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Abstract

This dissertation mainly studied on numerical approximation methods as a solution of the

integrability problem and the measure of welfare changes, and demonstrated how numerical

algorithms can be applied in empirical studies as a solution method.

In general, the integrability problem is described as a system of the partial differential

equations (PDE) in terms of the expenditure function, and the measure of welfare changes

is defined by the difference between the expenditure function at two different time peri-

ods. Both problems can be solved using the same method since solutions for these questions

mainly relied on how to recover the compensated income (expenditure) from the ordinary

demand function.

In order to investigate whether numerical approximation methods can be applied to the

integrability problem and the measure of welfare changes, first, we studied the integrability

problem mainly focusing on how to transform the system of the partial differential equations

to the system of the ordinary differential equation since this transform possibility provides a

way to solve the integrability problem using the numerical method. Second, several numer-

ical methods were investigated as a possible solution of both problem including the Vartia,

the RK-4th order algorithm, and the Adams Fourth-Order Predictor-Corrector algorithm. In

addition, the Rotterdam and Almost Ideal demand system were investigated since the de-

mand system played an important role on recovering the expenditure.

Two empirical studies are performed. In the first application, using both the U.S consumer

expenditure (CE) data and the consumer price index (CPI), the AI and Rotterdam demand

system were estimated, and the expenditure was recovered from the estimated demand sys-

tem using numerical approximation methods. From this, we could demonstrate the power

and the applicability of numerical algorithms. In the second application, we paid attention

to analyze the welfare effect on the U.S elderly population when prices changed. The burden

index and the compensating variation were calculated using the numerical algorithm. From

the evaluation, we could confirm that the welfare changes and consumer welfare losses of

the elderly population were larger than that of the general U.S population.
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1. Introduction

The numerical approximation to the integrability problem and the measure of welfare changes

is the main topic of this paper. At first glance, it seems that there exists no relationships

between the integrability problem and the measure of the welfare changes. However, the

common fact in both problems, in terms of the solution, can be found when studying both

problems a little deeper. In fact, the solution for both problems is identified in terms of the

expenditure function. For example, the integrability problem is defined as the system of the

partial differential equations in terms of the expenditure function (compensated income1),

and the measure of welfare changes is described by the expenditure function throughout the

compensating and equivalent variations. From this point of view, we could easily notice that

the expenditure function plays an important role in both problems, and if there is a way to

recover the expenditure function from other well-known systems, such as the demand func-

tion or the labor supply function, both problems can be solved. Although both problems

have the expenditure function in common, there exist differences on the usage of the expen-

diture function between the integrability problem and the measure of the welfare changes.

For example, the expenditure function in the integrability problem is used as an intermedi-

ate tool to deal with more fundamental questions in economic theories. On the contrary, in

case of the measure of welfare changes, the expenditure functions are used more directly to

estimate the size of the welfare change when price changes.

The integrability problem introduced by Varian (1992) and Mas-Colell et al (1995) is related

to the following old economic question. “Given a system of demand functions which has the

symmetric, negative semi-definite substitution matrix, can we derive the utility function (or
1According to the situation on the expenditure function, the expenditure function has the different name. The

expenditure function is called the money metric indirect utility function if the price vector p is fixed when the
indirect utility function changed. Similarly, the expenditure function is called the income compensation function
if the indirect utility function is fixed when price vector p varies.
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preference) from that demand function?” In general, the integrability problem is described

as a system of the partial differential equations (PDE) in terms of the expenditure function.

The well-known result of the integrability problem is that the expenditure function can be

integrated back from the ordinary demand function, if the ordinary demand system suffices

integrability conditions. The Slutsky matrix (substitution matrix of demand function) plays

an important role in finding the solution of the integrability problem. General approaches

are explained by Samuelson (1950); however, the main results are shown by Hurwicz and

Uzawa (1971).

Similarly, the measure of welfare changes is another old topic in economic fields. At the

starting point of the welfare analysis, the estimated demand functions, which are sufficiently

flexible to capture the variation in behavior observed in data, play an important role in ana-

lyzing the welfare effect when the price changed, since the welfare analysis is mainly based

on the expenditure function2. In general, the measure of welfare effects are usually estimated

by the compensating and equivalent variations. These concepts on the measure of welfare

changes are introduced by Hicks (1931), and defined by the difference between the expendi-

ture function at two different time periods under the assumption that consumer utilities are

held in constant. In fact, the measure of welfare changes can be determined by the indirect

utility function derived from the rational preference. However, the approach using the ex-

penditure function is more generally used, since these methods provide more a convenient

way to estimate welfare changes expressed in dollar units.

Many economists have studied solutions for the integrability problem after Hurwiz and

Uzawa (1971) introduced the PDE system. Apart from the integrability problem, studies on

the measure of welfare changes were performed after Hicks(1931) introduced the compen-

sating and equivalent variation in economics. Though both problems started from different

research interests, both problems can be solved using the same method, since solutions for

these questions mainly relied on how to recover the compensated income (expenditure) from

the ordinary demand function. Therefore, if there existed a way to recover the expenditure

function from the ordinary demand function, both problems can be solved. As a solution

2The role of the demand function in welfare analysis is based on the fact that the expenditure function can be
recovered from the demand function when it suffices the integrability conditions.
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method for this problem, several numerical approximation methods are introduced and used

in economic fields3.

Hausman (1981) proposed algebraical way to recover the compensated income from the

ordinary demand function as a solution of the integrability problem and the measure of

welfare changes. This paper opened the possibility of applying the numerical approximation

method to welfare analysis after showing that the system of partial differential equations

(PDEs) can be converted to the system of ordinary differential equation (ODE). In addition,

he showed that the compensated income can be calculated algebraically from the linear or

log-linear ordinary demand function. However, except fer some simple special cases, the

algebraic integration of differential equation is too difficult to solve, particularly if more than

one good is involved. Therefore, for more general cases, numerical algorithms for the ODE

system with initial value are required to calculate the compensated income. Later, Hausman

introduced the extrapolation method in the work with Newey (1995), which is well known

as the best way to obtain high accuracy solutions for the ODE system.

Vartia (1983) proposed the numerical method based on the implicit trapezoidal method in

order to generate the algorithm instead of the Taylor method which is very familiar to the

economist. This Vartia algorithm pointed out exactly how to recover the expenditure (com-

pensated income) from the ordinary demand function under no closed form solutions of the

underlying utility function. However, the demerit is exited on the algorithm itself4. In order

to calculate the compensated income, this algorithm requires an additional procedure, which

is the iteration method, to achieve the solution. This iteration procedure makes the Vartia al-

gorithm slow and inefficient. The applicability of the Vartia algorithm is demonstrated by

Porter-Hudak and Hayes (1986, 1991). They applied the Vartia algorithm for recovering the

compensating income from the estimated demand function (more specifically, calculating

the cost-of-living index).

The Taylor higher order method is used in many economic studies including Mackenzie

3In general, difficulties existed in identifying the functional form of the estimated demand system because,
except for very special cases, no closed form utility or expenditure function existed so it is hard to identify
the demand function from unknown utility or expenditure function. However, the numerical approximation
methods can be applied to both bases 1) there existed the functional form demand function and 2) opposite
case.

4It used “implicit” instead of “explicit”, and this implies that there is no direct way to obtain the exact solution
from the algorithm

3



and Pearce (1976), Breslaw and Smith (1995), and Irvine and Sims (1998). It partly depends

on the fact that the Taylor method is familiar to the economist, and this method provides

an convenient way of the approximation around the initial condition. The advantage of

the Taylor second and higher order method, compared to the Vartia algorithm, is that this

algorithm provides a simple way to calculate the variance of the estimated share which the

Vartia algorithm is unsuitable for. However, in general, the Taylor method is seldom used in

practice, since this algorithm has the disadvantage that it needs the evaluation of derivatives

of the object function. Sometimes, computing derivatives of the objective function is more

difficult than calculating the algorithm itself if we do not have the exact functional form of

the objective function( in here, the expenditure function.)

In addition, a couple of new methods which are variations of the Taylor method are pro-

posed First, Dumagan and Mount (1997) proposed a REversible Second-ORder Taylor (RE-

SORT) as an approximation method for calculating the compensated income from the ordi-

nary demand function. The Taylor backward and forward second order method is used to

generate the RESORT algorithm. However, the algorithm itself is more related to the Var-

tia algorithm. In their paper, they insisted that the Vartia algorithm is the first order case

of the RESORT algorithm, and the main advantage of using the RESORT is in the built-in

procedure which makes it possible to check the validity of the compensated income using

the Slutsky matrix. However, like the Vartia algorithm, this algorithm requires an additional

procedure to calculate the compensated income, since this algorithm has the unknown value

in both sides of the equation.

In fields of numerical analysis, Runge-Kutta methods are considered as important approxi-

mation methods for the system of ordinary differential equations. Surprisingly, no economist

applied RK methods, that are regarded as the standard solution of ODE, until Choi’s work-

ing paper (2010). Like the RESORT algorithm, RK methods are derived from the Taylor

higher order method, more specifically, the Taylor 4th order, but at the first glance, it seems

that there existed no relationship between the Taylor method and the RK-4th order method.

Moreover, it seems to be awkward and complicated to use it. However, it provides a simpler

way to obtain the solution comparing to the Vartia algorithm and the Taylor higher order

method, since this algorithm does not require the additional iteration method in the Vartia

4



algorithm, or derivatives of the object function in the Taylor method. In addition, the accu-

racy of the RK-4th order method is more precise than that of other methods including the

Vartia and the Taylor method according to the precision of the estimation results.

In this paper, we mainly investigate the integrability problem and the related numerical

approximation methods which make it possible to recover the expenditure from the ordi-

nary demand. In addition, as a related topic, we also investigate the measure of welfare

changes when price changes. The remainder of this paper is organized as follows: In Chap-

ter 2, we introduce the general description of the integrability problem and the measure of

welfare changes. More specifically, we identified how to transform the system of the partial

differential equations to the system of the ordinary differential equation, and how the com-

pensating and equivalent variation can be used as the measure of welfare changes in terms

of the approximation. Chapter 3 discusses numerical approximation methods which is pro-

posed as the solution of the integrability problem and methods of measuring welfare changes

in economics. In Chapter 4, we introduce two famous demand systems, Almost Ideal and

Rotterdam demand system, which are used to estimate the consumption patterns in the U.S.

Later, using both estimated coefficients from demand systems and approximation methods,

the cost-of-living and welfare changes were calculated for analyzing purposes. Chapter 5

and 6 is about empirical applications derived from the welfare measure and integrability

problem. More specifically, in Chapter 5, we introduce the new numerical approximation for

measuring cost-of-living indices, and show that the newly proposed numerical method can

be used as the alternative of Vartia’s famous approximation method. In Chapter 6, we inves-

tigate the welfare changes in U.S elderly using the compensating variation and the burden

index. Finally, in Chapter 7, the summary and conclusion of this research is provided.
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2. Integrability problem and Measure of

Welfare Changes

2.1. Integrability problem

2.1.1. Integrability problem

The integrability problem introduced by Varian (1992) and Mas-Colell et al (1995) is related

the following old economic question. “Given a system of demand functions which has the

symmetric, negative semi-definite substitution matrix, can we derive the utility function (or

preference) from that demand function?” In general, the integrability problem is described

as a system of the partial differential equations (PDE) between a expenditure and a demand

function, and it is possible to solve the PDE system if the expenditure can be integrated back

from the demand function. The Slutsky matrix, substitution matrix of demand function,

plays an important role in finding the solution.

Let’s consider a consumer who maximizes the utility. Let q ∈ RN
+ denotes a vector of quan-

tities and p ∈ RN
++ denotes a corresponding vector of prices. Let, further, U(q), v(p, y) and

e(p, u) denote the consumer utility, indirect utility and expenditure function respectively. In

here, u denotes a utility level and y denotes the total expenditure. We assume that U(·), v(·)

and e(·) satisfy usual regularity conditions. In addition, we assume that e(·) and v(·) is the

continuously differentiable in the open neighborhood around (p0, u0) and ∂e(p0, u0) > 0.

Given a system of demand functions qi(p, y) which is the solution of the utility maximiza-

tion problem and is continuously differentiable, then the demand function satisfied follow-

ing five conditions;

6



Hurwicz-Uzawa Integrability Conditions

1. Homogeneity

The demand function qi(p, y) is homogeneous of degree zero in prices p, and total

expenditure y

• q(tp, ty) = q(p, y)

2. Summability (Budget Balance)

The weighted sum of demand functions where weights are given by prices p is equal

to total expenditure

• p× q(p, y) = y

3. Non-negativity

The quantity consumed is non negative for all p, and y.

• q(p, y) ≥ 0

4. symmetry

The matrix of compensated price effects for demand functions must be symmetric

• ∂qi(p, e(·))
∂pj

+
∂qi(p, e(·))

∂e
· qj(p, e(·)) =

∂qj(p, e(·))
∂pi

+
∂qj(p, e(·))

∂e
· qi(p, e(·))

5. Negative-Semi-definite

The compensated own-price substitution effect for the demand function is non positive

• ∑j ∑i λjλi

(
∂qi(p, e(p, u0))

∂pj
+

∂qi(p, e(p, u0))

∂e
· qj(p, e(p, u0))

)
≤ 0

Main results of the integrability problem are summarized that these five integrability condi-

tions are in fact sufficient as well as necessary conditions for the integrability process. These

results imply that the expenditure can be derived from the observable data of demand quan-

tities. General approaches are performed by Samuelson (1950); however, main results are

shown by Hurwicz and Uzawa (1971).

To describe the integrability problem, the utility, an indirect utility, and expenditure func-

tion might be used. However, in order to find a utility function from a given system of

7



demand functions, we need an equation to be integrated. It can be achieved by dealing with

the integrability problem in terms of the expenditure function. From the Shepard’s lemma,

the duality between the Hicksian and Marshallian demand1, and the given specific boundary

condition of the expenditure e(p0, u0), the integrability problem in terms of the expenditure

function can be defined by followings

∂e(p, u0)

∂pi
= qi(p, e(p, u0)) i = 1, 2, · · · , n

e(p0, u0) = y0 (2.1.1)

where e(p0, u0) = y0 is the initial condition.

These system of equations (2.1.1) are called “a system of partial differential equations with

the initial value.” This system (2.1.1) has a unique solution if this PDE system suffices fol-

lowing conditions;

Hurwicz-Uzawa Global Existence Conditions

1. Differentiable

Each component function qi(p, y) is differentiable in p and y.

2. Symmetry

The Slutsky matrix which consist of the compensated own- and cross-price effects for

1We begin by posting a system of demand equations. Marshallian demand function q(p, y) can be derived from
the indirect utility function using the Roy’s identity:

q(p, y) = − ∂v(p, y)/∂p
∂v(p, y)/∂y

and the Hicksian demand function h(p, u) can be derived from the expenditure function by the Shepard
lemma:

h(p, u0) =
∂e(p0, u0)

∂p
If we used the duality condition at the initial equilibrium, we have the following relationship between

Marshalian demand and Hicksian demand function:

h(p, u0) = q(p, e(p, u0))

= q(p, y)

The expenditure function, e(p, v(q, y)), is called as the income compensation function when the price
vector,p , changes but the indirect utility, v(q, y), is fixed.

8



demand functions is symmetric,

• ∂qi(p, e(·))
∂pj

+
∂qi(p, e(·))

∂e
· qj(p, e(·)) =

∂qj(p, e(·))
∂pi

+
∂qj(p, e(·))

∂e
· qi(p, e(·))

3. No Demand

For each i = 1, . . . , n, and p, we have

• qi(p, 0) = 0

This implies that the demand equals zero for all goods whenever the income equals

zero.

4. Boundary Condition

The function qi satisfies the following boundary condition on the partial derivative w.r.t

the income. For every 0 < a < ā, there exists a (finite) real number M such that for all

y ≥ 0

• a ≤ p ≤ ā =⇒
∣∣∣∣∂qi(p, y)

∂y

∣∣∣∣ ≤ M i = 1, . . . , n

2.1.2. From a system of partial di�erential equations to a system of the

ordinary di�erential equation

As we described in the section above, if the PDE system suffices integrability conditions,

then the expenditure (or utility) function could be recovered from the demand function.

However, generally, there is no easy way to solve the PDE system algebraically and numeri-

cally so tricks are demanded to transform this system of partial differential equations to the

system of the ordinary differential equation (ODE). Under the assumption that the utility is

remained at same utility level2 though there exist price changes from p0 to p1 as a result of

the policy change, the PDE system can be transformed to the ODE system. This possibility

are introduced by Hausman (1981) and Vartia (1983) respectively.

2We assume that the demand function are moving on the same indifference surface. In fact, the necessary and
sufficient condition for the demand function q(p, y) moving on the same indifference surface is that the rate
of changes in utility equal zero.
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Hausman's approach

Hausman approach (1981) begins with the Roy’s identity3 which described the relationship

between the ordinary demand and the indirect utility function. In addition, the implicit

function theorem are employed for transforming procedures.

Assuming that p(t) denotes a price path with p(0) = p0 and p(1) = p1, and e(p(t), u0) be

a compensated income, satisfying

v(p(t), e(p(t), u0)) = v(p0, e0) (2.1.2)

where u0 is the utility level at the reference (base) period, and e0 = e(p(0), u0), the initial

value of total expenditure, is constant.

Differentiating both sides of the equation (2.1.2) w.r.t t yields

∑
i

∂v
(

p(t), e(p(t), u0)
)

∂pi(t)
∂pi(t)

∂t
+

∂v
(

p(t), e(p(t), u0)
)

∂e(p(t), u0)

∂e(p(t), u0)

∂t
= 0 (2.1.3)

Applying the implicit function theorem and Roy’s identity on the equation (2.1.3) yields

the following transformed equation,

∂e(p(t), u0)

∂pi(t)
= − ∑i ∂v(p(t),e(p(t),u0))/∂pi(t)

∂v(p(t),e(p(t),u0))/∂e(p(t),u0)
(2.1.4)

= ∑
i

qi
(

p(t), e(p(t), u0)
)

Multiplying
dpi(t)

dt
on both sides of the equation (2.1.4) , then finally we have

de(p(t), u0)

dt
= ∑

i
qi
(

p(t), e(p(t), u0)
)
· dpi(t)

dt
(2.1.5)

This equation (2.1.5) is the system of the ordinary differential equation since it contains the

derivative function for one independent variable4. Now, we know that the PDE system in

3This identity shows that the demand function can be derived from the indirect utility function.
4The difference between the ordinary differential equation and the partial differential equation are in the num-

ber of independent variable in the system. In fact, the ordinary differential equation contains the derivative

10



the equation (2.1.1) is transformed to the ODE system in the equation (2.1.5).

Vartia's approach

Another method of transforming the PDE system to the ODE system is introduced by Var-

tia (1983). This procedure is very similar to Hausman (1981) described above, however, it

provides a more compact way to transform the the PDE system to the ODE system. Simi-

lar to Hausman’s approach, Vartia’s approach also employed the Roy’s identity to solve the

problem, and assume that price changes happened on the same indifference curve surfaces.

Let’s consider the price path with p(0) = p0 and p(1) = p1, where 0 ≤ t ≤ 1. In addition,

v(p(t), e(p(t), u0) is the corresponding indirect utility function satisfying

v(p(t), e(p(t), u0)) = v(t) (2.1.6)

Differentiating the indirect utility function in the equation (2.1.6) w.r.t t produced

∑
i

∂v
(

p(t), e(p(t), u0)
)

∂pi(t)
∂pi(t)

∂t
+

∂v
(

p(t), e(p(t), u0)
)

∂e(p(t), u0)

∂e(p(t), u0)

∂t
=

dv(t)
dt

(2.1.7)

The above equation (2.1.7) gives the rate of changes in the utility at every point t when

price p and expenditure e change in an arbitrary way. Rearranging the equation (2.1.7) after

applying Roy’s identity yields

dv (p(t), e(·))
dt

= λ (p(t), e(·))
[

de(p(t), u0)

dt
−∑ qi (p(t), e(·)) · dpi(t)

dt

]
(2.1.8)

where λ (p(t), e(·)) = qi (p(t), e(·))× ∂v (p(t), e(·))
∂e(·)

Since we assume that price changes happened on the same indifference curve surfaces,

this assumption leads the equation (2.1.8) to the ODE system in terms of e(p(t), u0).

de(p(t), u0)

dt
= ∑

i
qi
(

p(t), e(p(t), u0)
)
· dpi(t)

dt
(2.1.9)

functions for the only one independent variable. In contrary, the partial differential equation contains par-
tial derivatives functions of several independent variables. In generally speaking, the ordinary differential
problems is easier than the partial differential equation case.
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This equation (2.1.9) is the same equation in Hausman approach (see the equation (2.1.5)).

2.2. Measure of Welfare Changes

The measure of welfare changes when the price has varied is the main topic in this section.

For this, the following economic situation is considered that the price changes from p0 to

p1 as a result of the policy, such as tax policy, that leads changes in market prices. The

postscripts 0 and 1 represent the before and the after policy changes, respectively.

In order to determine whether the consumer welfare is better or worse off when the price

changes, the indirect utility function derived from the rational preference is enough for mak-

ing this comparison. However, the money metric indirect utility function5 which is con-

structed by means of the expenditure function provides more convenient way to handle this

problem.

Let’s consider the indirect utility function v(p, y), an arbitrary price vector p̄ � 0, and

the expenditure function e ( p̄, v(p, y)). The expenditure function6 e ( p̄, v(p, y)) provides the

wealth required to reach the utility level v(p, y) when prices are p̄. As a function of (p, y),

the expenditure function is an indirect utility function for preference ordering. In addition,

the difference of expenditures between different price levels

e(p, v(p1, y))− e(p, v(p0, y)) (2.2.1)

provides a measure of the welfare change expressed in dollars terms. In fact, the money

metric indirect utility function can be formulated in this manner for any arbitrary price vector

p̄ � 0. Moreover, this measure is unaffected by the choice of the initial indirect utility

function, it depends only on the consumer’s preference. Two particularly natural choices for

the price vector p̄ are the initial price vector p0 and the new price vector p1. These choices lead

to two well-known measures of welfare changes called the compensating and the equivalent

variation.

5It leads to measurement of the welfare change expressed in dollar units.
6This expenditure is strictly increasing as a function of the level v(p, y)
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2.2.1. Compensating and Equivalent Variation

The compensating variation (CV) and the equivalent variation (EV) are used to measure

the utility changes in economic fields. These concepts are introduced by Hicks (1939). In

order to investigate the compensating and the equivalent variations, some technical as-

sumptions on the utility level and the expenditure are required. Formally, we assume that

u0 = v(p0, y), u1 = v(p1, y), and e(p0, y0) = e(p1, u1) = y.

Compensating-Variation. The compensating variation (CV) measures the net revenue of a

planner who must compensate the consumer for price changes after it occurs in order

to bring her back to the original utility level.

In fact, the compensating variation, which is defined in terms of the expenditure function

reflects changes of expenditures required to maintain the consumer at the original level of

utility when prices have changed from price level p0 to p1. It is defined by the following;

CV(p0 → p1) = e(p1, u0)− e(p0, u0)

= e(p1, u0)− y (2.2.2)

where y is the income at the initial period, v(p, y) is the indirect function, and u0 = v(p0, y)

is the utility corresponding to the pre-change situation.

Therefore, if the CV has the positive sign, it implies that more spending is required to

achieve the same utility level as before price changes. Thus, this means the decrease in con-

sumer welfare. By contrast, if the CV has the negative sign, it implies a drop in spending.

In other words, this means a gain in consumer welfare. From these points of views, com-

pensating variation can be used to find the effect of a price change on the consumer’s net

welfare.

Equivalent-Variation. The equivalent variation (EV) is defined as the amount of money paid

to an individual consumer with base prices and income that lead to the same satisfac-

tion as that generated by price changes.

13



In fact, the equivalent variation is the amount of money one has to give to consumers so

they could attain the same utility level possible with new prices. As the same manner of

the compensating variation (CV), when prices have changed from price level p0 to p1, the

equivalent variation (EV) is defined by the following;

EV(p0 → p1) = e(p1, u1)− e(p0, u1)

= y− e(p0, u1) (2.2.3)

where y is the income at the final period , v(p, y) is the indirect function, and u1 = v(p1, y)

is the utility corresponding to the post-change situation.

2.2.2. the Hicksian Demand Curve and Approximations of CV and EV

The compensating variation can be represented in terms of the Hicksian demand function

after applying the Shepard lemma on the expenditure function. This leads the following

result.

CV(p0 → p1) = e(p1, u0)− e(p0, u0)

= ∑
i

ˆ p1

p0

∂e(p, u0)

∂pi
dpi

= ∑
i

ˆ p1

p0
hi
(

p, u0) dpi (2.2.4)

where hi(p, u0) is the Hicksian demand function.

Above equation (2.2.4) implies that changes in consumer welfare measured in terms of the

CV can be represented by the area lying between p0 and p1. In other words, the CV can be

calculated by the area which is located in the left of the Hickisan demand curve associated

with the utility level u0.

The approximation of the equation (2.2.4) in terms of the Taylor higher order series around

at (p0, u0) is
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CV(p0 → p1) = e(p0, u0) +
∂e(p0, u0)

∂p
∆ +

1
2!

∂2e(p0, u0)

∂2 p
∆2 + · · ·+ R− e(p0, u0)

=
∂e(p0, u0)

∂p
∆ +

1
2!

∂2e(p0, u0)

∂2 p
∆2 + · · ·+ R

= h(p0, u0)∆ +
1
2!

∂h(p0, u0)

∂p
∆2 + · · ·+ R (2.2.5)

where ∆ = (p1 − p0) is the price change, and R is the remainder error term.

Applying the duality theorem to the equation (2.2.5), then we could represent the CV in

terms of the ordinary demand function which is observable. That is

CV(p0 → p1) = q(p0, y0)∆ +
1
2!

S(p0, y0)∆2 + · · ·+ R (2.2.6)

where S(p, y) =
∂h(p, u0)

∂p
=

∂q(p, y)
∂p

+ q(p, u0)
∂q(p, y)

∂y
is the Slutsky matrix, and y =

e(p, u0) is the income or the level of the expenditure.

From the equation (4.1.22), the fact that the CV can be calculated by using only the ordinary

demand function and relative terms is checked.

Similarly, the EV could be defined by the same manner in the CV. From the equation (2.2.3),

the equivalent variation could be presented by the following when the price changes from

p0 to p1

EV(p0 → p1) = e(p1, u1)− e(p0, u1)

= ∑
i

ˆ p1

p0

∂e(p, u1)

∂pi
dpi

= ∑
i

ˆ p1

p0
hi

(
p, u1

)
dpi (2.2.7)

Since the Taylor higher order approximation of e(p0, u1) around (p0, u0) is

e(p0, u1) = e(p0, u0) +
∂e(p1, u0)

∂p
∆ +

1
2!

∂2e(p1, u0)

∂2 p
∆2 + · · ·+ R (2.2.8)

So the EV could be expressed in terms of the Taylor higher order series after plugging the
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equation (2.2.8) into equation (2.2.7)

EV(p0 → p1) = e(p1, u1)−
[

e(p0, u0) +
∂e(p1, u0)

∂p
∆ +

1
2!

∂2e(p1, u0)

∂2 p
∆2 + · · ·+ R

]
= −

[
e(p0, u0) +

∂e(p1, u0)

∂p
∆ +

1
2!

∂2e(p1, u0)

∂2 p
∆2 + · · ·+ R

]
= −

[
h(p0, u0)∆ +

1
2!

∂h(p0, u0)

∂p
∆2 + · · ·+ R

]
(2.2.9)

where e(p0, y0) = e(p1, u1) = y, ∆ = (p1 − p0) is the price change, and R is the remainder

error term.

Using equation (4.1.21), finally, we could represent the EV in terms of the ordinary demand

function similarly in equation (2.2.6)

EV(p0 → p1) = −
[

q(p0, y0)∆ +
1
2!

S(p0, y0)∆2 + · · ·+ R
]

(2.2.10)

where S(p, y) =
∂h(p, u0)

∂p
=

∂q(p, y)
∂p

+ q(p, u0)
∂q(p, y)

∂y
is the Slutsky matrix, and y =

e(p, u0) is the income or the level of the expenditure.

From the equation (2.2.6) and equation (2.2.10), the relationship existed between the CV

and EV is identified. That is

EV(p0 → p1) = −CV(p0 − p1) (2.2.11)

Above equation (2.2.11) represent that the equivalent variation can be calculated in terms

of the compensating variation, either.
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3. Numerical approximation for recovering

the expenditure from the ordinary

demand

Main results of the previous section are following. One is if the given demand system qi(p, y)

which suffices integrability conditions, the utility in terms of the expenditure function can

be derived from that demand function (Integrability problems). Another is the measure

of welfare changes when price changes from p0 to p1 could be calculated in terms of the

expenditure function from the definition of the compensating and equivalent variations.

Both problems are related to the expenditure function itself, and the solution of both prob-

lems can be boiled down to the question how to recover the expenditure function from the ordinary

demand function. It can be simply described by the initial value problems of the ordinary dif-

ferential equation. Several numerical methods are proposed by several economists including

Hausman (1981 and 1995) and Vartia (1983) as a solution. In this section, the numerical ap-

proximation methods used in the economic fields are briefly introduced.

3.1. Numerical Approximation Methods

In order to apply numerical approximation methods on problems in the previous section, a

couple of assumptions are considered. First assumption is that the price moves on the same

indifference curve surface. This implies that no changes in utility level are existed though

the price changes. In addition, we assume that the price change can be divided into smaller

price steps. For this, following auxiliary terms are considered. For a given integer N which

is a number of the interval, the price range is defined by the linear combination of prices p0
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and p1

p(t) = p0 + t(p1 − p0), t ∈ [0, 1] (3.1.1)

where, pk = p(tk), and tk =
k
N

.

Using these auxiliary terms, technical terms in the previous section are simplified. Finally,

the expenditure and the ordinary demand function are satisfied the following

e
(

p(tk), u0) = e
(

pk, u0
)

(3.1.2)

and

q(p(tk), e(p(tk), u0)) = q
(

pk, e(pk, u0)
)

(3.1.3)

Moreover, suppose that the compensated income e
(

pk, u0) is the solution for the ODE

system with the initial-value, then the equation (2.1.5) and (2.1.9) become

de
(

pk, u0)
dt

= ∑
i

qi

(
pk, e(pk, u0)

)
· dpi(t)

dt
(3.1.4)

e(p0, u0) = y0

where e
(

pk, u0) has (n + 1) continuous derivatives.

In general, the data obtained from the real world has not a continuous but discrete form, so

the discrete form of the equation (3.1.4) is required in order to apply numerical algorithms to

the given problem. The following is called the difference equation associated with the above

equation (3.1.4).

e(pk, u0) = e(pk−1, u0) + ∑
i

qi

(
pk, e(pk, u0)

)
· ∆ (3.1.5)

e(p0, u0) = y0
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Where ∆ = (p(tk+1)− p(tk)) =
(p1 − p0)

N
.

This equation (3.1.5) are generally used to solve the ODE system with the initial value. In

general, the accuracy of the algorithm depends mainly on the size of intervals.

3.1.1. Taylor Higher-Order Type Methods

As a solution of the equation (3.1.5), the Taylor higher-order method is mainly recommended

by various papers including Mckenzie and Pearce(1976), Breslaw and Smith(1995), and Irvine

and Sims(1998). It is based on the fact that the Taylor method is familiar to the economist,

and provides a convenient way of the approximation around the initial value. Though a cou-

ple of economist recommended the Taylor higher-order method, in many cases, the order of

the Taylor method is limited to the order one or two. It is partly because of the difficulty in

calculating higher order derivatives of the object function.

3.1.1.1. Taylor higher order Method

The Taylor higher order method as a solution for the ODE system with the initial value can

be described by following. Let’s consider the solution e
(

p(tk+), u0) is evaluated at tk+1. This

solution can be expressed in terms of its nth Taylor polynomial around tk,

e
(

p(tk+1), u0) = e
(

p(tk), u0)+ e(1)
(

p(tk), u0)∆ +
1
2!

e(2)
(

p(tk), u0)∆2 + · · ·+ R (3.1.6)

Where ∆ = (p(tk+1)− p(tk)) =
(p1 − p0)

N
, and R is the reminder term.

since e(1) (p(tk)) = q
(

p(tk), e(p(tk), u0)
)
, e(2) (p(tk)) = q(1) (·), and generally, e(n) (p(tk)) =

q(n−1) (·). Substituting these results into the equation (3.1.6) produced the following

e
(

p(tk+1), u0) = e
(

p(tk), u0)+ q
(

p(tk), e(p(tk), u0)
)

∆

+
1
2!

q(1)
(

p(tk), e(p(tk), u0)
)

∆2 + · · ·+ R (3.1.7)
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Since y0 = e(p0, u0), and e
(

p(tk), u0) = e
(

pk, u0), for simplicity, the Taylor higher order

algorithm for the ODE system with the initial value are defined by the following,

For i = 0, 1, . . . , N,

e
(

pk+1, u0
)

= e
(

pk, u0
)
+ T(k)

(
pk, e(pk, u0)

)
· ∆ (3.1.8)

e
(

p0, u0) = y0

where T(k) (pk, e(pk, u0)
)
= e

(
pk, u0)+ q

(
pk, e(pk, u0)

)
∆+

1
2!

q(1)
(

pk, e(pk, u0)
)

∆2 + · · ·+ R,

k is the number of steps, and ∆ =
(p1 − p0)

N
.

The equation (3.1.8) is called the difference equation associated with Taylor method.

The advantage of using the Taylor method when calculating the solution of ODE system

is that the economist and researcher1 are familiar to the Taylor method so not much back-

ground or knowledge on the numerical analysis are required. However, in terms of the

numerical algorithm, in real practice, this approximation does not used often. It mainly de-

pends on that derivatives of the objective function are required in order to solve the ODE

system. In fact, the computation of derivatives is a complicated and time-consuming pro-

cedure for most problems even that the closed form of objective function are known. How-

ever, if considering the situation in real world, problems become more complicated in order

to achieve the goal since the exact functional form of the demand is generally unknown ex-

cept very special cases. This disadvantage can be considered as the common problem of the

numerical method which is used the Taylor expansion to generate the algorithm, either.

1In fact, the Taylor higher order approximation is used in various articles and papers to investigate the economic
model and phenomena.
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3.1.1.2. Euler Method

The Euler method is the special case of Taylor higher order method since this method is the

Taylor method of the order one. The Euler method can be described by the following,

For i = 0, 1, . . . , N

e
(

pk+1, u0
)

= e
(

pk, u0
)
+ q

(
pk, e(pk, u0)

)
· ∆ (3.1.9)

e
(

p0, u0) = y0

where ∆ =
(p1 − p0)

N
, and k is the number of steps.

The equation (3.1.9) is called the difference equation associated with the Euler method.

Though any economist do not mentioned the Euler method in their paper, the Euler method

are appeared as the special case of the Taylor method. In fact, this method provides an easier

and simpler way to recover the compensated income from the ordinary demand function

so this algorithm can increase the understanding of other numerical approximation meth-

ods2. However, the precision of this methods is not enough accurate compared to the Taylor

method and other algorithms.

3.1.1.3. RESORT Algorithm

The RESROT (REversible Second-ORder Taylor) method is proposed by Dumagan and Mount

(1997) as an alternative for the Vartia algorithm to calculate the compensate income and the

cost-of-living.

To generate the RESROT Algorithm, Dumagan and Mount (1997) employed the forward

and backward Taylor second order methods. The RESROT algorithm is described by fol-

lowings. At the first stage, for i = 0, 1, . . . , N, in order to recover the compensated income

from the ordinary demand, the forward second order Taylor approximation of e
(

pk+1, u0) is

2In general, the Euler method is considered as the starting point of learning procedure since this algorithm is
the very basic method for the initial value problems of the ordinary differential equation.
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calculated,

e
(

pk+1, u0
)
= e

(
pk, u0

)
+ q

(
pk, e(pk, u0)

)
· ∆ +

1
2

S
(

pk, e(pk, u0)
)
· ∆2 (3.1.10)

Similarly, the backward second order Taylor approximation to e
(

pk, u0) is estimated at the

second step,

e
(

pk, u0
)
= e

(
pk+1, u0

)
− q

(
pk+1, e(pk+1, u0)

)
· ∆ +

1
2

S
(

pk+1, e(pk+1, u0)
)
· ∆2 (3.1.11)

At the third stage, Dumagan and Mount combines above Taylor second order formulas to

generate the RESORT algorithm, and solve it in terms of e(pk+1, u0). The following mutual

unknown form is generated as a solution.

e
(

pk+1, u0
)

= e
(

pk, u0
)
+

1
2

q
(

pk, e(pk, u0)
)
· ∆ +

1
2

q
(

pk+1, e(pk+1, u0)
)
· ∆

+
1
4

S
(

pk, e(pk, u0)
)
· ∆2 − 1

4
S
(

pk+1, e(pk+1, u0)
)
· ∆2 (3.1.12)

e
(

p0, u0) = y0

where ∆ =
(p1 − p0)

N
, and S(pk, e(pk, u0)) =

q
(

pk, e(pk, u0)
)

∂pk · ∆ is the Slutsky matrix.

This equation (3.1.12) is called the RESORT algorithm, and yields unique approximation

to the compensated income. The value e(pk+1, u0) and e
(

pk, u0) sufficed both the forward

solution in equation (3.1.10) and the backward solution in equation (3.1.11).

At first glance, this algorithm can be considered as the special case of the Taylor method

since the backward and forward second order Taylor method are used in the generating

process. Moreover, according to Dumagan and Mount(1997), the RESORT algorithm has

a couple of advantages. First of all, the RESORT algorithm is a general case of the Vartia

algorithm3. This result can be confirmed from the first order of RESORT algorithm. That is

3For more details, see the Vartia(1983) or Vartia’s algorithm in this paper
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e
(

pk+1, u0
)
= e

(
pk, u0

)
+

1
2

[
q
(

pk, e(pk, u0)
)
+ q

(
pk+1, e(pk+1, u0)

)]
· ∆ (3.1.13)

where ∆ =
(p1 − p0)

N
, and k is the number of steps.

The equation (3.1.13) has the exactly same expression of the equation (3.1.17) in the sec-

tion 3.1.4. Another advantage of using the RESORT method when calculating compensated

income is that this approximation provides the built-in procedure to check integrability con-

ditions which the algorithm includes the Slutsky matrix in.

However, analogous other algorithm which used the Taylor method to generate the algo-

rithm, this algorithm required derivatives of the objective function. This implies that if there

exist no exact form of the ordinary demand function, the solution can not be easily gener-

ated from the above algorithm. Moreover, the RESORT algorithm contains the unknown

value e(pk+1, u0) in RHS of equation (3.1.12) so that the additional procedure4 is required in

order to complete the calculation.

4To estimated the the unknown value e(pk+1, u0), iterating is required until the estimated e(pk+1, u0) at step n
is converged to the real value of e(pk+1, u0).
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3.1.2. Runge-Kutta 4th order Method

In numerical analysis, the RK-4th order method is considered as the standard solution for

the ODE system with the initial value. This technique was developed by the German math-

ematicians C. Runge and M.W. Kutta around 1900s. Nevertheless, no papers in economic

fields are applied this algorithm to calculate the compensated income or measure of welfare

changes Until Choi(2010). In my opinion, it is partly because, at first glance, the expression in

RK-4th order algorithm is not familiar to the economist. In addition, any closed relationship

between the algorithm and the economic theory are not identified. However, in the strict

sense of word, the relevance in those two topic can be identified if we studied these more

deeper. In fact, the RK-4th order algorithm is another derivation of the Taylor higher order

algorithm since this algorithm has developed from the Taylor method with order 4th5.

5In here, the general description are used to derive the RK-4th order algorithm from the Taylor 4th order
method. Assuming that the initial value problem for an ordinary differential equation satisfies

dy(t)
dt

= f (t, y(t))

together with the initial condition
y(t0) = y0

The RK-4th order algorithm can be described by the following

yk+1 = yk + (α1k1 + α2k2 + α3k3 + α4k4) · h
where h = (tk+1 − tk), the knowing the value of y = yt at tk, then we can find the value of y = yt+1 at tk+1.
Equation described above is equated to first five terms of Taylor series

yk+1 = yk +
dy
dt

(tk+1 − tk) +
1
2!

d2y
dt2 (tk+1 − tk)

2 +
1
3!

d3y
dt3 (tk+1 − tk)

3 +
1
4!

d4y
dt4 (tk+1 − tk)

4

= yk + f (tk, yk) · h +
1
2!

f
′
(tk, yk) · h2 +

1
3!

f
′′
(tk, yk) · h3 +

1
4!

f
′′′
(tk, yk) · h4

= yk +

[
f (tk, yk) +

1
2!

f
′
(tk, yk) · h +

1
3!

f
′′
(tk, yk) · h2 +

1
4!

f
′′′
(tk, yk) · h3

]
· h

From this last equation, if we modified it properly, the RK-4th algorithm are derived.

yk+1 = yk +
1
6
(k1 + 2k2 + 2k3 + k4) · h

where

k1 = f (tk, yk)

k2 = f
(

tk +
1
2

h, yk +
1
2

k1h
)

k3 = f
(

tk +
1
2

h, yk +
1
2

k2h
)

k4 = f (tk + h, yk + k3h)

24



The RK-4th order method is defined by the following;

e(pk+1, u0) = e(pk, u0) +
K1 + 2K2 + 2K3 + K4

6
(3.1.14)

e
(

p0, u0) = y0

where

K1 = q
(

pk, e(pk, u0)
)
· ∆

K2 = q
(

pk+1 + pk

2
, e(pk, u0) +

1
2

K1

)
· ∆

K3 = q
(

pk+1 + pk

2
, e(pk, u0) +

1
2

K2

)
· ∆

K4 = q
(

pk, e(pk, u0) + K3

)
· ∆

where ∆ =
(p1 − p0)

N
, and k is the number of steps.

As with other algorithms, the accuracy of the RK-4th order algorithm mainly depends

on the size of intervals. In addition, this algorithm is easy to be programmed with any

computational programing language, and allows to evaluate welfare changes easily from

the demand function which is estimated.

Compared to the Euler or the Taylor approximation, the RK-4th order method seems to be

very awkward and complicated at the starting point. However, this approximation provides

a simpler way to solve the ODE system with the higher precisions, because this algorithm

does not require an additional procedure, the iteration procedure, to calculate undetermined

variables in equation. In fact, the e(pk, u0) can be calculated only using values from the

previous step such as e(pk−1, u0), qi(pk−1, e(pk−1, u0)), and p. Moreover, on the contrary to

the Taylor method, this RK-4th order algorithm contains no evaluations of the second or

higher order derivatives though it has the high-order local truncation error of the Taylor

method. This provides a huge advantages to the RK-4th order algorithm when solving the

ODE system with the initial value.
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3.1.3. Bulirsch-Stoer Method

The Bulirsh-Stoer method is generally called the Extrapolation method in numerical anal-

ysis. This method is used in Hausman and Newey (1995). However, not much details on

this algorithm are provided throughout paper6. Because of the insufficient information on

the algorithm, except for Hausman and Newey (1995) which is the original paper, no pa-

pers in economic fields used this method though it is well known as the best way to obtain

high-accuracy solutions to the ODE system with minimal computational effort. It is partly

because, by contrast to numerical methods introduced in previous section, the procedure of

this algorithm is quite complicated to be programed. Moreover, this numerical approxima-

tion required much more background on the numerical analysis itself.

Bulirsh-Store algorithm

This numerical algorithm provides the numerical solution for the ODE system as with nu-

merical methods introduced in previous section. To generate the algorithm, Bulirsh and

Stoer (2002)7 employed three powerful ideas such as : 1) Richardson extrapolation8: they used

the Richardson-type rational function extrapolation in algorithm, 2) the midpoint method: was

employed in order to obtain numerical solutions to the ODE system, and 3) the end point

correction: was used to modify the solution with the high accuracy and comparatively little

computational effort. It is sometimes called the Gragg–Bulirsch–Stoer (GBS) algorithm be-

cause of the important contribution of William B. Gragg in results about the error function

of the modified midpoint method.

The following is the general description of the Bulirsh-Stoer algorithm for calculating the

solution of the ODE system.

6In fact, Hausman and Newey shortly mentioned the algorithm name and the source where they hired the
Bulirsh-Stoer Method in the introduction. In their paper, instead of focusing the numerical algorithm itself,
Hausman and Newy focus on how to generate the ordinary demand function using non-parametric methods
which used the kernel predictor for it.

7There existed the time difference between Hausman and Newey (1995) paper and Bulirsh and Store (2002).
The book written by Bulirsh and Stoer are used in order to study the Bulirsh and Store algorithm instead of
the original paper.

8The Richardson extrapolation in numerical analysis is a sequence acceleration method and used to improve
the rate of convergence of a sequence. It is named after Lewis Fry Richardson, who introduced the technique
in the early 20th century.
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• Step.1 : The Midpoint Method

– The solution e
(

pk, u0) are calculated by using the midpoint method at step k

e
(

pk+1, u0
)
= e

(
pk, u0

)
+ 2q

(
pk, e(pk, u0)

)
· ∆ (3.1.15)

– Two starting values both e
(

p1, u0) and e
(

p0, u0) are required before the first mid-

point approximation e
(

p2, u0). We assume that the initial condition for e
(

p0, u0) =
y0 are known, and the Euler method are used to determine the second starting

value e
(

p1, u0)
– A series of approximations obtained from equation (3.1.15) are generated at step

k

• Step.2 : The end point correction using the extrapolation method

– The extrapolation technique are used in order to execute the end point correction,

e
(

pk+1, u0
)
= ̂e (pk, u0) +

∞

∑
j=1

δj∆2j (3.1.16)

– where the δj is a constant term related to derivatives of the solution e
(

pk, u0), and

is generated from the extrapolation method. The important point is that the δk do

not depend on the step size ∆.

3.1.4. Vartia algorithm

The numerical approximation method proposed by Vartia(1983) is the numerical integration

of equation (3.1.4). In economic literature, the Vartia algorithm is used to entail calculating

compensated income at step k. The applicability of the Vartia algorithm is demonstrated by

Porter-Hudak and Hayes (1986, 1991) when calculating cost-of-living indices and the com-

pensated income. This Vartia algorithm is generally called Implicit Trapezoidal method in nu-

merical analysis because the trapezoidal rule9 was used to generate the algorithm. Since

9The Trapezoidal Rule is used for approximating the following integral

ˆ b

a
f (x)dx
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this algorithm has the implicit form, iterations are required to estimate the solution. This

algorithm usually applies for the stiff function case.

The Vartia algorithm is defined by the following

e(pk+1, u0) = e(pk, u0) + 1
2

(
q(pk, e(pk, u0) + q(pk+1, e(pk+1, u0)

)
· ∆ (3.1.17)

e
(

p0, u0) = y0

where ∆ =
(p1 − p0)

N
, and k is the number of steps.

Weather the trapezoidal rule is employed or not can be checked after integrating both sides

of the equation (3.1.4). The result is that

e(pk+1, u0) = e(pk, u0) +

ˆ tk+1

tk

q
(

pk, e(pk, u0)
)

∆ · dt

In order to calculate the area of
´ tk+1

tk
q
(

pk, e(pk, u0)
)

∆ · dt, the trapezoidal method is used.

This leads to the equation (3.1.17).

As with algorithms described previous parts, the accuracy of the Vartia algorithm mainly

depends on the size of intervals. In general, the precision of this method is not good enough

compared to the RESORT and the RK-4th order algorithm. Moreover, this algorithm requires

let x0 = a , x1 = b, and h = b− a, and used the linear Lagrange polynomial P1(x) as an approximation of
f (x)

P1(x) =
(x− x1)

(x0 − x1)
f (x0) +

(x− x0)

(x1 − x0)
f (x1) ≈ f (x)

If applying the Lagrange polynomial to the integral, then we have

ˆ a

b
f (x)dx =

ˆ x1

x0

[
(x− x1)

(x0 − x1)
f (x0) +

(x− x0)

(x1 − x0)
f (x1)

]
dx

Above equation implies that

ˆ a

b
f (x)dx =

[
(x− x1)

2

2(x0 − x1)
f (x0) +

(x− x0)
2

2(x1 − x0)
f (x1)

]x1

x0

=
(x1 − x0)

2
[ f (x0) + f (x1)]

=
1
2
[ f (x0) + f (x1)] · h

This is called the Trapezoidal rule because when f is a function with the positive values,
´ b

a f (x)dx is
approximated by the area in a trapezoid.
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the additional procedure, the iterated method, to calculate the compensated income since

both sides of the equation (3.1.17) has the unknown value e(pk, u0). To estimated the the

unknown value e(pk+1, u0) in equation (3.1.17), the iterated method is required until the esti-

mated e(pk+1, u0) at step k is converged to the real value of e(pk+1, u0). This iteration makes

the algorithm a little bit slow compared to other numerical methods though the convergence

has achieved with the rapid speed.

However, this algorithm can be applied that the demand system was very inelastic (the

stiff equation case). In this case, numerical algorithms introduced in the previous section can

not be applied in order to recover the compensated income from the demand function since

the approximation procedure could not converge to the solution but explode.

3.1.5. Adams Fourth-Order Predictor-Corrector Method

Until now, the one-step method10 is investigated. Although these one-step methods might

be used for evaluating information at points between pk and pk+1, they do not retain in-

formation for the future approximation since all information used in one-step methods are

obtained within sub intervals that the solution is approximated. For example, the Euler and

Taylor method refer to only one previous point and its derivatives to estimate the value of

the current step, and the RK-4th order method takes some intermediate steps, for example, a

mid point, to calculate the current value, but finally discards all previous information before

taking a second step.

However, the approximation solution is available at every mesh points p0, p1, . . . , pk before

the approximation at pk+1 is achieved. So it seems reasonable to employ methods that use

more than one previous points when approximating the solution. In fact, the method using

more than one points to determine the approximation at the current step is called the multi-

step method. The multistep method attempts to utilize the efficiency by keeping and using

the information from previous steps rather than discarding it. Consequently, the multistep

method refers to several previous points to calculate the next value so the approximation of

the current value can be a linear combination of previous values.

10Because the approximation for the mesh point ti+1 involves information from only one for the previous mesh
point ti
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The multistep method for solving the ODE system is generally defined by the following

difference equation. In order to find the approximation e(pk+1, u0) at the mesh point ti+1,

for i = m− 1, m, . . . , N − 1

e(pk+1, u0) = am−1 · e(pk, u0) + am−2 · e(pk−1, u0) + · · · a0 · e(pk+1−m, u0)

+[bm · q
(

pk+1, e(pk+1, u0)
)
+ bm−1 · q

(
pk, e(pk, u0)

)
(3.1.18)

+ · · · b0 · q
(

pk+1−m, e(pk+1−m, u0)
)
] · ∆

Where ∆ =
(p1 − p0)

N
, and k is the number of steps. Coefficients a0, a1, . . . , am−1, and

b0, b1, . . . , bm presented in equation (3.1.18) are all constant, and starting values e(p0, u0) = α,

e(p1, u0) = α1, e(p2, u0) = α2, . . . , e(pm−1, u0) = αm−1 are specified11.

To obtain the numerical solution using the multistep method, the implicit and the explicit

method are generally used. The method is called the explicit (or forward) method when bm = 0.

wi+1 is expressed as a linear combination of known past values and functions of wi, as a

consequence, wi+1 is computed easily in terms of previously determined values. On the

contrary, when bm 6= 0, the method is called the implicit (or iterative) method. It is based on

the fact that wi+1 occurs on both sides of equation (3.1.18). In fact, the equation (3.1.18) is

specified only implicitly. Therefore, the iterative procedure is generally required in order to

compute the wi+1.

Several multistep methods in numerical analysis are commonly used as the solution for

the ODE system. One is called the Adams-Bashforth (A-B) method family which used the

explicit method to estimate the value of the current step, the other is called Adams-Moulton

(A-M) method family which used the implicit method to evaluate the present value.

The following is examples of the multistep explicit and implicit method.

11In general, we assume that the initial value of the ordinary differential equation is known. However, except
the initial value, there are no assumptions on the next values of the mesh points. In order to initiate the values
in algorithm, another algorithms including the RK method or some other one-step techniques are adapted.
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Example. Explicit Method

The A-B 4th order method is described by the following,

e(pk+1, u0) = e(pk, u0) +
1
24

[55q
(

pk, e(pk, u0)
)

−59q
(

pk−1, e(pk−1, u0)
)
+ 37q

(
pk−2, e(pk−2, u0)

)
− 9q

(
pk−3, e(pk−3, u0)

)
] · ∆

and

e(p0, u0) = α0, e(p1, u0) = α1, e(p2, u0) = α2, and e(p3, u0) = α3

Where ∆ =
(p1 − p0)

N
, and k is the number of steps.

Example. Implicit Method

The A-M 4th order method is described by the following,

e(pk+1, u0) = e(pk, u0) +
h

24
[9q
(

pk+1, e(pk+1, u0)
)

+19q
(

pk, e(pk, u0)
)
− 5q

(
pk−1, e(pk−1, u0)

)
+ q

(
pk−2, e(pk−2, u0)

)
] · ∆

and e(p0, u0) = α0, e(p1, u0) = α1, and e(p2, u0) = α2

Where ∆ =
(p1 − p0)

N
, and k is the number of steps.

The Adams 4th Order Predictor-Corrector algorithm

It is well known that the implicit method provides better results than the explicit method

of the same order but the implicit method is not always possible12. To derive the better

estimation result, the combination of the implicit and the explicit method are often used

to compute the solution for the ODE system. In common, the explicit method is used to

"predict" the value of wi+1, and then the predicted value is used inside the implicit formula to

12It is not surprising facts that the greater difficult of using the implicit formula with bm 6= 0 are existed when
calculating the wi+1.
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"correct" the estimated value later. The combination of the explicit and the implicit technique

leads so called a predictor-corrector method.

The Adams 4th Order Predictor-Corrector Method is a multistep method since it used more

than one mesh points to approximate the solution for the ODE system. Moreover, this al-

gorithm is the predictor-corrector method since it employed both the explicit and implicit

method in algorithm. In fact, Adams 4th Order Predictor-Corrector Method used total three

methods, including both the fourth order A-B and A-M method, to generate the algorithm.

The general description of Adams Fourth-Order Predictor-Corrector Method is following.

First, the RK-4th order algorithm is used for calculating four starting values. Second, the

explicit method (A-B method) is employed to predict an approximation, and finally, the im-

plicit multistep method (A-M method) is used to improve approximations obtained by the

explicit method. For simplicity, following notations, e
(

p0, u0) = w0, e
(

p1, u0) = w1, and

e
(

pk, u0) = wk are used.

• Step.1 : the RK method of the order four

– To calculate the first four starting values, e(p0, u0) = α0, e(p1, u0) = α1, e(p2, u0) =

α2, and e(p3, u0) = α3, the RK-4th order method are used.

– Four staring values are used in the explicit Adamas-Bashforth method as staring

values

• Step.2 :The explicit Adams-Bashfouth method as a predictor,

– An approximation w(0)
4 which is a prediction of e

(
p4, u0) was calculated by the

explicit Adams-Bashfouth method, where superscript (0) means the number of

iterations

w(0)
4 = e

(
p3, u0)+ 1

24
[55q

(
p3, e(p3, u0)

)
−59q

(
p2, e(p2, u0)

)
+ 37q

(
p1, e(p1, u0)

)
− 9q

(
p0, e(p0, u0)

)
] · ∆

– where ∆ =
(p1 − p0)

N
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• Step.3 : The implicit Admas-Moulton method as a corrector.

– The estimated values w(1)
4 , which is a approximation of e

(
p4, u0), is improved

by inserting w(0)
4 inside of the three-step implicit Adams-Moulton method, where

superscript (1) means the number of iterations

w(1)
4 = e

(
p3, u0)+ 1

24
[9q
(

p4, w(0)
4

)
+19q

(
p3, e(p3, u0)

)
− 5q

(
p2, e(p2, u0)

)
+ q

(
p1, e(p1, u0)

)
] · ∆

– where ∆ =
(p1 − p0)

N

• Step.4 : Iterating this procedure (from Step.1 to Step.3) until an approximation of

e
(

pk, u0) = w(j)
k are calculated.

– In fact, the improved approximations to e
(

pk+1, u0) could be obtained by iterating

the implicit Adams-Moulton formula

w(j+1)
k+1 = e

(
pk, u0

)
++

1
24

[9q
(

pk+1, w(j)
k+1

)
+19q

(
pk, e(pk, u0)

)
− 5q

(
pk−1, e(pk−1, u0)

)
+ q

(
pk−2, e(pk−2, u0)

)
] · ∆

– where j is the iteration size.

The {w(j+1)
k+1 } converges to the approximation given by the implicit formula rather than to

the solution e
(

pk+1, u0), and it is usually more efficient to use a reduction in the step size if

improved accuracy is needed.
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4. Demand systems

In this section, we introduce two demand systems such as the Rotterdam and the Almost

Ideal demand system. Each demand system is estimated as a starting point to calculate the

compensated income, the measure of welfare changes, and the cost-of-living index.

4.1. The Almost Ideal Demand system

4.1.1. Model description

The almost ideal demand system of Deaton and Muellbauer (1980) is fully consistent with

the economic theory, and possesses properties of the exact aggregation. The AI demand

system is developed from a particular cost function taken from the general class of “price-

independent, generalized logarithmic” or PIGLOG cost function which permits the exact

aggregation over consumers.

The PIGLOG cost function is defined by

ln C (p, U) = (1−U) ln {a(p)}+ U ln {b(p)} (4.1.1)

where p is a n× 1 vector of unit price, and U denotes the utility index which can be scaled

under cases of subsistence (U = 0) and bliss(U = 1). In addition, ln a(p) and ln b(p) re-

garded as costs of the subsistence and the bliss have the specific flexible functional form;

ln a(p) = α0 + ∑
k

αk ln(pk) +
1
2 ∑

k
∑

j
γ∗kj ln pk ln pj (4.1.2)

and
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ln b(p) = ln a(p) + β0 ∏
k

pβk
k (4.1.3)

Applying equation (4.1.2) and (4.1.3) into equation (4.1.1) leads to the AIDS cost function.

ln C(p, U) = α0 + ∑
k

αk ln(pk) +
1
2 ∑

k
∑

j
γ∗kj ln pk ln pj + Uβ0 ∏

k
pβk

k (4.1.4)

Share equations which are an objective function in AIDS can be derived easily after apply-

ing the Shepard’s lemma to the AIDS cost function. This leads to a set of share equations:

wi = αi + ∑
j

γij ln pj + βi(ln M− ln P) (4.1.5)

where wi is the expenditure share on commodity i, log pj and M is the log price of com-

modities and total expenditure respectively.

The price index ln P is given by

ln P = α0 + ∑
i

αi ln pi +
1
2 ∑

i
∑

j
γij ln pi ln pj (4.1.6)

The constant term αi denotes the value of the budget share when prices and total outlays

remained constant. The effect of price changes is transmitted through the parameter γij. And

the parameter βi measures the effect of changes in total real expenditure. The consistency

with economic theory requires that parameters of the system satisfy the following adding-

up, homogeneity and symmetry restrictions:

• Adding-up and Homogeneity Condition :

∑
i

αi = 1, ∑
j

γij = 0, ∑
i

βi = 0

• Symmetry Condition :

γij = γji
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For the estimation purpose, the LA-AIDS model, the linear approximation of the AI de-

mand system, is often used. The Stone index is used in order to approximate the translog

price index which are use in the AI demand system;

ln PS = ∑
i

wi ln pi (4.1.7)

In general, the estimation of the LA-AIDS model is simpler than that of the AI demand

system. However, there is a well-known couple of demerits using the LA-AIDS instead of the

AIDS. First, according to Moschini (1995) using the Stone index can cause the simultaneity

bias problem when estimating the demand system, because the expenditure share wi appears

on both sides of share equations. Moreover, deriving and calculating elasticities of the LA-

AIDS is more complicated than that of the AI demand system. In fact, the expenditure share

wi on the Stone index causes these difficulties. In general, the advantage in estimation of LA-

AI demand system is offset by difficulties in deriving elasticities. More details are described

in the next section.

4.1.2. Income and Price Elasticities of the AI demand System

Results in Barnett and Seck (2007) and Green and Alston(1990) are used to investigate elas-

ticities of the AI demand system. Income elasticities of the AIDS model can be derived after

applying the logarithm rule dz = z · d log z, on the definition of income elasticities,

ηiM =
∂ log qi

∂ log M
= 1 +

∂ log wi

∂ log M
= 1 +

1
wi

∂wi

∂ log M
(4.1.8)

where qi is the ordinary demand, wi is the expenditure share of good i, and M is the total

expenditure.

Uncompensated price elasticities can be calculated with the same manner,

ηij =
∂ log qi

∂ log pj
= −δij +

∂ log wi

∂ log pj
= −δij +

1
wi

∂wj

∂ log pj
(4.1.9)

where pi is the price of good i , and δij =

{
1 if i = j
0 if i 6= j

is the Kronecker delta term.
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In case of AI demand system, partial derivatives of the budget share (4.1.5) w.r.t the income

and the price j are
∂wi

∂ log M
= βi (4.1.10)

and

∂wj

∂ log pj
= γij − βi

∂ log P
∂ log pj

= γij − βi
(
αj + ∑ γjk log pk

)
(4.1.11)

where
∂ log P
∂ log pj

= αj + ∑ γjk log pk.

Therefore, plugging equation (4.1.10) and (4.1.11) into the equation (4.1.8) and equation

(4.1.9), then income and the uncompensated elasticities of AI demand system become

ηiM = 1 +
βi

wi
(4.1.12)

and

ηij = −δij +
γij − βi

(
αj + ∑k γjk ln pk

)
wi

(4.1.13)

where αj + ∑k γjk ln pk = wj − β j (ln M− ln P).

On the contrary, differently from the AIDS case, obtaining elasticities of LA-AI demand

system is more complicated and sensitive. This mainly depends on that the LA-AI demand

system used the Stone index as the price index instead of the translog price index used in AI

demand model.

Partial derivatives of the budget share equation (4.1.5) in case of LA-AI demand system,

w.r.t the income and the price j are

∂wi

∂ log M
= βi − βi

∂ log PS

∂ log M
(4.1.14)

and

∂wj

∂ log pj
= γij − βi

∂ log PS

∂ log pj
(4.1.15)

respectively.
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In order to evaluate the equation (4.1.14) and (4.1.15), exact values of partial derivatives on

the Stone index are required. In fact, partial derivatives of the Stone index w.r.t the income

and the price j are following

∂ log PS

∂ log M
= ∑

j
log pj

∂wj

∂ log M
= ∑

j
wj log pj(ηjM − 1) (4.1.16)

and

∂ log PS

∂ log pj
= wj + ∑

k
wk log pk

∂ log wk

∂ log pj
= wj + ∑

k
wk log pk(ηkj + δkj) (4.1.17)

Finally, applying the equation (4.1.16) and (4.1.17) into the equation (4.1.8) and equation

(4.1.9), then income and uncompensated elasticities of the LA-AI demand system are ob-

tained by

ηiM = 1 +
βi

wi

[
1−∑ wj log pj(ηjM − 1)

]
(4.1.18)

and

ηij = −δij +
γij

wi
−

βi
(
wj + ∑k wk log pk(ηkj + δkj)

)
wi

(4.1.19)

respectively.

In fact, the form of elasticities in the LA-AI demand system are more complicated those

of the AI demand system. However, practically, in order to calculate income and uncom-

pensated elasticities of the LA-AI demand system, the matrix form of the equation (4.1.20)

and (4.1.21) are required. After rearranging components in above equations, income and

uncompensated price elasticities can be expressed in matrix form as

N = [BC + I]−1 B (4.1.20)

and
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Table 4.1.: Income and uncompensated elasticities of AI and LA-AI demand system

Demand System

AIDS LA-AIDS

El
as

ti
ci

ti
es Income ηiM =

βi

wi
+ 1 ηiM = 1 +

βi

wi

[
1−∑ wj log pj(ηjM − 1)

]
Pr

ic
e Uncompensated ηij = −δij +

γij − βi
(
αj + ∑k γjk ln pk

)
wi

ηij = −δij +
γij

wi
−

βi
(
wj + ∑k wk log pk(ηkj + δkj)

)
wi

Compensated η∗ij = ηij + wj

(
1 +

βi

wi

)
η∗ij = ηij + wj

(
1 +

βi

wi

[
1−∑ wj log pj(ηjM − 1)

])

E = [BC + I]−1 [A + I]− I (4.1.21)

where A = −δij +
γij

wi
− βi

wj

wi
, B =

βi

wi
, and C = wj ln Pj which is a (1× n) matrix.

In addition, the compensated elasticities (η∗ij) can be derived from the Slutsky matrix easily.

Since Slutsky matrix is defined by

∂hi(p, u)
∂pj

=
∂qi(p, M)

∂pj
+

∂qi(p, M))

∂M
· qj(p, M) (4.1.22)

after applying the logarithm rule, dz = z · d log z.

Rearranging of the above equation (4.1.22), then compensated price elasticities are defined

by

η∗ij = ηij + wj · ηiM (4.1.23)

From this definition, compensated price elasticities of AIDS and LA-AIDS can be obtained.

For AIDS case, compensated elasticities is

η∗ij = ηij + wj

(
1 +

βi

wi

)
(4.1.24)

and compensated elasticities for the LA-AI demand system is

η∗ij = ηij + wj

(
1 +

βi

wi

[
1−∑ wj log pj(ηjM − 1)

])
(4.1.25)
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4.1.3. Deriving the functional form of the ordinary demand from the AI

demand model

The functional form of the AIDS ordinary demand can be derived from share equations.

Let’s consider the general form of expenditure share,

wi =
piqi(p, M)

M
(4.1.26)

where M = ∑i piqi is the total expenditure, and differently called the true compensated

income.

Plugging equation (4.1.5) into the equation (4.1.26), then following functional relationships

of the share of good i are obtained.

wi =
piqi(p, M)

C
= αi + ∑

j
γij ln pj + βi ln

(
M
P

)
(4.1.27)

From the above expenditure share equation (4.1.27), we have

qi(p, M) =
M
pi

[
αi + ∑

j
γij ln pj + βi ln

(
M
P

)]
(4.1.28)

This equation (4.1.28) is the function form of the ordinary demand in the AIDS, and can be

used for calculating the compensated income in numerical algorithms.

4.2. Rotterdam Model

4.2.1. Model description

The Rotterdam demand system was introduced by Theil (1967) and Barten (1966) as an es-

timation method for the differential approach. This demand system expressed the rate of

change in the quantity demanded of each commodity, weighted by the corresponding bud-

get share, as a function of the rate of change in prices and the rate of changes in total real

spending (income).

The Rotterdam model is started from the utility maximization. Differently from the func-

tional form of demand system, the Rotterdam demand system has no specific assumptions
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on the utility and the expenditure itself.

Let’s consider the utility maximization problem

max
q

u(q)

s.t. ∑ pi · qi = M
(4.2.1)

where pi and qi are the price and the demand quantity for good for good i, and M is total

expenditure.

Above utility maximization problem can be solved after applying the first order condition

and the Lagrangian method which is a auxiliary function. It leads the following ordinary

demand function which is the solution for the utility maximization problem,

qi = qi(p, M) i = 1, 2, . . . .n, (4.2.2)

Applying total differentiation on the equation (4.2.1) leads to

dqi =
∂qi(·)
∂M

dM + ∑
j

∂qi(·)
∂pj

dpj i = 1, 2, . . . .n (4.2.3)

In fact, this equation (4.2.3) is the starting point of the differential approach and the Rot-

terdam demand system. Multiplying both sides of equation (4.2.3) by pi/M and applying

the logarithm rule, dz = z · d log z, then the following logarithmic differential equation is

obtained

wid log qi = θid log M + ∑
j

pi pj

M
· ∂qi

∂pj
· d log pj (4.2.4)

where wi =
piqi

M
is the budget share of the ith good, and θi =

pi∂qi

∂M
is the marginal budget

shares of commodity i.

From the Slutsky Substitution Matrix, equation (4.1.22), we know that

∂qi

∂pj
=

∂hi

∂pj
− ∂qi

∂M
qj (4.2.5)

where h(p, u) is the Hicksian compensated demand function.
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Plugging equation (4.2.5) into equation (4.2.4), then this procedure yields

wid log xi = θi

d log M−∑ wjd log pj︸ ︷︷ ︸
A

+ ∑
j

pi pj

M
· ∂hi

∂pj
· d log pj (4.2.6)

Where ∑j wjd log pj = d log P.

The d log P, the budget share multiplied by weighted average of log price changed, is

called the Divisia price index which is proposed by Divisia (1925), French economist. Sim-

ilarly, the Divisia Quantity index are defined as the budget share multiplied by weighted

average of log quantity change instead of the price, ∑j wjd log qj = d log Q. The relation-

ship between Divisia price and quantity index can be find in the budget constraint in the

problems of the utility maximization.

Applying total differentiation and logarithm rule, dz = z · d log z, on the budget constraint,

then we have

∑
j

wjd log pj + ∑
j

wjd log qj = d log M (4.2.7)

From the definition of Divisia indices, above equation can be described in terms of the

Divisia quantity index. That is

d log Q = d log M− d log P (4.2.8)

Moreover,
pi pj

M
is the constant because we assume that prices and expenditures are known,

as a result, the functional form for the i th equation in this demand system takes the following

form

wid log qi = θid log Q + ∑
j=1

πijd log pj (4.2.9)

where πij =
∂hi

∂pj
=

(
∂qi

∂pj
+− ∂qi

∂M
qj

)
is the Slutsky matrix.

Since the data obtained from the real world is not continuous but discrete, the discrete

form of equation (4.2.9) are required in order to estimate the demand system. In fact, the
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finite changes version of equation (4.2.9) is

w∗itDqit = θiDQt + ∑
j=1

πijDpjt (4.2.10)

where w∗i =
1
2
(wit +wi,t−1) denotes the average budget share of commodity i at time t and

t− 1, DQt = log Qt− log Qt−1, Dqit = log qit− log qi,t−1, and Dpit = log pit− log pi,t−1. This

equation (4.2.10) is called the Absolute Price Version of the Rotterdam Model when the coefficient

θi and πij are treated as constants.

Parameters in the Rotterdam model have the following interpretations. πij , the Slutsky

matrix, measures total substitution effects on the demand for good i of a compensated change

in the price of commodity j. And θi, marginal budget shares, measures marginal effects

on the budget when the income changes. Differently from budget shares, marginal budget

shares are not always positive (for example, θi < 0 if good i is an inferior good) but, like

budget shares, sum to unity, ∑i θi = 1.

Two set restrictions on parameters of the Rotterdam model are required to suffice the the-

ory of the demand. The first set of week restrictions on the consumer demand is the adding-

up and the homogeneity of the demand equations

• Adding up conditions

n

∑
i=1

θi = 1 and
n

∑
j=1

πij = 0 for all i = 1, 2, . . . , n

• Demand homogeneity required

∑
j=1

πij = 0 for all i = 1, · · · , n

In addition, under the standard assumptions of economic theory, θi and πij must also satisfy

the following strong restrictions

• Slutsky symmetry

πij = πji
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• Concavity

[πij] is negative semi-definite

Above restrictions are not independent. Typically, the adding-up, the homogeneity, and

the symmetry are imposed in estimation while the negative semi-definiteness of [πij] ma-

trix is empirically confirmed. Parameters are assumed to be constant under the Rotterdam

parametrization, and the average budget shares over the sample period are used.

4.2.2. Income and Price Elasticities of the AI demand System

Compared to the AI demand system, one advantage using the Rotterdam model is that in-

come and price elasticities can be calculated with the convenient manner since the objective

function contains the log differential in equation.

From the Rotterdam demand equation (4.2.9), income and compensated price elasticities

are easily calculated

ηiM =
d log qi

d log Q
=

θi

wi
, , i = 1, · · · , n

η∗ij =
d log qi

d log pj
=

πij

wi
, , i, j = 1, · · · , n

Moreover, from the equation (4.1.23), the uncompensated price elasticities are obtained

ηij = η∗ij − wj · ηiM

4.2.3. Calculating ordinary demand From the Rotterdam model

The Rotterdam model is employed to demonstrate the applicability of the numerical algo-

rithm in real situation where there existed no exact form of the expenditure or demand func-

tion. Though no the functional form of ordinary demand is existed in the Rotterdam model,

the quantity demand at time t can be calculated.

There are two way to calculated the estimated demand quantity of the Rotterdam model.

The first method starts from the equation (4.2.10), which is the absolute version of the Rot-

terdam model. The equation (4.2.10) can be reorganized by the following.
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w∗itDqit = θiDQt + ∑
j=1

πijDpjt

→ w∗it(log qit − log qi,t−1) = θiDQt −+∑
j

πij(log pit − log pi,t−1)

→ log qit − log qi,t−1 =

 θiDQt + ∑j πij(log pit − log pi,t−1)

w∗it︸ ︷︷ ︸
A

 (4.2.11)

→ log qit = A + log qi,t−1︸ ︷︷ ︸
B

∴ qit = exp(B)

Using above procedure and estimated parameters from the Rotterdam model, whole cal-

culation can be done from the first period to the last period. In fact, we could calculate the

estimated demand quantity of good i at each time period of the Rotterdam model. However,

this estimated demand quantity is defined as a function of Divisia quantity index and dif-

ferences of log prices instead of the expenditure and prices1. Therefore, we can not directly

apply this estimated demand quantity to the numerical algorithm in order to recover the

compensated income. Therefore, the new approach is required to do it.

We considered the way of calculating the demand quantity from estimated expenditure

shares as with the AI demand system. According to the Theil(1981), in the Rotterdam model,

the estimated share ŵit is measured by

ŵit = wi,t−1 + prediction of ∆wit (4.2.12)

where ŵit is the estimated shares of wit, and the prediction of ∆wit implies the changes in

the budget share from period t− 1 to t.

Theil(1981) described how to calculate the prediction of ∆wit in his book. This can be ac-

complished after applying total differentiation and the following logarithm rule, z · d log z =

dz, on the expenditure share. Then, we have

1In order to apply the ordinary demand to the numerical method, the ordinary demand should be the function
of the expenditure and price.
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∆wit = witd log pit + witd log qit − witd log Mt (4.2.13)

Plug in the equation (4.2.13) into the equation (4.2.12), finally we have

ŵit = wi,t−1 + witd log pit + witd log qit − witd log Mt (4.2.14)

From this equation (4.2.14), the estimated share at time t is evaluated. To obtain more ac-

curate estimated share, updated values instead of original expenditure shares are used. For

example, first, we calculate the estimated value of second period using the original expendi-

ture share values such that

ŵi2 = wi1 + prediction of ∆wi2

Then, except for the first periods, updated values of expenditure shares are kept using

until time t

ŵit = ŵit−1 + prediction of ∆wit

However, values we actually needed in numerical algorithm is values of the demand quan-

tity so demand quantities are calculated by applying equation (4.2.14) to the share equation

(4.2.12). Finally, ordinary demand quantities of good i at time t are given by

qit(pt, Mt) =
wit Mt

pit

=
[wi,t−1 + witd log pit + witd log qit − witd log Mt]×Mt

pit
(4.2.15)

Unlike the AI demand system, obtaining the functional form of ordinary demand from the

Rotterdam system is impossible, however, we could finally calculate the demand quantity of

good i at each time period t. This implies that quantity demand at time t can be applied to

numerical approximation method in order to calculate the compensated income.

46



5. Application 1: Numerical Approximation

to Calculate the Cost-of-living and Its

Empirical Solution

5.1. Introduction

The purpose of this paper is to propose an empirically feasible method to measure the cost-

of-living index based on the RK-4th order algorithm which is the solution of the ordinary

differential equation, and demonstrate that the newly proposed approximation method can

be an alternative way to calculate the cost-of-living index instead of the Vartia algorithm.

For this research purpose, the accuracy and the applicability of the RK-4th order algorithm

are investigated. First, the simulation method is employed in order to check the accuracy of

the algorithm. For this, one of the flexible functional form demand system : Almost Ideal

Demand System (AIDS)1 is employed. The cost-of-living index2 and the conventional price

indices3 are calculated by using the numerical algorithm4 and estimated parameters from

the AI demand system. From the comparison between estimated cost-of-living indices and

conventional price indices, the accuracy and the power of the newly proposed numerical

method are confirmed. Second, the demand system which has no closed form solution is

considered in order to identify the applicability of the newly proposed numerical method

for calculating cost-of-living in the empirical world, since the exact functional form of the

1The demand quantity function are required to calculate the compensated income using the numerical algo-
rithm. The AIDS demand system has the exact form of the expenditure function, and this implies that the
exact form of the demand quantity function can be derived from it. See the demand model description in
Chapter 4 in this paper for more details.

2Here, true cost-of-living means the Konüs price index. It measure the proportional change in the minimum
cost of maintaining some fixed level of economic welfare when prices change. More description can be found
in Section 2.

3In general, when we mentioned the conventional price index, it include the following the price indices: the
Laspeyres, Paasche, Fisher Ideal, and Törnqvist Price Index. In this paper, these price indices are calculated
by the each specific formulas described in Section 2.

4To calculate the cost-of-living index, we hire the Vartia’s algorithm which is a standard method in calculating
the cost-of-living index and the RK-4th algorithm as an alternative of Vartia’s method. More detail can be
find in Section 3, or Chapter 3.
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demand does not exited in general. For this, the Rotterdam model is employed since this

theoretical demand system does not have any assumption on the utility or the expenditure

so no specific ordinary demand function can be derived from the demand system. We could

demonstrate that the numerical algorithm can be applied in any kinds of situations, whether

the exact form of demand system existed or not, to calculate the cost-of-living indices after

the comparison of the cost-of-living indices between AI and Rotterdam model.

The cost-of-living index (COLI) measures the relative cost-of-living over times. The use-

fulness of the COLI is that this index provides a method for comparing costs of maintaining

a certain level of living in different demographic groups, years, and geographic areas. In eco-

nomic fields, generally, the Konüs cost-of-living index, which is defined as the ratio of the

compensated incomes corresponding to the terminal and initial prices given the reference

level of the utility, is used in order to calculate the cost-of-living index. Based on the defini-

tion, the Konüs cost-of-living index can be calculated if compensated incomes are known at

each time period.

There are well known two methods for calculating the compensated income from the ordi-

nary demand function. One is that the exact form of expenditure or indirect utility functions

existed. For example, the Translog or the AI demand system5. In this case, the demand func-

tion with an explicit parametric form can be derived from the indirect utility or the expendi-

ture functions. Therefore, the compensated income can be evaluated by using this ordinary

demand function with the exact from. In the same manner, the Konüs cost-of-living index

can be evaluated after the compensated income is obtained. In this paper, this case is used

5Both the Translog and the AI demand system have the exact functional form demand system. In case of the
Translog demand system, it has the functional form of the indirect utility function such as

ln V(p, y) = α0 + ∑
k

αk ln
(

pk
y

)
+

1
2 ∑

k
∑

j
γkj ln

(
pk
y

)
ln
( pj

y

)
From the above equation, the compensated income function under the restrictions on translog demand

system can be derived.

e(p, u) =
∑k αk ln pk +

1
2 ∑k ∑j γkj ln pk ln pk − ln V

−1 + ∑k ∑j γkj ln pk

Similarly, the expenditure function of the AI demand system is defined by

ln C(p, U) = α0 + ∑
k

αk ln(pk) +
1
2 ∑

k
∑

j
γ∗kj ln pk ln pj + Uβ0 ∏

k
pβk

k
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in order to check the accuracy of the numerical algorithm. However, in general, closed form

solutions for parametric demand systems are not available. This implies that the compen-

sated income can not be obtained from the above method. An alternative way to calculate

the compensated income and the cost-of-living index is required.

Many economists including Breslaw and Smith (1995), Hausman and Newey(1995), Du-

magan and Mount (1997), and Vartia (1983) proposed the different ways to calculate the com-

pensated income using the numerical algorithm6. The solution they proposed are related the

integrability problem7 in economics. Simply, the integrability problem can be described by

followings: “Given a system of demand functions, Can a utility function or expenditure func-

tion are derived?” In economics, the integrability problem is described as the system of the

partial differential equations, more specifically, represents that relationship between the par-

tial derivative of the expenditure function and ordinary demand functions with the given

initial value. In fact, the integrability problem can be solved if demand functions suffices

integrability conditions defined by the Slutsky matrix.

In this paper, as the solution of the ordinary differential approach, we propose the RK-

4th order algorithm that is the general solution of the ODE problems in numerical analysis,

and represents that this algorithm can be the alternative tools to calculate the cost-of-living

indices after comparing its precision and accuracy to other conventional price indices, and

the Vartia algorithm. The reminder of this paper is organized as follows: section 5.2 and 5.3,

we will consider the numerical method related to the computation of the cost-of-living index,

and briefly introduce the definition of conventional price indices. Section 5.4 discusses data,

and reports the estimation results of both AIDS and Rotterdam demand system. In addition,

we report the index numbers based on numerical approximation, and describes the general

results. In section 5.5, the summary and conclusion of this research are provided.

6Numerical algorithms are related to the solution of the system of the ordinary differential equation with the
initial values. Using numerical approximation methods, the compensated income(expenditure function) can
be recovered from the ordinary demand system. Numerical methods can be applied both 1) there exists the
closed form of the ordinary demand function and 2) there is no closed form solutions of demand systems.
Especially, numerical approximation methods are very useful in the case under no closed form solution of
demand system since, generally, if there existed the parametric form demand system such as the AIDS or
more specifically defined demand system, one could directly calculated the compensated income using the
ordinary demand function without numerical approximations. However, if there is no closed form solution
of the demand function, it is impossible to calculate the compensated income. In this case, the numerical
algorithm can be applied to calculate the compensated income.

7See the Varian(1992) and Mas-Colell and et el(1995) for more details
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5.2. Price indices

A price index is a normalized average of prices during a given interval of time. It is a sta-

tistically designed to help to compare how these prices, taken as a whole, differ between

time periods or geographical locations. In this reason, the price index is generally used

for measuring the price level or a cost-of-living of the economy. In this section, we briefly

introduced the concept of the Konüs type price index, and the conventional price indices

including Laspeyres, Paasche, Fisher, and Törnqvist price indices.

5.2.1. Konüs cost-of-living Index

A cost-of-living index is a theoretical price index which measures the relative cost of liv-

ing over time or regions, and also allows to measure differences in the price of goods and

services. In economic fields, the Konüs price index, at least, is considered as the ideal for

measuring the cost-of-living. A Konüs cost-of-living index proposed by the Russian economist

Konüs(1924) is defined as the ratio of the minimum expenditure required to attain a particu-

lar level of satisfaction in two price situations, a comparison period and a base period.

I(p0, p1, u0) =
e(p1, u0)

e(p0, u0)
(5.2.1)

where u0 is the reference level of utility, e is the minimum expenditure of the utility level

at u when the consumer is facing a price vector p , and the index I represents the minimum

expenditure(cost) of the reference level of the utility when a consumer is facing with two

different price level, the price vector p1 and p0.

By the definition, the Konüs cost-of-living index I(p0, p1, u0) can be calculated at each data

point if the e(p, u) for a given time period and a given level of utility is known. In addition,

this index can be used an alternative way to evaluate the Hicksian welfare change because it

is defined as the difference between the compensated incomes in the different period.
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5.2.2. Conventional Price indices

Four price indices in the economic field are used for a method of estimating the cost-of-

living. Two most basic formulas used for calculating the cost-of-living are the Paasche and

the Laspeyres price index. The Fisher and the Törnqvist price formula are also frequently

used to calculate the cost-of-living.

In general, the Laspeyres index tends to overstate inflation while the Paasche index tends

to understate it, because these indices do not explain that consumers typically react to price

changes by changing quantities they purchase. As a solution of these problems, later, the

Fisher and the Törnqvist price index formulas are appeared.

We will start from the definition of the expenditure share to explain price indices. The

expenditure share are defined by the following way :

w0
i =

q0
i p0

i

∑i q0
i p0

i
, wT

i =
qT

i pT
i

∑i qT
i pT

i
, ∑

i
w0

i = 1 ∑
i

wT
i = 1 (5.2.2)

where 0 and T represent the initial and the terminal time period, respectively.

Combining the equation (5.2.1) and (5.2.2) leads to the Laspeyres and the Paasche price

indices, respectively.

The Laspeyres price index is defined by

IL
p =

e(pT, q0, u0)

e(p0, q0, u0)
=

pT · q0

p0 · q0 = ∑
i

w0
i

(
pT

i

p0
i

)
(5.2.3)

where p0 and pT is the vector of prices at the initial and terminal time period. As the same

manner, Paasche index is defined by

Ip
p =

e(pT, qT, uT)

e(p0, qT, uT)
=

pT · qT

p0 · qT =
1

∑i wT
i

(
p0

i

pT
i

) (5.2.4)

The Fisher and the Törnqvist price index formulas are used to be presented by the com-

bination of the Laspeyres and Paasche price indices. First, the Fisher Ideal Index (IF
p ) is the

geometric mean of those price indices, and is represented by
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IF
p = (IL

p IP
p )

1/2 = exp

{
1
2

ln

(
∑

i
w0

i

(
pT

i

p0
i

))
− 1

2
ln

(
∑

i
wT

i

(
p0

i

pT
i

))}
(5.2.5)

By contrast to the Fisher Ideal Index, the relationship between Törnqvist price Index and

above two indices are not clear but the close relationship with the Laspeyres and the Paasche

price indices can be identified from the following definition.

IT
p = exp

{
1
2 ∑

i

(
w0

i + wT
i

)
ln

(
pT

i

p0
i

)}
(5.2.6)

In fact, the Törnqvist price Index (IT
p ) can be considered as a discrete approximation to a

continuous Divisia price index8.

Here, above four price indices are used when checking the accuracy of the RK-4th order

algorithm.

5.3. Numerical Solutions

The expenditure function can be recovered from the ordinary demand function if it suffices

integrability conditions described in Chapter 2. As a solution method, numerical methods

are discussed in this section. Numerical algorithms for the ODE system, in general, consist of

8A Divisia index is a theoretical index number series for continuous-time data on prices and quantities of goods
exchanged. It is designed for incorporate quantity and price changes over time.

The Divisia indices are developed from the following line integral such as

ln(p(t) · x(t))− ln(p(t
′
) · x(t′ )) =

ˆ t

t′
d ln(p(τ) · x(τ))

dτ
dτ

where τ is time variable, p(t) and x(t) is a price vector and quantity vector respectively.
From above equation, the following equation are obtained

d ln(p(τ) · x(τ))
dτ

= ∑
n=1

sn(τ)
d ln xn(τ)

dτ
+ ∑

n=1
sn(τ)

d ln pn(τ)

dτ

This means that the growth rate of value are divide by
the Divisia price index

d ln PDiv(t)
dt

= ∑ si(t)
[

d ln pi(t)
dt

]
and
the Divisia Quantity index

d ln QDiv(t)
dt

= ∑ si(t)
[

d ln xi(t)
dt

]
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two elements. One is a discretization concept that steps are equally distributed where solu-

tions are evaluated. Another is an associated difference equations which determine the solu-

tion using the previous value. Practically, except for some special cases where the differential

equations is linear, the ODE system cannot be solved exactly so numerical approximations

are required for identifying the solution of it.

5.3.1. Vartia Algorithm

This numerical approximation method proposed by Vartia(1983) is the numerical integration

of equation (2.1.1) in Chapter 2. Vartia’s algorithm entails calculating compensated income at

step k of the algorithm. This algorithm is useful to calculate the compensated income under

no closed form solutions for the underlying utility or expenditure function. It is defined by

the following

e(pk, u0) = e(pk−1, u0) + 1
2 ∑

i

(
qi(pk, e(pk, u0) + qi(pk−1, e(pk−1, u0)

)
· (pk − pk−1) (5.3.1)

where pk = k
N · (p1 − p0) is the price increment, and N is the number of steps in the

algorithm.

The accuracy of the Vartia algorithm depends mainly on the size of intervals. This method

provides an extremely rapid numerical procedure that can be easily be programmed, and

allows to calculate welfare changes from the demand function. However, this algorithm re-

quires the additional procedure, the iteration method, to calculate the compensated income,

since the unknown value e(pk, u0) is appeared in both sides of the equation (5.3.1) simul-

taneously. To estimated the unknown value e(pk, u0), the iterated method is used until the

estimated value of e(pk, u0) is converged to the real value of e(pk, u0). This iteration makes

the algorithm slow though the convergence has achieved with the rapid speed.

5.3.2. Runge-Kutta 4th order Algorithm

In numerical analysis, the RK-4th order algorithm is regarded as the standard solution of the

ODE system with initial value. This technique was developed around 1900 by the German
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mathematicians C. Runge and M.W. Kutta.

It is defined by the following

e(pk, u0) = e(pk−1, u0) +
1
N

K1 + 2K2 + 2K3 + K4

6
(5.3.2)

where

K1 = ∑
i

qi

(
pk−1, e(pk−1, u0)

)
· (p1

i − p0
i )

K2 = ∑
i

qi

(
pk−1 + pk

2
, e(pk−1, u0) +

1
2

K1

)
· (p1

i − p0
i )

K3 = ∑
i

qi

(
pk−1 + pk

2
, e(pk−1, u0) +

1
2

K2

)
· (p1

i − p0
i )

K4 = ∑
i

qi

(
pk, e(pk−1, u0) + k3

)
· (p1

i − p0
i )

where k is the step number, pk = p(tk), and tk =
k
N

.

Similar to the Vartia algorithm, the accuracy of the RK-4th order algorithm depends mainly

on the size of intervals, and this algorithm is easy to be programmed with any computational

programing language. Compared to the Vartia method, this method seems to be very awk-

ward and complicated at the starting point. However, this algorithm provides a simpler

way to solve ODE system with higher precisions, because this algorithm do not need an it-

eration procedure to calculate the undetermined in the equation. In fact, the e(pk, u0) can be

calculated only using values from the previous step such as e(pk−1, u0), qi(pk−1, e(pk−1, u0)),

and p. In addition, on the contrary to the Taylor method9, this RK-4th algorithm contains

no evaluations of the second or higher order derivatives though it has the high-order local

truncation error of the Taylor method.

9See the Chapter 3 for more details.
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5.4. Estimation results and the cost-of-living index

The annual time series data of the Consumer Expenditure Survey (CE) from 1984 to 2008 are

used for the estimation purpose. These time series variables were constructed by the Bu-

reau of Labor Statistics (BLS) in the U.S., and were taken directly from the BLS web site (

http://www.bls.gov/cex/). According to categories of the Consumer Price Index (CPI), total

consumption is divided into seven commodities: “Food and Beverage”, “Housing”, “Ap-

parel“, “Transportation”, “Health Care”, “Recreation” and “Other goods and services”.

A measure of relative prices is required in order to estimate a system of demand. The

Consumer Price Index (CPI10) reported by The BLS is employed as a measure of the average

changes in prices over time. Similar to the CE Data, the CPI were directly collected from the

BLS web site (http://www.bls.gov/cpi/), too. Among the CPIs in BLS Web pages, the CPI

for all urban consumers (CPI-U) are used in the estimation since it covers 87% of the population

of the U.S..

During the data period, total expenditure and the expenditure of each categories have

gradually increased. And the CPI-U also has a increasing tendency at each data period.

But, according to the Figure 5.4.1, the share of each commodities present different properties

during the same data period. For example, shares of “Food and Beverage”, “Apparel” and

“Other goods and service” have generally decreased, but, in case of “House” and “the Health

Care”, shares of these commodities have increased during the same period. From variations

of shares in each item category, changes of consumption patterns of the U.S. consumer are

identified.

In order to demonstrate the power of the Runge-Kutta-4th algorithm, we start with esti-

mating the AI demand system, which is one of the flexible functional form demand systems

in economic theory. Since the AI demand system has the functional form of the cost, the

compensated income and cost-of-living can be algebraically calculated. The equation (4.1.5)

in Chapter 4 is estimated for the data period from 1984 to 2008 with the translog price in-

dex. The Iterated Linear Least Squares estimator (ILLE) procedure proposed by Blundell

and Robin (1999) is used for estimating the non-linear simultaneous system with six share

10When CPI is calculated, it is based on a fixed ’market basket’ of goods and services.
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equations ( the share, “Other good and service” is dropped to avoid a covariance matrix

singularity). The last share equation is recovered by using the restriction on the AI demand

system. The systemfit and micEcon packages in R (http://CRAN.R-project.org/) are em-

ployed for the AI demand system estimation and the matrix calculation respectively.

Estimation results are reported in Table 5.1. Income parameters (βi) of the estimated de-

mand system measure the effect of changes in total expenditure. Commodities are necessi-

ties when the value of income parameter is negative, and are luxuries in the opposite case.

According to the Table 5.1. “Food and Beverage”, “Health Care”, “Recreation” and “Other

goods and services” turned out as necessities. In addition, income parameters (βi) provide

the information whether the preference is homothetic or not. In fact, the AI demand sys-

tem is non-homothetic if and only if βi is not zero. Based on this fact, it turned out that the

estimated demand system has the non-homothetic preference.

Table 5.1.: Estimated Coefficient for the AI demand system from 1984 to 2008
Estimated Coefficients R2

αi γi1 γi2 γi3 γi4 γi5 γi6 γi7 βi
w1 0.6254 0.0467 -0.0044 -0.0250 0.0681 -0.1225 0.0123 0.0249 -0.0801

0.865
(0.423) (0.118) (0.090) (0.051) (0.118) (0.075) (0.063) (0.069) (0.079)

w2 0.2294 -0.0044 0.0658 -0.0395 -0.0410 0.1317 -0.0294 -0.0833 0.0158
0.938

(0.597) (0.090) (0.098) (0.030) (0.112) (0.069) (0.041) (0.044) (0.112)
w3 -0.0055 -0.0250 -0.0395 0.0492 0.0288 -0.0221 -0.0243 0.0328 0.0125

0.963
(0.534) (0.051) (0.030) (0.013) (0.103) (0.052) (0.015) (0.012) (0.100)

w4 -0.6610 0.0681 -0.0410 0.0288 -0.1730 0.0397 0.0415 0.0360 0.1721
0.215

(0.608) (0.118) (0.112) (0.103) (0.219) (0.129) (0.117) (0.132) (0.116)
w5 0.4652 -0.1225 0.1317 -0.0221 0.0397 -0.0160 -0.0012 -0.0097 -0.0779

0.824
(0.538) (0.075) (0.069) (0.052) (0.129) (0.110) (0.059) (0.067) (0.102)

w6 0.2243 0.0123 -0.0294 -0.0243 0.0415 -0.0012 0.0239 -0.0228 -0.0275
0.336

(0.517) (0.063) (0.041) (0.015) (0.117) (0.059) (0.024) (0.024) (0.097)
w7 0.1221 0.0249 -0.0833 0.0328 0.0360 -0.0097 -0.0228 0.0220 -0.0150

0.798
(0.571) (0.069) (0.044) (0.012) (0.132) (0.067) (0.024) (0.028) (0.109)

The income and uncompensated price elasticities in the AI demand system are defined11

by

• Income elasticities

ηiM =
βi

wi
+ 1 (5.4.1)

11For more details, see the Chapter 4.
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• Uncompensated price elasticities

ηij = −δij +
γij − βi

(
αj + ∑k γjk ln pk

)
wi

(5.4.2)

where αj + ∑k γjk ln pk = wj − β j (ln M− ln P),

δij =


1 if i = j

0 if i 6= j
is the Kronecker delta term .

The full set of elasticities, income and uncompensated price elasticities, calculated with

estimated parameters is reported in Table 5.2. Here, FB, H, A, TR, HC, R, and O repre-

sent “Food and Beverage”, “Housing”, “Apparel“, “Transportation”, “Health Care”, “Recre-

ation” and “Other goods”, respectively. Estimated own-price elasticities has all negative

values, as required by demand theory. This assumption is satisfied in all of the commodities

considered here.

Table 5.2.: Income and Uncompensated price elasticities based on AI demand system
Elasticities

Price Income
ηi1 ηi2 ηi3 ηi4 ηi5 ηi6 ηi7 ηiM

FB -0.4688 0.1018 -0.1441 0.0941 -0.4895 0.1635 0.2000 0.5431
H -0.0380 -0.8284 -0.1101 -0.0861 0.3477 -0.0911 -0.2382 1.0442
A -0.5424 -0.7235 -0.1698 0.6199 -0.4680 -0.4524 0.5260 1.2101

TR -0.1408 -0.3938 0.1303 -1.2757 -0.1737 0.0277 0.0629 1.7631
HC -1.1945 2.3688 -0.3452 -0.1615 -0.6953 0.2277 0.0034 -0.2033
R 0.4285 -0.3302 -0.3708 0.3612 0.1731 -0.5506 -0.2935 0.5823
O 0.6545 -1.5422 0.6385 0.5144 -0.0548 -0.3849 -0.5340 0.7085

After estimating the AI demand system, according to the procedure demonstrated in the

section 4.2.3, using estimated parameters which is represented in Table 5.2, The Expenditure,

Shares, and Quantities from the estimated parameters of AI demand system are recovered.

Finally, the true cost-of-living index are calculated based on the AI demand system. Next,

for the comparison purpose, the conventional price indices including Laspeyres, Paasche,

Fisher, and Törnqvist index are calculated using formula (5.2.3), (5.2.4), (5.2.5), and (5.2.6).

All indices are calculated after assuming that the utility level U0 is held fixed at 100 though

prices change. In addition, cost-of-living indices using the Vartia and the RK-4th order al-

gorithm are also calculated with the same objective and assumption. All evaluated indices

58



were reported in Table 5.3 for the comparison. In addition, substitution biases of each index

are reported in Table 5.4.

Not surprisingly, all price indices calculated is very similar to the true cost of living in-

dex based on the AI demand system. According to the Table 5.4, the substitution bias of

each index is not larger than 4.0 point. Moreover, as expected from the general results from

economic theory about price index12, it turned out that the Laspeyres index has positive

substitution biases and substitution biases of the Paasche index are negative. From this we

could confirm the fact that the Laspeyres and Paasche indices is an upper and lower bound

of the true cost-of-living index. However, we know that the estimated AI demand system

represents the non-homothetic preference instead of the homothetic preference according to

estimated income parameters13. In fact, the Laspeyres and Paasche indices do not necessarily

bound of the true cost-of-living index under non-homothetic preference.

In addition, according to the Table 5.4, Törnqvist indices generally have a negative substi-

tution bias but Fisher indices have a positive substitution bias as usual, and these two indices

are, however, very much smaller than those of the Laspeyres and Paasche indices. Törnqvist

indices have the smallest bias among them except for the indices calculated using numerical

algorithms. For Fisher indices, we can confirm that biases are some exact combinations, the

geometric mean, of the Laspeyres and Paasche biases. For Törnqvist indices, However, it is

not clear how it’s substitution biases are related algebraically to biases of the Laspeyres and

Paasche indices because there is no explicit relationship between these three indices.

12In general, if the consumer’s preference are homothetic, the Laspeyres index is the upper bound, and the
Paasche index is the lower bound of the true cost-of-living, respectively.

13In general, preferences are not homothetic in most actual situations since household budget studies and most
time-series evidence of systematic change in expenditure patterns show that Engel curve is not straight but
also increasing. From this point of view, the homothetic preference is very unrealistic and unattractive as-
sumption on the consumer demand.
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Table 5.4.: Substitution biases based on AI demand system

years True COLI
Substitution Biases

Rk-4th Vartia Laspeyres Paasche Fisher Törnqvist

1984 100.0000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

1985 104.2214 0.000000 0.000600 0.018830 -0.018491 0.000168 -0.000005

1986 106.6329 0.000000 0.000600 0.068344 -0.070463 -0.001082 -0.000310

1987 110.8386 0.000001 0.000800 0.118315 -0.120192 -0.001003 -0.000552

1988 116.2018 0.000001 0.001400 0.215592 -0.218417 -0.001615 -0.001089

1989 122.2808 0.000001 0.001800 0.312631 -0.309927 0.000956 -0.001665

1990 128.6191 0.000002 0.002500 0.406446 -0.391468 0.006870 -0.002014

1991 134.3283 0.000003 0.003100 0.610310 -0.578455 0.014613 -0.003339

1992 138.4341 0.000003 0.003500 0.820391 -0.758855 0.028516 -0.004443

1993 143.2041 0.000003 0.003900 1.017247 -0.930111 0.040259 -0.005661

1994 146.9654 0.000003 0.004100 1.114792 -1.001482 0.052847 -0.006207

1995 151.0586 0.000003 0.004300 1.241279 -1.093139 0.069563 -0.006558

1996 155.5008 0.000003 0.004500 1.342675 -1.172683 0.079913 -0.007375

1997 159.2559 0.000003 0.004700 1.477292 -1.288765 0.088262 -0.009177

1998 162.2472 0.000004 0.004800 1.794052 -1.569602 0.103514 -0.014353

1999 166.1465 0.000004 0.005400 2.196963 -1.878638 0.146677 -0.016418

2000 171.551 0.000004 0.006200 2.305153 -1.918888 0.180146 -0.013541

2001 176.6748 0.000004 0.006500 2.540481 -2.075758 0.217304 -0.018113

2002 179.9124 0.000004 0.006700 2.932205 -2.342436 0.275585 -0.025493

2003 184.035 0.000005 0.007000 3.033756 -2.348865 0.322803 -0.026142

2004 189.1383 0.000005 0.007400 3.189021 -2.417281 0.365139 -0.027225

2005 195.1114 0.000005 0.008400 3.307988 -2.471674 0.396800 -0.022088

2006 201.1875 0.000006 0.008700 3.380237 -2.482428 0.427596 -0.021116

2007 207.2424 0.000006 0.009200 3.698289 -2.653057 0.498345 -0.024942

2008 215.0524 0.000006 0.010000 4.008374 -2.871737 0.540875 -0.023358

As expected, the RK-4th algorithm shows outstanding approximation results. The Ta-

ble 5.3 and 5.4 are represented well these results. Compared to conventional price indices

such as Fisher and Törnqvist, substitution biases of numerical algorithms are much smaller

than those of conventional price indices. From this, the precision and power of numerical

algorithms are confirmed. Similarly, substitution biases of the RK-4th order algorithm is

the smallest among all of indices. In addition, the level of accuracies of this algorithm has

improved by increasing the number of price steps. In fact, the RK-4th order algorithm repre-

sents the better performance than any other indices. From these results, we could conclude

that the RK-4th algorithm has enough power to calculate the cost-of-living index.

Until this point, the power of the RK-4th algorithm are presented. The thing remained is
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to identify the applicability of the RK-4th order algorithm in empirical fields. To achieve this

goal, the ability of numerical algorithm has to be demonstrated under no exact functional

form of the expenditure or utility functions. For this, the Rotterdam model is selected. The

main reason the Rotterdam model hired in this paper is that the Rotterdam model is based on

the neoclassical consumer theory, and allows to impose and test cross-equation restrictions

such as symmetry although this model avoids the necessity of using a particular functional

form for the utility function.

Based on the equation (4.2.10), parameters of the demand system are estimated. The Iter-

ated Seemingly Unrelated Regression(ISUR) are used for estimating the system of six share

equations with the same data using in estimating the AI demand system. The share named

’Other good and service’ is dropped to avoid a covariance matrix singularity. Parameters of

the last equation is recovered by using the restriction on the Rotterdam demand system.

Estimation results are reported in Table 5.5. Marginal budget shares of commodities (θi)

have positive signs. This means that the estimated commodities are all normal goods except

for Health Care. To estimate the Rotterdam model, generally, adding-up, linear homogeneity,

and symmetry are imposed in the estimation. But the negative semi-definite restriction on

the [πij] matrix has to be empirically confirmed. The negative semi-definite restriction on

[πij] matrix are simply checked from the Table 5.5. From the fact that All six πii are negative

for each commodity and the matrix [πij] is singular, we roughly confirmed that the negative

semi-definite restriction on [πij] matrix are satisfied.

62



Table 5.5.: Estimated coefficient for Absolute Rotterdam demand system
Estimated coefficient

θi πi1 πi2 πi3 πi4 πi5 πi6 πi7

w1d log q1
0.0690 -0.0585 -0.0025 -0.0287 0.0653 -0.0529 0.0454 0.0320
(0.060) (0.075) (0.082) (0.023) (0.041) (0.029) (0.026) (0.034)

w2d log q2
0.3417 -0.0025 -0.0271 -0.0242 0.0399 0.0833 -0.0231 -0.0464
(0.084) (0.082) (0.143) (0.033) (0.060) (0.038) (0.041) (0.050)

w3d log q3
0.0711 -0.0287 -0.0242 -0.0100 0.0542 -0.0152 -0.0073 0.0312
(0.029) (0.023) (0.033) (0.014) (0.019) (0.012) (0.013) (0.015)

w4d log q4
0.3425 0.0653 0.0399 0.0542 -0.2019 -0.0107 0.0088 0.0445
(0.098) (0.041) (0.060) (0.019) (0.069) (0.018) (0.024) (0.026)

w5d log q5
-0.0005 -0.0529 0.0833 -0.0152 -0.0107 -0.0434 0.0321 0.0067
(0.027) (0.029) (0.038) (0.012) (0.018) (0.023) (0.014) (0.021)

w6d log q6
0.0772 0.0454 -0.0231 -0.0073 0.0088 0.0321 -0.0290 -0.0270
(0.039) (0.026) (0.041) (0.013) (0.024) (0.014) (0.022) (0.018)

w7d log q7
0.0992 0.0320 -0.0464 0.0312 0.0445 0.0067 -0.0270 -0.0409

(0.034) (0.050) (0.015) (0.026) (0.021) (0.018)

Income and uncompensated price elasticities of the Rotterdam model can be easily calcu-

lated as follows

ηiy =
d log xi

d log Q
=

θi

wi
, , i = 1, · · · , n (5.4.3)

ηij =
d log xi

d log pj
=

πij

wi
, , i = 1, · · · , n (5.4.4)

Elasticities of the Rotterdam model are reported in Table 5.6. Like the AI demand system,

the Rotterdam model is well estimated since estimated own-price elasticities in the Rotter-

dam model are all negative as required by the demand theory.

Table 5.6.: Income and Uncompensated price Elasticities of Absolute Rotterdam demand sys-
tem

Elasticities
Income Price

ηiM ηi1 ηi2 ηi3 ηi4 ηi5 ηi6 ηi7

FB 0.3860 -0.3278 -0.0142 -0.1608 0.3653 -0.2959 0.2543 0.1790

H 0.9629 -0.0071 -0.0764 -0.0681 0.1125 0.2349 -0.0650 -0.1308

A 1.1845 -0.4787 -0.4025 -0.1669 0.9036 -0.2532 -0.1217 0.5192

TR 1.5301 0.2915 0.1783 0.2423 -0.9022 -0.0478 0.0393 0.1986

HC -0.0077 -0.8161 1.2865 -0.2346 -0.1652 -0.6698 0.4955 0.1037

R 1.1611 0.6837 -0.3469 -0.1099 0.1323 0.4830 -0.4360 -0.4063

O 1.9259 0.6212 -0.9013 0.6052 0.8635 0.1304 -0.5244 -0.7947
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Similar to the case of the AI demand system, the cost-of-living index using the Rotterdam

demand estimation are calculated. Since the Rotterdam model has no exact form of the ex-

penditure or demand function, estimated shares based on the equation (4.2.12) are employed

to calculate the demand quantity at each time period. First, estimated shares of each good

are calculated at each time period. Second, the definition of expenditure shares (wi =
piqi

M
) is

applied to calculate the ordinary demand quantity at each time period14. Finally, using this

ordinary demand quantity, compensated income are evaluated.

Cost-of-living indices of the Rotterdam model calculated by the Vartia and the RK-4th or-

der algorithm are reported in Table 5.7. Not surprisingly, all price indices from each demand

system using numerical algorithms are very similar, though price indices from the Rotter-

dam demand system which has no specific functional form are not much closer the true

cost-of-living compared to those from the AI demand system. It seems to be partly because

we calculated the true cost-of-living based on the AI demand system. Table 5.7 shows that,

in Rotterdam case, RK-4th algorithm has better performance than the Vartia algorithm. Ac-

tually, the precision of the cost-of-living index calculating from RK-4th algorithm is more

accurate than that of the Vartia algorithm. From this, we could represent the applicability of

the RK-4th order algorithms in the empirical fields.

14See section 4.2.3 for more details.
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Table 5.7.: True cost-of-living index using RK-4th algorithm : AIDS vs Rotterdam base
year=1984

True COLI
Rotterdam demand system AI demand system
RK-4th Vartia RK-4th Vartia

1984 1.00000 1.00000 1.00000 1.00000 1.00000

1985 1.04221 1.03891 1.03892 1.04221 1.04222

1986 1.06633 1.05287 1.05288 1.06633 1.06634

1987 1.10839 1.09164 1.09165 1.10839 1.10839

1988 1.16202 1.14066 1.14067 1.16202 1.16203

1989 1.22281 1.19757 1.19759 1.22281 1.22283

1990 1.28619 1.25861 1.25864 1.28619 1.28622

1991 1.34328 1.31079 1.31082 1.34328 1.34331

1992 1.38434 1.34860 1.34863 1.38434 1.38438

1993 1.43204 1.39277 1.39281 1.43204 1.43208

1994 1.46965 1.42867 1.42872 1.46965 1.46970

1995 1.51059 1.46849 1.46853 1.51059 1.51063

1996 1.55501 1.51053 1.51058 1.55501 1.55505

1997 1.59256 1.54408 1.54413 1.59256 1.59261

1998 1.62247 1.56569 1.56574 1.62247 1.62252

1999 1.66147 1.60144 1.60149 1.66147 1.66152

2000 1.71551 1.65895 1.65901 1.71551 1.71557

2001 1.76675 1.70250 1.70257 1.76675 1.76681

2002 1.79912 1.72523 1.72530 1.79912 1.79919

2003 1.84035 1.76491 1.76498 1.84035 1.84042

2004 1.89138 1.81409 1.81416 1.89138 1.89146

2005 1.95111 1.87863 1.87871 1.95111 1.95120

2006 2.01188 1.93962 1.93970 2.01188 2.01196

2007 2.07242 1.99448 1.99457 2.07242 2.07252

2008 2.15052 2.07327 2.07336 2.15052 2.15062

5.5. Concluding Remarks

In this paper, we introduced the RK-4th algorithm as an alternative of the famous Vartia

algorithm which is considered as one of the standard solutions to recover the expenditure

from the ordinary demand function in economic fields. For this, we estimated the demand

system using both the U.S consumer expenditure (CEX) data and the consumer price index

(CPI), and recovered the expenditure at each time period using estimated demand from the

AIDS model. In addition, the cost-of-living index were evaluated at each time period in order

to demonstrate the power of the RK-4th algorithm. From the comparison between price

indices from this numerical algorithm and conventional price indices including Paasche and
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Fisher ideal price indices, we confirmed the accuracy of RK-4th algorithm since substitution

biases of this algorithm is much smaller than conventional price indices.

After then, we have tried to identify whether this numerical algorithm could be used in

the case that no exact form of object function were existed. For this research purpose, the

Rotterdam model was employed because the Rotterdam model had no exact form of the

expenditure or utility function though this demand system suffices the neoclassical economic

theory. For the comparison purpose, as with the AI demand system, cost-of-living indices

based on the estimated results of the Rotterdam model were calculated. Results showed that

all price indices from each demand system using numerical algorithms were very similar to

each other even price indices which were calculated from the Rotterdam model. From this,

we could confirm that the applicability of RK-4th algorithm in empirical worlds, and that

the RK-4th algorithm could be used as an alternative of the Vartia method when calculating

the cost-of-living indices.
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6. Application 2 : The Measure of Welfare

Changes in the U. S Elderly

6.1. Introduction

The purpose of this paper is to investigate the expenditure pattern of the elderly in U.S,

which should be different from the general U.S population, and to evaluate consumer wel-

fare effects on both population groups due to the increase in commodity prices. To accom-

plish the goal of the paper, first, consumption patterns of each population group are esti-

mated by using the Almost Ideal Demand System (AIDS) since estimated parameters and elas-

ticities of this demand system provide the information about expenditure patterns of con-

sumers. Second, based on estimation results from the AI demand system, consumer welfare

effects when commodity prices change (our case; Health Care and Housing) are analyzed by

two different methods. One is the compensating variation which is one of the Hicksian welfare

measure, another is the burden index which is defined as the ratio of the consumer welfare

loss to income per person. Both methods provide specific information on welfare changes.

For example, the compensating variation directly presents how much money are required

to attain a certain level of utility, similarly, the burden index provides the information on

welfare loss for individual in terms of dollars when the price has changed.

In 2011, the oldest baby boomers- Americans born between 1946 and 1964- will start to turn

65. According to A profile of Older Americans (2009) by U.S. Department of Health and Human

Services, and American Aging Population (2011) by Population Bulletin, the older population

(65+) numbered 38.9 million in 2008, in other words, over one in every eight, or 12.8% of the

population is an older American. In addition, Reports expected that the pace of population
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aging would be accelerated in next 40 years. Finally, this number would be projected to be

more than double, 89 million, by 20501. This phenomenon, the increase of the old population,

can be explained by the development in the medical system. It reduced mortality rates of the

U.S elderly, and has improved health conditions of the elderly over past 30 years. As a

consequence, the life expectancy of the U.S elderly has increased in 68.9 years 1950 to 79.2

years in 2009.

Separately from the aging population in the U.S, the old population has faced with slightly

higher inflation rates than the general U.S population during the period from 1984 to 2008.

According to Stewart (2008), Cashell (2008), the consumer price index of the elderly (CPI-

E) for all items rose at an annual average rate of 3.3 percent, compared to increases of 3.1

percent for the consumer price index for urban population (CPI-U). In short, the average

annual difference is 0.2 percent. This difference is very tiny, however, this small difference

can be a fundamental source of different demand patterns in both the over 65 and general

population groups. According to their paper, the higher inflation rate the elderly faced with

mainly depends on the fact that the older Americans devotes a substantially larger share of

their total budgets to “Health Care” and “Housing”. During the same periods, Health care

inflation increased more rapidly than most other goods and services, and the cost for the

shelter have modestly outpaced overall inflation.

Though the elderly population has experienced slightly higher inflation rate compared

to the general U.S population, annual average incomes of the elderly are much lower than

those of the general U.S population. According to A profile of Older Americans (2009), 1) the

median income of older persons in 2008 was $18,3372, 2) 39.9% of the elderly population

groups has the average income lower than $15,000, and 3) about 3.7 million elderly persons

(9.7%) were below the poverty level in 2008. Moreover, the major source of the elderly popu-

lation’s income is not stable compared to the general U.S population group. Most cases, the

income of the elderly American relies on the combination of Social Security benefits, pen-

sions, retirement saving, and earnings from full-time or part-time work. More specifically,

1The old population has increased of 4.5 million or 13% since 1998. Moreover, the pace of population aging is
projected to be accelerated in next 40 years

2According to “Age of reference person” of the Consumption expenditure Survey (2008), the average income of
the U.S general population which is $25,425 per person.
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Figure 6.1.1.: The percentage changes on CPI-E vs CPI-U from 1984 to 2008

the major source of income for older people in 2007 were 1) Social Security (reported by 87%

of older persons), income from assets (reported by 52%), private pensions (reported by 28%),

government employee pensions (reported by 13%), and earnings from the full time or part-

time work (reported by 25%). These facts imply that the elderly population can be effected

severely by the increases of the commodity prices more than the general U.S population.

A couple of studies are studied to investigate welfare effects on the poor when price have

changed dramatically including Wood, Nelson and Nogueira (2009) and Huang and Huang

(2009). Similarly, a couple of studies are accomplished to identify the relationship between

the economic growth and the aging population including Bloom, Canning and Finlay(2008)

and Rogers, Toder and Johns (2000). However, there existed not much studies on the welfare

analysis on the relationship between the elderly population and welfare changes though

aging population are getting larger, and become the common phenomenon in U.S.

In this paper, after estimating the demand system of the U.S general and over 65 popula-

tion groups, using the compensating variation, welfare effects on the U. S elderly and general
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population were investigated when prices have changes using the comparison method. The

remainder of this paper is organized as follows: In section 6.2, we discuss the data that we

hired to analyzes welfare effects on the U.S elderly population and the general U.S popula-

tion. More specifically, the Consumer Expenditure data and the Consumer Price Index are

used for the estimation purpose. Section 6.3 represents estimation results from the Linearly

approximate AI demand system (LA-AIDS) of both U.S general population and the elderly.

All estimations are based on the AIDS demand system described in Chapter 4. In section 6.4,

general results of the welfare analysis are discussed. All measures of welfare changes when

price changes are calculated by the burden index and the compensating variation which is

estimated by the Vartia algorithm. In section 6.5, the summary and conclusion of this re-

search is provide.

6.2. DATA

The annual times series data of the Consumer Expenditure Survey (CE) from 1984 to 2008 are

used for the estimation purpose. These time series variables were constructed by the Bu-

reau of Labor Statistics (BLS) in the U.S., and were taken directly from the BLS web site (

http://www.bls.gov/cex/). According to categories of the Consumer Price Index (CPI), total

consumption is divided into seven commodities: Food and Beverage (FB), Housing (H), Apparel

(A), Transportation (TR), Health Care (HC), Recreation (R) and Other goods and services (O). Two

different consumer expenditure data sets are collected during the same period. One is for

All American units, another is for Over 65 year population unit.

At the first glance, the data structure of consumer expenditure is investigated in order to

identify differences in consumption patterns between over 65 and the general U.S popula-

tion. According to Table 6.1, the largest difference in spending patterns between the elderly

and the general population is in the share of expenditures accounted for “Health Care”. The

over 65 year population group spent more than twice as large a share of their total outlays on

health care as did the overall population. Moreover, in terms of averages, the elderly in the

U.S spent less money on “Apparel”, “Recreation” , and “Transportation” than that of the gen-

eral population, and spent as almost same as a share of their income on the Food&Beverage
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Table 6.1.: Expenditure by Ages, from 1984 to 2008
All Population Over 65 Population

Ex
pe

nd
it

ur
e

Sh
ar

e Food& Beverage 17.86 17.43
Housing 35.48 34.98
Apparel 6.00 4.49

Transportation 22.38 18.51
Health Care 6.48 13.75
Recreation 6.65 5.59

Others 5.15 5.27
All 1.0 1.0

and Housing.

In order to estimate a system of demand, a measure of relative prices is required. The

Consumer Price Index (CPI) reported by The Bureau of Labor Statistics ( http://www.bls.gov/

cpi/) is employed as a measure of the average changes in prices over time. Especially, we

used the CPI for all urban consumers (CPI-U) for estimating the general population’s demand

pattern, since it covers about 87 percent spending of the population of the United States.

Moreover, the CPI for the elderly (CPI-E), the experimental price index, were used to estimate

the demand system for over 62 or old population. The only difference between the CPI-E

and the CPI-U are in the percentage weights price indices are used. The CPI-E used the

211 categories of goods and services in the CPI market basket of goods to reflect purchasing

patterns among more elderly Americans instead of the general Americans.

During the period from 1984 to 2008, consumer price indices, both the CPI-U and the CPI-

E, have an increasing tendency similar to total expenditure. In addition, the growth rate of

the both the CPI-U and the CPI-E are reviewed for the comparison purpose. Over this 25-

year period, the CPI-E for all items rose at an annual average rate of 3.3 percent, compared

with increases of 3.1 percent for the CPI-U. This fact implies that the CPI-E faced slightly

higher inflation rates than the CPI-U during sample data periods3. According to Horbijn

and Lagakos (2003), Stewart (2008), Cashell (2008), a couple of underlying reasons for these

differences are existed. The first reason of the differences is in the weights of the major goods

categories that make up each index. For example, the older Americans devote a substantially

larger share of their total budgets to “Health Care”. The share of expenditures on Health Care

3See the Figure 6.1.1
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costs by the CPI-E population is almost double that of the CPI-U population. The second

reason of the differences is in the higher inflation rate of “Health care” and “Housing”. Over

the 1984-2008 period, Health care inflation increased more rapidly than most other goods

and services, and the cost for the shelter have modestly outpaced overall inflation.

Though we assume that the CPI-E could explain the expenditure pattern of the elderly bet-

ter than the CPI-U, we recognize that there existed couple of limitation in using the CPI-E as

the price index for estimating the demand system of the elderly. Stewart (2008) and Horbijn

and Lagakos (2003) indicated that the experimental price index for the elderly has the cou-

ple of methodological limitation when composing the price indices. The first methodological

limitation is that expenditure weights used in the CPI-E are subject to higher sampling error

than the CPI-U because the number of consumer units used for determining weights when

the CPI-E constructed is much smaller than that of the CPI-U. In fact, approximately 18 per-

cent of all consumer units met above definition for older Americans in 2008. The second

limitation is that CPI-E used the same geographic areas and the same retail outlets as those

used for the CPI-U. The outlets selected thus might not be representative of the location

and types of stores used by the elderly population but the general population group. The

third limitation is that items priced for the CPI-E are the same as those priced in the CPI-U

because the items sampled within selected outlets are determined with the probabilities pro-

portionate to total urban expenditures, not the elderly expenditure. Therefore, the specific

items selected for pricing in each outlet many not be representative of the CPI-E population.

In addition, with the above methodological limitations, there existed the gap between the

population group of CPI-E and the population group over 65 since the CPI-E is composed

of all urban consumer units who are at least 62 years of age4. Therefore, the demand esti-

mation results of the elderly using the CPI-E could not provide accurate parameters of the

demand system. However, we might assume that the CPI-E could explained the demand

pattern better than the CPI-U though there existed the some weak points on the CPI-E, and

4The population of older Americans used in the CPI-E is composed of all urban non-institutionalized consumer
units that meet one of the following three condition: 1) Unattached individuals who are at least 62 years of
age; 2) Members of families whose reference person (as defined in the Consumer Expenditure Survey) or
spouse is at least 62 years of ages, or 3) Members of groups of unrelated individuals living together who pool
their resources to meet their living expenses and whose reference person is at least 62 years of age.

According to the 2007-2008 Consumer Expenditure Survey, Approximately 18 percent of all consumer units
met this definition for older Americans
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the population group does not exactly matched5.

6.3. Estimation Results

Parameters of the AI demand system are estimated by applying the Iterated Seemingly Un-

related Regression (ISUR) to the system of six share equations ( the share, “Other good and

service”, is dropped to avoid covariance matrix singularity). The systemfit and micEcon

package in R (http://CRAN.R-project.org/) are used to estimate the AI demand system

and matrix calculation respectively. The AI demand system is selected to estimate the de-

mand pattern of the U.S population since this demand system of Deaton and Muellbauer

(1980) is fully consistent with the economic theory, possesses properties of the exact aggre-

gation, and has the functional form of the expenditure6 which made the estimation results

more interpretable.

Three different demand systems are considered : 1) Over 65 population with CPI-E, 2)

Over 65 population with CPI-U, and 3) All population with CPI-U. Equation (4.1.5) with

Stone’s index, LA-AI demand system, is used to estimate the demand system for the data

period from 1984 to 2008. Estimation results from three different data sets are reported in Ta-

ble 6.1. In fact, estimated parameters do represent the partial information about the demand

system. The income parameters (βi) of estimated demand system measure the effects of

changes in total real expenditure. The commodities are necessities when the value of income

parameter is negative, and is luxury when this value is positive. For example, according to

the Table 6.2, in case of over 65 populations with the CPI-E, the commodities group of “Food

and Beverage”, “Health Care”, and “Other goods and services” are necessities. In case of All

populations with the CPI-U, in the contrary, the commodities group of “Food and Beverage”,

“Apparel”, “Health Care”, “Recreation” and “Other goods and services” are necessities, and

the “Housing”, “Transportation” are luxuries.

5From The own price elasticities from the estimated demand system in the following section, we find that the
expenditure pattern (or demand system) of over 65 population might be explained well by the CPI-E instead
of the CPI-U.

6From this functional form of expenditure function, the compensated income and the cost-of-living can be
algebraically calculated.
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Table 6.2.: The estimated parameter of AI demand system, from 1984 to 2008
αi γi1 γi2 γi3 γi4 γi5 γi6 γi7 βi R2

AIDS estimation of Over 65 population with CPI-E

w1
0.7040 0.1056 0.0295 0.0055 -0.0642 0.0100 0.0006 -0.0870 -0.1069

0.887
(0.1907) (0.0549) (0.0527) (0.0141) (0.0368) (0.0231) (0.0181) (0.0358) (0.0386)

w2
0.2268 0.0295 -0.0624 -0.0495 0.0786 0.0486 0.0129 -0.0576 0.0224

0.806
(0.2175) (0.0527) (0.0820) (0.0157) (0.0498) (0.0283) (0.0206) (0.0487) (0.0441)

w3
-0.2100 0.0055 -0.0495 0.0429 0.0070 -0.0271 -0.0213 0.0426 0.0517

0.866
(0.1369) (0.0141) (0.0157) (0.0073) (0.0156) (0.0090) (0.0075) (0.0133) (0.0281)

w4
-0.2207 -0.0642 0.0786 0.0070 -0.0135 -0.0548 0.0002 0.0468 0.0833

0.372
(0.2631) (0.0368) (0.0498) (0.0156) (0.0535) (0.0250) (0.0191) (0.0395) (0.0539)

w5
0.4453 0.0100 0.0486 -0.0271 -0.0548 0.0113 0.0046 0.0073 -0.0673

0.716
(0.1988) (0.0231) (0.0283) (0.0090) (0.0250) (0.0231) (0.0126) (0.0311) (0.0409)

w6
-0.0824 0.0006 0.0129 -0.0213 0.0002 0.0046 0.0281 -0.0251 0.0310

0.689
(0.1250) (0.0181) (0.0206) (0.0075) (0.0191) (0.0126) (0.0134) (0.0187) (0.0255)

w7
0.1369 -0.0870 -0.0576 0.0426 0.0468 0.0073 -0.0251 0.0730 -0.0142

0.257
(0.2065) (0.0358) (0.0487) (0.0133) (0.0395) (0.0311) (0.0187) (0.0532) (0.0420)

AIDS estimation of All populations with CPI-U

w1
0.8834 0.0620 0.0191 -0.0346 -0.0087 -0.0927 0.0380 0.0168 -0.1279

0.849
(0.2434) (0.0429) (0.0428) (0.0122) (0.0247) (0.0153) (0.0196) (0.0184) (0.0457)

w2
-0.3055 0.0191 -0.0220 -0.0087 0.0012 0.1235 -0.0514 -0.0617 0.1123

0.919
(0.3572) (0.0428) (0.0748) (0.0153) (0.0439) (0.0219) (0.0243) (0.0291) (0.0674)

w3
0.0866 -0.0346 -0.0087 0.0385 0.0266 -0.0257 -0.0166 0.0206 -0.0048

0.963
(0.1231) (0.0122) (0.0153) (0.0059) (0.0108) (0.0059) (0.0084) (0.0076) (0.0231)

w4
-0.5751 -0.0087 0.0012 0.0266 -0.0329 -0.0233 0.0170 0.0200 0.1517

0.158
(0.4500) (0.0247) (0.0439) (0.0108) (0.0427) (0.0159) (0.0156) (0.0205) (0.0853)

w5
0.6235 -0.0927 0.1235 -0.0257 -0.0233 0.0075 0.0165 -0.0057 -0.1065

0.747
(0.1667) (0.0153) (0.0219) (0.0059) (0.0159) (0.0126) (0.0098) (0.0143) (0.0315)

w6
0.0952 0.0380 -0.0514 -0.0166 0.0170 0.0165 0.0211 -0.0247 -0.0039

0.375
(0.1404) (0.0196) (0.0243) (0.0084) (0.0156) (0.0098) (0.0159) (0.0126) (0.0263)

w7
0.1921 0.0168 -0.0617 0.0206 0.0200 -0.0057 -0.0247 0.0347 -0.0210

0.368
(0.1978) (0.0184) (0.0291) (0.0076) (0.0205) (0.0143) (0.0126) (0.0192) (0.0374)

AIDS estimation of Over 65 population with CPI-U

w1
0.6914 0.0450 0.0397 0.0077 -0.0558 0.0114 0.0122 -0.0602 -0.1029

0.888
(0.2069) (0.0635) (0.0528) (0.0200) (0.0383) (0.0267) (0.0343) (0.0309) (0.0412)

w2
0.1234 0.0397 -0.0968 -0.0255 0.0750 0.0645 -0.0238 -0.0330 0.0390

0.813
(0.2199) (0.0528) (0.0644) (0.0197) (0.0410) (0.0288) (0.0319) (0.0334) (0.0442)

w3
-0.2370 0.0077 -0.0255 0.0466 -0.0003 -0.0462 -0.0191 0.0367 0.0579

0.859
(0.1526) (0.0200) (0.0197) (0.0118) (0.0180) (0.0124) (0.0168) (0.0149) (0.0309)

w4
-0.2271 -0.0558 0.0750 -0.0003 -0.0001 -0.0684 0.0090 0.0405 0.0855

0.384
(0.2679) (0.0383) (0.0410) (0.0180) (0.0494) (0.0271) (0.0261) (0.0303) (0.0546)

w5
0.5646 0.0114 0.0645 -0.0462 -0.0684 0.0345 0.0308 -0.0266 -0.0888

0.735
(0.2059) (0.0267) (0.0288) (0.0124) (0.0271) (0.0293) (0.0197) (0.0297) (0.0421)

w6
-0.1057 0.0122 -0.0238 -0.0191 0.0090 0.0308 0.0215 -0.0305 0.0339

0.663
(0.1545) (0.0343) (0.0319) (0.0168) (0.0261) (0.0197) (0.0319) (0.0242) (0.0303)

w7
0.1903 -0.0602 -0.0330 0.0367 0.0405 -0.0266 -0.0305 0.0731 -0.0247

0.265
(0.2046) (0.0309) (0.0334) (0.0149) (0.0303) (0.0297) (0.0242) (0.0350) (0.0415)

74



To investigate demand patterns of the All U.S populations and the elderly, income and un-

compensated price elasticities are required since parameter estimates provide a clear under-

standing of the demand pattern of the U.S population and the elderly, summarized through

income and price elasticities. Income and uncompensated price elasticities in the LA-AI de-

mand system can be calculated by7:

• Income elasticities

ηiM = 1 +
βi

wi

[
1−∑ wj log pj(ηjM − 1)

]
(6.3.1)

• Price uncompensated price elasticities

ηij = −δij +
γij

wi
−

βi
(
wj + ∑k wk log pk(ηkj + δkj)

)
wi

(6.3.2)

where δij =


1 if i = j

0 if i 6= j
is the Kronecker delta term.

The full set of elasticities, income and uncompensated price elasticities, based on estimates

of parameters are reported in Table 6.3. In here, FB, H, A, TR, HC, R, and O represent “Food

and Beverage”, “Housing”, “Apparel”, “Transportation”, “Health Care”, “Recreation”, and

“Other goods and services” respectively. The first thing we find from the estimated income

and price elasticities is that the estimated demand system on Over 65 populations with the

CPI-U does not satisfied the required demand theory assumption since own price elasticities

of “Apparel” has the positive sign instead of the negative sign. In contrary, the estimated

own-price elasticities are in all cases negative in case of Over 65 populations with the CPI-E

and All population with the CPI-U, as required by the demand theory. This implies that the

estimated demand system are theoretically consistent demand model of all population and

over 65 population, so we conclude that these estimated systems can be used to evaluate

the welfare implications of the price changes. Second, not surprisingly, not much differences

in expenditure pattens are identified between the U.S general and the over 65 population

group in terms of income and uncompensated price elasticities. In fact, numbers of those in

7See Chapter 4 in this paper for more detail
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Table 6.3.: Income and Price elasticities based on the estimated AIDS
Marshallian (uncompensated) Price Elasticities Income

Elasticities
ηi1 ηi2 ηi3 ηi4 ηi5 ηi6 ηi7 ηiM

AIDS estimation of Over 65 population with CPI-E
FB -0.2663 0.4057 0.0627 -0.2664 0.1601 0.0302 -0.4447 0.3628

H 0.0767 -1.2093 -0.1503 0.2212 0.1338 0.0355 -0.1788 1.0666

A -0.0696 -1.5760 -0.0658 -0.0565 -0.8146 -0.5419 0.8470 2.1944

TR -0.4369 0.2722 0.0170 -1.1611 -0.3812 -0.0184 0.2082 1.4677

HC 0.1588 0.5506 -0.1806 -0.3212 -0.8343 0.0560 0.1142 0.4917

R -0.0825 0.0317 -0.4235 -0.1018 -0.0050 -0.5018 -0.5333 1.5762

O -0.9625 -0.5964 0.4923 0.5609 0.1087 -0.2785 -0.1515 0.8383

AIDS estimation of All populations with CPI-U
FB -0.5307 0.4208 -0.1615 0.1083 -0.4953 0.2649 0.1883 0.2483

H 0.0102 -1.2016 -0.0445 -0.0669 0.3437 -0.1704 -0.2220 1.3325

A -0.5942 -0.1187 -0.3216 0.4837 -0.4443 -0.2861 0.3694 0.9165

TR -0.1402 -0.2862 0.0852 -1.3050 -0.1563 0.0408 0.0093 1.7116

HC -1.2614 2.7110 -0.3204 -0.0127 -0.7653 0.3623 0.1120 -0.7268

R 0.6099 -0.7874 -0.2592 0.2820 0.2648 -0.6625 -0.3827 0.9386

O 0.2040 -0.5476 0.2243 0.2523 -0.0451 -0.2429 -0.6161 0.7835

AIDS estimation of Over 65 population with CPI-U
FB -0.6246 0.4515 0.0733 -0.2271 0.1518 0.1075 -0.3093 0.3769

H 0.0983 -1.3251 -0.0802 0.2010 0.1752 -0.0765 -0.1078 1.1153

A -0.0430 -1.0607 0.0380 -0.2482 -1.2669 -0.5240 0.7430 2.3618

TR -0.3930 0.2589 -0.0219 -1.0858 -0.4487 0.0245 0.1852 1.4808

HC 0.1958 0.7108 -0.3187 -0.3956 -0.6517 0.2675 -0.1404 0.3324

R 0.1208 -0.6493 -0.3791 0.0547 0.4834 -0.6375 -0.6179 1.6249

O -0.6318 -0.2778 0.4254 0.5055 -0.2621 -0.3286 -0.1528 0.7221

Table 6.3 are similar. From this, we could assume that the expenditure pattern of the general

population and the over 65 group is basically similar but has some differences.

6.4. Welfare Analysis

We started the welfare analysis from estimating the cost-of-living index for each population

group, and move to the compensating variation and burden index since the cost-of-living

index could provide basic information about cost-of-living over time or groups. Based on

the estimated demand system, we calculate the cost-of-living index during the periods. The

Vartia algorithm are applied to estimate it. Specifically, we calculate total three of cost-of-
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living index such as, for over 65 populations with the CPI-E, over 65 populations with the

CPI-U, and all population with the CPI-U for the comparison. To calculate the cost-of-living

index, we employed the Konüs cost-of-living index defined by following

I(p0, p1, u0) =
e(p1, u0)

e(p0, u0)
(6.4.1)

where u0 is the reference level of utility, and e is the minimum expenditure of the utility

level at u when the consumer is facing a price vector p . The index, I, represent the minimum

expenditure(cost) of the reference level of the utility when a consumer is facing the price

vector p1 relative to the minimum expenditure of remaining at u0 under a different set of

prices p0.

A cost-of-living index is a theoretical price index that measures relative cost of living over

time or regions. This implies that if the cost of living of one group is higher than other group,

the group with the high cost-of-living index required more money to maintain their life and

lifestyle. In contrary, the Consumer Price Index (CPI) is a measure of the average change over

time in the prices. According to the BLS, the CPI frequently is called a cost-of-living index,

both the CPI and a cost-of-living index would reflect changes in the prices of goods and

services. So if the cost-of-living index are well estimated, it will reflect the trend of the CPI

as a similar manner. All calculated cost-of-living indices from 1984 to 2008 are reported in

Table 6.4. All indices are calculated after assuming that the utility level U0 is held fixed

at 100 though prices change, and the base period is the year 1984. Not surprisingly, the

cost-of-living indices of the Over 65 population group is larger than that of the general U.S

population group. This result are well matched the fact that the CPI-E has faced with slightly

higher inflation rates than the CPI-U during the period from 1984 to 2008. In addition, this

result means that the Over 65 population group usually spent more money on maintaining

the life than the general U.S population group in terms of the average. However, the average

income of the over 65 population group is much lower than that of the U.S general popula-

tion group, so it could cause the serious problem in welfare of the old generation. Moreover,

we found that the cost-of-living for the over 65 population group with the CPI-U are smaller

than that of using the CPI-E, either. Assuming that estimation results of the elderly with
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the CPI-E are correct and accurate, it implies that the cost-of-living indices for the over 65

population calculated using the CPI-U might be underestimated than the real indices.

Next, we want to investigate “How much money the elderly are required if the over 65

population is fully compensated in terms of income average of the general U.S population?”

For this, the comparison method between the different two cost-of-living are applied. The

following formula are used to calculate the required money for the full compensation to the

elderly population group.

Amout of money (%) =
(COLIOver 65 Population − COLIAll Population)

COLIAll Population
× 100 (6.4.2)

All calculated results based on the average income of over 65 population group in 2008

are reported at the last four columns in Table 6.4 for comparison. According to the Table 6.4,

generally speaking, the required income for the elderly in order to maintain their lifestyle

like an All population groups calculated by the CPI-E are two times larger than that of calcu-

lating by the CPI-U. More specifically, for example, if the elderly population want to be fully

compensated, they required 4.1% of the increased income, in other words, need $939.6 in

terms of the CPI-E at 2004. In contrary, with the same situation, the elderly required 2.0% of

the increased income, in other words, needs about $468 in terms of the CPI-U. If we assume

that estimated result are correct, these numbers implies that the elderly needed more money

if they have fully compensated, and cost-of-living index based on the CPI-U can generate the

wrong information on the spending of the elderly population. Generally speaking, it could

be a problem when determining the direction of policy for elderly since every statistics about

the over 65 population is calculated based on the CPI-U or the CPI-W instead of the CPI-E.

In order to define efficient policy responses to the welfare loss of both the elderly and

the general population in the U.S, it is necessary to quantify the losses with accurate mea-

sure from the estimated demand system. To do this, based on estimated parameters on the

demand system, the Vartia algorithm is applied to calculate the Hicksian compensating vari-

ation under various scenarios of price changes. According to Stewart(2008), “Health care”

and “Housing” components account for a significant portion of the higher inflation rates in
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Table 6.4.: Cost-of-living index and Need income for Elderly
Cost-of-living indices

Over 65 Population All Population Over 65 Population

CPI-E CPI-U CPI-U
CPI-E CPI-U

% $ % $
1984 100.00 100.00 100.00 0.0 0.00 0.0 0.00
1985 105.59 105.40 105.28 0.3 68.56 0.1 27.19
1986 111.17 110.79 110.53 0.6 133.20 0.2 54.29
1987 116.75 116.18 115.78 0.8 194.49 0.4 81.17
1988 122.32 121.57 121.00 1.1 252.80 0.5 107.69
1989 127.90 126.95 126.22 1.3 308.47 0.6 133.83
1990 133.48 132.33 131.42 1.6 361.76 0.7 159.52
1991 139.05 137.71 136.61 1.8 412.90 0.8 184.74
1992 144.63 143.08 141.80 2.0 462.06 0.9 209.47
1993 150.21 148.46 146.98 2.2 509.41 1.0 233.69
1994 155.80 153.84 152.15 2.4 555.08 1.1 257.43
1995 161.39 159.22 157.31 2.6 599.16 1.2 280.65
1996 166.98 164.60 162.47 2.8 641.79 1.3 303.39
1997 172.57 169.98 167.63 3.0 683.04 1.4 325.64
1998 178.17 175.37 172.78 3.1 723.01 1.5 347.39
1999 183.78 180.76 177.92 3.3 761.77 1.6 368.69
2000 189.39 186.14 183.06 3.5 799.39 1.7 389.54
2001 195.00 191.54 188.20 3.6 835.93 1.8 409.94
2002 200.62 196.93 193.34 3.8 871.45 1.9 429.89
2003 206.24 202.32 198.47 3.9 906.00 1.9 449.44
2004 211.87 207.72 203.60 4.1 939.61 2.0 468.57
2005 217.50 213.12 208.73 4.2 972.35 2.1 487.30
2006 223.13 218.53 213.85 4.3 1004.28 2.2 505.65
2007 228.77 223.93 218.98 4.5 1035.40 2.3 523.63
2008 234.42 229.34 224.10 4.6 1065.74 2.3 541.23

the CPI-E over the past 25, and play important roles on the living cost of the elderly. Based on

this fact, losses of the consumer welfare are estimated both Over 65 and general population

groups to compare the welfare loss caused by the simultaneous increase of both “Housing”

and “Health care” prices.

In Table 6.5, we present a total of 49 scenarios for combined changes in prices of “Health

Care” and “Housing”, ranging from 0 to 30 percent at every 5 percent intervals. According

to Table 6.5, in case of Over 65 population group, a 10 percent increase in prices of both

“Health Care” and “Housing” would increase the per capita total compensated expenditure

or incur the consumer welfare loss of $1,242. Similarly, in case of All population groups, a

10 percent increase in prices of both “Health Care” and “Housing” would increase the per
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capita total compensated expenditure or incur the consumer welfare loss of $955. Similarly,

in case of increases in “Health care” price by 15% and “Housing” price by 5%, the Table

6.5 shows that per capita total compensated expenditure would increase by about $1,072

in Over 65 population group and approximately $870 in All population group respectively.

According to the Table 6.5, we could easily notice that the increase of Housing price have

more serious effects on the welfare loss of both population groups than that of Health Care.

It is because the share of “Housing” component is more twice larger than that of “Health

care”. In addition, generally speaking, the welfare loss of Over 65 populations from price

changes are larger than that of All population groups in terms of the compensating variation.

Table 6.5.: Compensating variation of increased price of Health care and Housing
Increased the price of Health Care by

In
cr

ea
se

d
pr

ic
e

of
H

ou
si

ng
by

OVER65 population (Dollars)
0% 5% 10% 15% 20% 25% 30%

0% 0.00 226.71 446.50 659.89 867.33 1069.22 1265.94
5% 393.80 626.69 852.49 1071.71 1284.82 1492.25 1694.35

10% 771.90 1010.80 1242.41 1467.29 1685.91 1898.70 2106.03
15% 1135.54 1380.26 1617.53 1847.90 2071.86 2289.85 2502.27
20% 1485.81 1736.19 1978.95 2214.65 2443.81 2666.86 2884.21
25% 1823.68 2079.56 2327.66 2568.56 2802.77 3030.74 3252.89
30% 2150.03 2411.26 2664.56 2910.51 3149.64 3382.40 3609.23

All population (Dollars)
0% 5% 10% 15% 20% 25% 30%

0% 0.00 196.80 388.87 576.50 759.97 939.51 1115.35
5% 274.81 477.97 676.23 869.91 1059.29 1244.61 1426.10

10% 541.61 750.95 955.24 1154.80 1349.91 1540.85 1727.84
15% 801.00 1016.35 1226.51 1431.79 1632.50 1828.91 2021.26
20% 1053.52 1274.73 1490.61 1701.47 1907.64 2109.38 2306.96
25% 1299.65 1526.58 1748.03 1964.35 2175.84 2382.79 2585.47
30% 1539.82 1772.34 1999.24 2220.87 2437.56 2649.61 2857.27

The increased price of “Health care” and “Housing” would take away the purchasing

power of consumers in both Over 65 and All population groups, however, it should hit

harder on the elderly who can afford it least compared to the average American since, in

many case, the average income of the old American group is lower than that of the U.S

general population, and the elderly does not have the proper source of income in comparison

with the general population group8. Therefore, it could be important to estimate the size
8According to the “A profile of older Americans” published by Department of Health & Human Services, the
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of welfare losses of the elderly population when the cost of “Health Care” and “Housing”

increased in terms of income per person. For this, first, the average income of both over 65

populations and all American population are required for the calculation. According to “Age

of reference person” of the Consumption expenditure Survey (2008), in case of all consumer

units, the average number in consumer units are 2.5 persons and the average income before

taxes is $63,563 per unit. In other words, the average income of the general U.S population

group is $25,425.2 per person. Similarly, in case of the over 65 population units, the average

number in consumer unit is 1.7 persons, and the average income before taxes is $39,341 per

unit. In other words, the average income of the over 65 population group is $23,141.8 per

person.9

Based on the loss of consumer welfare under the situation with “Health Care” and “Hous-

ing” price changes, we calculated the “Burden indices”, which defined by the ratio of the

consumer welfare loss to income per person, of the general U.S and the over 65 population

groups. All calculated burden indices are reported in Table 6.6 by the population group.

According to the Table 6.6, in case of Over 65 population, for example, the diagonal entries

show that the burden indices would increase from 2.7 % to 15.6% because of increase in both

“Health Care” and “Housing” prices from 5% to 30%. In the contrary, in case of All American

population, the burden indices would increase from 1.8% to 11.2% at the same increase of

both “Health Care” and “Housing” prices, substantially smaller than those of the over 65

population groups. In general, burden indices of Over 65 population group are generally

larger than those of the all population group. This result implies that the Over 65 population

group suffer more than all American group when prices go up.

major source of income for older people in 2007 were 1) Social Security (reported by 87% of older persons),
2) income from assets(reported by 52%), 3) private pensions (reported by 28%), 4) government employee
pensions (reported by 13%), and 5) earnings (reported by 25%). In addition, Social Security constituted 90%
or more of income received by 35% of all Social Security beneficiaries, and about 3.7 million elderly persons
(9.7%) were below the poverty level in 2008.

9According to the “ A profile of older Americans”, The median income of older persons in 2008 was $25.503
for males and $14,559 for females. It is different from the average income of Consumer Expenditure Survey.
We used the average income of Consumer Expenditure Survey instead of the income in A profile of older
American since the all estimated result are based on the data from BLS.
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Table 6.6.: Burden indices of increased price of Health care and Housing
Increased the price of Health Care by

In
cr

ea
se

d
pr

ic
e

of
H

ou
si

ng
by

OVER65 population( % )
0% 5% 10% 15% 20% 25% 30%

0% 0.0000 0.9796 1.9294 2.8515 3.7479 4.6203 5.4704
5% 1.7017 2.7081 3.6838 4.6311 5.5520 6.4483 7.3216

10% 3.3355 4.3678 5.3687 6.3404 7.2851 8.2046 9.1006
15% 4.9069 5.9644 6.9896 7.9851 8.9529 9.8949 10.8128
20% 6.4205 7.5024 8.5514 9.5699 10.5602 11.5240 12.4632
25% 7.8805 8.9862 10.0583 11.0992 12.1113 13.0964 14.0563
30% 9.2907 10.4195 11.5141 12.5769 13.6102 14.6160 15.5962

All population (%)
0% 5% 10% 15% 20% 25% 30%

0% 0.0000 0.7740 1.5295 2.2674 2.9890 3.6952 4.3868
5% 1.0809 1.8799 2.6597 3.4215 4.1663 4.8952 5.6090

10% 2.1302 2.9535 3.7570 4.5419 5.3094 6.0603 6.7958
15% 3.1504 3.9974 4.8240 5.6314 6.4208 7.1933 7.9498
20% 4.1436 5.0137 5.8627 6.6921 7.5029 8.2964 9.0735
25% 5.1116 6.0042 6.8752 7.7260 8.5578 9.3718 10.1689
30% 6.0563 6.9708 7.8632 8.7349 9.5872 10.4212 11.2379

6.5. Concluding Remarks

Nowadays, the over one in every eight of the population in U.S is and older American. This

fact partly depends on the fact that the reduction in mortality at older ages and the im-

provement in the health care system. Moreover, the pace of aging population is projected to

accelerate in the U.S in the next 40 years since the baby boomer generation will start to turn

65. So studies on the demand pattern and welfare effect of the elderly population compared

to the general U.S population group are required since, differently from the general U.S pop-

ulation, the elderly in U.S have faced slightly higher inflation rate since the older Americans

spend substantially more money of their total income to Health Care and Housing whose

inflation rates are higher than any other commodities.

In this paper, first, we investigate the expenditure pattern of both the elderly in U.S and

the general population using the different price index such as CPI-E and CPI-U. We assume

that the expenditure pattern of the elderly in U.S should be different from the general U.S

population. From the demand estimation based on the AI demand system, we could check

that not much difference in expenditure patterns between two groups are existed. However,
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we identified that the expenditure pattern of Over 65 population group can not be properly

identified by using the CPI-U. Second, based on the estimated parameters, we calculate the

burden index and the compensating variation which is one of Hicksian welfare measure in

order to identify welfare changes and effects when price changes. From the evaluation, we

could confirm that welfare changes and consumer welfare losses of the elderly population

are larger than that of the general U.S population. This result implies that the over 65 popu-

lation group suffers more than the general U.S population with the situation prices go up.
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7. Conclusion

In this paper, we mainly investigated numerical approximation methods to the integrabil-

ity problem and the measure of welfare changes. The close relationship between the inte-

grability problem and the measure of welfare changes could be found in the expenditure

function which was the common fact in both problems. Both problems can be solved using

same methods since solutions for these questions mainly relied on how to recover the com-

pensated income (expenditure) from the ordinary demand function, and this procedure are

mainly demonstrated by numerical approximation algorithms.

As a solution of both the integrability problem and the measure of welfare changes, numer-

ical approximation methods were considered and discussed in this paper. In addition, a cou-

ple of applications were accomplished in order to demonstrate how the numerical method

could be applied in the empirical studies as a solution method.

To achieve the goal of the research, in this dissertation, a certain numbers of objectives

were pursued:

1. Studies on the integrability problem

2. Studies on the measure of welfare changes

3. Investigated numerical approximation methods as a solution of both the integrability

problem and the measure of welfare changes

4. Investigated the demand system since it plays an important role when solving the in-

tegrability problems which is defined as a system of the ordinary differential equation.

5. Demonstrated the accuracy and applicability of the numerical algorithm, and how the

numerical algorithm can be applied in empirical studies as a solution method.
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At first, we studied the integrability problem mainly focusing on how to transform the sys-

tem of the partial differential equations to the system of the ordinary differential equation.

Generally, there is no easy way to solve the system of partial differential equations alge-

braically and numerically. This transform possibility provides a way to solve the integra-

bility problem using the numerical method. In addition, the measure of welfare changes is

studied in terms of the compensating and equivalent variation. Main results of this part are

that this measure of welfare changes can be estimated by the numerical approximation meth-

ods since welfare changes are defined in the relationship between the expenditure function

and the ordinary demand function.

As solutions of both the integrability problem and the measure of welfare changes, a cou-

ple of numerical methods are discussed. At the first stage, we investigate existing numerical

methods including the Taylor higher order method and the Vartia algorithm. In addition,

possible new approximations have also been investigated in this paper such as the RK-4th

order algorithm and the Adams Fourth-Order Predictor-Corrector algorithm. Finally, using

these numerical algorithms, a couple of economic indicators including the cost-of-living and

welfare measures are estimated for research purposes. In fact, the cost-of-living index is used

to check the accuracy and the applicability of the algorithm. In addition, the welfare effects

on the price change are calculated in terms of the compensating variation using the proposed

numerical algorithm.

In order to demonstrate how numerical algorithms can be applied in empirical studies

as a solution method, two empirical studies are performed. In the first application, as an

alternative of the Vartia algorithm, the RK-4th algorithm is proposed. Using both the U.S

consumer expenditure (CEX) data and the consumer price index (CPI), the AI and Rotterdam

demand system are estimated, and expenditures are recovered from the estimated demand

system using the RK-4th algorithm. Moreover, based on recovered expenditures, the cost-of-

living index and conventional price index are evaluated at each time period. From this, we

could demonstrate the power and the applicability of the RK-4th algorithm as an alternative

of the Vartia algorithm based on the fact that the substitution bias of this algorithm is much

smaller than other price indices.

In the second application, we pay attention to the phenomenon called the aging popula-
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tion in U.S, and demonstrate the welfare effects on the U.S elderly when price changes. Using

the U.S consumer expenditure (CEX) data and the different consumer price index (CPI), the

demand pattern in both U.S general population and the elderly are estimated based on the AI

demand system. From this estimation results, the different demand patterns on two differ-

ent population groups are identified. In addition, in order to analyze the welfare effect when

prices have changes, the burden index and the compensating variation are calculated using

the numerical algorithm. From the evaluation, we could confirm that the welfare changes

and consumer welfare losses of the elderly population are larger than that of the general

U.S population. This result implies that the over 65 population group suffers more than the

general U.S population when prices go up.
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A. Appendix 1 : R code

A.1. Demand estimation

A.1.1. LA-AIDS Estimation

####################################################################################

## this code is an examaple R code for LA-AI demand system ##

## In this code, 6 commodity system are considered ##

####################################################################################

####################################################################################

### Read the data ####

####################################################################################

USCes1<-read.table("/Source of Data", header=TRUE)

####################################################################################

### Call the Library ####

####################################################################################

library(micEcon) # for matrix calculation

library(systemfit) # systemfit for the SUR

####################################################################################

### Variable in Demand estimation ####

####################################################################################

W # Expenditure share

LW # the log of Expenditure share

P # the log of Relative Price

PP # Relative Price

LTE # log of total Expenditure

lnPP # Stone index

####################################################################################

### LA-AIDS Estimation ####

####################################################################################
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# Stone index for the LA-AIDS

lnPP<-matrix(0,25,1)

for(i in 1:nrow(W)){

lnPP[i]=t(W[i,])%*%P[i,]

}

#calculate the LTEP = LTE - lnPP

LTEP<-LTE-lnPP

## LA-AIDS estimation

# make each equation - 6 quations

LAeq1<- W[,1]~P[,1]+P[,2]+P[,3]+P[,4]+P[,5]+P[,6]+LTEP

LAeq2<- W[,2]~P[,1]+P[,2]+P[,3]+P[,4]+P[,5]+P[,6]+LTEP

LAeq3<- W[,3]~P[,1]+P[,2]+P[,3]+P[,4]+P[,5]+P[,6]+LTEP

LAeq4<- W[,4]~P[,1]+P[,2]+P[,3]+P[,4]+P[,5]+P[,6]+LTEP

LAeq5<- W[,5]~P[,1]+P[,2]+P[,3]+P[,4]+P[,5]+P[,6]+LTEP

LAeq6<- W[,6]~P[,1]+P[,2]+P[,3]+P[,4]+P[,5]+P[,6]+LTEP

## system without restriction

# make the system : the equations go into the single system

LAsystem<-list(LAeq1, LAeq2, LAeq3, LAeq4, LAeq5, LAeq6)

labels<-list("LS1","LS2","LS3","LS4")

#SUR with all equations without restriction

LAresult<-systemfit(LAsystem, method="SUR", maxiter=500)

## system with restriction

LAsystemR<-list(LAeq1, LAeq2, LAeq3, LAeq4, LAeq5)

# Make the Restriction R matrix

RRmat<-matrix(0,nrow=15, ncol=40)

# Assgin the the value to make the restiction

# Homogeniety for gamma

RRmat[1,2:7]<-1

RRmat[2,10:15]<-1

RRmat[3,18:23]<-1

RRmat[4,26:31]<-1

RRmat[5,34:39]<-1

# symetric restiction

RRmat[6,3]<-1

RRmat[7,4]<-1

RRmat[8,5]<-1

RRmat[9,6]<-1

RRmat[10,12]<-1

RRmat[11,13]<-1

RRmat[12,14]<-1

RRmat[13,21]<-1

RRmat[14,22]<-1

RRmat[15,30]<-1
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RRmat[6,10]<- -1

RRmat[7,18]<- -1

RRmat[8,26]<- -1

RRmat[9,34]<- -1

RRmat[10,19]<- -1

RRmat[11,27]<- -1

RRmat[12,35]<- -1

RRmat[13,28]<- -1

RRmat[14,36]<- -1

RRmat[15,37]<- -1

# Make the qvec of RHS

qvec<-matrix(0, 15, 1)

TLAresultRI<-systemfit(LAsystemR, method="SUR", restrict.matrix=RRmat,

restrict.rhs= qvec, maxiter=500)

summary(TLAresultRI) # show the estimation result

####################################################################################

### Coefficient Matrix ####

####################################################################################

# extract the coefficients from the coefficient matrix

# setup the coefficient matrix at first

coeff.TLAresultRI<-matrix(0,8,5)

for(i in 1:40){

coef.TLAresultRI<-TLAresultRI$coefficient

coeff.TLAresultRI[i]<-coef.TLAresultRI[i]

}

# The coefficients of LA-AIDS estimation result

Tcoef.TLAresultRI<-t(coeff.TLAresultRI)

#Add row in the Tcoef.TLAresultRI to calculate the wq6 coefficients

TTcoef.TLAresultRI<-insertRow( Tcoef.TLAresultRI, 6, v = 0 )

#Call the TTcoef.TLAresultRI

TTcoef.TLAresultRI

#this calculation is on the Theoretical restriction

#adding-up, homogeneous, andn sysmetry condition

sumCoef1<-sum(TTcoef.TLAresultRI[,1])

sumCoef7<-sum(TTcoef.TLAresultRI[,7])

sumCoef8<-sum(TTcoef.TLAresultRI[,8])

for(i in 1:5){

TTcoef.TLAresultRI[6,i+1]<- TTcoef.TLAresultRI[i,7]

}

TTcoef.TLAresultRI[6,1]<-1-sumCoef1
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TTcoef.TLAresultRI[6,7]<- -sumCoef7

TTcoef.TLAresultRI[6,8]<- -sumCoef8

TTcoef.TLAresultRI

#Complete of Coefficient Matrix

####################################################################################

## calculate the elasticity of system #####

####################################################################################

# the average of Expenditure Share and Price

Aver.W<-apply(W,2,mean)

Aver.P<-apply(P,2,mean)

## Uncompensated Price Elasticity of LA-AIDS

####################################################################################

# set up the Alpha and the Beta

Alpha<-TTcoef.TLAresultRI[,1]

Beta<-TTcoef.TLAresultRI[,6]

# set up the Kronecker Delta delta_ij

Delta<-matrix(0,6,6)

Delta[row(Delta)==col(Delta)]<- -1

KronDelta<-Delta

# set up coefficient r_ij

TTcoef.withoutA<-TTcoef.TLAresultRI[,-1]

TTcoef.withoutAB<-TTcoef.withoutA[,-7]

# set up r_ij/w_i

RW<-TTcoef.withoutAB/Aver.W

#set up w_j/w_i

WW<-matrix(0,6,6)

for(i in 1:6){

for(j in 1:6){

WW[i,j]<-Aver.W[j]/Aver.W[i]

}

}

Alpha<-TTcoef.TLAresultRI[,1]

Beta<-TTcoef.TLAresultRI[,8]

#calculate the b_i (w_j/w_i)

BetaWW<-Beta * WW

# calculate the b_i/ w_i

BetaW<-Beta/Aver.W

#calculate the a_i/w_i

AlphaW<-Alpha/Aver.W

#calculate the b_i*a_*/W_i

BetaAlphaW<-Beta%*%t(AlphaW)
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# calcalate sumRP

SumRP<-TTcoef.withoutAB%*%Aver.P

#calculate the BetaW*SumRPP

BetaWSumRP<-BetaW%*%t(SumRP)

#calculate the SumWP

SumWP<-Aver.W*Aver.P

#formula 1 -Green and Alston -AIDS

####################################################################################

UPE.LAAIDS.formula1<-KronDelta+RW-BetaAlphaW-BetaWSumRP

UPE.LAAIDS.formula1

#formula 2 -Green and Alston

####################################################################################

UPE.LAAIDS.formula2<-KronDelta+RW

UPE.LAAIDS.formula2

#formula 3 -Green and Alston

####################################################################################

UPE.LAAIDS.formula3<-KronDelta+RW-BetaWW

UPE.LAAIDS.formula3

#formula 4 -Green and Alston

####################################################################################

#set A,B,C, and D

A<-UPE.LAAIDS.formula3

B<-BetaW

C<-SumWP

#set 8x8 Identity matrix

ID<-matrix(0,6,6)

ID[col(ID)==row(ID)]<- 1

# calculate the Uncompensated Price elasticity of LA-AIDS

UPE.LAAIDS.formula4<-solve(B%*%t(C)+ID)%*%(A+ID)-ID

UPE.LAAIDS.formula4

## Income elasticity of LA-AIDS

####################################################################################

ICE.LAAIDS<-matrix(0,6,1)

for(i in 1:6){

ICE.LAAIDS[i]<-1+TTcoef.TLAresultRI[i,8]/Aver.W[i]

}

ICE.LAAIDS
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#Income elasticity of LA-AIDS based on Green and Alston formula 4

ICE.LAAID.formula4<-solve(ID+B%*%t(C))%*%B

ICE.LAAID.formula4
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A.1.2. Rotterdam Estimation

####################################################################################

## An examaple R code for Absolute version of Rotterdam demand system ##

## In this code, 6 commodity system are considered ##

####################################################################################

####################################################################################

### Call the Library ####

####################################################################################

library(micEcon) # for matrix calculation

library(systemfit) # systemfit for the SUR

####################################################################################

### Variable in Demand estimation ####

####################################################################################

W # Expenditure share

Expenditure # Expenditure of each commodity

Price # the log of Relative Price

TE # Total exepnditure

LTE # log of total Expenditure

## Log difference of Price and Quantity

DLP<-diff(log(Price))

Quantity<-Expenditure/Price

DlogQuantity<-diff(log(Quantity))

## Weighted sum of exepnditure Share

WeightedW<-matrix(0,nrow(W),ncol(W))

for(i in 1:nrow(W)){

for(j in 1:ncol(W)){

WeightedW[i,j]<-.5*(W[i,j]+W[i+1,j])

}

}

## the Divisa Quantity Index

DivisiaQ<-matrix(0,nrow(W),1)

for(i in 1:nrow(W)){

DivisiaQ[i]<-t(WeightedW[i,])%*%DlogQuantity[i,]

}

ARs<-WeightedW*DlogQuantity

####################################################################################

## Absolute Price Version of Rotterdam Model

####################################################################################

# make each equation - 6 equations

####################################################################################
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APVReq1<- ARs[,1]~ -1+DivisiaQ+DLP[,1]+DLP[,2]+DLP[,3]+DLP[,4]+DLP[,5]+DLP[,6]

APVReq2<- ARs[,2]~ -1+DivisiaQ+DLP[,1]+DLP[,2]+DLP[,3]+DLP[,4]+DLP[,5]+DLP[,6]

APVReq3<- ARs[,3]~ -1+DivisiaQ+DLP[,1]+DLP[,2]+DLP[,3]+DLP[,4]+DLP[,5]+DLP[,6]

APVReq4<- ARs[,4]~ -1+DivisiaQ+DLP[,1]+DLP[,2]+DLP[,3]+DLP[,4]+DLP[,5]+DLP[,6]

APVReq5<- ARs[,5]~ -1+DivisiaQ+DLP[,1]+DLP[,2]+DLP[,3]+DLP[,4]+DLP[,5]+DLP[,6]

APVReq6<- ARs[,6]~ -1+DivisiaQ+DLP[,1]+DLP[,2]+DLP[,3]+DLP[,4]+DLP[,5]+DLP[,6]

####################################################################################

####################################################################################

## APVR system without restriction

####################################################################################

# make the system : the equations go into the single system

APVRsystem<-list(APVReq1, APVReq2, APVReq3, APVReq4, APVReq5, APVReq6)

# Estimation using ISUR system method with all equations without restriction

APVRresultI<-systemfit(APVRsystem, method="SUR", maxiter=500)

summary(APVRresult)

####################################################################################

## APVR system with restriction

####################################################################################

APVRsystemR<-list(APVReq1, APVReq2, APVReq3, APVReq4, APVReq5)

####################################################################################

### Imposing the Restriction to the Model

####################################################################################

# Make the Restriction R matrix

RRmat<-matrix(0,nrow=15, ncol=35)

####################################################################################

# Assgin the the value to make the restiction

RRmat[1,2:7]<-1

RRmat[2,9:14]<-1

RRmat[3,16:21]<-1

RRmat[4,23:28]<-1

RRmat[5,30:35]<-1

RRmat[6,3]<-1

RRmat[7,4]<-1

RRmat[8,5]<-1

RRmat[9,6]<-1

RRmat[10,11]<-1

RRmat[11,12]<-1

RRmat[12,13]<-1

RRmat[13,19]<-1

RRmat[14,20]<-1

RRmat[15,27]<-1
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RRmat[6,9]<- -1

RRmat[7,16]<- -1

RRmat[8,23]<- -1

RRmat[9,30]<- -1

RRmat[10,17]<- -1

RRmat[11,24]<- -1

RRmat[12,31]<- -1

RRmat[13,25]<- -1

RRmat[14,32]<- -1

RRmat[15,33]<- -1

# Make the qvec of RHS

qvec<-matrix(0, 15, 1)

####################################################################################

## Estimation Result of APVR,

## Estimation using ISUR system method with 5 equations with restriction, 500times

####################################################################################

# Estmation of APVR using ISUR=500, with restriction

APVRresultRI<-systemfit(APVRsystemR, method="SUR", restrict.matrix=RRmat,

restrict.rhs= qvec, maxiter=500)

APVRresultRI

summary(APVRresultRI)

####################################################################################

## calculate the elasticity of system

####################################################################################

# extract the coefficients from the coefficient matrix

# 1. setup the coefficient matrix at first

coeff.APVRresultRI<-matrix(0,7,5)

for(i in 1:35){

coef.APVRresultRI<-APVRresultRI$coefficient

coeff.APVRresultRI[i]<-coef.APVRresultRI[i]

}

# The coefficients of APVRresultRI estimation result

Acoef.APVRresultRI<-t(coeff.APVRresultRI)

#Add row in the Tcoef.TLAresultRI to calculate the wq6 coefficients

APVRcoef.APVRresultRI<-insertRow(Acoef.APVRresultRI, 6, v = 0 )

#Call the TTcoef.TLAresultRI

APVRcoef.APVRresultRI

summary(APVRcoef.APVRresultRI)

# this calculation is on the Theoretical restriction

# adding-up, homogeneous, andn sysmetry condition

sumCoef1<-sum(APVRcoef.APVRresultRI[,1])
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sumCoef7<-sum(APVRcoef.APVRresultRI[,7])

for(i in 1:5){

APVRcoef.APVRresultRI[6,i+1]<- APVRcoef.APVRresultRI[i,7]

}

APVRcoef.APVRresultRI[6,1]<-1-sumCoef1

APVRcoef.APVRresultRI[6,7]<- -sumCoef7

APVRcoef.APVRresultRI

#Complete of Coefficient Matrix
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A.2. Numerical Algorithm

A.2.1. Vartia Algorithm

####################################################################################

### Vartia's algorithm ####

####################################################################################

init_c # initial value of Expenditure

num_step # number of Stepms

qv # demand function

## Assign the matrix for storing the calculation result

resultVTA1<-matrix(0,25,1)

resultVTA1[1]<-y0

## Algorithm

####################################################################################

for(i in 1:num_step){

oldp<-PP[i,]

newp<-PP[i,]+(PP[i+1,]-PP[i,])

oldx<-qv(oldp,init_c)

oldc<-init_c

newx<-qv(newp,oldc)

tolerance<-1000

iterN<-0

while(tolerance>0.00001){ # iteration precedure

newx<-qv(newp,oldc)

newc<-init_c +0.5*(newx+oldx)%*%(PP[i+1,]-PP[i,])

temp<-oldc

oldc<-newc

tolerance<- abs(newc-temp)

iterN<-iterN+1

if(iterN>100){

print("not converged")

break

}

} # iteration end

resultVTA1[i+1]<-newc

resultVTB1<-cbind(i,t(iterN), t(newp),newx,newc)

print(resultVTB1)

init_c<-newc # replace the value

}

}
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A.2.2. RK-4th Algorithm

####################################################################################

### VRK-4th Algorithm ####

####################################################################################

oldc # initial value of Expenditure

num_step

n<-num_step+1 # number of Stepms

qv # demand function

## Assign the matrix for storing the calculation result

resultRKA1<-matrix(0,num_step,1)

resultRKA1[1]<-y0

## Algorithm

####################################################################################

for(k in 1:num_step){

oldp<-PP[k,]

newp<-PP[k,]+(PP[k+1,]-PP[k,])

k1=qv(oldp, oldc)%*%(PP[k+1,]-PP[k,])

k2=qv(0.5*(newp+oldp),oldc+0.5*k1)%*%(PP[k+1,]-PP[k,])

k3=qv(0.5*(newp+oldp),oldc+0.5*k2)%*%(PP[k+1,]-PP[k,])

k4=qv(newp,oldc+k3)%*%(PP[k+1,]-PP[k,])

newc_4<-oldc+1/6*(k1+2*k2+2*k3+k4)

newx = qv(newp, newc_4)

resultRKA[k+1]<-newc_4

resultRKB<-cbind(k,t(newp),newx,newc_4)

print(resultRKB)

oldc<-newc_4

}

resultRKA

coliRK<-matrix(0,n,1)

for(i in 1:n){

coliRK[i]<-resultRKA1[i]/resultRKA1[1]

}

coliRKB<-coliRK*100

coliRKB
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A.3. Index Calculation

####################################################################################

### Index Calculation ####

####################################################################################

## Example : LA-AIDS demand system

## Recall estimated parameters from the demand system

alpha # alpha (nx1)

beta # beta (nx1)

gamm # gamma (nxm)

n <- 25 # sample period

k <- ncol(alpha)

########################################################################################

P # log price

PP # Price

########################################################################################

## Calculate the basic component

Pgamm<-P%*%gamm

lnA<-matrix(0,n,1)

lnB<-matrix(0,n,1)

########################################################################################

########################################################################################

## calculate the LnA and LnB

for(i in 1:nrow(P)){

lnA[i]<-t(alpha)%*%P[i,]+0.5*(t(Pgamm[i,])%*%P[i,])

}

for(i in 1:nrow(P)){

lnB[i]<-t(beta)%*%P[i,]

}

########################################################################################

## calculation of expenditure

Yexpend<-exp(lnA)*100^exp(lnB)

Yexpend

#initial value of expenditure

y0<-exp(lnA[1,])*100^exp(lnB[1,])

########################################################################################

## Calculate the Cost of living index

Coli<-matrix(0,n,1)

for (j in 1:nrow(Yexpend)){

Coli[j]<-Yexpend[j]/Yexpend[1]

}

COLI<-100*Coli
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########################################################################################

LTE<-log(Exp.All[,1])

########################################################################################

## Calculate the Expenditure share of Model

wShare<-matrix(0,n,k)

for(j in 1:nrow(P)){

for(i in 1:k){

wShare[j,i]<- alpha[i]+gamm[i,]%*%P[j,]+beta[i]*(LTE[j]-lnA[j])

}

}

wShare<-matrix(0,n,k)

for(j in 1:nrow(P)){

for(i in 1:k){

wShare[j,i]<- alpha[i]+gamm[i,]%*%P[j,]+beta[i]*(log(Yexpend[j])-lnA[j])

}

}

## Laspeyres price ratio

LasPR<-matrix(0, n,k)

for(i in 1:nrow(PP)){

LasPR[i,]<-PP[i,]/PP[1,]

}

##Parssche price ratio

ParPR<-matrix(0, n,k)

for(i in 1:nrow(PP)){

ParPR[i,]<-PP[1,]/PP[i,]

}

## Log Price ratio of Laspeyres price rational

LogPR<-log(LasPR)

########################################################################################

## Calculate the Layspeyres index

LasIndex<-matrix(0,n,1)

for(i in 1:n){

LasIndex[i]<-wShare[1,]%*%LasPR[i,]

}

LasprIndex<-LasIndex*100

########################################################################################

## Calculate the Parssche index

ParIndex<-matrix(0,n,1)

for(i in 1:n){

ParIndex[i]<-wShare[i,]%*%ParPR[i,]

}

ParsscIndex<-1/ParIndex*100

########################################################################################

## Calculate the Fisher Ideal index

FisIndex<-matrix(0,n,1)

for(i in 1:n){

FisIndex[i]<-(.5*log(LasIndex[i])-.5*log(ParIndex[i]))

}

FisherIndex<-exp(FisIndex)*100

########################################################################################
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## Calculate Torqvist

TorIndex<-matrix(0,n,1)

TorIndex1<-matrix(0,n,k)

for(i in 1:k){

for(j in 1:n){

TorIndex1[j,i]<-.5*(wShare[1,i]+wShare[j,i])*LogPR[j,i]

}

}

for(i in 1:n){

TorIndex[i]<-sum(TorIndex1[i,])

}

TornqvIndex<-exp(TorIndex)*100

########################################################################################

## Summary of Price index

## 1. Summary

SummaryOfIndex<-cbind(COLI,LasprIndex,ParsscIndex,FisherIndex, TornqvIndex)

SummaryOfIndex

## 2. Bias

SummaryOfSubBias<-cbind(LasprIndex-COLI,ParsscIndex-COLI,FisherIndex-COLI, TornqvIndex-COLI)

SummaryOfSubBias

########################################################################################
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B. Appendix 2 : RATS code for Demand

estimation

B.1. LA-AIDS

****************************************************************************

* Almost Ideal Demand System Estimation Using RATS

****************************************************************************

****************************************************************************

* Read the data

****************************************************************************

OPEN DATA "Z:\RATS\Book1.xls"

DATA(FORMAT=XLS,ORG=COLUMNS)

****check the data which the RATS will use later

tables

****************************************************************************

** generate data

****************************************************************************

** 1. log of Expenditure

set lTE = log(TE);

** 2. log of Prices

set lp1 = log(P1); set lp2 = log(P2); set lp3 = log(P3);

set lp4 = log(P4); set lp5 = log(P5); set lp6 = log(P6)

** 3. Stone's Index

set lnP = w1*lp1+w2*lp2+w3*lp3+w4*lp4+w5*lp5+w6*lp6

set lTP = (lTE-lnP)

****************************************************************************

***** imposing the restriction on LA-AIDS

****************************************************************************
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************ Note ********************

* in this analysis, we used 6 item categories

* After applying homogeneity assumption,

* we estimate only 5 of the 6 equation.

* we will remove the last one for estimation purpose.

**** Create the parameter and Demand system

* 1. Define the parameters which are used in the Rotterdam demand system

nonlin(parms=base) a1 a2 a3 a4 a5 a6 p11 p12 p13 p14 p15 p16 p21 p22 p23 p24 p25 p26 p31 p32

p33 p34 p35 p36 p41 p42 p43 p44 p45 p46 p51 p52 p53 p54 p55 p56 b1 b2 b3 b4 b5

* 2. Symmetry condition

nonlin(parms=symmetry) p12=p21 p13=p31 p14=p41 p15=p51 p23=p32 p24=p42

p25=p52 p34=p43 p35=p53 p45=p54

* 3. Homogeneity condition

nonlin(parms=homogeneity) p11+p12+p13+p14+p15+p16==0 p21+p22+p23+p24+p25+p26==0

p31+p32+p33+p34+p35+p36==0 p41+p42+p43+p44+p45+p46==0 p51+p52+p53+p54+p55+p56==0

****************************************************************************

*** Set up the LA-AIDS demand system

****************************************************************************

frml eq1 w1= a1 + p11*(lp1) + p12*(lp2) + p13*(lp3) + p14*(lp4) + p15*(lp5) + p16*lp6 + b1*lTP

frml eq2 w2= a2 + p21*(lp1) + p22*(lp2) + p23*(lp3) + p24*(lp4) + p25*(lp5) + p26*lp6 + b2*lTP

frml eq3 w3= a3 + p31*(lp1) + p32*(lp2) + p33*(lp3) + p34*(lp4) + p35*(lp5) + p36*lp6 + b3*lTP

frml eq4 w4= a4 + p41*(lp1) + p42*(lp2) + p43*(lp3) + p44*(lp4) + p45*(lp5) + p46*lp6 + b4*lTP

frml eq5 w5= a5 + p51*(lp1) + p52*(lp2) + p53*(lp3) + p54*(lp4) + p55*(lp5) + p56*lp6 + b5*lTP

****************************************************************************

**** set up the initial values of parameters

****************************************************************************

compute a1=a2=a3=a4=a5=0.0

compute p11=p12=p13=p14=p15=p16=p21=p22=p23=p24=p25=p26=p31=p32=p33=p34=p35=p36=p41=p42=p43

=p44=p45=p46=p51=p52=p53=p54=p55=p56=0.0

compute b1=b2=b3=b4=b5=0.0

****************************************************************************

*** estimate the demand system

****************************************************************************

* 1. without Restriction

nlsystem(parmset=base) / eq1 eq2 eq3 eq4 eq5

* 2. only with Symmetry

nlsystem(parmset=base+symmetry) / eq1 eq2 eq3 eq4 eq5

* 3. only with Homogeneity

nlsystem(parmset=base+homogeneity) / eq1 eq2 eq3 eq4 eq5
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compute a1=a2=a3=a4=a5=0.0

compute p11=p12=p13=p14=p15=p16=p21=p22=p23=p24=p25=p26=p31=p32=p33=p34=p35=p36=p41=p42=p43=p44

=p45=p46=p51=p52=p53=p54=p55=p56=0.0

compute b1=b2=b3=b4=b5=0.0

* 4. symmetry+homogeneity

nlsystem(parmset=base+symmetry+homogeneity) / eq1 eq2 eq3 eq4 eq5
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B.2. Rotterdam

****************************************************************************

* Rotterdam Demand System Estimation Using RATS

****************************************************************************

****************************************************************************

* Read the data

****************************************************************************

OPEN DATA "Z:\RATS\Book1.xls"

DATA(FORMAT=XLS,ORG=COLUMNS)

*check the data which the RATS will use later

tables

****************************************************************************

** generate data

****************************************************************************

*********Divisia Quantity Index *******************

set DivisiaQ = sw1*dq1 + sw2*dq2 + sw3*dq3 + sw4*dq4 + sw5*dq5 + sw6*dq6

********* dependent variable in Rotterdam demand system

set wdq1 = sw1*dq1 ; set wdq2 =sw2*dq2

set wdq3 = sw3*dq3 ; set wdq4 =sw4*dq4

set wdq5 = sw5*dq5 ; set wdq6 =sw6*dq6

*check the variable after generating process

tables

****************************************************************************

**** Rotterdam demand Analysis

****************************************************************************

********* define the Rotterdam demand system

set Rdq = wdq1 +wdq2 +wdq3 + wdq4 +wdq5 +wdq6

***** imposing the restriction on The Rotterdam demand system

* Homogeneity condition

************ Note ********************

* in this analysis, we used 6 item categories

* After applying homogeneity assumption,

* we estimate only 5 of the 6 equation.

* we will remove the last one for estimation purpose.

**** Create the parameter and Demand system

* 1. Define the parameters which are used in the Rotterdam demand system

nonlin(parms=base) a1 a2 a3 a4 a5 p11 p12 p13 p14 p15 p21 p22 p23 p24 p25 p31
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p32 p33 p34 p35 p41 p42 p43 p44 p45 p51 p52 p53 p54 p55

* 2. This is for the last equation

nonlin(parms=relax) ep16 ep26 ep36 ep46 ep56

* Symmetry condition

nonlin(parms=symmetry) p12=p21 p13=p31 p14=p41 p15=p51 p23=p32 p24=p42

p25=p52 p34=p43 p35=p53 p45=p54

****************************************************************************

*** Set up the Rotterdam demand system with homogeneity

****************************************************************************

frml eq1 wdq1= a1*DivisiaQ + p11*(dp1-dp6) + p12*(dp2-dp6) + p13*(dp3-dp6)

+ p14*(dp4-dp6) + p15*(dp5-dp6) + ep16*dp6

frml eq2 wdq2= a2*DivisiaQ + p21*(dp1-dp6) + p22*(dp2-dp6) + p23*(dp3-dp6)

+ p24*(dp4-dp6) + p25*(dp5-dp6) + ep26*dp6

frml eq3 wdq3= a3*DivisiaQ + p31*(dp1-dp6) + p32*(dp2-dp6) + p33*(dp3-dp6)

+ p34*(dp4-dp6) + p35*(dp5-dp6) + ep36*dp6

frml eq4 wdq4= a4*DivisiaQ + p41*(dp1-dp6) + p42*(dp2-dp6) + p43*(dp3-dp6)

+ p44*(dp4-dp6) + p45*(dp5-dp6) + ep46*dp6

frml eq5 wdq5= a5*DivisiaQ + p51*(dp1-dp6) + p52*(dp2-dp6) + p53*(dp3-dp6)

+ p54*(dp4-dp6) + p55*(dp5-dp6) + ep56*dp6

****************************************************************************

**** set up the initial values of parameters

****************************************************************************

compute a1=a2=a3=a4=a5=0.0

compute p11=p12=p13=p14=p15=p16=p21=p22=p23=p24=p25=p26=p31=p32=p33=p34=p35

=p36=p41=p42=p43=p44=p45=p46=p51=p52=p53=p54=p55=p56=0.0

compute ep16=ep26=ep36=ep46=ep56=0.0

****************************************************************************

*** estimate the demand system

****************************************************************************

* 1. with Homogeniety only

nlsystem(parmset=base) / eq1 eq2 eq3 eq4 eq5

nlsystem(parmset=base+relax) / eq1 eq2 eq3 eq4 eq5

* 2. with Symmetric and Homogeneity

compute ep16=ep26=ep36=ep46=ep56=0.0

nlsystem(parmset=base+symmetry) / eq1 eq2 eq3 eq4 eq5
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