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Abstract

The Rosetta specification language aims to enable system designers to abstractly
design complex heterogeneous systems. To this end, Rosetta allows for compositional
design to facilitate modularity, separation of concerns, and specification reuse. The
behavior of Rosetta components and facets can be viewed as systems, which are well
suited for coalgebraic denotation. The previous semantics of Rosetta lacked detail in the
denotational work, and had no firm semantic basis for the composition operators. This
thesis refreshes previous work on the coalgebraic denotation of Rosetta. It then goes
on to define the denotation of the composition operators. A real-world Rosetta example
using all types of composition serves as a demonstration of the power of composition
as well as the clean, modular abstractness it affords the designer.
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Chapter 1

Introduction

Real-world systems tend to be too large and complex to reason about in a single

specification language or domain vocabulary. For one, systems are typically heteroge-

neous in nature, which necessitates different vocabularies for each aspect of the het-

erogenous design. System designs are also naturally done on a component-level basis,

in a block-diagram style. The complexities of an entire system cannot realistically be

expressed at the top level of a design. Rather, to be a scalable, feasible design repre-

sentation, a specification language must allow for many kinds of composition to enable

the designer to separate concerns and build up a system in pieces. Composition in

system-level specification languages not only aids the specifier in managing the size

and heterogeneity of real-world systems, but also supports predictive analysis. Auto-

mated reasoning techniques can be applied to the smaller pieces within the appropriate

domain vocabulary and knowledge, rather than trying to apply automated reasoning to

a monolithic specification [Frisby et al., 2011].

The Rosetta specification language [Alexander, 2006, Alexander et al., 2000] pro-

vides a semantic structure for system-level design that centers on heterogeneous model

composition. It aims to aid the specifier in meaningfully composing components of
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the system into the whole, or alternatively decomposing the whole system into specific

parts. Built-in composition operators give the designer the ability to design complex,

heterogeneous systems in a component-level fashion, building the entire system out

of domain-specific pieces. The basic unit of specification in Rosetta is a component

that collects a set of declarations and states assumptions, definitions, and implications

about those declarations within a single domain. In Rosetta, components are first-class

structures and can be manipulated as data. Three primitive operations are defined for

component composition: structural composition constructs a component that includes

the operand facets as components; conjunctive composition defines a component that

satisfies all given operand components; and disjunctive composition defines a compo-

nent that satisfies one or more of the given operand facets.

Formalizing the semantics of a specification language gives us assurances as to the

validity of the specifications we write with the language. This thesis refreshes previous

work on the coalgebraic denotation of components and facets. While the ideas of the

Rosetta composition operators are not new, they have yet to be formally denoted. This

work fills that semantic void by defining the denotation of the composition operators.

A real-world Rosetta example using all types of composition serves as a demonstration

of the power of composition as well as the clean, modular abstractness it affords the

designer.
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Chapter 2

Rosetta Background

Many complex systems have fundamental requirements that cannot be expressed

in one common domain. Thus, such systems cannot be easily specified using one

common semantics. For example, embedded systems may contain digital and ana-

log components that must communicate; a house is at once a load-bearing structure,

an electrically wired system, an HVAC system, and must obey certain accessibility,

zoning, and safety regulations; and an aircraft must fly, consume power, and deliver

entertainment to its passengers. In each case, different views of the same entity must

be satisfied to successfully construct an iPod, a house that passes all inspections, or an

aircraft in which people will fly. Yet, each view requires some specialized or expert

knowledge to express the requirements. No single language can encompass all of these

views simultaneously for any system of even marginal complexity.

Rosetta accommodates these multiple specification views by providing a framework

for characterizing these views, called domains [Streb et al., 2006, Streb and Alexander,

2006]. Each domain defines a domain-specific modeling vocabulary and semantics for

representing information related to a specification aspect. The basic building blocks of

Rosetta are components and facets. A component defines assumptions, definitions, and
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implications over a set of declarations. A facet is a component with no assumptions

or implications. Every facet models a specific system aspect by extending a domain

with problem specific definitions. For example, a digital adder might be written in the

discrete_time domain while a filter might be written in the frequency domain. In

these cases, the domain is like the type of the facet.

Rosetta includes a pre-defined domain hierarchy shown in Figure 2.1. Additionally,

a designer may extend the domain hierarchy to include a new domain with more specific

knowledge or to write models using a new semantic basis. This knowledge can be as

simple as a set of declarations and related axioms or as complicated as the domain

requires.

The Rosetta domain hierarchy forms a complete lattice ordered by theory homo-

morphism. In Figure 2.1, arrows define extension resulting in more concrete domains.

Inverse arrows define abstractions resulting in more abstract domains. Together, these

relationships form a Galois connection [Streb et al., 2006, Streb and Alexander, 2006]

between adjacent domains. This relationship is critical when viewing facet transforma-

tion as moving among domains in the lattice.

Figure 2.1.: The lattice of domains in Rosetta.

As specifications can be written in multiple domains, a mechanism is needed for

meaningfully combining information represented in facets from those various domains
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that construct the entire specification. In Rosetta, interactions provide ways to reason

about specifications from different domains. Just as users can extend domains with

new domains, they can define interactions between domains. The interaction construct

describes how information flows between two domains – as the name suggests, how two

domains interact with each other. In this way, the design of the Rosetta language does

not attempt to support all conceivable domains by itself, but instead offers a framework

in which the appropriate domains and interactions may be constructed.

2.1 Building Blocks

The basic specification structuring unit in Rosetta is the component or facet. A

component definition extends a particular domain with definitions, assumptions, asser-

tions, and implications. Components may have inputs and outputs that allow them to

be parameterized and to communicate with other specification constructs. The terms

within a component may either be Boolean expressions written in Rosetta’s expression

language or may instantiate other components to define structural, hierarchical specifi-

cations. Since it is common to not need the assumptions or implications of a compo-

nent, facets are more commonly seen in Rosetta than the more general components, as

facets are simply components with no assumptions or implications.

f a c e t h a l f A d d e r ( x , y : : input b i t ;
s , c : : output b i t )

: : s t a t e _ b a s e d i s
begin

s ’= x xor y ;
c ’= x and y ;

end f a c e t h a l f A d d e r ;

Figure 2.2.: Half adder specification.
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The example halfAdder facet shown in Figure 2.2 has two input bits, x and y,

and sum and carryout outputs, s and c, respectively. The domain of the facet is

state_based, as the sum and carry are computed for the next state, given the current

inputs. The next states, denoted by a “ticked” symbol, of the outputs are constrained

by Boolean expressions that equate them with values calculated from current state vari-

ables. This intentionally follows closely the convention used by hardware designers

writing VHDL [Ins, 1994] or Verilog [IEE, 1995].

In the following sections we use these basic constructs – components, facets, and

domains – to explore three types of composition built in to Rosetta. The three types of

composition allowed in Rosetta are structural, conjunctive, and disjunctive composi-

tion. Each type of composition is motivated, described, and a Rosetta example of each

type demonstrates its use.

2.2 Structural Composition

Structural, or hierarchical composition allows the designer to specify a system as

a collection of components. Structural decomposition and composition is a common

method of system design where components are composed into systems. This type

of composition is readily understood as component instantiation or inclusion. It is

extensively used by hardware design languages such as VHDL, Verilog, SystemVerilog

[Acc, 2002] and SystemC [Grötker et al., 2002] or software architecture specification

languages [Allen and Garlan, 1997, Nuseibeh et al., 2003].

Structural composition allows the designer to reuse models of components, and

to build up systems out of these components. The concept of structural composition

provides the semantic tool for specifying systems in a manner that reflects how they

are already designed, allowing direct representation of the structure already inherent in

6



the system being specified. Thus, the reusable units in a specification will mirror the

recurring units throughout the actual structure of the system. This is common for com-

posable elements in a hierarchical specification that is particularly popular in hardware

design.

Continuing with the halfAdder example from the previous section, we now cre-

ate the fullAdder facet by instantiating two halfAdders and appropriately intercon-

necting their input and output parameters. The resulting specification is shown in

Figure 2.3.

f a c e t f u l l A d d e r ( x , y , c i : : input b i t ;
s , co : : output b i t )

: : s t a t e _ b a s e d i s
s1 , c1 , c2 : : b i t ;

begin
ha1 : h a l f A d d e r ( x , y , s1 , c1 ) ;
ha2 : h a l f A d d e r ( s1 , c i , s , c2 ) ;
co ’ = c1 or c2 ;

end f a c e t f u l l A d d e r ;

Figure 2.3.: Structural full adder.

The fullAdder uses three internal variables, s1, c1 and c2 to share information

between the instantiated halfAdders. The fullAdder uses structural composition im-

plemented as facet inclusion to create the traditional implementation of a full adder us-

ing two half adders. The output, s, of fullAdder is constrained through the constraints

given by halfAdder, while co is constrained through a new Boolean expression.

By instantiating the halfAdder facet, we get a distinct unit with the given parame-

ters applied and with the equality constraints over that facet enforced. The fullAdder

facet instantiates two halfAdders. Their instantiations are separate from one another,

and the only relation between them is their sharing of the parameters s1 and c1. There

is no depth limit to hierarchical composition; we could just as easily use fullAdder
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instantiations to create ripple carry adders for inclusion in an ALU, and could then in-

stantiate an ALU in a CPU design, instantiate the CPU in an embedded systems design,

continuing as far as necessary.

This composition is available at any level of the specification from simple combina-

tional circuits through entire processors, embedded systems, and systems-of-systems.

As a more complex example, Figures 2.4 and 2.5 show how a simple structural CPU

model is constructed from components in the canonical fashion.

Figure 2.4.: Structural CPU block diagram.

Limiting ourselves to just hierarchical composition has drawbacks, however. We

are required to define all behavior and constraints in place. Any non-functional behav-

iors would necessarily be involved in the same specifications that defined the behavior.

Conjunctive composition alleviates this problem by adding a ‘horizontal’ composition

that allows two specifications to represent the same unit, both constraining what that

system is and how that system behaves.

8



f a c e t c o n t r o l U n i t ( . . ) : :HW . .
f a c e t a l u ( . . ) : :HW . .
f a c e t r e g F i l e ( . . ) : :HW . .
f a c e t memory ( . . ) : :HW . .

f a c e t cpu ( c l k ) : : HW i s
e n a b l e : : b i t ;
i n s t r u c t i o n , A, B , C : : word ;
addressA , addressB , addressC , aluOP : : n i b b l e ;
memControl : : b i t V e c t o r ;

begin
c : c o n t r o l U n i t ( i n s t r u c t i o n , memControl ,

addressA , addressB , addressC ,
enab l e , aluOP ) ;

a : a l u ( aluOp , A, B , C ) ;
r f : r e g F i l e ( c lk , enab l e , addressA , addressB ,

addressC , A, B , C ) ;
m: memory ( c lk , memControl , C ) ;

end f a c e t cpu ;

Figure 2.5.: Structural CPU example.

2.3 Conjunctive Composition

Specification conjunction allows the designer to specify multiple views of a single

component and compose them into a single model. As such, specification composition

provides language level support for separation of concerns. Conjunctive composition is

done through the product operator, ∗. We can define a facet f 3 as the product of facets

f 1 and f 2 by saying

f a c e t f3 = f1 ∗ f2 ;

Using specification conjunction a system designer may specify functional require-

ments that define what a system does separately from physical constraints such as re-

source limitations, available implementation fabrics, and usage assumptions. Conjoin-

ing the resulting specifications allows concurrent design, modeling all aspects simulta-

9



neously.

Similarly, using specification conjunction, a designer may specify system behavior

separately from implementation architecture specifics. This is a positive feature sup-

porting co-design applications where a system designer should define the functional

requirements of a component without tying the specification to particular hardware or

software architecture details [Peck, 2011]. Conjoining the resulting specifications al-

lows mapping of system requirements to individual system components.

As an example of how Rosetta supports specification at the language level, con-

sider the functional behavior definition for a QAM modulator with encryption [Kim-

mell et al., 2008] in the qamAESArch facet in Figure 2.6. In the structure1 and

structure2 facets, we define two alternative non-functional views of the same system

that differ by requiring the sub-components to be implemented in hardware or software

in different configurations.

As specified, the two models are independent – nothing has composed the functional

and non-functional models. We use the facet product operator * to define the conjunc-

tive composition of the qamAESArch facet with each non-functional requirements facet

to describe two separate implementations in Figure 2.7.

This composition requires any resulting implementation to satisfy both facet specifi-

cations simultaneously – both in terms of constraining the domains and all definitions in

the conjoined facets. Thus, implementation1 is constrained by domains static and

fabric, and by the definitions of code, buff1, enc, buf2 and modulate of behavior,

and the code, buff1, enc and modulate as defined in structure1. This composition

searches for terms within the two facets with the same names, that are then similarly

conjoined. The overall composed entity therefore must have within it one term for each

shared name that satisfies both sets of requirements.

10



f a c e t qamAESArch
( i : : input word ( 2 ) ; o : : output r e a l ;

f : : input f r equencyType ;
l e n g t h : : de s ign keyLengthType ;
k : : input word ( l e n g t h ) ) : : s t a t i c i s

ho : : b i t ;
a e s i : : word ( 1 6 ) ;
mi : : word ( 2 ) ;

begin
code : h u f f E n c o d e r ( i , ho ) ;
b u f f 1 : b u f f e r ( ho , a e s i ) ;
enc : a e s E n c r y p t o r ( a e s i , aeso , l e n g t h , k ) ;
b u f f 2 : b u f f e r ( aeso , mi ) ;
modu la t e : qamModulator ( mi , o , f ) ;

end f a c e t qamAESArch ;

f a c e t s t r u c t u r e 1 ( ) : : f a b r i c i s
begin

code : ha rdware ( fpga ) ;
b u f f 1 : ha rdware ( fpga ) ;
enc : ha rdware ( c r y p t o ) ;
b u f f 2 : ha rdware ( fpga ) ;
modu la t e : ha rdware ( fpga ) ;

end f a c e t s t r u c t u r e 1 ;

f a c e t s t r u c t u r e 2 ( ) : : f a b r i c i s
begin

code : ha rdware ( fpga ) ;
b u f f 1 : ha rdware ( fpga ) ;
enc : s o f t w a r e ( p roc1 ) ;
b u f f 2 : s o f t w a r e ( p roc2 ) ;
modu la t e : s o f t w a r e ( p roc2 ) ;

end f a c e t s t r u c t u r e 2 ;

Figure 2.6.: Rosetta conjunction co-design example for a QAM modulator with en-
cryption.

f a c e t i m p l e m e n t a t i o n 1 : : s t a t i c i s qamAESArch ∗ s t r u c t u r e 1 ;
f a c e t i m p l e m e n t a t i o n 2 : : s t a t i c i s qamAESArch ∗ s t r u c t u r e 2 ;

Figure 2.7.: Rosetta conjunction specifying two implementations of a QAM modulator
with encryption.
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With hierarchical and conjunctive composition, we are approaching a designer’s

goals of reuse and separation of concerns. However, we are still limited in that a con-

junctive facet must meet all definitions and constraints of each facet in the product. The

designer may desire the ability to compose separate aspects of a function, while requir-

ing only one of several sets of definitions and constraints to hold. In the next section,

we show how disjunction fulfills this desire to maintain separation of concerns under

this situation.

2.4 Disjunctive Composition

Specification disjunction allows the designer to specify alternate views of a system

where only one view must be satisfied at a given time. Disjunctive composition is a

means of separately defining alternatives of behavior or constraints within a system in

such a fashion that they can be connected afterwards. Disjunctive composition is done

through the sum operator, +. We can define a facet f 3 as the sum of facets f 1 and f 2

by saying

f a c e t f3 = f1 + f2 ;

The disjunction, or sum, of two facets is itself a facet where alternate definitions are

provided. At least one definition needs to be valid in a valid sum, though it does not

necessitate mutual exclusivity. All “alternate” definitions might hold in a valid sum. In

the running co-design example, we might use disjunction to define possible structures.

f a c e t a n y S t r u c t u r e : : f a b r i c i s s t r u c t u r e 1 + s t r u c t u r e 2 ;

Figure 2.8.: Rosetta disjunction example allowing multiple possible structures.

In Figure 2.8, anyStructure is a composed facet that must satisfy either structure1’s

behavior and constraints or structure2’s behavior and constraints. The disjunction al-
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lows for both to be satisfied at once – it is not an exclusive or. Often, in practice the

terms of the facets being composed will themselves disallow both being satisfied at

once.

We can now define a system specification that shows that both structures might

be valid in our co-design specification. Two available (and semantically equivalent)

implementations are show in Figure 2.9.

f a c e t i m p l e m e n t a t i o n 3 : : s t a t i c i s
qamAESArch ∗ a n y S t r u c t u r e ;

f a c e t i m p l e m e n t a t i o n 4 : : s t a t i c i s
qamAESArch ∗ ( s t r u c t u r e 1 + s t r u c t u r e 2 ) ;

Figure 2.9.: Co-design implementations using disjunction.

In these implementations, we require behavior to be satisfied, and we require ei-

ther structure1 or structure2 to be satisfied. This sort of implementation would

allow us to consider a larger system containing this implementation without having to

select one structure and exclude the other. We can define the behavior once, and have

reuse with respect to the different possible implementation structures and details of the

system. At the same time, this larger system is not leaving the structure entirely abstract

as it explicitly lists the structures that are allowed, without selecting exactly one.

Disjunction allows the designer to specify multiple pieces of a component and com-

pose them to make the whole. In this way, the designer can isolate functionalities. For

instance, if an instruction or command in a system can be one of many options, the

designer can specify each separately and compose them to create the entire instruction.

This approach is also used in the specification language Z, via disjoints [Jim Woodcock,

1995].

Consider the design of a simple processor with a variety of different instructions

shown in Figure 2.10. When writing the system, the designer may want to write each
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of the processor’s behavior for each instruction separately, and compose them to create

the processor’s complete behavior.

domain p r o c e s s o r : : s t a t e _ b a s e d i s
r e g i s t e r s : : array ( 1 6 , word ) ;
pc : : word ;
i n s t r u c t i o n : : word i s memFetch ( pc ) ;
op : : n i b b l e i s decodeOp ( i n s t r u c t i o n ) ;

begin
end domain p r o c e s s o r ;

f a c e t p l u s : : p r o c e s s o r i s
s r c 1 : : n i b b l e i s decodeSrc1 ( i n s t r u c t i o n ) ;
s r c 2 : : n i b b l e i s decodeSrc2 ( i n s t r u c t i o n ) ;
d e s t : : n i b b l e i s decodeDes t ( i n s t r u c t i o n ) ;

begin
op = plusOp ;
r e g i s t e r s ’= r e p l a c e ( r e g i s t e r s , d e s t ,

r e g i s t e r s [ s r c 1 ] +
r e g i s t e r s [ s r c 2 ] ) ;

pc ’ = pc + x " 0002 " ;
end f a c e t p l u s ;

f a c e t jmp : : p r o c e s s o r i s
begin

op = jmpOp ;
r e g i s t e r s ’ = r e g i s t e r s ;
pc ’ = newPC ( i n s t r u c t i o n ) ;

end f a c e t jmp ;

f a c e t p r o c e s s o r B e h : : p r o c e s s o r i s p l u s + . . . + jmp ;

Figure 2.10.: Processor disjunction example.

The processor domain is defined to extend the state_based domain with dec-

larations for a 16-register register file, registers, and a program counter, pc. Using

a function memFetch :: word -> word, it constrains the instruction to be the

value fetched from memory at address pc. Similarly, using a function to decode the
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instruction, decodeOp :: word -> nibble, the domain constrains the op.

The behavior for each op can then be written in its own facet with this new processor

domain. For instance, the plus facet enforces the constraint that op be the operation for

addition. Since the domain defines registers and pc, the plus facet must provide the

next state constraints for these. The register file is updated using the replace function,

which replaces the given index parameter with the new given value, and leaves the rest

alone. In this way, we correctly define the framing rules by updating the destination

register while leaving the rest unchanged. The facet also updates the pc’s next state

simply by adding 2 to the current state.

Similarly, the jmp facet constrains that op must be the jmpOp, explicitly states that

registers does not change, and updates pc with the newly calculated program counter

value given by the function newPC :: word -> word. The other processor instruc-

tions would be written in the same fashion.

Given the individually written facets for each instruction, we can disjunct them

to create a new facet, processorBeh, that defines the behavior of the processor for

all possible operations. Since each individual facet has the domain processor, the

disjuncted facet will as well. It should be noted that, although facet disjunction does

not outright force mutual exclusivity, in this case only one facet in the conjunction can

be consistent, since the decoded op will only match one possible processor operation.

The disjunction in this processor example illustrates two major benefits. The first

benefit is the notion that the designer can separate the concerns of the different opera-

tions and focus on the behavior of one instruction at a time. The second benefit is the

ease of extensibility of the processor design. New instructions can be written and added

in a clear way by adding one more facet to the disjunction. This allows for the modu-

larity a programmer is accustomed to utilizing, at a per-behavior level, and ensures that
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every facet in the disjunction is constraining the needed pieces of the facet — in this

case, the registers and pc. This strategy can be of great value for more complicated

specifications.
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Chapter 3

Coalgebraic Denotation

This chapter is heavily based on previous work [Kong et al., 2003] and builds upon

that work. The previous work sets up two parts to denoting a facet – defining the

coalgebraic system structure, and denoting the syntactic pieces of a facet. The definition

of coalgebraic system structure lacked a framework for the general case of denoting any

facet. It describes the structure and denotes some specific facets. This work expands

upon that, giving the framework for the general case. The previous work thoroughly

describes the general case of denoting the syntactic pieces of a facet. However, we have

updated these with some newer Rosetta requirements. The previous work also lacked

discussion of components, rather defining the denotation for only facets. This work

adds the details of component denotation.
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3.1 Facet Syntactic Denotation, Refreshed

Facets are denoted in two parts. One part is defining its behavior as a coalgebraic

structure. The abstract state of a facet is its observable behavior, which itself can be

viewed as a system, and is therefore a coalgebra. The other part looks at the facet

pieces, and denotes those syntactic pieces. This step goes inside the facet definitions

and gives the semantic details of the facet.

First consider the denotation of the syntactic pieces of a facet. Recall the general

syntactic parts of a typical facet f are

f a c e t f (# p a r a m e t e r s # ) : : # domain# i s

# v a r i a b l e s #

begin

# t e r m s #

end f a c e t f ;

Rosetta facets consist of observers (from parameters and variables and any variables

that come from the domain definition), a domain, and sets of definitions, or terms.

Every facet has only one set of observers. These observers are essentially the interface

of the facet. There can be multiple sets of terms, though it is most typical to only have

one set.

Though in previous work, facets were considered 4-tuples, <l,O,D,T>, we now de-

fine them as 3-tuples, <O,D,T> where

• l is the label of the facet, or the facet name.

• O contains the observers (parameters and variables, including all domain

variables) of f . So, O = (O1,O2, ...,On) where each Oi is an observer of

f .
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• D is the domain of the components.

• T = [T1,T2, ...Tn], where each Tj is a set of denotations of f ’s terms.

We now choose to exclude the label to treat it more like a lambda, in the lambda

calculus. Essentially, we are creating an interface, and the label of that interface is

irrelevant in describing the system behavior. Each facet instance would be unique,

and have its own label. The label of the facet definition is extraneous, and thus now

omitted. Also, this work adds the notion of allowing multiple bodies within a facet

or component. The motivation for this change is explained in Section 4.2.1.2. The

denotation has been refreshed to reflect these changes.

Any specification of a facet is consistent if at least one of the sets of terms is consis-

tent. Note that the majority of facets will only have one set of terms. The denotations

for the terms themselves has already been done [Kong et al., 2003]. The following

section describes these denotations to finish off the details of facet denotations.

There are three valuation functions, E, O, and V , for expressions, operators, and

values, respectively, where

• EJεK : Environment →Values

• OJΩK : Universal →Universal →Universal (where Universal includes all val-

ues, including lambdas)

• V JvK : Constants→Values

As an example of the use of these valuations, consider the denotation of some prelude

terms. As part of the language prelude, here is a sampling of typical Rosetta terms.

• EJξ K(envt)≡ (envt_value(ξ ))
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• EJvK(envt)≡V JvK

• EJεΩε ′K(envt)≡ OJΩK〈EJεK(envt),EJε ′K(envt)〉

• OJ=K≡ λ 〈v1,v2〉.i f v1 = v2 then True else False

where

• ξ corresponds to identifiers

• envt is the environment

• v corresponds to constant values

• ε is an expression

• Ω is a binary operator

• λ 〈parameters〉.body is a lambda expression

• (envt_value(ξ )) means the value of ξ in the environment

While this does not explicitly denote every possible syntactical term in Rosetta,

these prelude terms give a general basis for denoting terms. The remaining terms would

be denoted in the same fashion, with these three valuation functions.

3.2 Component Syntactic Denotation

In preious Rosetta work, a component was denoted as three facets – one for assump-

tions, one for definitions, and one one for implications. Since then, the component has

become the basic building block, while a facet is now a special case of a component

with no assumptions or implications. Therefore, the denotation of components has
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not previously been addressed. The observers and domain details of components and

facets are identical, so the denotations only differ in that the bodies of the component

denotation must also include the assumptions and implications.

Recall the general syntactic parts of a typical component c are

component c (# p a r a m e t e r s # ) : : # domain# i s

# v a r i a b l e s #

begin

assumptions

# assumptions #

end assumptions ;

d e f i n i t i o n s

# t e r m s #

end d e f i n i t i o n s ;

i m p l i c a t i o n s

# i m p l i c a t i o n s #

end i m p l i c a t i o n s ;

end c ;

Again, we will consider a component a 3-tuple. < O,Dom,Bodies > and where

• O contains the observers (parameters and variables, including all domain

variables) of c. So, O = (O1,O2, ...,On) where each Oi is an observer of

c.

• Dom is the domain of the components.

• Bodies = [(A1,D1, I1),(A2,D2, I2), ...,(Ap,Dp, Ip)], a list of triples containing

each of the following:
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• Each Ai is the set of denotations of the assumptions in the ith triple in c

• Each Di is the set of denotations of the definitions in the ith triple in c

• Each Ii is the set of denotations of the implications in the ith triple in c

So rather than just sets of terms, there are now sets of triples containing all assump-

tions, definitions, and implications. A consistent component is one in which every term

within one set of (assumptions, definitions, implications) in the component is consis-

tent. Note that the majority of components will only have one set of assumptions, def-

initions, and implications. All assumptions, definitions, and implications are denoted

with the same valuation functions previously described for facets.

3.3 Abstract Syntax as Coalgebra

The coalgebraic structure of facets is previously described [Kong et al., 2003], but

lacked a denotation for the general case. These techniques were used to denote the

coalgebraic structure of specific facets, but there was no general denotation to apply to

any facet. Thus, this work generalizes what was previously done.

The behavior, or abstract state, of a component or facet is defined by its observers.

This means there is no distinction between the coalgebra denoted by a component and

a facet. Consider the abstract state, S, of the facet f . S is defined by all possible obser-

vations of f , meaning S is the same as ON. We will see that S is the coalgebra denoted

by f . The behavior of a facet is what we observe of that facet over transitions. So, the

system can be thought of as all possible observations. Given a transition function, ξ ,

we take a step, which results in the observations from that transition as well as the rest

of the system behavior. So we can define the structure of f , ON ξ→ O × ON, where we

describe the behavior of the facet as a sequence of observations of the facet.
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We can then give the commuting diagram.

S
Beh

- ON
map( f )

- ON
D

O×S

ξ

? id×Beh
- O×ON

obs_ f nc

? f ×map( f )
- OD×ON

D

〈obs_domain,rest〉

?

where the objects in the diagram are

• S : The abstract state of the system corresponding to f ’s behavior

• ON : All possible behaviors/observers of each state of the system

• ON
D : The observations of the system state abstracted to f ’s domain

• O×S : The observations on state transitions

• O×ON : The behavior of the system, including the behavior of the observa-

tion on a transition as well as the behaviors of the possible next states

• OD×ON
D : The observations of system states, including the observation on

a transition, as well as the observations of possible next states, abstracted to

f ’s domain

the arrows are

• Beh : Gives the behavior of the system states in terms of the observation of

each state

• map(f) : The function f gives the abstraction from an observable behavior in

f of a system state to the observation of the domain variables. Mapping f over

the observable behaviors then gives the observations of the domain variables

for each observable state behavior of f .

23



• ξ : The transition function

• obs_fnc : A function to give the observation from taking one step; this in-

cludes the observation of the current state as well as the possible next states

(the rest of the behavior)

• 〈obs_domain,rest〉 : Abstracted to the domain level, obs_domain describes

the function to take an observation, and rest is the function that gives all

possible future observations of the system (for the state_based domain, this

is < curStateD, possNextD >)

• id×Beh : id is the identity function, Beh, as described above

• f ×map( f ) : f and map(f) as described above

The commuting diagram shows that the facets are described via their observations

over transitions. Furthermore, we can abstract these observations to observations within

their domains, or their domain coalgebra. Every facet with a given domain observes the

variables defined by that domain. When we abstract a facet’s coalgebra to its domain

coalgebra, we get the behavior from observing only the domain variables. Essentially,

we start with the abstract state of the facet. We abstract to get the behavior of the facet,

or facet coalgebra. We can abstract once more to get the behavior from only observing

domain variables. The commuting diagram shows that domain coalgebras are final,

meaning they are complete in the sense that any facet in that domain can be uniquely

mapped/abstracted to that domain. Essentially, this reiterates that every facet with a

given domain extends that domain, and therefore observes the variables of that domain.
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3.4 Example Facet Denotation

Consider the counter facet as an example denoted to a coalgebra as described above.

f a c e t c o u n t e r ( en : : input b i t ;
c l k : : input b i t ;
r s t : : input b i t ;
o u t : : output word ( 3 )
) : : s t a t e _ b a s e d i s

i n t e r n a l : : word ( 3 ) ;

begin

t 1 : i f r s t =1 then i n t e r n a l ’ = " 000 "
e l s e i f ( en =1 and c l k =1 and c lk ’ e v e n t ) then

i n t e r n a l ’ = case i n t e r n a l i s
b " 000 " −> b " 001 " |
b " 001 " −> b " 010 " |
b " 010 " −> b " 011 " |
b " 011 " −> b " 100 " |
b " 100 " −> b " 101 " |
b " 101 " −> b " 110 " |
b " 110 " −> b " 111 " |
b " 111 " −> b " 000 "

end case ;
e l s e i n t e r n a l ’= i n t e r n a l ;
end i f ;

t 2 : out ’ = i n t e r n a l ’ ;
end f a c e t c o u n t e r ;

Figure 3.1.: Example Facet Denotation

Let S be the set of states, or all the observations, of the counter facet. The system

defined by counter is a stream from S to S, exhibiting observations. The observations

are the 3 input bits, the output 3-bit bit vector (word(3)), and the internal 3-bit bit

vector of the facet, as well as the the set of states used in the specification of counter.
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The coalgebraic structure shows the observation from taking one transition with the rest

of the possible transitions, and follows in Figure 3.2.

(States×bit×bit×bit×word(3) ×word(3))N ξ→
(States×bit×bit×bit×word(3)×word(3)) ×

(States×bit×bit×bit×word(3)×word(3))N

Figure 3.2.: Coalgebraic Structure of counter Facet

We can then give the commuting diagram. For ease of reading, let Obs = (States×

bit×bit×bit×word(3)×word(3)).

X
Beh

- ObsN
map( f )

- StatesN

〈Obs〉×X

ξ

? id×Beh
- Obs×ObsN

obs_ f nc

? f ×map( f )
- States×StatesN

〈curStateD, possNextD〉

?

Where the objects in the diagram are

• X : The set of states of the system

• ObsN = (States× bit × bit × bit ×word(3)×word(3))N : The behaviors of

each state of the system

• StatesN : The observations of system states abstracted to the state_based

domain

• 〈Obs〉×X = 〈States×bit×bit×bit×word(3)×word(3)〉×X : The obser-

vations on transitions

• Obs×ObsN = (States×bit×bit×bit×word(3)×word(3))×(States×bit×

bit×bit×word(3)×word(3))N : The behavior of the system, including the
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behavior of the observation on a transition as well as the behaviors of the

possible next states

• States×StatesN : The observations of system states, including the observa-

tion on a transition as well as the observations of possible next states, ab-

stracted to the state_based domain

And the arrows are

• Beh : Gives the behavior of the system states in terms of the observation of

each state.

• map(f) : The function f gives the abstraction from an observable behavior in

add_beh of a system state to the observation of the domain variables. Map-

ping f over the observable behaviors then gives the observations of the do-

main variables for each observable state behavior of add_beh.

• ξ : The transition function

• obs_fnc : A function to give the observation from taking one step; this in-

cludes the observation of the current state as well as the possible next states

(the rest of the behavior)

• 〈curStateD, possNextD〉 : Like obs_fnc, but for the state_based domain

• id×Beh : id is the identity function, Beh as described above

• f ×map( f ) : f and map(f) as described above

The denotation of each term in counter is as follows:
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t1 T Ji f rst = 1
then internal′ = ”000”
elsei f (en = 1 and clk = 1 and clk′event)
then internal′ = case internal is

b”000”−> b”001”|
b”001”−> b”010”|
b”010”−> b”011”|
b”011”−> b”100”|
b”100”−> b”101”|
b”101”−> b”110”|
b”110”−> b”111”|
b”111”−> b”000”

end case;
else internal′ = internal;
end i f ;K envt

≡ i f ((envt_value(rst)) = 1)
then (envt_value(internal))((envt_value(next))

(envt_value(α))) = b”000”
elsei f ((envt_value(en) = 1 and envt_value(clk) = 1)

and ((envt_value(clk))(envt_value(event))))
then (envt_value(internal))((envt_value(next))

(envt_value(α))) =
case(envt_value(internal))is

b”000”−> b”001”|
b”001”−> b”010”|
b”010”−> b”011”|
b”011”−> b”100”|
b”100”−> b”101”|
b”101”−> b”110”|
b”110”−> b”111”|
b”111”−> b”000”

end case;
else (envt_value(internal))((envt_value(next))(envt_value(α)))

= envt_value(internal)
simplified t1 i f (rst = 1)

then internal(next(α)) = b”000”
elsei f ((en = 1 and clk = 1) and clk(event))
then internal(next(α)) =

case internal is
b”000”−> b”001”|
b”001”−> b”010”|

28



b”010”−> b”011”|
b”011”−> b”100”|
b”100”−> b”101”|
b”101”−> b”110”|
b”110”−> b”111”|
b”111”−> b”000”

end case;
else internal(next(α)) = internal

t2 T Jout ′ = internal′Kenvt

≡ i f
(
(envt_value(out put))((envt_value(next))(envt_value(α))) =

(envt_value(internal))((envt_value(next))(envt_value(α)))
)

then True else False
simplified t2 out put(next(α)) = internal(next(α))

So the denotation of counter is

< (en : input bit,clk : input bit,rst : input bit,out : out put word(3),

internal : word(3)),

State_based,

[[simpli f iedt1,simpli f iedt2]]

>

with coalgebraic structure given above in Figure 3.2.

The first part of the denotation gives all observers of counter, which includes all

parameters and variables of the counter. Next is the domain, which is State_based.

Then is the list of denoted term lists. As with most facets, this facet only has one

term body. Therefore, there is only one list of terms. That list contains the denotations

for t1, and t2, shown above. The denotation of counter follows the two parts of a

facet denotation. First, the observers form the coalgebraic structure of the denotation.

This consists of all possible states of counter’s behavior, and the observations over the

possible transitions. Second, the syntactic pieces of counter make up the rest of the

denotation. These pieces are the observers, domain, and denotations of all terms within
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counter.

3.5 Component Consistency

Components and facets may have more than one body, but only one body needs to be

consistent. Therefore, a consistent component is one in which every term within one set

of (assumptions, definitions, implications), corresponding to one body, in the compo-

nent is consistent. Similarly a consistent facet is one in which every term within at least

one set of terms, corresponding to one body, in the facet is consistent. A Boolean term,

or assertion, is consistent if it is true. In other words, if no term is false, then false has

not been asserted, so the component is consistent. In components, the assumptions and

definitions are typically used in the implications, i.e. (assumptions∧de f initions =⇒

implications). All instantiated facets within the instantiating facet must themselves be

consistent given their formal parameters replaced with the actual parameters. Essen-

tially, consistency is a structurally recursive or inductive concept, in that something

is consistent if all of its parts are consistent (the base case being true boolean asser-

tions). So a facet with only assertion terms is consistent if all of its assertions hold true.

Once that facet is instantiated in another facet, the instantiating facet is consistent if its

assertions hold and if the instantiated facet holds under the instantiation.

Using our counter example, an implementation of counter is consistent if the as-

sertions simpli f ied t1 and simpli f ied t2 hold true. Any facet that instantiates counter

is only consistent if that instantiation of counter, which replaces counter’s formal pa-

rameters with actual parameters, is consistent. An inconsistent component is invalid, in

that we can say nothing about it. There is no basis for reasoning about an inconsistent

component.
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Chapter 4

Composition Semantics

We’ve already defined the denotation for components and facets. This section will

show how we denote composed components and facets. First, we’ll look at sum and

product. For each, we give the denotation of the resulting sum or product, respectively.

We explain how the result is constructed, as well as the validity of the domain of the

result. We also describe how the result is still a valid component/facet, and exhibits

the desired behavior appropriate to sum and product. Each section gives an example to

illustrate the construction and denotation of the sum or product. We then move on to

instantiation and inclusion, noting the subtle distinction between the two. We give an

example of each, followed by each denotation. We end the chapter with a discussion

of homomorphisms. While not a true composition operator, it is an important factor in

relating and reasoning about multiple components and facets.

4.1 Preliminaries

Product and sum are binary operators. As such, we will define two components,

c1 and c2 as operands in future discussion. Say c1 and c2 are components denoted as
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< O1,Dom1,Bodies1 > and < O2,Dom2,Bodies2 >, where

• O1 and O2 are the observers (parameters and variables, including all domain

variables) of c1 and c2, respectively. So, O1 = (O11,O12, ...,O1n) and O2 =

(O21,O22, ...,O2m), where each O1i is an observer of c1 and each O2 j is an

observer of c2.

• Dom1 and Dom2 are the domains of the components.

• Bodies1 = [(A11,D11, I11),(A12,D12, I12), ...,(A1p,D1p, I1p)], a list of triples

containing each of the following:

• Each A1i is the set of denotations of the assumptions in the ith triple in

c1.

• Each D1i is the set of denotations of the definitions in the ith triple in

c1.

• Each I1i is the set of denotations of the implications in the ith triple in

c1.

• Bodies2 = [(A21,D21, I21),(A22,D22, I22), ...,(A2q,D2q, I2q)], like in Bodies1

Similarly, when needed, we will define two facets, f 1 and f 2, as the operands in fu-

ture facet composition discussion. Say f 1 and f 2 are facets denoted as < O1,D1,Terms1 >

and < O2,D2,Terms2 > where

• O1 and O2 are the observers (parameters and variables, including all domain

variables) of f 1 and f 2, respectively. So, O1 = (O11,O12, ...,O1n) and O2 =

(O21,O22, ...,O2m), where each O1i is an observer of f 1 and each O2 j is an

observer of f 2.
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• D1 and D2 are the domains of the facets.

• Terms1 = [T11,T12, ...T1m], where each Tjk is a set of terms (like sets of defi-

nitions in a component) in f 1, likewise for Terms2 = [T21,T22, ...T2n] in f 2.

4.2 Sum

The sum operator allows for disjunctive composition of components and facets. It

gives us the ability to define multiple views of a system, where only one must hold. As

described in Section 2.4, the specifier can separate alternative functionalities and sum

them to create the entire functionality. This section explains how the sum is constructed.

We look at the denotation, explain the validity of the pieces of the denotation and the

resulting component or facet, and give a full example.

4.2.1 Component Sum

Using the definitions of c1 and c2 from above, when we take the sum of two com-

ponents, we get the following:

Say c3 = c1+ c2, then c3 is denoted as < O1 ++O2, Dom1uDom2,

Bodies1 ++Bodies2 > where

• O1 + +O2 = (O11,O12, ...,O1n,O21,O22, ...O2m). Note that duplicates (i.e.

some O1i = O2 j) are excluded. Also note that it is common that O1 ≡ O2 ≡

O1 ++O2. All parameters and variables of both operands are included in the

sum.

• Dom1 uDom2 is the least common domain of Dom1 and Dom2. It is also

common for Dom1 ≡Dom2 ≡Dom1uDom2. The details of the least common

domain are described in Section 4.2.1.1
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• Bodies1++Bodies2 is a simple append yielding [(A11,D11, I11),(A12,D12, I12), ...,

(A1p,D1p, I1p),(A21,D21, I21),(A22,D22, I22), ...,(A2q,D2q, I2q)]. The details

of this append are in Section 4.2.1.2

4.2.1.1 Exploring the Least Common Domain

Rosetta domains and the transformations between domains form the Rosetta domain

lattice [Lohoefener, 2011]. As domains are extended (down the lattice), constraints

are added. Since the domains form a lattice, any two domains on the lattice have a

least common domain, or meet, above them in the hierarchy. So if c1 has domain

Dom1 and c2 has domain Dom2 as described above, when we disjoin them to produce

c3 = c1+ c2, we can safely say that c3 has the domain Dom3 = Dom1uDom2.

Furthermore, because any domain lower in the lattice is more constrained, all defi-

nitions in c1 meet all the constraints of Dom3 and likewise, the definitions of c2 meet

all constraints of Dom3. So no work is necessary to transform the terms in either com-

ponent of the sum into the new domain – they are already in that domain.

It should be noted that the specifier can safely explicitly abstract (moving up the

lattice) or concretize (moving down the lattice) a component into a desired domain

prior to taking the sum to control the domain of the resulting component. For instance,

the designer may want the specificity provided by a more constrained domain. They

may safely transform one of the components into the domain of the other component

prior to taking their sum to gain that specificity.

4.2.1.2 Exploring Bodies1++Bodies2

We can think of sum as a disjunction of components. We have two components that

we sum together, and we know the result is either the first part of the sum or the second
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part of the sum. We need a way of separating the disjoint parts within a summed facet.

Essentially, we need a way of separating entire sets of assumptions, definitions, and

implications, and enforcing that only one of those sets needs to be consistent. This need

prompted the addition of multiple bodies within a component, which was not previously

supported in Rosetta, and is the reason that only one body needs to be consistent for the

component to be consistent.

Say you know your system will behave in one of two ways. With the addition of

multiple bodies, you have two choices for specifying this system. You could explicitly

write a facet with two bodies – one for each behavior.

f a c e t sys tem (# p a r a m e t e r s # ) : : # domain#
begin

#body d e s c r i b i n g b e h a v i o r 1#

begin
#body d e s c r i b i n g b e h a v i o r 2#

end sys tem ;

Alternatively, you could define two components, behavior1 and behavior2. This way

you are able to separate the assumptions, definitions, and assumptions of these two

behaviors into their own components. When behavior1 and behavior2 are summed to

describe the entire system, their assumptions, definitions, and assumptions need to be

reflected in the entire system, though, in a way that allows for the situation that only

one behavior at a time need be enforced. To that end, we have chosen to append each

set of (assumptions,definitions,implications) onto the list of possible behaviors. One

or more of these triples needs to hold in a consistent component. Appending these

(assumptions,definitions, implications) triples gives us exactly the notion of disjunc-

tion we need. Note that it is not always possible to know which body (or bodies)
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is “active” within a specification. There is no notion of tagging that would identify

which set of (assumptions,definitions,implications) is consistent at that time. This is

intentional, as some specifications may not be constrained enough to determine which

option is currently “active.” We opted for a strategy that allows for expressivity and

under-constrained specifications.

4.2.2 Facet Sum

Facets are simply components without sets of assumptions or implications. So the

facet sum is a simplified version of the component sum.

We’ll use the previously defined facets, f 1 and f 2 as the operands of the sum. Say

f 3 = f 1+ f 2. Then it is denoted as < O1 ++O2,D1uD2,Terms1 ++Terms2) > where

• O1 ++O2 = (O11,O12, ...,O1n,O21,O22, ...O2m) as in component sum. Note

that duplicates (i.e. some O1i = O2 j) are excluded. Also note that it is com-

mon that O1 ≡O2 ≡O1++O2. All observers from each operand are included

in the result.

• D1uD2 is the least common domain of D1 and D2 as in component sum. It

is also common for D1 ≡ D2 ≡ D1uD2 Details of the least common domain

are described in Section 4.2.1.1.

• Terms1 ++Terms2 would be [T11,T12, ...,T1m,T21,T22, ...,T2n], where each Ti j

is a set of term. This is similar to the component sum in Section 4.2.1.2,

except since there are no assumptions or implications, there are only sets of

terms (definitions) to append.
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4.2.2.1 Example

Recall our processor example from Figure 2.10 in Section 2.4. Instructions are

fetched and decoded, and based on the decoding, different operations are executed. We

modularly define the execution for each possible instruction. The processor is defined

as the sum of each instruction execution.

Note, this is an example where the different parts of the sum are in fact mutually

exclusive. The first line of each facet asserts that the op is equal to that particular

instruction. That assertion will hold in only one of the facets. For instance, if the op is

decoded as the plusOp, then the assertion op = plusOp will hold in the facet plus, but

in any other facets those assertions will fail. In the jmp facet, the assertion op = jmpOp

will hold, etc. The facet processorBeh is consistent if any of the facets in the sum are

satisfied.

The denotation of this facet is as follows:

< (registers::array(16,word),pc::word,instruction::word is memFetch(pc),

op::nibble is decodeOp(instruction)),

processor,

[[ T J op= plusOp; K ,

T J registers’=replace(registers,dest,registers[src1]+registers[src2]);K,

T J pc’ = pc + x”0002”;K],

... , [ ... ] , ...

[ T J op= jumpOp;K,

T J registers’=registers;K,

T J pc’ = newPC(instruction);K]]

>

All observers are combined. The domain for all of the operands was processor,
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so the domain of the result is still processor. The list of all body terms in the result

contains separate lists of terms from each operand – the lists of terms are all appended

in the result.

4.2.2.2 Sharing

In sum, sharing clauses give us a similar power as domain definitions. In domain

definitions, we add constraints based on our knowledge of that domain. For example,

in state_based, we add the constraints of having a current state and next state. When

we do a facet sum, we have the potential of losing domain information since we may

have to go up the domain lattice to find the least common domain of the summed facets.

However, we may have knowledge of certain constraints that should still be part of each

of those facets. We can add that information to the sharing clause of the conjunction to

enforce those constraints. Note that with facet sum, nothing is automatically shared to

avoid name capture issues. Anything that should be shared must be explicitly added to

the sharing clause.

4.2.2.3 The Resulting Component/Facet

It should be noted that the result of summing two components (or facets) is a valid

component. A valid component/facet would contain valid observers, a valid domain,

and a list of valid bodies/terms. We have appended all observers from each operand to

form the observers of the sum. Since those operand observers were all the parameters

and variables of the operands, the appending of the observers gives us valid parameters

and variables for the sum. We’ve already discussed that the domain of the new facet

exists and is valid. Since we have appended sets of bodies/terms from the operands

together for the sum, we get a list of valid sets of bodies/terms. These are the three
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parts of a component’s (or facet’s) denotation.

Also, since the structure of the component coalgebra is defined over the observers,

we still have a valid coalgebra as the observers,(O1 ++02), are valid. Therefore, the

behavior of the summed component still denotes a coalgebra. The structure of this

coalgebra is

(O1 ++02)N ξ→ (O1 ++O2) × (O1 ++O2)N

4.3 Product

The product operator allows for conjunctive composition of components and facets.

It gives us the ability to define multiple views of a system, where all views must hold.

As described in Section 2.3, the specifier can separate concurrent requirements, often

in different domain vocabularies, and take the product to address all requirements. This

section explains how the product is constructed. We look at the denotation, explain the

validity of the pieces of the denotation and the resulting component or facet and give

an example.

4.3.1 Component Product

Using the definitions of c1 and c2 from above, when we take the product of two

components, we get the following:

Say c3 = c1∗c2, then c3 is denoted as < O1++O2,Dom1uDom2,Bodies1∗∗Bodies2 >

where

• O1 + +O2 = (O11,O12, ...,O1n,O21,O22, ...O2m). Note that duplicates (i.e.

some O1i = O2 j) are excluded.

• Dom1uDom2 is the least common domain of Dom1 and Dom2, as discussed
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in Section 4.3.1.1.

• Bodies1 ∗ ∗Bodies2 is essentially the cross product of Bodies1 and Bodies2,

however there are some intricacies in combining shared items. In the case of

no shared items,

Bodies1 ∗∗Bodies2 =

[(A11 ++A21,D11 ++D21, I11 ++I21), ...,(A1p ++A21,D1p ++D21, I1p ++I21),

(A11 ++A22,D11 ++D22, I11 ++I22), ...,(A1p ++A22,D1p ++D22, I1p ++I22),

...,

(A11 ++A2q,D11 ++D2q, I11 ++I2q), ...,(A1p ++A2q,D1p ++D2q, I1p ++I2q)]

The rest of the details of ∗∗ are addressed in Sections 4.3.1.2 and 4.3.2.

4.3.1.1 Exploring the Least Common Domain

For the same reasons as explained for component sum in Section 4.2.1.1, any two

components have a least common domain and it is safe to use this domain as the domain

for the product, with no additional work necessary as all terms in the product will be in

the least common domain.

4.3.1.2 Exploring Terms1**Terms2

Regardless of shared items in the definitions sections, there is no sharing in the as-

sumptions or implications. Therefore, we always use the simple append operator for

these sets, as done above. Within the sets of definitions, we can have sharing. Since

there is no sharing in the assumptions or implications, we will describe the details of

sharing within the confines of the simpler case of a facet product in Section 4.3.2, as
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facets have no assumptions or implications. The same notion is applied to the append-

ing of definitions in the case of component product.

4.3.2 Facet Product

Facets are simply components without sets of assumptions or implications. So the

facet product is a simplified version of the component product.

We’ll use the previously defined facets, f 1 and f 2, as the operands of the product.

Say f 3 = f 1∗ f 2. Then f 3 is denoted as < O1 ++O2,D1uD2,Terms1 ++Terms2) >,

where

• O1 ++O2 = (O11,O12, ...,O1n,O21,O22, ...O2m). Note that duplicates are ex-

cluded (e.g. O2 j is excluded if some O1i = O2 j).

• D1 uD2 is the least common domain of D1 and D2. We discuss the details

and validity of the least common domain in Section 4.3.1.1.

• Terms1 ∗∗Terms2 =

[T11 ++T21,T12 ++T21, ...,T1m ++T21,

T11 ++T22,T12 ++T22, ...,T1m ++T22,

...,

T11 ++T2n,T12 ++T2n, ...,T1m ++T2n]

if there is no sharing. However, for any shared items, their definitions must

be conjoined.

If there are no shared definitions in Terms1 and Terms2, then Terms1 ∗∗Terms2 is

the cross product of all of the sets of terms (each Tjk) in Terms1 and Terms2, where

all of the terms in each part of the cross product are appended, as done above. We
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are constraining f 3 with all of the constraints of f 1 and all of the constraints of f 2.

Often, these definitions are constraining the same item. Any terms that have the same

labels are considered shared items. Consider one cross product, say Tab ++Tcd within

T1 ∗∗T2. If Tab and Tcd each contain a term with label sharedItem, then those items are

conjoined into one item within Tab ++Tcd . Let’s look at some examples of the kinds of

shared items encountered.

Rosetta terms are either boolean assertions or are instantiated facets. When we

conjoin facets, we must essentially conjoin their terms. The conjunction of two boolean

assertions a1 and a2 would then instinctively be a1 and a2. For conformity, we can use

the ∗ operator in Rosetta, which subsumes and. Consider two simple facets g1 and g2

that both have an item sum, where g1 defines

sum: z’=input+z;

and g2 defines

sum: power’=power+loss;

Note that these definitions of sum are boolean assertions. Then g3 = g1 ∗ g2 would

contain the item with the boolean assertion:

sum: (z’=input+z) * (power’=power+loss);

The conjunction of two facet instantiations is done using facet product. Shared facet

instantiations can be seen in the following example of the denotation of a facet product.

Note that it is invalid to have a shared item where one is an assertion and the other is a

facet instantiation.

4.3.2.1 Example of facet product

Recall the QAM example from Figure 2.6 in Section 2.3. We defined the behavior

in qamAESArch, and the implementation details in structure1 and structure2. We then

42



composed the behavior and structure to get fully constrained implementation details in

implementation1, and implementation2.

The denotations for qamAESArch is

< (i::input word(2),o::output real, f::input frequencyType; length::design keyLengthType,

k::input word(length), ho::bit,aesi::word(16), mi::word(2)),

static,

[(Jcode: = huffEncoder(i,ho);K,

Jbuff1: buffer(ho,aesi);K,

Jenc: aesEncryptor(aesi,aeso,length,k);K,

Jbuff2: buffer(aeso,mi);K,

Jmodulate: qamModulator(mi,o,f);K)]

>

and the denotation of structure is

< ()

fabric,

[(Jcode:= hardware(fpga);K,

Jbuff1:hardware(fpga);K,

Jenc: hardware(crypto);K,

Jbuff2: ,hardware(fpga);K,

Jmodulate: hardware(fpga);K)]

>

Note each of these facets have only one set of terms. We are taking the cross

product of two sets with cardinality one, which yields a set with cardinality one. The

shared items in our QAM example are code, bu f f 1, enc, bu f f 2, and modulate. These
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terms are facet instantiations. Conjoining these terms involves taking their facet prod-

ucts. So, for the code item, we have the new code item code : hu f f Enconder(i,ho)∗

hardware( f pga);. The denotation of implementation1 is

< (i::input word(2), o::output real, f::input frequencyType; length::design keyLengthType,

k::input word(length), ho::bit,aesi::word(16), mi::word(2)),

static,

[(TJcode: huffEncoder(i,ho) * hardware(fpga);K,

TJbuff1: buffer(ho,aesi) * hardware(fpga);K,

TJenc: aesEncryptor(aesi,aeso,length,k) * hardware(crypto),K;

TJbuff2: buffer(aeso,mi) * hardware(fpga);K,

TJmodulate: qamModulator(mi,o,f) * hardware(fpga);K)]

>

Assertion terms have type Boolean, while instantiations have the type of the instan-

tiated facet. Rosetta does not support heterogeneity with respect to types. Thus, it is

considered invalid to take the product of a term that is an assertion and a term that is a

facet instantiation.

4.3.2.2 Sharing clause for explicit sharing

The previous example has many shared items, but they are implicitly shared. Shar-

ing clauses explicitly force facets in a facet product to each define every item in the

sharing clause. In other words, a valid specification of f 3 = f 1∗ f 2 sharing x1,x2, ...xn

explicitly forces f 1 and f 2 to each define items x1, x2,..., and xn. As discussed in Sec-

tion 4.2.2.2, sharing enables the addition of domain-specific constraints.
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4.3.2.3 The Resulting Component or Facet

It should be noted that the product of two components (or facets) is a valid com-

ponent. We have appended all observers, giving the resulting component a valid set

of observers. We’ve already discussed that the domain of the new facet exists and is

valid. We have appended the assumptions, implications, and unshared definitions of

each cross-product of bodies, which gives valid new assumptions, implications and

definitions. Any shared definitions are either boolean assertions that are multiplied to

give a valid boolean assertion, or are facet instantiations, where we take the product of

these instantiations. Using structural induction, we can assume that we start with the

product of any instantiated facets being valid. With that assumption, we can show that

for all products of two components, the result is a valid components.

Also, since the structure of the component coalgebra is defined over the observers,

we still have a valid coalgebra as the observers,(O1 ++02), are valid. Therefore, the

behavior of the product still denotes a coalgebra. The structure of this coalgebra is

(O1 ++02)N ξ→ (O1 ++O2) × (O1 ++O2)N

4.4 Instantiation

We can specify systems structurally or hierarchically using facet instantiation. Facet

instantiation happens within a body of another facet, by replacing the formal parameters

of the instantiated facet with actual parameters. A facet declaration, say f d, is similar

to a class. An instantiation of a facet is a value whose type is the facet it instantiates. If

f is an instance of f d, f is a value with type f d.
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4.4.1 Instantiation Example

Let’s look at an example of facet instantiation. Recall the hal f Adder facet from

Figure 2.2 in Section 2.1. Also recall from Figure 2.3 in Section 2.2 that we can now

structurally define a f ullAdder facet that instantiates two hal f Adders. We did this by

connecting the correct inputs to the correct outputs, i.e. by assigning the correct actual

parameters to the formal parameters of each hal f Adder.

4.4.2 Denotation

The denotations of both the instantiated facets and the the instantiating facet are the

same as for any facet. We’ll illustrate this using our example.

The denotation of hal f Adder is

< (x : input bit,y : input bit,s : out put bit,c : out put bit),

State_based,

[(T Js′ = x xor yK,(T Jc′ = x and yK)]

>

The denotation of each term in f ullAdder goes in its denotation. So, the above

denotation of hal f Adder will appear twice in the denotation of f ullAdder, with the

formal parameters replaced with the actual parameters. So, the denotation of f ullAdder

is

< (x : input bit,y : input bit,ci : input bit,s : out put bit,co : out put bit,

s1 : bit,c1 : bit,c2 : bit),

State_based,

[(ha1 :< (x : input bit,y : input bit,s1 : out put bit,c1 : out put bit),

State_based,

[(T Js′ = x xor yK,T Jc′ = x and yK)]
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>,

ha2 :< (s1 : input bit,ci : input bit,s : out put bit,c2 : out put bit),

State_based,

[(T Js′ = x xor yK,T Jc′ = x and yK)]

>,

T Jco = c1 or c2;K

)]

Note that since the instantiation occurs in the body of the instantiating facet, it

has no direct bearing on the observers of the instantiating facet. It therefore has no

bearing on the coalgebraic structure of the instantiating facet. Rather the denotation

of the instantiated facet just becomes part of the denoted terms within the body of the

instantiating facet.

4.5 Inclusion

We saw how facet instantiation is done in Section 4.4. The f ullAdder example

in Figure 2.3 instantiates two hal f Adders. Notice that each instantiation is given an

item label, namely ha1 and ha2. These items labels are essentially the facet inclusion.

So ha1 is a facet inclusion, and hal f Adder(x,y,s1,c1) is the facet instantiation. What

this does is allow the observable behavior of what is included to be observable by the

facet inclusion. For instance, any observable behaviors of the hal f Adder(x,y,s1,c1)

instantiation are observable by ha1. The inclusions ha1 and ha2 in effect rename the

instance allowing for multiple instances of the same facet.
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4.5.1 Inclusion Example

Here’s a more detailed example of facet inclusion, that will help illustrate the dis-

tinction between instantiation and inclusion, as well as what is in scope within the

including facet [Ros, 2008].

f a c e t pf ( x : : input i n t e g e r ; y : : output i n t e g e r ) : : s t a t i c i s
export power ;
power : : r e a l ;

begin
power = 0 . 2 ;
y = x + 3 ;

end f a c e t pf ;

f a c e t example ( x1 , x2 : : input i n t e g e r ;
y1 , y2 : : input i n t e g e r ;
z : : output i n t e g e r ) : : s t a t i c i s

export power ;
power : : r e a l ;

begin
power = f1 . power + f2 . power + 0 . 2 ;
z = y1 + y2 ;

f1 : p f ( x1 , y1 ) ;
f2 : p f ( x2 , y2 ) ;

end f a c e t example ;

Figure 4.1.: Inclusion Example

We’ve essentially put a box around the p f instantiation and called it f 1 (and f 2).

Anything observable from p f is now observable in the f 1 and f 2 inclusions. Therefore,

f 1.power is in scope. And while the facet definition p f is in scope in the example facet,

p f .power is not in scope, because p f is a facet definition, or class, and not a value.
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4.5.2 Denotation

As we saw in Section 4.4.2, the labels are left alone in the denotation, whereas the

actual facet instantiation is what is denoted. So in our example, we left ha1 and ha2

alone, and then denoted the two instantiations of hal f Adder. So, within the terms of

the denotation of f ullAdder we had

ha1 :< (x : input bit,y : input bit,s1 : out put bit,c1 : out put bit),

State_based,

[(T Js′ = x xor yK,T Jc′ = x and yK)]

>

In essence, there is no real denotation of the inclusion, but rather, the instantiation

of what is included. The effect of the included instantiation was discussed in 4.4.2.

4.6 Homomorphism

A homomorphism is a relationship expressed between facets rather than a compo-

sition operator, but is worthy of discussion due to the fact that it gives us a means for

reasoning about and relating multiple facets. A homomorphism A => B exists between

two facets A and B when all properties of B can be derived from A. Facet homomor-

phism is frequently referred to as implication because the behaviors of B are implied by

A. An isomorphism exists between two facets A and B when both A => B and B => A.

Facet isomorphism is frequently referred to as facet equivalence because A and B have

the same properties and are indistinguishable.

Both homomorphism and isomorphism are used to define correctness conditions

and express inheritance relationships among facets. In an algebraic sense, if A repre-

sents a system and B represents a minimal set of properties that system must exhibit,

then A => B formally defines a correctness condition on A that would be checked us-
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ing theorem proving techniques. Similarly, if B represents a system and A represents

a maximal set of properties the system is allowed to exhibit, then A => B formally

defines a correctness condition on B that would be checked using model checking tech-

niques. In essence, we are able to express both algebraic and coalgebraic correctness

conditions.

Homomorphism also defines the partial ordering used to specify the domain lat-

tice. Specifically, for a set to represent a lattice, a partial order on the set, a minimum

element, and a maximum element must be defined. For the Rosetta domain lattice, ho-

momorphism is the partial order while the static and bottom domains represent the

minimum and maximum elements respectively.
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Chapter 5

A Case Study

Here we will define and denote a complete system using facet composition as a

case study on system design using the composition operators and their semantics. Our

system, based on KURM [Alexander, 2009], will contain a dual port RAM and a CPU.

We will specify both the functional/behavioral design as well as implementation de-

tails, and use conjunction to combine these different design aspects to fully specify our

entire system. This example will use instantiation and inclusion, product and sum. The

functional design of our system is shown in Figure 5.1, with all descriptions of signals

in Table 5.1.
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Figure 5.1.: Functional system design
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Table 5.1. Description of signals in System Design
Signal Name Description
clk System clock
en System enable
rst System reset
Addr1 Address to read and write to data memory
DataOut1 Data from memory, used for LW from memory
Addr2 Address to read instructions from memory (Program Counter)
DataOut2 Instructions read from memory
WE1 Memory write enable, used for SW to memory
en1 Enable data memory, active for LW or SW
DataIn1 Data to write to memory, used for SW to memory
en2 Memory enable for Instructions–tied to system enable
memReadData Data from memory for SW, tied to DataOut1 of memory
PC Program Counter, tied to Addr2 of memory
instruction Instruction fetched from memory, tied to DataOut2 of memory
we Enable write to data memory, tied to WE1 of memory
memEn Enable data memory, tied to en1 of memory
memData Data to write to memory, tied to DataIn1 of memory
regFileWriteSelect Selects between data from memory, immediate data, or result

from ALU to write back to register file, depending on
instruction type

addressC Register to write to in register file
addressA First register to read from in register file
addressB Second register to read from in register file
regFileWriteEn Enable write back to register file
immediateValue Value to be used for immediate and memory instructions
memSelect Selects between immediate value or register value for ALU,

input, depending on instruction type
aluOp Operation for ALU to perform
lt Status reflecting when ALU’s first input is less than second

input
C Value to write to register file
A First register read from register file, and first input to ALU
B Second register read from register file
aluIn Second input to ALU
aluOut Result from ALU calculation
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5.1 Controller Functional Design

The controller lends itself well to being modularly designed using facet sum. We

can write a facet for each instruction type plus one for when there is a reset, and disjoin

them to create the entire controller.

Table 5.2. Instruction Set for CPU
Instruction Meaning Op Source1 Source2 Source3
Add Rs,Rt ,Rd Rd

′ = Rs +Rt 0000 0-15 0-15 0-15
Sub Rs,Rt ,Rd Rd

′ = Rs−Rt 0001 0-15 0-15 0-15
And Rs,Rt ,Rd Rd

′ = Rs∧Rt 0010 0-15 0-15 0-15
Or Rs,Rt ,Rd Rd

′ = Rs∨Rt 0011 0-15 0-15 0-15
LW Rs,Rt ,o f f Rt

′ = M(Rs +o f f ) 0100 0-15 0-15 off
LI Rs, immed Rs

′ = extend(immed) 0101 0-15 immed7−4 immed3−0
SW Rs,Rt ,o f f M(Rs +o f f )′ = Rt 0110 0-15 0-15 off
BLT Rs,Rt ,o f f i f (Rs < Rt) 0111 0-15 0-15 off

PC′ = PC +o f f
Jmp addr PC′ = extend(addr) 1000 addr11−8 addr7−4 addr3−0

We’ll define the facet definitions for the Reset, AddOp, LW , SW , LI, BLT , and

Jmp facets. The SubOp, AndOp, and OrOp facets only differ from AddOp in their

ops and the aluOp. In this example, these disjoined facets are mutually exclusive.

Only one facet will be consistent when there is a reset, and one for when there is no

reset and the instruction is, for example, add. Each facet starts with assertions that the

inputs to the facets have the values associated with that facet. For the reset facet, there

is an assertion that rst = 1. This is only a consistent facet under the condition of a

reset. Similarly, each facet for a particular instruction operator has an assertion that

rst = 0 and instruction = #Op f or that instruction#. Following the assertions are the

assignments that are appropriate for each instruction. So, in the reset facet, the facet

first asserts that there is a reset, followed by the assertions that the next state of each

output signal is assigned to all 0’s. In this fashion, we write each facet separately with
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the assertions and assignments appropriate to the desired functionality. When we sum

them, only one must be consistent. For each instruction, there is a facet that will be

consistent and give the appropriate assignments for that instruction.

f a c e t R e s e t ( r s t : : input b i t ;
we , memEn , memSelect ,

r e g F i l e W r i t e E n : : output b i t ;
aluOp , r e f F i l e W r i t e S e l e c t : : output word ( 2 ) ;
addressA , addressB , a d d r e s s C : : output word ( 4 ) ;
PC , immedia t eVa lue : : output word ( 1 6 )

) : : Sta te_based i s
begin

r s t =1 ; / / A s s e r t i o n t h a t t h e r e i s a r e s e t

we ’ = 0 ;
memEn’ = 0 ;
memSelect ’ = 0 ;
r e g F i l e W r i t e E n ’ = 0 ;
r e g F i l e W r i t e S e l e c t ’= b " 00 " ;
aluOp ’= b " 00 " ;
addressA ’= x " 0 " ;
addressB ’= x " 0 "
addressC ’= x " 0 " ;
PC’= x " 0000 " ;
memAddr ’= x " 0000 " ;
immedia teValue ’= x " 0000 " ;

end f a c e t R e s e t ;

Figure 5.2.: Facet for defining behavior for reset
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f a c e t AddOp ( r s t : : input b i t ;
i n s t r u c t i o n : : input word ( 1 6 ) ;
we , memEn , memSelect , r e g F i l e W r i t e E n : : output b i t ;
aluOp , r e f F i l e W r i t e S e l e c t : : output word ( 2 ) ;
addressA , addressB , a d d r e s s C : : output word ( 4 ) ;
PC , immedia t eVa lue : : output word ( 1 6 )

) : : Sta te_based i s
begin

r s t =0 ; / / A s s e r t i o n o f no r e s e t
i n s t r u c t i o n (15 downto 12)= b " 0000 " ; / / A s s e r t add op

we ’ = 0 ;
memEn’ = 0 ;
memSelect ’ = 0 ;
r e g F i l e W r i t e E n ’ = 1 ;
r e g F i l e W r i t e S e l e c t ’= b " 00 " ;
aluOp ’= b " 00 " ;
addressA ’= i n s t r u c t i o n (11 downto 8 ) ;
addressB ’= i n s t r u c t i o n (7 downto 4 ) ;
addressC ’= i n s t r u c t i o n (3 downto 0 ) ;
PC’=PC+x " 0002 " ;
immedia teValue ’= x " 0000 " ;

end f a c e t AddOp ;

Figure 5.3.: Facet for defining behavior for Add instruction
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f a c e t LW( r s t : : input b i t ;
i n s t r u c t i o n : : input word ( 1 6 ) ;
we , memEn , memSelect , r e g F i l e W r i t e E n : : output b i t ;
aluOp , r e f F i l e W r i t e S e l e c t : : output word ( 2 ) ;
addressA , addressB , a d d r e s s C : : output word ( 4 ) ;
PC , immedia t eVa lue : : output word ( 1 6 )

) : : Sta te_based i s
begin

r s t =0 ; / / a s s e r t i o n o f no r e s e t
i n s t r u c t i o n (15 downto 12)= b " 0100 " ; / / a s s e r t LW op

we ’ = 0 ;
memEn’ = 1 ;
memSelect ’ = 1 ;
r e g F i l e W r i t e E n ’ = 1 ;
r e g F i l e W r i t e S e l e c t ’= b " 11 " ;
aluOp ’= b " 00 " ;
addressA ’= i n s t r u c t i o n (11 downto 8 ) ;
addressB ’= x " 0 " ;
addressC ’= i n s t r u c t i o n (7 downto 4 ) ;
PC’=PC+x " 0002 " ;
immedia teValue ’= s i g n E x t e n d ( i n s t r u c t i o n (3 downto 0 ) ) ;

end f a c e t LW;

Figure 5.4.: Facet for defining behavior for LW instruction
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f a c e t LI ( r s t : : input b i t ;
i n s t r u c t i o n : : input word ( 1 6 ) ;
we , memEn , memSelect , r e g F i l e W r i t e E n : : output b i t ;
aluOp , r e f F i l e W r i t e S e l e c t : : output word ( 2 ) ;
addressA , addressB , a d d r e s s C : : output word ( 4 ) ;
PC , immedia t eVa lue : : output word ( 1 6 )

) : : Sta te_based i s
begin

r s t =0 ; / / a s s e r t i o n o f no r e s e t
i n s t r u c t i o n (15 downto 12)= b " 0101 " ; / / a s s e r t LI op

we ’ = 0 ;
memEn’ = 0 ;
memSelect ’ = 0 ;
r e g F i l e W r i t e E n ’ = 1 ;
r e g F i l e W r i t e S e l e c t ’= b " 01 " ;
aluOp ’= b " 00 " ;
addressA ’= x " 0 " ;
addressB ’= x " 0 " ;
addressC ’= i n s t r u c t i o n (11 downto 8 ) ;
PC’=PC+x " 0002 " ;
immedia teValue ’= s i g n E x t e n d ( i n s t r u c t i o n (7 downto 0 ) ) ;

end f a c e t LI ;

Figure 5.5.: Facet for defining behavior for LI instruction
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f a c e t SW( r s t : : input b i t ;
i n s t r u c t i o n : : input word ( 1 6 ) ;
we , memEn , memSelect , r e g F i l e W r i t e E n : : output b i t ;
aluOp , r e f F i l e W r i t e S e l e c t : : output word ( 2 ) ;
addressA , addressB , a d d r e s s C : : output word ( 4 ) ;
PC , immedia t eVa lue : : output word ( 1 6 )

) : : Sta te_based i s
begin

r s t =0 ; / / a s s e r t i o n o f no r e s e t
i n s t r u c t i o n (15 downto 12)= b " 0110 " ; / / a s s e r t SW op

we ’ = 1 ;
memEn’ = 1 ;
memSelect ’ = 1 ;
r e g F i l e W r i t e E n ’ = 0 ;
r e g F i l e W r i t e S e l e c t ’= b " 11 " ;
aluOp ’= b " 00 " ;
addressA ’= i n s t r u c t i o n (7 downto 4 ) ;
addressB ’= x " 0 " ;
addressC ’= x " 0 " ;
PC’=PC+x " 0002 " ;
immedia teValue ’= s i g n E x t e n d ( i n s t r u c t i o n (3 downto 0 ) ) ;

end f a c e t SW;

Figure 5.6.: Facet for defining behavior for SW instruction
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f a c e t BLT( r s t , l t : : input b i t ;
i n s t r u c t i o n : : input word ( 1 6 ) ;
we , memEn , memSelect , r e g F i l e W r i t e E n : : output b i t ;
aluOp , r e f F i l e W r i t e S e l e c t : : output word ( 2 ) ;
addressA , addressB , a d d r e s s C : : output word ( 4 ) ;
PC , immedia t eVa lue : : output word ( 1 6 )

) : : Sta te_based i s
begin

r s t =0 ; / / a s s e r t i o n o f no r e s e t
i n s t r u c t i o n (15 downto 12)= b " 0111 " ; / / a s s e r t BLT op

we ’ = 0 ;
memEn’ = 0 ;
memSelect ’ = 0 ;
r e g F i l e W r i t e E n ’ = 0 ;
r e g F i l e W r i t e S e l e c t ’= b " 00 " ;
aluOp ’= b " 00 " ;
addressA ’= x " 0 " ;
addressB ’= x " 0 " ;
addressC ’= x " 0 " ;
PC’= i f ( l t =1)

then
PC+ i n s t r u c t i o n (3 downto 0 ) ;

e l s e
PC+x " 0002 " ;

immedia teValue ’= x " 0000 " ;

end f a c e t BLT ;

Figure 5.7.: Facet for defining behavior for BLT instruction
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f a c e t Jmp ( r s t : : input b i t ;
i n s t r u c t i o n : : input word ( 1 6 ) ;
we , memEn , memSelect , r e g F i l e W r i t e E n : : output b i t ;
aluOp , r e f F i l e W r i t e S e l e c t : : output word ( 2 ) ;
addressA , addressB , a d d r e s s C : : output word ( 4 ) ;
PC , immedia t eVa lue : : output word ( 1 6 )

) : : Sta te_based i s
begin

r s t =0 ; / / a s s e r t i o n o f no r e s e t
i n s t r u c t i o n (15 downto 12)= b " 0000 " ; / / a s s e r t o f Jmp op

we ’ = 0 ;
memEn’ = 0 ;
memSelect ’ = 0 ;
r e g F i l e W r i t e E n ’ = 0 ;
r e g F i l e W r i t e S e l e c t ’= b ’ ’ 0 0 ’ ’ ;
aluOp ’= b " 00 " ;
addressA ’= x " 0 " ;
addressB ’= x " 0 " ;
addressC ’= x " 0 " ;
PC’= s i g n E x t e n d ( i n s t r u c t i o n (11 downto 0 ) ;
immedia teValue ’= x " 0000 " ;

end f a c e t Jmp ;

Figure 5.8.: Facet for defining behavior for Jmp instruction

Then summing those, we can create the controller facet.

f a c e t c o n t r o l l e r : : Sta te_based = R e s e t + AddOp + SubOp +
AndOp + OrOp + LW + LI +
SW + BLT + Jmp ;

Figure 5.9.: Facet for defining behavior for entire Controller. Parameters omitted for
ease of reading
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5.1.1 Denotation

The controller facet’s coalgebraic structure is

(bit,word(16),bit,bit,bit,bit,word(2),word(2),word(4),word(4),word(4),

word(16),word(16))N

ξ→ (bit,word(16),bit,bit,bit,bit,word(2),word(2),word(4),word(4),word(4),

word(16),word(16))

× (bit,word(16),bit,bit,bit,bit,word(2),word(2),word(4),word(4),word(4),

word(16),word(16))N

and its denotation is

< (rst:: input bit, lt :: input bit,

instruction :: input word(16),

we :: out put bit,memEn :: out put bit,memSelect :: out put bit,

regFileWriteEn :: out put bit,

aluOp :: out put word(2),re f FileWriteSelect :: out put word(2),

addressA :: out put word(4),addressB :: out put word(4),

addressC :: out put word(4),

PC :: out put word(16), immediateValue :: out put word(16)),

State_based,

[[#denotations o f all terms in Reset#],

[#denotations o f all terms in AddOp#],

[#denotations o f all terms in SubOp#],

[#denotations o f all terms in AndOp#],

[#denotations o f all terms in OrOp#],

[#denotations o f all terms in LW#],

[#denotations o f all terms in LI#],
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[#denotations o f all terms in SW#],

[#denotations o f all terms in BLT #],

[#denotations o f all terms in Jmp#]]

>

As an example, [#denotations o f all terms in Reset#] would be

[rst = 1; ,

we(next(α)) = 0; ,

memEn(next(α)) = 0; ,

memSelect(next(α)) = 0; ,

regFileWriteEn(next(α)) = 0; ,

regFileWriteSelect(next(α)) = b”00”; ,

aluOp(next(α)) = b”0)”; ,

addressA(next(α)) = x”0”; ,

addressB(next(α)) = x”0”; ,

addressC(next(α)) = x”0”; ,

PC(next(α)) = x”0000”; ,

memAddr(next(α)) = x”0000”; ,

immediateValue(next(α)) = x”0000”; ,

]

Other denotations follow similarly and will not be repeated here.

All observers from every part of this sum, meaning all parameters and variables of

each facet, are now part of the observers for the controller. The domain of each piece

is State_based, so the domain of the controller is still State_based. Because we are

taking a sum, the terms from each piece of the sum are kept separate in their own list
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of terms. The separate lists of terms are appended in the controller’s list of term lists.

In this way, only one instruction (or reset) is addressed at a time.

5.2 CPU Functional Design

The functional design of the CPU is done structurally. The controller facet is de-

fined in section 5.1. The muxes, registerFile, and ALU are all straight-forward, well-

known components, so we will assume those facets are already designed. All signal

descriptions are defined in Table 5.1.
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f a c e t cpu ( c lk , r s t : : input b i t ;
memReadData , i n s t r u c t i o n : : input word ( 1 6 ) ;
we , memEn : : output b i t ;
pc , a luOut , memData : : output word ( 1 6 ) ) : : HW i s

memLoadSelect , r e g F i l e W r i t e E n , i m m e d i a t e S e l e c t : : b i t ;
aluOp , a l u S t a t u s : : word ( 2 ) ;
addressA , addressB , a d d r e s s C : : word ( 4 ) ;
immedia teValue , A, B , C , a l u I n : : word ( 1 6 ) ;

begin
c : c o n t r o l U n i t ( r s t , l t ,

i n s t r u c t i o n ,
we , memEn , memSelect , r e g F i l e W r i t e E n ,
aluOp , r e f F i l e W r i t e S e l e c t ,
addressA , addressB , addressC ,
PC , immedia t eVa lue ) ;

a : a l u ( aluOp , A, a l u I n , a l u S t a t u s , a l u Ou t ) ;

r f : r e g F i l e ( c lk , r e g F i l e W r i t e E n , addressA ,
addressB , addressC , A, B , C ) ;

mux1 : mux ( memReadData , AluOut , memLoadSelect , C ) ;

mux2 : mux (B , immedia teValue , i m m e d i a t e S e l e c t , a l u I n ) ;
end f a c e t cpu ;

Figure 5.10.: CPU Functional Specification

5.2.1 Denotation

The cpu facet’s coalgebraic structure is

(bit,bit,word(16),word(16),bit,bit,word(16),word(16),word(16)

bit,bit,bit,word(2),word(2),word(4),word(4),word(16),word(16),

word(16),word(16),word(16))N

ξ→ (bit,bit,word(16),word(16),bit,bit,word(16),word(16),word(16)
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bit,bit,bit,word(2),word(2),word(4),word(4),word(16),word(16),

word(16),word(16),word(16))

× (bit,bit,word(16),word(16),bit,bit,word(16),word(16),word(16)

bit,bit,bit,word(2),word(2),word(4),word(4),word(16),word(16),

word(16),word(16),word(16))N

and its denotation is

< (clk:: input bit,rst :: input bit,

memReadData :: input word(16), instruction :: input word(16),

we :: out put bit,memEn :: out put bit,

pc :: out put word(16),aluOut :: out put word(16),memData :: out put word(16),

memLoadSelect :: bit,regFileWriteEn :: bit, immediateSelect :: bit,

aluOp :: word(2),aluStatus :: word(2),

addressA :: word(4),addressB :: word(4),addressC :: word(4),

immediateValue :: word(16),A :: word(16),B :: word(16),

C :: word(16),aluIn :: word(16))

HW ,

[[#denotation o f controlUnit instantiation#,

#denotation o f alu instantiation#,#denotation o f regFile instantiation#,

#denotation o f mux instantiation#,#denotation o f mux instantiation#]

]

>

This denotation involves the simple case of instantiations. The observers are the

parameters and variables from the cpu itself. Its domain is HW. There is one list of

terms, which contains the five facet instantiations in cpu.
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5.3 System Functional Design

The functional design of the system is a matter of instantiating and interconnecting

the previously defined CPU and a dual port RAM with write capabilities on one of the

ports.

f a c e t sys tem ( c lk , en , r s t : input b i t ) : : HW i s

we1 , en1 : : b i t ;
da taOut1 , da taOut2 , d a t a I n , Addr1 , Addr2 : : word ( 1 6 ) ;

begin
p r o c e s s o r : cpu ( c lk , r s t ,

DataOut1 , DataOut2 ,
WE1, en1 ,
Addr2 , Addr1 ,
Da ta In1 ) ;

mem: memory ( c lk ,
we1 , en1 , Addr1 , DataOut1 , DataIn1 ,
en , Addr2 , DataOut2
) ;

end f a c e t sys tem ;

Figure 5.11.: System Functional Specification

5.3.1 Denotation

The system facet’s coalgebraic structure is

(bit,bit,bit,bit,bit,

word(16),word(16),word(16),word(16),word(16))N

ξ→ (bit,bit,word(16),word(16),bit,bit,word(16),word(16),word(16))

× (bit,bit,word(16),word(16),bit,bit,word(16),word(16),word(16))N
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and its denotation is

<(clk,en,rst :: input bit;

we1,en1 :: bit;

dataOut1,dataOut2,dataIn,Addr1,Addr2 :: word(16);)

HW ,

[[#denotation o f processor instantiation#,

#denotation o f memory instantiation#]

]

>

This denotation involves the simple case of instantiations. The observers are the

parameters and variables from the system itself. Its domain is HW. And there is one list

of terms, which contains the two facet instantiations in system.

5.4 Power Consumption Constraints

The designer might be interested in specifying implementation details such as power

constraints of the system. We can write facets to model these constraints. We can make

these as course-grained or fine-grained as desired. For instance, we can have a facet to

model the power constraint to correspond with each block in Figure 5.1. Below we give

these facet definitions for the power consumption of the ALU, the CPU, the RAM, and

the entire system. The muxes, register file, controller, and memory would be done in a

similar manner to the ALU. Alternatively, we could have defined a very course-grained

model of power consumption at the top level, or any level of detail in between.
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f a c e t a luPower ( r s t : input b i t ;
wordSize , o p e r a n d S i z e ,

s t a t u s S i z e : : input n a t u r a l ;
c a l c u l a t i o n , sw i t ch , l e a k a g e : : de s ign r e a l ;
power : : output r e a l ) : : i s

begin

power ’= i f r s t =1
then l e a k a g e
e l s e wordSize ∗ ( s w i t c h +

o p e r a n d S i z e ∗ c a l c u l a t i o n ) +
s w i t c h ∗ s t a t u s S i z e ;

end i f ;

end f a c e t a luPower ;

Figure 5.12.: ALU Power Consumption Specification
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f a c e t cpuPower ( r s t : input b i t ;
c a l c u l a t i o n , sw i t ch , l e a k a g e : : de s ign r e a l ;
power : : output r e a l ) : : s t a t e _ b a s e d i s

aluP , mux1P , mux2P , r e g F i l e P , c o n t r o l l e r P : : r e a l ;
c o n t r o l l e r O u t p u t B i t s : : n a t u r a l ;

begin

cob : c o n t r o l l e r O u t p u t B i t s = 1∗4 + 2∗2 + 4∗3 + 16∗2 ;

a : a luPower ( r s t , 1 6 , 2 , 1 , c a l c u l a t i o n , sw i t ch , a luP ) ;

mux1 : muxPower ( r s t , 2 , 1 6 , sw i t ch , mux1P ) ;

mux2 : muxPower ( r s t , 4 , 1 6 , sw i t ch , mux2P ) ;

r f : r e g F i l e P o w e r ( r s t , 1 6 , 1 6 , sw i t ch , l e a k a g e , r e g F i l e P ) ;

c : c o n t r o l l e r P o w e r ( r s t , 1 0 , 1 6 , c o n t r o l l e r O u t p u t B i t s ,
sw i t ch , l e a k a g e ) ;

p : power ’= i f r s t =1
then l e a k a g e
e l s e a luP + mux1P + mux2P +

r e g F i l e P + c o n t r o l l e r P ;
end i f ;

end f a c e t cpuPower ;

Figure 5.13.: CPU Power Consumption Specification
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f a c e t sys temPower ( r s t : input b i t ;
c a l c u l a t i o n , sw i t ch , l e a k a g e ,

t h r e s h o l d : : de s ign r e a l ;
power : : output rea l ,
o v e r T h r e s h o l d : : output b o o l e a n )

: : s t a t e _ b a s e d i s

cpuP , memP, nextPower : : r e a l ;

begin

p r o c e s s o r : cpuPower ( r s t , c a l c u l a t i o n , swi t ch ,
l e a k a g e , cpuP ) ;

mem: memPower ( r s t , sw i t ch , l e a k a g e , memP ) ;

mp : nextPower = i f r s t =1
then l e a k a g e
e l s e cpuP + memP ;

o t : o v e r T h r e s h o l d ’ = nextPower > t h r e s h o l d ;

p : power ’= nextPower ;

end f a c e t sys temPower ;

Figure 5.14.: System Power Consumption Specification

The implementation details of the power-consumption facets model the same gen-

eral strategy of the behavioral model. The power consumption of the system is defined

in a block-diagram fashion using instantiation.

5.5 Entire System: Functional Behavior and Power Consumption

We now have a model for the behavior of our system and for the power consumption

of our system. We can conjoin them to create the desired specification of the system.

A consistent implementation would be one in which the behavior were consistent and
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the power consumption were consistent. In this case, given the appropriate design

parameters, the power consumption for each clock cycle must remain under the given

threshold.

Figure 5.15.: Complete System Design

f a c e t comple teSys tem = sys tem ( c lk , en , r s t ) ∗
sys temPower ( r s t , c a l c u l a t i o n ,

swi t ch , l e a k a g e ,
t h r e s h o l d , power ,
o v e r T h r e s h o l d ) ;

Figure 5.16.: Complete System Specification

5.5.1 Denotation

The completeSystem facet’s coalgebraic structure is

(bit,bit,word(16),word(16),bit,bit,word(16),word(16),word(16),

bit,bit,bit,word(2),word(2),word(4),word(4),word(4),

word(16),word(16),word(16),word(16),word(16),

real,real,real,real,real,real,real,real,real)N
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ξ→ (bit,bit,word(16),word(16),bit,bit,word(16),word(16),word(16),

bit,bit,bit,word(2),word(2),word(4),word(4),word(4),

word(16),word(16),word(16),word(16),word(16),

real,real,real,real,real,real,real,real,real)

× (bit,bit,word(16),word(16),bit,bit,word(16),word(16),word(16),

bit,bit,bit,word(2),word(2),word(4),word(4),word(4),

word(16),word(16),word(16),word(16),word(16),

real,real,real,real,real,real,real,real,real)N

and its denotation is

<(clk,en,rst::input bit; we1,en1 :: bit;

dataOut1,dataOut2,dataIn,Addr1,Addr2::word(16);

calculation,switch,leakage,threshold :: design real;

power :: output real; overThreshold :: output boolean;

cpuP,memP,nextPower :: real),

State_based,

[[#denotation of facet product of cpu and cpuPower#,

#denotation of facet product of memory and memPower#,

#denotation of np term#,

#denotation of ot term#

#denotation of p term#]]

>

Figure 5.17.: Denotation of completeSystem

where the denotation of the facet product of cpu and cpuPower (and similarly for the

product of memory and memPower) is

73



<(clk::input bit,rst::input bit,

memReadData::input word(16),instruction::input word(16),

we::output bit,memEn::output bit,

pc::output word(16),aluOut::output word(16),

memData::output word(16),

memLoadSelect::bit,regFileWriteEn::bit,immediateSelect::bit,

aluOp::word(2),aluStatus::word(2),

addressA::word(4),addressB::word(4),addressC::word(4),

immediateValue::word(16),A::word(16),B::word(16),C::word(16),

aluIn::word(16),

calculation::design real,switch::design real,

leakage::design real;

power::output real,

aluP::real,mux1P::real,mux2P::real,regFileP::real,

controllerP::real)

State_based,

[[#denotation of facet product of controlUnit and controllerPower#,

#denotation of facet product of controlUnit and controller#,

#denotation of facet product of alu and aluPower#,

#denotation of facet product of mux and muxPower#,

#denotation of facet product of mux and muxPower#,

#denotation of facet product of regFile and regFilePower#,

#denotation of cob term#,

#denotation of p term#]]

>

Figure 5.18.: Denotation for cpu*cpuPower

These denotations follow the details of facet product. The observers consist of

all observers from each piece of the product. The observers of completeSystem in-

clude the inputs from system, as well as the inputs, outputs, and design parameters of

systemPower, along with all variables of both. The domain is the least common domain

of HW and State_based, which is State_based.

There are several important things to note in constructing the list of term lists

of completeSystem. The system facet has one element in its list of term lists. The

systemPower also has one element in its list of term lists. Therefore, completeSystem
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will have one element in its list of term lists since it is the cross product of two lists with

one element. The system and systemPower facets have two shared items, processor and

mem. They are facet instantiations, so completeSystem will contain the facet products

of these items. The denotations of one of these facet products is given above, following

the denotation of completeSystem. The non-shared items in system and systemPower –

np, ot, and p – will also be part of completeSystem.

5.6 Discussion of Results

Our resulting facet, in Figure 5.16, is only useful if it gives us all of the behavior

desired from the system design (Figure 5.1, Table 5.2, Figure 5.14, and Figure 5.15).

Furthermore, a useful specification is one that can be designed modularly. We argue

that facet composition gives us the usefulness of modular design, while maintaining the

correct behavior.

5.6.1 Correctness

The denotation of the completeSystem facet in Figure 5.17 gives evidence of its

desired behavior. The denotations’s observers

(clk::input bit,rst::input bit,

memReadData::input word(16),instruction::input word(16),

we::output bit,memEn::output bit,

pc::output word(16),aluOut::output word(16),

memData::output word(16),

memLoadSelect::bit,regFileWriteEn::bit,immediateSelect::bit,

aluOp::word(2),aluStatus::word(2),
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addressA::word(4),addressB::word(4),addressC::word(4),

immediateValue::word(16),A::word(16),B::word(16),C::word(16),

aluIn::word(16),

calculation::design real,switch::design real,

leakage::design real;

power::output real,

aluP::real,mux1P::real,mux2P::real,regFileP::real,

controllerP::real)

show the entire state necessary to describe the complete system. Beyond the bit in-

puts and design inputs, all of the internal state (for instance, cpuP or nextPower)

of the completeSystem is present in its denotation. Note that in the facet definition

of completeSystem there are no explicit observers listed. Rather, these come from

each piece of the facet product used to construct completeSystem. Furthermore, inside

completeSystem’s list of denotation bodies

[[#denotation of facet product of controlUnit and controllerPower#,

#denotation of facet product of controlUnit and controller#,

#denotation of facet product of alu and aluPower#,

#denotation of facet product of mux and muxPower#,

#denotation of facet product of mux and muxPower#,

#denotation of facet product of regFile and regFilePower#,

#denotation of cob term#,

#denotation of p term#]]

is the denotation of any facet instantiation or facet composition at all levels within

completeSystem. As we push into the denotation of completeSystem, we get the con-
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straints at every level of the modular design. Pushing in one level, we’ve shown in Fig-

ure 5.18 that the denotation of cpu*cpuPower is part of the denotation of completeSys-

tem. This continues for each level of vertical composition in the design.

The denotation of every instantiated component throughout the system is included

in the denotation body of the facet that instantiates it. The constraints of each instan-

tiated component are included in the instantiating component. So, alu’s denotation is

included in the denotation body of cpu, cpu’s denotation is included in the denotation

body of system, etc.

When two facets are summed, their constraints are added in separate denotation

bodies in the resulting facet, indicating that only one of the bodies must hold. So the

controller is modularly built up. The denotations for each instruction in the controller

are in their own denotation body.

[[#denotations of all terms in Reset#],

[#denotations of all terms in AddOp#],

[#denotations of all terms in SubOp#],

[#denotations of all terms in AndOp#],

[#denotations of all terms in OrOp#],

[#denotations of all terms in LW#],

[#denotations of all terms in LI#],

[#denotations of all terms in SW#],

[#denotations of all terms in BLT#]

[#denotations of all terms in Jmp#]]

This means that only one instruction path must be satisfied for each instruction that

comes through the cpu.
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The product of two facets results in all of the constraints from both facets. So,

by taking the product of cpu and cpuPower, we are requiring a valid implementation

to meet all constraints of each. The denotation reflects that all of the terms and facet

instantiations of both facets are in the same term denotation body in the resulting facet.

[[#denotation of facet product of controlUnit and controllerPower#,

#denotation of facet product of controlUnit and controller#,

#denotation of facet product of alu and aluPower#,

#denotation of facet product of mux and muxPower#,

#denotation of facet product of mux and muxPower#,

#denotation of facet product of regFile and regFilePower#,

#denotation of cob term#,

#denotation of p term#]]

So, we have enforced that a valid implementation meets all of the behavioral constraints

of system as well as the power constraints of systemPower.

5.6.2 Ease of Design

The simplicity of the completeDesign facet speaks volumes to the simplicity of

design that facet composition enables. The completeDesign facet in Figure 5.15 is at

the same high level as the block design in Figure 5.16. However, the denotation of

completeDesign shows how intricate and detailed that facet is under the hood, so to

speak. We have the power to fully specify a complex system with the simplicity and

elegance of a high-level “black box” feel. Modular design is important for complex

systems in that it gives us the benefits of reuse and flexibility. Our coalgebraic se-

mantics gives us the benefits of modularity, while maintaining the power of a detailed
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design capability. We could have written a course-grained model of power consump-

tion to conjunct with the system design and could easily compare the two. This kind of

flexibility allows quick design-space exploration.
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Chapter 6

Related Works

6.1 Systems and Logics as Coalgebras

There are several works on applications that are particularly well suited to coal-

gebras. Two major categories that motivate our use of coalgebras for Rosetta specifi-

cations are modal logics and systems, especially state-based or reactive systems. We

describe the uses of coalgebras in these categories and describe why the techniques

used are appropriate for Rosetta.

6.1.1 Modal Logics

Modal logics are the family of logics whose operators conditionalize formulas to

hold under certain criteria such as “in the future,” “normally,” “necessarily.” There

are several works that address coalgebras’ suitability for modal logics. Cirstea et al.

[2011] discuss that the more common non-normal modal logics are not amenable to

the standard Kripke semantics. Rather, since these modal logics are essentially reactive

systems, they are much better suited to coalgebraic semantics.
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Cirstea et al. [2011] argue that the first major advantage of using coalgebraic se-

mantics is the generality. A coalgebraic framework is constructed per application, and

is therefore applicable to a larger class of modal logics. The second major advantage

is the compositionality. The coalgebraic framework allows for integration of different

requirements, and many different logics co-exist in the same framework. This allows

for the “modular combination of reasoning principles” [Cirstea et al., 2011]. Lastly,

the coalgebraic framework lends itself to adaptability. The previous two traits allow for

new requirements to be easily added to existing requirements.

Rosetta components are logics in that they express assumptions, definitions – which

are essentially assertions – and implications that must hold for the specification to be

valid. Furthermore, Rosetta has the ability of expressing temporal concepts, such as

current state and next state transitions. For instance, some assertions must hold for

the next state of a state-based specification. This makes Rosetta modal. Therefore

we can apply the principles of using coalgebras for modal logics to Rosetta domains,

components, and facets.

6.1.2 State-based Dynamic Systems

Kurz [2001] describes the theory of systems, and lays out how coalgebras are a

natural model of these theories. Systems are understood by their interfaces – how they

interact and communicate with other systems. Essentially, they are a set of states and

the observable transitions on those states. Systems are reactive in nature, and we look

at them as “black boxes.” Jacobs and Rutten [1997] also give a thorough tutorial of

algebras versus coalgebras, and induction versus coinduction and bisimulation.

With an algebraic definition, the initiality gives us a base to stand on. For instance,

when describing a list, we have the base case of an empty list, and all lists can be
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thought of as the pieces constructed to the base case of an empty list – we have a base

case and constructors that build any list. With a coalgebraic definition, we have the

dual, finality. Think of a stream. We don’t think of streams constructively, but rather

we have the entire stream, and we take observations, destructing the stream.

Rather than an inductive principle from the initiality of an algebra, we can utilize

a coinductive principle from the finality of a coalgebra. Along with coinduction, we

can also exploit bisimulation. Informally, a bisimulation exists between two systems or

coalgebras if all of their observations match. So, if A and B are two state machines,

then A and B are bisimilar if upon each state transition, their outputs or actions match.

When we specify or design a system in Rosetta, we in a sense do so constructively,

i.e. we build up a system using the components that make up that system. However,

since we still wish to view the systems we’re specifying or designing as black boxes,

reasoning about systems is done by observing their behavior. We look at the system as

a whole, and the only things we need to know about it are what we are able to observe

from its interface. This notion is exactly what coalgebras give us. We start with the

structure and take observations of all transitions. To this end, coalgebras are the suitable

choice to describe Rosetta specifications. We can then use the notions of coinduction

and bisimilarity to reason about and compare behavioral equivalence of systems. This

work shows how we we can still build models constructively using composition, while

maintaining the coalgebraic structure that is suitable for systems.

6.2 Semantics using Coalgebras

The second area of related works motivating this work is in using coalgebras specif-

ically in semantics. We describe the use of coalgebraic denotation in process calculi,

the use of coalgebras in the semantics of Java, as well as address previous semantic
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work of Rosetta.

6.2.1 Process Calculi

Hausmann et al. [2006] describe the use of a coalgebraic denotation for process

calculi. The paper claims coalgebraic semantics add clarity to the calculi as well as

allow for comparison and unification of process calculi. It gives the formal denotation

of the ambient calculus (for mobile computing) using CoCASL [Mossakowski et al.,

2003], an extension of the CASL specification language [Astesiano et al., 2001] that

adds built-in coalgebraic structures. Process calculi model concurrent systems. Rosetta

is for system specification, and we have shown that behaviors of Rosetta specifications

can themselves be considered systems. As such, the approaches used for denoting

process calculi with coalgebraic semantics can be applied to our denoting Rosetta with

coalgebraic semantics.

Hausmann et al. [2006] first lay out the signature functor for the design of the coal-

gebraic model of the ambient calculus. This sets up the structure, or type of transition

system. Then the paper lays out the transition rules. Essentially, this is the structure

and observations of the calculus. The coalgebraic framework gives more structure than

the typical approach of a labeled transition system, but also gives the generality to be

able to relate it to (via bisimulation, etc.) and combine it with other calculi.

6.2.2 Coalgebras in Java Semantics

Jacobs and Poll [2002] explore the use for a combination of monads and coalgebras

in the semantics of sequential Java. The monadic approach gives a clean model of

the computational structure of Java, while coalgebras give the program logic based on

that monadic structure. The coalgebraic view provides reasoning principles via modal
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operations and bisimulation. This approach is able to cleanly deal with complexities

such as multiple termination patterns in the model of computation.

While Rosetta is significantly different from sequential Java, this work still supports

our use of coalgebras in the denotation semantics of Rosetta. We show that the structure

of Rosetta is well suited for Rosetta components, and, as for Jacobs and Poll [2002],

the use of coalgebras gives us valuable reasoning principles, such as modal logic and

bisimulation.

6.2.3 Previous Work on Rosetta Coalgebraic Semantics

Kong et al. [2003] lay down the foundation for the coalgebraic semantics for Rosetta.

The work gives the general approach to denoting facets, giving the two-part denotation.

It then goes on to give the denotation details within a few specific domains. Kong et al.

[2003]’s work is the basis for this continued work. The denotation of components and

facets is necessary in developing the denotation of the composition of components and

facets. We have refreshed the denotation with necessary updates and details. Section

3.1 describes in detail what Kong et al. [2003]’s work entails, and how this thesis builds

on that work.
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Chapter 7

Conclusion and Future Work

This work discusses the utility of each composition operator for the system-level

designer and the role of the composition operators in the Rosetta semantics, providing

examples of the application of these operators to the specification design process. For-

malizing the semantics of a specification language gives us assurances as to the validity

of the specifications we write with the language. We refreshed the formal coalgebraic

denotation of components and facets. We then motivated the need for compositional

operators and defined the formal coalgebraic denotation of the resulting components

and facets from these compositions.

The extended example shows both the usefulness of the composition operators in

developing a real-world system specification as well as the conciseness of the end spec-

ification. We showed that a simple, clear, and modular specification had the desired

complexity in its denotation. This means the designer can utilize the power of the com-

position operators, while the complexities of composition lie “under the hood” in the

language denotation.

There are several directions to extend this work. One area is in formalizing the coal-

gebras of interactions. We discussed in Section 4.2.1.1 how, regardless of the operand
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components’ domains, we can compose them by using their least common domain as

the resulting domain. However, one of Rosetta’s features is its domain interactions.

These define translators, functors and combinators that precisely define how informa-

tion flows between domains. There remains further work on the denotation of inter-

actions, and interactions’ impact on the coalgebraic structure of Rosetta components

and facets. Furthermore, interactions involve facet combinations, and that needs to be

fleshed out in how it compares to the facet composition described in this work.

Another area for future work is in the utilization of tools to model the structure laid

out in this thesis. We could use a system such as PVS [FormalWare, 2011] to model

and verify domains, components, and facets. We can model facets as coalgebras within

PVS. We could then leverage the built-in coinduction proof capabilities to perform

bisimulation proofs, etc.
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