V is the intrinsic volume of a protein, T is absolute 

temperature and βT is the isothermal compressibility.  The compressibility of a protein has 

contributions from packing density (i.e., cavities), non-covalent and covalent (disulfide bonds) 
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interactions that stabilize proteins and contributions from hydration.  In general, protein 

compressibility is thought to inversely correlate with stability.  The coefficient of thermal 

expansion, obtained from pressure perturbation calorimetric experiments
100,102-104

, represents 

relative changes in volume upon changes in temperature and this parameter is used to correlate 

volume and energy fluctuations of a protein.  These terms can be mathematically represented as, 

 

            
      and,          

  

  
   

 

Where αp is coefficient of thermal expansion, which also has contributions from both intrinsic 

and hydration components.  The enthalpy fluctuations of a protein system can be evaluated using 

the isobaric heat capacity at constant T and P.  Since the absolute value of the partial molar 

enthalpy cannot be experimentally determined, the heat capacity is not a relative parameter 

(unlike compressibility and coefficient of thermal expansion).  The relationship between heat 

capacity and enthalpy fluctuation can therefore be given as,  

 

           
     and,       

  

  
  

 

Where Cp is the partial molar hear capacity with this parameter also representing both intrinsic 

(minor) and significant hydration contributions.  Even if these parameters can be studied in the 

presence of solutes, it is important to note that the dynamic information obtained from these 

measurements represent global dynamic phenomena in proteins.  Solute effects on local protein 

dynamics can be evaluated using fluorescence spectroscopy and other methods.  The findings of 

such studies are presented in Chapter 3.  
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1.2.1.3 Candidate solutes/excipients: Sucrose and arginine. 

 Sugars and amino acids are frequently used as additives/excipients to increase 

conformational stability and/or inhibit aggregation of proteins and biopharmaceuticals, both in 

the solution and dried states
78

.  Disaccharides such as sucrose (the major stabilizer used in these 

studies) are known to act as osmolytes and are found naturally to stabilize micro-organisms 

under severe environmental conditions.  These disaccharides stabilize proteins in solution by the 

preferential hydration mechanism
105

.  Since osmolytes-protein surface interactions are 

thermodynamically unfavorable, compounds such as sucrose are believed to increase the free 

energy of both the native and unfolded states of proteins.  The magnitude of increase in free 

energy, however, is greater for unfolded forms of the protein due to their increased surface area.  

The resulting increased free energy of unfolding in the presence of stabilizing solutes such as 

sucrose is therefore hypothesized to be responsible for their stabilizing effect.  In addition, the 

prevention of aggregation by osmolytes is thought to be due to a smaller free energy of 

association, which results in shifting the monomer-aggregate equilibrium towards the monomeric 

form of the protein.  Amino acids are generally known to stabilize proteins by various 

mechanisms such as preferential hydration, direct binding, buffering properties and antioxidant 

behavior
106,107

.  

 The mechanism of arginine and its salts (the major destabilizer of this study) is unique 

among amino acids and is a topic of active research
106,108-110

.  The structure of arginine results in 

the potential to form a variety of intra- and inter-molecular interactions due to its following 

characteristics
70

; the size of the molecule is larger than water and therefore can be excluded from 

a protein’s surface while increasing the surface tension of the solution.  Its zwitterionic nature 

and the salt form (usually HCl salt) create a polyanion with a delocalized positive charge, which 
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can significantly influence a protein and water structure via electrostatic interactions
70,78

.  The H-

bond accepting carboxylate group and H-bond donating amino group provide H-bond forming 

capability of the compound with water, the protein surface and other charged and aromatic 

amino acid side chains in proteins.  Additionally, the three carbon alkyl side chain imparts 

hydrophobic character to a part of the molecule.  Historically, arginine effects were commonly 

attributed to the presence of the guanidium group.  Quite a few alternative explanations, 

however, have been proposed to explain the complex effects of arginine on protein stability and 

aggregation.  For instance, arginine, unlike other amino acids, does not affect the folding 

equilibrium of a majority of proteins
106

.  Arginine is also believed to have a kinetic effect on 

protein association, which was explained by the ‘Gap Effect’ theory
111

.  A recent study in 

regards to preferential interaction of arginine showed that the arginine is neutral at low 

concentrations, whereas it becomes highly excluded at higher concentrations
112,113

.  This plethora 

of explanations makes arginine interactions extremely specific for individual proteins, and 

therefore, it appears that these effects need to be investigated on a case-by-case basis.  

 The highly dynamic and flexible nature inherent to most folded, globular proteins may 

significantly influence the intrinsic stability of proteins.  Any approach including the use of 

additives/excipients that affects the conformational stability of proteins or biopharmaceutical 

products may potentially exert its effect through perturbations of the dynamic behavior of 

proteins.  Sucrose and arginine were found to stabilize and destabilize candidate 

immunoglobulins, respectively, in the studies presented in Chapter 2 and Chapter 3 of this 

dissertation.  Since both of these excipients have effect on the properties of water around 

proteins, it was hypothesized that the stabilizing and destabilizing effects of these excipients may 
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influence both the hydration dynamics and the coupled global and/or local dynamics in 

immunoglobulins.  

1.3 Monoclonal antibodies as candidate systems:  Structure and dynamics 

1.3.1 Structure, function and dynamics 

 Natural immunoglobulins
114

 (Ig) or recombinant monoclonal antibodies (mAb) are an 

important class of dynamic glycoproteins with a wide variety of biological and 

biopharmaceutical roles, respectively. These are characteristic Y-shaped structures (Figure 1) 

containing four polypeptide chains; two heavy (each ~ 50 kDa) and two light (each ~ 25 kDa) 

chains. These light and heavy chains can be sub-categorized into variable and constant regions. 

The light chain and heavy chains are held together by disulfide bonds to form an antigen binding 

region (Fab) that binds to foreign antigens such as bacteria or virus to initiate an immune 

response. The constant region is held together by covalent disulfide bonds and apolar interactions 

to form a crystallizable fragments (Fc) that is responsible for complement activation and effector 

functions. The two Fab domains are connected to the Fc domain by a highly flexible hinge region, 

which is believed to be responsible for the major dynamic motions of immunoglobulins
115

. 

 Antibodies are categorized into five major classes i.e., IgG, IgM, IgA, IgE and IgD, 

depending upon the number of Y-shaped units and the type (size and sequence) of heavy-chain 

polypeptides. The type of heavy-chains present in IgG, IgM, IgA, IgE and IgD are γ-, μ-, α-, ε- 

and δ-chains, respectively. The differences in heavy-chains determine the distinct biological role 

of these antibody classes which are known to be functional at different stages of the immune 

response to an external stimulus. In addition, these different classes of antibodies vary in the 

number of Y-shaped units that combine to form a functional protein.  
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 For instance, IgM has five Y-shaped units combined together to eventually have 10 

similar antigen binding sites. The heavy chains in different classes of antibodies have minor 

variations in their sequence such that μ- and ε-chains in IgM and IgE, respectively, have four 

constant domains in their heavy chain (CH) while the γ-, α- and δ-chains in IgG, IgA and IgD 

antibodies are relatively shorter with only three CH domains. It is known that the sequences of 

CH1, CH3 and CH4 in IgM and IgE correspond to CH1, CH2 and CH3 domains in IgG, IgA and 

IgD. Furthermore, a classical hinge regions is absent in IgM and IgE with the flexibility of the 

Fab arms in these classes of antibodies conferred by their CH2 (unrelated to the CH2 domains of 

IgG, IgA, IgD) domains. 

 

Figure 1: Representative structure of an IgG antibody. A similar organization of conserved 

solvent-exposed and solvent-shielded tryptophan residues are also located on the other half of the 

molecule.  
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 In contrast, IgG and IgD have extended hinge regions that impart distinct dynamic 

properties to these molecules. The variations in the structure of the hinge region in different 

classes of antibodies may therefore be responsible for the differences in the structural 

arrangement and dynamics of the Fab and Fc regions
116

. Typically, the hinge region is known to 

contain many proline residues which are thought to impart rigidity to the top of the stem in the 

antibodies. The glycine residues in the hinge region, however, create a flexible secondary 

structure in which the Fab regions can move semi-independently around the proline-stabilized 

focal point. The disulfide bonds in the hinge region are also believed to have an effect on 

stability, dynamics and functional characteristics of the different antibody classes.  The 

variations in the amino acid sequences of γ- and α-heavy chains in IgG and IgA, along with the 

number/location of disulfide bonds and the length of the hinge regions give rise to Ig subclasses 

such as IgG1, IgG2, IgG3 and IgG4, and IgA1 and IgA2. In addition to differences in heavy-

chains, immunoglobulins have two distinct light chains, κ and λ, bound in any number of 

different combinations with heavy chains helping to determine the variability in functional 

properties of the antigen binding (Fab) regions.  

 Immunoglobulins are categorized as glycoproteins by virtue of their carbohydrate 

content, which varies with Ig isotype. The carbohydrate content is relatively higher (~ 12 – 14%) 

for IgD, IgE and IgM, while a lower content (~2 – 3%) is found in IgA and IgG. The number and 

location of oligosaccharide units differ between different molecules secreted from the same clone 

of a B-cell and also depend upon physiological variables at the time of protein’s post-

translational modification. The carbohydrate moieties are usually located on the CH2 domain 

(CH3 domain for IgM and IgE) of IgG, IgA and IgD. The carbohydrate containing domain, in 

contrast to other constant domains in heavy chains (CH), generally does not interact with the 
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corresponding domain on the complementary heavy chain due to the presence of these 

oligosaccharide units. The lack of strong interactions and relatively easy accessibility of this 

domain usually has a significant impact on stability and reversibility, function and dynamics of 

this region of the antibody. The CH3 (or CH4 if present) domain is believed to be involved in 

noncovalent interactions with its counterpart on the other heavy chain.  

 The biological function of a variety of proteins including immunoglobulins is closely 

related to their dynamics and flexibility
57,97,117

. The primary function of immunoglobulins is to 

bind and clear foreign antigens and thus protect the host. Antigen binding is carried out by 

variable regions of the antibody, the specificity of which depends upon hypervariable sequences 

in the VH and VL regions in the antibody. The effector functions of the antibody are mediated by 

the crystallizable fragment of the molecule which signals the innate immune response via Fc 

receptors on leukocytes. Since different classes of antibodies differ in their Fc region, the 

clearance mechanism varies depending upon the binding of foreign antigen to each specific Ig 

class. The effector functions are commonly categorized into four major roles; neutralization, 

opsonization, complement activation and antibody-dependent cell-mediated cytotoxicity. Since 

these molecules are evolved to perform highly specific roles, significant effort has been directed 

towards developing tools to characterize their structural, functional and dynamics properties.  

 Various analytical techniques such as fluorescence anisotropy
115,118-120

, resonance energy 

transfer
121

, two dimensional correlation FTIR spectroscopy
33

, X-ray and neutron scattering
116

, 

ultrasonic spectroscopy
38,120

, pressure perturbation calorimetry
38,120

, red edge excitation 

spectroscopy
120

 and nuclear magnetic resonance spectroscopy
117,122

 have been used to study the 

flexibility, dynamics and conformational stability of antibodies. Different molecules within an Ig 

subclass are broadly similar in their structure and sequence homology but still may strongly 
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differ in their dynamics, function and conformational stability. To evaluate such differences and 

understand their effects on protein dynamics and conformational stability is a major goal of the 

investigation presented in these studies. Furthermore, the conformational stability, and 

potentially dynamics, of antibody drugs formulated at both low and high concentrations is 

significantly influenced by environmental and formulation factors during their manufacturing, 

storage stability and delivery 
123-125

. The highly dynamic nature and unique multi-domain 

structure of antibodies makes them ideal candidates for studying the inter-relationship between 

conformational stability and dynamics in a variety of different solution and formulation 

conditions.  

1.3.2 Instability and stabilization approaches for antibodies at low and high 

concentrations 

Immunoglobulins, more specifically monoclonal antibodies, are been increasingly 

developed as protein therapeutics. Many advantages to antibodies such as functional specificity, 

fewer side effects, potential application in conjugating and targeting chemical drugs and targeted 

drug delivery, diagnostic applications upon conjugation of radioisotopes and potential to make 

less immunogenic humanized antibodies makes them attractive drug candidates. Like any other 

protein based drug, development of monoclonal antibodies as biopharmaceuticals has significant 

challenges involving physical and chemical instability in both solution and solid forms. As 

discussed earlier, the highly dynamic nature of immunoglobulins adds an additional dimension 

of complexity, which is currently perhaps not highly appreciated during protein drug or product 

development. Understanding immunoglobulin dynamics and their influence on conformational 

stability may not only help produce drugs but will also help in understanding their intra- and 

inter-molecular interactions with cosolvents, excipients and delivery devices among others. 
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Excellent reviews
46,125-128

 are available to describe instability considerations and stabilization 

approaches for proteins. Some aspects are briefly summarized in the following section.  

1.3.2.1 Physical and chemical instabilities of immunoglobulins 

 The major physical pathways to render immunoglobulins unstable are conformational 

changes and aggregation. Conformational changes (including unfolding and ultimately 

denaturation) can be caused by a variety of factors including pH, temperature, shear, freeze/thaw 

and the presence of chaotropes. Manufacturing and other processes such as lyophilization can 

also result in unfolding or other structural changes in the native structure of antibodies. Protein 

aggregation is usually considered a major challenge in protein drug development and can have 

deleterious immunological consequences. Aggregation can result in particles which can 

significantly vary in their size, shape and morphology. Such heterogeneity makes studying this 

phenomenon
129

 and their consequences
130-132

 extremely complex but important. A primary 

mechanism for protein aggregation is protein-protein interaction, in which various factors such 

as protein concentration, pH, temperature, salts, and physical phenomenon such as diffusion rates 

and steric constraints play a dominant role in determining the rate and extent of self-association. 

Various additional factors such as freeze-thaw, shaking, and long-term storage among others are 

responsible for differences in the extent of aggregation, morphology and number/size distribution 

of aggregated particles. These factors eventually influence chemical characteristics and 

reversibility of protein aggregates. Surface adsorption is another aspect of protein behavior 

which has gained significant attention recently. Such a phenomenon can lower the protein 

concentration in solution and adversely perturb the conformational stability of proteins.  

 Chemical instability in proteins has serious consequences that not only affect the physical 

stability of proteins but may also have undesirable biological effects. Major chemical 
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degradation pathways include deamidation
133,134

, isomerization
135

, oxidation
133

, cross-linking and 

disulfide bond scrambling
136-138

, C-terminal clipping
139

, peptide bond hydrolysis and 

fragmentation
140

 and in some cases formation of glycated products
141

 in presence of reducing 

sugars. If such changes occur in the hypervariable regions of antibodies, their binding properties 

can be negatively affected. 

1.3.2.2 Stabilization approaches 

 Immunoglobulins can be stabilized either by changing the structural characteristics of the 

protein and/or changing its interaction with the surrounding solvent by the addition of cosolvents 

or solutes. It is often observed that changing the intrinsic structural features of protein (i.e. 

altering its sequence) often affects its thermodynamic characteristics, which can influence its 

functional stability or dynamic properties. A more simplistic and commonly employed approach 

is to modulate the chemical properties of the surrounding solvent using excipients such that the 

intra-molecular interactions in proteins are enhanced and the protein retains its native 

conformational properties. Various potential mechanisms by which excipient can alter a protein’s 

stability and dynamics are discussed earlier in Section 1.2.1. A few promising yet challenging 

approaches towards increasing a protein’s stability are modification of specific amino acids by 

mutagenesis
142

, glycosylation
143

, pegylation
144

 and formation of disulfide bonds
145

. These 

modifications can significantly improve the stability of proteins although they often adversely 

affect the biological activity of the protein.  

1.3.2.3 Challenges in high concentration protein formulations
126-128

 

 Protein drugs sometimes require multiple dosing atleast partially due to the inherent 

stability challenges discussed earlier. In addition, parenteral administration of protein drugs via 
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subcutaneous or intramuscular routes (using <1.5 mL) may necessitate that protein drugs be 

formulated and manufactured at high concentrations up to hundreds of milligrams per milliliter. 

Many of the characteristics of protein solutions at low and high concentrations are strikingly 

different due to the fact that proteins will experience increased interactions with themselves as 

well as other solutes at high protein concentrations. These intermolecular interactions 

dramatically increase at high protein concentrations and can result in a variety of protein specific 

and process related challenges. The solubility, stability, viscosity and colloidal properties of 

proteins significantly change in high concentration proteins. The contributions of various intra- 

and inter-molecular forces (i.e., hydrogen bonding, electrostatic, van der Waals forces, apolar 

interactions and excluded volume effects), which commonly stabilize proteins, can be very 

different in dilute and concentrated protein solutions. For instance, electrostatics and apolar 

interactions have greater contributions to protein-protein interactions in dilute solutions 

compared to hydrogen bonding, van der Waals effects and excluded volume phenomenon. 

Activity coefficients of proteins at high concentrations can also become quite large (>1000), 

causing atypical behavior
146,147

. Excluded volume effects and proximity energies
23

 become more 

critical in concentrated protein solutions.  

 One major challenge in such solutions is concentration dependent protein aggregation, 

which not only involves formation of non-native aggregates and particles but may also involve 

reversible self-association.  Self-association in high concentration proteins primarily involves 

formation of dimers or other defined oligomers via non-covalent interactions. Such processes can 

occur on a temporal scale of few seconds to months. Self-associating proteins in crowded 

environments such as in a cell or high concentration biopharmaceutical products is accompanied 

by increased short-range interactions, with consequences such as increased solution viscosity as 
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well as prolonged biological half-life and possibly increased immune responses upon parenteral 

administration. Additional aspects such as increased opalescence may also compromise quality 

and acceptability of a protein based products. Since the consequences of self-association are 

unique, there continues to be a quest for developing newer analytical approaches to better 

understand such interactions in high concentration proteins. Chapter 4 in this dissertation 

presents one such unique approach. It has been reported that reversible self-association makes 

proteins amenable to formation of covalent linkages that may affect the reversibility of 

associated structures and can also lead to the formation of irreversible aggregates
148

. Such a 

‘switch’ can have deleterious effects on the stability of native proteins and consequently their 

biological activity.  

 Reversible self-association in IgG molecules has been proposed to occur by two distinct 

mechanisms
149

: (1) Fab – Fab interaction involving idiotypic and anti-idiotypic interacting sites on 

two IgG molecules and, (2) Fc – Fc contacts involving apolar interaction between the CH domains 

of two antibody molecules. Such interactions can be more pronounced in crowded environments 

in which excluded volume effects and proximity energies
23

 (high thermodynamic activity) can 

lead to the complex attractive and repulsive contributions governing intermolecular interactions. 

In addition to well accepted steric constraints and repulsive interactions that explain high 

concentration behavior, the dependence of these interactions on the sign and magnitude of 

surface charges and the dipolar characteristics of adjacent molecules have recently come to the 

fore
23

. Furthermore, such processes not only govern intermolecular interactions but can have 

effects on protein (un)folding and the formation of structured (amyloid-like) and unstructured 

aggregates.  Since protein dynamics may have a significant effect on both attractive and 

repulsive interactions on a wide range of timescales, it still remains unclear how dynamic aspects 
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of protein structural behavior govern these phenomena and their subsequent consequences. The 

findings presented in this dissertation and current research in progress are aimed at addressing 

some of these unanswered questions.  

1.4 Empirical phase diagrams: Analytical tool in evaluating stability and 

dynamics of proteins (immunoglobulins) 

 The effect of varying solution conditions on the inter-relationship between structure, 

dynamics and stability is of profound biological and pharmaceutical importance. Various high 

resolution analytical techniques such as X-ray crystallography (which does yield temperature 

factors) and nuclear magnetic resonance (NMR) have inherent experimental challenges such as 

the relevance of the crystalline state or the need for isotope labeling which limit their application 

to routine high throughput analysis of biopharmaceutical systems. A variety of lower resolution 

techniques such as UV-absorption, fluorescence, circular dichroism, light scattering, calorimetric 

and chromatographic techniques can therefore be employed to characterize higher order protein 

structure and hydrodynamic properties
38,150-158

 in a rapid and high throughput manner. It has 

becomes clear that internal molecular motions in macromolecules have a significant effect on 

their conformational stability and therefore measurements which can sample a wide range of 

motions with different timescales should ultimately become a routine set of measurements to 

characterize conformational stability. Various techniques sensitive to dynamic properties of 

proteins which can be employed in a high throughput manner such as high-resolution ultrasonic 

spectroscopy (HR-US), pressure perturbation calorimetry (PPC), red-edge fluorescence 

excitation shifts (REES), time-resolved (lifetime and anisotropy) fluorescence spectroscopy 
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(TCSPC) and temperature-dependent 2
nd

 derivative peak position shifts of UV-absorption spectra 

over a variety of different solution conditions
38,100,120,152,153

.  

 To establish the identity and integrity of macromolecules, and to better understand the 

complex inter-relationships between structure, stability and dynamics of large populations of 

conformational microstates, it is imperative to generate and analyze large sets of experimental 

data using multiple techniques that can probe both the static (time-averaged) and/or dynamic 

(time-resolved) properties of proteins and macromolecules
33,38,100,120,153

.  The complexity of these 

data sets and their multi- dimensional nature make data difficult to analyze and interpret with 

simple approaches such as visual inspection of the data in two dimensional spaces and/or 

mathematical fitting of unfolding plots to functions such as sigmoidal or polynomial functions. 

Such local data inspection may not always reveal the details of behavior of high-dimensional 

data spaces, which may be required to understand the global features of complex 

macromolecular systems and further relate them to dynamics and/or stability. A mathematical 

analysis approach based on singular value decomposition, the empirical phase diagram (EPD) 

was therefore developed which globally analyzes complex multi-dimensional data sets generated 

from static (time-averaged) and dynamic techniques that are used to study biopharmaceuticals 

and vaccines. The multi-dimensional data sets are projected down to three dimensions as 

described earlier
159,160

 and these three dimensional data sets are converted to different ratios of 

red, green and blue color to provide a simple visual representation, which manifests distinct 

segmented regions representing changes in the apparent conformational (or dynamic) properties 

of proteins or macromolecules over a range of solution conditions. Numerous such applications 

of EPDs have been reported which have evaluated the stability of a wide variety of 

macromolecular candidate systems such as proteins, plasmid DNA, viruses, virus-like particles 
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and antigens in the presence of adjuvants
120,159,161-181

.  These EPDs have traditionally been used 

to aid in preformulation and formulation of biopharmaceutical drugs and vaccines.  

 In recent studies
86,120

, however, EPDs generated using techniques (HR-US, PPC, REES, 

TCSPC) sensitive to the dynamic properties of IgG1 monoclonal antibodies (designated a 

“dynamic empirical phase diagram”) were compared with a static phase diagram (which 

primarily represent the time-averaged structures) of the same antibody as a function of pH and 

temperature under similar solution conditions. The key finding in these studies was that the 

dynamic empirical phase diagram showed a more complex pattern of apparent phase transitions 

at lower temperatures in pre-transition regions before any detectable unfolding event compared 

to a corresponding empirical phase diagram using time-averaged measurements. The pre-

transition region can be defined as the range of temperature and pH in which the protein retains 

its native structure and no major conformational change is observed. Therefore, EPDs can be 

successfully employed as a data analysis and/or a representation tool in evaluating the dynamic 

characteristics of proteins, such as immunoglobulins, in a variety of solution conditions as well 

be shown in depth below. 

1.5 Chapter reviews 

1.5.1 Effect of excipients on the conformational stability and ‘global’ dynamics of 

immunoglobulins (Chapter 2) 

  Chapter 2 is focused on (1) characterization and comparison of the conformational 

stability and global dynamic properties of two humanized IgG1 monoclonal antibodies, (2) 

identification of stabilizers and destabilizers from a library of Generally-Regarded-As-Safe 

(GRAS) excipients and, (3) evaluating the effect of candidate stabilizing and destabilizing 
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excipients on the conformational stability and global dynamics of the two IgG1 monoclonal 

antibodies, primarily in the pre-unfolding transition temperature range. The working hypothesis 

of this work was that formulation excipient(s) may affect conformational motions and/or solvent 

fluctuations in immunoglobulins. A combination of static (time-averaged) and dynamic-based 

techniques were employed to characterize the effect of pH and temperature on conformational 

changes and global dynamics of an IgG1 monoclonal antibody (mAb-A). Two separate empirical 

phase diagrams, one containing data from static (time-averaged) techniques and other containing 

additional data from HR-US measurements, were constructed to better understand the influence 

of global dynamic measurements on the pH/temperature behavior that can be detected in mAb-A 

by the EPD approach. The thermal stability of two IgG1s (mAb-A and mAb-B) were compared 

by measuring the transition midpoint of thermal unfolding (TM) as a function of pH using 

differential scanning calorimetry (DSC). A high-throughput steady-state intrinsic fluorescence 

spectroscopic assay was used to screen a GRAS library of excipients to identify potential 

stabilizers and destabilizes. The effect of different concentrations of excipients on the 

conformational stability of mAb-A and mAb-B were studied by differential scanning 

calorimetry. Finally, the effect of candidate excipients on global dynamics was evaluated using 

ultrasonic spectroscopy and red edge excitation spectroscopy. 

 Even though the two mAbs are of the same IgG1 subtype, the unfolding patterns, 

aggregation behavior, and pre-transition dynamics of these two antibodies were strikingly 

different in response to external perturbations such as pH, temperature, and the presence of 

excipients. The potential reasons for such differences in solute effects between two IgG1mAbs 

are discussed in this chapter. 
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1.5.2 Effect of excipients on ‘local’ dynamics of a monoclonal antibody and 

correlations with its global conformational stability (Chapter 3) 

 Proteins such as immunoglobulins can exhibit motions with different magnitudes of 

spatial and temporal scales which may arise from distinct local regions within the protein.  These 

regions may have different degrees of exposure to the solvent in their immediate vicinity which 

should involve water of hydration.  Many compounds such as osmolytes are known to influence 

the hydration potential of proteins by modulating protein-solvent interactions in solution.  

Chapter 3 is thus aimed at (1) evaluating the conformational stability, dynamics and excipient 

effects on regions with distinct solvent-exposure in an IgG1 monoclonal antibody (mAb-B) as a 

function of temperature, as measured by fluorescence spectroscopy using red-edge excitation 

(REE) and, (2) better understanding correlations between local dynamics and global 

conformational stability of mAb-B, both in the absence and presence of stabilizing or 

destabilizing excipients.  

 The principles of site-selective photoselection upon red-edge excitation, accompanied by 

acrylamide quenching of tryptophan fluorescence were employed in this study.  The initiation of 

mAb-B thermal unfolding occurs by structural alterations in the more solvent-exposed regions of 

the antibody, which subsequently leads to a cascade of structural alterations in its relatively more 

solvent-shielded regions.  In addition, an increase in internal dynamics of solvent-shielded 

regions made mAb-B more susceptible to thermally induced structural perturbations resulting in 

its global destabilization.  Sucrose and arginine were found to exert their stabilizing and 

destabilizing effects by predominantly influencing the conformational stability of solvent-

exposed regions in mAb-B.  The complex molecular effects of sucrose and arginine on local 

dynamics of different regions in mAb-B and their correlation with the protein’s conformational 
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stability are described within the pre-transition range, at the onset temperature (Tonset) and at the 

thermal melting temperature (TM). 

1.5.3 Understanding interactions in high concentration protein solutions (Chapter 4) 

 As discussed in section 1.3.2.3, proteins at high concentration present unique challenges 

and limited experimental data are currently available that measure non-ideality effects in highly 

concentrated (>50 mg/mL or volume fraction >0.1) protein solutions or that employ non-

hydrodynamic approaches.. Current analytical methods used to study protein interactions, 

however, rely primarily on the detection of non-ideality in relatively dilute (<50 mg/mL) 

solutions.  Chapter 4 presents an application of variable path-length UV-Visible absorption 

spectroscopy to examine and better understand interactions over a wide concentration range (5 to 

240 mg/mL) using several representative proteins. In this study, the change in ultraviolet 

absorption (or extinction coefficient) was monitored by determining delta absorbance (∆Abs), 

the difference between the measured absorbance and the corresponding theoretical absorbance 

(calculated from gravimetric dilution), over a wide range of protein concentrations.  The ∆Abs, 

corrected for light scattering, was found to increase with protein concentration for three model 

proteins (BSA, lysozyme and a monoclonal antibody).  Since PPIs influence solution viscosity, 

we studied the correlation between ∆Abs measurements and viscosity as a function of protein 

concentration.  The magnitude of ∆Abs and solution viscosity followed similar trends with 

increasing protein concentration, albeit to different extents for different proteins.  These data 

support the use of such ∆Abs measurements as an alternative approach to monitor and evaluate 

interactions in protein solutions at high concentration.  
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1.5.4 Summary, conclusions and future directions (Chapter 5) 

 Chapter 5 summarizes our findings and conclusions concerning how excipients affect the 

conformational stability and dynamics at a global level and in distinct local regions within 

immunoglobulins. The potential applications of ultraviolet spectroscopy to studying interactions 

and excipients effects that modulate solution viscosity for high concentration proteins are 

presented. Finally, current and future goals to evaluate inter-relationships between protein 

dynamics, solute effects and molecular interactions on the conformational stability and 

aggregation of proteins are proposed. 
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Chapter 2 

 

Effect of excipients on the conformational stability and global dynamics of 

immunoglobulins 
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2.1 Introduction 

 Proteins in solution are inherently conformationally dynamic molecules composed of 

atoms that are in a state of constant motion at ambient temperatures
182

.  At equilibrium, the 

native form of a protein is believed to sample a statistical ensemble of interconverting 

microstates which undergo continuous fluctuations, resulting in protein motions on the spatial 

scale of sub-nanometer to tens of nanometers and a temporal scale of femtoseconds to hours
183

.  

Protein dynamics are known to influence a wide variety of biological processes including 

folding
182

, enzymatic activity
184,185

, signaling
186

, allostery
187

, ligand binding
57,59,188

 and 

stability
38

.  Several studies suggest that examining the dynamics of proteins could play a role in 

elucidating more complex correlations that may exist between protein stability and 

function
29,30,36,37,39

.  

 Changes in solution properties (e.g., pH, temperature, ionic strength and the presence of 

cosolvents) as well as the structure of water itself (predominantly in the hydration layer) may 

significantly influence the structure, stability, dynamics and function of biologically and 

pharmaceutically important proteins
53,54,68,100,189,190

.  A variety of biophysical techniques such as 

X-ray crystallography
191,192

, nuclear magnetic resonance
184,193-195

, neutron scattering
192

, isotope 

exchange
33

, ultrasonic spectroscopy
38,98-101,196

 and pressure perturbation calorimetry
100,102-104,197

 

have been employed to probe fluctuations in the internal motions of proteins and/or their 

surrounding solvent.  Numerous lower resolution techniques such as UV-absorption, 

fluorescence, circular dichroism and light scattering among others have commonly been 

employed to characterize higher order structures, hydrodynamic properties and conformational 

stability of proteins
38,150-158

.  Data from these multiple biophysical techniques can be combined in 

a vector-based stress/response method known as an empirical phase diagram (EPD)
120,159,160

.  An 
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EPD displays distinct colored regions which represent different conformational states of proteins 

and other macromolecular systems as a function of solution conditions such as pH and 

temperature.  In a recent study
120

, an EPD was generated for an IgG1 monoclonal antibody 

(mAb-B) based on techniques sensitive to the dynamic properties of proteins such as high-

resolution ultrasonic spectroscopy, pressure perturbation calorimetry, red-edge excitation shifts 

and time-resolved fluorescence spectroscopy.  The results showed a more complex pattern of 

apparent structural transitions at lower temperatures in the pre-transition region (below any 

detectable unfolding event) compared to an EPD generated from biophysical data using static 

(time-averaged) measurements such as circular dichroism, steady-state fluorescence 

spectroscopy and light scattering.  The pre-transition region is defined as a temperature range 

over which the change in parameters traditionally used to evaluate a protein’s secondary 

structure, tertiary structure and conformation stability does not deviate from a continuous change 

with temperature, as studied by methods such as circular dichroism, fluorescence spectroscopy 

and differential scanning calorimetry.  A better understanding of any relationship between 

conformational stability and dynamics, especially in the pre-transition region, may be important 

to our understanding of the development and formulation of biopharmaceutical drugs such as 

monoclonal antibodies.  

 Monoclonal antibodies (mAbs) are an important class of dynamic, Y-shaped proteins that 

are good models for studying the inter-relationships between conformational stability and 

dynamics.  The two Fab domains of immunoglobulins are connected to the Fc domain by a highly 

flexible proline-rich hinge region which is believed to affect the structure and dynamics of 

immunoglobulins
115,116

.  Various analytical techniques have been used to study the flexibility and 

dynamics of antibodies
33,100,115-122

.  Different molecules within an immunoglobulin subclass, 
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despite their overall similarly in structure and sequence homology, may display significant 

differences in their conformational stability, flexibility and dynamics.  The conformational 

stability of antibody drugs, formulated at both low and high concentrations, is significantly 

influenced by environmental and formulation factors during manufacturing, long-term storage 

and administration
123-125

.  The effect of these factors on protein dynamics, however, has not been 

examined to any great extent.  It is therefore important not only to understand better any 

relationship between conformational stability and dynamics for different monoclonal antibodies, 

but also to examine the effect of various environmental factors (e.g., pH, temperature, excipients, 

etc.) on their conformational stability and dynamics.  

 In this study, the effect of stabilizing and destabilizing excipients on conformational 

stability and intra-molecular protein dynamics of two different IgG1 mAbs (mAb-A and mAb-B) 

is compared to further understand the relationships between stability and dynamics.  

2.2 Experimental methods 

2.2.1 Materials 

 The IgG1 monoclonal antibodies (mAb-A and mAb-B) were provided by MedImmune 

(Gaithersburg, MD).  The stock protein solutions were stored as received at 2-8°C.  The dialysis 

of stock protein solutions was carried out overnight (at 4 
o
C) using a 10 kDa MWCO dialysis 

cassette (Pierce, Rockford, IL) into 20 mM citrate-phosphate buffer at pH values ranging from 3 

to 8 at one unit intervals, unless otherwise noted.  The final ionic strength of the buffer was 

adjusted to 0.1 using NaCl.  All of the buffer components and other chemicals were purchased 

from Sigma (St. Louis, MO) and Fisher Scientific (Pittsburgh, PA).  The protein concentration 

was measured at room temperature by absorbance measurement at 280 nm using an extinction 
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coefficient 1.45 mL mg
-1

cm
-1

 in an Agilent 8453 UV-Visible spectrophotometer (Palo Alto, CA), 

and diluted to the final concentration as indicated in each experiment. 

2.2.2 Methods 

2.2.2.1 Steady-state intrinsic (Trp) and extrinsic (ANS) fluorescence spectroscopy 

 Intrinsic tryptophan fluorescence spectra and static light scattering intensities were 

acquired using a two-channel, peltier-controlled, four-position PTI Quanta Master 

Spectrophotometer (Lawrenceville, NJ). The sample temperature was precisely controlled at 10.0 

to 90.0 
o
C with 2.5 

o
C intervals and an equilibration time of 4 min at each temperature point. The 

IgG concentration used was 0.1 mg/mL (~ 6.7 x 10
-4

 mM) in a quartz cuvette with pathlength of 

1 cm. The excitation and emission slit widths were initially set to 3 nm. Intrinsic tryptophan 

fluorescence spectra were collected using excitation wavelength of 295 nm, which excites 

tryptophan residues predominantly, and the emission range of 300 to 400 nm. The intrinsic Trp 

fluorescence peak position and peak intensity was determined after respective buffer subtraction 

by polynomial fitting and first derivative analysis of the processed spectra. Static light scattering 

intensity was acquired in the same experiment by monitoring scattered light at 90
o
 relative to the 

excitation source. The emission detector slit width was set to 0.5 nm. ANS fluorescence 

experiments were performed with similar experimental set up using excitation wavelength of 375 

nm and emission range of 400–550 nm. The molar ratio of ANS: protein was maintained at 20:1. 

To obtain protein specific spectra corrected for background fluorescence, the spectra of ANS in 

buffer alone was subtracted from the sample spectra. 

 The excipient screening study using intrinsic tryptophan fluorescence assay was 

performed with similar instrumental settings in presence and absence of GRAS excipients. The 
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transition midpoint of thermal unfolding (TM) was determined by fitting the temperature 

dependent change in intrinsic tryptophan fluorescence intensity using a Sigmoidal-Boltzmann 

function, in which temperature corresponding to the half transition point of peak fluorescence 

intensity was considered as a TM value.  

2.2.2.2 Far-UV circular dichroism 

 Far-UV circular dichroism signals were used to monitor changes in secondary (-sheet) 

structure of IgG1 using a Jasco J-810 spectrometer (Tokyo, Japan) equipped with a six-cell 

sample holder and a peltier to precisely control the temperature. The effect of pH and 

temperature was studied by monitoring molar ellipticity of 0.2 mg/mL of IgG at 217 nm over the 

pH range of 3 to 8 (at one unit intervals) and temperatures of 10 – 90 
o
C at 0.5 

o
C intervals. Each 

measurement was acquired as an average of four accumulations with the temperature ramp rate 

of 15 
o
C/h, a response time of 1 s and the bandwidth of 1 nm. The sample specific spectra were 

obtained by subtracting the buffer spectrum from the sample spectrum. 

2.2.2.3 OD350nm turbidity measurements 

 The aggregation propensity of mAbA was studied using an orthogonal method by 

monitoring the optical density of 0.5 mg/mL of antibody at 350 nm using an Agilent 8453 UV-

Visible spectrophotometer (Palo Alto, CA) as a function of pH and temperature. The temperature 

range studied was 10 to 90 
o
C at 2.5 

o
C intervals, pH ranging from 3 to 8 at unit intervals and an 

equilibration time of 4 min. The experiments were performed in triplicate. 
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2.2.2.4 High resolution ultrasonic spectroscopy (HR-US) 

 Ultrasonic measurements
97,100,120,198,199

 were performed using an HR-US 102 

Spectrometer (Ultrasonic Scientific, Dublin, Ireland) with a frequency range of 2 – 18 MHz and 

a resolution of 0.2 mm/s for velocity and 0.2% for attenuation measurements.  The sample and 

reference cells contained 1 mL of protein and corresponding buffer solution, respectively. The 

differential velocity and attenuation were monitored at 12 MHz from 10 to 85 
o
C and pH 3 to 8 

using 5 mg/mL of mAb-A.  The temperature of the cells was controlled by a Phoenix P2 water 

circulator (Thermo Haake, Newington, NH). The sample and reference solutions were 

thoroughly degassed before each measurement.  Appropriate amounts of sucrose or arginine 

were added to both protein and buffer solutions while evaluating excipient effects.  Data were 

analyzed using HRUS v4.50.27.25 software.  The coefficient of adiabatic compressibility (βs) 

was determined using the following equations 
100

:  

 

     
 

 
 
  

  
      

 

  
  

   

  
    

  

  
    

   

 
 
  

    

 
 

                
   

  
                       

   

    

 
 

 

β and β0 are the adiabatic compressibility of the solution and buffer respectively, ρ and ρ0 are the 

density of the solution and the corresponding buffer, ν0 is the partial specific volume of the IgG, 

V0 is apparent volume fraction of the buffer and c is the protein concentration.  The adiabatic 

compressibility of the sample and buffer are related to the density (ρ) and ultrasonic velocity (u) 
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by the Laplace equation
200

, β=1/ρu
2
.  The effect of excipients on the compressibility of mAb-A 

and mAb-B was studied similarly using solution conditions described later in the text.  

2.2.2.5 Density 

 The density of protein samples (5 mg/mL) and corresponding buffer solutions was 

measured using a DMA-5000 high precision densitometer (Anton Paar, Graz, Austria) at a 

precision of 1 x10
-6

 g/cm
3
 and 0.001 

o
C.  The densities of degassed solutions were measured 

from 5 – 55 
o
C at 2.5 

o
C intervals.  The instrument was calibrated daily with dry air and degassed 

water before analysis.  For the excipient studies, both the protein sample and corresponding 

buffer solution contained equal predetermined quantities of each excipient.  

2.2.2.6 Differential scanning calorimetry (DSC) 

 The differential scanning calorimetric studies were performed using a MicroCal VP-

Capillary DSC with an autosampler (MicroCal, Northampton, MA).  The pH (pH 3 to 8 at 1-pH 

unit intervals) experiments for mAb-A and mAb-B were performed using 1 mg/mL of protein in 

20 mM citrate-phosphate buffer (I = 0.1 adjusted by the appropriate addition of NaCl).  The 

temperature ramp was programmed from 10 to 90 
o
C at a scanning rate of 60 

o
C/h and a filtering 

period of 16 s.  Protein thermograms were obtained by subtracting the corresponding buffer 

blank from the sample thermogram.  The transition midpoints were obtained by determining the 

baseline using linear or cubic functions, normalizing it to protein concentration, and fitting the 

processed thermogram to a non-two-state unfolding model.  The endothermic peak maximum of 

the heat capacity was considered to be the apparent transition midpoint (TM) for the individual 

peaks that could be deconvoluted from the thermogram.  The effect of varying concentrations of 

excipients was studied similarly at pH 4 and pH 4.5 for mAb-A and mAb-B, respectively.  
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2.2.2.7 Empirical phase diagrams 

 EPDs are constructed to visually represent changes in the structural
120,159

 and dynamic
120

 

properties of proteins in the form of colored diagrams as a function of solution variables such as 

pH and temperature.  The rationale and methodology of EPD construction are described 

elsewhere
159,160

.  Two separate EPDs were constructed using mAb-A. For the first EPD, 

experimental data as a function of pH and temperature from the following static biophysical 

techniques were used: intrinsic tryptophan fluorescence intensity, tryptophan peak position 

shifts, static light scattering intensity, ANS fluorescence intensity, circular dichroism at 217 nm 

and OD 350nm values.  The second EPD was constructed to include measurements of dynamic 

properties on mAb-A by adding compressibility data from HR-US.  The latter reflects changes in 

global dynamics as a function of pH and temperature.  These two EPDs for mAb-A are 

compared with previously published results for mAb-B
120

.  Different protein concentrations were 

used for different techniques (e.g., 0.1 mg/mL for fluorescence measurements and 5 mg/mL for 

ultrasonic measurements) and the concentration was chosen to obtain higher signal-to-noise in 

individual measurements. Because the concentrations used fall within the dilute solution regime 

as determined in control (concentration-dependent) experiments, the differences in protein 

concentration do not alter the pre-transition region significantly and hence should not influence 

the conformational stability and dynamics of the proteins as measured by these techniques. 

2.2.2.8 Excipient screening  

 Intrinsic tryptophan fluorescence and static light scattering were used to screen a 

Generally-Regarded-As-Safe (GRAS) library of excipients to identify compounds which either 

increased or decreased the stability of mAb-B, as determined by changes in the transition 
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midpoint (TM) of mAb-B unfolding.  The concentrations of excipients used were higher than 

those commonly used in protein formulations to facilitate screening of excipients.  The transition 

midpoint (TM) was determined from a sigmoidal fit of the first transition in intrinsic fluorescence 

intensity versus temperature plots.  The data were acquired between 10 and 90ºC in increments 

of 2.5ºC.  Static light scattering was used to assess the propensity of the IgG1 antibody to 

aggregate.  Prior to experimentation, mAb-B was dialyzed into 20 mM citrate-phosphate buffer 

(containing NaCl to adjust I= 0.1) at pH 4.5.  These stress conditions were selected based on the 

reduced stability of mAb-B at this pH
120

 which should facilitate the identification of stabilizing 

compounds.  The protein concentration employed was 0.1 mg/mL.  A few selected candidate 

stabilizers and destabilizers from this primary screen were used to further evaluate their effect on 

the second IgG1 molecule (mAb-A), either by the fluorescence method and/or differential 

scanning calorimetry. 

2.2.2.9 Red-edge excitation spectroscopy (REES) 

 Red edge excitation is a characteristic property of polar fluorophores which exhibit 

excitation wavelength dependent emission spectra
201,202

.  This phenomenon depends upon 

motional restriction of the environment of fluorophores.  The steady-state fluorescence 

measurements of red-edge excitation shifts were performed using a PTI Quanta Master 

Spectrophotometer (Lawrenceville, NJ).  The excitation and emission slit widths were set to 2.5 

and 3 nm, respectively.  The emission spectra (300 to 400 nm) were collected using different 

excitation wavelengths from 292 to 308 nm at 4 nm intervals.  Both mAb-A and mAb-B at 0.1 

mg/mL were studied in the absence and presence of selected excipients using a 1-cm pathlength 

quartz cuvette.  A temperature ramp from 10 
o
C to 70 

o
C at 2.5 

o
C increments was used with an 

equilibration time of 3 min.  An appropriate blank spectrum was subtracted from the sample 
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spectrum.  The emission peak position (and intensity) was determined by a mean spectral center 

of mass (MSM) method, which increased reproducibility and signal-to-noise ratio and thus 

improved our ability to measure the relative shifts in peak position in the presence of excipients.  

The peak position maxima obtained by the MSM method is ~8 – 10 nm higher than the actual 

peak position obtained by derivative analysis.    

2.3 Results 

2.3.1 Characterization of higher-order structure, conformational stability and 

dynamics of mAb-A as a function of pH and temperature. 

2.3.1.1 Static (time-averaged) measurements 

 The results from a variety of biophysical characterization measurements of mAb-A as a 

function of pH and temperature are shown in Figure 1 (a – f) and supplementary Figure S1 (a – 

f).  A well-defined structural transition occurs in mAb-A at 65 to 75 
o
C over the pH range of 5 – 

8 as detected by increases in Trp fluorescence intensity (Figure 1a) and a red-shift of emission 

peak maximum (Figure 1b).  The onset temperature (Tonset) of unfolding at pH 5 starts ~60 
o
C 

with a broad unfolding curve (Figure 1b).  The early Tonset at pH 5 is accompanied by an increase 

in ANS fluorescence intensity (Figure 1c) suggesting the exposure of apolar sites.  The presence 

of intermolecular β-structure rich structures at pH 5 – 8 is also detected ~63 to 78 
o
C as 

suggested by a decrease in the CD signal (Figure 1f).  The unfolding event at pH 5 – 8 leads to 

further aggregation which is apparent from the increase in light scattering intensity (Figure 1d) 

and OD 350 nm (Figure 1e) measurements.  The Tonset for the unfolding transition (Figure 1c) in the 

range of pH 5 – 8, however, follows an inverse trend compared to the Tonset of aggregate 

formation (Figure 1d, e).  For example, the Tonset of unfolding is lowest (~60 
o
C) at pH 5 
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(followed by pH 6 < pH 7 < pH 8) while its Tonset of aggregation is the highest (~ 85 
o
C) at pH 5 

(followed by pH 6 > pH 7 > pH 8).  In addition, at pH 4, the overall structural changes observed 

for mAb-A as a function of temperature were similar (Figure 1b, c, f) to that at pH 5 up to ~70 

o
C, albeit the transitions were observed at lower temperatures.  The CD signal at pH 4, however, 

continues to decrease above 75 
o
C, suggesting that the intermolecular interactions continue to 

increase with increases in temperature.  The behavior of mAb-A at pH 3 is significantly different 

than at other pH values below 65 
o
C, where the protein manifests multiple distinct structural 

transitions apparent from ANS fluorescence intensity change (Figure 1c), Trp peak position 

shifts (Figure 1b) and circular dichroism (Figure 1f).  No increase in light scattering intensity 

(Figure 1d) or optical density (Figure 1e) was observed at pH 3 and 4 up to 90 
o
C.  Fluorescence 

emission spectra (intrinsic and ANS) for mAb-A at 15, 35 and 60 
o
C are shown as a function of 

pH in supplementary Figure S1 (a – f). These data suggest that mAb-A retains its native-like 

structure (supplementary Figure S1 a, b, d, e) at temperatures in the pre-transition region (15 and 

35 
o
C) compared to results at higher temperatures (e.g., 60 

o
C), resulting in structural disruptions 

(supplementary Figure S1 c, f).  Upon excitation at 295 nm, the intrinsic Trp fluorescence 

emission represents the average emission signal from all the Trp residues (~ 22) present in the 

IgG1 molecules used in this study.   

2.3.1.2 High resolution ultrasonic spectroscopy  

 The global dynamics of mAb-A were studied by determining compressibility (volume 

fluctuations with changes in pressure) as a function of pH and temperature using high-resolution 

ultrasonic spectroscopy (HR-US) (Figure 2).  The adiabatic compressibility of mAb-A was 

calculated as a function of pH and temperature by determining the relative changes in the 

ultrasonic velocity between the sample and reference.  As expected, the adiabatic compressibility 
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of mAb-A was found to increase as a function of temperature at all pH values.  Plots of adiabatic 

compressibility versus temperature, however, show a unique non-linear increase in the pre-

transition regions (<45 
o
C) starting at pH 4 and above.  These HR-US deviations occur at lower 

temperatures than the respective Tonset and TM1 values as measured by DSC (see next section).  

This non-linear dependence of adiabatic compressibility therefore may reflect some form of 

change in the global dynamics of mAb-A in the pre-transition region.   

2.3.1.3 Empirical phase diagrams for mAb-A  

 The EPD constructed for mAb-A using the time-averaged measurements is presented in 

Figure 3a.  A broad structural transition is apparent between 60 and 75 
o
C for pH 5 – 8.  At pH 4, 

two distinct structural transitions occur at ~50 and ~70 
o
C. The contributions from ANS 

fluorescence intensity changes (Figure 1c) and CD signals (Figure 1f) may contribute the most to 

these apparent transitions at pH 4.  The transitions in mAb-A at pH 3 start at ~20 
o
C with 

multiple subsequent minor transitions observed every 10 – 15 
o
C.  The EPD in Figure 3a has 

been divided into three distinct phases, i.e., Phase I, II and III, representing regions of stable, 

unstable and aggregated form of mAb-A, respectively.  It has previously been reported
120

 that a 

‘dynamic’ EPD constructed using another IgG1 (mAb-B) was able to detect an additional 

transition region in the low temperature (< 45 
o
C) region arising from contributions of the 

adiabatic compressibility measurements.  An EPD using mAb-A was constructed combining 

static and compressibility measurements as a function of pH and temperature (Figure 3b).  Red-

edge excitation shift data were not included in the EPD because of lower resolution of these data 

at higher temperatures.  This ‘dynamic’ EPD for mAb-A shows an additional transition region 

(Phase 1’) at pH ≥ 4 and at temperatures < 45 
o
C compared to the static EPD (Figure 3a).  This 

EPD with mAb-A, together with the previously published
120

 results with mAb-B, suggest that 
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ultrasonic measurements provide additional information about conformational fluctuations and 

flexibility in IgG1 that are not apparent with the use of conventional biophysical techniques 

alone, especially in the pre-transition regions.  The presence of additional structural effects in the 

pre-transition regions of the two IgG1 antibodies at ~pH 5 – 8 emphasizes the need for 

developing a better understanding of the effect of formulation components not only on 

equilibrium conformational stability but also on the dynamic properties of protein therapeutic 

drugs in solution. 

2.3.1.4 Thermal stability of mAb-A and mAb-B 

 Differential scanning calorimetry (DSC) is routinely used to study the thermal stability of 

antibodies
100,203

 by measuring the differential heat capacity to determine the midpoint of a 

thermal unfolding event (TM).  DSC was used to compare directly the conformational stability of 

mAb-A and mAb-B as function of solution pH (Figure 4; Supplementary Table 1).  Three 

distinct conformational transitions (TM1, TM2, TM3) were apparent for mAb-A at pH 3 – 7, albeit 

at variable temperatures.  Only two major structural transitions, however, were observable at pH 

8 (Figure 4b).  In contrast, mAb-B showed only two distinct transitions in the pH range of 5 – 8 

by DSC (TM2 and TM3 in Figure 4c and 4d).  In the case of mAb-B at pH 3 and 4, an additional 

lower temperature transition (TM1) was detected.  

2.3.1.5 Screening of a GRAS library of excipients  

 To better understand the effect of formulation excipients on conformational stability and 

global dynamics of these two IgG1 monoclonal antibodies, a first set of experiments screened a 

GRAS library of excipients to identify potential stabilizing and destabilizing excipients using 

mAb-B.  The EPDs for mAb-A (Figure 3) and mAb-B (Ramsey JD et al.
120

 Figure 3) indicate 
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conformational instability in the range of 55 – 65 
o
C at pH ~4 – 4.5.  The intrinsic Trp 

fluorescence intensity method was utilized to identify stabilizing excipients. The change in 

stability of mAb-B’s tertiary structure by excipients was determined by computing the difference 

in TM (ΔTM) of mAb-B in absence and presence of excipients under these accelerated pH 

conditions (Table 1).  This methodology allowed for determination of the protein unfolding 

temperature (TM) as well as an assessment of aggregation behavior (Table 1).  Sugars and 

polyols in general increased the TM of mAb-B, whereas amino acids, such as arginine and 

histidine, lowered the transition temperature.  A few selected candidate stabilizers (sucrose, 

dextrose and mannitol) and destabilizers (arginine) were then tested with mAb-A (using DSC) at 

pH 4 to identify common excipients that either stabilize or destabilize both of the IgG1 

antibodies (data not shown).  Based on their effects on the TM values, as measured by 

fluorescence spectroscopy with mAb-B and DSC with mAb-A, sucrose was selected as a 

representative candidate stabilizer, and arginine was used as a destabilizing excipient for both 

proteins.  All subsequent studies evaluating the effect of excipients on conformational stability 

and pre-transition dynamics were performed at pH 4 and pH 4.5 for mAb-A and mAb-B, 

respectively.  These solution conditions were selected because the magnitude of stabilizing and 

destabilizing effects of these two excipients under neutral pH conditions was smaller than the 

chosen more acidic pH solutions conditions.  The selection of lower pH, however, does not 

preclude our ability to study the effect of excipients on the pre-transition conformational 

dynamics of the mAbs since the Tonset of unfolding for both the proteins under these conditions is 

still ≥ 45 
o
C.  
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2.3.2 Effect of arginine and sucrose on conformational stability and dynamics of IgG1 

mAb-A and mAb-B.  

2.3.2.1 Effect on conformational stability  

 The effect of sucrose and arginine on the conformational stability of mAb-A and mAb-B 

was studied using DSC and intrinsic Trp fluorescence spectroscopy (Figure 5, 6 and 

Supplementary Table 2).  DSC and fluorescence measurements were used to determine the effect 

of excipients on the overall thermal stability and tertiary structure stability, respectively. Figure 

5a shows a representative DSC thermogram for mAb-B at pH 4.5. Three distinct transitions were 

detected for mAb-B at pH 4.5 with TM1 being the first low temperature transition, TM2 the 

second transition, and TM3 the third transition seen at the highest temperature.  Similarly, three 

distinct transitions were observed for mAb-A at pH 4 (data not shown).  Arginine (up to ~300 

mM) was found to destabilize both mAb-A (Figure 5c; Supplementary Table 2a) and mAb-B 

(Figure 5e; Supplementary Table 2c) in a concentration dependent manner.  Sucrose (up to ~500 

mM) showed a concentration dependent stabilization effect on mAb-A (Figure 5d; 

Supplementary Table 2b) and mAb-B (Figure 5f; Supplementary Table 2d). 

 One goal of a protein formulation strategy would be to identify excipients that stabilize 

the first conformational transition (which is typically the unfolding of CH2 domain for IgG1)
204

 

and inhibit subsequent protein unfolding.  Figure 5b shows the effect of arginine and sucrose 

concentration on the TM1 values for both mAb-A and mAb-B.  Arginine was more potent at 

destabilizing mAb-A than mAb-B.  For example, to achieve ~2.5 
o
C destabilization, a lesser 

amount of arginine (highlighted with a rectangle) was required for mAb-A compared to mAb-B.  

Sucrose, however, was a more potent stabilizer for mAb-B compared to mAb-A.  As shown in 



50 

 

Figure 5b, to achieve ~2.5 
o
C stabilization, a lesser amount of sucrose (highlighted with a 

rectangle) was required for mAb-B compared to mAb-A. 

 Figure 6 shows the effect of the two excipients on the tertiary structure stability of mAb-

A (Figure 6a) and mAb-B (Figure 6b) as monitored by Trp peak position shifts as a function of 

temperature.  Arginine does not influence the tertiary structure stability of mAb-A throughout the 

temperature range examined.  For mAb-A in presence of sucrose, however, the protein showed 

blue-shifted Trp peak positions above 25 
o
C suggesting that aromatic residues are shielded from 

the solvent.  In the case of mAb-B, in the absence of excipients, the protein shows a red shift in 

Trp peak position (Tonset ~45 
o
C) upon thermal unfolding indicating exposure of aromatic 

residues to the solvent (Figure 6b) with increasing temperature.  Sucrose was found to stabilize 

while arginine destabilized the tertiary structure of mAb-B in terms of both Tonset and TM. 

2.3.2.2 Effect on protein dynamics 

 The effect of sucrose and arginine on the global dynamics of mAb-A and mAb-B was 

first examined by determination of compressibility values using HR-US as shown in Figure 7.  

The measurements of protein compressibility are directly related to the fluctuations in volume of 

the protein, thereby reflecting a form of the dynamics and flexibility of proteins.  Figure 7a 

shows that the adiabatic compressibility increases with temperature for both mAb-A (pH 4) and 

mAb-B (pH 4.5).  An increase in compressibility suggests that the relative difference in the 

ultrasonic velocity between the sample and the reference is decreased, while the absolute value 

of the velocity increases as a function of temperature.  Mobile or less structured molecules 

possess a lower elastic modulus compared to rigid, more structured species.  This results in a 

decrease in sound velocity through the unstructured or mobile material.  A higher compressibility 

value is therefore indicative of a less structured and/or a more dynamic protein.  As seen in 
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Figure 7a, the compressibility of mAb-A is relatively greater than mAb-B in the temperature 

range 10-50 
o
C, i.e., before any major detectable conformational transitions.  

 The effect of sucrose and arginine on mAb-A compressibility as a function of 

temperature is shown in Figure 7b.  Sucrose does not significantly influence the compressibility 

of mAb-A in the pre-transition region while arginine marginally decreases the compressibility of 

mAb-A, especially in the pre-transition region.  Figure 7c represents the effect of sucrose and 

arginine on the compressibility of mAb-B.  The compressibility of mAb-B in the presence of 

arginine was found to be marginally increased in the pre-transition region.  The significant 

increase in the compressibility of mAb-B in the presence of arginine above 55 
o
C most likely can 

be explained by the formation of highly compressible, irreversible aggregates.  The 

compressibility of mAb-B in the presence of sucrose was significantly reduced throughout the 

range of temperatures used in this study, but predominantly in the pre-transition region.  The 

lowering of compressibility suggests that the global dynamics of mAb-B are dampened in 

presence of stabilizing concentrations of sucrose.  

 Figure 8 shows the red edge excitation shift results for mAb-A and mAb-B in the 

presence of sucrose and arginine.  The red edge excitation effect (REES) is a phenomenon in 

which there is a shift in emission spectra maxima upon red edge excitation
201,202

.  Such an effect 

is primarily observed when the lifetime of solvent relaxation is equal to or larger than the 

lifetime of the fluorophore of interest.  The solvent reorientation or relaxation around an excited 

state fluorophore is influenced by dynamic motions within proteins and solvent fluctuations 

around the fluorophore’s environment.  At 10 
o
C, both mAb-A and mAb-B show red edge shifts 

in the absence of excipients suggesting that the fluorophore(s) examined (Trp in this case) are in 

an environment where the lifetime of solvent relaxation is either equal to or longer than the 



52 

 

lifetime of the fluorophore.  Such a system is suitable for studying the effects of excipients on the 

conformational flexibility and dynamics of proteins by monitoring their effect on the magnitude 

of any observed red edge shifts.  The REES effect occurs because the longer wavelength 

excitation results in photo-selection of fluorophores that are strongly interacting with polar 

solvent molecules in their vicinity, and as such, a less dynamic (or more rigid) fluorophore 

environment will lead to a decrease in solvent relaxation of the fluorophore and thus the 

magnitude of red edge shifts will increase.  As shown in Figure 8a and Figure 8b, neither sucrose 

nor arginine altered the red edge shifts observed in mAb-A in the temperature range spanning the 

pre-transition region of the antibody.  This result suggests that these two excipients do not 

significantly affect the internal dynamics of mAb-A in which the local environment around Trp 

residues was sampled.  In contrast, concentrations of sucrose which stabilized the tertiary 

structure of mAb-B were found to increase the magnitude of red edge shifts in the pre-transition 

region (Figure 8d).  Arginine did not alter the magnitude of the red edge shifts in the pre-

transition region (< 55 
o
C) of mAb-B (Figure 8c).   

2.4 Discussion 

2.4.1 Comparison of higher order structure, thermal stability behavior and EPDs 

between mAb-A and mAb-B
120

  

 The biophysical data suggest that mAb-A undergoes multi-step unfolding upon thermal 

unfolding with formation of intermolecular β-structure rich oligomeric structures at pH 4 – 8 at 

temperatures prior to major unfolding/aggregation events.  These intermolecular interactions 

appear to be accompanied by shielding of aromatic residues from the solvent, as suggested by the 

blue shift in Trp peak position observed at pH 5 – 8 between ~ 45 – 65 
o
C (Figure 1b). The Tonset 
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of unfolding for mAb-A was inversely related to the Tonset of aggregation between pH 5 – 8.  For 

example, mAb-A at pH 5 had the lowest Tonset of unfolding but the highest Tonset of aggregation 

as measured by ANS fluorescence intensity and static light scattering (or optical density) 

respectively (Figure 1 c, d, e).  An initial increase in ANS intensity (Figure 1c) at pH 5 reaches a 

plateau above 65 
o
C.  This result along with a continuous decrease in the CD signal (Figure 1f) at 

pH 5 above 65 
o
C suggests that no additional apolar residues are exposed in this temperature 

range.  There is, however, an increase in β-structure rich intermolecular oligomeric structures.  

These results suggest that mAb-A at pH 5 forms partially altered structures that are either stable 

in solution and/or form oligomeric species that are resistant to the formation of larger aggregates 

that can be detected by static light scattering and optical density measurements.  Furthermore, a 

steep increase in ANS fluorescence intensity and increase in CD signal (Figure 1c, f) at pH 6 – 8 

above 78 
o
C suggests that additional aromatic residues are being exposed and that the 

intermolecular β-structures begin to dissociate.  The Tonset for such a dissociation event above 78 

o
C is found to be in the following order: pH 8 < pH 7 < pH 6 (Figure 1f).  Once these structures 

dissociate and additional aromatic residues are exposed, the antibody may become more prone to 

formation of irreversible aggregates. The detection of larger aggregated species (Figure 1d, e) 

follows a similar trend as above (i.e., Tonset for aggregation pH 8 < pH 7 < pH 6), arguing that a 

dissociation of relatively stable oligomeric species may precede the formation of larger 

aggregates in solution at higher pH.  The sudden drop in light scattering intensity and optical 

density (after an initial increase at temperatures above 83 
o
C) indicates that the aggregates 

eventually fall out of solution.  At pH 3 and 4, mAb-A manifests blue-shifted Trp peak positions, 

an increase in ANS intensity and decreases in CD signal which indicates conformational 

alterations at much lower temperatures compared to higher pH conditions.  Nevertheless, the 
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protein remains aggregation resistant under these conditions.  In contrast, a single cooperative 

transition was observed in the case of mAb-B
120

 between 60 – 70 
o
C at pH values ranging from 5 

– 8 based upon static measurements (Figure 1
120

).  The unfolding event in mAb-B leads to the 

exposure of aromatic residues and the protein subsequently forms larger aggregates at pH 5 – 8 

(Figure 1
120

 e, f).  Furthermore, mAb-B at pH 5 – 8 aggregates over a very narrow temperature 

range as detected by static light scattering.  The Tonset of unfolding had no correlation with the 

Tonset of aggregation in this pH range (Figure 1
120

 e, f).  In this same study, mAb-B at pH 4 

showed a broad unfolding transition and aggregated to a lesser extent than at pH 5 – 8, while the 

protein at pH 3 was found to be resistant to formation of detectable aggregates.  In summary, 

these results from a variety of biophysical measurements clearly show that IgG1 mAb-A and 

mAb-B have distinct patterns of conformational alterations and aggregation behavior in response 

to changes in pH and temperature.   

 Antibodies by virtue of their multi-domain structure routinely display multiple 

conformational transitions due to environmental stresses such as changes in pH and temperature 

which can be detected by DSC.  A number of previous DSC studies have assigned these different 

transitions to the unfolding of antigen binding (Fab) region, crystallizable (Fc) region or 

individual domains within Fab and Fc regions
204-206

.  The presence of three transitions detected by 

DSC for mAb-A (Figure 4a, b) over a wide range of pH (3 – 7) correlated with spectroscopic 

measurements, which also showed multiple transitions (Figure 1b, c, and f).  The highest Tonset of 

unfolding for mAb-A (Figure 1b, c) and the lowest Tonset of aggregation (Figure 1d, e) at pH 8 

indicate that the protein aggregates rapidly upon unfolding.  Such a concerted phenomenon may 

explain only two major transitions that are apparent at pH 8.  In contrast, mAb-B was found to 

have two major transitions at higher pH except for pH 3, 4 (Figure 4c, d).  Our previous 
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spectroscopic results
120

 using mAb-B have shown that it undergoes a single cooperative 

unfolding transition at pH 5 – 8.  Therefore, the two main structural transitions (compared to 

three transitions for mAb-A) detected by DSC for mAb-B may suggest that the unfolding of one 

domain leads to an immediate subsequent unfolding of other domains within the mAb-B 

molecule.  The additional transition detected at pH 3 and 4 by DSC (Figure 4d) was also 

observed by other spectroscopic methods at similar temperatures (Ramsey JD et al.
120

; Figure 1b, 

f).  The thermal behavior and aggregation data for mAb-B suggests that no detectable stable 

intermediates are formed and that the protein undergoes concerted thermal unfolding and 

subsequent aggregation under these solution conditions.  

 In addition, comparison of structural features and thermal stability profiles of the two 

mAbs can be compared by their differences in the static and dynamic EPDs, i.e., mAb-A (Figure 

3 in this work) and mAb-B (Ramsey JD et al.
120

, Figure 3).  The static EPDs generated for mAb-

A and mAb-B
120

 were both able to detect differences in conformational stability as a function of 

temperature and pH.  The dynamic EPD containing the additional compressibility results for 

mAb-A (Figure 3b) was able to detect changes in dynamic behavior in the pre-transition region 

at a broader pH range (pH 4 – 8) than mAb-B (Ramsey JD et al.
120

, Figure 3), where the dynamic 

EPD was found to contain additional regions in the pH range of 6 – 8.  This difference in the 

EPDs of mAb-A and mAb-B may potentially be due inherent differences between the two IgGs 

or due to experimental differences such as: (1) the dynamic properties of mAb-B were studied 

above 20 
o
C rather than 10 

o
C for mAb-A.  Therefore, the conformational fluctuations that may 

exist at lower temperatures could be incompletely represented in the EPD for mAb-B, and/or (2) 

ANS fluorescence results for mAb-B (Ramsey JD et al.,
120

 Figure 1f) at lower pH values show a 

broad unfolding transition with a Tonset of ~37.5 
o
C.  The smaller magnitude of dynamic 
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fluctuations may therefore be obscured during the mathematical data processing used to 

construct the EPD.  

2.4.2 Effects of arginine and sucrose on the conformational stability and pre-

transition dynamics of mAb-A and mAb-B  

 Arginine was found to be a destabilizer, whereas sucrose was a stabilizer for both mAb-A 

and mAb-B in a concentration dependent manner, albeit at different effective concentrations as 

determined by DSC measurements.  Arginine was a more potent destabilizer for mAb-A 

compared to mAb-B, and sucrose was more potent at stabilizing mAb-B than mAb-A (Figure 5b, 

Supplementary Table 2a).  Arginine, however, did not perturb the tertiary structure stability of 

mAb-A.  Potential reasons for the destabilizing effect of arginine on mAb-A could either be the 

suppression of intermolecular β-structure rich oligomer formation and/or promotion of its 

dissociation
207

.  The destabilization of such β-structure rich intermediates structures, that 

potentially stabilize partially altered structures of mAb-A, may increase the propensity of mAb-

A to form larger aggregates.  Furthermore, the blue-shift observed in Trp peak position as a 

function of temperature for mAb-A in the presence of sucrose suggests that this sugar may be 

stabilizing the intermolecular β-structure rich structures, thus shielding the aromatic residues 

from the solvent.  Both of these excipients, however, influenced the tertiary structure stability of 

mAb-B.  Thus the effect of arginine and sucrose on the global thermal stability and tertiary 

structure suggest that both mAb-A and mAb-B interact with the same excipients in a different 

manner and at different effective concentrations.  This may in part be due to the inherent 

differences in the physico-chemical properties and the unfolding processes between the two 

proteins, where mAb-A appears to have a greater propensity to form β-structure rich structures 

that stabilize the partially altered native structure before any global unfolding/aggregation event.  
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In contrast, mAb-B undergoes a more cooperative unfolding process starting with disruption of 

its tertiary structure followed by an immediate aggregation of the structurally altered protein.  

 It is generally accepted that experimentally determined adiabatic compressibility values 

are comprised of positive contributions from the intrinsic compressibility of a protein and a 

negative contribution from a hydration component
200

.  Depending upon the magnitude of the 

intrinsic compressibility and the hydration contribution, the apparent adiabatic compressibility 

values may either be positive or negative.  The lower (negative at lower temperatures) adiabatic 

compressibility values in the pre-transition region for mAb-B compared to mAb-A (Figure 7a) 

suggest a combined effect of lower intrinsic compressibility and/or higher hydration contribution 

to mAb-B.  Such a combined effect may result in stronger coupling of mAb-B conformational 

fluctuations to the fluctuations in the surrounding hydration water and/or the proteins’ 

environment compared to mAb-A.  Sucrose did not affect the compressibility of mAb-A in the 

pre-transition region.  This result may be related to the lower potency of sucrose as a stabilizer of 

mAb-A.  Arginine marginally lowered the compressibility of mAb-A resulting in negative values 

in the pre-transition region suggesting an increased contribution of hydration to the apparent 

adiabatic compressibility values.  In contrast, arginine marginally increased the compressibility 

of mAb-B in the pre-transition region.  These mAb-B compressibility values go from negative to 

positive at lower temperatures suggesting either an increase in intrinsic compressibility and/or 

decrease in the hydration contribution.  These effects, however, may not be mutually exclusive.  

Arginine was found to destabilize mAb-B by influencing its tertiary structure stability.  Such a 

destabilization effect may require perturbation of the structure of water in the protein’s hydration 

layer, potentially due to the chaotropic nature of guanidinium group in arginine, resulting in a 

lower hydration contribution to the apparent compressibility of mAb-B.  This could explain the 
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marginal increase in compressibility in the presence of arginine at lower temperatures.  Sucrose, 

however, significantly decreased the compressibility of mAb-B especially in the pre-transition 

region.  The negative values of mAb-B compressibility in the presence of sucrose indicate that 

the hydration component has a greater contribution to the experimentally determined 

compressibility values.  This suggests that solvent fluctuations around the protein’s surface may 

have a significant effect on the dynamic behavior of mAb-B in the presence of sucrose.  Overall, 

these compressibility measurements suggest that mAb-B exists in a less dynamic or a more 

compact form due to the potent stabilizing effect of sucrose, which may increase the ordering of 

water in the hydration layer due to a preferential hydration mechanism.  In summary, HR-US 

results show that effective concentrations of arginine and sucrose did not significantly influence 

the dynamic behavior of mAb-A in the pre-transition region.  Similarly, arginine did not 

appreciably affect the pre-transition dynamics of mAb-B.  Sucrose, however, significantly 

reduced the dynamic behavior of mAb-B as indicated by the lower compressibility values in the 

pre-transition region.   

 Such a reduction in mAb-B pre-transition dynamics was also observed by increases in the 

magnitude of the red edge excitation shifts (REES) in the presence of stabilizing concentrations 

of sucrose.  The increase in magnitude of the red edge effect suggests that solvent relaxation 

contributions in the environment around the Trp residues in mAb-B were reduced.  This in turn 

suggests that the environment around the Trp residues is rigidified in the presence of sucrose, 

especially at lower temperatures, potentially due to a reduction in the internal dynamics of mAb-

B.  The inability of both arginine and sucrose to affect the magnitude of red edge effects for 

mAb-A at different temperatures suggests that excipients did not alter the dynamics of mAb-A in 

the immediate environment of aromatic residues.  Because the conformational fluctuations in 
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mAb-A and mAb-B are differently coupled to solvent fluctuations, it is possible that excipients 

which modulate solvation properties can influence the pre-transition dynamics of proteins whose 

conformational fluctuations are strongly coupled to the surrounding solvent. 
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Figure 1 
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Effect of pH and temperature on conformational stability of an IgG1 monoclonal antibody (mAb-A) as 

measured by a variety of biophysical techniques:  (a) Intrinsic tryptophan fluorescence intensity, (b) 

intrinsic tryptophan fluorescence peak position shifts, (c) ANS fluorescence intensity, (d) static light 

scattering, (e) OD (350 nm) , and (f) CD signal at 217 nm.   
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Figure 2 
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Adiabatic compressibility of mAb-A as a function of pH and temperature as measured by HR-US.  The 

straight lines along the data points are a visual aid for comparison of pre-transition regions.  The Tonset and 

TM values represent the initiation and peak maximum for the first thermal transition as determined 

separately by DSC.       
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Figure 3 

 

Empirical phase diagrams for mAb-A as a function of pH and temperature using (a) Static (time-

averaged) biophysical techniques alone, and (b) data from static techniques in (a) in conjunction with HR-

US data.  Static biophysical techniques data from intrinsic tryptophan fluorescence intensity and peak 

position shifts, static light scattering intensity, extrinsic ANS fluorescence intensity, circular dichroism at 

217 nm, and OD350nm values.  A continuous color in the phase diagram represents a single structural state 

of the protein. Transitions in the protein’s structure are manifested by changes in color. 
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Figure 4 
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Representative differential scanning calorimetric thermograms for mAb-A (a) and mAb-B (c) over pH 3 – 

8 and 10 – 100 
o
C (shown only above 30 

o
C); and plot of midpoint of thermal unfolding values (TM1, 

TM2, TM3) for mAb-A (b) and mAb-B (d) as a function of pH.  Error bars cannot be seen in (b) and (d) 

because they are within the symbols.  The summary of TM results and their corresponding SD values are 

presented in supplementary Table 1. 
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Figure 5 
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Effect of sucrose and arginine on conformation stability of mAb-A and mAb-B as measured by DSC:  (a) 

Representative DSC thermograms for mAb-B (pH 4.5) with TM1, TM2 and TM3; (b) effect of different 

concentrations of excipients on TM1 for mAb-A and mAb-B.  The box represents the effective 

concentration of excipient required to have ~ 2.5 
o
C of effect.  Plots of TM values for mAb-A (c, d) and 

mAb-B (e, f) in the presence of varying concentrations of arginine (c, e) and sucrose (d, f).  Error bars 

often cannot be seen because they fall within the dimensions of the data points.   
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Figure 6 

10 20 30 40 50 60 70
343.8

344.0

344.2

344.4

344.6

344.8

345.0

345.2

10 20 30 40 50 60 70
341.2

341.6

342.0

342.4

342.8

343.2

(a) 

P
E

A
K

 P
O

S
IT

IO
N

 (
n

m
)

 mAb-A

 mAb-A + Arginine (100 mM)

 mAb-A + Sucrose (500 mM)

TEMPERATURE (
o

C)

(b) 

P
E

A
K

 P
O

S
IT

IO
N

 (
n

m
)

 mAb-B

 mAb-B + Arginine (300 mM)

 mAb-B + Sucrose (500 mM)

TEMPERATURE (
o

C)

 

Effect of sucrose and arginine on Trp peak position shifts for (a) mAb-A and, (b) mAb-B as a function of 

temperature using fluorescence spectroscopy. 
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Figure 7 
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Effect of sucrose and arginine on adiabatic compressibility of mAb-A and mAb-B as measured by HR-

US: (a) comparison of compressibility of mAb-A and mAb-B in the pre-transition region, (b) effect of 

arginine and sucrose on adiabatic compressibility of mAb-A, and (c) effect of arginine and sucrose on 

adiabatic compressibility of mAb-B.     
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Figure 8 
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Red edge excitation shifts (REES) fluorescence measurements with mAb-A (a, b) and mAb-B (c, d) in the 

presence and absence of sucrose (b, d) and arginine (a, c). 
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Supplementary figure S1 
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Fluorescence emission spectra for mAb-A as a function of pH (3 – 8). Intrinsic Trp (a – c) and ANS (d – 

f) fluorescence were monitored at 15 
o
C (a, d), 35 

o
C (b, e) and 60 

o
C (c, f). 
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Table 1:  Effect of excipients on thermal unfolding temperature (TM) of mAb-B as monitored by intrinsic 

tryptophan fluorescence spectroscopy using 0.1 mg/mL protein at pH 4.5 in 20 mM citrate-phosphate 

buffer (containing NaCl, I=0.1 and indicated level of excipients). ΔTM and aggregation inhibition (%) 

columns represent the change in midpoint of thermal unfolding and change in aggregation, respectively 

for mAb-B in presence of excipients.  

*Excipient concentrations are higher than those commonly used in formulations to facilitate excipient 

screening. 
a
The TM measurements were made within the standard error of ± 0.5 

o
C. 

b
The aggregation 

inhibition (%) represents a mean of three measurements with a standard deviation of ± 2.5% for 

excipients that inhibited mAb-B aggregation. NC is a group of excipients that resulted in no change 

(±10%) in the aggregation behavior of mAb-B. ND is a group of excipients that increased mAb-B 

aggregation.          

  

Category Name Concentration* 
TM 

(ºC)
a
 

ΔTM 

(ºC)
a 

 

Aggregatio

n inhibition 

(%) 

Protein IgG1 (mAb-B) 0.1 mg/mL 59.9   

Stabilizer Lactose 10% 62.5 2.6 75.7 

 Trehalose 10% 61.8 1.9 30.5 

 Dextrose 10% 63.1 3.2 63.8 

 Sucrose  10% 62.4 2.5 81.9 

 Mannitol 10% 62.2 2.3 NC 

 Sorbitol 10% 61.9 2.0 59.7 

 Malic acid 0.30 M 62.7 2.8 ND 

Destabilizer α-cyclodextrin 2.5% 57.2 -2.7 NC 

 2-hydroxypropyl-β-cyclodextrin 10% 56.8 -3.1 NC 

 Aspartic acid 0.075 M 58.5 -1.4 NC 

 Lactic acid 0.15 M 58.2 -1.7 NC 

 Arginine 0.30 M 55.9 -4.0 61.7 

 Diethanolamine 0.30 M 57.5 -2.4 NC 

 Guanidine 0.30 M 57.9 -2.0 NC 

 Histidine 0.21 M 54.1 -5.8 NC 

 Pluronic F-68 0.1% 56.7 -3.2 ND 

Neutral  Sodium Citrate 0.1 M 58.9 -1.0 NC 

 Brij 35 0.1% 60.0 0.1 57.8 

 Tween 20 0.1% 59.7 -0.2 NC 

 Tween 80 0.1% 58.9 -1.0 NC 

 Glycine 0.30 M 61.1 1.2 62.5 

   Proline 0.30 M 59.6 -0.3 NC 

 Glycerol 10% 58.9 -1.0 64.7 

 Dextran T40 0.0075 mM 59.4 -0.5 53.1 

 2-hydroxypropyl-γ-cyclodextrin 10% 58.9 -1.0 NC 

  Glutamic acid 0.30 M 60.7 0.8 ND 

 Lysine 0.30 M 58.9 -1.0 ND 
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Supplementary Table 1:  Mid-point of thermal transitions (TM) for mAb-A (a) and mAb-B (b) studied 

over pH range 3-8 in 20 mM citrate-phosphate buffer (containing NaCl, I=0.1) as measured by 

differential scanning calorimetry (DSC). Error is SD of three measurements.  NA represents the 

experimental condition where no corresponding transition could be detected.  

 

(a)       

pH 3 4 5 6 7 8 

TM1 49.8 ± 1.0 54.1 ± 0.1 65.8 ± 0.1 69.0 ± 0.3 68.9 ± 0.1 68.7 ± 0.1 

TM2 70.7 ± 0.1 70.3 ± 0.1 82.1 ± 0.1 83.4 ± 0.2 84.0 ± 0.1 84.5 ± 0.1 

TM3 84.7 ± 0.4 84.9 ± 0.00 93.0 ± 0.1 91.7 ± 0.1 88.8 ± 0.1 NA 

 

(b)       

pH 3 4 5 6 7 8 

TM1 55.3 ± 0.1 56.9 ± 0.2 NA NA NA NA 

TM2 72.8 ± 0.2 65.6 ± 0.0 71.4 ± 0.2 72.4 ± 0.1 71.1 ± 0.2 71.5 ± 0.0 

TM3 85.8 ± 0.1 73.6 ± 0.1 82.0 ± 0.0 82.7 ± 0.0 82.0 ± 0.0 82.1 ± 0.1 
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Supplementary Table 2:  Effect of varying excipient concentrations on midpoints of thermal 

transitions (TM) for mAb-A at pH 4 [arginine (a) and sucrose (b)]; and mAb-B at pH 4.5 [arginine (c) and 

sucrose (d)] in 20 mM citrate-phosphate buffer (containing NaCl, I=0.1) as measured by DSC.  Error is 

SD of three measurements.   

 

(a)       

Arginine 

conc. 

(mM) 

TM1 (
o
C) 

± SD 

ΔTM1 

(
o
C) 

TM2 (
o
C) ± 

SD 

ΔTM2 

(
o
C) 

TM3 (
o
C) 

± SD 

ΔTM3 

(
o
C) 

0 53.2 ± 0.6  68.6  ± 0.1  83.6 ± 0.1  

10 52.1 ± 0.1 -1.1 68.1 ± 0.1 -0.5 83.0 ± 0.0 -0.6 

50 50.9 ± 0.2 -2.3 66.6 ± 0.1 -2 81.8 ± 0.0 -1.8 

100 49.6 ± 0.2 -3.6 65.6 ± 0.1 -3 80.7 ± 0.1 -2.9 

175 48.1 ± 0.1 -5.1 64.5 ± 0.2 -4.1 79.7 ± 0.1 -3.9 

250 46.9 ± 0.1 -6.3 63.3 ± 0.1 -5.3 78.7 ± 0.2 -4.9 

 

(b)       

Sucrose 

conc. 

(mM) 

TM1 (
o
C) 

± SD 

ΔTM1 

(
o
C) 

TM2 (
o
C) ± 

SD 

ΔTM2 

(
o
C) 

TM3 (
o
C) 

± SD 

ΔTM3 

(
o
C) 

0 53.2 ± 0.6  68.6 ± 0.1  83.6 ± 0.1  

10 52.7 ± 0.1 -0.5 68.6 ± 0.1 0.0 83.5 ± 0.0 -0.1 

50 53.0 ± 0.1 -0.2 68.9 ± 0.0 0.3 83.7 ± 0.1 0.1 

100 53.1 ± 0.1 -0.1 69.1 ± 0.1 0.5 83.9 ± 0.2 0.3 

250 53.9 ± 0.2 0.7 69.6 ± 0.1 1.0 84.5 ± 0.1 0.9 

500 55.5 ± 0.1 2.3 71.0 ± 0.2 2.4 85.5 ± 0.2 1.9 
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(c)       

Arginine 

conc. 

(mM) 

TM1 (
o
C) 

± SD 

ΔTM1 

(
o
C) 

TM2 (
o
C) ± 

SD 

ΔTM2 

(
o
C) 

TM3 (
o
C) 

± SD 

ΔTM3 

(
o
C) 

0 61.2  ± 0.6  69.4 ± 0.4  79.7 ± 0.5  

10 60.7 ± 0.2 -0.5 68.7 ± 0.2 -0.7 78.1 ± 0.5 -1.6 

50 59.9 ± 0.1 -1.3 68.1 ± 0.2 -1.3 77.5 ± 0.4 -2.2 

100 58.9 ± 0.2 -2.3 67.6 ± 0.3 -1.8 76.8 ± 0.6 -2.9 

250 57.6 ± 0.2 -3.6 66.8 ± 0.2 -2.6 75.7 ± 0.7 -4.0 

300 57.2 ± 0.2 -4.0 66.6 ± 0.2 -2.8 75.5 ± 0.7 -4.2 

 

(d)       

Sucrose 

conc. 

(mM) 

TM1 (
o
C) ± 

SD 

ΔTM1 

(
o
C) 

TM2 (
o
C) ± 

SD 

ΔTM2 

(
o
C) 

TM3 (
o
C) 

± SD 

ΔTM3 

(
o
C) 

0 61.2  ± 0.2  69.4 ± 0.3  79.7 ± 0.5  

10 63.2  ± 0.2 2.0 70.4 ± 0.4 1.0 79.9 ± 0.5 0.2 

50 63.3  ± 0.2 2.1 71.0 ± 0.4 1.6 80.1 ± 0.5 0.4 

100 63.8 ± 0.1 2.6 70.8 ± 0.4 1.4 80.3 ± 0.4 0.6 

250 64.7 ± 0.2 3.5 71.5 ± 0.5 2.1 81.1 ± 0.6 1.4 

500 66.6 ± 0.2 5.4 72.8 ± 0.7 3.4 82.6 ± 0.5 2.9 
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Chapter 3 

 

Effect of excipients on local dynamics of a monoclonal antibody and 

correlations with its global conformational stability 
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3.1 Introduction 

The three-dimensional structure of native, functionally active proteins is considered to be 

a large ensemble of dynamic intra-convertible microstates that are stable in solution
208,209

.  

Proteins typically exhibit a wide variety of molecular motions ranging on the timescale from 10
-

15
 to 10

4
 seconds.  These fluctuations are comprised of local motions (10

-15
–10

-1
 s; 0.01–5 Å) 

such as atomic and side chain fluctuations, rigid body motions (10
-9

–1 s; 1–10 Å) such as helix 

or hinge bending deflections, or larger-scale movements (10
-7

–10
4
 s; >5 Å) such as helix-coil or 

folding/unfolding transitions
210

.  Protein dynamics can be influenced by both equilibrium 

fluctuations and non-equilibrium effects
208

.  Equilibrium fluctuations strongly influence the 

biological function of a wide variety of proteins, including immunoglobulins
211

.  The complex 

inter-relationships between protein dynamics, function and stability, however, are still being 

established
29,36-41,100

.  A better understanding of the effect of micro-scale and large-scale 

conformational motions on the overall physical stability of pharmaceutically relevant proteins 

such as monoclonal antibodies (mAbs) will potentially aid in addressing challenges involved in 

the development of stable and efficacious formulations
127,212,213

. 

 Proteins such as immunoglobulins can exhibit motions with different magnitudes 

of spatial and temporal scales which may arise from distinct regions within the protein.  The 

thermodynamic and kinetic implications of such distinct dynamic regions in proteins have been 

previously studied
214-216

.  These regions may have different degrees of exposure to the solvent in 

their immediate vicinity primarily involving water of hydration.  This bound water is believed to 

play an important role in maintaining the stability and dynamics of the nonpolar core as well as 

the hydrophilic surface of proteins
53,190,192,217

.  Many compounds such as osmolytes are known to 

influence the hydration potential of proteins by modulating protein-solvent interactions in 
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solution
74,218-220

.  It is therefore of interest to study the effect of different solution variables such 

as pH, temperature and the presence of excipients not only on a global time-averaged scale but 

also on the local motions of different regions with distinct solvent exposures.   

Polar fluorophores in environments with reduced mobility in which the solvent relaxation 

time (τR) is either equal to or higher than the lifetime (τF) of the fluorophore, exhibit an excitation 

wavelength dependent shift in their emission maxima towards higher wavelengths, a 

phenomenon known as red-edge excitation shift (REES)
201,221-225

.  The concept of red-edge 

excitation can be used for site-selection and thus monitor the fraction of fluorophores (in this 

case Tryptophan; Trp) in different environments of immunoglobulins, instead of studying the 

averaged entire fluorophore population.  The conserved Trp residues in immunoglobulins are 

generally categorized into at least two different environments.  The solvent-exposed Trp 

populations are generally located between individual domains while the more buried Trp 

residues are located close to the intra-domain disulfide bond and in the proximity of other apolar 

side chains
226-231

.  The two antigen binding domains (Fab) comprise a total of 12 conserved Trp 

residues, while 8 Trp residues are contained in the crystallizable fragment (Fc) of 

immunoglobulins
232,233

.  The Trp residues located in and between different domains constitute 

~90% of the tryptophans present in the molecule
234

.  A few additional Trp residues may also be 

present in the variable regions of an antibody
235

.   

Although the majority of conserved Trp residues can be categorized into these two 

defined environments (solvent-exposed and solvent-shielded), immunoglobulin fluorescence has 

diverse contributions arising from many distinct fluorophores with differences in their individual 

fluorescence spectra, lifetimes and anisotropies
236

 indicative of differences in their 

microenvironments.  Thus, selectively exciting a population of these Trp residues in 
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immunoglobulins (where τR ≥ τF) with radiation containing progressively lower energy quanta 

(i.e., increasing excitation wavelength towards the red edge of an absorption band) should enable 

selective excitation of different average populations of fluorophores that have an increasing 

ability to interact strongly with solvent molecules in the excited state.  Solvent molecules orient 

around these excited state fluorophores similar to that in a solvent-relaxed state, thus lowering 

electronic transition energies. The degree of fluorophore sampling upon red-edge excitation will 

be determined by the magnitude of a fluorophore’s electronic transition energy, in which 

fluorophores with progressively lower electronic transition energies would be preferably excited 

upon red-edge excitation. It should be noted, however, that the observed fluorescence emission is 

still an average signal from more than one tryptophan residues.   

It has been previously shown that techniques sensitive to the dynamic properties of 

immunoglobulins are able to detect minor transitions within the pre-unfolding transition  

region
120

. This region is defined as a range of temperature and pH over which the experimental 

parameters routinely used to evaluate a protein’s higher-order structure and conformational 

stability do not demonstrate any evidence of a cooperative structural change. Such ambient 

temperatures and near neutral solution pH values comprising the pre-unfolding transition range 

are commonly encountered with formulated protein therapeutics.  Solution parameters, however, 

such as pH, ionic strength, and the presence of salts and other excipients critically influence the 

stability of proteins in solution
47,237

.  A recent study evaluating the effect of two different 

formulation excipients on the conformational stability and dynamics of immunoglobulins 

determined that sucrose and arginine differentially influenced the conformational stability and 

pre-transition dynamics of two IgG1 monoclonal antibodies in a concentration dependent 

manner
86

.  Interestingly, the excipients influenced the global dynamics of one antibody and not 
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the other mAb within the pre-transition temperature range.  These distinct effects on pre-

transition dynamics were attributed to inherent differences in the two IgG1 mAbs potentially due 

to their thermal unfolding patterns, aggregation behavior, and/or levels of hydration.  Stabilizing 

concentrations of sucrose were found to decrease, while destabilizing concentrations of arginine 

marginally increase, the global dynamics of mAb-B as studied by a combination of differential 

scanning calorimetry, ultrasonic spectroscopy and red-edge excitation spectroscopy.   

The ability to selectively excite and monitor intrinsic Trp fluorophores in regions with 

different degrees of solvent exposure within mAb-B, as a function of temperature and/or the 

presence of excipients, should therefore provide valuable insights into changes in conformational 

stability and dynamics of different regions within the protein.  The current study is thus aimed at 

(1) evaluating the conformational stability, dynamics and excipient effects on regions with 

distinct solvent-exposures in mAb-B as a function of temperature, as measured by fluorescence 

spectroscopy using red-edge excitation (REE) and, (2) better understanding correlations between 

local dynamics and global conformational stability of mAb-B, both in the absence and presence 

of stabilizing or destabilizing excipients.  

3.2 Experimental 

3.2.1 Materials 

The IgG1 monoclonal antibody (mAb-B) was supplied by MedImmune (Gaithersburg, 

MD) and stored in its formulation buffer at 2 – 8 
o
C.  The protein was dialyzed into 20 mM 

citrate phosphate buffer at pH 4.5 and the final ionic strength was maintained at 0.1 using NaCl.  

All chemicals, including the buffer components, were purchased either from Sigma (St. Louis, 
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MO) or Fisher Scientific (Pittsburgh, PA).  Sucrose from Ferro Pfanstiehl Laboratories was used 

in these studies.  

3.2.2 Methods 

Intrinsic tryptophan fluorescence spectra were acquired using a two-channel, peltier 

controlled four-position PTI Quanta Master Spectrophotometer (Lawrenceville, NJ).  The sample 

temperature was precisely controlled from 10.0 to 70.0 
o
C at 2.5 

o
C intervals with an 

equilibration time of 4 min.  An IgG1 concentration of 0.1 mg/mL (~ 6.7 x 10
-4

 mM) was used in 

a 1 cm quartz cuvette.  Excitation and emission slit widths were set at 3 nm.  Samples were 

excited from 292 to 308 nm at 4 nm intervals to insure samplings of tryptophan residues with 

different degrees of solvent exposure. Emission spectra were collected from 310 – 400 nm for 

each of the excitation wavelengths.  The spectra were corrected for background fluorescence and 

contributions from solvent Raman scattering by subtraction of a corresponding buffer.  The 

emission maxima and peak intensity were determined by a mean spectral center of mass (MSM) 

method, since the scattering peak at 308 nm limits the application of derivative analysis in a few 

cases.  Such emission maxima are usually higher by ~ 8 – 10 nm than that obtained by derivative 

analysis (the actual peak position).  The relative change in peak position, however, can be 

measured with increased precision and reproducibility by MSM.  This is especially the case for 

Trp fluorescence at the red edge of an absorption band due to poor signal to noise ratio (low 

emission).   

Experiments were performed in the absence and presence of excipients.  Sucrose (500 

mM) and arginine (250 mM; as hydrochloride salt) were used as a stabilizing and destabilizing 

excipient, respectively
86

.  The midpoints of thermal unfolding transitions (TM) were determined 
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by fitting tryptophan peak position versus temperature plots using a Sigmoidal-Boltzmann 

function, in which the half transition point was considered as the TM value.   

To provide further insights into local dynamic behavior of mAb-B, Trp fluorescence 

quenching experiments were performed using different concentrations of acrylamide as a neutral 

quencher
238-240

.  The peak intensities at various acrylamide concentrations (0 – 0.5 M) were used 

for constructing Stern-Volmer plots at different excitation wavelengths, in the absence and 

presence of excipients and at different temperatures (10, 20, 45 and 60 
o
C).  The temperatures 

were selected to monitor the pre-transition range (10 and 20 
o
C), onset temperature (Tonset; 45 

o
C) 

and the melting temperature (TM; 60 
o
C) of mAb-B thermal unfolding

86,120
.  Inner filter effects 

produced by acrylamide were corrected using the following equation
241

: 

 

Fcorrected = Fobserved antilog [(AbsEX + AbsEM)/2] 

 

where Fcorrected and Fobserved are the corrected and background subtracted fluorescence 

intensities of the sample. AbsEX and AbsEM are the measured absorbance at excitation and 

emission wavelengths, respectively. 

3.3 Results 

3.3.1 Intrinsic tryptophan fluorescence, thermal melting temperature and excipient 

effects as a function of fluorescence excitation wavelength 

Changes in mAb-B higher-order structure and conformational stability with temperature 

and excitation wavelength are illustrated in Figure 1, in which the tryptophan emission maximum 

(peak position) is plotted as a function of temperature at different excitation wavelengths.  At 10 
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o
C and throughout the pre-transition temperature range (10 – 35 

o
C), the Trp emission maxima 

for mAb-B have shifted to a higher wavelength upon red-edge excitation from 292 to 308 nm 

(Figure 1A, 1D).  This observation suggests that the sampled fluorophores exist in an 

environment with reduced mobility in which a red-edge effect is observed.  Similar trends in the 

red-edge shifts in mAb-B were also observed in the presence of arginine and sucrose, albeit to 

different extents (Figure 1B, 1C, 1D). Since Trp fluorophores in immunoglobulins can exist in 

distinct microenvironments with differences in their solvent exposures, the higher initial peak 

positions (Figure 1A to 1D) and decrease in fluorescence intensity (Figure 1E) indicate that 

regions with a greater degree of solvent exposure in mAb-B are monitored by progressively 

increasing excitation wavelengths.  The change in peak position with temperature in the absence 

and presence of excipients and at different excitation wavelengths can thus be used to study 

alterations in tertiary structure and conformational stability of different regions within mAb-B.  

mAb-B undergoes structural transitions with increases in temperature above 40 
o
C such that the 

intrinsic protein fluorophores are more exposed to solvent as suggested by red-shifts in the Trp 

peak position.  The thermal melting temperature (TM), however, was found to inversely correlate 

with excitation wavelength (i.e., TM values were lower when the protein was probed with higher 

excitation wavelengths).  For example, the melting temperature for mAb-B was determined to be 

55.2 ± 0.0 when excited at 292 nm, while the TM was lowered to 52.7 ± 0.2 when the peak 

position shifts were monitored upon excitation at 308 nm (Table 1).   

The unfolding pattern as a function of excitation wavelength was not, however, altered in 

the presence of the excipients (Figure 1B and 1C).  Figure 2 (2A to 2D) shows a comparison of 

the same data set in terms of peak position shifts in mAb-B as a function of temperature in the 

absence and presence of arginine and sucrose at different excitation wavelengths.  Arginine 
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lowered the TM, whereas sucrose increased the melting temperature of mAb-B at all excitation 

wavelengths.  The trend of decreasing TM values as a function of increasing excitation 

wavelength was retained in the presence of arginine and sucrose, albeit possessing lower and 

higher TM values, respectively (Figure 2E; Table 1).  In the pre-transition temperature range (< 

35 
o
C), sucrose caused an increase in Trp peak position in mAb-B regions with relatively higher 

degrees of solvent exposure as probed by excitation at 304 and 308 nm (Figure 2C and 2D).  

This result suggests an expected increased hydration of fluorophore environments closer to the 

surface of the protein, and is consistent with the well-known preferential hydration mechanism of 

protein stabilization by sucrose
105

.  Both arginine and sucrose influenced the stability of the more 

solvent-exposed versus more solvent-shielded Trp containing regions in mAb-B to different 

extents, in which the trend and magnitude of stabilizing or destabilizing effects were greater for 

regions that were excited at 304 and 308 nm compared to those excited at 292 nm and 296 nm 

(Figure 2F, Table 2).  

It was also found that the tryptophan peak positions in the pre-transition temperature 

range (10 – ~35 
o
C; prior to any major structural transitions as evidenced by a red-shift with 

temperature) were sensitive to increases in solution temperature (Figure 1A, 1B, 1C).  As shown 

in Figure 3, for mAb-B in the absence of excipients, these peak positions versus temperature 

plots demonstrated a measurable negative slope for lower excitation wavelengths.  This slope 

was found to increase (become more positive) as the excitation wavelength was raised (as 

observed with two separate controls in Figure 3A and 3B, respectively).  Since arginine and 

sucrose were found to influence the dynamics of mAb-B in its pre-transition temperature range
86

, 

the effect of these excipients on mAb-B was evaluated by assessing their effects on the pre-

transition slope as a function of excitation wavelength.  Figure 3 displays the magnitude of pre-
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transition slopes (10 – 27.5 
o
C) for mAb-B in the absence and presence of both sucrose and 

arginine at various excitation wavelengths.  For the protein in the absence of excipients, the 

negative slope of peak position versus temperature data remained unchanged when the excitation 

wavelength was increased from 292 nm up to 300 nm.  The peak position shifts for Trp 

fluorophores excited with > 300 nm radiation, however, were found to have greater slopes as a 

function of temperature compared to those at lower excitation wavelengths.  Arginine and 

sucrose both increased the magnitude of negative slopes seen for mAb-B.  The prominent effect 

of arginine was on pre-transition slopes at lower excitation wavelength (from 292 – 300 nm), 

while sucrose primarily influenced the slopes when probed by higher excitation wavelengths 

(304 and 308 nm).  The significance of these results is discussed later.  

3.3.2 Acrylamide quenching studies using mAb-B at various excitation wavelengths 

and temperatures: Evaluation of excipient effects. 

Acrylamide quenching of tryptophan fluorescence is routinely used to monitor changes in 

tryptophan environment in proteins as well as the dynamic properties of protein matricies
238,239

.  

Figure 4 (A to I) shows Stern-Volmer plots for acrylamide quenching of tryptophan residues in 

mAb-B at 20 
o
C (Figure 4A, 4D, 4G), 45 

o
C (Figure 4B, 4E, 4H) and 60 

o
C (Figure 4C, 4F, 4I) 

and at excitation wavelengths ranging from 292 – 308 nm.  These experiments were performed 

in the absence and presence of arginine and sucrose as described above.  The slopes of these 

individual plots are related to the accessibility of Trp residues to the quencher (which in turn is 

related to the dynamics of the fluorophore environment), wherein a more positive slope is 

indicative of a higher degree of Trp exposure.  For example, the Stern-Volmer plots were found 

to deviate from linearity (towards the X-axis) at 20 
o
C, when the Trp residues with a higher 

degree of solvent-shielding (excitation at 292 nm) were examined.  Such well-defined curvature, 
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indicative of heterogeneous Trp environments, was less apparent for more solvent-exposed Trp 

residues (excitation at 308 nm).  Excipients did not alter these non-linear curves in their 

respective Stern-Volmer plots (Figure 6A, 6B, 6C; see text below) suggesting that a 

heterogeneous environment of Trp fluorescence exists in mAb-B even in the presence of 

excipients.  

The standard Stern-Volmer equation
234

 is valid only for homogenous fluorescence and in 

the absence of static quenching. Heterogeneity due to the multiple microenvironments of 

tryptophan(s) residues in immunoglobulins thus precludes fitting of the data to the Stern-Volmer 

equation.  This limits our ability to extract quantitative static and dynamic components from the 

data.  Furthermore, a meaningful bimolecular quenching constant could not be determined since 

it was not possible to deconvolute the intensity decay into its components to obtain individual 

lifetimes.  Processes such as configurational relaxation and/or contributions from heterogeneous 

microenvironments are also known to cause complex time dependence in excited-state 

interactions resulting in non-exponential fluorescence decay
242

.  All of the plots, however, can be 

qualitatively compared based on the trends in the magnitude of the quenching by acrylamide.  

This trend analysis can be used to evaluate the effect of excipients on potential changes in 

dynamics of different regions within mAb-B.   

At 20 
o
C, the slopes in the Stern-Volmer plots were found to increase with increases in 

excitation wavelength (Figure 4A, 4D, 4G).  The largest and smallest slope was found for 308 

nm (solvent-exposed regions) and 292 nm (solvent-shielded regions) excitation respectively.  

The dependence of these slopes on excitation wavelength was influenced by temperature.  For 

instance, the trend in the magnitude of the slopes and/or the extent of quenching as a function of 

excitation wavelength were reversed when the temperature of a mAb-B solution was raised from 
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20 to 45 
o
C (Figure 4A compared to Figure 4B). This effect of temperature on the extent of 

quenching at 292 nm and 308 nm in the absence and presence of excipients is plotted separately 

in Figure 5 (A – F).  The extent of quenching was found to increase when the temperature was 

raised from 10 
o
C to 60 

o
C for mAb-B alone (Figure 5A) and in the presence of sucrose (Figure 

5E) upon excitation at 292 nm.  A similar temperature dependence was found for mAb-B in the 

presence of arginine only up to 45 
o
C while the trend in the magnitude of the Trp quenching was 

decreased at a higher temperature (Figure 5C).  Upon an excitation at 308 nm, however, such 

trends in the magnitude of quenching were not observed until up to 45 
o
C for protein alone or in 

the presence of excipients (Figure 5B, 5D, 5F).  At 60 
o
C, a smaller slope was observed for 

protein alone and in the presence of sucrose (Figure 5B, 5F).  The magnitude of fluorescence 

quenching in the protein alone (Figure 5B) and in presence of arginine (Figure 5D) was found to 

be dependent upon acrylamide concentration at 60 
o
C.  This acrylamide concentration 

dependence was not, however, observed in mAb-B solutions containing sucrose at 60 
o
C (Figure 

5F).   

The effect of excipients on the dynamics of mAb-B can be evaluated by monitoring 

trends in the Stern-Volmer plots upon excitation at 292 and 308 nm.  These graphs, using the 

same data sets in Figure 4, are replotted at 20, 45 and 60 
o
C separately in Figure 6 to enable more 

effective comparison of the data.  The slope of these plots for mAb-B was lowered in the 

presence of both sucrose and arginine when probed with excitation at 292 nm, albeit to different 

extents (Figure 6A, 6B, 6C).  The magnitude of changes in slope values in the presence of 

arginine was sensitive to temperature while sucrose lowered mAb-B fluorescence quenching at 

all temperatures used in this study, especially notable at higher acrylamide concentrations 
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(Figure 6A, 6B, 6C).  Upon 308 nm excitation, however, the differences in the slopes in the 

presence of excipients were only significant at 60 
o
C (Figure 6D, 6E, 6F).    

3.4 Discussion 

 Excipients such as sugars and amino acids are frequently used to increase the 

conformational stability of therapeutic proteins’ native structure and prevent aggregation both in 

solution and the dried state
47,78

.  These excipients are known to influence the forces and 

interactions involved in maintaining the stability of protein(s)
47

 in part by altering the 

organization of hydration water
243

.  Our previous studies show that sucrose and arginine had 

distinct effects on the stability and global dynamics of two different mAbs
86

.  It is now well 

accepted that changes in solvent properties by co-solutes not only influence proteins’ inherent 

stability, but also have significant effect on their internal dynamics, which is thought to be 

coupled to the surrounding solvent
53,54,190

.  The current study is directed toward a better 

understanding of the effects of these excipients on the stability of different regions within an 

antibody by site-selection (upon red-edge excitation) of Trp fluorophores within environments 

with differential extents of solvent exposure.  The findings are further supported by acrylamide 

quenching studies to better understand excipient effects on the local dynamics of mAb-B.   

3.4.1 Structure, conformational stability and excipient effects on different regions of 

mAb-B 

As discussed earlier, excitation of Trp residues in mAb-B with a progressively higher 

excitation wavelength towards the red-edge of an absorption band should enable sampling of 

fluorophores within environments that are increasingly exposed to the solvent.  For instance, 

excitation at 292 nm should monitor Trp fluorophore environments that are relatively more 
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shielded from the solvent (described as ‘solvent-shielded’ for rest of this discussion although 

these residues are still in polar environments as discussed below) compared to that at 308 nm 

which would sample more solvent-exposed Trp residues.  A red-edge excitation shift was 

observed at all of the excitation wavelengths employed in this study with mAb-B, albeit to 

different extents.  This result suggests that the indole sidechains of Trp residues in mAb-B are 

located in polar environments accessible to the solvent.  This accessibility should be governed by 

the dynamics of both the global and local environments.   

Higher peak positions as a function of excitation wavelength (Figure 1A, 1B, 1C) 

throughout the temperature range examined shows that fluorophores (Trp residues) with different 

degrees of solvent exposure are sampled in mAb-B.  The peak position shifts with temperature, 

which indicates alterations in a protein’s tertiary structure, demonstrates that the solvent-exposed 

regions (e.g., upon 308 nm excitation) in mAb-B unfold at lower temperatures than regions that 

are relatively more shielded (e.g., upon 292 nm excitation) from the solvent.  This is evident 

from an inverse relationship between TM values of these different regions as shown in Figure 2E 

and Table 1 (comparison of higher to a lower excitation wavelength).  Although these 

observations seem intuitively reasonable, such results may be different for individual mAbs, 

since a similar pattern was not observed (unpublished data) for a different IgG1 antibody.  

Sucrose and arginine influenced the structural stability of the different solvent-exposed regions 

of Trp residues in mAb-B as monitored in these studies (Figure 2; Table 1).  The trend and 

magnitude of stabilization and destabilization by both sucrose and arginine, respectively, was 

greater for solvent-exposed residues (monitored, for instance, by 308 nm excitation) compared to 

solvent-shielded ones (for example, upon 292 nm excitation) as shown in Figure 2F and Table 2.  
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In the pre-transition temperature range, however, arginine was found to significantly 

influence the solvent-shielded regions while sucrose effects were more prominent with solvent-

exposed Trp residues in mAb-B (Figure 3).  This result was supported by arginine and sucrose 

effects on the slope of peak position versus temperature plots in the pre-transition range.  It is 

known that entropically governed apolar interactions generally increase with temperature
244-246

 in 

the low temperature regime.  Similar increases in apolar interactions in mAb-B may result in 

greater shielding of apolar residues with increases in temperature in the pre-transition range, 

consistent with the blue shifts in Trp peak position versus temperature (negative slope) results 

when probed, for example, at 292 nm.  The trend in the magnitude of this slope was found to 

increase (become more positive) for more solvent-exposed residues in mAb-B (Figure 3), 

potentially reflecting limited participation of these different environments in apolar interactions 

that stabilize the native structure.   

The effect of arginine on these pre-transition slopes was more pronounced for solvent-

shielded regions, suggesting that arginine further increases the extent of apolar interactions in the 

protein’s interior.  One possible explanation for such an effect could arise from the fact that 

arginine can be involved in cation-π interactions and hydrogen bonding contacts with protein 

surface sidechains or have a direct or indirect effect on surface hydration
110,113,247,248

.  Such 

effects may also strengthen compensatory stabilizing forces such as apolar interactions.  Since 

solvent-exposed residues are expected to contribute less to apolar interactions, arginine does not 

appear to influence pre-transition slopes of such regions (Figure 3B; 304 and 308 nm excitation 

data).  In contrast, the preferential hydration of proteins by sucrose stabilization is well known
105

.  

Such an effect would promote protein surface-solvent interactions and promote a significant 

effect of sucrose on solvent-exposed residues.  These interactions would be expected to be more 
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effective at lower temperatures compared to room (or higher) temperatures.  Such low 

temperature effects resulted in a red-shifted initial Trp peak position (Figure 1C), the magnitude 

of which decreases with increases in temperature, resulting in a negative pre-transition slope for 

solvent-exposed regions in mAb-B in the presence of sucrose (Figure 3A; 304 and 308 nm 

excitation data).  This negative slope in the presence of sucrose should to a first approximation 

be a reflection of temperature effects on the interaction of the antibody surface with the 

surrounding solvent especially in the hydration layer.   

3.4.2 Excipient effects on the dynamics of different regions in mAb-B with varying 

degrees of solvent exposure.  

The dynamics of different tryptophan environments in mAb-B were studied in the 

absence and presence of excipients by monitoring acrylamide quenching of Trp fluorescence 

upon red-edge excitation.  Acrylamide in solution acts as a neutral collisional quencher which 

can diffuse into proteins’ interior and quench indole fluorescence.  The accessibility of 

tryptophan residues, however, will depend upon the dynamic properties of its environment.  A 

better understanding of local dynamics can therefore be obtained by performing quenching 

studies on distinct solvent-exposed Trp populations (and hence their environments).  The 

quenching studies were performed at different temperatures to help evaluate the dynamic 

properties of mAb-B in the pre-transition temperature range (10 and 20 
o
C), at Tonset (45 

o
C) and 

at the melting temperature (60 
o
C) of thermal unfolding.  Immunoglobulins such as mAb-B 

typically have ~20 conserved tryptophan residues, and although located in heterogeneous 

environments, can be generally grouped into two environments: solvent-exposed and solvent-

shielded (see introduction).   
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When solvent-shielded environments in mAb-B were probed (for instance, by 292 nm 

excitation), a heterogeneous distribution of Trp residues results in a deviation of Stern-Volmer 

plots from linearity towards the X-axis (downward curvature).  This effect was found at all 

temperatures (Figure 6A, 6B, 6C).  Such heterogeneity was less apparent for surface-exposed 

regions (for instance, by 308 nm excitation as shown in Figure 6D, 6E, 6F).  Deviations from 

simple Stern-Volmer behavior can also be a consequence of unresolved static and dynamic 

components in the data
234

.  The static and dynamic (or collisional) quenching effects can be 

differentiated by decreases and increases in the magnitude of quenching upon increases in 

temperature, respectively.  The magnitude of quenching for mAb-B Trp residues was found to 

increase when the temperature was raised from 10 to 20 
o
C (Figure 5A, 5C, 5E), both in the 

absence and presence of excipients, suggesting that the non-linearity in Stern-Volmer plots is due 

to a heterogeneous distribution of fluorophores rather than contributions from static quenching.  

A greater magnitude of quenching is indicative of increased accessibility of Trp residues 

and thus a more dynamic nature of the fluorophore’s environment.  This is reflected in higher 

(more positive) slopes of Stern-Volmer plots.  In the pre-transition range (at 20 
o
C), the solvent-

exposed Trp containing regions of mAb-B (monitored, for instance, upon 308 nm excitation) 

were found to be more dynamically quenched compared to the solvent-shielded Trp containing 

regions (using 292 nm excitation), both in the absence and presence of arginine or sucrose 

(compare Figure 4D and 4G to 4A).  Arginine and sucrose were found to rigidify the solvent-

shielded regions to greater and lower extents, respectively, in the pre-transition range (Figure 

6A).   Such a rigidifying effect by arginine in the pre-transition temperature range can be 

explained by increases in apolar interactions involving solvent-shielded regions of mAb-B as 
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discussed earlier (Figure 3).  The quenching data, however, could not distinguish such excipient 

effects for solvent-exposed regions (at 308 nm excitation) in the pre-transition range (Figure 6D).   

At the Tonset temperature (~45 
o
C), however, it was determined that the dynamic nature of 

solvent-shielded regions of mAb-B (upon 292 excitation) was significantly increased relative to 

regions with more surface-exposed Trp residues (upon excitation at 308 nm) as shown in Figure 

4B, 4E, 4H.  No major change was observed in the dynamics of the surface exposed regions of 

mAb-B and in presence of sucrose when the temperature was raised from 20 
o
C to 45 

o
C (Figure 

5B, 5F).  The exception was protein in the presence of arginine where the dynamic behavior of 

the more surface-exposed regions of mAb-B seems to marginally decrease when the temperature 

was raised from 20 
o
C to either 45 or 60 

o
C (Figure 5D). These observations suggest that 

increases in dynamics of the more solvent-shielded regions presumably located in mAb-B’s 

interior may predispose the protein to structural alterations such that it subsequently undergoes 

thermal unfolding.   

The increase in internal dynamics (more solvent-shielded Trp containing regions 

monitored, for instance, by 292 nm) was further increased when observed at the thermal melting 

temperature (60 
o
C) of the protein alone and in the presence of sucrose (Figure 5A, 5E).  The 

protein in the presence of arginine, however, showed a decrease in internal dynamics at 60 
o
C 

(Figure 5C).  Since mAb-B is prone to formation of intermolecular β-sheet rich aggregates upon 

unfolding
86,120

, arginine destabilization may result in shielding of tryptophan residues in such 

intermolecular species, thus lowering the magnitude of quenching by acrylamide.  Such an 

apparent reduction in dynamics at 60 
o
C was also observed for solvent-exposed regions (probed 

by 308 nm excitation) in mAb-B in absence and presence of excipients (Figure 5B, 5D, 5F).  

This result may be due to the possibility that surface regions (more solvent-exposed Trp 
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residues) precede the internal regions (more solvent-shielded Trp residues) in their involvement 

during aggregate formation. Alternatively, the surface dynamics may be significantly dampened 

at the thermal melting temperature of the protein.  For mAb-B alone and in the presence of 

arginine (Figure 5B, 5D), there exists a concentration dependent quenching of Trp residues in 

which higher concentrations of acrylamide seem to diffuse into more loosely formed mAb-B 

structures, suggesting the former mechanism is more likely in these scenarios.  The protein in the 

presence of sucrose, however, does not show such concentration dependent acrylamide 

quenching trends suggesting that the surface dynamics of mAb-B are reduced dramatically by 

sucrose even at 60 
o
C.  The preferential hydration of the protein in the presence of sucrose 

provides a potential reason for such a surface effect.  Furthermore, it is apparent that at 60 
o
C, 

arginine decreases the dynamics of solvent-shielded Trp regions (probed using 292 nm 

excitation) as shown in Figure 6C, potentially due to aggregate formation upon mAb-B 

destabilization
120

, while increasing the surface dynamics by influencing solvent-exposed Trp 

regions (Figure 6F).  Sucrose, however, was found to decrease the dynamics of both regions at 

all temperatures examined (Figure 3 and Figure 6A – C, 6F).  These results are consistent with 

our earlier results
86

 in which sucrose decreased and arginine marginally increased global 

dynamics of mAb-B.  

3.4.3 Correlation of excipient effects between conformational stability and the 

dynamics of different regions within mAb-B.  

 This study highlights some important relationships between protein dynamics and 

conformational stability within different solvent exposed regions of mAb-B, as monitored via the 

Trp residues in the protein.  To summarize the results of changes in dynamics and 

conformational stability of mAb-B, in the absence and presence of excipients, it was initially 
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found that mAb-B thermal unfolding was a step-wise cascade of events that is initiated by 

transitions in the solvent-exposed regions of the protein.  Secondly, arginine and sucrose 

influenced the conformational stability by decreasing and increasing the TM, respectively, for 

both solvent-exposed and solvent-shielded regions.  The magnitude of stabilization or 

destabilization of these excipients, however, was higher for solvent-exposed and less for solvent-

shielded regions of mAb-B.  Thirdly, the increase in internal dynamics (in the more solvent-

shielded regions) of mAb-B was found to predispose the protein to unfolding structural 

transitions at the Tonset.  Furthermore, this effect may increase the propensity of arginine to form 

cation-π or other interactions with solvent-shielded aromatic residues, leading to destabilization.  

The reduction in the pre-transition dynamics of mAb-B, however, observed in the presence of 

arginine for the solvent-shielded regions, within the pre-transition temperature range, could 

potentially be explained by increases in apolar interactions in mAb-B under these conditions.  

Furthermore, a reduction of mAb-B dynamics by sucrose, predominantly in the proteins’ solvent-

exposed regions, may better explain the greater magnitude of surface stabilization in the presence 

of sucrose (Figure 2F).  Such an effect of sucrose on the more solvent-exposed regions of mAb-

B may thus help prevent the step-wise, subsequent cascade of unfolding events that initiate upon 

surface destabilization (Figure 1A, 1C, 2F).  Finally, the dampening of mAb-B surface dynamics 

(i.e., in the more solvent-exposed regions of mAb-B; Figure 5B, 5D) at the thermal melting 

temperature provide preliminary evidence that apolar amino acids in solvent-exposed regions 

could potentially initiate the formation of larger irreversible aggregates, as reported earlier
120

, 

during thermal unfolding of mAb-B.  
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Figure 1 
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Figure 2 
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The effect of arginine and sucrose on the tertiary structure stability of mAb-B at pH 4.5 as 

measured by intrinsic fluorescence spectroscopy upon excitation at (A) 292 nm, (B) 300 nm, (C) 

304 nm, and (D) 308 nm.  Similar figure at 296 nm excitation has been presented previously
86

. 

The thermal melting temperature as a function of excitation wavelength is plotted in (E) for 

mAb-B in the absence and presence of arginine or sucrose. The change in thermal melting 

temperature (ΔTM) of mAb-B produced by the excipients, compared to protein without 

excipients, is presented as a function of different excitation wavelengths (F). 
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Figure 3  
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The slope of Trp peak position of mAb-B versus temperature in the pre-transition temperature range (10 – 

27 
o
C) as measured by intrinsic fluorescence spectroscopy as a function of an excitation wavelength in the 

absence and presence of (A) sucrose or (B) arginine.  The statistical significance of excipient effects on 

the measured slope were evaluated at p-values of <0.05 (*) and <0.01 (**).  
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Figure 4 

 

Stern-Volmer plots for acrylamide quenching of intrinsic tryptophan fluorescence in mAb-B at different 

excitation wavelengths for (A) mAb-B alone at 20 
o
C, (B) mAb-B alone at 45 

o
C, (C) mAb-B alone at 60 

o
C, (D) mAb-B with arginine at 20 

o
C, (E) mAb-B with arginine at 45 

o
C, (F) mAb-B with arginine at 60 

o
C, (G) mAb-B with sucrose at 20 

o
C, (H) mAb-B with sucrose at 45 

o
C and, (I) mAb-B with sucrose at 

60  
o
C.  Experimental details are given in the text. The line connecting data points are for visual aid only. 
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Figure 5 

 

Stern-Volmer plots for acrylamide quenching of intrinsic tryptophan fluorescence of mAb-B at various 

temperatures upon an excitation at 292 nm (A, C, E) and 308 nm (B, D, F).   The plots for mAb-B alone 

(A, B), mAb-B in presence of arginine (C, D) and, mAb-B in presence of sucrose (E, F) are presented 

separately for better representation and comparison of excipient effects.  The line connecting data points 

are for visual aid only. 
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Figure 6 

 

Stern-Volmer plots for acrylamide quenching of intrinsic tryptophan fluorescence of mAb-B in absence 

and presence of excipients (arginine or sucrose) upon an excitation at 292 nm (A, B, C) and 308 nm (D, 

E, F).  Results at 20 
o
C (A, D), 45 

o
C (B, E) and 60 

o
C (C, F) are presented for better representation and 

comparison of temperature effects.  The line connecting the data points is for visual aid only.  
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Table 1: Thermal melting temperature (TM) values of mAb-B in presence and absence of excipients 

(arginine or sucrose) at pH 4.5 as measured by fluorescence spectroscopy at different excitation 

wavelengths. The melting temperature was determined by sigmoidal fitting of tryptophan peak position 

versus temperature plots above 30 
o
C. The mean and standard deviation (SD) are from three separate 

measurements. The change in TM values due to excipients are significant with a p-value <0.01 (**) at all 

the excitation wavelengths. 

 

Excitation 

wavelength 

(nm) 

Melting Temperature (TM); (
o
C) 

mAb-B alone 

(Mean ± SD)** 

mAb-B + arginine (250mM) 

(Mean ± SD)** 

mAb-B + sucrose (500mM) 

(Mean ± SD)** 

292 55.2 ± 0.0 51.4 ± 0.0 58.1 ± 0.1 

296 54.8 ± 0.0 50.7 ± 0.1 57.8 ± 0.2 

300 54.2 ± 0.1 49.9 ± 0.0 57.4 ± 0.1 

304 53.7 ± 0.1 49.1 ± 0.3 57.1 ± 0.2 

308 52.7 ± 0.2 47.8 ± 0.7 56.6 ± 0.4 
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Table 2: Change in thermal melting temperature (ΔTM) of mAb-B in presence and absence of excipients 

(arginine or sucrose) at pH 4.5 as measured by fluorescence spectroscopy at different excitation 

wavelengths. The mean and standard deviation (SD) represent data from three separate measurements. 

The ΔTM, due to arginine and sucrose, at 292 nm was statistically compared for significant differences 

with ΔTM at other excitation wavelengths with a p-value of <0.01(**), <0.05(*) and <0.1(‡).   

 

 

Excitation 

wavelength 

(nm) 

Change in Melting Temperature (ΔTM); (
o
C) 

mAb-B + arginine (250mM) 

(Mean ± SD) 

mAb-B + sucrose (500mM) 

(Mean ± SD) 

292 -3.8 ± 0.1 2.9 ± 0.1 

296 -4.1 ± 0.1
**

 3.0 ± 0.2 

300 -4.3 ± 0.1
**

 3.2 ± 0.1
*
 

304 -4.6 ± 0.4
‡
 3.4 ± 0.2

**
 

308 -4.9 ± 0.5
‡
 3.9 ± 0.5

‡
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Chapter 4 

 

Understanding interactions in high concentration protein solutions 
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4.1 Introduction 

 Biological processes largely are governed by macromolecular complexes and their 

interactions
249

.  A plethora of qualitative and quantitative techniques have been developed and 

validated to understand the stoichiometry and strength of intermolecular interactions
250-261

.  

These interactions have generated significant interest in the context of better understanding the 

folding
262

, solubility
263

, osmolarity
264

, crystallization
265-267

, colloidal behavior
268

, self-

association
269

, viscosity
213,270,271

, and stability
128,203,272

 of proteins and other macromolecular 

systems.  With the appearance of an increasing number of high concentration protein therapeutic 

drugs (e.g., monoclonal antibodies), pharmaceutical challenges such as storage stability 

(conformational instability and aggregation), solution viscosity, and process optimization have 

also arisen
124

.  

 A number of the analytical techniques used to study protein-protein interactions (such as 

light scattering, membrane osmometry, sedimentation equilibrium and self-interaction 

chromatography) determine the second virial coefficient (B22), a thermodynamic parameter used 

to characterize non-ideality of solutions.  B22 has traditionally been used as a guide to understand 

phenomena such as solubility
263

, crystallization
267

, and self-association
269

.  Limited experimental 

data are currently available, however, that measure non-ideality effects in highly concentrated 

(>50 mg/mL or volume fraction >0.1) protein solutions or that employ non-hydrodynamic 

approaches.  Experimental limitations of currently available methods such as low throughput, 

high protein requirements, increased viscosity or the need for prior immobilization of proteins 

encourage the development of complementary analytical technologies to better understand 

protein-protein interactions at high concentrations. 
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 In this work, we present one such new approach that employs a variable-pathlength UV-

Visible spectrophotometer to study interactions over a wide range of concentrations for three 

model proteins: bovine serum albumin (BSA), lysozyme and a monoclonal antibody (IgG2).  We 

determine a unique parameter referred to as delta absorbance (∆Abs), which is defined as the 

difference between the measured absorbance of proteins in solution at different protein 

concentrations and their corresponding theoretical/calculated absorbance values (determined by 

gravimetric dilution from a stock protein solution of known concentration).  The origin of ∆Abs 

is hypothesized to be due to potential changes in the optical properties of interacting protein 

molecules in solution, rearrangement of water molecules around chromophores due to protein-

protein interactions, and/or light scattering.  Numerous studies
273-277

 have been performed using 

either non-associating and/or self-associating proteins to study the effect of increasing protein 

concentrations (up to hundreds of milligrams per milliliter) on light scattering intensity.  

Concentration-dependent Raleigh scattering intensity was found to deviate from both ideal 

scattering and from the scattering values predicted by first-order corrections to non-ideality
273,276

.  

This non-linear dependence of light scattering on protein concentration has been attributed to 

repulsive interactions (excluded volume effects) and other short/long range effects that modulate 

the inter-molecular interactions in globular proteins
273,275

.  Theoretical models using Rayleigh 

scattering theory, and subsequent experimental results, have quantitatively determined the 

magnitude of these contributions, which become especially significant at high concentrations.  

Various models such as simple hard-spheres, adhesive hard-spheres and effective hard-sphere 

mixture models have been employed to characterize different types of intermolecular interactions 

such as steric repulsion, short/long range interactions and equilibrium self-association
274-276

.  The 

measurement of ∆Abs potentially provides complementary information to aid in the detection 
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and understanding of these protein-protein interactions. The unavailability of a convenient 

analytical technique to collect absorption spectra at high protein concentrations without prior 

sample handling and dilution, as well as challenges in obtaining a wide range of pathlength 

cuvettes, especially at very short pathlengths, have previously precluded such a study.  Since 

increased solution viscosity is one of the most immediate consequences of high concentration 

protein solutions, we also evaluated the possibility that correlations might exist between ∆Abs 

and solution viscosity as a function of protein concentration.  

 The variable-pathlength (0.01 mm to 15 mm) tool that serves as a cuvette (the SoloVPE) 

used in these studies employs the principle of slope spectroscopy™ to reliably measure low and 

high protein concentrations without dilution using a coupled Cary 50™ UV-Visible 

spectrophotometer.  This instrument is able to record and generate absorbance versus pathlength 

linear plots using its variable pathlength capability.  The slope determined from absorbance 

versus pathlength relationships is further used to determine precise protein concentrations using 

the known extinction coefficients of proteins under investigation.  This variable pathlength 

spectrophotometer is employed in the current studies to detect potential change(s) in optical 

properties of individual and/or interacting molecules for a wide range of protein concentrations.  

The absorbance values were computed using the Beer-Lambert law with experimentally 

determined protein concentrations and known values of extinction coefficients for BSA, 

lysozyme and IgG2.  The theoretical absorbance was calculated after gravimetric dilution of a 

protein stock solution of known concentration.  The calculation of theoretical absorbance was 

appropriately corrected for changes in density with protein concentration, which is especially 

significant at higher protein concentrations.  The density measurements were performed at 20 
o
C 

using a DMA-5000 high precision densitometer (Anton Paar, Graz, Austria) with a precision of 1 
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x10
-6

 g/cm
3
 and 0.001 

o
C.  This new analytical technique is simple, non-destructive and requires 

only small volumes (10–150 μL) of protein solution.  It can potentially provide a simple and 

unique measure to study intermolecular interactions for a wide range of protein concentrations.   

4.2 Experimental 

4.2.1 Materials 

 Bovine serum albumin and lysozyme (chicken egg white) were obtained from Sigma-

Aldrich.  All chemicals and buffer components were purchased from Sigma-Aldrich.  The 

monoclonal antibody (IgG2) was procured from a commercial source.  The chemicals and 

protein samples were used without further processing or purification.  

4.2.2 Sample preparation 

 Protein samples were extensively dialyzed into their respective, pH adjusted buffers and 

filtered through 0.22 μm Millipore filters prior to use.  Stock solutions of BSA (250 mg/mL) and 

IgG2 (150 mg/mL) were prepared in 10 mM histidine buffer pH 6 with NaCl to produce a final 

ionic strength of 0.015.  Lysozyme stock solution (240 mg/mL) was made by dissolving an 

appropriate amount of protein in 10 mM acetate buffer, pH 4 with NaCl to an ionic strength of 

0.015.  The ionic strength was kept low to minimize screening of electrostatic interactions.  The 

pH of the final buffer solutions was determined post dialysis and found to be ± 0.05 units.  The 

concentrations of the stock solutions were measured by the traditional dilution method and the 

absorbance was determined using a NanoDrop 2000 spectrophotometer and reconfirmed by an 

Agilent 8453 UV-Vis spectrophotometer.  The series of solutions of varying protein 

concentrations were then prepared by gravimetric dilution of the stock solution, and the 
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theoretical absorbance was calculated using the extinction coefficients for BSA (0.66 mL mg
-1 

cm
-1

)
278

, lysozyme (2.72 mL mg
-1

cm
-1

)
279

 and IgG2 (1.45 mL mg
-1

cm
-1

)
280

.  

4.2.3 Optical density/absorbance measurements using a variable pathlength 

spectrophotometer 

 The SoloVPE (C. Technologies Inc., Bridgewater, NJ 08807, USA) takes advantage of its 

capability to change the optical pathlength (l), (which is held constant in traditional 

spectrophotometers using fixed pathlength cuvettes) and the linear Beer-Lambert Law to 

measure concentrations of solutions at higher concentrations than fixed pathlength 

spectrophotometers.  The Beer-Lambert Law is expressed as  

    A = a . l . c       (1) 

where ‘A’ is the measured absorbance, ‘a’ is the molar absorption coefficient, ‘l’ is the 

pathlength, and ‘c’ is the sample concentration. Thus,  

    A / l  = a . c      (2) 

For absorbance versus pathlength measurements,  

     A = m . l + b 

where ‘m’ is the slope and ‘b’ is the y-intercept.  

    A / l  α m      (3) 

This dimensional equality allows direct replacement of the A/l term in eq (2) with the slope term 

(m) in eq (3),  

      m = a . c        (4) 

 where the concentration is : c = m / a (if ‘a’ is known)   (5) 

 and the molar absorptivity is :  a = m / c (if ‘c’ is known) .  (6) 
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 These measurements are acquired by capturing the light passing from a Varian Cary 50™ 

spectrophotometer through the sample solution onto a detector through an optical fiber 

(Fibrette™).  The fibrette can be moved up and down relative to the bottom of the sample vessel, 

thus precisely and accurately controlling the pathlength (the distance between the lower tip of the 

fibrette and the bottom of the sample vessel).  The light passing through the solution is 

monitored by a detector system housed below the sample vessel.  The pathlength range 

achievable by this assembly is from 0.01 mm (10 microns) to 15 mm (1.5 cm) at pathlength 

intervals of 0.005 mm (5 microns).  Absorption spectra (or individual wavelength specific 

absorbance measurements) can be collected for a range of predetermined pathlengths, and 

absorbance versus pathlength plots are then created and analyzed by linear regression analysis.  

The slope of this absorbance versus pathlength plots at a specific wavelength of interest (for 

example 280 nm for proteins) can be used to determine the concentration of protein in solution 

using eq 5.  The smallest accessible pathlength of 10 microns allows this technology to 

conveniently measure protein concentrations of hundreds of milligrams per milliliter without 

dilution.  The pathlength accuracy and concentration linearity of the SoloVPE was confirmed 

using a proprietary dye (CHEM013 VPE 1-mm standard, Lot # C141923) over a pathlength 

range of 0.01 – 1 mm.  

 The ‘Quick Slope’ software option provided by the manufacturer is a rapid method for 

measuring protein concentration without dilution or need to optimize data collection parameters.  

For the more systematic application of studying physical phenomena such as intermolecular 

interactions, however, the ‘Setup’ mode was used.  The ‘setup’ option allows the user to tailor 

the experimental and data collection parameters, which may be required especially at higher 

protein concentrations.  Absorbance measurements were acquired at room temperature for a 
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series of pathlengths spanning 10 μm to 3 mm by tailoring the data collection parameters in the 

‘Setup’ mode of the software for BSA, lysozyme and IgG2.  The step size for pathlength 

scanning was selected to obtain a maximum number of points (>5) to obtain a coefficient of 

determination (r
2
) ≥ 0.999 for absorbance versus pathlength plots.  To maintain the linear range 

of absorbance, an absorbance threshold of 1.0 (A280 = 1) was sufficient to derive the desired 

number of data points.  For only a few cases was the absorbance threshold increased >1.0.  This 

was required for lysozyme at higher protein concentrations due to the protein’s relatively high 

extinction coefficient.   

 The measured absorbance values for proteins were corrected for scattering contributions 

(one-wavelength or two-wavelength corrections) at each of the pathlengths tested.  The one-

wavelength scattering correction subtracts the absorbance value at one specific wavelength in a 

non-absorbing region (for example, 350 nm) from the optical density spectrum through the 

absorbing region.  The two-wavelength scattering option in the software corrects for scattering 

contribution by linear extrapolation of the non-absorbing region of the spectrum from 320 – 350 

nm (these wavelengths can be selected by the user) through the absorbing region and subtracting 

the extrapolated scattering component to obtain protein specific absorbance values.  These 

corrections are discussed in more detail later in the text.  

4.2.4 Viscosity measurements 

 The viscosity of the protein samples was measured using mVROC, a 

Viscometer/Rheometer-on-a-Chip, (RheoSense Inc.) at 25 ± 0.1 
o
C after equilibration for 5 min.  

The mVROC determines shear-rate dependent viscosity of protein solutions by measuring the 

pressure drop of the solution when the liquid flows through a rectangular glass slit containing a 

monolithic Si pressure sensor array placed at different positions from the entrance.  The pressure 
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drop as a function of the position of the pressure sensor is used to compute wall shear stress (τ) 

to determine the viscosity of Newtonian solutions.  The viscosity of non-Newtonian solutions 

can also be determined using appropriate corrections available in the software.  The instrument 

can determine the viscosity of the sample at either a fixed shear-rate (single-point measurement) 

or perform shear-rate sweeps (multi-point measurements)
281

.  We performed shear-rate sweeps 

for BSA (240 mg/mL; Shear rate: 150 – 2250 s
-1

), lysozyme (240 mg/mL; Shear rate: 500 – 5500  

s
-1

) and IgG2 (120 mg/mL; Shear rate: 50 – 850 s
-1

) to determine the Newtonian and/or non-

Newtonian behavior of these protein solutions at the highest concentration used in these studies.  

The measurement was made for 20 seconds with a wait time of 3 seconds before each shear-rate 

determination.  The shear rate range used in the study was optimized based on acceptable criteria 

(i.e., 5% < x <90% of the maximum limit) to monitor pressure by the instrument.  The flow/shear 

rate at lower protein concentrations was selected (where x ~20% of the maximum pressure limit) 

from the respective shear rate range mentioned above to avoid potential shear-thinning of the 

protein samples.  

4.2.5 Dynamic light scattering 

 Dynamic light scattering (DLS) was used to evaluate IgG2 self-association as a function 

of protein concentration.  The DLS measurements were carried out at 20 
o
C using a DynaPro™ 

Plate reader DLS system from Wyatt Technology (Santa Barbara, CA) with a data acquisition 

time of 30 s and an average of 10 acquisitions per measurement. 

4.3 Result and discussion 

4.3.1 Optical density measurements and scattering correction 
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 Figure 1 shows plots of the theoretical and measured absorbance versus protein 

concentration for BSA (a), lysozyme (b) and IgG2 (c).  The theoretical absorbance was 

calculated from the gravimetric dilution of protein stock solution at known concentrations while 

the measured absorbance at each concentration point was determined using the measured protein 

concentration (without further dilution by SoloVPE) and the extinction coefficient of the protein.  

The measured absorbance values for all the three proteins show a positive deviation from the 

theoretical values, the magnitude of which increases as the protein concentration rises.  The 

deviation from linearity observed in the theoretical plot for BSA is due to small dilution errors at 

higher concentrations.  The measured absorbance values were corrected for light scattering 

contributions using the two-wavelength scatter correction method available in the instrument 

software. To determine the suitability of this method to appropriately correct for scattering, we 

compared (Figure 2) the two-wavelength scatter correction method (linear extrapolation, Figure 

2b) with the standard multi-wavelength method
282

 which employs a log-log extrapolation (Figure 

2c) using a 120 mg/mL IgG2 solution. This concentration of IgG2 was chosen because it showed 

the highest deviation among the samples.  The variability in the concentration of IgG2 solution 

obtained at 280 nm and 0.05 mm pathlength (Abs ~1.0) was found to be <0.5%.  This variability 

in the measured concentration values was even smaller at lower concentrations.  Furthermore, 

the inter-sample variability (~2.5 percent standard deviation) found by analysis of five replicate 

measurements was higher than the variability (<0.5%) in measured concentration between linear 

and log-log scatter correction of 120 mg/mL IgG2.  In addition, the effectiveness of the linear 

and log-log scatter correction methods was further studied using 1 mg/mL of IgG2 in the absence 

and presence of an external scatterer (polystyrene beads) at different pathlengths. A sufficient 

amount of external scatterer was added to increase the apparent absorbance of 1 mg/mL IgG2 
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solution by 20% (comparable to the difference observed for IgG2 at concentrations exceeding 

120 mg/mL) at 280 nm using a 1 mm pathlength. Figure 3a shows that both the linear and log-

log correction methods were able to correct for scattering in the IgG2 solution (1 mg/mL) with 

no added scatter (the non-scattering control). At 1 mm pathlength, the log-log scatter correction 

method, however, was more efficient in retrieving the spectrum corresponding to the non-

scattering control from the protein solutions containing an external scatterer. In contrast, as the 

pathlength of absorbance measurement was lowered (for instance to 0.25 mm, Figure 3c), both 

the linear and log-log correction methods were equally effective in correcting for light scattering. 

Because a majority of absorbance measurements at high protein concentrations were made at 

pathlengths below 0.25 mm, the choice of the light scattering correction method should not 

influence the measurement of intermolecular interactions described in these studies.  

 Light scattering intensity generally increases with increases in protein concentration. An 

effective hard particle model based on Raleigh scattering theory for single and multicomponent 

systems can accurately describe this concentration dependence of light scattering for single non-

associating, non-associating mixture and self-associating proteins
273-276

.  Thus, the log-log 

extrapolation (or the two-wavelength scatter correction) method described above, to a first 

approximation, should account for the concentration dependent increase in Raleigh scattering 

intensity for the different protein systems.  The small differences in the measured and calculated 

absorbance values may therefore qualitatively represent some form of weak interactions at both 

low and high protein concentrations.  The magnitude of these deviations, which is a function of 

protein concentration, suggests that the variable-pathlength spectrophotometer is sensitive 

enough to detect subtle spectral changes arising from the interactions between protein molecules 

as a function of protein concentration (see below).  
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 The characteristics and behavior of proteins in aqueous solutions are governed by both 

long and short-range interactions between protein molecules as well as their interactions with 

solvent and other co-solute molecules
126

.  These interactions are known to be a function of 

protein concentration with long-range, repulsive charge-charge interactions dominating at low 

protein concentrations, while short-range interactions such as van der Waals attraction and 

dipole-dipole interactions are significant at higher concentrations.  These interactions along with 

excluded volume effects are known to increase the probability of protein-protein 

interactions
128,283,284

, especially at high protein concentrations.  A variety of analytical techniques 

such as light scattering (static and dynamic) and analytical ultracentrifugation are used to study 

protein-protein interactions by determining either the second virial coefficient (B22) from SLS or 

an interaction parameter (kD) from DLS.  The B22 and kD parameters are now well established 

as measurements of solute interactions with each other or with the solvent.  These parameters, 

however, are generally studied in dilute solution conditions (<50 mg/mL).  A qualitative 

correlation of ultrasonic storage modulus (G’) at high protein concentration was observed with 

B22 (or kD) measured at low protein concentration
284

.  The authors, however, discuss differences 

in attractive and repulsive behavior of the protein in dilute and concentrated solutions as 

measured by G’, B22 and kD.  

 It has been pointed out
284

 that the inter-particle distance between monoclonal antibody 

molecules is reduced from 22 to 12 nm as the protein concentration increases from 20 to 120 

mg/mL.  Similarly, concentrated protein solutions with fractional volume occupancy >0.1 

increase the propensity for protein-protein interactions
285

.  The basis of the current work is the 

hypothesis that these protein-protein interactions might affect the optical characteristics of 

interacting protein molecules and/or cause fluctuations in hydrating water molecules around one 
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or more aromatic amino acid residues.  This may cause either an increase or decrease in the 

measured ultraviolet absorbance (extinction coefficient) compared to that of the theoretical 

absorbance which assumes a linear relationship between absorbance and protein concentration.  

The theoretical absorbance was computed from gravimetric dilution of protein stock solution of 

known concentration using the Beer-Lambert law and is highly accurate with an error less than 

1.5%.  The capability of the variable-pathlength technology to measure a wide range of protein 

concentrations without dilution enabled the accurate direct measurement of absorbance at both 

low and high protein concentrations, which in turn could potentially detect change(s) in optical 

characteristics of interacting macromolecules. 

4.3.2 Delta absorbance measurements (∆Abs) 

 Figure 4 represents these deviations in the form of ∆Abs, which is the difference in 

measured and theoretical absorbance, for the three proteins.  The average ratio of ∆Abs to total 

absorbance was found to be ~4% for BSA (5 – 240 mg/mL), ~3% for lysozyme (5 – 220 mg/mL) 

and ~17% for IgG2 (5 – 140 mg/mL).  The magnitude of ∆Abs should represent a measure of 

weak association arising from the various types of interactions undergone by proteins under 

conditions of increasing thermodynamic activity.  The ∆Abs values were not found to vary 

significantly below 100 mg/mL for BSA and 40 mg/mL for lysozyme.  Similar low 

concentration (<50 mg/mL) behavior was reported
286

 for both BSA and lysozyme where the 

second virial coefficient measured by an osmotic pressure method showed little change as a 

function of protein concentration over this low concentration range. Another study
274

 based on 

hard particle approximation models used to describe concentration dependent scattering that 

treats attractive intermolecular interactions as association equilibria, reported repulsive, short-

range interactions and no significant self-association (or attractive intermolecular interactions) up 
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to ~100 mg/mL for BSA, which should further explain the lower magnitude of ∆Abs observed in 

dilute BSA solutions. The magnitude of ∆Abs, however, clearly increases at higher BSA and 

lysozyme concentrations (>100 mg/mL) suggesting that at these concentrations protein-protein 

interactions may result in non-ideal solution behavior of these two proteins.  Furthermore, self-

interaction chromatographic studies of a peptide
287

 and light scattering measurements using 

model proteins
275,276

 suggests attractive interactions to be predominant at higher (>100 mg/mL) 

concentrations.  Similarly, the increase in magnitude of ∆Abs values observed at high (>100 

mg/mL) BSA and lysozyme concentrations may therefore represent increases in the extent of 

attractive interactions between protein molecules.  

 Various symmetric potentials such as hard-sphere or excluded-volume effects, van der 

Waals dispersion, charge-charge repulsion, attractive interactions due to presence of salts, 

square-well interactions representing specific self-association and dipole interactions potentially 

contribute to interactions between globular proteins and affect the center-to-center distance, r
288

, 

between molecules in solution.  The interplay of these contributions will govern the overall 

interactions of a solute in solution and therefore may influence an experimentally measured 

parameter such as ∆Abs in any number of different ways.  The repulsive charge-charge 

interactions, known to predominate at low protein and low salt concentrations, might increase the 

inter-particle distance, r, and thus fail to affect optical properties such that the measured 

absorbance of the molecules in solution does not deviate significantly from the theoretical 

absorbance.  This would explain the low magnitude of ∆Abs at low BSA and lysozyme 

concentrations.  At high BSA and lysozyme concentrations, the van der Waals and dipolar 

potentials (among others) could have a larger contribution to the sum of potentials of the mean 

force (W22) between interacting particles, thus lowering the inter-particle distance.  This 
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lowering of ‘r’ may significantly perturb the spectral properties of interacting molecules 

compared to individual non-interacting molecules and therefore increase the magnitude of ∆Abs 

at higher concentration.  

 In the case of the IgG2 (Figure 1c and Figure 4), however, the ∆Abs values deviate from 

theoretical absorbance values even at the lower protein concentrations of ~20 mg/mL, and the 

magnitude of the effect increases markedly at >40 mg/mL.  The magnitude of ∆Abs reached a 

plateau at >100 mg/mL.  An increase in ∆Abs at lower (~20 mg/mL) IgG2 concentration could 

potentially be due to increases in the square-well interaction and account for weak self-

association.  Jimenez M. et al.
289

 not only reported weak self-association of IgG2 molecules at 

~30 mg/mL for the antibody of their study but also suggested formation of ~33% trimers at 100 

mg/mL and ~50% at 200 mg/mL due to predominant attractive interactions.  Recent work
276

 

provides a detailed account of such interactions, using different hard-sphere models and light 

scattering data, successfully accounting for the self-association of monoclonal antibodies.  The 

steep increase in ∆Abs at IgG2 concentration greater than ~100 mg/mL (Figure 4) may thus be a 

consequence of the formation of higher order reversible oligomeric species in solution.  In 

addition, the markedly different behavior of ∆Abs for each of the model proteins as a function of 

concentration argues strongly that the apparent observed changes in ultraviolet absorbance or 

extinction coefficient are not due to an instrumental artifact (Figure 4).   

 Nonetheless, orthogonal methods to study these types of interactions are needed to 

validate these possibilities and to correlate the change in magnitude of ∆Abs with the physical 

phenomenon occurring for IgG2. DLS was therefore employed to see if IgG2 self-association 

could be detected as the protein concentration was raised.  It was found that the average diameter 

of the monoclonal antibody increased from 9.8 ± 0.1 to 10.9 ± 0.03 nm (n=3) as the protein 
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concentration was increased from 0.5 to 10 mg/mL. Measurements could not be performed 

above 10 mg/mL due to multiple scattering (data not illustrated).  These results suggest 

association of the IgG2 and this effect may thus be responsible for the observed changes in ∆Abs 

even at lower concentrations.  

 Why should the absorbance (or extinction coefficient) change at higher protein 

concentration?  Aromatic residues are known to be dispersed throughout the structure of most 

proteins.  While Phe residues are typically buried, both Trp and Tyr side chains are often at least 

partially accessible to solvent.  Furthermore, the dynamic nature of protein structure is known to 

permit significant solvent penetration into protein interiors and potentially increase the hydration 

of these aromatic residues.  It seems probable that this phenomenon would be enhanced at higher 

protein concentrations due to a corresponding increase in the thermodynamic activity of either 

the hydrating or bulk water.  Whichever is the case, small changes in absorbance are not 

necessarily unexpected at higher protein concentrations.  

 Three other potential sources of the observed deviation from the theoretical absorbance 

values at higher protein concentration are absorption flattening, opalescence and constructive 

interference.  Absorption flattening arises from shadowing of one particle by another and is 

accompanied by red shifts in the absorption spectrum
290

.  This effect should become more 

pronounced as the pathlength is increased.  Because neither of these phenomena is seen at the 

pathlengths used for concentration measurement, it is unlikely to be the source of the deviations 

manifested by positive ∆Abs.  Opalescence is a form of micro-phase separation and is 

characterized by a unique shimmering appearance of solutions
291,292

.  This optical effect was not 

observed by visual examination for the three model proteins, even at the highest protein 

concentrations examined.  A third possibility is the constructive interference that is observed 
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when a low degree of periodic order is present in liquids containing large solutes as has been 

observed in the mammalian lens
293-295

.  Since this phenomenon is known to produce increases in 

the transmittance of light, such a phenomenon cannot be responsible for the deviations in 

absorbance observed in the present study.  We cannot, however, entirely exclude a contribution 

from light scattering to these deviations, which is not adequately compensated for by the 

methods employed.  Light scattering effects would appear, however, to provide only a small 

contribution to the spectral changes as described above.  The positive ∆Abs values observed in 

this study at low and high protein concentrations can therefore be taken as a reflection of the 

complex interplay of intermolecular interactions in solution.  

4.3.3 Viscosity measurements and correlation with ∆Abs 

 Protein-protein interactions in aqueous solution are known to have a direct effect on 

viscosity, especially with significant self-association at higher protein concentrations
126,296

.  We 

therefore studied the effect of protein concentration on the viscosity and compared the changes in 

magnitude of ∆Abs to see if they correlated with changes in viscosity as a function of BSA, 

lysozyme and IgG2 concentrations.  Figure 5 illustrates the effect of shear rate (or flow rate) on 

the viscosity of BSA, lysozyme and IgG2 at the highest concentrations tested.  Dilute protein 

solutions are known to behave like Newtonian fluids in which the viscosity of the solution is 

independent of shear rate.  In contrast, non-Newtonian (viscosity dependent on shear rate) 

behavior is often observed at higher protein concentrations.  We therefore tested the effect of 

shear rate on viscosity of solutions containing 240 mg/mL BSA and lysozyme, and 120 mg/mL 

IgG2. The shear rates employed in this experiment were selected based on a predetermined 

criteria (i.e., 5% < x <90%) of the maximum limit of the instrument to monitor pressure.  BSA 

and lysozyme were found to behave like Newtonian fluids under the conditions tested in which 
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the viscosity of the solution did not markedly change with shear rate. IgG2 viscosity, however, 

was found to undergo shear-thinning upon an increase in shear rate, suggesting non-Newtonian 

behavior (Figure 5).  

 Figure 6 shows a correlation of ∆Abs with viscosity for BSA (a), lysozyme (b) and IgG2 

(c) as a function of protein concentration.  The change in magnitude of ∆Abs for BSA and 

lysozyme was found to correlate with increases in viscosity as a function of protein 

concentration.  The change in magnitude of ∆Abs for the IgG2 (Figure 6c), however, correlated 

with an exponential increase in viscosity as a function of IgG2 concentration.  A similar 

exponential increase in viscosity was reported earlier for other monoclonal antibodies
296

.  The 

differences in correlation of ∆Abs with viscosity change between BSA, lysozyme and IgG2 are 

intriguing and require further investigation to better understand the contributions of the different 

intermolecular forces that dictate solute viscosity.  

 Because ionic strength is one of the key parameters that affect viscosity, flow behavior 

and interactions in proteins solutions
297,298

, we studied the effect of varying ionic strength on 

∆Abs and the viscosity of IgG2 (Figure 7).  The viscosity of IgG2 solutions was reduced with 

increases in ionic strength from 0.015 to 0.15. This viscosity mitigating effect was more 

pronounced at higher protein concentrations (≥ 40 mg/mL).  A similar effect of ionic strength 

was observed in terms of the magnitude of experimentally measured ∆Abs value. The ∆Abs was 

lowered significantly at higher IgG2 concentrations in higher ionic strength solutions.  These 

trends of change in ∆Abs at different IgG2 concentrations correlated well with the changes 

observed in viscosity in low and high ionic strength solutions.  Increases in ionic strength are 

believed to screen both net attractive (electrostatic component) and net repulsive (excluded 

volume) interactions in immunoglobulins consistent with both electrostatic and excluded volume 
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effects affecting the properties of high concentration protein solutions
276

. The correlation 

between solution viscosity and ∆Abs value (measured by ultraviolet spectroscopy) may therefore 

reflect the interplay of the factors responsible for protein-protein interactions at higher protein 

concentrations.  

 The measurement of ∆Abs values represents a new approach to characterize the 

relationship between intermolecular interactions and viscosity in low and high concentration 

protein solutions, the magnitude of which is a function of protein concentration.  ∆Abs values 

were monitored for three model proteins of varying size and molecular weight (lysozyme, BSA, 

and IgG2) over a wide range of protein concentrations.  The observed change in ∆Abs correlated 

with measured changes in solution viscosity for all three model proteins at different protein 

concentrations.  The correlation between ∆Abs and solution viscosity for the IgG2 monoclonal 

antibody solution, observed at different protein concentrations and ionic strengths, suggests that 

the spectral changes detected by the deviations in the optical characteristics of protein molecules 

at high concentration represent changes in the intermolecular forces governing protein-protein 

interactions.  A more detailed analysis of such protein-protein interactions under these conditions 

should further clarify the origin of the spectral changes detected by ultraviolet spectroscopy in 

this study.  This type of measurement offers a new analytical probe for monitoring protein 

interactions in concentrated solutions and studying the effect of solution variables on protein-

protein and protein-solvent interactions.   
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Figure 1 
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Theoretical and measured absorbance of proteins:  (a) BSA in 10 mM histidine buffer pH 6 (I=0.015), (b) 

lysozyme in 10 mM acetate buffer pH 4 (I=0.015), and (c) IgG2 mAb in 10 mM histidine buffer pH 6 

(I=0.015) as a function of protein concentration.  The theoretical absorbance was calculated from the 

gravimetric dilution of protein stock solutions of known concentration.  The measured absorbance at each 

concentration was determined at room temperature using the extinction coefficient of the protein and the 

measured protein concentration, respectively.  The measured concentration was appropriately corrected 

for light scattering as described in the text. The line connecting the data points is for visual aid only.  

When error bars (representing standard deviation of five replicate measurements) cannot be seen, they are 

encompassed within the individual symbols. 
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Figure 2 
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Representative absorption spectra of the IgG2 monoclonal antibody (a) uncorrected along with 

extrapolated scatter signal for linear and log-log correction method, (b) corrected using linear 

extrapolation of the non-absorbing (320 – 350 nm) region and, (c) corrected using log-log extrapolation of 

non-absorbing (320 – 350 nm) region.  Protein sample contained IgG2 (10 mM histidine buffer pH 6, 

I=0.015) at 120 mg/mL and measurements employed a pathlength of 50 microns. 
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Figure 3 
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Absorption spectra of the IgG2 monoclonal antibody (1 mg/mL) in absence and presence of an external 

scatter (polystyrene beads) corrected for scattering using linear and log-log scatter correction methods.  

The spectra were collected at pathlength of (a) 1 mm, (b) 0.5 mm and, (c) 0.25 mm. 
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Figure 4 
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Delta absorbance (∆Abs), the difference between measured and theoretical absorbance, for BSA, 

lysozyme and IgG2 mAb solutions as a function of protein concentration.  The error bars represent the 

standard deviation for five replicate measurements.  Experimental conditions are listed in Figure 1. 
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Figure 5 
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Viscosity measurements of solutions containing BSA, lysozyme and IgG2 mAb as a function of shear-

rate (s
-1

).  Shear-rate sweeps were performed at 150 – 2250 s
-1

 for BSA (240 mg/mL), 500 – 5500 s
-1

 for 

lysozyme (240 mg/mL) and 50 – 850 s
-1

 for IgG2 (120 mg/mL). 
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Figure 6 
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Comparison of changes in ∆Abs and viscosity (mPa.s) as function of protein concentration for solutions 

containing (a) BSA, (b) lysozyme and (c) IgG2 mAb.  The ∆Abs values are plotted on the Y-axis and 

viscosity values on Y’-axis.  The error bars represent the standard deviation of five replicate 

measurements. 
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Figure 7 
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Effect of ionic strength on ∆Abs and viscosity (mPa.s) for solution containing IgG2 mAb as function of 

protein concentration.  An ionic strength (I) of 0.015 (low) and 0.15 (high) was attained using NaCl.  The 

∆Abs values are plotted on Y-axis and viscosity on the Y’-axis.  The error bars represent the standard 

deviation of five replicate measurements. 
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Chapter 5 

 

Summary, conclusions and future directions 
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5.1 Summary and conclusions 

 Protein dynamics and flexibility has been extensively investigated in the context of 

understanding their role in regulating biological functions such as enzyme catalysis and ligand 

recognition by macromolecules
57-61

. The functional properties of native proteins are often 

attributed to their unique ability to interconvert between energetically equivalent conformational 

microstates and a role for solvent in such processes is well recognized
299

.  The interplay between 

protein dynamics, stability and aqueous solvent, however, is less well understood. To better 

understand these relationships, the studies presented in this dissertation evaluate the effect of 

varying solution characteristics (i.e., alterations in pH, temperature, protein concentration and 

excipients) on protein dynamics, conformation stability, protein-protein interactions and 

aggregation. A variety of experimental methods and their underlying physical principles were 

combined to better understand the correlations between global and/or local dynamics and the 

conformational stability at a molecular level of two IgG1 monoclonal antibodies. In addition, 

such correlations were also evaluated in the absence and presence of stabilizing and destabilizing 

excipients at different pH values and temperatures, both of which can affect a protein’s intrinsic 

stability.  

 Proteins in solution at high concentrations are known to have unique properties as 

compared to that at lower concentrations. One of the major consequences of interactions 

governing the properties of proteins in highly concentrated solutions is increases in solution 

viscosity
126,213,270,276,300,301

. Such increases in viscosity can consequently influence the 

dynamics
302

 and conformational properties
303

 of proteins. Findings of studies aimed at a better 

understanding of such interactions in high concentration protein solutions using a new ultraviolet 

absorption spectroscopy based approach are presented in Chapter 4.  
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 Chapter 2 characterizes the conformational properties and ‘global’ dynamics of an IgG1 

monoclonal antibody (mAb-A) and compares these characteristic with another antibody (mAb-

B) of the same heavy-chain subtype. A variety of biophysical, hydrodynamic and 

thermodynamic techniques such as fluorescence spectroscopy, circular dichroism, static light 

scattering, ultraviolet absorption spectroscopy, high resolution ultrasonic spectroscopy, red-edge 

excitation shift spectroscopy and differential scanning calorimetry were employed to characterize 

these two antibodies. The effects of sucrose (a stabilizer) and arginine (a destabilizer) on the 

conformational stability and global dynamics of mAb-A and mAb-B were evaluated using a 

combination of ultrasonic spectroscopy, red-edge excitation shift spectroscopy and differential 

scanning calorimetry
86

.  

 The two IgG1 mAbs used in this study exhibited notable differences in their 

conformational stability and dynamic properties as a function of pH, temperature and presence of 

solutes. Using the experimental techniques mentioned above, differences in the conformational 

properties, global dynamics and aggregation were summarized using an empirical phase diagram 

(EPD) approach. The EPD generated using techniques sensitive to global dynamic properties of 

mAb-A was able to detect additional structural alterations when compared to the static (time-

averaged) EPD. These differences were detectable at lower temperatures and at pH values 

commonly used to formulate proteins. A similar observation was published earlier using mAb-

B
120

. In addition, a pH dependent inverse correlation of the TM of unfolding and TM of 

aggregation was observed for mAb-A. Circular dichroism studies suggested formation of 

intermolecular β-sheet rich species. Formation of such species was postulated to be a potential 

mechanism explaining an inverse correlation between the unfolding and aggregation observed in 

mAb-A. No such correlation between unfolding and aggregation was seen for mAb-B. 
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Furthermore, structural transitions apparent in differential scanning calorimetric data showed 

differences between mAb-A and mAb-B at pH 3 – 8 (unit intervals). Three transitions were 

observed for mAb-A while only two apparent transitions were determined for mAb-B. Finally, 

apparent adiabatic compressibility measurements suggest that mAb-A and mAb-B may differ in 

their hydration characteristics, wherein mAb-B was either more hydrated and/or more rigid 

compared to mAb-A, especially in the pre-unfolding transition region.  

 Sucrose and arginine were identified as candidate stabilizer and a destabilizer, 

respectively, based on a screening of a GRAS library of excipients. These excipients influenced 

the conformational stability of mAb-A and mAb-B to varying extents and at different effective 

concentrations. Both sucrose and arginine, however, did not significantly influence the pre-

transition dynamics of mAb-A as determined by both HR-US and REES studies. In contrast, in 

the case of mAb-B, the effects of stabilizing concentrations of sucrose on the compressibility and 

the magnitude of red-edge effects suggest that both the internal dynamics and the surrounding 

solvent dynamics of mAb-B are influenced by sucrose. The conformational stability and global 

dynamics results reported in this work highlight some of the key differences in physical behavior 

between two generally similar IgG mAbs. The molecular origin of these effects for mAb-B is 

discussed in Chapter 3, while the studies using mAb-A are ongoing (work in progress). 

 These results show that formulation components can have unique effects on the dynamics 

of individual proteins within a single IgG1 subclass, especially in the pre-transition region. Such 

distinct effects of excipients on dynamics of therapeutic proteins may thus profoundly influence 

the long-term storage stability and efficacy of biopharmaceutical products and thus require 

evaluation during preformulation and formulation activities. 
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 Chapter 3 is focused on a molecular understanding of excipient effects on the inter-

relationship(s) between ‘local’ dynamics and the conformational stability of mAb-B. Such an 

understanding may potentially provide insights into the development of better 

biopharmaceuticals, such as monoclonal antibodies. In these studies, stabilizing and destabilizing 

effects of excipients were examined on the conformational stability and local dynamics of 

distinct solvent-exposed regions within mAb-B. The conformational stability of different regions 

was evaluated by selectively sampling distinct Trp-containing environments upon red-edge 

excitation and subsequently monitoring their thermal unfolding. Furthermore, the local dynamic 

behavior of these environments was studied by acrylamide quenching of Trp-fluorescence as a 

function of increasing excitation wavelengths.   

 It was determined that mAb-B thermal unfolding was a step-wise cascade of events that 

is initiated by transitions in the solvent-exposed regions of the protein.  Arginine and sucrose 

influenced the conformational stability by decreasing and increasing the TM, respectively, for 

both solvent-exposed and solvent-shielded regions.  The magnitude of stabilization or 

destabilization of these excipients, however, was higher for solvent-exposed and lower for more 

solvent-shielded regions of mAb-B.  In addition, an increase in internal dynamics (in the more 

solvent-shielded regions) of mAb-B was found to predispose the protein to unfolding structural 

transitions at the Tonset.  Such an effect may increase the propensity of arginine to form cation-π 

or other interactions with solvent-shielded aromatic residues, subsequently leading to the 

protein’s destabilization.  In the pre-transition temperature range, however, arginine was found to 

increase the extent of apolar interactions within the solvent-shielded regions of mAb-B. Such an 

increase may explain the reduction in pre-transition dynamics of solvent-shielded regions in the 

presence of arginine. Furthermore, a reduction of mAb-B dynamics by sucrose at all 
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temperatures, predominantly in the proteins’ solvent-exposed regions, may better explain the 

greater magnitude of surface stabilization in the presence of sucrose.  Such an effect of sucrose 

on the more solvent-exposed regions of mAb-B may thus help prevent the step-wise, subsequent 

cascade of unfolding events that initiates upon surface destabilization.  Finally, surface dynamics 

(i.e., in the more solvent-exposed regions) was found to be dampened at the thermal melting 

temperature, and this may provide preliminary evidence that apolar amino acids in solvent-

exposed regions of mAb-B could potentially initiate the formation of larger irreversible 

aggregates, as reported earlier
120

, during its thermal unfolding.  

 These results suggest that local dynamics in mAb-B are intimately correlated to its 

conformational stability in the pre-transition region, as well as at the onset and melting 

temperature. Furthermore, alterations in these dynamic properties by excipients at various 

temperatures were found to modulate the global conformational stability of mAb-B. These 

results indicate that the mechanisms by which excipients exert their stabilizing and/or 

destabilizing effects on proteins profoundly influences their global and/or local dynamic 

properties at a molecular level. It is therefore proposed that the dynamic properties of proteins 

such as immunoglobulins may strongly influence their stability and thermal unfolding properties. 

 Since aqueous proteins can exist in dilute and concentrated forms, Chapter 4 presents a 

new ultraviolet absorption spectroscopy based approach to study interactions in both dilute and 

concentrated solutions of bovine serum albumin (BSA), lysozyme and a monoclonal antibody 

(IgG2). A variable pathlength UV-Visible spectrophotometer was employed for these studies. 

Delta absorbance (∆Abs), which is a difference between the measured absorbance of proteins in 

solution and their corresponding theoretical/calculated absorbance, was determined for the three 

model proteins as a function of protein concentration. It was found that ∆Abs, which potentially 
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represent changes in molar extinction coefficient, increased with increases in protein 

concentration. The magnitude of change in ∆Abs was different for all the three model proteins 

examined in these studied. It was hypothesized that interacting protein molecules in solution 

and/or rearrangement of water molecules around chromophores due to protein-protein 

interactions may be responsible for the magnitude of ∆Abs observed for these different protein 

systems. Since intermolecular interactions are known to modulate solution 

viscosity
126,213,270,276,300,301

, the magnitude of ∆Abs was compared with changes in apparent 

viscosity as a function of protein concentration. The changes in ∆Abs were highly correlated 

with changes in viscosity for BSA, lysozyme and the monoclonal antibody as the protein 

concentration in solution was raised. Such a correlation may suggest that ∆Abs measurements 

can be used as a complementary analytical approach to evaluate factors, such as excipients or 

salts, which can potentially modulate interactions and viscosity in high concentration protein 

solutions.  

5.2 Ongoing studies and future work 

 The outcome of the research presented in Chapters 2 – 4 of this dissertation highlights a 

few major findings; (1) Antibody molecules belonging to the same IgG subclass can have 

inherent differences in their conformational properties, protein dynamics and aggregation 

behavior, (2) external perturbations such as changes in solution pH, temperature and the presence 

of stabilizing or destabilizing solutes can uniquely influence the conformational stability and 

protein dynamics of closely related proteins, (3) global and/or local protein dynamics and their 

alterations by excipients can have a profound influence on the conformational stability and 

aggregation properties of monoclonal antibodies and, (4) interactions and factors modulating 
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solution viscosity in high concentration protein solutions may result in changes in extinction 

coefficients of proteins, which can be monitored by determining ∆Abs in such solutions.  

 The effect of local dynamics and their alterations by excipients has been evaluated on the 

conformational stability of mAb-B (Chapter 3). Excipients (sucrose or arginine), however, did 

not have a major influence on the global dynamics of mAb-A (Chapter 2) as monitored by 

ultrasonic spectroscopy and red-edge excitation shift spectroscopy. In addition, mAb-A showed a 

unique pH-dependent inverse correlation between its unfolding and aggregation. Furthermore, 

preliminary evidence for the presence of intermolecular interactions was observed with mAb-A. 

Finally, excipients differentially influenced the conformational stability of mAb-A in comparison 

to mAb-B. A molecular understanding of these inherent differences in the conformational 

stability and protein dynamics between mAb-A and mAb-B should provide valuable insights into 

interactions (intra- and inter-) governing the folding, stability and dynamics of these proteins. 

Furthermore, evaluating excipient effect on the conformational stability and local protein 

dynamics of mAb-A should help better understand modulation of the protein characteristics due 

to alterations in solution properties at a molecular level.  

 These studies are currently ongoing and will be continued as a part of future research. 

The site-selective fluorescence approach accompanied by acrylamide quenching, infrared 

spectroscopy and differential scanning calorimetry is being employed for mAb-A at different pH 

values and temperatures comprising the pre-transition range, onset temperature and at the 

midpoints of thermal unfolding and aggregation. Since sucrose and arginine have distinct 

effective concentrations for mAb-A compared to mAb-B, the excipient effects are being 

evaluated on the intermolecular interactions and local protein dynamics to help unravel the 

complex pH dependent relationship between conformational stability and aggregation. 
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Furthermore, a combination of analytical approaches, including but not limited to fluorescence 

spectroscopy and calorimetry, are being developed to better understand these excipient effects on 

distinct domains in immunoglobulins. In addition, amide hydrogen/deuterium exchange coupled 

with mass spectrometry is being currently employed in the laboratory to further investigate the 

effect of excipients on local flexibility of mAb-B and correlate the effects on the protein’s 

overall conformational and accelerated storage stability.  Finally, the application of ∆Abs as an 

analytical probe is being further evaluated using two (IgG1 and IgG2) antibody candidates with 

known differences in their viscosity behavior at high concentrations. The effect of viscosity 

modulating excipients will be tested to gain an insight into intermolecular interactions governing 

the characteristics of these proteins at high concentrations. These studies should validate the 

newly developed method of determining potential changes in extinction coefficient of high 

concentration proteins using a variable-pathlength ultraviolet spectrophotometer.  

 All of these ongoing and future studies taken together should eventually help define any 

molecular connection between protein dynamics, conformational stability and intra- and 

intermolecular interactions governing proteins in solution, both at low and high concentrations. 
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