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Abstract 

 

Robert R. P. Torregrosa 

Department of Chemistry, July 2012 

The University of Kansas 

 

 

 Carbon-carbon bond formation between the benzyl carbon and a functional group is 

important in organic synthesis because majority of the compounds in the chemical literature 

contain aromatic cores appended with different functionalities in the benzyl carbon. These 

compounds are utilized in pharmaceuticals and medicinal chemistry. While current literature in 

Pd-catalyzed benzylations is increasingly becoming recognized, conventional methodologies 

require the use of toxic benzyl halides, stoichiometric bases and/or performed organometallics 

which not only generate benzyl compounds but also give side products and toxic metal wastes. 

Our research group has a long-standing interest using decarboxylation as a tool in constructing 

diverse compounds without the need of base and preformed organometallics. Previously applied 

in the synthesis of functionalized allylic compounds from allyl esters, we envisioned to utilize 

this tool towards the synthesis of functionalized benzylic compounds from benzyl esters. We 

thought that it would be feasible and ideal to perform decarboxylative benzylation (DcB) based 

from well-explored decarboxylative allylation (DcA) methodology. Indeed, we were able to 

show that Pd-catalyzed DcB was an indispensable tool in synthesizing functionalized benzylic 

compounds in good to high yields. This was shown in the syntheses of benzyl ketones and 

benzyl alkynes. In the DcB of ketones, simple and benzo-fused β-ketoesters underwent 
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decarboxylation affording benzyl ketones in good to high yields. DcB was also regiospecific, the 

kinetically preformed enolate did not undergo thermodynamic isomerization resulting to direct 

functionalization to the carbon next to the carboxylate group where it was once located. In 

addition to naphthyl and simple benzyls, heteroaromatics were also used as coupling partners 

with enolate. The nature of substituents in the ring and its position from the benzyl moiety 

affected benzylation. Depending on the nature of heterocycle, regioselective benzylation 

occurred resulting in formation of C-benzylation ketone, C-arylation ketone, or O-benzylation 

enol ether. The utility of DcB methodology was also used towards the synthesis of Nabumetone. 

In the DcB of alkynes, simple and benzo-fused propiolates underwent decarboxylation to 

generate benzyl alkynes in good to high yields. The use of biphenyl derived ligand was crucial in 

the synthesis of simple benzyl alkynes. The benzylic carbon in diaryls and heterocycles can also 

be used as coupling partners with alkynes.  
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Chapter 1 

Background of Palladium-Catalyzed Benzylation Reactions 
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1.1 Introduction 

Benzylic functionalization using palladium catalysis 

The formation of carbon-carbon bonds in organic synthesis is important because it plays 

a vital role in creating molecules or targets for study in many scientific fields. More specifically, 

the construction of C-C bonds via benzylic functionalization is desirable given that many natural 

products and biologically active chemical compounds contain aromatic rings in which the 

benzylic carbon is functionalized. Current methodologies that utilize metal-catalyzed 

benzylations to generate benzylic compounds are superior to classical SN2 alkylation because the 

latter requires use of stoichiometric bases to deprotonate nucleophiles, which attack benzyl 

electrophiles, often resulting in generation of mixtures of benzylation products. Among the 

metals used in metal-catalyzed benzylation reactions, Pd is typically the metal of choice because 

it has been shown to have remarkable reactivity to various benzyl moieties such as benzyl 

halides, acetates, carbonates, and other derivatives.
1
 In the simplest sense, the catalytic cycle of 

Pd-catalyzed benzylation involves activation of benzyl-LG (LG = leaving group) with Pd via 

oxidative addition to generate η
3
-benzyl-Pd intermediate 1, which is then attacked by a 

nucleophile to release the functionalized benzyl product and regenerate the Pd catalyst (Scheme 

1). The formation of functionalized benzyl product depends on several variables present in the 

catalytic cycle: Pd choice, electronics of the R substituents on the benzyl reactant, the LG in 

benzyl-LG that will undergo oxidative addition to generate 1, and the nature of nucleophile and 

how its method of generation.  
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Scheme 1. 

LG
R

LG - Br, Cl, I, OAc, OCO2Me

R

Pd

Pd(0)

1

Nu

Nu
R

LG

Pd
R

1a  

The  nature of Pd intermediate: η
3
-Pd-benzyl complex 

As shown in Scheme 1, the most accepted structure of the Pd-benzyl complex is 1 in 

which it exists in η
3
 fashion where the metal binds into three carbons. Another possibility is the 

same Pd-benzyl complex 1a exists in η
1
 fashion where the metal binds only to the benzylic 

carbon. It was reported that formation of 1a is believed to be more thermodynamically favorable 

than 1 due to the loss of aromatic stabilization.
2
 While 1b (fig. 1) was the initial sole product 

generated from oxidative addition of Pd to benzyl trifluoroacetate or halide as reported by 

Yamamoto
3a-b

 and Turco,
3c

 the formation of 1c (fig. 2) was only observed when sodium, 

potassium, or silver salt was added to the preformed η
1
-benzyl-Pd complex

3a,c,5b
 (eq 1). 

Mechanistic studies pertaining to the interconversion of 1 and 1a in different solvents and varied 

temperatures indicated that the two equilibrate presumably through η
3
-η

1
-η

3
 isomerization.

4
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LG

LG - OCOCF3,
Br, Cl

Pd, L
Pd

L

LG L

1b

M-X
salt

Pd

L

L
X

+ M-LG

1c

(1)

 

          

 Figure 1. X-ray crystal structure of η
1
- Figure 2. X-ray crystal structure of η

3
- 

            benzyl-Pd 1b (L = PPh2Me2, LG =   benzyl-Pd 1c (L = Xantphos, X = OTf). 

            OCOCF3). Figure taken from ref. 3a.     Figure taken from ref 5b.   

    

As shown from the catalytic cycle in Scheme 1, 1 is attacked by nucleophiles to release 

the functionalized benzylic product. The chemical nature of 1 as an electrophile has been 

established based on the reactivity of isolated η
3
-benzyl-Pd complexes from addition of Pd to 

benzyl halides, benzyl trifluoroacetates, or styrene to certain nucleophiles (Chapter 1.2). While 

the electrophilicity of 1 is known, the regioselectivity of C-C bond formation from the 

nucleophilic attack merits discussion. In 1, the delocalization of positive charge is spread across 

three carbons similar to η
3
-allyl-Pd complex, and from these three carbons, nucleophiles only 

attack at positions 1 and 3. If the nucleophile attacks at C-1, benzyl (linear-type) product is 

obtained, whereas if the nucleophile attacks at C-3, a cyclohexadiene (branched-type) product is 

obtained (Scheme 2).  
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Scheme 2. 

Nu
RR

Pd

Nu

C-1 attack
aromaticity
preserved

or R

C-3 attack
aromaticity
destroyed

Nu

1

2

3

Pd
1

2

3 NuNu vs.

Nu

linear
product

branched
product

1

 

Based on several Pd-catalyzed benzylations reported, it was shown that nucleophiles 

regioselectively attack at C-1 to generate 1b for two reasons. First, the formation of 1b has the 

aromatic ring preserved from the reactant to the product in contrast with 1c in which the 

aromaticity was destroyed. Second, the Pd-C1 has been reported to contain higher degree of 

electrophilicity than the Pd-C2 and -C3 bonds.
2,4a,5

 This remarkable electrophilic character is 

possibly the consequence of its shorter bond length compared to other Pd-C bonds.
4,5

 While 

nucleophiles would prefer to attack at C-1 than C-3 of the complex giving benzyl compounds, it 

has been shown that by simply altering the conditions required for Pd-catalyzed benzylation such 

as in the Stille coupling of benzyl halide with allylstannane, dearomatized compound can also be 

accessed (Scheme 3).
6
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Scheme 3. 

Br
+ Bu3Sn

5 mol% N

O

O

Pd(PPh3)2Br

toluene, 60oC, 48h

90%

Taylor, 2005

Cl
+ Bu3Sn

5 mol% Pd2(dba)3
.CHCl3

40 mol% PPh3

acetone, rt, 24h

80%

Yamamoto, 2001

 

Reactivity of Pd-catalyzed benzylations versus allylations 

Pd-catalyzed benzylations have similarities with Pd-catalyzed allylations because both 

generate Pd complexes which are coupled with nucleophiles giving linear or branched products. 

However, there are certain differences between the two analogous Pd-catalyzed reactions. 

Though both Pd complexes are electrophilic, the formation of η
3
-benzyl-Pd is kinetically less 

facile than formation of η
3
-allyl-Pd electrophile due to fact that the β,γ π-bond in the Pd-benzyl 

complex is part of the aromatic ring.
1a,7

 The reactivity of Pd-benzyl vs. Pd-allyl with 

nucleophiles is also slower due to lower stability of the preformed Pd π-complex. As shown by 

Rawal and Zhu, when an equimolar mixture of allyl carbonate and benzyl carbonate was reacted 

with indole, none of benzyl indole 1e was observed but only allyl indole 1d (eq 2).
8
 This result 

explains the faster generation of η
3
-Pd-allyl complex than 1 resulting in faster reactivity to the 

indole nucleophile.  
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OCO2Me

+

OCO2Me N
H

5 mol% [Pd(allyl)COD]BF4

5.5 mol% DPEPhos

BSA, BEt3, toluene, 50oC
+

N

+

N

1d
95%

1e
< 2%O

PPh2 PPh2

DPEPhos

(2)

 

While η
3
-allyl-Pd complexes react with nucleophiles faster than 1, there are certain cases 

in which the reverse occurs such that 1 was more favorable to be attacked by nucleophiles than 

η
3
-allyl-Pd. Hartwig and coworkers have shown that the addition of aniline to η

3
-Pd-benzyl 

triflate decayed the Pd-complex and generated benzyl amine 1f 12-times faster than formation of 

allyl amine 1g from η
3
-Pd-allyl triflate complex (Scheme 4). Further evidence of their 

differences was shown by the calculated APT charges of the two model Pd complexes in which 

the degree of positive charge at the site of nucleophilic attack in η
3
-benzyl-Pd was greater than 

that of the η
3
-allyl-Pd.

5a
 The reactions in eq. 2 and Scheme 4 suggest that formation of Pd-π-

benzyl is slower but the reaction with nucleophiles is faster. In these reactions, the high 

temperature requirement (50
o
C) is presumably one of the important conditions to consider in 

performing Pd-catalyzed benzylation reactions. 

Scheme 4. 

Pd

NH2 N
H

N
H

1f

1g

L L

OTf

Pd

L L

OTf

+

+

NH2

fast

slow

t1/2 = 185 min

kobs = 0.062 x 103 s-1

t1/2 = 2200 min

kobs = 0.0052 x 103 s-1 L-L - (R)-BINAP

PPh2

PPh2

 



8 

 

Applications of Pd-catalyzed benzylations in natural product synthesis 

It is important for organic chemists to be able to synthesize small compounds using the 

developed methodology and to be able to apply it towards the synthesis of large molecules such 

as natural products. This is important because it allows scientists to produce greater quantities of 

these biologically active products that can be used in different scientific applications, which 

cannot feasibly be produced by direct isolation of the same compounds from natural resources. 

Despite advances of Pd-catalyzed benzylations reported in the chemical literature towards the 

construction of small-sized benzyl compounds (Chapter 1.2), application towards large molecule 

natural products and other biologically active compounds of interest remains limited. In 1993, 

Paquette and Astles utilized a Pd-catalyzed aryl methylation strategy towards the synthesis of 

seco-cembrane 2 through Stille cross-coupling of 2-furyl bromide derivative with vinyl stannane 

(Scheme 5).
9
 The formation of 2 depends on the solvent in which non-polar solvents such as 

benzene and DME gave poorer yields in contrast to chloroform. Their synthesis of 2 was only 

five steps towards the total synthesis of acerosolide 3, a natural product that is a part of 14-

membered marine furanocembranolide diterpenes.
10

 The synthesis of 2 is important because it 

allows construction of sp
3
-sp

2
 C-C bonds directly without the need for additional steps which can 

be beneficial in large-scale applications. 
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Scheme 5. 

O

CO2Me

Br

+

O

O
OSiPh2t-Bu

Me3Sn

OTHP Pd(PPh3)4

CHCl3, reflux

65%

O

CO2Me

O

O
OSiPh2t-Bu

OTHP

seco-cembrane
2

O

CO2Me

acerosolide
3O

O OH  

 After the acerosolide total synthesis, the utility of Pd-catalyzed benzylation in natural 

product synthesis was also reported in the synthesis of an important intermediate component of 

the macrocyclic epothilone. In 2004, Schinzer and coworkers reported the benzylation of a vinyl 

iodide through Negishi cross-coupling conditions to generate furan 4 (Scheme 6).
11

 The 

formation of 4 is necessary towards the total synthesis of furano-epothilone D 5, a derivative of 

epothilone macrolide that possesses antitubercular activity.
12

 Based on these two examples, it is 

clear that Pd-catalyzed benzylation reactions typically used in small-molecule synthesis can be 

transferred and applied towards large-molecule synthesis. In order to adapt this methodology to 

other natural product synthesis, newer methods of constructing other small-sized functionalized 

benzylic compounds must be developed. 
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Scheme 6. 

OBrZn

OTBS

+

N

S

OTBS

I

12.5 mol% Pd(PPh3)4
THF

-30oC to 60oC, 6h

85%
N

S

OTBS

O

OTBS

N

S

O

O OH
O

O

O OH

furano-epothilone B
5

4

 

 

1.2 Nucleophilic partners of η
3
-Pd-benzyl 

1.2.1 Olefins 

 Based on the catalytic cycle shown in Scheme 1, it has been shown that certain 

nucleophiles attack Pd-π-benzyl complexes to give functionalized benzyl derivatives. An 

example is the olefin which was reported as the first coupling partner of η
3
-benzyl-Pd complex 

through a Heck reaction in 1972. Heck and Nolley showed that treatment of benzyl bromide with 

Pd(OAc)2 under basic conditions gave a mixture consisting of the desired benzyl product 6 in a 

very low yield and undesired aryl isomer 6a in high yield (eq 3).
13

 The preferential formation of 

6a rather than 6 was the result of its higher thermodynamic stability due to the conjugation 

between the double bond and aromatic ring. Despite the low benzylation yield, its formation via 

sp
3
-sp

2
 coupling between benzyl halide and olefin is possible since typical coupling partners 

used in Heck reactions form products through sp
2
-sp

2
 coupling. 
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Cl 1 mol% Pd(OAc)2

NBu3

100oC, 15h

+ OMe

O

CO2Me CO2Me+

6
9%

6a
67%3:3a - 1:7.5

(3)

 

The low selectivity of 6 in the Heck reaction using benzyl chloride prompted Shimizu 

and coworkers to use other benzyl substrates that would also generate η
3
-benzyl-Pd complex. In 

2004, they reported an improved formation of analog 6 and minimized the generation of 

isomerized product 6a by Heck coupling of acrylates with benzyl trifluoroacetate using the same 

Pd catalyst but in the presence of monodentate phosphine ligand PPh3 in DMF at 100
o
C.

14
 Under 

these conditions, a variety of olefins can be coupled in good yields without the need of benzyl 

chlorides and bases (Scheme 7). This is important because benzyl chloride is toxic in nature. The 

use of benzyl trifluoroacetate which generated the complex through cleavage of the benzyl-

oxygen bond was thought to be more facile than cleavage of benzyl-chlorine bond in benzyl 

halide. While Heck benzylations occurred, the formation of these products requires higher 

temperatures and longer reaction times. Nevertheless, these reactions demonstrate the inherent 

power of benzylic sp
3
 coupling with olefinic sp

2
 substrates without the need of strong bases. 

Scheme 7. 

Ar O
5 mol% Pd(OAc)2
20 mol% PPh3

DMF, 100oC, 39h

+ R2 Ar R2CF3

O R1 R1

CO2Et

R = H 75%
= OMe 59%

R R Me
R = H 65%

= OMe 42%
= Cl 81%
= F 80%

Ph

MeO

Ph

21%

 

In addition to intermolecular benzylation, intramolecular Heck benzylations have also 

been realized. This was first demonstrated by Negishi and coworkers in the benzylation of o-
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allylbenzyl chloride to generate 2-methyleneindane 7 exclusively without the formation of 

isomeric 2-methylindene 7a (Scheme 8).
15

 The formation of 7 and 7a significantly depends on 

the nature of the benzyl leaving group. While benzyl acetate does not undergo benzylation 

because acetates are not very good leaving groups in benzylation reactions, it is surprising that 

benzyl substrates which contain good leaving groups such as bromide and carbonate gave lower 

yields of 7 yet significant formation of undesired 7a. Among these, it is intriguing that the 

formation of 7 from Heck cyclization of benzyl carbonate was slower (five days) in contrast to 

the Heck benzylation with benzyl trifluoroactetate in Scheme 7 though both benzyl substrates 

contain good leaving groups.  

Scheme 8. 

X 5 mol% Pd(PPh3)4
NEt3
MeCN, reflux, time

+

7 7a

X % yield 7 % yield 7a time

Cl 82 <1 1h

Br 64 18 0.5h
OCO2Me 26 23 5d

OAc <1 <1 2d  

A similar intramolecular Heck benzylation was reported by Grigg and coworkers in 

1991.
16

 They showed that an external phenyl source coming from NaBPh4 can act as the second 

nucleophile to intermediate 8a to generate dihydroquinoline 8b in good yield (eq 4). While this 

reaction involves intramolecular Heck benzylic cyclization similar to Scheme 11, what makes 

this reaction important in developing newer benzylation methods is that the presence of an 

external nucleophile can be used to functionalize the initially preformed η
3
-Pd-benzyl complex. 

In this case, the Ph from anionic phenylborate adds to Pd to form 8a via anion capture to 

generate the desired product. 
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X

N

Ac

X = Br:Cl (1:1)

10 mol% Pd(OAc)2
20 mol% PPh3

NaBPh4

anisole, 90oC, 9h
N

Ph

Me

Ac
N

Pd

Me

Ac

Ph

8 8a 8b
69%

(4)

 

 In some cases, instead of an external nucleophile, an internal nucleophile can be used to 

functionalize the preformed η
3
-benzyl-Pd complex. As shown by Pan and coworkers in the 

cascade cyclization of benzyl halides with diethyl-diallylmalonate, after the initial Heck 

benzylation generated 9, the presence of the second double bond allowed a second Heck 

coupling via carbopalladation to occur, generating a Pd-cyclized intermediate 10 which forms 

cyclopentene (Scheme 9). In 9, there is the possibility that BHE (β-hydride elimination) could 

occur because of the presence of nearby hydrogens. However, the proximity of a second 

nucleophilic source prevented BHE, which aided the overall Heck reaction.
17

 This suggests that 

while benzylation reactions are slow and require high temperatures, certain nucleophiles can take 

advantage of coupling with Pd-π-benzyl before completing the actual catalytic cycle, resulting in 

formation of functionalized and more complex benzyl compounds. 

Scheme 9. 

X
R

X = Br, Cl

+

E E

E = CO2Et

1 mol% Pd(OAc)2

N(t-Bu)3
DMF, 110-120oC, 15h E

E

R

34-71%

R

Pd

E E

Pd

R

E
E

R

9 10

Pd
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1.2.2 Alkylidine 

 As of this writing, only one example of benzylation with a benzyl enol ether has been 

reported. In 2010, Murakami and coworkers reported the benzylation of 3-(alkoxyalkylidene 

oxindole) 11 with CpPd(allyl) and bidentate dppf ligand through an intramolecular process to 

generate 3,3-disubstituted oxindole 11b in a high yield (eq 5). The formation of 11b occurred via 

[1,3] rearrangement after generation of the η
3
-benzyl-Pd intermediate 11a.

18
 This reaction is 

important because it highlights the in situ formation of a very reactive nucleophile concomitant 

with Pd-π-benzyl formation. The importance of Pd-catalyzed benzylation in the generation of 

reactive species in situ such as 5a will be discussed in subsequent chapters.  

Fe

N
H

O

n-Bu
O

Ph

5 mol% CpPd(allyl)

5 mol% dppf

toluene, 80oC, 12h
N
H

O

n-Bu
O

Pd

N
H

O

n-Bu
PhO

11 11a 11b
97%

[1,3]

PPh2

PPh2

dppf

(5)

 

1.2.3 Aromatics 

 The cross-coupling of η
3
-benzyl-Pd with C-H bond of aromatic rings generate 

diarylmethanes. Diarylmethanes are an important class of compounds because there are many 

biologically active natural products in the chemical literature that contain this skeletal 

framework. Their synthesis merits paramount and practical importance in other applications such 

as medicine, biology, and nanotechnology.
19

 The earliest known Pd-catalyzed benzylation of 

arenes was reported by Zhang and coworkers in 2010.
20

 Various benzyl chlorides undergo 

coupling with fluoroarenes in the presence of Pd(OAc)2, PPh3 and Cs2CO3 to generate 

fluoroaryl-phenylmethanes in good to high yields (eq 6). The proposed mechanism for this 
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reaction was thought to proceed through a concerted metallation-deprotonation step generating 

σ-benzyl-Pd-aryl intermediate 12, which then undergoes reductive elimination to release 

diarylmethane and Pd is regenerated back in the catalytic cycle (Scheme 10).
20

 Based on this 

mechanism, it appears that the C-H bond of the arene can be activated when appropriate reaction 

conditions such as base, Pd and ligand catalysts, and other additives are used. Once activated, it 

can couple to η
3
-benzyl-Pd 1 thus expanding the scope of Pd-catalyzed benzylation reactions in 

the synthesis of diverse diaryl compounds using substituted arenes and heteroarenes. 

R
Cl

+

F

F

F

F

F

10 mol% Pd(OAc)2

20 mol% PPh3

Cs2CO3

PivOH-toluene

140oC, 12h

R

F

F

F

F

F

74-94%

(6)

 

Scheme 10. 

R
ClR

F

F

F

F

F

R
Pd

Pd

R

Pd

F

F

F

F

F

F

F

F

F

F

+ Cs2CO3CsCl + Cs(HCO3)

12
R

Pd

F

F

F

F

F

1

 

 In addition to fluoroarenes, heteroarenes have also been used as coupling partners with 

benzyl halide. Hoarau and coworkers reported the benzylation of ethyl-4-oxazole carboxylate 
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using a biphenyl JohnPhos ligand and conditions identical to those used by Zhang (eq 7).
21

 

Similarly, Fagnou and coworkers reported the benzylation of benzyl chlorides with thiazole and 

other heteroarenes using Pd(OPiv)2, an amino-biphenyl phosphine ligand, Cs2CO3, and PivOH 

(eq. 8).
22

 In both cases, a variety of hetero-diarylmethanes were synthesized in good to high 

yields. Similar to the conditions of Zhang, a monodentate ligand is necessary to generate 

heterodiarylmethanes. It has been shown that bidentate ligands were ineffective presumably due 

to sterics and the inability to access an open coordination site from the Pd-benzyl complex with 

the activated arene.  

R

Cl +
N

O

EtO2C

5 mol% Pd(OAc)2

10 mol% JohnPhos

Cs2CO3

dioxane, 110oC, 18h

N

O

EtO2C

R39 - 91%

(7)

Cy2P

JohnPhos

Cl
+

N

S
R1

R2

1 mol% Pd(OPiv)2

2 mol% L1

10 mol% PivOH

Cs2CO3

tol, 110oC, 16-20h

R1
S

N
R2

52-84%

(8)

PPh2NMe2

L1
 

Other researchers recently reported benzylic alkylations with indole using Pd and 

bidentate ligands. Rawal and Zhu reported that the combination of cationic Pd, DPEPhos, BSA 

and BEt3 allowed benzylic alkylation of benzyl carbonates to the C-3 position of indole to occur 

in high yields (eq 9). Here, the BEt3 facilitates the formation of η
3
-benzyl-Pd complex by binding 

to the carbonyl group of the benzyl carbonate, while the BSA activates benzyl carbonate by 

forming a silyl enol ether nucleophile.
8
 Earlier, Trost and coworkers used a pre-activated 
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Pd(0)/bidentate ligand catalyst, and t-BuOH to benzylate aryl oxindoles (eq. 10). The use of a 

bulky chiral ligand L2, induced the asymmetric benzylic alkylation in good to high yields and 

ee’s.
23

 The importance of using very bulky bidentate ligands in Pd-catalyzed benzylations will be 

discussed in Chapter 2.  

N
H

N
H

O O

PPh2 Ph2P

+

O

O

OMe
R1

N
H

R2

R3

R4

5 mol% [Pd(allyl)COD]BF4

5.5 mol% DPEPhos

BSA, BEt3, 50oC, 18h N
R2

R3

R4

R1

(9)

69-86%

+

Ar O

O

OMe

N
H

R

Ph

O

5 mol% CpPd(allyl)
6 mol% L2
t-BuOH, 10-14 h N

H

R

Ph

O

44-98%
76-96% ee

(10)

Ar

L2
 

Aside from benzyl chloride, other leaving groups can be used to couple with heteroarenes 

(Scheme 11). Ackermann and coworkers have shown that benzyl phosphates can be used to 

couple with benzoxazoles in the presence of Pd(OAc)2, dppe, and K2CO3 whereas Miura and 

coworkers used benzyl carbonates, similar to Rawal and Trost, in cross-coupling with identical 

heteroarenes under different Pd basic conditions.
24,25

 Overall, these reactions highlight the use of 

other benzyl substrates derived from benzyl alcohol in contrast with benzyl halides. It is 

important in developing new methods of Pd-catalyzed benzylations under milder conditions that 

occur and use benzyl-derived starting materials that are non-toxic. 
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Scheme 11. 

O

N

R

O
P

OEt

O

OEt 5 mol% Pd(OAc)2
7.5 mol% dppe

K3PO4

NMP, 100oC, 15h

O

N

R

59-69%

Ph2P
PPh2

dppe

O

O

OMe

R1

R1

2.5 mol Pd2(dba)3
5 mol% dppp

NaOAc

DMSO, 120oC, 3h

R1

PPh2Ph2P
dppp

26-92%

 

1.2.4 Heteroatom from phenols, amines, sulfinates, and phosphonates  

 Other important classes of nucleophiles that have been used in coupling with η
3
-benzyl-

Pd in Pd-catalyzed benzylations are from heteroatom-containing compounds derived from 

phenols, amines, sulfinates, and phosphanates in which the heteroatom is the nucleophile. These 

compounds have been used in a variety of cross-coupling reactions as nucleophiles because they 

have low pKa’s (5-20) which can be easily deprotonated with mild bases to generate reactive 

heteroanions. While prevalent in the literature, their applications in Pd-catalyzed benzylation 

reactions are currently limited.  Kuwano and Kusano reported the use of phenols in substitution 

of benzyl carbonates in the presence of CpPd(allyl) and DPEPhos ligand to generate benzyl 

phenyl ethers in high yields (Scheme 12). A variety of substituted phenols and benzyl carbonates 

showed that EDG and EWG are tolerable under the reaction conditions to give functionalized 

benzyl ethers.
26
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Scheme 12. 

R
O OMe

O

+ R1

1 mol% CpPd(allyl)

1.1 mol% DPEPhos

toluene, 60oC, 3-24h R
O

OH R1

R
O

R % yield

H 96
4-OMe 97

4-CF3 96

2-Me 97

O

R1

R1 % yield

4-OMe 96
4-CO2Me 96

3-OMe 94

4-Cl 90  

It has been proposed that the mechanism of the benzylic-etherification reaction is similar 

to the mechanism of Tsuji-Trost allylation. The Tsuji-Trost allylation reaction is well-known 

cross-coupling reaction between an allyl-LG and a nucleophile in the presence of Pd and base.
27

 

Its relation to benzylation reactions is analogous in which all components are identical with the 

exception of the type of Pd electrophile. The benzylation mechanism in particular begins by 

oxidative addition of Pd to benzyl carbonate which generates Pd-π-benzyl, CO2 and methoxide 

anion (Scheme 13). While a base is needed in Tsuji-Trost reaction to deprotonate a 

pronucleophile, the methoxide anion generated from decarboxylation of benzyl carbonate acts as 

a base instead, to deprotonate phenol (pKa – 10 in H2O, 18 in DMSO) generating a more 

nucleophilic phenoxide anion. The anion undergoes nucleophilic substitution with Pd-π-benzyl 

to form benzyl phenyl ether. It is important to realize that this mechanism is operating for most 

types of intermolecular cross-coupling benzylation reactions in which Pd-π-benzyl is generated 

and the nucleophile is formed by base or an alkoxide deprotonation.  

 

 

 



20 

 

Scheme 13. 

R
O OMe

O

R
O

R Pd(0)

R

Pd

- CO2 OMe
+

R1

OH

OMe +

R

Pd

R1

O

MeOH

 

 Amines have also been used to couple with Pd-π-benzyl complexes. Hartwig and 

coworkers reported the benzylation of bifunctional anilines with styrene to give benzyl amines in 

high yields in the presence of cationic Pd and Xantphos ligand (eq. 11).
5b

 Kuwano and 

coworkers on the other hand used secondary amines to couple with benzyl carbonates using a 

different cationic Pd catalyst and DPEPhos ligand (eq. 12).
28

 The formation of C-N bonds in 

both cases depended significantly on the use of bulky bidentate phosphine ligands since no 

reactivity was observed when monodentate ligands were used.  
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+
H2N

R 2 mol% [(Xantphos)Pd(3-allyl)]OTf

10 mol% TfOH

dioxane, 100oC, 24h

O

PPh2 PPh2

Xantphos

HN

R

59-99%

(11)

O OMe

O

R + HNR1R2

1 mol% [Pd(allyl)COD]BF4

1.1 mol% DPEPhos

DME, 80oC, 1-96 h
R

N
R1

R2

73-98%

(12)

 

In addition to phenols and amines, sulfur-containing compounds such as sulfinates have 

also been utilized in Pd-catalyzed benzylation reactions. This was shown by Kuwano and 

coworkers in which arene sulfinates (pKa – 20 in DMSO) can couple with benzyl carbonates in 

the presence of [Pd(allyl)Cl]2 and DPEPhos to form benzyl sulfones in high yields (eq. 13).
29

 

While the use of a base is not required in the reaction, the arene sulfinate from the salt is 

nucleophilic enough to react with Pd-π-benzyl generated from oxidative addition of benzyl 

carbonate. Similar to benzylation of amines and phenols, the use of bulky bidentate ligand gave 

the best results.  

O OMe

O

R + R1SO2Na

0.5 mol% [Pd(3-allyl)Cl]2
1.1 mol% DPEPhos

DMSO, 80oC, 1-48 h
R

72-99%

S
R1

O O (13)

 

Aside from oxygen, nitrogen, and sulfur-containing compounds, phosphorus-containing 

compounds have also been used as nucleophiles in coupling with Pd-π-benzyl electrophiles. 

Currently, there are only two reports that showcased benzylic C-P bond formation to generate 

benzyl phosphine derivatives. The first application was reported in 2005 by Montchamp and 

coworkers in which they showed that benzylation of alkyl hypophosphite with benzyl chloride in 
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the presence of Pd(OAc)2, dppf ligand, and DABCO generated benzyl phosphinates in good 

yields (eq. 14).
 30

 The second application was reported in 2009 by Stawinski and Lavén in which 

they have shown that benzylation of dialkyl phosphonate ester with benzyl halide in the presence 

of Pd(OAc)2 and Xantphos under basic conditions form benzylphosphonates in good to high 

yields (eq. 15).
31

 Similar to the benzylation of phenols, amines, and arene sulfinates, the 

judicious choice of base and bulky bidentate ligands gave the best results. 

X

Cl
+

X = C,N

2 mol% Pd(OAc)2
2 mol% dppf
DABCO

MeCN, reflux X

P
OBu

O
H

24-88%

P

O

H
H

OBu (15)R R

R

X

X = Cl, Br

+ P

O

H
OR1

OR1

10 mol% Pd(OAc)2
20 mol% Xantphos

i-Pr2NEt, THF
reflux, 2-4 h

R

P
OR1

O
OR1

71-98%

(16)

 

 

1.2.5 Preformed organometallics 

 Aside from olefins, aromatics, alkylidene, and heteroatom containing compounds, certain 

carbon nucleophiles have also been used as nucleophilic partners in Pd-catalyzed benzylation 

reactions. While carbon nucleophiles derived from enolates (Chapter 2) and alkynes (Chapter 3) 

will be discussed in succeeding chapters, other carbon nucleophile sources from preformed 

organometallics will be discussed here. Carbon nucleophiles derived from preformed 

organometallics are perhaps the most common and frequently used coupling partners in Pd-

catalyzed benzylations. These are frequently used because they can be prepared easily by treating 

any coupling substrate (alkyl or aryl halide, for example) with an external metal similar to 

preparation of Grignard reagent in the presence of external additives. The preformed 

organometallics are very reactive towards any electrophiles. Their remarkable reactivity lies in 
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contrast with other anionic nucleophiles that have to be generated using base. In principle, these 

organometallic compounds react with Pd-π-benzyl complexes through transmetallation of 13 

where a variety of metals have been used in the formation of M-R1 organometallic reagent 

(Scheme 14). This results in the formation of 14 which undergoes reductive elimination to give 

the functionalized benzyl product. Certain organometallic reagents have been utilized in cross-

coupling with Pd electrophile. As shown in Scheme 14, it is important that the generation of 13 

must occur before it undergoes transmetallation with Pd-π-benzyl complex. 

Scheme 14. 

R
X

R

Pd

R
Pd

R1

R
R1

Pd

M R1M X

14

13

X

 

 The following metals have been used in the formation of preformed organometallic M-

R1. One source of metal used to prepare the transmetallating reagent was In. Sarandeses and 

coworkers have shown that triphenylindium can be used to couple with benzyl chloride to form 

diphenylmethane in the presence of Pd(II) in high yield.
32

 Also, the same compound can be made 

using phenyl triphenylphosphine gold, where Au is another source of transmetallating reagent, to 

couple with the same benzyl halide in moderate yield using a slightly different Pd (II) catalyst.
33

 

For both reactions, the reaction of benzyl bromide with triphenyl-In occurred in one hour reflux 
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whereas with phenyl-Au, the reaction occurred at room temperature in four hours (Scheme 15). 

Scheme 15. 

Br
+

In
1 mol% Pd(dppf)Cl2
THF, reflux, 1h

94%

or

Ph3P Au
1 mol% Pd(PPh)3Cl2
THF, room temp, 4h

60%  

 Another source of metal used as a transmetallating reagent for Pd-catalyzed benzylation 

was Zn. Campbell and coworkers have reported the utility of Zn in the coupling of indole 

carbonates with aryl iodides to form indole-arylmethanes.
34

 Zn reacts to aryl iodide in the 

presence of Mg to form the reactive aryl-Zn which undergoes transmetallation with η
3
-Pd-

indolyl complex from indole carbonate via Negishi cross-coupling to generate indolyl-aryl 

compounds that were used as target substrates for potential COX-2 inhibitors (eq 16). COX-2 is 

a type of enzyme in prostaglandin G/H synthesis induced by mitogens or cytokines in 

inflammatory sites where inflammation and other immunoreactions occur.
35

 While the formation 

of aryl-Zn is high yielding, the low yield of the isolated products was presumably due to the 

presence of ortho-cyano and methylsulfone EWG’s that destabilize the Pd complex. Also, the N-

H proton of the indole could have been abstracted easily by the preformed transmetallating 

reagent. 

MeO2S N
H

CN

O

OMe
O

+ R

I
9 mol% Pd(PPh3)4
Rieke Mg, ZnCl2
THF, 0 - 60oC MeO2S N

H

CN

R

36-49%

(16)
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Another source of metal used as a transmetallating reagent in Pd-catalyzed benzylation 

reactions was Mg. It was shown by Carretero and coworkers that organomagnesium, or Grignard 

reagents, can couple with benzylic bromides through Kumada cross-coupling to generate 

functionalized benzylic products (Scheme 16).
36

 The different electronic substituents at the para 

position of PhMgBr did not affect the overall benzylation. Benzylation only decreased when a 

meta substituent was used and no reaction was observed with an ortho substituent. This suggests 

that steric bulk in the ortho position of the benzyl ring significantly affects the benzylation 

process. More importantly, the use of bulky Xantphos ligand is desirable especially for α-

substituted methyl benzyl bromide substrates (R1 = Me) because its steric bulk presumably 

prevented the formation of undesired styrene derivatives via BHE.  

Scheme 16. 

Br + R MgBr

3 mol% Pd(MeCN)2Cl2
3 mol% Xantphos
MeCN, room temp, 14h

R

R % yield
H 96
4-F 95
4-OMe 98
4-Ph 94
3-OMe 70
2-Me 0  

 Another metal source used as a transmetallating reagent in Pd-catalyzed benzylation 

reactions is Si. This was shown by Hiyama and coworkers in 2007 in the benzylation of benzyl 

carbonates with o-silyl alcohols (eq. 18).
37

 A variety of R-silyl alcohols underwent cross-

coupling in which the R of the silyl group was transferred to the benzylic moiety. The presence 

of pendant alcohol near the silicon group was important because its role was to generate a five 

membered silacycle, coming from deprotonation of the alcohol by the alkoxide generated from 

decarboxylation of benzyl carboxylate. The reactive R1 was expelled as the result of cyclization 
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which ultimately reacts with the Pd-π-benzyl intermediate to generate Bn-Pd-R1 which 

undergoes reductive elimination to form the substituted benzyl product. Similar to previous 

benzylation reactions, the use of bidentate ligands such as dppf gave the best yields in contrast 

with monodentate ligands. 

O OMe

O

R +

5 mol% CpPd(allyl)

5 mol% dppf

THF, 80oC, 8-40h

R
R1

64-99%

Si
Me2

R1

OH
Si
Me2

O

+ MeOH

R
Pd

R1

(17)

 

 The use of Sn in Pd-catalyzed benzylation reactions as a transmetallating reagent was 

perhaps the oldest and most direct method in constructing functionalized benzyl compounds. 

Introduced in 1979, its utility was applied towards constructing benzylic compounds from small 

molecules to large molecule intermediates, such as in the total synthesis of acerosolide in 

Scheme 5. While Stille and Milstein first reported the use of SnMe4 in coupling with benzyl 

bromide to give ethylbenzene in low yield,
38

 significant improvement in benzylation was 

realized by changing the nature of benzyl moiety and the stannane coupling partner. This was 

demonstrated by Fairlamb and coworkers in which an oxazole benzyl bromide was used to 

couple with an olefin ester stannane to form an oxazole polyene (eq. 18).
6b

 In another case, 

Pettus and coworkers reported the Stille coupling of oxazole benzyl esters with aryl stananes 

using Pd2(dba)3 and LiCl to generate oxazole diarylmethanes in moderate to good yields (eq. 

19).
39 

Lastly, Kuwano and coworkers utilized benzyl carbonates instead of benzyl halides in the 

Stille coupling with aryl stannanes using Pd allyl dimer to form diarymethanes in good to high 

yields (eq. 20). In their approach, the use of base or salt additive is eliminated in contrast to the 
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benzylation reported by Pettus.
40

 In these three reactions, Stille benzylation required higher 

temperatures and longer reaction times in order to achieve the desired formation of 

functionalized benzyl compounds. 

N

O

Br

+ Bu3Sn OEt

O 5 mol% Pd(PPh3)4

toluene, reflux, 20h OEt

ON

O

78%

N

O

N O

RO

Bn

+

SnMe3

R1

20 mol% Pd2(dba)3
LiCl, NMP

N

O

N

Bn

R1

30-83%

O OMe

O

R
+

SnBu3

R1

1 mol% [Pd(3-allyl)Cl]2
2.2 mol% dpppent

DMF, 80oC, 24-72h

Ph2P PPh2

dpppent

R

R1

64-99%

(20)

(19)

(18)

 

 The use of boron as an organometallic reagent in Pd-catalyzed benzylation reactions was 

also utilized. Kuwano and Yokogi have shown that benzyl acetate and benzyl carbonates can 

undergo Suzuki coupling with arylboronic acids in the presence of Pd and dppent 

(diphenylphosphinopentane) bidentate ligand to generate diarylmethanes in high yields (eq. 

21).
41

 In the benzylation of benzyl acetate, the incorporation of t-AmOH and base in the reaction 

medium was necessary in order to allow ligand exchange between the acetate and alkoxide on 

the Pd catalyst to occur prior to transmetallation with arylboronic acid. In the benzylation of 

benzyl carbonates however, t-AmOH is not required to achieve the same benzylation, 

presumably because carbonates are better leaving groups than acetates in generating Pd-π-benzyl 

such that an external alcohol is not necessary. 
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X
R +

RR1

B(OH)2
0.5 mol% [Pd(3-allyl)Cl]2
1 mol% dpppent

t-AmOH (for benzyl acetate)

K2CO3, DMF, 80oC, 3-72h
R178-99%

X = OCO2Me, 78-99%

= OAc, 65-94%

(21)

 

 While these nucleophilic sources demonstrate their ability to couple with Pd-π-benzyl 

intermediates, these reactions also have limitations. First, the majority of these methodologies 

relies on the use of toxic benzyl halides and preformed organometallics. While preformed 

organometallics generate the desired benzyl compound in high yields, these additives also create 

metallic wastes which can lead to tedious workup and purification of the benzylic compound. 

Second, these additives are added stoichiometric or in excess to generate the reactive nucleophile 

prior to coupling with Pd-π-benzyl. While the fate of benzylation rests on the type of Pd, ligand, 

and the coupling partner to be used in reacting with benzyl-LG, the use of excess additives 

overrides the catalytic role of the reaction. While it is understood that benzyl-LG will generate 

Pd-π-benzyl from the catalytic cycle (Scheme 1), it is the nucleophile that will determine what 

functional group or unit can couple with the Pd complex. If the nucleophile is not reactive to 

attack the Pd-π-benzyl complex, then benzylation will not occur. As such, it is truly 

advantageous to look for other alternative methods and reaction conditions in constructing 

functionalized benzylic compounds that will not require the use of additives or incorporate 

hazardous reagents, yet will still generate the reactive intermediates that will couple to form the 

desired products.  
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1.3 The Decarboxylative Benzylation (DcB) reaction 

1.3.1 Fundamentals of DcB 

An alternative approach in constructing functionalized benzylic compounds through Pd 

catalysis is by decarboxylation, or loss of CO2. In this approach, a benzyl ester, upon reaction 

with Pd, undergoes oxidative addition to generate Pd-π-benzyl 1 and carboxylate 16 (Scheme 

17). Loss of CO2 from 16 forms an anion 17. This anion acts as a nucleophile that couples with 1 

to generate the functionalized benzylic product. In this catalytic cycle, it is noteworthy that after 

decarboxylation, both electrophilic 1 and nucleophilic species are generated in situ.
42

 Thus, they 

can react immediately. Finally, since gaseous CO2 is the only byproduct in the reaction, the 

generation of large toxic metal wastes is avoided.  

Scheme 17. 
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1.3.2 Applications of DcB 

 The earliest application of Pd-catalyzed decarboxylative benzylation (DcB) was reported 

by Kuwano and Kusano in 2008. They showed that benzyl aryl carbonates 18 undergo DcB in 

the presence of CpPd(allyl) and DPEPhos ligand to generate benzyl aryl ethers 18a in high yields 

(Scheme 18).
26

 In this reaction, the nucleophilic partner of Pd-π-benzyl complex 1 generated in 

situ was phenoxide anion. The choice of Pd and ligand catalyst was crucial. While 18 underwent 

DcB, a benzyl alkyl carbonate was unreactive to DcB, presumably due to the hardness or high 

pKa of the alkoxide anion. Both EWGs and EDGs on the phenyl ring gave benzylations in high 

yields. Finally, a diaryl carbonate also underwent DcB to generate diaryl phenyl ether in high 

yield albeit with longer reaction time. 

Scheme 18. 
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 Two years after the first Pd-catalyzed DcB publication, DcB was once again highlighted 

by Chruma and Fields towards the synthesis of diphenylglycinate imines.
43

 They showed that 

diphenylglycinate imino esters 19 undergo DcB in the presence of Pd(OAc)2 and rac-BINAP 
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ligand under microwave conditions to generate benzyl diphenyl imines 19a (Scheme 19). In this 

reaction, the nucleophile formed in situ from glycinate ester was a 2-azaallyl anion. In addition 

to 19a, other side-products were obtained such as protonated benzyl imine 19b.
43

 The electronic 

substituents on the ring significantly affected the benzylation. In the benzyl component, 

incorporation of an EDG gave higher yields of benzylation than an EWG due to the greater 

stabilization of η
3
-Pd-benzyl complex. In the benzyl imine component, electron withdrawing 

groups accelerated DcB more than electron donating groups due to their greater stabilization of 

the azaallyl anion. Based on these results, it appears that benzyl stability depends on the 

substituents in which EDG stabilizes benzyl carbocation (η
3
-Pd-benzyl) while EWG stabilizes 

the azaallyl anion. 
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 Pd-catalyzed DcB was also applied to the benzylation of α,α-disubstituted cyanoacetates, 

which was reported by a coworker from our group, Tony Recio III. He showed that benzyl 

cyanoacetates 20 undergo DcB in the presence of Pd(PPh3)4 or CpPd(allyl) and bidentate ligand 

to generate homobenzyl nitriles 20a in good to high yields (Scheme 20).
44

 The only side-product 

that was obtained in these reactions is the protonated nitrile 20b. In this reaction, the nucleophilic 

partner was the ketiminate anion. While both EWG and EDG substituents are compatible with 

DcB, electron-donating substituents gave slightly higher benzylation yields than electron-

withdrawing substituents. The reaction also tolerated several benzo-fused aromatics, albeit in 

low yield when nitrogen-containing heterocycles were used. 

Scheme 20. 
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The scope of DcB was also demonstrated with heterocycles. While these substrates 

underwent DcB similar to benzyl nitriles, certain heteroaromatic cyanoacetates undergo DcB to 

generate unusual products. When furyl cyanoacetate was tried under different Pd conditions, the 

regioselective benzylation changed from expected C-benzylation to C-arylation depending on the 
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type of ligand used in conjunction with Pd catalyst (Scheme 21). When 2-furyl cyanoacetate 21 

was treated with Pd(PPh3)4 bearing a monodentate ligand, methylfuryl nitrile 21b was 

predominantly observed. On the other hand, when 21 was treated with Pd and bidentate DTBM-

Segphos ligand, benzyl nitrile 21a was the major product. The difference between the two 

products based on ligand selectivity was due to the availability of an open coordination site on 

Pd in the presence of monodentate ligand that allowed an inner-sphere attack of the ketimine, 

generating 21b (arylation). In contrast, with bidentate ligand, no open coordination site was 

available which lead to outer-sphere attack of ketimine to the η
3
-Pd-furyl generating 21a.

44
 In 

this regard, it shows that regioselective benzylation can occur in the DcB process by simply 

changing the origin of benzyl electrophile and ligand coordination mode. 

Scheme 21. 
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1.4 Conclusion 

We have shown the current scope of benzylic functionalization using Pd catalysis. Based 

on the electrophilic nature of Pd-π-benzyl, nucleophiles such as olefins, alkylidene, arenes, and 

heteroatoms derived from phenols, amines, sulfinates, and phosphonates can couple with Pd 

complex to form newly diverse functionalized benzyl compounds. In these reactions, 

stoichiometric bases and/or preformed organometallics are incorporated to achive benzylation in 

high yields. The scope of aromatic substrates used in coupling with these nucleophiles cover 

simple benzene, benzo-fused aromatics, and heterocycles making the overall Pd-catalyzed 

benzylation chemistry, an important class of reactions an organic chemist must include in his or 

her synthetic toolbox. The use of decarboxylation in Pd-catalyzed benzylation reactions avoids 

the need of additives since the loss of CO2 forms the reactive intermediates in situ directly, 

which ultimately couple and form the desired benzyl compound, making the overall 

transformation milder and more robust compared to other benzylation methodologies.  
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Chapter 2 

Palladium-Catalyzed Decarboxylative Benzylation of Ketones 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 

 

2.1 Introduction 

Classical strategies in α-benzyl ketone synthesis 

The construction of α-benzyl ketones through alkylation of enolates with benzyl halide is 

a well-known synthetic method in organic chemistry.
1
 Though well-known it also has 

limitations. First, this approach requires stoichiometric amounts of benzyl halides such as benzyl 

bromide and benzyl chloride. They are inexpensive and commercially available, but toxic and 

known to be potent lachrymators. Second, both the amount and type of base needed to 

deprotonate ketones to generate enolates are important. Monobenzylations require an equivalent 

of base and an equivalent of benzyl halide. However, typical benzylic alkylation experiments do 

not always yield monobenzylated ketones but rather a mixture of mono- and dibenzyl ketones. 

While enolate generation from symmetrical ketones is not challenging, the use of unsymmetrical 

ketones is also problematic (Scheme 22). Depending on the type of base used to generate 

enolates from such ketones, a mixture of isomeric benzyl ketones is usually obtained. The site-

specific generation of enolates becomes difficult for these substrates because their α-acidic 

hydrogens have very close pKa’s and the thermodynamics of enolates (A vs. B, Scheme 22) can 

have significant impact upon benzylation. As a result, a judicious choice of base is required to 

selectively generate the specific enolate needed to alkylate the benzyl halide. Other reaction 

conditions such as solvent and temperature are also taken into account. 

 

 

 



42 

 

Scheme 22. 

O
base

O

+

OO

+

O
ArCH2X

Ar

O
base

O O

ArCH2X

Ar

A B
Ar  

One way to address the regioselective deprotonation issue, as shown in Scheme 22, is to 

perform benzylation through acetoacetic ester synthesis. In this reaction, the base exclusively 

deprotonates at the α-carbon of the β-ketoester followed by SN2 attack to benzyl-X, resulting in 

direct benzylic alkylation. Under appropriate conditions, the benzyl β-ketoester undergoes 

hydrolysis generating benzyl β-ketoacid, which then undergoes decarboxylation to generate the 

desired α-benzyl ketone (eq. 22). While site-specific enolate generation is achieved in this 

methodology, the formation of mono and dibenzyl ketones as a result from benzylation with β-

ketoester could still occur. Walker and co-workers reported the synthesis of benzyl ketones 

through acetoacetate ester synthesis to generate benzyl ketones.
2
 Unfortunately, the reaction 

required very high temperature to obtain the desired benzyl ketone during the decarboxylation 

event of the in situ generated benzyl β-ketoacid. Clearly, there is a need to develop new 

benzylation methodologies that will couple electrophilic benzyls with enolates under mild 

conditions while preventing the formation of isomeric benzyl ketone mixtures. 

OEt

OO
+ Ar Br

K2CO3

tol, reflux OEt

OO

Ar

NaCl

DMSO

170oC

OH

OO

Ar

O

Ar- CO2
(22)

 

 



43 

 

Benzyl ketone synthesis via Pd catalysis: Tsuji-Trost approach  

The issues stemming from classical benzylation were significantly resolved through Pd-

catalyzed reactions. Further, enolates can be coupled with benzyl electrophiles in the presence of 

catalytic Pd. In Pd-catalyzed benzylation of ketones, the generation of η
3
-benzyl-Pd 1 from 

oxidative addition of Pd with benzyl-LG is coupled to an enolate via nucleophilic substitution 

(Scheme 23). While these two benzylation reactions are similar in obtaining α-benzyl ketones 

(enolate generation, benzyl halide, and base), the advantage of Pd catalysis is that other benzyl-

LG substrates such as benzyl acetates, carbonates, and phosphonates derived from benzyl 

alcohols can be used in lieu of benzyl halides. 

Scheme 23. 

R

R

Pd(0)

R

Pd

+

R

Pd
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R2R1

O O

R2R1

O O
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H

O

OR2

R1

1

 

The catalytic cycle shown in Scheme 23 is reminiscent of the Tsuji-Trost reaction. The 

Tsuji-Trost reaction began to appear in literature as early as 1965, when the Pd-catalyzed allylic 

alkylation of nucleophiles with nucleophiles derived from active methylenes, amines, phenols, 

and other compounds with low pKa’s (18-20), with allylic halides, acetates and carbonates in the 
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presence of base was described.
2
 The reaction begins by coordination of Pd to an allyl substrate 

(Cycle A, Scheme 24). This is followed by nucleophilic displacement of the leaving group to 

generate electrophilic η
3
-allyl-Pd, which is subsequently attacked by a nucleophile that was 

deprotonated by a base to form the newly substituted allyl product. Ultimately, Pd is regenerated 

back into the catalytic cycle. Considering that there is similarity between η
3
-benzyl-Pd and η

3
-

allyl-Pd electrophiles (Chapter 1), the scope of Tsuji-Trost reaction in allylations can be applied 

to benzylations (Cycle B, Scheme 24). 

Scheme 24. 
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 The earliest report of Tsuji-Trost benzylations utilized the cross-coupling of benzyl 

acetate with stabilized enolates.
4,10

 In 1992, Legros and Fiaud reported the benzylation of 1-

naphthylmethyl acetate 22 with sodium dimethylmalonate in the presence of Pd(0) and bidentate 

dppe ligand in DMF at 60
o
C for 24h to generate α-1-naphthylmethyl dimethylmalonate 22a (eq. 

23).
4
 While 22 did not undergo substitution at room temperature, replacing the acetate LG with 

trifluoroacetate allowed benzylation to occur. This implies that the nature of the LG of benzyl 

moiety is important. As shown in Chapter 1, certain LG’s on the benzyl moiety are reactive with 
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Pd. Under these conditions, benzyl trifluoroacetate is a better substrate than benzyl acetate 

because the former has a better LG that contains highly electronegative fluorine which 

presumably assists in ionization of the benzylic C-O bond of the ester, leading to generation of 

η
3
-benzyl-Pd complex.  

O R

O

+ MeO

O

OMe

O

Na

2 mol% Pd(dba)2

3 mol% dppe

DMF, 24h, 60oC

MeO

O

OMe

O

Ph2P
PPh2

dppe

22

R = Me, 77% (22a)

= Me, NR at 20oC

= CF3, 83% at 20oC

(23)

 

The difficulty in working with benzyl acetate was also realized in Pd-catalyzed 

hydroxycarbonylation of 6-methoxy-2-naphthyl acetate 23 (eq. 24). As reported by Lee and 

coworkers in 1991, only traces of the desired 6-methoxy-2-naphthyl propanoic acid 23a were 

obtained after the carbonylation reaction of 23 was run at 120
o
C in 43.5 hours.

5
 By switching to 

a bidentate ligand and increasing the CO pressure, carbonylation occurred generating the desired 

2-naphthylethylpropanoic acid, yet in low yield as an inseparable mixture with demethylated 

propanoic acid (eq. 25). Lastly, the unreactivity of 23 to undergo substitution at room 

temperature suggests that benzylation reactions would require high temperatures  to achieve the 

desired chemical transformation possibly in generating Pd-π-benzyl complex prior to 

nucleophilic attack of the enolate. 
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MeO

O Me

OMe
10 mol% PdCl2
30 mol% PPh3

100 psig CO

1:1 DMF/tol, 120oC

43.5 h
MeO

CO2H

Me

23a
traces

10 mol% PdCl2
11 mol% dppp

650 psig CO

1:1 DMF/tol, 120oC

16.9 h

+
MeO

CO2H

50% as a mixture

Ph2P PPh2

dppp

23

23 23a

(24)

(25)

 

While 22 underwent substitution in high yields, the substitution of simple benzyl acetate 

22c failed to provide the desired benzyl product at room and high temperatures even though it 

possessed a ring similar to 22 which should also generate Pd-π-benzyl complex (eq. 26). The 

only difference between the two benzyl substrates, however, was the presence of an extra ring in 

22 compared to 22c. In the succeeding chapters, the word “simple” will be used throughout 

which will denote a substrate that does not contain extended aromatic conjugation.  

O Me

O

22c

+ MeO

O

OMe

O

Na

2 mol% Pd(dba)2
3 mol% dppe

DMF, 24h, 60oC
MeO

O

OMe

O

not observed

(26)

 

The inability of 22c to undergo substitution can be rationalized in terms of its high 

resonance stability. A comparison of η
3
-Pd-benzyl complexes 24a and 24b derived from the 

oxidative addition of 22 and 22c with Pd, respectively, clearly shows that when both Pd-benzyl 

complexes undergo dearomatization, 24a maintains significant aromaticity in contrast with 24b 

which loses significant aromaticity (Scheme 25). Based on the calculated resonance energies of 

aromatic rings, it has been shown that benzo-fused rings have lower resonance energies than a 

simple benzene.
6,7

 These results suggest that benzo-fused substrates such as naphthalene are 
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highly suitable substrates in Pd-catalyzed benzylation reactions, which can be easily 

functionalized by any nucleophile at the benzylic position.  

Scheme 25. 

Pd Pd

vs.

OAc

Pd Pd

OAc

24a 24b  

The importance of resonance energy in identifying suitable benzyl substrates towards 

nucleophilic substitution with malonates is the criterion in expanding the scope of benzylation 

towards stabilized enolates. After the seminal benzylation publication, Legros and coworkers 

reported the substitution of heteroaromatic benzo-fused methyl acetates such as quinoline, 

benzofuran, benzothiophene, and indole with metal malonates under identical conditions.
8
 In the 

benzylation of potassium dimethylmalonate with quinolinylmethyl acetate, the position of the 

benzyl moiety in quinolinylmethyl acetate significantly affected the benzylation (eq. 27). When 

2-quinolinylmethyl acetate was tried, benzylation did not occur. This may be due to the 

generation of η
3
-Pd-quinolinyl(methyl) complex which was unstable because of interaction 

between the Pd-π-benzyl complex near the heteroatom. It was possible that Pd preferably 

coordinates with the heteroatom rather than oxidatively adding to the benzyl C-O bond. The pre-

coordination of Pd to nitrogen prior to benzylation could also make the molecule unreactive 

towards nucleophilic enolate attack. When the location of benzyl acetate was placed farther from 

nitrogen, benzylation occurred producing quinolinyl acetate and protonated by-product, 

methylquinoline.
8
 While the formation of methylquinoline came from a formal reduction 

process, the authors were not able to identify the origin of the proton source. 
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N

OAc

2

3

4

+
MeO

O

OMe

O

K

2 mol% Pd(dba)2

3 mol% dppe

DMF, 80oC, 4h

MeO

O

OMe

O

N

2-Qn = NR
3-Qn = 23%
4-Qn = 55%

+
N

Me
(27)

 

When benzofuryl acetate 25 was treated under identical conditions to that of the naphthyl 

acetate shown in eq. 23, benzofuryl malonate 25a was isolated in low yield along with 

dibenzofuryl malonate 25b (eq. 28). The formation of dibenzyl ester was presumed to involve an 

acid-base exchange between monobenzyl ester 25a and sodium dimethylmalonate such that a 

second benzylation was allowed to occur.
9
 The results in eq. 28 are interesting because the 

formation of dibenzyl ester was never observed with naphthyl and quinolinyl acetates. In the 

case of benzothiophenyl acetate 26, benzylation occurred generating a mixture of monobenzyl 

26a and dibenzyl ester 26b, in which the yield of 26a was higher than 25a, the only difference 

between the two heterofused-benzyl acetates was the type of heteroatom. Also, benzofuryl ester 

27 was isolated in this reaction. Legros and coworkers speculated that the formation of 27 came 

from deacylation of 26a during the benzylation process, which somehow contributed to the low 

isolated yield of 26a.  

X

OAc
+

MeO

O

OMe

O

Na

2 mol% Pd(dba)2
3 mol% dppe

DMF, 80oC, 24-48h
MeO

O

OMe

O

X

+ MeO

O

OMe

O

Ar ArAr

X = O (25)
= S (26)

X = O, 37% (25a)
= S, 48% (26a)

+

S

O

OMe

27

X = O (25b)
= S (26b)

(28)
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When indolylmethyl acetate 28 was treated with sodium dimethylmalonate under the 

identical conditions as that of other heterobenzo-fused acetates, formation of the desired indole 

malonate ester 28a was only achieved when nitrogen was protected with a bulky protecting 

group (eq. 29). No benzylation occurred when unprotected indole was used. When Ac was used 

as N-protecting group, benzylation did not occur but rather unprotected indole acetate was 

isolated which was thought to have to come from deacylation of N-acetyl indole through a 

hydrolytic workup.
9
 When Me was used as the N-protecting group, benzylation was observed in 

low conversion along with formation of N-methyl indole ester 28b.  

R
N

OAc

+

MeO

O

OMe

O

Na

2 mol% Pd(dba)2
3 mol% dppe

DMF, 80oC, 24h

OMe

O

OMe

O

N
R

+

Me
N

O

O O

OMe28

28a
28b

R = H, NR
= Ac, NR
= Me, 22% NMR conversion
= t-Bu, 57%

(29)

 

The formation of 28b stemmed from transesterification between an indole alkoxide and a 

second molecule of dimethylmalonate (Scheme 26). The indole alkoxide was generated from the 

deacylation of malonate ketone after nucleophilic attack of the malonate ester to the carbonyl of 

indole ester. When a bulky t-Bu group was used as the N-protecting group, the formation of 28a 

significantly improved and none of 28b was observed. Based on these results, the judicious 

choice of protecting group is important in developing benzylation reactions with indoles. It 

becomes clear that an unprotected indole is not a suitable substrate because it tends to shut down 

the reaction via reactivity of the N-H bond with Pd, malonate anion, or other component in the 

reaction medium. The failed and/or poor reactivity of most heterobenzo-fused acetates under 

these conditions could also be due to the location of the benzyl carbon near the heteroatom.  
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Scheme 26. 
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In another benzylation experiment, when 1 and 2-naphthyl carbonates 29 were allowed to 

react with sodium dimethylmalonate under identical conditions as shown in eq. 23, the formation 

of the α-substituted 1- and 2-naphthylmethyl esters 29 occurred, and more importantly, gave 

higher yields than the reactions performed using 1- and 2-naphthyl acetates (eq. 30).
10

 The 

difference between the two sets of benzyl substrates was the nature of the LG. Despite the 

difference in LG, simple benzyl carbonate 31 still failed to generate the desired benzylation 

product (eq. 31).  

1

2 O
R

O

+ MeO

O

OMe

O

Na

2 mol% Pd(dba)2

3 mol% dppe

DMF, 60oC, 48h
MeO

O

OMe

O

+

29

29a

30

R = Me, 1-Np - 37%
2-Np - 26%

R = OMe, 1-Np - 95%
2-Np - 67%

O OMe

O

+ MeO

O

OMe

O

Na

2 mol% Pd(dba)2

3 mol% dppe

DMF, 60oC, 48h
NR

31

(30)

(31)

 

Based on these outcomes, it appears that carbonates are better leaving groups than 

acetates in benzylation reactions, resulting in facile generation of Pd-π-benzyl complexes. The 
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improved reactivity of benzyl carbonates over benzyl acetates has been demonstrated in some 

benzylation reactions as shown in Chapter 1 (Chapter 1.2). Previously, it has been shown that 

benzyl trifluoroacetate underwent benzylation faster than benzyl acetate (eq. 23). Based on these 

results, it is possible that a trend could be established between the three LGs used in benzylation 

with enolates. The trend in LG compatibility among benzyl substrates towards generation of Pd-

π-benzyl complex follows the order Me << CF3 < OMe (eq. 32).  

O Pd
Pd

R

O

R: Me << CF3 < OMe

(32)

 

The higher benzylation yield of 1-naphthylmethyl carbonate compared to 2-

naphthylmethyl carbonate could be rationalized in terms of the greater stability of the η
3
-Pd-

benzyl complex at the 1-position of the naphthyl ring compared to the 2-position. Along with this 

result, it was interesting that the formation of vinylnaphthalene 30 was isolated from the reaction 

of 2-naphthylmethyl carbonate whereas none was observed from 1-naphthylmethyl carbonate, 

though both naphthyl carbonates have cis β-hydrogens near the Pd complex. The formation of 30 

resulted from either direct BHE of Pd complex 32 or from displacement of Pd resulting from 

deprotonation of benzylic proton by an alkoxide generated from the decarboxylation of 2-

naphthylcarbonate (Scheme 27).
10

 Overall, the position of the benzylic carbon on the aromatic 

ring is very important since this could potentially dictate the overall benzylation reactivity of 

benzyl esters towards cross-coupling with other nucleophiles while avoiding the formation of 

side products. 
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Scheme 27. 
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The failed reactivity of simple benzyl carbonate with sodium dimethylmalonate, as 

shown by Legros and coworkers, prompted other researchers to identify newer conditions that 

will effectively allow benzylation with this type of substrate. In 2003, Kuwano and coworkers 

reported that the combination of cationic [Pd(allyl)COD]BF4 and dppf, a more electron-rich 

bidentate ligand, allowed benzylation of substituted diethylmalonate with simple benzyl 

carbonates in the presence of BSA and base to generate α-substituted benzyl malonate 33.
11

 

Without base, reaction did not occur. Various substituted benzyl carbonates were coupled with 

substituted malonates to generate a variety of benzyl malonates in good to high yields (Scheme 

28).  
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Scheme 28. 
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OEt
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O OMe

O

+ EtO

O

OEt

O 1 mol% [Pd(allyl)COD]BF4
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R

R1
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RFe
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PPh2
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EtO

O

OEt

O

Ph

R time (h) % yield

H 24 95
OMe 4 94

Me 24 98

CF3 48 78
Cl 48 79

CO2Me 24 86
R

EtO

O

OEt

O

1-Np - 1h, 92%
2-Np - 1h, 92%

EtO

O

OEt

O
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MeO

24h, >99%

EtO

O

OEt

O
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Me
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O

OEt

O

MeO

MeO

24h, 94%

EtO

O

OEt

O

MeO

F3C

EtO

O

OEt

O

MeO

Me

48h, 83%

24h, 92%

33
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The electronic substituents on the aromatic ring have a profound effect on benzylation. 

Certain benzylation reactions illustrated in Chapter 1 (Chapter 1.2) have shown that benzyl 

substrates which contain electron-donating substituents give higher benzylation yields than 

benzyl substrates containing electron-withdrawing substituents because of the greater 

stabilization of the cationic η
3
-Pd-benzyl complex. As shown in Scheme 28, while both p-

methoxybenzyl carbonate and p-trifluoromethylbenzyl carbonate underwent nucleophilic 

substitution with the malonate in high yields, the former took four hours to achieve reaction 

completion compared to the latter which took two days. Both 1- and 2-naphthylmethyl 

carbonates underwent benzylation in identical yields to simple benzyl carbonates. Ortho-

substituted benzyl carbonates gave slightly lower yields than para-substituted benzyl carbonates 

presumably due to sterics between the Pd and the substituent. It is interesting that p-methylester 
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benzyl carbonate gave higher benzylation yield than p-chlorobenzyl carbonate since the former is 

more electron-withdrawing than the latter. On the other hand, the ability of p-chlorobenzyl 

carbonate to undergo substitution with malonate suggests that inductive effects may also be 

important.
11

 Ultimately, the strength and stability of η
3
-Pd-benzyl complex in cross-coupling 

reactions with enolates depends on the nature of substituents on the aromatic ring and their 

resonance, inductive, and steric effects. 

Another important result was the judicious choice of ligand which had significant impact 

towards benzylation. As shown in eq. 23, scheme 28, and in Chapter 1.2, the use of bidentate 

ligands gave the desired benzylation more favorably than monodentate ligands, presumably due 

to chelation of two phosphorus atoms in a single backbone compared to two individual 

phosphine entities. While PPh3 failed to generate the desired benzyl product, a small-sized 

bidentate ligand such as dppe allowed benzylation albeit with poor conversion.
11 

Increasing the 

bite angle of the bidentate ligand enhanced the benzylation reactivity (Table 1).  

Table 1. 

MeO

O

OMe

O

O OMe

O

+ MeO

O

OMe

O 1 mol% [Pd(allyl)COD]BF4

1.1 mol% ligand

7.5 mol% BSA

KOAc, THF, 80oC, 3h

entry ligand bite angle (deg) % GC yield

1 2 PPh3 - 0

2 dppe 86 2

3 dppp 91 10

4 dppb 95 41

5 dppf 99 74

6 DPEPhos 102 62

7 Xantphos 112 62

O

PPh2 PPh2

Xantphos

O

PPh2 PPh2

DPEPhos

Ph2P
PPh2

dppb
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Bite angle is defined as the preferred chelation angle determined by the phosphine ligand 

backbone.
12

 A wider bite angle in a metal complex can exert two effects: increase in steric bulk 

of the whole ligand, and electronically favor or disfavor a geometry at the metal complex. In the 

case of the ligand screening shown in Table 1, bulky and larger bite angles containing electron-

rich phosphine ligands in combination with Pd catalyst allowed oxidative addition of simple 

benzyl to generate Pd-π-benzyl even though it has lower resonance energy compared to benzo-

fused systems. While bulky ligands with larger bite angles improved benzylation, the decent bulk 

and bite angle of dppf somehow fits perfectly with the formation of Pd complex and coupling 

with enolates compared to other bidentate ligands with comparable steric bulk and bite angles 

such as DPEPhos.  

The benzylation mechanism was similar to the Tsuji-Trost allylation (Scheme 29). It 

began from the DPPF-ligated Pd complex which became a reactive Pd(0)-DPPF species, which 

then reacted with benzyl carbonate via oxidative addition to generate η
3
-benzyl-Pd(DPPF) 

complex 34. At the same time decarboxylation occurred releasing the methoxide anion. The 

malonate anion, generated from base deprotonation of the malonate, attacked 34 to form the α-

substituted benzyl product and the active Pd catalyst was regenerated.  
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Scheme 29. 
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 A year after the publication of substitution of simple benzyl carbonates, Kuwano and 

Kondo showed that the alkoxide generated in situ leading to 34 could act as a base to deprotonate 

the malonate by simply using an even more active Pd catalyst.
13

 They reported the use of 

CpPd(allyl) and dppf ligand in substitution of naphthylmethyl carbonates with enolates without 

the need of an external base. This newer Pd source allowed substitution of 1- and 2-

naphthylmethyl carbonates with several active methine compounds to generate functionalized α-

substituted naphthyl derivatives (Scheme 30). Enolate sources from malonates, β-ketoesters, 

diketones, and azalactones were coupled with 1- and 2-naphthylmethyl carbonates in high yields. 

When p-methoxybenzyl carbonate was tried, benzylation occurred in low yield. The poor 

reactivity of simple benzyl carbonate under these conditions was rationalized in terms of 
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unfavorable aggregation of the Pd(0)-DPPF complex that resulted due to formation of Pd 

black.
13,14

 In order to suppress the formation of undesired and inactive Pd black, an external 

labile ligand was thought to be necessary to be added in the reaction. A variety of ligands were, 

therefore, screened to evaluate their ability to suppress Pd aggregation which was a deterrent to 

the substitution of p-methoxybenzyl methyl carbonate with phenyl-dimethylmalonate (Table 2). 

Based on these results, DBA and TPO inhibited benzylation. While 1-octene gave slight 

improvement, the use of 1,5-COD showed a remarkable increase in the formation of the desired 

benzyl product. To this end, a variety of simple benzyl carbonates underwent substitution with 

different active methine compounds to generate functionalized benzyl compounds in good to 

high yields without the need of an external base (Scheme 31). Both EDG and EWG-containing 

benzyl carbonates underwent substitution in high yields, although certain substrates required 

longer reaction times and/or higher catalyst loading (2 mol%). Based on these results, by simply 

changing the Pd catalyst while maintaining the usage of more electron-rich and bulky bidentate 

phosphine ligands, both naphthylmethyl and simple benzyls can undergo benzylation with 

diverse stabilized enolates. 

Scheme 30. 

O
OMe

O

+
R1R

H R2

1 mol% CpPd(allyl)

1.1 mol% dppf

THF, 80oC, 1-3h

R

R2

R1

Ph

CO2Et

CO2Et

1-Np = 99%
2-Np = >99%

R

CO2Et

CO2Et

R = Me, 91%
= NHAc, 98%
= OMe, 99%

O

R

O

R = OEt, >99%
= Me, 97%

N
O

O

Ph

R

R = Ph, 97%
= i-Pr, >99%

Ph

CO2Et

CO2Et

MeO

11%
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Table 2. 

EtO

O

OEt

O

O OMe

O

+ EtO

O

OEt

O 1 mol% CpPd(allyl)

1.1 mol% dppf

additive

THF, 80oC, 3h

entry additive % GC yield

1 2 mol% dba 2

2 2 mol% TPO 2

3 10 mol% 1-octene 20

4 2 mol% NBD 15

5 2 mol% COD 69

6 10 mol% COD >99

MeO Ph
Ph

MeO

 

Scheme 31. 

+
R2R1

H R3

1 mol% CpPd(allyl)

1.1 mol% dppf

10 mol% COD

THF, 80oC, 3-72h

R1

R3
R2

Ph

CO2Et

CO2Et

R

O OMe

O

R R

R

R time (h) % yield

H 24 84
p-Me 24 99

p-CO2Me 3 >99

p-CF3 3 90
o-Me 24 90

O

MeO

R = CO2Et, 48h, 74%

= Ac, 48h, 88%

NHAc

CO2Et

CO2Et
R

R time (h) % yield

p-OMe 3 92
p-CO2Me 24 85

p-Me 24 90

o-Me 3 91

 

In 2007, Kuwano and Kondo reported the substitution of simple benzyl acetates using 

identical conditions to those used for substitution of benzyl carbonates.
15

 However, the use of a 

polar and bulky AmOH solvent was necessary to achieve the desired benzylation. A variety of 

benzyl acetates underwent substitution with malonates to give α-substituted benzyl malonates in 

high yields regardless of the electronic nature of substituents on the benzyl acetate (Scheme 32). 

The use of a slightly stronger base was important, presumably due to its solubility in the solvent. 

The authors speculated that the role of the polar solvent was to provide hydrogen bonding 

between the alcohol and carbonyl oxygen of the acetate which could ultimately weaken the 
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benzylic C-O bond, allowing oxidative addition to occur and generate the Pd-π-benzyl 

intermediate.
15

  

Scheme 32. 

+
R2R1

H R3

2 mol% [Pd(allyl)COD]BF4

2.2 mol% dppf

K2CO3

t-AmOH, 80oC, 48h

R1

R3
R2

Ph

CO2Et

CO2Et

R

O

O

R R

R

R % yield
H 90

p-OMe 92

p-CO2Me 89
p-CF3 95

p-F 95
o-Me 90

O

MeO

R = CO2Et, 87%
= Ac, 85%

NHAc

CO2Et

CO2Et

R % yield
OMe 88

CF3 86

F 90

OMe

CO2Et

CO2Et

MeOR
96%

 

 Aside from benzyl acetate and carbonate, benzyl chloride has also been utilized towards 

cross-coupling with enolates. Treatment of benzyl chloride and diethylmalonate with Pd(PPh3)4 

and NaH in THF at room temperature generated the desired α-substituted benzyl malonate (eq. 

33).
16

 The high yield of α-1-naphthyl malonate in contrast to simple benzyl malonate was the 

result of greater stabilization of the Pd complex with naphthyl compared to simple benzyls (vide 

infra).  When naphthylethyl chloride was treated with the same conditions, an unexpected 

dearomatized vinyl naphthyl malonate 36 was observed along with the expected naphthylethyl 

malonate 35 (eq. 34). When the α-alkyl substituent was replaced with a bulky phenyl group, only 

aryl-vinyl naphthyl malonate 36b was isolated in high yield.
16

 Unfortunately, no benzylation 

occurred when simple benzyl phenyl chloride was used. Based on these results, simply changing 

the LG allows complete regioselective attack of the nucleophile to the preformed η
3
-benzyl-Pd 

complex. 
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EtO

O

OEt

O

+ EtO

O

OEt

O
5 mol% Pd(PPh3)4

NaH, THF, rt

Ar

Ar Cl

Ar = Ph, 64%
= 1-Np, 91%

R Cl

+ EtO

O

OEt

O
5 mol% Pd(PPh3)4

NaH, THF, rt

EtO

O

OEt

O

R
+

R OEt

OEt

O

O

35

36

R = Et, 40% (35a); 32% (36a)
= Ph, 0% (35b); 85% (36b)

(33)

(34)

 

The use of monodentate ligand in these reactions was completely different from the 

previous enolate benzylations. Their utility in these type of reactions allow the generation of 

dearomatized products rather than the expected benzyl products. Dearomatization occurred in 

these reactions possibly because the use of monodentate phosphine ligand allowed the generation 

of an open coordination site for the enolate to access in the η
3
-Pd-benzyl complex such that the 

proximal distance of the enolate to C-3 of the Pd complex allowed a site-specific nucleophilic 

attack on this carbon rather than the C-1 benzylic carbon (Scheme 33). The steric bulk of the 

phenyl group in the α-position of the complex may somehow have contributed to prevent the 

enolate to attack at C-1 position. This explains the generation of 35a and 36a when the small-

sized ethyl substituent was used.  
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Scheme 33. 

 

 

2.2 Pd-catalyzed decarboxylative allylations (DcA): Prelude to DcB 

Significance of DcB from DcA 

 Much of the Pd-catalyzed benzylation of ketones covered until now occurs 

intermolecularly. The η
3
-Pd-benzyl electrophile and enolate nucleophile have to be generated 

separately before coupling occurs. Moreover, the nature of the enolate nucleophile in these 

reactions is stabilized (pKa < 20). We wanted to expand the scope of benzylation from stabilized 

to non-stabilized enolates and avoid the need to use stoichiometric bases and/or preformed 

organometallics. To address these problems, we thought we could instead perform 

intramolecular benzylation reactions where the Pd-π-benzyl can couple with enolates through 

decarboxylative cross-coupling. In this reaction, the electrophilic Pd-π-benzyl complex and 
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enolate 37 are both generated in situ after decarboxylation of benzyl β-ketoester in the presence 

of catalytic Pd (Scheme 34). While the process would occur intramolecularly, the overall 

reaction would allow utilization of various non-stabilized enolates without the need of 

unnecessary additives. Ultimately, the ability to perform site-specific benzylations with non-

stabilized enolates would enable us to synthesize diverse and functionalized benzyl ketones that 

cannot be traditionally accessed using standard acid-base chemistry. 

Scheme 34. 

R
O R

OO

R

Pd

O

O

R1

O
- CO2

R

Pd

R1

O

R
R1

O

Pd
- Pd

37  

 Prior to the development of α-benzyl ketone synthesis through decarboxylative 

benzylation (DcB) of benzyl β-ketoesters, an analogous decarboxylative allylation (DcA) of allyl 

β-ketoesters has been reported. Pd-catalyzed DcA reactions of allyl β-ketoesters have been 

known for the past 32 years since the reaction was independently discovered and reported by 

Tsuji and Saegusa.
17,18

 After the publication of their seminal works, several reviews have been 

published over the next years detailing its overall utility and chemistry in constructing allyl 

ketones in terms of substrate scope, application to natural product syntheses, and mechanistic 

studies.
16,17,19

 From the DcB perspective, we were aware that it is important to highlight 

important results and information from DcA since they are integral to establishing the feasibility 

of the benzylation project. In the simplest sense, Pd-catalyzed DcA and DcB of β-ketoesters 
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yield allyl and benzyl ketones through generation of enolate and alkyl electrophiles in situ 

(Scheme 35). What makes the DcA different from DcB, when all things are identical, is only the 

nature of electrophile.  

Scheme 35. 
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DcA of unsubstituted allyl β-ketoesters 

 Saegusa and Tsuji simultaneously reported that an unsubstituted allyl β-ketoester 38 

underwent DcA in the presence of Pd and PPh3 ligand to generate a mixture of allyl ketone 38a 

and diallyl ketone 38b (eq. 35).
18

 In this reaction, the generation of electrophilic Pd-π-allyl and 

nucleophilic enolate was effected by loss of CO2. This was important because it allowed 

generation of reactive species in situ which then couple rapidly to form newly functionalized 

allyl ketones. More importantly, the formation of non-stabilized enolates through 

decarboxylation occurred under mild conditions such that the need of base and preformed 

organometallics were unnecessary.  
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O

O O O O

+

A: 10 mol% Pd(OAc)2
40 mol% PPh3

THF, reflux

B: 5 mol% Pd(PPh3)4
DMF, rt38 38a

38b

A - 40% (38a); 30% (38b) Saegusa, 1980
B - 37% (38a); 16% (38b) Tsuji, 1980

(35)

 

 The scope of DcA towards unsubstituted allyl β-ketoesters was explored by varying the 

allyl fragment and terminal substituent of the β-ketoester (Scheme 36). Tsuji and Tunge 

independently showed that a variety of unsubstituted cyclic and acyclic allyl β-ketoesters 

undergo DcA in the presence of an appropriate Pd catalyst giving allyl ketones in good to high 

yields.
17a,19

 Allyl trifluororoethyl diesters also underwent DcA giving α-allyl trifluoroethyl esters 

in high yields.
17b,20 

Scheme 36.  
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Based on the reaction in equation 35, a competing diallylation 38b was also observed 

along with 38a in the DcA of 38. It was proposed that the formation of 38b proceeded through a 

Tsuji-Trost allylation-decarboxylative allylation mechanism.
16,21

 Oxidative addition of 38 with 

Pd generated η
3
-allyl-Pd and β-ketocarboxylate 38c species. An intramolecular proton transfer 



65 

 

from α-hydrogen of 38c occurred to form an enolate carboxylic acid 38d intermediate (Scheme 

37). Ligand exchange from 38d or Pd-π-allyl non-stabilized enolate intermediate formed the α-

allyl β-ketocarboxylic acid 38e via Tsuji-Trost allylation. Finally, decarboxylation of 38e then a 

second allylation occurred to release 38b and Pd is regenerated back into the catalytic cycle. 

Scheme 37. 
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 It was believed that the nature of the enolate nucleophile existed as free enolate rather 

being bound to Pd.
17,23

 When cis-cyclohexenyl lactone 39 was treated with Pd conditions in the 

presence of phenylacetoacetic acid, DcA occurred giving cyclohexenyl ketone 39a in cis 

stereochemistry (Scheme 38). The observed overall retention of the stereochemistry in the 

product implied that a double inversion mechanism occurred in the overall transformation. This 

would mean that Pd underwent backside attack to 39 generating trans-Pd-π-allyl intermediate 

39b as a result of first inversion. Protonation of 39b followed by decarboxylation would lead to 

formation of the enolate. The enolate underwent backside attack to the Pd-π-allyl forming cis-

allyl ketone 39a as a result of second inversion. The double inversion mechanism has been 
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observed in allylations of ketones with stabilized nucleophiles.
24

 The slight lower 

stereospecificity observed in 39a from 39 could be attributed to competing inner-sphere 

reductive elimination or reactant epimerization. 

 

Scheme 38. 
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DcA of monosubstituted allyl β-ketoesters 

 The formation of diallyl ketones such as 38b was prevented when the parent allyl β-

ketoester contained an aryl or cyclic ketone moiety.
18a

 Tsuji and coworkers showed that an allyl 

cyclohexanone ester underwent DcA to generate α-allyl cyclohexanone 40 in very high yield. 

Formation of diallyl cyclohexanone was not observed (eq. 36). Similarly, allyl phenylacetone 41 

was observed exclusively and none of undesired diallyl phenylacetone was observed in the DcA 

allyl phenyl β-ketoester (eq. 37). 
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O O
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Ph
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41

92% not observed

(36)

(37)

 

 Based on several experimental and mechanistic studies, it was proposed that the catalytic 

cycle of DcA of allyl β-ketoesters that contain α-hydrogen undergo decarboxylation-allylation 

mechanism that involved an outer-sphere attack of the enolate to the η
3
-allyl-Pd complex.

17
  

After oxidative addition to generate Pd-π-allyl complex and carboxylate, intramolecular proton 

transfer from the α-hydrogen occurred to generate an enolate carboxylic acid which can undergo 

allylation to form an α-allyl-β-ketocarboxylic acid (Scheme 39). Decarboxylation of α-allyl-β-

ketocarboxylic acid furnished the allylated ketone. The overall mechanism showed similar 

resemblance to the diallylation mechanism. It was believed that the decarboxylation step was the 

rate-determining step based on several studies pertaining to the decarboxylation of similar-type 

allyl systems.
17 
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Scheme 39. 
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Lastly, a similar analog of allyl β-ketoester such as allyl enol carbonates can also undergo 

DcA giving identical allyl ketones. Tsuji and coworkers showed that an allyl cyclohexenol 

carbonate underwent DcA in the presence of a different Pd catalyst to generate the same allyl 

ketone 40a in slightly lower yield compared with the DcA of cyclic allyl β-ketoester (eq. 38).
25

 

Since both substrates gave identical products, it was speculated that both classes of substrates 

underwent DcA via similar operating mechanisms though other experiments suggested 

otherwise.
17

  

10 mol% Pd2(dba)3
.CHCl3

40 mol% PPh3

DME, 0oC

40a

91%

O O

O

(38)
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DcA of disubstituted allyl β-ketoesters 

Over the 32 years since the inception of DcA of allyl β-ketoesters, the chemical literature 

currently contains hundreds of methodologies pertaining to the synthesis of α-disubstituted allyl 

functionalities. Rather than describing these reactions in detail, only the following issues will be 

discussed which are relevant to DcB. First, the mechanism of the DcA of α-disubstituted allyl β-

ketoesters is thought to proceed via decarboxylation-allylation route.
16 

Upon generation of Pd-π-

allyl complex and carboxylate intermediate after oxidative addition of Pd to the parent allyl β-

ketoester, decarboxylation occurs to form the enolate. The enolate ultimately attacks the Pd 

electrophile to release the α-quaternary allyl ketone (Scheme 40). Mechanistic studies have 

shown the enolate can attack the Pd-π-allyl complex through either an outer-sphere approach or 

seven-membered cyclic transition state.
17

 Importantly, the mechanism is different from the DcA 

mechanism of α-monosubstituted allyl β-ketoesters (Scheme 37) when the substrates contain no 

α-hydrogen (Scheme 40).  

Scheme 40. 
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 The second important feature is that the formation of α-disubstituted allyl ketones is 

regiospecific. Decarboxylation of the carboxylate generates the enolate at the α-position that 

once bore the CO2 unit. Burger and Tunge reported the formation of 42 as the only product 

isolated and none of the allyl ketone isomer 42a was observed (eq. 39). These results indicate 

that the kinetic enolate that was initially formed after decarboxylation does not isomerize to a 

more stable, thermodynamic enolate before being trapped with the electrophile.
20 

Similarly, 

Shimizu and Ishii showed that an allyl α-fluoroketone-β-ketoester underwent DcA to generate 

fluoroketone 43 exclusively in high yield without formation of α’-allyl-α-fluoroketone 43a (eq. 

40).
26

 The regiospecific generation of enolates through decarboxylation is advantageous because 

it allows access to enolates, particularly with non-stabilized enolates, which are difficult to 

generate using standard acid-base chemistry (Chapter 2.1).  
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Enantioselective DcA of allyl β-ketoesters 

 Given the broad scope of DcA reactions with racemic substrates, its full potential was 

also explored towards asymmetric synthesis. In 2006, Burger and Tunge reported the first 

enantioselective DcA of allyl β-ketoesters in the presence of Pd and Trost ligand L1 in benzene 

at room temperature.
20

 The ability of the chiral ligand to introduce a chiral environment in the 

meso-Pd-π-allyl complex such that one face of the Pd allyl terminus is more favorable towards 

enolate attack allowed full control of the stereochemistry at the β-position of various allyl 

ketones in good to high ee’s (Scheme 41). Higher enantioselectivities were obtained when the 

ring size of the allyl fragment was increased. The enantioselecivity was slightly influenced by 

the substituents at the terminal ketone position. In addition, the nature of the allyl moiety was 

important. If the allyl unit was cyclic, higher enantioselectivites were observed compared to 

acyclic allyl units. In these reactions, the origin of asymmetric control in these reactions is 

coming from the electrophile. 
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Scheme 41. 
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 In addition to the asymmetric reaction shown in Scheme 41, in which the stereochemistry 

is controlled by the electrophile, other research groups performed DcA of allyl β-ketoesters in 

which the stereochemistry is set at the α-position of the nucleophile. Nakamura and coworkers 

showed that α-fluroro substituted allyl β-ketoester undergoes DcA to generate chiral α,α-

disusbtituted fluoroketone 44 in high yield in the presence of Pd and t-BuPHOX ligand L2 (eq. 

41).
27

 While the product yield was high, the obtained ee was moderate. The low 

enantioselectivity observed was attributed to the formation of E and Z enolates in the reaction 

medium. Other acyclic α-disubstituted allyl β-ketoesters also failed to give high ee’s yet high 

product yields resulted regardless of the kind of Pd catalyst and chiral ligand.
28

  

O
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Me F
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N
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(41)
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 To minimize the inevitable low ee observed with acyclic ketones, enolates derived from 

cyclic ketones were used in order to generate single and fixed enolate geometry. Stoltz and 

coworkers showed that α-substituted 2-allyl carboxyallylcyclohexanones underwent DcA in an 

enantioconvergent process to generate α-substituted allyl cyclohexanones using the same chiral 

L2 ligand used by Nakamura and coworkers in enantioselective DcA of α-fluoro allyl β-

ketoesters.
29

 A variety of chiral cyclic ketones were obtained in good to high yields and ee’s 

(Scheme 71). The scope of asymmetric DcA was applied to other cyclic ketones such as 

tetralone, cycloheptanone, and α,β-unsaturated cyclohexanone. In addition to t-BuPHOX ligand, 

other researchers have shown that other chiral bidentate ligands were capable to perform 

asymmetric DcA of cyclic allyl β-ketoesters to generate enantioenriched allyl ketones.
27,30

 

Scheme 42. 
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Stereospecific DcA of allyl β-ketoesters  

 The observed retention of stereochemistry in the DcA of cyclohenexyl lactone in Scheme 

38, based on double inversion mechanism, shows that the reaction is stereospecific. Further 
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evidence of stereospecificity of DcA was also shown by Burger and Tunge in which they 

reported that, when cis-cyclohexenyl β-ketoester was allowed to undergo DcA under appropriate 

conditions, cyclohexenyl ketone 45 was observed in cis configuration.
16

 (eq. 42) The slightly 

lower stereospecificity of 45 presumably came from competing inner-sphere reductive 

elimination or epimerization of the starting material.  

O
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THF, 55oC, 12h

45

80% cis

(42)

 

In 2008, Yan and Spilling also reported the stereospecific DcA of phosphono 

allylacetoacetate to phosphono allylketone 46 in moderate to good yields and 

enantioselectivity.
30

 Unfortunately, when a sec-butyl group was tried, it gave racemic allyl 

ketone in low yield (Scheme 43). 

Scheme 43. 
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2.3 Development of DcB of benzo-fused ketones 

2.3.1 DcB of unsubstituted benzo-fused β-ketoesters 

 Until now, benzylations have been performed by coupling Pd-π-benzyl with various 

substituted malonate in which the generated enolate is stabilized. Benzylic substitutions with 

non-stabilized enolates typically resulted to formation of mono- and dibenzyl ketone mixtures. 

To overcome this problem, there is a need to develop new methodology that will allow benzylic 

substitution with various enolates without formation of mono- and dibenzyl ketone mixtures. We 

think that by pursuing benzylic functionalization through decarboxylation would avoid the 

formation of mono- and dibenzyl ketone mixtures. Hence, to carry out research with regards to 

the development of Pd-catalyzed decarboxylative benzylation (DcB) of ketones is desirable 

because it would utilize non-stabilized enolates as the nucleophilic coupling partner with Pd-π-

benzyl. Previous benzylation reactions were only restricted towards stabilized enolates (pKa < 

15). Moreover, these reactions used stoichiometric bases which overrides catalytic role of the 

reaction. To be able to perform site-specific benzylations with non-stabilized enolates (pKa > 15) 

through decarboxylation would allow us to prepare diverse benzyl ketones that cannot be 

accessed using standard acid-base chemistry.  

We initially began the development of decarboxylative benzylation (DcB) of ketones by 

using simple benzyl β-ketoesters. When an unsubstituted simple benzyl β-ketoester was treated 

with Pd(PPh3)4, the expected α-benzyl ketone was not observed and only the starting material 

was recovered (eq. 43). When the simple benzyl ester was replaced with 1-naphthylmethyl 

moiety, benzylation occurred giving a 75:12 ratio (based on crude 
1
H NMR spectroscopy) of 

mono-naphthylmethyl ketone 47 in 40% yield and di-naphthylmethyl ketone 47a in 8% yield. 
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The formation of mono- and di-naphthylmethyl ketones coming from the DcB of an 

unsubstituted 1-naphthylmethyl β-ketoester was consistent with the generation of mono- and 

diallyl ketones in the DcA of unsubstituted allyl β-ketoester 38 (eq. 35).  

Ar O

O O
10 mol% Pd(PPh3)4

tol, 110oC Ar

O

Ar

O

Ar

+

47

47a

Ar = Ph, no reaction
= 1-Np, 40% (47); 8% (47a)

(43)

 

 Given the ability of the 1-naphthylmethyl-β-ketoester to undergo DcB, we then decided 

to pursue DcB of ketones with benzo-fused substrates. The scope of DcB with various 

unsubstituted naphthyl β-ketoesters was briefly explored (Scheme 44). Several substrates gave 

benzylation in good to high yields. Despite the observance of di-naphthylmethyl ketone in their 

crude 
1
H NMR’s, only monobenzyl ketones were isolated. The presence of substituents on the 

naphthyl ring significantly affected the benzylation. While an o-methoxy substituted naphthyl 

47e failed to react, presumably due to steric environment between Pd-π-benzyl and the ortho 

substituent, a p-methoxy substituted naphthyl 47b gave benzylation in high yield. The use of p-F 

substituted 47d gave lower benzylation yield than p-OMe due to its lower stabilization of Pd-π-

benzyl intermediate. Similarly, the greater stabilization of the Pd-complex rationale can also be 

applied for 47 and 47h in which the position of the benzyl moiety in the aromatic ring was 

varied. Replacing the terminal Me group of the β-ketoester with other alkyl groups (47f and 47g) 

led to benzylation in good yields. The benzylation of 47g in high yield implies that DcB is 

regiospecific, similar to DcA, in which C-C bond formation occurred at the carbon where the 

carboxylate was once located. 
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Scheme 44.  
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 In addition to 1- and 2-naphthylmethyl electrophiles, benzo-fused heterocycles such 

quinoline and coumarin β-ketoesters were also tried (Scheme 45). For these substrates, 

benzylation proceeded in good to high yields. Similar to the benzylation of heteroaromatics with 

malonates, the position of benzyl carbon relative to the nitrogen had profound effect on 

benzylation. While 2-quinoline 47i was unreactive towards DcB, other quinoline substrates 

underwent substitution (47j, 47k, 47l, and 47m) in the presence of an appropriate Pd catalyst in 

moderate yields. For these substrates, the benzyl carbon was located farther from nitrogen. 

Finally, coumarylmethyl β-ketoesters can undergo DcB at room temperature and in the presence 

of polar solvent to generate coumarin ketones in good to high yields.
32
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Scheme 45. 
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When an N-Boc protected indole β-ketoester was subjected to conditions for DcB, an 

unexpected indoline ketone 48 rather than desired aromatic indole ketone 48a was isolated in 

low yield (eq. 44). Despite its low yield, it was interesting that a dearomatized heterocycle can be 

obtained coming from an aromatic starting material. While dearomatizations of naphthalene and 

heterocycles are known, this result highlights the first isolation of dearomatized heterocycle 

coming from DcB.  

N

Boc

O

O
O

10 mol% Pd(PPh3)4
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N
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O
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The formation of 48 is thought to proceed through a Carroll-type rearrangement. Carroll 

rearrangement is a classical reaction in which an allyl β-ketoester undergoes [3,3] sigmatropic 
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rearrangement to form an α-allyl-β-ketocarboxylic acid, which then undergoes decarboxylation 

to generate γ,δ-allylketone at high temperatures.
33

 In this case, the mechanism possibly begins by 

oxidative addition of Pd to N-Boc protected indole β-ketoester to form Pd-π-benzyl complex and 

carboxylate intermediate 48b. Proton transfer occurs to generate an enolate carboxylic acid 

which can occupy an open coordination site in the Pd-complex to form an O-bound Pd-π-benzyl 

complex 48c. The complex undergoes reductive elimination resulting in formation of indoline β-

ketoacid 48d. Decarboxylation of 48d ultimately furnishes the product (Scheme 46). This type of 

mechanism would be similar to the dearomatization of 1-naphthylaryl chlorides with 

diethylmalonate that generate dearomatized dihydronaphthalenes (Scheme 33). 

Scheme 46. 

 

 The developed DcB of benzo-fused β-ketoesters was applied towards the synthesis of a 

known pharmaceutical, Nabumetone. Nabumetone is a commercial NSAID developed by 

Beecham and is commercially sold as Relafen. It is used to relieve pain, tenderness, swelling, 

and stiffness caused by osteoarthritis and rheumatoid arthritis.
34

 Looking at the parent structure 
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of Nabumetone 49, it can be clearly seen that it could come from the DcB of 6-methoxy-2-

naphthylmethyl β-ketoester 50, which would then come from esterification of 6-methoxy-2-

naphthylmethyl alcohol and diketene (Scheme 47). 

Scheme 47. 

MeO

O

MeO

O

O O

MeO

OH

+

O

O

O

49 50   

When 50 was treated with Pd(PPh3)4, we were disappointed that formation of 49 did not 

occur, and starting material was recovered (eq. 45). It appeared that the presence of an EDG 

strategically located at the 6-position of the 2-naphthyl ring inhibited benzylation, suggesting 

that it destabilizes the Pd-π-benzyl complex compared to an unsubstituted 2-naphthylmethyl β-

ketoester. When a more reactive Pd catalyst was used, we were pleased that benzylation occurred 

in good yield.  

MeO

O

MeO

O

O O

4950

Pd

tol, 110oC

10 mol% Pd(PPh3)4 = NR

10 mol% CpPd(allyl); 11 mol% dppf = 64%

(45)

 

 In a separate experiment, we were curious if an analog of 1-naphthylmethyl β-ketoester 

such as α-1-naphthyl enol carbonate can undergo DcB and give exclusively the same α-1-

naphthyl ketone 47 since it has been shown that the DcA of either allyl β-ketoester or allyl enol 

carbonate generates the same allyl ketone (eqs. 35, 38).
17

 When 1-naphthyl isopropenyl enol 

carbonate was allowed to react with Pd(PPh3)4, it gave 47 in high yield (eq. 46). When the 

catalyst was replaced with Pd2(dba)3/Xantphos catalyst, it gave 47 in low yield along with tri-
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benzyl ketone 47s (eq. 47). The formation of 47s was interesting because none of the di-benzyl 

ketone 35b was observed (based on crude 
1
H NMR spectrum) and for the first time, a tri-benzyl 

ketone was observed and isolated from the decarboxylation reaction of a benzyl enol carbonate.  

A similar phenomenon was also observed in the DcB of 2-naphthyl enol carbonate in the 

presence of CpPd(allyl)/dppf catalyst. Considering that triallylation was never observed in DcA 

reactions, these results could possibly open up newer mechanistic routes. As such, these results 

also suggest that there are differences in the DcB mechanism between benzyl β-ketoesters and 

benzyl enol carbonates.   

5 mol% Pd2dba3

10 mol% Xantphos

tol, 110oC
O

O O

O

10 mol% Pd(PPh3)4
tol, 110oC

47
79%

47 +

47s

29%

17%

(46)

(47)

O

 

 

2.3.2 DcB of α-monosubstituted benzo-fused-β-ketoesters 

 After exploring the scope of DcB towards unsubstituted benzo-fused β-ketoesters, we 

began to expand the scope of benzylation by exploiting the α-substitution at the β-ketoester 

functionality. We first explored the scope of DcB of monosubstituted naphthylmethyl β-

ketoesters. We were pleased that it allowed DcB to occur generating alkyl α-naphthylmethyl 

ketones in good to high yields (Scheme 48). A higher yield of benzylation was observed when 

the α-alkyl substituent 49 was small compared to bulkier benzyl substituent 49c. Similar to 
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unsubstituted naphthylmethyl β-ketoesters, α-substituted 2-naphthylmethyl β-ketoesters gave 

lower benzylation yields compared to 1-naphthylmethyl β-ketoesters. 

Scheme 48. 

O

O O

10 mol% Pd(PPh3)4
tol, 110oC

O

alkyl alkyl

O O

Et

O O

Ph

O O O O

Ph

49
87%

49a
79%

49b
60%

49c
68%

49d
48%

49e
36%

49f
36%

49g
60%  

 When an α-ethyl-4-oxo-1-naphthylmethyl β-ketoester was treated with Pd(PPh3)4, it also 

underwent DcB to give α-ethyl-4-oxo-1-naphthyl ketone 50 in high yield and none of the 

isomerized naphthyl ketone 50a was observed (eq. 48). This result is consistent with the 

regiospecificity of DcA reactions; enolate isomerization does not occur. As a result, C-C bond 

formation occurs directly at the carbon where the carboxylate was initially located.  

O

O O

O

Et

10 mol% Pd(PPh3)4
tol, 110oC

O

O

Et
+

O

O

Et

50a
77%

50b
< 5%

O

O

Et X
O

O

Et

(48)
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Similarly, regiospecific benzylation also occurred when unsubstituted 1-naphthylmethyl 

β-ketobenzyl ester underwent DcB to give 1-naphthyl-3-oxobenzylketone 47g in high yield 

rather than isomeric α-1-naphthylmethyl ketone. The formation of the isomeric α-1-

naphthylmethyl ketone would come from isomerization of the kinetic enolate 50b to a more 

stable thermodynamic enolate 50c (eq. 49). It has been reported that pKa differences between 

50b and 50c could be as high as 7.2 pKa units.
35

 

O

O O O

+

47g
72%

not observedX

Pd

O

O O

50b 50c

(49)

 

 Encouraged by these results, we explored a variety of α-substituents that contain ketones 

and esters in DcB reactions. Indeed, all underwent regiospecific DcB to give functionalized α-

substituted naphthylmethyl ketones in good to high yields using Pd(PPh3)4 (Scheme 49). In 

addition to α-1-naphthylmethyl ketone 51, a protonation product 52 was also observed with some 

substrates. As expected, the benzylation of α-substituted ketones and esters of 2-naphthylmethyl 

β-ketoesters gave lower benzylation yields compared to 1-naphthylmethyl esters. 
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Scheme 49. 

O

O O

10 mol% Pd(PPh3)4
tol, 110oC

O

O

O

O

R

O

R
+

O

O

R

52

OEt

O

O

O

R

entry R % yield
51b H 70
51c p-OMe 81, 16% (52b)

51d p-Me 85, 12% (52c)
51e p-CF3 52
51f m-OMe 70
51g o-OMe 88

51a
75%, 14% (52a)

O

OEt

O

O

Et

O

O

O

O

OMe

51h
29%, 4% (52a)

51i
53%

51j
34%

51k
68%

51

 

 Aside from 1- and 2-naphthylmethyl β-ketoesters, quinolinylmethyl β-ketoesters were 

also tried. Based on the DcB of unsubstituted quinolinylmethyl β-ketoesters in Scheme 45, 

benzylation significantly improved when the position of benzyl carbon was located farther from 

the nitrogen. In this regard, we focused on using α-substituted 4- and 6-quinolinyl β-ketoesters. 

Gratifyingly, several monosubstituted 4- and 6-quinolinylmethyl ketones can be accessed from 

DcB of parent quinolinylmethyl β-ketoesters in moderate to good yields (Scheme 50). When the 

α-substituent was an alkyl group, α-6-quinolinylmethyl ketones gave higher yields than 4-

quinolinylmethyl ketones. Once again, regiospecific benzylation was also observed for ketone 

and ester-containing 4- and 6-quinolinylmethyl compounds, along with formation of protonation 

side product. 
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Scheme 50. 
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53b
39%

53c
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53d
45%

53e
45%, 38% (52b)

53f
45%, 31% (52e)

53g

51% (85oC)

53i
46%

N

O

53h
75%

53k
42%

53l
45%, 35% (52b)

N

O

53j
46%  

When α-ethyl-4-oxo-4-quinolinyl β-ketoester was treated with Pd(PPh3)4, benzylation 

occurred to furnish the expected 4-quinolinyl ketone 54 and protonated side products such ethyl 

β-ketoester 54a and lepidine (eq. 50). Based on these results and other previous benzylations, it 

appears that formation of protonation products is difficult to avoid in Pd-catalyzed 

decarboxylation reactions. This was also observed in the DcA of allyl sulfones and allyl 

nitriles.
36

 Unfortunately, the exact origin of the proton responsible for the formation of 

protonated side products is currently unknown despite several attempts at elucidation (Chapter 

2.4.4). 
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N

O

O O

O

Et

10 mol% Pd(PPh3)4

tol, 110oC

N

O

Et

O

+

O

Et

O

+
N

54
47%

54a
10%

31%

(50)

 

 

2.3.3 DcB of α-disubstituted benzo-fused-β-ketoesters 

 When an α,α-dimethyl-1-naphthylmethyl β-ketoester 55 was treated in the presence of 

Pd(PPh3)4, formation of ketone 55a occurred in 70% conversion (based on 
1
H NMR 

spectroscopy). To improve the yield of 55a, other Pd-based catalysts were screened (Table 3). 

We first considered screening a variety of monodentate ligands since the initial catalyst that was 

used contains monodentate PPh3. The results of the catalyst screening revealed that the 

combination of a more electron-deficient, dba-ligated Pd precatalyst with PPh3 or PPh2H was 

ineffective (entries 3 and 7). Reasoning that a more electron-rich ligand may facilitate the 

formation of the putative Pd-π-benzyl complex, several additional ligands were explored. While 

bulky, electron-rich ligands failed to promote the reaction (entries 4-6), the use of small-sized 

electron-rich ligands such as PMe3 gave an improved conversion (entry 8). Ultimately, the use of 

PBu3 gave the best conversion (entry 9). The Pd:PBu3 ratio can be altered to either 1:1 or 1:2 to 

generate the product in very high conversion.
37

 When the catalyst loading was reduced, the 

formation of 55a was drastically reduced (entry 12). Only when the reaction was heated for more 

than three days, did the product conversion significantly improve. 
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Table 3. 

O

O O
X mol% Pd

Y mol% ligand

tol, 110oC

O

55 55a

Me Me Me Me

entry X Pd Y ligand % conversiona

1 5 Pd(PPh3)4 - - 53

2 10 Pd(PPh3)4 - - 70

3 5 Pd2(dba)3 10 PPh3 4

4 5 Pd2(dba)3 10 P(t -Bu)3 0

5 5 Pd2(dba)3 10 PCy3 0

6 5 Pd2(dba)3 10 P(2-TFP)3 3

7 5 Pd2(dba)3 10 PPh2H 0

8 5 Pd2(dba)3 10 PMe3 19

9 5 Pd2(dba)3 10 PBu3 >99

10 5 Pd2(dba)3 20 PBu3 >99

11 2.5 Pd2(dba)3 10 PBu3 >99

12 1 Pd2(dba)3 5 PBu3 21b

a Based on crude 1H NMR spectra; b 97% conversion

af ter 40 h  

 We also surveyed several bidentate ligands to assess their reactivity towards 55 (Table 4). 

We were aware that bidentate ligands have been used in benzylation reactions with stabilized 

enolates (Chapter 2.1). When Pd2dba3 was used as the Pd source, all bidentate phosphine ligands 

that were tried gave good conversions, even the catalyst system used by Legros and coworkers in 

nucleophilic substitution of naphthyl acetates with malonate (entries 13, 15, 16, 18). Similar to 

Table 3, a 1:1 Pd:ligand ratio gave better product conversions compared to a 1:2 ratio (entry 14). 

The Pd catalyst used in DcB of benzyl diphenylglycinate imines also gave modest product 

conversion (entry 17). The dppf ligand provided the best conversion when combined with a 

catalyst precursor that was devoid of an electron-withdrawing dba ligand (entry 20). 

Interestingly, this catalyst proved to be beneficial in DcB of simple benzyl β-ketoesters (Chapter 

2.4). Between the two best Pd catalyst systems, we ultimately chose the Pd2(dba)3/PBu3 

combination in the DcB of α-disubstituted 1-naphthyl β-ketoesters because it gave the highest 

product conversion.  
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Table 4.  

O

O O
X mol% Pd

Y mol% ligand

tol, 110oC

O

55 55a

Me Me Me Me

entry X Pd Y ligand % conversiona

13 5 Pd2(dba)3 10 Xantphos 88

14 5 Pd2(dba)3 20 Xantphos 74

15 5 Pd2(dba)3 10 rac-BINAP 65

16 2 Pd2(dba)3 3 dppe 36

17 3 Pd(OAc)2 20 rac-BINAP 65

18 10 Pd2(dba)3 11 dppf 69

19 10 [Pd(allyl)Cl]2 11 dppf 0

20 10 CpPd(allyl) 11 dppf 97
a Based on crude 1H NMR spectra

PPh2

PPh2

rac-BINAP

 

 Using the chosen Pd catalyst system, a variety of α,α-disubstituted 1-naphthylmethyl β-

ketoesters underwent DcB to yield α-quaternary naphthyl ketones in good to high yields (Scheme 

51). Remarkably, the new catalyst system improved the generation of desired products compared 

to Pd(PPh3)4. The presence of an ester or ketone-containing α-substituent was tolerated while 

alkyl α-substituents gave higher benzylation yields. Nevertheless, acyclic and cyclic α-

substituents were compatible under the developed DcB conditions. 
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Scheme 51. 
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55a
93% (A)
36% (B)

55b
95% (B)

55c
71% (B)

55d
91% (A)
62% (B)

55e
77% (A)
69% (B)

55f
64% (A)
65% (B)

55g
58% (B)

55h
61% (A)
54% (B)  

The DcB reaction was also applied towards cyclic ketones. With these substrates, 

Pd(PPh3)4 was a better catalyst than Pd2(dba)3/PBu3 (Scheme 52). However, all the yields were 

significantly lower compared to acyclic ketones. We were pleased however that using 

CpPd(allyl)/dppf catalyst allowed benzylation to occur giving the desired 1-naphthylmethyl 

cyclic ketones in significantly improved yield. When the size of the α-substituent of the cyclic 

ketone 55k was small, a higher benzylation yield was obtained compared to large size substituent 

55l. Moreover, six-membered ketones gave benzylation in high yields compared to five-

membered ketones. The increase in ring size of the cyclic ketone towards decarboxylation was 

also observed in the DcA of allyl cyclic β-ketoesters (Scheme 36).
20
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Scheme 52. 

O

O O OA. 10 mol% Pd(PPh3)4
B. 10 mol% CpPd(allyl)

11 mol% dppf

tol, 110oCR Rn n

O O

Bn

O

O

Bn

O

55i
27% (A)
36% (B)

55j
NR (A)

55k
20% (A)
49% (B)

55l
NR (A)

38% (B)
55m

NR (A)
45% (B)  

 In addition to 1-napthyl substrates, 4- and 6-quinolinyl substrates were also tried. When 

α,α-dimethyl-6-quinolinyl β-ketoester 56 was treated with Pd(PPh3)4, benzylation did not occur. 

This was surprising since we have shown that mono- and unsubstituted 6-quinoline β-ketoesters 

(Schemes 45, 50) underwent DcB in the presence of this catalyst. Gratifyingly, the use of 

CpPd(allyl)-dppf catalyst allowed DcB of 56 to occur, giving the desired α,α-dimethyl-6-

quinolinylmethyl ketone 56a in good yield (eq. 51). Other heteroaromatic β-ketoesters such as 

indole and benzofuran underwent DcB to generate heteroaromatic ketones in good yields 

(Scheme 53). 

O

O O
A. 10 mol% Pd(PPh3)4
B. 10 mol% CpPd(allyl)

11 mol% dppf

tol, 110oC

O

N N
Me Me Me Me

56a
A - NR
B - 57%

56

(51)
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Scheme 53. 
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2.3.4 Regioselective benzylation 

 In addition to the substrates shown in Scheme 53, we also tried to perform DcB on α,α-

dibenzyl-4-quinolinylmethyl β-ketoester 57. Treatment of 57 with Pd ketone afforded 56h in 

good yield. In addition to 56h, we were also able to isolate an unknown compound which turned 

out to be the 4-quinolinyl enol ether 58 (eq. 52). Interestingly, other heteroaromatic β-ketoesters 

also showed the formation of benzyl enol ethers (based on crude 
1
H NMR spectra) in addition to 

benzyl ketones but attempts to isolate these through flash column chromatography were not 

successful. Despite these drawbacks, this was the first report of achieving C and O-benzylation 

products resulting from Pd-catalyzed DcB. 

N

O

O O
10 mol% CpPd(allyl)

11 mol% dppf

tol, 110oC

O

NBn Bn Bn Bn

56h
67%

57

+
N

O

BnBn

58
27%

(52)
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 The formation of C- and O-bound 4-quinolinyl compounds (56h and 58) suggests that the 

enolate was not bound to the metal center. The formation of freely diffusing enolates in Pd-

catalyzed DcA of allyl β-ketoesters has been suggested based on crossover experiments.
17 

The 

ability of enolates to diffuse in the reaction system after decarboxylation allows the preformed 

enolate to be intercepted with other external pronucleophiles which could couple instead to Pd-π-

allyl complex resulting in formation of newly functionalized allyl compounds instead of 

expected allyl ketones.
38

 In terms of DcB, this was shown through DcB of 55 in the presence of 

dimethylmalonate which gave a mixture of expected 1-naphthyl ketone 55a and α-1-naphthyl 

malonate 22a. (eq. 53) 

O

O O
2.5 mol% Pd2(dba)3

10 mol% PBu3

tol, 110oC

O

55a
76%

55

+

22a
16%

+ MeO

O

OMe

O

MeO

O

OMe

O

(53)

  

When α-dimethyl-2-furylmethyl β-ketoester 59 was treated with CpPd(allyl)-dppf 

catalyst, the formation of anticipated α-dimethyl-2-furyl ketone 59a did not occur but rather an 

isomeric 2-dimethyl-5-methyl ketone 59b was observed and isolated (eq. 54). The formation of 

aryl ketone 59b instead of benzyl ketone 59a was also observed in the DcB of 2-furylmethyl 

cyanoacetate with Pd(PPh3)4 (eq. 55).
39

 When a bidentate ligand was used, benzyl nitrile was 

observed. Interestingly, Chruma showed that the DcB of 2-furyl-diphenylglycinate imine gave 

benzyl imine rather than aryl imine in the presence of bidentate ligand (eq. 56).
40
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O
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59a
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O

O
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O
ONC

Ph
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Pd(PPh3)4

O

O

N

Ph Ph

O

CN

3 mol% Pd(OAc)2

20 mol% rac-BINAP

DMA, 175oC

O N

Ph Ph

CN

43%

O

Ph
NC

83%

CpPd(allyl)/DTBM-Segphos

(54)

(55)

(56)

 

When 59 was treated with Pd(PPh3)4, 59b was isolated in just 29% yield. The remaining 

mass balance was made up of 59a and other unknown side products which was difficult to 

separate. Despite the roadblock, we could confirm that 59a was indeed present in the reaction 

based on the 
1
H NMR spectrum of the crude material. Attempts to isolate 59a using other Pd-

monodentate ligand catalysts regrettably gave only the starting material. Nevertheless, we briefly 

explored the scope of arylation with other five-membered heterocycles (Scheme 54). In addition 

to furan, the N-Boc pyrrole also gave the arylated ketone in high yield. When thiophene was 

used, benzylation was predominantly observed. 
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Scheme 54. 
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tol, 110oC

S
S O

Me

Me

Boc
N Me

Me

O

O Me
Bn

O

O

O

O

Me Me

X
X

O

O
O

R1 R2

R1 R2

O

59c
67%

59d
58%

59e
78%

59f

67%a
59g
58%

a Two isomers of aryl-thiophenyl ketone were also isolated in 5%

combined yield.  

 Recio and Tunge proposed in the DcB of α-disubstituted 2-furyl cyanoacetates that 

arylation is favored over benzylation when using monodentate ligand because of the availability 

of an open coordination site in the Pd-π-benzyl complex for the ketimine to access (Scheme 

21).
39

 Based on the results in Scheme 54, the formation of arylation products would possibly 

indicate that the enolate attacks the 5-position of the Pd-furyl complex. A plausible mechanism 

can be envisioned such that oxidative addition of Pd to 59 generates η
3
-Pd-furyl complex and β-

ketocarboxylate. Decarboxylation occurs to generate the free enolate. Since both C-2 and C-6 

positions of η
3
-furyl-Pd complex is blocked by the bidentate ligand, the free enolate attacks the 

C-5 position instead (Scheme 55).  Rearomatization of dihydrofuryl ketone after nucleophilic 

attack occurs to generate the aryl ketone.  
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Scheme 55. 
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2.4 Development of DcB of simple benzyl ketones 

2.4.1 DcB of unsubstituted β-ketoesters 

 Having successfully developed a DcB methodology of benzyl-fused ketones, we turned 

our attention towards the initial goal of this research, which was developing DcB of simple 

benzyl esters. When p-methoxybenzyl β-ketoester 60 was treated with Pd(PPh3)4, benzylation 

did not occur. Other Pd/ligand combinations were also tried but they also failed to catalyze DcB. 

When CpPd(allyl) and dppf catalyst was used however, DcB occurred giving the expected 

mixture of 60a and dibenzyl ketone 60b in 80% combined yield (eq. 57). It appears that the 

combination of this new Pd catalyst along with a more electron-rich phosphine ligand compared 

to PPh3 allowed the formation of Pd-π-benzyl species.  
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MeO

O

O O A. 10 mol% Pd(PPh3)4

B. 10 mol% CpPd(allyl)

11 mol% dppf

tol, 110oC
MeO

O

MeO

O

OMe

+

60a 60b

60

A - NR
B - 80%, 76:12 (50a:50b)

(57)

 

 The utility of this catalyst with other unsubstituted p-methoxybenzyl β-ketoesters was 

explored (Scheme 56). A variety of p-methoxybenzylalkyl and aryl ketones can be accessed in 

good to high yields. Similar to the benzylation of benzo-fused ketones, the formation of 60f 

implies that DcB of simple benzyl ketones is regiospecific, the benzyl moiety adds to the carbon 

at which the carboxylate was once located, indicating that isomerization of kinetic enolate to 

thermodynamic enolate does not occur (eq. 49). While the catalyst failed the DcB of p-methoxy-

methylbenzyl diester to give p-methoxybenzyl-methyl ester 60g, a trifluoroethyl substituent did 

allow DcB to occur giving the desired ester 60h albeit in low yield.  

Scheme 56. 
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60c
52%

60d
63%

60e
52%

60f
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60g
NR

60h

30%a

a Di- and tribenzyl trifluoromethyl ester were also isolated in 10% and 16% respectively.  
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When p-methoxybenzyl enol carbonate was allowed to react under identical conditions, 

60a was also isolated in 32% yield along with unexpected bibenzyl 61 (eq. 58). In this case, 

formation of tribenzyl ketone 62 was not observed in contrast with 1-naphthyl enol carbonate 

(eq. 47). The formation of 61 could possibly come from ligand exchange between two Pd-

benzyl-enolate species, followed by reductive elimination. Based on this intriguing result and the 

DcB of 1-naphthyl enol carbonate, it appears that the mechanism of DcB of simple benzyl 

carbonate may be different than naphthyl enol carbonate.  

MeO

O O

O

10 mol% CpPd(allyl)

11 mol% dppf

tol, 110oC

60a
32%

+

MeO

OMe

61
26%

MeO
O

Ar
Ar

62

not observed

Ar

(58)

 

 

2.4.2 DcB of α-substituted β-ketoesters 

 We then looked into the DcB of α-substituted simple benzyl β-ketoesters. We were 

pleased that a variety of α-substituted p-methoxybenzyl ketones can be accessed in moderate to 

high yields (Scheme 57). In addition, benzyl ketones containing an alkyl or ketone-containing α-

substituent are compatible with benzylation. While an α-dimethyl-p-methoxybenzyl ketone gave 

benzylation in moderate yield, the α,α-dibenzyl-p-methoxybenzyl ketone gave the best 

benzylation yield. Increasing the size of the α-substituent improved the benzylation. Based on 

these results, it appears that the steric bulk of the enolate in relation to Pd-π-benzyl complex has 

significant effect on benzylation.  
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Scheme 57. 
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 The high yield of 63f prompted us to briefly look into the electronics of the benzyl ring 

towards DcB. Previous reports indicated that the presence of EDG gave high yielding 

benzylations than those with an EWG. Using the parent β-ketoester of 63f as the model, a variety 

of EDG and EWG-substituted α-dibenzyl β-ketoesters were prepared. Consistent with earlier 

reports, the benzylation yield decreases dramatically for benzyl substrates containing an EWG 

group 63n, 63p (Scheme 58). The position of the benzyl substituent also affected the 

benzylation. While m-methoxy substituent 63l gave a lower benzylation yield than 63f, an o-

methoxy substituent 63m completely shut down the benzylation. The presence of two or more 

methoxy substituents in the ring had also significant effect in benzylation. The low yield of 63u 

and 63v compared to 63f was due to other unknown side products present in the reaction 

mixture.  
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Scheme 58. 
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 We also expanded the scope of benzylation towards cyclic ketones. In addition to 1-

naphthylmethyl α-substituted cyclic ketones (Scheme 52), a variety of p-methoxybenzyl cyclic 

β-ketoesters underwent DcB giving p-methoxybenzyl cyclic ketones in good yields (Scheme 59). 

Increasing the ring size of the cyclic ketone decreased the benzylation yield. Similar to acyclic 

ketones (Scheme 57), the use of more bulky α-substituent gave higher benzylation yields 

regardless of the ring size. Other substrates that incorporate indanone and tetralone moieties were 

also compatible with DcB.  
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Scheme 59. 
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2.4.3 Efforts towards elucidating the source of protonation 

 During the DcB of α,α-dibenzyl-benzyl β-ketoester, we were able to isolate benzyl ketone 

63o along with dibenzyl acetone 65 (eq. 59). The generation of 65 must come from protonation 

of the enolate during the reaction. The same phenomenon was also observed in the DcB of α-

substituted naphthyl ketones (Schemes 49 and 50). Based on these results, we were curious to 

identify the proton source in the reaction that could be responsible for enolate protonation.  
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 To potentially shed light on this intriguing problem, deuterium-labeling experiments were 

performed hoping that a deuterium coming from different positions of the benzyl β-ketoester 

would be abstracted by the enolate to generate a D-labeled side product. In this regard, three 

separate α,α-dibenzyl benzyl β-ketoesters labeled at different positions were independently 

prepared and treated with Pd (Scheme 60). After the reaction proceeded, each of the crude 

spectra was compared to the spectrum of 65 to determine if deuterium scrambling took place. 

Based on their spectra, while all three D-labeled benzyl substrates indicated benzylation, the 

product did not show deuterium incorporation. While these results were disappointing, we 

speculated that the proton source could probably come from the dppf ligand.  

Scheme 60. 
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2.5 Efforts towards asymmetric benzylation 

 Given the success in developing a method of constructing α-substituted simple and fused-

benzyl ketones, we wanted to expand the current scope of DcB of benzyl β-ketoesters towards 

asymmetric benzylation. While Pd-catalyzed asymmetric benzylations using secondary benzyl 
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halide as electrophiles have been reported,
41

 the use of benzyl acetate and carbonate remain 

limited. The first reported asymmetric benzylation was disclosed by Legros and coworkers in 

1995.
42

 They have shown that 2-naphthyl methyl carbonate underwent benzylation with sodium 

dimethylmalonate using Pd(dba)2 and BDPP ligand giving the desired α-substituted 2-naphthyl 

methyl dimethylmalonate 66 in high yield yet very low ee (eq. 60). When the carbonate LG was 

replaced with acetate, the yield significantly decreased but the observed enantioselectivity 

slightly improved. Ten years after the seminal publication, the same group reported a greatly 

improved enantioselectivity of 66 using DUPHOS ligand albeit in low isolated yield (eq. 61).
43

 

In these reactions, the asymmetry originates at the benzyl carbon.  
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 Recently, Trost and Czabaniuk reported the asymmetric benzylation using benzyl 

carbonate and phosphates with oxindoles and azalactones in the presence of anthracenyl or 

dibenzylamino Trost-type ligand in good to high yields and enantioselectivities (eq. 62).
44

 In 

these reactions, benzylation was achieved in the presence of superstoichiometric bases and t-
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BuOH additives. In contrast with the asymmetric benzylation performed by Legros and 

coworkers, the asymmetry is set at the α-carbon. 
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 Based on these results, we pursued the development of an asymmetric DcB methodology 

of benzyl ketones. We used 64 as the model compound for asymmetric DcB analysis. Moreover, 

the use of 64 was also inspired by the asymmetric DcA of allyl β-ketoesters (Chapter 2.2). Using 

CpPd(allyl) as the Pd source, a variety of chiral ligands were screened towards the asymmetric 

DcB of α-methyl-p-methoxybenzyl cyclopentanone ester (Scheme 61). The percent conversion 

and ee’s of each reaction were determined using chiral stationary phase GC and compared to the 

data of racemic compound. 
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Scheme 61. 
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The results of asymmetric DcB attempt towards 64 were disappointing but promising. It 

was surprising that chiral ligands such as t-BuPHOX 67 and QUINAP 68 which gave high 

enantioselectivities in DcA of allyl β-ketoesters
29,30a

 were unreactive. When Trost ligands were 

tried, a very low conversion despite moderate enantioselectvity was observed. The DUPHOS 

ligand that was reported by Legros that gave high enantioselectvity yet low benzylation yield 
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sadly gave even lower ee and conversion. Since dppf was the ligand used in DcB of racemic 

simple benzyl ketones, chiral ferrocene-derived (Josiphos) ligands were also tried. While 69 gave 

a moderate conversion and poor ee, the use of 70 gave a significant improvement in product 

formation, the difference between two ligands was the backbone of the phosphine ligand in 

which the latter has two more bulky t-Bu substituents compared to the former which has two 

cyclohexyl substituents. Unfortunately, both ee’s were very low. When 70 was also tried with 

other benzyl substrates, product formation occurred in good to high yields but all gave low ee’s 

(Scheme 62). When a methoxy-biphenyl compound containing electron rich and bulky t-Bu 

groups 71 ligand was tried, a slightly improved ee was obtained in contrast with ferrocene-

derived ligands yet low product conversion. When the reaction was run in a microwave, product 

formation improved yet the ee was similar to the “un-microwaved” reaction. Despite these 

unfortunate results, one could conclude that higher enantioselectivity can be achieved using 

phosphine ligands containing bulky t-Bu and EDG substituents.  

Scheme 62. 
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2.6 Mechanistic insights 

 It is likely that the mechanism of DcB of β-ketoesters should be similar to the DcA 

mechanism of allyl-β-ketoesters (Chapter 2.2) except the origin of Pd electrophile. Despite these 

similarities, it is interesting that all benzylation reactions of benzyl β-ketoesters require higher 

temperatures to achieve decarboxylation compared to DcA of allyl β-ketoesters that took place 

typically at room temperature. Their temperature differences potentially reflect a change in the 

rate-determining step of DcB process.
17

 While it has been reported that decarboxylation is the 

rate-determining step in the DcA of allyl β-ketoesters (Cycle A, Scheme 63), the decarboxylation 

might not be the slowest step in DcB of benzyl β-ketoesters but rather the ionization step leading 

to oxidative addition (Cycle B, Scheme 63). As a result, the ease in generation of Pd-electrophile 

follows a trend such that an allyl-LG generates the Pd species much faster than naphthylmethyl-

LG, followed by EDG-containing simple benzyl-LG.  

Scheme 63. 
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2.7. Conclusion 

 We have shown that the functionalization of simple and benzo-fused compounds with 

enolates via decarboxylation requires only catalytic Pd to generate the reactive η
3
-benzyl-Pd 

enolate species in situ without the need of base and other additives. In addition, a variety of non-

stabilized enolates can be accessed, thus expanding the scope of enolate benzylation from 

previously reported stabilized nucleophiles. C-C bond formation takes place at the site where the 

carboxylate group was once located. This allows site-specific generation of enolates which are 

difficult to synthesize using classical acid-base chemistry. While certain benzyl β-ketoesters 

require a different kind of Pd catalyst, their reactivity allows formation of benzyl ketones (and 

esters) in good to high yields. These reactions significantly depend on the electronics of the 

aromatic ring, the position of the benzyl moiety near to an electronic substituent or heteroatom, 

and steric bulk of enolate. The DcB reactions of simple and benzo-fused β-ketoesters are 

regiospecific in which enolate isomerization does not occur. In some substrates, some notable 

interesting compounds have been isolated. For the first time, a tribenzyl ketone and bibenzyl can 

be isolated using benzyl enol carbonate in contrast with benzyl β-ketoester suggesting that their 

mechanisms are not similar. Also, depending on appropriate reaction conditions, benzylation 

utilizing heteroaromatic compounds occurs giving C-benzylation, O-benzylation, or arylation 

depending on the nature of heterocycle. While current results did not provide high asymmetric 

benzylation, a lot of information can be gained from the ligands that were tried, particularly in 

terms of possibly designing chiral phosphine ligands that contain bulky and electron-rich 

substituents. Finally, the developed methodology can be applied in the synthesis of NSAID 

Nabumetone, thus harnessing the power of decarboxylative benzylation in constructing benzyl 

compounds which are relevant in medicinal chemistry. 
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2.9 Methodology and compound characterizations 

 General Information 

Toluene and THF were dried over sodium in the presence of benzophenone indicator. 

DCM and Et2O were dried over activated alumina on a solvent system purchased from 

Innovative Technologies, Inc. Pd catalysts and ligands were purchased from Strem and Sigma-

Aldrich. Other reagents and solvents were also obtained commercially and used without 

additional purification. K2CO3 was activated through microwave prior to use. CpPd(allyl) was 

prepared according to a literature procedure.
1
 The isolated products were purified on silica gel 

from Sorbent Technologies (40-63 μm particle size, 60 Å porosity, pH 6.5-7.5). The 
1
H and 

13
C 

NMR spectra were obtained on a Bruker Avance 400 or 500 MHz DRX spectrometer and were 

referenced to residual protio solvent signals. FTIR spectra were acquired on Shimadzu FTIR 

8400S spectrometer. HRMS was performed on a LCT Premier TOF mass spectrometer using ESI 

techniques. Asymmetric analyses were performed via gas chromatography using Shimadzu GC-

17A instrument with an attached AOC-20i auto injector and high performance liquid 

chromatography using Shimadzu SCL-10A VP insturment. Certain reactions that require very 

high temperatures were ran using Biotage Initiator Microwave Synthesizer equipped with Robot 

Eight Initiator System. Structural assignments of the isolated compounds were based on 
1
H, 

13
C, 

DEPT 135, COSY and HSQC spectroscopies. 

 

Preparation of Starting Materials 

Synthesis of 1- and 2-naphthyl β-ketoesters and 1- and 2-naphthylmethyl enol carbonate 

 Unsubstituted 1- and 2-naphthylmethyl β-ketoesters were prepared through esterification 

of 1- and 2-naphthylmethanol with diketene, stabilized with Cu, and catalytic DMAP at room 
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temperature.
2
 The diketene was added dropwise to prevent rapid exothermic reaction. Other 

substituted 1- and 2-naphthylmethanols were prepared from NaBH4 reduction of their parent 1- 

and 2-naphthaldehyde. The syntheses of 1- and 2-naphthylmethyl enol carbonate were prepared 

by esterification of 1- and 2-naphthylmethanol and isopropenyl chloroformate. 

OH O
O

cat. DMAP
ether, rt

O

O O

R R

NaBH4

MeOH

rt

CHO

R

Cl O

O

pyridine

0oC

O O

O

R

 

 The 1-naphthylmethyl β-ketoester of 47f and 47g were prepared by esterification of 1-

naphthylmethanol with enol-derived Meldrum acid, which was prepared by addition of 

isobutyryl chloride or phenylacetyl chloride to Meldrum’s acid in pyridine.
3
 The isolated 

compound was used immediately without column purification. 

R Cl

O

R = i-Pr, Bn

+

O

O

O

O O

O

O

O

R

OH

+

OH

toluene
reflux

O

O

R

O

pyridine

0oC to rt

 

Synthesis of quinolinylmethyl, N-Boc indolylmethyl, furylmethyl, thiophenylmethyl, and N-

Boc pyrolylmethyl β-ketoesters 

 2-, 3-, 4-, 6-, and 8-quinolinylmethyl β-ketoesters were prepared from esterification of 2-, 

3-, 4-, 6-, and 8-quinolinylmethanol and 2,2,6-trimethyl-4H-1,3-dioxin-4-one in refluxing 

xylene.
4
 This procedure was also used in the synthesis of indolylmethyl, furylmethyl, 
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thiophenylmethyl, and N-Boc pyrollylmethyl β-ketoesters using toluene as the refluxing solvent. 

While 2-, 3-, 4-, and 6-quinolinylmethanol were prepared from NaBH4 reduction of their 

quinolinyl aldehyde, the 8-quinolinylmethanol, on the other hand, was prepared from 8-

methylquinoline in three steps: NBS bromination, OAc substitution, and reduction.
5
  

N

OAc

N

CH3

N

Br

NBS, BPO
CCl4

NaOAc
MeOH

30% NaOH

N

OH  

The syntheses of 3-, 4-, and 6-quinolinyl aldehydes were prepared from SeO2 oxidation 

of 3-, 4- and 6-methylquinoline.
6
 Oxidations of 4- and 6-methylquinoline with SeO2 were 

performed in an oil bath whereas 3-methylquinoline oxidation was performed in a microwave.  

N

OH

N

CH3

N

CHO
NaBH4

MeOH

65oC O

O

O

N

O Me

O O

xylene
or

toluene
ref lux

+
SeO2

4-Qn - dioxane, reflux

6-Qn - neat, 160oC  

Synthesis of simple-benzyl β-ketoesters 

 Simple benzyl β-ketoesters were prepared similarly to the preparation of heterocyclic β-

ketoesters by esterification of benzyl alcohol and 2,2,6-trimethyl-4H-1,3-dioxin-4-one using 

toluene in reflux. Other simple benzyl β-ketoesters that contain varied terminal ketone 

substituents were prepared by esterification of benzyl alcohol with an enol-derived Meldrum’s 

acid. The synthesis of benzyl β-ketoester of 60d was prepared from transesterifcation of benzyl 

alcohol and ethyl oxovalerate with catalytic PPh3.
7
 

MeO

OH
+

EtO

O O
cat. PPh3

tol, reflux
O

MeO

O O
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Synthesis of cyclic benzyl β-ketoesters 

 Cyclic benzyl β-ketoesters of 55i-55m and 64-64h were prepared from transesterification 

of p-methoxybenzyl alcohol or 1-naphthalene methanol with ethyl-oxocycloalkane, ethyl-

oxocycloindanone, or ethyl-oxocyclotetralone in toluene at reflux with or without catalytic 

PPh3.
7,8

 

Ar OH +
EtO

O O

PPh3 or DMAP

tol, ref lux
O

O O

Ar

 

Synthesis of trifluoromethyl β-ketoester 

 The parent β-ketoester of 60h was prepared by esterification of p-methoxybenzyl alcohol 

and trifluromethyl β-ketocarboxylic acid using EDCI and catalytic DMAP. The synthesis of 

trifluromethyl β-ketocarboxylic acid was prepared by esterification of trifluoromethyl alcohol 

and Meldrum’s acid in refluxing toluene.
9
 

F3C OH + O O

O O

toluene
ref lux O

O

OH

O

F3C

+

MeO

OH EDCI
cat. DMAP
DCM

O

O

O

O

F3C

OMe

O

O

OH

O

F3C

 

General procedure for the synthesis of α-substituted benzyl β-ketoesters
10

 

In an oven-dried 100-mL flask, a solution of benzyl β-ketoester (1.0 mmol) was dissolved 

in THF (10 mL). Next, t-BuOK (1.0 mmol) was added and the reaction was cooled in an ice bath 

for 30 minutes after which the alkyl halide (1.0 mmol) was added dropwise. For naphthyl esters, 

the solution was stirred at room temperature overnight while for quinolinyl esters, the reaction 
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mixture was stirred at 70oC overnight. Next, the reaction was quenched with water, extracted 

with ether (3 x 20 mL), washed with brine (20 mL) and dried over MgSO4. The resulting 

solution was concentrated in vacuo before purifying via flash chromatography. To make the 

disubstituted ester (R1 ≠ R2), the above procedure was followed starting from the isolated 

monosubstituted aromatic β-ketoester. 

Ar O

O O

Ar O

O O

R1

R1X, t-BuOK

0o to rt
Ar O

O O

R1 R2

R2X, t-BuOK

0o to rt
 

General procedure for the synthesis of α,α-disubstituted benzyl β-ketoesters
11

 

In a dried 100 mL-flask under Ar, a solution of 1-naphthyl β-ketoester (1.0 mmol) in 

DMSO (20 mL) was prepared. Activated K2CO3 (4.00 mmol) was added after few minutes and 

the reaction was stirred at room temperature for 30 minutes. At this time, alkyl halide (2.0 mmol) 

or dibromoalkane (1.0 mmol) was added dropwise. The resulting solution was stirred at room 

temperature overnight. The yellowish solution was quenched with water extracted with DCM (3 

x 20 mL), washed with brine (20 mL) and dried over MgSO4. The resulting solution was 

concentrated in vacuo before purifying via flash chromatography. 

Ar O

O O
RX, K2CO3

DMSO

rt

Ar O

O O

R R  

Procedure for decarboxylative benzylation of unsubstituted ketones 

In a flame-dried Schlenk tube under argon, Pd(PPh3)4 (0.10 mmol), or combination of 

either Pd2dba3 (0.10 or 0.05 mmol) and Xantphos (0.11 mmol) or CpPd(allyl) (0.10 mmol) and 

dppf (0.11 mmol) were dissolved in toluene (5 mL) and subsequently added to the unsubstituted 

benzyl β-keto ester (1.0 mmol). The resulting solution was heated at 110
o
C with stirring for 15 

hours. After cooling the reaction mixture to room temperature, the solution was concentrated in 
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vacuo and the resulting residue was purified via flash chromatography using ethyl acetate and 

hexanes eluent. 

Procedure for decarboxylative benzylation of α-monosubstituted ketones 

In a flame-dried Schlenk tube under argon, Pd(PPh3)4 (0.10 mmol) was dissolved in 

toluene (5 mL) and subsequently added to the α-monosubstituted benzyl β-keto ester (1.0 mmol). 

The resulting solution was heated at 110
o
C with stirring for 15 hours. After cooling the reaction 

mixture to room temperature, the solution was concentrated in vacuo and the resulting residue 

was purified via flash chromatography using ethyl acetate and hexanes eluent. 

Procedure for decarboxylative benzylation of α,α-disubstituted ketones 

 

In a flame-dried Schlenk tube under argon, A combination of either Pd2dba3 (0.025 

mmol) and PBu3 (0.10 mmol) or CpPd(allyl) (0.10 mmol) and dppf (0.11 mmol) were dissolved 

in toluene (5 mL) and subsequently added to the α,α-disubstituted benzyl β-keto ester (1.0 

mmol). The resulting solution was heated at 110
o
C with stirring for 15 hours. After cooling the 

reaction mixture to room temperature, the solution was concentrated in vacuo and the resulting 

residue was purified via flash chromatography using hexane and ethyl acetate eluent. 

 

Nabumetone synthesis 

Synthesis of 6-methoxy-2-naphthyl-β-ketoester  

In a dried round-bottom flask containing 6-methoxy-2-naphthylmethanol (1.0 mmol) 

obtained from NaBH4 reduction of 6-methoxy-2-naphthaldehyde, 2,2,6-trimethyl-4H-1,3-dioxin-

4-one (1.1 mmol) and toluene (10 mL) were added. The solution was stirred under reflux for 12 

hrs. After heating, the solution was allowed to cool at room temperature. The solvent from the 
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crude mixture was removed in vacuo prior to purification via column chromatography using 

hexanes and ethyl acetate as eluent to yield the title compound as white solid (94%). 

 

Synthesis of Nabumetone via decarboxylative benzylation  

In a dried Schlenk flask, containing 1 (1.0 mmol) and toluene (5 mL), CpPd(allyl) (0.10 

mmol) and dppf (0.11 mmol) were added. The tube was stoppered with a rubber septum and was 

heated at 110
o
C for 12 hours. After heating, the tube was allowed to cool at room temperature. 

The solvent from the crude mixture was removed in vacuo prior to purification via column 

chromatography using hexanes and ethyl acetate as eluent to yield the title compound as pale-

white solid.
12

 

MeO

OH
+

O

O

O

toluene
reflux
12h, 94%

MeO

O

O O

10 mol% CpPd(allyl)

11 mol% dppf

toluene, 110oC, 64% MeO

O

Nabumetone

MeO

CHO
NaBH4

EtOH, rt

>90%
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 Spectroscopic Data 
O

 
4-(naphthalen-1-yl)butan-2-one, 47

13
  

(RT-2-176, frac A)  

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.97 (d, J = 7.9 Hz, aromatic H), 7.84 (d, J = 7.5 Hz, 

aromatic H), 7.71 (d, J = 8.1 Hz, aromatic H), 7.48 (dtd, J = 16.0, 6.8, 1.3 Hz, 2H, aromatic H), 

7.37 (t, J = 7.6 Hz, 1H, aromatic H), 7.31 (d, J = 6.8 Hz, 1H, aromatic H), 3.37 – 3.32 (m, 2H, 

CH2-C=O), 2.89 – 2.85 (m, 2H, O=C-CH3), 2.14 (s, 3H, Ar-CH2). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 208.45 (C=O), 140.55 (aromatic C), 137.37 (aromatic C), 

134.15 (aromatic C), 131.84 (aromatic C), 131.13 (aromatic C), 129.24 (aromatic C), 127.30 

(aromatic C), 126.33 (aromatic C), 125.93 (aromatic C), 123.70 (aromatic C), 44.65 (CH2-C=O), 

30.41(C=O-CH3), 27.06 (Ar-CH2). 

 
O

 
4-(naphthalen-1-yl)-3-(naphthalen-2-ylmethyl)butan-2-one, 47a 

 (RT-2-176, frac B)  

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.83 (d, J = 7.8 Hz, 2H, aromatic H), 7.72 (d, J = 8.1 Hz, 

2H, aromatic H), 7.64 (d, J = 8.5 Hz, 2H, aromatic H), 7.43 (t, J = 7.5 Hz, 2H, aromatic H), 7.36 

(dd, J = 14.5, 6.5 Hz, 3H, aromatic H), 7.31 (dd, J = 7.0, 2.8 Hz, 3H, aromatic H), 3.54 (dt, J = 

14.3, 7.2 Hz, Bn-CH-Bn), 3.43 (dd, J = 13.7, 8.5 Hz, 2H, Ar-CH2), 3.25 (dd, J = 13.8, 5.9 Hz, 

2H, Ar-CH2 ), 1.67 (s, 3H, CH3). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 212.42 (C=O), 135.29 (aromatic C), 133.99 (aromatic C), 

131.61 (aromatic C), 128.98 (aromatic C), 127.55 (aromatic C), 127.43 (aromatic C), 126.09 

(aromatic C), 125.65 (aromatic C), 125.52 (aromatic C), 123.37 (aromatic C), 54.10  (Bn-CH-

Bn), 35.34 (Np-CH2), 31.98 (CH3). 

 

FTIR (CH2Cl2) ῡmax cm
–1

 1713, 1508, 1396, 1354, 790, 777 

 

HRMS Calcd for C25H22O (M+H) – 339.1749, found 339.1692. 
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MeO

O

 
4-(4-methoxynaphthalen-1-yl)butan-2-one, 47b

14 

(RT-11-200) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 8.35 – 8.27 (m, 1H, aromatic H), 7.96 – 7.88 (d, J = 8.5 Hz, 

1H, aromatic H), 7.64 – 7.40 (m, 2H, aromatic H), 7.25 – 7.19 (m, 1H, aromatic H), 6.77 – 6.67 

(d, J = 8.0 Hz, 1H, aromatic H), 4.00 – 3.97 (s, 3H, O-CH3), 3.34 – 3.22 (t, J = 7.7 Hz, 2H, Ar-

CH2), 2.91 – 2.80 (t, J = 7.7 Hz, 2H, CH2-C=O), 2.20 – 2.08 (s, 3H, CH3). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 208.39 (C=O), 154.48 (aromatic C), 132.47 (aromatic C), 

128.92 (aromatic C), 127.47 (aromatic C), 126.67 (aromatic C), 126.10 (aromatic C), 125.91 

(aromatic C), 125.13 (aromatic C), 125.06 (aromatic C), 123.38 (aromatic C), 122.90 (aromatic 

C), 103.51 (aromatic C), 55.62 (O-CH3), 44.78 (CH2-C=O), 30.24 (O=C-CH3), 26.53 (Ar-CH2).  

 

Me

O

 
4-(4-methylnaphthalen-1-yl)butan-2-one, 47c

15
 

(RT-10-88) 
 

1
H NMR (400 MHz, CDCl3) δ ppm 8.07 – 7.96 (td, J = 9.8, 3.3 Hz, 2H, aromatic H), 7.57 – 7.50 

(dd, J = 6.5, 3.3 Hz, 2H, aromatic H), 7.24 – 7.21 (s, 2H, aromatic H), 3.38 – 3.29 (t, J = 7.8 Hz, 

2H, Ar-CH2), 2.92 – 2.83 (t, J = 7.8 Hz, 2H, CH2-C=O), 2.70 – 2.63 (s, 3H, Ar-CH3), 2.21 – 2.11 

(s, 3H, CH3). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 208.09 (C=O), 135.25 (aromatic C), 133.16 (aromatic C), 

131.74 (aromatic C), 126.47 (aromatic C), 125.84 (aromatic C), 125.56 (aromatic C), 125.19 

(aromatic C), 124.09 (aromatic C), 45.00 (Ar-CH3), 30.08 (CH2-C=O), 26.38 (O=C-CH3), 19.46 

(Ar-CH2).  

 

F

O

 
4-(4-fluoronaphthalen-1-yl)butan-2-one, 47d 

(RT-11-89) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 8.21 – 8.09 (d, J = 7.7 Hz, 1H, aromatic H), 8.03 – 7.92 (d, J 

= 7.3 Hz, 1H, aromatic H), 7.62 – 7.49 (p, J = 6.8 Hz, 2H, aromatic H), 7.25 – 7.22 (m, 1H, 

aromatic H), 7.13 – 6.98 (dd, J = 10.3, 7.9 Hz, 1H, Ar-CH2), 3.34 – 3.27 (t, J = 7.7 Hz, 2H, Ar-

CH2), 2.92 – 2.83 (t, J = 7.7 Hz, 2H, CH2-C=O), 2.21 – 2.11 (s, 3H, CH3). 
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13
C NMR (126 MHz, CDCl3) δ ppm 207.68 (C=O), 158.63 (aromatic C), 156.64 (aromatic C), 

132.71 (aromatic C), 126.91 (aromatic C), 125.93 (aromatic C), 125.59 (aromatic C), 124.11 

(aromatic C), 123.44 (aromatic C), 121.30 (aromatic C), 108.98 (aromatic C), 108.82 (aromatic 

C), 44.12 (CH2-C=O), 29.95 (O=C-CH3), 26.23 (Ar-CH2). 

 

HRMS Calcd for C14H14OF (M+H) – 217.1029, found 217.1035. 

 
O

 
4-methyl-1-(naphthalen-1-yl)pentan-3-one, 47e 

(RT-4-37) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.98 (d, J = 8.4 Hz, 1H, aromatic H), 7.84 (d, J = 8.8 Hz, 

1H, aromatic H), 7.70 (d, J = 8.1 Hz, 1H, aromatic H), 7.49 (dtd, J = 16.1, 6.8, 1.4 Hz, 2H, 

aromatic H), 7.40 – 7.35 (m, 1H, aromatic H), 7.32 (d, J = 7.1 Hz, 1H, aromatic H), 3.37 – 3.31 

(m, 2H, Np-CH2), 2.91 – 2.85 (m, 2H, CH2-C=O ), 2.55 (dt, J = 13.9, 6.9 Hz, Me-CH-Me), 1.06 

(d, J = 6.9 Hz, 6H, CH3-CH-CH3). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 213.90 (C=O), 137.51 (aromatic C), 134.00 (aromatic C), 

131.76 (aromatic C), 128.95 (aromatic C), 127.85 (aromatic C), 127.40 (aromatic C), 126.79 

(aromatic C), 126.01 (aromatic C), 125.62 (aromatic C), 123.47 (aromatic C), 41.03 (CH3-CH-

CH3), 27.10 (CH2-C=O), 18.11 (Np-CH2), 16.55 (CH3-CH-CH3). 

 

FTIR (CH2Cl2) ῡmax cm
–1

 1711, 1597, 1466, 797, 777, 436. 

 

HRMS Calcd for C16H18O (M + Na) – 249.1255, found 249.1263. 

 

O

 
4-(naphthalen-1-yl)-1-phenylbutan-2-one, 47g 

(RT-3-297) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.88 – 7.81 (m, 2H, aromatic C), 7.70 (d, J = 8.2 Hz, 1H, 

aromatic C), 7.49 – 7.44 (m, 2H, aromatic C), 7.37 – 7.32 (m, 1H, aromatic C), 7.32 – 7.27 (m, 

2H, aromatic C), 7.25 (dd, J = 7.2, 2.8 Hz, 2H, aromatic C), 7.15 (d, J = 6.8 Hz, 2H, aromatic C), 

3.66 (s, 2H, Ar-CH2-C=O), 3.34 – 3.28 (m, 2H, Ar-CH2), 2.91 – 2.86 (m, 2H, CH2-C=O). 

 
13

C NMR (126 MHz, CDCl3) δ 208.15 (C=O), 137.25 (aromatic C), 134.35 (aromatic C), 134.20 

(aromatic C), 131.88 (aromatic C), 129.75 (aromatic C), 129.21 (aromatic C), 129.10 (aromatic 
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C), 127.41 (aromatic C), 127.31 (aromatic C), 126.42 (aromatic C), 126.36 (aromatic C), 125.91 

(aromatic C), 123.74 (aromatic C), 50.88 (CH2-Ph), 42.87 (CH2-C=O), 27.09 (Ar-CH2). 

 

FTIR (CH2Cl2) ῡmax cm
–1

 1713, 1597, 1495, 1454, 797, 777, 735, 698. 

 

HRMS Calcd for C20H18O (M + Na) – 297.1255, found 297.1248. 

 
O

 
4-(naphthalen-2-yl)butan-2-one, 47h

13 

(RT-2-177-1) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.82 – 7.75 (m, 3H, aromatic H), 7.64 – 7.60 (m, 1H, 

aromatic H), 7.48 – 7.40 (m, 2H, aromatic H), 7.35 – 7.30 (dd, J = 8.4, 1.7 Hz, 1H, aromatic H), 

3.10 – 3.02 (t, J = 7.6 Hz, 2H, Ar-CH2), 2.89 – 2.81 (m, 2H, O=C-CH2), 2.20 – 2.12 (s, 3H, 

CH3). 

 
 13

C NMR (126 MHz, CDCl3) δ ppm 208.04 (C=O), 138.59 (aromatic C), 133.68 (aromatic C), 

132.12 (aromatic C), 128.24 (aromatic C), 127.74 (aromatic C), 127.58 (aromatic C), 127.17 

(aromatic C), 126.53 (aromatic C), 126.17 (aromatic C), 125.47 (aromatic C), 45.24 (CH2-C=O), 

30.26 (O=C-CH3), 29.96 (Ar-CH2).  

 

N

O

 
4-(quinolin-3-yl)butan-2-one, 47j

16 

(RT-4-46) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.80 – 8.75 (d, J = 2.2 Hz, 1H, aromatic H), 8.11 – 8.04 (m, 

1H, aromatic H), 7.96 – 7.92 (m, 1H, aromatic H), 7.86 – 7.73 (m, 1H, aromatic H), 7.69 – 7.63 

(m, 1H, aromatic H), 7.55 – 7.49 (m, 1H, aromatic H), 3.12 – 3.04 (t, J = 7.4 Hz, 2H, Ar-CH2), 

2.91 – 2.84 (t, J = 7.4 Hz, 2H, CH2-C=O), 2.21 – 2.13 (s, 3H, CH3). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 207.11 (C=O), 151.81 (aromatic C), 134.55 (aromatic C), 

133.76 (aromatic C), 130.32 (aromatic C), 129.17 (aromatic C), 128.93 (aromatic C), 127.50 

(aromatic C), 126.76 (aromatic C), 123.03 (aromatic C), 44.63 (CH2-C=O), 30.22 (O=C-CH3), 

26.88 (Ar-CH2). 

 

N

O

Me

 
4-(quinolin-4-yl)butan-2-one, 47k

17
  

(RT-3-136, frac A) 
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1
H NMR (500 MHz, CDCl3) δ ppm 8.77 (d, J = 4.4 Hz, 1H, aromatic H), 8.10 (d, J = 8.4 Hz, 

1H, aromatic H), 7.98 (d, J = 8.5 Hz, 1H, aromatic H), 7.72 – 7.65 (m, 1H, aromatic H), 7.58 – 

7.52 (m, 1H, aromatic H), 7.21 (d, J = 4.4 Hz, 1H, aromatic H), 3.37 – 3.31 (m, 2H, CH2-C=O), 

2.91 – 2.86 (m, 2H, Ar-CH2), 2.16 (s, 3H, CH3-C=O) 

 
13

C NMR (126 MHz, CDCl3) δ ppm 207.18 (C=O), 150.52 (aromatic C), 148.59 (aromatic C), 

147.25 (aromatic C), 130.65 (aromatic C), 129.52 (aromatic C), 127.56 (aromatic C), 126.93 

(aromatic C), 123.52 (aromatic C), 121.09 (aromatic C), 43.60 (CH2-C=O), 30.38 (CH3-C=O), 

25.93 (Ar-CH2). 

 

FTIR (CH2Cl2) ῡmax cm
–1

 2341, 1717, 1593, 1364, 1163, 764 

 

HRMS Calcd for C13H13NO (M+H) – 200.1075, found 200.1073. 

 
O

N  
4-(quinolin-6-yl)butan-2-one, 47l 

(RT-3-258) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.87 – 8.81 (d, J = 5.7 Hz, 1H, aromatic H), 8.10 – 8.05 (d, J 

= 9.4 Hz, 1H, aromatic H), 8.05 – 7.99 (d, J = 8.6 Hz, 1H, aromatic H), 7.60 – 7.57 (s, 1H, 

aromatic H), 7.57 – 7.52 (dd, J = 8.6, 2.0 Hz, 1H, aromatic H), 7.38 – 7.33 (dd, J = 8.3, 4.2 Hz, 

1H, aromatic H), 3.10 – 3.04 (t, J = 7.5 Hz, 2H, Ar-CH2), 2.88 – 2.82 (t, J = 7.5 Hz, 2H, CH2-

C=O), 2.18 – 2.13 (s, 3H, CH3). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 207.69 (C=O), 149.95 (aromatic C), 147.19 (aromatic C), 

139.48 (aromatic C), 135.70 (aromatic C), 130.73 (aromatic C), 129.51 (aromatic C), 128.28 

(aromatic C), 126.40 (aromatic C), 121.32 (aromatic C), 44.89 (CH2-C=O), 30.22 (O=C-CH3), 

29.67 (Ar-CH2).  

 

HRMS Calcd for C13H14NO (M+H) – 200.1075, found 200.1077. 

 

ON

 
4-(quinolin-8-yl)butan-2-one, 47m

18 

(RT-4-131, frac 10-14) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.93 – 8.89 (dd, J = 4.2, 1.8 Hz, 1H, aromatic H), 8.15 – 

8.11 (dd, J = 8.2, 1.8 Hz, 1H, aromatic H), 7.71 – 7.66 (dd, J = 8.2, 1.3 Hz, 1H, aromatic H), 

7.60 – 7.56 (d, J = 7.0 Hz, 1H, aromatic H), 7.47 – 7.42 (m, 1H, aromatic H), 7.41 – 7.37 (dd, J 

= 8.2, 4.2 Hz, 1H, aromatic H), 3.54 – 3.48 (t, J = 7.6 Hz, 2H, Ar-CH2), 3.01 – 2.95 (t, J = 7.6 

Hz, 2H, CH2-C=O), 2.17 – 2.12 (s, 3H, CH3). 
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13
C NMR (126 MHz, CDCl3) δ 208.85 (C=O), 149.42 (aromatic C), 146.90 (aromatic C), 139.73 

(aromatic C), 136.52 (aromatic C), 129.35 (aromatic C), 128.42 (aromatic C), 126.58 (aromatic 

C), 126.43 (aromatic C), 121.10 (aromatic C), 44.67 (CH2-C=O), 30.14 (O=C-CH3), 26.50 (Ar-

CH2). 

 

N Me

O

Boc  
tert-butyl 3-methylene-2-(2-oxopropyl)indoline-1-carboxylate, 48 

(RT-3-38) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 7.39 (d, J = 7.6 Hz, 1H, aromatic H), 7.29 (d, J = 7.8 Hz, 

1H, aromatic H), 6.97 (t, J = 7.4 Hz, 2H, aromatic H), 5.42 (s, 1H, diastereotopic H, C=CH), 

5.25 (dd, J = 11.9, 5.0 Hz, 1H, C-CH-CH2), 5.01 (s, 1H, diastereotopic H, C=CH), 3.06 (d, J = 

17.5 Hz, 1H, diastereotopic H, CH-C=O), 2.82 (dd, J = 16.7, 8.1 Hz, 1H, diastereotopic H, CH-

C=O), 2.15 (s, 3H, CH3-C=O), 1.57 (s, 9H, Boc) 

 

MeO

O

 
4-(6-methoxynaphthalen-2-yl)butan-2-one, 49

12 

(RT-11-186) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 7.71 – 7.66 (d, J = 8.4 Hz, 2H, aromatic H), 7.58 – 7.53 (m, 

1H, aromatic H), 7.33 – 7.29 (s, 1H, aromatic H), 7.17 – 7.11 (m, 2H, aromatic H), 3.94 – 3.93 

(s, 3H, O-CH3), 3.09 – 3.00 (t, J = 7.5 Hz, 2H, Ar-CH2), 2.91 – 2.81 (m, 2H, CH2-C=O), 2.22 – 

2.15 (s, 3H, CH3). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 207.98 (C=O), 157.39 (aromatic C), 136.08 (aromatic C), 

134.45 (aromatic C), 133.01 (aromatic C), 128.93 (aromatic C), 127.53 (aromatic C), 126.96 

(aromatic C), 126.20 (aromatic C), 118.68 (aromatic C), 105.50 (aromatic C), 55.30 (O-CH3), 

45.19 (CH2-C=O), 30.14 (O=C-CH3), 29.67 (Ar-CH2). 

 

O
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4-(naphthalen-1-yl)-3,3-bis(naphthalen-1-ylmethyl)butan-2-one, 48s 

(RT-3-291) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.03 – 7.98 (d, J = 9.6 Hz, 3H, aromatic H), 7.87 – 7.81 (m, 

3H, aromatic H), 7.75 – 7.70 (d, J = 8.2 Hz, 3H, aromatic H), 7.47 – 7.44 (m, 5H, aromatic H), 

7.35 – 7.31 (m, 4H, aromatic H), 7.18 – 7.15 (d, J = 7.1 Hz, 3H, aromatic H), 3.79 – 3.67 (s, 6H, 

Ar-CH2), 1.52 – 1.43 (s, 3H, CH3). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 215.69 (C=O), 133.99 (aromatic C), 133.94 (aromatic C), 

133.24 (aromatic C), 128.99 (aromatic C), 127.76 (aromatic C), 127.47 (aromatic C), 126.21 

(aromatic C), 125.76 (aromatic C), 125.21 (aromatic C), 124.07 (aromatic C), 55.97 (CH2-C=O), 

37.18 (O=C-C), 29.94 (Ar-CH2). 

 

HRMS Calcd for C36H30ONa (M+Na) – 501.2194, found 501.2189. 

 

Me

O

Me

 
3-methyl-4-(naphthalen-1-yl)butan-2-one, 49  

(RT-2-126) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.00 (d, J = 8.3 Hz, 1H, aromatic CH), 7.86 (d, J = 8.0 Hz, 

1H, aromatic CH), 7.73 (d, J = 8.1 Hz, 1H, aromatic CH), 7.50 (dt, J = 14.9, 6.8 Hz, 2H, 

aromatic CH), 7.38 (t, J = 7.6 Hz, 1H, aromatic CH), 7.28 (d, J = 7.0 Hz, 1H, aromatic CH), 3.51 

(dd, J = 13.4, 5.9 Hz, 1H, CH-Me), 3.00 (ddd, J = 28.2, 13.8, 7.4 Hz, 2H, Ar-CH2), 2.07 (s, 3H, 

CH-CH3), 1.14 (d, J = 6.8 Hz, 3H, CH3-C=O) 

 
13

C NMR (126 MHz, CDCl3) δ ppm 212.64 (C=O), 135.91 (aromatic C), 134.23 (aromatic C), 

132.05 (aromatic C), 129.25 (aromatic C), 127.63 (aromatic C), 127.46 (aromatic C), 126.32 

(aromatic C), 125.87 (aromatic C), 125.74 (aromatic C), 123.83 (aromatic C), 47.94 (Bn-CH-

Me), 36.17 (Ar-CH2), 29.39 (CH3-C=O), 16.98 (CH-CH3) 

 

FTIR (CH2Cl2) ῡmax cm
–1

 1711, 1458, 1396, 1356, 781, 445. 

 

HRMS Calcd for C15H16O (M+Na) – 235.1099, found 235.1091. 

 
O

 
3-(naphthalen-1-ylmethyl)pentan-2-one, 49a 

(RT-2-135) 
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1
H NMR (500 MHz, CDCl3) δ ppm  7.99 (d, J = 8.2 Hz, 1H, aromatic H), 7.85 (d, J = 7.9 Hz, 

1H, aromatic H), 7.71 (d, J = 8.1 Hz, 1H, aromatic H), 7.50 (dt, J = 14.9, 6.8 Hz, 2H, aromatic 

H), 7.38 – 7.33 (m, 1H, aromatic H), 7.26 (d, J = 6.8 Hz, 1H, aromatic H), 3.32 (dd, J = 14.0, 8.1 

Hz, 1H, diastereotopic H), 3.14 (dd, J = 14.0, 6.4 Hz, 1H, diastereotopic H), 3.02 – 2.90 (m, 1H, 

diastereotopic H), 1.94 (s, 3H, CH3-C=O), 1.74 (dq, J = 15.2, 7.5 Hz, 1H, diastereotopic H), 1.65 

– 1.53 (m, 1H, diastereotopic H), 0.92 (t, J = 7.4 Hz, 3H, CH2-CH3). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 213.00 (C=O), 135.91 (aromatic C), 134.25 (aromatic C), 

131.99 (aromatic C), 129.28 (aromatic C), 127.55 (aromatic C), 127.47 (aromatic C), 126.36 

(aromatic C), 125.89 (aromatic C), 125.79 (aromatic C), 123.83 (aromatic C), 55.16 (CH-C=O), 

34.90 (Ar-CH2), 30.88 (CH3-C=O), 25.30 (CH-CH2-CH3), 11.98 (CH2-CH3). 

 

FTIR (CH2Cl2) ῡmax cm
–1

 2962, 2931, 1711, 1597, 1456, 1167, 777 

 

HRMS Calcd for C18H16O (M+H) – 249.1279, found 249.1264. 

 

Me

O

 
3-(naphthalen-1-ylmethyl)hex-5-en-2-one, 49b 

(RT-2-117) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.98 (d, J = 8.4 Hz, 1H, aromatic H), 7.85 (d, J = 8.0 Hz, 

1H, aromatic H), 7.72 (d, J = 8.2 Hz, 1H, aromatic H), 7.51 (dt, J = 14.9, 6.9 Hz, 2H, aromatic 

H), 7.36 (t, J = 7.6 Hz, 1H, aromatic H), 7.27 (d, J = 7.0 Hz, 1H, aromatic G), 5.77 (td, J = 17.1, 

7.1 Hz, 1H, CH2-CH=CH2), 5.14 – 5.05 (m, 2H, CH=CH2), 3.33 (dd, J = 14.0, 8.3 Hz, 1H, 

diastereotopic H), 3.18 (dd, J = 14.0, 6.2 Hz, 1H, diastereotopic H), 3.14 – 3.05 (m, 1H, CH2-

CH-C=O), 2.45 (dt, J = 14.8, 7.5 Hz, 1H, diastereotopic H), 2.33 – 2.23 (m, 1H, diastereotopic 

H), 1.91 (s, 3H, CH3-C=O). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 212.12 (C=O), 135.66 (aromatic C), 135.37 (aromatic C), 

134.27 (CH=CH2), 131.96 (aromatic C), 129.30 (aromatic C), 127.67 (aromatic C), 127.58 

(aromatic C), 126.42 (aromatic C), 125.93 (aromatic C), 125.80 (aromatic C), 123.81 (aromatic 

C), 117.92 (CH=CH2), 53.02 (CH-C=O), 36.33 (Ar-CH2), 34.45 (CH2-CH=CH2), 31.07 (CH3-

C=O). 

 

FTIR (CH2Cl2) ῡmax cm
–1

 3047, 3003, 2978, 1713, 1510, 1167, 918, 781 

 

HRMS Calcd for C17H18O (M+Na) – 261.1255, found 261.1316. 
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O

 
3-benzyl-4-(naphthalene-1-yl)butan-2-one, 49c 

(RT-2-151) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.83 (d, J = 5.7 Hz, 1H, aromatic H), 7.74 (d, J = 8.5 Hz, 

1H, aromatic H), 7.70 (d, J = 8.2 Hz, 1H, aromatic H), 7.47 – 7.43 (m, 2H, aromatic H), 7.34 (t, J 

= 7.5 Hz, 1H, aromatic H), 7.27 (dd, J = 16.1, 7.3 Hz, 3H, aromatic H), 7.21 (d, J = 6.9 Hz, 1H, 

aromatic H), 7.16 (d, J = 7.6 Hz, 2H, aromatic H), 3.30 (dd, J = 11.3, 6.9 Hz, 2H, Ar-CH2), 3.23 

(t, J = 9.0 Hz, 1H, diastereotopic H), 3.02 (dd, J = 13.2, 7.3 Hz, 1H, diastereotopic H), 2.78 (dd, 

J = 13.5, 5.4 Hz, 1H, diastereotopic H), 1.68 (s, 3H, CH3-C=O) 

 
13

C NMR (126 MHz, CDCl3) δ ppm 212.49 (C=O), 139.56 (aromatic C), 135.64 (aromatic C), 

134.26 (aromatic C), 131.86 (aromatic C), 129.33 (aromatic C), 129.27 (aromatic C), 128.91 

(aromatic C), 127.61 (aromatic C), 127.60 (aromatic C), 126.88 (aromatic C), 126.84 (aromatic 

C), 126.39 (aromatic C), 125.90 (aromatic C), 125.81 (aromatic C), 123.71 (aromatic C), 55.60 

(CH2-CH-CH2), 38.89 (Ar-CH2), 35.30 (Ar-CH2), 32.17 (CH3-C=O) 

 

FTIR (CH2Cl2) ῡmax cm
–1

 3061, 2939, 1713, 1597, 1454, 1161, 779, 700 

 

HRMS Calcd for C21H20O (M+Na) – 311.1412, found 311.1424. 

 
O

Me

Me  
3-methyl-4-(naphthalen-2-yl)butan-2-one, 49d 

RT-2-210 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.75 (d, J = 8.1 Hz, 2H, aromatic H), 7.54 – 7.48 (m, 2H, 

aromatic H), 7.47 – 7.39 (m, 2H, aromatic H), 7.28 (dd, J = 8.4, 1.7 Hz, 1H, aromatic H), 3.15 

(dd, J = 13.6, 6.8 Hz, 1H, diastereotopic H), 2.99 – 2.86 (m, 1H, diastereotopic H), 2.70 (dd, J = 

13.6, 7.8 Hz, 1H, diastereotopic H), 2.09 (s, 3H, CH3-C=O), 1.11 (d, J = 7.0 Hz, 3H, CH3-CH) 

 
13

C NMR (126 MHz, CDCl3) δ ppm 200.34 (C=O), 129.93 (aromatic C), 128.68 (aromatic C), 

128.40 (aromatic C), 127.94 (aromatic C), 127.83 (aromatic C), 127.69 (aromatic C), 127.65 

(aromatic C), 126.88 (aromatic C), 126.37 (aromatic C), 125.74 (aromatic C), 49.13, (CH-CH3), 

39.41 (Ar-CH2), 29.27 (CH3-C=O), 16.64 (CH-CH3). 

 

FTIR (CH2Cl2) ῡmax cm
–1

 3045, 2922, 1710, 1663, 1358, 1240, 820, 746 

 

HRMS Calcd for C15H16O (M+Na) – 253.1099, found 253.1101. 
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O

Me

 
3-(naphthalen-2-ylmethyl)pentan-2-one, 49e 

(RT-4-250) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.81 – 7.74 (m, 3H, aromatic H), 7.54 – 7.49 (m, 1H, 

aromatic H), 7.48 – 7.39 (m, 2H, aromatic H), 7.29 (dd, J = 8.4, 1.7 Hz, 1H, aromatic H), 3.04 

(dd, J = 12.1, 6.8 Hz, 1H, diastereotopic H), 2.90 – 2.78 (m, 2H, CH2-CH3), 2.00 (s, 3H, CH3-

C=O), 1.69 (dt, J = 15.3, 7.6 Hz, 1H, diastereotopic H), 1.56 (s, 1H, diastereotopic H), 0.91 (t, J 

= 7.5 Hz, 3H, CH2-CH3). 

 
13

C NMR (126 MHz, CDCl3) δ 200.46 (C=O), 137.66 (aromatic C), 133.92 (aromatic C), 132.52 

(aromatic C), 128.52 (aromatic C), 128.03 (aromatic C), 127.93 (aromatic C), 127.73 (aromatic 

C), 127.65 (aromatic C), 126.45 (aromatic C), 125.83 (aromatic C), 56.58 (CH-C=O), 37.92 (Ar-

CH2), 30.81 (CH3-C=O), 24.99 (CH2-CH3), 11.95 (CH2-CH3) 

 

FTIR (CH2Cl2) ῡmax cm
–1

 3051, 1666, 1634, 1504, 1277, 815 

 

HRMS Calcd for C16H18O (M+) – 226.1358, found 226.1321. 

 
O

Me

 
3-(naphthalen-2-ylmethyl)hex-5-en-2-one, 49f 

(YA-1-133r) 

 
1
H NMR (500 MHz, CDCl3) δ 7.77 (dd, J = 14.5, 8.7 Hz, 3H, aromatic H), 7.58 (s, 1H, aromatic 

H), 7.53 – 7.37 (m, 2H, aromatic H), 7.28 (d, J = 8.4 Hz, 1H, aromatic H), 5.74 (dt, J = 17.2, 7.0 

Hz, 1H, CH=CH2), 5.06 (dd, J = 13.6, 6.7 Hz, 2H, CH=CH2), 3.14 – 2.93 (m, 2H, CH2-

CH=CH2), 2.85 (dd, J = 12.9, 5.7 Hz, 1H, diastereotopic H), 2.48 – 2.33 (m, 1H, diastereotopic 

H), 2.31 – 2.19 (m, 1H, diastereotopic H), 1.99 (s, 3H, CH3-C=O) 

 
13

C NMR (126 MHz, CDCl3) δ 211.52 (C=O), 136.97 (aromatic C), 135.14 (aromatic C), 133.53 

(CH=CH2), 132.18 (aromatic C), 128.21 (aromatic C), 127.69 (aromatic C), 127.65 (aromatic C), 

127.56 (aromatic C), 127.38 (aromatic C), 127.32 (aromatic C), 126.11 (aromatic C), 125.51 

(aromatic C), 117.41 (CH=CH2), 54.32 (CH2-CH-CH2), 37.52 (Ar-CH2), 35.76 (CH2-CH=CH2), 

30.82 (CH3-C=O). 

 

FTIR (CH2Cl2) ῡmax cm
–1

 3053, 2924, 1711, 1601, 1439, 1363, 918, 820, 749 

 

HRMS Calcd for C17H18O (M-H) – 237.1279, found 237.1267 
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O

Me

 
3-benzyl-4-(naphthalen-2-yl)butan-2-one, 49g 

(RT-2-194) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.77 (dd, J = 14.7, 8.4 Hz, 3H, aromatic H), 7.57 (s, 1H, 

aromatic H), 7.43 (pd, J = 6.8, 1.5 Hz, 2H, aromatic H), 7.29 – 7.25 (m, 3H, aromatic H), 7.19 (t, 

J = 7.4 Hz, 1H, aromatic H), 7.15 (d, J = 8.3 Hz, 2H, aromatic H), 3.32 – 3.20 (m, 1H, 

diastereotopic H), 3.08 (dd, J = 13.6, 8.9 Hz, 1H, diastereotopic H), 2.95 (dd, J = 13.6, 8.8 Hz, 

1H, diastereotopic H), 2.87 (dd, J = 13.6, 5.9 Hz, 1H, diastereotopic H), 2.76 (dd, J = 13.6, 6.0 

Hz, 1H, diastereotopic H), 1.75 (s, 3H, CH3-C=O) 

 
13

C NMR (126 MHz, CDCl3) δ ppm 212.51 (C=O), 139.54 (aromatic C), 137.20 (aromatic C), 

133.86 (aromatic C), 132.54 (aromatic C), 129.88 (aromatic C), 129.22 (aromatic C), 128.90 

(aromatic C), 128.55 (aromatic C), 127.95 (aromatic C), 127.88 (aromatic C), 127.67 (aromatic 

C), 127.54 (aromatic C), 126.77 (aromatic C), 126.42 (aromatic C), 125.79 (aromatic C), 123.08 

(aromatic C), 56.79 (CH2-CH-CH2), 38.53 (Ar-CH2), 31.97 (Ar-CH2), 32.04 (CH3-C=O). 

 

FTIR (CH2Cl2) υmax cm
–1

 3057, 3026, 1710, 1601, 1497, 1360, 1161, 818, 700 

 

HRMS Calcd for C21H20O (M+Na) – 311.1412, found 311.1368 

 

 
O

O  
3-(naphthalen-1-ylmethyl)heptane-2,5-dione, 50 

(RT-3-43) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 8.04 (d, J = 8.4 Hz, 1H, aromatic H), 7.85 (d, J = 8.1 Hz, 

1H, aromatic H), 7.74 (d, J = 8.2 Hz, 1H, aromatic H), 7.52 (dt, J = 14.9, 6.9 Hz, 2H, aromatic 

H), 7.37 (dd, J = 8.2, 7.1 Hz, 1H, aromatic H), 7.22 (s, 1H, aromatic H), 3.56 – 3.43 (m, 1H, 

CH2-CH-CH2), 3.30 (dd, J = 13.7, 7.3 Hz, 1H, diastereotopic H), 3.01 (dd, J = 25.4, 7.5 Hz, 2H, 

CH2-CH3), 2.44 (dd, J = 18.1, 3.9 Hz, 1H, diastereotopic H), 2.34 (dd, J = 12.7, 7.3 Hz, 2H, 

diastereotopic H), 2.04 (s, 3H, CH3-C=O), 0.96 (t, J = 7.3 Hz, 3H, CH2-CH3) 

 
13

C NMR (126 MHz, CDCl3) δ ppm 212.20 (C=O), 210.37 (C=O), 134.77 (aromatic C), 134.29 

(aromatic C), 131.94 (aromatic C), 129.34 (aromatic C), 127.96 (aromatic C), 127.75 (aromatic 

C), 126.70 (aromatic C), 126.16 (aromatic C), 125.75 (aromatic C), 123.73 (aromatic C), 47.74 

(Np-CH2-CH-C=O), 44.66 (CH-C(O)-CH2), 35.98 (C(O)-CH2-CH3), 35.26 (Ar-CH2), 31.18 

(CH3-C=O), 7.91 (CH2-CH3) 
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FTIR (CH2Cl2) ῡmax cm
–1

 2976, 2937, 1713, 1510, 1115, 781 

 

HRMS Calcd for C18H20O2 (M+Na) – 291.1361, found 291.1361. 

 
O

O

O

 
ethyl 3-(naphthalen-1-ylmethyl)-4-oxopentanoate, 51a  

(RT-2-118) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.04 (d, J = 8.4 Hz, 1H, aromatic H), 7.86 (d, J = 8.1 Hz, 

1H, aromatic H), 7.74 (d, J = 8.2 Hz, 1H, aromatic H), 7.52 (dt, J = 14.9, 6.9 Hz, 2H, aromatic 

H), 7.40 – 7.35 (m, 1H aromatic H), 7.25 (d, J = 7.2 Hz, 1H, aromatic H), 4.03 (q, J = 7.1 Hz, 

2H, (O-CH2-CH3), 3.51 – 3.43 (m, 1H, CH2-CH-CH2), 3.35 (dd, J = 13.7, 7.3 Hz, 1H, 

diastereotopic H), 3.06 (dd, J = 13.7, 8.2 Hz, 1H, diastereotopic H), 2.83 (dd, J = 17.1, 9.7 Hz, 

1H, diastereotopic H), 2.37 (dd, J = 17.2, 4.4 Hz, 1H, diastereotopic H), 2.03 (s, 3H, CH3-C=O), 

1.18 (t, J = 7.1 Hz, 3H, CH2-CH3) 

 
13

C NMR (126 MHz, CDCl3) δ ppm 211.20 (C=O), 172.22 (C=O), 134.20 (aromatic C), 133.99 

(aromatic C), 131.59 (aromatic C), 129.05 (aromatic C), 127.70 (aromatic C), 127.60 (aromatic 

C), 126.39 (aromatic C), 125.82 (aromatic C), 125.47 (aromatic C), 123.34 (aromatic C), 60.74 

(O-CH2), 48.36 (CH2-CH-CH2), 35.88 (Np-CH2), 35.04 (CH-CH2-C=O), 30.77 (CH3-C=O), 

14.12 (CH2-CH3) 

 

FTIR (CH2Cl2) ῡmax cm
–1

 2982, 1732, 1715, 1371, 1196, 783. 

 

HRMS Calcd for C18H20O3 (M+Na) – 307.1310, found 307.1313. 

 

 

O
O

 
3-(naphthalen-1-ylmethyl)-1-phenylpentane-1,4-dione, 51b 

(RT-2-119) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.10 (d, J = 8.4 Hz, 1H, aromatic H), 7.87 (d, J = 8.1 Hz, 

3H, aromatic H), 7.75 (d, J = 8.0 Hz, 1H, aromatic H), 7.60 – 7.54 (m, 1H, aromatic H), 7.54 – 

7.47 (m, 2H, aromatic H), 7.45 – 7.37 (m, 3H, aromatic H), 7.29 (d, J = 6.9 Hz, 1H, aromatic H), 

3.70 (dt, J = 11.6, 5.8 Hz, 1H, CH2-CH-CH3), 3.59 (dd, J = 17.9, 9.7 Hz, 1H, diastereotopic H), 

3.39 (dd, J = 13.7, 7.4 Hz, 1H, diastereotopic H), 3.17 (dd, J = 13.7, 8.0 Hz, 1H, diastereotopic 

H), 3.06 (dd, J = 18.0, 3.6 Hz, 1H, diastereotopic H), 2.09 (s, 3H, CH3-C=O). 
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13
C NMR (126 MHz, CDCl3) δ ppm 212.13 (C=O), 198.87 (C=O), 136.61 (aromatic C), 134.85 

(aromatic C), 134.30 (aromatic C), 133.64 (aromatic C), 131.96 (aromatic C), 129.36 (aromatic 

C), 128.91 (aromatic C), 128.35 (aromatic C), 128.01 (aromatic C), 127.70 (aromatic C), 126.80 

(aromatic C), 126.18 (aromatic C), 125.79 (aromatic C), 123.79 (aromatic C), 47.51 (CH2-CH-

CH2), 41.30 (CH2-C=O), 35.37 (Ar-CH2), 31.12 (CH3-C=O). 

 

FTIR (CH2Cl2) ῡmax cm
–1

 3059, 2945, 1710, 1682, 1356, 1163, 779, 689 

 

HRMS Calcd for C22H20O2 (M+Na) – 339.1361, found 339.1346. 

 

O
O

OMe

 
1-(4-methoxyphenyl)-3-(naphthalene-1-ylmethyl)pentane-1,4-dione, 51c 

(RT-2-162) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.10 (d, J = 8.4 Hz, 1H, aromatic H), 7.85 (dd, J = 7.6, 5.4 

Hz, 3H, aromatic H), 7.74 (d, J = 8.2 Hz, 1H, aromatic H), 7.53 (dt, J = 14.8, 7.1 Hz, 2H, 

aromatic H), 7.38 (t, J = 7.6 Hz, 1H, aromatic H), 7.29 (d, J = 6.9 Hz, 1H, aromatic H), 6.87 (d, J 

= 8.7 Hz, 2H, aromatic H), 3.83 (s, 3H, O-CH3), 3.68 (qd, J = 8.0, 3.8 Hz, 1H, diastereotopic H), 

3.54 (dd, J = 17.9, 9.6 Hz, 1H, diastereotopic H), 3.36 (dd, J = 13.7, 7.6 Hz, 1H, diastereotopic 

H), 3.17 (dd, J = 13.7, 7.9 Hz, 1H, diastereotopic H), 3.03 (dd, J = 17.9, 3.7 Hz, 1H, 

diastereotopic H), 2.06 (s, 3H, CH3-C=O) 

 
13

C NMR (126 MHz, CDCl3) δ ppm 212.31 (C=O), 197.18 (C=O), 163.75 (aromatic C), 134.81 

(aromatic C), 134.16 (aromatic C), 131.85 (aromatic C), 130.48 (aromatic C), 129.61 (aromatic 

C), 129.17 (aromatic C), 127.80 (aromatic C), 127.58 (aromatic C), 126.55 (aromatic C), 126.00 

(aromatic C), 125.63 (aromatic C), 123.69 (aromatic C), 113.86 (aromatic C), 55.66 (O-CH3), 

47.76 (CH2-CH-CH2), 41.12 (CH2-C=O), 35.42 (Ar-CH2), 31.27 (CH3-C=O) 

 

FTIR (CH2Cl2) ῡmax cm
–1

 2934, 1709, 1672, 1574, 1261, 1169, 802 

 

HRMS Calcd for C23H22O3 (M+H) – 347.1647, found 347.1634. 

 

O
O

 
3-(naphthalen-1-ylmethyl)-1-p-tolylpentane-1,4-dione, 51d 

(RT-2-164) 

 

 
1
H NMR (500 MHz, CDCl3) δ ppm  8.10 (d, J = 8.4 Hz, 1H, aromatic H), 7.86 (d, J = 8.1 Hz, 

1H, aromatic H), 7.75 (dd, J = 12.9, 8.3 Hz, 3H, aromatic H), 7.56 (t, J = 7.6 Hz, 1H, aromatic 

H), 7.49 (t, J = 7.4 Hz, 1H, aromatic H), 7.40 – 7.34 (m, 1H, aromatic H), 7.29 (d, J = 6.9 Hz, 
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1H, aromatic H), 7.20 (d, J = 8.0 Hz, 2H, aromatic H), 3.73 – 3.63 (m, 1H, diastereotopic H), 

3.56 (dd, J = 18.0, 9.6 Hz, 1H, diastereotopic H), 3.37 (dd, J = 13.7, 7.6 Hz, 1H, diastereotopic 

H), 3.18 (dd, J = 13.7, 7.9 Hz, 1H, diastereotopic H), 3.05 (dd, J = 18.0, 3.7 Hz, 1H, 

diastereotopic H), 2.37 (s, 3H, Ar-CH3), 2.06 (s, 3H, CH3-C=O) 

 
13

C NMR (126 MHz, CDCl3) δ 211.84 (aromatic C), 198.19 (aromatic C), 144.16 (aromatic C), 

134.62 (aromatic C), 134.02 (aromatic C), 133.89 (aromatic C), 131.70 (aromatic C), 129.29 

(aromatic C), 129.04 (aromatic C), 128.17 (aromatic C), 127.67 (aromatic C), 127.44 (aromatic 

C), 126.42 (aromatic C), 125.87 (aromatic C), 125.49 (aromatic C), 123.53 (aromatic C), 47.57 

(CH2-CH-CH2), 41.20 (CH2-C=O), 35.28 (Ar-CH2), 31.13 (CH3-C=O), 21.73 (Ar-CH3) 

 

FTIR (CH2Cl2) ῡmax cm
–1

 3045, 2922, 1713, 1678, 1606, 1354, 1165, 781 

 

HRMS Calcd for C23H22O2 (M+Na) – 353.1518, found 353.1492. 

 

O
O

CF3

 
3-(naphthalen-1-ylmethyl)-1-(4-(trifluoromethyl)phenyl)pentane-1,4-dione, 51e 

(RT-2-163) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.08 (d, J = 8.4 Hz, 1H, aromatic H), 7.94 (d, J = 8.0 Hz, 

2H, aromatic H), 7.87 (d, J = 8.0 Hz, 1H, aromatic H), 7.75 (d, J = 8.1 Hz, 1H, aromatic H), 7.66 

(d, J = 8.0 Hz, 2H, aromatic H), 7.60 – 7.54 (m, 1H, aromatic H), 7.50 (t, J = 7.4 Hz, 1H, 

aromatic H), 7.38 (t, J = 7.5 Hz, 1H, aromatic H), 7.29 (d, J = 6.8 Hz, 1H, aromatic H), 3.75 – 

3.65 (m, 1H, diastereotopic H), 3.60 (dd, J = 18.0, 9.8 Hz, 1H, diastereotopic H), 3.42 (dd, J = 

13.7, 7.1 Hz, 1H, diastereotopic H), 3.15 (dd, J = 13.8, 8.4 Hz, 1H, diastereotopic H), 3.00 (dd, J 

= 18.0, 3.3 Hz, 1H, diastereotopic H), 2.12 (s, 3H, CH3-C=O) 

 
13

C NMR (126 MHz, CDCl3) δ 211.80 (C=O), 197.91 (C=O), 139.24 (aromatic C), 134.93 

(aromatic C), 134.72 (aromatic C), 134.52 (aromatic C), 134.30 (aromatic C), 131.97 (aromatic 

C), 129.43 (aromatic C), 128.67 (aromatic C), 128.15 (aromatic C), 127.77 (aromatic C), 126.76 

(aromatic C), 126.25 (aromatic C), 126.00 (aromatic C), 125.97 (aromatic C), 125.80 (aromatic 

C), 123.65 (Ar-CF3), 48.10 (CH2-CH-CH2), 41.61 (CH2-C=O), 35.08 (Ar-CH2), 31.11 (CH3-

C=O) 

 

FTIR (CH2Cl2) ῡmax cm
–1

 1713, 1690, 1410, 1067, 781 

 

HRMS Calcd for C23H19F3O2 (M+Na) – 407.1235, found 407.1218 

 

O
O

OMe
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1-(3-methoxyphenyl)-3-(naphthalen-1-ylmethyl)pentane-1,4-dione, 51f 

(RT-3-296) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.09 (d, J = 8.4 Hz, 1H, aromatic H), 7.86 (d, J = 7.6 Hz, 

1H, aromatic H), 7.74 (d, J = 8.2 Hz, 1H, aromatic H), 7.67 (dd, J = 7.7, 1.8 Hz, 1H, aromatic 

H), 7.58 – 7.52 (m, 1H, aromatic H), 7.51 – 7.46 (m, 1H, aromatic H), 7.44 – 7.39 (m, 1H, 

aromatic H), 7.37 (dd, J = 8.1, 7.1 Hz, 1H, aromatic H), 7.29 (d, J = 6.9 Hz, 1H, aromatic H), 

6.94 (t, J = 7.5 Hz, 1H, aromatic H), 6.89 (d, J = 8.4 Hz, 1H, aromatic H), 3.77 (s, 3H, O-CH3), 

3.62 (ddd, J = 17.1, 7.6, 3.5 Hz, 1H, diastereotopic H), 3.55 (dd, J = 18.3, 9.7 Hz, 1H, 

diastereotopic H), 3.34 (dd, J = 13.7, 7.4 Hz, 1H, diastereotopic H), 3.16 (dd, J = 5.5, 2.0 Hz, 

1H), 3.13 (t, J = 5.5 Hz, 1H, diastereotopic H), 2.08 (s, 3H, CH3-C=O) 

 
13

C NMR (126 MHz, CDCl3) δ 212.80 (C=O), 200.63 (C=O), 159.57 (aromatic C), 135.63 

(aromatic C), 134.61 (aromatic C), 134.54 (aromatic C), 132.46 (aromatic C), 131.11 (aromatic 

C), 129.57 (aromatic C), 128.10 (aromatic C), 128.07 (aromatic C), 127.70 (aromatic C), 126.87 

(aromatic C), 126.35 (aromatic C), 126.04 (aromatic C), 124.28 (aromatic C), 121.23 (aromatic 

C), 112.17 (aromatic C), 55.99 (O-CH3), 48.88 (CH2-CH-CH2), 47.36 (CH2-C=O), 35.69 (Ar-

CH2), 31.52 (CH3-C=O). 

 

FTIR (CH2Cl2) ῡmax cm
–1 

1711, 1666, 1597, 1286, 1163, 779 

 

HRMS Calcd. for C23H22O3 (M+H) – 347.1647, found 347.1633. 

 

MeO
O OMe

 
1-(2-methoxyphenyl)-3-(naphthalene-1-ylmethyl)pentane-1,4-dione, 51g 

(RT-3-295) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.10 (d, J = 8.5 Hz, 1H, aromatic H), 7.86 (d, J = 8.1 Hz, 

1H, aromatic H), 7.75 (d, J = 8.2 Hz, 1H, aromatic H), 7.57 (ddd, J = 8.4, 6.9, 1.3 Hz, 1H, 

aromatic H), 7.53 – 7.47 (m, 1H, aromatic H), 7.47 – 7.43 (m, 1H, aromatic H), 7.38 (dt, J = 5.6, 

3.9 Hz, 2H, aromatic H), 7.31 (dt, J = 6.8, 3.9 Hz, 2H, aromatic h), 7.07 (ddd, J = 8.2, 2.6, 0.9 

Hz, 1H, aromatic H), 3.80 (s, 3H, O-CH3), 3.72 – 3.64 (m, 1H, diastereotopic H), 3.57 (dd, J = 

18.0, 9.7 Hz, 1H, diastereotopic H), 3.38 (dd, J = 13.7, 7.5 Hz, 1H, diastereotopic H), 3.17 (dd, J 

= 13.8, 8.0 Hz, 1H, diastereotopic H), 3.05 (dd, J = 18.0, 3.6 Hz, 1H, diastereotopic H), 2.08 (s, 

3H, CH3-C=O) 

 
13

C NMR (126 MHz, CDCl3) δ ppm  212.01 (C=O), 198.58 (C=O), 159.94 (aromatic C), 137.89 

(aromatic C), 134.72 (aromatic C), 134.21 (aromatic C), 131.88 (aromatic C), 129.76 (aromatic 

C), 129.22 (aromatic C), 127.86 (aromatic C), 127.61 (aromatic C), 126.58 (aromatic C), 126.03 

(aromatic C), 125.65 (aromatic C), 123.64 (aromatic C), 120.93 (aromatic C), 120.07 (aromatic 

C), 112.24 (aromatic C), 55.61 (O-CH3), 47.82 (CH2-CH-CH2), 41.52 (CH2-C=O), 35.37 (Ar-

CH2), 31.17 (CH3-C=O) 
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FTIR (CH2Cl2) ῡmax cm
–1

 1713, 1690, 1325, 1067, 781 

 

HRMS Calcd for C23H22O3 (M+H) – 347.1647, found 347.1668 

 
O

Me

O

O

 
ethyl 3-(naphthalen-2-ylmethyl)-4-oxopentanoate, 51h 

(RT-3-144) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.78 (dd, J = 16.5, 8.1 Hz, 3H, aromatic H), 7.58 (s, 1H, 

aromatic H), 7.50 – 7.40 (m, 2H, aromatic H), 7.30 (d, J = 8.4 Hz, 1H, aromatic H), 4.03 (q, J = 

7.1 Hz, 2H, CH2-CH3), 3.46 – 3.28 (m, 1H, diastereotopic H), 3.08 (dd, J = 13.5, 6.9 Hz, 1H, 

diastereotopic H), 2.83 – 2.67 (m, 2H, CH2-C=O), 2.34 (dd, J = 17.1, 4.2 Hz, 1H, diastereotopic 

H), 2.12 (s, 3H, CH3-C=O), 1.18 (t, J = 7.1 Hz, 3H, CH2-CH3) 
 

13
C NMR (126 MHz, CDCl3) δ ppm 210.93 (C=O), 172.24 (C=O), 135.75 (aromatic C), 133.49 

(aromatic C), 132.26 (aromatic C), 128.49 (aromatic C), 127.72 (aromatic C), 127.64 (aromatic 

C), 127.58 (aromatic C), 127.06 (aromatic C), 126.27 (aromatic C), 125.76 (aromatic C), 60.46 

(CH2-CH3), 49.67 (CH2-CH-CH2), 37.56 (Ar-CH2), 35.08 (CH2-C=O), 30.43 (CH3-C=O), 13.75 

(CH2-CH3) 

 

FTIR (CH2Cl2) ῡmax cm
–1

 2980, 2926, 1730, 1715, 1508, 1371, 1196, 821, 748 

 

HRMS Calcd for C18H20O3 (M+Na) – 307.1310, found 307.1325 

 
O

Me

O  
3-(naphthalen-2-ylmethyl)heptane-2,5-dione, 51i 

(RT-3-252) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.78 (dd, J = 16.5, 8.0 Hz, 3H, aromatic H), 7.57 (s, 1H, 

aromatic H), 7.53 – 7.37 (m, 2H, aromatic H), 7.29 (dd, J = 8.4, 1.7 Hz, 1H, aromatic H), 3.40 

(td, J = 10.3, 3.6 Hz, 1H, diastereotopic H), 3.05 (dd, J = 13.5, 6.9 Hz, 1H, diastereotopic H), 

2.95 (dd, J = 18.1, 10.1 Hz, 1H, diastereotopic H), 2.69 (dd, J = 13.5, 8.5 Hz, 1H, diastereotopic 

H), 2.44 – 2.26 (m, 3H, diastereotopic H), 2.13 (s, 3H, CH3-C=O), 0.96 (t, J = 7.3 Hz, 3H, CH2-

CH3) 

 
13

C NMR (126 MHz, CDCl3) δ ppm 212.10 (C=O), 210.34 (C=O), 136.33 (aromatic C), 133.74 

(aromatic C), 132.60 (aromatic C), 128.77 (aromatic C), 128.01 (aromatic C), 127.85 (aromatic 

C), 127.75 (aromatic C), 127.36 (aromatic C), 126.60 (aromatic C), 126.03 (aromatic C), 48.86 
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(CH2-CH-CH2), 44.09 (CH-CH2-C=O), 38.04 (Ar-CH2), 36.02 (CH2-CH3), 30.78 (CH3-C=O), 

7.84 (CH2-CH3). 

 

FTIR (CH2Cl2) ῡmax cm
–1

 2976, 2937, 1732, 1711, 1360, 1165, 822, 750 

 

HRMS Calcd for C18H20O2 (M+Na) – 291.1361, found 291.1417 

 

O Me
O

 
3-(naphthalen-2-ylmethyl)-1-phenylpentane-1,4-dione, 51j 

(RT-2-194) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.86 (dd, J = 8.4, 1.2 Hz, 2H, aromatic H), 7.80 (d, J = 8.3 

Hz, 2H, aromatic H), 7.77 (d, J = 7.6 Hz, 1H, aromatic H), 7.62 (s, 1H, aromatic H), 7.53 – 7.48 

(m, 1H, aromatic H), 7.45 (dtd, J = 14.1, 6.8, 1.5 Hz, 2H, aromatic H), 7.39 (t, J = 7.7 Hz, 2H, 

aromatic H), 7.35 (dd, J = 8.4, 1.7 Hz, 1H, aromatic H), 3.64 – 3.58 (m, 1H, diastereotopic H), 

3.55 (dd, J = 17.4, 9.9 Hz, 1H, diastereotopic H), 3.14 (dd, J = 13.5, 6.7 Hz, 1H, diastereotopic 

H), 3.00 (dd, J = 17.3, 2.7 Hz, 1H, diastereotopic H), 2.83 (dd, J = 13.5, 7.9 Hz, 1H, 

diastereotopic H), 2.19 (s, 3H, CH3-C=O). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 211.52 (C=O), 198.58 (C=O), 144.99 (aromatic C), 136.39 

(aromatic C), 136.07 (aromatic C), 133.52 (aromatic C), 133.30 (aromatic C), 132.30 (aromatic 

C), 128.58 (aromatic C), 128.52 (aromatic C), 128.05 (aromatic C), 127.71 (aromatic C), 127.58 

(aromatic C), 127.49 (aromatic C), 127.08, (aromatic C), 126.29, (aromatic C), 125.73, (aromatic 

C), 48.41 (CH2-CH-CH2), 40.39 (CH2-C=O), 37.91 (Ar-CH2), 30.81 (CH3-C=O). 

 

FTIR (CH2Cl2) ῡmax cm
–1

 1713, 1682, 1597, 1448, 1163, 750 

 

HRMS Calcd for C22H20O2 (M+H) – 317.1542, found 317.1526 

 

O Me
O

OMe

 
1-(4-methoxyphenyl)-3-(naphthalen-2-ylmethyl)pentane-1,4-dione, 51k 

(RT-2-196) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.85 (d, J = 6.9 Hz, 2H, aromatic H), 7.79 (dd, J = 15.7, 6.8 

Hz, 3H, aromatic H), 7.62 (s, 1H, aromatic H), 7.48 – 7.40 (m, 2H, aromatic H), 7.34 (dd, J = 

8.4, 1.7 Hz, 1H, aromatic H), 6.86 (d, J = 9.0 Hz, 2H, aromatic H), 3.82 (s, 3H, O-CH3), 3.63 – 

3.53 (m, 1H, diastereotopic H), 3.49 (dd, J = 17.7, 9.9 Hz, 1H, diastereotopic H), 3.12 (dd, J = 

13.5, 7.1 Hz, 1H, diastereotpic H), 2.97 (dd, J = 17.7, 3.4 Hz, 1H, diastereotopic H), 2.82 (dd, J 

= 13.5, 8.1 Hz, 1H, diastereotopic H), 2.18 (s, 3H, CH3-C=O) 
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13
C NMR (126 MHz, CDCl3) δ 211.84 (C=O), 197.00 (C=O), 163.55 (aromatic C), 136.20 

(aromatic C), 133.53 (aromatic C), 132.31 (aromatic C), 130.35 (aromatic C), 129.53 (aromatic 

C), 128.49 (aromatic C), 127.71 (aromatic C), 127.59 (aromatic C), 127.48 (aromatic C), 127.14 

(aromatic C), 126.27 (aromatic C), 125.74 (aromatic C), 113.76 (aromatic C), 55.49 (O-CH3), 

48.75 (CH2-CH-CH3), 40.11 (CH2-C=O), 37.94 (Ar-CH2), 30.84 (CH3-C=O). 

 

FTIR (CH2Cl2) ῡmax cm
–1

 1710, 1672, 1574, 1356, 1169, 822, 750 

 

HRMS Calcd for C23H22O3 (M+H) – 347.1647, found 347.1668 

 

N

O

Me

Me  
3-methyl-4-(quinolin-4-yl)butan-2-one, 53a 

(SRM-9-141) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.79 (d, J = 4.3 Hz, 1H, aromatic H), 8.11 (d, J = 8.4 Hz, 

1H, aromatic H), 7.98 (d, J = 8.4 Hz, 1H, aromatic H), 7.70 (t, J = 7.6 Hz, 1H, aromatic H), 7.56 

(t, J = 7.6 Hz, 1H, aromatic H), 7.19 (d, J = 4.2 Hz, 1H, aromatic H), 3.51 (dd, J = 13.3, 5.8 Hz, 

1H, CH2-CH-CH3), 2.98 (dt, J = 20.8, 7.4 Hz, 2H, CH2-CH), 2.11 (s, 3H, CH3-C=O), 1.16 (d, J = 

6.8 Hz, 3H, CH-CH3) 
 

13
C NMR (126 MHz, CDCl3) δ 211.18 (C=O), 150.27 (aromatic H), 148.43 (aromatic H), 

145.85 (aromatic H), 130.64 (aromatic H), 129.42 (aromatic H), 127.80 (aromatic H), 126.82 

(aromatic H), 123.53 (aromatic H), 122.17 (aromatic H), 47.44 (CH-CH3), 34.72 (Ar-CH2), 

29.11 (CH3-C=O), 17.11 (CH-CH3) 

 

FTIR (CH2Cl2) ῡmax cm
–1

 2970, 1713, 1508, 1360, 1169, 878, 762, 579 

 

HRMS Calcd for C14H15NO (M+H) – 214.1232, found 214.1209 

 

N

O

 
3-(quinolin-4-ylmethyl)pentan-2-one, 53b 

(RT-2-236) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.81 – 8.74 (d, J = 4.4 Hz, 1H, aromatic H), 8.16 – 8.09 (d, J 

= 8.4 Hz, 1H, aromatic H), 8.06 – 7.95 (d, J = 9.3 Hz, 1H, aromatic H), 7.76 – 7.68 (m, 1H, 

aromatic H), 7.63 – 7.54 (m, 1H, aromatic H), 7.23 – 7.16 (d, J = 4.4 Hz, 1H, aromatic H), 3.42 – 

3.32 (dd, J = 14.0, 8.4 Hz, 1H, diasterotopic H), 3.17 – 3.09 (dd, J = 14.0, 6.0 Hz, 1H, 

diastereotopic H), 3.01 – 2.92 (m, 1H, diastereotopic H), 2.05 – 1.97 (s, 3H, O=C-CH3), 1.82 – 
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1.73 (m, 1H, diastereotopic H), 1.68 – 1.58 (m, 1H, diastereotopic H), 1.00 – 0.92 (t, J = 7.5 Hz, 

3H, CH2-CH3). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 211.39 (C=O), 150.22 (aromatic C), 148.57 (aromatic C), 

145.88 (aromatic C), 130.58 (aromatic C), 129.33 (aromatic C), 127.47 (aromatic C), 126.76 

(aromatic C), 123.41 (aromatic C), 122.01 (aromatic C), 54.39 (CH2-CH-C=O), 33.04 (Ar-CH2), 

30.44 (O=C-CH3), 25.20 (CH2-CH3), 11.55 (CH2-CH3). 
 

FTIR (CH2Cl2) ῡmax cm
–1

 2962, 1711, 1591, 1508, 1352 1157, 737 

 

HRMS Calcd for C15H18NO (M+H) – 228.1388, found 228.1352. 

 

N

O

Me

 
3-benzyl-4-(quinolin-4-yl)butan-2-one, 53c 

(RT-2-237) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.75 (d, J = 4.4 Hz, 1H, aromatic H), 8.08 (d, J = 8.7 Hz, 

1H, aromatic H), 7.70 – 7.63 (m, 2H, aromatic H), 7.48 (t, J = 8.3 Hz, 1H, aromatic H), 7.31 (t, J 

= 7.3 Hz, 2H, aromatic H), 7.24 (d, J = 12.1 Hz, 2H, aromatic H), 7.17 (dd, J = 11.7, 5.6 Hz, 3H, 

aromatic H), 3.33 (dd, J = 13.0, 9.3 Hz, 1H, diastereotopic H), 3.31 – 3.24 (m, 1H, diastereotopic 

H), 3.17 (dd, J = 13.0, 4.1 Hz, 1H, diastereotopic H), 3.04 (dd, J = 13.5, 7.3 Hz, 1H, 

diastereotpic H), 2.75 (dd, J = 13.5, 7.0 Hz, 1H, diastereotopic H), 1.77 (s, 3H, CH3-C=O) 

 
13

C NMR (126 MHz, CDCl3) δ ppm 210.97 (C=O), 150.14, (aromatic H), 148.45 (aromatic H), 

145.50 (aromatic H), 138.63 (aromatic H), 130.46 (aromatic H), 129.27 (aromatic H), 129.23 

(aromatic H), 128.82 (aromatic H), 127.26 (aromatic H), 126.90 (aromatic H), 126.71 (aromatic 

H), 123.25 (aromatic H), 121.98 (aromatic H), 55.04 (CH2-CH-CH2), 38.79 (Ar-CH2), 33.29 (Ar-

CH2), 31.51 (CH3-C=O). 
 

FTIR (CH2Cl2) ῡmax cm
–1

 1710, 1591, 1364, 1161, 845, 764, 700 

 

HRMS Calcd for C20H19NO (M+H) – 290.1545, found 290.1552 

 

N

O

Me

 
3-(quinolin-4-ylmethyl)hex-5-en-2-one, 53d 

(RT-2-235) 
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1
H NMR (500 MHz, CDCl3) δ ppm 8.76 (d, J = 4.4 Hz, 1H, aromatic H), 8.10 (d, J = 8.4 Hz, 

1H, aromatic H), 7.97 (d, J = 8.4 Hz, 1H, aromatic H), 7.70 (t, J = 7.6 Hz, 1H, aromatic H), 7.56 

(t, J = 8.3 Hz, 1H, aromatic H), 7.18 (d, J = 4.4 Hz, 1H, aromatic H), 5.83 – 5.70 (m, 1H, 

CH=CH2), 5.11 (d, J = 14.8 Hz, 2H, CH=CH2), 3.34 (dd, J = 14.0, 8.6 Hz, 1H, diastereotopic H), 

3.15 (dd, J = 14.0, 5.8 Hz, 1H, diastereotopic H), 3.10 – 3.02 (m, 1H, diastereotopic H), 2.44 (dt, 

J = 14.2, 8.2 Hz, 1H, diastereotopic H), 2.33 – 2.24 (m, 1H, diastereotopic H), 1.97 (s, 3H, CH3-

C=O) 

 
13

C NMR (126 MHz, CDCl3) δ 211.04 (C=O), 150.65 (aromatic C), 150.65 (aromatic C), 149.16 

(aromatic C), 146.23 (aromatic C), 134.97 (CH=CH2), 131.02 (aromatic C), 129.88 (aromatic C),  

127.95 (aromatic C), 127.31 (aromatic C), 123.91 (aromatic C), 122.59 (aromatic C), 118.90 

(CH=CH2), 53.05 (CH2-CH-CH2), 36.84 (Ar-CH2), 33.35 (CH2-CH=CH2), 31.15 (CH3-C=O). 
 

FTIR (CH2Cl2) ῡmax cm
–1

 3074, 2926, 1711, 1640, 1591, 1358, 1167, 760  

 

HRMS Calcd for C16H17NO (M+H) – 240.1388, found 240.1384 

 
O

N O

OMe  
1-(4-methoxyphenyl)-3-(quinolin-4-ylmethyl)pentane-1,4-dione, 53e 

(RT-2-233) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.85 – 8.79 (d, J = 4.4 Hz, 1H, aromatic H), 8.19 – 8.12 (m, 

2H, aromatic H), 7.91 – 7.84 (d, J = 9.0 Hz, 2H, aromatic H), 7.79 – 7.73 (m, 1H, aromatic H), 

7.68 – 7.62 (t, J = 7.1 Hz, 1H aromatic H), 7.26 – 7.24 (d, J = 4.4 Hz, 1H, aromatic H), 6.93 – 

6.88 (d, J = 9.0 Hz, 2H, aromatic H), 3.92 – 3.81 (s, 3H, O-CH3), 3.73 – 3.65 (m, 1H, CH2-CH-

CH2), 3.55 – 3.45 (dd, J = 17.9, 8.7 Hz, 1H, diastereotopic H), 3.43 – 3.33 (dd, J = 13.6, 7.8 Hz, 

1H, diastereotopic H), 3.27 – 3.18 (dd, J = 13.7, 7.5 Hz, 1H, diastereotopic H), 3.11 – 3.01 (dd, J 

= 17.9, 4.6 Hz, 1H, diastereotopic H), 2.17 – 2.05 (s, 3H, O=C-CH3). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 210.96 (C=O), 196.39 (C=O), 163.95 (aromatic C), 149.89 

(aromatic C), 130.50 (aromatic C), 129.82 (aromatic C), 129.32 (aromatic C), 127.50 (aromatic 

C), 127.14 (aromatic C), 123.63 (aromatic C), 121.99 (aromatic C), 113.76 (aromatic C), 55.32 

(CH2-CH-CH3), 47.03 (O-CH3), 40.47 (CH-CH2), 33.91 (Ar-CH2), 30.93 (O=C-CH3). 

 

HRMS Calcd for C22H22NO3 (M+H) – 348.1600, found 348.1565. 
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N

O
O

CF3

 
3-(quinolin-4-ylmethyl)-1-(4-(trifluoromethyl)phenyl)pentane-1,4-dione, 53f 

(RT-2-234) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.85 – 8.80 (d, J = 4.4 Hz, 1H, aromatic H), 8.17 – 8.10 (dd, 

J = 12.5, 8.1 Hz, 2H, aromatic H), 8.00 – 7.95 (d, J = 8.1 Hz, 2H, aromatic H), 7.79 – 7.73 (m, 

2H, aromatic H), 7.72 – 7.69 (d, J = 8.2 Hz, 2H, aromatic H), 7.67 – 7.63 (m, 1H, aromatic H), 

3.76 – 3.66 (m, 2H, CH2-CH-CH2), 3.64 – 3.54 (dd, J = 18.1, 9.2 Hz, 1H, diastereotopic H), 3.46 

– 3.38 (dd, J = 13.7, 7.3 Hz, 1H, diastereotopic H), 3.24 – 3.15 (dd, J = 13.7, 8.0 Hz, 1H, 

diastereotopic H), 3.10 – 3.00 (dd, J = 18.1, 4.0 Hz, 1H, diastereotopic H), 2.22 – 2.09 (s, 3H, 

O=C-CH3). 
 
13

C NMR (126 MHz, CDCl3) δ ppm 210.38 (C=O), 196.88 (aromatic C), 149.77 (aromatic C), 

148.80 (aromatic C), 144.55 (aromatic C), 130.68 (aromatic C), 129.42 (aromatic C), 128.08 

(aromatic C), 127.10 (aromatic C), 125.76 (aromatic C), 123.15 (CF3), 122.11 (aromatic C), 

47.42 (CH2-CH-CH2), 41.14 (Ar-CH2), 34.21 (CH-CH2C-O), 30.54 (O=C-CH3). 
 

FTIR (CH2Cl2) ῡmax cm
–1

 3074, 2926, 1711, 1640, 1591, 1358, 1167, 760  

 

HRMS Calcd for C16H17NO (M+H) – 240.1388, found 240.1384 

 

N

O

Me

O

O

 
ethyl 4-oxo-3-(quinolin-4-ylmethyl)pentanoate, 53g 

(srm9146) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.80 (d, J = 4.4 Hz, 1H, aromatic H), 8.12 (d, J = 8.3 Hz, 

1H, aromatic H), 8.05 (d, J = 8.4 Hz, 1H, aromatic H), 7.73 (t, J = 7.0 Hz, 1H, aromatic H), 7.61 

(t, J = 7.1 Hz, 1H, aromatic H), 7.18 (d, J = 4.4 Hz, 1H, aromatic H), 4.06 (q, J = 7.1 Hz, 2H, 

CH2-CH3), 3.45 (ddd, J = 12.7, 7.7, 5.4 Hz, 1H, diastereotopic H), 3.35 (dd, J = 13.6, 7.5 Hz, 1H, 

diastereotopic H), 3.08 (dd, J = 13.6, 7.8 Hz, 1H, diastereotopic H), 2.81 (dd, J = 17.1, 9.0 Hz, 

1H, diastereotopic H), 2.38 (dd, J = 17.1, 4.9 Hz, 1H, diastereotopic H), 2.07 (s, 3H, CH3-C=O), 

1.20 (t, J = 7.1 Hz, 3H, CH2-CH3) 

 
13

C NMR (126 MHz, CDCl3) δ ppm 210.19 (C=O), 172.14 (C=O), 150.29 (aromatic C), 148.71 

(aromatic C), 144.35 (aromatic C), 130.74 (aromatic C), 129.70 (aromatic C), 127.21 (aromatic 

C), 123.38 (aromatic C), 122.34 (aromatic C), 61.17 (CH2-CH3), 48.25 (CH2-CH-CH2), 36.05 

(Ar-CH2), 33.93 (CH2-C=O), 30.81 (CH3-C=O), 14.31 (CH2-CH3) 
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FTIR (CH2Cl2) ῡmax cm
–1

 2982, 1723, 1709, 1591, 762 

 

HRMS Calcd for C17H19NO3 (M+H) – 286.1443, found 286.1447 

 

N

Me

O

Me

 
3-methyl-4-(quinolin-6-yl)butan-2-one, 53h 

(YA-1-120) 

 
1
H NMR (500 MHz, CDCl3) δ  ppm 8.85 (d, J = 2.5 Hz, 1H, aromatic H), 8.07 (d, J = 9.3 Hz, 

1H, aromatic H), 8.01 (d, J = 8.6 Hz, 1H, aromatic H), 7.55 (s, 1H, aromatic H), 7.52 (dd, J = 

8.6, 2.0 Hz, 1H, aromatic H), 7.36 (dd, J = 8.3, 4.2 Hz, 1H, aromatic HH), 3.18 (dd, J = 13.7, 7.0 

Hz, 1H, diastereotopic H), 2.98 – 2.87 (m, 1H, diastereotopic H), 2.73 (dd, J = 13.7, 7.5 Hz, 1H, 

diastereotopic H), 2.09 (s, 3H, CH3-C=O), 1.12 (d, J = 7.0 Hz, 3H, CH-CH3) 

 
13

C NMR (126 MHz, CDCl3) δ ppm 212.13 (C=O), 150.25 (aromatic C), 147.49 (aromatic C), 

138.54 (aromatic C), 135.96 (aromatic C), 131.34 (aromatic C), 129.86 (aromatic C), 128.63 

(aromatic C), 127.53 (aromatic C), 121.66 (aromatic C), 49.01 (CH-CH3), 38.83 (Ar-CH2), 29.55 

(CH3-C=O), 16.52 (CH-CH3) 

 

FTIR (CH2Cl2) ῡmax cm
–1

 2359, 1709, 1500, 1456, 1362, 837, 798 

 

HRMS Calcd for C14H15NO (M+H) – 214.1232, found 214.1222 
 

N

Me

O  
3-benzyl-4-(quinolin-6-yl)butan-2-one, 53i 

(RT-3-275) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.84 (dd, J = 4.2, 1.7 Hz, 1H, aromatic H), 8.06 (d, J = 6.8 

Hz, 1H, aromatic H), 8.00 (d, J = 8.6 Hz, 1H, aromatic H), 7.53 (d, J = 1.7 Hz, 1H, aromatic H), 

7.49 (dd, J = 8.6, 2.0 Hz, 1H, aromatic H), 7.36 (dd, J = 8.3, 4.2 Hz, 1H, aromatic H), 7.27 (t, J = 

7.4 Hz, 2H, aromatic H), 7.19 (t, J = 8.0 Hz, 1H, aromatic H), 7.14 (d, J = 8.3 Hz, 2H, aromatic 

H), 3.25 (tt, J = 11.9, 5.9 Hz, 1H, diastereotopic H), 3.10 (dd, J = 13.6, 9.2 Hz, 1H, 

diastereotopic H), 2.96 (dd, J = 13.6, 8.6 Hz, 1H, diastereotopic H), 2.88 (dd, J = 13.6, 5.6 Hz, 

1H, diastereotopic H), 2.75 (dd, J = 13.6, 6.2 Hz, 1H, diastereotopic H), 1.75 (s, 3H, CH3-C=O) 

 
13

C NMR (126 MHz, CDCl3) δ ppm 212.12 (C=O), 150.45 (aromatic C), 147.56 (aromatic C), 

139.36 (aromatic C), 138.19 (aromatic C), 136.06 (aromatic C), 131.05 (aromatic C), 130.00 

(aromatic C), 129.23 (aromatic C), 128.91 (aromatic C), 128.61 (aromatic C), 127.58 (aromatic 
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C), 126.84 (aromatic C), 121.59 (aromatic C), 56.12 (CH-CH2), 38.85 (Ar-CH2), 38.26 (Ar-

CH2), 32.02 (CH3-C=O) 
 

FTIR (CH2Cl2) ῡmax cm
–1

 1711, 1499, 1369, 1161, 837, 700 

 

HRMS Calcd for C20H19NO (M+H) – 290.1545, found 290.1533. 
 

N

Me

O  
3-(quinolin-6-ylmethyl)hex-5-en-2-one, 53j 

(RT-3-274) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.84 (d, J = 5.9 Hz, 1H, aromatic H), 8.06 (d, J = 7.8 Hz, 

1H, aromatic H), 8.01 (d, J = 8.6 Hz, 1H, aromatic H), 7.57 – 7.47 (m, 2H, aromatic H), 7.35 

(dd, J = 8.3, 4.2 Hz, 1H, aromatic H), 5.80 – 5.64 (m, 1H, CH=CH2), 5.11 – 5.00 (m, 2H, 

CH=CH2), 3.07 (dd, J = 13.3, 8.5 Hz, 1H, diastereotopic H), 3.04 – 2.95 (m, 1H, diastereotopic 

H), 2.86 (dd, J = 13.3, 5.8 Hz, 1H, diastereotopic H), 2.43 – 2.34 (m, 1H, diastereotopic H), 2.28 

– 2.19 (m, 1H, diastereotopic H), 1.97 (s, 3H, CH3-C=O) 

 
13

C NMR (126 MHz, CDCl3) δ 211.52 (C=O), 150.35 (aromatic H), 147.48 (aromatic H), 

138.24 (aromatic H), 136.04 (aromatic H), 135.12 (CH=CH2), 131.20 (aromatic H), 129.86 

(aromatic H), 128.57 (aromatic H), 127.52 (aromatic H), 121.61 (aromatic H), 117.88 

(CH=CH2), 54.02 (CH-CH2), 37.55 (Ar-CH2), 36.07 (CH2-CH=CH2), 30.73 (CH3-C=O) 
 

FTIR (CH2Cl2) ῡmax cm
–1

 3074, 3011, 2924, 1709, 1640, 1362, 1161, 837 

 

HRMS Calcd for C16H17NO (M+H) – 240.1388, found 240.1362 

 

N

Me

O

O

O

 
ethyl 4-oxo-3-(quinolin-6-ylmethyl)pentanoate, 53k 

(RT-3-74) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.87 (d, J = 5.9 Hz, 1H, aromatic H), 8.06 (dd, J = 18.2, 8.3 

Hz, 2H, aromatic H), 7.54 (d, J = 8.4 Hz, 2H, aromatic H), 7.38 (dd, J = 8.3, 4.2 Hz, 1H, 

aromatic H), 4.08 – 3.99 (m, 2H, CH2-CH3), 3.36 (dt, J = 14.5, 7.7 Hz, 1H, diastereotopic H), 

3.10 (dd, J = 13.6, 7.2 Hz, 1H, diastereotopic H), 2.82 – 2.73 (m, 2H, diastereotopic H), 2.34 (dd, 

J = 17.1, 4.4 Hz, 1H, diastereotopic H), 2.11 (s, 3H, CH3-C=O), 1.18 (t, J = 7.1 Hz, 3H, CH2-

CH3) 
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13
C NMR (126 MHz, CDCl3) δ ppm 210.83 (C=O), 172.47 (C=O), 150.64, 147.43, 137.01, 

136.05, 130.99, 130.29, 128.49, 127.72, 121.79, 61.13 (CH2-CH3), 49.77 (CH2-CH-CH2), 37.93 

(Ar-CH2), 35.85 (CH2-C=O), 30.84 (CH3-C=O), 14.44 (CH2-CH3) 
 

FTIR (CH2Cl2) ῡmax cm
–1

 1728, 1713, 1501, 1196, 1163, 1027, 841 

 

HRMS Calcd for C17H19NO3 (M+H) – 286.1443, found 286.1414. 

 
O

N
O

OMe  
1-(4-methoxyphenyl)-3-(quinolin-6-ylmethyl)pentane-1,4-dione, 53l 

(RT-3-76) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.95 – 8.82 (s, 1H, aromatic H), 8.13 – 8.03 (dd, J = 15.6, 

9.3 Hz, 2H, aromatic H), 7.90 – 7.83 (d, J = 9.0 Hz, 2H, aromatic H), 7.63 – 7.57 (m, 2H, 

aromatic H), 7.43 – 7.36 (dd, J = 8.3, 4.2 Hz, 1H, aromatic H), 6.92 – 6.85 (d, J = 9.0 Hz, 2H, 

aromatic H), 3.88 – 3.82 (s, 3H, O-CH3), 3.65 – 3.57 (m, 1H, CH2-CH-CH2), 3.54 – 3.45 (dd, J = 

17.7, 9.6 Hz, 1H, diastereotopic H), 3.20 – 3.12 (dd, J = 13.6, 7.5 Hz, 1H, diastereotopic H), 3.04 

– 2.95 (dd, J = 17.7, 3.8 Hz, 1H, diastereotopic H), 2.92 – 2.84 (dd, J = 13.6, 7.7 Hz, 1H, 

diastereotopic H), 2.21 – 2.14 (s, 3H, O=C-CH3). 

 
13

C NMR (126 MHz, CDCl3) δ 211.73 (C=O), 196.59 (aromatic C), 163.95 (aromatic C), 150.12 

(aromatic C), 147.16 (aromatic C), 136.94 (aromatic C), 135.67 (aromatic C), 131.06 (aromatic 

C), 130.39 (aromatic C), 129.71 (aromatic C), 129.04 (aromatic C), 127.11 (aromatic C), 121.50 

(aromatic C), 113.60 (aromatic C), 55.28 (O-CH3), 48.67 (CH2-CH-CH2), 40.44 (Ar-CH2), 37.48 

(CH-CH2-C=O), 30.55 (O=C-CH3). 
 

FTIR (CH2Cl2) ῡmax cm
–1

 1711, 1672, 1599, 1574, 1501, 1259, 1169, 833, 797 

 

HRMS Calcd for C22H22NO3 (M+H) – 348.1600, found 348.1583. 

 

O
O

N  
3-(quinolin-6-ylmethyl)heptane-2,5-dione, 54 

(RT-3-78) 

 
1
H NMR (500 MHz, CDCl3) δ 8.83 – 8.79 (d, J = 4.4 Hz, 1H, aromatic H), 8.18 – 8.13 (d, J = 

7.8 Hz, 1H, aromatic H), 8.11 – 8.06 (d, J = 8.4 Hz, 1H, aromatic H), 7.78 – 7.72 (m, 1H, 

aromatic H), 7.66 – 7.60 (m, 1H, aromatic H), 7.21 – 7.17 (d, J = 4.4 Hz, 1H, aromatic H), 3.55 – 

3.46 (ddt, J = 12.2, 7.8, 4.4 Hz, 1H, CH2-CH-CH2), 3.41 – 3.26 (m, 1H, diastereotopic H), 3.11 – 
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2.88 (m, 2H, CH2-CH3), 2.52 – 2.44 (dd, J = 18.2, 4.4 Hz, 1H, diastereotopic H), 2.44 – 2.32 (m, 

2H), 2.12 – 2.05 (s, 3H, O=C-CH3), 1.04 – 0.95 (t, J = 7.3 Hz, 3H, CH2-CH3). 

 
13

C NMR (126 MHz, CDCl3) δ 210.73 (C=O), 209.39 (C=O), 150.04 (aromatic C), 148.38 

(aromatic C), 144.64 (aromatic C), 130.38 (aromatic C), 129.60 (aromatic C), 127.03 (aromatic 

C), 126.87 (aromatic C), 123.43 (aromatic C), 121.94 (aromatic C), 120.71 (aromatic C), 47.14 

(CH2-CH-CH2), 44.17 (Ar-CH2), 35.78 (CH-CH2-C=O), 33.80 (O=C-CH2-CH3), 30.80 (O-C-

CH3), 7.68 (CH2-CH3). 
 

FTIR (CH2Cl2) ῡmax cm
–1

 1709, 1591, 1508, 1360, 1115, 764 

 

HRMS Calcd for C17H20NO2 (M+H) – 270.1494, found 270.1499. 

 

Me
Me Me

O

 
3,3-dimethyl-4-(naphthalene-1-yl)butan-2-one, 55a 

(RT-4-141) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.04 (d, J = 8.4 Hz, 1H, aromatic H), 7.82 (d, J = 9.3 Hz, 

1H, aromatic H), 7.72 (d, J = 8.2 Hz, 1H, aromatic H), 7.50 – 7.42 (m, 2H, aromatic H), 7.40 – 

7.36 (m, 1H, aromatic H), 7.24 (d, J = 6.5 Hz, 1H, aromatic H), 3.31 (s, 2H, Ar-CH2), 2.08 (s, 

3H, CH3-C=O), 1.15 (s, 6H, CH3-C-CH3) 
 

13
C NMR (126 MHz, CDCl3) δ ppm 214.50 (C=O), 134.28 (aromatic C), 133.89 (aromatic C), 

133.05 (aromatic C), 128.79 (aromatic C), 128.42 (aromatic C), 127.27 (aromatic C), 125.73 

(aromatic C), 125.42 (aromatic C), 125.11 (aromatic C), 124.52 (aromatic C), 49.27 (CH3-C-

CH3), 40.12 (Ar-CH2), 26.36 (CH3-C=O), 24.83 (CH3-C-CH3) 

 

FTIR (CH2Cl2) ῡmax cm
–1

 2968, 1701, 1352, 1117, 779, 453 

 

HRMS Calcd for C16H18O (M+Na) – 249.1255, found 249.1263. 

 

O Me  
3-methyl-3-(naphthalene-1-ylmethyl)pentan-2-one, 55b 

(RT-4-71) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.04 (d, J = 8.5 Hz, 1H, aromatic H), 7.82 (d, J = 9.5 Hz, 

1H, aromatic H), 7.71 (d, J = 8.2 Hz, 1H, aromatic H), 7.46 (dtd, J = 14.5, 6.8, 1.4 Hz, 2H, 

aromatic H), 7.37 (dd, J = 8.1, 7.2 Hz, 1H, aromatic H), 3.31 (dd, J = 72.7, 14.3 Hz, 2H, 

diastereoptopic H), 2.03 (s, 3H, CH3-C=O), 1.93 (dq, J = 14.8, 7.4 Hz, 1H, diastereotopic H), 
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1.51 (dt, J = 14.1, 7.5 Hz, 1H, diastereotopic H), 1.06 (s, 3H, CH3-C-C=O), 0.85 (t, J = 7.5 Hz, 

3H, CH2-CH3) 
 

13
C NMR (126 MHz, CDCl3) δ ppm 214.38 (C=O), 134.29 (aromatic C), 133.90 (aromatic C), 

133.12 (aromatic C), 128.82 (aromatic C), 128.15 (aromatic C), 127.25 (aromatic C), 125.75 

(aromatic C), 125.43 (aromatic C), 125.17 (aromatic C), 124.47 (aromatic C), 53.24 (CH3-C-

C=O), 39.29 (Ar-CH2), 31.89 (CH2-CH3), 27.04 (CH3-C=O), 20.52 (CH3-C), 9.19 (CH2-CH3) 

 

FTIR (CH2Cl2) ῡmax cm
–1

 2968, 2937, 1701, 1462, 1354, 1177, 800, 781, 434 

 

HRMS Calcd for C17H20O (M+H) – 241.1592, found 241.1609 

 

O Me  
3-benzyl-3-methyl-4-(naphthalene-1-yl)butan-2-one, 55c 

(RT-4-40) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.01 (dd, J = 8.5, 7.4 Hz, 1H, aromatic H), 7.83 (dd, J = 7.4, 

2.1 Hz, 1H, aromatic H), 7.73 (d, J = 8.2 Hz, 1H, aromatic H), 7.46 (pd, J = 6.8, 1.5 Hz, 2H, 

aromatic H), 7.40 – 7.34 (m, 1H, aromatic H), 7.27 – 7.22 (m, 3H, aromatic H), 7.20 (d, J = 7.1 

Hz, 1H, aromatic H), 7.10 – 7.07 (m, 2H, aromatic H), 3.53 (d, J = 14.2 Hz, 1H, diastereotopic 

H), 3.30 (t, J = 13.6 Hz, 2H, diastereotopic H), 2.72 (d, J = 13.2 Hz, 1H, diastereotopic H), 1.78 

(s, 3H, CH3-C=O), 1.10 (s, 3H, CH3-C-C=O) 

 
13

C NMR (126 MHz, CDCl3) δ ppm 215.28 (C=O), 137.92 (aromatic C), 134.34 (aromatic C)v, 

134.21 (aromatic C), 133.29 (aromatic C), 130.77 (aromatic C), 129.10 (aromatic C), 128.59 

(aromatic C), 128.45 (aromatic C), 127.66 (aromatic C), 126.81 (aromatic C), 126.12 (aromatic 

C), 125.78 (aromatic C), 125.51 (aromatic C), 124.75 (aromatic C), 54.01 (CH2-C-CH2), 46.16 

(Ph-CH2), 40.96 (Np-CH2), 29.24 (CH3-C=O), 21.28 (CH3-C) 

 

FTIR (CH2Cl2) ῡmax cm
–1

 2940, 1701, 1454, 1352, 1094, 779, 704 

 

HRMS Calcd for C22H22O (M+Na) – 325.1568, found 325.1571. 

 

Me

O

Me

 
3-methyl-3-(naphthalene-1-ylmethyl)hex-5-en-2-one, 55d 

(RT-4-126) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.96 (d, J = 8.2 Hz, 1H, aromatic H), 7.85 (dd, J = 12.6, 8.1 

Hz, 2H, aromatic H), 7.52 (td, J = 14.2, 6.8 Hz, 3H, aromatic H), 7.44 (d, J = 7.2 Hz, 1H, 
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aromatic H), 5.61 (d, J = 3.1 Hz, 2H, CH=CH2), 5.57 (ddd, J = 14.8, 7.9, 5.2 Hz, 1H, CH=CH2), 

5.00 (s, 1H, diastereotopic H), 4.98 (d, J = 8.0 Hz, 1H, diastereotopic H), 2.61 (dd, J = 14.0, 7.1 

Hz, 1H, diastereotopic H), 2.47 (dd, J = 14.1, 7.5 Hz, 1H, diastereotopic H), 1.97 (s, 3H, CH3-

C=O), 1.31 (s, 3H, CH3-C) 
 

13
C NMR (126 MHz, CDCl3) δ ppm 204.92 (C=O), 172.62 (aromatic C), 133.93 (CH=CH2), 

132.68 (aromatic C), 131.82 (aromatic C), 130.94 (aromatic C), 129.71 (aromatic C), 128.86 

(aromatic C), 128.16 (aromatic C), 126.93 (aromatic C), 126.24 (aromatic C), 125.36 (aromatic 

C), 123.61 (aromatic C), 119.07 (CH=CH2), 65.63 (CH3-C-CH2), 59.67 (CH2-CH=CH2), 39.37 

(Ar-CH2), 26.28 CH3-C=O), 19.10 (CH3-C) 

 

FTIR (CH2Cl2) ῡmax cm
–1

 3072, 2980, 2341, 1713, 1225, 1140, 777, 424 

 

HRMS Calcd for C18H20O (M+H) – 253.1592, found 253.1502. 

 

Me

O

O

O Me

 
ethyl 3-methyl-3-(naphthalene-1-ylmethyl)-4-oxopentanoate, 55e 

(RT-3-123) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.00 (d, J = 8.4 Hz, 1H, aromatic H), 7.83 (d, J = 7.8 Hz, 

1H, aromatic H), 7.74 (d, J = 8.2 Hz, 1H, aromatic H), 7.47 (tdd, J = 14.4, 6.8, 1.4 Hz, 2H, 

aromatic H), 7.38 (dd, J = 8.1, 7.1 Hz, 1H, aromatic H), 7.25 (s, 1H, aromatic H), 4.08 (qd, J = 

7.1, 2.0 Hz, 2H), CH2-CH3, 3.33 (dd, J = 41.3, 14.0 Hz, 2H, diastereotopic H), 2.97 (d, J = 16.7 

Hz, 1H, diastereotopic H), 2.38 (d, J = 16.7 Hz, 1H, diastereotopic H), 2.06 (s, 3H, CH3-C=O), 

1.25 (s, 3H, CH3-C), 1.20 (t, J = 7.1 Hz, 3H, CH2-CH3) 

 
13

C NMR (126 MHz, CDCl3) δ ppm 213.53 (C=O), 171.99 (C=O), 134.24 (aromatic C), 133.34 

(aromatic C), 133.29 (aromatic C), 129.23 (aromatic C), 129.15 (aromatic C), 128.01 (aromatic 

C), 126.27 (aromatic C), 125.87 (aromatic C), 125.41 (aromatic C), 124.65 (aromatic C), 60.88 

(CH2-CH3), 50.92 (CH3-C-C=O), 43.51 (CH2-C=O), 40.06 (Ar-CH2), 27.71 (CH3-C=O), 22.31 

(CH3-C), 14.46 (CH2-CH3) 

 

FTIR (CH2Cl2) ῡmax cm
–1

 2975, 1709, 1703, 1460, 1111, 802, 781 

 

HRMS Calcd for C19H22O3 (M+Na) – 321.1467, found 321.1449 

 

Me

O

O

Me
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3-methyl-3-(naphthalen-1-ylmethyl)heptane-2,5-dione, 55f 

(RT-5-90) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.98 (d, J = 8.0 Hz, 1H, aromatic H), 7.83 (d, J = 7.5 Hz, 

1H, aromatic H), 7.74 (d, J = 8.0 Hz, 1H, aromatic H), 7.51 – 7.42 (m, 2H, aromatic H), 7.38 (t, J 

= 7.6 Hz, 1H, aromatic H), 7.22 (d, J = 7.0 Hz, 1H, aromatic H), 3.31 (s, 2H, Ar-CH2), 3.04 (d, J 

= 18.1 Hz, 1H, diastereotopic H), 2.53 (d, J = 18.1 Hz, 1H, diastereotopic H), 2.32 – 2.26 (m, 

2H, CH2-CH3), 2.06 (s, 3H, CH3-C=O), 1.22 (s, 3H, C-CH3), 0.98 (t, J = 7.3 Hz, 3H, CH2-CH3) 

 
13

C NMR (126 MHz, CDCl3) δ ppm 213.75 (C=O), 209.37 (C=O), 133.90 (aromatic C), 133.30 

(aromatic C), 132.97 (aromatic C), 128.89 (aromatic C), 128.78 (aromatic C), 127.55 (aromatic 

C), 125.82 (aromatic C), 125.48 (aromatic C), 124.98 (aromatic C), 124.35 (aromatic C), 51.54 

(C-CH2-C=O), 50.13 (C-CH3), 39.79 (Ar-CH2), 35.97 (CH2-CH3), 27.35 (CH3-C=O), 22.41 (C-

CH3), 7.53 (CH2-CH3). 
 

FTIR (CH2Cl2) ῡmax cm
–1

 1713, 1709, 1460, 1354, 1111, 802, 781 

 

HRMS Calcd for C19H22O2 (M+Na) – 305.1518, found 305.1518. 

 

O

Me

 
3-allyl-3-(naphthalen-1-ylmethyl)hex-5-en-2-one, 55g 

(RT-5-74) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.13 (d, J = 8.3 Hz, 1H, aromatic H), 8.04 – 7.98 (m, 2H, 

aromatic H), 7.52 – 7.50 (m, 1H, aromatic H), 7.48 (dd, J = 3.3, 1.6 Hz, 1H, aromatic H), 7.37 

(d, J = 3.5 Hz, 1H, aromatic H), 7.31 (d, J = 6.9 Hz, 1H, aromatic H), 5.79 – 5.68 (m, 2H, 

CH=CH2), 5.15 – 5.04 (m, 4H, CH=CH2), 3.36 (s, 2H, Ar-CH2), 2.57 – 2.42 (m, 4H, CH2-

CH=CH2), 1.88 (s, 3H, CH3-C=O) 

 
13

C NMR (126 MHz, CDCl3) δ ppm 213.71 (C=O), 138.74 (aromatic C), 134.44 (CH=CH2) 

129.47 (aromatic C), 129.15 (aromatic C), 128.02 (aromatic C), 127.47 (aromatic C), 126.58 

(aromatic C), 126.17 (aromatic C), 125.70 (aromatic C), 124.71 (aromatic C), 124.56 (aromatic 

C), 124.30 (aromatic C), 119.61 (CH=CH2), 53.67 (C-CH2), 39.11 (Ar-CH2), 37.86 (CH2-

CH=CH2), 28.26 (CH3-C=O). 
 

FTIR (CH2Cl2) ῡmax cm
–1

 3067, 3007, 2928, 1703, 1441, 1354, 918, 777 

 

HRMS Calcd for C20H22O (M+H) – 279.1749, found 279.1750. 
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Me

O

 
1-(1-(naphthalene-1-ylmethyl)cyclohexyl)ethanone, 55h 

(RT-5-75) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.01 (d, J = 8.4 Hz, 1H, aromatic H), 7.82 (d, J = 7.9 Hz, 

1H, aromatic H), 7.72 (d, J = 8.2 Hz, 1H, aromatic H), 7.46 (dtd, J = 14.5, 6.8, 1.4 Hz, 2H, 

aromatic H), 7.38 (dd, J = 8.1, 7.1 Hz, 1H, aromatic H), 7.22 (d, J = 7.1 Hz, 1H, aromatic H), 

3.18 (s, 2H, Ar-CH2), 2.18 (d, J = 13.4 Hz, 2H, Cy-CH2), 1.94 (s, 3H, (CH3-C=O), 1.58 (t, J = 

4.9 Hz, 1H, cyclohexyl H), 1.53 (d, J = 8.4 Hz, 1H, cyclohexyl H), 1.33 (td, J = 13.1, 3.4 Hz, 

2H, cyclohexyl H), 1.23 – 1.13 (m, 2H, cyclohexyl H), 1.13 – 1.03 (m, 1H, cyclohexyl H) 

 
13

C NMR (126 MHz, CDCl3) δ ppm 214.37 (C=O), 134.13 (aromatic H), 133.63 (aromatic H), 

133.32 (aromatic H), 129.04 (aromatic H), 128.90 (aromatic H), 127.73 (aromatic H), 126.09 

(aromatic H), 125.77 (aromatic H), 125.32 (aromatic H), 124.80 (aromatic H), 54.49 (C-C=O), 

42.26 (Ar-CH2), 34.21 (cyclohexyl C), 27.19 (CH3-C=O), 25.99 (cyclohexyl C), 23.92 

(cyclohexyl C) 

 

FTIR (CH2Cl2) ῡmax cm
–1

 2932, 1697, 1454, 1352, 1124, 779 

 

HRMS Calcd. for C19H22O (M+Na) – 289.1568, found 289.1557. 

 

O

Me
 

2-methyl-2-(naphthalen-1-ylmethyl)cyclopentanone, 55i 

(RT-7-135) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.05 (d, J = 8.5 Hz, 1H, aromatic H), 7.82 (d, J = 8.0 Hz, 

1H, aromatic H), 7.71 (d, J = 8.2 Hz, 1H, aromatic H), 7.47 (dtd, J = 16.1, 6.8, 1.3 Hz, 2H, 

aromatic H), 7.39 – 7.33 (m, 1H, aromatic H), 7.27 (d, J = 7.1 Hz, 1H, aromatic H), 3.27 (s, 2H, 

Ar-CH2), 2.27 (ddd, J = 12.2, 8.3, 2.6 Hz, 1H, diastereotopic H), 1.98 – 1.89 (m, 1H, 

diastereotopic H), 1.83 (dt, J = 12.4, 7.5 Hz, 1H, diastereotopic H), 1.76 – 1.68 (m, 1H, 

diastereotopic H), 1.68 – 1.65 (m, 1H, diastereotopic H), 1.65 – 1.61 (m, 1H, diastereotopic H), 

1.09 (s, 3H, C-CH3) 

 
13

C NMR (126 MHz, CDCl3) δ ppm 193.82 (C=O), 134.95, 133.99, 133.28, 128.92, 128.63, 

127.36, 125.93, 125.59, 125.54, 124.68, 50.93 (C-CH3), 38.07 (Ar-CH2), 35.17 (CH2-C=O), 

23.67 (C-CH3), 18.76 (CH2-CH2-CH2) 

 
FTIR (CH2Cl2) ῡmax cm

–1
 2961, 2930, 1732, 1456, 1161, 1064, 800, 779 

 

HRMS Calcd for C17H18O (M+H) – 239.1436, found 239.1400. 
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O

Me
 

2-methyl-2-(naphthalen-1-ylmethyl)cyclohexanone, 55k 

(RT-10-67) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.10 – 8.04 (d, J = 8.0 Hz, 1H), 7.86 – 7.80 (d, J = 7.6 Hz, 

1H), 7.74 – 7.68 (d, J = 7.9 Hz, 1H), 7.50 – 7.41 (dt, J = 14.3, 7.3 Hz, 2H), 7.41 – 7.35 (t, J = 7.6 

Hz, 1H), 7.31 – 7.27 (d, J = 7.1 Hz, 1H), 3.51 – 3.29 (dd, J = 66.8, 14.3 Hz, 2H), 2.55 – 2.46 (t, J 

= 6.7 Hz, 2H), 1.94 – 1.75 (m, 4H), 1.75 – 1.66 (dt, J = 8.8, 4.8 Hz, 1H), 1.62 – 1.55 (m, 1H), 

1.08 – 1.00 (s, 3H). 
 
13

C NMR (126 MHz, CDCl3) δ ppm 216.08, 134.59, 133.99, 133.54, 128.87, 128.77, 127.21, 

125.70, 125.41, 125.20, 125.13, 124.83, 50.27, 39.07, 38.63, 37.88, 27.27, 23.36, 21.26. 
 

HRMS Calcd for C18H20ONa (M+Na) – 275.1412, found 275.1433. 

 

O

Bn
 

2-benzyl-2-(naphthalen-1-ylmethyl)cyclohexanone, 55l 

(RT-10-68) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.87 – 7.75 (t, J = 7.4 Hz, 2H), 7.74 – 7.66 (d, J = 7.7 Hz, 

1H), 7.45 – 7.30 (m, 4H), 7.29 – 7.26 (m, 1H), 7.24 – 7.17 (dd, J = 8.6, 4.7 Hz, 2H), 7.14 – 7.03 

(d, J = 7.3 Hz, 2H), 3.60 – 3.49 (d, J = 14.6 Hz, 1H), 3.33 – 3.16 (m, 2H), 2.83 – 2.74 (d, J = 

13.6 Hz, 1H), 2.45 – 2.34 (m, 2H), 1.77 – 1.56 (m, 6H). 
 
13

C NMR (126 MHz, CDCl3) δ ppm 215.14, 137.64, 134.61, 133.91, 133.56, 130.98, 129.28, 

128.90, 128.65, 128.43, 128.23, 127.17, 126.63, 125.82, 125.45, 125.39, 124.38, 54.77, 42.75, 

39.96, 36.14, 33.38, 25.64, 20.88. 
 

HRMS Calcd for C24H24ONa (M+Na) – 351.1725, found 351.1725. 

 

O

 
2-allyl-2-(naphthalen-1-ylmethyl)cyclohexanone, 55m 

(RT-10-101) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.08 – 8.02 (d, J = 8.2 Hz, 1H), 7.85 – 7.79 (d, J = 7.7 Hz, 

1H), 7.74 – 7.66 (d, J = 8.1 Hz, 1H), 7.51 – 7.41 (dd, J = 16.6, 7.7 Hz, 2H), 7.41 – 7.31 (m, 2H), 

5.83 – 5.67 (m, 1H), 5.15 – 4.99 (dt, J = 16.9, 9.7 Hz, 2H), 3.61 – 3.21 (dd, J = 136.8, 14.4 Hz, 
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3H), 2.53 – 2.36 (m, 1H), 2.36 – 2.22 (dd, J = 14.1, 7.7 Hz, 1H), 1.90 – 1.74 (dt, J = 17.6, 4.9 

Hz, 1H), 1.75 – 1.57 (m, 5H). 
 
13

C NMR (126 MHz, CDCl3) δ ppm 214.60, 134.71, 133.95, 133.83, 133.58, 128.92, 127.18, 

125.75, 125.41, 125.34, 124.64, 118.59, 53.74, 40.31, 39.81, 35.61, 34.94, 26.39, 20.90. 
 

HRMS Calcd for C20H22ONa (M+Na) – 301.1568, found 301.1583. 

 

N

O

Me Me

 
3,3-dimethyl-4-(quinolin-6-yl)butan-2-one, 56a 

(RT-11-166) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 8.92 – 8.80 (d, J = 4.0 Hz, 1H), 8.14 – 8.04 (d, J = 8.3 Hz, 

1H), 8.04 – 7.96 (d, J = 8.6 z, 1H), 3.05 – 2.94 (s, 2H), 2.17 – 2.07 (s, 1H), 1.22 – 1.11 (s, 3H). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 213.63, 150.03, 147.16, 136.62, 135.64, 132.66, 128.33, 

128.03, 121.11, 48.63, 44.69, 25.97, 24.61. 

 

HRMS Calcd for C15H18NO (M+H) – 228.1388; found 228.1381. 

 

N

O

 
3-methyl-3-(quinolin-4-ylmethyl)hex-5-en-2-one, 56b  

(RT-11-194B) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.83 – 8.75 (d, J = 4.5 Hz, 2H), 8.17 – 8.09 (d, J = 8.4 Hz, 

3H), 8.09 – 8.01 (d, J = 8.5 Hz, 3H), 7.75 – 7.67 (m, 1H), 7.60 – 7.53 (m, 1H), 7.21 – 7.14 (d, J 

= 4.5 Hz, 2H), 5.78 – 5.65 (ddt, J = 17.2, 10.2, 7.3 Hz, 2H), 5.19 – 5.07 (m, 5H), 3.54 – 3.19 (dd, 

J = 121.6, 14.1 Hz, 4H), 2.61 – 2.54 (dd, J = 14.0, 6.9 Hz, 3H), 2.32 – 2.21 (m, 2H), 2.11 – 2.01 

(s, 5H), 1.19 – 1.04 (s, 6H). 
 
13

C NMR (126 MHz, CDCl3) δ ppm 212.95, 149.43, 133.25, 130.23, 129.43, 128.63, 126.58, 

124.25, 122.76, 119.12, 52.60, 43.74, 37.84, 27.25, 21.00. 

 

HRMS Calcd for C17H20NO (M+H) – 254.1545; found 254.1532. 
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N

O

Me

OEt
O

 
ethyl 3-methyl-4-oxo-3-(quinolin-4-ylmethyl)pentanoate, 56c 

(RT-11-165) 

 
1
H NMR (500 MHz, CDCl3) δ ppm  8.87 – 8.79 (d, J = 4.2 Hz, 1H), 8.22 – 8.15 (d, J = 8.4 Hz, 

1H), 8.08 –  8.00 (d, J = 8.4 Hz, 1H), 7.79 – 7.71 (t, J = 7.2 Hz, 1H), 7.60 – 7.53 (t, J = 7.7 Hz, 

1H), 7.33 – 7.28 (d, J = 4.2 Hz, 1H), 4.17 – 4.10 (q, J = 7.2 Hz, 2H), 3.69 – 3.59 (s, 2H), 2.87 – 

2.76 (s, 3H), 2.10 – 2.03 (s, 3H), 1.27 – 1.22 (t, J = 7.1 Hz, 3H). 

  
13

C NMR (126 MHz, CDCl3) δ ppm 210.99, 171.65, 130.13, 128.81, 127.16, 124.31, 123.80, 

61.32, 51.87, 39.50, 35.72, 28.28, 14.44. 

 

HRMS Calcd for C18H22NO3 (M+H) – 300.1600; found 300.1618. 

 

N

O

 
3-allyl-3-(quinolin-4-ylmethyl)hex-5-en-2-one, 56d 

(RT-10-243) 

  
1
H NMR (500 MHz, CDCl3) δ ppm 8.84 – 8.70 (d, J = 4.5 Hz, 1H), 8.14 – 7.98 (m, 2H), 7.77 – 

7.65 (m, 1H), 7.62 – 7.50 (m, 1H), 7.20 – 7.09 (d, J = 4 .5 Hz, 1H), 5.75 – 5.61 (m, 2H), 5.17 – 

5.01 (m, 4H), 3.41 – 3.33 (s, 2H), 2.54 – 2.41 (m, 4H), 2.06 – 1.97 (s, 3H). 
 

13
C NMR (126 MHz, CDCl3) δ 212.24, 149.81, 148.63, 144.32, 132.95, 130.43, 129.44, 128.61, 

126.80, 123.84, 122.17, 119.74, 55.17, 38.68, 36.06, 27.49;  

 

HRMS Calcd for C19H22NO (M+H) – 280.1701; found 280.1694. 

 

N

O

Bn Bn

 
3,3-dibenzyl-4-(quinolin-6-yl)butan-2-one, 56e 

(RT-10-254) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 8.91 – 8.83 (d, J = 3.3 Hz, 1H), 8.04 – 7.94 (dd, J = 13.4, 

8.4 Hz, 2H), 7.41 – 7.33 (m, 3H), 7.28 – 7.21 (q, J =  8.7, 7.6 Hz, 6H), 7.07 – 7.01 (d, J = 7.6 Hz, 

4H), 3.29 – 3.21 (s, 2H), 3.18 – 3.03 (q, J = 14.9 Hz, 4H), 2.03 – 1.94 (s, 3H) 
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13
C NMR (126 MHz, CDCl3) δ ppm 213.50, 150.27, 147.38, 137.30, 136.25, 135.92, 132.45, 

130.27, 129.25, 128.34, 128.02, 126.64, 121.31, 56.44, 41.35, 40.34, 29.00.  

 

HRMS Calcd for C27H26NO (M+H) – 380.2014; found 380.2005. 

 
O

Bn
Bn

O

 
4-(benzofuran-2-yl)-3,3-dibenzylbutan-2-one, 56f 

(RT-11-105) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 7.54 – 7.44 (dd, J = 19.9, 7.4 Hz, 2H), 7.32 – 7.28 (s, 3H), 

7.25 – 7.19 (m, 4H), 7.18 – 7.12 (d, J = 7.6 Hz, 5H), 6.44 – 6.38 (s, 1H), 3.21 – 3.07 (m, 6H), 

2.08 – 2.00 (s, 3H). 

 
13

C NMR (126 MHz, CDCl3) δ ppm  212.38, 212.23, 155.73, 154.59, 137.13, 130.52, 128.83, 

126.85, 126.35, 123.67, 122.87, 120.71, 111.07, 105.73, 56.24, 42.10, 38.31, 31.73, 28.65. 

 

HRMS Calcd for C26H24O2Na (M+Na) – 391.1674; found 391.1692. 

 
BocN

Bn
Bn

O

 
tert-butyl 3-(2,2-dibenzyl-3-oxobutyl)-1H-indole-1-carboxylate, 56g 

(RT-11-270) 

  
1
H NMR (400 MHz, CDCl3) δ ppm 8.22 – 8.07 (s, 1H), 7.42 – 7.33 (m, 3H), 7.27 – 7.20 (m, 

7H), 7.12 – 7.02 (t, J = 3.7 Hz, 4H), 3.28 – 3.09 (m, 4H), 3.09 – 3.02 (s, 2H), 2.06 – 1.95 (s, 3H), 

1.75 – 1.66 (s, 3H). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 213.46, 137.16, 130.33, 128.48, 126.74, 124.69, 123.36, 

122.57, 119.03, 116.75, 115.22, 56.13, 41.51, 28.98, 28.60, 28.38. 

 

HRMS Calcd for C31H33NO3Na (M+Na) – 490.2358; found 490.2333. 

 

N

O

Bn Bn
 

3,3-dibenzyl-4-(quinolin-4-yl)butan-2-one, 56h 

(RT-10-53fracC) 

  
1
H NMR (400 MHz, CDCl3) δ 8.89 – 8.77 (d, J = 4.5 Hz, 1H), 8.21 – 8.09 (d, J = 8.3 Hz, 1H), 

7.99 – 7.87 (d, J = 8.2 Hz, 1H), 7.81 – 7.68 (t, J = 8.2 Hz, 1H), 7.60 – 7.50 (m, 1H), 7.25 – 7.16 
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(t, J = 3.2 Hz, 6H), 7.14 – 7.08 (d, J = 4.6 Hz, 1H), 7.05 – 6.96 (s, 4H), 3.56 – 3.44 (s, 2H), 3.29 

– 3.13 (m, 4H), 2.02 – 1.87 (s, 3H). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 213.05, 149.76, 148.12, 143.86, 136.64, 130.42, 129.39, 

128.36, 126.72, 123.15, 120.83, 55.29, 41.42, 35.17, 28.88.  

 

HRMS Calcd for C27H26NO (M+H) – 380.2014; found 380.2001. 

 

N

O

Bn Bn

 
4-((3-benzyl-4-phenylbut-2-en-2-yloxy)methyl)quinoline, 58 

(RT-10-53fracA) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.96 – 8.87 (d, J = 4.2 Hz, 1H), 8.19 – 8.09 (d, J = 8.4 Hz, 

1H), 8.02 – 7.93 (d, J = 8.3 Hz, 1H), 7.78 – 7.68 (t, J = 8.2 Hz, 1H), 7.62 – 7.51 (m, 2H), 7.30 – 

7.15 (m, 9H), 7.13 – 7.08 (t, J = 5.8 Hz, 5H), 5.37 – 5.24 (s, 2H), 3.45 – 3.20 (d, J = 65.1 Hz, 

3H), 2.22 – 2.04 (s, 2H). 
 
13

C NMR (126 MHz, CDCl3) δ ppm 150.58, 148.07, 147.08, 143.49, 140.83, 140.14, 130.40, 

129.41, 128.96, 128.54, 128.40, 126.88, 126.19, 125.91, 123.04, 120.09, 119.28, 67.13, 35.83, 

34.25, 14.13. 
 

HRMS Calcd for C27H26NO (M+H) – 380.2014; found 380.1997. 

 

O Me
Me

O  
3-methyl-3-(5-methylfuran-2-yl)butan-2-one, 59b 

(RT-9-166) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 6.08 – 6.03 (s, 1H), 5.93 – 5.89 (s, 1H), 2.28 – 2.25 (s, 3H), 

2.02 – 1.99 (s, 3H), 1.44 – 1.42 (s, 6H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 209.70, 156.40, 151.47, 139.91, 109.94, 106.00, 65.81, 

49.34, 25.63, 22.64, 15.43, 13.76. 

 

HRMS Calcd for C10H15O2 (M+NH4) – 167.1072; found 167.1078. 
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O Me
Bn

O  
3-methyl-3-(5-methylfuran-2-yl)-4-phenylbutan-2-one, 59c 

(RT-10-82) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 7.24 – 7.10 (s, 3H), 6.88 – 6.72 (s, 2H), 6.00 – 5.86 (s, 2H), 

3.37 – 3.03 (dd, J = 80.8, 13.5 Hz, 2H), 2.42 – 2.28 (s, 3H), 2.13 – 2.00 (s, 3H), 1.35 – 1.20 (s, 

3H). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 209.54, 153.87, 151.63, 137.51, 130.43, 127.88, 126.26, 

108.63, 106.52, 53.76, 41.23, 26.18, 19.57, 13.82. 

 

HRMS Calcd for C16H19O2 (M+H) – 243.1385; found 243.1384. 

 

O

O  
1-(1-(5-methylfuran-2-yl)cyclohexyl)ethanone, 59d 

(RT-10-84) 

 
1
H NMR (400 MHz, CDCl3) δ 6.13 – 5.98 (s, 1H), 5.98 – 5.82 (s, 1H), 2.32 – 2.19 (s, 3H), 2.08 

– 1.86 (s, 7H), 1.60 – 1.31 (m, 6H). 
 

13
C NMR (126 MHz, CDCl3) δ 209.18, 153.88, 151.37, 107.70, 106.31, 53.65, 31.25, 25.66, 

25.34, 22.47, 13.54. 

 

HRMS Calcd for C13H17O2 (M-H) – 205.1229; found 205.1246. 

 
Boc
N Me

Me

O  
tert-butyl 2-methyl-5-(2-methyl-3-oxobutan-2-yl)-1H-pyrrole-1-carboxylate, 59e 

(RT-10-120) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 6.09 – 6.01 (s, 1H), 5.88 – 5.80 (s, 1H), 2.37 – 2.32 (s, 3H), 

2.06 – 2.02 (s, 3H), 1.55 – 1.52 (s, 9H), 1.43 – 1.39 (s, 6H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 210.56, 139.28, 131.62, 110.11, 109.78, 84.32, 49.37, 

27.87, 25.73, 25.69, 17.00. 

 

HRMS Calcd for C15H23NO3Na (M+Na) – 288.1576; found 288.1573. 
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S

O

Me Me  
 

3,3-dimethyl-4-(thiophen-2-yl)butan-2-one, 59f 

(RT-9-209) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.16 – 7.07 (d, J = 4.2 Hz, 1H), 6.94 – 6.86 (s, 1H), 6.79 – 

6.70 (s, 1H), 3.08 – 2.99 (s, 2H), 2.17 – 2.09 (s, 3H), 1.20 – 1.15 (s, 6H).  
 

13
C NMR (126 MHz, CDCl3) δ ppm 213.46, 139.95, 127.01, 126.72, 124.17, 48.81, 39.39, 

26.01, 24.59. 

 

HRMS Calcd for C10H14OSLi (M+Li) – 189.0925; found 189.0922. 
 

S O

Me

Me  
3,3-dimethyl-4-(thiophen-3-yl)butan-2-one, 59g 

(RT-9-210) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 7.24 – 7.18 (s, 1H), 6.95 – 6.88 (s, 1H), 6.88 – 6.81 (s, 1H), 

2.87 – 2.83 (s, 2H), 2.13 – 2.09 (s, 3H), 1.15 – 1.12 (s, 6H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 213.83, 138.08, 129.49, 124.87, 122.26, 53.45, 39.57, 

25.78, 24.07. 

 

HRMS Calcd for C10H13OS (M-H) – 181.0687; found 181.0657. 
 

MeO

O

 
4-(4-methoxyphenyl)butan-2-one, 60a

19
 

(RT-7-97) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 7.16 – 7.02 (d, J = 6.5 Hz, 2H), 6.91 – 6.75 (d, J = 6.8 Hz, 

2H), 3.83 – 3.74 (s, 3H), 2.95 – 2.80 (t, J = 7.6 Hz, 2H), 2.80 – 2.59 (m, 2H), 2.26 – 2.10 (d, J = 

16.5 Hz, 3H). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 208.32, 158.15, 129.81, 129.35, 114.09, 56.94, 55.30, 

37.20, 28.91. 
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MeO

O

OMe  
3-(4-methoxybenzyl)-4-(4-methoxyphenyl)butan-2-one, 60b 

(RT-7-97 frac) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.11 – 7.08 (d, J = 8.7 Hz, 2H), 7.06 – 7.03 (d, J = 8.7 Hz, 

2H), 6.83 – 6.79 (t, J = 8.6 Hz, 4H), 3.80 – 3.77 (s, 6H), 3.11 – 3.03 (ddd, J = 14.9, 9.0, 5.9 Hz, 

1H), 2.87 – 2.85 (d, J = 3.0 Hz, 1H), 2.83 – 2.81 (d, J = 4.5 Hz, 1H), 2.69 – 2.64 (dd, J = 13.7, 

5.9 Hz, 2H), 2.19 – 2.07 (s, 3H). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 212.76, 158.18, 132.97, 131.57, 130.02, 129.43, 113.84, 

57.02, 55.37, 37.42, 31.84. 

 

HRMS Calcd. for C19H22O3Na (M+Na) – 321.1467, found 321.1435. 

 
O

MeO  
1-(4-methoxyphenyl)-4-methylpentan-3-one, 60c 

(RT-7-88) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.12 – 7.07 (d, J = 8.7 Hz, 2H), 6.84 – 6.80 (d, J = 8.7 Hz, 

2H), 3.83 – 3.74 (s, 3H), 2.86 – 2.79 (m, 2H), 2.76 – 2.70 (m, 2H), 2.59 – 2.52 (m, 1H), 1.10 – 1. 

03 (d, J = 6.9 Hz, 6H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 214.12, 163.57, 158.03, 133.54, 129.40, 113.99, 55.40, 

42.40, 41.18, 29.12, 18.28. 

 

HRMS Calcd for C13H18O2Li (M+Li) – 213.1467, found 213.1452. 

 
O

MeO  
1-(4-methoxyphenyl)-4,4-dimethylpentan-3-one, 60d 

(RT-7-89) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.12 – 7.08 (d, J = 8.6 Hz, 2H), 6.84 – 6.80 (d, J = 8.6 Hz, 

2H), 3.80 – 3.76 (s, 3H), 2.83 – 2.78 (m, 2H), 2.78 – 2.72 (m, 2H), 1.14 – 1.05 (s, 9H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 215.26, 158.01, 133.77, 129.46, 113.96, 55.40, 44.23, 

38.87, 29.35, 26.45. 
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HRMS Calcd for C14H21O2 (M+H) – 221.1542, found 221.1548. 
 

O

MeO  
3-(4-methoxyphenyl)-1-phenylpropan-1-one, 60e

20
 

(RT-10-21) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 8.00 – 7.92 (d, J = 8.1 Hz, 2H), 7.60 – 7.52 (t, J = 7.4 Hz, 

1H), 7.49 – 7.42 (m, 2H), 7.21 – 7.14 (d, J = 8.4 Hz, 2H), 6.89 – 6.81 (d, J = 8.5 Hz, 2H), 3.86 – 

3.71 (s, 3H), 3.33 – 3.21 (t, J = 7.7 Hz, 2H), 3.07 – 2.96 (t, J = 7.6 Hz, 2H). 

 
13

C NMR (126 MHz, CDCl3) δ p pm 199.53, 158.10, 136.96, 133.44, 133.18, 129.49, 128.67, 

128.13, 114.06, 55.14, 40.97, 29.35. 

 

O

MeO  
4-(4-methoxyphenyl)-1-phenylbutan-2-one, 60f 

(RT-7-93fracA) 

 
1
H NMR (500 MHz, CDCl3) δ pm 7.98 – 7.95 (m, 2H), 7.58 – 7.54 (t, J = 7.4 Hz, 1H), 7.49 – 

7.43 (m, 2H), 7.21 – 7.13 (d, J = 8.7 Hz, 2H), 6.88 – 6.80 (d, J = 8.7 Hz, 2H), 3.83 – 3.75 (s, 

3H), 3.31 – 3.2 4 (m, 2H), 3.05 – 2.98 (t, J = 7.7 Hz, 2H), 2.66 – 2.57 (s, 2H) 
 

13
C NMR (126 MHz, CDCl3) δ ppm 199.59, 157.95, 136.86, 133.40, 133.23, 133.18, 129.49, 

128.74, 128.72, 128.43, 128.18, 114.00, 55.43, 40.82, 29.35, 26.82. 

 

HRMS Calcd for C17H18O2Li (M+Li) – 261.1467, found 261.1463. 
 

O

O

MeO

CF3

 
2,2,2-trifluoroethyl 3-(4-methoxyphenyl)propanoate, 60h 

(RT-10-20) 

 
1
H NMR (400 MHz, CDCl3)  δ ppm 7.15 – 7.08 (d, J = 10.3 Hz, 2H), 6.87 – 6.80 (d, J = 10.4 

Hz, 2H), 4.50 – 4.39 (m, 2H), 3.83 – 3.75 (s, 3H), 2.98 – 2.88 (t, J = 7.5 Hz, 2H), 2.76 – 2.66 (t, 

J = 7.6 Hz, 2H). 

 
13

C NMR (126 MHz, CDCl3) δ ppm  210.78, 139.49, 131.89, 110.38, 109.95, 84.53, 49.49, 

27.98, 25.77, 16.88. 
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HRMS Calcd for C12H12F3O3 (M-H) – 261.0739, found 261.0715. 

 

MeO

OMe

 
1,2-bis(4-methoxyphenyl)ethane, 61

21
 

(RT-7-103) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.15 – 7.02 (d, J = 8.6 Hz, 4H), 6.88 – 6.76 (s, 4H), 3.87 – 

3.72 (s, 6H), 2.86 – 2.77 (s, 4H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 157.91, 134.08, 129.50, 113.82, 55.40, 37.43. 

 
O

Me Me
MeO  

4-(4-methoxyphenyl)-3,3-dimethylbutan-2-one, 63 

(RT-11-280) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 7.05 – 6.95 (d, J = 8.6 Hz, 2H), 6.86 – 6.74 (d, J = 8.6 Hz, 

2H), 3.80 – 3.76 (s, 3H), 2.80 –.68 (s, 2H), 2.14 – 2.05 (s, 3H), 1.15 – 1.05 (s, 6H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 214.23, 158.40, 131.29, 129.83, 113.43, 55.20, 49.01, 

44.47, 26.17, 24.12; FT-IR (CH2Cl2) υmax cm
–1

 2928, 1697, 1454, 1356, 1167, 737, 700. 

 

HRMS Calcd for C13H18O2Li (M+Li) – 213.1467, found 213.1490. 
 

O

Me
MeO  

3-(4-methoxybenzyl)-3-methylpentan-2-one, 63a 

(RT-11-290) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 7.03 – 6.95 (d, J = 8.4 Hz, 2H), 6.83 – 6.72 (d, J = 8.5 Hz, 

2H), 3.79 – 3.76 (s, 3H), 2.91 – 2.57 (dd, J = 101.0, 13.6 Hz, 2H), 2.09 – 2.04 (s, 3H), 1.80 – 

1.68 (dq, J = 14.4, 7.6, 7.0 Hz, 1H), 1.49 – 1.38 (dq, J = 15.0, 7.4 Hz, 1H), 1.08 – 1.01 (s, 3H), 

0.87 – 0.78 (t, J = 7.5 Hz, 3H). 
 

13
C NMR (126 MHz, CDCl3) δ 214.15, 158.25, 131.35, 130.24, 129.64, 114.09, 113.56, 55.34, 

52.87, 43.26, 31.24, 26.81, 20.40, 9.15. 

 

HRMS Calcd for C14H20O2Na (M+Na) –243.1361, found 243.1373. 
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O

Me
MeO

 
3-benzyl-4-(4-methoxyphenyl)-3-methylbutan-2-one, 63b 

(RT-7-236) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 7.10 – 7.02 (d, J = 8.3 Hz, 2H), 6.85 – 6.78 (d, J = 8.7 Hz, 

2H), 3.82 – 3.75 (s, 3H), 2.97 – 2.87 (dd, J = 13.6, 6.9 Hz, 1H), 2.83 – 2.72 (h, J = 6.7 Hz, 1H), 

2.56 – 2.46 (dd, J = 13.6, 7.6 Hz, 1H), 2.11 – 2.01 (s, 3H), 1.12 – 1.03 (d, J = 6.9 Hz, 3H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 212.55, 158.22, 131.60, 129.88, 113.69, 55.19, 49.01, 

38.25, 28.90, 16.15. 

 

HRMS Calcd for C19H22O2Na (M+Na) – 305.1518, found 305.1524. 
 

O

Me
MeO

 
3-(4-methoxybenzyl)-3-methylhex-5-en-2-one, 63c 

(RT-10-57) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.04 – 6.96 (d, J = 8.7 Hz, 2H), 6.84 – 6.74 (d, J = 8.7 Hz, 

2H), 5.77 – 5.62 (m, 1H), 5.09 – 5.08 (s, 1H), 5.07 – 5.03 (d, J = 5.8 Hz, 2H), 3.80 – 3.74 (s, 

3H), 2.93 – 2.60 (dd, J = 127.1, 13.7 Hz, 2H), 2.49 – 2.41 (dd, J = 14.0, 7.0 Hz, 1H), 2.17 – 2.08 

(m, 1H), 2.08 – 2.03 (s, 3H), 1.12 – 1.06 (s, 3H). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 213.51, 158.20, 133.97, 131.07, 129.46, 118.46, 113.54, 

55.32, 52.44, 43.58, 42.89, 27.31, 20.92. 

 

HRMS Calcd for C15H20O2Na (M+Na) – 255.1361, found 255.1364. 
 

O

Me
MeO

OEt
O

 
ethyl 3-(4-methoxybenzyl)-3-methyl-4-oxopentanoate, 63d 

(RT-6-203) 
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1
H NMR (400 MHz, CDCl3) δ ppm 7.06 3.83 – 3.76 (s, 3H), 2.87 – 2.78 (dd, J = 14.9, 9.1 Hz, 

2H), 2.76 – 2.69 (m, 1H), 2.38 – 2.28 (d, J = 16.5 Hz, 1H), 2.15 – 2.07 (s, 3H), 1.29 – 1.20 (m, 

6H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 213.07, 171.71, 158.63, 131.38, 128.46, 113.59, 60.63, 

55.37, 50.16, 43.96, 42.53, 27.31, 21.55, 14.31. 

 

HRMS Calcd for C16H22O4Na (M+Na) – 301.1416, found 301.1422. 
 

O

Me
MeO

O  
3-(4-methoxybenzyl)-3-methylheptane-2,5-dione, 63e 

(RT-6-227) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 7.01 – 6.93 (d, J = 8.5 Hz, 2H), 6.85 – 6.77 (d, J = 8.6 Hz, 

2H), 3.85 – 3.73 (s, 3H), 2.97 – 2.87 (d,  J = 18.0 Hz, 1H), 2.82 – 2.66 (m, 2H), 2.52 – 2.42 (d, J 

= 18.0 Hz, 1H), 2.40 – 2.30 (p, J = 7.1 Hz, 2H), 2.15 – 2.05 (s, 3H), 1.27 – 1.17 (s, 3H), 1.06 – 

0.95 (t, J = 7.3 Hz, 3H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 213.97, 209.64, 158.46, 131.40, 128.60, 113.70, 55.36, 

50.73, 49.45, 44.14, 36.10, 27.39, 21.82, 7.85. 

 

HRMS Calcd for C16H22O3Na (M+Na) – 285.1467, found 285.1469. 

 
O

MeO
Bn Bn

 
3,3-dibenzyl-4-(4-methoxyphenyl)butan-2-one, 63f 

(RT-6-202) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.27 – 7.18 (m, 6H), 7.03 (d, J = 6.8 Hz, 4H), 6.94 (d, J = 

8.7 Hz, 2H), 6.78 (d, J = 8.7 Hz, 2H), 3.77 (s, 3H), 3.04 (s, 4H), 3.00 (s, 2H), 1.95 (s, 3H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 214.00, 158.45, 137.79, 131.48, 130.47, 129.54, 129.12, 

128.88, 128.55, 126.74, 113.92, 56.45, 55.48, 41.01, 40.45, 29.14; FT-IR (CH2Cl2) υmax cm
–1

 

2932, 1699, 1497, 1454, 1250, 1032, 748. 

 

HRMS Calcd for C25H26O2 (M+H) – 359.2011, found 359.2018. 
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O

MeO
 

3-allyl-3-(4-methoxybenzyl)hex-5-en-2-one, 63g 

(RT-10-58) 
 

1
H NMR (400 MHz, CDCl3) δ ppm 7.10 – 6.95 (d, J = 8.6 Hz, 2H), 6.89 – 6.73 (m, 2H), 5.83 – 

5.65 (m, 2H), 5.20 – 5.12 (s, 2H), 5.12 – 5.06 (d, J = 8.0 Hz, 2H), 3.84 – 3.73 (s, 3H), 2.91 – 

2.79 (s, 2H), 2.43 – 2.23 (ddd, J = 37. 0, 14.1, 7.7 Hz, 4H), 2.14 – 2.03 (s, 3H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 212.54, 158.34, 133.61, 131.16, 129.27, 118.75, 113.72, 

55.85, 55.32, 39.66, 38.17, 27.50. 

 

HRMS Calcd for C17H22O2Na (M+Na) –281.1518, found 281.1520. 

 

Me

O

MeO  
4-(4-methoxyphenyl)-3-methylbutan-2-one, 63h

23
 

(RT-11-287) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 7.13 – 6.99 (m, 2H), 6.89 – 6.77 (m, 2H), 3.82 – 3.80 (d, J = 

1.3 Hz, 3H), 3.17 – 2.90 (m, 1H), 2.88 – 2.75 (q, J = 7.0 Hz, 1H), 2.60 – 2.48 (dd, J = 12.8, 5.0 

Hz, 1H), 2.14 – 2.05 (s, 3H), 1.18 – 1.04 (m, 3H). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 212.60, 158.33, 131.75, 131.26, 129.81, 114.00, 113.47, 

55.35, 49.15, 38.17, 29.05, 16.35. 

  
O

MeO
O

 
3-(4-methoxybenzyl)-1-phenylpentane-1,4-dione, 63i 

(RT-11-210) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 7.92 – 7.87 (d, J = 8.3 Hz, 2H), 7.58 – 7.51 (m, 1H), 7.46 – 

7.39 (t, J = 7.6 Hz, 2H), 7.14 – 7.08 (d, J = 8.6 Hz, 2H), 6.87 – 6.82 (d, J = 8.7 Hz, 2H), 3.82 – 

3.74 (s, 3H), 3.56 – 3.43 (m, 2H), 3.02 – 2.88 (m, 2H), 2.69 – 2.60 (dd, J = 13.7, 7.7 Hz, 1H), 

2.24 – 2.15 (s, 3H). 
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13
C NMR (126 MHz, CDCl3) δ ppm 211.92, 198.75, 158.43, 136.62, 133.19, 130.63, 130.02, 

128.77, 128.16, 114.02, 54.92, 49.04, 40.75, 37.18, 30.90 

 

HRMS Calcd for C19H20O3Na (M+Na) – 319.1310; found 319.1311. 

 
O

MeO
O

 
3-(4-methoxybenzyl)heptane-2,5-dione, 63j 

(RT-11-211) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 7.09 – 7.03 (d, J = 8.5 Hz, 1H), 6.98 – 6.94 (m, 1H), 6.85 – 

6.77 (dd, J = 11.8, 8.6 Hz, 2H), 3.85 – 3.70 (s, 3H), 3.34 – 3.19 (dt, J = 13.9, 5.1 Hz, 1H), 3.17 – 

3.07 (d, J = 13.7 Hz, 1H), 3.01 – 2.78 (m, 2H), 2.55 – 2.45 (m, 1H), 2.42 – 2.38 (m, 1H), 2.37 – 

2.33 (d, J = 7.2 Hz, 1H), 2.31 – 2.16 (m, 1H), 2.16 – 2.08 (s, 2H), 2.09 – 2.03 (s, 1H), 1.04 – 

0.93 (t, J = 7.3 Hz, 2H). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 211.88, 210.15, 158.31, 131.25, 130.53, 129.98, 129.11, 

114.16, 113.83, 55.40, 48.96, 45.33, 43.89, 40.16, 36.97, 36.30, 35.86, 30.72, 27.85, 7.64. 

 

HRMS Calcd for C15H20O3Na (M+Na) – 271.1310; found 271.1315. 

 

O

O

MeO

CF3

 
2,2,2-trifluoroethyl 3-(4-methoxyphenyl)-2,2-dimethylpropanoate, 63k 

(RT-11-197) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.05 – 6.98 (d, J = 8.7 Hz, 2H), 6.85 – 6.77 (d, J = 8.7 Hz, 

2H), 4.47 – 4.38 (m, 2H), 3.80 – 3.76 (s, 3H), 2.85 – 2.79 (s, 2H), 1.25 – 1.18 (s, 6H). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 176.05, 158.53, 131.17, 129.26, 113.64, 60.22, 54.93, 

45.08, 43.74, 24.97. 
 

HRMS Calcd for C14H16F3O3 (M-H) – 289.1052; found 289.1054. 

 
O

Bn Bn

OMe  
3,3-dibenzyl-4-(3-methoxyphenyl)butan-2-one, 63l 

(RT-11-289) 
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1
H NMR (400 MHz, CDCl3) δ ppm 7.31 – 7.27 (d, J = 1.9 Hz, 2H), 7.25 – 7.13 (m, 5H), 7.09 – 

7.03 (d, J = 8.2 Hz, 4H), 6.79 – 6.73 (d, J = 10.4 Hz, 1H), 6.70 – 6.63 (d, J = 7.6 Hz, 1H), 6.59 – 

6.53 (s, 1H), 3.79 – 3.67 (s, 3H), 3.13 – 3.01 (d, J = 9.3 Hz, 6H), 2.03 – 1.90 (s, 3H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 213.48, 159.33, 139.06, 137.42, 130.19, 129.19, 128.39, 

126.60, 122.58, 115.98, 112.14, 56.12, 55.23, 41.17, 40.83, 28.99. 

 

HRMS Calcd for C25H26O2Na (M+Na) –381.1831, found 381.1844. 

 
O

O2N
Bn Bn

 
3,3-dibenzyl-4-(4-nitrophenyl)butan-2-one, 63n 

(RT-7-122) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.12 – 8.04 (d, J = 8.8 Hz, 2H), 7.30 – 7.24 (m, 6H), 7.17 – 

7.12 (d, J = 8.8 Hz, 2H), 7.07 – 7.00 (d, J = 6.6 Hz, 4H), 3.18 – 3.14 (s, 2H), 3.14 – 2.99 (m, 

4H), 2.09 – 2.02 (s, 3H). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 212.58, 146.64, 145.90, 136.69, 131.03, 130.11, 128.61, 

126.88, 123.31, 56.40, 41.57, 40.05, 28.68. 

 

HRMS Calcd for C24H23NO3 (M+) – 373.1678, found 373.1727. 

 
O

Bn Bn
 

3,3-dibenzyl-4-phenylbutan-2-one, 63o 

(RT-7-138) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.28 – 7.27 (d, J = 1.5 Hz, 1H), 7.26 – 7.19 (m, 8H), 7.15 – 

7.12 (d, J = 8.2 Hz, 1H), 7.06 – 7.03 (d, J = 6.9 Hz, 5H), 3.12 – 3.04 (s, 6H), 1.99 – 1.93 (s, 3H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 213.70, 139.25, 137.49, 130.29, 128.99, 128.67, 128.37, 

126.60, 126.53, 56.18, 41.01, 38.30, 29.02. 

 

HRMS Calcd for C24H24ONa (M+Na) –351.1725, found 351.1736. 
 

O

NC
Bn Bn

 
4-(2,2-dibenzyl-3-oxobutyl)benzonitrile, 63p 

(RT-7-142) 
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1
H NMR (500 MHz, CDCl3) δ ppm 7.55 – 7.48 (d, J = 8.4 Hz, 2H), 7.30 – 7.23 (m, 6H), 7.14 – 

7.06 (d, J = 8.4 Hz, 2H), 7.06 – 6.98 (m, 4H), 3.15 – 3.06 (m, 4H), 3.05 – 2.97 (m, 2H), 2.08 – 

2.00 (s, 3H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 212.81, 143.65, 136.77, 131.77, 131.14, 130.12, 128.41, 

126.89, 118.84, 110.48, 56.19, 41.48, 40.37, 28.69. 

 

HRMS Calcd for C25H27N2O (M+NH4) – 371.2123, found 371.2054. 

 
O

Bn Bn
 

3,3-dibenzyl-4-(5,6,7,8-tetrahydronaphthalen-2-yl)butan-2-one, 63q 

(RT-7-129) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.30 – 7.26 (s, 2H), 7.24 – 7.19 (m, 4H), 7.08 – 7.04 (d, J = 

8.1 Hz, 4H), 6.97 – 6.76 (m, 2H), 6.72 – 6.67 (s, 1H), 3.10 – 3.07 (d, J = 4.7 Hz, 1H), 3.07 – 3.06 

(s, 3H), 3.05 – 3.04 (d, J = 5.6 Hz, 1H), 3.04 – 2.96 (s, 2H), 2.77 – 2.63 (d, J = 25.9 Hz, 4H), 

2.07 – 2.01 (s, 1H), 1.99 – 1.94 (s, 3H), 1.79 – 1.74 (m, 3H). 
 
13

C NMR (126 MHz, CDCl3) δ ppm 213.87, 137.74, 136.80, 135.29, 134.23, 131.13, 130.31, 

128.98, 128.66, 128.31, 127.34, 126.51, 56.21, 41.03, 40.62, 29.53, 29.10, 23.33. 
 

HRMS Calcd for C28H31O (M+H) – 383.2375, found 383.2347. 

 
O

Bn Bn

O

O  
4-(benzo[d][1,3]dioxol-5-yl)-3,3-dibenzylbutan-2-one, 63r 

(RT-7-148) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.28 – 7.20 (m, 6H), 7.08 – 7.01 (d, J = 8.3 Hz, 4H), 6.72 – 

6.67 (d, J = 8.0 Hz, 1H), 6.55 – 6.47 (m, 2H), 5.95 – 5.90 (s, 2H), 3.11 – 3.02 (s, 4H), 3.02 – 

2.94 (s, 2H), 2.02 – 1.93 (s, 3H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 213.66, 147.60, 146.19, 137.42, 130.95, 130.24, 128.39, 

126.60, 123.40, 110.65, 107.99, 101.03, 56.28, 40.76, 28.90. 

 

HRMS Calcd for C25H28NO3 (M+NH4) – 390.2069, found 390.2077. 
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O

MeO
Bn Bn

MeO

 
3,3-dibenzyl-4-(3,4-dimethoxyphenyl)butan-2-one, 63s 

(RT-7-144) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.27 – 7.18 (m, 6H), 7.07 – 7.02 (d, J = 7.0 Hz, 4H), 6.77 – 

6.71 (d, J = 8.2 Hz, 1H), 6.65 – 6.59 (dd, J = 8.2, 2.0 Hz, 1H), 6.45 – 6.40 (d, J = 2.0 Hz, 1H), 

3.87 – 3.80 (s, 3H), 3.74 – 3.67 (s, 3H), 3.12 – 2.98 (m, 6H), 2.01 – 1.91 (s, 3H) 
 

13
C NMR (126 MHz, CDCl3) δ ppm 213.95, 148.41, 147.66, 137.69, 130.21, 129.80, 128.39, 

126.59, 122.25, 113.75, 110.90, 56.23, 55.94, 55.79, 41.18, 40.27, 29.03. 

 

HRMS Calcd for C26H28O3Na (M+Na) – 411.1936, found 411.1932. 
 

O

MeO
Bn Bn

MeO

OMe  
3,3-dibenzyl-4-(3,4,5-trimethoxyphenyl)butan-2-one, 63t 

(RT-11-277) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 7.30 – 7.27 (s, 3H), 7.25 – 7.19 (m, 3H), 7.12 – 7.03 (d, J = 

8.1 Hz, 4H), 6.22 – 6.18 (s, 2H), 3.85 – 3.77 (s, 3H), 3.76 – 3.65 (s, 6H), 3.24 – 2.99 (m, 4H), 

2.06 – 1.95 (s, 4H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 213.88, 152.86, 137.53, 133.16, 130.21, 128.32, 126.45, 

107.25, 60.75, 56.28, 56.19, 56.09, 41.33, 40.71, 39.92, 28.99. 

 

HRMS Calcd for C27H30O4Na (M+Na) – 441.2042, found 441.2019. 

 
O

Bn Bn
 

3,3-dibenzyl-4-(naphthalen-2-yl)butan-2-one, 63u 

(RT-6-267) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.83 – 7.78 (m, 1H), 7.76 – 7.70 (t, J = 8.4 Hz, 2H), 7.48 – 

7.42 (m, 3H), 7.30 – 7.22 (m, 6H), 7.20 – 7.16 (dd, J = 8.4, 1.7 Hz, 1H), 7.09 – 7.06 (m, 4H), 

3.28 – 3.21 (s, 2H), 3.20 – 3.06 (m, 4H), 2.03 – 1.93 (s, 3H). 
 
13

C NMR (126 MHz, CDCl3) δ ppm 213.77, 137.53, 135.17, 133.36, 132.25, 130.32, 128.98, 

128.85, 128.78, 128.67, 128.41, 127.80, 127.65, 126.66, 126.17, 125.80, 56.36, 41.30, 40.85, 

29.12. 
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HRMS Calcd for C28H27O (M+H) – 379.2062, found 379.2063. 

 

O

Bn Bn
 

3,3-dibenzyl-4-(naphthalen-1-yl)butan-2-one, 63v 

(RT-7-76) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.97 – 7.93 (dd, J = 6.2, 3.5 Hz, 1H), 7.89 – 7.85 (dd, J = 

6.1, 3.4 Hz, 1H), 7.77 – 7.73 (d, J = 8.2 Hz, 1H), 7.53 – 7.48 (dd, J = 6.4, 3.3 Hz, 2H), 7.42 – 

7.37 (t, J = 7.7 Hz, 1H), 7.25 – 7.18 (m, 7H), 7.06 – 7.00 (m, 4H), 3.52 – 3.44 (s, 2H), 3.28 – 

3.16 (m, 4H), 1.85 – 1.77 (s, 3H). 
 
13

C NMR (126 MHz, CDCl3) δ ppm 214.40, 137.31, 133.91, 133.40, 132.74, 130.44, 128.95, 

128.56, 128.36, 127.31, 126.62, 126.28, 125.85, 125.16, 123.42, 55.66, 41.66, 36.47, 29.16. 
 

HRMS Calcd for C28H27O (M+H) – 379.2062, found 379.2059. 

 
O

MeO  
2-(4-methoxybenzyl)-2-methylcyclopentanone, 64

22
 

(RT-7-149) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.01 (d, J = 8.7 Hz, 2H), 6.78 (d, J = 8.7 Hz, 2H), 3.76 (s, 

3H), 2.78 (d, J = 13.6 Hz, 1H), 2.51 (d, J = 13.6 Hz, 1H), 2.26 (ddd, J = 18.8, 8.3, 5.5 Hz, 1H), 

2.08 – 1.97 (m, 1H), 1.93 (dt, J = 12.7, 7.6 Hz, 1H), 1.83 – 1.64 (m, 1H), 1.64 – 1.56 (m, 2H), 

0.99 (s, 3H). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 224.02, 158.28, 131.38, 130.27, 113.72, 77.48, 77.23, 

76.98, 55.37, 49.86, 41.97, 38.32, 34.77, 22.88, 18.84. 

 
O

MeO

 
2-benzyl-2-(4-methoxybenzyl)cyclopentanone, 64a 

(RT-7-140) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.26 – 7.20 (m, 3H), 7.12 – 7.07 (d, J = 6.9 Hz, 2H), 7.04 – 

6.99 (m, 2H), 6.82 – 6.77 (d, J = 8.7 Hz, 2H) , 3.82 – 3.73 (s, 3H), 3.04 – 2.91 (dd, J = 20.1, 13.3 
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Hz, 2H), 2.62 – 2.49 (dd, J = 20.6, 13.3 Hz, 2H), 1.92 – 1.80 (m, 4H), 1.36 – 1.30 (td, J = 7.5, 

3.4 Hz, 2H). 
 

13
C NMR (126 MHz, CDCl3) δ 224.36, 158.69, 137.89, 131.60, 130.70, 129.94, 128.38, 126.76, 

113.97, 55.58, 55.09, 43.28, 42.35, 39.88, 30.28, 19.07. 

 

HRMS Calcd for C20H22O2Na (M+Na) – 317.1518, found 317.1545. 

 
O

MeO
Me

 
2-(4-methoxybenzyl)-2-methylcyclohexanone, 64b

24
 

(RT-10-275) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.06 – 6.97 (d, J = 8.6 Hz, 2H), 6.84 – 6.75 (d, J = 8.6 Hz, 

2H), 3.83 – 3.71 (s, 3H), 2.86 – 2.77 (s, 2H), 2.55 – 2.40 (m, 2H), 1.90 – 1.78 (m, 3H), 1.78 – 

1.66 (m, 2H), 1.57 – 1.48 (m, 1H), 1.04 – 0.96 (s, 3H). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 215.59, 158.00, 131.31, 129.41, 113.21, 55.08, 49.30, 

42.09, 38.81, 37.91, 27.17, 22.67, 21.01. 

 

HPLC (Daicel Chiralpak OD-H HPLC column: 95% hexane/isopropanol, 0.1 mL/min) tr = 

66.990 (minor), 70.095 (major) minutes 

 
O

MeO

 
2-benzyl-2-(4-methoxybenzyl)cyclohexanone, 64c 

(RT-7-141) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 7.25 – 7.15 (m, 3H), 7.13 – 7.08 (d, J = 6.6 Hz, 2H), 7.05 – 

6.99 (d, J = 8.7 Hz, 2H), 6.82 – 6.76 (d, J = 8.7 Hz, 2H), 3.86 – 3.73 (s, 3H), 3.14 – 2.97 (dd, J = 

24.9, 13.7 Hz, 2H), 2.71 – 2.59 (dd, J = 13.7, 7.9 Hz, 2H), 2.44 – 2.38 (t, J = 6.5 Hz, 2H), 1.78 – 

1.61 (m, 6H). 
 

13
C NMR (126 MHz, CDCl3) δ 214.69, 158.01, 146.48, 137.60, 131.82, 130.93, 129.62, 128.12, 

126.44, 113.21, 55.31, 53.94, 42.13, 41.45, 39.93, 33.59, 25.75, 20.92. 

 

HRMS Calcd for C21H24O2Na (M+Na) – 331.1674, found 331.1699. 
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O

MeO
Me

 
2-(4-methoxybenzyl)-2-methyl-2,3-dihydro-1H-inden-1-one, 64e 

(RT-10-226) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.75 – 7.71 (d, J = 7.7 Hz, 1H), 7.55 – 7.50 (t, J = 7.4 Hz, 

1H), 7.36 – 7.29 (m, 1H), 7.08 – 7.03 (d, J = 8.4 Hz, 2H), 6.77 – 6.72 (d, J = 8.6 Hz, 2H), 3.77 – 

3.71 (s, 2H), 3.27 – 3.18 (d, J = 17.4 Hz, 1H), 3.02 – 2.94 (d, J = 13.8 Hz, 1H), 2.77 – 2.71 (m, 

3H), 1.25 – 1.21 (s, 3H). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 210.75, 158.33, 152.46, 135.96, 134.64, 131.05, 129.71, 

127.41, 126.43, 124.11, 113.61, 54.91, 50.66, 42.40, 38.82, 35.16, 24.65. 

 

HRMS Calcd. for C25H24O2Na (M+Na) – 289.1205, found 289.1222. 

 

O

MeO
Me

 
2-(4-methoxybenzyl)-2-methyl-3,4-dihydronaphthalen-1(2H)-one, 64f 

(RT-10-233) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 8.11 – 8.01 (d, J = 7.9 Hz, 1H), 7.48 – 7.40 (t, J = 7.5 Hz, 

1H), 7.33 – 7.27 (t, J = 7.5 Hz, 1H), 7.24 – 7.18 (d, J = 7.3 Hz, 1H), 7.10 – 7.03 (d, J = 8.5 Hz, 

1H), 6.82 – 6.75 (d, J = 6.9 Hz, 2H), 3.82 – 3.71 (s, 3H), 3.10 – 3.01 (d, J = 13.6 Hz, 1H), 3.01 – 

2.94 (t, J = 3.9 Hz, 2H), 2.81 – 2.74 (d, J = 13.6 Hz, 1H), 2.05 – 1.93 (m, 1H), 1.90 – 1.77 (dt, J 

= 11.8, 5.9 Hz, 1H), 1.17 – 1.13 (s, 3H). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 202.33, 158.26, 143.37, 133.23, 131.92, 131.74, 129.73, 

128.79, 128.19, 126.80, 113.48, 55.34, 46.04, 41.92, 33.12, 25.61, 22.47. 

 

HRMS Calcd for C19H20O2Na (M+Na) – 303.1361, found 303.1364. 

 

HPLC (Daicel Chiralpak OD-H HPLC column: 97% hexane/isopropanol, 0.1 mL/min) tr = 

73.113 (minor), 77.700 (major) minutes 

 
O

MeO

 
2-benzyl-2-(4-methoxybenzyl)-2,3-dihydro-1H-inden-1-one, 64g 

(RT-10-64) 
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1
H NMR (500 MHz, CDCl3) δ ppm 7.65 – 7.59 (d, J = 7.6 Hz, 1H), 7.40 – 7.34 (t, J = 7.3 Hz, 

1H), 7.23 – 7.17 (t, J = 6.6 Hz, 1H), 7.17 – 7.11 (t, J = 7.6 Hz, 3H), 7.11 – 7.06 (d, J = 6.1 Hz, 

4H), 7.04 – 6.99 (d, J = 8.1 Hz, 2H), 6.72 – 6.65 (d, J = 6.3 Hz, 3H), 3.76 – 3.65 (s, 1H), 3.23 – 

3.10 (t, J = 13.6 Hz, 2H), 3.08 – 2.98 (s, 2H), 2.87 – 2.72 (dd, J = 21.2, 12.7 Hz, 2H). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 210.68, 158.16, 153.17, 137.29, 137.04, 134.56, 131.40, 

130.40, 129.26, 128.13, 127.21, 126.53, 126.07, 123.67, 113.60, 55.46, 55.27, 43.53, 42.74, 

34.65. 

 

HRMS Calcd for C25H24O2Na (M+Na) – 379.1674, found 379.1657. 

 

O

MeO

 
 

2-benzyl-2-(4-methoxybenzyl)-3,4-dihydronaphthalen-1(2H)-one, 64h 

(RT-7-278) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 8.12 – 8.05 (d, J = 7.8 Hz, 1H), 7.46 – 7.39 (t, J = 8.0 Hz, 

1H), 7.33 – 7.27 (m, 1H), 7.24 – 7.20 (d, J = 7.5 Hz, 2H), 7.19 – 7.11 (m, 4H), 7.09 – 7.02 (d, J 

= 8.6 Hz, 2H), 6.80 – 6.74 (d, J = 8.6 Hz, 2H), 3.81 – 3.69 (s, 3H), 3.36 – 3.19 (dd, J = 25.8, 13.5 

Hz, 2H), 3.07 – 2.96 (t, J = 6.3 Hz, 2H), 2.68 – 2.56 (dd, J = 13.4, 10.5 Hz, 2H), 1.99 – 1.84 (t, J 

= 6.3 Hz, 2H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 200.97, 158.27, 143.15, 137.60, 133.29, 132.57, 131.97, 

131.06, 129.37, 128.73, 128.20, 128.10, 126.81, 126.46, 113.51, 55.30, 51.07, 41.64, 40.85, 

29.22, 25.61. 

 

HRMS Calcd for C25H24O2Na (M+Na) – 379.1674, found 379.1657. 

 

HPLC (Daicel Chiralpak OD-H HPLC column: 99% hexane/isopropanol, 0.3 mL/min) tr = 

46.907 (minor), 49.957 (major) minutes 
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Chapter 3 

Palladium-Catalyzed Decarboxylative Benzylation of Alkynes 
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3.1 Introduction 

Classical strategies in benzyl alkyne synthesis 

Benzyl alkyne synthesis through alkylation of alkynes with benzyl halides is a well-

known synthetic method in organic chemistry.
1
 In this method, the terminal hydrogen of the 

alkyne (pKa ~ 25 in DMSO) is deprotonated with base prior to nucleophilic attack on the benzyl 

halide. As an example, Takahashi and coworkers used this method in constructing benzyl alkyne 

72 in very high yield (eq. 63).
2
 The formation of 72 is important in the synthesis of naphthacene 

73 which could be potentially used as an organic source of conductive material. 

Pr

Pr

Pr

Pr

Br

Br
H Pr

n-BuLi, THF

-78oC

Pr

Pr

Pr

Pr

Pr

Pr

Pr

Pr

Pr

Pr

Pr

Pr

CO2Me

CO2Me

72
97%

+

73

(63)

 

While this synthetic method is well-known, typical benzyl alkyne preparations use n-

BuLi as the base which is hazardous and difficult to handle. Moreover, when this is used, the 

reaction has to be performed at very low temperatures (-78
o
C). In some cases, the use of n-BuLi 

alone at lower temperatures will not work to deprotonate the terminal hydrogen of the alkyne. 

Wang and coworkers attempted to prepare benzyl alkyne 75 by alkylating Boc-protected 

azetidine alkyne 74 with a benzyl halide derivative using n-BuLi at -78
o
C (eq. 64). 

Unfortunately, a very low yield of desired product was obtained.
3
 The low yield of 75 could be 

due to the ring opening of the azetidine in presence of the base rather than deprotonating the 

terminal hydrogen of the alkyne.
4
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N

F3C

O
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+

H NBoc

n-BuLi, THF

-78oC
N

F3C

O

NBoc

75
7%

(64)

74  

To solve the deprotonation problem using n-BuLi, stoichiometric Cu(I) is added in the 

reaction mixture. Miyoshi and coworkers reported the addition of CuI in the alkylation of THP-

protected alkyne with benzyl bromide giving benzyl alkyne 76 in high yield (eq. 65). The 

formation of 76 was a key step in the synthesis of a hybrid ubiquinone that potentially worked as 

an electron transfer substrate to bovine heart mitochondrial succinate–ubiquinone oxidoreductase 

and ubiquinol–cytochrome c oxidoreductase.
5 

The role of Cu when added to the reaction with n-

BuLi is to make the alkyne more reactive by undergoing metal exchange with preformed alkyne-

Li, generating a Gilman-type (acetylide)2CuLi species. Unfortunately, this also results to 

formation of Li salts and other Cu by-products in the reaction mixture making product 

purification tedious and difficult, resulting to lower product yields. 

 

MeO
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OMe
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Synthesis of benzyl alkynes using palladium catalysis 

Problems arising from benzyl alkynylation in the presence of n-BuLi at very low 

temperatures were significantly resolved through Pd-catalyzed reactions. In particular, the alkyne 
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coupling partner more commonly comes from preformed organometallics. In this method, benzyl 

halide undergoes oxidative addition in the presence of Pd to generate η
3
-benzyl-Pd 1. 

Transmetallation of 1 with metal-acetylide 77 occurs to generate benzyl-Pd-acetylide 

intermediate 78. Reductive elimination releases benzyl alkyne and Pd is regenerated back into 

the catalytic cycle (Scheme 64). The synthesis of 77 would come from deprotonation of the 

terminal hydrogen of an alkyne and its coupling with an external organometallic reagent. 

Ultimately, this methodology allows construction of diverse benzyl alkynes at room to high 

temperatures compared to classical alkylations that require n-BuLi and perform at very low 

temperatures. 

Scheme 64.  
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X
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R1 M

R

R

X

M X

Pd

R1

R

R
R1

78
1

77  

Several organometallic alkyne sources have been used to couple with Pd-π-benzyl. 

Sarandeses and coworkers reported the synthesis of benzyl alkyne 79 through cross-coupling 

between benzyl bromide and alkynylphenylindium (eq. 66).
6
 Despite the apparent low toxicity 

associated with In metal, alkynylphenylindium is extremely reactive such that it must be stored 

in THF when not in used to prevent immediate decomposition.  
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In PhBr + 1 mol% Pd(dppf)Cl2
THF, reflux Ph

79
94%

(66)

Fe

PPh2

PPh2

dppf

3

 

 Qian and Negishi reported the use of zinc as the source of metal that can form an 

organometallic reagent, alkynylzinc which was used to couple with benzyl bromide to generate 

benzyl alkynes at room temperature. (Scheme 65) Both EWG and EDG substituents in the 

benzyl bromide underwent cross-coupling with alkynylzinc in good to high yields. When an 

aliphatic alkynylzinc was used, benzylation with benzyl bromide occurred in slightly lower 

yields compared with aromatic alkynylzinc.
7
 

Scheme 65. 
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 Another source of metal used in Pd catalysis was Sn. Yong and coworkers reported the 

synthesis of diazalide 81 via Stille cross-coupling of diazalide-stannane 80 with benzyl dihalide 

to generate benzyl alkyne in good yield (eq. 67).
8
 The formation of 81 was essential in evaluation 

of its antibacterial activity against erythromycin-resistant respiratory tract pathogens.  
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The use of Sn in Stille cross-coupling of benzyl halides with alkynylstannanes was also 

used by Alami and coworkers. They showed that tributyltin propragyl alcohol couples with 

benzyl bromide in the presence of NMP to generate benzyl alkyne 82. This also results to 

formation of benzyl enyne 83 in the reaction hence giving an overall low yield of 82. (eq. 68) 

The authors postulated that the formation of 83 came from tandem Stille-carbopalladation-Stille 

sequence.
9
  

5 mol% Pd(PPh3)4
NMP

Br

+

HO

SnBu3

OH +

HO

OH

(68)

82
20%

83
17%  

Lastly, the use of Cu metal in benzyl alkynylations via Sonogahsira cross-coupling has 

also been utilized.
10

 This was highlighted by Alami and coworkers, in which they reported the 

cross-coupling of benzyl bromide and propargyl alcohol in the presence of CuI, and BnNEt3Cl 

salt to generate benzyl alkyne 82 in low yield (condition A, eq. 69). When other Pd catalysts, Cu 

salts, and ammonium salt additives were tried, an unprecedented enyne 83 in moderate yield was 

also observed rather than desired benzyl alkyne 82 (condition B, eq. 69). The formation of 83 

was similar to the Stille cross-coupling of tributylstannane propargyl alcohol with benzyl 

bromide (eq. 68). The double bond stereochemistry of the enyne was unambiguously assigned as 

E based on NOESY, HMBC and HSQC experiments.  Despite the inability to synthesize 82, they 

took advantage in expanding the scope of benzyl enyne formation. A variety of benzyl enynes 
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can be made in good to high yields (Scheme 66). Benzyl bromides that contain an EDG 

substituent gave higher yields than benzyl bromides that contain EWG substituent. While 

branched aliphatic propargyl alcohol gave lower yields than aryl propargyl alcohol, a fluoro-

substituted benzyl halide gave the desired benzyl enyne in almost identical yields when it reacted 

to either an aryl or aliphatic propargyl alcohol. 

Et3N, THF, 50oC

A. 5 mol% Pd(dba)2, 10 mol% CuI
10 mo% BnNEt3Cl

B: 5 mol% PdCl2(PPh)2, 10 mol% CuCl
10 mol% Bu4NI

Br
+

HO

H OH +

HO

OH

Pd conditions
(69)

82 83

12% (A); 0% (B)

<3% (A); 69% (B)

 

Scheme 66. 
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 The authors proposed that the mechanism of formation of benzyl enyne 83 would also 

come from tandem Sonogashira-carbopalladation-Sonogashira sequence, similar to the Stille-

carbopalladation-Stille sequence that they proposed in Stille cross-coupling of benzyl bromide 

and alllylstannanes in eq. 68.
10

 (Scheme 67) Oxidative addition of Pd to benzyl bromide 

generates η
3
-benzyl-Pd complex 1. Transmetallation of 1 with Cu-acetylide occurs to yield 
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benzyl-Pd-alkyne intermediate 82a. Reductive elimination of 82a leads to formation of benzyl 

alkyne 82. It is believed that at this stage, the Pd of a second 82a intermediate coordinates to 82. 

This results to carbopalladation to generate a σ-vinyl-Pd complex 82b. Reductive elimination of 

82b ultimately releases benzyl enyne 83 and Pd is regenerated back in the catalytic cycle.   

Scheme 67.  
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 The use of other catalysts and additives also gave benzyl alkynes while preventing the 

formation of benzyl enynes. Zhang and coworkers showed that an electron-poor monodentate 

aminophosphine ligand can be used to generate benzyl alkyne 79 in high yield without the need 

of Cu additive (eq. 70).
11 

Trzeciak and coworkers on the other hand, showed that Cu-free 

Sonogashira reactions can be performed to generate the same benzyl alkyne using a monodentate 

phosphite ligand (eq. 71). However, they also observed significant formation of the isomeric 
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phenyl vinyl enyne 84 along with the benzyl alkyne which presumably resulted from “head-to-

tail” dimerization of phenylacetylene.
12
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83%
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(70)
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81%
+

Ph

Ph

84
20%

(71)

 

An improved synthesis of 79 and other benzyl alkynes was reported by Buchwald 

through the coupling of benzyl chlorides with acetylene derivatives in the presence of 

monodentate ligand that contain the biphenyl backbone (Scheme 68).
13

 A variety of benzyl 

alkynes can be accessed under these conditions in good to high yields. Both aromatic and 

aliphatic acetylenes were compatible substrates with benzyl chloride. In addition, both EDG and 

EWG-containing benzyl chlorides were tolerable. More importantly, formation of undesired 

isomers such as aryl allenes and benzyl enynes were not observed. The authors reasoned that 

difference of this method compared to Trzeciak and Alami’s protocols was that the use of a more 

bulky electron-rich monodentate phosphine ligand suppresses the occurrence of Pd being bound 

to the arene and alkyne that will lead to a second carbometallation step that would result in the 

formation of 82b. 
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Scheme 68. 
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While the reaction worked with various substituted benzyl chlorides and acetylenes, a 

major limitation of the methodology was that the formation of benzyl alkyne significantly 

depended on the amount of base, nature of solvent and temperature. When reactions were ran 

using stoichiometric base, less polar solvent such as THF, and heated at lower temperatures, 

benzyl alkynes were formed. When the reactions were ran in excess base, more polar solvent 

such as MeCN, and heated above 80
o
C, aryl allenes 85 were formed (eq. 72). These results 

suggest that the formation of alkyne at lower temperatures is kinetically driven whereas the 

formation of phenyl allene, resulted from isomerization of benzyl alkyne at higher temperatures 

is thermodynamically driven. 
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3.2 Decarboxylative allylation of alkynes: prelude to DcB of alkynes 

Prior to the development of DcB of alkynes, it was disclosed in 2005 by Rayabarapu and 

Tunge that allyl propriolates undergo decarboxylation in the presence of Pd(PPh3)4 giving 1,4-

enynes in good to high yields (Scheme 69). They proposed that the DcA mechanism begins 

through oxidative addition of allyl propiolate with Pd to generate an η
3
-allyl-Pd carboxylate 

complex 86. Alkynyl metalation occurs in which η
1
-allyl-Pd coordinates to the alkyne. This 

undergoes decarboxylation to give an allyl-Pd-alkyne intermediate 86a. Finally, reductive 

elimination forms the enyne (Scheme 70). The formation of allyl-Pd-alkyne 86a, in which Pd is 

bound to acetylide was rationalized based on the observed inversion of stereochemistry of trans-

1,4 cyclohexenyl phenyl alkyne 87 resulting from the DcA of cis-cyclohenxenyl phenyl 

propriolate 87 (eq. 73).
14
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Scheme 70.  
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 Inspired by these results, we wanted to develop a decarboxylative strategy towards the 

synthesis of benzyl alkynes. To be able to perform DcB of alkynes will allows us to construct 

benzyl alkynes under milder conditions without the need of base or any preformed 

organometallics, which were utilized in previous benzyl alkynylation chemistries. In terms of the 

mechanism of DcB, it will be similar to the DcA of alkynes mechanism since both will generate 

the same reactive nucleophile (Scheme 71). 
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Scheme 71. 

O

O

R1

Pd(0)

CO2

Pd

O

O

R1

O

O

R1

Pd

R1

R1

Pd

R
R

R

R

R

O

O

R1

R
Pd

-CO2 R1

R

 

 

3.3 Development of DcB of benzo-fused alkynes 

3.3.1 Substrate Scope 

 We began the development of DcB of alkynes using benzo-fused propiolates. When 1-

naphthylmethyl phenyl propiolate 88 was tried using the standard reaction conditions used in 

DcA of alkynes, we were pleased that the reaction proceeded smoothly to give 1-naphthylmethyl 

phenyl alkyne 88a in high yield (eq. 74).
 15
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 Based on this promising result, we also explored other substrates to examine the scope of 

DcB (Scheme 72). Various naphthylmethyl propiolates undergo decarboxylation to generate 

naphthylmethyl alkynes in good to high yields. The position and nature of the substituents near 

to the benzyl alkyne significantly affected the benzylation. While (4-methoxy) 1-naphthylmethyl 

phenyl propiolate 88b undergoes DcB in very high yield, (2-methoxy) 1-naphthylmethyl phenyl 

propiolate 84c regrettably did not undergo DcB. The use of EDG substituents (88b and 88d) 

gave higher yields than a substrate with an EWG substituent 88e. Both 1- and 2-naphthylmethyl 

propiolates underwent DcB although a higher catalyst loading (10 mol%) was necessary for 2-

naphthylmethyl propiolates. In addition to phenyl alkynes, other aliphatics such as methyl, 

pentyl, and cyclohexenyl alkynes can be used with little to no effect on yield of benzylation. This 

is in contrast with the DcA of alkynes in which aromatic propiolates are superior substrates.
15

 

While a terminal alkyne 88i failed to undergo DcB, a TMS group 88j can be used in lieu of the 

hydrogen.
15
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Scheme 72. 
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 We also expanded the scope of DcB using heterocycles. We were pleased that 

quinolinylmethyl, indolylmethyl, and benzofurylmethyl propiolates undergo DcB in good to 

excellent yields (Scheme 73). The position of the nitrogen near to the benzyl carbon in 

quinolines did not seem to affect benzylation. While we were able to obtain 4-quinolinylmethyl 

methyl alkyne 88q in good yield, it has to be kept cold after isolation to prevent isomerization to 

4-quinolinyl butadiene.
15
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Scheme 73. 
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 While we were working towards expanding the scope of DcB using Pd(PPh3)4, we were 

curious if other Pd catalysts could also be used instead of Pd(PPh3)4. More specifically, we were 

curious if we could use the catalyst inspired from our first project in which CpPd(allyl)/dppf 

catalyst was a very useful catalyst in the DcB of simple benzyl β-ketoesters (Chapter 2.3). To test 

our hypothesis, 1-naphthylmethyl phenyl alkyne 88 was treated with CpPd(allyl)/dppf catalyst. 

We were delighted that it gave 88a cleanly at a lower catalyst loading and in higher yield 

compared to Pd(PPh3)4 catalyst (eq. 75). 
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Ph
5 mol% CpPd(allyl)

6 mol% dppf
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Ph

88 88a
95%
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 Gratified by this result, we briefly looked into some of the substrates that were coupled 

previously using Pd(PPh3)4 and compared these results using CpPd(allyl)/dppf (Scheme 74). We 

were pleased that CpPd(allyl)/dppf catalyst also effectively allowed DcB of aromatic and 

heteroaromatic benzo-fused propiolates into their corresponding alkynes in higher and 

comparable yields to the Pd(PPh3)4 catalyst. Other quinolinylmethyl alkynes (88y and 88z) can 

also be accessed using this catalyst system. While a 2-chloro-6-methoxy-3-quinolinylmethyl 

phenyl propioplate 88bb failed to undergo DcB, 7-quinolinylmethyl phenyl alkyne 88aa was an 

excellent substrate. The inability of 8-quinolinylmethyl phenyl propiolate 84cc to undergo DcB 

supports the idea that the position of the heteroatom near to the benzylic carbon is important.  
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Scheme 74. 
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3.3.2 Inevitable isomerizations 

 One of the key experiments reported by Buchwald and coworkers showed that benzyl 

octyne 89 underwent isomerization givng benzyl allene 89a in presence of base (eq. 76).
13

 This 

implies that the role of base has significant impact in alkyne-allene isomerizations. Alkyne-

allene isomerization of this kind is known as prototropic rearrangement in which there is 

migration of a non-cumulated π-bond into cumulation with a second π-bond.
16

 Based on the 
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results shown in Schemes 72-74, we did not see any formation of aryl allene from benzyl alkyne, 

but rather decomposition when benzyl alkynes were kept at room temperature.  

C8H17

2.5 eq. Cs2CO3

MeCN, 90oC, 10h
C8H17 (76)

89 89a  

When 4-quinolinylmethyl phenyl propiolate 90 was treated with Pd(PPh3)4 for 12 hours, 

the expected 4-quinolinylmethyl phenyl alkyne 90a was observed (eq. 77). However, when we 

let the reaction run longer; we no longer observed 90a (based on 
1
H NMR spectroscopy) but 

rather 4-quinolinyl phenyl allene 90b. The formation of 90a can also be bypassed by simply 

heating 90 longer than 12 hours albeit in low yield. When CpPd(allyl)-dppf catalyst was used, 

90b was isolated in good yield and none of 90a was observed (eq. 78). This implies that 

formation of 90a is kinetically driven while 90b is thermodynamic. Since we could only see 

benzyl alkyne 90a on NMR scale, attempts to isolate it proved difficult. While isolation of 90a 

was not possible, it was interesting that other benzo-fused alkynes did not isomerize to aryl 

allenes, even when reactions were heated for more than 12 hours.  

N PhN
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(77)

N

O

O

Ph
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tol, 110oC, 12h
90b
60%

(78)

 

Another substrate that also underwent isomerization was the product of DcB of 4-

quinolinylmethyl methyl propiolate. For this substrate, formation of 4-quinolinyl butadiene 91 

occurred from isomerization of 4-quinolinylmethyl methyl alkyne 88q. This concomitant 
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isomerization event was observed during the course of reaction (eq. 79). While we could get a 

clean 
1
H NMR spectrum of 88q, a clean 

13
C NMR spectrum of it was difficult because we could 

notice the formation and appearance of olefin signals pertaining to 91 during acquisition. 

Considering that the thermodynamic stability of isomeric acetylenes and dienes, in which 1,3-

dienes are the most stable compounds, we were pleased that diene formation was not observed in 

other substrates.
17
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3.3.3 Diaryl alkyne synthesis 

 We also looked into the DcB of diaryl alkynes (Scheme 75). For these reactions, 

Pd(PPh3)4 proved to be a better catalyst. While a higher catalyst loading was necessary to 

achieve a high yield of benzylation, both aromatic and heteroaromatic substrates underwent 

benzylation in good to high yields. Similar to previous DcB results, the electronics and position 

of the substituent on the ring affected the overall reaction. 
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Scheme 75.  
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92g
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a Number in parenthesis is the % yield using 5 mol% Pd.  

 

3.4 Development of DcB of simple benzyl alkynes 

3.4.1 Background 

 The ability of benzo-fused propiolates to undergo DcB inspired us to investigate the 

scope of alkyne DcB using simple benzyl esters. To begin, when p-methoxybenzylmethyl phenyl 

propiolate 93 was subjected to Pd conditions used in the DcB of benzo-fused propiolates, 

formation of benzyl alkyne 93a did not occur (eq. 80). Saddened by these results, we looked into 

the literature with the hope to find publications that describe in some way regarding 
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decarboxylative benzylations of simple benzyls. We were able to find an interesting publication 

reported by Li and coworkers in 2010, in which they reported the benzylation of propiolic acids 

with benzyl halide in the presence of base and XPhos ligand giving simple benzyl alkynes (eq. 

81). A variety of benzyl halides can be used as coupling partner with aromatic and aliphatic 

propiolic acids in good to high yields.
18

  

MeO

O

O

Ph

93

10 mol% Pd(PPh3)4

or

10 mol% CpPd(allyl)

11 mol% dppf

tol, 110oC

Ph
MeO

93a

(80)

 

R

O

OH
R

R1

X
R +

X = Cl, Br

1 mol% Pd(OAc)2

2 mol% Xphos (L2)

Cs2CO3, THF, 80oC

42-90%

(81)

. 

 The proposed mechanism occurs starting from oxidative addition of benzyl halide with 

Pd to generate Pd-π-benzyl complex. Cs2CO3 deprotonates phenyl propiolic acid giving phenyl 

alkynyl carboxylate which then undergoes decarboxylation to generate phenyl alkynyl anion. 

This leads to formation of alkyne-Pd-benzyl intermediate (Scheme 76). Reductive elimination 

ultimately releases benzyl alkyne and Pd is regenerated back into the catalytic cycle.
19
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Scheme 76. 
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R
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One interesting feature of this reaction was phenylacetylene can undergo substitution 

with benzyl chloride to give benzyl alkyne in comparable yield with that of phenylpropiolic acid 

(eq. 82). This suggests that formation of phenylacetylene occurs in the reaction in situ. If 

phenylacetylene is present in the reaction, then decarboxylation would become unnecessary since 

deprotonation of the terminal alkyne from phenylacetylene will also generate the alkynyl anion 

needed to form the alkyne-Pd-benzyl intermediate. Based on a series of 
1
H NMR experiments, 

we were able to observe the formation of phenylacetylene in the reaction of phenyl propiolic acid 

and benzyl bromide (eq. 83). It appears that while the overall chemistry leads to generation of 

benzyl alkynes, synthetic preparations required more expensive propiolic acids rather than 

acetylenes to generate the alkynyl anion. Despite the disadvantage, the overall benzylation could 

be beneficial to our chemistry. 
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Ph R R

Cl
+

1 mol% Pd(OAc)2

2 mol% Xphos (L2)

Cs2CO3, THF, 80oC

R = CO2H, 92%
= H, 87%

(82)

Ph CO2H
Ph

Cl
+

1 mol% Pd(OAc)2
2 mol% L2

Cs2CO3, THF, 80oC
(83)Ph H

1H NMR

observed  

3.4.2 Substrate methodology and reaction scope 

 The inability of p-methoxybenzylmethyl phenyl propiolate 93 to undergo DcB prompted 

us to try other catalysts. Initial screening results showed that while bidentate and monodentate 

ligands that contain (PPhx) in their ligand backbone failed (entries 1-4), the use of 

alkylphosphine monodentate ligands incredibly gave the desired p-methoxybenzyl phenyl alkyne 

93a in moderate to good conversions. Switching from CpPd(allyl) to Pd2(dba)3 as Pd source, we 

were able to notice improved product conversion. When we switched from alkyl phosphines to 

electron-rich biphenyl-derived phosphines, identical to the catalyst used by Li
18

 and Buchwald.
13

 

We were pleased that higher product conversions were observed. Finally, the use of XPhos 

ligand gave the best conversion. When the catalyst loading was lowered, the conversion to 

product dropped drastically. Ultimately, we chose the combination of Pd2dba3/XPhos catalyst for 

DcB of simple benzyl propiolates. 
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Table 5. 

MeO

O

O

Ph

X mol% Pd

Y mol% ligand

tol, 110oC, 15h MeO
Ph

Entry X Pd Y Ligand %Conversiona

1 10 CpPd(allyl) 11 dppf 0

2 10 CpPd(allyl) 11 dppe 0

3 10 CpPd(allyl) 11 Xantphos 0

4 10 CpPd(allyl) 20 PPh3 0

5 10 CpPd(allyl) 20 PMe3 67

6 10 CpPd(allyl) 20 PBu3 47

7 10 CpPd(allyl) 20 P(t -Bu)3 0

8 10 CpPd(allyl) 20 PCy2bp 72b

9 5 Pd2dba3 20 PCy2bp 63

10 5 Pd2dba3 20 SPhos 77

11 5 Pd2dba3 20 XPhos 94

12 2.5 Pd2dba3 10 XPhos 11

13 1 Pd2dba3 5 XPhos 0

a Determined by 1H NMR spectroscopy. b The 1H NMR spectrum gave messy

mixtures.

PCy2

MeO OMe

SPhos

Ph2P
PPh2

O

PPh2 PPh2

Xantphos

dppe

93 93a

 

 Having the optimized reaction conditions at hand, we tried it to utilize various simple 

benzyl propiolates in DcB reactions. We first looked into the effect of substituents around the 

aromatic ring towards DcB. (Scheme 77) As expected, EDG-containing substituents gave 

products in higher yields compared to substrates containing EWG substituents, We were also 

pleased that 2-methoxy-1-naphthylmethyl phenyl propiolate underwent DcB giving 2-methoxy-

1-naphthyl phenyl alkyne in high yield when a more reactive Pd catalyst was used. 
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Scheme 77. 
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 We also looked into exploring the scope of DcB with other substituted benzyl alkynes 

(Scheme 78). While the formation of 93u did not occur, presumably because of the presence of 

bromine substituent, a fluoro substituent (93n and 93o) underwent benzylation in low to 

moderate yields. When a terminal alkyne was replaced with a bulky group such as pentyl or 

TMS, DcB proceeded in high yield compared to smaller group Me. This lies in contrast with 

DcA of alkynes in which a dimeric-type enyne 94a was obtained rather than the desired enyne 94 

when Me-substituent was used (eq. 84).
14

 

O

O

Me
10 mol% Pd(PPh3)4
tol, 75oC

MeO Me

Me

MeO

OMe
94a
81%

MeO
Me

94
not observed

(84)
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Scheme 78. 
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 Finally, we looked into the DcB of benzyl alkynes using five-membered heterocycles as 

the benzyl coupling partner (Scheme 79). We were pleased that furanylmethyl, 

thiophenylmethyl, and Boc-protected pyrrolylmethyl phenyl propiolates undergo DcB giving the 

corresponding five-membered heterocyclic alkynes in high yields. Pd(PPh3)4 can also be used in 

these reactions and still generate benzylation compounds in high yields. When an oxazole was 

tried, it appeared that the position of the benzyl next to an electronegative atom has significant 

effect on DcB. While 4-oxazolylmethyl phenyl alkyne 94e was obtained in high yield, 5-

oxazolylmethyl phenyl alkyne 94f gave a lower benzylation yield. When the benzyl moiety is in 

between two heteroatoms (94g), DcB did not occur. 
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Scheme 79.  
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a Numbers in parenthesis indicate % yield using 10 mol% Pd(PPh3)4.
b Performed by Shehani Mendis.
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3.5 Mechanistic insights 

 We think that the DcB mechanism of benzyl alkynes should be similar to the DcA 

mechanism of allyl alkynes; the only difference is the type of Pd electrophile. Also in this 

mechanism, the nucleophile is bound to the metal compared to enolate which is not bound 

(Chapter 2.3). To test whether the alkyne is bound to Pd after decarboxylation, an enantiopure 1-

napthylphenyl phenyl propiolate 95 was treated under identical reaction conditions as that of 

benzo-fused phenyl propiolates. It gave the expected 1-naphthylphenyl phenyl alkyne 95a in 

good yield with high conservation of enantiomeric excess (eq. 85). While we were not able to 

determine the absolute configuration of 95a, we think that the reaction would proceed with 

inversion. This assumption is based on the stereochemical probe in the DcA of allyl phenyl 

propiolate (eq. 73).
14
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Ph

O

O

Ph
95

89% ee

10 mol% Pd(PPh3)4
tol, 110oC

Ph

Ph

95a
68%, 86% ee

(85)

 

 

3.6 Conclusion 

 We have shown that simple benzyl and benzo-fused propiolates undergo DcB in the 

presence of appropriate Pd catalyst to generate benzyl alkynes. While benzo-fused propiolates 

can undergo DcB with either Pd(PPh3)4 or CpPd(allyl)/dppf catalyst, simple benzyl propiolates 

undergo DcB in the presence of electron-rich monodentate biphenyl-containing phosphine 

ligands. With the exception of a few 4-quinolinyl propiolates, the developed methodology allows 

construction of various substituted benzyl alkynes in good to high yields without formation of 

side products such as allenes and benzyl enynes. Similar to the DcB of benzyl β-ketoesters, the 

DcB of alkynes depends on the electronics of substituent and its position next to the benzylic 

carbon. Both simple aromatic and heteroaromatics can be utilized using the developed 

methodology. Also, the developed DcB of alkynes allows generation of diaryl methane 

containing alkynes in good yields, which can be applied towards the development of asymmetric 

DcB. Finally, the utility of DcB for functionalization of heterocycles makes this method an 

attractive tool useful in pharmaceutical synthesis and medicinal chemistry. 

 

 

 



202 

 

3.7 References 

1. (a) Buck, M.; Chong, J. M. “Alkylation of 1-alkynes in THF” Tetrahedron Lett. 2001, 42, 

5825-5827.; (b) Brandsma, L. Preparative Acetylenic Chemistry, 2nd ed.; Elsevier: 

Amsterdam, 1988, 322 pp.; (c) Raphael, R. A. Acetylene Compounds in Organic Synthesis; 

Butterworths: London, 1955, 219 pp.  

 

2. Takahashi, T.; Kitamura, M.; Shen, B.; Nakajima, K. “Straightforward method for synthesis 

of highly alkyl-substituted naphthacene and pentacene derivatives by homologation” J. Am. 

Chem. Soc. 2000, 122, 12876–12877. 

 

3. Wang, J. L.; Bowen, S. J.; Schweitzer, B. A.; Madsen, H. M.; McDonald, J.; Pelc, M. J.; 

Tenbrink, R. E.; Beidler, D.; Thorarensen, A. “Structure based design of novel irreversible 

FAAH inhibitors” Bioorg. Med. Chem. Lett. 2009, 19, 5970–5974. 

 

4. Gaertner, V. R. “Ring-opening nucleophilic alkylations by tertiary azetidines” J. Heterocycl. 

Chem. 1969, 6, 273–277. 

 

5. Yabunaka, H.; Kenmochi, A.; Nakatogawa, Y.; Sakamoto, K.; Miyoshi, H. “Hybrid 

ubiquinone: novel inhibitor of mitochondrial complex I” Biochim. Biophys. Acta 2002, 1556, 

106–112. 

 

6. Pérez, I.; Sestelo, J. P.; Sarandeses, L. A. “Atom-efficient metal-catalyzed cross-coupling 

reaction of indium organometallics with organic electrophiles” J. Am. Chem. Soc. 2001, 123, 

4155–4160 

 

7. Qian, M.; Negishi, E.-i. “Palladium-catalyzed cross-coupling reaction of alkynylzincs with 

benzylic electrophiles” Tetrahedron Lett. 2005, 46, 2927–2930. 

 

8. Yong, H.; Gu, Y. G.; Clark, R. F.; Marron, T.; Ma, Z.; Soni, N.; Stone, G. G.; Nilius, A. M.; 

Marsh, K.; Djuric, S. W. “Design, synthesis and structure-activity relationships of 6-O-

arylpropargyl diazalides with potent activity against multidrug-resistant Streptococcus 

pneumonia” Bioorg. Med. Chem. Lett. 2005, 15, 2653–2658. 

 

9. Pottier, L. R.; Peyrat, J.-F.; Alami, M.; Brion, J.-D. “Highly substituted enynes via a 

palladium-catalyzed tandem three carbon-carbon bonds forming reaction procedure from 

benzyl halides and alkynyl tributyltin reagents” Tetrahedron Lett. 2004, 45, 4035–4038. 

 

10. (a) Pottier, L. R.; Peyrat, J.-F.; Alami, M.; Brion, J.-D. “Unexpected tandem Sonogashira-

carbopalladation-Sonogashira coupling reaction of benzyl halides with terminal alkynes: a 

novel four-component domino sequence to highly substituted enynes” Synlett 2004, 9, 1503–

1508.; (b) Arcadi, A.; Cacchi, S.; Ianelli, S.; Marinelli, F.; Pietroni, B. “The palladium-

tributylammonium formate reagent in the stereoselective hydrogenation, and stereo- and 

regioselective hydroarylation of alkyl 4-hydroxy-2-alkynoates: a route to substituted 

butenolides” Tetrahedron 1988, 44, 481–490. 



203 

 

11. Cheng, J.; Sun, Y.; Wang, F.; Guo, M.; Xu, J.-H.; Pan, Y.; Zhang, Z. “A copper- and amine-

free Sonogashira reaction employing aminophosphines as ligands” J. Org. Chem. 2004, 69, 

5428–5432.  

 

12. Sans, V.; Trzeciak, A. M.; Luis, S.; Ziólkowski, J. J. ”PdCl2(P(OPh)3)2 catalyzed coupling 

and carbonylative coupling of phenylacetylenes with aryl iodides in organic solvents and in 

ionic liquids” Catal. Lett. 2006, 109, 37–41. 

 

13. Larsen, C. H.; Anderson, K. W.; Tundel, R. E.; Buchwald, S. L. “Palladium-catalyzed Heck 

alkynylation of benzyl chlorides” Synlett 2006, 18, 2941–2946. 

 

14. Rayabarapu, D. K.; Tunge, J. A. “Catalytic decarboxylative sp–sp
3
 coupling” J. Am. Chem. 

Soc. 2005, 127, 13510–13511. 

 

15. Torregrosa, R. R. P.; Ariyarathna, Y.; Chattopadhyay, K.; Tung, J. A. “Decarboxylative 

benzylations of alkynes and ketones” J. Am. Chem. Soc. 2010, 132, 9280–9282.  

 

16. Hashmi, A. S. K. “Synthesis of allenes by isomerization reactions” In Modern Allene 

Chemistry; Krause, N.; Hashmi, A. S. K., Eds.; John Wiley & Sons, Germany, 2004, pp. 3–

50. 

 

17. Olah, G. A.; Mólnar, A. “Hydrocarbon Chemnistry, 2
nd

 Edition” John Wiley and Sons, p. 

180. 

 

18. Zhang, W.-W..; Zhang, X.-G.; Li, J.-H. “Palladium-catalyzed decarboxylative coupling of 

alkynyl carboxylic acids with benzyl halides or aryl halides” J. Org. Chem. 2010, 75, 5259–

5264. 

 

19. Weaver, J. D.; Recio, A., III; Grenning, A. J.; Tunge, J. A. “Transition metal-catalyzed 

decarboxylative allylation and benzylation reactions” Chem. Rev. 2011, 111, 1846–1913. 

 

 

 

 

 

 



204 

 

3.8 Methodology and Compound Characterizations 

General Information 

Toluene and THF were dried over sodium in the presence of benzophenone indicator. 

DCM and Et2O were dried over activated alumina on a solvent system purchased from 

Innovative Technologies, Inc. Pd catalysts and ligands were purchased from Strem and Sigma-

Aldrich. Other reagents and solvents were also obtained commercially and used without 

additional purification unless specified. Chiral 1-napthylphenyl methanol was prepared 

according to a literature procedure.
1
 CpPd(allyl) was prepared according to another literature 

procedure.
2
 The isolated products were purified on silica gel from Sorbent Technologies (40-63 

μm particle size, 60 Å porosity, pH 6.5-7.5). The 
1
H and 

13
C NMR spectra were obtained on a 

Bruker Avance 400 or 500 MHz DRX spectrometer and were referenced to residual protio 

solvent signals. FTIR spectra were acquired on Shimadzu FTIR-8400S spectrometer. HRMS was 

performed on a LCT Premier TOF mass spectrometer using ESI techniques. Asymmetric 

analyses were performed via HPLC using Shimadzu SCL-10A VP instrument equipped with a 

chiral OD-H column.  Structural assignments of the isolated compounds were based on 
1
H, 

13
C, 

DEPT 135, COSY and HSQC spectroscopies. 

 

Synthesis of Starting Materials 

Synthesis of fused and simple benzyl propiolates 

In an oven-dried 100 mL-flask were added the benzyl alcohol (1.0 mmol), propiolic acid 

(1.0 mmol) and DCM (10 mL). The mixture was stirred in an ice bath for 30 minutes, after 

which, a DCM (3 mL) solution containing DCC (1.0 mmol) and DMAP (0.10 mmol) was added 

dropwise to the cooled flask. The reaction was stirred at room temperature overnight. The 
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resulting solution was filtered through a pad of celite in a funnel fitted with a filter paper. The 

celite mixture was washed with small amounts of DCM. The collected filtrate was concentrated 

in vacuo before purifying via flash chromatography over silica gel. 

Ar OH + R CO2H
DCC, cat. DMAP

DCM, 0oC to rt
Ar O

O

R  

Synthesis of 1-naphthyl cyclohexenyl ester 

The benzyl propiolate ester of 88h was made by DCC-DMAP coupling of 1-

naphthalenemethanol and 3-cyclohexenyl propiolic acid. 3-cyclohexenyl propiolic acid was 

prepared from the addition of CO2, in the form of dry ice, to the mixture containing n-BuLi and 

1-ethynylcyclohex-1-ene at -78
o
C followed by acidic workup at room temperature. 

H

n-BuLi

CO2

-78oC

CO2H

+ R CO2H
DCC, cat. DMAP

DCM, 0oC to rt
Ar O

O

 

Synthesis of 4- and 5-oxazole phenyl propiolates 

 The parent benzyl propiolate of 94d and 94e were prepared by DCC-DMAP coupling of 

phenyl propiolic acid and oxazole alcohol. The alcohols were prepared by LAH reduction of 4 

and 5-oxazole ethyl esters at 0
o
C.  

O

O

PhN

O

CO2Et

LAH

ether, 0oC N

O

OH + Ph CO2H
DCC, cat. DMAP

DCM, 0oC to rt N

O
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Procedure for decarboxylative benzylation of alkynes 

In a flame-dried Schlenk tube under argon, Pd(PPh3)4 (0.05 mmol) or the combination of 

Pd2(dba)3 (0.05 mmol) and XPhos (0.20 mmol) was dissolved in toluene (5 mL) and was added 

to the benzyl propiolic ester (1.0 mmol). The reaction was stirred at 110
o
C for 7 – 15 hours 

depending on the compound. After cooling the reaction mixture at room temperature, the 

reaction was concentrated in vacuo and was purified via flash chromatography using hexane and 

ethyl acetate as eluent. The isolated compound was kept in the freezer. 

 

Note on storage of benzylic alkynes 

We observed that some of the isolated benzylic alkynes - especially quinolinyl alkynes - 

decomposed over time when stored at room temperature. To avoid the risk of decomposition and 

degradation of other substrates in the future, all benzylic alkynes were stored in a freezer after 

isolation. 
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Spectroscopic Data 

Ph  
1-(3-phenylprop-2-ynyl)naphthalene, 88a

3 

(YA-1-24) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.10 (d, J = 8.3 Hz, 1H, aromatic H), 7.89 (d, J = 8.0 Hz, 

1H, aromatic H), 7.79 (d, J = 8.2 Hz, 1H, aromatic H), 7.71 (d, J = 7.0 Hz, 1H, aromatic H), 7.59 

– 7.54 (m, 1H, aromatic H), 7.54 – 7.49 (m, 1H, aromatic H), 7.49 – 7.43 (m, 3H, aromatic H), 

7.29 (dd, J = 5.1, 1.9 Hz, 3H, aromatic H), 4.24 (s, 2H, Ar-CH2) 

 
13

C NMR (126 MHz, CDCl3) δ ppm 134.16 (aromatic C), 132.94 (aromatic C), 132.10 (aromatic 

C), 131.92 (aromatic C), 129.20 (aromatic C), 128.69 (aromatic C), 128.30 (aromatic C), 128.06 

(aromatic C), 126.64 (aromatic C), 126.21 (aromatic C), 126.19 (aromatic C), 126.07 (aromatic 

C), 124.11 (aromatic C), 123.85 (aromatic C), 87.69 (CH2-C-C-Ar) 84.01 (CH2-C-C-Ar), 24.14 

(Ar-CH2) 

 

Ph
MeO  

1-methoxy-4-(3-phenylprop-2-ynyl)naphthalene, 88b 

(RT-4-283) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.35 (d, J = 8.3 Hz, 1H, aromatic H), 8.04 (d, J = 8.3 Hz, 

1H, aromatic H), 7.64 – 7.56 (m, 2H, aromatic H), 7.56 – 7.50 (m, 1H, aromatic H), 7.46 (dd, J = 

7.0, 2.6 Hz, 2H, aromatic H), 7.33 – 7.27 (m, 3H, aromatic H), 6.79 (d, J = 7.8 Hz, 1H, aromatic 

H), 4.15 (s, 2H, Ar-CH2), 3.99 (s, 3H, O-CH3). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 154.87 (aromatic C), 132.23 (aromatic C), 131.61 (aromatic 

C) (aromatic C), 128.18 (aromatic C), 127.73 (aromatic C), 126.64 (aromatic C), 125.89 

(aromatic C), 125.61 (aromatic C), 125.06 (aromatic C), 124.35 (aromatic C), 123.77 (aromatic 

C), 123.24 (aromatic C), 122.63 (aromatic C), 103.29 (aromatic C), 87.63 (CH2-C-C-Ar) , 83.24 

(CH2-C-C-Ar), 55.40 (O-CH3), 23.20 (Ar-CH2). 

 

FTIR (CH2Cl2) ῡmax cm
-1

 2938, 2359, 2332, 1489, 1437, 1119, 756. 

 

HRMS Calcd for C20H16O (M+H) – 273.1279, found 273.1273. 
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Ph  
1-methyl-4-(3-phenylprop-2-ynyl)naphthalene, 88d 

(RT-9-282) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 8.14 – 8.11 (dd, J = 6.6, 3.2 Hz, 1H, aromatic H), 8.07 – 

8.03 (dd, J = 7.6, 2.1 Hz, 1H, aromatic H), 7.60 – 7.53 (td, J = 6.3, 5.8, 2.4 Hz, 3H, aromatic H), 

7.47 – 7.41 (dd, J = 6.0, 2.3 Hz, 2H, aromatic H), 7.32 – 7.27 (m, 4H, aromatic H), 4.24 – 4.16 

(s, 2H, Ar-CH2), 2.72 – 2.68 (s, 3H, Ar-CH3). 
 
13

C NMR (126 MHz, CDCl3) δ ppm 133.66 (aromatic C), 132.77 (aromatic C), 131.57 (aromatic 

C), 131.47 (aromatic C), 130.51 (aromatic C), 128.11 (aromatic C), 127.63 (aromatic C), 126.29 

(aromatic C), 125.70 (aromatic C), 125.46 (aromatic C), 125.37 (aromatic C), 124.85 (aromatic 

C), 123.83 (aromatic C), 123.62 (aromatic C), 87.57 (Ar-C-C-CH2), 83.18 (Ar-C-C-CH2), 23.55 

(Ar-CH2), 19.49 (CH3). 
 

FTIR (CH2Cl2) ῡmax cm
-1

 2995, 2246, 1686, 1390, 1094, 758, 432. 

 

HRMS Calcd for C20H17 (M+H) – 257.1330, found 257.1328. 

 

Ph
F  

1-fluoro-4-(3-phenylprop-2-ynyl)naphthalene, 88e 

(RT-9-52) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 8.22 – 8.13 (d, J = 8.2 Hz, 1H, aromatic H), 8.13 – 8.05 (d, J 

= 7.9 Hz, 1H, aromatic H), 7.66 – 7.55 (t, J = 8.9 Hz, 3H, aromatic H), 7.50 – 7.41 (s, 2H, 

aromatic H), 7.33 – 7.27 (m, 3H, aromatic H), 7.18 – 7.06 (t, J = 8.6 Hz, 1H, aromatic H), 4.23 – 

4.13 (s, 2H, Ar-CH2). 
 
13

C NMR (126 MHz, CDCl3) δ ppm 159.44 (aromatic C), 157.39 (aromatic C), 132.55 (aromatic 

C), 131.77 (aromatic C), 128.39 (aromatic C), 127.98 (aromatic C), 127.21 (aromatic C), 126.24 

(aromatic C), 125.44 (aromatic C), 123.56 (aromatic C), 121.27 (aromatic C), 109.11 (aromatic 

C), 108.92 (aromatic C), 87.16 (Ar-C-C-CH2), 83.83 (Ar-C-C-CH2), 23.48 (Ar-CH2). 
 

FTIR (CH2Cl2) ῡmax cm
-1

 2926, 2359, 2189, 1603, 1238, 1055, 690. 

 

HRMS Calcd for C19H13FLi (M+Li) – 267.1161, found 267.1203. 
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Me  
1-(but-2-ynyl)naphthalene, 88f

4
 

(RT-4-294) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.04 (d, J = 8.3 Hz, 1H, aromatic H), 7.87 (d, J = 7.9 Hz, 

1H, aromatic H), 7.76 (d, J = 8.0 Hz, 1H, aromatic H), 7.63 (d, J = 7.0 Hz, 1H, aromatic H), 7.52 

(dt, J = 22.5, 7.3 Hz, 3H, aromatic H), 7.47 – 7.42 (m, 1H, aromatic H), 3.96 (s, 2H, Ar-CH2), 

1.87 (s, 3H, C-CH3). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 133.62 (aromatic C), 133.24 (aromatic C), 131.38 

(aromatic C), 128.61 (aromatic C), 127.31 (aromatic C), 125.93 (aromatic C), 125.58 (aromatic 

C), 125.51 (aromatic C), 125.50 (aromatic C), 123.39 (aromatic C), 78.69 (Ar-C-C-CH2), 76.39 

(Ar-C-C-CH2), 22.78 (Ar-CH2), 3.75 (C-CH3). 

 

Me

4
 

1-(oct-2-ynyl)naphthalene, 88g 

(RT-6-7) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.04 (d, J = 8.4 Hz, 1H, aromatic H), 7.86 (d, J = 7.7 Hz, 

1H, aromatic H), 7.75 (d, J = 8.2 Hz, 1H, aromatic H), 7.64 (d, J = 6.6 Hz, 1H, aromatic H), 7.51 

(dt, J = 20.8, 7.5 Hz, 2H, aromatic H), 7.46 – 7.42 (m, 1H, aromatic H), 3.98 (s, 2H, Ar-CH2), 

2.23 (t, J = 7.1 Hz, 2H, C-CH2-CH2), 1.57 – 1.50 (m, 2H, CH2-CH2), 1.42 – 1.36 (m, 2H, CH2-

CH2), 1.33 (dd, J = 14.1, 7.2 Hz, 2H, CH2-CH3), 0.89 (t, J = 7.2 Hz, 3H, CH2-CH3) 

 
13

C NMR (126 MHz, CDCl3) δ ppm 133.65 (aromatic C), 133.39 (aromatic C), 131.51 (aromatic 

C), 128.62 (aromatic C), 127.28 (aromatic C), 125.39 (aromatic C), 123.44 (aromatic C), 83.69 

(C-CH2-CH2), 77.19 (Ar-CH2-C-C), 30.71 (C-C-CH2-CH2), 28.82 (CH2-CH2), 23.23 (Ar-CH2), 

22.27 (CH2-CH3, 18.55 (C-CH2-CH2), 13.87 (CH2-CH3). 

 

FTIR (CH2Cl2) ῡmax cm
–1

 2930, 2230, 1597, 1510, 1396, 987, 769 

 

HRMS Calcd for C18H20 (M+H) – 237.1643, found 237.1634. 

 

 
1-(3-cyclohexenylprop-2-ynyl)naphthalene, 88h 

(RT-9-287) 
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1
H NMR (400 MHz, CDCl3) δ ppm 8.08 – 8.00 (d, J = 8.2 Hz, 1H, aromatic H), 7.89 – 7.83 (d, J 

= 7.1 Hz, 1H, aromatic H), 7.78 – 7.73 (d, J = 8.3 Hz, 1H, aromatic H), 7.67 – 7.62 (d, J = 7.0 

Hz, 1H, aromatic H), 7.55 – 7.43 (ddd, J = 21.8, 13.6, 8.1 Hz, 3H, aromatic H), 6.11 – 6.05 (s, 

1H, vinyl H), 4.15 – 4.05 (s, 2H, Ar-CH2), 2.20 – 2.11 (s, 2H, C-CH2), 2.11 – 2.00 (s, 2H, C-

CH2), 1.67 – 1.55 (m, 4H, (CH2-CH2). 
 
13

C NMR (126 MHz, CDCl3) δ ppm 134.03 (vinyl C), 133.79 (aromatic C), 133.00 (aromatic C), 

131.56 (aromatic C), 128.79 (aromatic C), 127.55 (aromatic C), 126.19 (aromatic C), 125.80 

(aromatic C), 125.70 (aromatic C), 123.53 (aromatic C), 120.98 (vinyl C), 85.53 (Ar-C-C-CH2), 

84.32 (Ar-C-C-CH2), 29.61 (CH2), 25.72 (CH2), 23.69 (CH2), 22.51 (CH2), 21.71 (CH2). 
 

FTIR (CH2Cl2) ῡmax cm
–1

 3047, 2932, 2361, 2214, 1690, 1508, 790 

 

HRMS Calcd for C19H17 (M-H) – 245.1330, found 245.1367. 

 

TMS  
trimethyl(3-(naphthalene-1-yl)prop-1-ynyl)silane, 88j

5
 

(RT-4-284) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.91 (d, J = 8.3 Hz, 1H, aromatic H), 7.78 (d, J = 8.3 Hz, 

1H, aromatic H), 7.68 (d, J = 8.2 Hz, 1H, aromatic H), 7.57 (d, J = 7.0 Hz, 1H, aromatic H), 7.46 

– 7.34 (m, 4H, aromatic H), 3.97 (s, 2H, Ar-CH2), 0.11 (s, 9H, (CH3-Si) 
 

13
C NMR (126 MHz, CDCl3) δ ppm 133.79 (aromatic C), 133.63 (aromatic C), 132.08 (aromatic 

C), 131.39 (aromatic C), 128.65 (aromatic C), 128.42 (aromatic C), 127.48 (aromatic C), 126.02 

(aromatic C), 125.66 (aromatic C), 125.55 (aromatic C), 123.25 (aromatic C), 103.75 (CH2-C-C-

TMS), 87.89 (CH2-C-C-TMS), 23.84 (Ar-CH2), 0.06 (CH3-Si) 

 

Ph  
2-(3-phenylprop-2-ynyl)naphthalene, 88k 

(YA-1-47) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.87 (s, 1H, aromatic H), 7.82 (dd, J = 7.3, 2.1 Hz, 2H, 

aromatic H), 7.50 (dd, J = 8.4, 1.8 Hz, 1H, aromatic H), 7.48 (dd, J = 3.3, 1.2 Hz, 1H, aromatic 

H), 7.47 (d, J = 1.9 Hz, 1H, aromatic H), 7.45 (dd, J = 2.0, 0.8 Hz, 1H, aromatic H), 7.43 (dd, J = 

6.7, 1.4 Hz, 1H, aromatic H), 7.30 (dt, J = 4.7, 2.4 Hz, 3H, aromatic H), 3.99 (s, 2H, Ar-CH2) 

 
13

C NMR (126 MHz, CDCl3) δ ppm 134.54 (aromatic C), 133.86 (aromatic C), 132.68 (aromatic 

C), 132.01 (aromatic C), 128.59 (aromatic C), 128.53 (aromatic C), 128.21 (aromatic C), 127.98 

(aromatic C), 126.84 (aromatic C), 126.56 (aromatic C), 126.46 (aromatic C), 125.92 (aromatic 

C), 123.97 (aromatic C), 87.70 (CH2-C-C-Ar), 83.05 (CH2-C-C-Ar), 26.46 (Ar-CH2) 
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FTIR (CH2Cl2) ῡmax cm
–1

 3053, 2251, 1694, 1489, 1269, 812, 690. 

 

HRMS Calcd for C19H14 (M+H) – 243.1174, found 243.1174. 

 

Ph
MeO  

2-methoxy-6-(3-phenylprop-2-ynyl)naphthalene, 88l 

(RT-9-283) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 7.84 – 7.77 (s, 1H, aromatic H), 7.77 – 7.70 (d, J = 9.2 Hz, 

2H, aromatic H), 7.53 – 7.45 (s, 3H, aromatic H), 7.36 – 7.29 (t, J = 3.4 Hz, 3H, aromatic H), 

7.19 – 7.11 (m, 2H, aromatic H), 4.02 – 3.95 (d, J = 2.8 Hz, 2H, Ar-CH2), 3.95 – 3.87 (d, J = 3.9 

Hz, 3H, O-CH3). 
 
13

C NMR (126 MHz, CDCl3) δ ppm 157.55 (aromatic C), 133.51 (aromatic C), 131.96 (aromatic 

C), 131.72 (aromatic C), 129.26 (aromatic C), 129.10 (aromatic C), 128.39 (aromatic C), 127.88 

(aromatic C), 127.14 (aromatic C), 126.17 (aromatic C), 123.80 (aromatic C), 118.99 (aromatic 

C), 105.79 (aromatic C), 87.75 (Ar-C-C-CH2), 82.83 (Ar-C-C-CH2), 55.44 (Ar-CH2), 25.91 (O-

CH3). 
 

FTIR (CH2Cl2) ῡmax cm
–1

 2935, 2359, 2332, 1606, 1265, 1229, 756. 

 

HRMS Calcd for C20H17O (M+H) – 273.1279, found 273.1266. 

 

Me  
2-(but-2-ynyl)naphthalene, 88m 

(YA-1-50) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 7.80 (s, 4H, aromatic H), 7.43 (s, 3H, aromatic H), 3.71 (s, 

2H, Ar-CH2), 1.88 (s, 3H, C-CH3) 
 

13
C NMR (126 MHz, CDCl3) δ ppm 135.17 (aromatic C), 133.74 (aromatic C), 132.48 (aromatic 

C), 128.27 (aromatic C), 127.78 (aromatic C), 126.74 (aromatic C), 126.24 (aromatic C), 125.66 

(aromatic C), 78.37 (CH2-C-C-CH3), 76.89 (CH2-C-C-CH3), 25.68 (Ar-CH2), 3.73 (C-CH3). 

 

FTIR (CH2Cl2) ῡmax cm
–1

 3053, 2243, 1693, 1265, 748 

 

HRMS Calcd for C14H12 (M+Li) – 187.1099, found 187.0987. 

 

 

TMS  
trimethyl(3-(naphthalene-2-yl)prop-1-ynyl)silane, 88n 

(YA-1-07) 
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1
H NMR (500 MHz, CDCl3) δ ppm 7.81 (t, J = 8.3 Hz, 4H, aromatic H), 7.50 – 7.42 (m, 3H, 

aromatic H), 3.81 (s, 2H, aromatic H), 0.22 (s, 9H, CH3-Si).  

 
13

C NMR (126 MHz, CDCl3) δ ppm 134.17 (aromatic C), 133.82 (aromatic C), 132.65 (aromatic 

C), 128.45 (aromatic C), 127.97 (aromatic C), 126.76 (aromatic C), 126.55 (aromatic C), 126.43 

(aromatic C), 125.90 (aromatic C), 104.57 (CH2-C-C-Si), 87.55 (CH2-C-C-Si), 26.73 (Ar-CH2), 

0.45 (Si-CH3). 

 

FTIR (CH2Cl2) ῡmax cm
–1

 2959, 2176, 1601, 1508, 1250, 842. 

 

HRMS Calcd for C16H18Si (M+H) – 239.1256, found 239.1270. 

 

N
Ph

 
3-(3-phenylprop-2-ynyl)quinoline, 88o 

(RT-4-215) 

 
1
H NMR (500 MHz, CDCl3) δ 8.92 ppm (d, J = 2.2 Hz, 1H, aromatic H), 8.19 (s, 1H, aromatic 

H), 8.09 (d, J = 8.4 Hz, 1H, aromatic H), 7.81 (d, J = 8.1 Hz, 1H, aromatic H), 7.70 – 7.66 (m, 

1H, aromatic H), 7.54 (t, J = 7.5 Hz, 1H, aromatic H), 7.46 (dd, J = 5.8, 3.8 Hz, 2H, aromatic H), 

7.31 (dd, J = 4.4, 2.2 Hz, 3H, aromatic H), 4.01 (s, 2H, Ar-CH2). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 150.97 (aromatic C), 147.07 (aromatic C), 134.21 (aromatic 

C), 131.64 (aromatic C), 129.61 (aromatic C), 129.15 (aromatic C), 129.08 (aromatic C), 128.29 

(aromatic C), 128.11 (aromatic C), 127.98 (aromatic C), 127.51 (aromatic C), 126.82 (aromatic 

C), 122.95 (aromatic C), 85.81 (CH2-C-C-Ar), 83.65 (CH2-C-C-Ar), 23.25 (Ar-CH2). 

 

FTIR (CH2Cl2) υmax cm
–1

 3057, 2924, 2177, 1691, 1267, 432 

 

HRMS Calcd for C18H13N (M+H) – 244.1126, found 244.1122. 

 

N  
3-(but-2-ynyl)quinoline, 88p 

(RT-5-41) 

 
1
H NMR (500 MHz, CDCl3) δ 8.82 ppm (d, J = 2.1 Hz, 1H, aromatic H), 8.09 (s, 1H), 8.06 (d, J 

= 8.4 Hz, 1H), 7.77 (d, J = 8.1 Hz, 1H), 7.64 (t, J = 7.6 Hz, 1H), 7.50 (t, J = 7.5 Hz, 1H), 3.70 (s, 

2H), 1.86 (s, 3H).  

 
13

C NMR (126 MHz, CDCl3) δ ppm 151.39, 147.23, 134.41, 130.72, 129.40, 129.30, 128.38, 

127.83, 127.08, 79.40, 75.65, 23.03, 3.87. 

 

FTIR (CH2Cl2) ῡmax cm
–1

 3057, 2918, 2278, 1641, 1377, 1196, 752. 
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HRMS Calcd for C13H11N (M+H) – 182.0970, found 182.0958. 

 

N Me  
4-(but-2-ynyl)quinoline, 88q 

(RT-6-58) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 8.85 (s, 1H), 8.10 (t, J = 7.7 Hz, 1H), 7.98 (d, J = 5.9 Hz, 

1H), 7.69 (d, J = 6.9 Hz, 1H), 7.57 (s, 2H), 3.95 (s, 2H), 1.86 (s, 3H). 

 
13

C NMR (101 MHz, CDCl3) δ ppm 150.64, 148.16, 143.31, 130.36, 129.37, 126.77, 123.19, 

120.56, 80.29, 74.71, 22.59, 3.62. 

 

FTIR (CH2Cl2) ῡmax cm
–1

 2923, 2176, 1655, 1379, 1020, 762.  

 

HRMS Calcd for C13H11N (M+H) – 182.0970, found 182.0957. 

 

Ph
N  

6-(3-phenylprop-2-ynyl)quinoline, 88r 

(RT-6-15) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.88 (d, J = 4.2 Hz, 1H, aromatic H), 8.13 (d, J = 8.2 Hz, 

2H, aromatic H), 8.08 (d, J = 8.6 Hz, 1H, aromatic H), 7.85 (s, 1H, aromatic H), 7.73 (dd, J = 

8.6, 1.8 Hz, 1H, aromatic H), 7.47 (dd, J = 6.7, 2.9 Hz, 3H, aromatic H), 7.38 (dd, J = 8.3, 4.2 

Hz, 1H, aromatic H), 7.30 (dd, J = 5.0, 2.0 Hz, 1H, aromatic H), 4.00 (s, 2H, Ar-CH2) 
 

13
C NMR (126 MHz, CDCl3) δ 150.36, 147.72, 135.94, 135.34, 131.85, 130.30, 129.88, 128.42, 

128.18, 126.25, 123.44, 121.22, 86.87 (CH2-C-C-Ar), 83.38 (Ar-C-C-CH2), 25.97 (Ar-CH2) 

 

FTIR (CH2Cl2) ῡmax cm
–1

 2926, 2199, 1595, 1277, 827, 692. 

 

HRMS Calcd for C18H13N (M+H) – 244.1126, found 244.1125. 

 

Me
N  

6-(but-2-ynyl)quinoline, 88s 

(RT-6-14) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.86 (d, J = 4.1 Hz, 1H, aromatic H), 8.12 (d, J = 8.1 Hz, 

1H, aromatic H), 8.03 (d, J = 8.6 Hz, 1H, aromatic H), 7.77 (s, 1H, aromatic H), 7.65 (d, J = 8.6 

Hz, 1H, aromatic H), 7.37 (dd, J = 8.2, 4.2 Hz, 1H, aromatic H), 3.72 (s, 2H, Ar-CH2), 1.87 (s, 

3H, C-CH3). 
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13
C NMR (126 MHz, CDCl3) δ ppm 150.50, 147.71, 136.47, 130.87, 129.87, 128.68, 126.48, 

121.80, 78.97 (CH2-C-C-CH3), 76.66 (CH2-C-C-CH3), 25.55 (Ar-CH2), 4.03 (C-CH3) 

 

FTIR (CH2Cl2) ῡmax cm
–1

 2959, 2228, 1500, 1117, 827, 615. 

 

HRMS Calcd for C13H11N (M+H) – 182.0970, found 182.0939. 

 

N

Boc

Ph

 
tert-butyl-3-(3-phenylprop-2-ynyl)-1H-indole-1-carboxylate, 88t 

(YA-1-30) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 8.11 (s, 1H, aromatic H), 7.62 (dd, J = 10.9, 3.1 Hz, 2H, 

aromatic H), 7.43 – 7.40 (m, 2H, aromatic H), 7.35 – 7.30 (m, 1H, aromatic H), 7.27 (dd, J = 4.0, 

2.5 Hz, 4H, aromatic H), 3.83 (s, 2H, Ar-CH2), 1.65 (s, 9H, CH3-C=O). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 150.22, (C=O peak) 131.60 (aromatic C), 128.19 (aromatic 

C), 127.82 (aromatic C), 124.48 (aromatic C), 123.53 (aromatic C), 123.37 (aromatic C), 122.48 

(aromatic C), 118.89 (aromatic C), 116.22 (aromatic C), 115.30 (aromatic C), 86.30 (Ar-CH2-C), 

83.51 (O=C-C-CH3), 81.62 (CH2-C-C-Ar), 27.90 (CH3-C-C=O), 15.96, (Ar-CH2). 

 

FTIR (CH2Cl2) ῡmax cm
–1

 2250, 1707, 1491, 1232, 754 

 

HRMS Calcd for C22H21NO2 (M+H) – 332.1651, found 332.1649. 

 

N

Boc

Me

 
tert-butyl 3-(but-2-ynyl)-1H-indole-1-carboxylate, 88u 

(YA-1-40) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 8.04 (s, 1H, aromatic H), 7.47 (d, J = 7.5 Hz, 2H, aromatic 

H), 7.21 (s, 1H, aromatic H), 7.16 (d, J = 6.2 Hz, 1H, aromatic H), 3.47 (s, 2H, Ar-CH2), 1.76 (s, 

3H, C-C-CH3), 1.58 (s, 9H, O=C-C-CH3). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 149.83 (C=O), 133.85 (aromatic C), 133.64 (aromatic C), 

128.56 (aromatic C), 124.49 (aromatic C), 123.24 (aromatic C), 122.46 (aromatic C), 118.89 

(aromatic C), 117.14 (aromatic C), 115.33 (aromatic C), 83.38 (O=C-C-CH3), 75.65 (Ar-C-C-

CH3), 27.98 (Ar-C-C-CH3), 15.32 (Ar-CH2), 3.57 (Ar-C-C-CH3). 

 

FT-IR (CH2Cl2) ῡmax cm
–1

 2978, 2931, 1732, 1256, 1155, 748, 542 

 

HRMS Calcd for C17H19NO2 (M+H) – 270.1494, found 270.1529. 
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N

Boc

TMS

 
tert-butyl 3-(3-(trimethylsilyl)prop-2-ynyl)-1H-indole-1-carboxylate, 88v 

(YA-1-41) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.12 (s, 1H, aromatic H), 7.53 (d, J = 7.6 Hz, 2H, aromatic 

H), 7.31 (t, J = 7.7 Hz, 1H, aromatic H), 7.22 (d, J = 7.2 Hz, 1H, aromatic H), 3.63 (s, 2H, Ar-

CH2), 1.65 (s, 9H, C-CH3), 0.17 (s, 9H, Si-CH3) 

 
13

C NMR (126 MHz, CDCl3) δ ppm 149.93 (C=O), 129.83 (aromatic C), 124.71 (aromatic C), 

123.67 (aromatic C), 122.64 (aromatic C), 119.04 (aromatic C), 116.22 (aromatic C), 115.51 

(aromatic C), 103.53 (C-Si-CH3), 86.71 (O=C-C-CH3), 83.66 (CH2-C-C), 28.47 (O=C-C-CH3), 

16.89 (Ar-CH2), 0.00 (Si-CH3) 

 

FTIR (CH2Cl2) ῡmax cm
–1

 2976, 2961, 2179, 1736, 1369, 1157, 844. 

 

HRMS Calcd for C19H25NO2Si (M+H) – 328.1733, found 328.1736. 

 

N

Boc

Ph

OMe

 
tert-butyl 5-methoxy-3-(3-phenylprop-2-ynyl)-1H-indole-1-carboxylate, 88w 

(RT-9-117) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 8.10 – 7.93 (s, 1H, aromatic H), 7.62 – 7.56 (s, 1H, aromatic 

H), 7.47 – 7.41 (dd, J = 6.5, 3.1 Hz, 2H, aromatic H), 7.30 – 7.28 (d, J = 3.5 Hz, 2H, aromatic 

H), 7.20 – 7.15 (m, 1H, aromatic H), 7.10 – 7.09 (d, J = 2.5 Hz, 1H, aromatic H), 6.97 – 6.91 

(dd, J = 9.0, 2.5 Hz, 1H, aromatic H), 3.92 – 3.84 (s, 3H, O-CH3), 3.84 – 3.76 (s, 2H, Ar-CH2), 

1.67 – 1.66 (s, 9H, Boc). 
 
13

C NMR (126 MHz, CDCl3) δ ppm 185.92 (C=O), 155.91 (aromatic C), 133.93 (aromatic C), 

131.56 (aromatic C), 130.02 (aromatic C), 128.38 (aromatic C), 127.79 (aromatic C), 116.30 

(aromatic C), 115.70 (aromatic C), 113.08 (aromatic C), 103.98 (C-Si-CH3), 101.60 (O=C-C-

CH3), 86.32 (alkyne C), 82.15 (alkyne C), 56.14 (Ar-CH2), 27.92 (O-Me), 16.39 (Boc). 
 

FTIR (CH2Cl2) ῡmax cm
–1

 2978, 2359, 2195, 1730, 1383, 1076, 758. 

 

HRMS Calcd for C23H27N2O3 (M+NH4) – 379.2022, found 379.2036. 
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O PhMeO

 
5-methoxy-2-(3-phenylprop-2-ynyl)benzofuran, 88x 

(RT-9-285) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 7.57 – 7.51 (d, J = 7.5 Hz, 1H, aromatic H), 7.51 – 7.43 (m, 

3H, aromatic H), 7.37 – 7.29 (s, 3H, aromatic H), 7.29 – 7.26 (s, 1H, aromatic H), 7.25 – 7.20 

(m, 1H, aromatic H), 6.74 – 6.68 (s, 1H, aromatic H), 4.02 – 3.94 (s, 2H, Ar-CH2). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 155.10 (aromatic C), 153.56 (aromatic C), 131.82 (aromatic 

C), 128.38 (aromatic C), 128.12 (aromatic C), 123.71 (aromatic C), 123.13 (aromatic C), 122.85 

(aromatic C), 120.58 (aromatic C), 111.06 (aromatic C), 103.38 (aromatic C), 83.92 (Ar-C-C-

CH2), 82.67 (Ar-C-C-CH2), 20.04 (Ar-CH2). 
 

FTIR (CH2Cl2) ῡmax cm
–1

 3057, 2932, 2359, 2220, 1599, 1165, 752. 

 

HRMS Calcd for C17H12ONa (M+Na) – 255.0786, found 255.0869. 

 

N  
3-(oct-2-ynyl)quinoline, 88y 

(RT-9-293) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 8.90 – 8.84 (s, 1H, aromatic H), 8.16 – 8.12 (s, 1H, aromatic 

H), 8.12 – 8.06 (d, J = 8.4 Hz, 1H, aromatic H), 7.84 – 7.77 (d, J = 8.2 Hz, 1H, aromatic H), 7.73 

– 7.65 (t, J = 7.7 Hz, 1H, aromatic H), 7.58 – 7.50 (t, J = 7.0 Hz, 1H, aromatic H), 3.83 – 3.71 (s, 

2H, Ar-CH2), 2.32 – 2.20 (t, J = 7.1 Hz, 2H, C-CH2), 1.61 – 1.57 (m, 1H, diastereotopic H), 1.56 

– 1.52 (m, 1H, diastereotopic H), 1.44 – 1.31 (m, 4H, CH2-CH2), 0.95 – 0.88 (t, J = 7.1 Hz, 3H, 

CH3). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 150.97 (aromatic C), 134.53 (aromatic C), 130.72 (aromatic 

C), 129.25 (aromatic C), 128.90 (aromatic C), 128.20 (aromatic C), 127.67 (aromatic C), 127.00 

(aromatic C), 84.25 (Ar-C-C-CH2), 76.11 (Ar-C-C-CH2), 31.27 (Ar-CH2), 28.71 (CH2), 23.09 

(CH2), 22.33 (CH2), 18.89 (CH2), 14.17 (CH3). 
 

FT-IR (CH2Cl2) ῡmax cm
–1

 2955, 2359, 2216, 1496, 1285, 787. 

 

HRMS Calcd for C17H20N (M+H) – 238.1596, found 238.1586. 

 

N
TMS

 
6-(3-(trimethylsilyl)prop-2-ynyl)quinoline, 88z 

(RT-10-11) 
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1
H NMR (400 MHz, CDCl3) δ ppm 8.91 – 8.81 (d, J = 4.1 Hz, 1H, aromatic H), 8.17 – 8.09 (d, J 

= 8.3 Hz, 1H, aromatic H), 8.09 – 7.96 (d, J = 8.8 Hz, 1H, aromatic H), 7.82 – 7.71 (s, 1H), 7.71 

– 7.61 (d, J = 8.7 Hz, 1H, aromatic H), 7.44 – 7.31 (dd, J = 8.2, 4.2 Hz, 1H, aromatic H), 3.91 – 

3.72 (s, 2H, Ar-CH2), 0.26 – 0.18 (s, 9H, TMS). 
 
13

C NMR (126 MHz, CDCl3) δ ppm 150.29 (aromatic C), 147.58 (aromatic C), 135.80 (aromatic 

C), 134.90 (aromatic C), 130.19 (aromatic C), 129.69 (aromatic C), 128.22 (aromatic C), 126.16 

(aromatic C), 121.43 (aromatic C), 103.76 (Ar-C-C-CH2), 87.90 (Ar-C-C-CH2), 26.29 (Ar-CH2), 

-0.02 (TMS). 
 

FTIR (CH2Cl2) ῡmax cm
–1

 2959, 2359, 2176, 1645, 1250, 1022, 847. 

 

HRMS Calcd for C15H18NSi (M+H) – 240.1209, found 240.1198. 

 

N

Ph

 
7-(3-phenylprop-2-ynyl)quinoline, 88aa 

(RT-9-289) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 8.98 – 8.88 (d, J = 3.9 Hz, 1H, aromatic H), 8.23 – 8.12 (m, 

2H, aromatic H), 7.85 – 7.78 (d, J = 8.3 Hz, 1H, aromatic H), 7.65 – 7.58 (d, J = 8.5 Hz, 1H, 

aromatic H), 7.51 – 7.46 (t, J = 3.5 Hz, 2H, aromatic H), 7.43 – 7.37 (dd, J = 8.0, 4.2 Hz, 1H, 

aromatic H), 7.34 – 7.29 (t, J = 2.9 Hz, 3H, aromatic H), 4.09 – 4.05 (s, 2H, Ar-CH2). 
 
13

C NMR (126 MHz, CDCl3) δ 150.69 (aromatic C), 136.10 (aromatic C), 131.86 (aromatic C), 

128.39 (aromatic C), 128.11 (aromatic C), 127.90 (aromatic C), 127.42 (aromatic C), 127.21 

(aromatic C), 123.58 (aromatic C), 121.00 (aromatic C), 86.91 (Ar-C-C-CH2), 83.63 (Ar-C-C-

CH2), 26.26 (Ar-CH2). 
 

FTIR (CH2Cl2) ῡmax cm
–1

 2926, 2359, 2201, 1630, 1448, 1281, 773, 690. 

 

HRMS Calcd for C18H14N (M+H) – 244.1126, found 244.1115. 

 

N Ph  
4-(3-phenylprop-2-ynyl)quinoline, 90a 

(RT-5-194) 

 
1
H NMR (500 MHz, CDCl3) δ 8.89 (d, J = 4.3 Hz, 1H, aromatic H), 8.14 (d, J = 8.6 Hz, 1H, 

aromatic H), 8.05 (d, J = 8.5 Hz, 1H, aromatic H), 7.75 – 7.71 (m, 1H, aromatic H), 7.66 (d, J = 

3.8 Hz, 1H, aromatic H), 7.46 – 7.44 (m, 2H, aromatic H), 7.38 (d, J = 7.9 Hz, 1H, aromatic H), 

7.34 (d, J = 9.4 Hz, 1H, aromatic H), 7.31 (d, J = 3.1 Hz, 2H, aromatic H), 4.25 (s, 2H, Ar-CH2) 

 

HRMS Calcd for C18H14N (M+H) – 244.1126, found 244.1108. 
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N

Ph

 
4-(3-phenylpropa-1,2-dienyl)quinoline, 90b 

(RT-11-142) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 8.81 (d, J = 4.5 Hz, 1H, aromatic H), 8.24 (d, J = 8.5 Hz, 

1H, aromatic H), 8.12 (d, J = 8.5 Hz, 1H, aromatic H), 7.72 (t, J = 7.6 Hz, 1H, aromatic H), 7.56 

(t, J = 7.1 Hz, 1H, aromatic H), 7.45 (d, J = 4.5 Hz, 1H, aromatic H), 7.40 – 7.29 (m, 5H, 

aromatic H), 7.26 (d, J = 7.0 Hz, 1H, diastereotopic H), 7.23 (s, 1H, aromatic H), 6.72 (d, J = 6.6 

Hz, 1H, diastereotopic H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 210.65 (Ar-C-C-C-Ar), 150.11 (aromatic C), 148.86 

(aromatic C), 139.12 (aromatic C), 132.54 (aromatic C), 130.29 (aromatic C), 129.43 (aromatic 

C), 128.94 (aromatic C), 127.92 (aromatic C), 127.31 (aromatic C), 126.65 (aromatic C), 126.09 

(aromatic C), 123.33 (aromatic C), 119.26 (aromatic C), 98.50 (Ar-C-C-C-Ar), 93.57 (Ar-C-C-

C-Ar). 

 
HRMS Calcd for C18H13N (M+H) – 244.1126, found 244.1146. 

N  
(E)-4-(buta-1,3-dienyl)quinoline, 91 

(RT-5-195) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 8.84 (d, J = 4.5 Hz, 1H, aromatic H), 8.10 (t, J = 8.6 Hz, 2H, 

aromatic H), 7.70 (t, J = 5.6 Hz, 1H, aromatic H), 7.55 (t, J = 7.0 Hz, 1H, aromatic H), 7.50 (d, J 

= 4.5 Hz, 1H, aromatic H), 7.27 (d, J = 15.4 Hz, 1H, aromatic H), 7.00 (dd, J = 15.0, 10.7 Hz, 

1H, Ar-CH=CH), 6.72 – 6.53 (m, 1H, Ar-CH=CH=CH2), 5.50 (d, J = 16.8 Hz, 1H, 

diastereotopic H), 5.36 (d, J = 9.9 Hz, 1H, diastereotopic H). 

 
13

C NMR (126 MHz, d-Tol) δ ppm 150.64 (aromatic C), 142.22 (aromatic C), 137.64 

(CH=CH=CH=CH2), 135.66 (CH=CH=CH=CH2), 131.45 (Ar-CH), 129.56 (aromatic C), 128.63 

(aromatic C), 127.76 (aromatic C), 126.73 (aromatic C), 123.81 (aromatic C), 120.87 (aromatic 

C), 120.25 (aromatic C), 117.40 (CH=CH=CH=CH2). 

 

Ph  
1-(1,3-diphenylprop-2-ynyl)naphthalene, 92 and 95a 

(RT-7-248, RT-9-150) 
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1
H NMR (500 MHz, CDCl3) δ ppm 8.13 (dd, J = 6.2, 2.8 Hz, 1H), 7.88 – 7.82 (m, 1H), 7.79 (d, 

J = 8.2 Hz, 1H), 7.67 (dd, J = 6.9, 2.4 Hz, 1H), 7.48 – 7.39 (m, 7H), 7.33 – 7.24 (m, 6H), 7.22 – 

7.18 (m, 1H), 5.91 (s, 1H). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 141.00, 136.83, 134.17, 131.68, 128.82, 128.58, 128.20, 

128.10, 128.02, 127.96, 126.87, 126.70, 126.13, 125.61, 125.51, 124.19, 123.50, 90.15, 85.22, 

40.68. 

 

FTIR (CH2Cl2) ῡmax cm
–1

 3057, 2116, 1948, 1597, 1491, 797, 756. 

 

HRMS Calcd for C25H18 (M+H) – 319.1487, found 319.1495. 

 

HPLC (Daicel Chiralpak OD-H HPLC column: 95% hexane/isopropanol, 0.5 mL/min) tr = 

10.330 (major), 12.242 (minor) minutes 

 

Ph

OMe

 
1-(1-(4-methoxyphenyl)-3-phenylprop-2-ynyl)naphthalene, 92a 

(RT-10-124) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.20 – 8.10 (t, J = 4.6 Hz, 1H), 7.92 – 7.84 (m, 1H), 7.83 – 

7.77 (d, J = 8.4 Hz, 1H), 7.73 – 7.65 (d, J = 6.7 Hz, 1H), 7.51 – 7.42 (m, 4H), 7.40 – 7.34 (d, J = 

8.7 Hz, 2H), 7.31 – 7.27 (t, J = 3.0 Hz, 3H), 7.27 – 7.26 (s, 1H), 6.93 – 6.79 (d, J = 8.6 Hz, 2H), 

5.98 – 5.83 (s, 1H), 3.87 – 3.73 (s, 3H). 
 
13

C NMR (126 MHz, CDCl3) δ ppm 158.56, 137.25, 134.28, 133.29, 131.80, 131.13, 129.15, 

128.94, 128.32, 128.16, 128.05, 126.67, 126.22, 125.72, 125.64, 124.33, 123.71, 114.07, 90.72, 

85.17, 55.40, 40.12. 
 

FTIR (CH2Cl2) ῡmax cm
–1

 2930, 2359, 2199, 1597, 1173, 781. 

 

HRMS Calcd for C26H20ONa (M+H) – 371.1412, found 371.1426. 

 

Ph

F

 
1-(1-(4-fluorophenyl)-3-phenylprop-2-ynyl)naphthalene, 92b 

(RT-9-187) 
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1
H NMR (400 MHz, CDCl3) δ ppm  8.14 – 8.06 (t, J = 4.6 Hz, 1H), 7.93 – 7.86 (t, J = 4.6 Hz, 

1H), 7.86 – 7.79 (d, J = 8.0 Hz, 1H), 7.71 – 7.65 (d, J = 7.1 Hz, 1H), 7.52 – 7.38 (m, 8H), 7.31 – 

7.29 (d, J = 3.0 Hz, 2H), 7.04 – 6.95 (t, J = 8.7 Hz, 2H), 5.95 – 5.80 (s, 1H). 

 

 
13

C NMR (126 MHz, CDCl3) δ ppm 162.89, 160.85, 136.81, 136.63, 134.25, 132.60, 131.76, 

131.05, 129.66, 128.95, 128.40, 128.21, 126.85, 126.37, 125.83, 125.61, 124.08, 123.35, 115.54, 

115.34, 90.19, 85.27, 40.15. 

 

FTIR (CH2Cl2) ῡmax cm
–1

 3057, 2359, 2216, 1598, 1157, 756, 690. 

 

HRMS Calcd for C25H18F (M-H) – 335.1236, found 335.1242. 
 

Ph

OMe

 
1-(1-(2-methoxyphenyl)-3-phenylprop-2-ynyl)naphthalene, 92c 

(RT-10-250) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.22 – 8.12 (d, J = 8.2 Hz, 1H), 7.90 – 7.82 (d, J = 7.6 Hz, 

1H), 7.81 – 7.75 (d, J = 8.2 Hz, 1H), 7.74 – 7.69 (d, J = 7.0 Hz, 1H), 7.53 – 7.39 (m, 6H), 7.31 – 

7.20 (m, 4H), 6.97 – 6.87 (m, 4H), 6.41 – 6.33 (s, 1H), 3.97 – 3.78 (s, 3H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 156.23, 156.03, 137.36, 134.01, 131.84, 131.36, 129.76, 

129.60, 128.78, 128.35, 128.25, 127.88, 126.15, 125.86, 125.55, 124.07, 123.91, 120.97, 110.94, 

90.85, 83.92, 55.96, 33.22. 

 

FTIR (CH2Cl2) ῡmax cm
–1

 3057, 2933, 2334, 2216, 1597, 1103, 757. 

 

HRMS Calcd for C26H20O (M+Na) – 371.1412, found 371.1396 

 

Ph  
2-(1,3-diphenylprop-2-ynyl)naphthalene, 92d 

(RT-7-241) 

  
1
H NMR (500 MHz, CDCl3) δ ppm 7.92 (d, J = 4.4 Hz, 1H), 7.85 – 7.76 (m, 3H), 7.53 – 7.46 

(m, 5H), 7.46 – 7.42 (m, 2H), 7.36 – 7.28 (m, 9H), 7.25 (s, 1H), 5.37 (d, J = 5.9 Hz, 1H). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 141.52, 139.13, 133.83, 133.68, 133.50, 132.47, 131.77, 

128.76, 128.56, 128.50, 128.30, 128.09, 127.92, 127.71, 127.05, 126.34, 126.18, 125.87, 123.53, 

90.18, 85.26, 43.77. 
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FTIR (CH2Cl2) ῡmax cm
–1

 3026, 2334, 1950, 1599, 1491, 1271, 1028, 756, 694. 

 

HRMS Calcd HRMS for C25H18 (M+H) – 319.1487, found 319.1481. 

 

Ph
MeO  

2-(1,3-diphenylprop-2-ynyl)-6-methoxynaphthalene, 92e 

(RT-11-86) 

 
1
H NMR (400 MHz, CDCl3) δ ppm  7.87 – 7.82 (s, 1H), 7.75 – 7.66 (dd, J = 16.0, 8.7 Hz, 2H), 

7.52 – 7.44 (qd, J = 8.8, 8.4, 3.1 Hz, 5H), 7.36 – 7.29 (m, 5H), 7.26 – 7.23 (d, J = 4.0 Hz, 1H), 

7.16 – 7.09 (m, 2H), 5.40 – 5.27 (s, 1H), 3.94 – 3.85 (s, 3H). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 157.78, 141.84, 136.98, 133.61, 131.85, 129.52, 128.94, 

128.81, 128.75, 128.38, 128.14, 127.43, 127.04, 126.96, 126.25, 123.65, 119.06, 105.79, 90.29, 

85.30, 55.33, 43.68. 

 

FTIR (CH2Cl2) ῡmax cm
–1

 3057, 2220, 1607, 1235, 1030, 756. 

 

HRMS Calcd for C26H19O (M-H) – 347.1436, found 347.1470. 

 

 

N
Ph

 
3-(1,3-diphenylprop-2-ynyl)quinoline 92f 

(RT-11-90) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 9.02 – 8.94 (s, 1H), 8.22 – 8.16 (s, 1H), 8.12 – 8.06 (d, J = 

8.3 Hz, 1H), 7.84 – 7.78 (d, J = 8.0 Hz, 1H), 7.72 – 7.66 (t, J = 7.7 Hz, 1H), 7.59 – 7.53 (d, J = 

7.0 Hz, 1H), 7.54 – 7.47 (t, J = 6.4 Hz, 4H), 7.39 – 7.31 (m, 4H), 7.31 – 7.26 (m, 3H), 5.47 – 

5.41 (s, 2H). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 151.15, 147.22, 140.54, 134.74, 134.12, 131.81, 129.48, 

129.32, 129.07, 128.47, 128.13, 127.95, 127.54, 127.05, 123.15, 88.79, 86.00, 41.71. 

 

FTIR (CH2Cl2) ῡmax cm
–1

 2341, 1656, 1598, 1377, 756, 692. 

 

HRMS Calcd for C24H18N (M+H) – 320.1439, found 320.1431. 
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Ph
N  

6-(1,3-diphenylprop-2-ynyl)quinoline, 92g 

(RT-11-91) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 8.92 – 8.85 (dd, J = 4.2, 1.6 Hz, 1H), 8.18 – 8.11 (d, J = 8.1 

Hz, 1H), 8.09 – 8.02 (d, J = 8.8 Hz, 1H), 7.93 – 7.87 (d, J = 1.7 Hz, 1H), 7.78 – 7.72 (dd, J = 8.8, 

2.0 Hz, 1H), 7.55 – 7.45 (m, 4H), 7.42 – 7.38 (dd, J = 8.3, 4.2 Hz, 1H), 7.37 – 7.31 (m, 5H), 7.29 

– 7.26 (m, 1H), 5.48 – 5.34 (s, 1H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 150.46, 147.63, 141.22, 140.14, 136.22, 131.86, 130.13, 

130.04, 128.92, 128.43, 128.33, 128.16, 127.33, 126.17, 123.37, 121.48, 89.67, 85.71, 43.85. 

 

FT-IR (CH2Cl2) ῡmax cm
–1

 3028, 1596, 1491, 1265, 1028, 842, 756. 

 

HRMS Calcd for C24H18N (M+H) – 320.1439, found 320.1449. 

 

MeO
Ph

 
1-methoxy-4-(3-phenylprop-2-ynyl)benzene, 93a 

(RT-11-160) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 7.47 – 7.40 (dd, J = 6.6, 3.0 Hz, 2H), 7.35 – 7.31 (m, 2H), 

7.31 – 7.28 (dd, J = 4.8, 2.1 Hz, 3H), 6.92 – 6.84 (d, J = 8.6 Hz, 2H), 3.83 – 3.80 (s, 3H), 3.79 – 

3.76 (s, 2H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 158.50, 131.76, 129.07, 128.92, 128.36, 123.71, 114.03, 

88.16, 82.45, 55.58, 24.66. 

 

FTIR (CH2Cl2) ῡmax cm
–1

 2928, 2835, 2359, 2191, 1670, 1510, 1037, 756. 

 

HRMS Calcd for C16H15O (M+H) – 223.1123; found 223.1097. 

 

Ph

O

O  
5-(3-phenylprop-2-ynyl)benzo[d][1,3]dioxole, 93b

6
 

(RT-11-65) 

 
1
H NMR (500 MHz, CDCl3) δ 7.48 – 7.42 (dd, J = 6.5, 3.2 Hz, 2H), 7.33 – 7.27 (m, 3H), 6.97 – 

6.90 (d, J = 1.5 Hz, 1H), 6.89 – 6.83 (dd, J = 8.0, 1.6 Hz, 1H), 6.80 – 6.75 (m, 1H), 5.99 – 5.92 

(s, 2H), 3.80 – 3.69 (s, 2H). 
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13
C NMR (126 MHz, CDCl3) δ 147.92, 146.42, 131.69, 130.58, 128.81, 128.30, 127.98, 127.05, 

123.65, 120.90, 108.70, 108.35, 101.12, 87.69, 82.69, 25.30.  

 

Ph  
prop-1-yne-1,3-diyldibenzene, 93c

7
 

(RT-11-161) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 7.52 – 7.40 (m, 4H), 7.38 – 7.32 (t, J = 7.6 Hz, 2H), 7.32 – 

7.28 (m, 3H), 7.28 – 7.27 (s, 1H), 3.93 – 3.75 (s, 2H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 136.89, 131.78, 128.69, 128.37, 128.10, 127.96, 126.77, 

123.79, 87.65, 82.78, 25.89. 

 

Ph

TMS  
trimethyl((4-(3-phenylprop-2-ynyl)phenyl)ethynyl)silane, 93d 

(RT-11-66) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.49 – 7.40 (dt, J = 5.0, 3.2 Hz, 4H), 7.37 – 7.33 (d, J = 7.9 

Hz, 2H), 7.33 – 7.28 (dd, J = 4.9, 1.9 Hz, 3H), 3.89 – 3.75 (s, 2H), 0.32 – 0.18 (s, 9H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 137.38, 132.26, 131.78, 128.41, 128.08, 127.97, 123.51, 

121.58, 105.11, 94.08, 86.88, 83.14, 25.85, 0.15. 

 

FTIR (CH2Cl2) ῡmax cm
–1

 2959, 2349, 2156, 1599, 1489, 1250, 864, 690. 

 

HRMS Calcd for C20H24NSi (M+NH4) – 306.1678, found 306.1640. 
 

N
H

Ph
Me

O

 
N-(4-(3-phenylprop-2-ynyl)phenyl)acetamide, 93e 

(RT-11-76) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.49 – 7.41 (td, J = 10.1, 9.2, 3.7 Hz, 4H), 7.38 – 7.33 (d, J 

= 8.0 Hz, 2H), 7.32 – 7.27 (m, 3H), 7.23 – 7.17 (m, 1H), 3.83 – 3.73 (s, 2H), 2.19 – 2.14 (m, 

3H). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 168.36, 136.53, 132.86, 131.69, 130.24, 129.54, 128.64, 

128.38, 127.99, 123.72, 120.23, 87.58, 82.81, 25.34, 24.75. 

 

FTIR (CH2Cl2) ῡmax cm
–1

 3303, 3059, 2349, 2197, 1666, 1537, 1319, 1020, 756, 692. 
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HRMS Calcd for C17H16NO (M+H) – 250.1232; found 250.1237. 
 

F
Ph

 
1-fluoro-4-(3-phenylprop-2-ynyl)benzene, 93f

8
 

(RT-11-48) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 7.47 – 7.42 (dd, J = 6.6, 3.0 Hz, 2H), 7.41 – 7.35 (dd, J = 

8.3, 5.4 Hz, 2H), 7.33 – 7.28 (t, J = 3.3 Hz, 3H), 7.06 – 7.00 (t, J = 8.7 Hz, 3H), 3.90 – 3.72 (s, 

2H). 
 

13
C NMR (101 MHz, CDCl3) δ ppm 162.95, 160.59, 133.12, 132.42, 131.72, 130.86, 129.49, 

128.41, 127.97, 123.49, 115.43, 87.37, 82.66, 25.15.  
 

NC
Ph

 
4-(3-phenylprop-2-ynyl)benzonitrile, 93g

8 

(RT-10-255) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.67 – 7.57 (d, J = 8.1 Hz, 2H), 7.57 – 7.48 (d, J = 7.9 Hz, 

2H), 7.48 – 7.38 (dd, J = 6.5, 3.1 Hz, 3H), 7.36 – 7.28 (dd, J = 4.4, 2.1 Hz, 2H), 3.93 – 3.81 (s, 

2H). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 142.45, 132.52, 131.78, 128.91, 128.48, 128.37, 123.18, 

119.01, 110.81, 85.27, 83.91, 25.98. 

 

O
Ph

F

F  
1-(difluoromethoxy)-4-(3-phenylprop-2-ynyl)benzene, 93h 

(RT-11-67) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.47 – 7.37 (m, 4H), 7.34 – 7.27 (m, 3H), 7.13 – 7.05 (d, J = 

8.5 Hz, 2H), 6.68 – 6.31 (t, J = 74.1 Hz, 1H), 3.87 – 3.73 (s, 2H). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 149.96, 133.94, 131.71, 129.45, 128.42, 128.11, 119.94, 

117.93, 116.12, 114.06, 86.92, 83.05, 25.11. 

 

FTIR (CH2Cl2) ῡmax cm
–1

 2959, 2199, 1703, 1603, 1508, 1223, 1018, 758, 692. 

 

HRMS Calcd. for C16H16F2NO (M+NH4) – 276.1200; found 276.1171. 

 

O2N
Ph
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1-nitro-4-(3-phenylprop-2-ynyl)benzene, 93i 

(RT-11-47) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 8.30 – 8.15 (d, J = 8.7 Hz, 2H), 7.64 – 7.56 (dd, J = 8.9, 2.1 

Hz, 2H), 7.50 – 7.43 (dd, J = 6.6, 3.0 Hz, 2H), 7.38 – 7.30 (dd, J = 8.7, 4.2 Hz, 3H), 4.02 – 3.90 

(s, 2H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 147.12, 144.17, 131.79, 129.08, 128.96, 128.50, 128.42, 

123.96, 123.12, 85.56, 83.92, 25.99. 

 

FTIR (CH2Cl2) ῡmax cm
–1

 2853, 2349, 1597, 1518, 1344, 1109, 858, 756. 

 

HRMS Calcd for C15H10NO2 (M-H) – 236.0712; found 236.0708. 

 

Ph

NO2  
1-nitro-3-(3-phenylprop-2-ynyl)benzene, 93j 

(RT-11-35) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 8.34 – 8.27 (s, 1H), 8.16 – 8.10 (dd, J = 7.9, 1.9 Hz, 1H), 

7.81 – 7.73 (m, 1H), 7.56 – 7.49 (t, J = 7.9 Hz, 1H), 7.49 – 7.44 (td, J = 4.2, 2.2 Hz, 2H), 7.35 – 

7.29 (t, J = 3.2 Hz, 3H), 3.96 – 3.92 (s, 2H). 

 
13

C NMR (126 MHz, CDCl3) δ 139.03, 134.30, 131.83, 129.60, 128.49, 128.40, 123.16, 122.07, 

85.66, 84.02, 25.70. 

 

FTIR (CH2Cl2) ῡmax cm
–1

 3080, 2920, 2210, 1594, 1354, 1101, 757. 

 

HRMS Calcd for C15H15N2O2 (M+NH4) – 255.1134; found 255.1178. 

 

Ph

OMe  
1-methoxy-3-(3-phenylprop-2-ynyl)benzene, 93k

5
 

(RT-11-33) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.50 – 7.40 (m, 2H), 7.32 – 7.28 (m, 3H), 7.28 – 7.24 (m, 

2H), 7.03 – 6.94 (m, 2H), 6.83 – 6.77 (m, 1H), 3.83 – 3.82 (s, 3H), 3.82 – 3.81 (s, 2H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 159.93, 138.46, 131.77, 129.65, 128.40, 128.37, 127.97, 

123.77, 120.47, 113.84, 112.19, 87.49, 82.84, 55.37, 25.90. 
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Ph
OMe  

1-methoxy-2-(3-phenylprop-2-ynyl)benzene, 93l 

(RT-11-34) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.62 – 7.57 (dd, J = 7.5, 1.5 Hz, 1H), 7.50 – 7.44 (m, 2H), 

7.33 – 7.28 (m, 3H), 7.27 – 7.23 (m, 1H), 7.03 – 6.94 (td, J = 7.5, 1.0 Hz, 1H), 6. 91 – 6.81 (d, J 

= 8.1 Hz, 1H), 3.91 – 3.83 (s, 3H), 3.83 – 3.74 (s, 2H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 156.89, 131.80, 129.04, 128.34, 127.94, 127.83, 125.24, 

124.02, 120.66, 110.07, 87.70, 82.84, 55.50, 20.22. 

 

FTIR (CH2Cl2) ῡmax cm
–1

 3060, 2940, 2370, 2230, 1604, 1484, 1243, 1103, 755. 

 

HRMS Calcd for C16H13O (M-H) – 221.0966; found 221.0962. 

 

N
Ph

 
3-(3-phenylprop-2-ynyl)pyridine, 93m 

(RT-11-226) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 8.70 – 8.62 (m, 2H), 8.56 – 8.47 (d, J = 4.2 Hz, 1H), 7.81 – 

7.73 (d, J = 7.9 Hz, 1H), 7.51 – 7.39 (m, 1H), 7.36 – 7.29 (dt, J = 4.9, 2.5 Hz, 5H), 3.94 – 3.74 

(s, 2H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 149.46, 148.33, 135.65, 132.55, 131.78, 128.45, 128.25, 

123.60, 123.33, 86.23, 83.25, 23.00. 

 

HRMS Calcd for C14H12N (M+H) – 194.0970; found 194.0971. 
 

F

NO2

TMS

 
(3-(4-fluoro-3-nitrophenyl)prop-1-ynyl)trimethylsilane, 93n 

(RT-11-80) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 8.10 – 8.05 (d, J = 7.6 Hz, 1H), 7.65 – 7.57 (m, 1H), 7.28 – 

7.27 (s, 1H), 3.77 – 3.62 (s, 2H), 0.22 – 0.19 (s, 9H). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 155.58, 153.48, 135.00, 125.49, 118.66, 102.01, 89.18, 

29.85, 25.43, 0.09. 

FTIR (CH2Cl2) ῡmax cm
–1

 2959, 2392, 2179, 1622, 1539, 1350, 844, 760. 

 

HRMS Calcd for C12H18FN2O2Si (M+NH4) – 269.1122, found 269.1132. 
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F

OMe

Ph

 
1-fluoro-2-methoxy-4-(3-phenylprop-2-ynyl)benzene, 93o 

(RT-11-79) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 7.50 – 7.41 (t, J = 3.5 Hz, 2H), 7.34 – 7.28 (d, J = 3.8 Hz, 

3H), 7.21 – 7.06 (dd, J = 25.1, 11.3 Hz, 2H), 6.98 – 6.87 (t, J = 8.6 Hz, 1H), 3.94 – 3.85 (s, 3H), 

3.80 – 3.74 (s, 2H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 131.79, 128.40, 128.08, 123.58, 115.92, 113.78, 87.09, 

83.08, 56.69, 25.01. 

 

FTIR (CH2Cl2) ῡmax cm
–1

 2932, 2349, 2039, 1518, 1277, 1122, 1027. 

 

HRMS Calcd for C16H14FO (M+H) – 241.1029; found 241.1023. 

 

MeO
Me

 
1-methoxy-4-(oct-2-ynyl)benzene, 93p 

(RT-11-20) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 7.28 – 7.24 (m, 2H), 6.90 – 6.82 (d, J = 8.5 Hz, 1H), 3.85 – 

3.76 (s, 2H), 3.57 – 3.47 (s, 1H), 2.27 – 2.15 (t, J = 7.1 Hz, 1H), 1.39 – 1.29 (m, 2H), 1.23 – 1.16 

(d, J = 6.8 Hz, 1H), 0. 93 – 0.87 (t, J = 6.7 Hz, 2H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 158.31, 129.79, 128.91, 113.94, 82.43, 78.06, 55.44, 31.18, 

28.80, 24.41, 22.31, 18.86, 14.08. 

 

FTIR (CH2Cl2) ῡmax cm
-1

 2965, 2935, 2865, 2195, 1602, 1514, 1461, 1248, 1176, 1026, 825. 

 

HRMS Calcd for C15H19O (M-H) – 215.1436; found 215.1445. 
 

O2N
TMS

OMe  
(3-(2-methoxy-4-nitrophenyl)prop-1-ynyl)trimethylsilane, 93q 

(RT-11-130) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.89 – 7.85 (dd, J = 8.3, 2.1 Hz, 1H), 7.71 – 7.68 (d, J = 8.4 

Hz, 1H), 7.68 – 7.67 (d, J = 2.1 Hz, 1H), 3.99 – 3.85 (s, 3H), 3.72 – 3.58 (s, 2H), 0.26 – 0.15 (s, 

9H). 
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13
C NMR (126 MHz, CDCl3) δ ppm 156.74, 147.79, 132.63, 128.92, 115.74, 104.57, 102.10, 

88.55, 55.76, 20.51, 0.07. 

 

FTIR (CH2Cl2) ῡmax cm
-1

 2959, 2179, 1526, 1493, 1416, 1288, 1094, 1034, 845, 760. 

 

HRMS Calcd for C13H21N2O3Si (M+NH4) – 281.1321; found 281.1329. 

 

MeO
Me

 
1-(but-2-ynyl)-4-methoxybenzene, 93r 

(RT-11-6) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 7.26 – 7.21 (d, J = 4.8 Hz, 2H), 6.89 – 6.81 (d, J = 8.7 Hz, 

2H), 3.85 – 3.73 (s, 3H), 3.53 – 3.41 (d, J = 2.5 Hz, 2H), 1.92 – 1.77 (s, 3H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 158.35, 129.75, 128.96, 114.03, 113.99, 77.67, 77.35, 

55.45, 24.39, 3.76. 

 

FTIR (CH2Cl2) ῡmax cm
–1

 2922, 2215, 1599, 1514, 1253, 1026, 833. 

 

HRMS Calcd for C11H11O (M-H) – 159.0810; found 159.0823. 

 

N

NO2

TMS

 
1-(2-nitro-4-(3-(trimethylsilyl)prop-2-ynyl)phenyl)pyrrolidine, 93s 

(RT-11-131) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 7.77 – 7.68 (d, J = 2.1 Hz, 1H), 7.38 – 7.29 (dd, J = 8.7, 2.0 

Hz, 1H), 6.92 – 6.83 (d, J = 8.8 Hz, 1H), 3.62 – 3.51 (s, 2H), 3.24 – 3.16 (t, J = 6.4 Hz, 4H), 2.04 

– 1.91 (p, J = 3.6 Hz, 4H), 0.26 – 0.12 (s, 9H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 141.88, 136.85, 132.83, 125.86, 123.80, 116.29, 103.82, 

87.59, 50.58, 25.89, 24.88, 0.21. 

 

FTIR (CH2Cl2) ῡmax cm
–1

 2959, 2176, 2118, 1630, 1463, 1306, 845, 760. 

 

HRMS Calcd for C16H23N2O2Si (M+H) – 303.1529; found 303.1531. 
 

MeO
TMS

 
(3-(4-methoxyphenyl)prop-1-ynyl)trimethylsilane, 93t 

(RT-10-287) 
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1
H NMR (400 MHz, CDCl3) δ ppm 7.26 – 7.21 (s, 2H), 6.91 – 6.82 (d, J = 8.5 Hz, 2H), 3.88 – 

3.74 (s, 3H), 3.65 – 3.51 (s, 2H), 0.23 – 0.15 (s, 9H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 158.51, 128.97, 128.43, 114.02, 104.91, 86.62, 55.29, 

25.33, 0.26. 

 

FTIR (CH2Cl2) ῡmax cm
–1

 2960, 2170, 2125, 1614, 1509, 1243, 1036, 840. 

 

HRMS Calcd for C13H17OSi (M-H) – 217.1049; found 217.1066. 

 

Ph
OMe  

2-methoxy-1-(3-phenylprop-2-ynyl)naphthalene, 93v 

(RT-11-53) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 8.20 – 8.15 (d, J = 8.8 Hz, 1H), 7.84 – 7.78 (d, J = 10.3 Hz, 

1H), 7.59 – 7.51 (t, J = 7.7 Hz, 1H), 7.41 – 7.35 (t, J = 7.5 Hz, 1H), 7.35 – 7.29 (m, 2H), 7.24 – 

7.19 (dd, J = 4.4, 2.1 Hz, 3H), 4. 25 – 4.17 (s, 1H), 4.06 – 3.96 (s, 1H): 

 
13

C NMR (126 MHz, CDCl3) δ ppm 154.13, 133.01, 131.79, 129.44, 128.93, 128.54, 128.16, 

127.61, 126.78, 124.07, 123.82, 123.67, 118.31, 113.87, 88.67, 80.24, 57.09, 15.54. 

 

FTIR (CH2Cl2) ῡmax cm
–1

 2934, 2210, 1949, 1626, 1512, 1089, 756, 692. 

 

HRMS Calcd for C20H17O (M+H) – 273.1279; found 273.1282. 

 
O

Ph  
2-(3-phenylprop-2-ynyl)furan, 94a 

(RT-10-246) 

 
1
H NMR (500 MHz, CDCl3) δ ppm 7.47 – 7.39 (m, 2H), 7.38 – 7.33 (m, 1H), 7.32 – 7.27 (t, J = 

3.2 Hz, 3H), 6.37 – 6.24 (d, J = 33.9 Hz, 2H), 4.01 – 3.50 (s, 2H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 150.45, 141.90, 131.83, 131.75, 128.49, 128.37, 128.33, 

128.14, 123.44, 110.60, 110.43, 106.38, 84.64, 81.98, 19.59. 

 

FTIR (CH2Cl2) ῡmax cm
–1

 3057, 2924, 2189, 1657, 1597, 1315, 1070, 756. 

HRMS Calcd for C13H9O (M-H) – 181.0653, found 181.0638. 

 
S

Ph  
2-(3-phenylprop-2-ynyl)thiophene, 94b

8
 

(RT-11-57) 
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1
H NMR (500 MHz, CDCl3) δ ppm 7.51 – 7.41 (dd, J = 6.5, 3.0 Hz, 2H), 7.36 – 7.28 (dd, J = 

6.4, 2.7 Hz, 3H), 7.23 – 7.17 (dd, J = 5. 1, 1.1 Hz, 1H), 7.06 – 7.00 (d, J = 4.5 Hz, 1H), 7.00 – 

6.93 (m, 1H), 4.06 – 3.95 (s, 2H). 

 
13

C NMR (126 MHz, CDCl3) δ ppm 139.72, 131.78, 128.38, 128.35, 128.13, 127.00, 125.20, 

124.25, 123.47, 86.82, 82.46, 20.81. 

 

N

Ph

O
O

 
tert-butyl 2-(3-phenylprop-2-ynyl)-1H-pyrrole-1-carboxylate, 94c 

(RT-11-58) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 7.50 – 7.39 (m, 2H), 7.32 – 7.27 (t, J = 2.8 Hz, 3H), 7.27 – 

7.24 (s, 1H), 6.37 – 6.31 (t, J = 2.2 Hz, 1H), 6.15 – 6.11 (t, J = 3.3 Hz, 1H), 4.07 – 3.94 (s, 2H), 

1.68 – 1.56 (s, 9H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 149.40, 131.82, 130.12, 128.32, 127.93, 123.81, 121.70, 

112.70, 110.15, 86.81, 84.12, 81.84, 27.93, 20.33 

 

FTIR (CH2Cl2) ῡmax cm
–1

 2978, 2931, 2359, 1740, 1491, 1340, 1119, 756. 

 

HRMS Calcd for C18H19NO2 (M+Na) – 304.1313, found 304.1313. 

 
N

O Ph  
4-(3-phenylprop-2-ynyl)oxazole, 94d 

(RT-11-60) 

 
1
H NMR (400 MHz, CDCl3) δ ppm 7.88 – 7.84 (s, 1H), 7.69 – 7.65 (dd, J = 2.4, 1.4 Hz, 1H), 

7.47 – 7.41 (m, 2H), 7.33 – 7.28 (m, 3H), 3.78 – 3.70 (s, 2H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 151.36, 136.92, 135.67, 131.81, 128.40, 128.22, 123.31, 

84.99, 82.17, 18.02. 

 

FTIR (CH2Cl2) ῡmax cm
–1

 3134, 3057, 2361, 2203, 1699, 1488, 1061, 914, 756. 

 

HRMS Calcd for C12H8NO (M+H) – 184.0762, found 184.0774. 

 
N

O
Ph

 
5-(3-phenylprop-2-ynyl)oxazole, 94e 

(RT-11-59) 
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1
H NMR (400 MHz, CDCl3) δ ppm 7.87 – 7.79 (s, 1H), 7.51 – 7.38 (d, J = 5.8 Hz, 2H), 7.36 – 

7.28 (t, J = 2.8 Hz, 3H), 7.28 – 7.26 (s, 1H), 7.06 – 6.99 (s, 1H), 4.14 – 3.62 (s, 2H). 
 

13
C NMR (126 MHz, CDCl3) δ ppm 150.76, 147.91, 131.84, 128.45, 123.40, 122.94, 82.81, 

82.55, 17.34. 

 

FTIR (CH2Cl2) ῡmax cm
–1

 3134, 3057, 2361, 2203, 1699, 1488, 1061, 914, 756. 

 

HRMS Calcd for C12H8NO (M+H) – 184.0762, found 184.0756. 
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