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Abstract

In spite of being few in number, off-road vehicles have a significant contribution
to air pollutants such as NOy and CO,. Engine dynamometer test cycles have been
developed in an effort to better characterize the emissions from off-road vehicles.
However, these test cycles may not accurately represent the emission profiles under
normal operating conditions. The current study seeks to: (1) collect real-world NOx and
COz emission profiles from an off-road diesel vehicle; (2) analyze NOy and CO, emission
profiles for a diesel off-road vehicle running on no. 2 diesel, 20% biodiesel mix (B20)
and ultra-low sulfur diesel (ULSD) fuels to determine potential emission reductions; (3)
test the effect that temporal factors exert on NOy and CO, emission profiles; (4) evaluate
the emission variability between two pieces of equipment of the same model; and (5)
develop a standard, systematic analysis for handling large emission data sets.

The study is based on the tailpipe emission sampling of a diesel fueled 525-
horsepower Trashmaster 3-90E trash compactor operated at the N.R. Hamm Landfill
facility located near the city of Perry in Jefferson County, Kansas. The sampling
instrument used for the study is the Simple, Portable, On-vehicle Testing (SPOT) system
manufactured by Analytical Engineering Inc. The SPOT is able to collect second-by-
second data for total exhaust mass flow, relative humidity, engine speed, and NOx and
CO; emissions among other parameters. The fuel types used include regular no. 2 diesel,
B20 and ULSD. The sampling campaign took place in two stages: (1) running the
compactor with regular no. 2 diesel from August 28 to September 1 and with B20 and
ULSD fuels from September 12 to September 15, 2005, and (2) running a second
compactor of the same model with no. 2 diesel. The purpose of the first stage of the
project was to determine the possible emission reductions from the use of B20 and
ULSD. The purpose of the second stage was to test the emission variability between two
compactors of the same model. This is relevant since it is commonly assumed that the
emission profile from one engine is representative for all engines of the same type and
family.

Initial data analysis showed a significant autocorrelation in the NOx and CO, data
observations. Autocorrelation is inherent in continuous data sets where sequential
observations are too close together to be independent from each other and must be
resolved so that a robust statistical analysis may ensue. By using a time interval data
reduction technique a set of quasi-independent observations was produced. This
technique allowed for a valid use of the general linear model (GLM) with engine speed as
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the covariate factor to test day, fuel type and compactor factors. For the first stage of the
project the results from the GLM showed that neither day nor fuel type factors were
statistically significant on NOy and CO; emissions. These results suggest that NOy and
CO; emissions are not dependent on the day in which they were collected or on the fuel
type used. The second stage of the project involved the comparison of NOy and CO,
emissions from two compactors of the same model while running on no. 2 diesel fuel.
The results from the temporal analysis indicated that the day factor was not statistically
significant for either of the two pollutants. Results from the compactor analysis showed
that compactor was not a statistically significant factor on NOy emissions. However, the
interaction of compactor and engine speed factors was found to be statistically significant
on NOy emissions. For CO, emissions the results indicated that compactor was a
statistically significant factor. These results suggest that the there is a statistically
significant difference between the NO and CO; emissions obtained from each of the two
compactors. However, this difference is expressed differently in each of the two data
sets.

In addition to the GLM analyses, a data fitting model analysis was also completed
for NOy and COa,. The results showed that the linear and the cubic models do a good job
of fitting the NO, and CO, data and they both have high R* values. These data fitting
technique may be used to estimate NOy and CO; emissions based solely on engine speed
after an emission profile has been collected. This information can be of great import to
obtain more accurate emission estimates from off-road diesel vehicles.

This study makes three main contributions including the development of a data
handling technique to deal with autocorrelation in continuous data. This study also
showed that the three fuel types evaluated had no significant effect on NOy and CO,
emissions. Finally, the evaluation of two Trashmaster 3-90E compactors showed that
NOy and CO; emissions are significantly different between the compactors.
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I. INTRODUCTION

ILA. Statement of problem
The diesel engine plays a vital role in transportation, power generation, farming,

construction and industrial activities. The primary advantages of this type of engine
include its durability and its lower fuel consumption when compared to the gasoline
spark ignition engine. The diesel engine also provides more energy per unit of fuel than a
gasoline engine. At full load, a diesel engine uses approximately 70% of the fuel a
comparable gasoline engine consumes for the same output (Lloyd et al., 2001).

However, exhaust emissions from diesel engines are also an important source of air
pollutants.

Diesel particulate matter is considered a hazardous pollutant with known health
risks (U.S. EPA 2000C; CARB, 1999). Particulate matter (PM) and nitrogen oxides
(NOx) are two of the main criteria pollutants posing an important risk to public health.
NOx formation is related directly to the high temperature of the engine combustion
chamber. These compounds are also an important contributor to ozone formation and
irritation of the eyes, nose, throat and lungs. Particulate matter (PM) emissions result
from incomplete combustion in the engine chamber. Studies have linked PM emissions
with respiratory and cardiovascular conditions (U.S. EPA, 2004C). Also, growing
concerns about global warming highlight the importance of CO, emissions from diesel
engines and other combustion sources.

Research into engine emissions has historically focused on on-road vehicles. As a
result, since 1985 emission standards have become more stringent for diesel on-road
vehicles, whereas off-road vehicles and equipment have been subject to less stringent
regulations. This situation changed in 1994, when the United States Environmental
Protection Agency (EPA) adopted the first set of emission standards (Tier 1) for all new
off-road diesel engines greater than 37 kilowatts (50 horsepower), except those used in
locomotives and marine vessels (40 CFR 89). Further Tier 1 standards were introduced
for engine sizes between 1996 and 2000 to reduce NOy emissions by 30 percent (U.S.
EPA, 2003C). Since then, the gap in emissions limits between on-road and off-road has

closed rapidly. However, as of 2003, land-based off-road diesels accounted for 44 and 12



percent of the mobile source emissions of PM and NOx, respectively (U.S. EPA, 2003A).
A recently promulgated emission standard relevant to off-road vehicles calls for a
reduction of sulfur in diesel fuel to 15 ppm by 2010. This reduction in sulfur is aimed at
reducing PM emissions and enabling the use of advanced aftertreatment technologies
such as catalytic particulate filters and NOy adsorbers. Along with the reduction of sulfur,
alternative fuels such as biodiesel may help in minimizing the harmful emissions from
diesel fuel.

The emissions characterization for off-road diesel vehicles is not nearly as
comprehensive as it is for on-road vehicles. This is true because of the wide variety of
off-road diesel vehicles and equipment and the high cost of engine and chassis
dynamometer testing. Recent research has exposed the limitations of laboratory testing
in accurately characterizing emission profiles of on-road and off-road vehicles. Results
from continuous sampling systems have shown that the existing test cycles for chassis
and engine dynamometer cycles do not accurately characterize the actual (real-world)
duty cycles of on-road and off-road vehicles. For example, Shah, et al. (2004) found that
diesel emissions of elemental carbon, organic carbon and particulate matter depend
strongly on the mode of operation. Yanowitz et al. (2000) also found that NOx emissions
are proportional to work done by the engine. These results emphasize the need for real-
world data that characterize the relationship between duty cycles and emission profiles
for diesel equipment. For this and other reasons, research has shifted towards on-board
systems that are capable of collecting duty-cycle data and yield a more accurate emission
profile.

Historically the air emission contributions from off-road vehicles have been
overlooked since this equipment tends to be small in number and their use is generally
transient and localized to a certain work site or location. In spite of being few in number,
off-road vehicles make a significant contribution to air pollutants such as NOy, PM and
CO,. Itis estimated that in the US 20 million diesel engines are in operation: 13 million
are on-road and 7 million are off-road vehicles (U.S. EPA, 2009A). In comparison it is
estimated that 210 million cars and light duty trucks in the US (U.S. EPA, 2012A) are in
operation. Furthermore, the turnover of diesel engines is slower since these engines can

last between 20 and 30 years. The EPA estimated that 11 million diesel vehicles do not



meet the 2005 emission standards (U.S. EPA, 2006). Thus, it is important to characterize
the emissions contributions from off-road diesel equipment more accurately. The current
study seeks to help in this effort by using an on-board system to collect and analyze

tailpipe emissions from an off-road vehicle operating under normal conditions.

I.B.  Objectives and Significance
The current study seeks to analyze NOx and CO2 emissions from an off-road

diesel vehicle collected with a continuous emissions sampler. The first stage of the
sampling involved the collection of emissions data from an off-road diesel vehicle run
with three fuel types: no. 2 diesel, ultra-low sulfur diesel (ULSD, average sulfur content
of 15 ppm) and 20% biodiesel mix (B20). The second stage involved the emission
testing of a second off-road diesel vehicle of the same model for comparison with the one
used in the first stage of the emission testing. The emissions from this compactor were
sampled while it ran on no. 2 diesel fuel only. These data were then compared and

analyzed with the data from the diesel portion collected from the first compactor.

The objectives of this project include

I. Collecting NOy and CO, emission profiles from an off-road diesel vehicle on a
second-by-second basis while under normal operation;

2. Analyzing NOy and CO, emission profiles for a diesel off-road vehicle running on
no. 2 diesel, 20% biodiesel mix (B20) and ultra-low sulfur diesel (ULSD) fuels to
determine potential emission reductions;

3. Testing the NOy and CO; emission variability between two pieces of equipment
of the same model run with no. 2 diesel fuel;

4. Testing the effect that temporal factors exert on NOy and CO, emission profiles;

5. Developing models to predict NOy and CO, emissions from engine speed data.

The approach involves the gathering of continuous field data from an off-road
diesel compactor. These type of data are valuable in investigating the relationship
between diesel emissions and engine parameters. The sampling system for this study

collects continuous NOx and COz2 exhaust emissions. By analyzing these data, we seek to



assess whether the use of B20 and ULSD fuel can reduce NOx and CO2 emission by
comparing them to baseline emissions from diesel fuel. The purpose is to find out if
either of these two fuels is able to provide significant reductions in NOy and CO,
emissions. Additionally, by comparing the emissions profiles of two comparable
compactors running on diesel fuel we can identify any differences and similarities related
to testing separate equipment. This compactor analysis indicated whether the emission
profiles from two compactors of the same type are similar to each other or not. This is
relevant because currently it is assumed that emissions from an engine test are
representative for all engines of the same type or family. This comparison is also useful
in assessing the repeatability of emission profiles from two compactors and gives insight

into the variability that may exist between equipment of the same type.



Il. LITERATURE REVIEW

I1.LA. Diesel Engine
The diesel compression engine was invented by Rudolf Diesel in 1892. This type

of engine produced a significant amount of power while being fuel efficient and durable.
During the early 1900’s diesel engines spread throughout the United States and Europe
and ultimately replaced the steam-powered engines for heavy-duty applications in marine
transportation and some industrial applications. Diesel engines could withstand heavy
loads at relatively low speeds. Technological advances in the 1930’s raised the operating
speeds and decreased engine weight, allowing the use of diesel engines for on-road
applications. A two-cycle diesel engine developed by General Motors was also
introduced for use in railroads and was later adapted for trucks and buses (Williamson et
al., 1963). From this point on, the movement of freight and passengers has depended
heavily on the diesel engine.

Currently, the diesel engine is the prime mover in our society due to its power,
fuel efficiency and long life span. The diesel engine is designed to reach higher peak
pressures and temperatures than the spark ignited gasoline engine. This makes diesel
engines heavier and more costly but also more durable and fuel efficient. At full load, the
diesel engine uses only 70% of the fuel that a comparable gasoline engine consumes for
the same power output (Lloyd and Cackette, 2001).

PM and NOxy are the main emissions produced from diesel fuel combustion. The
process of combustion in a diesel engine occurs when the fuel blend is injected at high
velocity into the cylinder where air has been compressed at a high temperature and
pressure. The injected fuel does not ignite immediately but undergoes a period of
ignition delay. During this ignition delay, the fuel heats up, vaporizes, mixes with the air
and undergoes chemical pre-combustion reactions that produce the radicals necessary for
spontaneous ignition. Ignition then occurs spontaneously at multiple nuclei in regions of
stoichiometric (theoretical minimum for complete combustion) balance between fuel and
air reactants. Thus, PM is formed in the areas of incomplete combustion where the air-
to-fuel ratio is low. These reactions are controlled by the rate at which air is entrained
and a combustible mixture is formed. Combustion in diesel engines occurs under lean-

burning conditions; the excess air in the reaction results in a large amount of water vapor
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and oxygen in the exhaust. The nitrogen and oxygen in the excess air, along with the high
temperature of the combustion chamber, create an ideal environment for NOy production
to ensue.

Diesel engines power more than 3 million highway trucks and buses and at least 6
million pieces of off-road heavy equipment (Moran, 2003). However, these diesel
powered vehicles were left virtually unregulated until 1996. In 1996, the emissions from
land-based non-road diesel engines, locomotive engines and marine diesel engines were
estimated to be about 40 percent of the total mobile-source inventory of PM; s and 25
percent of the NOy inventory (U.S. EPA, 2004D). Also in 1996, land-based non-road
diesel engines accounted for about 47 percent of the PM; 5 emitted from all diesel

engines.

I1.B. Diesel Emissions
The emissions from diesel engines include a mixture of compounds in the vapor

phase and very fine particles with a carbon core coated by condensed organic
compounds. The gaseous constituents include carbon dioxide, carbon monoxide, nitric
oxide, nitrogen dioxide, oxides of sulfur, and hydrocarbons (Dawson, et. al., 1998). The
combustion process forms solid carbon cores that interact with each other and form
chains and cluster aggregates. It is estimated that more than 98% of these particles are
less than 1 micrometer in size (Bagley, 1996). Two of the most important emissions that
are associated with diesel engines are PM and NOy. Additionally, a growing interest in
global warming highlights the attention placed on CO, emissions from combustion

sources including diesel engines.

II.B.1 Health Effects of Diesel Exhaust. Adverse human health effects are known to be
caused by exposure to diesel emissions (U.S. EPA, 2002B). The health risks identified

are derived from extensive studies of human workers as well as some studies in animals,
and observations of mutagenic activity in culture systems. Some of these health effects
include aggravation of bronchitis and asthma, decreased lung function, decreased

respiratory defense mechanisms, acute respiratory illness and increased risk for lung



cancer. These effects can range from acute to chronic and in some cases they can lead to
decreased life span.

Critical reviews from scientific journals (Lloyd and Cackette, 2001; Pope and
Dockery, 2006) and government agencies (U.S. EPA, 2004C; CARB, 2000) have
analyzed the numerous animal and human studies that relate adverse human health effects
to diesel exhaust exposure. The research data obtained from these studies is extensive
and confirms the chronic and acute health effects from diesel exhaust exposure.
Although, some gaps still exist in the understanding of biological mechanisms that link
adverse health conditions to diesel exhaust exposure, it is reasonable to conclude that
exposure to diesel exhaust significantly increases human health risks.

The health effects from diesel exhaust exposure are commonly divided into two
groups: 1) acute and chronic noncancer adverse respiratory health effects and 2)
carcinogenic health effects. The first category is caused by fine and ultrafine particles
(smaller than 0.1 micrometers) that are highly respirable and penetrate deep inside the
lungs. Ultrafine particles also have a large surface area, which makes them an excellent
carrier for adsorbed inorganic and organic compounds. Some of the most toxic organic
compounds adsorbed onto the particles include polycyclic aromatic hydrocarbons
(PAHSs), nitro-PAHs, and oxidized PAH derivatives (U.S. EPA, 2000C). Diesel exhaust
is also composed of hazardous particles and vapors, some of which are known or
probable carcinogens.

According to the California Environmental Protection Agency (Cal/EPA, 1998),
diesel exhaust can cause noncancer health effects including acute irritation (e.g. eyes,
throat, and bronchial irritation), neurophysiological symptoms (e.g. lightheadedness and
nausea), and respiratory symptoms (cough and phlegm). Evidence also suggests possible
immunological effects and/or exacerbation of allergenic responses to known allergens.
These effects aggravate respiratory illnesses such as bronchitis, emphysema and asthma.
These symptoms are associated with premature deaths from cardio-pulmonary disorders.
Exposure to fine particles causes changes in the lung function and inflammation of the
small airways. Also PM exposure may increase susceptibility to bacterial or viral
respiratory infections, and may increase the incidence of respiratory disease in vulnerable

groups such as the elderly, people with chronic pulmonary diseases, and people with



immune system dysfunction. In the presence of pre-existing heart or lung disease,
respiratory exacerbations induced by air pollutants may lead to death.

Cancer health effects have been documented in numerous animal and human
studies. In 1988 the National Institute for Occupational Safety and Health (NIOSH)
recommended that diesel exhaust be regarded as a potential carcinogen. According to
more than 30 epidemiological studies, people who are routinely exposed to diesel exhaust
through their work on railroads, docks, trucks, or buses have a greater risk of lung cancer
(CARB, 1998). On average, long-term occupational exposure to diesel exhaust is
associated with an increase of about 40% in the relative risk of lung cancer (Lipsett et al.,
1999; Cal. EPA, 1998). CARB (2000) estimates that diesel exhaust is responsible for 70
percent of California’s cancer risk from airborne toxic pollution. This translates to 540
additional cancers per million people exposed to current outdoor levels of diesel pollution
over a 70-year lifetime.

In 1989, the International Agency for Research on Cancer (IARC) concluded that
diesel exhaust was a probable carcinogen to humans (WHO, 1989). In 1990, based on
the IARC findings, the State of California identified diesel exhaust as a chemical known
to cause cancer (Cal. EPA, 2012). Subsequently, the Health Effects Institute (1995), the
World health Organization (1996), the U.S. Department of Health and Human Services
(2001), the American Council of Government Industrial Hygienists (2001), and the EPA

(2002) declared diesel exhaust as a likely human carcinogen.

I1.C. Particulate Matter
Formation of particulate matter (PM) occurs in the center of the fuel spray where

the air-to-fuel ratio is low. As the soot cools, organic compounds derived from the fuel
and the lubricating oil adsorb onto the particle surface or may form organic aerosol by

homogenous nucleation. Figure 1 below shows a conceptual model of such process.
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Figure 1. Conceptual model showing the main features of a reacting diesel fuel jet during quasi-
steady portion of combustion (Dec, 1997).

Diesel aerosol consists of highly agglomerated solid carbonaceous material and
ash, volatile organic and sulfur compounds. A schematic of this structure is shown in
Figure 2 below. PM can be released directly from the exhaust stream or it may form as a
secondary particle once nitrogen oxides, hydrocarbons and sulfur oxides released from

the tail pipe react in the atmosphere. The diesel particles released directly from the
tailpipe are composed of a carbon core with an array of toxic compounds including

metals, polycyclic aromatic compounds (PAHs) and dioxins adsorbed to the particle’s
surface.
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Figure 2. Typical structure of engine exhaust particles (Kittleson, 1998)




Solid carbon is formed in the combustion chamber in fuel rich regions. Much of
this carbon is then oxidized as solid agglomerates. A small fraction of the fuel and
atomized and evaporated lube oil escape oxidation and appear as volatile or soluble
organic compounds called soluble organic fraction (SOF). The SOF contains polycyclic
aromatic compounds containing oxygen, nitrogen and sulfur. Most of the sulfur in the
fuel is oxidized to SO, and a small fraction is oxidized to SO;, leading to sulfuric acid
and sulfate aerosol. The metal compounds in the fuel and lube oil lead to a small amount
of inorganic ash.

A heavy-duty diesel engine tested under the U.S. Heavy Duty Transient Test
(CFR Title 40, Part 86.1333) reveals the composition of particulate matter from diesel
exhaust as depicted in Figure 3. The fraction associated with unburned fuel and lube oil
(SOF) varies with engine design and operating condition. It can range from 10% to 90%
by mass. SOF values are highest at light engine loads when exhaust temperatures are low

(Kittelson, 1999).

Particle Composition For A
Heavy-Duty Diesel Engine
Tested in Heavy-Duty Transient Cycle

Unbumt Fuel
7%

Carbon
41%

T
Unburnt Oil
25%

Sulfate and Water
14% Ash and Other
13%

Figure 3. Particle composition for a heavy-duty diesel engine tested in a heavy-duty transient cycle
(Kittelson, 1998).

C.1. Aerosol Size Distribution. The distribution of diesel aerosols is trimodal and

lognormal in form (Kittleson, 1998). Figure 4 below shows the idealized diesel aerosol
number and mass weighted size distributions. Most of the particle mass exists in the
accumulation mode in the 0.05 to 1.0 micrometer diameter range. This is where the
carbonaceous agglomerates and associated adsorbed material reside. The nuclei mode

typically consists of particles in the 0.005 to 0.05 micrometer diameter range. This mode
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usually is composed of volatile organic and sulfur compounds formed during exhaust
dilution and cooling. The nuclei mode usually contains between 1-20% of the particle
mass and more than 90% of the particle number. The coarse mode contains between 5-
20% of the particle mass. It consists of accumulation mode particles that have been
deposited on cylinder and exhaust system surfaces and later reentrained. By number,
nearly all particles emitted by a diesel engine are nanoparticles that have a diameter of
less than .05 micrometers. The same pattern is true for gasoline engine emissions.

Motor vehicles are a major source of nanoparticles in urban areas. Recent studies
conducted in Southern California have shown high counts of these particles near
freeways. Substantially higher numbers of particles are found near the roadway, while a
sharp reduction in particle count has been shown to occur within 100- 300 meters
downwind of the roadway (Zhu, 2002). These particle sizes are important because for a
given mass concentration, nanoparticles have much higher numbers and surface areas
compared to larger particles. These particles can act as carriers for other compounds,
such as trace metals and organic compounds that can adsorb on the particles’ surfaces.
Thus, due to nanoparticles’ larger surface area, more toxic compounds may be
transported into the lungs than with larger particles. Furthermore, these particles can also
be inhaled and deposited deeper into the lungs than larger particles. As much as 50% of
the particles with 0.02 um or smaller are estimated to be deposited in the alveolar region

of the lung (SCAQMD, 2007).
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Figure 4. Typical engine exhaust size distribution. Mass and number weights are shown (Kittelson,

1998).

C.2.

Health Effects. Diesel engines emit elemental carbon, adsorbed organic

compounds, and small amount of sulfate, nitrate, metals, and other trace element

particles. These diesel particulates are emitted in distinct sizes. The larger particles settle

rapidly to the ground and finer particles remain suspended in the air for a longer time and

may be able to travel in winds for hundreds of miles. Large particles that are inhaled get

trapped by fine hairs and mucus in the nose, throat and large airways and thus pose a

lower health risk than smaller size particles. Particles less than about 10 microns in

diameter (PM,) are more likely to make their way into the deeper portion of the lungs

(U.S. EPA, 2000C). Scientific research has also found that PM; 5 (diameter smaller than

2.5 micrometers) and ultrafine (diameter less than 0.1 micrometers) particles can travel

deep into the lungs and lodge in the alveoli. There particles need to be cleared by cells of

the immune system over a period of months or years. However, some of these particles
are never cleared from the body and they accumulate in the lungs and the lymph nodes
(Chung and Brauer, 1997). Autopsy studies of people living in urban areas have found
significant blackening of the lungs due to the accumulation of fine particles (Pratt and
Kilburn, 1971). Additionally, the fine particles emitted from diesel engines are coated

with a mixture of PAHSs, nitroaromatics, benzenem dioxins and other toxic substances
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that irritate the respiratory system and can cause and exacerbate respiratory conditions
and can lead to premature death. Sensitive populations include children, elderly,

asthmatics, and individuals with preexisting respiratory or cardiovascular diseases.

C.3.  Issues in Particulate Matter Sampling. The EPA has been regulating particulate

matter smaller than 10 microns in size (PM,() since 1987. However, it is estimated that
98 percent of the PM from diesel exhaust are smaller than one micron in diameter and
can lodge and linger in the deepest air sacs of the lung (Bagley, 1996). PM,, regulations
are mass-based, emphasizing the reduction of larger, heavier particles such as those
occurring from earth-moving in construction and agriculture. Based on the significant
risks associated with fine particles, the EPA adopted new National Ambient Air Quality
Standards for particles smaller than 2.5 micrometers in size (PM,s) on September 16,
1997 (U.S. EPA, 1997).

Evidence suggests that fine particles may contain more reactive substances linked
to health impacts than coarse particles (SCAQMD, 2007). It is estimated that between 80
and 90 percent of diesel particles fall in the ultrafine size range of 0.05 to 1.0 micron
(U.S. EPA, 2000C). However, current regulations do not address growing concerns
about health effects of ultrafine and nanoparticles which are difficult to measure with
today’s technology. These smaller particles penetrate deeper into the respiratory tract
and their large surface to volume ratio could allow for more biological interaction.
However, a reliable testing instrument to ensure an accurate and consistent measurement
of these particles is not currently available.

Measurement of diesel aerosol is affected by three primary parameters: the
environmental conditions experienced by the emissions, the sampling/measurement
system used to characterize the emissions, and the chemical and physical composition of
the engine emissions. An understanding of how exhaust conditions interact with exhaust
constituents is critical to determine size distribution and composition. Some issues
related to sampling of nanoparticles include the correct simulation of atmospheric
dilution. The gas to particle conversion may happen in three ways: nucleation,
condensation/adsorption, and adsorption (Kittelson, 2003). Nucleation causes a

homogeneous formation of new particles. In condensation/adsorption gas molecules
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transfer into liquid droplets. And in adsorption, a layer of molecules is formed on solid
particles. Coagulation is the other homogenous process based on particle to particle
collision. Heterogeneous processes include the loss of particles (or particle precursors) to
walls of sampling and dilution system and storage and release of particle precursors on
walls of sampling and dilution system. It is estimated that more than 90% of the particle
number may form through homogeneous nucleation of nanoparticles. From 5% to more
than 50% of the particle mass may form through adsorption and nucleation (Kittelson et
al., 2002). These processes are extremely sensitive to sampling and dilution conditions.

Few commercial portable emission measurement sampling instruments accurately
measure particulate matter. Apparently, only three companies have such sampling
devices available on the market. The SEMTECH-QCM (Quartz Crystal Microbalance)
manufactured by Sensors Inc. uses electrostatic precipitation to collect aerosol particles
from a known volume of air and deposit the particles on an oscillating piezoelectric
crystal (Buchholz, 2004). The PM1065 PM Sampling System by Analytic Engineering
Inc. (AEI) measures particulate mass, and the company claims that it exceeds the 40CFR
part 1065 requirements in its testing. This system uses partial dilution and is
recommended for steady and transient state applications (AEI, 2006). The Montana
system by Clean Air Technologies Inc. (CATI) also measures particulate matter based on
light scattering. However, the three systems were designed to measure PM mass, and
they are not able to speciate by particle size.

These systems collect PM measurements from diesel exhaust. Only the Montana
system by CATI is able to measure PM emissions from an off-road vehicle outside of a
lab environment. However, this system uses qualitative light scattering techniques to
obtain analogous PM measurements. Thus, at this point in time there is no system that is
able to quantify PM emissions from off-road vehicles during real world conditions.
Therefore, the current study does not address PM diesel emissions but focuses on NOy

and CO, emissions instead.

11.D. Nitrogen Oxides
IL.D.1. Nitrogen Oxides Formation. Nitric oxide (NO) and nitrogen dioxide (NO) are

the primary nitrogen oxides (NOy) produced by diesel engines. NOy is formed by four
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routes: the thermal route, the prompt route, the NO; route and the fuel-bound nitrogen
route (Bowman, 1992). Out of these four routes, the fuel-bound nitrogen route is
important only for coal combustion, and the NO, route is not a significant source of NO
(Warnatz, 1999). Prompt NO results from a reaction between CH and N, and caused by
the low activation energies of the reactions involved, is favored at lower temperatures
(about 1000° K). However, thermal NO is favored at higher temperatures and is
therefore the most significant source of NOy for diesel engines.

Thermal NO is formed by the elementary reactions depicted in Figure 5. The first
reaction is the rate-limiting reaction since it requires a very high activation energy due to
a strong triple bond in the N, molecule. However, the combustion reaction inside the
diesel engine is able to provide the necessary energy that makes this a viable and fast

reaction.

O+N, —X5NO+N k;=1.8%*10" exp(-318 kJ mol-1/ (RT)) cm*/(mol s)
N+0, —25NO+0 k;=9.0*10° exp(-27 kJmol-1/(RT)) cm*/(mol s)
N+OH —5>NO+H k;=2.8*10" cm’/(mol s)

Figure 5. Elementary reactions for thermal NO, formation.

In the diesel combustion chamber, NOy is created where the air to fuel ratio is
near stoichiometric and high temperatures are generated. Retardation of injection timing,
relative to optimum timing for fuel economy, can decrease the NOy emissions. However,
retarding the injection timing typically lowers fuel efficiency which results in higher PM
emissions. Thus, a delicate balance must be kept to keep both PM and NOy emissions

controlled.

I1.D.2. Health Effects. Two of the most toxicologically significant nitrogen oxides, nitric

oxide and nitrogen dioxide, are produced primarily by combustion sources. NOy’s are
broken down rapidly in the atmosphere. Reaction with chemicals in the air produced by
sunlight leads to the formation of nitric acid, a major component of acid rain. NO; also
reacts with sunlight, leading to the formation of ozone and smog conditions in the
ambient air. Health effects from exposure to low levels of NOy’s include irritation of
eyes, nose, throat, and lungs, possibly causing cough and shortness of breath, tiredness

and nausea. Exposure to low NOy levels also could be conducive to fluid build-up in the
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lungs 1-2 days after exposure (ATSDR, 2002). Breathing high levels of nitrogen oxides
can cause rapid burning, spasms, and swelling of tissues in the throat and upper
respiratory tract, reduced oxygenation of body tissues in the throat and upper respiratory

tract, reduced oxygenation of body tissues, a buildup of fluid in the lungs and death.

I1.E. Nitrogen Oxides and Particulate Matter Relationships
The inverse relation between NOy and PM formation poses the primary challenge

in lowering diesel engine emissions since control techniques are usually limited by a NOy
and PM tradeoff where strategies to reduce one pollutant generally result in an increase of
the other. Nitric oxide formation is directly related to the temperature in the combustion
chamber with increased temperatures in the combustion chamber resulting in higher NOy
emissions. However, PM is formed when there is incomplete combustion of diesel fuel.
Reductions in PM emissions can be achieved by an improvement in fuel combustion that
results in higher combustion temperatures and increased NOy. Additionally, diesel
engines operate with excess air, this lean burning condition creates an oxidizing

environment that is favorable for NOy formation.

I.F. Carbon Dioxide
Reports about global warming indicate that since the Industrial Revolution levels

of atmospheric carbon dioxide have increased by more than 30 percent and reached
concentrations higher than any observed in the last 420,000 years (Petit et al., 1999). In
its Fourth Assessment Report, the Intergovernmental Panel on Climate Change (IPCC)
concluded that “most of the observed increase in global average temperatures since the
mid-20th century is very likely due to the observed increase in anthropogenic greenhouse
gas (GHG) concentrations” (IPCC, 2007). As a result, GHG inventories of anthropogenic
sources have been developed to identify the primary sources of GHGs and develop
possible mitigation strategies. These inventories are relatively new and do not itemize
off-road equipment specifically but include them in the transportation category. It is
estimated that in 2009 about 23 percent of the CO, emissions in the world were produced

from transportation activities (IEA, 2011).
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The EPA estimates that in 2010 transportation emissions accounted for about 31%
of the total CO, emissions. About 65 percent of these emissions were produced from
gasoline consumption while the remainder was produced from other transportation
activities including the combustion of diesel fuel in heavy-duty vehicles and jet fuel in
aircraft (EPA, 2012B). Thus, off-road equipment is not considered a major source of
CO; emissions. Nonetheless, obtaining a more accurate characterization of CO,
emissions from these sources can aid in developing mitigation priorities and strategies to

reduce GHGs.

ILF.1. CO, Formation. Diesel engines, like any other internal combustion engine,

produce CO; emissions in the process of converting chemical energy from the fuel into
mechanical power. Under ideal conditions, combustion of diesel fuel would produce only
carbon dioxide (CO,) and water vapor (H,O) (Majewski, 2012) - the two most important
greenhouse gases in the atmosphere. However, under real world conditions it is estimated
that each of these emissions only accounts for 12 percent of the total diesel emissions
(ibidem). For most transportation modes, other greenhouse gases such as N,O and CHy4
comprise a relatively small proportion of overall transportation related GHG emissions
(approximately 2 percent combined) (EPA, 2008). Due to the increase in fuel
consumption, CO, emissions increase with engine torque and speed (Abdelghaffar,
2011). This means that the higher the engine load, the higher the CO, concentrations that
will be produced. This effect can also be attributed to the improvement in turbulence at
higher speeds and the higher cylinder temperature at a higher engine torque that results in

better oxidation of carbon atoms to form CO, (ibidem).

IL.LF.2. Health Effects. CO; is a simple asphyxiant that reduces oxygen availability in the

air and at concentrations above 15,000 ppm some loss of mental acuity may be noted
(EPA, 2012C). According to the EPA acute effects from CO, exposure can occur starting
at a concentration of 20,000 ppm with a recommended maximum indoor concentration of
1000 ppm for continuous exposure. The Occupational Safety and Health Administration
(OSHA) permissible emission limit (PEL) for CO; in indoor air is set a 5,000 ppm
(OSHA, 2012). The ambient CO, concentrations have been found to be between 300 and
400 ppm (NOAA, 2012). As a reference, CO, concentrations in office buildings typically
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range from 350 to 2,500 ppm where the primary source of CO; is respiration of the
building occupants. (Seppénen et al., 1999). Thus, the ambient CO, concentrations are
well below any health threshold. This means that no direct adverse health effects exist to

humans from exposure to ambient levels of CO,.

ILLF.3. Greenhouse Gas Regulations in the US. The legal basis for the regulation of

GHG emissions originated from the April 2, 2007 US Supreme Court ruling stating that
the EPA had the authority under the Clean Air Act to regulate greenhouse gas emissions
from motor vehicles (U.S. Supreme Court, 2006). The Court also stated that EPA had to
determine whether GHGs endanger public health or welfare, and whether emissions from
new motor vehicles contribute to this air pollution. EPA issued endangerment and
contribution findings in December 2009 (EPA, 2009B). Since then, the following GHG
regulations have ensued: the mandatory reporting of GHG from large GHG emissions
sources finalized on October 30, 2009, the GHG Tailoring Rule finalized on May 13,
2010, and the Carbon Pollution Standard for New Power Plants proposed on March 27,
2012. These regulations affect primarily stationary sources, however, more recent GHG

regulations started shifting their focus to mobile sources.

II.LF.4. CO, regulations for Mobile Sources. On April 1, 2010, EPA and the National

Highway Traffic Safety Administration (NHTSA) finalized a national program setting
standards to cut greenhouse gas emissions and increase fuel economy of cars and light
trucks for model years 2012-2016. These agencies also issued a Final Rulemaking with
standards for model years 2017-2025 on August 28, 2012 that calls for vehicle
manufacturers to meet a CO, standard projected to be equivalent to 54.5 miles per gallon

on an average fleet-wide basis.

Regulations affecting heavy-duty vehicles have also been issued by the EPA. In
August 2011, EPA and NHTSA issued the first ever greenhouse gas and fuel efficiency
standards for trucks and buses. Once effective, these standards will jointly reduce fuel
use and greenhouse gas emissions from medium- and heavy-duty vehicles, which range

in size from the largest pickup trucks and vans to semi-trucks (EPA, 2011).
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CO; regulations do not currently cover off-road vehicles. However, it is just a
matter of time before these sources become subject to regulations similar to those

applicable to on-road vehicles.

11.G. Off-road Vehicles and Equipment
The term off-road defines a diverse collection of outdoor power equipment,

recreational vehicles, farm and construction machinery, lawn and garden equipment,
marine vessels, locomotives, and other. This equipment is also referred to as non-road
equipment making the term interchangeable with off-road equipment. The EPA
definition for an off-road engine is based on the principle of mobility/portability and
includes engines installed on (1) self propelled equipment, (2) on equipment that is
propelled while performing its function, or (3) on equipment that is portable or
transportable, as indicated by the presence of wheels, skids, carrying handles, dolly,
trailer, or platform (U.S. EPA, 2003B). Examples include farm tractors, excavators,
compactors, bulldozers, wheel loaders, road graders, diesel lawn tractors, logging
equipment, portable generators, skid steer loaders, and forklifts. These vehicles are very
robust and durable so their turn-over rate is rather slow. Thus, newly enacted emission
standards will not have an immediate effect on the exhaust emissions of these types of
vehicles. The trash compactor used in this study fits the definition of both off-road and

non-road vehicles.

I1.H. Trends in PM and NO, contributions from Off-road Vehicles
Emissions from off-road equipment negatively impact air quality in the US. The

National Emission Inventory (NEI) compiles information from sources such as EPA’s
Toxics Release Inventory (TRI), the Acid Rain Program, as well as state, local and tribal
air agencies. The estimated contribution that off-road equipment have in comparison with
other emission sources is shown in Figures 6-8. The NEI program develops datasets,
blends data from these multiple sources, and performs quality assurance steps that further
enhance and augment the compiled data. The NEI emissions data are compiled for
detailed emissions processes within a facility for large “point” sources or as a county total
for smaller “nonpoint” sources and spatially dispersed sources such as on-road and non-

road mobile sources.
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The NEI evaluates all criteria air pollutants (CAPs) associated with the National
Ambient Air Quality Standards (NAAQS) along with hazardous air pollutants (HAPs)
associated with EPA’s Air Toxics Program. In this section, PM;o, PM; s and NOy
pollutants are depicted for 2000 and 2011. In addition to non-road diesel vehicles, NEI’s
non-road category includes: non-road gasoline, aircraft, marine vessels, railroads and
other gasoline equipment. However, as discussed earlier, diesel off-road equipment are
the major contributors to PM and NOy emissions when compared to gasoline equipment.
Thus, the NEI non-road category is useful to gage the magnitude of pollution that diesel
off-road equipment exert of ambient air concentrations in the US.

When compared with all source categories, the PM; contribution from off-road
vehicles was 10% and 6% in 2000 and 2011 respectively (Figure 6). However, when only
mobile sources are considered the off-road contribution to PM;y emissions is 58% and
40% for 2000 and 2011 respectively. This reduction can be attributed to the regulations
that have started to encompass off-road equipment. Nonetheless, PM;¢ emissions from

off-road equipment continue to have a significant contribution comparable to that of

highway vehicles.
All Source Categorlesn 2000 All Source Categoriesin 2011
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Figure 6. Comparison of PMy, contributions from different emission sources for years 2000 and
2011.
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PM, 5 emission trends are similar to the ones shown previously for PM,, (Figure
7). When compared with all source categories, the PM; s contribution from off-road
vehicles was 11% and 10% on 2000 and 2011 respectively. When only mobile sources
are considered the off-road contribution to PM, 5 emissions is 63% and 51% for 2000 and
2011 respectively. In 2011 off-road equipment still contributes more to PM; s than
highway vehicles. This shows that PM, s emissions from off-road equipment have not

decreased at the same rate as those from PM;,.

All Source Categories in 2000 All Source Categoriesin 2011
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Only Mobile Sources in 2000 Only Mobile Sources in 2011

Figure 7. Comparison of PM, 5 contributions from different emission sources for years 2000 and
2011.

The NOy contribution from off-road emissions has increased slightly in the last
decade. NOy emission contributions have increased from 19 to 21 percent when
compared to all the source categories and from 33 to 38 percent in the mobile source
category (Figure 8). When compared with all source categories the NOy contribution
from off-road vehicles was 19% and 21% on 2000 and 2011 respectively. When only
mobile sources are considered the off-road contribution to NOy emissions is 33% and
38% for 2000 and 2011 respectively. This increase may be due to new regulations that

have limited NOy emissions from highway vehicles. Off-road NOy emissions will
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continue to decrease as the Tier IV standards become effective for these equipment.
However, since it is more challenging to control NOy emissions from diesel engines, the
contribution from these equipment most likely will continue to be significant when

compared to highway vehicles that are mostly gasoline powered.

All Source Categories in 2000 All Source Categories in 2011

Fuel
Fuel Combustier

Comaustion 150
9%

Industrial Indlustrial
Procasses Processes
4% 9%

Only Mabile Sources in 2000 Only Mobile Sources in 2011

Figure 8. Comparison of NO, contributions from different emission sources for years 2000 and 2011.

Il.l.  Fuels
Three fuel types are evaluated in the present study including one baseline fuel and

two alternative diesel fuels. The baseline fuel considered for this study is the no. 2
diesel fuel in its conventional form. The two alternative fuels include the ultra-low sulfur
diesel (ULSD) and the 20% biodiesel mix (B20). These two fuels are increasingly
becoming more commonly used for on-road diesel engines. Thus, it is expected that their

use will continue to increase in off-road vehicles also.

ILI.1. Petroleum Diesel. A mixture of many hydrocarbons with carbon numbers in the

range of C9 to C28 and distillation range of 350 to 640 °F make up diesel fuel. Three
types of diesel fuel are commonly used in the US: no. 1 diesel, no. 2 diesel, and no. 4

diesel. No. 1 and no. 2 diesel are used for highway and industrial applications. No. 4
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diesel is a lower quality blend of distillates compared to no. 1 and no. 2 diesel and is used
for low speed engines or non-automotive applications. (Singer and Harley, 1996).

The regular no. 2 diesel is also referred to as no. 2 low sulfur diesel, containing a
maximum of 500 ppm and an average of 330 ppm of sulfur. This diesel is supplied to the
Northeast Kansas area by Flint Hills Resources, LP, Corpus Christi TX and is distributed
by Capitol City Oil (CCO) of Topeka. This fuel meets the ASTM D-975 diesel fuel

specification.

IL.1.2. Ultra-low Sulfur Diesel. Sulfur occurs naturally in crude oil, and is often

removed in varying amounts at the refinery to create higher grades of gasoline and diesel
fuel. To remove sulfur, the crude oil is heated and put under high pressure in the
presence of hydrogen. The sulfur chemically combines with hydrogen and is removed as
hydrogen sulfide (NYC DDC, 2004).

Sulfur significantly inhibits or impairs the function of diesel exhaust emission
control devices. For example, catalysts with precious metals tend to oxidize sulfur
dioxide (SO,) to sulfur trioxide (SOs) which inhibits the emission control performance of
catalyst technology. It is expected that starting in 2011 this emission control technology
will be available for road diesel engines (U.S. EPA, 2004D).

BP is one of the companies that produces and sells ULSD under the brand name
of Emission Control Diesel (ECD). This fuel has maximum and average concentrations
of 30 ppm and 15 ppm respectively. The no. 1 ULSD fuel was used for this study. No. 1
diesel fuel is typically used for colder climates since it is slightly lighter in density than
the no. 2 diesel. Under the Clean Air Nonroad Diesel Rule announced by the U.S.
Environmental Protection Agency in 2004, all off-road diesel engines are scheduled to be
running on ULSD fuel since 2010. ULSD poses no compatibility or lubricity concerns to
diesel engines and it is interchangeable with CARB or EPA diesel (BP America Inc.,
2006). The ECD fuel meets the ASTM D-975 and the ASTM D-6078 lubricity
specifications. Additionally, this fuel improves storage and thermal stability due to the
hydrotreating process used to remove sulfur. The primary emission benefit from this fuel
is a 18£1.5% particulate matter (PM) reduction (Durbin et al., 2003). One significant

advantage of ULSD is that it allows for after-treatment technology and when used with a
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catalyzed particulate filter, a reduction of more than 90% in PM, hydrocarbons (HC) and

carbon monoxide (CO) can be achieved.

IL.I1.3. Biodiesel. The first use of vegetable oil in a compression engine was

demonstrated by Rudolph Diesel who used peanut oil in his diesel engine (Engler et al.,
1992). However, the long term use of chemically unaltered vegetable oils leads to
performance problems because of the high viscosity and low volatility of these fuels.
The solution commonly used to avoid these conditions includes the transesterification of
the oils with methanol or ethanol to form esters (Figure 9). In this process the glycerol
esters of fatty acids (triglycerides) are exchanged for a lighter methanol or ethanol. The
product is made up of fatty acid methyl esters (or ethyl esters) consisting of straight
saturated and unsaturated hydrocarbon chains. The esters formed are commonly referred
to as biodiesel. One of the most commonly used product is the soyate methyl ester

(SME) made from the reaction of soybean and methanol (Wang et al., 2000).

CH>COOR, CH3;COOR, CH, OH
Catalyst
CHCOOR; + 3CH;0H ————— CH3;COOR, + CH — OH
(NaOCH,) |
CH,>COOR; CH3COOR; CH, — OH
Triglyceride Alcohol Mixture of Glycerin
(Vegetable oil) fatty esters

Figure 9. Transesterification reaction between triglycerides and alcohol.

In its pure form biodiesel is renewable, nontoxic and biodegradable. Biodiesel is
also compatible with petroleum diesel fuel in compression-ignition engines and this
allows for the use of a blended mix. In the US, the most common form of biodiesel used
is a blended mix of 20% vol biodiesel and 80% petroleum diesel. The diesel portion of

the fuel determines its toxicity and biodegradability. Exhaust emissions from biodiesel
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blends in general exhibits reductions in PM, HC and CO but an increase in NOy
concentrations.

Based on information from the supplier, the B20 fuel used in the study met the
specifications from ASTM D6751. Table 1 below summarizes the fuel properties of the
three fuels considered for this study. The three fuels have similar properties since they
need to meet certain standards to be used in diesel engines. However, of particular
interest is the sulfur content that is highest for diesel fuel at 500 ppm. The sulfur content
in B20 is based on the assumption that the biodiesel portion has negligible amounts of
sulfur and ULSD has the lowest sulfur content from the three fuels. As discussed earlier,
fuel sulfur content decreases the efficiency of catalysts technologies and also contributes
to particulate emissions. The current study evaluated the effect that these three fuels have

on emissions of NO, and CO,.

Table 1. Properties of three fuel types considered.

Property DNi‘;'S; B20 | ULSD
LHV (BTU/Ib) 18730 18100 | 18452
Specific Gravity (kg/l) @ 60° F| .835-.9 0.85 .81-.82
Cetane No. 44 46 45 min
Carbon, wt% 86.4 84.5 86
Hydrogen, wt% 13.6 13.3 14
Oxygen, wt% 0 2.2 n/a
Cloud point (° F) 18 20 10 max
Flash point (° F) 150 180 100
Distillation point (T90° F) 603 640 550
Aromatics, vol% 30 24 30
Viscosity @40° C (mm”2 /s) 2.6 2.9 1.3-2.1
Sulfur content by weight (ppm) 500 400 <15

(Frey et al., 2005; BP America, Inc., 2006)
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11.J. Regulatory Approach
Since the 1970’s the EPA has established stringent emission standards for

highway cars and trucks. On-road vehicle emissions have been dramatically reduced as a
result of these regulations and periodic updates. As a result, non-road equipment have
become a larger and more significant contributor, on a percentage basis, to the pollutant
emissions.

The 1990 amendments to the Clean Air Act started to call attention to off-road
engines. In 1991, the EPA published a report showing that off-road equipment accounted
for large amounts of nitrogen oxides, hydrocarbons, carbon monoxide and particulate
matter. The report showed that, the emissions from off-road engines had total emissions
almost as high as highway motor vehicles. The diesel particulate matter was found to be
significantly higher than highway emissions. (U.S. EPA, 2003A).

In 1994, the EPA adopted the first set of emission standards (Tier 1) for all off-
road diesel engines greater than 50 horsepower. These standards focused primarily on
nitrogen oxides and smoke opacity. Larger engines were also subject to limits on carbon
monoxide (CO), hydrocarbons (HC) and particulate matter (PM). These non-road
regulations are being phased in over time. The emission standards are categorized in
Tiers, with higher Tier numbers representing more stringent emission requirements. The
Tier 1 standards were phased in for engine sizes between 1996 and 2000 reducing NOy
emissions from these engines by 30 percent (U.S. EPA, 2003A). Tier 2 and Tier 3
standards were enacted in 1998 and are scheduled to be phased-in from 2000-2008.
Currently, most equipment is subject to Tier 2 and Tier 3 standards but Tier 4 standards
are starting to be implemented for certain engines.

In May 2004(B), the EPA signed the final rule for stricter Tier 4 standards,
scheduled to be phased in between 2008 and 2015. Additionally, on May 2004, the Bush
administration issued the Clean Air Non-road Diesel Rule which is one of the most
significant advancements in clean air protection since the passage of the Clean Air Act
Amendments of 1990. Under this rule, stringent pollution controls on non-road diesel
engines are introduced along with a significant reduction on the sulfur content of diesel
fuel. This program combines cleaner engine technologies with cleaner fuel to produce

significant emission reductions from non-road diesel engines (U.S. EPA, 2000B). Under
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it, sulfur levels are to decrease by more than 99 percent from 3000 ppm in 2004 to 15
ppm in 2010. This enables the use of advanced clean technologies (such as catalytic
particulate filters and NOy adsorbers) and a reduction of PM and SO, emissions in non-
road diesel engines.

Table 2 below shows a summary of past, current and proposed non-road emission
standards (U.S. EPA, 2004A). However, the effect from these regulations will not be
immediately evident. Older equipment first needs to be replaced with newer equipment
that is regulated by these emission standards. It is expected that the entire 6 million
pieces of non-road equipment will be completely replaced by 2030. Also, the allowable
emission levels increase as the engine rating decreases. This means that a smaller piece
of equipment is regulated to emit more pollution than a larger piece of equipment

performing the same activity.
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Table 2. Summary of past, current and future non-road emission standards.
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This EPA rule also requires a significant reduction in sulfur content for on-road
fuel. These regulations were phased in between 2006 and 2010. These regulations
require the use of “ultra-low sulfur diesel (ULSD)” with a maximum sulfur content of 15
ppm. Also, as of June 9, 2006, all refineries in the US have started producing some fuel
with less than 15 ppm of sulfur and since 2010 all on-road diesel produced have to meet
this specification. On June 2010 the ULSD standard started applying to most non-road
diesel engines except locomotive and marine engines (Direct Final Rule and Notice of
Proposed Rulemaking for Amendments to the Nonroad and Highway Diesel Fuel
Regulations (U.S. EPA, 2006).

I1.K. Exhaust Emissions Characterization for Off-road Diesel Engines
Emission standards that regulate off-road diesel vehicles are based on test cycles

that evaluate the amount of pollution released under certain operating conditions. Engine
manufacturers must comply with these standards by testing at least one engine of a given
engine model on an engine dynamometer. Off-road engines are mostly sampled under
steady-state conditions, yet a certain type of engine can be used in distinct types of
equipment with unique duty cycles. One of the main criticisms of off-road emission
standards is that they do not accurately account for real world emissions. Most of the
regulatory decisions made for off-road diesel engines have been done without real world
data. A very limited inventory of in-use emissions currently exists. Furthermore, the
rugged environment under which many of these vehicles operate could translate into even
higher pollutant loads.

New methods of characterizing off-road diesel emissions with conventional and
non-conventional equipment include chassis dynamometer, tunnel, remote sensing and
on-board emission testing. Lately, interest has shifted towards on-board systems that are
able to sample during normal operating conditions that give a more accurate profile of

real-world emissions.

II.K.1. Engine Dynamometer. Emission testing for off-road diesel vehicles is not well

characterized mainly because the emissions standards rely on engine certification tests

rather than on real-world conditions. These regulations specify the emissions levels
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permitted from a specific engine in units of grams/brake horsepower-hr (g/bhp-h).

Steady state tests are commonly performed on off-road diesel engines. These tests
involve running the engine under constant conditions, such as constant engine RPM and
load. Many steady state tests involve more than one “mode” where each mode has
constant conditions. This type of testing has been criticized because off-road diesels
usually operate under stop-and-go or transient cycles (Moran, 2003). Ideally, engines
should have to meet emission standards under transient test cycles tailored to their unique
operating cycle. Transient tests vary operating conditions and thereby resemble real
world conditions.

An engine dynamometer is a device that measures mechanical power of an
engine. To do this the dynamometer puts a load on the engine. This device attaches
directly to the engine shaft and places a specified load on the engine. To perform this
type of test is difficult and costly since the engine needs to be removed from the vehicle.
Additionally the engine dynamometer does not take into account the properties of the
vehicle itself such as transmission or driveline losses influence the results (Canagaratna et
al., 2004). Furthermore, engine manufacturers are required to test and certify their
engines for deterioration for the lifetime of the engine. However, there is minimal in-use
testing of engines to determine if deterioration is more significant under in-use conditions
(Yanowitz, et. al., 2000). The emissions from engine dynamometers are typically
reported in units of grams of pollutant emitted per brake horse power-hour of engine
output (g/bhp-hr). These units are not directly related to real world activity patterns.
Thus, to estimate total emissions some values need to be estimated including engine

capacity (hp), load and number of hours in operation.(Frey and Kim, 2005).

I1.LK.2. Chassis Dynamometer. A chassis dynamometer test involves the entire vehicle.
In this test, the drive wheels of the vehicle are placed upon rollers and the vehicle is tied
down so that it remains stationary. The rollers along with variable weight flywheels are
used to simulate inertial load. In this test, the vehicle is operated according to a
predetermined speed profile shown on a computer screen that displays the current
required speed. The driver operates the vehicle to closely match the speed profiles shown

on the computer screen. Researchers have developed chassis dynamometer test cycles to
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represent highway, city and suburban conditions. For example the Central Business
District cycle is an attempt to model inner-city driving conditions through repeated
accelerations, decelerations and idle periods. On the other hand, the Urban Dynamometer
Driving Schedule (UDDS) is characterized by high speeds representing real world
highway scenarios. The advantage of this type of testing is that its transient cycles
resemble more closely the real world conditions of a vehicle and account for the entire
drive train and not only the engine. Additionally, the emission measurements of grams
of pollutant emitted per mile of vehicle travel provide more useful information for
emission inventory purposes than the one yielded from engine testing.

There is no chassis dynamometer test for regulatory purposes with heavy-duty
diesel vehicles. Chassis dynamometers are commonly used for light duty vehicles (Frey
and Kim, 2005). Heavy-duty diesel vehicles require larger facilities that make this type

of testing exceedingly expensive.

I1.K.3. Tunnel Studies. In this type of test the total emissions from vehicles that enter a

tunnel during a test period are measured. Pollutant concentrations are measured in the air
at the inlet to the tunnel and at the outlet. By multiplying the change in concentration by
the estimated air flow through the tunnel, a rate of pollutant emissions is determined.
Vehicles traveling through the tunnel are counted and divided into the total emission rate.
Also taking into account the length of the tunnel makes this measurement on a per mile
basis (Yanowitz et. al, 2000). The advantages of this type of study are that it can capture
a cross-section of the on-road vehicle fleet and represents real world operation. On the
other hand, this test is not able to assign emission profiles to individual vehicles.
Furthermore, the traffic conditions of the tunnel may not be representative of conditions
elsewhere. Also, far more light duty vehicles exist compared to heavy duty vehicles so

the measurements collected are bound to be biased towards light duty vehicles.

I1.K.4. Remote Sensing Testing. In this type of testing, emissions are measured as the

vehicles pass by a measurement station. Ultraviolet (UV) and infrared (IR) light of
specific wavelengths are passed through the exhaust plume of the vehicle to a detector.

The light absorbed is proportional to the amount of CO, CO,, HC and NO. Some of the
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applications for remote sensing devices include the monitoring of emissions to evaluate
the overall effectiveness of inspection and maintenance programs, and identification of
high emitting vehicles (Bishop et al., 1989). The main advantage is that it is possible to
measure a large number of on-road vehicles given favorable weather conditions. The
main disadvantage of such systems is that it only gives an instantaneous estimate of the
emissions at a specific location. Other limitations include difficulty in dealing with

multiple lanes of traffic, slow moving vehicles or closely-spaced vehicles.

I1.LK.5. On-board Emission Testing. This type of testing is widely recognized as a

desirable approach for quantifying emissions from vehicles since data are collected under
real world conditions at any location traveled by the vehicle. On-board measurements
can be made with large, complex and expensive instrumentation or with smaller, less
expensive and more portable systems (Frey and Kim, 2005). Until recently, the
instruments capable of making these measurements were prohibitively expensive.
However, in the last few years, efforts have focused on the development of less expensive
on-board systems that are able to measure vehicle activity and emissions on a second-by-
second basis.

Two types of on-board systems exist: the ones that involve large and complex and
expensive instrumentation and smaller, less expensive and more portable systems. The
former systems typically involve a permanent installation in a vehicle or trailer and take
considerable room. The EPA owns one such system that is a 53 foot trailer that can be
towed in a tractor-trailer configuration (Figure 10). This trailer facility is equipped with
an air suspension system to minimize shock and vibration for sensitive electronic
equipment. This on-board system includes a computerized Data Acquisition System
(DAS) and continuous emissions monitoring systems (CEMS) analyzers that measure O,

CO,, CO, and total hydrocarbons (THCs) directly from the exhaust (Brown et. al., 2002).
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Figure 10. Schematic of on-board trailer facility (Brown et. al., 2002).

The Center for Environmental Research & Technology (CE-CERT) at the Bourns
College of Engineering at the University of California, Riverside owns and operates a
Mobile Emissions Laboratory (MEL). This system is able to collect emission
measurements that are comparable to those collected from a dynamometer. This system
is housed in a 53-foot truck trailer with a dilution tunnel, analyzers for gaseous emissions,
and ports for particulate measurements (Figure 11). The MEL can be used to collect on-
road NOy, methane (CH4), THC, CO, and CO, emissions at a frequency of 1 hertz while
being pulled by a heavy-duty truck or it can be used as a stationary laboratory for the
testing of heavy-duty vehicles, engines, or generators. A more detailed description of this
system is available from Cocker, et al. (2004).

The MEL is designed and operated to meet the specifications of title 40 of the
CFR Part 1065, Engine testing. The system has also been verified against CARB’s
heavy-duty diesel lab, the Department of Energy (DOE) lab in Denver, and a laboratory
at Southwest Research (SWRI) in San Antonio. Recently, the MEL was used for the on-
road verification of the Measurement Allowance program to verify portable emissions

measurement system for in-use compliance testing (Johnson et al., 2009).
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Figure 11. Image and diagram of the Mobile Emission Laboratory (MEL).
(http://www.cert.ucr.edu/emissions/)

Another such system is the Aerodyne Research Inc. (ARI) Mobile laboratory
system built around a 1989 Ford Econoline 350 chassis (Figure 12). The rear of the
mobile lab is a box that houses all the instrumentation including the Aerodyne Aerosol
Mass Spectrometer (AMS). The AMS is able to sample submicron particles into vacuum,
where they are aecrodynamically sized, thermally vaporized on a heated surface, and
chemically analyzed via electron impact ionization quadrupole mass spectrometry.
Additionally the AMS mobile lab is equipped with two ARI tunable infrared laser
differential absorption spectroscopy (TILDAS) instruments utilizing lead salt diode lasers
for real-time measurements of selected trace gases including NO, NO,, CO, N,O, CHy,
SO, and H,CO. Data from each instrument is logged on a central computer that stores the
data synchronously (Canagaratna, 2004). The advantage of this complex system is that it

uses more advanced instrumentation that is comparable in precision and accuracy to the
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one from dynamometer facilities. However, these systems are more expensive and they

are not suitable for off-road applications.

Aerodyne Mobile Lab
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Figure 1. Schematic of the AR mobike laboratony as instrumented for the CEPEX/PMTACS-NY experiment.

Figure 12. Schematic of the ARI mobile laboratory as instrumented for the CEPEX/PMTACS-NY
experiment (Canagaratna, 2004).

Portable on-board emissions measurement systems (PEMS) are relatively simple
to use and their cost is significantly lower than the complex on-board systems described
above. These systems are able to collect in-use emissions during real-world on-road
operation. One key advantage of these systems is that they can be easily installed in a
wide variety of vehicles within an hour. Another advantage of PEMS is that their weight
is usually between 30 to 100 pounds and their installation does not require major or
permanent modifications on the vehicle being tested. Some of the shortcomings of these
systems include the less accurate or precise methodology when compared with complex
on-board systems or dynamometers. However, new technological advances are bridging

this gap rapidly making PEMS measurement methods more accurate and precise.
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The future of PEMS is very promising and according to the EPA (2002) on-board
testing may be used at some point for on-vehicle certification. The first step envisioned
is the collection of on-vehicle emissions data to create a model inventory that includes
duty cycles, emissions activity and population. Then on-vehicle compliance can be
achieved by establishing test protocols. After these two steps are finished, an
investigation of feasibility could lead to an on-vehicle certification which would yield a

more accurate emission profile for on-road and off-road vehicles.

I1.LK.6 Portable Emissions Measurement System (PEMS). These systems are increasingly
more common in emission testing of vehicles and equipment due to their affordability,
smaller size, ease of installation, and accuracy. A brief description of the main PEMS
currently available is included below.

The SEMTECH PEMS from Sensors, Inc. (Sensors, 2012) is the most widely
used system in emission testing research (Figure 13). This system measures CO, and CO
concentrations by using nondispersive infrared spectroscopy (NDIR), NO and NO, by
nondispersive ultraviolet spectroscopy (NDUV), and THC using a heated flame
ionization detector (FID). This PEMS is also able to measure NO and NO, separately.
This is a feature commonly overlooked that could provide important information about
the NO,/NOx ratio that is becoming more important in air dispersion modeling involving

the stringent 1-hour NO, National Ambient Air Quality Standards (NAAQS).

5 SEMTECH-DS,
5en$.|'.‘||"5 Enc:

Figure 13. SEMTECH-DS system by Sensors, Inc. (http://www.sensors-inc.com/ds.html)

36



HORIBA is commonly known for its laboratory bench dynamometer systems.
However, they also manufacture the OBS-2200 Series on-board emission measurement
system (HORIBA, 2012). This system analyzes all gases wet without drying. CO, CO,
and water vapor concentrations are measured by a heated NDIR analyzer (Figure 14).
The water measurement compensates for water vapor interferences. THC concentrations
are measured by a heated FID analyzer (190°C), and NOy concentrations are measured by
a heated chemilumensescence detector (CLD) analyzer. This system weighs about 64

pounds plus about 140 pounds from the batteries to power it.

The OEM-2100 “Montana” System, manufactured by Clean Air Technologies
International, Inc. (CATI, 2012) includes a gas analyzer, an opacity measurement system,
an engine scanner, a global positioning system (GPS), and an on-board computer (Figure
15). The Montana system includes a non-dispersive infrared (NDIR) sensor to collect
HC, CO and CO, emissions. Additionally, an electrochemical cell is used to detect NO
that is used to estimate total NOx emissions. Finally, a light scattering device is used to
collect opacity readings. These gas analyzers are calibrated periodically with a cylinder
gas and ambient air. This unit weighs about 44 pounds and may be powered directly

from a vehicle's electrical system or by AC in the case of stationary testing.
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Figure 15. OEM-2100 “Montana” System, manufactured by Clean Air Technologies International,
Inc.(www.cleanairt.com/)

The Simple Portable On-Vehicle Testing (SPOT) system was initially designed
and developed by Analytical Engineering Inc. (AEI) under contract from the EPA, to
obtain real-world data from non-road heavy equipment (AEI, 2002). The SPOT system
simultaneously collects NOy and O, emission concentrations with an NGK NOy sensor.
The NGK is a zirconia based electrochemical sensor located directly in the exhaust flow.
This sensor has shown great accuracy and sensitivity in measuring NOy concentrations

(Figure 16). The O, sensor is also used to calculate CO, emissions in the exhaust flow.
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Figure 16. NGK NOx sensor accuracy and sensitivity analysis.
(http://www.ngkntk.co.jp/english/product/sensors/index.html#sensor3)

The exhaust probe designed for the SPOT system contains AEI's proprietary

exhaust mass flow rate device, which functions well in both diesel and gasoline exhaust.
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Also, AEI worked with CARB and EPA to improve the design of the probe geometry and
improve the accuracy and the signal to noise ratio (May, 2003). Furthermore, the SPOT
units were utilized to collect over 6000 hours of vehicle emissions and duty cycle data on

more than fifty different vehicles, which currently comprise the largest database of its

kind in the world (May, et al., 2002).

Figure 17. SPOT system from AEI. (http://www.aei-tech.com/development/on-
vehicle emissions.html)

I1.K.7 PEMS Validation. Accuracy evaluations of PEMS have been investigated

extensively. One such study is the Kansas City PM Characterization Study (U.S. EPA,
2008B) that sampled 480 light duty gasoline vehicles (LDGV) using the SEMTECH-G.
This study sought to identify how real-world on-board PEMS could be used to collect
HC, CO, NOy, CO; and PM; s emissions data. Additionally, a dynamometer versus
PEMS evaluation was performed by collecting emission data from a PEMS device while
simultaneously measuring with laboratory grade instruments on a dynamometer. The
evaluation analysis was mostly qualitative and concluded that there is a very favorable
accuracy and a good correlation between the PEMS and the dynamometer readings.

The Bourns College of Engineering at the University of California, Riverside
performed an evaluation of the Semtech G, Semtech D with a Dekati Mass Monitor for
PM, and a Semtech DS (Liu, 2010). These PEMS were compared to a Burke E. Porter
48-in. single-roll electric dynamometer and a Pierburg AMA-4000 bench. The study
evaluated CO, HC, NOy, and CO, emissions from three diesel and three gasoline vehicles
with the Federal test procedure (FTP) (40 CFR Parts 86-99), the high-speed US06 cycle,

and a modal emission cycle. The results indicated an agreement between the PEMS and
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the Pierburg system that varied depending on the pollutant. For CO; and NOy the
agreement observed was 3% and 15% respectively for diesel vehicles and within 10% for
CO; on gasoline vehicles. The PEMS showed larger deviations for HC and CO that were
probably due to a decrease in agreement at very low concentrations.

Johnson et al. (2009) also performed a comparison between the Semtech DS
PEMS and a mobile emissions laboratory (MEL). The MEL was validated before this
study with an engine dynamometer at the SWRI in accordance to 40 CFR Part 1065. Once
this validation was performed, the MEL was used as a validation tool for the PEMS. A
475 hp test truck was used in this evaluation under different road grade, vibration,
altitude, electric fields, and humidity. The study found that NOx and CO, emissions
collected with the PEM were biased high relative to the MEL measurements. In the case
of NOy, a two-tailed t-test between the MEL and PEMS measurements was found to be
statistically significant. This discrepancy could be due to the type of NOy sensors used
by each system: the PEMS uses a NDUV and the MEL uses standard
chemiluminescence, However, another possible cause for the discrepancy in NOy
measurements could be due to the fact that the PEMS measures NO and NO; directly
while the MEL uses a NOy convertion efficiency of 96.4% per 40 CFR Part 1065.378.
Very low NMHC and CO emissions were recorded with both systems. However, the
analysis of these two pollutants was curtailed due to the relatively small concentrations
observed compared to the not-to-exceed (NTE) thresholds.

Rubino et al. (2007) performed an accuracy verification of the Semtech-DS
against a 48 inches chassis dynamometer with a Horiba MEXA-7400HTR-LE instrument
to collect CO,HC, NOy, and CO, measurements. Emission testing was performed on two
diesel light duty vehicles with the laboratory system used in parallel to the PEMS
instrument. Three testing events were performed with the New European Driving Cycle
(NEDC) and three more with the Milan City cycle. This study found negligible
deviations between the emissions measured from the PEMS and the reference test cell

analyzer (Figure 18).
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I1.K.8 40 CFR 1065. In this regulation the EPA has implemented procedures of

calibration and verification for PEMS use in laboratory and field emission testing. The
original regulations for 40 CFR part 1065 were adopted in 2002. EPA has amended these
regulations in 2004, 2005, 2006, 2008, 2009, 2010, and most recently on January 18,
2012. These amendments have expanded the scope of engines covered by this regulation
and improved the procedures included therein. The long-term plan is for all types of
engines to follow the procedures in 40 CFR part 1065 excluding aircraft engines and
those that require vehicle testing.

EPA (2008C) performed a study to determine measurement allowances under
controlled conditions in a laboratory and measurement emissions in the field using
PEMS. The scope included NMHC, CO, and NOy. The main PEMS used was the
SEMTECH-DS and limited analysis was performed with the Horiba OBS-2200. A
gaseous analyzer linearity audit was performed based on Table 1 from 40 CFR 1065
Subpart D — Calibrations and Verifications. Numerous SEMTECH units failed the
linearity criteria specifying a tolerance on the intercept of 0.5% of the maximum value
during testing. This case was especially evident for the NDUV analyzer measuring NO
and NO,. The Horiba units tested did pass the linearity checks. Another issue identified
during this study was the PEMS variability. The measurement errors observed in the
engines tested were not consistent. Thus, as PEMS begin to be scrutinized more
rigorously, some issues have arisen. However, in their respective web sites Sensors Inc.,

CATI and Horiba claim that their systems are compliant with 40 CFR 1065 requirements.

Il.L. Analysis of Continuous Emission Data from PEMS
The analysis of continuous emission data is paramount in finding meaning in the

volumes of data collected by PEMS.

II.L.1 Autocorrelation. In 2001 the EPA started to envision the use of on-board emission

data as the basis for EPA’s mobile source emissions modeling program coined the New
Generation Model. Frey et al. (2002) prepared a set of recommendations for on-board
emission data analysis for these data commissioned by the Office of Transportation and

Air Quality at the EPA. This document recognized the importance of identifying the
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nature of the data set collected. One feature identified in data collected with on-board
instrumentation was the short averaging time present on the data. This means that vehicle
emissions in a given second are a function of the previous second’s speed and
acceleration (NRC, 2000). This is referred to as autocorrelation in the time series.
Brocklebank and Dickey (1986) warn that data with autocorrelation need to be treated
carefully. Specifically, ordinary least squares regression should be used only if residuals
are uncorrelated with each other. Thus, autocorrelation in the data needs to be
investigated and addressed for a robust statistical analysis to ensue. In their
recommendation report, Frey et al. identify the importance of autocorrelation in
continuous emission data from PEMS and they outline a data analysis technique based on
an analysis of autocorrelation and partial autocorrelation in the data. This approach is
dismissed by Frey et al. because it is deemed impractical for the development of the New

Generation Model.

II.L.2 Binning. Frey et al. (2002) proposed to bin vehicle emissions data based on speed

and acceleration criteria to reduce the influence of autocorrelation in the data. This
approach defined driving modes based upon speed criteria yielding idle, acceleration,
deceleration and cruise bins. This technique segregates the original time series into
shorter discontinuous time series which are supposed to reduce the influence of
autocorrelation. Regression techniques were pursued once this binning technique was
performed. This binning technique was also described by EPA (2002C, 2002D).
However, the binning of data based on speed and acceleration will still include segments
of autocorrelated data. Furthermore, no testing was performed on the binned data to
determine if autocorrelation was still present in the data observations after applying the
binning technique. Thus, it is not clear how the binning technique would mitigate the

effect of autocorrelation.

I1.L.3 Averaging. An average time approach was also evaluated by EPA (2002D). The

purpose of this evaluation was to determine if 5 and 10 second averages of emissions and
vehicle activity data could decrease autocorrelation. The intent was to smooth the data to

remove some of the high frequency variability in the data. The results obtained showed
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that 5 and 10 second averaging times offer no benefit over the 1-second averaging time in
predictive ability. Thus, the 1-second averaging time approach was preferred.

This study also recognized that it may be more effective to use peak values of key
variables rather than averages. The rational is that short duration of values such as
acceleration will have a higher correlation to the largest share of emissions produced.
Thus, an average value approach would miss these relevant peaks in assessing
relationships between the independent variables in the analysis. However, a comparison
analysis to test these conjectures was not provided.

A similar approach was also performed in the European Union by Weiss, et al.
(2011A, 2011B) and Rubino et al. (2007). These researchers introduced the concept of
averaging windows that is in line with the methodology used for the emission testing and
characterization of Euro VI heavy-duty vehicles (EC, 2011) in the European Union.
These individual windows represent sub-trips of a test route. This method intends to
reduce fluctuation in the second-by-second emissions data to focus on the emission
variability related to route averages. Thus, emissions are averaged over intervals of a
predefined duration. Specifically, the duration of a window is determined by the distance
traveled until the vehicle has emitted a cumulative CO, mass equivalent to the mass
emitted during the NEDC testing. The advantage of this method is that it yields values
that can be directly compared to the standard NEDC values. However, the details of the

data collected are lost in the averaging windows.

I1.M. Analysis of PEMS Data in Recent Publications
Kousoulidou et al. (2013) performed an evaluation of six diesel and gasoline

passenger vehicles with the SEMTECH-DS. These vehicles were tested under real-world
operating conditions in two routes in the region of Lombardia, Italy. Additionally, the
PEMS was used to test the vehicles while under the European dynamometer cycle
(NEDC). This study found that NOy emissions for the diesel vehicles comply with the
standard when operated under the NEDC. However, when operated under real-world
driving conditions the NOy emissions constantly exceed the limits. The real-world data
were analyzed by dividing the trip into sub-trips based on the average speed and number

of stops. These sub-trips were then classified as urban, rural, or motorway and average
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values were calculated. Average emission values for the complete driving cycle were also
calculated for the NEDC and compared to the applicable standard. Zhihua et al. (2011)
performed a similar evaluation of four diesel buses using the SEMTECH-DS analyzer in
Beijing, China. This study compared real-world emissions to the European steady cycle
(ESC) and the European transient cycle (ETC) limits and reported their results in average
emission values. This type of averaging approach is used to determine compliance with
current emission standards. However, as regulations move towards not-to-exceed
standards, it will become more important to properly characterize emissions with a finer
resolution.

Chao et al. (2011) performed a study to characterize heavy-duty diesel engine
emissions at simulated high altitudes. The SEMTECH-DS was used to measure engine
emissions at simulated 0, 100 meters, and 2000 meter altitudes at five engine loads. The
comparison of HC, CO, NOy and smoke was based on average of the five engine loads
investigated. Whereas this analysis is useful, it does not look past simple averaging
values.

Peltier et al. (2011) evaluated emissions from a diesel switching locomotive ran
on B10, B20 and ULSD fuels with a SEMTECH-DS. The test sampled emissions from
the locomotive engine for 30 minutes while at full throttle. The data were then averaged
over 10-second intervals and emission benefits were reported. Cecrle et al. (2012A)
performed a similar evaluation of NOy, CO, HC and PM emissions from two engines
fueled with seven types of biodiesel. The SEMTECH-DS was used to collect emission
data at five engine loadings for each engine. The emission data collected were averaged
over 10-second intervals to reduce background noise. In this analysis, an analysis of
variance (ANOVA) was also performed to determine the variables that were most
statistically significant on emissions. Jing et al. (2012) also evaluated emissions from
two off-road diesel engines with the SEMTECH-DS while running on biodiesel made
from waste cooking oil (WCO). In this evaluation the engines were run on idle and the
significance of different variables was evaluated with an ANOVA. The results from the
ANOVA indicated that biodiesel content was statistically significant for all pollutants but

ambient temperature was not.
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At the present time, most research is being performed by calculating an average
emission value and comparing it to distinct routes, cycles, etc. Some researchers are
averaging values over the period of testing and others are segregating emissions in bins
based on speed and acceleration criteria. Being that the current approach to emission
testing relates to set duty cycles, it is a good transition to compare these values to
averaging windows that are meant to resemble these set cycles. Other researchers are

performing more advanced statistics by using ANOVA and GLM tests to find

significance when comparing different independent variables related to fuel, ambient and

engine parameters. Thus, when comparing the effect of independent variables on

emissions, an approach like the one led by the Department of Civil, Environmental, and

Architectural Engineering (CEAE) at the University of Kansas (KU) is preferred.

46



I11. METHODOLOGY AND APPROACH

I11.A. Exhaust Emissions and Duty Cycle Characterization
As discussed in the previous sections, the established laboratory testing methods

do not accurately characterize the emission profiles of on-road and off-road vehicles.
Therefore, we used an on-board system to characterize the engine and ambient
parameters from an off-road diesel vehicle. This system provided a wealth of

information by allowing a second-by-second characterization of exhaust emissions.

III.A.1.0n-board System. The sampling system used for this study is the Simple,

Portable, On-vehicle Testing (SPOT) system. This system was manufactured by
Analytical Engineering Inc. (AEI) under contract with the EPA. Under such a contract
over 50 off-road vehicles underwent weeklong in-use measurements totaling over 8000
hours of accumulated vehicle information (May et al., 2002).

The SPOT system was loaned to the Department of Civil, Environmental and
Architectural Engineering to carry out the present study. Per AEI’s request this system
was returned to them on August 29, 2007. The SPOT system is able to accurately
measure NOx and Oz emissions, as well as exhaust mass flow, relative humidity, ambient
temperature, engine speed, calculated CO,, and a host of internal parameters on a second-
by-second basis during normal operations (May et al., 2002). AEI provided technical

i

[ /. f support along with training on how to

use this on-board system during June
2005 at their facilities in Columbus,
Ohio.

Particulate matter is an
important emission from diesel
engines: however PM sampling under

off-road conditions is a capability not

§. available in the SPOT system or any

N A S
Figure 19. SPOT system components. 1)
console, 2) alternator sensor, 3) battery
connections, 4) exhaust probe.

main other on-board system in the market.

Sensors Inc. has a particulate matter
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sampling extension to their on-board system. However, the price of this device was
outside of the budget of the present study. Furthermore, the Sensors system is not
designed to be used under off-road conditions. Thus the current study focused on NOy
and CO, exhaust emissions.

The SPOT system is composed of four main parts including: (1) the main data
logger console, (2) an alternator sensor, (3) a connector to the vehicle’s battery and (4) an
exhaust probe (Figure 19). The main data logger console contains a Campbell Scientific
CR5000 datalogger along with sensors for ambient temperature, humidity and barometric
pressure. The alternator sensor gathers the instantaneous alternator frequencies that are
automatically converted to engine speed. At the beginning of each sampling run, the
engine speed is directly measured at low and high idle conditions. This is done by placing
reflective tape on the engine’s damper and then using a laser tachometer to measure the
damper’s revolutions per minute (May et al., 2002). The battery connector is used to
power the SPOT system when the engine is turned on. The exhaust probe has a
thermocouple, a mass air flow sensor, and NOx and Oz sensors.

NOx measurements are made possible by an NGK NOy sensor. This type of
sensor consists of a catalyst, a heater, a sensing element and an O, sensor (U.S. Patent,
1998). The catalyst is placed upstream from the flow of the gas to be measured, and it
removes the CO component from it. The heater is located next to the sensor element and
it maintains the sensor element and the catalyst at a constant temperature. The Zirconia
multilayer ceramic sensing element responds to NOy concentrations by a representative
resistance. This measured resistance is adjusted for a given O, concentration to produce a
representative NOy value. The NGK NOy sensor is an electrochemical in-situ sensor that
can reside directly in the exhaust flow and measure the gas as it leaves the exhaust of an
engine. This minimizes the error due to transient mixing in the extracting lines and the
solubility of NOy in water. The O, sensor is also used to calculate CO, emissions.

The SPOT system was able to provide unique information about the diesel
compactor analyzed. This information is most valuable since it was collected under
normal operating conditions on a piece of equipment that was used for at least 8 hours a
day. This was possible due to the ease of data collection afforded by this type of system.

Furthermore, this sampling equipment was rugged enough to withstand the rough
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conditions that trash compactors experience on a regular basis. Appendix D depicts the

SPOT system and trash compactor during installation, fueling, and field sampling.

II1.A.2.Partnership with a Construction Company. A construction partner was sought
among numerous construction companies and organizations in the area. It was necessary
to find a partner that would allow the testing of an off-road diesel vehicle and allow the
use of ULSD and B20 on this piece of equipment. After contacting many companies in
the KC area the KU team approached Charlie Sedlock, Operations Director for N. R.
Hamm Quarry, Inc. Mr. Sedlock allowed the sampling of the trash compactors at the
facility along with the fueling of these compactors with B20 and ULSD. Thus, this
partnership fulfilled our criteria and in August 2005 Mr. Sedlock and the KU team agreed
to partner in this study. This partnership was crucial in making the current study
possible. It was important for the N.R. Hamm personnel that their two trash compactors
remained in service for the duration of our study since they are critical to the operation of
the facility. This condition allowed the KU team to gather real world data.

The current study also called for the sampling of three fuel types: regular no. 2
diesel fuel, ultra-low sulfur diesel and a 20% mix of biodiesel. Arrangements were made
with N.R. Hamm to sample their compactor with the no. 2 diesel fuel they commonly use.
Arrangements were also made with Ken Kimura, principal engineer for Fuels Product
Development at BP for the donation of 500 gallons of the ultra low sulfur diesel. The
biodiesel mix was then purchased from Capitol City Oil, who also provides the regular
no. 2 diesel for the N.R. Hamm facility. The N.R. Hamm personnel helped in completely
draining the fuel tank before refueling with a ULSD and B20 fuel types. This procedure
was very important especially in the case of the ULSD which could be easily

contaminated by small amounts of regular diesel fuel.

II1.A.3.Selection of an Off-road Diesel Vehicle and Testing Site. N.R. Hamm personnel

and a member from the KU team surveyed types of diesel engine equipment available at
their facility. Among them was a backhoe, a tractor and two trash compactors. The KU
team learned that the backhoe and tractor were only in use intermittently and it was hard

to know when they would be in service. Additionally, the engine configurations from
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these two pieces of equipment were not ideal for the installation of the SPOT system.
However, two trash compactors at the property were in use constantly throughout the day.
This type of work regime seemed advantageous for our study given that we needed to
collect as much data as possible under normal operating conditions. After the
compatibility between the engine and the SPOT system was confirmed, the KU team and
Charlie Sedlock agreed to the use of one of these compactors for the present study.

The off-road equipment used for the present study is a 2002 Terex CMI
Trashmaster 3-90E. This landfill compactor is the largest kind offered by its
manufacturer and features a Cummins Model QSK-19, 525-hp diesel engine,
turbocharged and charge air cooled (TEREX, 2002). More information about this
equipment is available I Appendix C. Hamm Quarry has two of these compactors at their
location operating continuously from approximately 7 AM to 5:30 PM Monday through
Friday while using over 200 gallons of fuel a day each. The operator of this compactor
controls the front blade to move trash to its desired location as he or she steers the
compactor over the trash underneath. In every pass this compactor exerts a compaction

force of 767 pounds per linear inch. Figure 20 shows the compactor at N.R. Hamm’s

facility.

s T e K s s St S

Figure 20. CMI 3-90E compactor at Hamm’s landfill.

IT1.A 4. Testing Site Description. Hamm'’s Sanitary Landfill (Division of N.R. Hamm
Quarry Inc.) served as the testing site for our study. This facility is located at the junction
of U.S. Highway 24 and U.S. Highway 59 in Williamstown, Jefferson County (see Figure
21). The facility is managed by Charlie Sedlock, Operations Director for N. R. Hamm
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who provided the necessary access and assistance to the KU team. The hours of operation
of the landfill facility span from 7:30AM to 4:00 PM Mondays through Fridays and
from7:30 AM to 1:00 PM on Saturdays. However, the two compactors in the facility
continue being operated even after the facility is closed to the public. This landfill

services 13 counties including cities and communities in northeast Kansas.

Sanitary landfill "

]

—— 0 A8
]

e

Figure 21. N.R. Hamm facility.

II1.A.5.Data Output and Manipulation. There are very few sampling systems like the

SPOT that are rugged enough to withstand the rough use that off-road equipment

undergo. Consequently, emission data from off-road diesels operating under real world
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conditions are quite limited. In fact, previous data were not available at the time of this
literature review. Since data collected by the EPA and AEI have not been released, this
research is the first to analyze this type of data for off-road diesel vehicles. Thus, the data
manipulation and analysis for this output is unchartered territory.

The SPOT system collects emission, engine and ambient parameters on a second-
by-second basis onto a memory card inside the main console of the system. This output
includes data for NOx, Oz, COz, total exhaust mass flow, relative humidity, ambient
temperature, engine speed, calculated fuel consumption, and barometric pressure, among
other parameters. Thus, the size of the dataset produced by the SPOT is extremely large.

To analyze these data the following steps were followed:

A) Data reduction. The raw data set produced by the SPOT system included variables
that were inconsequent to the scope of this study. These variables were filtered out of the
dataset. Additionally, the raw data set included calibration values that were ran
periodically. In other instances a communication port error produced voids in the data
set. All these values were cleared from the data set before being analyzed. Once the raw
data were cleaned of invalid and unneeded variables it was ready to be analyzed. This
reduced data set included engine parameters and NOy and CO, emissions values.

B) Preliminary analysis. The NOx and COz2 data were plotted in distinct ways to identify
meaningful patterns and relationships between some of the variables collected.
Descriptive statistics for all relevant variables needed to be also calculated.

C) The dependent variables for this study are NOx and CO2 concentrations. Therefore, a
Pearson correlation test was necessary to identify the independent variables that exerted
the greatest influence on NOx and CO2 emissions.

D) Subsequent to the identification of the most significant variables, a test of
independence was performed to validate the assumptions necessary for statistical
analyses.

E) Once independence was established, the data were tested for normality using the
Ryan-Joiner test. The result from this test helped define the type of statistical analysis

performed. Possible data transformations were also investigated in an effort to normalize
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the data. However, this approach was abandoned since no success was obtained from
these data transformation techniques.

F) Based on the results from the previous steps, a statistical analysis was defined to
determine the effect of the distinct fuel types on NOy and CO; emissions. Pertinent
statistical tests include the analysis of variance (ANOVA) or the covariate version of the
General Linear Model (GLM).

G) The statistical analyses performed were used to determine whether the independent
variables of fuel type and compactor were statistically significant on the emissions of
NOy and CO,. A standard significance value of o = 0.05 (95% confidence level) was

used to define statistical significance.

I11.B. Statistical Analysis
This section describes the statistical analysis that was used to determine if the

factors of “fuel type” for the first part and “compactor” for the second part have a
statistically significant effect on the NOy and CO, concentrations. The parametric test
considered was the analysis of covariance since parametric tests tend to be more powerful
than nonparametric tests.

The SPOT sampler collected over 30,000 engine and emission observations
during a regular day of sampling on a second-by-second basis. The advantage of this
data set was the number of observations collected to characterize the diesel vehicle.
However, these observations were collected so closely to each other that they had a
strong dependence that violated one of the basic assumptions in parametric statistics
related to independent observations. Thus, the issue of autocorrelation had to be resolved

to enhance the robustness of the statistical analyses performed.

II1.B.1. Analysis of Variance. The analysis of variance (anova) technique is commonly
used to test whether two or more sample means could have been obtained from
populations with the same parametric mean (Sokal and Rohlf, 1981). This procedure
evaluates whether the mean difference between two or more treatment conditions has a
significant effect on a dependent variable (Agresti & Finlay, 1997). The treatment

conditions or groups are defined by the various levels of independent variables. For this
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study the two dependent variables being tested are NOy and CO, emissions from the
diesel compactor. The groups include the following: for the first part of the analysis the
three fuel types used- namely no. 2 diesel, B20 and ULSD fuel; and for the second part of
the analysis the compactor tested- either Compactor #1 or Compactor #2. To decide if
the difference between treatment conditions is due to random variation or not, the F-ratio
is calculated (Equation 1). This ratio compares the variance between subjects to the
variance expected due to random error. The variance calculated in the numerator of the
F-ratio describes the differences between the sample means (Equation 2) and is referred
to as the between-groups variability. The variance in the denominator of the F-ratio
(Equation 3) is referred to as the error variance or within-groups variability (Mertler and
Vannatta, 2002). In other words, the between-groups variability actually measures the
differences due to the effect of the treatment or chance and the within-groups variability
measures only differences caused by chance. This calculated value is then compared to
the F-statistic (Equation 4) which is based on levels of significance and degrees of
freedom for between and within groups data (v; and v, respectively). This distribution is
used to test whether two or more samples have the same variance. The null hypothesis
for this statistical analysis is that two or more variances estimate the same parametric
variance; the alternative hypothesis in an anova is always that the parametric variance
estimated by the variance among groups is greater than that estimated by the variance

within groups.

Definition of distribution statistic:

F=MSg/MSy : (Equation 1)

MS5 is the mean square difference between groups defined by the following
equation:

Zk:n (X, =X ) (Equation 2)

= )

k = number of groups.
J = group number.
X;=mean for ] group.

X, = mean of all groups combined.

n; = number of observations in group J.
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MSy is the mean square difference within groups or the variance expected due to

random error defined by the following equation:

ZZ(Xij _Yj)z

j=1 i=1
n —k

(Equation 3)

Where: k = number of groups.

J = group number.
X; = value I from group J.

X; = mean of group .
n; = number of observations in group J.

n, = total number of observations in all groups.

Once the F-value has been calculated, it is compared to the following F-statistic
based on the level of significance. The values for this F-statistic are generally obtained
from a table of values organized by levels of significance and degrees of freedom.

1 .
F(oz)[vl Wl = (Equation 4)

(=), %]
Where: a = level of significance (0.05 for this study).
v; = degrees of freedom for between groups data.

vy = degrees of freedom for within groups data.

The assumptions for the analysis of variance are:

1. The observations within each sample must be independent of one another.

2. The populations from which the samples were selected must be normal.

3. The population from which the samples were selected must have equal variances

(homogeneity of variance).

The first assumption was achieved by using a data reduction technique that
yielded quasi-independent observations. The second assumption was not achieved, but,

the one-way anova is robust to violations of the normality assumption (Harris, 1998;
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Randolph, 1989). The third assumption of equal variances was tested and identified in the

data sets analyzed.

II1.B.2. Analysis of Covariance. This is a variation on the original analysis of variance

technique. The analysis of covariance (ancova) test can be used to improve research
design efficiency by adjusting the effect of variables that are related to the dependent
variable. This test is particularly useful when the effect posed by one or more
concomitant variables needs to be removed or partialed out from the dependent variable.
In the present study, NOy and CO, emissions are correlated strongly to engine speed.
However, a primary interest in this study is to identify the effect of the fuel types and
compactors on emissions. Thus, the ancova technique was used to partial out the effect
of engine speed (concomitant variable) from NOy and CO, emissions (dependent
variables tested separately). In the analysis of variance the effect from any concomitant
variable is ignored. Yet, in the covariance analysis this effect is removed by adjusting the
scores on the dependent variable to reflect initial differences in the covariate (Mertler and
Vannatta, 2002). The variable whose effects have been partialed out of the results is
called the covariate in this case Engine Speed. Then NOx and CO, emissions were used
as the dependent variables that were tested separately versus the independent variables of
“fuel type” and “compactor”.

The primary purpose of the analysis of covariance test is to increase the sensitivity
of the F-test to main effects and interactions by reducing the error variance. This is
accomplished by removing the error term associated with the covariate(s). This
predictable variance is best addressed through means of random assignment of subject
groups (Stevens, 1992). However, when random assignment is not possible, the inclusion
of a covariate in the analysis can be helpful in reducing the error variance. The covariate
is used to assess any undesirable variance in the dependent variable by estimating scores
on the covariate. If the covariate has a substantial effect on the dependent variable, a
portion of the within-variability is statistically removed. This ultimately reduces the error

term and produces a larger value for the F-statistic and a more sensitive test.
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Analogous to the previously-described test (anova), in the ancova the two
dependent variables that were tested separately are CO, and NOx. However, in this case
the covariate variable that was partialed out from the dependent variables is
Engine Speed. This covariate variable was chosen since its effect is highly related to the
emissions of CO; and NOy. By removing the effect of engine speed the intent is that the

pure effect that fuel types and compactor exert on the emissions can be identified.

In addition to the anova assumptions, the ancova also includes the following three
assumptions:

1. A linear relationship exists between the dependent variable and the covariate(s).

2. The regression slopes for a covariate are homogeneous (same slope for each group).

3. The covariate is reliable and is measured without error.

The first assumption was checked by plotting the scatterplots of NOy and CO,
versus revolutions per minute (RPM). These plots showed a linear relationship between
emissions and engine speed. The second assumption was checked by performing an F
test for the interaction of emissions and engine speed. The last assumption was assumed

to be true since engine speed was calibrated with a manual tachometer.

I11.B.4. General Linear Model. This is an ANOVA procedure that can be used to analyze

data collected with balanced and unbalanced designs, ANCOVA, and regression.
Calculations are done using a regression approach where a “full rank™ design matrix is
formed from the factors and covariates and each response variable is regressed on the
columns of the design matrix (Minitab, 2012). The General Linear Model assumes that,
apart from residual or uncontrolled variation, the variability in the response variable(s)
can be explained by a linear combination of various constant levels corresponding to
different combinations of the factors and/or a linear dependence on the values of the
covariate(s). In all cases, the residual variations from such a hypothetical model are
assumed to be independent and normal deviates with constant variance (Minitab, 2012).
In this study, the dependent variables analyzed are NOy and CO; emissions and

the independent factors analyzed are fuel type and compactor. The first part of the study
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analyzes the effect of fuel type used on the NOy and CO, emissions sampled from the
first compactor. The second part of the study analyzes the effect that two compactors
have on NOy and CO; emissions while running on diesel fuel. Thus, fuel type and
compactor are the two independent factors used in the statistical analysis. In both cases
the engine speed factor was entered as a covariate term in the GLM analysis since it is an
influential factor on NOy and CO, emissions. By having engine speed as the covariate
factor we seek to isolate the effect from fuel type and compactor in each part of the
analysis.

Additionally, a temporal analysis was performed on the data. The difference from
the design described earlier is that the day factor was used as the independent variable.
However, NOx and CO, emissions remained being the dependent variables and engine
speed remained as the covariate term. This analysis was performed for the two parts of

the study to identify any temporal bias in the data.

IT1.B.5.Hypothesis Testing. The statistical tests mentioned in this section were performed

on the data collected by means of hypothesis testing. The four steps involved in
hypothesis testing are:
Step 1. Formulation of null and alternate hypotheses (H, and H, respectively).
Step 2. Assumptions, sampling distribution and sampling statistic.
Step 3. Determine the probability value. This value determines the probability of
falling in the tail bounded by the test statistic found in step 2.
Step 4. Reject or not reject the null hypothesis depending on the relation between
the probability value and the level of significance or a value. This value
determines the probability of committing a Type I error, where the null hypothesis
is actually true, and the researcher concludes that it is false. For the current study
the common significance level of oo = 0.05 was used. Therefore, the following
criteria defined whether the null hypothesis is rejected or not.
If P <0.05, then reject H,.
If P > 0.05, then do not reject H,.
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The results from the hypothesis test addressed the following questions covered in

the present study:

Phase 1: Fuel Analysis

1.

“Are there statistically significant differences in mean NOy concentrations from a
diesel compactor running on no. 2 diesel, ULSD and B20 fuel types?”

“Are there statistically significant differences on NOy concentrations due to
temporal factors?”

“Are there statistically significant differences in CO, concentrations from a diesel
compactor running on no. 2 diesel, ULSD and B20 fuel types?”

“Are there statistically significant differences in CO, concentrations due to

temporal factors?”

Phase 2: Compactor Analysis

1.

“Are there statistically significant differences in mean NOy concentrations
between Compactor #1 and Compactor #2?

“Are there statistically significant differences in NOy concentrations due to
temporal factors?”

“Are there statistically significant differences in CO, concentrations between
Compactor #1 and Compactor #2?

“Are there statistically significant differences in CO, concentrations due to

temporal factors?”
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IV. RESULTS OF FUEL TYPE ANALYSIS

The first set of engine and emissions data was collected from August 28 to
September 1, 2005 at the Hamm’s landfill facility. This sampling campaign was
originally intended to be used to identify possible problems and obtain experience with
the equipment. However, given the favorable results, these data were used for the
emission characterization of no. 2 diesel fuel. The sampling was continued from
September 12-15, 2005 with the compactor running with B20 and ECD. The actual
running times of the compactor for the days sampled are shown in Table 3. This table
shows the actual number of data points available for the statistical analysis since a few
readings were discarded due to calibration values and communication gaps in the SPOT

system.

Table 3. Total number of hours compactor was in operation during each sampling day.

Day |[Fuel type|Start time [End time| Total time To;gilnq[z;ta
08/29/2005| Diesel | 7:07 AM |5:10 PM 10:03 36158
08/30/2005] Diesel | 7:10 AM |5:57PM | 10:47 38873
08/31/2005| Diesel | 7:08 AM |5:21 PM 10:13 36738
09/01/2005] Diesel | 7:08 AM |4:29 PM 9:21 32383
09/12/2005] B20 7:07 AM |5:10 PM 10:03 35704
09/13/2005 B20 | 7:21 AM |5:11 PM 9:50 32287
09/14/2005| ECD 7:22 AM |5:02 PM 9:40 33441
09/15/2005{ ECD 7:21 AM |5:00 PM 9:39 30906

The average temperature, relative humidity and sky cover conditions for each of
the sampling episodes are shown in Table 4. These data were obtained from the National
Climatic Data Center (NCDC) for the Lawrence municipal airport station. This station is
located about 5 miles southeast of Hamm’s Sanitary Landfill. In this table, scattered sky

cover indicates a 1/8 to 4/8 cover and broken refers to a 5/8 to 7/8 cover.

Table 4. Average temperature, relative humidity and sky cover for sampling period.

sampling day Avg(;)ga)mp. Relatlvzao/k(l;mldlty Sky cover
08/29/2005 21.3 49.4-100 Clear
08/30/2005 21.1 51.1-96.6 mostly clear
08/31/2005 22.0 48.3-96.6 clear, scattered and broken
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09/01/2005 19.8 57.5-96.6 scattered, broken and overcast
09/12/2005 23.9 58.8-84.0 clear and scattered
09/13/2005 22.9 66.3-84.6 clear, scattered and broken
09/14/2005 18.2 53.3-86.6 mostly clear

09/15/2005 15.1 77.7-93.1 overcast

IV.A. Data Screening
A profile for each fuel type used was created by collecting engine and emissions

data from the compactor while running with each fuel type. This raw data included some
calibration values each time the engine was started and also some missing values due to
compiling gaps. These values were cleared from the final dataset prepared for the
statistical analysis. Upon further analysis, the KU team also found that the ambient
temperature and humidity values collected by the SPOT system were inaccurate. This
was the case because of the location of the SPOT system. The only viable place for
placing the SPOT was behind the operator cabin. This location, although not directly
above the engine, did receive enough heat to significantly impact the ambient temperature
values and consequently the relative humidity as well. Thus, weather surface data were
used from the closest weather station located at the Lawrence Municipal Airport (about 5

miles southeast from the sampling location).

IV.A.1.Descriptive Statistics and Correlation Analysis. Descriptive statistics for ambient

temperature, relative humidity, engine speed, mass air flow, exhaust flow, fuel flow and
O, concentrations are shown in Tables 5 and 6. For all descriptive statistics presented, N
stands for the sample size. Q1 and Q3 refer to the first and third quartiles, respectively;

approximately 50% of a distribution falls between these two values.

Table 5. Descriptive statistics for ambient and engine variables for all data.

Variable N |Mean |Median|StDev |Min.|Max.| Q1 | Q3

Amb. Temp (deg. C)| 122 19.8 | 18.9 42 | 139 31.1 | 16.1 | 22.8

Dew point (deg. C) | 122 162 | 17.2 2.5 11221222 13,6 | 17.8
Relative humidity (%) 122 | 81.1 | 84.5 | 12.7 [48.3[100.0| 75.1 | 90.0
Engine Speed (RPM)|276486(1810.2{2106.0 | 545.3 |781.312282.0[1871.02151.0
MAF (Ibs/hr) 276486|271.4 | 322.3 | 104.8 | 56.2 |1439.4|191.6 |345.4
FuelFlow (kg/hr) [276486| 70.8 | 86.8 | 39.3 | 2.4 [139.7| 34.1 [101.2
MAF T (deg. C) |276486|362.2 | 391.4 | 73.6 |40.2 |444.5|352.3|406.7
0, (%) 276486 12.2 | 10.9 32 [ 6.0 | 195 9.7 | 14.6
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Table 6. Descriptive statistics for ambient and engine variables by fuel type.
Variable | Day N [Mean |Median|StDev(Min.| Max. | Q1 | Q3
Ambient | B20 29 233 | 22.8 1.8 [21.1] 28.9 | 22.2 | 23.9
Temperature Diesel| 50 | 20.9 | 189 | 4.1 |17.2 ] 31.1 | 17.8 | 23.1
(deg.C) |ECD| 43 16.0 | 150 | 2.0 [13.9] 22.8 | 15.0 | 16.1
Dew point 320 29 19.1 | 18.9 1.1 [17.2] 22.2 | 18.3 | 20.0
(deg. C) Diesel| 50 17.1 | 17.2 | 0.9 [13.9] 189 | 169 | 174
ECD | 43 13.1 | 128 | 0.5 |[12.2] 13.9 | 12.8 | 13.9
Relative | B20 29 77.7 | 789 | 8.0 |58.8| 87.3 | 74.7 | 82.9
Humidity [Diesel| 50 81.0 | 85.5 | 16.7 |48.31100.0| 66.3 | 96.6
(%) ECD | 43 83.7 | 86.6 | 9.0 |53.3]| 93.1 | 80.6 | 86.7
Engine B20 | 67991 |1813.5/2101.0 |544.21819.0(2282.0/1932.0|2155.0
Speed  |Diesel|144152|1810.1{2106.0 | 543.5|781.3]|2258.0/1882.0|2146.0
(RPM) ECD | 64343 {1807.0/2111.0|550.5(827.0|2257.0{1687.0{2157.0
Mass Air | B20 | 67991 | 260.3 | 309.6 | 97.4 | 61.9 |426.4|196.6 | 328.8
Flow Diesel (144152 277.7 | 331.4 |107.8|56.5|439.4|197.3 |354.1
(Ibs./hr) | ECD | 64343 |269.0 | 323.7 |104.4|56.2 |431.5|146.4 | 342.3
Fuel Flow 320 67991 | 66.5 | 81.9 | 369 | 24 |127.7| 33.5 | 97.1
(Kg/hr) Diesel|144152| 73.8 | 90.9 | 40.5 | 2.7 [139.7| 36.3 | 1054
ECD | 64343 | 68.4 | 84.3 | 383 | 2.4 |130.0| 22.0 | 100.2
Mass Air | B20 | 67991 | 360.1 | 393.7 | 80.4 | 71.7 | 439.6 | 353.7 | 408.7
Flow Diesel|144152|369.0 | 395.0 | 66.2 | 40.2 | 444.5 | 357.5 | 409.1
Temperature
(deg. C) | ECD | 64343 |348.9 | 383.0 | 79.7 | 50.6 | 436.1 | 338.1 | 397.7
B20 {67991 | 123 | 109 | 32 | 7.2 | 19.5 | 9.7 | 14.6
0, (%) |Diesel|144152] 12.1 | 10.7 | 3.1 | 6.0 | 193 | 9.6 | 143
ECD | 64343 | 12.6 | 11.2 | 3.2 | 7.8 | 195 | 99 | 15.6

A Pearson correlation analysis was performed to assess which of the variables had
the most important influence on the NOy and CO, emissions. This analysis is shown in
Table 7; in it we can see that ambient temperature, relative humidity and mass air flow
temperature have a very small influence on these concentrations. Engine speed, mass air
flow and fuel flow do have a significant influence above 0.8 on NOy and CO,
concentrations. However, upon closer inspection these variables are strongly dependent
on each other as well. Therefore, these variables are not independent with respect to the
influence they place on these two emissions. From the variables with high Pearson
correlation values, engine speed is the most reliable since it is measured directly based on

the alternator signal and the curve obtained from using a manual tachometer.
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Table 7. Pearson correlation for main variables collected.

. . Mass| Fuel
Factor NOx | CO, A_Ir_nblentReIa_tl\_/e Eng. air [Flow
emp. humidity] Speed fi
ow
CO, 0.935
Ambient Temp. 0.045 [0.020
Relative Humidity  |-0.082 |-0.011] -0.700
Engine Speed 0.849 [0.910| 0.020 | -0.039
Mass Air Flow 0.910 {0.970| -0.034 | 0.023 | 0.934
Fuel Flow 0.929 10986| -0.017 | 0.018 0.880 0.982
Mass Air Flow Temp. 0.760 [0.746| 0.082 | -0.051 | 0.772 |0.7280.721

The histogram of the engine speed data is shown in Figure 22. In it we can
identify two separate distribution areas. The first distribution is centered near 800 RPM
and is indicative of the RPM frequency when the engine is idling. The second part of the
histogram shows a bimodal distribution with peaks at about 2050 and 2150 RPM that is
indicative of the two gears of the compactor. Histograms with the same pattern were

obtained for the data of the individual fuel types (Figure 23).

Histogram of EngineSpeed for all data
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Figure 22. Histogram of engine speed for all data.
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Histogram of EngineSpeed for each fuel type
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Figure 23. Histogram of engine speed for each fuel type.

IV.A.2.Homogeneity of Variance. The assumption of equal variances (homogeneity of

variance) for the engine speed observations was evaluated with Barlett’s and Levene’s
tests (Table 8). Levene’s test is less sensitive to departures from normality and therefore
more appropriate for the data analyzed than Bartlett’s test. However, both tests confirmed
that there was not a significant difference between the variances in engine speed
observations from the three fuel types. These results were also confirmed visually in the

histograms from Figures 24, 25 and 26 that show very similar distributions.

Table 8. Test of homogeneity of variance for three pairs of fuel type.

Engine Speed Test Difference
: Factor o P-value | .. .-
comparison statistic Significant?
Bartlett’s-
ECD, B20 and test 0.81 0.667 NO
Diesel Levene’s 0.69 0.504 NO
test
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Histogram of ECDES, B20ES
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Figure 24. Histogram of engine speed for ECD and B20 fuel types.
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Figure 25. Histogram of engine speed for diesel and B20 fuel types.



Histogram of DieselES, ECDES
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Figure 26. Histogram of engine speed for Diesel and ECD fuel types.

IV.B. NOy Results for Fuel Analysis

IV.B.1.Scatterplots and Histograms for NO,. The SPOT system used to collect data on a

second-by-second basis yielded a vast and daunting dataset due to the extremely large
number of data points. The following figures are a graphical representation used to
identify patterns and relationships between some of the variables collected. Figure 27
shows a scatterplot for engine speed versus NOy concentrations for the cumulative data.
In it we can identify a positive relationship between NOy concentrations and engine
speed. This relationship is expected since higher emission concentrations correlate with
an increase in engine loading. The scatterplot also shows an increase in NOy variability
between an engine speed of 1900 and 2200 RPM. This variability spans from
approximately 200 to 700 ppm of NOy. Figure 28 shows the same shape and pattern
exhibited in Figure 27 for each fuel type tested.
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Scatterplot of NOx vs EngineSpeed for all data
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Figure 27. Scatterplot of NO, vs. engine speed for all data.
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Scatterplots of NOx vs EngineSpeed for each fuel type
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Figure 28. Scatterplot of NO, vs. engine speed for each fuel type.
IV.B.2.Preliminary Data Analysis. The data set for the three fuel types was analyzed
further. As shown in Table 9, a total of 276,486 observations were collected for the fuel
analysis part of the project. These observations were subject to a General Linear Model
(GLM) analysis with NOy concentrations as the dependent variable, engine speed as the
covariate independent factor and Fuel Type as an independent factor. Engine Speed was
chosen as a covariate factor since this variable is highly related to NOy concentrations
and the intent is to segregate the effect from the “fuel type” factor. Residuals were saved
for further analysis as described below.
Table 9. NO, descriptive statistics.
Variable Day N Mean | Median | StDev | Minimum | Maximum | Q1 Q3
NOx (ppm) All 276486 | 415.04 | 445.1 141.51 63.79 728.1 320.1 | 532.5
Diesel 8/29/2005 | 36158 | 417.9 444.8 139.2 76.3 643.9 337.3 | 530.3
Diesel 8/30/2005 | 38873 | 426.6 441.2 123.8 81.2 638.7 366.6 | 524.7
Diesel 8/31/2005 | 36738 | 411.7 444.7 144.7 76.4 632.2 222 | 539.5
Diesel 9/1/2005 | 32383 398 420.5 135 63.8 627.7 286.6 | 514.9
B20 9/12/2005 | 35704 | 413.4 449.6 147.2 82.6 657.1 219.1 | 534.6
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B20 9/13/2005 | 32287 | 414.9 453.1 139 81.2 634.5 331.4 | 535.2
ECD 9/14/2005 | 33441 | 417.9 456.9 162.1 87.5 728.1 213.4 | 543.9
ECD 9/15/2005 | 30906 418 450 138.1 82.1 630.4 353.2 | 538
All B20 9/12-9/13 | 67991 | 414.1 451.1 143.4 81.2 657.1 309.3 [ 535
All Diesel 8/29-9/01 | 144152 | 414.2 439 136.1 63.8 643.9 326.6 | 527.2
All ECD 9/14-9/15 | 64347 418 453.8 151 82.1 728.1 294.3 | 539.8

The results from the GLM analysis are shown in Table 10 where a large F value
and thereby a statistical significance for fuel type, engine speed and their interaction was
identified. However, upon closer inspection it was realized that the P values were biased
based on the very large samples. Basically, with such large sample sizes, any effect

would be found to be statistically significant based on the probability value (P).

Table 10. General Linear Model for NO, versus Fuel Type with Engine Speed as covariate.

Factor N DF F P-value
Engine 1 |655115.01 | 0.000
Speed
Fuel Type 276485 2 610.58 0.000
Fuel Type
*Engine 2 781.41 0.000
Speed

IV.B.3.Autocorrelation Test. An autocorrelation test was performed in the data using the

residuals obtained from the previous GLM analysis. These residuals were subject to a
partial autocorrelation test and the results are plotted in Figure 29. Almost imperceptible
in this figure are the critical bands for an alpha value of 0.05 for the hypothesis that the
correlations are equal to zero. As we can tell, the first 10 lags shown are random in their
pattern but well outside the critical bands. Thus, as expected, the raw data show signs of
a strong autocorrelation. This issue is inherent in any database made up of frequent
successive observations. Thereby, autocorrelation needed to be addressed since it was

limiting the validity and confidence of the GLM analysis (Randolf, 1989).
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Partial Autocorrelation (no lag)
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Figure 29. Plot of partial autocorrelation for all data.

IV.B.4.Time to Independence. In most data gathering campaigns a main challenge

relates to collecting large enough samples. Usually, the problem is that sample sizes are
too small because of financial limitations, and researchers then have to make the best out
of the collected data. In the current study, the opposite is true since the SPOT system is
able to collect virtually continuous samples without incurring in an added expense. For
as long as the trash compactor was in operation, the SPOT system collected second-by-
second data. Needless to say, this large data set poses a challenge when it comes to

performing statistical analyses with using independent of observations.

Different techniques were sought to address the issue of autocorrelation. In this
search, a publication by Swihart and Slade (1985) was found. Their research developed a
procedure for determining the time interval at which autocorrelation becomes negligible
by using location data of a radio-tagged adult female cotton rat. This study showed that if
a fixed interval separates successive observations in an autocorrelated data set, the
dependency can be removed by using observations separated by several intervals, thus

permitting the use of statistical home range estimates. This approach was quite effective
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in the animal movement studies but had not been used in a data set like the one being
used in the current tailpipe emissions study. This procedure was adapted and used for
the current study by analyzing different time intervals to determine a time interval at
which autocorrelation becomes negligible. This approach was tested with some
skepticism but yielded excellent results in producing quasi-independent observations that
satisfy the assumptions of the statistical analysis hereby presented. This “time to
independence” can be thought of as the time necessary to produce a distribution of quasi-
independent observations. Appendix A includes the results from these analyses. After
several iterations an interval of 800 seconds (about 13 minutes) was identified as an
adequate interval that minimized autocorrelation. Figure 30 shows that after using an
interval of 800 seconds per observation, the observations are quasi-independent and

virtually all are inside the 5% critical bands.

Table 11. Total number of observations used after test for independence procedure.

Fuel type Day Total data points
Diesel 08/29/2005-09/01/2005 181
B20 09/12/2005-09/13/2005 85
ECD 09/14/2005-09/15/2005 81
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Partial Autocorrelation for NOx (1 of 800 lag)
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Figure 30. Plot of partial autocorrelation for NO, data after interval of 1 of 800.

The reduced data set was also subject to a GLM analysis where Engine Speed was
used as a covariate to partial out its effect. By removing the effect of Engine Speed the
intent is that we will be able to test for the pure effect that fuel types have on emissions.
The results in Table 12 show that at an alpha value of 0.05, engine speed is statistically
significant but fuel type and the interaction of fuel type and engine speed are not. The
effect of Fuel Type and its interaction with Engine Speed was opposite from what was
found in the previous data set. This highlights the importance of having independent
samples in performing ANOVA/GLM analyses.

The current approach was carried over to the CO; analysis and to the two

compactor analysis.

Table 12. General Linear Model for NO, versus Fuel Type with Engine Speed as covariate for
reduced data set.

Factor N DF F P-value
Engine Speed 1 824.72 0.000
Fuel Type 2 0.52 0.595
Fuel Type* 346
Engine Speed 2 0.44 0.645
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IV.B.5.Temporal Analysis. A temporal analysis was also performed to identify potential

daily biases. As shown in Table 13, the temporal factor and its interaction with engine
speed are not statistically significant. This means that NOy concentrations are not

dependent on the day of sampling.

Table 13. General Linear Model for NO, versus Sampling Day with Engine Speed as covariate for
reduced data set.

Factor N DF F P-value
Engine 1 921.77 0.000
Speed
Day 346 7 0.28 0.960
P
Day*Engine 7 0.51 0.823
Speed

IV.B.6.Data Fitting Model Analysis. One of the goals of the current project is to develop

potential models that can be used to analyze and predict diesel NOy emissions. The
nature of the data is such that most of the NOy readings are at high engine speed values
between 2000 and 2400 RPM. Then a second cluster of observations are also observed at
a low engine speed between 750 and 850 RPM. A third group of observations was
present at the remaining engine speeds (850-200 RPM). Needless to say, finding a valid
model to represent this type of data is a cumbersome task. Nonetheless, three types of
models were used to fit the NO, data.

The first model used is the fitted line plot with logarithmic NOy values. As shown
in Figure 31, this model is quite successful in capturing most of the data observations

within the 95% prediction intervals and it accounts for 81% of the variability in the data.
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Fitted Line Plot
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Figure 31. Fitted line plot for fuel data with a linear regression equation.

The next model used is a second order (quadratic) regression model using a log

scale for NOy observations (Figure 32). This model allowed for some curvilinear feature

to fit the data but did not improve the shape fit much since it overestimates the middle

values between 1200 and 2000 RPM. However, this model did achieve an improvement

in the coefficient of determination, which rose to 83%.
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Figure 32. Fitted line plot for fuel data with a quadratic regression equation.

The third model considered was the cubic regression model also using a log scale
for the NOy observations (Figure 33). This model seemed to fit the data very closely in
distinct engine speed regions, and it was able to account for the highest variability from
the three models considered with 86%. Of remarkable note is the fit at the higher engine
speed cluster area between 2000 and 2200 RPM where the model matched the shape
almost perfectly. The fit at the low engine speed cluster was also good but perhaps not
any better than the previous two models. The one weakness in predicting NOy
concentrations is evident in the 850-1300 RPM engine speed where the model seems to

underpredict. However, most of the observations in that range are still within the 95%

prediction interval bands.
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Fitted Line Plot
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Figure 33. Fitted line plot for fuel data with a cubic regression equation.
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IV.C. CO; Results for Fuel Analysis
The CO; concentrations were also plotted versus engine speed in Figure 34. In

this case we identified a positive relationship between these two variables. The
variability of CO, concentrations also increases with engine speed. This behavior creates
a fanning effect where the largest variability is observed from 1600 to 2300 RPM. Figure
35 shows the same shape and pattern exhibited in Figure 34 for each fuel type tested.

Scatterplot of CO2 vs EngineSpeed for all data

CO2 (06)
n

1000 1500 2000 2300
EngineSpeed (RPM)

Figure 34. Scatterplot of CO, vs. engine speed for all data.
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Scatterplot of CO2 vs EngineSpeed
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Figure 35. Scatterplot of CO, vs. engine speed for each fuel type.

IV.C.1.Preliminary Data Analysis. The first data set was analyzed further to determine

the effect on the emissions concentrations from temporal and fuel type factors. As shown

in Table 14, a total of 276,486 observations was collected for the fuel analysis part of the

project. These observations were subject to a General Linear Model (GLM) analysis with

CO; concentrations as the dependent variable, Engine Speed as the covariate independent

factor and Fuel Type as an independent factor. Engine Speed was chosen as a covariate

factor since this variable is highly related to CO, concentrations and the intent is to

segregate the effect from the “fuel type” factor. Residuals were also saved for further

analysis.

Table 14. CO, descriptive statistics.

Variable Day N Mean | Median | StDev | Minimum | Maximum | Q1 Q3
CO2 (%) All 276486 | 53074 | 6.166 | 2.0187 0.676 9.31 3.815 | 6.909
Diesel 8/29/2005 | 36158 | 5.57 6.38 1.97 1.05 9.31 435 | 7.07
Diesel 8/30/2005 38873 5.70 6.36 1.82 0.83 8.56 5.18 7.03
Diesel 8/31/2005 | 36738 | 5.22 6.24 2.16 0.75 8.82 2.13 | 7.08
Diesel 9/1/2005 32383 | 5.17 6.05 2.01 0.80 8.44 2.89 | 6.86
B20 9/12/2005 35704 5.09 6.03 2.07 0.68 8.55 1.98 6.75
B20 9/13/2005 | 32287 [ 5.32 6.17 2.00 0.74 8.39 433 | 695
ECD 9/14/2005 | 33441 | 4.97 5.98 2.11 0.78 8.27 1.94 | 6.63
ECD 9/15/2005 30902 5.35 6.07 1.89 0.72 8.14 470 | 6.86
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All B20 9/12-9/13 | 67991 | 5.20 6.09 2.04 0.68 8.55 3.74 | 691

All Diesel 8/29-9/01 | 144152 | 5.43 6.27 2.00 0.75 9.31 398 | 7.01

All ECD 9/14-9/15 | 64343 | 5.15 6.02 2.01 0.72 8.27 322 | 6.82

The results from the GLM analysis are shown in Table 15 where a large F-value
and thereby a statistical significance for fuel type, engine speed and their interaction was
identified. However, the same issue identified for NOy concentrations was present for

CO; also and the P values were biased because of the very large samples.

Table 15. General Linear Model for CO, versus Fuel Type with Engine Speed as covariate.

Factor N DF F P-value
Engine Speed 1 1196847.29 0.000
;lleilg;g):* 276485 2 433.31 0.000
Engine Speed 2 37.97 0.000

IV.C.2.Autocorrelation Test. An autocorrelation test was performed on the data by using

the residuals obtained from the previous GLM analysis. These residuals were subject to a
partial autocorrelation test and the results are plotted in Figure 36. Almost imperceptible
in this figure are the critical bands for an alpha value of 0.05 for the hypothesis that the
correlations are equal to zero. As we can tell, the first 10 lags shown are random in their
pattern but well outside the critical bands. Thus, as expected, the raw data show signs of
a strong autocorrelation. This issue is inherent in any database made up of frequent
successive observations. Thereby, autocorrelation needed to be addressed since it was

limiting the validity and confidence of the GLM analysis.
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Partial Autocorrelation for CO2 (no lag)
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Figure 36. Plot of partial autocorrelation for all data.

IV.C.3.Time to Independence. The same procedure used for NOy concentrations was

used for CO; concentrations to develop quasi-independent observations. This data
reduction technique produces a subset of observations by selecting observations from the
original data set separated by a large enough interval to render autocorrelation
insignificant. Appendix A includes the results from these analyses. Thus, an interval of
800 seconds (about 13 minutes) was used to minimize autocorrelation. Figure 37 shows
that after using an interval of 800 seconds per observation, the observations are quasi-

independent.

Table 16. Total number of observations used after test for independence procedure.

Total data
Fuel type Day points
Diesel 08/29/2005-09/01/2005 181
B20 09/12/2005-09/13/2005 85
ECD 09/14/2005-09/15/2005 81
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Partial Autocorrelation for CO2 (1 of 800 lag)
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Figure 37. Plot of partial autocorrelation for CO, data after interval of 1 of 800.

The reduced data set was then subjected to a GLM analysis where Engine Speed
was used as a covariate to partial out its effect. By removing the effect of engine speed
the intent is that we will be able to test for the pure effect that fuel types have on
emissions. The results in Table 17 show that at an alpha value of 0.05, engine speed is
statistically significant, but the Fuel Type and the interaction of Fuel Type and Engine
Speed are not. The effect of Fuel Type and its interaction with Engine Speed was the
opposite of what was found in the previous data set.

Table 17. General Linear Model for CO, versus Fuel Type with Engine Speed as covariate for
reduced data set.

Factor N DF F P-value
Engine Speed 1 1454.71 0.000
Fuel Type 2 0.95 0.389
Fuel Type* 346
Engine Speed 2 0.34 0.714

IV.C.4.Temporal Analysis. A temporal analysis was also performed to identify potential

daily biases. As shown in Table 18 below, the temporal factor and its interaction with
engine speed are not statistically significant. This means that CO, concentrations are not

dependent on the day of sampling.
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Table 18. General Linear Model for CO, versus Sampling Day with Engine Speed as covariate for
reduced data set.

Factor N DF F P-value
Engine Speed 1 1555.83 0.000
]]))ay* 346 0.38 0914
ay 7 0.25 0.972

Engine Speed

IV.C.5.Data Fitting Model Analysis. One of the goals of the current project is to develop

potential models for analyzing and predicting diesel CO, emissions. The nature of the

data is such that most of the CO; readings are at high engine speed values between 2000

and 2400 RPM. Then a second cluster of observations are also observed at a low engine

speed between 750 and 850 RPM. A third group of observations was present at the

remaining engine speeds (850-200 RPM). Finding a valid model to represent this type of

data is a cumbersome task; nonetheless, three types of models were used to fit the CO,

data.

The first model used is the fitted line plot with logarithmic CO, values. As shown

in Figure 38, this model is quite successful in capturing most of the data observations

within the 95% prediction intervals and it accounts for 89 percent of the variability in the

data. The performance of this model is better than the one exhibited for NOx.
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Figure 38. Fitted line plot for fuel data with a linear regression equation.

The next model used is a second order (quadratic) regression model using a log

scale for CO, observations (Figure 39). This model allowed for some curvilinear feature

to fit the data but did not improve the shape fit that much since it overestimates the

middle values between 1200 and 2000 RPM. However, this model did achieve an

improvement in the coefficient of determination, raising it to 92%.
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Figure 39. Fitted line plot for fuel data with a quadratic regression equation.

The last model tested is the third order (cubic) regression model also using a log
scale for the CO, observations (Figure 40). This model seemed to fit the data very
closely, in the engine speed regions it was able to account for the highest variability with
95 percent. Of note is the fit at the higher engine speed cluster area between 2000 and
2200 RPM where the model matched the shape almost perfectly. The fit at the low
engine speed cluster was also good but perhaps not any better than the previous two
models. The one weakness in predicting CO, concentrations is evident in the 850-1300
RPM engine speed were the model seems to underpredict as shown in Figure 30.

However, few observations occur in that interval so this weakness is not as significant.
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Fitted Line Plot
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Figure 40. Fitted line plot for fuel data with a cubic regression equation.
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V. RESULTS OF COMPACTOR ANALISIS

The second analysis compares two trash compactors of the same model to test the
effect of individual machine on emissions and temporal factors. This analysis only
entails diesel fuel. Since the fuel type analysis already collected information on one
compactor running on diesel fuel, a second compactor was also tested in a second
sampling campaign that occurred from June 21 to June 26, 2007 at the same location and
with the same operator. The actual running time of the compactor for the days sampled
are shown in Table 19. This table shows the actual number of data points available for
the statistical analysis since a few readings were discarded due to calibration values and

communication gaps in the SPOT system.

Table 19. Total number of hours compactor was in operation during each sampling day.

Day |Fuel type Compactor|Start time |End time| Total time | Total data points
08/29/2005| Diesel 7:07 AM [5:10PM | 10:03 36158
08/30/2005] Diesel 1 7:10 AM |5:57TPM | 10:47 38873
08/31/2005] Diesel 7:08 AM [5:21PM | 10:13 36738
09/01/2005| Diesel 7:08 AM |4:29 PM 9:21 32383
06/21/2007| Diesel 1:15PM |5:05 PM 3:50 12866
06/22/2007| Diesel ) 7:22 AM |5:13 PM 9:51 30109
06/25/2007| Diesel 6:54 AM [5:10PM | 10:16 35741
06/26/2007| Diesel 7:29 AM |3:51 PM 8:22 23065

The average temperature, relative humidity and sky cover conditions for each of
the sampling episodes are shown in Table 20. These data were obtained from the National
Climatic Data Center (NCDC) for the Lawrence municipal airport station. This station is

located about 5 miles southeast of Hamm’s Sanitary Landfill.

Table 20. Average temperature, relative humidity and sky cover for sampling period.

Samplin Avg. temp. Relative humidit

dgy g g(oc) b (%) y Sky cover
08/29/2005 21.3 49.4-100 Clear
08/30/2005 21.1 51.1-96.6 mostly clear
08/31/2005 22.0 48.3-96.6 clear, scattered and broken
09/01/2005 19.8 57.5-96.6 scattered, broken and overcast
06/21/2007 26.1 52-93 Few, scattered and broken
06/22/2007 25.6 48-90 Clear, few, scattered
06/25/2007 27.2 50-93 Clear, few
06/28/2007 21.1 72-93 Few, scattered, overcast
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V.A. Data Screening
Profiles were created for each of the two compactors using the diesel fuel data

collected for this and the previous part of the study. These raw data included some
calibration values each time the engine was started and also some missing values due to
compiling gaps. These values were cleared from the final dataset prepared for the
statistical analysis. As mentioned earlier, the KU team also found that the ambient
temperature and humidity values collected by the SPOT system were inaccurate. This
was caused by the location of the SPOT system. The only viable place for placing the
SPOT was behind the operator cabin. This location, although not directly above the
engine, did receive enough heat to significantly impact the ambient temperature values
and consequently the relative humidity ones as well. Thus, weather surface data were
used from the closest weather station located at the Lawrence Municipal Airport (about 5
miles southeast from the sampling location). Descriptive statistics for engine variables

are shown in Table 21.

Table 21. Descriptive statistics for engine variables by compactor

Variable Compactor] N Mean | Median | StDev | Min. [Max.| Q1 | Q3
Engine Speed 1 144160(1810.0| 2106 | 543.6 |781.3|2258 | 1882 | 2146
(RPM) 2 102734 11767.7| 2128 | 581.1 |801.0|2290 | 858 | 2169
Mass Air Flow 1 144160(277.70| 331.4 |107.76|56.54439.4]197.2 |354.1
(Ibs./hr) 2 1027341264.39| 316.6 |116.84|40.82|465.0{113.4|359.5
Fuel Flow (Kg/hr) 1 144160|73.786| 90.90 |40.535|2.676|139.7|36.23|105.4
2 102734166.037| 80.95 [43.159(2.710|142.2| 8.57 |103.2

Mass Air Flow 1 144160/369.02| 395.0 | 66.20 |40.24 |444.5|357.4|409.1
Temperature (°C) 2 102734 (318.30| 359.8 | 82.25 |58.72|417.2|278.9|375.2
Os (%) 1 144160|12.051| 10.73 | 3.131 |6.007|14.29| 9.55 |14.29

2 102734 (12.725| 11.13 | 3.346 |7.497|17.30| 9.93 |17.30

A Pearson correlation analysis assesses which of the variables had the most
important influence on the NOy and CO, emissions (Table 22). We can see that all
variables have a significant influence on NOy and CO; concentrations. A closer
inspection indicates that these variables are strongly dependent on each other. Therefore,
the fundamental assumption of independent observations is not met in either emission
data set. From the variables with high Pearson correlation values, engine speed is the one

measured directly based on the alternator signal and the curve obtained from using a
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manual tachometer to find the exact engine speed values. Thus, this variable is more

reliable to this analysis.

Table 22. Pearson correlation for main variables collected.

Eng. Mass Fuel
Factor NOy | CO, S air |Flow
peed
flow
CO, 0911
Engine Speed 0.787 10914
Mass Air Flow 0.879 [0.970| 0.929
Fuel Flow 0.911 10.985] 0.878 ]0.984
Mass Air Flow Temp.| 0.747 [0.723| 0.722 ]0.680/0.685

In the histogram of the engine speed data shown, we can identify two separate
distribution areas (Figure 41). The first distribution is centered near 800 RPM and is
indicative of the RPM frequency when the engine is idling. The second part of the
histogram shows a bimodal distribution with peaks at about 2050 and 2150 RPM. This is
the same pattern observed in the previous data analyses. Histograms with the same

pattern were obtained for the data of the individual compactors (Figure 42).
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Figure 41. Histogram of engine speed for the combined data of both compactors.
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Histogram of EngineSpeed for Individual Compactors
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Figure 42. Histogram of engine speed for individual compactors.

V.A.1.Homogeneity of Variance. The assumption of equal variances (homogeneity of

variance) for the engine speed observations was evaluated with the F-test and Levene’s
test (Table 23 and Figure 43). Levene’s test is less sensitive to departures from normality
and therefore more appropriate for the data analyzed than the F-test. However, both tests
confirmed that there was not a significant difference between the variances in engine
speed observations from the two compactors. These results were also confirmed visually

in the histograms from Figure 42 showing very similar distributions.

Table 23. Test of homogeneity of variance for two compactors.

Engine S_peed Factor DF1 DF2 | Teststatistic | P-value [.)'ff.e rence
comparison Significant?
Compactor #1 F-test 180 127 0.94 0.699 NO
and Levene’s
Compactor #2 test 1 307 0.88 0.348 NO
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Test for Equal Variances for EngineSpeed

F-Test
Test Statistic 0.94
P-Value 0.699
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Figure 43. Test of equality of variance for engine speed.
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V.B. NOy Results for Compactor Analysis
V.B.1.Scatterplots and Histograms for NOy. The following figures are a graphical

representation used to identify patterns and relationships between the variables collected.
Figure 44 shows a scatterplot for engine speed versus NOy concentrations for the two
compactors. In it we can identify a positive relationship between NOx concentrations and
engine speed. This relationship is expected since higher emission concentrations
correlate with an increase in engine loading. The scatterplot also shows an increase in
NOx variability between an engine speed of 1900 and 2200 RPM. This variability spans
from approximately 200 to 700 ppm of NOy. The shapes of the scatterplots are generally
similar for each compactor. The variability of the observations at a low engine speed is
smaller for the second compactor. Also the observations between 1200 and 2000 RPM
are more compact for the first compactor than for the second one that shows more
variability. In fact at around 1600 RPM, we can identify a few observations that had NOy
concentrations similar to those observed at the highest engine speed for the second

compactor.

Scatterplot of NOx vs EngineSpeed for Compactors #1 and #2
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Figure 44. Scatterplot of NO, vs. engine speed for each compactor.
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V.B.2.Preliminary Data Analysis. The data set for the two compactors were analyzed

further. A total of 246,893 observations were collected for this comparison analysis.
These observations were subjected to a General Linear Model (GLM) analysis with NOy
concentrations as the dependent variable, Engine Speed as the covariate independent
factor and Compactor as the independent factor. Residuals were saved for further analysis
as described below.

The results from the GLM analysis are shown in Table 24 where once more we
identify a large F value and a statistical significance value for Engine Speed, Compactor
and their interaction. These results are the artifact of very large samples in the dataset.
Basically, with such large sample sizes, any effect would be found to be statistically

significant based on the probability value (P).

Table 24. General Linear Model for NO, versus Compactor with Engine Speed as covariate.

Factor N DF F statistic | P-value
Engine Speed 1 482235.67 | 0.000
CCompacttor>l< 246893 1 1680.21 0.000
ormpactot 1 1314.71 | 0.000
Engine Speed

V.B.3.Autocorrelation Test. An autocorrelation test was performed on the data using the

residuals obtained from the previous GLM analysis in order to check the parametric
assumption of independent observations. These residuals were subjected to a partial
autocorrelation test and the results are plotted in Figure 45. Almost imperceptible in this
figure are the critical bands for an alpha value of 0.05 for the hypothesis that the
correlations are equal to zero. As we can tell, the first 10 lags shown are random in their
pattern but well outside the critical bands. Thus, as expected, the raw data show signs of
a strong autocorrelation. This issue is inherent in any database made up of frequent
successive observations. The autocorrelation was addressed since it was limiting the

validity and confidence of the GLM analysis.
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Figure 45. Plot of partial autocorrelation for all data

V.B.4.Time to Independence. The same procedure used previously in the fuel type

analysis for NOy and CO, concentrations was used for the two compactor analysis. This

data reduction technique produces a subset of observations by selecting observations

from the original data set separated by a large enough interval to render autocorrelation

insignificant. Appendix B includes the results from these analyses. Thus, an interval of

800 seconds (about 13 minutes) was used to minimize autocorrelation. Figure 46 shows

that after using an interval of 800 seconds per observation, the observations are quasi-

independent.

Table 25. NO, descriptive statistics.

Variable Day N Mean | Median | StDev | Minimum | Maximum Q1 Q3

(I;;)g) All 246894 | 376.57 | 398.1 145.43 60.81 643.9 215.8 | 501.9
8/29/2005 36158 417.89 4448 139.18 76.26 643.9 337.3 530.3

cl 8/30/2005 | 38873 | 426.57 | 441.2 123.81 81.2 638.7 366.55 | 524.7
8/31/2005 | 36738 411.7 4447 144.7 76.36 632.2 222 539.5

9/1/2005 32391 397.98 420.5 134.99 63.79 627.7 286.4 | 514.9

© 6/21/2007 | 12866 | 386.58 | 378.2 123.06 67.52 605.2 319.5 | 499.33
6/22/2007 | 30109 | 308.58 | 330.9 125.67 60.81 578.2 166.7 | 395.8
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6/23/2007 953 269.56 306.6 89.82 74.37 433.8 155.4 | 341.95

6/25/2007 | 35741 317.88 310.8 154.39 68.16 597.3 155.6 | 465.2

6/26/2007 | 23065 320.07 323.7 142.63 72.82 587.2 153 444
AllC1 | 8/29-9/01 | 144160 | 414.18 438.9 136.12 63.79 643.9 326.6 | 527.2
AllC2 | 6/21-6/26 | 102734 323.8 330.8 141.65 60.81 605.2 1653 | 4379

Partial Autocorrelation Function for RES14
(with 5% significance limits for the partial autocorrelations)

Partial Autocorrelation

T T T T T T T T T T T T T T T T
1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Lag

Figure 46. Plot of partial autocorrelation for NO, data after interval of 1 of 800.

The reduced data set was then subject to a GLM analysis where Engine Speed was
used as a covariate to partial out its effect. The results in Table 26 show that at an alpha
value of 0.05, engine speed is statistically significant along with the interaction between
compactor and engine speed. The interaction significance was an unexpected result that

prompted further analysis.

Table 26. General Linear Model for NO, versus Fuel Type with Engine Speed as covariate for
reduced data set.

Factor N DF F statistic | P-value
Engine Speed 1 715.24 0.000
Compactor 308 1 1.48 0.225
Compactor*Engine Speed 1 4.65 0.032

The interaction between Engine Speed and Compactor means that the difference
in slopes between the regression lines for each compactor is statistically significant. This
means two things: first, that the rate change in NOy concentrations is different for each
distribution and second, that at some point the two lines intersect. Thus, if a pattern is

identified, it would be reversed after the two lines intersect. For example, Compactor #1
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could have lower emissions than Compactor #2 at a given engine speed, however, once
the lines intersect that pattern would be reversed and Compactor #2 would have lower
emissions at a different engine speed. To diagnose this finding more thoroughly both
regression lines were plotted in the same graph and their line equations were scrutinized.
The plot of this exercise can be found in Figure 47. It is interesting to note that the two
lines do not intersect at a plausible engine speed. However, the difference in slopes
between the two compactors is statistically significant. This figure shows the two linear
regression lines getting farther apart from each other as engine speed increases. This
indicates that each compactor produces NOyx emissions at a different rate. This rate
difference is shown to be statistically significant based on the GLM test performed (Table
26).
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Figure 47. Plot of predicted values for two compactors with line equation and intercept value.

V.B.5.Temporal Analysis. A temporal analysis was also performed to identify potential

daily biases. As shown in Table 27 below, the temporal factor and its interaction with
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engine speed are not statistically significant. This means that NOy concentrations are not

dependent on the day of sampling.

Table 27. General Linear Model for NO, versus Sampling Day with Engine Speed as covariate for
reduced data set.

Factor N DF F P-value
Engine Speed 1 610.85 | 0.000

]?aayﬁ 308 7 0.38 0.914
Engine Speed 7 1.34 0.229

V.B.6.Data Fitting Model Analysis. As discussed earlier, one of the goals of the current

project is to develop potential models that can be used to analyze and predict diesel NOy
emissions. Three models tested to fit the NOy data are presented below. The first set of
analyses uses the aggregate data for both compactors. An additional comparison analysis
was also performed on each data set separately since the statistical analyses suggest that
the difference in the two distributions is statistically significant.

The three models use a single set of data including both compactors. The first
model used is the fitted line plot with logarithmic NOy values. As shown in Figure 48,
this model is quite successful in capturing most of the data observations within the 95%
confidence intervals and it accounts for 65% of the variability in the data. The
performance of this model is not as good as the one exhibited in the fuel analysis where

the coefficient of determination (R?) ranged from the high 80’s to mid-90’s for NO,.
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Figure 48. Fitted line plot for compactors data with a linear regression equation.

The next model used is a second order (quadratic) regression model using a log
scale for NOy observations (Figure 49). This model allowed for some curvilinear feature
to fit the data but performed only marginally better than the previous linear model.

Again, this model seems to have a pronounced “hump” at the middle values that is clearly

overestimating NOy concentrations. This model achieved an R? of 66%.
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Figure 49. Fitted line plot for compactors data with a quadratic regression equation.

The third model considered was the cubic regression model also using a log scale

for the NOy observations (Figure 50). This model fit the data very closely in distinct

engine speed regions, and it was able to account for the highest variability from the three

models considered with 79%. Of remarkable note is the fit at the higher engine speed

cluster area between 2000 and 2200 RPM where the model matched the shape almost

perfectly. The fit at the low engine speed cluster was also good but perhaps not any

better than the previous two models. The one weakness in predicting NOy concentrations

is evident in the 850-1300 RPM engine speed where the model seems to underpredict.

However, most of the observations in that range are still within the 95% confidence

interval bands.
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Figure 50. Fitted line plot for compactors data with a cubic regression equation.

The following models compare the performance of these three models based on
an analysis of each individual compactor data set.

The first model analyzed is the fitted line plot with logarithmic NOy values for the
first and second compactor. As shown in Figures 51 and 52, this model is quite
successful in capturing most of the data observations within the 95% prediction intervals
and it accounts for 75% of the variability in the data for the first compactor and 64% for
the second one. The performance of this model is better for the first compactor than the

one exhibited when using the aggregate data for both compactors and about the same for

the second compactor.
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Figure 51. Fitted line plot for Compactor#1 data with a linear regression equation.
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Figure 52. Fitted line plot for Compactor#2 data with a linear regression equation.
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The next model analyzed is the second order (quadratic) regression model with
logarithmic NOy values for the first and second compactor. As shown in Figures 53 and
54, this model is quite successful in capturing most of the data observations within the
95% prediction intervals and it accounts for 78% of the variability in the data for the first
compactor and 64% for the second one. The performance of this model is again better for
the first compactor than the one exhibited when using the aggregate data for both

compactors and about the same for the second compactor.
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Figure 53. Fitted line plot for Compactor#1 data with a quadratic regression equation.
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Figure 54. Fitted line plot for Compactor#2 data with a quadratic regression equation.

The cubic regression model with logarithmic NOy values was analyzed next for
the first and second compactor. As shown in Figures 55 and 56, this model is quite
successful in capturing most of the data observations within the 95% prediction intervals
and it accounts for 83% of the variability in the data for the first compactor and 73% for
the second one. The performance of this model is again better for the first compactor
than the one exhibited when using the aggregate data for both compactors. This model

did show an improvement for the second compactor by yielding the highest R? value.
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Figure 55. Fitted line plot for Compactor#1 data with a cubic regression equation.
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Figure 56. Fitted line plot for Compactor#2 data with a cubic regression equation.

103



V.C. CO; Results for Compactor Analysis
The CO; concentrations for each compactor are plotted versus engine speed in

Figure 57. In this case we identified a positive relationship between these two variables.
The variability of CO, concentrations also increases with engine speed. This behavior

creates a fanning effect where the largest variability is observed from 1600 to 2300 RPM.

Scatterplot of CO2 vs EngineSpeed for Compactors #1 and #2
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Figure 57. Scatterplot of CO, vs. Engine Speed for both compactors.

V.C.1.Preliminary Data Analysis. The data set for the two compactors was analyzed

further to determine the effect on the emissions concentrations from temporal and
compactor factors. A total of 246,893 observations were collected for this compactor
comparison analysis part of the project (Table 28). These observations were subject to a
General Linear Model (GLM) analysis with CO, concentrations as the dependent
variable, Engine Speed as the covariate independent factor and Fuel Type as an

independent factor. Residuals were also saved for further analysis.
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Table 28. CO, descriptive statistics.

Variable | Day N Mean | Median | StDev | Minimum | Maximum | Q1 Q3
CO2 (%) All 24289 51975 | 6.154 | 2.0864 0.754 9.31 2’958 6.871
81)2095/2 36158 | 5.5675 | 6.382 1.9735 1.054 9.31 4£35 7.074
8/3072 38873 | 5.7018 | 6.355 1.819 0.834 8.56 >.18 7.025
i 005 05
81)3015/2 36738 | 5.2208 | 6.235 | 2.1569 0.754 8.82 2’113 7.078
9/(1)/520 32391 | 5.1724 6.05 2.0116 0.801 8.44 2’58 6.859
6/21/2 5.34
007 12866 | 5.6982 | 6.363 1.7336 1.135 8.06 07 6.877
61)2027/2 30109 | 4.8516 | 5.902 1.9588 1.057 7.87 2‘264 6.381
C2 61)2037/2 953 4.8681 5.909 1.8713 1.283 7.267 2’27 6.327
6/25/2 1.85
007 35741 | 4.6634 | 5.525 2.333 1.004 8.2 55 6.981
61)2067/2 23065 | 47795 | 5.837 | 2.2355 1.008 7.935 1'270 6.736
8/29- | 14416 3.98
AllC1 9/01 0 54266 | 6.271 2.0036 0.754 9.31 13 7.006
6/21- | 10273 1.95
All C2 626 4 4.8761 5908 | 2.1567 1.004 8.2 4 6.69

The results from the GLM analysis are shown in Table 29 where once more we
identify a large F value and a statistical significance value for Engine Speed, Compactor
and their interaction. These results are the artifact of very large samples in the dataset.
Basically, with such large sample sizes, any effect would be found to be statistically

significant based on the probability value (P).

Table 29. General Linear Model for CO, versus Compactor with Engine Speed as covariate.

Factor N DF F statistic | P-value
Engine Speed 1 1300965.75 | 0.000
CCompa(:,[tOI:l< 246893 1 2679.29 0.000
ompagtor 1 257.01 0.000
Engine Speed

V.C.2.Autocorrelation Test. An autocorrelation test was performed in the data by using

the residuals obtained from the previous GLM analysis. These residuals were subject to a
partial autocorrelation test and the results are plotted in Figure 58. Almost imperceptible
in this figure are the critical bands for an alpha value of 0.05 for the hypothesis that the

correlations are equal to zero. As we can tell, the first 10 lags shown are random in their
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pattern but well outside the critical bands. Thus, as expected, the raw data show signs of
a strong autocorrelation. This issue is inherent in any database made up of frequent
successive observations. Thereby, autocorrelation needed to be addressed since it was

limiting the validity and confidence of the GLM analysis.

Partial Autocorrelation (no lag)
(with 5% significance limits for the partial autocorrelations)

1.0
0.8
0.6
0.4
0.2 |
0.0

-0.21

-0.4

Partial Autocorrelation

-0.6
-0.8
-1.04

Lag

Figure 58. Plot of partial autocorrelation for all data.

V.C.3.Time to Independence. The same procedure used previously in the fuel type

analysis for NOx and CO; concentrations was used for the two compactor analysis to
develop quasi-independent observations. This data reduction technique produces a subset
of observations by selecting observations from the original data set separated by a large
enough interval to render autocorrelation insignificant. Appendix B includes the results
from these analyses. Thus, an interval of 800 seconds (about 13 minutes) was used to
minimize autocorrelation. Figure 59 shows that after using an interval of 800 seconds per

observation, the observations are quasi-independent.
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Table 30. Total number of observations used after test for independence procedure.

Total data
Compactor Day points
Compactor #1  [08/29/2005-09/01/2005 181
Compactor #2  06/21/2007-06/26/2007 128

Partial Autocorrelation for CO2 (1 of 800 lag)
(with 5% significance limits for the partial autocorrelations)
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Figure 59. Plot of partial autocorrelation for CO, data after interval of 1 of 800.

The reduced data set was then subjected to a GLM analysis where Engine Speed
was used as a covariate to partial out its effect. The results in Table 31 show that at an
alpha value of 0.05, engine speed is statistically significant along with compactor. This
means that the difference in the CO, emission distributions for the compactors is
statistically significant. This was an interesting finding because the two compactors used
were the exact same model and were being operated by the same person. This result
along with the interaction significance identified for NOy concentrations mean that the
NOy and CO; emission distributions from each compactor are in fact different from each

other.
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Table 31. General Linear Model for CO, versus Compactor with Engine Speed as covariate for
reduced data set.

Factor N DF F statistic | P-value
Engine Speed 1 1827.41 0.000
Compactor 1 5.76 0.017
Compactor* 308
Engine Speed 1 0.24 0.623

V.C.4. Temporal Analysis. A temporal analysis was also performed to identify potential
daily biases. As shown in Table 32 below, the temporal factor and its interaction with
engine speed are not statistically significant. This means that CO, concentrations are not

dependent on the day of sampling.

Table 32. General Linear Model for CO, versus Sampling Day with Engine Speed as covariate for
reduced data set.

Factor N DF F P-value
Engine 1 1465.63 0.000
Speed
Day 308 7 1.09 0.372
P
Day*Engine 7 0.38 0.916
Speed

V.C.5.Data Fitting Model Analysis. Three types of models used to fit the CO, data are

presented below. The first set of analyses uses the aggregate data for both compactors.

An additional comparison analysis was also performed on each data set separately since
the statistical analyzes suggest that the difference in the two distributions is statistically
significant.

The following set of three models use one set of data that includes both
compactors. The first model used is the fitted line plot with logarithmic CO, values. As
shown in Figure 60, this model is quite successful in capturing most of the data
observations within the 95% prediction intervals and it accounts for 90% of the
variability in the data. The performance of this model is comparable to the one exhibited
in the fuel analysis where the coefficient of determination (R?) ranged from the high 80’s

to mid-90’s for NO,.
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Figure 60. Fitted line plot for compactors data with a linear regression equation.

The next model used is a second order (quadratic) regression model using a log
scale for CO, observations (Figure 61). This model allowed for some curvilinear feature
to fit the data but performed only about the same as the previous linear model. Again,
this model seems to have a pronounced “hump” at the middle values that is clearly

overestimating NOy concentrations. This model achieved an R? 0f 91%.
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Figure 61. Fitted line plot for compactors data with a quadratic regression equation.

The third model considered was the cubic regression model also using a log scale
for the CO; observations (Figure 62). This model seemed to fit the data very closely, in
the engine speed regions it was able to account for the highest variability from the three
models considered with 94 percent. Of note is the fit at the higher engine speed cluster
area between 2000 and 2200 RPM where the model matched the shape almost perfectly.
The fit at the low engine speed cluster was also good but perhaps not any better than the
previous two models. The one weakness in predicting NOy concentrations is evident in
the 850-1300 RPM engine speed were the model seems to underpredict as shown in
Figure 52. However, most of the observations in that range are still within the 95%

prediction interval bands.
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Figure 62. Fitted line plot for compactors data with a cubic regression equation.

The following models compare the performance of these three models based on
an analysis of each individual compactor data set.

The first model analyzed is the fitted line plot with logarithmic CO; values for the
first and second compactor. As shown in Figures 63 and 64, this model is quite
successful in capturing most of the data observations within the 95% confidence intervals
and it accounts for 90% of the variability in the data for the first compactor and 94% for

the second one. The performance of this model is very good for both compactors.
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Figure 63. Fitted line plot for Compactor #1 data with a linear regression equation.
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Figure 64. Fitted line plot for Compactor #2 data with a linear regression equation.
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The next model analyzed is the second order (quadratic) regression model with
logarithmic CO,; values for the first and second compactor. As shown in Figures 65 and
66, this model is quite successful in capturing most of the data observations within the
95% prediction intervals and it accounts for 93% of the variability in the data for each of
the two compactors. The performance of this model is about the same than the one

exhibited when using the first model for both compactors.
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Figure 65. Fitted line plot for Compactor #1 data with a quadratic regression equation.
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Fitted Line Plot
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Figure 66. Fitted line plot for Compactor #2 data with a quadratic regression equation.

The cubic regression model with logarithmic CO, values was analyzed next for
the first and second compactor. As shown in Figures 67 and 68, this model is quite
successful in capturing most of the data observations within the 95% prediction intervals
and it accounts for 91% of the variability in the data for the first compactor and 97% for
the second one. The performance of this model is again better for the second compactor
than the one exhibited when using the aggregate data for both compactors. This model
did not show a significant improvement for the first compactor and in fact did more

poorly than the second (quadratic) model.
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Figure 67. Fitted line plot for Compactor #1 data with a cubic regression equation.
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Figure 68. Fitted line plot for Compactor #2 data with a cubic regression equation.
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V1. DISCUSSION AND CONCLUSIONS

This study makes three main contributions including the development of a data
handling technique to deal with autocorrelation in continuous data. This study also
showed that the three fuel types evaluated had no significant effect on NOy and CO,
emissions. Finally, the evaluation of two Trashmaster 3-90E compactors showed that
NOy and CO; emissions are significantly different between the compactors.

The discussion is divided in three parts: initial data analysis, comparison analysis,
and model analysis. The first part covers the data screening and the data reduction
technique used to address statistical biases, especially autocorrelation. The second part
focuses on the comparison analysis of the three fuel types and the two compactors. The
third element of this section deals with three data fitting models tested on the fuel type

and compactor data subsets.

VIL.A. Initial Data Analysis
Engine speed was identified as the best engine parameter for inclusion in the

statistical analysis since it is measured directly and since engine speed has a strong
correlation with NOy and CO, emissions. This parameter is closely related to NOy and
CO, emissions since emissions increase as engine speed increases. Thus, the Engine
Speed factor was partialed out as a covariate factor in the GLM test to identify the effects
of fuel type and compactor on NOy and CO, emissions.

The initial data analysis identified two important issues that needed to be
addressed in all data collected. The first concern was related to a bias in the calculated F
values due to the very large number of samples (N). The large N influenced the
probability values and indicated a false statistical significance for all factors tested. This
issue is due to the fact that a statistical value (e.g. t-statistic, F-statistic) can be made
arbitrarily large (and the P-value associated with it arbitrarily small) by increasing the
sample size (Johnson, 1999). Good (1982) suggest that P-values be standardized to a
sample size of 100 to avoid this bias. Thus, researchers need to be mindful of the strong
dependence of P on the sample size when devising a statistical analysis that involves

large sample sizes.
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Additionally, the data observations were found to be highly autocorrelated. A time
interval data reduction technique was used to address these two statistical limitations to
the robustness of the statistical analyses. The result in each case was a subset of quasi-
independent observations sampled at an interval of 800 seconds.

The time interval data reduction technique applied in this study was used
previously in animal movement studies, but this is the first time that this method is
applied to a continuous emission data set. The autocorrelation and false statistical
significance issues were promptly resolved using this technique. Since the issues of false
statistical significance and autocorrelation are inherent in continuous data, the positive
results obtained from the use of this technique can be far-reaching. This is of utmost
import because continuous data collection is becoming increasingly common due to
technological advances evident in devices such as smart meters, digital pedometers, and
continuous emission monitoring systems. Methods like this one will allow researchers to

analyze and find meaning from continuous emission data collected in many disciplines.

VI1.B. Comparison Analysis: Fuel Type
It was expected that ECD and B20 fuels would provide reductions in NOy and

CO, emissions when compared to baseline diesel fuel, but surprisingly they did not. The
first stage of the analysis used the GLM with Engine Speed as a covariate factor to test
the effect of fuel type on NOy and CO; emissions in one compactor. As shown in the
results, the fuel type factor was not found to be statistically significant at an alpha value
of 0.05 for either pollutant. This means that the use of diesel, ECD, or B20 fuel did not
have a statistically significant effect on NOx and CO, emissions. From these results we
can conclude that the effect of the three fuels tested does not impact the emissions of NOy
and CO,. Thus, no benefits should be expected from running this compactor on ECD or

B20 based on NO, and CO, emissions.

VI.C. Comparison Analysis: Compactor
Unexpectedly, the comparison of two Trashmaster 3-90E compactors showed that

the difference in emission profiles from these was statistically significant for both NOy
and CO, emissions. This analysis involved the use of the GLM with Engine Speed as the

covariate factor in testing the NOy and CO, emission variability between the data
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collected from two compactors of the same model running on diesel fuel. As shown in
the results section, the compactor factor was not found to be statistically significant at an
alpha value of 0.05 for NOy. This means that the difference in NOy emissions from the
two compactors is not statistically significant. However, the interaction of compactor and
engine speed factors was statistically significant for NOy emissions. This means that the
rate (slope) at which each compactor produces NOy emissions is significantly different
from each other (a=0.05) and therefore, the rate of emissions per engine speed is
significantly different for each compactor.

For CO,, the GLM test showed that the compactor factor was statistically
significant at an alpha value of 0.05. This means that the CO, emissions from the two
compactors are significantly different. Contrary to what was found for NOy emissions,
the interaction of the compactor and engine speed factors was not statistically significant.
This meant that the rate of CO, emissions produced as a function of engine speed from
each compactor was not found to be significantly different. However, since the CO,
emissions were found to be significantly different for each compactor, we can conclude
that the two compactors have a different CO, emission profile.

The results of this analysis were unexpected because the two compactors sampled
were of the same model, operated at the same location, and driven by the same operator.
Thus, it would be expected that the difference in emissions produced from the two
compactors would not be statistically significant. For CO, this difference was clear
because the compactor factor was found to be statistically significant. However, for NOy
emissions this difference was expressed differently because the difference was not
identified in the compactor factor but in the interaction of compactor and engine speed
factors. These results suggest that off-road diesel equipment can produce different NOy
and CO, emission profiles even when the equipment are of the same model and sampled
under similar conditions. These results also suggest that each off-road diesel engine can
produce a unique emission profile even when the engine is of the same family and type.
Further research needs to be done to investigate if this variability is pervasive among
other types of diesel engines. In this study the data were collected in 2005 and 2007 so
perhaps this difference influenced the emissions results. However, temporal factors were

not found to be statistically significant but aging factors in engines need to be better
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understood to identify how emissions profiles change according to the aging engine
deterioration. This unique emission “footprint” can be caused by many factors including

the maintenance performed on each engine or an inherent variability of engine emissions.

VI.D. Temporal Analysis: Fuel Type and Compactor
The temporal effects evaluated for the fuel type and compactor analyses showed

that these effects were not statistically significant. The fuel type and two compactor data
sets were collected over ten and eight days respectively. Thus, it was important to
identify if temporal factors affected the NOx and CO, emissions. Emissions of NOy and
CO; were not found to be dependent on the day when they were collected. These results
indicate that the day factor is not statistically significant for either of these data sets. This
was expected since the compactor activity and the person operating the compactor were

constant.

VI.E. Data Fitting Models: Fuel Analysis
The third objective of the current study relates to the development of models to

predict NOy and CO, emission from engine speed data. Linear, quadratic, and cubic
models were evaluated for this purpose.

The fuel analysis data were fitted to each of these three models and the results
were evaluated based on the coefficient of determination (R?) and a visual analysis. For
NO, emissions R? values are 81%, 83%, and 86% for the linear, quadratic, and cubic
models respectively. CO, emissions have similar R* values: 89%, 92%, and 95% for the
linear, quadratic, and cubic models respectively (Table 33). The linear model can be an
acceptable predictive tool because visually it fits the NOy and CO, data nicely, and it also
has a high correlation value. The quadratic model is the least acceptable model because it
does not fit the data correctly. This model has a concave down shape that overestimates
concentrations in the transition period between idle and high engine loading. Based on
the R? values, the cubic model accounts for most of the data variability for both the NOy
and the CO, data. Based on a visual analysis, the cubic model underpredicts emissions at
engine speeds between 850 and 1300 RPM for NOy and CO,. The best feature of the
cubic model is the prediction of NOy and CO, values at the higher engine speed between

2000 and 2300 RPM. At these engine speed values the cubic model is able to accurately
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represent the shape of the emission distribution that peaks but then tapers off. This is
probably the case because engines are designed to work most efficiently at full load.

Thus, NOy and CO, emissions drop slightly as peak engine speeds are reached.

Table 33. Coefficient of determination (R?) in percentage.

Emission | Linear model | Quadratic Model | Cubic Model

NOx 81 &3 86

CO, 89 92 95

The linear and the cubic models do a good job of fitting the NOy and CO, data
and they both have high R? values. Depending on the emphasis sought, either of these
two models could be used as a predictive tool. The advantage of the linear model is its
simplicity while the advantage of the cubic model is the fitting of emission data at high

engine speeds.

VI.E. Data Fitting Models: Compactor Analysis
Linear, quadratic, and cubic models were used to fit the diesel fuel emission data

from the two compactors. This analysis evaluated the compactors separately since in the
statistical analysis performed, the difference in emission profiles was found to be
statistically significant. The same visual patterns found in the fuel analysis data set were
observed in this data set for each compactor. For example, based on a visual analysis, the
quadratic model was found to be inadequate in how it fitted the NOy and CO, data. The
models that best fit the NO, and CO, emission data were the linear and cubic. The NOy
emission data from the second compactor showed lower correlation values with 64%,
64%, and 73% for the linear, quadratic, and cubic models respectively (Table 33). The
CO; emission data from the second compactor showed slightly higher correlation values
than the ones from the fuel type analysis with 94%, 94%, and 96% for the linear,
quadratic, and cubic models respectively (Table 34). Thus, the linear and the cubic
models do a good job of fitting the NO, and CO, data and they both have high R? values.
The advantage of the linear model is its simplicity while the advantage of the cubic model
is the fitting of emission data at high engine speeds. Depending on the emphasis sought,

either of these two models could be used as predictive tools.
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Table 34. Coefficient of determination (R?) in percentage.

Compactor | Emission | Linear model | Quadratic Model | Cubic Model
NO, 75 78 84
Cl
CO, 90 93 94
NOy 64 64 73
C2
CO, 94 94 96

VI.F. Future Implications and Concluding Remarks
The three main contributions from this study include the development of a data

handling technique to deal with autocorrelation in continuous data, the finding that NOy
and CO; emissions are unaffected from the use of ECD and B20 fuel, and the finding that

two compactors of the same model have significantly different emission profiles.

VLF.1.Mitigation of Autocorrelation. This is the first time that the time to independence

data technique is used for continuous emission data. The results obtained from its use on
NOy and CO; emission data show that this technique is most useful and effective in
mitigating autocorrelation. This technique is most relevant given the advancements in
sampling devices and data collection capabilities that have afforded the collection of
enormous amounts of data for a myriad of purposes. These capabilities include smart
meters, digital pedometers, medical devices, and continuous emission monitoring systems
in factory stacks among many more. We can currently measure every instant of virtually
every activity thanks to the advances afforded by technology. That is why data handling
techniques like the time to independence herein developed are most necessary in finding
meaning out of the colossal amounts of data available at our disposal.

The time to independence method described is a valuable tool that can make any
subsequent statistical analysis valid and robust since autocorrelation in the data would be
mitigated. Thus, once data are composed of quasi-independent observations, a more
meaningful statistical analysis may ensue since the correct use of an ANOVA or GLM
analysis will be warranted. Under such an analysis the significance of independent

variables can be determined, allowing then for the testing of the significance of fuel
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types, engine parameters, and ambient parameters on engine emissions. PEMS data
collected at the CEAE of KU can benefit from using the approach herein presented to
confirm the significance of independent variables tested previously. Furthermore, given
the strong ongoing research on bio-diesel emissions at the CEAE of KU, the approach
herein presented can be used to determining the benefits from distinct types and mixes of

biodiesel fuel.

VLF.2. Interval Refinements. In the current analysis an interval of 1 every 800 seconds

was used to mitigate autocorrelation. This was deemed an acceptable interval since the
compactor provided over 8 hours (28,800 seconds) of real-world data each day.
However, this value is overly conservative and can be refined to accommodate shorter
sampling campaigns. Thus, an adjustment of this lag value can yield a smaller interval
within observations. Furthermore, distinct emission equipment may experience different
levels of autocorrelation that may require distinct intervals. Therefore, different intervals

need to be evaluated for other equipment and engine types.

VLF.3. False Statistical Significance. Large data sets collected from PEMS can bias

statistical significance by producing very small probability (P) values. This is not a
common issue in most statistical analyses where researchers struggle to get enough data
to analyze. However, by collecting data on a second-by-second basis, PEMS units can
produce large enough data observations (N) that can bias P values and show an artificial
significance. For example, Johnson et al. (2009) found a statistically significant
difference between the NO, emission observations collected from the MEL and PEMS
units. This may be a case of a false statistical significance due to a large N since other
studies (Rubino et al., 2007) showed a strong agreement between the observations

collected with laboratory and on-board systems.

VLF.4. Null Emissions Benefits from ULSD and B20. An unexpected lack of

reductions in NO, and CO, emissions was found from the use of ECD and B20 fuel.
Both, biodiesel fuel mixes and ECD have been promoted for their emission benefits

compared to regular no. 2 diesel fuel. However, these reductions were not found to be
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statistically significant in this study. Nonetheless, the use of biodiesel mixes and ECD
fuels in diesel engines will continue to increase due to geopolitical and economic factors.
Thus, emission reductions touted from the use of these fuels should be considered with
reservation especially when related to NOy and CO; emissions. However, these
conclusions need to be confirmed by further emission testing research. Furthermore, there

may be other pollutants that show reductions with ULSD and B20 fuels.

VLE.5. Variability in Emission Profiles. Another important finding in this study was the

significant difference in NOy and CO; emission profiles from the two Trashmaster 3-90E
compactors. This could mean that engines have a unique emission profile with
significant variability, even within engines of the same model and type. The
repercussions of this finding are far-reaching. If each off-road diesel equipment has a
significantly different emission profile, then there is an inherent variability analogous to
an individual engine emission “footprint”. This would create a great challenge in
characterizing emissions from mobile sources. However, additional testing is necessary

to determine if this finding is in fact pervasive among other equipment and engine types.

VLF.6. Concluding Remarks. Characterization of mobile real-world emissions has been

made possible due to the latest advancements in technology that make emission
measurements from on-board emission testing units as accurate and precise as laboratory-
grade equipment. The EPA in the US and the EC in the European Union have started
using on-board data in their New Generation Models in an effort to characterize mobile
emissions more accurately. Technological advancements related to on-board emission
testing systems also have allowed for the collection of continuous data. The vast amount
of data that can now be collected by on-board systems also increases the complexity of
data analysis, posing new challenges such as apparent statistical significance and
autocorrelation. These challenges mar the validity and robustness of statistical analyses
performed when determining the effect on emission from independent variables such as
fuel types, altitude, and engine parameters.

Therefore, the real challenge that researchers face today when analyzing

continuous data, is how to mine the mountains of data for meaning. Most research on
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continuous data is based on a comparison of averages that all but ignore the nature and
value of the data collected. Complex data requires more advanced statistical analyses.
Some other researchers have started to address this need by using ANOVA and GLM
analyses to evaluate the effect of independent variables (i.e. fuel types) on specific
dependent variables (i.e. emissions). The methodology outlined in this thesis is a crucial
tool to make sense and find meaning from real-world, continuous data.

The Department of CEAE at KU is leading the effort in biofuels development and
testing for over 10 years. In addition, the CEAE owns a SEMTECH-DS that has been
thoroughly validated in accuracy and which is the most widely used instrument for on-
board emission testing. Therefore, the CEAE of KU is in a prime position to use the tools
herein presented for the advancement of emission testing and fuel development science

and continue to be a leader in these fields.
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APPENDIX A: Fuel Analysis

Residual Plots for NOx (1 of 100)
Normal Probability Plot Versus Fits
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Results for: 1 of 100 lag

General Linear Model: NOx versus Fuel Type

Factor Type Levels Values
Fuel Type fixed 3 B20, Diesel, ECD

Analysis of Variance for NOx, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
EngineSpeed 1 41678700 37568249 37568249 6836.03 0.000
Fuel Type 2 11673 61303 30652 5.58 0.004
Fuel Type*EngineSpeed 2 81234 81234 40617 7.39 0.001
Error 2760 15167925 15167925 5496

Total 2765 56939531

S = 74.1325 R-Sq = 73.36% R-Sq(adj) = 73.31%
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Partial Autocorrelation Function for residuasl from GLM (1 of 100)
(with 5% significance limits for the partial autocorrelations)
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General Linear Model: CO2 versus Fuel Type

Factor

Type
Fuel Type fixed

Levels Values

3 B20, Diesel, ECD

Analysis of Variance for CO2, using Adjusted SS for Tests

Source DF
EngineSpeed 1
Fuel Type 2
Fuel Type*EngineSpeed 2
Error 2760
Total 2765
S = 0.819583 R-Sq = 83.89%

Seq SS Adj SS Adj MS F P
9612.6 8443.0 8443.0 12569.26 0.000
39.3 5.8 2.9 4.32 0.013
0.6 0.6 0.3 0.43 0.651
1853.9 1853.9 0.7
11506.4

R-Sq(adj) = 83.86%

Partial Autocorrelation Function for residuals from GLM (1 of 100)

(with 5% significance limits for the partial autocorrelations)
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Residual Plots for NOx (1 of 200)
Normal Probability Plot Versus Fits
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General Linear Model: NOx versus Fuel Type

Factor Type
Fuel Type fixed

Levels Values
3 B20, Diesel, ECD

Analysis of Variance for NOx, using Adjusted SS for Tests

Source DF
EngineSpeed 1
Fuel Type 2
Fuel Type*EngineSpeed 2
Error 1377
Total 1382
S = 75.2008 R-Sg = 73.19%

Seq SS  Adj SS  Adj Ms
21196529 19086141 19086141
11322 34465 17233
49577 49577 24788
7787164 7787164 5655
29044592

R-Sq(adj) = 73.09%

F
3374.99
3.05
4.38

P
0.000
0.048
0.013

A4



Partial Autocorrelation Function for residuals from GLM (1 of 200)
(with 5% significance limits for the partial autocorrelations)
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General Linear Model: CO2 versus Fuel Type

Levels Values
3 B20, Diesel, ECD

Factor Type
Fuel Type fixed

Analysis of Variance for CO2, using Adjusted SS for
Source DF Seq SS Adj SS Adj
EngineSpeed 1 4809.86 4221.13 4221.
Fuel Type 2 15.10 4.05 2
Fuel Type*EngineSpeed 2 1.77 1.77 0.
Error 1377 971.78 971.78 0.
Total 1382 5798.51

S = 0.840073 R-Sq = 83.24% R-Sq(adj) = 83.18%

Tests

MS F

13 5981.30
.03 2.87

89 1.26

71

P
0.000
0.057
0.285

Partial Autocorrelation Function for residuals from GLM (1 of 200)

(with 5% significance limits for the partial autocorrelations)
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Versus Fits
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Residual Plots for NOx (1 of 300)
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Results for: 1 of 300 lag

General Linear Model: NOx versus Fuel Type

Factor Type
Fuel Type fixed

Levels Values
3 B20, Diesel, ECD

Analysis of Variance for NOx, using Adjusted SS for Tests

Source DF
EngineSpeed 1
Fuel Type 2

Fuel Type*EngineSpeed 2

Error 917
Total 922
S = 74.7124 R-Sq = 73.00%

Seq SS
13824523
10984
5085
5118640
18959232

Adj SS
12038636
9458
5085
5118640

Adj MS
12038636
4729
2542
5582

R-Sq(adj) = 72.85%

F P
2156.71 0.000
0.85 0.429
0.46 0.634
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Partial Autocorrelation Function for residuals from GLM (1 of 300)
(with 5% significance limits for the partial autocorrelations)
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General Linear Model: CO2 versus Fuel Type

Factor Type
Fuel Type fixed

Levels Values
3 B20, Diesel, ECD

Analysis of Variance for CO2, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
EngineSpeed 1 3230.79 2763.17 2763.17 4049.45 0.000
Fuel Type 2 20.36 1.13 0.57 0.83 0.437
Fuel Type*EngineSpeed 2 0.49 0.49 0.25 0.36 0.697
Error 917 625.72 625.72 0.68

Total 922 3877.37

S = 0.826049 R-Sq = 83.86% R-Sq(adj) = 83.77%

Partial Autocorrelation Function for residuals from GLM (1 of 300)

(with 5% significance limits for the partial autocorrelations)
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Normal Probability Plot
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Results for: 1 of 400 lag

General Linear Model: NOx versus Fuel Type

Factor Type
Fuel Type fixed

Levels Values
3 B20, Diesel, ECD

Analysis of Variance for NOx, using Adjusted SS for Tests

Source DF
EngineSpeed 1
Fuel Type 2

Fuel Type*EngineSpeed 2

Error 686
Total 691
S = 75.5739 R-Sq = 73.94%

Seq SS
11100481
565
15203
3918029
15034279

Adj SS

9792619

12859
15203

3918029

Adj MS F P

9792619 1714.57 0.000
6430 1.13 0.325
7602 1.33 0.265
5711

R-Sq(adj) = 73.75%
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Partial Autocorrelation Function for residuals from GLM (1 of 400)
(with 5% significance limits for the partial autocorrelations)
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General Linear

Factor

Type
Fuel Type fixed

Model: CO2 versus Fuel Type

Levels Values
3 B20, Diesel, ECD

Analysis of Variance for CO2, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS
EngineSpeed 1 2482.98 2149.67 2149.67
Fuel Type 2 7.54 1.87 0.93
Fuel Type*EngineSpeed 2 0.52 0.52 0.26
Error 686 499.79 499.79 0.73
Total 691 2990.83

S = 0.853552 R-Sgq = 83.29% R-Sq(adj) = 83.17%

F
2950.62
1.28
0.36

P
0.000
0.279
0.700

Partial Autocorrelation Function for residuals from GLM (1 of 400)

(with 5% significance limits for the partial autocorrelations)
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Residual Plots for NOx (1 of 500)
Normal Probability Plot Versus Fits
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General Linear Model: NOx versus Fuel Type

Factor Type Levels Values
Fuel Type fixed 3 B20, Diesel, ECD

Analysis of Variance for NOx, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Fuel Type 2 3693 14384 7192 1.34 0.262
EngineSpeed 1 8812595 7976444 7976444 1490.10 0.000
Fuel Type*EngineSpeed 2 21295 21295 10648 1.99 0.138
Error 548 2933421 2933421 5353

Total 553 11771004

S = 73.1639 R-Sq = 75.08% R-Sq(adj) = 74.85%
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Partial Autocorrelation Function for residuals from GLM (1 of 500)
(with 5% significance limits for the partial autocorrelations)
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General Linear Model: CO2 versus Fuel Type

Factor Type Levels Values
Fuel Type fixed 3 B20, Diesel, ECD

Analysis of Variance for CO2, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Fuel Type 2 6.74 1.34 0.67 1.06 0.346
EngineSpeed 1 1980.68 1744.50 1744.50 2763.53 0.000
Fuel Type*EngineSpeed 2 0.42 0.42 0.21 0.33 0.719
Error 548 345.93 345.93 0.63

Total 553 2333.77

S = 0.794518 R-Sq = 85.18% R-Sq(adj) = 85.04%

Partial Autocorrelation Function for residuals from GLM (1 of 500)
(with 5% significance limits for the partial autocorrelations)
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General Linear Model: NOx versus Fuel Type

Factor Type Levels Values

Fuel Type fixed

3 B20, Diesel, ECD

Analysis of Variance for NOx, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
EngineSpeed 1 7233331 6394569 6394569 1152.22 0.000
Fuel Type 2 5532 7068 3534 0.64 0.529
Fuel Type*EngineSpeed 2 10686 10686 5343 0.96 0.383
Error 457 2536259 2536259 5550

Total 462 9785808

S = 74.4970 R-Sq = 74.08% R-Sg(adj) = 73.80%
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Partial Autocorrelation Function for residuals from GLM (1 of 600)
(with 5% significance limits for the partial autocorrelations)
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General Linear Model: CO2 versus Fuel Type

Factor

Type
Fuel Type fixed

3 B2

Levels Values

0, Diesel, ECD

Analysis of Variance for CO2, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
EngineSpeed 1 1648.66 1423.48 1423.48 2115.98 0.000
Fuel Type 2 6.39 0.91 0.46 0.68 0.509
Fuel Type*EngineSpeed 2 0.99 0.99 0.50 0.74 0.479
Error 457 307.44 307.44 0.67

Total 462 1963.48

S = 0.820199 R-Sq = 84.34% R-Sq(adj) = 84.17%

Partial Autocorrelation Function for residuals from GLM (1 of 600)

(with 5% significance limits for the partial autocorrelations)
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Results for: 1 of 700

General Linear Model: NOx versus Fuel Type

Factor Type
Fuel Type fixed

Levels Values
3 B20, Diesel, ECD

Analysis of Variance for NOx, using Adjusted SS for Tests

Source DF
Fuel Type 2
EngineSpeed 1

Fuel Type*EngineSpeed 2

Error 390
Total 395
S = 72.7139 R-Sq = 76.72%

Seq SS Adj SS Adj MS
32594 8510 4255
6752312 5896630 5896630
12151 12151 6075
2062049 2062049 5287
8859105

R-Sq(adj) = 76.43%

F P
0.80 0.448
1115.24 0.000
1.15 0.318
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Partial Autocorrelation Function for residuals from GLM (1 of 700)

(with 5% significance limits for the partial autocorrelations)
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General Linear Model: CO2 versus Fuel Type

Factor Type Levels Values
Fuel Type fixed 3 B20, Diesel, ECD

Analysis of Variance for CO2, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Fuel Type 2 8.61 1.43 0.72 1.25 0.286
EngineSpeed 1 1587.95 1344.74 1344.74 2355.09 0.000
Fuel Type*EngineSpeed 2 0.37 0.37 0.19 0.33 0.723
Error 390 222 .69 222 .69 0.57

Total 395 1819.61

S = 0.755640 R-Sq = 87.76% R-Sq(adj) = 87.60%

Partial Autocorrelation Function for residuals from GLM (1 of 700)
(with 5% significance limits for the partial autocorrelations)
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Residual Plots for NOx (1 of 800)
Normal Probability Plot Versus Fits
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Results for: 1 of 800

General Linear Model: NOx versus Fuel Type

Factor Type
Fuel Type fixed

Levels Values
3 B20, Diesel, ECD

Analysis of Variance for NOx, using Adjusted SS for Tests

Source DF
Fuel Type 2
EngineSpeed 1

Fuel Type*EngineSpeed 2

Error 341
Total 346
S = 75.9153 R-Sq = 73.76%

Seq SS Adj SS Adj MS
28293 5995 2998
5489489 4752988 4752988
5063 5063 2531
1965230 1965230 5763
7488075

R-Sq(adj) = 73.37%

F P
0.52 0.595
824.72 0.000
0.44 0.645
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Partial Autocorrelation Function for residuals from GLM (1 of 800)
(with 5% significance limits for the partial autocorrelations)
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General Linear Model: CO2 versus Fuel Type

Factor Type Levels Values
Fuel Type fixed 3 B20, Diesel, ECD

Analysis of Variance for CO2, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Fuel Type 2 6.92 1.39 0.69 0.95 0.389
EngineSpeed 1 1248.25 1066.55 1066.55 1454.71 0.000
Fuel Type*EngineSpeed 2 0.49 0.49 0.25 0.34 0.714
Error 341 250.01 250.01 0.73

Total 346 1505.68

S = 0.856255 R-Sq = 83.40% R-Sq(adj) = 83.15%

Partial Autocorrelation Function for residuals from GLM (1 of 800)
(with 5% significance limits for the partial autocorrelations)
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Residual Plots for NOx (1 of 900)
Normal Probability Plot Versus Fits
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Results for: 1 of 900
General Linear Model: NOx versus Fuel Type

Factor Type Levels Values
Fuel Type fixed 3 B20, Diesel, ECD

Analysis of Variance for NOx, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Fuel Type 2 19958 4054 2027 0.35 0.708
EngineSpeed 1 4104430 3384041 3384041 577.37 0.000
Fuel Type*EngineSpeed 2 2467 2467 1233 0.21 0.810
Error 303 1775911 1775911 5861

Total 308 5902765

S = 76.5578 R-Sq = 69.91% R-Sq(adj) = 69.42%
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Partial Autocorrelation Function for residuals from GLM (1 of 900)
(with 5% significance limits for the partial autocorrelations)
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General Linear Model: CO2 versus Fuel Type

Factor Type Levels Values
Fuel Type fixed 3 B20, Diesel, ECD

Analysis of Variance for CO2, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Fuel Type 2 2.22 1.15 0.57 0.83 0.437
EngineSpeed 1 947.83 776.83 776.83 1123.31 0.000
Fuel Type*EngineSpeed 2 1.23 1.23 0.61 0.89 0.413
Error 303 209.54 209.54 0.69

Total 308 1160.82

S = 0.831601 R-Sq = 81.95% R-Sq(adj) = 81.65%

Partial Autocorrelation Function for residuals from GLM (1 of 900)
(with 5% significance limits for the partial autocorrelations)
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Normal Probability Plot
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Results for: 1 of 1000

General Linear Model: NOx versus Fuel Type

Factor Type
Fuel Type fixed

Levels Values
3 B20, Diesel, ECD

Analysis of Variance for NOx, using Adjusted SS for Tests

Source DF
Fuel Type 2
EngineSpeed 1
Fuel Type*EngineSpeed 2
Error 272
Total 277
S = 76.2328 R-Sq = 74.29%

Adj SS
11283
3967746
14223
1580710

Adj MS
5641

3967746

7111
5811

R-Sq(adj) = 73.82%

F P
0.97 0.380
682.75 0.000
1.22 0.296
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Partial Autocorrelation Function for residuals from GLM (1 of 1000)

(with 5% significance limits for the partial autocorrelations)
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General Linear Model: CO2 versus Fuel Type

Levels Values
3 B20, Diesel, ECD

Factor Type
Fuel Type fixed

Analysis of Variance for CO2, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Fuel Type 2 12.21 0.66 0.33 0.55 0.580
EngineSpeed 1 1007.66 850.36 850.36 1398.27 0.000
Fuel Type*EngineSpeed 2 0.09 0.09 0.05 0.08 0.927
Error 272 165.42 165.42 0.61

Total 277 1185.38

S = 0.779838 R-Sq = 86.05% R-Sq(adj) = 85.79%

Partial Autocorrelation Function for residuals from GLM (1 of 1000)
(with 5% significance limits for the partial autocorrelations)
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APPENDIX B: Compactor Analysis
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General Linear Model: NOx versus compactor

Factor
compactor fixed

Type

Levels Values

2 1, 2

Analysis of Variance for NOx, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
EngineSpeed 1 32475720 30913375 30913375 4723.16 0.000
compactor 1 4617459 94535 94535 14.44 0.000
compactor*EngineSpeed 1 129327 129327 129327 19.76 0.000
Error 2466 16140136 16140136 6545

Total 2469 53362642

S = 80.9016 R-Sq = 69.75% R-Sq(adj) = 69.72%
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Partial Autocorrelation Function for residuals from GLM (1 of 100)
(with 5% significance limits for the partial autocorrelations)
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General Linear Model: CO2 versus compactor

Factor Type Levels Values
compactor fixed 2 1, 2

Analysis of Variance for CO2, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
EngineSpeed 1 9009.2 8840.8 8840.8 12815.70 0.000
compactor 1 132.9 18.3 18.3 26.46 0.000
compactor*EngineSpeed 1 0.7 0.7 0.7 0.98 0.322
Error 2466  1701.2 1701.2 0.7

Total 2469 10843.9

S = 0.830568 R-Sq = 84.31% R-Sq(adj) = 84.29%

Partial Autocorrelation Function for residuals from GLM (1 of 100)
(with 5% significance limits for the partial autocorrelations)
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Residual Plots for NOx (1 of 200)
Normal Probability Plot Versus Fits
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Results for: 1 of 200
General Linear Model: NOx versus compactor

Factor Type Levels Values
compactor fixed 2 1, 2

Analysis of Variance for NOx, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
EngineSpeed 1 16158885 15497316 15497316 2358.17 0.000
compactor 1 2146991 49967 49967 7.60 0.006
compactor*EngineSpeed 1 53340 53340 53340 8.12 0.004
Error 1231 8089822 8089822 6572

Total 1234 26449038

S = 81.0663 R-Sq = 69.41% R-Sq(adj) = 69.34%



Partial Autocorrelation Function for residuals from GLM (1 of 200)
(with 5% significance limits for the partial autocorrelations)

1.0+
0.8 1
0.6
0.4

0.2
0.0 I'I'I"Il_r_lil_l'_-'l'rl'lﬁ'I_'_'-_'__'_-'_'ﬁl'_'._u'T:W'u

-0.2 1
-0.4 1
-0.6 1
-0.8 1
-1.01

Partial Autocorrelation
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
| wy
|3
1
|
1
|
1
|.
1
|
1
|
1
|
—
|
1

T
1 5 10 15 20 25 30 35 40 45 50 55 60 65
Lag

Percent

Residual Plots for CO2 (1 of 200)

Normal Probability Plot Versus Fits
99.99

[}
o
Residual

-4 -2 0 2 4
Residual Fitted Value

Histogram Versus Order

Frequency
Residual

501

0
3.2 24 -16 -08 0.0 08 16 24

SEOE SR SIS
Residual 2R S M SR NN SN

Observation Order




General Linear Model: CO2 versus compactor

Factor Type Levels Values
compactor fixed 2 1, 2

Analysis of Variance for CO2, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
EngineSpeed 1 4492.7 4422.9 4422.9 6407.72 0.000
compactor 1 56.8 10.7 10.7 15.47 0.000
compactor*EngineSpeed 1 1.1 1.1 1.1 1.55 0.214
Error 1231 849.7 849.7 0.7

Total 1234 5400.3

S = 0.830814 R-Sq = 84.27% R-Sq(adj) = 84.23%

Partial Autocorrelation Function for residuals from GLM (1 of 200)
(with 5% significance limits for the partial autocorrelations)
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Residual Plots for NOx (1 of 300)
Normal Probability Plot Versus Fits
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Results for: 1 of 300

General Linear Model: NOx versus compactor

Factor Type Levels Values

compactor fixed 2 1

, 2

Analysis of Variance for NOx, using Adjusted SS for Tests

Source DF
EngineSpeed 1
compactor 1
compactor*EngineSpeed 1
Error 820
Total 823

S = 78.7442 R-Sq = 71.57%

Seq SS  Adj SS  Adj MS F P

11248863 10806656 10806656 1742.83 0.000

1513172 33442 33442 5.39 0.020
39398 39398 39398 6.35 0.012

5084533 5084533 6201

17885966

R-Sq(adj) = 71.47%
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Partial Autocorrelation Function for residuals form GLM (1 of 300)
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General Linear Model: CO2 versus compactor

Factor
compactor

Type
fixed

Levels Va
2 1,

lues
2

Analysis of Variance for CO2, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
EngineSpeed 1 3088.7 3035.5 3035.5 4580.70 0.000
compactor 1 39.9 5.8 5.8 8.77 0.003
compactor*EngineSpeed 1 0.3 0.3 0.3 0.42 0.519
Error 820 543.4 543.4 0.7
Total 823 3672.2
S = 0.814051 R-Sqg = 85.20% R-Sq(adj) = 85.15%
Partial Autocorrelation Function for residuals from GLM (1 of 300)
(with 5% significance limits for the partial autocorrelations)
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Residual Plots for NOx (1 of 400)
Normal Probability Plot Versus Fits
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Results for: 1 of 400
General Linear Model: NOx versus compactor

Factor Type Levels Values
compactor fixed 2 1, 2

Analysis of Variance for NOx, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
EngineSpeed 1 8159681 7850801 7850801 1170.54 0.000
compactor 1 1225183 19764 19764 2.95 0.087
compactor*EngineSpeed 1 41880 41880 41880 6.24 0.013
Error 614 4118077 4118077 6707

Total 617 13544821

S = 81.8961 R-Sq = 69.60% R-Sq(adj) = 69.45%



Partial Autocorrelation Function for residuals from GLM (1 of 400)
(with 5% significance limits for the partial autocorrelations)
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General Linear Model: CO2 versus compactor

Levels Values
2 1, 2

Factor
compactor

Type
fixed

Analysis of Variance for CO2, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F
EngineSpeed 1 2258.07 2215.77 2215.77 3018.89
compactor 1 35.37 5.60 5.60 7.62
compactor*EngineSpeed 1 0.35 0.35 0.35 0.47
Error 614 450.66  450.66 0.73

Total 617 2744.44

S = 0.856720 R-Sgq = 83.58% R-Sq(adj) = 83.50%

P
0.000
0.006
0.491

Partial Autocorrelation Function for residuals from GLM (1 of 400)

(with 5% significance limits for the partial autocorrelations)
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Versus Fits
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Results for: 1 of 500

General Linear Model: NOx versus compactor

Factor
compactor

Type
fixed

Levels Values
2 1,

2

Analysis of Variance for NOx, using Adjusted SS for Tests

Source DF
EngineSpeed 1
compactor 1
compactor*EngineSpeed 1
Error 490
Total 493
S = 79.4698 R-Sq = 71.63%

Seq SS Adj SS
6862161 6457793 6

919757 17066

30969 30969
3094574 3094574
10907461

R-Sq(adj) = 71.46%

Adj MS
457793
17066
30969
6315

F P
1022.54 0.000
2.70 0.101
4.90 0.027
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Partial Autocorrelation Function for residuals from GLM (1 of 500)

(with 5% significance limits for the partial autocorrelations)
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General Linear Model: CO2 versus compactor

Factor Type Levels Values
compactor fixed 2 1, 2

Analysis of Variance for CO2, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
EngineSpeed 1 1851.15 1810.19 1810.19 2575.56 0.000
compactor 1 26.67 3.66 3.66 5.21 0.023
compactor*EngineSpeed 1 0.11 0.11 0.11 0.15 0.698
Error 490 344.39 344.39 0.70

Total 493 2222.32

S = 0.838353 R-Sq = 84.50% R-Sq(adj) = 84.41%

Partial Autocorrelation Function for residuals from GLM (1 of 500)
(with 5% significance limits for the partial autocorrelations)
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Residual Plots for NOx (1 of 600)
Normal Probability Plot Versus Fits
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Results for: 1 of 600

General Linear Model: NOx versus compactor

Levels V
2 1

Factor
compactor

Type
fixed

alues
, 2

Analysis of Variance for NOx, using Adjusted SS for Tests

Source DF
EngineSpeed 1
compactor 1
compactor*EngineSpeed 1
Error 408
Total 411
S =78.3731 R-Sq = 71.64%

Seq SS Adj SS Adj MS
5710682 5493606 5493606
608726 19985 19985

10227 10227 10227
2506078 2506078 6142
8835712

R-Sq(adj) = 71.43%

F P
894.38 0.000
3.25 0.072
1.66 0.198
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Partial Autocorrelation Function for residuals from GLM (1 of 600)

(with 5% significance limits for the partial autocorrelations)
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General Linear Model: CO2 versus compactor

Factor Type Levels Values
compactor fixed 2 1, 2

Analysis of Variance for CO2, using Adjusted SS for Tests

Source DF
EngineSpeed 1
compactor 1
compactor*EngineSpeed 1
Error 408
Total 411

S = 0.813482 R-Sq = 85.37%

Seq SS
1559.05
16.49
0.50
270.00
1846.03

Adj SS Adj MS F P
1532.99 1532.99 2316.56 0.000
3.64 3.64 5.50 0.020
0.50 0.50 0.75 0.387
270.00 0.66

R-Sq(adj) = 85.27%

Partial Autocorrelation Function for residuals from GLM (1 of 600)
(with 5% significance limits for the partial autocorrelations)
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Residual Plots for NOx (1 of 700)
Normal Probability Plot Versus Fits
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Results for: 1 of 700

General Linear Model: NOx versus compactor

Factor Type Levels Values

compactor fixed 2 1,

2

Analysis of Variance for NOx, using Adjusted SS for Tests

Source DF
EngineSpeed 1
compactor 1
compactor*EngineSpeed 1
Error 348
Total 351

S =79.7233 R-Sq = 71.05%

Seq SS Adj SS  Adj MS F P

4695056 4492286 4492286 706.80 0.000
704132 10504 10504  1.65 0.199
27864 27864 27864  4.38 0.037

2211822 2211822 6356

7638873

R-Sqg(adj) = 70.80%
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Partial Autocorrelation Function for residuals from GLM (1 of 700)

(with 5% significance limits for the partial autocorrelations)
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General Linear Model: CO2 versus compactor

Factor Type Levels Values
compactor fixed 2 1, 2

Analysis of Variance for CO2, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
EngineSpeed 1 1388.28 1344.98 1344.98 2076.82 0.000
compactor 1 26.26 3.11 3.11 4.80 0.029
compactor*EngineSpeed 1 0.03 0.03 0.03 0.05 0.826
Error 348 225.37 225.37 0.65

Total 351 1639.94

S = 0.804746 R-Sq = 86.26% R-Sq(adj) = 86.14%

Partial Autocorrelation Function for residuals from GLM (1 of 700)
(with 5% significance limits for the partial autocorrelations)
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Results for: 1 of 800

General Linear Model: NOx versus compactor

Factor Type
compactor fixed

Levels Values
2 1, 2

Analysis of Variance for NOx, using Adjusted SS for Tests

Source DF
EngineSpeed 1
compactor 1
compactor*EngineSpeed 1
Error 305
Total 308
S =75.9932 R-Sq = 73.97%

Adj SS
4130488 4130488
8543
26878
1761365

Adj MS

26878

R-Sq(adj) = 73.71%

F P
715.24 0.000
1.48 0.225
4.65 0.032
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Partial Autocorrelation Function for residuals from GLM (1 of 800)
(with 5% significance limits for the partial autocorrelations)

3.0 -24 -18 -1.2 -06 0.0 06 1.2

Residual

1.0
0.8 1
c 0.64
Qo
T 0.4
o)
& 0.24
g T SET1 I DT U T TR 1 IO T T T T T T T
-8 0.0 L1 11 .III 1 i, 1 IlluI I l|II ' II-.I Lty I
5 | - - - ‘3 - _ - -
< -0.24
©
£ -0.41
o]
o -0.64
-0.8 1
-1.01
T T T T T T T T T T T T T
1 5 10 15 20 25 30 35 40 45 50 55 60 65
Lag
Residual Plots for CO2 (1 of 800)
Normal Probability Plot Versus Fits
99.9
994 Y hd ) ° L
901 = —'—‘
£ % ® ‘.0 )
8 50 e} o % °®
2 g " s
- z . i
- [
ol 8% . . R
-4 2 0 2 2 4 6
Residual Fitted Value
Histogram Versus Order
601 —
> 457 =
§ 30 33
o 3
i A‘Pﬂ‘!‘lT m
0 | —

Observation Order

B-23



General Linear Model: CO2 versus compactor

Factor Type Levels Values
compactor fixed 2 1, 2

Analysis of Variance for CO2, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
EngineSpeed 1 1200.40 1170.98 1170.98 1827.41 0.000
compactor 1 22.78 3.69 3.69 5.76 0.017
compactor*EngineSpeed 1 0.15 0.15 0.15 0.24 0.623
Error 305 195.44 195.44 0.64

Total 308 1418.77

S = 0.800492 R-Sq = 86.22% R-Sq(adj) = 86.09%

Partial Autocorrelation Function for residuals from GLM (1 of 800)
(with 5% significance limits for the partial autocorrelations)
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Results for: 1 of 900

General Linear Model: NOx versus compactor

Factor Type
compactor fixed

Levels Values
2 1, 2

Analysis of Variance for NOx, using Adjusted SS for Tests

Source DF
EngineSpeed 1
compactor 1
compactor*EngineSpeed 1
Error 271
Total 274
S = 78.0900 R-Sq = 72.88%

1652573

Adj SS  Adj MS F P

3595761 3595761 589.66 0.000

9048 9048  1.48 0.224

18536 18536  3.04 0.082
6098

R-Sq(adj) = 72.57%
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Partial Autocorrelation Function for residuals from GLM (1 of 900)
(with 5% significance limits for the partial autocorrelations)
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General Linear Model: CO2 versus compactor

Factor
compactor

Type
fixed

Levels Values

2 1,

2

Analysis of Variance for CO2, using Adjusted SS for Tests

Source DF
EngineSpeed 1
compactor 1
compactor*EngineSpeed 1
Error 271
Total 274
S = 0.818191 R-Sg = 85.17%

Seq SS Adj SS Adj MS
1030.60 1009.42 1009.42
10.02 3.49 3.49
0.89 0.89 0.89
181.42 181.42 0.67
1222.93

R-Sq(adj) = 85.00%

F
1507.87
5.21
1.33

P
0.000
0.023
0.250

Partial Autocorrelation Function for residuals from GLM (1 of 900)

(with 5% significance limits for the partial autocorrelations)
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Residual Plots for NOx (1 of 1000)
Normal Probability Plot Versus Fits
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Results for: 1 of 1000

General Linear Model: NOx versus compactor

Factor
compactor

Type
fixed

Levels Values
2 1, 2

Analysis of Variance for NOx, using Adjusted SS for Tests

Source DF
EngineSpeed 1
compactor 1
compactor*EngineSpeed 1
Error 244
Total 247
S = 73.8995 R-Sq = 75.51%

Seq SS Adj SS Adj MS F p

3628836 3316541 3316541 607.30 0.000

456138 5635 5635  1.03 0.311
23460 23460 23460  4.30 0.039

1332518 1332518 5461

5440952

R-Sq(adj) = 75.21%
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Partial Autocorrelation Function for residuals from GLM (1 of 1000)
(with 5% significance limits for the partial autocorrelations)
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General Linear Model: CO2 versus compactor

Factor
compactor

Type

fixed 2 1,

Analysis of Variance for CO2,

Source DF
EngineSpeed 1
compactor 1
compactor*EngineSpeed 1
Error 244
Total 247
S = 0.787899 R-Sg = 86.81%

Levels Values

2

using Adjusted SS for Tests

Seq SS Adj SS Adj Ms F P
978.56 940.44 940.44 1514.93 0.000
18.34  1.15  1.15 1.85 0.175
0.12 0.12  0.12 0.19 0.665
151.47 151.47  0.62
1148.49
R-Sq(adj) = 86.65%

Partial Autocorrelation Function for residuals from GLM (1 of 1000)
(with 5% significance limits for the partial autocorrelations)
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Trashmaster 3-90F

Landfill Compactor Specifications

Horsepower:
Applicalion
PU:

Compec ion Nidde

B2E hp (391 kw)
@ 2100 rpm

Extrerne Service
Lardfill Carnpaction

up to 767 lhe Arear nch
(137 kaArear om)

13 ft. 8in. (4165 mm)




CMI TRASHMASTER 3-80E Landfill Compactor

DIESEL ENGINE
D » Cummins Model QSK-19, 525 hp
(391 kW) @ 2,100 rpm.
Turbo charged and charge air-cooled.

+ Puel, lube oil and coolant filters; dry-type,
replaceable air cleaner with safety element
and service indicator

* 46in. (1168 mm) blower fan,

= The QSK-19 features robust design compo-
nents, superior fuel economy, long life,

a: SELF-DIRGNOSTIC DRIVE

=N SYSTEM MONITOR (DSM)

Protects power train components from failure
due to:

Low engine oil pressure.

High engine coolant temperature,
Loss of engine coolant.

High hydrostatic oil temperature.

Low hydrostatic charge pressure,
Low battery voltage.
High pump drive box lube cil temperature,

If the monitoring system detects a develop-
ing problem, it activates an in-cab audible
and visual alarm and either automatically
shuts down the engine or reduces engine
speed before serious damage occurs.

DSM gauges identify the source of a prob-
lem to simplify troubleshooting and servie-

ing.

- POWER TRAIN

Engine power drives each hydrostatic

system through a pump drive box
which provides power to drive four vari-
able displacement pumps, four variable
displacement motors and four planetary
wheel drives, A load controller in the
hydrostatic system keeps engine at or near
rated speed.

§= Each wheel is driven independenily by ils
own hvdrostatic drive system, Each system
consists of a flooded suction inlet, charge
pressure filter, variable displacement pump
and motor sharing a common hydrostatic
reservoir with non-bypass suction filtration.
Refurn oil is routed through an cil-to-air
cooler with supplemental oil being auto-
miatically filtered and supplied from the
main hydraulic reservoir.

Fage 2

GAUGES/INDICATORS
# Tachometer, engine oil pressure,
engine coolant temperature, fuel level
gauge, voltmeter, hour-meter, air filter ser-
vice indicator, parking brake light and
buzzer, belly pan up light, pump drive box
temperature,
= Self-diagnostic DSM instrumentation with
separate gauges for each hydroslalic drive
system with an audible and visual alarm.
* 24 volt system, two 8D 12 volt
batteries.

= 75 amp allemalor, heavy-duty starter and
service shutoff.

= All wiring loom protected or run in waler-
tight conduit.

= Remote master disconnect switch located
in cab.

* Fight, cab-mounted, 50 watt halogen lights;
two front and two rear.

* Movable engine compartment service light
with magnelic base.

CODLING SYSTEM
= Specially designed, large capacity,

steel framed, aluminum cored, inde-
pendent side-by radiator/cil cooler/CAC
with widely-spaced fins and inline tubes;
twa side clean out doors; radiator sight
glass and thermostatically controlled oil
cooler by-pass valve for rapid, cold weath-
er, hydrostatic system warmup.

VPN WWHEELS
~ ¢ G large 85.5 in. (2172 mm)

diameter wheels are designed to
exert highest compaction force.

S Constructed of alloy steel
1.5 in. (38 mm) cuter wrapper with .5 in.
(13 mm} hard surfacing on the inner and
outer wheel circumference.

gﬂ Wheel width front is 35 in, (889 mm); rear
is 40 in, (1016 mum),

g: Higher total ground clearance of 35 in.
(889 mm).

g:: Inner wheels protected by labyrinth type
antiwrap discs and cable traps.
Two 19 in. (483 mm) quick opening
access covers for easy visual inspection,

ELECTRICAL

CLEATS

aﬂ Big Dog cleats, constructed of

manganese alloy steel, provide a crisp
chopping to reduce refuse size.

§= The exclusive contour design of CMI cleats
eliminates surface fluffing,

S}a CMI cleats are self-cleaning, discourage
build-up and eliminate the need for power-
robbing raker bars.

g:l Oplional 2 piece Trak Lok™ and 7,25 in.
(184 mm}) high Terra Twist Torque® cleats
available.

Q)

FENDERS

g:! All wheels are fender covered and
available with optional integral striker bars.

g: Fixed antiwrap discs fil inside the rotating
wheel drum to form a labyrinth seal for
superior wheel and planetary drive protec-
tion. Each planetary wheel drive also has its
own multiple labyrinth seal guard.

g:l Cable traps provide added protection for
wheel drive seals,

g?-l Hand rails and steps provide sure cab

access.
m FRAME
 Front and rear frames are con-

siructed of heavy steel plate
weldments,

= Prames are connected by large,
hardened steel pins riding in large,
tapered roller bearings.
Massive box section steel castings support
each planetary wheel drive.

BRAKES

* Hydrodynamic service brake for
each wheel.
+ (il cooled parking/emergency wet fail-
safe brakes on rear wheels are spring
applied with automatic hydraulic release,

==
.|| HYDRAULICS / STEERING AND

BLADE
Suction and return filters, with
indicators, filter all cil entering and leaving
the hydraulic reservoir,
* Tandem gear pump provides independent
oil supply to the steering and blade sys-
tems.
Steering and blade spool valves include
high pressure reliels, steering system anti-
cavitation checks and cylinder port cross-
over relief valves.

CMI Trashmester 3-90€ Landfll Compactor
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Special Access Features

These exclusive features are designed to provide fast, easy service access.

E:I For underneath access,
twio, heawy-duty re-
inforced belly pans
swing up and down
hydraulically. Separate
pin lock system secures
helly pans in up posi-
tian.

= The reinforced stesl
articulation doors swing
open for easy access
and are secured by a
positive pin lock sys-
tem.

[UTTHE
JAHTAEEY

. g:l Hydraulically actuated,
heaw-gauge tilt hood .

> 3:- Heawy radiator gril

. doors swing out for
easy radiator cleaning
and radiator / oil cooler
servicing.

g:I Fenders provide stahle
service platforms and

deflect dehris.

+ Hydrostatic drive sys-
tem in cab gauges for
wheel traction systerm
charge pressure and oil
temperature.

+ Control for tilt hood and
helly pans is conve-
niently located in rear
fender step.

+ Articulated, full-power steering is actuated
by two 5 20,5 in, (127 %521 mm) cush-
ioned hydrawic cylinders powered by an
independent 39 epm (148 lpm) pump for
easy operation and mazimum maneuver-
ability

+ Cylinders are located hish — away from
debris,

+ All hoses are located inside the mainframe
for maxdmum protection,

+ Total articulation is G4 degrees.

CONTROLS / STEERING & BLADE
g:l & joystick control is mounted on

each seat arm rest,

+ Onejoystick controls blade operation and
forwardsneutralireverse propulsion.

+ The other joystick controls steering and
work range (2) speed selection,

+ Each joystick has a hom button.

+ Machine reversals can be made at maxi-
mum engine mpm without power train
shocks,

+ Blade and steering controls are indepen-
dent of hydrostatic systems for smooth
operation.

CMI Trashmaster 3-9C€ Landfill Cormpactor

+ Joystick input and output are transmitted
through durable inductive coupling tech-
nology for long life operation. Mo sole-
noids. Mo mechanical linkages, Mo lubrica-
tion. Spocl snifting is enclosed and oper-
ates in oil,

+ Self diagnostic LED indicators dmplify trou-
Hleshooting,

CAB FEATURES
+ & fully enclosed, sound supressed

structure with insulated walls and
heawe duty floor matting,

ﬂ:l High back, side facing seat with lumbar
supportis suspension mounted, adjusts dx
ways and featres breathable cloth uphol-
stery.

+ Heater and defroster fans.

ﬂ:- Large windows all around for best 360

degree Wsibiity in the industry.

+ Independent ROES.

+ Tinted safety glass.

+ Front and rear windshield wipers and
washers,

+ Front clean out door
a:l Benders, stairs and handrails provide sure
access to the cab,

BLADE
o 4161 widex 7 . hish (4877 x

2134 mim) semi-U shaped blade
directs trash under the wheels.

+ Pull-width, rugged trash screen with 1 in.
(25 mm) square bars.

+ Blade controlled by a single 6x 40 in,
(152 % 1016 mm) hydraunlic cplinder powe
ered by an independent 50 gpm (129 1pm)
pump for easy operation with up, down,
hold and float posiions. Cylinder and both
exposed hydraulic lines are located high
and guarded for mazximum protection.

+ Cutting edges are reversible for extended
life.

g:IDencmes CMI standard features which may only be available at extra cost from competitors.
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Powerful, yet simple to service and
maintain - Each of four wheels is driven
by an indepandent hydrastatic drive
traction system consisting of a variable
displacernent pump, variable displace-
ment motar, non-bypass charge pres-
sure filker and a planetary whael drive.

A cammon pump drive box, reservair,
non-bypass suction filker and oil cooler
complete the hydrostatic drive traction
systarm.

Chll Trashimastar 2-90E Landfill Compador

The Best Compaction
In The Industry

At up to BOO PLI, the 3-90E Trashmaster exerts the greatest

compaction force available in the industry. The reason is its tri-

angular wheel configuration. WMachine

weight is equally distributed across

three points of contact.

The result is:

S= huch greater compaction pres-
sure than its competitors.

SR Greater landfill densities than
Campetitors.

28 Superior efficiency because of its single-
pass, full-width compaction.

Consult the CMI PLI Story
for more details.

a:I Denotes CMT standard featires which may only be avaifahle af extra cosffrom com petifors.
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EMI TRASHMASTER 2.90E Landflll Compactor
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Easy moubleshooting — Each hpdroztatic drive
cyetmm fag e own gauges Br manioring rac-
ton syetern charge pressura and oil bempara-
re, ard & niegrated with an aummatic
engine shutdown or speed redicon on falk.
The source of he problen & identified. Gauges
e beaed nthe cab with nd widual ndicator

lights and audible akrm on the nsrurent
panal.

Teskports are ako boated throughouk the
yterm o furher Beilit e rowbk-shoo g,
For conveniznca, 3 carvice lighbwith e mreion
cord and madgnetic ase & beated n the engine
cormparment,

Faga S

Hydrostatic Drive

The system behind 3-80E's
awesome pushing power

CHI 3-90E Tashmas er proddes a superior leved of pushing,
dimbing and compac don power no o thers can mach —
thanks to the high-perforrrance povwer train systern which is
composed of a Curnrning 525 hp G5k 19 diessl engine cou-
pled with Trashraster's proven wdrstatic drive system,
plus extra-large diarmeter whesls and our ukra-efficient blade
design.

n the laniAll, this system Bsno equal. Factis, the 390E
power train is backed by a decade of landfill cornpastion
experience, and field-prowen resuls.

The new age of lamifll design kas hegun. The large, high
wolurme landfills are being designed to handle the world's
growing waste strearn Chls 3-80E Trashrraster offers un-
equalled cormpaction efficiency to raxirmize the capacity of
your landfill ses, as well as the return on your investment.

Chll Traehrmeta 2 80E Landfil Compectoe



CMI TRASHMASTER 3-90E Landfill Compactor
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Englizh Nletric English hlatric
Cornpactive Stress Capacities
Crushing ( enty* 0,940 g G080 kg feond Engine ookt Systern 43 gals, 125 liters
Cornpressing (W heslr up to 707 FLI* 137 kgfornt Frgine ¢rankrass 16 gals. 45 iters
; ; : Fuel 234 gals. 220 Liters
Machine Dimensions : :
Coropaction Wilth 13 £ 2in 4166 tom Ehiate et él':' gals. it
: ; ; 19 £ £ in 3790 gom Hydrostatc Swetem 0 gals. 330]11.12:5
oﬂk'ﬂde. iI "“T e IWME ar 0% sorn “Wheel Ends 25 qis, 73 7 liters
Ebde Faise i bove Grmde 420, 1219 fodn Optional Equipoo et
Bhde Lower Belowr Grde 3 in. 152 roan Air Conditinrer With
Gmund Clesrance 35 . 220 foon Cab Fresurmer 140 Ths. Gékg
Cpemfing Weight' o ll5000Is 52103 ke Backup Alarm 4 Ite. Tkg
S epine Specitiaics ah Fire Brtinguisher 20 Ths. kg
Shipping Weght upto 115000 bs* 52163 ke told Veather Starting il 6 ke
Shipping Heig} 13 £, 2.5 in 407 tomn Fire Suppresion Systedn 115 1ke. 52 ka
mppmm Cnpar Trak Lok™ Tero-Piece
Criarcl Rl 124 3458 som Replaceshle Cleats 1944 The. 222 kg
Shifinieg | nath “ardal Kit 14 Ihs. t kg
With Elacle and with S8 fin BT rorn Terma Twist Torqued 1g45hs. 837 kg
bhde wings stored “Hhesl Bakers 1,201 Ihs. 8T ke
¥ Depesading orzabRorzs
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CMI TEREX Corporation
f. 0. Box 1923
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Ph; q05127-6020 Fax: 00570912017
¥ phsite; www, cmicorg.com
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APPENDIX D: Field Sampling of Trashmaster 3-90 with SPOT Unit
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