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Abstract 
 

In spite of being few in number, off-road vehicles have a significant contribution 
to air pollutants such as NOx and CO2.  Engine dynamometer test cycles have been 
developed in an effort to better characterize the emissions from off-road vehicles. 
However, these test cycles may not accurately represent the emission profiles under 
normal operating conditions.  The current study seeks to: (1) collect real-world NOx and 
CO2 emission profiles from an off-road diesel vehicle; (2) analyze NOx and CO2 emission 
profiles for  a diesel off-road vehicle running on no. 2 diesel, 20% biodiesel mix (B20) 
and ultra-low sulfur diesel (ULSD) fuels to determine potential emission reductions; (3) 
test the effect that temporal factors exert on NOx and CO2 emission profiles; (4) evaluate 
the emission variability between two pieces of equipment of the same model; and (5) 
develop a standard, systematic analysis for handling large emission data sets.  
 

The study is based on the tailpipe emission sampling of a diesel fueled 525-
horsepower Trashmaster 3-90E trash compactor operated at the N.R. Hamm Landfill 
facility located near the city of Perry in Jefferson County, Kansas. The sampling 
instrument used for the study is the Simple, Portable, On-vehicle Testing (SPOT) system 
manufactured by Analytical Engineering Inc.   The SPOT is able to collect second-by-
second data for total exhaust mass flow, relative humidity, engine speed, and NOx and 
CO2 emissions among other parameters.  The fuel types used include regular no. 2 diesel, 
B20 and ULSD.  The sampling campaign took place in two stages: (1) running the 
compactor with regular no. 2 diesel from August 28 to September 1 and with B20 and 
ULSD fuels from September 12 to September 15, 2005, and (2) running a second 
compactor of the same model with no. 2 diesel.  The purpose of the first stage of the 
project was to determine the possible emission reductions from the use of B20 and 
ULSD.   The purpose of the second stage was to test the emission variability between two 
compactors of the same model. This is relevant since it is commonly assumed that the 
emission profile from one engine is representative for all engines of the same type and 
family.  
 
 Initial data analysis showed a significant autocorrelation in the NOx and CO2 data 
observations. Autocorrelation is inherent in continuous data sets where sequential 
observations are too close together to be independent from each other and must be 
resolved so that a robust statistical analysis may ensue. By using a time interval data 
reduction technique a set of quasi-independent observations was produced. This 
technique allowed for a valid use of the general linear model (GLM) with engine speed as 
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the covariate factor to test day, fuel type and compactor factors.  For the first stage of the 
project the results from the GLM showed that neither day nor fuel type factors were 
statistically significant on NOx and CO2 emissions. These results suggest that NOx and 
CO2 emissions are not dependent on the day in which they were collected or on the fuel 
type used. The second stage of the project involved the comparison of NOx and CO2 
emissions from two compactors of the same model while running on no. 2 diesel fuel.  
The results from the temporal analysis indicated that the day factor was not statistically 
significant for either of the two pollutants. Results from the compactor analysis showed 
that compactor was not a statistically significant factor on NOx emissions. However, the 
interaction of compactor and engine speed factors was found to be statistically significant 
on NOx emissions.  For CO2 emissions the results indicated that compactor was a 
statistically significant factor.  These results suggest that the there is a statistically 
significant difference between the NOx and CO2 emissions obtained from each of the two 
compactors.  However, this difference is expressed differently in each of the two data 
sets.   
 
 In addition to the GLM analyses, a data fitting model analysis was also completed 
for NOx and CO2. The results showed that the linear and the cubic models do a good job 
of fitting the NOx and CO2 data and they both have high R2 values.  These data fitting 
technique may be used to estimate NOx and CO2 emissions based solely on engine speed 
after an emission profile has been collected.  This information can be of great import to 
obtain more accurate emission estimates from off-road diesel vehicles. 
 

This study makes three main contributions including the development of a data 
handling technique to deal with autocorrelation in continuous data.  This study also 
showed that the three fuel types evaluated had no significant effect on NOx and CO2 
emissions. Finally, the evaluation of two Trashmaster 3-90E compactors showed that 
NOx and CO2 emissions are significantly different between the compactors. 

 
 
 
 
 



v 
 

ACKNOWLEDGEMENTS 
 

There are so many people that have been instrumental in helping me complete this 
dissertation. 

 
First, I want to thank the members of my committee: Dr. Dennis Lane, Dr. Ray 

Carter, Dr. Norm Slade, Dr. Edward Peltier, and Dr. Glen Marotz.  I greatly appreciate 
your guidance and feedback and I feel honored to have such a distinguished group of 
experts in my committee.   

 
I especially want to acknowledge my advisor, Dr. Dennis Lane, for his continuous 

support and guidance throughout my many years in graduate school.  I owe Dr. Lane my 
deepest admiration and gratitude for taking me under his wing and providing me with the 
unique opportunity to participate in numerous research projects for the eight years I 
worked for him as a research assistant.  I owe much of what I have accomplished to his 
ongoing support and guidance.   

 
I am also most thankful for being able to learn from Dr. Ray Carter while working 

with him in numerous research projects throughout the years.  His expertise and 
knowledge are almost boundless.    

 
I also would like to acknowledge Dr. Norm Slade for his help in the statistical 

aspects of this study and for his thorough review of my dissertation drafts.    
 
I would like to thank Dr. Christine Jensen for her guidance regarding the 

structure, grammar, and style of my writing. Her insights greatly improved the clarity, 
flow, and readability of my dissertation. 

 
Thanks to Richard Baldauf, who was instrumental in helping me discover my 

passion for environmental engineering.  Due to his encouragement I joined the Southeast 
Kansas Health Study which was the start of my graduate journey in air quality.  

 
This project would not have been possible without the help from Analytical 

Engineering Inc. (AEI) who graciously lent KU their SPOT system and provided training 
and technical assistance. 

 
Also, my deepest gratitude to the staff at the Hamm Quarry Landfill for allowing 

me to sample their two trash compactors.  I am especially thankful to Charlie Sedlock 
who was most helpful in granting access and assistance for this project.  

 
I also want to thank Carrie Hohl for her insights and help in securing a monitoring 

system and a monitoring site. 
 
At the Kansas Department of Health and Environment (KDHE), where I worked 

full-time during part of my graduate work, I am most appreciative of the support I 
received from Rick Brunetti, Marian Massoth, Mindy Bowman, and Terry Tavener. 



vi 
 

 
At Wenck Associates, where I currently work, I would like to thank my 

colleagues Jared Anderson, Ed Hoefs, Steve Menden, Denise Kazmierczak and Ron 
Keller for being supportive of my efforts in the last stage of this journey.      

 
I am also most grateful for the support I received during my graduate work from 

Chancellor Robert Hemenway and Mary Burg. 
 
I also want to thank my parents who have always been there for me and 

encouraged me along the way. I especially want to thank my dad who by his 
perseverance has taught me that with hard work all things are possible and my mom for 
her love.   

 
Thanks also to my wife Rachel for her support and advice in the many stages of 

this process that now comes to an end.  I am especially grateful for her joy, her smile, and 
her faith in my success.  I also owe her a huge “thank you” for her unconditional love and 
encouragement even in the darkest hours when the outcome did not seem so certain.   

 
Thanks also to Marilene Magario and Rebecca Magario for their love and support.  
 
Thanks to Bob and Suzanne McColl for all the different ways they have supported 

and encouraged me during this journey.    
 
And last, but not least, I would like to acknowledge all the people who have 

encouraged me along the way with their thoughts, prayers, and advice including: 
Channette Alexander, Lynne Tidwell, Joanne Soraya, Gia Maisch, Margaret O’Brien, 
Rudy and Clare Parker, Carol Reitshuh, the Minneapolis Basilica Choir members, the 
Summit Lighthouse, all my family, friends, and everyone else who, unbeknownst to me, 
kept me in their thoughts and prayers. 
 
 
 



vii 
 

TABLE OF CONTENTS 
 
I. INTRODUCTION ......................................................................................................... 1 

I.A.   Statement of problem ........................................................................................ 1 
I.B.   Objectives and Significance .............................................................................. 3 

II. LITERATURE REVIEW ........................................................................................... 5 
II.A.    Diesel Engine ..................................................................................................... 5 
II.B.    Diesel Emissions ................................................................................................ 6 
II.C.    Particulate Matter ............................................................................................. 8 
II.D.    Nitrogen Oxides ............................................................................................... 14 
II.E.    Nitrogen Oxides and Particulate Matter Relationships .............................. 16 
II.F.    Carbon Dioxide ................................................................................................ 16 
II.G.   Off-road Vehicles and Equipment ................................................................. 19 
II.H.   Trends in PM and NOx contributions from Off-road Vehicles ................... 19 
II.I.     Fuels .................................................................................................................. 22 
II.J.    Regulatory Approach ...................................................................................... 26 
II.K.   Exhaust Emissions Characterization for Off-road Diesel Engines ............. 29 
II.L.   Analysis of Continuous Emission Data from PEMS ..................................... 42 
II.M.  Analysis of PEMS Data in Recent Publications ............................................ 44 

III. METHODOLOGY AND APPROACH ................................................................. 47 
III.A.  Exhaust Emissions and Duty Cycle Characterization ................................. 47 
III.B.  Statistical Analysis ........................................................................................... 53 

IV. RESULTS OF FUEL TYPE ANALISIS ................................................................ 60 
IV.A.  Data Screening ................................................................................................. 61 
IV.B.  NOx Results for Fuel Analysis......................................................................... 66 

V. RESULTS OF COMPACTOR ANALISIS ............................................................. 86 
V.A.   Data Screening .................................................................................................. 87 
V.B.   NOx Results for Compactor Analysis ............................................................. 91 
V.C.   CO2 Results for Compactor Analysis ........................................................... 104 

VI. DISCUSSION AND CONCLUSIONS .................................................................. 116 
VI.A. Initial Data Analysis ....................................................................................... 116 
VI.B. Comparison Analysis: Fuel Type .................................................................. 117 
VI.C. Comparison Analysis: Compactor ................................................................ 117 
VI.D. Temporal Analysis: Fuel Type and Compactor ........................................... 119 
VI.E. Data Fitting Models: Fuel Analysis ............................................................... 119 
VI.E. Data Fitting Models: Compactor Analysis ................................................... 120 
VI.F. Future Implications and Concluding Remarks ............................................ 121 

VI.REFERENCES ........................................................................................................ 125 
 
APPENDIX A: Fuel Analysis 
APPENDIX B: Compactor Analysis 
APPENDIX C: Trashmaster 3-90 
APPENDIX D: Field Sampling of Trashmaster 3-90 with SPOT Unit 
 
 
 



viii 
 

 
 
LIST OF FIGURES 
 
Figure 1.   Conceptual model showing the main features of a reacting diesel fuel jet. ...... 9 
Figure 2.   Typical structure of engine exhaust particles. ................................................... 9 
Figure 3.   Particle composition for a heavy-duty diesel engine. ...................................... 10 
Figure 4.   Typical engine exhaust size distribution. ........................................................ 12 
Figure 5.   Elementary reactions for thermal NOx formation. .......................................... 15 
Figure 6.   Comparison of PM10 contributions from different emission sources. ............. 20 
Figure 7.   Comparison of PM2.5 contributions from different emission sources. ............ 21 
Figure 8.   Comparison of NOx contributions from different emission sources. .............. 22 
Figure 9.   Transesterification reaction between triglycerides and alcohol. ..................... 24 
Figure 10.  Schematic of on-board trailer facility (Brown et. al., 2002). ......................... 33 
Figure 11.  Image and diagram of the Mobile Emission Laboratory (MEL) .................... 34 
Figure 12.  Schematic of the ARI mobile laboratory ........................................................ 35 
Figure 13.  SEMTECH-DS system by Sensors, Inc. ........................................................ 36 
Figure 14.  HORIBA’s OBS-2200 .................................................................................... 37 
Figure 15.  OEM-2100 “Montana” System ...................................................................... 38 
Figure 16.  NGK NOx sensor accuracy and sensitivity analysis ...................................... 38 
Figure 17.  SPOT system from AEI .................................................................................. 39 
Figure 18.  Comparison between Horiba laboratory instruments and Semtech DS ......... 41 
Figure 19.  SPOT system components .............................................................................. 47 
Figure 20.  CMI 3-90E compactor at Hamm’s landfill. .................................................... 50 
Figure 21.  N.R. Hamm facility. ....................................................................................... 51 
Figure 22.  Histogram of engine speed for all data. .......................................................... 63 
Figure 23.  Histogram of engine speed for each fuel type. ............................................... 64 
Figure 24.  Histogram of engine speed for ECD and B20 fuel types. .............................. 65 
Figure 25.  Histogram of engine speed for diesel and B20 fuel types. ............................. 65 
Figure 26.  Histogram of engine speed for Diesel and ECD fuel types. ........................... 66 
Figure 27.  Scatterplot of NOx vs. engine speed for all data. ............................................ 67 
Figure 28.  Scatterplot of NOx vs. engine speed for each fuel type. ................................. 68 
Figure 29.  Plot of partial autocorrelation for all data. ...................................................... 70 
Figure 30.  Plot of partial autocorrelation for NOx data after interval of 1 of 800. .......... 72 
Figure 31.  Fitted line plot for fuel data with a linear regression equation. ...................... 74 
Figure 32.  Fitted line plot for fuel data with a quadratic regression equation. ................ 75 
Figure 33.  Fitted line plot for fuel data with a cubic regression equation. ...................... 76 
Figure 34.  Scatterplot of CO2 vs. engine speed for all data. ............................................ 77 
Figure 35.  Scatterplot of CO2 vs. engine speed for each fuel type. ................................. 78 
Figure 36.  Plot of partial autocorrelation for all data. ...................................................... 80 
Figure 37.  Plot of partial autocorrelation for CO2 data after interval of 1 of 800. .......... 81 
Figure 38.  Fitted line plot for fuel data with a linear regression equation. ...................... 83 
Figure 39.  Fitted line plot for fuel data with a quadratic regression equation. ................ 84 
Figure 40.  Fitted line plot for fuel data with a cubic regression equation. ...................... 85 
Figure 41.  Histogram of engine speed for the combined data of both compactors. ........ 88 
Figure 42.  Histogram of engine speed for individual compactors. .................................. 89 



ix 
 

Figure 43.  Test of equality of variance for engine speed. ................................................ 90 
Figure 44.  Scatterplot of NOx vs. engine speed for each compactor. .............................. 91 
Figure 45.  Plot of partial autocorrelation for all data ....................................................... 93 
Figure 46.  Plot of partial autocorrelation for NOx data after interval of 1 of 800. .......... 94 
Figure 47.  Plot of predicted values for 2 compactors with line equation and intercept  . 95 
Figure 48.  Fitted line plot for compactors data with a linear regression equation. .......... 97 
Figure 49.  Fitted line plot for compactors data with a quadratic regression equation. .... 98 
Figure 50.  Fitted line plot for compactors data with a cubic regression equation. .......... 99 
Figure 51.  Fitted line plot for Compactor#1 data with a linear regression equation. .... 100 
Figure 52.  Fitted line plot for Compactor#2 data with a linear regression equation. .... 100 
Figure 53.  Fitted line plot for Compactor#1 data with a quadratic regression equation.
......................................................................................................................................... 101 
Figure 54.  Fitted line plot for Compactor#2 data with a quadratic regression equation.
......................................................................................................................................... 102 
Figure 55.  Fitted line plot for Compactor#1 data with a cubic regression equation. ..... 103 
Figure 56.  Fitted line plot for Compactor#2 data with a cubic regression equation. ..... 103 
Figure 57.  Scatterplot of CO2 vs. Engine Speed for both compactors. .......................... 104 
Figure 58.  Plot of partial autocorrelation for all data. .................................................... 106 
Figure 59.  Plot of partial autocorrelation for CO2 data after interval of 1 of 800. ........ 107 
Figure 60.  Fitted line plot for compactors data with a linear regression equation. ........ 109 
Figure 61.  Fitted line plot for compactors data with a quadratic regression equation. .. 110 
Figure 62.  Fitted line plot for compactors data with a cubic regression equation. ........ 111 
Figure 63.  Fitted line plot for Compactor #1 data with a linear regression equation. ... 112 
Figure 64.  Fitted line plot for Compactor #2 data with a linear regression equation. ... 112 
Figure 65.  Fitted line plot for Compactor #1 data with a quadratic regression equation.
......................................................................................................................................... 113 
Figure 66.  Fitted line plot for Compactor #2 data with a quadratic regression equation.
......................................................................................................................................... 114 
Figure 67.  Fitted line plot for Compactor #1 data with a cubic regression equation. .... 115 
Figure 68.  Fitted line plot for Compactor #2 data with a cubic regression equation. .... 115 

 



x 
 

LIST OF TABLES 
 

Table 1.  Properties of three fuel types considered. .......................................................... 25 
Table 2.  Summary of past, current and future non-road emission standards. .................. 28 
Table 3. Total number of hours compactor was in operation during each sampling day. 60 
Table 4. Average temperature, relative humidity and sky cover for sampling period. ..... 60 
Table 5.  Descriptive statistics for ambient and engine variables for all data. ................. 61 
Table 6.  Descriptive statistics for ambient and engine variables by fuel type. ................ 62 
Table 7.  Pearson correlation for main variables collected. .............................................. 63 
Table 8. Test of homogeneity of variance for three pairs of fuel type. ............................. 64 
Table 9. NOx descriptive statistics. ................................................................................... 68 
Table 10. General Linear Model for NOx versus Fuel Type. ............................................ 69 
Table 11. Total number of observations used after test for independence procedure. ..... 71 
Table 12. General Linear Model for NOx versus Fuel Type. ............................................ 72 
Table 13. General Linear Model for NOx versus Sampling Day. ..................................... 73 
Table 14. CO2 descriptive statistics. ................................................................................. 78 
Table 15. General Linear Model for CO2 versus Fuel Type. ............................................ 79 
Table 16. Total number of observations used after test for independence procedure. ..... 80 
Table 17. General Linear Model for CO2 versus Fuel Type. ............................................ 81 
Table 18. General Linear Model for CO2 versus Sampling Day. ..................................... 82 
Table 19. Total number of hours compactor was in operation. ........................................ 86 
Table 20. Average temperature, relative humidity and sky cover for sampling period. ... 86 
Table 21.  Descriptive statistics for engine variables by compactor ................................. 87 
Table 22. Pearson correlation for main variables collected. ............................................. 88 
Table 23. Test of homogeneity of variance for two compactors. ..................................... 89 
Table 24. General Linear Model for NOx versus Compactor ........................................... 92 
Table 25. NOx descriptive statistics. ................................................................................. 93 
Table 26. General Linear Model for NOx versus Fuel Type. ............................................ 94 
Table 27. General Linear Model for NOx versus Sampling Day. ..................................... 96 
Table 28. CO2 descriptive statistics. ............................................................................... 105 
Table 29. General Linear Model for CO2 versus Compactor ......................................... 105 
Table 30. Total number of observations used after test for independence procedure. ... 107 
Table 31. General Linear Model for CO2 versus Compactor ......................................... 108 
Table 32. General Linear Model for CO2 versus Sampling Day .................................... 108 
Table 33. Coefficient of determination (R2) in percentage. ............................................ 120 
Table 34. Coefficient of determination (R2) in percentage. ............................................ 121 



1 
 

I. INTRODUCTION 

I.A. Statement of problem 

 The diesel engine plays a vital role in transportation, power generation, farming, 

construction and industrial activities. The primary advantages of this type of engine 

include its durability and its lower fuel consumption when compared to the gasoline 

spark ignition engine.  The diesel engine also provides more energy per unit of fuel than a 

gasoline engine. At full load, a diesel engine uses approximately 70% of the fuel a 

comparable gasoline engine consumes for the same output (Lloyd et al., 2001).  

However, exhaust emissions from diesel engines are also an important source of air 

pollutants.   

 Diesel particulate matter is considered a hazardous pollutant with known health 

risks (U.S. EPA 2000C; CARB, 1999). Particulate matter (PM) and nitrogen oxides 

(NOx) are two of the main criteria pollutants posing an important risk to public health. 

NOx formation is related directly to the high temperature of the engine combustion 

chamber. These compounds are also an important contributor to ozone formation and 

irritation of the eyes, nose, throat and lungs. Particulate matter (PM) emissions result 

from incomplete combustion in the engine chamber. Studies have linked PM emissions 

with respiratory and cardiovascular conditions (U.S. EPA, 2004C). Also, growing 

concerns about global warming highlight the importance of CO2 emissions from diesel 

engines and other combustion sources. 

Research into engine emissions has historically focused on on-road vehicles. As a 

result, since 1985 emission standards have become more stringent for diesel on-road 

vehicles, whereas off-road vehicles and equipment have been subject to less stringent 

regulations.  This situation changed in 1994, when the United States Environmental 

Protection Agency (EPA) adopted the first set of emission standards (Tier 1) for all new 

off-road diesel engines greater than 37 kilowatts (50 horsepower), except those used in 

locomotives and marine vessels (40 CFR 89). Further Tier 1 standards were introduced 

for engine sizes between 1996 and 2000 to reduce NOx emissions by 30 percent (U.S. 

EPA, 2003C).  Since then, the gap in emissions limits between on-road and off-road has 

closed rapidly.  However, as of 2003, land-based off-road diesels accounted for 44 and 12 
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percent of the mobile source emissions of PM and NOx, respectively (U.S. EPA, 2003A). 

A recently promulgated emission standard relevant to off-road vehicles calls for a 

reduction of sulfur in diesel fuel to 15 ppm by 2010. This reduction in sulfur is aimed at 

reducing PM emissions and enabling the use of advanced aftertreatment technologies 

such as catalytic particulate filters and NOx adsorbers. Along with the reduction of sulfur, 

alternative fuels such as biodiesel may help in minimizing the harmful emissions from 

diesel fuel.   

The emissions characterization for off-road diesel vehicles is not nearly as 

comprehensive as it is for on-road vehicles. This is true because of the wide variety of 

off-road diesel vehicles and equipment and the high cost of engine and chassis 

dynamometer testing.  Recent research has exposed the limitations of laboratory testing 

in accurately characterizing emission profiles of on-road and off-road vehicles. Results 

from continuous sampling systems have shown that the existing test cycles for chassis 

and engine dynamometer cycles do not accurately characterize the actual (real-world) 

duty cycles of on-road and off-road vehicles.  For example, Shah, et al. (2004) found that 

diesel emissions of elemental carbon, organic carbon and particulate matter depend 

strongly on the mode of operation. Yanowitz et al. (2000) also found that NOx emissions 

are proportional to work done by the engine. These results emphasize the need for real-

world data that characterize the relationship between duty cycles and emission profiles 

for diesel equipment.  For this and other reasons, research has shifted towards on-board 

systems that are capable of collecting duty-cycle data and yield a more accurate emission 

profile.   

Historically the air emission contributions from off-road vehicles have been 

overlooked since this equipment tends to be small in number and their use is generally 

transient and localized to a certain work site or location.  In spite of being few in number, 

off-road vehicles make a significant contribution to air pollutants such as NOx, PM and 

CO2.   It is estimated that in the US 20 million diesel engines are in operation: 13 million 

are on-road and 7 million are off-road vehicles (U.S. EPA, 2009A). In comparison it is 

estimated that 210 million cars and light duty trucks in the US (U.S. EPA, 2012A) are in 

operation. Furthermore, the turnover of diesel engines is slower since these engines can 

last between 20 and 30 years. The EPA estimated that 11 million diesel vehicles do not 
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meet the 2005 emission standards (U.S. EPA, 2006).  Thus, it is important to characterize 

the emissions contributions from off-road diesel equipment more accurately.  The current 

study seeks to help in this effort by using an on-board system to collect and analyze 

tailpipe emissions from an off-road vehicle operating under normal conditions.   

   

I.B. Objectives and Significance 

 The current study seeks to analyze NOx and CO2 emissions from an off-road 

diesel vehicle collected with a continuous emissions sampler.  The first stage of the 

sampling involved the collection of emissions data from an off-road diesel vehicle run 

with three fuel types: no. 2 diesel, ultra-low sulfur diesel (ULSD, average sulfur content 

of 15 ppm) and 20% biodiesel mix (B20).  The second stage involved the emission 

testing of a second off-road diesel vehicle of the same model for comparison with the one 

used in the first stage of the emission testing.  The emissions from this compactor were 

sampled while it ran on no. 2 diesel fuel only.  These data were then compared and 

analyzed with the data from the diesel portion collected from the first compactor. 

  

The objectives of this project include   

1. Collecting NOx and CO2 emission profiles from an off-road diesel vehicle on a 

second-by-second basis while under normal operation;  

2. Analyzing NOx and CO2 emission profiles for a diesel off-road vehicle running on 

no. 2 diesel, 20% biodiesel mix (B20) and ultra-low sulfur diesel (ULSD) fuels to 

determine potential emission reductions;    

3.    Testing the NOx and CO2 emission variability between two pieces of equipment 

of the same model run with no. 2 diesel fuel; 

4. Testing the effect that temporal factors exert on NOx and CO2 emission profiles;  

5. Developing models to predict NOx and CO2 emissions from engine speed data. 

 

 The approach involves the gathering of continuous field data from an off-road 

diesel compactor. These type of data are valuable in investigating the relationship 

between diesel emissions and engine parameters. The sampling system for this study 

collects continuous NOx and CO2 exhaust emissions. By analyzing these data, we seek to 
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assess whether the use of B20 and ULSD fuel can reduce NOx and CO2 emission by 

comparing them to baseline emissions from diesel fuel.  The purpose is to find out if 

either of these two fuels is able to provide significant reductions in NOx and CO2 

emissions.  Additionally, by comparing the emissions profiles of two comparable 

compactors running on diesel fuel we can identify any differences and similarities related 

to testing separate equipment.  This compactor analysis indicated whether the emission 

profiles from two compactors of the same type are similar to each other or not.  This is 

relevant because currently it is assumed that emissions from an engine test are 

representative for all engines of the same type or family.  This comparison is also useful 

in assessing the repeatability of emission profiles from two compactors and gives insight 

into the variability that may exist between equipment of the same type.    
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II. LITERATURE REVIEW 
II.A.   Diesel Engine 

 The diesel compression engine was invented by Rudolf Diesel in 1892.  This type 

of engine produced a significant amount of power while being fuel efficient and durable.  

During the early 1900’s diesel engines spread throughout the United States and Europe 

and ultimately replaced the steam-powered engines for heavy-duty applications in marine 

transportation and some industrial applications.  Diesel engines could withstand heavy 

loads at relatively low speeds.  Technological advances in the 1930’s raised the operating 

speeds and decreased engine weight, allowing the use of diesel engines for on-road 

applications.  A two-cycle diesel engine developed by General Motors was also 

introduced for use in railroads and was later adapted for trucks and buses (Williamson et 

al., 1963).   From this point on, the movement of freight and passengers has depended 

heavily on the diesel engine.   

 Currently, the diesel engine is the prime mover in our society due to its power, 

fuel efficiency and long life span.  The diesel engine is designed to reach higher peak 

pressures and temperatures than the spark ignited gasoline engine.  This makes diesel 

engines heavier and more costly but also more durable and fuel efficient.  At full load, the 

diesel engine uses only 70% of the fuel that a comparable gasoline engine consumes for 

the same power output (Lloyd and Cackette, 2001).   

 PM and NOx are the main emissions produced from diesel fuel combustion. The 

process of combustion in a diesel engine occurs when the fuel blend is injected at high 

velocity into the cylinder where air has been compressed at a high temperature and 

pressure.  The injected fuel does not ignite immediately but undergoes a period of 

ignition delay.  During this ignition delay, the fuel heats up, vaporizes, mixes with the air 

and undergoes chemical pre-combustion reactions that produce the radicals necessary for 

spontaneous ignition.  Ignition then occurs spontaneously at multiple nuclei in regions of 

stoichiometric (theoretical minimum for complete combustion) balance between fuel and 

air reactants.  Thus, PM is formed in the areas of incomplete combustion where the air-

to-fuel ratio is low.  These reactions are controlled by the rate at which air is entrained 

and a combustible mixture is formed.  Combustion in diesel engines occurs under lean-

burning conditions; the excess air in the reaction results in a large amount of water vapor 
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and oxygen in the exhaust. The nitrogen and oxygen in the excess air, along with the high 

temperature of the combustion chamber, create an ideal environment for NOx production 

to ensue.     

 Diesel engines power more than 3 million highway trucks and buses and at least 6 

million pieces of off-road heavy equipment (Moran, 2003).  However, these diesel 

powered vehicles were left virtually unregulated until 1996.  In 1996, the emissions from 

land-based non-road diesel engines, locomotive engines and marine diesel engines were 

estimated to be about 40 percent of the total mobile-source inventory of PM2.5 and 25 

percent of the NOx inventory (U.S. EPA, 2004D).    Also in 1996, land-based non-road 

diesel engines accounted for about 47 percent of the PM2.5 emitted from all diesel 

engines.     

 

II.B.   Diesel Emissions  

 The emissions from diesel engines include a mixture of compounds in the vapor 

phase and very fine particles with a carbon core coated by condensed organic 

compounds.  The gaseous constituents include carbon dioxide, carbon monoxide, nitric 

oxide, nitrogen dioxide, oxides of sulfur, and hydrocarbons (Dawson, et. al., 1998).  The 

combustion process forms solid carbon cores that interact with each other and form 

chains and cluster aggregates.   It is estimated that more than 98% of these particles are 

less than 1 micrometer in size (Bagley, 1996).  Two of the most important emissions that 

are associated with diesel engines are PM and NOx. Additionally, a growing interest in 

global warming highlights the attention placed on CO2 emissions from combustion 

sources including diesel engines.   

 

II.B.1 Health Effects of Diesel Exhaust.  Adverse human health effects are known to be 

caused by exposure to diesel emissions (U.S. EPA, 2002B).  The health risks identified 

are derived from extensive studies of human workers as well as some studies in animals, 

and observations of mutagenic activity in culture systems.  Some of these health effects 

include aggravation of bronchitis and asthma, decreased lung function, decreased 

respiratory defense mechanisms, acute respiratory illness and increased risk for lung 



7 
 

cancer.  These effects can range from acute to chronic and in some cases they can lead to 

decreased life span. 

 Critical reviews from scientific journals (Lloyd and Cackette, 2001; Pope and 

Dockery, 2006) and government agencies (U.S. EPA, 2004C; CARB, 2000) have 

analyzed the numerous animal and human studies that relate adverse human health effects 

to diesel exhaust exposure.  The research data obtained from these studies is extensive 

and confirms the chronic and acute health effects from diesel exhaust exposure. 

Although, some gaps still exist in the understanding of biological mechanisms that link 

adverse health conditions to diesel exhaust exposure, it is reasonable to conclude that 

exposure to diesel exhaust significantly increases human health risks.  

 The health effects from diesel exhaust exposure are commonly divided into two 

groups: 1) acute and chronic noncancer adverse respiratory health effects and 2) 

carcinogenic health effects.  The first category is caused by fine and ultrafine particles 

(smaller than 0.1 micrometers) that are highly respirable and penetrate deep inside the 

lungs.  Ultrafine particles also have a large surface area, which makes them an excellent 

carrier for adsorbed inorganic and organic compounds.  Some of the most toxic organic 

compounds adsorbed onto the particles include polycyclic aromatic hydrocarbons 

(PAHs), nitro-PAHs, and oxidized PAH derivatives (U.S. EPA, 2000C).  Diesel exhaust 

is also composed of hazardous particles and vapors, some of which are known or 

probable carcinogens. 

 According to the California Environmental Protection Agency (Cal/EPA, 1998), 

diesel exhaust can cause noncancer health effects including acute irritation (e.g. eyes, 

throat, and bronchial irritation), neurophysiological symptoms (e.g. lightheadedness and 

nausea), and respiratory symptoms (cough and phlegm).  Evidence also suggests possible 

immunological effects and/or exacerbation of allergenic responses to known allergens.   

These effects aggravate respiratory illnesses such as bronchitis, emphysema and asthma.  

These symptoms are associated with premature deaths from cardio-pulmonary disorders.  

Exposure to fine particles causes changes in the lung function and inflammation of the 

small airways.  Also PM exposure may increase susceptibility to bacterial or viral 

respiratory infections, and may increase the incidence of respiratory disease in vulnerable 

groups such as the elderly, people with chronic pulmonary diseases, and people with 
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immune system dysfunction.  In the presence of pre-existing heart or lung disease, 

respiratory exacerbations induced by air pollutants may lead to death.   

 Cancer health effects have been documented in numerous animal and human 

studies.  In 1988 the National Institute for Occupational Safety and Health (NIOSH) 

recommended that diesel exhaust be regarded as a potential carcinogen.  According to 

more than 30 epidemiological studies, people who are routinely exposed to diesel exhaust 

through their work on railroads, docks, trucks, or buses have a greater risk of lung cancer 

(CARB, 1998).  On average, long-term occupational exposure to diesel exhaust is 

associated with an increase of about 40% in the relative risk of lung cancer (Lipsett et al., 

1999; Cal. EPA, 1998).  CARB (2000) estimates that diesel exhaust is responsible for 70 

percent of California’s cancer risk from airborne toxic pollution.  This translates to 540 

additional cancers per million people exposed to current outdoor levels of diesel pollution 

over a 70-year lifetime.   

 In 1989, the International Agency for Research on Cancer (IARC) concluded that 

diesel exhaust was a probable carcinogen to humans (WHO, 1989).  In 1990, based on 

the IARC findings, the State of California identified diesel exhaust as a chemical known 

to cause cancer (Cal. EPA, 2012).  Subsequently, the Health Effects Institute (1995), the 

World health Organization (1996), the U.S. Department of Health and Human Services 

(2001), the American Council of Government Industrial Hygienists (2001), and the EPA 

(2002) declared diesel exhaust as a likely human carcinogen.   

 

II.C.   Particulate Matter 

 Formation of particulate matter (PM) occurs in the center of the fuel spray where 

the air-to-fuel ratio is low.  As the soot cools, organic compounds derived from the fuel 

and the lubricating oil adsorb onto the particle surface or may form organic aerosol by 

homogenous nucleation. Figure 1 below shows a conceptual model of such process. 
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Figure 1. Conceptual model showing the main features of a reacting diesel fuel jet during quasi-
steady portion of combustion (Dec, 1997). 
 

 Diesel aerosol consists of highly agglomerated solid carbonaceous material and 

ash, volatile organic and sulfur compounds.  A schematic of this structure is shown in 

Figure 2 below. PM can be released directly from the exhaust stream or it may form as a 

secondary particle once nitrogen oxides, hydrocarbons and sulfur oxides released from 

the tail pipe react in the atmosphere.  The diesel particles released directly from the 

tailpipe are composed of a carbon core with an array of toxic compounds including 

metals, polycyclic aromatic compounds (PAHs) and dioxins adsorbed to the particle’s 

surface.   

 

 
Figure 2.  Typical structure of engine exhaust particles (Kittleson, 1998). 
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 Solid carbon is formed in the combustion chamber in fuel rich regions.  Much of 

this carbon is then oxidized as solid agglomerates. A small fraction of the fuel and 

atomized and evaporated lube oil escape oxidation and appear as volatile or soluble 

organic compounds called soluble organic fraction (SOF).  The SOF contains polycyclic 

aromatic compounds containing oxygen, nitrogen and sulfur.  Most of the sulfur in the 

fuel is oxidized to SO2 and a small fraction is oxidized to SO3, leading to sulfuric acid 

and sulfate aerosol.  The metal compounds in the fuel and lube oil lead to a small amount 

of inorganic ash.         

 A heavy-duty diesel engine tested under the U.S. Heavy Duty Transient Test 

(CFR Title 40, Part 86.1333) reveals the composition of particulate matter from diesel 

exhaust as depicted in Figure 3. The fraction associated with unburned fuel and lube oil 

(SOF) varies with engine design and operating condition.  It can range from 10% to 90% 

by mass.  SOF values are highest at light engine loads when exhaust temperatures are low 

(Kittelson, 1999).   

 

 
Figure 3. Particle composition for a heavy-duty diesel engine tested in a heavy-duty transient cycle 
(Kittelson, 1998).  
  

C.1. Aerosol Size Distribution.  The distribution of diesel aerosols is trimodal and 

lognormal in form (Kittleson, 1998).  Figure 4 below shows the idealized diesel aerosol 

number and mass weighted size distributions.  Most of the particle mass exists in the 

accumulation mode in the 0.05 to 1.0 micrometer diameter range.  This is where the 

carbonaceous agglomerates and associated adsorbed material reside.  The nuclei mode 

typically consists of particles in the 0.005 to 0.05 micrometer diameter range.  This mode 
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usually is composed of volatile organic and sulfur compounds formed during exhaust 

dilution and cooling.  The nuclei mode usually contains between 1-20% of the particle 

mass and more than 90% of the particle number.  The coarse mode contains between 5-

20% of the particle mass.  It consists of accumulation mode particles that have been 

deposited on cylinder and exhaust system surfaces and later reentrained.  By number, 

nearly all particles emitted by a diesel engine are nanoparticles that have a diameter of 

less than .05 micrometers.  The same pattern is true for gasoline engine emissions.    

Motor vehicles are a major source of nanoparticles in urban areas.  Recent studies 

conducted in Southern California have shown high counts of these particles near 

freeways. Substantially higher numbers of particles are found near the roadway, while a 

sharp reduction in particle count has been shown to occur within 100- 300 meters 

downwind of the roadway (Zhu, 2002).   These particle sizes are important because for a 

given mass concentration, nanoparticles have much higher numbers and surface areas 

compared to larger particles.  These particles can act as carriers for other compounds, 

such as trace metals and organic compounds that can adsorb on the particles’ surfaces.  

Thus, due to nanoparticles’ larger surface area, more toxic compounds may be 

transported into the lungs than with larger particles.  Furthermore, these particles can also 

be inhaled and deposited deeper into the lungs than larger particles.  As much as 50% of 

the particles with 0.02 μm or smaller are estimated to be deposited in the alveolar region 

of the lung (SCAQMD, 2007). 
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Figure 4.  Typical engine exhaust size distribution.  Mass and number weights are shown (Kittelson, 
1998). 
 

C.2. Health Effects.  Diesel engines emit elemental carbon, adsorbed organic 

compounds, and small amount of sulfate, nitrate, metals, and other trace element 

particles.  These diesel particulates are emitted in distinct sizes.  The larger particles settle 

rapidly to the ground and finer particles remain suspended in the air for a longer time and 

may be able to travel in winds for hundreds of miles. Large particles that are inhaled get 

trapped by fine hairs and mucus in the nose, throat and large airways and thus pose a 

lower health risk than smaller size particles.  Particles less than about 10 microns in 

diameter (PM10) are more likely to make their way into the deeper portion of the lungs 

(U.S. EPA, 2000C).  Scientific research has also found that PM2.5 (diameter smaller than 

2.5 micrometers) and ultrafine (diameter less than 0.1 micrometers) particles can travel 

deep into the lungs and lodge in the alveoli.  There particles need to be cleared by cells of 

the immune system over a period of months or years.  However, some of these particles 

are never cleared from the body and they accumulate in the lungs and the lymph nodes 

(Chung and Brauer, 1997).  Autopsy studies of people living in urban areas have found 

significant blackening of the lungs due to the accumulation of fine particles (Pratt and 

Kilburn, 1971).  Additionally, the fine particles emitted from diesel engines are coated 

with a mixture of PAHs, nitroaromatics, benzenem dioxins and other toxic substances 
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that irritate the respiratory system and can cause and exacerbate respiratory conditions 

and can lead to premature death.  Sensitive populations include children, elderly, 

asthmatics, and individuals with preexisting respiratory or cardiovascular diseases. 

 

C.3. Issues in Particulate Matter Sampling.  The EPA has been regulating particulate 

matter smaller than 10 microns in size (PM10) since 1987.  However, it is estimated that 

98 percent of the PM from diesel exhaust are smaller than one micron in diameter and 

can lodge and linger in the deepest air sacs of the lung (Bagley, 1996).  PM10 regulations 

are mass-based, emphasizing the reduction of larger, heavier particles such as those 

occurring from earth-moving in construction and agriculture.  Based on the significant 

risks associated with fine particles, the EPA adopted new National Ambient Air Quality 

Standards for particles smaller than 2.5 micrometers in size (PM2.5) on September 16, 

1997 (U.S. EPA, 1997).  

 Evidence suggests that fine particles may contain more reactive substances linked 

to health impacts than coarse particles (SCAQMD, 2007).  It is estimated that between 80 

and 90 percent of diesel particles fall in the ultrafine size range of 0.05 to 1.0 micron 

(U.S. EPA, 2000C).  However, current regulations do not address growing concerns 

about health effects of ultrafine and nanoparticles which are difficult to measure with 

today’s technology.  These smaller particles penetrate deeper into the respiratory tract 

and their large surface to volume ratio could allow for more biological interaction.  

However, a reliable testing instrument to ensure an accurate and consistent measurement 

of these particles is not currently available.   

 Measurement of diesel aerosol is affected by three primary parameters:  the 

environmental conditions experienced by the emissions, the sampling/measurement 

system used to characterize the emissions, and the chemical and physical composition of 

the engine emissions.  An understanding of how exhaust conditions interact with exhaust 

constituents is critical to determine size distribution and composition.  Some issues 

related to sampling of nanoparticles include the correct simulation of atmospheric 

dilution.  The gas to particle conversion may happen in three ways: nucleation, 

condensation/adsorption, and adsorption (Kittelson, 2003).  Nucleation causes a 

homogeneous formation of new particles.  In condensation/adsorption gas molecules 
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transfer into liquid droplets. And in adsorption, a layer of molecules is formed on solid 

particles.  Coagulation is the other homogenous process based on particle to particle 

collision.  Heterogeneous processes include the loss of particles (or particle precursors) to 

walls of sampling and dilution system and storage and release of particle precursors on 

walls of sampling and dilution system.  It is estimated that more than 90% of the particle 

number may form through homogeneous nucleation of nanoparticles.  From 5% to more 

than 50% of the particle mass may form through adsorption and nucleation (Kittelson et 

al., 2002).  These processes are extremely sensitive to sampling and dilution conditions.   

 Few commercial portable emission measurement sampling instruments accurately 

measure particulate matter.  Apparently, only three companies have such sampling 

devices available on the market. The SEMTECH-QCM (Quartz Crystal Microbalance) 

manufactured by Sensors Inc. uses electrostatic precipitation to collect aerosol particles 

from a known volume of air and deposit the particles on an oscillating piezoelectric 

crystal (Buchholz, 2004).  The PM1065 PM Sampling System by Analytic Engineering 

Inc. (AEI) measures particulate mass, and the company claims that it exceeds the 40CFR 

part 1065 requirements in its testing.  This system uses partial dilution and is 

recommended for steady and transient state applications (AEI, 2006).   The Montana 

system by Clean Air Technologies Inc. (CATI) also measures particulate matter based on 

light scattering.  However, the three systems were designed to measure PM mass, and 

they are not able to speciate by particle size.  

 These systems collect PM measurements from diesel exhaust. Only the Montana 

system by CATI is able to measure PM emissions from an off-road vehicle outside of a 

lab environment.  However, this system uses qualitative light scattering techniques to 

obtain analogous PM measurements.  Thus, at this point in time there is no system that is 

able to quantify PM emissions from off-road vehicles during real world conditions. 

Therefore, the current study does not address PM diesel emissions but focuses on NOx 

and CO2 emissions instead.         

       

II.D.   Nitrogen Oxides   

II.D.1. Nitrogen Oxides Formation.  Nitric oxide (NO) and nitrogen dioxide (NO2) are 

the primary nitrogen oxides (NOx) produced by diesel engines.  NOx is formed by four 
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routes: the thermal route, the prompt route, the NO2 route and the fuel-bound nitrogen 

route (Bowman, 1992).  Out of these four routes, the fuel-bound nitrogen route is 

important only for coal combustion, and the NO2 route is not a significant source of NO 

(Warnatz, 1999).  Prompt NO results from a reaction between CH and N2, and caused by 

the low activation energies of the reactions involved, is favored at lower temperatures 

(about 1000° K).  However, thermal NO is favored at higher temperatures and is 

therefore the most significant source of NOx for diesel engines. 

 Thermal NO is formed by the elementary reactions depicted in Figure 5. The first 

reaction is the rate-limiting reaction since it requires a very high activation energy due to 

a strong triple bond in the N2 molecule. However, the combustion reaction inside the 

diesel engine is able to provide the necessary energy that makes this a viable and fast 

reaction.  

O + N2  
1kNO + N   k1 = 1.8 * 1014  exp(-318 kJ mol-1 / (RT))  cm3/(mol s)  

N + O2  
2kNO + O   k2 = 9.0 * 109   exp(-27   kJ mol-1 / (RT))  cm3/(mol s)  

N + OH 3kNO + H   k3 = 2.8 * 1013     cm3/(mol s)  
Figure 5.  Elementary reactions for thermal NOx formation. 
  

 In the diesel combustion chamber, NOx is created where the air to fuel ratio is 

near stoichiometric and high temperatures are generated.  Retardation of injection timing, 

relative to optimum timing for fuel economy, can decrease the NOx emissions.  However, 

retarding the injection timing typically lowers fuel efficiency which results in higher PM 

emissions. Thus, a delicate balance must be kept to keep both PM and NOx emissions 

controlled. 

 

II.D.2. Health Effects.  Two of the most toxicologically significant nitrogen oxides, nitric 

oxide and nitrogen dioxide, are produced primarily by combustion sources.  NOx’s are 

broken down rapidly in the atmosphere.  Reaction with chemicals in the air produced by 

sunlight leads to the formation of nitric acid, a major component of acid rain. NO2 also 

reacts with sunlight, leading to the formation of ozone and smog conditions in the 

ambient air. Health effects from exposure to low levels of NOx’s include irritation of 

eyes, nose, throat, and lungs, possibly causing cough and shortness of breath, tiredness 

and nausea.  Exposure to low NOx levels also could be conducive to fluid build-up in the 
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lungs 1-2 days after exposure (ATSDR, 2002).  Breathing high levels of nitrogen oxides 

can cause rapid burning, spasms, and swelling of tissues in the throat and upper 

respiratory tract, reduced oxygenation of body tissues in the throat and upper respiratory 

tract, reduced oxygenation of body tissues, a buildup of fluid in the lungs and death.   

 

II.E.   Nitrogen Oxides and Particulate Matter Relationships 

 The inverse relation between NOx and PM formation poses the primary challenge 

in lowering diesel engine emissions since control techniques are usually limited by a NOx 

and PM tradeoff where strategies to reduce one pollutant generally result in an increase of 

the other.  Nitric oxide formation is directly related to the temperature in the combustion 

chamber with increased temperatures in the combustion chamber resulting in higher NOx 

emissions. However, PM is formed when there is incomplete combustion of diesel fuel.  

Reductions in PM emissions can be achieved by an improvement in fuel combustion that 

results in higher combustion temperatures and increased NOx.   Additionally, diesel 

engines operate with excess air, this lean burning condition creates an oxidizing 

environment that is favorable for NOx formation.   

 

II.F.   Carbon Dioxide 

Reports about global warming indicate that since the Industrial Revolution levels 

of atmospheric carbon dioxide have increased by more than 30 percent and reached 

concentrations higher than any observed in the last 420,000 years (Petit et al., 1999). In 

its Fourth Assessment Report, the Intergovernmental Panel on Climate Change (IPCC) 

concluded that “most of the observed increase in global average temperatures since the 

mid-20th century is very likely due to the observed increase in anthropogenic greenhouse 

gas (GHG) concentrations” (IPCC, 2007). As a result, GHG inventories of anthropogenic 

sources have been developed to identify the primary sources of GHGs and develop 

possible mitigation strategies. These inventories are relatively new and do not itemize 

off-road equipment specifically but include them in the transportation category.  It is 

estimated that in 2009 about 23 percent of the CO2 emissions in the world were produced 

from transportation activities (IEA, 2011). 
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The EPA estimates that in 2010 transportation emissions accounted for about 31% 

of the total CO2 emissions. About 65 percent of these emissions were produced from 

gasoline consumption while the remainder was produced from other transportation 

activities including the combustion of diesel fuel in heavy-duty vehicles and jet fuel in 

aircraft (EPA, 2012B).  Thus, off-road equipment is not considered a major source of 

CO2 emissions. Nonetheless, obtaining a more accurate characterization of CO2 

emissions from these sources can aid in developing mitigation priorities and strategies to 

reduce GHGs.  

II.F.1. CO2 Formation.  Diesel engines, like any other internal combustion engine, 

produce CO2 emissions in the process of converting chemical energy from the fuel into 

mechanical power. Under ideal conditions, combustion of diesel fuel would produce only 

carbon dioxide (CO2) and water vapor (H2O) (Majewski, 2012) - the two most important 

greenhouse gases in the atmosphere. However, under real world conditions it is estimated 

that each of these emissions only accounts for 12 percent of the total diesel emissions 

(ibidem). For most transportation modes, other greenhouse gases such as N2O and CH4 

comprise a relatively small proportion of overall transportation related GHG emissions 

(approximately 2 percent combined) (EPA, 2008).  Due to the increase in fuel 

consumption, CO2 emissions increase with engine torque and speed (Abdelghaffar, 

2011). This means that the higher the engine load, the higher the CO2 concentrations that 

will be produced.  This effect can also be attributed to the improvement in turbulence at 

higher speeds and the higher cylinder temperature at a higher engine torque that results in 

better oxidation of carbon atoms to form CO2 (ibidem). 

II.F.2. Health Effects.  CO2 is a simple asphyxiant that reduces oxygen availability in the 

air and at concentrations above 15,000 ppm some loss of mental acuity may be noted 

(EPA, 2012C). According to the EPA acute effects from CO2 exposure can occur starting 

at a concentration of 20,000 ppm with a recommended maximum indoor concentration of 

1000 ppm for continuous exposure. The Occupational Safety and Health Administration 

(OSHA) permissible emission limit (PEL) for CO2 in indoor air is set a 5,000 ppm 

(OSHA, 2012).  The ambient CO2 concentrations have been found to be between 300 and 

400 ppm (NOAA, 2012).  As a reference, CO2 concentrations in office buildings typically 
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range from 350 to 2,500 ppm where the primary source of CO2 is respiration of the 

building occupants.  (Seppänen et al., 1999). Thus, the ambient CO2 concentrations are 

well below any health threshold. This means that no direct adverse health effects exist to 

humans from exposure to ambient levels of CO2. 

II.F.3. Greenhouse Gas Regulations in the US.  The legal basis for the regulation of 

GHG emissions originated from the April 2, 2007 US Supreme Court ruling stating that 

the EPA had the authority under the Clean Air Act to regulate greenhouse gas emissions 

from motor vehicles (U.S. Supreme Court, 2006). The Court also stated that EPA had to 

determine whether GHGs endanger public health or welfare, and whether emissions from 

new motor vehicles contribute to this air pollution.  EPA issued endangerment and 

contribution findings in December 2009 (EPA, 2009B). Since then, the following GHG 

regulations have ensued: the mandatory reporting of GHG from large GHG emissions 

sources finalized on October 30, 2009, the GHG Tailoring Rule finalized on May 13, 

2010, and the Carbon Pollution Standard for New Power Plants proposed on March 27, 

2012. These regulations affect primarily stationary sources, however, more recent GHG 

regulations started shifting their focus to mobile sources.   

II.F.4. CO2 regulations for Mobile Sources.  On April 1, 2010, EPA and the National 

Highway Traffic Safety Administration (NHTSA) finalized a national program setting 

standards to cut greenhouse gas emissions and increase fuel economy of cars and light 

trucks for model years 2012-2016.  These agencies also issued a Final Rulemaking with 

standards for model years 2017-2025 on August 28, 2012 that calls for vehicle 

manufacturers to meet a CO2 standard projected to be equivalent to 54.5 miles per gallon 

on an average fleet-wide basis. 

Regulations affecting heavy-duty vehicles have also been issued by the EPA.  In 

August 2011, EPA and NHTSA issued the first ever greenhouse gas and fuel efficiency 

standards for trucks and buses.  Once effective, these standards will jointly reduce fuel 

use and greenhouse gas emissions from medium- and heavy-duty vehicles, which range 

in size from the largest pickup trucks and vans to semi-trucks (EPA, 2011).   
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CO2 regulations do not currently cover off-road vehicles.  However, it is just a 

matter of time before these sources become subject to regulations similar to those 

applicable to on-road vehicles.   

II.G.   Off-road Vehicles and Equipment 

 The term off-road defines a diverse collection of outdoor power equipment, 

recreational vehicles, farm and construction machinery, lawn and garden equipment, 

marine vessels, locomotives, and other.  This equipment is also referred to as non-road 

equipment making the term interchangeable with off-road equipment.  The EPA 

definition for an off-road engine is based on the principle of mobility/portability and 

includes engines installed on (1) self propelled equipment, (2) on equipment that is 

propelled while performing its function, or (3) on equipment that is portable or 

transportable, as indicated by the presence of wheels, skids, carrying handles, dolly, 

trailer, or platform (U.S. EPA, 2003B).  Examples include farm tractors, excavators, 

compactors, bulldozers, wheel loaders, road graders, diesel lawn tractors, logging 

equipment, portable generators, skid steer loaders, and forklifts.  These vehicles are very 

robust and durable so their turn-over rate is rather slow.  Thus, newly enacted emission 

standards will not have an immediate effect on the exhaust emissions of these types of 

vehicles. The trash compactor used in this study fits the definition of both off-road and 

non-road vehicles. 

   

II.H.   Trends in PM and NOx contributions from Off-road Vehicles  

Emissions from off-road equipment negatively impact air quality in the US.  The 

National Emission Inventory (NEI) compiles information from sources such as EPA’s 

Toxics Release Inventory (TRI), the Acid Rain Program, as well as state, local and tribal 

air agencies. The estimated contribution that off-road equipment have in comparison with 

other emission sources is shown in Figures 6-8. The NEI program develops datasets, 

blends data from these multiple sources, and performs quality assurance steps that further 

enhance and augment the compiled data.  The NEI emissions data are compiled for 

detailed emissions processes within a facility for large “point” sources or as a county total 

for smaller “nonpoint” sources and spatially dispersed sources such as on-road and non-

road mobile sources.  
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The NEI evaluates all criteria air pollutants (CAPs) associated with the National 

Ambient Air Quality Standards (NAAQS) along with hazardous air pollutants (HAPs) 

associated with EPA’s Air Toxics Program. In this section, PM10, PM2.5 and NOx 

pollutants are depicted for 2000 and 2011. In addition to non-road diesel vehicles, NEI’s 

non-road category includes: non-road gasoline, aircraft, marine vessels, railroads and 

other gasoline equipment.  However, as discussed earlier, diesel off-road equipment are 

the major contributors to PM and NOx emissions when compared to gasoline equipment.  

Thus, the NEI non-road category is useful to gage the magnitude of pollution that diesel 

off-road equipment exert of ambient air concentrations in the US.   

When compared with all source categories, the PM10 contribution from off-road 

vehicles was 10% and 6% in 2000 and 2011 respectively (Figure 6). However, when only 

mobile sources are considered the off-road contribution to PM10 emissions is 58% and 

40% for 2000 and 2011 respectively.  This reduction can be attributed to the regulations 

that have started to encompass off-road equipment.  Nonetheless, PM10 emissions from 

off-road equipment continue to have a significant contribution comparable to that of 

highway vehicles.     

 

 
Figure 6. Comparison of PM10 contributions from different emission sources for years 2000 and 
2011. 
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PM2.5 emission trends are similar to the ones shown previously for PM10 (Figure 

7).  When compared with all source categories, the PM2.5 contribution from off-road 

vehicles was 11% and 10% on 2000 and 2011 respectively. When only mobile sources 

are considered the off-road contribution to PM2.5 emissions is 63% and 51% for 2000 and 

2011 respectively.  In 2011 off-road equipment still contributes more to PM2.5 than 

highway vehicles. This shows that PM2.5 emissions from off-road equipment have not 

decreased at the same rate as those from PM10.  

 

 
 
Figure 7. Comparison of PM2.5 contributions from different emission sources for years 2000 and 
2011. 
  

The NOx contribution from off-road emissions has increased slightly in the last 

decade. NOx emission contributions have increased from 19 to 21 percent when 

compared to all the source categories and from 33 to 38 percent in the mobile source 

category (Figure 8).  When compared with all source categories the NOx contribution 

from off-road vehicles was 19% and 21% on 2000 and 2011 respectively. When only 

mobile sources are considered the off-road contribution to NOx emissions is 33% and 

38% for 2000 and 2011 respectively.  This increase may be due to new regulations that 

have limited NOx emissions from highway vehicles.  Off-road NOx emissions will 
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continue to decrease as the Tier IV standards become effective for these equipment. 

However, since it is more challenging to control NOx emissions from diesel engines, the 

contribution from these equipment most likely will continue to be significant when 

compared to highway vehicles that are mostly gasoline powered.   

 

 
Figure 8. Comparison of NOx contributions from different emission sources for years 2000 and 2011. 
 
II.I.     Fuels 

 Three fuel types are evaluated in the present study including one baseline fuel and 

two alternative diesel fuels.    The baseline fuel considered for this study is the no. 2 

diesel fuel in its conventional form.  The two alternative fuels include the ultra-low sulfur 

diesel (ULSD) and the 20% biodiesel mix (B20).  These two fuels are increasingly 

becoming more commonly used for on-road diesel engines.  Thus, it is expected that their 

use will continue to increase in off-road vehicles also.      

  

II.I.1. Petroleum Diesel.  A mixture of many hydrocarbons with carbon numbers in the 

range of C9 to C28 and distillation range of 350 to 640 ºF make up diesel fuel.  Three 

types of diesel fuel are commonly used in the US: no. 1 diesel, no. 2 diesel, and no. 4 

diesel.  No. 1 and no. 2 diesel are used for highway and industrial applications.  No. 4 



23 
 

diesel is a lower quality blend of distillates compared to no. 1 and no. 2 diesel and is used 

for low speed engines or non-automotive applications. (Singer and Harley, 1996). 

  The regular no. 2 diesel is also referred to as no. 2 low sulfur diesel, containing a 

maximum of 500 ppm and an average of 330 ppm of sulfur.  This diesel is supplied to the 

Northeast Kansas area by Flint Hills Resources, LP, Corpus Christi TX and is distributed 

by Capitol City Oil (CCO) of Topeka. This fuel meets the ASTM D-975 diesel fuel 

specification.   

 

II.I.2. Ultra-low Sulfur Diesel.  Sulfur occurs naturally in crude oil, and is often 

removed in varying amounts at the refinery to create higher grades of gasoline and diesel 

fuel.  To remove sulfur, the crude oil is heated and put under high pressure in the 

presence of hydrogen.  The sulfur chemically combines with hydrogen and is removed as 

hydrogen sulfide (NYC DDC, 2004). 

 Sulfur significantly inhibits or impairs the function of diesel exhaust emission 

control devices. For example, catalysts with precious metals tend to oxidize sulfur 

dioxide (SO2) to sulfur trioxide (SO3) which inhibits the emission control performance of 

catalyst technology. It is expected that starting in 2011 this emission control technology 

will be available for road diesel engines (U.S. EPA, 2004D). 

 BP is one of the companies that produces and sells ULSD under the brand name 

of Emission Control Diesel (ECD).  This fuel has maximum and average concentrations 

of 30 ppm and 15 ppm respectively.  The no. 1 ULSD fuel was used for this study.  No. 1 

diesel fuel is typically used for colder climates since it is slightly lighter in density than 

the no. 2 diesel.  Under the Clean Air Nonroad Diesel Rule announced by the U.S.  

Environmental Protection Agency in 2004, all off-road diesel engines are scheduled to be 

running on ULSD fuel since 2010.  ULSD poses no compatibility or lubricity concerns to 

diesel engines and it is interchangeable with CARB or EPA diesel (BP America Inc., 

2006).  The ECD fuel meets the ASTM D-975 and the ASTM D-6078 lubricity 

specifications.    Additionally, this fuel improves storage and thermal stability due to the 

hydrotreating process used to remove sulfur.  The primary emission benefit from this fuel 

is a 18±1.5% particulate matter (PM) reduction (Durbin et al., 2003).  One significant 

advantage of ULSD is that it allows for after-treatment technology and when used with a 
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catalyzed particulate filter, a reduction of more than 90% in PM, hydrocarbons (HC) and 

carbon monoxide (CO) can be achieved.   

 

II.I.3. Biodiesel.  The first use of vegetable oil in a compression engine was 

demonstrated by Rudolph Diesel who used peanut oil in his diesel engine (Engler et al., 

1992).  However, the long term use of chemically unaltered vegetable oils leads to 

performance problems because of the high viscosity and low volatility of these fuels.  

The solution commonly used to avoid these conditions includes the transesterification of 

the oils with methanol or ethanol to form esters (Figure 9).  In this process the glycerol 

esters of fatty acids (triglycerides) are exchanged for a lighter methanol or ethanol.  The 

product is made up of fatty acid methyl esters (or ethyl esters) consisting of straight 

saturated and unsaturated hydrocarbon chains.  The esters formed are commonly referred 

to as biodiesel.  One of the most commonly used product is the soyate methyl ester 

(SME) made from the reaction of soybean and methanol (Wang et al., 2000).  

 

    
Figure 9.  Transesterification reaction between triglycerides and alcohol. 
   

 In its pure form biodiesel is renewable, nontoxic and biodegradable. Biodiesel is 

also compatible with petroleum diesel fuel in compression-ignition engines and this 

allows for the use of a blended mix.  In the US, the most common form of biodiesel used 

is a blended mix of 20% vol biodiesel and 80% petroleum diesel.  The diesel portion of 

the fuel determines its toxicity and biodegradability.  Exhaust emissions from biodiesel 
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blends in general exhibits reductions in PM, HC and CO but an increase in NOx 

concentrations.  

 Based on information from the supplier, the B20 fuel used in the study met the 

specifications from ASTM D6751. Table 1 below summarizes the fuel properties of the 

three fuels considered for this study. The three fuels have similar properties since they 

need to meet certain standards to be used in diesel engines.  However, of particular 

interest is the sulfur content that is highest for diesel fuel at 500 ppm.  The sulfur content 

in B20 is based on the assumption that the biodiesel portion has negligible amounts of 

sulfur and ULSD has the lowest sulfur content from the three fuels. As discussed earlier, 

fuel sulfur content decreases the efficiency of catalysts technologies and also contributes 

to particulate emissions.  The current study evaluated the effect that these three fuels have 

on emissions of NOx and CO2. 

 

Table 1.  Properties of three fuel types considered. 

Property  
No. 2 
Diesel 

B20 ULSD 

LHV (BTU/lb) 18730 18100 18452 

Specific Gravity  (kg/l) @ 60º F .835-.9 0.85 .81-.82 

Cetane No. 44 46 45 min 

Carbon, wt% 86.4 84.5 86 

Hydrogen, wt% 13.6 13.3 14 

Oxygen, wt% 0 2.2 n/a 

Cloud point (º F) 18 20 10 max

Flash point (º F) 150 180 100 

Distillation point (T90º F) 603 640 550 

Aromatics, vol% 30 24 30 

Viscosity @40º C (mm^2 /s)  2.6 2.9 1.3-2.1 

Sulfur content by weight (ppm) 500 400 <15 

(Frey et al., 2005; BP America, Inc., 2006) 
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	II.J.     Regulatory Approach 

 Since the 1970’s the EPA has established stringent emission standards for 

highway cars and trucks.  On-road vehicle emissions have been dramatically reduced as a 

result of these regulations and periodic updates.  As a result, non-road equipment have 

become a larger and more significant contributor, on a percentage basis, to the pollutant 

emissions.     

 The 1990 amendments to the Clean Air Act started to call attention to off-road 

engines.  In 1991, the EPA published a report showing that off-road equipment accounted 

for large amounts of nitrogen oxides, hydrocarbons, carbon monoxide and particulate 

matter.  The report showed that, the emissions from off-road engines had total emissions 

almost as high as highway motor vehicles.  The diesel particulate matter was found to be 

significantly higher than highway emissions. (U.S. EPA, 2003A).  

 In 1994, the EPA adopted the first set of emission standards (Tier 1) for all off-

road diesel engines greater than 50 horsepower. These standards focused primarily on 

nitrogen oxides and smoke opacity.  Larger engines were also subject to limits on carbon 

monoxide (CO), hydrocarbons (HC) and particulate matter (PM). These non-road 

regulations are being phased in over time. The emission standards are categorized in 

Tiers, with higher Tier numbers representing more stringent emission requirements.  The 

Tier 1 standards were phased in for engine sizes between 1996 and 2000 reducing NOx 

emissions from these engines by 30 percent (U.S. EPA, 2003A). Tier 2 and Tier 3 

standards were enacted in 1998 and are scheduled to be phased-in from 2000-2008.  

Currently, most equipment is subject to Tier 2 and Tier 3 standards but Tier 4 standards 

are starting to be implemented for certain engines.   

 In May 2004(B), the EPA signed the final rule for stricter Tier 4 standards, 

scheduled to be phased in between 2008 and 2015.  Additionally, on May 2004, the Bush 

administration issued the Clean Air Non-road Diesel Rule which is one of the most 

significant advancements in clean air protection since the passage of the Clean Air Act 

Amendments of 1990. Under this rule, stringent pollution controls on non-road diesel 

engines are introduced along with a significant reduction on the sulfur content of diesel 

fuel.  This program combines cleaner engine technologies with cleaner fuel to produce 

significant emission reductions from non-road diesel engines (U.S. EPA, 2000B).  Under 
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it, sulfur levels are to decrease by more than 99 percent from 3000 ppm in 2004 to 15 

ppm in 2010.  This enables the use of advanced clean technologies (such as catalytic 

particulate filters and NOx adsorbers) and a reduction of PM and SO2 emissions in non-

road diesel engines. 

 Table 2 below shows a summary of past, current and proposed non-road emission 

standards (U.S. EPA, 2004A).  However, the effect from these regulations will not be 

immediately evident.  Older equipment first needs to be replaced with newer equipment 

that is regulated by these emission standards.  It is expected that the entire 6 million 

pieces of non-road equipment will be completely replaced by 2030.  Also, the allowable 

emission levels increase as the engine rating decreases.  This means that a smaller piece 

of equipment is regulated to emit more pollution than a larger piece of equipment 

performing the same activity.   
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Table 2.  Summary of past, current and future non-road emission standards.  
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This EPA rule also requires a significant reduction in sulfur content for on-road 

fuel.  These regulations were phased in between 2006 and 2010.  These regulations 

require the use of “ultra-low sulfur diesel (ULSD)” with a maximum sulfur content of 15 

ppm.  Also, as of June 9, 2006, all refineries in the US have started producing some fuel 

with less than 15 ppm of sulfur and since 2010 all on-road diesel produced have to meet 

this specification.   On June 2010 the ULSD standard started applying to most non-road 

diesel engines except locomotive and marine engines (Direct Final Rule and Notice of 

Proposed Rulemaking for Amendments to the Nonroad and Highway Diesel Fuel 

Regulations (U.S. EPA, 2006). 

 

II.K.    Exhaust Emissions Characterization for Off-road Diesel Engines 

 Emission standards that regulate off-road diesel vehicles are based on test cycles 

that evaluate the amount of pollution released under certain operating conditions.  Engine 

manufacturers must comply with these standards by testing at least one engine of a given 

engine model on an engine dynamometer.  Off-road engines are mostly sampled under 

steady-state conditions, yet a certain type of engine can be used in distinct types of 

equipment with unique duty cycles.  One of the main criticisms of off-road emission 

standards is that they do not accurately account for real world emissions. Most of the 

regulatory decisions made for off-road diesel engines have been done without real world 

data.  A very limited inventory of in-use emissions currently exists. Furthermore, the 

rugged environment under which many of these vehicles operate could translate into even 

higher pollutant loads.   

 New methods of characterizing off-road diesel emissions with conventional and 

non-conventional equipment include chassis dynamometer, tunnel, remote sensing and 

on-board emission testing.  Lately, interest has shifted towards on-board systems that are 

able to sample during normal operating conditions that give a more accurate profile of 

real-world emissions.     

 

II.K.1. Engine Dynamometer.  Emission testing for off-road diesel vehicles is not well 

characterized mainly because the emissions standards rely on engine certification tests 

rather than on real-world conditions. These regulations specify the emissions levels 
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permitted from a specific engine in units of grams/brake horsepower-hr (g/bhp-h).  

Steady state tests are commonly performed on off-road diesel engines.  These tests 

involve running the engine under constant conditions, such as constant engine RPM and 

load.  Many steady state tests involve more than one “mode” where each mode has 

constant conditions.  This type of testing has been criticized because off-road diesels 

usually operate under stop-and-go or transient cycles (Moran, 2003). Ideally, engines 

should have to meet emission standards under transient test cycles tailored to their unique 

operating cycle.  Transient tests vary operating conditions and thereby resemble real 

world conditions.   

 An engine dynamometer is a device that measures mechanical power of an 

engine.  To do this the dynamometer puts a load on the engine.  This device attaches 

directly to the engine shaft and places a specified load on the engine.  To perform this 

type of test is difficult and costly since the engine needs to be removed from the vehicle. 

Additionally the engine dynamometer does not take into account the properties of the 

vehicle itself such as transmission or driveline losses influence the results (Canagaratna et 

al., 2004). Furthermore, engine manufacturers are required to test and certify their 

engines for deterioration for the lifetime of the engine. However, there is minimal in-use 

testing of engines to determine if deterioration is more significant under in-use conditions 

(Yanowitz, et. al., 2000).  The emissions from engine dynamometers are typically 

reported in units of grams of pollutant emitted per brake horse power-hour of engine 

output (g/bhp-hr).  These units are not directly related to real world activity patterns.  

Thus, to estimate total emissions some values need to be estimated including engine 

capacity (hp), load and number of hours in operation.(Frey and Kim, 2005).  

  

II.K.2. Chassis Dynamometer.  A chassis dynamometer test involves the entire vehicle.  

In this test, the drive wheels of the vehicle are placed upon rollers and the vehicle is tied 

down so that it remains stationary.  The rollers along with variable weight flywheels are 

used to simulate inertial load.  In this test, the vehicle is operated according to a 

predetermined speed profile shown on a computer screen that displays the current 

required speed.  The driver operates the vehicle to closely match the speed profiles shown 

on the computer screen. Researchers have developed chassis dynamometer test cycles to 
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represent highway, city and suburban conditions.  For example the Central Business 

District cycle is an attempt to model inner-city driving conditions through repeated 

accelerations, decelerations and idle periods.  On the other hand, the Urban Dynamometer 

Driving Schedule (UDDS) is characterized by high speeds representing real world 

highway scenarios.  The advantage of this type of testing is that its transient cycles 

resemble more closely the real world conditions of a vehicle and account for the entire 

drive train and not only the engine.   Additionally, the emission measurements of grams 

of pollutant emitted per mile of vehicle travel provide more useful information for 

emission inventory purposes than the one yielded from engine testing.   

 There is no chassis dynamometer test for regulatory purposes with heavy-duty 

diesel vehicles.  Chassis dynamometers are commonly used for light duty vehicles (Frey 

and Kim, 2005).  Heavy-duty diesel vehicles require larger facilities that make this type 

of testing exceedingly expensive.   

       

II.K.3. Tunnel Studies.  In this type of test the total emissions from vehicles that enter a 

tunnel during a test period are measured.  Pollutant concentrations are measured in the air 

at the inlet to the tunnel and at the outlet.  By multiplying the change in concentration by 

the estimated air flow through the tunnel, a rate of pollutant emissions is determined.  

Vehicles traveling through the tunnel are counted and divided into the total emission rate.  

Also taking into account the length of the tunnel makes this measurement on a per mile 

basis (Yanowitz et. al, 2000).  The advantages of this type of study are that it can capture 

a cross-section of the on-road vehicle fleet and represents real world operation.  On the 

other hand, this test is not able to assign emission profiles to individual vehicles.  

Furthermore, the traffic conditions of the tunnel may not be representative of conditions 

elsewhere.  Also, far more light duty vehicles exist compared to heavy duty vehicles so 

the measurements collected are bound to be biased towards light duty vehicles.    

 

II.K.4. Remote Sensing Testing.  In this type of testing, emissions are measured as the 

vehicles pass by a measurement station.  Ultraviolet (UV) and infrared (IR) light of 

specific wavelengths are passed through the exhaust plume of the vehicle to a detector.  

The light absorbed is proportional to the amount of CO, CO2, HC and NO.  Some of the 
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applications for remote sensing devices include the monitoring of emissions to evaluate 

the overall effectiveness of inspection and maintenance programs, and identification of 

high emitting vehicles (Bishop et al., 1989).  The main advantage is that it is possible to 

measure a large number of on-road vehicles given favorable weather conditions.  The 

main disadvantage of such systems is that it only gives an instantaneous estimate of the 

emissions at a specific location.  Other limitations include difficulty in dealing with 

multiple lanes of traffic, slow moving vehicles or closely-spaced vehicles.        

 

II.K.5. On-board Emission Testing.  This type of testing is widely recognized as a 

desirable approach for quantifying emissions from vehicles since data are collected under 

real world conditions at any location traveled by the vehicle.  On-board measurements 

can be made with large, complex and expensive instrumentation or with smaller, less 

expensive and more portable systems (Frey and Kim, 2005).  Until recently, the 

instruments capable of making these measurements were prohibitively expensive.  

However, in the last few years, efforts have focused on the development of less expensive 

on-board systems that are able to measure vehicle activity and emissions on a second-by-

second basis.   

 Two types of on-board systems exist: the ones that involve large and complex and 

expensive instrumentation and smaller, less expensive and more portable systems.  The 

former systems typically involve a permanent installation in a vehicle or trailer and take 

considerable room.  The EPA owns one such system that is a 53 foot trailer that can be 

towed in a tractor-trailer configuration (Figure 10).  This trailer facility is equipped with 

an air suspension system to minimize shock and vibration for sensitive electronic 

equipment.  This on-board system includes a computerized Data Acquisition System 

(DAS) and continuous emissions monitoring systems (CEMS) analyzers that measure O2, 

CO2, CO, and total hydrocarbons (THCs) directly from the exhaust (Brown et. al., 2002). 
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Figure 10.  Schematic of on-board trailer facility (Brown et. al., 2002). 
 

The Center for Environmental Research & Technology (CE-CERT) at the Bourns 

College of Engineering at the University of California, Riverside owns and operates a 

Mobile Emissions Laboratory (MEL). This system is able to collect emission 

measurements that are comparable to those collected from a dynamometer.  This system 

is housed in a 53-foot truck trailer with a dilution tunnel, analyzers for gaseous emissions, 

and ports for particulate measurements (Figure 11). The MEL can be used to collect on-

road NOx, methane (CH4), THC, CO, and CO2 emissions at a frequency of 1 hertz while 

being pulled by a heavy-duty truck or it can be used as a stationary laboratory for the 

testing of heavy-duty vehicles, engines, or generators. A more detailed description of this 

system is available from Cocker, et al. (2004). 

The MEL is designed and operated to meet the specifications of title 40 of the 

CFR Part 1065, Engine testing.  The system has also been verified against CARB’s 

heavy-duty diesel lab, the Department of Energy (DOE) lab in Denver, and a laboratory 

at Southwest Research (SwRI) in San Antonio. Recently, the MEL was used for the on-

road verification of the Measurement Allowance program to verify portable emissions 

measurement system for in-use compliance testing (Johnson et al., 2009). 
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Figure 11. Image and diagram of the Mobile Emission Laboratory (MEL).  
(http://www.cert.ucr.edu/emissions/)  
 

  Another such system is the Aerodyne Research Inc. (ARI) Mobile laboratory 

system built around a 1989 Ford Econoline 350 chassis (Figure 12).  The rear of the 

mobile lab is a box that houses all the instrumentation including the Aerodyne Aerosol 

Mass Spectrometer (AMS).  The AMS is able to sample submicron particles into vacuum, 

where they are aerodynamically sized, thermally vaporized on a heated surface, and 

chemically analyzed via electron impact ionization quadrupole mass spectrometry.  

Additionally the AMS mobile lab is equipped with two ARI tunable infrared laser 

differential absorption spectroscopy (TILDAS) instruments utilizing lead salt diode lasers 

for real-time measurements of selected trace gases including NO, NO2, CO, N2O, CH4, 

SO2 and H2CO. Data from each instrument is logged on a central computer that stores the 

data synchronously (Canagaratna, 2004).  The advantage of this complex system is that it 

uses more advanced instrumentation that is comparable in precision and accuracy to the 
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one from dynamometer facilities.  However, these systems are more expensive and they 

are not suitable for off-road applications.           

   

 
Figure 12.  Schematic of the ARI mobile laboratory as instrumented for the CEPEX/PMTACS-NY 
experiment (Canagaratna, 2004). 
 

 Portable on-board emissions measurement systems (PEMS) are relatively simple 

to use and their cost is significantly lower than the complex on-board systems described 

above.  These systems are able to collect in-use emissions during real-world on-road 

operation.  One key advantage of these systems is that they can be easily installed in a 

wide variety of vehicles within an hour.  Another advantage of PEMS is that their weight 

is usually between 30 to 100 pounds and their installation does not require major or 

permanent modifications on the vehicle being tested.  Some of the shortcomings of these 

systems include the less accurate or precise methodology when compared with complex 

on-board systems or dynamometers.  However, new technological advances are bridging 

this gap rapidly making PEMS measurement methods more accurate and precise.        
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 The future of PEMS is very promising and according to the EPA (2002) on-board 

testing may be used at some point for on-vehicle certification.  The first step envisioned 

is the collection of on-vehicle emissions data to create a model inventory that includes 

duty cycles, emissions activity and population.  Then on-vehicle compliance can be 

achieved by establishing test protocols.  After these two steps are finished, an 

investigation of feasibility could lead to an on-vehicle certification which would yield a 

more accurate emission profile for on-road and off-road vehicles. 

 

II.K.6 Portable Emissions Measurement System (PEMS).  These systems are increasingly 

more common in emission testing of vehicles and equipment due to their affordability, 

smaller size, ease of installation, and accuracy. A brief description of the main PEMS 

currently available is included below. 

The SEMTECH PEMS from Sensors, Inc. (Sensors, 2012) is the most widely 

used system in emission testing research (Figure 13). This system measures CO2 and CO 

concentrations by using nondispersive infrared spectroscopy (NDIR), NO and NO2 by 

nondispersive ultraviolet spectroscopy (NDUV), and THC using a heated flame 

ionization detector (FID). This PEMS is also able to measure NO and NO2 separately.  

This is a feature commonly overlooked that could provide important information about 

the NO2/NOx ratio that is becoming more important in air dispersion modeling involving 

the stringent 1-hour NO2 National Ambient Air Quality Standards (NAAQS).  

 
Figure 13.  SEMTECH-DS system by Sensors, Inc. (http://www.sensors-inc.com/ds.html)  
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HORIBA is commonly known for its laboratory bench dynamometer systems. 

However, they also manufacture the OBS-2200 Series on-board emission measurement 

system (HORIBA, 2012). This system analyzes all gases wet without drying. CO, CO2 

and water vapor concentrations are measured by a heated NDIR analyzer (Figure 14). 

The water measurement compensates for water vapor interferences. THC concentrations 

are measured by a heated FID analyzer (190ºC), and NOx concentrations are measured by 

a heated chemilumensescence detector (CLD) analyzer. This system weighs about 64 

pounds plus about 140 pounds from the batteries to power it.  

 

 
Figure 14.  HORIBA’s OBS-2200. (http://www.horiba.com) 
  

The OEM-2100 “Montana” System, manufactured by Clean Air Technologies 

International, Inc. (CATI, 2012) includes a gas analyzer, an opacity measurement system, 

an engine scanner, a global positioning system (GPS), and an on-board computer (Figure 

15).  The Montana system includes a non-dispersive infrared (NDIR) sensor to collect 

HC, CO and CO2 emissions. Additionally, an electrochemical cell is used to detect NO 

that is used to estimate total NOx emissions. Finally, a light scattering device is used to 

collect opacity readings. These gas analyzers are calibrated periodically with a cylinder 

gas and ambient air.  This unit weighs about 44 pounds and may be powered directly 

from a vehicle's electrical system or by AC in the case of stationary testing. 
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Figure 15.  OEM-2100 “Montana” System, manufactured by Clean Air Technologies International, 
Inc.(www.cleanairt.com/)  
 

The Simple Portable On-Vehicle Testing (SPOT) system was initially designed 

and developed by Analytical Engineering Inc. (AEI) under contract from the EPA, to 

obtain real-world data from non-road heavy equipment (AEI, 2002). The SPOT system 

simultaneously collects NOx and O2 emission concentrations with an NGK NOx sensor.  

The NGK is a zirconia based electrochemical sensor located directly in the exhaust flow. 

This sensor has shown great accuracy and sensitivity in measuring NOx concentrations 

(Figure 16). The O2 sensor is also used to calculate CO2 emissions in the exhaust flow.  

 

  
Figure 16.  NGK NOx sensor accuracy and sensitivity analysis. 
(http://www.ngkntk.co.jp/english/product/sensors/index.html#sensor3)  
 

The exhaust probe designed for the SPOT system contains AEI's proprietary 

exhaust mass flow rate device, which functions well in both diesel and gasoline exhaust.  
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Also, AEI worked with CARB and EPA to improve the design of the probe geometry and 

improve the accuracy and the signal to noise ratio (May, 2003). Furthermore, the SPOT 

units were utilized to collect over 6000 hours of vehicle emissions and duty cycle data on 

more than fifty different vehicles, which currently comprise the largest database of its 

kind in the world (May, et al., 2002). 

 

 
 Figure 17.  SPOT system from AEI. (http://www.aei-tech.com/development/on-
vehicle_emissions.html)  
 

II.K.7 PEMS Validation.  Accuracy evaluations of PEMS have been investigated 

extensively. One such study is the Kansas City PM Characterization Study (U.S. EPA, 

2008B) that sampled 480 light duty gasoline vehicles (LDGV) using the SEMTECH-G. 

This study sought to identify how real-world on-board PEMS could be used to collect 

HC, CO, NOx, CO2 and PM2.5 emissions data.  Additionally, a dynamometer versus 

PEMS evaluation was performed by collecting emission data from a PEMS device while 

simultaneously measuring with laboratory grade instruments on a dynamometer. The 

evaluation analysis was mostly qualitative and concluded that there is a very favorable 

accuracy and a good correlation between the PEMS and the dynamometer readings. 

The Bourns College of Engineering at the University of California, Riverside 

performed an evaluation of the Semtech G, Semtech D with a Dekati Mass Monitor for 

PM, and a Semtech DS (Liu, 2010).  These PEMS were compared to a Burke E. Porter 

48-in. single-roll electric dynamometer and a Pierburg AMA-4000 bench.  The study 

evaluated CO, HC, NOx, and CO2 emissions from three diesel and three gasoline vehicles 

with the Federal test procedure (FTP) (40 CFR Parts 86-99), the high-speed US06 cycle, 

and a modal emission cycle.   The results indicated an agreement between the PEMS and 
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the Pierburg system that varied depending on the pollutant.  For CO2 and NOx the 

agreement observed was 3% and 15% respectively for diesel vehicles and within 10% for 

CO2 on gasoline vehicles.  The PEMS showed larger deviations for HC and CO that were 

probably due to a decrease in agreement at very low concentrations. 

Johnson et al. (2009) also performed a comparison between the Semtech DS 

PEMS and a mobile emissions laboratory (MEL).  The MEL was validated before this 

study with an engine dynamometer at the SwRI in accordance to 40 CFR Part 1065. Once 

this validation was performed, the MEL was used as a validation tool for the PEMS. A 

475 hp test truck was used in this evaluation under different road grade, vibration, 

altitude, electric fields, and humidity. The study found that NOx and CO2 emissions 

collected with the PEM were biased high relative to the MEL measurements.  In the case 

of NOx, a two-tailed t-test between the MEL and PEMS measurements was found to be 

statistically significant.  This discrepancy could be due to the type of NOx sensors used 

by each system: the PEMS uses a NDUV and the MEL uses standard 

chemiluminescence, However, another possible cause for the discrepancy in NOx 

measurements could be due to the fact that the PEMS measures NO and NO2 directly 

while the MEL uses a NOx convertion efficiency of 96.4% per 40 CFR Part 1065.378.  

Very low NMHC and CO emissions were recorded with both systems.  However, the 

analysis of these two pollutants was curtailed due to the relatively small concentrations 

observed compared to the not-to-exceed (NTE) thresholds. 

Rubino et al. (2007) performed an accuracy verification of the Semtech-DS 

against a 48 inches chassis dynamometer with a Horiba MEXA-7400HTR-LE instrument 

to collect CO,HC, NOx, and CO2 measurements.  Emission testing was performed on two 

diesel light duty vehicles with the laboratory system used in parallel to the PEMS 

instrument.  Three testing events were performed with the New European Driving Cycle 

(NEDC) and three more with the Milan City cycle.  This study found negligible 

deviations between the emissions measured from the PEMS and the reference test cell 

analyzer (Figure 18).      
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Figure 18. Comparison between reference Horiba laboratory instruments (red) and Semtech DS 
(green) over the NEDC cycle for (a) CO2, (b) THC, (c) NOx, (d) CO and (e) exhaust gas flow (Rubino, 
et al., 2007). 
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II.K.8 40 CFR 1065.  In this regulation the EPA has implemented procedures of 

calibration and verification for PEMS use in laboratory and field emission testing. The 

original regulations for 40 CFR part 1065 were adopted in 2002.  EPA has amended these 

regulations in 2004, 2005, 2006, 2008, 2009, 2010, and most recently on January 18, 

2012.  These amendments have expanded the scope of engines covered by this regulation 

and improved the procedures included therein.  The long-term plan is for all types of 

engines to follow the procedures in 40 CFR part 1065 excluding aircraft engines and 

those that require vehicle testing.   

EPA (2008C) performed a study to determine measurement allowances under 

controlled conditions in a laboratory and measurement emissions in the field using 

PEMS.  The scope included NMHC, CO, and NOx. The main PEMS used was the 

SEMTECH-DS and limited analysis was performed with the Horiba OBS-2200.  A 

gaseous analyzer linearity audit was performed based on Table 1 from 40 CFR 1065 

Subpart D – Calibrations and Verifications.  Numerous SEMTECH units failed the 

linearity criteria specifying a tolerance on the intercept of 0.5% of the maximum value 

during testing. This case was especially evident for the NDUV analyzer measuring NO 

and NO2. The Horiba units tested did pass the linearity checks. Another issue identified 

during this study was the PEMS variability.  The measurement errors observed in the 

engines tested were not consistent. Thus, as PEMS begin to be scrutinized more 

rigorously, some issues have arisen. However, in their respective web sites Sensors Inc., 

CATI and Horiba claim that their systems are compliant with 40 CFR 1065 requirements. 

 

II.L.    Analysis of Continuous Emission Data from PEMS 

The analysis of continuous emission data is paramount in finding meaning in the 

volumes of data collected by PEMS.  

 

II.L.1 Autocorrelation.  In 2001 the EPA started to envision the use of on-board emission 

data as the basis for EPA’s mobile source emissions modeling program coined the New 

Generation Model. Frey et al. (2002) prepared a set of recommendations for on-board 

emission data analysis for these data commissioned by the Office of Transportation and 

Air Quality at the EPA.  This document recognized the importance of identifying the 
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nature of the data set collected.  One feature identified in data collected with on-board 

instrumentation was the short averaging time present on the data. This means that vehicle 

emissions in a given second are a function of the previous second’s speed and 

acceleration (NRC, 2000). This is referred to as autocorrelation in the time series. 

Brocklebank and Dickey (1986) warn that data with autocorrelation need to be treated 

carefully. Specifically, ordinary least squares regression should be used only if residuals 

are uncorrelated with each other.  Thus, autocorrelation in the data needs to be 

investigated and addressed for a robust statistical analysis to ensue. In their 

recommendation report, Frey et al. identify the importance of autocorrelation in 

continuous emission data from PEMS and they outline a data analysis technique based on 

an analysis of autocorrelation and partial autocorrelation in the data.  This approach is 

dismissed by Frey et al. because it is deemed impractical for the development of the New 

Generation Model.   

 

II.L.2 Binning.  Frey et al. (2002) proposed to bin vehicle emissions data based on speed 

and acceleration criteria to reduce the influence of autocorrelation in the data. This 

approach defined driving modes based upon speed criteria yielding idle, acceleration, 

deceleration and cruise bins.  This technique segregates the original time series into 

shorter discontinuous time series which are supposed to reduce the influence of 

autocorrelation.  Regression techniques were pursued once this binning technique was 

performed. This binning technique was also described by EPA (2002C, 2002D). 

However, the binning of data based on speed and acceleration will still include segments 

of autocorrelated data.  Furthermore, no testing was performed on the binned data to 

determine if autocorrelation was still present in the data observations after applying the 

binning technique. Thus, it is not clear how the binning technique would mitigate the 

effect of autocorrelation.            

 

II.L.3 Averaging.  An average time approach was also evaluated by EPA (2002D).  The 

purpose of this evaluation was to determine if 5 and 10 second averages of emissions and 

vehicle activity data could decrease autocorrelation.  The intent was to smooth the data to 

remove some of the high frequency variability in the data. The results obtained showed 
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that 5 and 10 second averaging times offer no benefit over the 1-second averaging time in 

predictive ability.  Thus, the 1-second averaging time approach was preferred.     

This study also recognized that it may be more effective to use peak values of key 

variables rather than averages.  The rational is that short duration of values such as 

acceleration will have a higher correlation to the largest share of emissions produced.  

Thus, an average value approach would miss these relevant peaks in assessing 

relationships between the independent variables in the analysis.  However, a comparison 

analysis to test these conjectures was not provided.   

A similar approach was also performed in the European Union by Weiss, et al. 

(2011A, 2011B) and Rubino et al. (2007).  These researchers introduced the concept of 

averaging windows that is in line with the methodology used for the emission testing and 

characterization of Euro VI heavy-duty vehicles (EC, 2011) in the European Union. 

These individual windows represent sub-trips of a test route. This method intends to 

reduce fluctuation in the second-by-second emissions data to focus on the emission 

variability related to route averages. Thus, emissions are averaged over intervals of a 

predefined duration.  Specifically, the duration of a window is determined by the distance 

traveled until the vehicle has emitted a cumulative CO2 mass equivalent to the mass 

emitted during the NEDC testing.  The advantage of this method is that it yields values 

that can be directly compared to the standard NEDC values.  However, the details of the 

data collected are lost in the averaging windows. 

 

II.M.    Analysis of PEMS Data in Recent Publications 

Kousoulidou et al. (2013) performed an evaluation of six diesel and gasoline 

passenger vehicles with the SEMTECH-DS.  These vehicles were tested under real-world 

operating conditions in two routes in the region of Lombardia, Italy.  Additionally, the 

PEMS was used to test the vehicles while under the European dynamometer cycle 

(NEDC).  This study found that NOx emissions for the diesel vehicles comply with the 

standard when operated under the NEDC.  However, when operated under real-world 

driving conditions the NOx emissions constantly exceed the limits. The real-world data 

were analyzed by dividing the trip into sub-trips based on the average speed and number 

of stops.  These sub-trips were then classified as urban, rural, or motorway and average 
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values were calculated. Average emission values for the complete driving cycle were also 

calculated for the NEDC and compared to the applicable standard. Zhihua et al. (2011) 

performed a similar evaluation of four diesel buses using the SEMTECH-DS analyzer in 

Beijing, China.  This study compared real-world emissions to the European steady cycle 

(ESC) and the European transient cycle (ETC) limits and reported their results in average 

emission values.  This type of averaging approach is used to determine compliance with 

current emission standards. However, as regulations move towards not-to-exceed 

standards, it will become more important to properly characterize emissions with a finer 

resolution. 

Chao et al. (2011) performed a study to characterize heavy-duty diesel engine 

emissions at simulated high altitudes.  The SEMTECH-DS was used to measure engine 

emissions at simulated 0, 100 meters, and 2000 meter altitudes at five engine loads. The 

comparison of HC, CO, NOx and smoke was based on average of the five engine loads 

investigated.  Whereas this analysis is useful, it does not look past simple averaging 

values. 

Peltier et al. (2011) evaluated emissions from a diesel switching locomotive ran 

on B10, B20 and ULSD fuels with a SEMTECH-DS.  The test sampled emissions from 

the locomotive engine for 30 minutes while at full throttle.  The data were then averaged 

over 10-second intervals and emission benefits were reported.  Cecrle et al. (2012A) 

performed a similar evaluation of NOx, CO, HC and PM emissions from two engines 

fueled with seven types of biodiesel.  The SEMTECH-DS was used to collect emission 

data at five engine loadings for each engine. The emission data collected were averaged 

over 10-second intervals to reduce background noise.  In this analysis, an analysis of 

variance (ANOVA) was also performed to determine the variables that were most 

statistically significant on emissions.  Jing et al. (2012) also evaluated emissions from 

two off-road diesel engines with the SEMTECH-DS while running on biodiesel made 

from waste cooking oil (WCO).  In this evaluation the engines were run on idle and the 

significance of different variables was evaluated with an ANOVA.  The results from the 

ANOVA indicated that biodiesel content was statistically significant for all pollutants but 

ambient temperature was not.   
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At the present time, most research is being performed by calculating an average 

emission value and comparing it to distinct routes, cycles, etc.  Some researchers are 

averaging values over the period of testing and others are segregating emissions in bins 

based on speed and acceleration criteria.  Being that the current approach to emission 

testing relates to set duty cycles, it is a good transition to compare these values to 

averaging windows that are meant to resemble these set cycles.  Other researchers are 

performing more advanced statistics by using ANOVA and GLM tests to find 

significance when comparing different independent variables related to fuel, ambient and 

engine parameters.  Thus, when comparing the effect of independent variables on 

emissions, an approach like the one led by the Department of Civil, Environmental, and 

Architectural Engineering (CEAE) at the University of Kansas (KU) is preferred.       
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III. METHODOLOGY AND APPROACH 
III.A.  Exhaust Emissions and Duty Cycle Characterization  

  As discussed in the previous sections, the established laboratory testing methods 

do not accurately characterize the emission profiles of on-road and off-road vehicles.  

Therefore, we used an on-board system to characterize the engine and ambient 

parameters from an off-road diesel vehicle.  This system provided a wealth of 

information by allowing a second-by-second characterization of exhaust emissions.   

 

III.A.1. On-board System.  The sampling system used for this study is the Simple, 

Portable, On-vehicle Testing (SPOT) system.  This system was manufactured by 

Analytical Engineering Inc. (AEI) under contract with the EPA.   Under such a contract 

over 50 off-road vehicles underwent weeklong in-use measurements totaling over 8000 

hours of accumulated vehicle information (May et al., 2002).   

 The SPOT system was loaned to the Department of Civil, Environmental and 

Architectural Engineering to carry out the present study.  Per AEI’s request this system 

was returned to them on August 29, 2007.  The SPOT system is able to accurately 

measure NOx and O2 emissions, as well as exhaust mass flow, relative humidity, ambient 

temperature, engine speed, calculated CO2, and a host of internal parameters on a second-

by-second basis during normal operations (May et al., 2002).   AEI provided technical 

support along with training on how to 

use this on-board system during June 

2005 at their facilities in Columbus, 

Ohio.   

 Particulate matter is an 

important emission from diesel 

engines: however PM sampling under 

off-road conditions is a capability not 

available in the SPOT system or any 

other on-board system in the market.  

Sensors Inc. has a particulate matter   
 

Figure 19. SPOT system components. 1) main 
console, 2) alternator sensor, 3) battery 
connections, 4) exhaust probe. 
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sampling extension to their on-board system.  However, the price of this device was 

outside of the budget of the present study.  Furthermore, the Sensors system is not 

designed to be used under off-road conditions.  Thus the current study focused on NOx 

and CO2 exhaust emissions.  

 The SPOT system is composed of four main parts including: (1) the main data 

logger console, (2) an alternator sensor, (3) a connector to the vehicle’s battery and (4) an 

exhaust probe (Figure 19).  The main data logger console contains a Campbell Scientific 

CR5000 datalogger along with sensors for ambient temperature, humidity and barometric 

pressure. The alternator sensor gathers the instantaneous alternator frequencies that are 

automatically converted to engine speed.  At the beginning of each sampling run, the 

engine speed is directly measured at low and high idle conditions. This is done by placing 

reflective tape on the engine’s damper and then using a laser tachometer to measure the 

damper’s revolutions per minute (May et al., 2002).  The battery connector is used to 

power the SPOT system when the engine is turned on.  The exhaust probe has a 

thermocouple, a mass air flow sensor, and NOx and O2 sensors. 

 NOx measurements are made possible by an NGK NOx sensor.  This type of 

sensor consists of a catalyst, a heater, a sensing element and an O2 sensor (U.S. Patent, 

1998).  The catalyst is placed upstream from the flow of the gas to be measured, and it 

removes the CO component from it.  The heater is located next to the sensor element and 

it maintains the sensor element and the catalyst at a constant temperature.  The Zirconia 

multilayer ceramic sensing element responds to NOx concentrations by a representative 

resistance.  This measured resistance is adjusted for a given O2 concentration to produce a 

representative NOx value.  The NGK NOx sensor is an electrochemical in-situ sensor that 

can reside directly in the exhaust flow and measure the gas as it leaves the exhaust of an 

engine.  This minimizes the error due to transient mixing in the extracting lines and the 

solubility of NOx in water.  The O2 sensor is also used to calculate CO2 emissions. 

 The SPOT system was able to provide unique information about the diesel 

compactor analyzed.  This information is most valuable since it was collected under 

normal operating conditions on a piece of equipment that was used for at least 8 hours a 

day.  This was possible due to the ease of data collection afforded by this type of system.  

Furthermore, this sampling equipment was rugged enough to withstand the rough 
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conditions that trash compactors experience on a regular basis. Appendix D depicts the 

SPOT system and trash compactor during installation, fueling, and field sampling.      

 

III.A.2. Partnership with a Construction Company. A construction partner was sought 

among numerous construction companies and organizations in the area. It was necessary 

to find a partner that would allow the testing of an off-road diesel vehicle and allow the 

use of ULSD and B20 on this piece of equipment. After contacting many companies in 

the KC area the KU team approached Charlie Sedlock, Operations Director for N. R. 

Hamm Quarry, Inc. Mr. Sedlock allowed the sampling of the trash compactors at the 

facility along with the fueling of these compactors with B20 and ULSD.  Thus, this 

partnership fulfilled our criteria and in August 2005 Mr. Sedlock and the KU team agreed 

to partner in this study.  This partnership was crucial in making the current study 

possible.  It was important for the N.R. Hamm personnel that their two trash compactors 

remained in service for the duration of our study since they are critical to the operation of 

the facility.  This condition allowed the KU team to gather real world data.   

 The current study also called for the sampling of three fuel types: regular no. 2 

diesel fuel, ultra-low sulfur diesel and a 20% mix of biodiesel.  Arrangements were made 

with N.R. Hamm to sample their compactor with the no. 2 diesel fuel they commonly use.  

Arrangements were also made with Ken Kimura, principal engineer for Fuels Product 

Development at BP for the donation of 500 gallons of the ultra low sulfur diesel.    The 

biodiesel mix was then purchased from Capitol City Oil, who also provides the regular 

no. 2 diesel for the N.R. Hamm facility.  The N.R. Hamm personnel helped in completely 

draining the fuel tank before refueling with a ULSD and B20 fuel types.  This procedure 

was very important especially in the case of the ULSD which could be easily 

contaminated by small amounts of regular diesel fuel.   

 

III.A.3. Selection of an Off-road Diesel Vehicle and Testing Site. N.R. Hamm personnel 

and a member from the KU team surveyed types of diesel engine equipment available at 

their facility.  Among them was a backhoe, a tractor and two trash compactors.  The KU 

team learned that the backhoe and tractor were only in use intermittently and it was hard 

to know when they would be in service.   Additionally, the engine configurations from 
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these two pieces of equipment were not ideal for the installation of the SPOT system.  

However, two trash compactors at the property were in use constantly throughout the day. 

This type of work regime seemed advantageous for our study given that we needed to 

collect as much data as possible under normal operating conditions.  After the 

compatibility between the engine and the SPOT system was confirmed, the KU team and 

Charlie Sedlock agreed to the use of one of these compactors for the present study.  

 The off-road equipment used for the present study is a 2002 Terex CMI 

Trashmaster 3-90E.  This landfill compactor is the largest kind offered by its 

manufacturer and features a Cummins Model QSK-19, 525-hp diesel engine, 

turbocharged and charge air cooled (TEREX, 2002).  More information about this 

equipment is available I Appendix C.  Hamm Quarry has two of these compactors at their 

location operating continuously from approximately 7 AM to 5:30 PM Monday through 

Friday while using over 200 gallons of fuel a day each.  The operator of this compactor 

controls the front blade to move trash to its desired location as he or she steers the 

compactor over the trash underneath. In every pass this compactor exerts a compaction 

force of 767 pounds per linear inch. Figure 20 shows the compactor at N.R. Hamm’s 

facility.  

 

 
Figure 20. CMI 3-90E compactor at Hamm’s landfill. 
 
III.A.4. Testing Site Description.  Hamm’s Sanitary Landfill (Division of N.R. Hamm 

Quarry Inc.) served as the testing site for our study.  This facility is located at the junction 

of U.S. Highway 24 and U.S. Highway 59 in Williamstown, Jefferson County (see Figure 

21). The facility is managed by Charlie Sedlock, Operations Director for N. R. Hamm 
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who provided the necessary access and assistance to the KU team. The hours of operation 

of the landfill facility span from 7:30AM to 4:00 PM Mondays through Fridays and 

from7:30 AM to 1:00 PM on Saturdays. However, the two compactors in the facility 

continue being operated even after the facility is closed to the public. This landfill 

services 13 counties including cities and communities in northeast Kansas. 

Figure 21.  N.R. Hamm facility. 
 
III.A.5. Data Output and Manipulation.  There are very few sampling systems like the 

SPOT that are rugged enough to withstand the rough use that off-road equipment 

undergo.  Consequently, emission data from off-road diesels operating under real world 

Sanitary landfill 
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conditions are quite limited.  In fact, previous data were not available at the time of this 

literature review.  Since data collected by the EPA and AEI have not been released, this 

research is the first to analyze this type of data for off-road diesel vehicles.  Thus, the data 

manipulation and analysis for this output is unchartered territory.   

 The SPOT system collects emission, engine and ambient parameters on a second-

by-second basis onto a memory card inside the main console of the system.  This output 

includes data for NOx, O2, CO2, total exhaust mass flow, relative humidity, ambient 

temperature, engine speed, calculated fuel consumption, and barometric pressure, among 

other parameters.  Thus, the size of the dataset produced by the SPOT is extremely large.  

To analyze these data the following steps were followed:  

 

A) Data reduction.  The raw data set produced by the SPOT system included variables 

that were inconsequent to the scope of this study.  These variables were filtered out of the 

dataset. Additionally, the raw data set included calibration values that were ran 

periodically.  In other instances a communication port error produced voids in the data 

set.  All these values were cleared from the data set before being analyzed. Once the raw 

data were cleaned of invalid and unneeded variables it was ready to be analyzed. This 

reduced data set included engine parameters and NOx and CO2 emissions values.  

B) Preliminary analysis.  The NOx and CO2 data were plotted in distinct ways to identify 

meaningful patterns and relationships between some of the variables collected.  

Descriptive statistics for all relevant variables needed to be also calculated. 

C) The dependent variables for this study are NOx and CO2 concentrations.  Therefore, a 

Pearson correlation test was necessary to identify the independent variables that exerted 

the greatest influence on NOx and CO2 emissions.   

D) Subsequent to the identification of the most significant variables, a test of 

independence was performed to validate the assumptions necessary for statistical 

analyses.   

E) Once independence was established, the data were tested for normality using the 

Ryan-Joiner test.  The result from this test helped define the type of statistical analysis 

performed.  Possible data transformations were also investigated in an effort to normalize 
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the data.  However, this approach was abandoned since no success was obtained from 

these data transformation techniques.    

F) Based on the results from the previous steps, a statistical analysis was defined to 

determine the effect of the distinct fuel types on NOx and CO2 emissions.  Pertinent 

statistical tests include the analysis of variance (ANOVA) or the covariate version of the 

General Linear Model (GLM). 

G) The statistical analyses performed were used to determine whether the independent 

variables of fuel type and compactor were statistically significant on the emissions of 

NOx and CO2.  A standard significance value of  = 0.05 (95% confidence level) was 

used to define statistical significance. 

 

III.B.   Statistical Analysis 

 This section describes the statistical analysis that was used to determine if the 

factors of “fuel type” for the first part and “compactor” for the second part have a 

statistically significant effect on the NOx and CO2 concentrations.  The parametric test 

considered was the analysis of covariance since parametric tests tend to be more powerful 

than nonparametric tests.   

 The SPOT sampler collected over 30,000 engine and emission observations 

during a regular day of sampling on a second-by-second basis.  The advantage of this 

data set was the number of observations collected to characterize the diesel vehicle.  

However, these observations were collected so closely to each other that they had a 

strong dependence that violated one of the basic assumptions in parametric statistics 

related to independent observations.  Thus, the issue of autocorrelation had to be resolved 

to enhance the robustness of the statistical analyses performed. 

 

III.B.1. Analysis of Variance.  The analysis of variance (anova) technique is commonly 

used to test whether two or more sample means could have been obtained from 

populations with the same parametric mean (Sokal and Rohlf, 1981).  This procedure 

evaluates whether the mean difference between two or more treatment conditions has a 

significant effect on a dependent variable (Agresti & Finlay, 1997).  The treatment 

conditions or groups are defined by the various levels of independent variables.  For this 
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study the two dependent variables being tested are NOx and CO2 emissions from the 

diesel compactor.  The groups include the following: for the first part of the analysis the 

three fuel types used- namely no. 2 diesel, B20 and ULSD fuel; and for the second part of 

the analysis the compactor tested- either Compactor #1 or Compactor #2.  To decide if 

the difference between treatment conditions is due to random variation or not, the F-ratio 

is calculated (Equation 1).   This ratio compares the variance between subjects to the 

variance expected due to random error.  The variance calculated in the numerator of the 

F-ratio describes the differences between the sample means (Equation 2) and is referred 

to as the between-groups variability.   The variance in the denominator of the F-ratio 

(Equation 3) is referred to as the error variance or within-groups variability (Mertler and 

Vannatta, 2002).  In other words, the between-groups variability actually measures the 

differences due to the effect of the treatment or chance and the within-groups variability 

measures only differences caused by chance.  This calculated value is then compared to 

the F-statistic (Equation 4) which is based on levels of significance and degrees of 

freedom for between and within groups data (v1 and v2 respectively).  This distribution is 

used to test whether two or more samples have the same variance.  The null hypothesis 

for this statistical analysis is that two or more variances estimate the same parametric 

variance; the alternative hypothesis in an anova is always that the parametric variance 

estimated by the variance among groups is greater than that estimated by the variance 

within groups.     

 

Definition of distribution statistic: 

 F = MSB / MSW :   (Equation 1) 

 MSB is the mean square difference between groups defined by the following 

equation: 
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 k = number of groups. 
 j = group number. 
 jx = mean for j group. 

 gx  = mean of all groups combined. 

 jn  = number of observations in group j. 
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 MSW is the mean square difference within groups or the variance expected due to 

random error defined by the following equation: 
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 (Equation 3) 

Where:  k = number of groups. 

  j = group number. 
  ijx = value i from group j. 

  jx  = mean of group j. 

  jn  = number of observations in group j. 

  tn = total number of observations in all groups. 

 

 Once the F-value has been calculated, it is compared to the following F-statistic 

based on the level of significance.  The values for this F-statistic are generally obtained 

from a table of values organized by levels of significance and degrees of freedom.  
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  (Equation 4) 

Where:   = level of significance (0.05 for this study). 

  v1 = degrees of freedom for between groups data. 

  v2 = degrees of freedom for within groups data. 

 

The assumptions for the analysis of variance are:   

1.  The observations within each sample must be independent of one another. 

2.  The populations from which the samples were selected must be normal. 

3.  The population from which the samples were selected must have equal variances 

(homogeneity of variance). 

  

The first assumption was achieved by using a data reduction technique that 

yielded quasi-independent observations. The second assumption was not achieved, but, 

the one-way anova is robust to violations of the normality assumption (Harris, 1998; 
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Randolph, 1989). The third assumption of equal variances was tested and identified in the 

data sets analyzed.  

 

III.B.2. Analysis of Covariance.  This is a variation on the original analysis of variance 

technique.  The analysis of covariance (ancova) test can be used to improve research 

design efficiency by adjusting the effect of variables that are related to the dependent 

variable.   This test is particularly useful when the effect posed by one or more 

concomitant variables needs to be removed or partialed out from the dependent variable.  

In the present study, NOx and CO2 emissions are correlated strongly to engine speed.   

However, a primary interest in this study is to identify the effect of the fuel types and 

compactors on emissions.  Thus, the ancova technique was used to partial out the effect 

of engine speed (concomitant variable) from NOx and CO2 emissions (dependent 

variables tested separately).  In the analysis of variance the effect from any concomitant 

variable is ignored.  Yet, in the covariance analysis this effect is removed by adjusting the 

scores on the dependent variable to reflect initial differences in the covariate (Mertler and 

Vannatta, 2002).  The variable whose effects have been partialed out of the results is 

called the covariate in this case Engine Speed.  Then NOx and CO2 emissions were used 

as the dependent variables that were tested separately versus the independent variables of 

“fuel type” and “compactor”. 

 The primary purpose of the analysis of covariance test is to increase the sensitivity 

of the F-test to main effects and interactions by reducing the error variance.  This is 

accomplished by removing the error term associated with the covariate(s).  This 

predictable variance is best addressed through means of random assignment of subject 

groups (Stevens, 1992).  However, when random assignment is not possible, the inclusion 

of a covariate in the analysis can be helpful in reducing the error variance.  The covariate 

is used to assess any undesirable variance in the dependent variable by estimating scores 

on the covariate.  If the covariate has a substantial effect on the dependent variable, a 

portion of the within-variability is statistically removed.  This ultimately reduces the error 

term and produces a larger value for the F-statistic and a more sensitive test.  
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 Analogous to the previously-described test (anova), in the ancova the two 

dependent variables that were tested separately are CO2 and NOx.  However, in this case 

the covariate variable that was partialed out from the dependent variables is 

Engine Speed.  This covariate variable was chosen since its effect is highly related to the 

emissions of CO2 and NOx.  By removing the effect of engine speed the intent is that the 

pure effect that fuel types and compactor exert on the emissions can be identified.  

  

In addition to the anova assumptions, the ancova also includes the following three 

assumptions: 

1.  A linear relationship exists between the dependent variable and the covariate(s). 

2.  The regression slopes for a covariate are homogeneous (same slope for each group). 

3.  The covariate is reliable and is measured without error. 

 

The first assumption was checked by plotting the scatterplots of NOx and CO2 

versus revolutions per minute (RPM). These plots showed a linear relationship between 

emissions and engine speed.  The second assumption was checked by performing an F 

test for the interaction of emissions and engine speed.  The last assumption was assumed 

to be true since engine speed was calibrated with a manual tachometer.    

 

III.B.4. General Linear Model.  This is an ANOVA procedure that can be used to analyze 

data collected with balanced and unbalanced designs, ANCOVA, and regression.  

Calculations are done using a regression approach where a “full rank” design matrix is 

formed from the factors and covariates and each response variable is regressed on the 

columns of the design matrix (Minitab, 2012). The General Linear Model assumes that, 

apart from residual or uncontrolled variation, the variability in the response variable(s) 

can be explained by a linear combination of various constant levels corresponding to 

different combinations of the factors and/or a linear dependence on the values of the 

covariate(s). In all cases, the residual variations from such a hypothetical model are 

assumed to be independent and normal deviates with constant variance (Minitab, 2012).   

In this study, the dependent variables analyzed are NOx and CO2 emissions and 

the independent factors analyzed are fuel type and compactor. The first part of the study 
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analyzes the effect of fuel type used on the NOx and CO2 emissions sampled from the 

first compactor.  The second part of the study analyzes the effect that two compactors 

have on NOx and CO2 emissions while running on diesel fuel. Thus, fuel type and 

compactor are the two independent factors used in the statistical analysis.  In both cases 

the engine speed factor was entered as a covariate term in the GLM analysis since it is an 

influential factor on NOx and CO2 emissions. By having engine speed as the covariate 

factor we seek to isolate the effect from fuel type and compactor in each part of the 

analysis.   

Additionally, a temporal analysis was performed on the data.  The difference from 

the design described earlier is that the day factor was used as the independent variable.  

However, NOx and CO2 emissions remained being the dependent variables and engine 

speed remained as the covariate term.  This analysis was performed for the two parts of 

the study to identify any temporal bias in the data.   

 

III.B.5. Hypothesis Testing.  The statistical tests mentioned in this section were performed 

on the data collected by means of hypothesis testing. The four steps involved in 

hypothesis testing are:  

 Step 1. Formulation of null and alternate hypotheses (Ho and Ha respectively).   

 Step 2.  Assumptions, sampling distribution and sampling statistic. 

 Step 3.  Determine the probability value.  This value determines the probability of 

 falling in the tail bounded by the test statistic found  in step 2. 

Step 4.  Reject or not reject the null hypothesis depending on the relation between 

the probability value and the level of significance or  value.  This value 

determines the probability of committing a Type I error, where the null hypothesis 

is actually true, and the researcher concludes that it is false.  For the current study 

the common significance level of  = 0.05 was used.  Therefore, the following 

criteria defined whether the null hypothesis is rejected or not. 

 If P ≤ 0.05, then reject Ho. 

 If P > 0.05, then do not reject Ho.   
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 The results from the hypothesis test addressed the following questions covered in 

the present study:  

Phase 1: Fuel Analysis 

1. “Are there statistically significant differences in mean NOx concentrations from a 

diesel compactor running on no. 2 diesel, ULSD and B20 fuel types?”   

2. “Are there statistically significant differences on NOx concentrations due to 

temporal factors?” 

3. “Are there statistically significant differences in CO2 concentrations from a diesel 

compactor running on no. 2 diesel, ULSD and B20 fuel types?”   

4. “Are there statistically significant differences in CO2 concentrations due to 

temporal factors?”   

Phase 2: Compactor Analysis 

1. “Are there statistically significant differences in mean NOx concentrations 

between Compactor #1 and Compactor #2?  

2. “Are there statistically significant differences in NOx concentrations due to 

temporal factors?” 

3. “Are there statistically significant differences in CO2 concentrations between 

Compactor #1 and Compactor #2?  

4. “Are there statistically significant differences in CO2 concentrations due to 

temporal factors?” 
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IV. RESULTS OF FUEL TYPE ANALYSIS 
 

The first set of engine and emissions data was collected from August 28 to 

September 1, 2005 at the Hamm’s landfill facility.  This sampling campaign was 

originally intended to be used to identify possible problems and obtain experience with 

the equipment.  However, given the favorable results, these data were used for the 

emission characterization of no. 2 diesel fuel.  The sampling was continued from 

September 12-15, 2005 with the compactor running with B20 and ECD.  The actual 

running times of the compactor for the days sampled are shown in Table 3.  This table 

shows the actual number of data points available for the statistical analysis since a few 

readings were discarded due to calibration values and communication gaps in the SPOT 

system.   

 
Table 3. Total number of hours compactor was in operation during each sampling day.  

Day Fuel type Start time End time Total time
Total data 

points 
08/29/2005 Diesel 7:07 AM 5:10 PM 10:03 36158 
08/30/2005 Diesel 7:10 AM 5:57 PM 10:47 38873 
08/31/2005 Diesel 7:08 AM 5:21 PM 10:13 36738 
09/01/2005 Diesel 7:08 AM 4:29 PM 9:21 32383 
09/12/2005 B20 7:07 AM 5:10 PM 10:03 35704 
09/13/2005 B20 7:21 AM 5:11 PM 9:50 32287 
09/14/2005 ECD 7:22 AM 5:02 PM 9:40 33441 
09/15/2005 ECD 7:21 AM 5:00 PM 9:39 30906 
 

The average temperature, relative humidity and sky cover conditions for each of 

the sampling episodes are shown in Table 4. These data were obtained from the National 

Climatic Data Center (NCDC) for the Lawrence municipal airport station.  This station is 

located about 5 miles southeast of Hamm’s Sanitary Landfill.  In this table, scattered sky 

cover indicates a 1/8 to 4/8 cover and broken refers to a 5/8 to 7/8 cover.  

 
Table 4. Average temperature, relative humidity and sky cover for sampling period.  

Sampling day 
Avg. temp. 

(ºC) 
Relative humidity 

(%) 
Sky cover 

08/29/2005 21.3 49.4-100 Clear 
08/30/2005 21.1 51.1-96.6 mostly clear 
08/31/2005 22.0 48.3-96.6 clear, scattered and broken 
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09/01/2005 19.8 57.5-96.6 scattered, broken and overcast 
09/12/2005 23.9 58.8-84.0 clear and scattered 
09/13/2005 22.9 66.3-84.6 clear, scattered and broken 
09/14/2005 18.2 53.3-86.6 mostly clear 
09/15/2005 15.1 77.7-93.1 overcast 

 
IV.A.  Data Screening 

A profile for each fuel type used was created by collecting engine and emissions 

data from the compactor while running with each fuel type. This raw data included some 

calibration values each time the engine was started and also some missing values due to 

compiling gaps.  These values were cleared from the final dataset prepared for the 

statistical analysis.  Upon further analysis, the KU team also found that the ambient 

temperature and humidity values collected by the SPOT system were inaccurate.  This 

was the case because of the location of the SPOT system.  The only viable place for 

placing the SPOT was behind the operator cabin. This location, although not directly 

above the engine, did receive enough heat to significantly impact the ambient temperature 

values and consequently the relative humidity as well.  Thus, weather surface data were 

used from the closest weather station located at the Lawrence Municipal Airport (about 5 

miles southeast from the sampling location).   

 
IV.A.1.Descriptive Statistics and Correlation Analysis.  Descriptive statistics for ambient 

temperature, relative humidity, engine speed, mass air flow, exhaust flow, fuel flow and 

O2 concentrations are shown in Tables 5 and 6. For all descriptive statistics presented, N 

stands for the sample size.  Q1 and Q3 refer to the first and third quartiles, respectively; 

approximately 50% of a distribution falls between these two values.  

 

Table 5.  Descriptive statistics for ambient and engine variables for all data.  
Variable N Mean Median StDev Min. Max. Q1 Q3 

Amb. Temp (deg. C) 122 19.8 18.9 4.2 13.9 31.1 16.1 22.8 
Dew point (deg. C) 122 16.2 17.2 2.5 12.2 22.2 13.6 17.8 

Relative humidity (%) 122 81.1 84.5 12.7 48.3 100.0 75.1 90.0 
Engine Speed (RPM) 276486 1810.2 2106.0 545.3 781.3 2282.01871.02151.0

MAF (lbs/hr) 276486 271.4 322.3 104.8 56.2 439.4 191.6 345.4 
FuelFlow (kg/hr) 276486 70.8 86.8 39.3 2.4 139.7 34.1 101.2 
MAF_T (deg. C) 276486 362.2 391.4 73.6 40.2 444.5 352.3 406.7 

O2 (%) 276486 12.2 10.9 3.2 6.0 19.5 9.7 14.6 
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Table 6.  Descriptive statistics for ambient and engine variables by fuel type.  
Variable Day N Mean Median StDev Min. Max. Q1 Q3 
Ambient 

Temperature 
(deg. C) 

B20 29 23.3 22.8 1.8 21.1 28.9 22.2 23.9 
Diesel 50 20.9 18.9 4.1 17.2 31.1 17.8 23.1 
ECD 43 16.0 15.0 2.0 13.9 22.8 15.0 16.1 

Dew point 
(deg. C) 

B20 29 19.1 18.9 1.1 17.2 22.2 18.3 20.0 
Diesel 50 17.1 17.2 0.9 13.9 18.9 16.9 17.4 
ECD 43 13.1 12.8 0.5 12.2 13.9 12.8 13.9 

Relative 
Humidity    

(%) 

B20 29 77.7 78.9 8.0 58.8 87.3 74.7 82.9 
Diesel 50 81.0 85.5 16.7 48.3 100.0 66.3 96.6 
ECD 43 83.7 86.6 9.0 53.3 93.1 80.6 86.7 

Engine 
Speed 
(RPM) 

B20 67991 1813.5 2101.0 544.2 819.0 2282.0 1932.0 2155.0 
Diesel 144152 1810.1 2106.0 543.5 781.3 2258.0 1882.0 2146.0 
ECD 64343 1807.0 2111.0 550.5 827.0 2257.0 1687.0 2157.0 

Mass Air 
Flow 

(lbs./hr) 

B20 67991 260.3 309.6 97.4 61.9 426.4 196.6 328.8 
Diesel 144152 277.7 331.4 107.8 56.5 439.4 197.3 354.1 
ECD 64343 269.0 323.7 104.4 56.2 431.5 146.4 342.3 

Fuel Flow 
(Kg/hr) 

B20 67991 66.5 81.9 36.9 2.4 127.7 33.5 97.1 
Diesel 144152 73.8 90.9 40.5 2.7 139.7 36.3 105.4 
ECD 64343 68.4 84.3 38.3 2.4 130.0 22.0 100.2 

Mass Air 
Flow 

Temperature 
(deg. C) 

B20 67991 360.1 393.7 80.4 71.7 439.6 353.7 408.7 
Diesel 144152 369.0 395.0 66.2 40.2 444.5 357.5 409.1 

ECD 64343 348.9 383.0 79.7 50.6 436.1 338.1 397.7 

O2 (%) 
B20 67991 12.3 10.9 3.2 7.2 19.5 9.7 14.6 

Diesel 144152 12.1 10.7 3.1 6.0 19.3 9.6 14.3 
ECD 64343 12.6 11.2 3.2 7.8 19.5 9.9 15.6 

 

A Pearson correlation analysis was performed to assess which of the variables had 

the most important influence on the NOx and CO2 emissions.  This analysis is shown in 

Table 7; in it we can see that ambient temperature, relative humidity and mass air flow 

temperature have a very small influence on these concentrations.  Engine speed, mass air 

flow and fuel flow do have a significant influence above 0.8 on NOx and CO2 

concentrations.  However, upon closer inspection these variables are strongly dependent 

on each other as well. Therefore, these variables are not independent with respect to the 

influence they place on these two emissions.  From the variables with high Pearson 

correlation values, engine speed is the most reliable since it is measured directly based on 

the alternator signal and the curve obtained from using a manual tachometer.    
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Table 7.  Pearson correlation for main variables collected. 

Factor NOx CO2
Ambient 
Temp.

Relative 
humidity

Eng. 
Speed 

Mass 
air 

flow 

Fuel 
Flow 

CO2 0.935       
Ambient Temp. 0.045 0.020      
Relative Humidity -0.082 -0.011 -0.700     
Engine Speed 0.849 0.910 0.020 -0.039    
Mass Air Flow 0.910 0.970 -0.034 0.023 0.934   
Fuel Flow 0.929 0.986 -0.017 0.018 0.880 0.982  
Mass Air Flow Temp. 0.760 0.746 0.082 -0.051 0.772 0.7280.721
 

The histogram of the engine speed data is shown in Figure 22.  In it we can 

identify two separate distribution areas.  The first distribution is centered near 800 RPM 

and is indicative of the RPM frequency when the engine is idling. The second part of the 

histogram shows a bimodal distribution with peaks at about 2050 and 2150 RPM that is 

indicative of the two gears of the compactor.  Histograms with the same pattern were 

obtained for the data of the individual fuel types (Figure 23). 
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Figure 22.  Histogram of engine speed for all data. 
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Figure 23.  Histogram of engine speed for each fuel type. 
 
IV.A.2.Homogeneity of Variance.  The assumption of equal variances (homogeneity of 

variance) for the engine speed observations was evaluated with Barlett’s and Levene’s 

tests (Table 8). Levene’s test is less sensitive to departures from normality and therefore 

more appropriate for the data analyzed than Bartlett’s test. However, both tests confirmed 

that there was not a significant difference between the variances in engine speed 

observations from the three fuel types.  These results were also confirmed visually in the 

histograms from Figures 24, 25 and 26 that show very similar distributions. 

 
Table 8. Test of homogeneity of variance for three pairs of fuel type. 
Engine Speed 
comparison 

Factor 
Test 

statistic 
P-value 

Difference 
Significant?

ECD, B20 and 
Diesel 

Bartlett’s-
test 

0.81 0.667 NO 

Levene’s 
test 

0.69 0.504 NO 
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Figure 24. Histogram of engine speed for ECD and B20 fuel types. 
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Figure 25. Histogram of engine speed for diesel and B20 fuel types. 
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Figure 26. Histogram of engine speed for Diesel and ECD fuel types. 
 
IV.B.  NOx Results for Fuel Analysis 

 
IV.B.1.Scatterplots and Histograms for NOx.  The SPOT system used to collect data on a 

second-by-second basis yielded a vast and daunting dataset due to the extremely large 

number of data points.  The following figures are a graphical representation used to 

identify patterns and relationships between some of the variables collected.  Figure 27 

shows a scatterplot for engine speed versus NOx concentrations for the cumulative data.  

In it we can identify a positive relationship between NOx concentrations and engine 

speed.  This relationship is expected since higher emission concentrations correlate with 

an increase in engine loading.  The scatterplot also shows an increase in NOx variability 

between an engine speed of 1900 and 2200 RPM. This variability spans from 

approximately 200 to 700 ppm of NOx.  Figure 28 shows the same shape and pattern 

exhibited in Figure 27 for each fuel type tested.  
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Figure 27.  Scatterplot of NOx vs. engine speed for all data. 
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Figure 28.  Scatterplot of NOx vs. engine speed for each fuel type. 
 

IV.B.2.Preliminary Data Analysis.  The data set for the three fuel types was analyzed 

further.  As shown in Table 9, a total of 276,486 observations were collected for the fuel 

analysis part of the project.  These observations were subject to a General Linear Model 

(GLM) analysis with NOx concentrations as the dependent variable, engine speed as the 

covariate independent factor and Fuel Type as an independent factor.  Engine Speed was 

chosen as a covariate factor since this variable is highly related to NOx concentrations 

and the intent is to segregate the effect from the “fuel type” factor.  Residuals were saved 

for further analysis as described below.   

 
Table 9. NOx descriptive statistics. 

Variable Day N Mean Median StDev Minimum Maximum Q1 Q3 

NOx (ppm) All 276486 415.04 445.1 141.51 63.79 728.1 320.1 532.5

Diesel 8/29/2005 36158 417.9 444.8 139.2 76.3 643.9 337.3 530.3

Diesel 8/30/2005 38873 426.6 441.2 123.8 81.2 638.7 366.6 524.7

Diesel 8/31/2005 36738 411.7 444.7 144.7 76.4 632.2 222 539.5

Diesel 9/1/2005 32383 398 420.5 135 63.8 627.7 286.6 514.9

B20 9/12/2005 35704 413.4 449.6 147.2 82.6 657.1 219.1 534.6
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B20 9/13/2005 32287 414.9 453.1 139 81.2 634.5 331.4 535.2

ECD 9/14/2005 33441 417.9 456.9 162.1 87.5 728.1 213.4 543.9

ECD 9/15/2005 30906 418 450 138.1 82.1 630.4 353.2 538 

All B20 9/12-9/13 67991 414.1 451.1 143.4 81.2 657.1 309.3 535 

All Diesel 8/29-9/01 144152 414.2 439 136.1 63.8 643.9 326.6 527.2

All ECD 9/14-9/15 64347 418 453.8 151 82.1 728.1 294.3 539.8

 

 

The results from the GLM analysis are shown in Table 10 where a large F value 

and thereby a statistical significance for fuel type, engine speed and their interaction was 

identified. However, upon closer inspection it was realized that the P values were biased 

based on the very large samples.  Basically, with such large sample sizes, any effect 

would be found to be statistically significant based on the probability value (P).   

 

Table 10. General Linear Model for NOx versus Fuel Type with Engine Speed as covariate. 
Factor N DF F P-value 
Engine 
Speed 

276485 

1 655115.01 0.000 

Fuel Type 2 610.58 0.000 
Fuel Type 
*Engine 
Speed 

2 781.41 0.000 

 

IV.B.3.Autocorrelation Test.  An autocorrelation test was performed in the data using the 

residuals obtained from the previous GLM analysis. These residuals were subject to a 

partial autocorrelation test and the results are plotted in Figure 29.  Almost imperceptible 

in this figure are the critical bands for an alpha value of 0.05 for the hypothesis that the 

correlations are equal to zero.  As we can tell, the first 10 lags shown are random in their 

pattern but well outside the critical bands.  Thus, as expected, the raw data show signs of 

a strong autocorrelation.  This issue is inherent in any database made up of frequent 

successive observations. Thereby, autocorrelation needed to be addressed since it was 

limiting the validity and confidence of the GLM analysis (Randolf, 1989).  
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Figure 29. Plot of partial autocorrelation for all data. 
 
IV.B.4.Time to Independence.  In most data gathering campaigns a main challenge 

relates to collecting large enough samples. Usually, the problem is that sample sizes are 

too small because of financial limitations, and researchers then have to make the best out 

of the collected data.  In the current study, the opposite is true since the SPOT system is 

able to collect virtually continuous samples without incurring in an added expense.  For 

as long as the trash compactor was in operation, the SPOT system collected second-by-

second data.  Needless to say, this large data set poses a challenge when it comes to 

performing statistical analyses with using independent of observations.  

Different techniques were sought to address the issue of autocorrelation.  In this 

search, a publication by Swihart and Slade (1985) was found.  Their research developed a 

procedure for determining the time interval at which autocorrelation becomes negligible 

by using location data of a radio-tagged adult female cotton rat.  This study showed that if 

a fixed interval separates successive observations in an autocorrelated data set, the 

dependency can be removed by using observations separated by several intervals, thus 

permitting the use of statistical home range estimates.  This approach was quite effective 
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in the animal movement studies but had not been used in a data set like the one being 

used in the current tailpipe emissions study.   This procedure was adapted and used for 

the current study by analyzing different time intervals to determine a time interval at 

which autocorrelation becomes negligible.  This approach was tested with some 

skepticism but yielded excellent results in producing quasi-independent observations that 

satisfy the assumptions of the statistical analysis hereby presented.  This “time to 

independence” can be thought of as the time necessary to produce a distribution of quasi-

independent observations. Appendix A includes the results from these analyses. After 

several iterations an interval of 800 seconds (about 13 minutes) was identified as an 

adequate interval that minimized autocorrelation. Figure 30 shows that after using an 

interval of 800 seconds per observation, the observations are quasi-independent and 

virtually all are inside the 5% critical bands.  

 
Table 11. Total number of observations used after test for independence procedure.  

Fuel type Day Total data points

Diesel 08/29/2005-09/01/2005 181 

B20 09/12/2005-09/13/2005 85 

ECD 09/14/2005-09/15/2005 81 
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Figure 30. Plot of partial autocorrelation for NOx data after interval of 1 of 800.   
 

The reduced data set was also subject to a GLM analysis where Engine Speed was 

used as a covariate to partial out its effect.  By removing the effect of Engine Speed the 

intent is that we will be able to test for the pure effect that fuel types have on emissions.  

The results in Table 12 show that at an alpha value of 0.05, engine speed is statistically 

significant but fuel type and the interaction of fuel type and engine speed are not. The 

effect of Fuel Type and its interaction with Engine Speed was opposite from what was 

found in the previous data set. This highlights the importance of having independent 

samples in performing ANOVA/GLM analyses.    

The current approach was carried over to the CO2 analysis and to the two 

compactor analysis.    

 

Table 12. General Linear Model for NOx versus Fuel Type with Engine Speed as covariate for 
reduced data set. 

Factor N DF F P-value 
Engine Speed 

346 

1 824.72 0.000 
Fuel Type 2 0.52 0.595 

Fuel Type* 
Engine Speed 

2 0.44 0.645 
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IV.B.5.Temporal Analysis.  A temporal analysis was also performed to identify potential 

daily biases.  As shown in Table 13, the temporal factor and its interaction with engine 

speed are not statistically significant. This means that NOx concentrations are not 

dependent on the day of sampling.   

 
Table 13. General Linear Model for NOx versus Sampling Day with Engine Speed as covariate for 
reduced data set. 

Factor N DF F P-value 
Engine 
Speed 

346 

1 921.77 0.000 

Day 7 0.28 0.960 
Day*Engine 

Speed 
7 0.51 0.823 

IV.B.6.Data Fitting Model Analysis.  One of the goals of the current project is to develop 

potential models that can be used to analyze and predict diesel NOx emissions.  The 

nature of the data is such that most of the NOx readings are at high engine speed values 

between 2000 and 2400 RPM. Then a second cluster of observations are also observed at 

a low engine speed between 750 and 850 RPM. A third group of observations was 

present at the remaining engine speeds (850-200 RPM). Needless to say, finding a valid 

model to represent this type of data is a cumbersome task. Nonetheless, three types of 

models were used to fit the NOx data.   

The first model used is the fitted line plot with logarithmic NOx values.  As shown 

in Figure 31, this model is quite successful in capturing most of the data observations 

within the 95% prediction intervals and it accounts for 81% of the variability in the data.      
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Figure 31. Fitted line plot for fuel data with a linear regression equation. 
 

The next model used is a second order (quadratic) regression model using a log 

scale for NOx observations (Figure 32).  This model allowed for some curvilinear feature 

to fit the data but did not improve the shape fit much since it overestimates the middle 

values between 1200 and 2000 RPM.  However, this model did achieve an improvement 

in the coefficient of determination, which rose to 83%.  
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Figure 32. Fitted line plot for fuel data with a quadratic regression equation. 
 

The third model considered was the cubic regression model also using a log scale 

for the NOx observations (Figure 33).  This model seemed to fit the data very closely in 

distinct engine speed regions, and it was able to account for the highest variability from 

the three models considered with 86%.  Of remarkable note is the fit at the higher engine 

speed cluster area between 2000 and 2200 RPM where the model matched the shape 

almost perfectly.  The fit at the low engine speed cluster was also good but perhaps not 

any better than the previous two models. The one weakness in predicting NOx 

concentrations is evident in the 850-1300 RPM engine speed where the model seems to 

underpredict.  However, most of the observations in that range are still within the 95% 

prediction interval bands.  

 
 



76 
 

24002200200018001600140012001000800

800
700

600

500

400

300

200

150

100

EngineSpeed (RPM)

N
O

x 
(p

pm
)

S 0.0707221
R-Sq 86.2%
R-Sq(adj) 86.1%

Regression
95% CI
95% PI

Fitted Line Plot
log10(NOx) =  5.502 - 0.007713 EngineSpeed

+ 0.000006 EngineSpeed**2 - 0.000000001 EngineSpeed**3

 
Figure 33. Fitted line plot for fuel data with a cubic regression equation. 
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IV.C.  CO2 Results for Fuel Analysis 

The CO2 concentrations were also plotted versus engine speed in Figure 34.  In 

this case we identified a positive relationship between these two variables.  The 

variability of CO2 concentrations also increases with engine speed.  This behavior creates 

a fanning effect where the largest variability is observed from 1600 to 2300 RPM.  Figure 

35 shows the same shape and pattern exhibited in Figure 34 for each fuel type tested. 

 

 
Figure 34.  Scatterplot of CO2 vs. engine speed for all data. 
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Figure 35.  Scatterplot of CO2 vs. engine speed for each fuel type. 
  

IV.C.1.Preliminary Data Analysis.  The first data set was analyzed further to determine 

the effect on the emissions concentrations from temporal and fuel type factors. As shown 

in Table 14, a total of 276,486 observations was collected for the fuel analysis part of the 

project.  These observations were subject to a General Linear Model (GLM) analysis with 

CO2 concentrations as the dependent variable, Engine Speed as the covariate independent 

factor and Fuel Type as an independent factor.  Engine Speed was chosen as a covariate 

factor since this variable is highly related to CO2 concentrations and the intent is to 

segregate the effect from the “fuel type” factor.  Residuals were also saved for further 

analysis.   

 

Table 14. CO2 descriptive statistics. 
Variable Day N Mean Median StDev Minimum Maximum Q1 Q3 

CO2 (%) All 276486 5.3074 6.166 2.0187 0.676 9.31 3.815 6.909

Diesel 8/29/2005 36158 5.57 6.38 1.97 1.05 9.31 4.35 7.07 
Diesel 8/30/2005 38873 5.70 6.36 1.82 0.83 8.56 5.18 7.03 
Diesel 8/31/2005 36738 5.22 6.24 2.16 0.75 8.82 2.13 7.08 
Diesel 9/1/2005 32383 5.17 6.05 2.01 0.80 8.44 2.89 6.86 
B20 9/12/2005 35704 5.09 6.03 2.07 0.68 8.55 1.98 6.75 
B20 9/13/2005 32287 5.32 6.17 2.00 0.74 8.39 4.33 6.95 
ECD 9/14/2005 33441 4.97 5.98 2.11 0.78 8.27 1.94 6.63 
ECD 9/15/2005 30902 5.35 6.07 1.89 0.72 8.14 4.70 6.86 
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All B20 9/12-9/13 67991 5.20 6.09 2.04 0.68 8.55 3.74 6.91 
All Diesel 8/29-9/01 144152 5.43 6.27 2.00 0.75 9.31 3.98 7.01 
All ECD 9/14-9/15 64343 5.15 6.02 2.01 0.72 8.27 3.22 6.82 

 

The results from the GLM analysis are shown in Table 15 where a large F-value 

and thereby a statistical significance for fuel type, engine speed and their interaction was 

identified. However, the same issue identified for NOx concentrations was present for 

CO2 also and the P values were biased because of the very large samples.     

 

Table 15. General Linear Model for CO2 versus Fuel Type with Engine Speed as covariate. 
Factor N DF F P-value 

Engine Speed 

276485 

1 1196847.29 0.000 
Fuel Type 2 433.31 0.000 
Fuel Type* 

Engine Speed 
2 37.97 0.000 

 

IV.C.2.Autocorrelation Test.  An autocorrelation test was performed on the data by using 

the residuals obtained from the previous GLM analysis. These residuals were subject to a 

partial autocorrelation test and the results are plotted in Figure 36.  Almost imperceptible 

in this figure are the critical bands for an alpha value of 0.05 for the hypothesis that the 

correlations are equal to zero.  As we can tell, the first 10 lags shown are random in their 

pattern but well outside the critical bands.  Thus, as expected, the raw data show signs of 

a strong autocorrelation.  This issue is inherent in any database made up of frequent 

successive observations. Thereby, autocorrelation needed to be addressed since it was 

limiting the validity and confidence of the GLM analysis. 
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Figure 36. Plot of partial autocorrelation for all data. 
 
IV.C.3.Time to Independence.  The same procedure used for NOx concentrations was 

used for CO2 concentrations to develop quasi-independent observations. This data 

reduction technique produces a subset of observations by selecting observations from the 

original data set separated by a large enough interval to render autocorrelation 

insignificant. Appendix A includes the results from these analyses. Thus, an interval of 

800 seconds (about 13 minutes) was used to minimize autocorrelation. Figure 37 shows 

that after using an interval of 800 seconds per observation, the observations are quasi-

independent.   

 

Table 16. Total number of observations used after test for independence procedure.  

Fuel type Day 
Total data 

points 

Diesel 08/29/2005-09/01/2005 181 

B20 09/12/2005-09/13/2005 85 

ECD 09/14/2005-09/15/2005 81 
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Figure 37. Plot of partial autocorrelation for CO2 data after interval of 1 of 800.   
 
 

The reduced data set was then subjected to a GLM analysis where Engine Speed 

was used as a covariate to partial out its effect.  By removing the effect of engine speed 

the intent is that we will be able to test for the pure effect that fuel types have on 

emissions.  The results in Table 17 show that at an alpha value of 0.05, engine speed is 

statistically significant, but the Fuel Type and the interaction of Fuel Type and Engine 

Speed are not. The effect of Fuel Type and its interaction with Engine Speed was the 

opposite of what was found in the previous data set.  

 
Table 17. General Linear Model for CO2 versus Fuel Type with Engine Speed as covariate for 
reduced data set. 

Factor N DF F P-value 
Engine Speed 

346 

1 1454.71 0.000 
Fuel Type 2 0.95 0.389 
Fuel Type* 

Engine Speed 
2 0.34 0.714 

IV.C.4.Temporal Analysis.  A temporal analysis was also performed to identify potential 

daily biases.  As shown in Table 18 below, the temporal factor and its interaction with 

engine speed are not statistically significant. This means that CO2 concentrations are not 

dependent on the day of sampling.   
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Table 18. General Linear Model for CO2 versus Sampling Day with Engine Speed as covariate for 
reduced data set. 

Factor N DF F P-value 
Engine Speed 

346 

1 1555.83 0.000 
Day 7 0.38 0.914 
Day* 

Engine Speed 
7 0.25 0.972 

IV.C.5.Data Fitting Model Analysis.  One of the goals of the current project is to develop 

potential models for analyzing and predicting diesel CO2 emissions.  The nature of the 

data is such that most of the CO2 readings are at high engine speed values between 2000 

and 2400 RPM. Then a second cluster of observations are also observed at a low engine 

speed between 750 and 850 RPM. A third group of observations was present at the 

remaining engine speeds (850-200 RPM). Finding a valid model to represent this type of 

data is a cumbersome task; nonetheless, three types of models were used to fit the CO2 

data.   

The first model used is the fitted line plot with logarithmic CO2 values.  As shown 

in Figure 38, this model is quite successful in capturing most of the data observations 

within the 95% prediction intervals and it accounts for 89 percent of the variability in the 

data.  The performance of this model is better than the one exhibited for NOx.  
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Figure 38. Fitted line plot for fuel data with a linear regression equation. 
 

The next model used is a second order (quadratic) regression model using a log 

scale for CO2 observations (Figure 39).  This model allowed for some curvilinear feature 

to fit the data but did not improve the shape fit that much since it overestimates the 

middle values between 1200 and 2000 RPM.  However, this model did achieve an 

improvement in the coefficient of determination, raising it to 92%. 
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Figure 39. Fitted line plot for fuel data with a quadratic regression equation. 
 

The last model tested is the third order (cubic) regression model also using a log 

scale for the CO2 observations (Figure 40).  This model seemed to fit the data very 

closely, in the engine speed regions it was able to account for the highest variability with 

95 percent.  Of note is the fit at the higher engine speed cluster area between 2000 and 

2200 RPM where the model matched the shape almost perfectly.  The fit at the low 

engine speed cluster was also good but perhaps not any better than the previous two 

models. The one weakness in predicting CO2 concentrations is evident in the 850-1300 

RPM engine speed were the model seems to underpredict as shown in Figure 30.  

However, few observations occur in that interval so this weakness is not as significant.  
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Figure 40. Fitted line plot for fuel data with a cubic regression equation. 
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V. RESULTS OF COMPACTOR ANALISIS 
The second analysis compares two trash compactors of the same model to test the 

effect of individual machine on emissions and temporal factors.  This analysis only 

entails diesel fuel.  Since the fuel type analysis already collected information on one 

compactor running on diesel fuel, a second compactor was also tested in a second 

sampling campaign that occurred from June 21 to June 26, 2007 at the same location and 

with the same operator.  The actual running time of the compactor for the days sampled 

are shown in Table 19.  This table shows the actual number of data points available for 

the statistical analysis since a few readings were discarded due to calibration values and 

communication gaps in the SPOT system.   

 
Table 19. Total number of hours compactor was in operation during each sampling day.  

Day Fuel type Compactor Start time End time Total time Total data points
08/29/2005 Diesel 

1 

7:07 AM 5:10 PM 10:03 36158 
08/30/2005 Diesel 7:10 AM 5:57 PM 10:47 38873 
08/31/2005 Diesel 7:08 AM 5:21 PM 10:13 36738 
09/01/2005 Diesel 7:08 AM 4:29 PM 9:21 32383 
06/21/2007 Diesel 

2 

1:15 PM 5:05 PM 3:50 12866 
06/22/2007 Diesel 7:22 AM 5:13 PM 9:51 30109 
06/25/2007 Diesel 6:54 AM 5:10 PM 10:16 35741 
06/26/2007 Diesel 7:29 AM 3:51 PM 8:22 23065 
 

The average temperature, relative humidity and sky cover conditions for each of 

the sampling episodes are shown in Table 20. These data were obtained from the National 

Climatic Data Center (NCDC) for the Lawrence municipal airport station.  This station is 

located about 5 miles southeast of Hamm’s Sanitary Landfill.   

 
Table 20. Average temperature, relative humidity and sky cover for sampling period.  

Sampling 
day 

Avg. temp.  
(ºC) 

Relative humidity 
(%) 

Sky cover 

08/29/2005 21.3 49.4-100 Clear 
08/30/2005 21.1 51.1-96.6 mostly clear 
08/31/2005 22.0 48.3-96.6 clear, scattered and broken 
09/01/2005 19.8 57.5-96.6 scattered, broken and overcast 
06/21/2007 26.1 52-93 Few, scattered and broken 
06/22/2007 25.6 48-90 Clear, few, scattered 
06/25/2007 27.2 50-93 Clear, few 
06/28/2007 21.1  72-93 Few, scattered, overcast 
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V.A.   Data Screening 

Profiles were created for each of the two compactors using the diesel fuel data 

collected for this and the previous part of the study.  These raw data included some 

calibration values each time the engine was started and also some missing values due to 

compiling gaps.  These values were cleared from the final dataset prepared for the 

statistical analysis.  As mentioned earlier, the KU team also found that the ambient 

temperature and humidity values collected by the SPOT system were inaccurate.  This 

was caused by the location of the SPOT system.  The only viable place for placing the 

SPOT was behind the operator cabin. This location, although not directly above the 

engine, did receive enough heat to significantly impact the ambient temperature values 

and consequently the relative humidity ones as well.  Thus, weather surface data were 

used from the closest weather station located at the Lawrence Municipal Airport (about 5 

miles southeast from the sampling location).  Descriptive statistics for engine variables 

are shown in Table 21.  

 

Table 21.  Descriptive statistics for engine variables by compactor 
Variable Compactor N Mean Median StDev Min. Max. Q1 Q3 

Engine Speed 
(RPM) 

1 144160 1810.0 2106 543.6 781.3 2258 1882 2146
2 102734 1767.7 2128 581.1 801.0 2290 858 2169

Mass Air Flow 
(lbs./hr) 

1 144160 277.70 331.4 107.76 56.54 439.4 197.2 354.1
2 102734 264.39 316.6 116.84 40.82 465.0 113.4 359.5

Fuel Flow (Kg/hr)
1 144160 73.786 90.90 40.535 2.676 139.7 36.23 105.4
2 102734 66.037 80.95 43.159 2.710 142.2 8.57 103.2

Mass Air Flow 
Temperature (°C) 

1 144160 369.02 395.0 66.20 40.24 444.5 357.4 409.1
2 102734 318.30 359.8 82.25 58.72 417.2 278.9 375.2

O2 (%) 
1 144160 12.051 10.73 3.131 6.007 14.29 9.55 14.29
2 102734 12.725 11.13 3.346 7.497 17.30 9.93 17.30

 

A Pearson correlation analysis assesses which of the variables had the most 

important influence on the NOx and CO2 emissions (Table 22). We can see that all 

variables have a significant influence on NOx and CO2 concentrations.  A closer 

inspection indicates that these variables are strongly dependent on each other. Therefore, 

the fundamental assumption of independent observations is not met in either emission 

data set.  From the variables with high Pearson correlation values, engine speed is the one 

measured directly based on the alternator signal and the curve obtained from using a 
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manual tachometer to find the exact engine speed values. Thus, this variable is more 

reliable to this analysis. 

 
Table 22. Pearson correlation for main variables collected.  

Factor NOx CO2
Eng. 

Speed 

Mass 
air 

flow

Fuel 
Flow

CO2 0.911     
Engine Speed 0.787 0.914    
Mass Air Flow 0.879 0.970 0.929   
Fuel Flow 0.911 0.985 0.878 0.984  
Mass Air Flow Temp. 0.747 0.723 0.722 0.680 0.685
 

In the histogram of the engine speed data shown, we can identify two separate 

distribution areas (Figure 41).  The first distribution is centered near 800 RPM and is 

indicative of the RPM frequency when the engine is idling. The second part of the 

histogram shows a bimodal distribution with peaks at about 2050 and 2150 RPM.  This is 

the same pattern observed in the previous data analyses.  Histograms with the same 

pattern were obtained for the data of the individual compactors (Figure 42). 
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Figure 41. Histogram of engine speed for the combined data of both compactors. 
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Figure 42. Histogram of engine speed for individual compactors. 
 
 
V.A.1.Homogeneity of Variance.  The assumption of equal variances (homogeneity of 

variance) for the engine speed observations was evaluated with the F-test and Levene’s 

test (Table 23 and Figure 43).  Levene’s test is less sensitive to departures from normality 

and therefore more appropriate for the data analyzed than the F-test. However, both tests 

confirmed that there was not a significant difference between the variances in engine 

speed observations from the two compactors.  These results were also confirmed visually 

in the histograms from Figure 42 showing very similar distributions. 

 
Table 23. Test of homogeneity of variance for two compactors. 
Engine Speed 
comparison 

Factor DF1 DF2 Test statistic P-value 
Difference 

Significant?
Compactor #1 

and 
Compactor #2 

F-test 180 127 0.94 0.699 NO 
Levene’s 

test 
1 307 0.88 0.348 NO 
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Figure 43.  Test of equality of variance for engine speed. 
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V.B.  NOx Results for Compactor Analysis 

V.B.1.Scatterplots and Histograms for NOx.  The following figures are a graphical 

representation used to identify patterns and relationships between the variables collected.  

Figure 44 shows a scatterplot for engine speed versus NOx concentrations for the two 

compactors.  In it we can identify a positive relationship between NOx concentrations and 

engine speed.  This relationship is expected since higher emission concentrations 

correlate with an increase in engine loading.  The scatterplot also shows an increase in 

NOx variability between an engine speed of 1900 and 2200 RPM. This variability spans 

from approximately 200 to 700 ppm of NOx.  The shapes of the scatterplots are generally 

similar for each compactor.  The variability of the observations at a low engine speed is 

smaller for the second compactor.  Also the observations between 1200 and 2000 RPM 

are more compact for the first compactor than for the second one that shows more 

variability.  In fact at around 1600 RPM, we can identify a few observations that had NOx 

concentrations similar to those observed at the highest engine speed for the second 

compactor.   

 

 
Figure 44.  Scatterplot of NOx vs. engine speed for each compactor. 
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V.B.2.Preliminary Data Analysis.  The data set for the two compactors were analyzed 

further.  A total of 246,893 observations were collected for this comparison analysis.  

These observations were subjected to a General Linear Model (GLM) analysis with NOx 

concentrations as the dependent variable, Engine Speed as the covariate independent 

factor and Compactor as the independent factor. Residuals were saved for further analysis 

as described below.   

The results from the GLM analysis are shown in Table 24 where once more we 

identify a large F value and a statistical significance value for Engine Speed, Compactor 

and their interaction. These results are the artifact of very large samples in the dataset.  

Basically, with such large sample sizes, any effect would be found to be statistically 

significant based on the probability value (P).   

 

Table 24. General Linear Model for NOx versus Compactor with Engine Speed as covariate. 
Factor N DF F statistic P-value 

Engine Speed 

246893 

1 482235.67 0.000 
Compactor 1 1680.21 0.000 
Compactor* 

Engine Speed 
1 1314.71 0.000 

 

V.B.3.Autocorrelation Test.  An autocorrelation test was performed on the data using the 

residuals obtained from the previous GLM analysis in order to check the parametric 

assumption of independent observations. These residuals were subjected to a partial 

autocorrelation test and the results are plotted in Figure 45.  Almost imperceptible in this 

figure are the critical bands for an alpha value of 0.05 for the hypothesis that the 

correlations are equal to zero.  As we can tell, the first 10 lags shown are random in their 

pattern but well outside the critical bands.  Thus, as expected, the raw data show signs of 

a strong autocorrelation.  This issue is inherent in any database made up of frequent 

successive observations. The autocorrelation was addressed since it was limiting the 

validity and confidence of the GLM analysis. 
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Figure 45. Plot of partial autocorrelation for all data 
 

V.B.4.Time to Independence.  The same procedure used previously in the fuel type 

analysis for NOx and CO2 concentrations was used for the two compactor analysis. This 

data reduction technique produces a subset of observations by selecting observations 

from the original data set separated by a large enough interval to render autocorrelation 

insignificant. Appendix B includes the results from these analyses. Thus, an interval of 

800 seconds (about 13 minutes) was used to minimize autocorrelation. Figure 46 shows 

that after using an interval of 800 seconds per observation, the observations are quasi-

independent.   

 

Table 25. NOx descriptive statistics.  
Variable Day N Mean Median StDev Minimum Maximum Q1 Q3 

NOx 
(ppm) 

All 246894 376.57 398.1 145.43 60.81 643.9 215.8 501.9 

C1 

8/29/2005 36158 417.89 444.8 139.18 76.26 643.9 337.3 530.3 

8/30/2005 38873 426.57 441.2 123.81 81.2 638.7 366.55 524.7 

8/31/2005 36738 411.7 444.7 144.7 76.36 632.2 222 539.5 

9/1/2005 32391 397.98 420.5 134.99 63.79 627.7 286.4 514.9 

C2 
6/21/2007 12866 386.58 378.2 123.06 67.52 605.2 319.5 499.33

6/22/2007 30109 308.58 330.9 125.67 60.81 578.2 166.7 395.8 
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6/23/2007 953 269.56 306.6 89.82 74.37 433.8 155.4 341.95

6/25/2007 35741 317.88 310.8 154.39 68.16 597.3 155.6 465.2 

6/26/2007 23065 320.07 323.7 142.63 72.82 587.2 153 444 

All C1 8/29-9/01 144160 414.18 438.9 136.12 63.79 643.9 326.6 527.2 

All C2 6/21-6/26 102734 323.8 330.8 141.65 60.81 605.2 165.3 437.9 
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Figure 46. Plot of partial autocorrelation for NOx data after interval of 1 of 800.   
 

The reduced data set was then subject to a GLM analysis where Engine Speed was 

used as a covariate to partial out its effect. The results in Table 26 show that at an alpha 

value of 0.05, engine speed is statistically significant along with the interaction between 

compactor and engine speed. The interaction significance was an unexpected result that 

prompted further analysis.  

  
Table 26. General Linear Model for NOx versus Fuel Type with Engine Speed as covariate for 
reduced data set. 

Factor N DF F statistic P-value 
Engine Speed  

308 
 1 715.24 0.000 

Compactor  1 1.48 0.225 
Compactor*Engine Speed 1 4.65 0.032 

 

The interaction between Engine Speed and Compactor means that the difference 

in slopes between the regression lines for each compactor is statistically significant.  This 

means two things: first, that the rate change in NOx concentrations is different for each 

distribution and second, that at some point the two lines intersect.  Thus, if a pattern is 

identified, it would be reversed after the two lines intersect.  For example, Compactor #1 
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could have lower emissions than Compactor #2 at a given engine speed, however, once 

the lines intersect that pattern would be reversed and Compactor #2 would have lower 

emissions at a different engine speed.  To diagnose this finding more thoroughly both 

regression lines were plotted in the same graph and their line equations were scrutinized.  

The plot of this exercise can be found in Figure 47.  It is interesting to note that the two 

lines do not intersect at a plausible engine speed. However, the difference in slopes 

between the two compactors is statistically significant.  This figure shows the two linear 

regression lines getting farther apart from each other as engine speed increases.  This 

indicates that each compactor produces NOx emissions at a different rate. This rate 

difference is shown to be statistically significant based on the GLM test performed (Table 

26).      

    

 
Figure 47. Plot of predicted values for two compactors with line equation and intercept value.  
 

V.B.5.Temporal Analysis.  A temporal analysis was also performed to identify potential 

daily biases.  As shown in Table 27 below, the temporal factor and its interaction with 
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engine speed are not statistically significant. This means that NOx concentrations are not 

dependent on the day of sampling.   

 

Table 27. General Linear Model for NOx versus Sampling Day with Engine Speed as covariate for 
reduced data set. 

 Factor N  DF F P-value 
Engine Speed 

308 

1 610.85 0.000 
Day 7 0.38 0.914 
Day* 

Engine Speed 
7 1.34 0.229 

 

V.B.6.Data Fitting Model Analysis.  As discussed earlier, one of the goals of the current 

project is to develop potential models that can be used to analyze and predict diesel NOx 

emissions.  Three models tested to fit the NOx data are presented below.  The first set of 

analyses uses the aggregate data for both compactors.  An additional comparison analysis 

was also performed on each data set separately since the statistical analyses suggest that 

the difference in the two distributions is statistically significant.  

The three models use a single set of data including both compactors. The first 

model used is the fitted line plot with logarithmic NOx values.  As shown in Figure 48, 

this model is quite successful in capturing most of the data observations within the 95% 

confidence intervals and it accounts for 65% of the variability in the data.  The 

performance of this model is not as good as the one exhibited in the fuel analysis where 

the coefficient of determination (R2) ranged from the high 80’s to mid-90’s for NOx.  
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Figure 48. Fitted line plot for compactors data with a linear regression equation. 
 

The next model used is a second order (quadratic) regression model using a log 

scale for NOx observations (Figure 49).  This model allowed for some curvilinear feature 

to fit the data but performed only marginally better than the previous linear model.  

Again, this model seems to have a pronounced “hump” at the middle values that is clearly 

overestimating NOx concentrations.  This model achieved an R2 of 66%.  
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Figure 49. Fitted line plot for compactors data with a quadratic regression equation. 
 

The third model considered was the cubic regression model also using a log scale 

for the NOx observations (Figure 50).  This model fit the data very closely in distinct 

engine speed regions, and it was able to account for the highest variability from the three 

models considered with 79%.  Of remarkable note is the fit at the higher engine speed 

cluster area between 2000 and 2200 RPM where the model matched the shape almost 

perfectly.  The fit at the low engine speed cluster was also good but perhaps not any 

better than the previous two models. The one weakness in predicting NOx concentrations 

is evident in the 850-1300 RPM engine speed where the model seems to underpredict.  

However, most of the observations in that range are still within the 95% confidence 

interval bands.  
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Figure 50. Fitted line plot for compactors data with a cubic regression equation. 
 

The following models compare the performance of these three models based on 

an analysis of each individual compactor data set.  

The first model analyzed is the fitted line plot with logarithmic NOx values for the 

first and second compactor.  As shown in Figures 51 and 52, this model is quite 

successful in capturing most of the data observations within the 95% prediction intervals 

and it accounts for 75% of the variability in the data for the first compactor and 64% for 

the second one.  The performance of this model is better for the first compactor than the 

one exhibited when using the aggregate data for both compactors and about the same for 

the second compactor.   
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Figure 51. Fitted line plot for Compactor#1 data with a linear regression equation. 
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Figure 52. Fitted line plot for Compactor#2 data with a linear regression equation. 
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The next model analyzed is the second order (quadratic) regression model with 

logarithmic NOx values for the first and second compactor.  As shown in Figures 53 and 

54, this model is quite successful in capturing most of the data observations within the 

95% prediction intervals and it accounts for 78% of the variability in the data for the first 

compactor and 64% for the second one.  The performance of this model is again better for 

the first compactor than the one exhibited when using the aggregate data for both 

compactors and about the same for the second compactor.   
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Figure 53. Fitted line plot for Compactor#1 data with a quadratic regression equation. 
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Figure 54. Fitted line plot for Compactor#2 data with a quadratic regression equation. 
 

 
The cubic regression model with logarithmic NOx values was analyzed next for 

the first and second compactor.  As shown in Figures 55 and 56, this model is quite 

successful in capturing most of the data observations within the 95% prediction intervals 

and it accounts for 83% of the variability in the data for the first compactor and 73% for 

the second one.  The performance of this model is again better for the first compactor 

than the one exhibited when using the aggregate data for both compactors.  This model 

did show an improvement for the second compactor by yielding the highest R2 value.  
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Figure 55. Fitted line plot for Compactor#1 data with a cubic regression equation. 
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Figure 56. Fitted line plot for Compactor#2 data with a cubic regression equation. 
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V.C.   CO2 Results for Compactor Analysis 

The CO2 concentrations for each compactor are plotted versus engine speed in 

Figure 57.  In this case we identified a positive relationship between these two variables.  

The variability of CO2 concentrations also increases with engine speed.  This behavior 

creates a fanning effect where the largest variability is observed from 1600 to 2300 RPM.   

 

 
Figure 57.  Scatterplot of CO2 vs. Engine Speed for both compactors. 
 
V.C.1.Preliminary Data Analysis.  The data set for the two compactors was analyzed 

further to determine the effect on the emissions concentrations from temporal and 

compactor factors.  A total of 246,893 observations were collected for this compactor 

comparison analysis part of the project (Table 28).  These observations were subject to a 

General Linear Model (GLM) analysis with CO2 concentrations as the dependent 

variable, Engine Speed as the covariate independent factor and Fuel Type as an 

independent factor. Residuals were also saved for further analysis.   
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Table 28. CO2 descriptive statistics. 
Variable Day N Mean Median StDev Minimum Maximum Q1 Q3 

CO2 (%) All 
24689

4 
5.1975 6.154 2.0864 0.754 9.31 

2.58
9 

6.871 

C1 

8/29/2
005 

36158 5.5675 6.382 1.9735 1.054 9.31 
4.35
18 

7.074 

8/30/2
005 

38873 5.7018 6.355 1.819 0.834 8.56 
5.18
05 

7.025 

8/31/2
005 

36738 5.2208 6.235 2.1569 0.754 8.82 
2.13

1 
7.078 

9/1/20
05 

32391 5.1724 6.05 2.0116 0.801 8.44 
2.88

6 
6.859 

C2 

6/21/2
007 

12866 5.6982 6.363 1.7336 1.135 8.06 
5.34
07 

6.877 

6/22/2
007 

30109 4.8516 5.902 1.9588 1.057 7.87 
2.64

2 
6.381 

6/23/2
007 

953 4.8681 5.909 1.8713 1.283 7.267 
2.47

4 
6.327 

6/25/2
007 

35741 4.6634 5.525 2.333 1.004 8.2 
1.85
55 

6.981 

6/26/2
007 

23065 4.7795 5.837 2.2355 1.008 7.935 
1.70

2 
6.736 

All C1 
8/29-
9/01 

14416
0 

5.4266 6.271 2.0036 0.754 9.31 
3.98
13 

7.006 

All C2 
6/21-
6/26 

10273
4 

4.8761 5.908 2.1567 1.004 8.2 
1.95

4 
6.69 

 

The results from the GLM analysis are shown in Table 29 where once more we 

identify a large F value and a statistical significance value for Engine Speed, Compactor 

and their interaction. These results are the artifact of very large samples in the dataset.  

Basically, with such large sample sizes, any effect would be found to be statistically 

significant based on the probability value (P).   

 
Table 29. General Linear Model for CO2 versus Compactor with Engine Speed as covariate. 

Factor N DF F statistic P-value 
Engine Speed 

246893 

1 1300965.75 0.000 
Compactor 1 2679.29 0.000 
Compactor* 

Engine Speed 
1 257.01 0.000 

 
V.C.2.Autocorrelation Test.  An autocorrelation test was performed in the data by using 

the residuals obtained from the previous GLM analysis. These residuals were subject to a 

partial autocorrelation test and the results are plotted in Figure 58.  Almost imperceptible 

in this figure are the critical bands for an alpha value of 0.05 for the hypothesis that the 

correlations are equal to zero.  As we can tell, the first 10 lags shown are random in their 
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pattern but well outside the critical bands.  Thus, as expected, the raw data show signs of 

a strong autocorrelation.  This issue is inherent in any database made up of frequent 

successive observations. Thereby, autocorrelation needed to be addressed since it was 

limiting the validity and confidence of the GLM analysis. 
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Figure 58. Plot of partial autocorrelation for all data. 
 

 

V.C.3.Time to Independence.  The same procedure used previously in the fuel type 

analysis for NOx and CO2 concentrations was used for the two compactor analysis to 

develop quasi-independent observations. This data reduction technique produces a subset 

of observations by selecting observations from the original data set separated by a large 

enough interval to render autocorrelation insignificant. Appendix B includes the results 

from these analyses. Thus, an interval of 800 seconds (about 13 minutes) was used to 

minimize autocorrelation. Figure 59 shows that after using an interval of 800 seconds per 

observation, the observations are quasi-independent.   
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Table 30. Total number of observations used after test for independence procedure.  

Compactor Day 
Total data 

points 

Compactor #1 08/29/2005-09/01/2005 181 

Compactor #2 06/21/2007-06/26/2007 128 
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Figure 59. Plot of partial autocorrelation for CO2 data after interval of 1 of 800.   
 
 

The reduced data set was then subjected to a GLM analysis where Engine Speed 

was used as a covariate to partial out its effect. The results in Table 31 show that at an 

alpha value of 0.05, engine speed is statistically significant along with compactor. This 

means that the difference in the CO2 emission distributions for the compactors is 

statistically significant.  This was an interesting finding because the two compactors used 

were the exact same model and were being operated by the same person.  This result 

along with the interaction significance identified for NOx concentrations mean that the 

NOx and CO2 emission distributions from each compactor are in fact different from each 

other.   
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Table 31. General Linear Model for CO2 versus Compactor with Engine Speed as covariate for 
reduced data set. 

Factor N DF F statistic P-value 
Engine Speed 

308 

1 1827.41 0.000 
Compactor 1 5.76 0.017 
Compactor* 

Engine Speed 
1 0.24 0.623 

 
 
V.C.4.Temporal Analysis.  A temporal analysis was also performed to identify potential 

daily biases.  As shown in Table 32 below, the temporal factor and its interaction with 

engine speed are not statistically significant. This means that CO2 concentrations are not 

dependent on the day of sampling.   

 
Table 32. General Linear Model for CO2 versus Sampling Day with Engine Speed as covariate for 
reduced data set. 

 Factor N  DF F P-value 
Engine 
Speed 

308 

1 1465.63 0.000 

Day 7 1.09 0.372 
Day*Engine 

Speed 
7 0.38 0.916 

 
 

V.C.5.Data Fitting Model Analysis.  Three types of models used to fit the CO2 data are 

presented below.  The first set of analyses uses the aggregate data for both compactors.  

An additional comparison analysis was also performed on each data set separately since 

the statistical analyzes suggest that the difference in the two distributions is statistically 

significant.  

The following set of three models use one set of data that includes both 

compactors. The first model used is the fitted line plot with logarithmic CO2 values.  As 

shown in Figure 60, this model is quite successful in capturing most of the data 

observations within the 95% prediction intervals and it accounts for 90% of the 

variability in the data.  The performance of this model is comparable to the one exhibited 

in the fuel analysis where the coefficient of determination (R2) ranged from the high 80’s 

to mid-90’s for NOx.  
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Figure 60. Fitted line plot for compactors data with a linear regression equation. 
 

The next model used is a second order (quadratic) regression model using a log 

scale for CO2 observations (Figure 61).  This model allowed for some curvilinear feature 

to fit the data but performed only about the same as the previous linear model.  Again, 

this model seems to have a pronounced “hump” at the middle values that is clearly 

overestimating NOx concentrations.  This model achieved an R2 of 91%.  
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Figure 61. Fitted line plot for compactors data with a quadratic regression equation. 
 

The third model considered was the cubic regression model also using a log scale 

for the CO2 observations (Figure 62).  This model seemed to fit the data very closely, in 

the engine speed regions it was able to account for the highest variability from the three 

models considered with 94 percent.  Of note is the fit at the higher engine speed cluster 

area between 2000 and 2200 RPM where the model matched the shape almost perfectly.  

The fit at the low engine speed cluster was also good but perhaps not any better than the 

previous two models. The one weakness in predicting NOx concentrations is evident in 

the 850-1300 RPM engine speed were the model seems to underpredict as shown in 

Figure 52.  However, most of the observations in that range are still within the 95% 

prediction interval bands.  
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Figure 62. Fitted line plot for compactors data with a cubic regression equation. 
 

The following models compare the performance of these three models based on 

an analysis of each individual compactor data set.  

The first model analyzed is the fitted line plot with logarithmic CO2 values for the 

first and second compactor.  As shown in Figures 63 and 64, this model is quite 

successful in capturing most of the data observations within the 95% confidence intervals 

and it accounts for 90% of the variability in the data for the first compactor and 94% for 

the second one.  The performance of this model is very good for both compactors.   
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Figure 63. Fitted line plot for Compactor #1 data with a linear regression equation. 
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Figure 64. Fitted line plot for Compactor #2 data with a linear regression equation. 
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The next model analyzed is the second order (quadratic) regression model with 

logarithmic CO2 values for the first and second compactor.  As shown in Figures 65 and 

66, this model is quite successful in capturing most of the data observations within the 

95% prediction intervals and it accounts for 93% of the variability in the data for each of 

the two compactors. The performance of this model is about the same than the one 

exhibited when using the first model for both compactors.   
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Figure 65. Fitted line plot for Compactor #1 data with a quadratic regression equation. 
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Figure 66. Fitted line plot for Compactor #2 data with a quadratic regression equation. 
 

The cubic regression model with logarithmic CO2 values was analyzed next for 

the first and second compactor.  As shown in Figures 67 and 68, this model is quite 

successful in capturing most of the data observations within the 95% prediction intervals 

and it accounts for 91% of the variability in the data for the first compactor and 97% for 

the second one.  The performance of this model is again better for the second compactor 

than the one exhibited when using the aggregate data for both compactors.  This model 

did not show a significant improvement for the first compactor and in fact did more 

poorly than the second (quadratic) model.  
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Figure 67. Fitted line plot for Compactor #1 data with a cubic regression equation. 
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Figure 68. Fitted line plot for Compactor #2 data with a cubic regression equation. 
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VI. DISCUSSION AND CONCLUSIONS 
This study makes three main contributions including the development of a data 

handling technique to deal with autocorrelation in continuous data.  This study also 

showed that the three fuel types evaluated had no significant effect on NOx and CO2 

emissions. Finally, the evaluation of two Trashmaster 3-90E compactors showed that 

NOx and CO2 emissions are significantly different between the compactors.     

The discussion is divided in three parts: initial data analysis, comparison analysis, 

and model analysis.  The first part covers the data screening and the data reduction 

technique used to address statistical biases, especially autocorrelation. The second part 

focuses on the comparison analysis of the three fuel types and the two compactors. The 

third element of this section deals with three data fitting models tested on the fuel type 

and compactor data subsets. 

 

VI.A.  Initial Data Analysis 

Engine speed was identified as the best engine parameter for inclusion in the 

statistical analysis since it is measured directly and since engine speed has a strong 

correlation with NOx and CO2 emissions.  This parameter is closely related to NOx and 

CO2 emissions since emissions increase as engine speed increases.  Thus, the Engine 

Speed factor was partialed out as a covariate factor in the GLM test to identify the effects 

of fuel type and compactor on NOx and CO2 emissions. 

The initial data analysis identified two important issues that needed to be 

addressed in all data collected.  The first concern was related to a bias in the calculated F 

values due to the very large number of samples (N).  The large N influenced the 

probability values and indicated a false statistical significance for all factors tested. This 

issue is due to the fact that a statistical value (e.g. t-statistic, F-statistic) can be made 

arbitrarily large (and the P-value associated with it arbitrarily small) by increasing the 

sample size (Johnson, 1999). Good (1982) suggest that P-values be standardized to a 

sample size of 100 to avoid this bias. Thus, researchers need to be mindful of the strong 

dependence of P on the sample size when devising a statistical analysis that involves 

large sample sizes.   
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Additionally, the data observations were found to be highly autocorrelated. A time 

interval data reduction technique was used to address these two statistical limitations to 

the robustness of the statistical analyses.  The result in each case was a subset of quasi-

independent observations sampled at an interval of 800 seconds. 

The time interval data reduction technique applied in this study was used 

previously in animal movement studies, but this is the first time that this method is 

applied to a continuous emission data set.  The autocorrelation and false statistical 

significance issues were promptly resolved using this technique. Since the issues of false 

statistical significance and autocorrelation are inherent in continuous data, the positive 

results obtained from the use of this technique can be far-reaching.  This is of utmost 

import because continuous data collection is becoming increasingly common due to 

technological advances evident in devices such as smart meters, digital pedometers, and 

continuous emission monitoring systems.  Methods like this one will allow researchers to 

analyze and find meaning from continuous emission data collected in many disciplines.   

 

VI.B.  Comparison Analysis: Fuel Type   

It was expected that ECD and B20 fuels would provide reductions in NOx and 

CO2 emissions when compared to baseline diesel fuel, but surprisingly they did not.  The 

first stage of the analysis used the GLM with Engine Speed as a covariate factor to test 

the effect of fuel type on NOx and CO2 emissions in one compactor.  As shown in the 

results, the fuel type factor was not found to be statistically significant at an alpha value 

of 0.05 for either pollutant.  This means that the use of diesel, ECD, or B20 fuel did not 

have a statistically significant effect on NOx and CO2 emissions.  From these results we 

can conclude that the effect of the three fuels tested does not impact the emissions of NOx 

and CO2.  Thus, no benefits should be expected from running this compactor on ECD or 

B20 based on NOx and CO2 emissions. 

 

VI.C.  Comparison Analysis: Compactor 

Unexpectedly, the comparison of two Trashmaster 3-90E compactors showed that 

the difference in emission profiles from these was statistically significant for both NOx 

and CO2 emissions. This analysis involved the use of the GLM with Engine Speed as the 

covariate factor in testing the NOx and CO2 emission variability between the data 
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collected from two compactors of the same model running on diesel fuel.  As shown in 

the results section, the compactor factor was not found to be statistically significant at an 

alpha value of 0.05 for NOx.  This means that the difference in NOx emissions from the 

two compactors is not statistically significant. However, the interaction of compactor and 

engine speed factors was statistically significant for NOx emissions.  This means that the 

rate (slope) at which each compactor produces NOx emissions is significantly different 

from each other (=0.05) and therefore, the rate of emissions per engine speed is 

significantly different for each compactor.  

For CO2, the GLM test showed that the compactor factor was statistically 

significant at an alpha value of 0.05.  This means that the CO2 emissions from the two 

compactors are significantly different.  Contrary to what was found for NOx emissions, 

the interaction of the compactor and engine speed factors was not statistically significant.  

This meant that the rate of CO2 emissions produced as a function of engine speed from 

each compactor was not found to be significantly different.  However, since the CO2 

emissions were found to be significantly different for each compactor, we can conclude 

that the two compactors have a different CO2 emission profile.     

The results of this analysis were unexpected because the two compactors sampled 

were of the same model, operated at the same location, and driven by the same operator.  

Thus, it would be expected that the difference in emissions produced from the two 

compactors would not be statistically significant.  For CO2 this difference was clear 

because the compactor factor was found to be statistically significant.  However, for NOx 

emissions this difference was expressed differently because the difference was not 

identified in the compactor factor but in the interaction of compactor and engine speed 

factors.  These results suggest that off-road diesel equipment can produce different NOx 

and CO2 emission profiles even when the equipment are of the same model  and sampled 

under similar conditions.  These results also suggest that each off-road diesel engine can 

produce a unique emission profile even when the engine is of the same family and type.    

Further research needs to be done to investigate if this variability is pervasive among 

other types of diesel engines.  In this study the data were collected in 2005 and 2007 so 

perhaps this difference influenced the emissions results. However, temporal factors were 

not found to be statistically significant but aging factors in engines need to be better 
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understood to identify how emissions profiles change according to the aging engine 

deterioration.  This unique emission “footprint” can be caused by many factors including 

the maintenance performed on each engine or an inherent variability of engine emissions. 

 

VI.D.  Temporal Analysis: Fuel Type and Compactor 

The temporal effects evaluated for the fuel type and compactor analyses showed 

that these effects were not statistically significant. The fuel type and two compactor data 

sets were collected over ten and eight days respectively.  Thus, it was important to 

identify if temporal factors affected the NOx and CO2 emissions. Emissions of NOx and 

CO2 were not found to be dependent on the day when they were collected.  These results 

indicate that the day factor is not statistically significant for either of these data sets.  This 

was expected since the compactor activity and the person operating the compactor were 

constant. 

 

VI.E.  Data Fitting Models: Fuel Analysis 

The third objective of the current study relates to the development of models to 

predict NOx and CO2 emission from engine speed data.  Linear, quadratic, and cubic 

models were evaluated for this purpose.   

The fuel analysis data were fitted to each of these three models and the results 

were evaluated based on the coefficient of determination (R2) and a visual analysis.  For 

NOx emissions R2 values are 81%, 83%, and 86% for the linear, quadratic, and cubic 

models respectively. CO2 emissions have similar R2 values:  89%, 92%, and 95% for the 

linear, quadratic, and cubic models respectively (Table 33).  The linear model can be an 

acceptable predictive tool because visually it fits the NOx and CO2 data nicely, and it also 

has a high correlation value.  The quadratic model is the least acceptable model because it 

does not fit the data correctly.  This model has a concave down shape that overestimates 

concentrations in the transition period between idle and high engine loading. Based on 

the R2 values, the cubic model accounts for most of the data variability for both the NOx 

and the CO2 data.  Based on a visual analysis, the cubic model underpredicts emissions at 

engine speeds between 850 and 1300 RPM for NOx and CO2.  The best feature of the 

cubic model is the prediction of NOx and CO2 values at the higher engine speed between 

2000 and 2300 RPM. At these engine speed values the cubic model is able to accurately 
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represent the shape of the emission distribution that peaks but then tapers off.  This is 

probably the case because engines are designed to work most efficiently at full load.  

Thus, NOx and CO2 emissions drop slightly as peak engine speeds are reached.  

 

Table 33. Coefficient of determination (R2) in percentage.  
Emission Linear model Quadratic Model Cubic Model 

NOx 81 83 86 
CO2 89 92 95 

 

The linear and the cubic models do a good job of fitting the NOx and CO2 data 

and they both have high R2 values. Depending on the emphasis sought, either of these 

two models could be used as a predictive tool.  The advantage of the linear model is its 

simplicity while the advantage of the cubic model is the fitting of emission data at high 

engine speeds.    

 

VI.E.  Data Fitting Models: Compactor Analysis  

Linear, quadratic, and cubic models were used to fit the diesel fuel emission data 

from the two compactors.  This analysis evaluated the compactors separately since in the 

statistical analysis performed, the difference in emission profiles was found to be 

statistically significant.   The same visual patterns found in the fuel analysis data set were 

observed in this data set for each compactor.  For example, based on a visual analysis, the 

quadratic model was found to be inadequate in how it fitted the NOx and CO2 data.  The 

models that best fit the NOx and CO2 emission data were the linear and cubic. The NOx 

emission data from the second compactor showed lower correlation values with 64%, 

64%, and 73% for the linear, quadratic, and cubic models respectively (Table 33).   The 

CO2 emission data from the second compactor showed slightly higher correlation values 

than the ones from the fuel type analysis with 94%, 94%, and 96% for the linear, 

quadratic, and cubic models respectively (Table 34).  Thus, the linear and the cubic 

models do a good job of fitting the NOx and CO2 data and they both have high R2 values.  

The advantage of the linear model is its simplicity while the advantage of the cubic model 

is the fitting of emission data at high engine speeds.  Depending on the emphasis sought, 

either of these two models could be used as predictive tools.   
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Table 34. Coefficient of determination (R2) in percentage.  
Compactor Emission Linear model Quadratic Model Cubic Model 

C1 
NOx 75 78 84 

CO2 90 93 94 

C2 
NOx 64 64 73 

CO2 94 94 96 

 

VI.F.  Future Implications and Concluding Remarks  

The three main contributions from this study include the development of a data 

handling technique to deal with autocorrelation in continuous data, the finding that NOx 

and CO2 emissions are unaffected from the use of ECD and B20 fuel, and the finding that 

two compactors of the same model have significantly different emission profiles.   

 

VI.F.1. Mitigation of Autocorrelation.  This is the first time that the time to independence 

data technique is used for continuous emission data.  The results obtained from its use on 

NOx and CO2 emission data show that this technique is most useful and effective in 

mitigating autocorrelation. This technique is most relevant given the advancements in 

sampling devices and data collection capabilities that have afforded the collection of 

enormous amounts of data for a myriad of purposes.  These capabilities include smart 

meters, digital pedometers, medical devices, and continuous emission monitoring systems 

in factory stacks among many more. We can currently measure every instant of virtually 

every activity thanks to the advances afforded by technology.  That is why data handling 

techniques like the time to independence herein developed are most necessary in finding 

meaning out of the colossal amounts of data available at our disposal.   

The time to independence method described is a valuable tool that can make any 

subsequent statistical analysis valid and robust since autocorrelation in the data would be 

mitigated. Thus, once data are composed of quasi-independent observations, a more 

meaningful statistical analysis may ensue since the correct use of an ANOVA or GLM 

analysis will be warranted.  Under such an analysis the significance of independent 

variables can be determined, allowing then for the testing of the significance of fuel 
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types, engine parameters, and ambient parameters on engine emissions.  PEMS data 

collected at the CEAE of KU can benefit from using the approach herein presented to 

confirm the significance of independent variables tested previously.  Furthermore, given 

the strong ongoing research on bio-diesel emissions at the CEAE of KU, the approach 

herein presented can be used to determining the benefits from distinct types and mixes of 

biodiesel fuel.  

 

VI.F.2. Interval Refinements.  In the current analysis an interval of 1 every 800 seconds 

was used to mitigate autocorrelation. This was deemed an acceptable interval since the 

compactor provided over 8 hours (28,800 seconds) of real-world data each day.  

However, this value is overly conservative and can be refined to accommodate shorter 

sampling campaigns.  Thus, an adjustment of this lag value can yield a smaller interval 

within observations.  Furthermore, distinct emission equipment may experience different 

levels of autocorrelation that may require distinct intervals. Therefore, different intervals 

need to be evaluated for other equipment and engine types.  

 

VI.F.3. False Statistical Significance.  Large data sets collected from PEMS can bias 

statistical significance by producing very small probability (P) values.  This is not a 

common issue in most statistical analyses where researchers struggle to get enough data 

to analyze.  However, by collecting data on a second-by-second basis, PEMS units can 

produce large enough data observations (N) that can bias P values and show an artificial 

significance.   For example, Johnson et al. (2009) found a statistically significant 

difference between the NOx emission observations collected from the MEL and PEMS 

units. This may be a case of a false statistical significance due to a large N since other 

studies (Rubino et al., 2007) showed a strong agreement between the observations 

collected with laboratory and on-board systems. 

 

VI.F.4.   Null Emissions Benefits from ULSD and B20.  An unexpected lack of 

reductions in NOx and CO2 emissions was found from the use of ECD and B20 fuel.  

Both, biodiesel fuel mixes and ECD have been promoted for their emission benefits 

compared to regular no. 2 diesel fuel.  However, these reductions were not found to be 
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statistically significant in this study. Nonetheless, the use of biodiesel mixes and ECD 

fuels in diesel engines will continue to increase due to geopolitical and economic factors.  

Thus, emission reductions touted from the use of these fuels should be considered with 

reservation especially when related to NOx and CO2 emissions. However, these 

conclusions need to be confirmed by further emission testing research. Furthermore, there 

may be other pollutants that show reductions with ULSD and B20 fuels. 

 

VI.F.5.   Variability in Emission Profiles.  Another important finding in this study was the 

significant difference in NOx and CO2 emission profiles from the two Trashmaster 3-90E 

compactors.  This could mean that engines have a unique emission profile with 

significant variability, even within engines of the same model and type. The 

repercussions of this finding are far-reaching. If each off-road diesel equipment has a 

significantly different emission profile, then there is an inherent variability analogous to 

an individual engine emission “footprint”.  This would create a great challenge in 

characterizing emissions from mobile sources.  However, additional testing is necessary 

to determine if this finding is in fact pervasive among other equipment and engine types.   

 

VI.F.6.   Concluding Remarks.  Characterization of mobile real-world emissions has been 

made possible due to the latest advancements in technology that make emission 

measurements from on-board emission testing units as accurate and precise as laboratory-

grade equipment.  The EPA in the US and the EC in the European Union have started 

using on-board data in their New Generation Models in an effort to characterize mobile 

emissions more accurately.  Technological advancements related to on-board emission 

testing systems also have allowed for the collection of continuous data.  The vast amount 

of data that can now be collected by on-board systems also increases the complexity of 

data analysis, posing new challenges such as apparent statistical significance and 

autocorrelation. These challenges mar the validity and robustness of statistical analyses 

performed when determining the effect on emission from independent variables such as 

fuel types, altitude, and engine parameters.   

Therefore, the real challenge that researchers face today when analyzing 

continuous data, is how to mine the mountains of data for meaning. Most research on 
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continuous data is based on a comparison of averages that all but ignore the nature and 

value of the data collected.  Complex data requires more advanced statistical analyses.  

Some other researchers have started to address this need by using ANOVA and GLM 

analyses to evaluate the effect of independent variables (i.e. fuel types) on specific 

dependent variables (i.e. emissions). The methodology outlined in this thesis is a crucial 

tool to make sense and find meaning from real-world, continuous data.  

The Department of CEAE at KU is leading the effort in biofuels development and 

testing for over 10 years.  In addition, the CEAE owns a SEMTECH-DS that has been 

thoroughly validated in accuracy and which is the most widely used instrument for on-

board emission testing.  Therefore, the CEAE of KU is in a prime position to use the tools 

herein presented for the advancement of emission testing and fuel development science 

and continue to be a leader in these fields.      
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APPENDIX A: Fuel Analysis 
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Results for: 1 of 100 lag 
 
General Linear Model: NOx versus Fuel Type  
 
Factor     Type   Levels  Values 
Fuel Type  fixed       3  B20, Diesel, ECD 
 
 
Analysis of Variance for NOx, using Adjusted SS for Tests 
 
Source                   DF    Seq SS    Adj SS    Adj MS        F      P 
EngineSpeed               1  41678700  37568249  37568249  6836.03  0.000 
Fuel Type                 2     11673     61303     30652     5.58  0.004 
Fuel Type*EngineSpeed     2     81234     81234     40617     7.39  0.001 
Error                  2760  15167925  15167925      5496 
Total                  2765  56939531 
 
 
S = 74.1325   R-Sq = 73.36%   R-Sq(adj) = 73.31% 
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General Linear Model: CO2 versus Fuel Type  
 
Factor     Type   Levels  Values 
Fuel Type  fixed       3  B20, Diesel, ECD 
 
 
Analysis of Variance for CO2, using Adjusted SS for Tests 
 
Source                   DF   Seq SS  Adj SS  Adj MS         F      P 
EngineSpeed               1   9612.6  8443.0  8443.0  12569.26  0.000 
Fuel Type                 2     39.3     5.8     2.9      4.32  0.013 
Fuel Type*EngineSpeed     2      0.6     0.6     0.3      0.43  0.651 
Error                  2760   1853.9  1853.9     0.7 
Total                  2765  11506.4 
 
 
S = 0.819583   R-Sq = 83.89%   R-Sq(adj) = 83.86% 
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General Linear Model: NOx versus Fuel Type  
 
Factor     Type   Levels  Values 
Fuel Type  fixed       3  B20, Diesel, ECD 
 
 
Analysis of Variance for NOx, using Adjusted SS for Tests 
 
Source                   DF    Seq SS    Adj SS    Adj MS        F      P 
EngineSpeed               1  21196529  19086141  19086141  3374.99  0.000 
Fuel Type                 2     11322     34465     17233     3.05  0.048 
Fuel Type*EngineSpeed     2     49577     49577     24788     4.38  0.013 
Error                  1377   7787164   7787164      5655 
Total                  1382  29044592 
 
 
S = 75.2008   R-Sq = 73.19%   R-Sq(adj) = 73.09% 
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General Linear Model: CO2 versus Fuel Type  
 
Factor     Type   Levels  Values 
Fuel Type  fixed       3  B20, Diesel, ECD 
 
 
Analysis of Variance for CO2, using Adjusted SS for Tests 
 
Source                   DF   Seq SS   Adj SS   Adj MS        F      P 
EngineSpeed               1  4809.86  4221.13  4221.13  5981.30  0.000 
Fuel Type                 2    15.10     4.05     2.03     2.87  0.057 
Fuel Type*EngineSpeed     2     1.77     1.77     0.89     1.26  0.285 
Error                  1377   971.78   971.78     0.71 
Total                  1382  5798.51 
 
 
S = 0.840073   R-Sq = 83.24%   R-Sq(adj) = 83.18% 
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Results for: 1 of 300 lag 
 

General Linear Model: NOx versus Fuel Type  
 
Factor     Type   Levels  Values 
Fuel Type  fixed       3  B20, Diesel, ECD 
 
 
Analysis of Variance for NOx, using Adjusted SS for Tests 
 
Source                  DF    Seq SS    Adj SS    Adj MS        F      P 
EngineSpeed              1  13824523  12038636  12038636  2156.71  0.000 
Fuel Type                2     10984      9458      4729     0.85  0.429 
Fuel Type*EngineSpeed    2      5085      5085      2542     0.46  0.634 
Error                  917   5118640   5118640      5582 
Total                  922  18959232 
 
 
S = 74.7124   R-Sq = 73.00%   R-Sq(adj) = 72.85% 
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General Linear Model: CO2 versus Fuel Type  
 
Factor     Type   Levels  Values 
Fuel Type  fixed       3  B20, Diesel, ECD 
 
 
Analysis of Variance for CO2, using Adjusted SS for Tests 
 
Source                  DF   Seq SS   Adj SS   Adj MS        F      P 
EngineSpeed              1  3230.79  2763.17  2763.17  4049.45  0.000 
Fuel Type                2    20.36     1.13     0.57     0.83  0.437 
Fuel Type*EngineSpeed    2     0.49     0.49     0.25     0.36  0.697 
Error                  917   625.72   625.72     0.68 
Total                  922  3877.37 
 
 
S = 0.826049   R-Sq = 83.86%   R-Sq(adj) = 83.77% 
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Results for: 1 of 400 lag 
 

General Linear Model: NOx versus Fuel Type  
 
Factor     Type   Levels  Values 
Fuel Type  fixed       3  B20, Diesel, ECD 
 
 
Analysis of Variance for NOx, using Adjusted SS for Tests 
 
Source                  DF    Seq SS   Adj SS   Adj MS        F      P 
EngineSpeed              1  11100481  9792619  9792619  1714.57  0.000 
Fuel Type                2       565    12859     6430     1.13  0.325 
Fuel Type*EngineSpeed    2     15203    15203     7602     1.33  0.265 
Error                  686   3918029  3918029     5711 
Total                  691  15034279 
 
 
S = 75.5739   R-Sq = 73.94%   R-Sq(adj) = 73.75% 
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General Linear Model: CO2 versus Fuel Type  
 
Factor     Type   Levels  Values 
Fuel Type  fixed       3  B20, Diesel, ECD 
 
 
Analysis of Variance for CO2, using Adjusted SS for Tests 
 
Source                  DF   Seq SS   Adj SS   Adj MS        F      P 
EngineSpeed              1  2482.98  2149.67  2149.67  2950.62  0.000 
Fuel Type                2     7.54     1.87     0.93     1.28  0.279 
Fuel Type*EngineSpeed    2     0.52     0.52     0.26     0.36  0.700 
Error                  686   499.79   499.79     0.73 
Total                  691  2990.83 
 
 
S = 0.853552   R-Sq = 83.29%   R-Sq(adj) = 83.17% 
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General Linear Model: NOx versus Fuel Type  
 
Factor     Type   Levels  Values 
Fuel Type  fixed       3  B20, Diesel, ECD 
 
 
Analysis of Variance for NOx, using Adjusted SS for Tests 
 
Source                  DF    Seq SS   Adj SS   Adj MS        F      P 
Fuel Type                2      3693    14384     7192     1.34  0.262 
EngineSpeed              1   8812595  7976444  7976444  1490.10  0.000 
Fuel Type*EngineSpeed    2     21295    21295    10648     1.99  0.138 
Error                  548   2933421  2933421     5353 
Total                  553  11771004 
 
 
S = 73.1639   R-Sq = 75.08%   R-Sq(adj) = 74.85% 
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General Linear Model: CO2 versus Fuel Type  
 
Factor     Type   Levels  Values 
Fuel Type  fixed       3  B20, Diesel, ECD 
 
 
Analysis of Variance for CO2, using Adjusted SS for Tests 
 
Source                  DF   Seq SS   Adj SS   Adj MS        F      P 
Fuel Type                2     6.74     1.34     0.67     1.06  0.346 
EngineSpeed              1  1980.68  1744.50  1744.50  2763.53  0.000 
Fuel Type*EngineSpeed    2     0.42     0.42     0.21     0.33  0.719 
Error                  548   345.93   345.93     0.63 
Total                  553  2333.77 
 
 
S = 0.794518   R-Sq = 85.18%   R-Sq(adj) = 85.04% 
 

65605550454035302520151051

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Lag

P
ar

ti
al

 A
ut

oc
or

re
la

ti
on

Partial Autocorrelation Function for residuals from GLM (1 of 500)
(with 5% significance limits for the partial autocorrelations)

 

A-15



2000-200-400

99.9

99

90

50

10

1

0.1

Residual

P
er

ce
n

t

500400300200

100

0

-100

-200

-300

Fitted Value

R
es

id
u

al

160800-80-160-240-320

60

45

30

15

0

Residual

Fr
eq

u
en

cy

450400350300250200150100501

100

0

-100

-200

-300

Observation Order

R
es

id
u

al

Normal Probability Plot Versus Fits

Histogram Versus Order

Residual Plots for NOx (1 of 600)

 

General Linear Model: NOx versus Fuel Type  
 
Factor     Type   Levels  Values 
Fuel Type  fixed       3  B20, Diesel, ECD 
 
 
Analysis of Variance for NOx, using Adjusted SS for Tests 
 
Source                  DF   Seq SS   Adj SS   Adj MS        F      P 
EngineSpeed              1  7233331  6394569  6394569  1152.22  0.000 
Fuel Type                2     5532     7068     3534     0.64  0.529 
Fuel Type*EngineSpeed    2    10686    10686     5343     0.96  0.383 
Error                  457  2536259  2536259     5550 
Total                  462  9785808 
 
 
S = 74.4970   R-Sq = 74.08%   R-Sq(adj) = 73.80% 
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General Linear Model: CO2 versus Fuel Type  
 
Factor     Type   Levels  Values 
Fuel Type  fixed       3  B20, Diesel, ECD 
 
 
Analysis of Variance for CO2, using Adjusted SS for Tests 
 
Source                  DF   Seq SS   Adj SS   Adj MS        F      P 
EngineSpeed              1  1648.66  1423.48  1423.48  2115.98  0.000 
Fuel Type                2     6.39     0.91     0.46     0.68  0.509 
Fuel Type*EngineSpeed    2     0.99     0.99     0.50     0.74  0.479 
Error                  457   307.44   307.44     0.67 
Total                  462  1963.48 
 
 
S = 0.820199   R-Sq = 84.34%   R-Sq(adj) = 84.17% 
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Results for: 1 of 700 
  

General Linear Model: NOx versus Fuel Type  
 
Factor     Type   Levels  Values 
Fuel Type  fixed       3  B20, Diesel, ECD 
 
 
Analysis of Variance for NOx, using Adjusted SS for Tests 
 
Source                  DF   Seq SS   Adj SS   Adj MS        F      P 
Fuel Type                2    32594     8510     4255     0.80  0.448 
EngineSpeed              1  6752312  5896630  5896630  1115.24  0.000 
Fuel Type*EngineSpeed    2    12151    12151     6075     1.15  0.318 
Error                  390  2062049  2062049     5287 
Total                  395  8859105 
 
 
S = 72.7139   R-Sq = 76.72%   R-Sq(adj) = 76.43% 
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General Linear Model: CO2 versus Fuel Type  
 
Factor     Type   Levels  Values 
Fuel Type  fixed       3  B20, Diesel, ECD 
 
 
Analysis of Variance for CO2, using Adjusted SS for Tests 
 
Source                  DF   Seq SS   Adj SS   Adj MS        F      P 
Fuel Type                2     8.61     1.43     0.72     1.25  0.286 
EngineSpeed              1  1587.95  1344.74  1344.74  2355.09  0.000 
Fuel Type*EngineSpeed    2     0.37     0.37     0.19     0.33  0.723 
Error                  390   222.69   222.69     0.57 
Total                  395  1819.61 
 
 
S = 0.755640   R-Sq = 87.76%   R-Sq(adj) = 87.60% 
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Results for: 1 of 800 
  

General Linear Model: NOx versus Fuel Type  
 
Factor     Type   Levels  Values 
Fuel Type  fixed       3  B20, Diesel, ECD 
 
 
Analysis of Variance for NOx, using Adjusted SS for Tests 
 
Source                  DF   Seq SS   Adj SS   Adj MS       F      P 
Fuel Type                2    28293     5995     2998    0.52  0.595 
EngineSpeed              1  5489489  4752988  4752988  824.72  0.000 
Fuel Type*EngineSpeed    2     5063     5063     2531    0.44  0.645 
Error                  341  1965230  1965230     5763 
Total                  346  7488075 
 
 
S = 75.9153   R-Sq = 73.76%   R-Sq(adj) = 73.37% 
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General Linear Model: CO2 versus Fuel Type  
 
Factor     Type   Levels  Values 
Fuel Type  fixed       3  B20, Diesel, ECD 
 
 
Analysis of Variance for CO2, using Adjusted SS for Tests 
 
Source                  DF   Seq SS   Adj SS   Adj MS        F      P 
Fuel Type                2     6.92     1.39     0.69     0.95  0.389 
EngineSpeed              1  1248.25  1066.55  1066.55  1454.71  0.000 
Fuel Type*EngineSpeed    2     0.49     0.49     0.25     0.34  0.714 
Error                  341   250.01   250.01     0.73 
Total                  346  1505.68 
 
 
S = 0.856255   R-Sq = 83.40%   R-Sq(adj) = 83.15% 
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Results for: 1 of 900 
  

General Linear Model: NOx versus Fuel Type  
 
Factor     Type   Levels  Values 
Fuel Type  fixed       3  B20, Diesel, ECD 
 
 
Analysis of Variance for NOx, using Adjusted SS for Tests 
 
Source                  DF   Seq SS   Adj SS   Adj MS       F      P 
Fuel Type                2    19958     4054     2027    0.35  0.708 
EngineSpeed              1  4104430  3384041  3384041  577.37  0.000 
Fuel Type*EngineSpeed    2     2467     2467     1233    0.21  0.810 
Error                  303  1775911  1775911     5861 
Total                  308  5902765 
 
 
S = 76.5578   R-Sq = 69.91%   R-Sq(adj) = 69.42% 
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General Linear Model: CO2 versus Fuel Type  
 
Factor     Type   Levels  Values 
Fuel Type  fixed       3  B20, Diesel, ECD 
 
 
Analysis of Variance for CO2, using Adjusted SS for Tests 
 
Source                  DF   Seq SS  Adj SS  Adj MS        F      P 
Fuel Type                2     2.22    1.15    0.57     0.83  0.437 
EngineSpeed              1   947.83  776.83  776.83  1123.31  0.000 
Fuel Type*EngineSpeed    2     1.23    1.23    0.61     0.89  0.413 
Error                  303   209.54  209.54    0.69 
Total                  308  1160.82 
 
 
S = 0.831601   R-Sq = 81.95%   R-Sq(adj) = 81.65% 
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Results for: 1 of 1000 
  

General Linear Model: NOx versus Fuel Type  
 
Factor     Type   Levels  Values 
Fuel Type  fixed       3  B20, Diesel, ECD 
 
 
Analysis of Variance for NOx, using Adjusted SS for Tests 
 
Source                  DF   Seq SS   Adj SS   Adj MS       F      P 
Fuel Type                2    21153    11283     5641    0.97  0.380 
EngineSpeed              1  4532826  3967746  3967746  682.75  0.000 
Fuel Type*EngineSpeed    2    14223    14223     7111    1.22  0.296 
Error                  272  1580710  1580710     5811 
Total                  277  6148912 
 
 
S = 76.2328   R-Sq = 74.29%   R-Sq(adj) = 73.82% 
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General Linear Model: CO2 versus Fuel Type  
 
Factor     Type   Levels  Values 
Fuel Type  fixed       3  B20, Diesel, ECD 
 
 
Analysis of Variance for CO2, using Adjusted SS for Tests 
 
Source                  DF   Seq SS  Adj SS  Adj MS        F      P 
Fuel Type                2    12.21    0.66    0.33     0.55  0.580 
EngineSpeed              1  1007.66  850.36  850.36  1398.27  0.000 
Fuel Type*EngineSpeed    2     0.09    0.09    0.05     0.08  0.927 
Error                  272   165.42  165.42    0.61 
Total                  277  1185.38 
 
 
S = 0.779838   R-Sq = 86.05%   R-Sq(adj) = 85.79% 
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APPENDIX B: Compactor Analysis 
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General Linear Model: NOx versus compactor  
 
Factor     Type   Levels  Values 
compactor  fixed       2  1, 2 
 
 
Analysis of Variance for NOx, using Adjusted SS for Tests 
 
Source                   DF    Seq SS    Adj SS    Adj MS        F      P 
EngineSpeed               1  32475720  30913375  30913375  4723.16  0.000 
compactor                 1   4617459     94535     94535    14.44  0.000 
compactor*EngineSpeed     1    129327    129327    129327    19.76  0.000 
Error                  2466  16140136  16140136      6545 
Total                  2469  53362642 
 
 
S = 80.9016   R-Sq = 69.75%   R-Sq(adj) = 69.72% 
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General Linear Model: CO2 versus compactor  
 
Factor     Type   Levels  Values 
compactor  fixed       2  1, 2 
 
 
Analysis of Variance for CO2, using Adjusted SS for Tests 
 
Source                   DF   Seq SS  Adj SS  Adj MS         F      P 
EngineSpeed               1   9009.2  8840.8  8840.8  12815.70  0.000 
compactor                 1    132.9    18.3    18.3     26.46  0.000 
compactor*EngineSpeed     1      0.7     0.7     0.7      0.98  0.322 
Error                  2466   1701.2  1701.2     0.7 
Total                  2469  10843.9 
 
 
S = 0.830568   R-Sq = 84.31%   R-Sq(adj) = 84.29% 
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Results for: 1 of 200 
  

General Linear Model: NOx versus compactor  
 
Factor     Type   Levels  Values 
compactor  fixed       2  1, 2 
 
 
Analysis of Variance for NOx, using Adjusted SS for Tests 
 
Source                   DF    Seq SS    Adj SS    Adj MS        F      P 
EngineSpeed               1  16158885  15497316  15497316  2358.17  0.000 
compactor                 1   2146991     49967     49967     7.60  0.006 
compactor*EngineSpeed     1     53340     53340     53340     8.12  0.004 
Error                  1231   8089822   8089822      6572 
Total                  1234  26449038 
 
 
S = 81.0663   R-Sq = 69.41%   R-Sq(adj) = 69.34% 
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General Linear Model: CO2 versus compactor  
 
Factor     Type   Levels  Values 
compactor  fixed       2  1, 2 
 
 
Analysis of Variance for CO2, using Adjusted SS for Tests 
 
Source                   DF  Seq SS  Adj SS  Adj MS        F      P 
EngineSpeed               1  4492.7  4422.9  4422.9  6407.72  0.000 
compactor                 1    56.8    10.7    10.7    15.47  0.000 
compactor*EngineSpeed     1     1.1     1.1     1.1     1.55  0.214 
Error                  1231   849.7   849.7     0.7 
Total                  1234  5400.3 
 
 
S = 0.830814   R-Sq = 84.27%   R-Sq(adj) = 84.23% 
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Results for: 1 of 300 
  

General Linear Model: NOx versus compactor  
 
Factor     Type   Levels  Values 
compactor  fixed       2  1, 2 
 
 
Analysis of Variance for NOx, using Adjusted SS for Tests 
 
Source                  DF    Seq SS    Adj SS    Adj MS        F      P 
EngineSpeed              1  11248863  10806656  10806656  1742.83  0.000 
compactor                1   1513172     33442     33442     5.39  0.020 
compactor*EngineSpeed    1     39398     39398     39398     6.35  0.012 
Error                  820   5084533   5084533      6201 
Total                  823  17885966 
 
 
S = 78.7442   R-Sq = 71.57%   R-Sq(adj) = 71.47% 
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General Linear Model: CO2 versus compactor  
 
Factor     Type   Levels  Values 
compactor  fixed       2  1, 2 
 
 
Analysis of Variance for CO2, using Adjusted SS for Tests 
 
Source                  DF  Seq SS  Adj SS  Adj MS        F      P 
EngineSpeed              1  3088.7  3035.5  3035.5  4580.70  0.000 
compactor                1    39.9     5.8     5.8     8.77  0.003 
compactor*EngineSpeed    1     0.3     0.3     0.3     0.42  0.519 
Error                  820   543.4   543.4     0.7 
Total                  823  3672.2 
 
 
S = 0.814051   R-Sq = 85.20%   R-Sq(adj) = 85.15% 
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Results for: 1 of 400 
  

General Linear Model: NOx versus compactor  
 
Factor     Type   Levels  Values 
compactor  fixed       2  1, 2 
 
 
Analysis of Variance for NOx, using Adjusted SS for Tests 
 
Source                  DF    Seq SS   Adj SS   Adj MS        F      P 
EngineSpeed              1   8159681  7850801  7850801  1170.54  0.000 
compactor                1   1225183    19764    19764     2.95  0.087 
compactor*EngineSpeed    1     41880    41880    41880     6.24  0.013 
Error                  614   4118077  4118077     6707 
Total                  617  13544821 
 
 
S = 81.8961   R-Sq = 69.60%   R-Sq(adj) = 69.45% 
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General Linear Model: CO2 versus compactor  
 
Factor     Type   Levels  Values 
compactor  fixed       2  1, 2 
 
 
Analysis of Variance for CO2, using Adjusted SS for Tests 
 
Source                  DF   Seq SS   Adj SS   Adj MS        F      P 
EngineSpeed              1  2258.07  2215.77  2215.77  3018.89  0.000 
compactor                1    35.37     5.60     5.60     7.62  0.006 
compactor*EngineSpeed    1     0.35     0.35     0.35     0.47  0.491 
Error                  614   450.66   450.66     0.73 
Total                  617  2744.44 
 
 
S = 0.856720   R-Sq = 83.58%   R-Sq(adj) = 83.50% 
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Results for: 1 of 500 
  

General Linear Model: NOx versus compactor  
 
Factor     Type   Levels  Values 
compactor  fixed       2  1, 2 
 
 
Analysis of Variance for NOx, using Adjusted SS for Tests 
 
Source                  DF    Seq SS   Adj SS   Adj MS        F      P 
EngineSpeed              1   6862161  6457793  6457793  1022.54  0.000 
compactor                1    919757    17066    17066     2.70  0.101 
compactor*EngineSpeed    1     30969    30969    30969     4.90  0.027 
Error                  490   3094574  3094574     6315 
Total                  493  10907461 
 
 
S = 79.4698   R-Sq = 71.63%   R-Sq(adj) = 71.46% 
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General Linear Model: CO2 versus compactor  
 
Factor     Type   Levels  Values 
compactor  fixed       2  1, 2 
 
 
Analysis of Variance for CO2, using Adjusted SS for Tests 
 
Source                  DF   Seq SS   Adj SS   Adj MS        F      P 
EngineSpeed              1  1851.15  1810.19  1810.19  2575.56  0.000 
compactor                1    26.67     3.66     3.66     5.21  0.023 
compactor*EngineSpeed    1     0.11     0.11     0.11     0.15  0.698 
Error                  490   344.39   344.39     0.70 
Total                  493  2222.32 
 
 
S = 0.838353   R-Sq = 84.50%   R-Sq(adj) = 84.41% 
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Results for: 1 of 600 
  

General Linear Model: NOx versus compactor  
 
Factor     Type   Levels  Values 
compactor  fixed       2  1, 2 
 
 
Analysis of Variance for NOx, using Adjusted SS for Tests 
 
Source                  DF   Seq SS   Adj SS   Adj MS       F      P 
EngineSpeed              1  5710682  5493606  5493606  894.38  0.000 
compactor                1   608726    19985    19985    3.25  0.072 
compactor*EngineSpeed    1    10227    10227    10227    1.66  0.198 
Error                  408  2506078  2506078     6142 
Total                  411  8835712 
 
 
S = 78.3731   R-Sq = 71.64%   R-Sq(adj) = 71.43% 
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General Linear Model: CO2 versus compactor  
 
Factor     Type   Levels  Values 
compactor  fixed       2  1, 2 
 
 
Analysis of Variance for CO2, using Adjusted SS for Tests 
 
Source                  DF   Seq SS   Adj SS   Adj MS        F      P 
EngineSpeed              1  1559.05  1532.99  1532.99  2316.56  0.000 
compactor                1    16.49     3.64     3.64     5.50  0.020 
compactor*EngineSpeed    1     0.50     0.50     0.50     0.75  0.387 
Error                  408   270.00   270.00     0.66 
Total                  411  1846.03 
 
 
S = 0.813482   R-Sq = 85.37%   R-Sq(adj) = 85.27% 
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\ 

Results for: 1 of 700 
  

General Linear Model: NOx versus compactor  
 
Factor     Type   Levels  Values 
compactor  fixed       2  1, 2 
 
 
Analysis of Variance for NOx, using Adjusted SS for Tests 
 
Source                  DF   Seq SS   Adj SS   Adj MS       F      P 
EngineSpeed              1  4695056  4492286  4492286  706.80  0.000 
compactor                1   704132    10504    10504    1.65  0.199 
compactor*EngineSpeed    1    27864    27864    27864    4.38  0.037 
Error                  348  2211822  2211822     6356 
Total                  351  7638873 
 
 
S = 79.7233   R-Sq = 71.05%   R-Sq(adj) = 70.80% 
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General Linear Model: CO2 versus compactor  
 
Factor     Type   Levels  Values 
compactor  fixed       2  1, 2 
 
 
Analysis of Variance for CO2, using Adjusted SS for Tests 
 
Source                  DF   Seq SS   Adj SS   Adj MS        F      P 
EngineSpeed              1  1388.28  1344.98  1344.98  2076.82  0.000 
compactor                1    26.26     3.11     3.11     4.80  0.029 
compactor*EngineSpeed    1     0.03     0.03     0.03     0.05  0.826 
Error                  348   225.37   225.37     0.65 
Total                  351  1639.94 
 
 
S = 0.804746   R-Sq = 86.26%   R-Sq(adj) = 86.14% 
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Results for: 1 of 800 
  

General Linear Model: NOx versus compactor  
 
Factor     Type   Levels  Values 
compactor  fixed       2  1, 2 
 
 
Analysis of Variance for NOx, using Adjusted SS for Tests 
 
Source                  DF   Seq SS   Adj SS   Adj MS       F      P 
EngineSpeed              1  4396393  4130488  4130488  715.24  0.000 
compactor                1   581737     8543     8543    1.48  0.225 
compactor*EngineSpeed    1    26878    26878    26878    4.65  0.032 
Error                  305  1761365  1761365     5775 
Total                  308  6766373 
 
 
S = 75.9932   R-Sq = 73.97%   R-Sq(adj) = 73.71% 
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General Linear Model: CO2 versus compactor  
 
Factor     Type   Levels  Values 
compactor  fixed       2  1, 2 
 
 
Analysis of Variance for CO2, using Adjusted SS for Tests 
 
Source                  DF   Seq SS   Adj SS   Adj MS        F      P 
EngineSpeed              1  1200.40  1170.98  1170.98  1827.41  0.000 
compactor                1    22.78     3.69     3.69     5.76  0.017 
compactor*EngineSpeed    1     0.15     0.15     0.15     0.24  0.623 
Error                  305   195.44   195.44     0.64 
Total                  308  1418.77 
 
 
S = 0.800492   R-Sq = 86.22%   R-Sq(adj) = 86.09% 
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Residual Plots for NOx (1 of 900)

 

Results for: 1 of 900 
  

General Linear Model: NOx versus compactor  
 
Factor     Type   Levels  Values 
compactor  fixed       2  1, 2 
 
 
Analysis of Variance for NOx, using Adjusted SS for Tests 
 
Source                  DF   Seq SS   Adj SS   Adj MS       F      P 
EngineSpeed              1  3882022  3595761  3595761  589.66  0.000 
compactor                1   539347     9048     9048    1.48  0.224 
compactor*EngineSpeed    1    18536    18536    18536    3.04  0.082 
Error                  271  1652573  1652573     6098 
Total                  274  6092477 
 
 
S = 78.0900   R-Sq = 72.88%   R-Sq(adj) = 72.57% 
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General Linear Model: CO2 versus compactor  
 
Factor     Type   Levels  Values 
compactor  fixed       2  1, 2 
 
 
Analysis of Variance for CO2, using Adjusted SS for Tests 
 
Source                  DF   Seq SS   Adj SS   Adj MS        F      P 
EngineSpeed              1  1030.60  1009.42  1009.42  1507.87  0.000 
compactor                1    10.02     3.49     3.49     5.21  0.023 
compactor*EngineSpeed    1     0.89     0.89     0.89     1.33  0.250 
Error                  271   181.42   181.42     0.67 
Total                  274  1222.93 
 
 
S = 0.818191   R-Sq = 85.17%   R-Sq(adj) = 85.00% 
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Results for: 1 of 1000 
  

General Linear Model: NOx versus compactor  
 
Factor     Type   Levels  Values 
compactor  fixed       2  1, 2 
 
 
Analysis of Variance for NOx, using Adjusted SS for Tests 
 
Source                  DF   Seq SS   Adj SS   Adj MS       F      P 
EngineSpeed              1  3628836  3316541  3316541  607.30  0.000 
compactor                1   456138     5635     5635    1.03  0.311 
compactor*EngineSpeed    1    23460    23460    23460    4.30  0.039 
Error                  244  1332518  1332518     5461 
Total                  247  5440952 
 
 
S = 73.8995   R-Sq = 75.51%   R-Sq(adj) = 75.21% 
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General Linear Model: CO2 versus compactor  
 
Factor     Type   Levels  Values 
compactor  fixed       2  1, 2 
 
 
Analysis of Variance for CO2, using Adjusted SS for Tests 
 
Source                  DF   Seq SS  Adj SS  Adj MS        F      P 
EngineSpeed              1   978.56  940.44  940.44  1514.93  0.000 
compactor                1    18.34    1.15    1.15     1.85  0.175 
compactor*EngineSpeed    1     0.12    0.12    0.12     0.19  0.665 
Error                  244   151.47  151.47    0.62 
Total                  247  1148.49 
 
 
S = 0.787899   R-Sq = 86.81%   R-Sq(adj) = 86.65% 
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APPENDIX D: Field Sampling of Trashmaster 3-90 with SPOT Unit 
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