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Abstract

There is a great deal of interest in carbon nanostructures such as graphene and various
forms of carbon nanotubes due to their exceptional physical, electronic, and optical properties.
Many technological applications have been proposed for these nanostructures, but despite the
promise many carbon nanostructure-based optoelectronic devices fail to compete with their
conventional counterparts. This is often due in large part to a non-optimized material or device
microstructure. Factors such as crystallinity, contact quality, defect structure, and device
configuration can critically affect device performance due to the high sensitivity and extreme
surface to volume ratio of carbon nanostructures. In order for the exceptional intrinsic properties
of the nanostructures to be exploited, a clear understanding of the microstructure and its
correlation with device-relevant optoelectronic properties is needed. This dissertation presents
four projects which demonstrate this principle. First, a TiO,-coated carbon nanofiber is studied in
order to optimize its structure for use in a novel dye-sensitized solar cell. Second, the electrode
configuration of an individual multiwall carbon nanotube infrared sensor is investigated in order
to surpass the limitations of disordered nanotube film-based infrared sensors. Third, the
properties of defect structures in large area transferred graphene films grown by chemical vapor
deposition are correlated with carrier diffusion in order to understand the film’s low mobility
compared to exfoliated graphene. Fourth, the effect of deposition conditions on graphene-metal
contact was studied with the goal of achieving sufficiently transparent contacts for investigation
of the superconducting proximity effect. All four projects highlight the unique properties of
carbon nanostructures as well as the need to correlate their optoelectronic properties with

microstructural details in order to achieve the desired device performance.



Dedicated to Russell Bryant Friedman

“There is no end to education. It is not that you read a book, pass an examination,
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Chapter 1

Introduction

1.1 Introduction to Carbon Nanomaterials

Carbon, the sixth element of the periodic table, forms the basis of all known life on earth.
Despite its familiarity and ubiquity however, carbon truly is a wonder. In the form of a diamond,
carbon disperses light, conducts electricity very poorly, and has the highest hardness and thermal
conductivity of any naturally occurring bulk material on earth. In the form of graphite, carbon is
black, conducts electricity very well, and is extremely soft. Whether carbon is best suited for
industrial drilling applications or for use in a writing utensil depends on the arrangement of the
atoms.

A neutral carbon atom has six protons balanced by six electrons in the configuration
1s?2s*2p?. Because the s-orbital and p-orbitals of carbon's second electronic shell have very
similar energies, they can hybridize to form bonds with different geometries. In a diamond, each
carbon atom forms four covalent bonds in a sp® hybridized tetrahedral orbital. All of the p-
orbitals are used for bonding so there are no free electrons and the resistivity, typically on the
order of 100 GQ-m, is very high. The crystal structure of diamond is face-centered cubic, which
is very stable and rigid. This leads to the high hardness and melting point. These strong covalent
bonds also give diamond its high thermal conductivity at room temperature, about 2200 W/m-K,
which is roughly five times higher than copper. Graphite on the other hand consists of many
stacked sheets of hexagonally arranged carbon atoms. Each atom forms three covalent bonds in a

sp? hybridized planar orbital. The unhybridized p-orbital is oriented perpendicularly to the
1



hybridized orbital’s plane. This orbital overlaps with those of neighboring carbon atoms and
allows for good electrical conduction along the individual sheets. The resistivity is typically
reported in on the order of a few to a few tens of pQ-m, up to 17 orders of magnitude lower than
diamond! Only weak Van der Waals forces exist between the carbon sheets, leading to its soft
and lubricating nature’.

The emergence of nanoscience in the past few decades has shown us even more tricks
that carbon can play. New zero- and one-dimensional carbon allotropes were discovered
throughout the 1980°s and 1990’s. The first was the Buckminsterfullerene, a hollow sphere
consisting of 60 carbon atoms resembling a soccer ball, which discovered in 1985 by Richard
Smalley and coworkers®. This work sparked intense research into the possibility of other carbon-
based nanostructures. In 1991, lijima was the first to report carbon nanotubes, coaxial tubes of
graphitic sheets in which the carbon atom hexagons trace a helical path around the tube axis®.
Interestingly, carbon nanotubes can be either semiconducting or metallic depending on their
chirality, and in the semiconducting case the size of the bandgap depends on the tube diameter.
Chirality is the “twist” in the nanotube, and is represented by a vector which connects two
equivalent sites on an unrolled nanotube sheet. Among carbon nanotubes’ remarkable properties
is an ultrahigh room temperature thermal conductivity of about 3500 W/m-K along the axis of
single wall carbon nanotubes®, which is even higher than natural diamonds. This is juxtaposed to
a relatively poor thermal conductivity of just a few W/m'K in the radial direction®. Carbon
nanotubes also have the highest tensile strength and Young’s modulus of any known material,
given by a reported 63 GPa for a multiwall carbon nanotube® and about ~ 1 — 4 TPa in the axial
direction of nanotubes with varying diameters’, respectively. Following these groundbreaking

discoveries, many forms of carbon based spheres and tubes were later reported and have since



been the subject of intense research because of their unique properties and possibilities for
technological applications.

In 2004, carbon surprised us yet again in the experimental discovery of graphene, a one
atom thick sheet of sp?-bonded carbon atoms arranged in a hexagonal crystal lattice®. These
sheets are in fact the building blocks of other graphitic structures. They can be wrapped into a
sphere to form Bucky balls, rolled up to form carbon nanotubes, or stacked by the millions to
form graphite. Graphene boasts many exceptional and incomparable properties which will be
discussed in more detail in later chapters. To give the reader a flavor of these properties, consider
the following. It is the thinnest (one atomic sheet) and strongest (~ 130 GPa ultimate strength®)
known material on earth, it is able to sustain current densities (~ 108 A/cm? for few layer
graphene nanoribbons™) six orders of magnitude higher than copper, it has zero effective mass
charge carriers with huge mobilities (up to 2 x 10° cm?/V-s*) , it is impermeable to gases*?, and
more. After many failed chemical attempts, the isolation of an individual layer of graphene for
the first time was achieved by an incredibly simple technique of repeated peeling of graphite
using Scotch tape®. The excitement surrounding graphene within the scientific community was
recently echoed by the 2010 Nobel Prize in Physics which was awarded to Andre Geim and
Konstantin Novoselov "for groundbreaking experiments regarding the two-dimensional material
graphene"®?,

Both graphene and many forms of carbon nanotubes, including as grown and
functionalized single wall nanotubes, multiwall nanotubes, and carbon nanofibers, are being
explored in myriad optical and electronic applications, some of which will be mentioned here.
One of the most important features of carbon nanotubes for electronic applications is their quasi-

one dimensional geometry. Because electrical and thermal transport is much more efficient



axially than radially, carbon nanotubes are often used in devices to provide directional charge or

1415 in which the

thermal transport. One major area of research utilizing this effect is in solar cells
carbon nanotube provides a direct route for electrons to the anode. Additionally, due to their
potentially high aspect and surface to volume ratios, carbon nanotubes are being studied as
highly sensitive gas'® and infrared sensors'’. Graphene is considered to be an extremely
attractive alternative for transparent conductors in a variety of devices because of its flexibility,
optical transparency, and low sheet resistance. The biggest issue at hand is how to create high
quality large scale graphene films which can be patterned lithographically or utilized in large
area applications such as touch screens. As will be discussed later in this document, large area
graphene suffers from a variety of structural defects which degrade its electronic performance.
An understanding of the effect of these defects on graphene’s electronic properties and improved
growth and device fabrication techniques are keenly needed. Primarily because of its high
mobility, graphene is also being considered as the active element in many electronic devices
such as ultrafast photodetectors®®, high frequency transistors®, single electron transistors®, or as
a qubit for quantum technologies?®?!. Because graphene’s electronic device performance is so
sensitive to the fabrication procedures and device structure, one of the biggest challenges with
these types of devices is to avoid destroying or masking graphene’s intrinsic properties through
inappropriate device structure or non-optimized fabrication.

This dissertation contains work regarding four different carbon nanostructures: carbon
nanofibers coated with titanium dioxide, multiwall carbon nanotubes, graphene grown by
chemical vapor deposition, and micromechanically exfoliated graphene flakes. Each of the

carbon nanostructures studied in this body of work will be introduced in further detail in the

following chapters. The breadth and depth of research conducted by the physics, chemistry, and

4



materials science communities on these materials is huge, and so the introduction to each

material will focus only on the most relevant properties.

1.2 Importance of Studying Microstructure in Nanoscience

Based purely on the construction of the word, the term microstructure refers to the small
characteristics of an object which is built out of other things. More quantitatively, one might
suggest that it refers to an object’s structure on the 10° meter scale, or as viewed under an
optical microscope above a certain magnification. In this dissertation we will take microstructure
to refer generally to the details of the construction of a material or device relevant to
nanoscience. That is, for example, how the atoms or grains are arranged, the nature of the
surfaces and interfaces, how the material interacts with the environment, the presence of defect
structures, and the geometry of a nanoscale device, to name a few. Nanoscience cannot be done,
or at least cannot be done well, without an understanding of microstructure and an appreciation
for its effect on experimental outcomes and device performance.

The biggest reason for this is the scale of the materials and devices in question. As
objects get smaller and smaller their surfaces become more and more important. In some cases,
such as monolayer graphene and single wall carbon nanotubes, the material may consist entirely
of surface and no “insides”. The nature of the surface and how it interacts with gases in the
environment, the substrate, and materials it is in contact with may then dominate the behavior of
that material. If the microstructure is not well understood, experiments are very difficult to
interpret, and desired effects may be elusive.

Additionally, important processes for material and device physics such as charge
transport, metal contact, and photon absorption are extremely sensitive to microstructure. This is

5



especially relevant for devices made of arrays or composites of nanostructures. Often times
complex macroscopic devices such as solar cells, thermoelectric arrays, or detectors are
constructed out of as grown nanostructures without careful characterization of the constituent
parts. When the device performance is inevitably poorer than hoped it is difficult to know
precisely why. The key to overcoming this hurdle is to correlate the microstructure with the
optical and electronic properties relevant to device performance and use that information to
optimize material growth, device fabrication, and experimental conditions. This encompasses the

theme of this dissertation, which will be elaborated on in the following section.

1.3 Overview and Theme of Following Chapters

As evidenced by the previous section, nanoscale sample fabrication involves a substantial
learning curve. Additionally, the fabrication is not entirely transferrable to different materials.
Over the years | fabricated nano- and microscale devices on various inorganic nanowires, carbon
nanotubes, and graphene. Each material has its own set of considerations, and the fabrication
must be optimized according to that material’s and device’s demands. For example, something as
simple as how to deposit niobium metal onto graphene has taken many months to optimize.

Because of the nature of nano- and microscale device research, a great deal of time must
be spent on device fabrication. Through this journey | developed an appreciation for the
importance of the microstructure of a device, including that of the material itself; the nature of its
interfaces with the substrate, metal, and environment; and the details of the fabrication
procedure. All of these things can have tremendous effects on what is measured in an
experiment. Without careful control and consideration of these factors and more, meaningful
results are difficult to obtain, and device optimization is hindered. | believe that this mindset is
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the most important thing that I take with me as | move forward in my research career. It is also
the theme of this dissertation.

During my time at the University of Kansas, | was able to work on many different
projects, four of which are presented 