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Abstract

Programs involving precise types enforce more properties via type-checking, but

precise types also prevent the reuse of functions throughout a program since

no single precise type is used throughout a large program. My work is a step

toward eliminating the underlying dilemma regarding type precision versus func-

tion reuse. It culminates in a novel traversal operator that recovers the reuse by

automating most of each conversion between “similar” precise types, for a notion

of similarity that I characterize in both the intuitive and technical senses. The

benefits of my techniques are clear in side-by-side comparisons; in particular, I

apply my techniques to two definitions of lambda-lifting. I present and imple-

ment my techniques in the Haskell programming language, but the fundamental

ideas are applicable to any statically- and strongly-typed programming functional

language with algebraic data types.
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1 Introduction

In this dissertation, I make it easier for programmers working in statically- and strongly-

typed functional languages to use more precise types, i.e. those that contain fewer unintended

values. This is a step towards making large programs easier to write, because precise types

simplify function definitions by eliminating unintended exceptional cases and enforce some

of the properties expected at various points in a program. For example, a precise codomain

of a function implementing let-elaboration would intentionally not be able to represent let-

expressions. The most compelling motivation for my work is that precise types are currently

prohibitively expensive to use in large statically- and strongly-typed programs; their benefits

are out-of-reach when needed the most.

Ideally, programmers could readily define numerous precise types throughout a large pro-

gram, each enforcing the respective properties that characterize the intended data within

a given part of the program. However, while each precise type itself is relatively cheap to

define, the functions converting between precise types become expensive to write. In par-

ticular, the usual technique of defining a traversal operator and reusing it throughout a

program is no longer viable: because of the precise typing, there is no single data type used

pervasively throughout a program. Because the precise types themselves are necessarily dis-

tinct types, a simple traversal operator cannot be reused for multiple precise—but otherwise

conventional—data types.

As a result of these costs of precise types, developers of large programs favor the reusability

of simpler types over the correctness benefits of precise types. For example, the source of the

Glasgow Haskell Compiler (GHC) includes many functions that immediately raise fatal run-

time errors for some of their domain type’s constructors. The GHC implementers document

these functions’ related preconditions using type synonyms of the inexact types, indicative

constructor names, and comments that explain which of the constructors are expected as

input and output. Specialized precise types are avoided and reuse made possible, but at the
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cost of some enforced correctness. For data types with more than a hundred constructors,

like the GHC representation of external syntax, this is a fair engineering choice. My work,

though, is a step toward eliminating the underlying dilemma regarding type precision versus

reuse.

My technical work in this dissertation culminates in a novel reusable traversal operator

that can automate most of the conversion between “similar” precise types. I characterize

this notion of similarity later in both the intuitive and technical senses and demonstrate

several ways that such similar types naturally arise in programs. My operator eliminates

a major cost of precise types: it makes the conversions between them as cheap to write

as the corresponding function operating on a single imprecise type would be. I give a

spectrum of concrete motivating examples in the next section. The comparisons of these

examples’ uniquely expressive solutions enabled by my operator against their imprecisely-

typed-and-reusable and nonreusable-but-precisely-typed counterparts serve as the basis of

my evaluation.

I work within two research areas: generic programming and precisely-typed programming.

The first terminology is well-established in the literature, which includes my main publi-

cations [51, 16, 17]. The second is my own terminology for programming practices that

prioritize leveraging the type system in order to assure program correctness (e.g. my other

relevant publication [53]). Precisely-typed programming is an existing, seemingly implicit,

notion in the broad literature regarding programming with statically-checked types, but I do

not know of existing terminology with the same connotation as precisely-typed programming

nor any published work that focuses directly on it. I refer to the large body of existing work

relevant to precisely-typed programming as if it were a recognized classification within the

field. In that sense, my work lies in the intersection of generic programming and precisely-

typed programming: I develop new generic programming techniques in order to define my

traversal operator, which then reduces the cost precisely-typed programming.
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Generic programming techniques enable extremely reusable definitions. I focus on a major

branch of generic programming that attains its genericity by mapping back and forth between

a data type and a quasi-canonical representation of that data type built from a finite set

of representation types. If a generic value is defined for each of the representation types,

then it can be used for any data type that can be represented. Common generic functions

include structured-based ordering, (un)serialization, pretty-printing, and uniform traversals.

Generic programming simplifies definitions (often to a few function calls) and reduces their

coupling to the involved data types by consolidating that correlation within in each data

type’s representation.

I contribute to generic programming by enriching a major branch with lightweight support for

programming with anonymous subsets of a data type’s constructors, i.e. constructor subsets.

This allows the programmer to easily use more precise intermediate types within value-level

definitions. Lacking this capability, some case expressions involve “impossible” cases that

the programmer hopes will never arise at run-time but the type-checker still requires to be

handled and well-typed. Usually, the programmer discharges the impossible cases by raising

an exception exclaiming that “the impossible has happened!”. There is, however, a more

nuanced and costly scenario in strongly-typed languages: the well-typedness of impossible

cases may introduce nonsensical and even unsatisfiable type constraints. In Haskell, this

sometimes forces the programmer to either declare nonsensical and misleading type class

instances or to obfuscate the case expression, function, module, or even program in order to

prevent the troublesome constraints from being introduced. With my support for constructor

subsets, some impossible cases can easily be eliminated altogether.

In precisely-typed programming, the programmer prioritizes the use of types to assure pro-

gram correctness. The two essential elements of precisely-typed programming are 1) the pre-

cise types that strongly characterize the data at particular points in a program and 2) the ubiq-

uitous precise conversions between such types. The use of precise types eliminates down-
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stream impossible cases, so that the type-checker can statically confirm that a case expression

or function definition handles all possible alternatives. This assures the absence of run-time

errors due to non-exhaustive patterns and also avoids nonsensical and unsatisfiable type

constraints.

A statically- and strongly-typed programming language is essential for precisely-typed pro-

gramming, but the converse is not true. It is always possible to program within a statically-

and strongly-typed programming language without actually relying on the type-checker. For

example, one could represent all data with strings or even with slightly-structured trees that

contain only strings within each node. Within such programs there are many invariants that

could be encoded in the types but are not; the type system is ignored. While this sort of

practice seems odd, it does yield some practical benefits over precise types, such as sim-

plicity, uniformity, and portability. Indeed, “slightly-structured trees” is the basic structure

of S-expressions and XML, which certainly exhibit those virtues. This identifies a trade-off

involved in choosing a level of precision for the types in a program. Very precise types assure

program correctness, but are less practical. Statically- and strongly-typed programming lan-

guages accommodate many degrees of type precision, where precisely-typed programming is

one extreme. My main objective is to recover some of the practical benefits of less structured

data when using precisely-typed programming.

I contribute to precisely-typed programming by enriching generic programming techniques

to be usable within the definitions of precise conversions. Because a precise conversion’s do-

main and codomain are unequal types, there is no automated support for expressing conver-

sions between them. In particular, existing generic programming techniques cannot express

the useful default behaviors. While programmers can define precise types and conversions

without generic programming, they usually choose not to because manually defining precise

conversions is only tractable in small programs with small data types. For large programs,

with many data types with many constructors and many derived precise types, maintaining
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the numerous precise conversions becomes untenable. My enriched generic programming

techniques reduce the cost of precise conversions by automating the tedious cases that “just

do the obvious thing”. My approach relies on a precise conversion’s domain and codomain

having mostly isomorphic constructors. This precondition is not limiting in practice because

programs are already often organized as a series of small passes. Because precise conversions

can be simplified via my generic programming techniques, programmers get the benefits of

precisely-typed programming without having to write nearly as much tedious code.

The methods I develop for using constructor subsets and generic precise conversions together

reduces the cost of precise types. Constructor subsets are a variety of precise type that is

useful within a single function definition. In particular, constructor subsets are essential for

my application of generic programming techniques to precise conversions. In turn, generic

precise conversions make it more cost-effective for the programmer to write the conversions

between precise types necessary for precisely-typed programming across multiple functions.

Both varieties of precise types, in the small and in the large, provide the benefits of simpler

and less coupled definitions, resulting in programs that are easier to document, test, and

verify. The principal benefit is that programmers can attain the benefits of precise types—

both in a single definition and in the broader form of precisely-typed programming—without

having to write as much tedious code.

My primary technical contribution is the novel traversal operator for generic precise conver-

sions. Effective use of the operator requires cheap constructor subsets, which is a secondary

technical contribution because it can also be independently useful. Both serve my broader

agenda of simplifying large programs by reducing the cost of precise types. I include small

running examples while developing the basic approach and adding support for more sophis-

ticated data types. The enrichments make the techniques applicable to most data types

commonly used in practice.
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I claim that my work makes it easier for programmers working in statically- and strongly-

typed functional languages to use more precise types. Specifically, I show that my traversal

operator makes it easy to define precise conversions. Since programmer effort is difficult to

usefully quantify, my evidence for this claim is qualitative and relies on many comparative

examples. The benefits of generic programming and precisely-typed programming are clear

in side-by-side comparisons. Generic programming makes definitions simpler and less cou-

pled. By “simpler”, I mean fewer explicit cases (and so usually less code) and more uniform

structure. In particular, generic programming tends to focus on reusable operators that

correspond to well-understood semantics (e.g. catamorphism) and precisely-typed program-

ming eliminates many side-conditions. The evaluation consists, therefore, of juxtaposition

of definitions without generic programming and precisely-typed programming against their

variations using generic programming and precisely-typed programming via my techniques.

My culminating examples use my traversal operator to define two definitions of lambda-

lifting, which is a well-studied pass in functional language compilers.

I present and implement my techniques in the Haskell programming language, but the fun-

damental ideas are applicable to any statically- and strongly-typed programming functional

language with algebraic data types. I have implemented my ideas in a Haskell library avail-

able at http://hackage.haskell.org/package/yoko. The details of that implementation

are discussed more concisely in my paper [17].
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2 Motivation

Researchers working on static type systems strive to balance two opposing objectives. They

want type systems to catch as many errors as possible and to help structure programs, but

they want just as much to avoid getting in the programmer’s way. In this chapter, I use

examples to motivate how my techniques will augment this balance with respect to algebraic

data types. I give the solutions to the smaller examples here in order to provide a feel for

the resulting interface. In the later chapters, I explain the details of the solutions to all

examples.

I begin with a definition of precise type. The term is inherently relative. It indicates a

comparison on the spectrum of adequacy central to the work of Harper et al. [19]. For

example, the following generalized algebraic data type [48], when wrapped with STLC, is

inhabited only by values encoding closed and well-typed terms of the simply-typed lambda

calculus, like identity = STLC $ Lam Var.

data Tm ∷ (* → *) → * → * where

Var ∷ v a → Tm v a

Lam ∷ (v a → Tm v b) → Tm v (a → b)

App ∷ Tm v (a → b) → Tm v a → Tm v b

newtype STLC ty = STLC {unwrap ∷ ∀v. Tm v ty}

Such encodings are adequate: well-typed values of the data type correspond exactly to the

objects the data type is intended to represent [19]. An adequate type is the ultimate precise

type, but a precise type is not necessarily adequate. Without the specific context of the

Logical Framework as used by Harper et al. [19], adequacy is too strong a notion for general

purpose programming. The precise terminology is more relaxed. It also tends to be used

as a comparison, where adequacy in its intended context is all-or-nothing. For example,

the following data type only gaurantees that the represented lambda calculus terms are

well-scoped.

7



data Tm v = Var v | Lam (v → Tm v) | App (Tm v) (Tm v)

newtype ULC = ULC {unwrap ∷ ∀v. Tm v}

The ULC type is an adequate encoding of the untyped lambda calculus, but not of the

simply-typed lambda calculus. However, it is a more precise encoding of either the untyped

or the simply-typed lambda calculus than the most common first-order representation using

Strings for binders and variable occurrences. “More adequate” would be just as meaningful

as “more precise”, but it connotes more formality than I intend and constrasts with the

usual all-or-nothing semantics of “adequate”.

2.1 In-the-Small

While easier precisely-typed programming is my main goal, my solution also involves sup-

port for programming with constructor subsets. This is independently useful but not well-

supported in many strongly-typed languages.

Example 1: Serializing Data Containing Cached Functions. The C constructor

of the data type T uses its second field as a cache for a function determined by its first field.

In general, the caching could be a significant optimization. All other types in T are assumed

to not involve functions and to be easy to serialize.

data T = ... | C X (X → X) -- the first field determines the second

The objective is to serialize values of this data type, using the following interface.

class Serialize t where serialize ∷ t → [Bool]

The salient charateristic of this example is the use of a default handler (e.g. a generic seri-

alizer) that would be ill-typed if applied to a C value. Without automation, the handling of

the non-C constructors could be tedious.

End of Example
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The basic notion of serialization is “emarassingly generic”; it has almost nothing to do with

the details of the data type. However, the generic programming technique I have adopted

as a basis for my work cannot apply its generic definition of serialization to T. I discuss

the technique in depth in Section 3.3, but it is important to know now that it is a leading

generic programming: this example exacerbates one of its few comparative faults. The

generic serializer defined with it as ig_serialize.

ig_serialize ∷ (. . .) ⇒ t → [Bool]

ig_serialize = . . . -- defined in Section 3.3

I mention this now because it first occurs in this example’s definition. In Haskell, the

word “field” usually refers only to the arguments of a constructor that were declared with

names using Haskell’s lightweight support for record syntax. I instead use “field” to mean

“an argument to a constructor”. Record syntax is irrelevant to this dissertation but is

occasionally used for convenience without ambiguity.

The problem with applying ig_serialize to a value of type T is the function space in the

field of C. The definition of ig_serialize requires all types occuring within its argument’s

type to be themselves serializable. This usually just requires the programmer to indicate

that a few auxiliary serialization instances should also be generically automated, but there

is no meaningful instance of Serialize for the → type. Thus the simplest first attempt at

serializing T

instance Serialize T where serialize = ig_serialize -- ill-typed

fails with an error complaining about the lack of a Serialize instance for X → X.

It is insightful to understand why the näıve next attempt also fails in the exact same way.

instance Serialize T where -- also ill-typed!

serialize t = case t of

C c _ → False : serialize c

x → True : ig_serialize x

9



I add the Booleans to preserve the essential bijection of serialization. The intent of this

definition is to capitalize on the fact that the second field of C is determined by the first,

so only the first need be serialized. The omitted unserialization would rebuild the second

field. This successfully avoids ever trying to serialize a function. However, because of the

imprecise types involved in general Haskell pattern matches, this instance is ill-typed with

the same error message: no Serialize instance for X → X. The crux of the matter is that

while our explicit manual handler for the C case eliminates the actual run-time need for the

serialization of the function, the argument x of the ig_serialize function still has type T.

Since my generic programming is type-directed and the type of x does not encode the simple

property that it is not constructed with C, the type error remains.

The common solution to this problem is to use the näıve instance above and declare a vacous

Serialize instance for the function type → that does not actually define the serialize

method. Because the T instance successfully guards against invoking serialize on a function,

there will be no run-time error. However, this is exactly the kind of side-condition that

precisely-typed programming is supposed to supplant! It seems simple enough to manage

the side-conditions at this point, but during the life-time maintenance of the program, the

side-condition can easily be overlooked in the documention or simply forgotten about. Worse

still, there is the nonsensical instance of Serialize for functions, which other programmers

might unknowingly rely on.

Constructor subsets neatly solve this problem, preventing the need for side-conditions and

avoiding the nonsensical instance. In particular, they allow an instance of Serialize for

T that is just a syntactic variant of the previous one but does not need the nonsensical

Serialize instance for the → type. The following example solution imports my library as

Data.Yoko.
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import qualified Data.Yoko as Y

Y.yokoTH ’’T -- Template Haskell derives necessary declarations

instance Serialize T where

serialize t = Y.precise_case (λx → True : ig_serialize x) t $ Y.one $

λ(C_ c _) → False : serialize c

The basic improvement is that x in the new instance has an inferred type that indicates it

is not constructed with C. Its type is therefore the subset of T constructors that are not C.

Since this intuitive idea is now actually formalized in the Haskell type system, the nonsensical

constraint Serialize (X → X) is never generated. The type-checker validates that all cases

are handled in a well-typed manner without the programmer having to manage any side-

conditions. The precise constructor subset type enables precisely-typed programming.

Other than the occurrence of the one function, this instance has nearly the exact same

syntactical components as the previous näıve instance. The precise_case function, which

simulates a more precisely-typed case expression, is defined in Section 4.2. Note that the

underscore at the end of the name C_ in the pattern is not a typo. It belongs to a type

automatically derived from T which includes only the C_ constructor. Thus, the lambda is

total. This derived data type is generated by the Template Haskell splice yokoTH.

This example of serializing values of the T data type just involved the single definition

of the serialize method. In this localized case, it explained how precise types can be

used to simplify functions. The programmer can easily handle the troublesome C case and

leverage the type-directed generic programming library to automatically serialize the rest

of the constructors. The next section introduces an example where the concerns are less

localized.
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2.2 In-the-Large

My main goal is to make it easier to use a particular kind of precise type throughout large

programs. Specifically, I make it cheap for the programmer to define ad-hoc variantions of

data types with relatively few differing constructors. By encoding invariants in these more

precise ad-hoc data types, the programmer leverages the type-checker to actually enforce

the invariants. These precise types are ideally ubiquitous, but require at least as many

precise conversions between them. With current technology, these conversions’ definitions

are untenably tedious to maintain in such large numbers. My techniques eliminate the tedium

and therefore prevent precise types, a crucial element of precisely-typed programming, from

getting in the programmer’s way. I adapt a small example from Chakravarty et al. [8].

Example 2: Losing Weight. The objective is to define a function rmWeights to remove

weights from weighted trees.

module WTree where

data Tree a w = Leaf a | Fork (Tree a w) (Tree a w) | WithWeight (Tree a w) w

The range of rmWeights must not contain any WithWeight constructors.

End of Example

The definition of rmWeights given by Chakravarty et al. uses an imprecise type.

rmWeights ∷ Tree a w → Tree a w -- adapted from [8]

rmWeights t = case t of

Leaf a → Leaf a

Fork l r → Fork (rmWeights l) (rmWeights r)

WithWeight t _ → rmWeights t

While it is true that the range of rmWeights contains no WithWeight constructors, its codomain

still does. If any downstream functions require the absence of WithWeight, they would rely

on a side-condition that rmWeights has been applied, even perhaps applying it locally. A
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more precise codomain for rmWeights enables precisely-typed programming, eliminating the

side-condition.

module Tree where

import qualified WTree as W

data Tree a = Leaf a | Fork (Tree a) (Tree a)

precise_rmWeights ∷ W.Tree a w → Tree a

precise_rmWeights t = case t of

W.Leaf a → Leaf a

W.Fork l r → Fork (precise_rmWeights l) (precise_rmWeights r)

W.WithWeight t _ → precise_rmWeights t

In the definition of precise_rmWeights, the codomain actually enforces the absence of weights

in the range. Downstream functions that cannot handle weights could use this more precise

Tree data type as their domain and thus avoid side-conditions and potentially redundant

applications of precise_rmWeights.

Superficially, the only cost of employing precisely-typed programming in this example is

the additional declaration of the more precise Tree data type. While this is an “in the

large” example because it is concerned with the flow of types and values between defini-

tions throughout the program, its ramifications are diminished by its small size. In larger

programs, involving richer data types, more constructors, more fields, and many properties

to be encoded as more precise variants, the definition of functions like precise_rmWeight is

untenable because there are many of them and each involves so many tedious cases. For

precise_rmWeights, the tedius cases are for Leaf and Fork—it is obvious to the programmer

what these cases ought to do. Unfortunately, mainstream languages and existing generic

programming techniques cannot provide the necessary default behavior. With the larger

examples, this means that precise types in the large are not a workable solution. On the

other hand, existing generic programming techniques can automate the tedius cases within
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the imprecisely-typed rmWeights function. Because of this opportunity cost, precisely-typed

programming is too costly to use.

For example, the technique at the foundation of my work can define the reusable operator

compos [7], which handles the tedius cases of rmWeights’. Since the traversal is side-effect

free, the pure_compos variant suffices. I discuss the compos operator in depth in Section 3.2.

pure_compos ∷ (. . .) ⇒ (t → t) → t → t

pure_compos = . . . -- defined generically in Section 3.2

rmWeights’ ∷ Tree a w → Tree a w

rmWeights’ t = case t of

WithWeight t _ → rmWeights’ t

x → pure_compos rmWeights’ x

Because pure_compos is defined generically, the Leaf and Fork cases are effectively automated

in the definition of rmWeights’. This definition exhibits the same default handler that is the

main characteristic of Example 2.1. Thus, as I enrich my generic programming approach to

be applicable to precise_rmWeights in the following, I take extra care in order to avoid the

sort of type error demonstrated in Example 2.1. In this way, my techniques for precise types

in the large also require the constructor subset types that provide precision in the small.

The eventual solution for Example 2.2 is the precise_rmWeights’ function. It uses the

hcompos function from my library that I show here for convenient comparison with compos.

The “h” is for heterogenous, since the domain and codomain of hcompos can be inequal unlike

compos. Note that precise_rmWeights’ in the following example solution does indeed rely

on precise_case just as does the solution of Example 2.1.
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import qualified Data.Yoko as Y

import qualified WTree as W

import Tree

Y.yokoTH ’’W.Tree

Y.yokoTH ’’Tree

-- hcompos generalizes to compos to handle distinct types;

-- Invariant: soc is some subset of the constructors of s

pure_hcompos ∷ (. . .1) ⇒ (s → t) → soc → t

pure_hcompos = . . . -- defined generically in Section 5

precise_rmWeights’ ∷ (. . .) ⇒ W.Tree a w → Tree a

precise_rmWeights’ t = Y.precise_case (pure_hcompos precise_rmWeights’) t $

Y.one $ λ(WithWeight_ t _) → precise_rmWeights’ t

This generic definition of precise_rmWeights’ fits into the same schema as all of the previous

generic functions: it has a default case that needs to exclude a particular constructor. Modulo

the use of precise_case and one, it is syntactically analogous to the generic definition of the

less precisely typed rmWeights’.

In Table 2.1 I organize the four functions for solving Example 2.2 in a grid. The columns in-

dicate if the function is precisely-typed and the rows indicate if it has a concise and modular

definition. Existing generic programming methods allow the programmer to improve the def-

inition of rmWeights to rmWeights’. As a principal benefit of this dissertation, I enrich generic

programming to permit that same improvement for the precisely-typed precise_rmWeights;

the bottom right cell is part of my objective.

imprecise precise

complicated & immodular rmWeights precise rmWeights

concise & modular rmWeights’ precise rmWeights’

Table 2.1: Solutions to Example 2.2 organized on a grid indicating precision of type and
concision/modularity of definition.

1The context I have left out is an artifact of my simulation of a decidable type-level equality test. This
artifact is necessary for using my technique with polymorphic types like W.Tree a w and Tree a. Based
on communication with the GHC implementers, I believe these constraints will soon not be necessary with
upcoming GHC versions. I explain them in detail in Section 3.5.
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Though the required programmer effort for precisely-typed programming becomes untenable

without generic programming only in larger programs, I make Example 2.2 intentionally

small so as to focus on the main idea behind enabling precisely-typed programming with

precise types. In the next section, I summarize a well-known instantiation of precisely-typed

programming from the literature and adopt part of its larger program as an example in

which generic programming is essential for precisely-typed programming to be practical.

2.3 Nanopasses in Haskell

Sarkar et al. [39] summarized their investigation of building a compiler as a series of “nanopass”.

They begin with a micropass compiler that is composed of minimal passes, each of which

implements an individual logical step of the compiler. Their micropasses qualify as precisely-

typed programming because they use precise types between some passes to enforce the inter-

mediate program grammars (though not statically). Sarkar et al. claim numerous benefits

derived from their micropass formulation of precisely-typed programming. They summarize

those beneifts as easier to understand (i.e. simpler) and easier to maintain. They further

refine the micropasses into nanopass by reducing the size of passes’ definitions. This is

accomplished by their novel pass expander, which automates the tedious cases much like

compos does. In this dissertation, I translate the essence of nanopasses from their syntax-

based extension of Scheme to Haskell using modern generic programming foundations. This

culminates in an enrichment of compos that generalizes the pass expander.

The nanopass (and micropass) compiler of Sarkar et al. [39] includes many simplification and

conversion passes such as the elaboration of pattern matching syntax and the conversion of

higher-order functions into closures. Simplification passes transform from one grammar to a

smaller grammar that excludes the simplified syntacitc forms. Conversion passes transform

between two mostly equivalent grammars. The grammars’ similarity enables the major

improvement of nanopasses over micropasses: the programmer can omit tedius cases from

conversions because the pass expander infers them.
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The nanopass work of Sarkar et al. is a well-known example of the benefits of precisely-typed

programming. Yet they based their work in the untyped programming language Scheme!

To achieve precisely-typed programming in Scheme, they extended the Scheme language

using the syntax-case mechanism of Dybvig et al. [14]. The extension most essential to

precisely-typed programming that they added was support for enforced grammars (though

not statically). This involves a define-language syntax for declaring grammars and related

syntaxes for pattern-matching and for the “templates” that are used to construct terms.

Haskell’s native support for data types provides comparable mechanisms; such restricted

grammars are straight-forward to encode as a mutually recursive data types. Haskell is

therefore a more natural place to start when investigating precisely-typed programming.

The define-language syntax does, however, provide some mechanisms without counterparts

in Haskell, such as declared classes of pattern variables (i.e. metavariables) enforcing, e.g.,

that pattern variables like xn can only match occurrences of variable names, en can only

match occurrences of expressions, and nn can only match integer literals. They also provide

mechanisms comparable to view patterns [1, §7.3.5], including a special type-directed implicit

syntax comparable to the implicit calculus of d. S. Oliveira et al. [11]. However, these

mechanisms’ benefits are minor compared to the basic strong-typing of data types inherent

to Haskell and the pass expander that I implement using IG.

The pass expander underlying nanopasses is less recognized as an early instance of generic

programming. Since Haskell provides many other elements of nanopasses, the pass expander

is the more technically interesting part with respect to this dissertation. I take the rest

of that work as evidence supporting the benefits of precisely-typed programming; it is the

inspiration for my dissertation. I compare the details of the techniques demonstrated by

Sarkar et al. to my Haskell implementation within my evaluation in Section 7.4.
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Because the simplification and conversion passes considered by Sarkar et al. are so Scheme-

centric, I will also solve the more generally interesting example of lambda lifting, which

would be consideration a conversion pass.

Example 3: Lambda-Lifting. Implement a precisely typed lambda lifting function.

End of Example

I solve this example twice, once in Section 5.5 and again in Section 7.3. The first solution

demonstrates a concise lambda lifter over a de Bruijn indexed term representation. The use

of de Bruijn indices exacerbates one of the restrictions imposed by the hcompos interface.

When discussing that example, I focus on how its concision follows from using my technical

contributions and also on the demonstrated difficulty of accomodating the hcompos interface.

In the second solution, I reimplement a lambda lifter from the literature, specifically that

of Jones and Lester [23]. They designed that lambda lifter to be modular, so it is not as

dramatically concise as my first solution. However, by using multiple steps, the example

shows precisely-typed programming in action. In my implementation, I use precise types

to enforce invariants they specifically lament not being able to encode in the type system.

Without hcompos, the use of those types would be untenable, which is something those

authors implicitly expressed in their paper. The generic programming benefits of hcompos and

the precisely-typed programming benefits it enables yield a dramatic side-by-side comparison

of the old code and my new code.

Jones and Lester [23, §4] also discusses the lack of support for precisely-typed programming

in Haskell (without using that terminology, of course). They share some design decisions re-

garding the data type over which they define their lambda lifter. They begin with Expression

where Name and Constant are language-specific.
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data Expression

= EConst Constant -- e.g. 7 or True or +

| EVar Name

| EAp Expression Expression

| ELam [Name] Expression

| ELet IsRec [Definition] Expression

type Name = String

type IsRec = Bool

type Definition = (Name, Expression)

They note that this data type’s fixed use of Name for binders lacks the flexibility that is

important for later passes like type inference. They quickly advance to Expr.

data Expr binder

= EConst Constant

| EVar Name

| EAp (Expr binder) (Expr binder)

| ELam [binder] (Expr binder)

| ELet IsRec [Defn binder] (Expr binder)

type Defn binder = (binder, Expr binder)

type Expression = Expr Name

They point out that Expression is an instance of Expr while the data type used for type

inference could be Expr (Name, TypeExpr). Note that Expression is now just one type in the

parametric Expr family of types2. We shall see in the next chapter than conversions between

instances of a parametric family of types are still beyond the reach of compos.

2I follow the convention from the Logical Framework of using “family of types” to refer to any type of
higher-kind. I will only use “type family” to refer directly to the Haskell feature of the same name.
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Jones and Lester are still not satisfied with their data type because they intend to annotate

nodes in the tree other than just lambdas. They end up using both Expr and AnnExpr.

type AnnExpr binder annot = (annot, AnnExpr’ binder annot)

data AnnExpr’ binder annot

= AConst Constant

| AVar Name

| AAp (AnnExpr binder annot) (AnnExpr binder annot)

| ALam [binder] (AnnExpr binder annot)

| ALet IsRec [AnnDefn binder annot] (AnnExpr binder annot)

type AnnoDefn binder annot = (binder, AnnExpr binder annot)

The mutual recursion between AnnExpr and AnnExpr’ guarantees that each node in the tree is

paired with a value of annot. At this point, the authors lament that AnnExpr and Expr dupli-

cate the constructors. And while Expr binder is almost isomorphic to AnnExpr binder (),

they say it is too tedious to deal with the ubiquitous ()s when constructing and destructing

Exprs.

Finally, they define their lambda lift function with the following signature.

lambdaLift ∷ Expression → [SCDefn]

type SCDefn = (Name, [Name], Expression)

They remark that the Expressions in SCDefn will never be constructed with the ELam con-

structor and that in the Haskell type system (of 1991) there was no way to express/enforce

this fact. There still is no best mechanism to do so in a general way. My contribution for

subsets of constructors leverages current generic programming fundamentals as a lightweight

solution to this problem. Where they mention adding “yet another new variant of Expr” with-

out the ELam constructor, they do not even stop to consider that option—it is implicitly and

immediately dismissed as impractical. My techniques make it viable. In particular, Jones
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and Lester could indeed define another such data type as I do in Section 5.5, or they could

even define SCDefn as follows.

import qualified Data.Yoko as Y

Y.yokoTH ’’Expr -- recall that Expression = Expr Name

type SCDefn = (Name, [Name], Y.DCs Expression Y.:-: Y.N (ELam_ Name))

In my library, DCs is a type family that maps a data type to the set of all its constructors, :-:

is a set difference operator, and N builds singleton sets. In this example, ELam_ is the name of

both the data type and its only constructor that is derived from the ELam constructor. Thus

the type literally reads as the constructors of Expression except ELam. Either way, using yet

another variant or explicitly using a constructor subset, the definition of lambdaLift can use

the hcompos function to handle the tedious cases.

I have recounted the design considerations of Jones and Lester because it is a concrete

testimony that the concerns of precise types arise in practice with even well-known functions

and extremely capable programmers. The work of Sarkar et al. further testifies that relying

on mechanisms to directly address these concerns pays off.

2.4 My Work on the Rosetta Toolset

While this chapter has so far motivated my work by referring to established ideas and exam-

ples from the literature, the actual research unfortunately happened backwards. I invented

my ideas to solve an engineering problem and then backed up to find the relevant literature.

I will overview the engineering problem and sketch the solution because it demonstrates how

my techniques can influence even the high-level design of programs.

I am an implementor of the Rosetta specification language [3]. Rosetta is intended to

be a industrial strength language in wide-spread use, and its intended users are distributed

along multiple spectrums from design engineers “on the front lines” to formal methods
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practioners proving more general theorems. In order to contend with its various peers along

these spectrums (like VHDL, PVS, Verilog, Coq, etc), Rosetta must include a cornucopia

of powerful language features. Even just the features of its type systems that are well-

understood in isolation, such as dependent types, implicit subtypes, first-class modules, and

type reconstruction, lead to open problems in the respective fields when integrated [42].

The Rosetta team has decided to adopt my techniques in order to gradually diffuse the

complexity of the full Rosetta feature set. In particular, some members of the implemen-

tation team are researching the integration of subsets of the aforementiong features while

others are researching the novel language constructs specific to Rosetta. As a result, the in-

termediate representation of the full language is in flux. This incurs the software engineering

problem of constantly updating parts of the toolchain, like the parser and the pretty-printer.

Moreover, these changes to the intermediate representation tend to be experimental, since we

are conducting research on open problems. My techniques make it cheap for an implementor

to create a secondary intermediate representation that excludes the troublesome features

that are irrelevant to that implementor’s current research. Prior to my techniques, this was

prohibitively expensive, since the abstract syntax for the full Rosetta language at the time

of writing this disseration contains 17 Haskell data types with 92 constructors.

The major engineering issue is that when a Rosetta implementor forks the abstract syntax,

they usually need to also fork other functionality of the tool set, such as the parser and

sometimes even the type-checker (which is itself experimental!). This is, for the most part,

tedious busy work—most of the syntax can still be parsed in the same way. My work

mitigates much of this work by making it inexpensive to translate between the full abstract

syntax and the implementors’ experimental forks of it.

That is how my work will help the Rosetta implementors in their day-to-day research: by

automating the tedious parts of converting between large intermediate representations data

types. However, the Rosetta team’s long-term plan is actually to provide a suite of tools
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that each handles only a subset of the Rosetta feature set, akin to the PVS tool suite

[37]. This is a practial approach to the complex open problems inherent in the combination

of all those rich language features; we do not anticipate a single monolithic tool capable of

supporting all valid specifications within the entire Rosetta language. Thus, my work is

not only useful for the current research that is devoloping Rosetta tools, it will remain

within the code that interfaces between the various tools in the suite.

2.5 Limitations

I claim my work only reduces of the cost of precise types, as opposed to eliminating the

cost, for three reasons. As I discuss during the evaluation of my work, the time and space

overhead of my techniques could prohibit their use in some programs. There is, though,

no obvious theoretical limitation; continued research on optimizing generic programming

techniques in Haskell will likely reduce my library’s overhead. Similarly, the type errors

incurred by mistaken uses of my API have a poor signal-to-noise ratio, and this is again a

drawback of concern common to the field of generic programming. Finally, as I explain when

relating my work to that of Bahr and Hvitved [4], my techniques address only one detriment

of precise types. In particular, my techniques are not a solution to Wadler’s expression

problem [50].

My techniques could be extended to address the expression problem, but that has not been

my objective in this work. It could even be simpler to make my library interoperable with

approaches like that of Bahr and Hvitved that do address the expression problem. Even

without the reuse specific to the expression problem, my work significantly reduces the costs

of using precise types in large Haskell programs.

2.6 Summary

In this chapter, I defined and explained the benefits of precise types in the small and in the

large. This results in three unsolved examples, one of which focuses on in-the-small (i.e.
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constructor subset) and the other two on the more important in-the-large (i.e. precisely-

typed programming). Two of the examples are from existing literature [8, 23].

Having here motivated and established some concrete objectives, I explain the technical

foundations of my general approach in the next chapter. The novel technical work comprising

my contributions is developed in the following three chapters. I extend the foundation with

cheap constructor subsets and generic precise conversions, first on only simple data types

and then in the presence of richer data types. These chapters include solutions to all of my

concrete examples as well as many ad-hoc examples that assist with the development and

explanation of the ideas.

To evaluate my work, I compare and constrast the solutions enabled by my techniques

against the conventional alternatives. My arguments are merely qualitative, since legitimate

empirical studies are beyond my resources. Even so, I make a compelling argument for the

worthwhileness of my library’s unique capabilities for a widely-recognized subset of Haskell

programmers: those prioritizing correctness and rapid development. I conclude that I have

made it easier for programmers working in the statically- and strongly-typed Haskell language

to use more precise types. Moreover, the underlying ideas are not deeply entangled with

Haskell; they can be ported to other languages that have users with the same cultural priority

on correctness and comparable algebraic data types.
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3 Background

As a review of the technical definitions that I build on, I recall the definition and usage of

applicative functors [34], the compos operator [7], the instant-generics generic program-

ming approach [8], and the automated embedding and projection into sums types [44]. I

then summarize my use of type-level programming in Haskell. I assume that the reader is

familiar with Haskell, including type classes, monads, and the more recent type families [40].

3.1 Applicative Functors and Traversable Functors

The standard Control.Applicative and Data.Traversable modules are inspired by the work

of McBride and Paterson [34], which shows how their interface precisely factors a widespread

class of data structure-centric algorithms.

class Functor i ⇒ Applicative i where

pure ∷ a → i a

(<*>) ∷ i (a → b) → i a → i b

(<$>) ∷ Applicative i ⇒ (a → b) → i a → i b

(<$>) = fmap

Applicative functors are not necessarily computations that yield values (i.e. monads), but

such computations are a useful subset of applicative functors. The pure function corresponds

to monadic return, and the <*> function is a weaker version of >>= with its own related laws.

For any monad, f <*> m = f >>= λf → m >>= λm → return (f m). On the other hand,

there exist applicative functors that are not monads. The useful Const data type is an

example.

newtype Const a b = Const {unConst ∷ a}

instance Monoid a ⇒ Applicative (Const a) where

pure _ = Const mempty

Const a1 <*> Const a2 = Const $ a1 ‘mappend‘ a2
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This data type emphasizes the major difference from monads. The continuation argument

of >>= allows later side-effects to depend on the value of previous computations. Such a

value would be impossible to provide with the Const data type—it cannot be a monad.

Where the monadic interface allows the computational structure to dynamically depend on

the computed values, the applicative interface is restricted to static computations.

The Applicative interface becomes much more useful in the presence of the Traversable

class. Its traverse method is a structure-preserving map like fmap that uses Applicative to

also correctly thread side-effects in a “left-to-right” manner.

class Traversable t where

traverse ∷ Applicative i ⇒ (a → i b) → t a → i (t b)

Instances of the Traversable class specify how a particular functor t can distribute with

any applicative functor. It creates an applicative computation that is structured similarly

to the input value of type t a. Its type doubly generalizes the standard mapM and sequence

functions: the Monad restriction is relaxed to Applicative and the list type is generalized to

any Traversable type. Therefore, it can be used with non-monadic effects like that of Const

and operate or more interesting structures like trees.

import Tree (Tree(..)) -- unweighted trees from Section 2.2

instance Traversable Tree where

traverse f (Leaf a) = Leaf <$> f a

traverse f (Fork l r) = Fork <$> traverse f l <*> traverse f r

For example, these instances for Const and Tree can be combined to flatten a Tree into a

list. The list is the monoid carried by the Const applicative functor. Other monoids are

defined in Control.Applicative that are often useful: Any and All for the disjunctive and

conjunctive monoids over Booleans and the Sum and Product monoids for number types.

flatten ∷ Tree a → [a]

flatten = unConst ○ traverse Const
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Or a Tree could be traversed with the State monad in order to uniquely number its el-

ements. This is assuming that the State monad has been declared directly as an in-

stance of Applicative. For some monad that has no such instance, one could use the

Control.Applicative.WrappedMonad newtype.

renumber ∷ Tree a → Tree (Int, a)

renumber = flip runState 0 ○ traverse gensym

where gensym a = get >>= λi → put (i + 1) >> return (i, a)

As McBride and Paterson show with more examples like these two, the Applicative interface

enables the traverse operator to model the shape of many diverse traversal functions. In

next section, I discuss another Traversable-like class that use Applicative so that it can to

model a distinct class of traversal functions. In the following, it will be useful for the reader

to observe that some of my main classes have similar semantics to Traversable.

3.2 The compos Operator

Bringert and Ranta [7] introduce the compos operator for defining “almost compositional

functions”. In this context, compositional means that the result of a function for a construc-

tor of a data type is determined by that constructor’s non-recursive content and the result of

that same function on all the immediate recursive occurences of the constructor. The compos

operator provides just the necessary interface to a data type to use compositionality as a

definitional mechanism. It has the following signature, assuming that t is a singly recursive

data type.

class Compos t where compos ∷ Applicative i ⇒ (t → i t) → t → i t

pure_compos ∷ Compos t ⇒ (t → t) → t → t

pure_compos f = runIdentity ○ compos (pure ○ f)

The operator is useful for defining the uninteresting cases of bottom-up transformations. For

example, I used the pure variant to define the rmWeights function from Example 2.2 without
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explicitly handling the tedius cases of leaves and branches. Those cases are tedius because

they include no weights. However, because they contain recursive occurrences into which the

transformation must be propagated, they still need definitions. Indeed, those cases ought to

be compositional, so pure_compos suffices. We can define a similar function that applies an

adjustment to the weights instead of removing them.

adjustWeight ∷ (Double → Double) → WTree Double a → WTree Double a

adjustWeight adjust = f where

f (WithWeight t w) = WithWeight (f t) (adjust w)

f x = pure_compos f x

Without compos, this definition would be written with the following two cases, which are

equivalent to the relevant inlining of pure_compos.

f (Leaf a) = Leaf a

f (Fork l r) = Fork (f l) (f r)

Bringert and Ranta call functions like rmWeight and adjustWeight almost compositional

because most of their cases are compositional. As a result, there are significant benefits

to replacing those cases with compos. The relative concision of the definition prevents those

bugs due to the inattentive programming invited by the tedius cases (e.g. Fork (f l) (f l)).

It also simplifies reasoning, since all compositional cases are handled uniformly and are

explicitly identified as compositonal. Finally, it reduces the coupling with the definition

of WTree. In particular, this definition of adjustWeight no longer explicitly depends on

any details of those constructors which should behave compositionally. Since changes in

those details need not be reflected in the definition of adjustWeight, maintainance is easier.

For example, the Fork constructor could be changed to allow n-ary branching without any

change to adjustWeight. Compositionality is the semantics of most cases for many interesting

functions.

Beacuse the type of compos preserves the input type, the function cannot be used, for ex-

ample, to change the type of the weights in a tree. Even though the following definition
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of changeWeight is so similar to adjustWeight—the tedious cases are even syntactically

identical—the type of the compos operator is too strict for it to be used.

import WTree

changeWeight ∷ (w → w’) → Tree a w → Tree a w’

changeWeight f = work where

work (WithWeight t w) = WithWeight (work t) (f w)

-- work x = pure_compos work x -- intuitively meaningful but ill-typed!

work (Leaf a) = Leaf a

work (Fork l r) = Fork (work l) (work r)

From this example, it is evident that compos cannot be used to automate conversions between

similar data types, even different instances of the same parametric data type. Applying GP

to such conversions is the main technical challenge I overcome in this dissertation. The

eventual solution is a generalization of the Compos class. For the linear presentation of the

technical development, however, I first introduce the starting point of my GP techniques. In

particular, the next section includes a generic (i.e. very reusable) definition of compos.

3.3 The instant-generics Approach

This section summarizes the instant-generics approach [8], the foundation of my generic

programming. It is expressive [33] and performant [8, §5]. Existing generic programming

techniques are sufficient for generically defining the compos function of Bringert and Ranta

[7]. These same techniques convey the majority of the reusability of my techniques; my

extensions just enable more flexible use.

The instant-generics framework derives its genericity from two major Haskell language

features: type classes and type families. I demonstrate it with a simple example type and

two generically defined functions in order to set the stage for my extensions. In doing so,

I introduce my own vocabulary for the concepts underlying the instant-generics Haskell

declarations.
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Listing 3.1: The core instant-generics interface.

-- set of representation types

data Dep a = Dep a data Rec a = Rec a

data U = U data a :*: b = a :*: b

data C c a = C a data a :+: b = L a | R b

-- maps a type to its sum-of-products structure

type family Rep a

class Representable a where

to ∷ Rep a → a

from ∷ a → Rep a

-- further reflection of constructors

class Constructor c where

conName ∷ C c a → String

The core instant-generics declarations are listed in Listing 3.1. In this approach to generic

programming, any value with a generic semantics is defined as a method of a type class.

That method’s generic definition is a set of instances for each of a small set of representation

types : Dep (replacing the Var type of Chakravarty et al. [8]), Rec, U, :*:, C, and :+:. The

representation types encode a data type’s structure as a sum of products of fields. A data

type is associated with its structure by the Rep type family, and a corresponding instance of

the Representable class converts between a type and its Rep structure. Via this conversion,

an instance of a generic class for a representable data type can delegate to the generic

definition by invoking the method on the type’s structure. Such instances are not required

to rely on the generic semantics. They can use it partially or completely ignore it.

The Sum-of-Products Representation Types

Each representation type models a particular structure common in the declaration of data

types. The Rec type represents occurrences of types in the same mutually recursive family as

the represented type (roughly, its binding group), and the Dep type represents non-recursive

occurrences of other types. Sums of constructors are represented by nestings of the higher-

order type :+:, and products of fields are represented similarly by :*:. The U type is the
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empty product. Since an empty sum would represent a data type with no constructors, it

has no interesting generic semantics. The representation of each constructor is annotated via

C’s phantom parameter to carry more reflective information. The :+:, :*:, and C types are

all higher-order representations in that they expect representations as arguments. If Haskell

supported subkinding [55, 32], these parameters would be of a subkind of * specific to

representation types. Since parameters of Dep and Rec are not supposed to be representation

types; they would have the standard * kind.

Consider a simple de Bruijn-indexed abstract syntax for the untyped lambda calculus [13],

declared as ULC.

data ULC = Var Int | Lam ULC | App ULC ULC

An instance of the Rep type family maps ULC to its structure as encoded with the represen-

tation types.

type instance Rep ULC =

C Var (Dep Int) :+: C Lam (Rec ULC) :+: C App (Rec ULC :*: Rec ULC)

data Var; data Lam; data App

instance Constructor Var where conName _ = "Var"

instance Constructor Lam where conName _ = "Lam"

instance Constructor App where conName _ = "App"

The void Var, Lam, and App types are considered auxiliary in instant-generics. They were

added to the sum-of-products representation types only to define another class of generic

values, such as show and read. I call these types constructor types. They are analogous to a

primary component of my cheap constructor subsets, and so will be referenced in Section 4.1.

Each constructor type corresponds directly to a constructor from the represented data type.

The Var constructor’s field is represented with Dep, since Int is not a recursive occurrence.

The ULC occurrence in Lam and the two in App are recursive, and so are represented with

Rec. The entire ULC type is represented as the sum of its constructors’ representations—the
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products of fields—with some further reflective information provided by the C annotation.

The Representable instance for ULC is almost entirely determined by the types.

instance Representable ULC where

from (Var n) = L (C (Dep n))

from (Lam e) = R (L (C (Rec e)))

from (App e1 e2) = R (R (C (Rec e1 :*: Rec e2)))

to (L (C (Dep n)) ) = Var n

to (R (L (C (Rec e)))) = Lam e

to (R (R (C (Rec e1 :*: Rec e2)))) = App e1 e2

Two Example Generic Definitions

The instant-generics approach can generically define the compos operator for singly re-

cursive types.

class Compos t where compos ∷ Applicative i ⇒ (t → i t) → t → i t

The generic definition of the compos method extends its first argument by applying it to

the second argument’s recursive occurrences. Accordingly, the essential case of the generic

definition is for Rec. All other cases merely structurally recur. Note that the Dep case always

yields the pure function, since a Dep contains no recursive occurrences.

instance Compos (Dep a) where compos _ = pure

instance Compos (Rec a) where compos f (Rec x) = Rec <$> f x

instance Compos U where compos _ = pure

instance (Compos a, Compos b) ⇒ Compos (a :*: b) where

compos f (x :*: y) = (:*:) <$> compos f x <*> compos f y

instance Compos a ⇒ Compos (C c a) where

compos f (C x) = C <$> compos f x

instance (Compos a, Compos b) ⇒ Compos (a :+: b) where

compos f (L x) = L <$> compos f x

compos f (R x) = R <$> compos f x

For the Rec case, the original function is applied to the recursive field, but compos itself

does not recur. As shown in the definition of rmWeights’ at the end of Section 2.2, the

programmer, not compos, introduces the recursion. With this generic definition in place, the

Compos instance for ULC is a straight-forward delegation.

32



ig_compos ∷ (Applicative i, Representable a, Compos (Rep a)) ⇒
(a → i a) → a → i a

ig_compos f = fmap to ○ compos (fmap from ○ f ○ to) ○ from

instance Compos ULC where compos = ig_compos

Further, we can generically define the serialize method of the Serialize class from Sec-

tion 2.1.

instance Serialize a ⇒ Serialize (Dep a) where serialize (Dep x) = serialize x

instance Serialize a ⇒ Serialize (Rec a) where serialize (Rec x) = serialize x

instance Serialize U where serialize _ = []

instance (Serialize a, Serialize b) ⇒ Serialize (a :*: b) where

serialize (x :*: y) = serialize x ++ serialize y

instance Serialize a ⇒ Serialize (C c a) where

serialize (C x) = serialize x

instance (Serialize a, Serialize b) ⇒ Serialize (a :+: b) where

serialize (L x) = False : serialize x

serialize (R x) = True : serialize x

With these instances, the ig_serialize generic function is immediate. As Chakravarty et al.

[8, §5] show, the GHC inliner can be compelled to optimize away much of the representational

overhead.

ig_serialize ∷ (Representable t, Serialize (Rep t)) ⇒ t → t

ig_serialize = serialize ○ from

As demonstrated with compos and serialize, generic definitions—i.e. the instances for rep-

resentation types—provide a default behavior that is easy to invoke. If that behavior suffices

for a representable type, then an instance of the class at that type can simply convert with

to and from in order to invoke the same method at the type’s representation. If a particular

type needs a distinct ad-hoc definition of the method, then that type’s instance can use its

own specific method definitions, defaulting to the generic definitions to a lesser degree or

even not at all.
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Limitations

The instant-generics approach is not the perfect solution. Specifically for my interests,

there are data types useful for precise types that instant-generics cannot fully represent

with the representation types in Listing 3.1. Generalized Algebraic Data Types (GADTs)

are the most appealing variety of data type that cannot be faithfully represented. The use

of GADTs was demonstrated in Section 2 by the example of adequate encodings of terms in

the simply-typed lambda calculus.

The two data types from that section both use the parametric higher-order abstract syntax

[9], which is a well-studied representational technique for binding. An alternative well-scoped

encoding of the untyped lambda calculus can be defined instead using nested recursion [5].

data Tm free = Var free | Lam (Tm (Maybe free)) | App (Tm free) (Tm free)

In this data type, the parameter corresponds to the type of free variables that can be used in

the term representation. It is not the general type of free variables, like String, but rather

the precise type of usable names, like {0, 1, 2} for a term with three free variables. The

application of Maybe within the Lam constructor achieves this semantics and is characteristic

of nested recursion. Tm could also be enriched to be a GADT that enforces simply well-

typedness.

GADTs and nested recursion are not supported by instant-generics. They are, how-

ever, better supported by two extensions of IG: generic-deriving [30] and the work pre-

sented by Magalhães and Jeuring [29]. generic-deriving represents * → * types like

instant-generics represents * types. Since nested recursion takes place in the parameter,

a representation that tracks the parameter can better handle it. Magalhães and Jeuring

[29] can represent those GADTs that only use existential types in indices (i.e. as phantom

type variables), which includes well-typed lambda calculi representations. I believe that my
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extensions can also be applied to these more expressive variants. I discuss the details further

in Section 6.3.

Summary

The instant-generics approach is a successful GP approach because it relies on two major

features of GHC Haskell: type classes and type families. By using the major features, it

inherits GHC’s strengths. This includes performance, as the optimizer is aggressive with

dictionaries and case expressions, as well as extensibility, because classes and families are

open definition mechanisms. This is why I adopt it as the basis of my GP techniques.

There are alternative approaches that might better support more precise types, but

instant-generics is a solid and simple foundation with which to start this line of technical

work. In the next section, I discuss a well-known approach unrelated to instant-generics

from which I will also adopt some concepts in the next chapter. In particular, these concepts

make it easier to program with constructor subsets.

3.4 Automatic Embedding and Projection

Swierstra [44] discusses a different way to represent data types: two-level data types, in

which the recursion and the sum of alternatives are introduced independently. The two-level

data type for the untyped lambda calculus is defined as Mu SigULC. Data types like SigULC

are called signatures.

newtype Mu f = In (f (Mu f)) -- the standard type-level fixed-point operator

data SigULC r = Var Int | Lam r | App r r

type ULC = Mu SigULC

Because the recursion is factored out via Mu, the r parameter of a signature stands for what

would have been its recursive occurrences. This key idea is discussed by Meijer et al. [35].

The two-level approach can implement the compos function as a specialization of traverse.
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compos ∷ (Traversable f, Applicative i) ⇒ (Mu f → i (Mu f)) → Mu f → i (Mu f)

compos f (In x) = In <$> traverse f x

The equivalence follows from the semantics of compos and the r parameter. Because the

type of traverse is more general than that of compos, the traverse operator can be used

more flexibly. As Sheard and Pasalic [41] demonstrate, two-level types yield many software

engineering benefits. But the approach does inherently provide any genericity. Though

compos can now be defined as traverse, two-level types provide no means for specifying a

generic definition of traverse comparable to the instant-generics definition of compos.

The regular approach of van Noort et al. [46] merges the fundamentals of instant-generics

and two-level types by using * → * versions of the core instant-generics declarations

listed in Listing 3.1. For example, instead of :+:, the * → * sum is

data (:++:) f g a = L (f a) | R (g a) -- c.f. :+: from the previous section

but the essential semantics is the same.

Sheard and Pasalic [41] do not use any representation types like Mu, :++:, :**:, or so on.

They instead introduce a fresh data type isomorphic to Mu for each new data structure and

declare signatures and explicit sums of those signatures. This is presumably a trade-off of

reuse to make the code more accessible.

Swierstra [44] uses Mu for recursion and :++: for sums but not :**: for products. Instead of

summing products representing fields, Swierstra follows Sheard and Pasalic and sums user-

defined signatures. The difference is that Swierstra reuses :++: to combine the signatures,

and so he uses the Sub class to hide the representational details.

class Sub sub sup where

embed ∷ sub a → sup a

project ∷ sup a → Maybe (sub a)

embedIn ∷ Sub sub sup ⇒ sub (Mu sup) → sup (Mu sup)

embedIn = In ○ embed
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For example, SigULC might be decomposed into a signature for lambdas and applications

and a separate signature for variables, since variables are often used independently of the

other two.

type SigULC = V :++: LA

data V r = Var Int

data LA r = Lam r | App r r

The identity function is represented as In (R (Lam (In (L (V 0))))). This immediately

motivates abstracting over the L and R constructors, since further uses of :++: to add other

signatures to the sum quickly amplifies the noise. This is remedied by the Sub class. With

the appropriate instances, the identity function becomes embedIn (Lam (embedIn (V 0))).

This value inhabits any sum of signatures that includes V and LA; it therefore has the type

∀f. (Sub V f, Sub LA f) ⇒ Mu f. Uses of project incur similar types.

The common instances of Sub use the overlapping instances GHC extension in order to check

for type equivalence. This also requires that :++: is only nested in a right-associative way

and that sums are terminated with Void. The :++: operator is effectively treated like a cons

for type-level lists of signatures.

data Void r

-- NB overlapping instances; all sums must be right-nested and Void-terminated

instance Sub f (f :++: g) where

embed = L

project (L x) = Just x

project _ = Nothing

instance Sub f h ⇒ Sub f (g :++: h) where -- NB f /= g, b/c overlap

embed = R embed

project (R x) = project x

project _ = Nothing

My extensions to instant-generics and Swierstra and the further developments in Sec-

tion 4.2 involve non-trivial type-level programming. Thus I first introduce the newer Haskell

features I use as well as some conveniences that I assume for the sake of presentation.
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3.5 Type-level Programming in Haskell

Promotion of data types to data kinds is a recent extension of GHC [55]. The definitions

in this paper use the genuine Bool data kind where True and False are also types of kind

Bool. I also uses the following straight-forward declarations of the type-level conditional and

disjunction as the If and Or type families.

type family If (b ∷ Bool) (t ∷ *) (f ∷ *)

type instance If True t f = t

type instance If False t f = f

type family Or (b1 ∷ Bool) (b2 ∷ Bool) ∷ Bool

type instance Or False b2 = b2

type instance Or True b2 = True

λnoindent

I explicitly simluate the ‘Maybe‘ data kind, since some of my operations (λieλ
type families) over the ‘Maybe‘ kind would require kind variables, which are

not yet fully supported by GHC.

λbegin{haskellq}
data Nothing

data Just a

type family MaybeMap (f ∷ * → *) (x ∷ *) ∷ *

type instance MaybeMap f (Just x) = Just (f x)

type instance MaybeMap f Nothing = Nothing

type family MaybePlus (a ∷ *) (b ∷ *)

type instance MaybePlus Nothing b = b

type instance MaybePlus (Just a) b = Just a

I use MaybeMap like a type-level fmap and MaybePlus uses the Maybe a monoid for back-

tracking in type-level computation. These families would ideally have the respective kinds

(∀k1 k2. (k1 → k2) → Maybe k1 → Maybe k2) and (∀ k. Maybe k → Maybe k).
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The type-level programming necessary for my generic programming extensions is only par-

tially supported in Haskell. For clarity of presentation, I assume throughout this dissertation

that these features are already available:

1. a type family implementing decidable type equality, and

2. direct promotion of strings to the type-level.

My current implementation simulates these features without exposing them to the user. The

user cannot observe type-level strings at all, and the type equality test is only exposed as

the occasional redundant-looking constraint Equal a a on some type variable.

The GHC implementers are currently discussing how to implement these features. In par-

ticular, the decidable type equality will likely be defined using closed type families, with the

common fall-through matching semantics from value-level patterns.

type family Equal a b ∷ Bool where

Equal a a = True

Equal a b = False

This type family definition incurs the following table of example type equalities, assuming

that the a and b type variables are both in scope. The � cells result in a type error due to

that fact that Equal is undefined for those indexes; essentially, more information is needed

before the equality can be decided.
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A B Equal A B

Int Int True

Int Char False

Int a �

a b �

a a True

[Int] [Char] False

[a] [a] True

Maybe Int [Int] False

I simulate this definition of Equal in a way that requires all potential arguments of Equal to

be mapped to a globally unique type-level number. The yoko library provides an easy-to-use

Template Haskell function that derives such a mapping for a type according to its globally

unique name (i.e. package, version, module, and name); Kiselyov [24, #TTypeable] uses the

same mapping. This simulation of Equal is undefined for some arguments for which the

ideal Equal is defined. One example case is when both arguments are the same polymorphic

variable. I add a column to the previous table showing the result using the simulated Equal.

A B Equal A B simulated Equal A B

Int Int True True

Int Char False False

Int a � �

a b � �

a a True �

[Int] [Char] False False

[a] [a] True �

Maybe Int [Int] False False
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Note that the simulation is strictly less than the ideal Equal with respect to a partial or-

der where � is the least element and True and False are incomparable. In particular, the

simulation can only determine concrete types to be equal; it is incapable of identifying two

uses of equivalent type variables in its arguments. Thus a a ∼ b constraint would imply

that the ideal Equal is True at a and b but not so for the simulated one. However, if each ∼
constraint were to be accompanied by a corresponding Equal constraint with True, such as

Equal a b ∼ True, then the simulation becomes otherwise entirely accurate. I occasionally

use such constraints in this dissertation, but they will no longer be needed once upcoming

versions of GHC support closed type families.

Furthermore, the simulation is only defined for concrete types that have been reflected with

yoko’s bundled Template Haskell, which I tacitly assume for all of my examples. This is a

meager assumption since Template Haskell is always (within this dissertation) used to derive

the generic structure of the data types anyway.

In the next chapter, I extend instant-generics to support constructor subsets. The key

ingredient is an intermediate representation that uses :++: sums to represent subsets without

using :**: products to represent constructor fields. In the same way as Swierstra uses

Sub, I use analogous classes to let the programmer manipulate sums without exposing their

irrelevant representational details. However, I define more complicated instances that respect

the symmetry of :++: as a sum; I do not cast it as a type-level list. Furthermore, I define a

class that permutes sums in order to interpret them as unordered type-level sets.
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4 Constructor Subsets

I must extend instant-generics in order to generically define hcompos. Existing generic

programming techniques cannot in general be used to define consumer functions with unequal

domain and codomain types, which is an essential quality of hcompos. Existing techniques

can only define consumer functions with a codomain type that is either (i) the same as

the domain, (ii) some type with monoidal properties, or (iii) degenerate in the sense that

its constructors are structurally-unique and also subsume the domain’s constructors. In this

section, I enable a more feasible restriction: the function must have a subset of homomorphic

cases that map a domain constructor to a similar constructor in the codomain. The notion

of similarity is based on constructor names; I define it in Section 5 below. This improved

restriction is enabled by my two extensions to instant-generics.

4.1 Disbanding Data Types

My first extension is the basis for clear and modular use of hcompos. It emulates subsets of

constructors. Thus the programmer can split a data type into the relevant constructors and

the rest, then explicitly handle the relevant ones, and finally implicitly handle the rest with

hcompos. Specifically, this extension makes it possible for the programmer to use individual

constructors independently of their siblings from the data type declaration. I therefore call

the resulting generic programming approach yoko, a Japanese name that can mean “free

child”. This extension is the foundation for combining “freed” constructors into subsets

and for splitting data types into these subsets; both of these mechanisms are defined in

Section 4.2 below.

My second extension enables the generic definition of hcompos to automatically identify the

similar pairs of constructors in its domain and codomain. Existing generic programming

techniques in Haskell can only identify the corresponding constructors under the degenerate

circumstances of (iii) because they do not reflect enough information about data types. My
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extension reflects constructor names at the type-level, which is how my generic definition of

hcompos automatically identifies corresponding constructors.

Delayed Representation

My first extension is the delayed representation of data types. While instant-generics

maps a type directly to a sum of products of fields, yoko maps a type to a sum of its

constructors, which can later be mapped to a product of their fields if necessary. The inter-

mediate stage of a data type’s representation is the anonymous set of all of its constructors,

which the programmer can then partition into the subsets of interest.

Delayed representation requires a type corresponding to each constructor, called a fields type.

Fields types are similar to instant-generics’s constructor types. However, constructor

types are void because they merely annotate a constructor’s representation, while a fields

type is the representation. Accordingly, each fields type has one constructor with exactly

the same fields as the constructor it represents. For example, the ULC data type needs three

fields types, one for each constructor.

data Var_ = Var_ Int

data Lam_ = Lam_ ULC

data App_ = App_ ULC ULC

As will be demonstrated in Section 5.5, programs using the hcompos approach use the fields

types directly. It is therefore crucial that fields types and their constructors be predictably-

named.

The yoko interface for data type reflection is listed in Listing 4.1. It reuses the

instant-generics representation types, except C is replaced by N, which contains a fields

type. The DCs type family disbands a data type to a sum of its fields types; any subset of this

sum is called a disbanded data type. The DCs mapping is realized at the value-level by the DT

class. This family and class are the delayed representation analogs of instant-generics’s

Rep family and the from method of its Generic class. The inverse mapping, from a fields

44



Listing 4.1: The yoko interface for data type reflection. I presume type-level strings and
reuse the Generic class from instant-generics (imported here as IG).

-- analog of instant-generics’ C representation type

newtype N dc = N dc

-- maps a type to a sum of its fields types

type family DCs t

class DT t where disband ∷ t → DCs t

-- maps a fields type to its original type

type family Codomain dc

class (IG.Generic dc, DT (Codomain dc)) ⇒ DC dc where

rejoin ∷ dc → Codomain dc

-- maps a fields type to its tag

type family Tag dc ∷ String

type back to its original type, is specified with the Codomain family and DC class. The ULC

data type is represented as follows.

type instance DCs ULC = N Var_ :+: N Lam_ :+: N App_

instance DT ULC where

disband t = case t of

Var i → L (Var_ i)

Lam e → R (L (Lam_ e))

App e0 e1 → R (R (App_ e0 e1))

type instance Codomain Var_ = ULC

type instance Codomain Lam_ = ULC

type instance Codomain App_ = ULC

instance DC Var_ where rejoin (Var_ i) = Var i

instance DC Lam_ where rejoin (Lam_ e) = Lam e

instance DC App_ where rejoin (App_ e0 e1) = App e0 e1

The DC class also requires that its parameter be a member of the instant-generics Generic

class. The instances for Var_, Lam_, and App_ are straight-forward and as expected. Note,

though, that the Rep instances for fields types never involve sums. Because every fields type

has one constructor, sums only occur in the DCs family.
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Because DC implies Generic, the delayed representation subsumes the sum-of-products rep-

resentation. In particular, the delay effected by fields type is straight-forward to eliminate.

The following instances of Rep and Generic for :+: and N do just that.

type instance Rep (a :+: b) = Rep a :+: Rep b

instance (Generic a, Generic b) ⇒ Generic (a :+: b) where

to (L x) = L (to x)

to (R x) = R (to x)

from (L x) = L (from x)

from (R x) = R (from x)

The :+: type is its own representation. However, where Rep is homomorphic with respect to

:+:, it eliminates the N structure.

type instance Rep (N dc) = Rep dc

instance Generic dc ⇒ Generic (N dc) where

to = N ○ to

from (N x) = from x

With the instances of Rep for the representation types for sums, applying Rep to a disbanded

data type yields the corresponding instant-generics representation, excluding the C type.

This is mirrored on the term-level by the ig_from function.

ig_from ∷ (DT t, Generic (DCs t)) ⇒ t → Rep (DCs t)

ig_from = IG.from ○ disband

The C types’ annotation could be recovered by introducing yet another type family mapping

a fields type to its analogous constructor type; I omit this for brevity. In this way, the

delayed representation could preserve the instant-generics structural interpretation. In

general, with an equivalence ≅ that ignores the C type, ∀t. Rep t ≅ Rep (DCs t).

Type-level Reflection of Constructor Names

The instant-generics approach cannot in general infer the correspondence of constructors

like Plus and PlusN, because it does not reflect constructor names on the type-level. I

define the Tag type family (bottom of Listing 4.1) for precisely this reason. This type
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family supplants the Constructor type class from instant-generics; it provides exactly

the same information, only as a type-level string instead of a method yielding a string. For

example, instead of the previous section’s Constructor instances for the constructor types

Var, Lam, and App, I declare the following Tag instances for the corresponding fields types.

The Constructor class’s conName method could be defined using an interface to the type-level

strings that supports demotion to the value-level.

type instance Tag Var_ = "Var"

type instance Tag Lam_ = "Lam"

type instance Tag App_ = "App"

4.2 Implicit Partitioning of Disbanded Data Types

This section develops the implicit partitioning of disbanded data types, which builds on

the delayed representation extension in order to enable modular and clear use of hcompos.

This mechanism lets the programmer clearly specify an anonymous subset of a data type’s

constructors and then automatically partitions a data type into that subset of interest and

the subset of remaining constructors.

In the solution for Example 2.1 as given in Section 2.1, the precise_case function implicitly

partitions the constructors of the T type in the definition of serialize. Recall that the

following definition of serialize for T would be ideally concise, but it is ill-typed.

instance Serialize T where serialize = serialize_T

serialize_T ∷ T → [Bool]

serialize_T t = case t of

C c _ → False : serialize c

x → True : ig_serialize x -- NB ill-typed

The problem is that the type of x in the third case is T. Thus the type of disband x is DCs T,

which includes the C_ fields types. Because ig_serialize is applied to the x, the generic

definition of ig_serialize will eventually apply the serialize method to all the fields of C_,
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having mapped it to its instant-generics Representation. Since it is applied to a function

value, there will be a type error about the missing instance of Serialize. The crucial insight

motivating my entire approach is that the C_ fields type will never occur at run-time as a

value of x, since it is guarded by the first case of serialize_T. Thus, the type error can be

avoided by encoding this insight in the type system. Given the yoko interface up to this

point, this can only be done by working directly with the sums of fields types.

type instance DCs T = N C_ :+: . . . -- assuming ‘C_‘ is the leftmost

-- NB speculative: well-typed, but immodular

serialize_T ∷ T → [Bool]

serialize_T t = case disband t of

L (C_ c _) → False : serialize c

R x → True : ig_serialize x

This second definition is well-typed but unacceptably immodular because it exposes extra-

neous details of T’s representation as a sum to the programmer. Specifically, the L and R

patterns depend on how the :+: type was nested in DCs T. Modularity can be recovered by

automating the partitioning of sums that is currently explicit in the L and R patterns. The

implicit partitioning of disbanded data types is the final yoko capability.

Beyond motivating implicit partitioning of disbanded data types, the above definition of

serialize_T is also the original motivation for fields types. Indeed, the hcompos func-

tion can be defined—perhaps less conveniently—with a more conservative extension of the

instant-generics C representation type that indexes the Tag type family by

instant-generics’s constructor types. The above definition of serialize_T would still

need to avoid the type-error by partitioning the constructors. However, where the fields

types’ syntax conveniently imitates the original constructors, the instant-generics C type

would compound the immodularity and even obfuscate the code by exposing the represen-

tation of fields. Worse still, the current development of implicit partitioning would require

further obfuscation of this definition in order to indicate which summand is intended by a

given product pattern, since two constructors might have the same product of fields. It is the
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Listing 4.2: Interface for implicitly partitioning disbanded data types.

-- embedding relation

class Embed sub sup where embed_ ∷ sub → sup

embed ∷ (Range sub ∼ Range sup) ⇒ sub → sup

embed = embed_

-- ternary partitioning relation

class Partition sup subL subR where

partition_ ∷ sup → Either subL subR

-- set difference function

type family (:-:) sum sum2

partition ∷ (Range sub ∼ Range sup, Partition sup sub (sup :-: sub) ⇒
sup → Either sub (sup :-: sub)

partition = partition_

-- a precisely typed eliminator

precise_case ∷ (Range dcs ∼ t, Range (DCs t) ∼ t,

Partition (DCs t) dcs (DCs t :-: dcs) ⇒
t → ((DCs t :-: dcs) → a) → (dcs → a) → a

-- assembling fields type consumers

one ∷ (dc → a) → N dc → a

(|||) ∷ (Range l ∼ Range r) ⇒ (l → a) → (r → a) → l :+: r → a

(||.) ∷ (Range l ∼ Range r) ⇒ (l → a) → (r → a) → l :+: N r → a

(.||) ∷ (Range l ∼ Range r) ⇒ (l → a) → (r → a) → N l :+: r → a

(.|.) ∷ (Range l ∼ Range r) ⇒ (l → a) → (r → a) → N l :+: N r → a

fields types’ precise imitation of the represented constructor that simultaneously encapsulates

the representational details and determines the intended summand.

The implicit partitioning interface is declared in Listing 4.2. Its implementation interprets

sums as sets. Specifically, N constructs a singleton set and :+: unions two sets. The Embed

type class models the subset relation with elements identified by the Equal type family from

Section 3.5. Similarly, the Partition type class models partitioning a set into two subsets.

Finally, set difference is modeled by the :-: family, which determines the right-hand subset

of a partitioning from the left. It enables the type of the value-level partitioning function.
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Some of the definitions implementing this interface use the foldPlus function to fold values

of the :+: type. This provides a nice structure to my code that manipulates sums. I use the

simple unN function as an analog for the N type.

foldPlus ∷ (l → l’) → (r → r’) → l :+: r → l’ :+: r’

foldPlus f g x = case x of

L x → f x

R x → g x

unN ∷ N a → a

unN (N x) = x

The following instances are complicated and dense. But they are never seen by the user and

need only be extended with more instances if a power user adds representation types for

sums alongside N and :+:. This is unlikely as long as the focus is on representing data types

in Haskell.

Embedding

I define the Embed and Partition classes using auxiliary type-level programming that encodes

and manipulate paths through sums of types. This is how I avoid the technique used by

Swierstra [44] that treats sums like type-level lists. Paths are represented by the Here,

TurnLeft, and TurnRight types.

data Here a

data TurnLeft path

data TurnRight path

The Locate family constructs a path by finding a given type in a given sum. For example,

the type Locate Int (N Int) is Just (Here Int), the type Locate Char (N Int) is Nothing,

Locate Char (N Int :+: N Char) is Just (TurnRight (Here Char)), and

Locate Int (N Int :+: N Char) is Just (TurnLeft (Here Int)).
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type family Locate a sum

type instance Locate a (N x) = If (Equal x a) (Just (Here a)) Nothing

type instance Locate a (l :+: r) =

MaybeMap TurnLeft (Locate a l) ‘MaybePlus‘

MaybeMap TurnRight (Locate a r)

type instance Locate a Void = Nothing

In the case of a singleton set, it uses the Equal equality test to determine if the only element

is the target element. If so, it returns a result in the Maybe monad with Just, otherwise is fails

with Nothing. The case for the union of two sets uses both the functorial properties of Maybe

and the monoid properties of Maybe a. It recurs into the two sets and then tags the result

via MaybeMap with the appropriate turn. Then MaybePlus combines the two results with a

preference for paths in the left set. As a result, Locate will only return one path if a type

occurs at multiple paths within a sum. While Locate could be enriched to return all possible

paths, this is unnecessary for my interests. The sets correspond to sums of constructors and

should never include two equivalent types.

Given a value of type a and a path, the injectAt function builds a value of any sum that con-

tains a at that path. The path is passed in using a proxy argument: data Proxy t = Proxy.

class InjectAt path a sum where injectAt ∷ Proxy path → a → sum

instance InjectAt (Here a) a (N a) where injectAt _ = N

instance InjectAt path a l ⇒ InjectAt (TurnLeft path) a (l :+: r) where

injectAt _ = L ○ injectAt (Proxy ∷ Proxy path)

instance InjectAt path a r ⇒ InjectAt (TurnRight path) a (l :+: r) where

injectAt _ = R ○ injectAt (Proxy ∷ Proxy path)

If the path is constructed with Here, then the sum is a singleton set built with N. If it is a left

turn, then the sum must be a union and the type a can be injected into the left set using the

rest of the path. The case for a right turn is analogous. The occurrences of N and :+: types

in the instance heads could be relaxed using equality constraints in the instance contexts

to add more robustness to these instances. However, this is unnecessary here because the
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path argument will always be built with by passing the sum to Locate—the structure of the

union is always already fixed and so need never be refined by a ∼ constraint. Instantiation

at incompatible types incurs in a type error.

The definition of Embed relies on Locate and InjectAt. In particular, the case for singletons

uses Locate to find the element in the superset and then injects its value correspondingly

with injectAt. The instance for a union tail-recurs through the unioned subsets.

instance (Locate x sup ∼ Just path, InjectAt path x sup) ⇒ Embed (N x) sup where

embed_ = injectAt (Proxy ∷ Proxy path) ○ unN
instance (Embed l sup, Embed r sup) ⇒ Embed (l :+: r) sup where

embed_ = foldPlus embed_ embed_

In order to use these methods, the structure of both sets must be fully concrete. This is

always the case for disbanded data types because the entire structure is determined by the

data type declaration as statically encoded by instances of the DCs type family.

The embed_ method generalizes the inj function of Swierstra [44]. Where inj can insert a

signature in the correct place within a type-level list of signatures, the embed_ function can

insert each type in a set (encoded as a sum) into a superset (encoded as a sum). While

inj could be enriched towards embed, its use of overlapping instances and reliance on the

type-level list structure of :+:s makes it more difficult to do so. The use of the Equal type

family in the definition of Embed makes the general definition the natural one.

The embed function is defined as a specialization of the embed_ method in order to encode the

intuitive notion that constructors from various disbanded data types should not be mixed.

This is the purpose of the Range sub ∼ Range sup constraint. While this is not a required

constraint, it may help catch some bugs. Furthermore, for higher-kinded types, such as list,

this constraint propagates type parameters between arguments. I discuss this issue further

at the end of the section.
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Partitioning

The Partition class is more complicated than Embed. In particular, the class is defined as a

three-place relation between a set and two subsets that it can be partitioned into. However,

when used to implement precise_case, it is more convenient to think of Partition as a

function from a set and one of its subset to the rest of the set. Hence the partition_

method is separate from the partition function, which is equal but has a type specialized

to the case of interest using the :-: type family to compute the third set.

partition ∷ Partition sup sub (sup :-: sub) ⇒ sup → Either sub (sup :-: sub)

partition = partition_

The Partition class cannot be defined with its method having this more specific signature

because the more specific relation it encodes does not hold throughout the type-level traversal

of the type-level encodings of the set that the instances implement. I will return to this point

after defining the instances in order to explain that they are simpler this way.

The instances of the Partition class rely on Embed and an auxiliary class Partition_N that

handles the N case.

class Partition_N bn x subL subR where

partition_N ∷ Proxy bn → N x → Either subL subR

As with InjectAt, the Partition_N class is only instantiated with arguments that satisfy a

particular relation. Specifically, the bn type variable indicates whether or not the type x was

found in subL by Locate. It is equal to Elem x subL.

type Elem a sum = IsJust (Locate a sum)

The Elem family implements a decidable membership relation by testing if Locate was success-

ful. The partition_N method injects single element into the left or right subset accordingly.
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instance Embed (N x) subR ⇒ Partition_N False x subL subR where

partition_N _ = Right ○ embed

instance Embed (N x) subL ⇒ Partition_N True x subL subR where

partition_N _ = Left ○ embed

Using Partition_N, the Partition class is defined like Embed was with an interesting instance

for N and a merely tail-recursive instance for :+:. Note that the instance for N invokes

Partition_N with the expected arguments.

instance (Partition_N (Elem x subL) x subL subR)

⇒ Partition (N x) subL subR where

partition_ = partition_N (Proxy ∷ Proxy (Elem x subL))

instance (Partition a subL subR, Partition b subL subR)

⇒ Partition (a :+: b) subL subR where

partition_ = foldPlus partition_ partition_

It is because of the tail-recursive :+: instance that the partition_ method must have a

more relaxed type than the partition function. If the method requires that its third type

argument be the set difference of its first two, then the recursion in the :+: instance would

be ill-typed. The first argument is getting smaller while the other two stay the same, which

means that it might be losing some elements that are always present in the third argument.

This is an example where programming with type-level relations is simpler than programming

with type-level functions. The partition function also adds an equality constraint on its

type variables Ranges that is comparable to the one that embed adds to embed_.

The set difference operator :-: is much easier to define than the Embed and Partition classes.

It also uses the Elem membership predicate.

type instance (:-:) (N a) sum2 = If (Elem a sum2) Void (N a)

type instance (:-:) (a :+: b) sum2 = Combine (a :-: sum2) (b :-: sum2)

The Combine type family is only used to prevent the empty set, modeled by Void, from being

represented as a union of empty sets. Because Void is used only in the definition of :-:,
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an empty result of :-: leads to type-errors in the rest of the program. This is reasonable

since the empty set represents a data type with no constructors and these offer no potential

simplification with GP.

data Void

type family Combine sum sum2 where

Combine Void a = a

Combine a Void = N a

Combine a b = a :+: b

Because the Embed and Partition instances only treat the N and :+: types, the programmer

need not declare their own. They have the same essential semantics as similar classes from

existing work, such as that of Swierstra [44]. However, my instances have two advantages

over existing work. They avoid overlapping instances and therefore respect the :+: operator

as a closed binary operator instead of treating it like a type-level cons. I use type-level

programming to avoid overlap for reasons discussed by Kiselyov [24, #anti-over]. I also use

the decidable Equal type family and its derivatives, such as Locate and Elem, to explicitly

distinguish between instances that would otherwise overlap. Kiselyov [24, #without-over]

develops a similar method.

The partition method generalizes the prj function of Swierstra [44]. Where prj can isolate

a signature from within a type-level list of signatures, the partition function can divide a

superset (encoded as a sum) into two subsets (encoded as sums), one of which is specified by

the programmer. Where inj could be partially enriched towards embed, partition is strictly

more powerful than prj since it returns the smaller subset of the other part of the superset.

There is no way to recover this functionality with the prj interface. On the contrary, prj

can be easily defined in terms of partition by using a singleton set as the first argument

and forgetting the extra information via either Just (const Nothing).
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Simulating a Precise Case Expression

The last part of the yoko interface is comprised of the one function and the family of

disjunctive operators assemble functions consuming fields types into larger functions. These

larger functions’ domain is a subset of constructors. The ||| operator is directly analogous

to the Prelude.either function. Its derivatives are defined by composition in one argument

with one.

one (N x) = x

(|||) = foldPlus

f .|| g = one f ||| g

f ||. g = f ||| one g

f .|. g = one f ||| one g

When combined with the disband and partition functions, these operators behave like an

extension of the Haskell case expression that supports precise types. Note again that the type

of precise_case introduces equality constraints over Range that are not technically required.

precise_case x g f = either f g $ partition $ disband x

With precise_case, the well-typed but immodular definition of serialize_T at the beginning

of this section can be directly transliterated to the ideal (i.e. both precisely typed and

concisely defined) Serialize instance for the T data type that solved Example 2.1, repeated

here for convenience.

instance Serialize T where serialize = serialize_T

serialize_T t = precise_case (λx → True : ig_serialize x) t $ one $

λ(C_ c _) → False : serialize c

The main difference is that the default case occurs as the first argument to precise_case; I

abandon the allusion to gravity for “fall-through” instead of requiring that the exceptional

cases be wrapped in parentheses.
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To observe the ||| operators in action, consider if T had four constructors like C that need

special treatment.

data T = ... | C0 W (W → W) | C1 X (X → X) | C2 Y (Y → Y) | C3 Z (Z → Z)

instance Serialize T where

serialize t = precise_case (λx → True : ig_serialize x) t $

(λ(C1_ c1 _) → False : False : serialize c1) .||

(λ(C2_ c2 _) → False : True : serialize c2) .||

(λ(C3_ c3 _) → True : False : serialize c3) .|.

(λ(C4_ c4 _) → True : True : serialize c4)

The operators’ fixities are declared so that they could also be used in this example in the

order .|., |||, .|. without having to add any more parentheses. Because Partition handles

any permutation it does not matter which shape the programmer chooses. In this way,

the ||| family of operators help the programmer use disbanded data types in a clear way.

As demonstrated in the above example, they resemble the | syntax used in many other

functional languages to separate the alternatives of a case expression. Their inclusion in the

yoko interface for partitioning helps simulate an precisely-typed case expression. They also

have the specialized constraints required that the Range types be equivalent.

Partitioning Higher-Kinded Data Types

Because the yoko generic view is focused on * types, higher-kinded data types require special

consideration. For example, the yoko-specifc part of the generic representation of Maybe is

as follows.

data Nothing_ a = Nothing_

data Just_ a = Just_ a

type instance DCs (Maybe a) = N (Nothing_ a) :+: N (Just_ a)

instance (EQ ∼ Compare a a) ⇒ DT (Maybe a) where

disband x = case x of

Nothing → L ○ N $ Nothing_

Just x → R ○ N $ Just_ x
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instance (EQ ∼ Compare a a) ⇒ DC (Nothing_ a) where rejoin_ _ = Nothing

instance (EQ ∼ Compare a a) ⇒ DC (Just_ a) where rejoin_ (Just_ x) = Just x

There are two main observations to make. First, the Compare constraints on the instances of

DC and DT are the artifact necessitated by my simulation of the ideal Equal type family as

discussed in Section 3.5. They enable the simulation to conclude that a is indeed equal to

a. The second observation is the major benefit of the extra Range constraints that pervade

the interface in Listing 4.2. While previously they had been explained as an enforcement

of the intuitive notion that sums of constructors should all have the same Range, they more

importantly provide an avenue for the propagation of actual type parameters. For example,

without the Range constraints, the inferred type of a the following function would be too

polymorphic.

(λNothing_ → mempty) .|. (λ(Just_ a) → a)

Without the Range constraints on .|., this function has the polymorphic type

∀a b. Monoid a ⇒ (Nothing _b) :+: (Just _a) → a. Note that the type argument to

Nothing_ might differ from the argument to Just_. This is more polymorphic than in-

tended, and may lead to type errors caused by ambiguity, such as the infamous show . read

type error.

The Range constraints on embed, partition, precise_case, and the disjuctive operators—

i.e. any type in the interface where two sums of fields types are combined or in a subset

relationship—perform the same unification of type arguments. Especially because of the

type-level programming involved behind-the-scenes, extraneous type variables can lead to

incomprehensible types that quickly overwhelm the programmer. It is often hard to identify

where an ambiguity type error is coming from, especially when it the error itself is obfuscated

by the type-level programming’s delayed computations. And once found, it is awkward to

add the necessary ascription that elimates the ambiguity. Without the (intuitive!) Range

constraints, the yoko library would be unusable.
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4.3 Summary

My first extension to instant-generics delays the structural representation of a data type

by intermediately disbanding it into a sum of its constructors. Each constructor is repre-

sented by a fields type that has one constructor with the exact fields of the original and a

predictably similar name. Any sum of fields types is called a disbanded data type. My second

extension maps each fields type to its original constructor’s name, reflected at the type-level.

These extensions of instant-generics are both used in the generic definition of hcompos

in the next chapter. The last extension hides the the representation of sums so the user

can maniuplate them without coupling code to their irrelevant structural details. Together

with fields types, this extension prevents uses of hcompos from obfuscating the surrounding

definitions.
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5 A Pattern for Almost Homomorphic Functions

I explain more precisely how the hcompos function generalizes the compos function of Bringert

and Ranta [7], and then generically define hcompos accordingly. I begin by developing a

schema for the homomorphisms I am interested in. This schema serves as a specification

for hcompos and one specialization of the schema also specifies the behavior of compos. This

emphasizes their shared semantics and demonstrates how hcompos generalizes compos. The

use of yoko’s reflection of constructor names to add support for heterogeneity to compos.

5.1 Homomorphism

A homomorphism is a function that preserves a semantics common to both its domain and

codomain. For example, the function from lists to their length is a homomorphism from lists

to integers that preserves monoidal semantics. Recall that a monoid is determined by a unit

element mempty and a binary operator mappend that together satisfy the monoid laws. Lists

with mempty = [] and mappend = (++) form a monoid, as do integers with mempty = 0 and

mappend = (+). The length function is a monoid homomorphism because it preserves the

monoidal semantics: it maps lists’ mempty to integers’ mempty and lists’ mappend to integers’

mappend.

length mempty = mempty

length (mappend x y) = mappend (length x) (length y)

Note that the mempty and mappend on the left-hand sides operate on lists while those on the

right-hand sides operate on integers.

The two equations above are an instantiation of a more general schema that expresses the

homomorphic property. It is simple to abstract the length function out of the equations.

Doing so results in a schema is only specialized to monoids; any function f satisfying the

following two equations is a monoid homomorphism, assuming that the involved Monoid

instances for the domain and codomain of f do actually satisfy the monoid laws.
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f mempty = mempty

f (mappend x y) = mappend (f x) (f y)

It is more difficult to abstract over the part of this schema that is specific to monoidal

semantics. Semantics for constructions from abstract algebra, like monoids, tend to be

encoded in Haskell with type classes and informal side-conditions for those associated laws

that cannot be encoded directly in the Haskell type system. This is the case for the Monoid

type class, which does not actually guarantee that mempty is a unit and mappend is associative.

The natural option, therefore, is to define the general form of the homomorphism schema in

terms of the methods of a type class by requiring one equation per method. A function f is

a TC homomorphism (in general, a type class homomorphism) for some class TC if f satisfies

the following equation for each method m that takes n occurrences of the the class’s type

parameter. In this equation, I assume without loss of generality that the x⃗ variable includes

all arguments of m that do no involve the class’s type parameter.

f (m x⃗ r0 ... rn) = m x⃗ (f r0) ... (f rn)

The assumption about the ri values having the class’s parameter as their type precludes the

use of classes that have methods with richly structured arguments, like a list of the class

parameter, for example. I add support for some rich arguments in Section 6. The assumption

primarily helps the presentation, since it allows me to write f__ri instead of having to map

f through whatever compound structure is containing the recursive occurrence.

This form of homomorphic schema, however, is too general for my purpose. I am specifying

hcompos as an operator that the programmer can use in order to invoke the homomorphic

schema as a definitional mechanism. The compos operator serves the same purpose for

compositional cases of a function. The programmer must be able to define the tedious

(i.e. either compositional or homomorphic) cases of functions simply by appeal to compos or

hcompos. The above schema is problematic when interpreted as a definition of a case of f

since it includes a method within a pattern. The arguments to f on the left-hand side of the
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schema equations must only be valid Haskell patterns in order to be executable. Moreover,

the patterns must be exhaustive, and a type class’s methods do not necessarily partition

all values in its parameter type. For this reason, I instead define the general case of the

homomorphic schema using data types to encode semantics.

Analogous to the assumption in the class-based schema that x⃗ contains no occurrences of the

class’s parameter, I assume here without loss of generality that a constructor’s non-recursive

fields are all to the left of its recursive fields. I also assume that its recursive occurrences

are all simple fields without compound structure like lists. Again, this second requirement is

primarily for simplicity of the presentation; I relax it in Section 6. A function f with domain

T is a T homomorphism (in general, a data type homomorphism) if it satisfies the following

equation for each constructor C of the data type T, which may have type arguments.

f (C x⃗ r0 ... rn) = C x⃗ (f r0) ... (f rn)

This switch to data types instead of type classes refines the schema closer to a valid Haskell

definition. However, I am not actually interested in defining homomorphisms; I am inter-

ested in defining almost homomorphic functions. Thus the schema equation need not apply

to all constructors C of the domain, just enough of them for the programmer to benefit

from automating them via the hcompos operator. So I am actually interested in data type

homomorphic cases of functions as opposed to data type homomorphisms.

Though the use of constructors instead of methods successfully forces the schema equation

for data type homomorphism to be a valid Haskell function case definition, it also introduces

a problem with the types. In the schema equation based on type classes, the m method occurs

with different types on the left- and right-hand sides in the general case. Simply replacing m

with a constructor C resulted in a schema that is too restrictive: it requires that the defined

function map one instantiation of a polymorphic data type to another. This schema requires
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that both the domain and codomain of f are an instantiation of the same data type T. I will

relax this requirement shortly.

Note how similar the above schema is to a potential schema for the fmap method of the

Functor type class. The schema for fmap can be derived from the above schema by focusing on

the occurrences of the functor’s type parameter in addition to recursive occurrences. Under

the assumption that the new pi variables correspond to all occurrences in the C constructor of

the functor’s type parameter, the following schema characterizes valid instances of fmap. An

fmap function f whose domain is an instantiation T a extends some some function g whose

domain is the type a by applying it to all occurrences of a in C and recurring structurally.

f g (C x⃗ p0 ... pm r0 ... rn) = C x⃗ (g p0) ... (g pm) (f g r0) ... (f g rn)

If the p values are removed from both sides of this schema equation (including the applications

of g on the right-hand side), the resulting equation would just be a specialization of the

previous schema. It would express that the C case of the function f g is T homomorphic.

This is in accord with the semantics of nonvariant functors, those that do not include any

occurrences of their type parameter. The fmap operator for a nonvariant functor T must be

the unique T-homomorphism. Similarly, for any covariant functor data type F, the case in

its fmap function for a constructor C that does not include occurrences of the type parameter

must be F homomorphic.

I have compared the data type homomorphic schema to the schema for fmap for two reasons.

First, it shows that it is not unusual to model a semantics with a data type when considering

a homomorphism’s preservation of that semantics. Second, I hope it prevents the reader from

conflating data type homomorphisms with their intuitions about the functorial extension.

An entire fmap function is only a T-homomorphism if the data type T is nonvariant. However,

it is likely that many cases of that fmap function are data type homomorphic, such as the

case for the empty list, for Nothing, for the Fork constructors of both types Tree.Tree
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and WTree.Tree, and so on. Indeed, hcompos can be used to automate these cases of fmap

since the final homomorphic schema I am about to define generalizes the one for data type

homomorphism.

The last observation about the data type homomorphic schema is that it is implied by the

compositionality of cases defined with compos (c.f. Section 3.2). The compos function uses

the data type homomorphic schema as a definitional mechanism for f, under the severe

additional constraint that f has equivalent domain and codomain. Thus, each default (i.e.

compositional) case of an almost compositional function f is trivially data type homomorphic:

it does not change the constructor or even its type arguments. All compositional cases for a

constructor C of functions like f satisfy the data type homomorphic schema equation.

By specification, the hcompos function is applicable for the definition of cases of functions

like fmap, in which the compos function cannot be used: when the domain and codomain are

unequal. To refine the notion of homomorphism encoded by the previous schema towards

an implementation of this specification of hcompos, I generalize the data type homomorphic

schema. As I said before, restricting the domain and codomain to be instantiations of the

same parameterized data type is too restrictive for my purposes. So instead of using the

constructor itself as the semantics-to-be-preserved, each default case handled by hcompos is

defined to preserve the constructor’s programmer-intended semantics. In Example 2.2 from

Section 2, the Tree.Leaf and WTree.Leaf constructors correspond to one another because

they have the same intended semantics, namely they both construct the leaves of a tree.

The intended semantics is the ideal semantics to preserve, but no algorithm is capable

of robustly inferring those semantics from a data type declaration. With existing generic

programming techniques like instant-generics, the only available property that could

suggest a correspondence between two constructors in separate data types is the structure

of their fields. However, this is too abstract to be unambiguous. Specifically, it is common
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for a data type to have multiple constructors with the same fields. For example, consider

the following two data types representing arithmetic expressions.

module PN where

data E = Lit Int | Plus E E | Negate E

module PNM where

data E = Lit Int | Plus E E | Negate E | Mult E E

Any programmer would expect that the PN.Plus and PNM.Plus constructors have the same

intended semantics. It would be frustrating for the programmer to have to specify that

PN.Plus is mapped to PNM.Plus instead of mapped to PNM.Mult.

I encode this intuition as the specification of hcompos. Specifically, I approximate the pro-

grammer’s intended semantics by interpreting the name of a constructor as its intended

semantics. This is crude but practical because it is lightweight and in accord with the

innocuous assumption that constructors with comparable intended semantics have similar

names. The interpretation is also not impractically severe because it is in accord with the

common practice of using indicative names when programming.

Since the default cases of the almost homomorphic functions built with hcompos are defined by

their preservation of the programmer’s intended semantics, the hcompos operator implements

a function that maps constructors in one type to constructors in another type that have

the same name. It is simple to extend the data type homomorphic schema with this new

flexibility. Each homomorphic case of a function f maps a domain constructor CD with

non-recursive fields x⃗ and n many recursive fields to the codomain constructor CR which has

the same name and, modulo the types that are being converted (i.e. D and R), the same

fields:

f (CD x⃗ r0 ... rn) = CR x⃗ (f r0) ... (f rn) where Tag CD ∼ Tag CR.
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The compatibility of the two constructors’ fields is not an explicit side-condition because

it is implied by the well-typedness of this equality. Any such case of a function is called

tag homomorphic. The benefit of tag homomorphic cases over data type homomorphic cases

is that tag homomorphic cases do not require the domain and codomain to be instantia-

tions of the same polymorphic data type. Instead, they can be any two data types that

have a constructor with the same name. I refer to this relaxed constraint between domain

and codomain as the heterogeneity of hcompos. It is what the h stands for: hcompos is a

heterogeneous compos.

Because compositionality implies data type homomorphicness, and data type homomorphic-

ness implies tag homomorphicness, the hcompos operator generalizes the compos operator.

5.2 Constructor Correspondences

I determine constructor correspondence via an algorithm called FindDC. This algorithm takes

two parameters: a constructor and the data type in which to find a corresponding construc-

tor. Applied to a constructor C and a data type T , the algorithm finds the constructor of

T with the same name as C. If no such constructor exists, then a type-error is raised; the

programmer cannot delegate such cases to hcompos. The role of my first extension, delayed

representation, is precisely to help the programmer separate the constructors needing explicit

handling from those that can be handled implicitly.

The FindDC type family defined in Listing 5.1 implements the FindDC algorithm. An appli-

cation of FindDC to a fields type dc, modeling the constructor C, and a data type dt uses

Listing 5.1: The FindDC type family.

-- find a fields type with the same name

type FindDC dc dt = FindDC_ (Tag dc) (DCs dt)

type family FindDC_ s dcs

type instance FindDC_ s (N dc) = If (Equal s (Tag dc)) (Just dc) Nothing

type instance FindDC_ s (a :+: b) = MaybePlus (FindDC_ s a) (FindDC_ s b)
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the auxiliary FindDC_ family to find a fields type in the DCs of dt with the same Tag as dc.

The instances of FindDC_ query dt’s sum of constructors, using the type equality predicate

and the Maybe data kind discussed in Section 3.5. The result is either the type Nothing if no

matching fields type is found or an application of the type Just to a fields type of dt with the

same name as dc. The hcompos definition below enforces the compatibility of corresponding

constructors’ fields with an equality constraint.

Because the names of corresponding constructors must match exactly, I have so far been

explicit about defining data types in distinct modules. For example, in the discussion of

Example 2.2, the two Tree data types declared in the Tree and WTree modules both have

constructors named Leaf and Fork. In the solution of this example, the use of hcompos

actually requires FindDC to map the Leaf constructor of WTree.Tree to the Leaf constructor

of Tree.Tree and similarly for the Fork constructors.

The inconvenience of needing to define similar data types in separate modules is actually

one of the major detriments of my approach. Therefore, I plan to implement a more robust

FindDC algorithm that can conservatively match in the presence of disparate prefixes and/or

suffixes once GHC adds more support for type-level programming with strings. The risk is

that the definition of FindDC might imply that two constructors correspond that the program-

mer did not intend to correspond. This sort of accident is currently very unlikely because

FindDC requires the names to be equivalent. One possible alternative is to factor FindDC

out of the definitions and allow the programmer to provide an algorithm for determining

constructor correspondence. Only time will identify the appropriate balance of expressive-

ness, convenience, and the possibility for confusion within the interface. For the rest of this

dissertation, I will continue to define data types with equivalently named constructors and

explicitly use separate modules to do so.
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Listing 5.2: The hcompos function generalizes compos.

-- convert dcs to b; dcs is sum of a’s fields types;

-- uses the argument for recursive occurrences

class HCompos a dcs b where hcompos ∷ Applicative i ⇒ (a → i b) → dcs → i b

pure_hcompos ∷ HCompos a dcs b ⇒ (a → b) → dcs → b

pure_hcompos f = runIdentity ○ compos (pure ○ f)

5.3 The Generic Definition of hcompos

The generic homomorphism is declared as the hcompos method in Listing 5.2. To support

heterogeneity, the HCompos type class adds the dcs and b parameters along side the original a

parameter from the Compos class. The dcs type variable will be instantiated with the sum of

fields types corresponding to the subset of a’s constructors to which hcompos is applied. The

dcs parameter is necessary because it varies throughout the generic definition of hcompos.

The b type is the codomain of the conversion being defined.

The generic definition of hcompos relies on the generic function mapRs, which extends a

function by applying it to every recursive field in a product of fields.

-- q is p with the fields of type a mapped to b

class MapRs a b p q where

mapRs ∷ Applicative i ⇒ (a → i b) → p → i q

instance MapRs a b (Rec a) (Rec b) where mapRs f (Rec x) = pure Rec <*> f x

instance MapRs a b (Dep x) (Dep x) where mapRs _ = pure

instance MapRs a b U U where mapRs _ = pure

instance (MapRs a b aL bL, MapRs a b aR bR) ⇒
MapRs a b (aL :*: aR) (bL :*: bR) where

mapRs f (l :*: r) = pure (:*:) <*> mapRs f l <*> mapRs f r

The instance for Rec is the only one that uses the supplied function; it applies that function

to all recursive occurrences. All the other instances behave homomorphically (natch). The

mapRs function is another example of the theme where recursive occurrences are treated

specially like the Traversable class treats its parameter’s type parameter. In fact, in some

generic programming approaches—those that represent a data type by the fixed point of its
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pattern functor—the mapRs function would correspond to a use of fmap. The mapRs function

also exemplifies the fact that sums and products are not mixed when representing data types:

mapRs handles only products while hcompos handles sums.

The hcompos function, like most generic functions, handles sums directly with the foldPlus

operator. Note how the dcs parameter varies in the head and context of the following

instance; it hosts this type-level traversal. This is the reason for its existence as a parameter

of the class.

instance (HCompos a l b, HCompos a r b) ⇒ HCompos a (l :+: r) b where

hcompos cnv = foldPlus (hcompos cnv) (hcompos cnv)

The instance for N uses the enhanced data type reflection of yoko. This is where the real

work is done.

instance (Generic dc, MapRs a b (Rep dc) (Rep dc’),

Just dc’ ∼ FindDC dc b, DC dc’, Codomain dc’ ∼ b

) ⇒ HCompos a (N dc) b where

hcompos cnv (N x) = fmap (rejoin ○ (id ∷ dc’ → dc’) ○ to) $ mapRs cnv $ from x

The instance converts a fields type dc, with possible recursive occurrences of a, to the type

b in three steps. First, it completes the representation of dc by applying from, eliminating

the delay of representation. Second, it applies the mapRs extension of cnv in order to convert

the recursive fields. The result is a new product, where the recursive fields are of type b.

This use of mapRs is well-typed due to the second constraint in the instance context, which

enforces the compatibility of the two constructors’ fields. Thus, the final step is to convert

the new product to the new fields type found by FindDC in the third constraint and then

insert it into b via rejoin. The insertion requires the last two constraints in the context and

relies on the guarantee of the MapRs constraint that the result of the mapRs function is equal

to the product of fields that represents the dc’ fields type. The two instances of HCompos
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traverse the sums of constructors and then delegate to MapRs in order handle the products

of fields.

I have now explained the yoko generic programming approach and shown how its implicit

partitioning enables the clean use of hcompos via the precise_case combinator in examples

like Example 2.2 . I have also generically defined the hcompos operator by using my novel

delayed representation. In the rest of this chapter, I discuss some more examples, including

the lambda-lifting of Example 2.3. In the next chapter, I enrich hcompos to be applicable

to more interesting data types. It cannot currently be used, for example, with mutually

recursive data types.

5.4 Small Examples

The hcompos operator is more widely applicable than the compos operator. In the discussion

of compos in Section 3.2, I explained how it could not be used to convert between two

instantiations of the same parametric data type. The particular example was the function

that maps a function on weights to a function on weighted trees without changing the

structure of the tree.

import WTree

changeWeight ∷ (w → w’) → Tree a w → Tree a w’

changeWeight f = work where

work (WithWeight t w) = WithWeight (work t) (f w)

-- work x = pure_compos work x -- intuitively meaningful but ill-typed!

work (Leaf a) = Leaf a

work (Fork l r) = Fork (work l) (work r)

The pure_compos operator is not applicable because its type requires its resulting function to

have an equivalent domain and codomain. This is not the case here, since it must map from

Tree a w to Tree a w’. This requires data type homomorphicness, not just compositionality.

Two different instantiations of the same parametric data type are the most prevalent example

of data types that have constructors with the same names. As such, hcompos can be readily
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applied, since tag homomorphicness implies data type homomorphicness. Indeed, in this

example, it works where compos fails. However, it cannot just be plugged in directly; the

following näıve attempt is still ill-typed, with a comparable type error.

changeWeight ∷ (w → w’) → Tree a w → Tree a w’

changeWeight f = work where

work (WithWeight t w) = WithWeight (work t) (f w)

work x = pure_hcompos work $ disband x -- still ill-typed!

The new type error is intuitively being caused by the fact that this definition uses hcompos to

construct a homomorphic case for WithWeight. Since this homomorphic case does not alter

the weight field—homomorphic cases only structurally recur—the resulting type error cor-

rectly explains that Tree a w is not equal to Tree a w’. Once again the precise_case com-

binator is required. Translating the normal case expression to the simulation is as straight-

forward as always.

changeWeight ∷ (w → w’) → Tree a w → Tree a w’

changeWeight f = work where

work t = precise_case (pure_hcompos work) t $ one $

λ(WithWeight t w) → WithWeight (work t) (f w)

This last definition is finally well-typed, except for the omitted EQ/Compare constraints nec-

essary for the simulation of Equal. With those constraints, this function could be used as

the fmap method in a Functor instance for WTree.Tree.

A function for changing the a parameter of Tree instead of the weights is just as simple as

changeWeight.

mapTree ∷ (a → b) → Tree a w → Tree a’ w

mapTree f t = w where

w t = precise_case (pure_hcompos w) t $ one $ λ(Leaf_ a) → Leaf $ f a
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And so is the definition of map for lists.

mapList ∷ (a → b) → [a] → [b]

mapList f = w where

w t = precise_case (pure_hcompos w) t $ one $ λ(Cons_ a as) → f a : w as

Maintaining effects is just a matter of dropping the pure_ prefix and using the Applicative

combinators instead of standard application in the alternatives for each specific fields type.

The resulting variants of changeWeight and mapList could be readily used as instances of

Traverse for WTree.Tree and lists.

I have shown with these simple examples that functions for converting between two instantia-

tions of the same parametric data type are prime candidates for the using homomorphicness

as a definitional mechanism. The hcompos operator provides the convenience of compos,

which would otherwise be out of reach because of strong typing. When using hcompos in

such definitions, the programmer need only explicitly handle the constructors involving oc-

currences of the parameters that are being changed; the nonvariant cases can be automated

with hcompos. For many data types, this means many cases can be omitted.

I have now developed the two technical cores for the two small examples Example 2.1 and

Example 2.2 and discussed them in detail. In the next section, I use hcompos to solve the

lambda lifting example, Example 2.3. The following two chapter enriches the set of types

that hcompos can be used with.

5.5 Example: Lambda Lifting

I solve Example 2.3 in this section in order to demonstrate the utility of fields types, hcompos,

and implicit partitioning on a realistic example. Lambda-lifting (also known as closure

conversion; see, e.g., [38, §14]) makes for a compelling example because it is a standard

compiler pass and usually has many homomorphic cases. For example, if hcompos were used

to define a lambda-lifting function over the GHC 7.4 data type for external expressions, it

would automate approximately 35 out of 40 constructors. Also, lambda-lifting with the term
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representation I have chosen here involves sophisticated effects and therefore demonstrates

the kind of subtlety that can be necessary in order to encapsulate effects with an applicative

functor.

The Types and The Homomorphic Cases

The lambda-lifting function lifts lambdas out of untyped lambda calculus terms without

changing the meaning of the program. As the ULC data type has been a working example

in the previous sections, its instances for yoko type families and classes are assumed in this

section.

data ULC = Var Int | Lam ULC | App ULC ULC

Lambda-lifting generates a top-level function declaration for each sequence of juxtaposed

lambdas found in a ULC term. Each declaration has two sets of parameters: one for the

formal arguments of the lambdas it replaces and one for the variables that occur free in the

original body. I call the second kind of variable captive variables, as the lambdas’ bodies

capture them from the lexical environment.

The bodies of the generated declarations have no lambdas. Their absence is the character-

istic property that lambda-lifting establishes. I encode this property in precise type derived

from ULC; the SC data type is used for the bodies of top-level functions, the resulting super-

combinators.

data SC = Top Int [Occ] | Occ Occ | App SC SC

data Occ = Par Int | Env Int

Instead of modeling lambdas, SC data type models occurrences of top-level functions, invo-

cations of which must always be immediately applied to the relevant captives. This is the

meaning of the new Top constructor. The data type also distinguishes occurrences of formals
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and captives. I also assume, as with ULC, that SC has instances for the yoko type families

and classes.

The codomain of lambda-lifting is the Prog data type, which pairs a sequence of top-level

function declarations with a main term.

data Prog = Prog [TLF] SC

type TLF = (Int, Int, SC) -- # captives, # formals

Each function declaration specifies the sizes of its two sets of variables: the number of captives

and the number of formals. Because this data type has no constructor corresponding to

lambdas, it guarantees that the values returned by lambda-lifting replace all lambdas with

occurrences of top-level function definitions.

Because both of the ULC and SC data types have a constructor named App, the definition of

lambda-lifting delegates the case for applications to hcompos. If constructors for any other

syntactic constructs unrelated to binding were added to both ULC and SC, the definition of

lambda-lifting below would not need to be adjusted. This is because non-binding constructs

have tag homomorphic cases for lambda-lifting. As mentioned above with the GHC example,

this can lead to significant savings in real-world data types.

The lambdaLift function is defined by its cases for lambdas and variables. I define the monad

M next.

lambdaLift ∷ ULC → Prog

lambdaLift ulc = Prog tlfs body where

(body, tlfs) = runM (ll ulc) ((i, IntMap.empty), 0)

i = IntSet.findMax $ freeVars ulc

ll ∷ ULC → M SC

ll tm = precise_case (hcompos ll) tm $ llVar .|. llLam

llVar ∷ Var_ → M SC ; llLam ∷ Lam_ → M SC
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This is the principal software engineering benefit of hcompos—tag homomorphic cases are

completely automated. In fact, the rest of the code in this example is largely independent

of the use of hcompos; this code already exhibits the punchline: the whole function can be

defined via a case for variables, a case for lambdas, and a use of hcompos for everything else.

However, the rest of the code is indirectly affected by the use of hcompos because the operator

requires that a monad be used. As will be discussed below, this is not a trivial matter given

the chosen encoding of SC.

This small code listing demonstrates a further benefit of the delay representation: fields types

make it convenient to handle specific constructors separately. In previous examples, I have

written the alternatives directly in the last argument of precise_case in order to emphasize

how precise_case simulates the normal case expression. In this example, though, the llLam

case is going to be more complicated than previous alternatives, so I break it out as a separate

definition. I do the same for the llVar alternative because it involves details of the monad

that I have not yet introduced. Note, however, that the llVar and llLam functions have

types that strongly indicate their meaning. This helps me clearly present the structure of

my lambda-lifting function in this abbreviated code listing because the names llVar and

llLam are indicative but so are the types. Fields types help the programmer in this way to

write code that is easier to understand.

The traversal implementing lambda-lifting must collect the top-level functions as they are

generated and also maintain a renaming between ULC variables and SC occurrences. The

monad M declared in Listing 5.3 provides these effects. They are automatically threaded by

the hcompos function since every monad is also an applicative functor.

The Rename type includes the number of formal variables that are in scope and a map from the

captives to their new indices. It is used as part of a standard monadic environment, accessed

with ask and updated with local. The list of generated declarations is a standard monadic

output, collected in left-to-right order with the []/++ monoid, and generated via the emit
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Listing 5.3: The monad for lambda-lifting.

-- # of formal variables and the mapping for captives

type Rename = (Int, IntMap Int)

newtype M a = M {runM ∷ (Rename, Int) → (a, [TLF])}

instance Monad M where

return a = M $ λ_ → (a, [])

m >>= k = M $ λ(rn, sh) →
-- NB backwards state: a and w’ are circular

let (a, w) = runM m (rn, sh + length w’)

(b, w’) = runM (k a) (rn, sh)

in (b, w ++ w’)

-- monadic environment

ask ∷ M Rename

local ∷ Rename → M a → M a

-- monadic output and its abstraction as backward state

emit ∷ TLF → M ()

intermediates ∷ M Int

ignoreEmissions ∷ M a → M a

function. The final effect is the other Int in the environment, queriable with intermediates

and reset to 0 by ignoreEmissions. It corresponds to the number of emissions by subsequent

computations; note the circularity via the w’ variable in the definition of >>=. This backwards

state [49, §2.8] is crucial to maintaining a de Bruijn encoding for the occurrences of top-level

functions.

Because monads are now a familiar method of structuring side-effects, the hcompos interface

was designed to support them in the same way that the standard Traversable class and the

compos function do. This makes the hcompos function applicable in many more situations;

were it entirely pure, it would rarely be useful. However, this example was designed to also

demonstrate that it can be difficult to formulate a function using monads. The backwards

state is essential here, but it is considered a rare and confusing monadic formulation. As

will be discussed in Section 7.3, this means that architecting some functions so that hcompos

can be used in their definition may require clever techniques.
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The Interesting Cases

The variable case is straight-forward. Each original variable is either a reference to a

lambda’s formal argument or its captured lexical environment. The lookupRN function uses

the monadic effects to correspondingly generate either a Par or a Env occurrence.

-- llVar ∷ Var_ → M SC

llVar (Var_ i) = (λrn → lookupRN rn i) <$> ask

lookupRN ∷ Rename → Int → Occ

lookupRN (nLocals, _) i | i < nLocals = Par i

| otherwise = case IM.lookup (i - nLocals) m of

Nothing → error "free var"

Just i → Env i

The occurrence of error is required because the ULC data type does not guarantee that all

of its values correspond to well-scoped terms; it is not a precise data type. It would be

reasonable to enrich the monad M to handle exceptions and raise one in this case, but I prefer

not to do so for the sake of the presentation. Also, in a program doing lambda lifting, an ill-

scoped input term is likely a fatal error, so there is not necessarily a benefit to complicating

the monad with exceptions. If ULC did guarantee the well-scopedness of its values, it would

no longer be in yoko’s generic universe. I discuss this as future work in Section 6.3.

The case for lambdas is defined in Listing 5.4. It uses two auxiliary functions: freeVars

for computing free variables and peel for peeling a sequence of lambdas off the top of a

ULC term. I omit the definition of freeVars because it is familiar and can be sufficiently

automated using instant-generics.

freeVars ∷ ULC → IntSet

peel ∷ ULC → (Int, ULC)

peel = w 0 where

w acc (Lam tm) = w (1 + acc) tm

w acc tm = (acc, tm)
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Listing 5.4: The lambda-lifting case for lambdas.

-- llLam ∷ Lam_ → M SC

llLam lams@(Lam_ ulcTop) = do

-- get the body; count formals; determine captives

let (k, ulc) = peel ulcTop

let nLocals = 1 + k

let captives = IntSet.toAscList $ freeVars $ rejoin lams

-- generate a top-level function from the body

do let m = IntMap.fromDistinctAscList $ zip captives [0..]

tlf <- ignoreEmissions $ local (const (nLocals, m)) $ ll ulc

emit (IntMap.size m, nLocals, tlf)

-- replace lambdas with an invocation of tlf

rn <- ask

sh <- intermediates

return $ Top sh $ map (lookupRN rn) $ reverse captives

Though peel is a property-establishing function—the resulting ULC is not constructed with

Lam—I do not encode the property in the types because I do not actually depend on it. If peel

were redefined with a precise_case, it could be given the codomain (Int, DCs ULC :-: N Lam_).

The llLam function in Listing 5.4 uses peel to determine the sequence of lambdas’ length

and its body, called nLocals and ulc respectively. The captives of a sequence of lambdas

are precisely its free variables. The body is lambda-lifted by a recursive call to ll with

locally modified monadic effects. Its result, called tlf, is the body of the top-level function

declaration generated by the subsequent call to emit. Since tlf corresponds to the original

lambdas, an invocation of it replaces them. This invocation explicitly pass the captives as

the first set of actual arguments.

The de Bruijn index used to invoke the newly generated top-level function is determined the

intermediates monadic effect. The index cannot simply be 0 because sibling terms to the

right of this sequence of lambdas also generate top-level declarations, and the left-to-right

collection of monadic output places them between this Top reference and the intended top-

level function. This is the reason for the backwards state in M. The corresponding circularity
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in the definition of >>= is guarded here (i.e. it does not lead to infinite regress) because

tlf is emitted without regard to the number of subsequent emissions, though its value does

depend on that number. In other words, the length of the list of TLFs in the monad’s monadic

output depends only on the input ULC term. In particular, it does not depend on the part of

the monadic environment that corresponds to how many emissions there will be later in the

computation. Indeed, the length of the output actually determines that value, even though

the TLFs in the output rely on it.

The recursive call to ll must use a new monadic environment for renaming that maps

captives variable occurrences to the corresponding parameters of the new top-level function;

local provides the necessary environment to the subcomputation. The recursive call must

also ignore the emissions of computations occurring after this invocation of llLam, since

those computations correspond to siblings of the sequence of lambdas, not to siblings of the

lambda body—the body of a lambda is an only child. This is an appropriate semantics for

intermediates because the emissions of those ignored computations do not end up between

tlf and the other top-level functions it invokes.

Summary

This example evidences the software engineering benefits of hcompos for defining non-trivial

functions. Lambda-lifting establishes the absence of lambdas, which I encode with a precise

type. It is also an almost homomorphic function, because only two cases are not homomor-

phic. My yoko approach therefore enables an concise and modular definition of a precisely-

typed lambda-lifting function. Though the generic case only handles the constructor for

function application in this example, the very same code would correctly handle any addi-

tional constructors unrelated to binding. This would include, for example, approximately 35

out of 40 constructors in the GHC 7.4 data type for external expressions.
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6 Enriching the Generic Universe

All of the data types in the previous sections have been easy to represent generically; they are

just sums of fields types, each of which can be mapped to a product of fields that are either

Dep or Rec. Large programs, however, usually involve richer data types. In this section, I

enable the use of yoko with two additional classes of data types in order to make hcompos

more applicable. I add support for mutually recursive data types and for those data types

with compound recursive fields. Compound recursive fields contain applications of higher-

kinded types, such as [], (,), and ((,) Int), to recursive occurrences. Such fields are only

partially supported by instant-generics but are common in large programs. My solution

is still partial, but much less so, and is not specific to hcompos. I discuss support for even

more sophisticated data types like GADTs in the last section of this chapter.

I have used simpler data types up to this point in order to focus on the semantics of hcompos.

Adding support for mutually recursive data types makes the type of hcompos less clear.

Similarly, I have been presenting the compos operator that only handles singly recursive data

types. Since mutually recursive data types are common and important, Bringert and Ranta

[7] also define a version of compos that handles mutually recursive data types. I will begin

with their solution. The other kind of data type for which I add support, compound recursive

fields, has no effect on the interface of hcompos or compos. It is simply a disadvantage of

the instant-generics representation types. I support such fields by adding additional

representation types. Since the instant-generics approach was designed to be extensible,

my solution is simple to implement.

6.1 Mutually Recursive Data Types

The previous declaration of hcompos and mapRs cannot be used with mutually recursive data

types because of the type of their first argument is too restrictive. In particular, the type

of the function argument constrains that function to convert only one data type. In order

to support mutually recursive data types, this function must instead be able to convert

81



each type in the mutually recursive family; it must be polymorphic over those types. There

are at least two established ways in the generic programming literature to handle mutually

recursive data types. I will show how to apply both techniques to the HCompos class and the

generic definition of the hcompos operator.

Encoding Relations of Types with GADTs

The first generalization of hcompos supports mutually recursive families using the same es-

sential idea as Bringert and Ranta. This approach uses generalized algebraic data types

(GADTs) [48] and rank-2 polymorphism to express the type of polymorphic functions that

can be instantiated only for the data types comprising a given mutually recursive family.

Instead of supporting mutually recursive data types, Bringert and Ranta demonstrate how

any mutually recursive family of data types can be redefined as a single GADT without los-

ing any expressiveness. The GADT is indexed by a set of empty types that are in one-to-one

correspondence with types in the original family. Each constructor from the original family

becomes a constructor in the GADT with an index that corresponds to the constructor’s

original range. As a result, the Compos function is redefined as follows by just making room

for the new index and requiring the function argument to handle any index.

class Compos t where compos ∷ (∀a. t a → i (t a)) → t a → i (t a)

The rank-2 polymorphism guarantees that the input function can handle all constructors in

the GADT. This is comparable to handling all types from the original mutually recursive

family.

The essence of this technique is separated into more elementary components in the multirec

generic programming approach [54]. The multirec approach uses GADTs to encode sets of

types instead of combining all of those types into a single monolithic GADT. For example,

the following Odd and Even data types are a pair of mutually recursive data types for even
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and odd natural numbers with special cases for addition by two. The set of types {Odd,

Even} is encoded by the OddEven GADT.

module OEWithDouble where

data Odd = SuO Even | SuSuO Odd

data Even = Zero | SuE Odd | SuSuE Even

data OddEven ∷ * → * where

OddT ∷ OddEven Odd

EvenT ∷ OddEven Even

The index of OddEven can only ever be Odd or Even. It thus emulates a type-level set inhab-

ited by just those types, and a function with type ∀s. OddEven s → s → a can consume

precisely either of those types. I prefer this approach to the one used by Bringert and Ranta.

Their formulation would require the user to define only a monolithic OddEven GADT instead

of using the full Odd and Even data types separately.

module NotUsed where

data Odd

data Even

data OddEven ∷ * → * where

SuO ∷ OddEven Even → OddEven Odd

SuSuO ∷ OddEven Odd → OddEven Odd

Zero ∷ OddEven Even

SuE ∷ OddEven Odd → OddEven Even

SuSuE ∷ OddEven Even → OddEven Even

Since the full use of Odd and Even in the OEWithDouble module is more conventional and

the small OddEven GADT in that module ultimately provides the same power as the larger

one in the NotUsed module, I prefer the multirec approach. Indeed, OEWithDouble.Odd is

isomorphic to NotUsed.OddEven NotUsed.Odd and the same relationship holds for the Even

types.
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Using the multirec approach to that of Bringert and Ranta, I redefine Compos.

class Compos phi where

compos_phi ∷ (∀a. phi a → a → i a) → phi a → a → i a

instance Compos OddEven where

compos_phi f = w where

w ∷ OddEven a → a → i a

w Odd (SuO e) = SuO <$> f Even e

w Odd (SuSuO o) = SuSuO <$> f Odd o

w Even Zero = pure Zero

w Even (SuE o) = SuE <$> f Odd o

w Even (SuSuE e) = SuSuE <$> f Even e

In their work, Yakushev et al. refer to those GADTs like OEWithDouble.OddEven that encode

the set of types in the mutually recursive family as a family. Since the terminology “family”

is already overloaded, I will not use it. I will, however, adopt the convention of abstracting

over such families with a type variable named phi.

The second occurrence of the phi variable in the type of compos_phi is a nuisance, as can

be seen in the occurrences of f within the definition of w in the instance for OddEven. Con-

sidering the context of those applications, the first argument to f should be inferable. The

multirec approach therefore also provides a class that automatically selects the correct

GADT constructor to witness the membership of a given type in a given set.

class Member set a where memb ∷ set a

instance Member OddEven Odd where memb = OddT

instance Member OddEven Even where memb = EvenT

The Member class is used throughout the multirec approach for those generic definitions

with value-level parameters that must be instantiable at any type in the mutually recursive

family. It enables the following definition of compos.

compos ∷ (Compos phi, Member phi a) → (∀a. phi a → a → i a) → a → i a

compos f = compos_phi f memb
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This compos operator can be used much like the singly recursive one from the previous

chapters, though it is often simpler to use compos_phi directly.

My example function for the rest of this section will be the function that inlines the special-

case SuSu constructors as two applications of the relevant Su constructors. It is defined as

follows using the compos_phi operator.

import OEWithDouble

forget_double ∷ OddEven a → a → a

forget_double = w where

w ∷ OddEven a → a → a

w Odd (SuSuO o) = SuO $ SuE $ w Odd o

w Even (SuSuE e) = SuE $ SuO $ w Even e

w oe x = compos_phi w oe x

Since the forget_double function guarantees that no SuSu constructors occur in its range, it

could have a more precise codomain. As with all early examples, this unequal domain and

codomain would then make the above definition ill-typed because compos requires its domain

and codomain to be equivalent. I therefore extend hcompos to support mutually recursive

data types in the exact same way as I have extended compos to do so.

The multirec approach uses GADTs to encode the set of types in a mutually recursive

family so that the types of operators like compos can abstract over the whole family by

abstracting over the appropriate GADT. GADTs can also be used to similarly encode the

relation between types that is required for hcompos. The HCompos and MapRs classes can be

parameterized over a GADT-encoded relation as follows, where C is HCompos or MapRs and

m is hcompos or mapRs, respectively.

class C rel x b where

m ∷ Applicative i ⇒ (∀a b. rel a b → a → i b) → x → i b
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Where the first argument of hcompos/mapRs was formerly a function from a to b, it is now a

function between any two types that are related by the GADT-encoded rel relation. The

former type of the first argument constrained the (implicit) relation to exactly {a ↦ b} and

nothing else. The new type removes this excessive constraint.

This variant of hcompos has essentially the same instances as declared in Section 5: the

case for the :+: type folds through the sum and the case for N invokes FindDC etc. and the

auxiliary MapRs class. The MapRs class still applies the conversion function to the recursive

fields, but it must now also provide the conversion function with its rel argument in order

to invoke the part of the conversion that handles the specific pair of types being converted

by that particular invocation of mapRs. So the Rec instance must use the Related type class,

analogous to the Member class, to determine the first argument to the conversion function.

The code for the other instances of HCompos and MapRs do not need to be changed.

class Related rel a b where rel ∷ rel a b

instance Related rel a b ⇒ MapRs rel (Rec a) (Rec b) where

mapRs cnv (Rec x) = Rec <$> cnv rel x

This encoding of relations requires the user to define the GADT. Otherwise, it behaves just

like the hcompos for singly recursive types. In particular, the forget_double function can now

still be defined generically even with the precise codomain. This new codomain is defined in

the OEWithoutDouble module.

module OEWithoutDouble where

data Odd = SuO Even

data Even = Zero | SuE Odd

data OddEven ∷ * → * where

OddT ∷ OddEven Odd

EvenT ∷ OddEven Even
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The forget_double function can be defined with hcompos as follows. First, the programmer

must define a GADT specifying the intended relationship between data types. The encoded

relation does not need to be functional, as it is in this example.

import qualified OEWithDouble as WD

import qualified OEWithoutDouble as WoD

data Rel ∷ * → * → * where

ROdd ∷ ROdd WD.Odd WoD.Odd

REven ∷ REven WD.Even WoD.Even

instance Related Rel WD.Odd WoD.Odd where rel = ROdd

instance Related Rel WD.Even WoD.Even where rel = REven

This GADT can then be used to structure the cases of forget_double.

forget_double ∷ Rel a b → a → b

forget_double = w where

w ∷ Rel a b → a → b

w ROdd = precise_case (hcompos w) $ one $

λ(WD.SuSuO_ o) → WoD.SuO $ WoD.SuE $ w ROdd o

w REven = precise_case (hcompos w) $ one $

λ(WD.SuSuE_ e) → WoD.SuE $ WoD.SuO $ w REven e

In this example I have used precise_case twice instead of also extending it to handle mutu-

ally recursive data types directly. I have not done so for two reasons. First, this demonstrates

that precise_case can be used with the multirec technique without needing to be changed.

Second, I ultimately prefer another solution for mutually recursive data types, so adjusting

precise_case would just be extra work.

The multirec approach to handling mutually recursive data types works well for compos

and hcompos. In particular, it remains easy to convert from an imprecisely-typed function

that was defined with compos to a more precisely-typed function that uses hcompos: just

switch compos to hcompos and switch case expressions to uses of precise_case as necessary.

The major downside of this approach is that it needs the GADT-encoded relation to be

separately provided by the user. While this example makes it seem like it could be easy to
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automatically derive the relation and its GADT encoding (perhaps with Template Haskell),

there are important degrees of freedom that this example avoids for simplicity of presenta-

tion. If I wanted to preserve the look and feel compos, I would investigate how to automate

this relation. However, I ultimately do want the programmer to have to provide the in-

formation that is contained in this relation, but I find the redundancy in this approach to

be unacceptable. Fortunately, the conventional instant-generics approach for supporting

mutually recursive data types integrates the relation much more seamlessly.

Encoding Relations of Types with Type Classes

The second generalization of hcompos uses the established instant-generics techniques

for mutually recursive data types. The key insight is that multiparameter type classes

already encode relations. The only distinction is that type classes encode open relations

while GADTs encode closed relations. Since the semantics of the hcompos operator does not

rely on the closedness of the relation, the type class approach suffices.

In this encoding, I introduce another type class with the same signature as HCompos. This is

the class the programmer will instantiate in order to simultaneously define both the conver-

sion relation between types and and the value-level implementation of the conversion. I call

this class Convert.

type family Idiom (cnv ∷ * → *) ∷ * → *

class Applicative (Idiom cnv) ⇒ Convert cnv a b where

convert ∷ cnv → a → Idiom cnv b

The main beneift of the Convert class is that it accomodates an intuitive semantics for its

three types parameters. This is important because it is the interface that the programmer

uses. Each instance of Convert for a given cnv type specifies that a value of the cnv type can

be used to convert between the second two parameters of Convert. In this way, the instances

determine the relation of types previously encoded with the Related class.
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The applicative functor could also be provided as a type class parameter, but I have not done

so in order to reserve the instance head for specifying the relation. The explicit encoding

of the applicative functor necessary for a given conversion is the major downside of this

approach; in the previous approach it was implicit. However, the requisite instance of the

Idiom type family is less burdensome for the programmer to define than is the GADT that

encodes a relation in the previous section’s approach.

The Convert class helps handle mutually recursive data types because it provides a means for

a single value to handle each type in the family in a different way. This is evident in the new

definition of the forget_double function converting from the Odd/Even types in OEWithDouble

to those in OEWithoutDouble. In this definition, the OddEven GADTs are unnecessary.

data Forget = Forget

type instance Idiom Forget = Id -- no effects needed for this conversion

instance Convert Forget WD.Odd WoD.Odd where

convert cnv o = precise_case o (hcompos cnv) $ one $

λ(WD.SuSuO_ o) → (WoD.SuO ○ WoD.SuE) <$> convert cnv o

instance Convert Forget WD.Even WoD.Even where

convert cnv e = precise_case e (hcompos cnv) $ one $

λ(WD.SuSuE_ e) → (WoD.SuE ○ WoD.SuO) <$> convert cnv e

forget_double ∷ Convert Forget oe oe’ ⇒ oe → oe’

forget_double = unId ○ convert Forget

The relation between types in the domain and codomain families must still be specified

by the user. Instead of being defined with a GADT, however, that relation becomes a

consequence of the necessary instances of Convert for a given conversion. Thus, the Convert

class subsumes the Related class.

In order to integrate the Convert class into the definition of hcompos, the HCompos and MapRs

classes are redefined with the same signature as Convert.

class Applicative (Idiom cnv) ⇒ C cnv a b where m ∷ cnv → a → Idiom cnv b
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As with Convert, this declaration indicates that hcompos is now a mapping from the type cnv

to a conversion between the types a and b. Since the Convert instances for a given cnv type

also defines the relation characterizing that conversion, the MapRs instance for Rec, which

had used the Related class in the previous section, must call convert instead of rel.

instance Convert cnv a b ⇒ MapRs cnv (Rec a) (Rec b) where

mapRs cnv (Rec x) = Rec <$> convert cnv x

Though Convert and HCompos/MapRs are now mutually recursive, the user only declares in-

stances of Convert.

The Forget value used in the last definition of forget_double and its instances of the Convert

class subsume both the w function and the Rel data type from the multirec-based definition

of forget_double. This combination makes the type class encoding of relations more concise,

which is the reason for adding the new Convert class.

Semantically, the Convert class is similar to the Apply class popularized by Kiselyov et al.

[25].

class Apply fn dom cod where apply ∷ fn → dom → cod

Instances of this class specify both the standard action that a function-like value of type fn

has on values of the domain as well as the less conventional action in which the type fn also

determines the relationship between the dom and cod types. For example, standard functions

have the following Apply instance.

instance (a ∼ x, b ∼ y) ⇒ Apply (a → b) x y where apply = ($)

One way in which Apply generalizes normal application is that a given function type fn

can be ad-hoc polymorphic, which allows it to effectively reify a type class. This is why

the Convert class is useful for adding support for mutually recursive data types to hcompos.

Indeed, the only change that was required for the generic definition of hcompos was the switch
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from standard application to application via the convert method in the MapRs instance for

the Rec type. This allows the first argument of hcompos to handle multiple types non-

parametrically—like a type class. Since its former argument used the → type directly, it

could only be applied to a single specific domain/range pair, which is evident from the above

instance of Apply for the → type.

Ultimately the two techniques for handling mutually recursive data types are also mutually

definable. As I have said, I consider the second one preferable because it is more concise.

Instead of defining a GADT and inventing a constructor name for each pair of types in the

relation that the GADT encodes, the programmer need only invent a name for the function-

like type implementing the conversion and specify each pair of related types in an anonymous

instance of Convert for that conversion. The extra instances of the Idiom type family is a

comparatively small price to pay. Moreover, each function-like type could be reused for

various conversions if it has a general enough semantics, and the encoded relation has the

added benefit of being defined with an open mechanism—if it is unnecessary, closedness risks

becoming a maintenance burden.

Finally, two clever instances let the second approach subsume both the first approach as well

as the tidy interface for singly recursive data types that is used in early chapters. First, the

instance of Apply for the → type can be imitated for the Idiom family and the Convert class.

type instance Idiom (a → i b) = i

instance (Applicative i, a ∼ x, b ∼ y) ⇒ Convert (a → i b) x y

where convert = ($)

Because of this instance, if a given occurrence of hcompos only requires that its argument be

used to convert bewteen a single pair of types then that argument can just be a properly

typed function. This condition is always met when converting between single recursive data

types. Thus the code examples in the previous chapters still work with this definition of

HCompos.
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The second clever instance embeds the multirec approach into this section’s approach.

newtype MultiRec rel i = MultiRec (∀a b. rel a b → a → i b)

instance (Applicative i, Related rel a b) ⇒ Convert (MultiRec rel i) a b where

convert (MultiRec f) x = f rel x

Because of these two instances, the programmer has many options for how to define the

ad-hoc type-indexed behavior of a conversion. The reverse embedding, of the multiparam-

eter type-class based approach into the GADT-based approach is vacuous: it just uses a

GADT that guarantees an suitable Convert constraint is available. It uses the same idea

that is fundamentally captured by the Dict GADT, which uses the recent ConstraintKinds

extension to GHC to reify type class dictionaries.

data Dict ∷ Constraint → * where Dict ∷ con ⇒ Dict con

With this data type, or a specialization of it, the programmer can encode a set as a GADT

by actually encoding the set as a type class (e.g. Convert) and then reifying that class with

the GADT. This is more convoluted than the opposite encoding via the MultiRec newtype,

so I prefer the type class approach though both are equally powerful, in some sense.

6.2 Data Types with Compound Recursive Fields

All three definitions of hcompos, for one for singly recursive data types and the two for

mutually recursive data types, require that the Rec representation type is only applied to

simple recursive occurrences. Thus hcompos is inapplicable to data types with compound

recursive fields. Since data types commonly have such fields, I extend instant-generics

to handle them.

Consider the data type T with two constructors Tip and Bin with compound recursive fields as

follows. These two instances of Rep follow the implicit conventions for representing compound
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recursive fields that are established in the instant-generics and generic-deriving papers

[8, 30].

type instance Rep Tip_ = Rec (Int, T)

type instance Rep Bin_ = Rec (T, T)

The hcompos operator cannot be used with data types like T because the MapRs instance for

Rec requires that the argument is itself a recursive occurrence and therefore calls hcompos

on it. These two representations, however, use Rec for types that are not just recursive

occurrences: the arguments of Rec are types other than just T.

This issue cannot be solved by adding an HCompos instance for (a, b). For example, such

an instance cannot distinguish between the (Int, T) and (T, T) fields, but treating them

both the same requires an HCompos constraint for converting an Int to an Int. I consider

requiring the user to declare such ad-hoc and degenerate instances is unacceptable.

The real problem is the imprecision of the conventional instant-generics representation

types. However, instant-generics is designed to be extensible, so it is easy to add new

representation types.

newtype Arg1 t a = Arg1 (t a)

newtype Arg2 t a b = Arg2 (t a b) -- etc, as needed

In the Arg1 and Arg2 representation types, the a and b type parameters are representations

and the t parameter is not. These types permit a precise representation of compound fields

in which Rec is only applied directly to recursive type occurrences.

type instance Rep Tip_ = Arg1 ((,) Int) (Rec T)

type instance Rep Bin_ = Arg2 (,) (Rec T) (Rec T)
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Because the Argn types indicate which of their arguments need conversion, they do not intro-

duce degenerate HCompos constraints. Because these types are only used as representations of

fields, their addition to the representation types only require additional instances of MapRs.

instance (Traversable f, MapRs cnv a b) ⇒ MapRs cnv (Arg1 f a) (Arg1 f b) where

mapRs cnv (Arg1 x) = Arg1 $ traverse (mapRs cnv) x

instance (BiTraversable ff, MapRs cnv a1 b1, MapRs cnv a2 b2) ⇒
MapRs cnv (Arg2 ff a1 a2) (Arg2 ff b1 b2) where

mapRs cnv (Arg2 x) = Arg2 $ bitraverse (mapRs cnv) (mapRs cnv) x

The instance for Arg1 simply uses the traverse method to propagate the hcompos conversion

within the compound structure that the Arg1 representation type delineates. The instance

for Arg2 is analogous to the one for Arg1, but instead uses the BiTraversable class and two

C constraints. The BiTraversable class is like Traverse, but handles mappings that involve

two parameters.

class BiTraversable t where

bitraverse ∷ Applicative i ⇒
(a1 → i b1) → (a2 → i b2) → t a1 a2 → i (t b1 b2)

It is a simple extension of Traversable that handles an additional type parameter.

The pattern indicated by Arg1 and Arg2 extends smoothly to data types with more param-

eters. It is easy to add similar representation types for data types with greater arities as

long as their parameters are of kind *. In order to support data types with higher-kinded

parameters, yoko would need to be extended in the same manner that instant-generics

was extended in the development of generic-deriving [30]. All representation type would

need to be of a higher kind, say * → *. This is a pervasive change, and though it is seman-

tically orthogonal to delayed representation, there two extensions will likely require some

integration.

The dimension of extensibility towards higher-kinds has been problematic in the

instant-generics branch of generic programming, but it is commonly accepted that higher-
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kinded parameters—especially beyond the * → * kind supported by generic-deriving—

are relatively rare in practice. As a consequence, there are likely to be only a few instances

of the BiTraversable class. The usual candidates are (,) and Either.

I have motivated the addition of the Argn family of representation types by observing that

the generic definition of hcompos requires that the Rec representation type only be used in a

certain way. In particular, it must only be applied directly to recursive occurrences. Most

generic functions do not have such a requirement. I suppose this is why the Argn types were

not initially included in instant-generics. Generic definitions can usually just use ad-hoc

instances on a per-functor basis. For example, the common instance Eq a ⇒ Eq (Maybe a)

seamlessly handles compound recursive fields without the need for the Argn representation

types. The reason for this is that instances of the Eq class have a uniform behavior for both

representation types and genuine types. This is not the case for HCompos, so it requires the

Argn types.

I hypothesize that any generic function that behaves differently in the Dep and Rec cases

would benefit from the Argn types. My experiments with the hasRec function from the work

of Chakravarty et al. [8] is one such example where use of the Argn types enables the related

:+: instance of Enum to avoid divergence in some cases where the standard hasRec definition

causes it to diverge. More similarly to HCompos, the generic implementation of fmap that uses

the Var representation type of Chakravarty et al. [8] also assumes that Rec is only applied

directly to recursive occurrences. Such generic functions would benefit from the Argn types

in the same way that hcompos does: they would be applicable to more types.

As I said above, the Argn types can only represent the compound structure of fields that

involve data types with parameters of kind *. If the parameters are of a higher-kind, then

all of the represntational machinery must be expanded to represent types of that kind. The

generic-deriving library represents * → * kinds in this way. Thus the Argn types are a

simple extension that is sufficient for representing (fully saturated) applications of higher-
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kinded types, but generic-deriving is required to represent abstraction at higher-kinds.

However, the more complicated generic-deriving approach is usually considered necessary

even for just handling applications. I have shown here that this is not the case: the simpler

Argn types are enough for applications.

6.3 Future Work: GADTs and Nested Recursion

The most precise types currently possible in Haskell require the use of GADTs, or at least

nested recursion. The poster child example is the GADT that adequately represents well-

typed (and hence well-scoped) terms of the simply-typed lambda calculus.

data Tm ∷ (* → *) → * → * where

Var ∷ v a → Tm v a

Lam ∷ (v a → Tm v b) → Tm v (a → b)

App ∷ Tm v (a → b) → Tm v a → Tm v b

newtype STLC ty = STLC {unwrap ∷ ∀v. Tm v ty}

A similar data type can also be defined using de Bruijn indices instead of PHOAS [9] for

binding.

data Elem ∷ * → * → * where

Here ∷ Elem (gamma, a) a

Next ∷ Elem gamma a → Elem (gamma, b) a

data Tm ∷ * → * → * where

Var ∷ Elem gamma a → Tm gamma a

Lam ∷ Tm (gamma, a) b → Tm gamma (a → b)

App ∷ Tm gamma (a → b) → Tm gamma a → Tm gamma b

newtype STLC ty = STLC {unwrap ∷ Tm () ty}

In this case, a Tm represents an open term that is well-typed in the context modelled by

gamma.

As adequate types, these types are the most precise possible kind of data types. In particular,

they are more precise than the kind of types I intended to help programmers use in large
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programs, since they are practially dependently typed. However, this sort of programming

seems to be arriving in Haskell via GADTs and singleton types [15]. While I have not chosen

to support it now, it does deserve mention as important future work.

My techniques are based on instant-generics and are thus similarly amenable to GADTs.

In particular, my experimentation with integrating the approach of Magalhães and Jeuring

[29] into yoko shows promise. The outstanding technical issues come from poor interactions

with the type-level machinery for avoiding overlapping instances that I discussed in Sec-

tion 3.5. Even so, the techniques from Magalhães and Jeuring can almost directly translated

to yoko. Unfortunately, even those authors’ original extension of instant-generics is cum-

bersome. In particular, it requires an instance of each generic class (e.g. Show, Serialize,

my Convert) for every index used within the declarations of the GADT’s constructors. If

the de Bruijn-indexed Tm data type above was extended with a base type like Integer or

Bool, then its generic instantiation for Show would require two instances, one for the Tm with

an index of the → type and one with an index of Integer. In short, instant-generics can

be economically extended to represent GADTs, but instantiating generic functions for them

remains cumbersome. It seems that applying that approach directly would yoko would only

make it a little more complicated.

Similar approaches to instant-generics but with representation types of kind * → * like

multirec have fared better. They benefit from the fact that the kind * → * admits a

representation type that is itself a GADT. For indexed programming, as Magalhães and

Jeuring [29] discuss, the sort of type equality that can be encoded with a simple GADT is

all that is needed. This suggests that shifting my extensions from instant-generics to

multirec or generic-deriving might be a simpler means to better handle GADTs than

integrating the extension of instant-generics by Magalhães and Jeuring into yoko itself.
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6.4 Summary

In the above, I have refined the HCompos class and extended its generic definition to work for

an additional family of representation types. Together, these changes add support for using

the hcompos operator on mutually recursive families of data types and also on data types

that include compound recursive fields. While both considered mechanisms for supporting

mutually recursive data types are at least rooted in the literature, the approach to compound

recursive fields might be a simpler alternative than what is present in existing literature about

the instant-generics branch of generic programming. Since both mutually recursive data

types and compound recursive types are in common use, the additions to the universe of types

representable with yoko are crucial for the hcompos operator to be practical. Support for

more expressive data types like GADTs is deferred to future work; the generic programming

field currently offers multiple unsatisfying options for representing them.
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7 Evaluation

In this evaluation section, I support four claims.

1. The hcompos operator provides the programmer with more automation than does the

compos operator of Bringert and Ranta [7].

2. Enhanced with the hcompos operator, standard Haskell mechanisms support the static

and strong typing and automation of the nanopass methodology better than does the

Scheme implementation of Sarkar et al. [39]. I make no claim about relative efficiency.

3. The hcompos operator can be used to define non-trivial functions.

4. The benefit of hcompos as summarized by the other three claims is greater than its

detriments.

These claims imply that my technical contributions as presented in this dissertation make

it easier for programmers working in statically- and strongly-typed functional languages to

use more precise types, specifically by providing a novel degree of useful automation.

I assume that automating function cases, especially ones the programmer finds tedious, elim-

inates bugs and makes the code easier to understand and reason about. I am not attempting

to evidence that belief; it is my main premise and motivation. It is an instantiation of

the DRY modern coding maxim: Don’t Repeat Yourself. Similarly, I consider it accepted

that the compos operator and the pass expander are useful largely because they underly this

automation. My general claim is that my operator improves upon the other two in this

capability.

It is straight-forward to evidence the first two claims. For the first claim, I have given numer-

ous examples throughout the previous chapters showing that hcompos supplants compos. The

second claim is to a large extent immediately evidenced by the simple fact that my operator

is a genuine Haskell function while the nanopass implementation uses Scheme definitions
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augmented with some basic compile-time checks. Because Haskell obviously supports static

and strong typing better than does Scheme and the hcompos operator function places no

restrictions on the rest of the program, Haskell with hcompos is more useful to a program-

mer working with static and strong typing. However, since the two operators are defined

in separate languages, it is more difficult to show that they provide similar automation. I

therefore compare the two approaches on a per-feature basis in Section 7.4.

I demonstrate the validity of the third claim by refining the definition of an important

function from the literature. In particular, I add the precise types and automation uniquely

supported by the hcompos operator to the lambda lifter of Jones and Lester [23]. Again, I

consider the importance of lambda lifting and the competence of the original authors as an

accepted fact.

The fourth claim is the most difficult. In particular, I have not focused on the efficiency and

ease-of-use of hcompos. Compared to hand-written code—code enjoying none of the benefits

of my first three claims—definitions that use hcompos are less efficient and also generate type

errors for easy mistakes that are harder to understand (but ultimately contain the important

information). I discuss the details of performance and type errors in Section 7.2. Ultimately,

the loss of efficiency and clarity of type errors does not eclipse the benefits of the automation

and precise types enabled by hcompos. At the very least, the operator is advantageous for

experienced Haskell programmers rapidly developing prototypes.

My evaluation throughout is predominantly qualitative. The sort of quantities I do have, such

as automating 13 out of 15 cases or reducing the definition from 39 to 25 lines of code (−36%),

are anecdotal. I include them anyway because I believe they are reflective of the benefits in

the general case. I could only empirically evidence this claim with expensive longitudinal

studies of teams of professional programmers. The legitimate execution of such experiments

is simply beyond my means. I therefore settle for drawing parallels between my methods and
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existing research that has already been accepted by the community and highlighting ways in

which my approach obviously surpasses the previous ones.

In the rest of this chapter, I first review and summarize the comparisons from previous

chapters of my hcompos operator and the compos operator of Bringert and Ranta (Claim 1).

I consider the detriments of hcompos by summarizing the efficiency issues in terms of other

generic programming libraries and by discussing the type errors incurred by possible mistakes

within one of the simpler examples (Claim 4). I update the function definitions within

the lambda lifter of Jones and Lester and explain the improvements (Claim 3). Finally, I

breakdown the nanopass framework into its major features and show that they are supported

by a combination of existing Haskell features and my yoko library and hcompos operator.

Almost all of their features are totally reproduced; a few of the minor features have only

partial analogs (Claim 2).

7.1 Comparison to compos

Claim The hcompos operator provides the programmer with more automation than does the

compos operator of Bringert and Ranta [7].

There is a single essential difference between the compos operator of Bringert and Ranta [7]

and my hcompos operator. While their operator requires that the function being defined

has the same domain and codomain, my operator requires only that each constructor in the

domain has a matching constructor in the the codomain with the same name and fields.

Since this property is trivially satisfied when the domain and codomain are equal, the type

of hcompos is strictly more flexible than that of compos. Semantically, hcompos can always

replace compos; it is strictly more expressive.

My solution for Example 2.2 demonstrates that hcompos generalizes compos. The compos

operator can be used to automate most cases in the definition of a function that discards the

weights within a weighted tree–the programmer only needs to explicitly handle the interesting
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case for the WithWeight constructor. Even though the WithWeight constructor never occurs

in the range of the function, this cannot be enforced by the the codomain, since compos

requires it to be the same as the domain. In order to enable a more precise codomain in

which the WithWeight constructor no longer exists without sacrificing the benefits of generic

programming, the compos operator must be replaced by my hcompos operator and a simple

invocation of the precise_case function.

My first solution to Example 2.3 offers a more sophisticated example. I define a lambda

lifting function with a precise codomain. In particular, it guarantees that the range of the

function includes no anonymous lambdas, which is an intended property of any lambda-

lifter. If the domain were reused as the codomain, then the compos operator could provide

the same genericity. However, the type of the lambda lifting function would no longer reflect

and enforce its characteristic invariant.

Because of its extra flexibility, the hcompos operator is also useful for common functions

which the compos operator could never be used for. In particular, I showed that the hcompos

operator can be used to automate the tag homomorphic cases of functorial maps like fmap.

In these functions, many cases are tag homomorphic, but they are not compositional in the

sense required by compos because the domain and codomain are inherently unequal. An

embedding conversion is another kind of function for which hcompos can be used but compos

would be ill-typed. These functions embed one data type into another data type that includes

the same constructors but also has additional ones. For example, the precise codomain of

the function that removes weights from trees could be embedded into the original weighted

tree data type using just the function fix $ λw → hcompos w . disband.

These examples evidence my first claim. The compos operator is a widely applicable mech-

anism for automating compositional functions that simplifies the definition of important

functions with potentially no overhead [7]. My examples show that hcompos can both re-
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place compos as well as be used in definitions where compos would never have been well-typed;

it provides strictly more automation than does compos.

7.2 The Detriments of hcompos

Claim The benefit of hcompos as summarized by the other three claims is greater than its

detriments.

As discussed in the beginning of this chapter, the use of hcompos incurs costs. In particular,

there are three potential ways for it to be detrimental. I list these issues in order of increasing

severity.

1. The need for the precise_case function instead of just a normal Haskell case expression

and the rich type of hcompos slightly obfuscates those definitions that rely on them.

2. The hcompos operator can be less efficient than the the compos operator.

3. The type-level programming in the definitions of precise_case and hcompos can result

in some type errors that are either difficult to understand or very large.

Code Obfuscation

The issue about precise_case is the least severe because it is so similar to the structure of

a normal case expression. The obfuscation is slight and the programmer likely internalizes

the difference after seeing a few examples. In fact, minimal syntactic sugar would solve the

issue almost entirely. Language support for constructor subsets is a viable consideration for

future adoption; see my comparison with polymorphic variants in Section 8.

In my first solution of Example 5.5, I observed that the use of de Bruijn indexing for ref-

erences to the resulting supercombinators required that the monad—necessary for the use

of hcompos—use the rare backwards state feature. I do not consider this reflective of the

general case for two reasons. First, monads have become pervasive in Haskell (and other

languages too), and so the same awkward feature would be required without the hcompos
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interface. Second, though it might be possible to redefine the entire lambda lifter to avoid

using a monad with the de Bruijn indices in such a way that requires backwards state, the

exotic monadic feature can be considered an “elegant” solution. This indicates that the

overall structure is correct, and so organizing a definition so that the hcompos operator can

be used may actually encourage a definition that better reflects its essential semantics. In

other words, the need for backwards state is odd, but not necessarily obfuscating.

It is a simpler argument for me to observe that the compos operator and the pass expander

have similar interfaces to hcompos and they have not impaired programmers. Only the

subtle distinction between a fields type and its constructors and the slight syntactic noise

of precise_case versus a natural case expression make hcompos any harder to use than

programming by hand. And as my examples have shown, those differences are slight enough

to dismiss.

Inefficiency

The issue of efficiency is concerning for two reasons. First, uses of compos can be straight-

forwardly optimized by hand-writing some code instead of relying on generic definitions while

uses of hcompos cannot. Any instance of the Compos class for a user data type could be defined

by hand, and with suitable annotations for inlining, the GHC compiler can then simplify

any definition that relies on that instance (i.e. uses compos) to code that is equivalent to

the conventional definition as it would have been written by hand not using compos. Since

the generic definition of hcompos is more complicated than that of compos, there are in fact

more places a user could write instances by hand. However, the fact that these classes (i.e.

MapRs, HCompos, Partition, and Convert in the fully expressive case) are paramterized by two

types (i.e. roughly: the source and target of the conversion) means that the user interested

in writing code by hand would end up writing the tedius part of conversion by hand and

not using hcompos (or precise_case) at all. Thus, the efficiency of the code using hcompos
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will always rely on the GHC optimizer to eliminate the overhead introduced by the generic

definition of hcompos via the yoko interface (i.e. DT, DC, etc).

The second reason is that the expected current overhead of yoko is a factor of two. I am

supposing that the overhead of yoko is comparable to that for instant-generics, but I have

not done measurements—the basic mechanisms are exactly the same: families and classes for

mapping between data types and almost the exact same set of representation types. Generic

definitions in instant-generics, like the one for compos in Section 3.3, have been measured

at about twice as slow as hand-written code [31, 2]. Only a recent generic programming

approach has done any better; previously existing approaches are usually orders of magnitude

slower than instant-generics and its derivatives [8, 31, 2].

The new Template Your Boilerplate (TYB) approach of Adams and DuBuisson [2] relies

heavily on metaprogramming to program generically with little overhead. The basis of the

approach is a set of Template Haskell combinators that directly generate code by inspecting

the definition of the involved types. As a result, GHC compiles the generated code almost as

effectively as if it were hand written. But use of the TYB interface is rife with quasiquations

and splices; it is severely obfuscated. The instant-generics and yoko interface, on the

other hand, is composed of combinators and classes that are better founded in data type se-

mantics. This results in easier to read generic definitions and invocations of those definitions.

However, if that trade-off were preferable, I am confident that the semantic concepts of yoko

and hcompos can be transferred to TYB. In fact, I performed my original investigations of

the very same ideas in Template Haskell.

There is an important qualification to this efficiency concern. The GHC implementors

adopted generic-deriving [30] as the basis of GHC-preferred generic programing approach

as of the 7.2.1 release in August 2011. The generic-deriving approach is a derivative of

instant-generics that uses the exact same Haskell features: type families and type classes.

Because GHC adopted it, and those are two major features of Haskell, I believe that con-

105



tinued improvements to the GHC optimizer will result in better efficiency of definitions that

are automated as-is with instant-genericsand generic-deriving. Morever, yoko relies

on the exact same Haskell features, so it will also improve. Essentially, I am hitching my

wagon to the implementors of GHC, instant-generics, and generic-deriving, and they

have a great record.

Even without the confidence that the efficiency of yoko will improve as a consequence of

the related efforts by other researchers, the benefit of hcompos still outweighs its efficency

detrminents in many scenarios. At the very least, it can be used during the prototyping phase

or used as a specification for testing the more optimized version. This has been sufficient

for my applications, which is why I have not further investigated the efficiency and means

of optimization. In short, it will be harder to optimize in the presence of hcompos than

in the presence of compos, but the initial overhead of hcompos is not prohibitive for most

applications.

Bad Type Errors

This issue of unclear type errors is appeased by roughly the same argument as for effi-

ciency concerns. This is again a prevalent issue in Haskell because it accomodates embed-

ded domain-specific languages (EDSLs) so well; this is a well-attended field of research.

I expect its result to benefit yoko error messages as it advances because yoko (and other

instant-generics-based approaches) can be cast as EDSLs for programming with the struc-

ture of data types. Even so, the type errors resulting from a misapplication of precise_case

or hcompos usually include at least one error that indicates the mistake and its location. The

major issue is that the compile-time computation determined by type family instances and

reduction of type class constraints via instance selection do not preserve enough information

to determine their origin. GHC has cannot differentiate the useful errors from the less useful

ones that arise as a cascade, and so it just reports them all.
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The important case is when hcompos is used to automate a case that is not actually tag

homomorphic. This happens in two ways, according to the two conditions required by the

schema for tag homomorphism. First, the codomain type might not have a constructor with

the same name as one in the domain. With the current definitions, this results is an opaque

error message that only successfully indicates the location of the error.

Tree.hs:35:27:

Couldn’t match type ‘Data.Yoko.MaybeKind.Nothing’

with ‘Data.Yoko.MaybeKind.Just (N dc’)’

In the second argument of ‘(.)’, namely ‘w’

In the expression: runIdentity ○ w
In an equation for ‘rmWeights’:

rmWeights = runIdentity ○ w where

w t = hcompos w $ disband t

Failed, modules loaded: WTree, MonoHCompos.

I generate this type error by removing the special treatment of the WithWeight constructor

from the definition of rmWeights’. The resulting definition just tries to automate the conver-

sion of every constructor by disbanding the input and then immediately invoking hcompos.

The only thing the error tells the confused programmer is what line the problem is actually

on. It gives no domain-specific (i.e. yoko or hcompos-based) reason that the Nothing and

Just types are involved at all. As I said, this is a prevalent problem from EDSLs in Haskell.

The only solution I know of is to add extraneous parameters to the involved type families

and type classes that preserve enough information to reflect the related errors’ origin. In

this case, I could enrich the Nothing type with an additional parameter and the failure case

of FindDC in order to generate a type error like the following.

Tree.hs:35:27:

Couldn’t match type ‘Data.Yoko.MaybeKind.Nothing

(CouldNotFindMatchingConstructorFor

(WTree.WithWeight_ a))’

with ‘Data.Yoko.MaybeKind.Just (N dc’)’

...

This error now correctly specifies where the error originates and why.
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The second condition of the tag homomorphic schema that can be violated is the compati-

bility of the matched constructors’ fields, modulo the conversion. For example, again reusing

the rmWeights’ function, if the Leaf constructors in the precise codomain had an extra field,

say of type String, the programmer would see the following error.

Tree.hs:35:27:

Could not deduce (MapRs

(W.Tree a w → Identity (Tree a))

(Dep a)

(Dep a :*: Dep [Char]))

arising from a use of ‘w’

at Tree.hs:(35,1)-(58,2)

Possible fix:

add (MapRs

(W.Tree a w → Identity (Tree a))

(Dep a)

(Dep a :*: Dep [Char])) to the context of

the type signature for

rmWeights ∷ W.Tree a w → Tree a

or add an instance declaration for

(MapRs

(W.Tree a w → Identity (Tree a))

(Dep a)

(Dep a :*: Dep [Char]))

In the second argument of ‘(.)’, namely ‘w’

In the expression: runIdentity ○ w
In an equation for ‘rmWeights’:

rmWeights = runIdentity ○ w where

w t = precise_case (hcompos w) t $ one $ λ (W.WithWeight_ t _) → w t

Failed, modules loaded: WTree, MonoHCompos.

An error like this would be generated for every mismatch in each pair of constructors’ fields.

This can quickly fill up multiple screens, which intimidates programmers that are unfamiliar

with EDSL type errors. While this error actually includes enough information to explain

the problem that information is presented in terms of the data types representation and

the MapRs class, which is supposed to internal to the generic definition of hcompos. It is not

intended for the common programmer using hcompos to understand either the type class
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or the representation types. I can improve the problem similarly as last time by adding a

parameter to the MapRs class that indicates what is going on in domain-specific terms.

Tree.hs:35:27:

Could not deduce (MapRs

(W.Tree a w → Identity (Tree a))

(TryingToConvertBetween (W.Leaf_ a w) (Leaf_ a w))

(Leaf_ a)

(Dep a)

(Dep a :*: Dep [Char]))

...

Presumably, the programmer is now aware that the two leaf constructors have incompatible

fields and need to be handled explicitly using precise_case. The improved type errors

resulting from both varieties of mistaken automation via hcompos now actually indicate both

the location and details of the mistake. I said before that these are the two important cases;

I suspect they are the most common mistakes to make.

Another easy mistake is for the programmer to use an original constructor in the pattern for

a precise_case special case instead of the corresponding fields type’s constructor. Again for

the rmWeights’ function, the programmer might accidentally write λ(WithWeight t) → . . .

instead of λ(WithWeight_ t) → . . . . This results in two errors. The first of which is both

unhelpful and enormous: it is a noisy 762 lines of unreduced applications of type families

with fully qualified names, since the involved names are not imported because they are not

(supposed to be) part of the programmer-facing yoko interface. The second error, though is

short and informative.

Tree.hs:27:27:

Couldn’t match type ‘Range (W.Tree Int Char)’

with ‘W.Tree Int Char’

In the second argument of ‘(.)’, namely ‘w’

In the expression: runIdentity ○ w
In an equation for ‘rmWeights’:

rmWeights = runIdentity ○ w where

w t = precise_case (hcompos w) t $ one $ λ (W.WithWeight t _) → w t

Failed, modules loaded: WTree, MonoHCompos.
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If the programmer understands that the Range type family is only supposed to be applied to

fields types—which seems like a reasonable prerequisite for a progammer choosing to employ

hcompos—then this error both locates and explains the mistake. It just unfortunately occurs

after the other large error. Similar mistakes like using the wrong type’s fields type results

in the same issue: accurate informative messages that might be hidden among the other

messages, some of which are unhelpful and intimidatingly large.

The problem of very large unhelpful errors is inherent to type families’ compile-time com-

putation. Because it is a recent and important feature addition to Haskell, I anticipate the

development of techniques for dealing with these sort of situations errors. Even a simple

interface for summarizing type errors in, say, 20 lines or less while being able to expand

them as necessary would vastly improve this situation.

I listed type errors as the most severe issue in the list of detriments at the beginning of

this section. I consider bad type error issues more severe than inefficiency because they

make it more difficult for programmers to use hcompos. On the other hand, the type errors

do successfully identify the location and explanation of the mistakes I have made when

developing with hcompos. Over my own years of EDSL programming, I have learned the

lesson that I should investigate the small type errors first and even then look for the one

that is easier to solve, since it might have caused the others in a cascade effect. Unfortunately,

until other techniques are developed for retaining domain-specificity for EDSL type errors,

the adding the extraneous parameters for the sake of provenance and asking for a bit of

understanding and patience from the programmer is the best I can do with respect to the

precise_case and hcompos errors I have seen. If the programmer understands even just the

major yoko and hcompos concepts and focuses on the small error messages, they can find the

bug.
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Summary

The above discussions show that the fourth claim is evidenced, though less absolutely than

are the others. While the hcompos operator does provide even greater benefits than those of

compos, its richer type and complex generic definition lead to comparatively worse efficiency

and type errors. Neither of these are so extreme as to make it unusable, though: the

current efficiency is enough for at least the prototyping phase and the type errors include

the essential information among the noise. Also, both issues are largely due to widely-

recognized deficiencies of embedding DSLs in Haskell with GHC. Since this is a major use

case of Haskell, I anticipate the issues will receive attention. Furthermore, any improvements

will likely integrate with yoko because it only relies on type families and type classes. Even

without this optimistic opinion, the code simplification benefits of hcompos outweight the

efficiency and type error issues. The generalization from compos to hcompos worsens the

efficiency of the defined function and the possible type errors, but not to such a degree that

its benefits are eclipsed.

7.3 Comparison to a Conventional Lambda Lifter

Claim The hcompos operator can be used to define non-trivial functions.

In this comparison, I solve Example 2.3 for a second time to demonstrate how my approach

enables precisely-typed programming with non-trivial functions. My first solution in Sec-

tion 5.5 showed how expressive hcompos is and also how its rigid interface may demand some

clever techniques. This solution is instead a reimplementation of the lambda lifting func-

tion defined by Jones and Lester [23]. I use the same decomposition as they do, but use

hcompos to define each part. This makes it cheaper for me to use precise types between each

component function. They factored the function into three parts.

1. The freeVars function computes all of the nodes’ free variables and caches this infor-

mation on each node as an annotation.
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2. The abstract function discards the cached information for all nodes except lambdas.

3. The collectSCs function extracts those lambdas as top-level supercombinator decla-

rations and replaces them with references to those new declarations. Since it is a thin

wrapper, I will instead deal with its main workhorse function collectSCs_e.

The lambda lifting function is the composition of the three functions. The involved concepts

are familiar from my first solution in Section 5.5. There are three major differences between

this algorithm and that one. First, this one uses an atomic representation for names. Because

it just uses strings instead of de Bruijn indices, it does not require anything as exotic as a

backwards state monadic effect. Second, it is modularly defined as a composition of three

smaller functions. This makes room for numerous precise types in the sequence. Third, it is

to some extent designed with efficiency in mind. In particular, it involves caching the result

of a code analysis in the term representation, which presents yet another compelling use case

for hcompos.

In this comparison, I will discuss the three function definitions presented by Jones and Lester

in turn. For each, I will summarize the original authors’ discussion that is relevant to the

benefits provided by hcompos and juxtapose the new code along-side the old. In order to make

the comparison more accurate, I have updated the older definitions to use modern coding

techniques, such as monads and applicative functors and their many related combinators.

While I have changed a few variable names and fused a few local definitions for the sake

of presentation, I have tried to keep the translation minimal. I recommend looking to the

original paper [23]—it is enjoyable and informative.
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Step Zero: The Term Representation Data Types

In their paper, Jones and Lester allocate an entire section to discussing their choice of data

types. They end up using two principal types.

data Expr n

= EConst String

| EVar n

| EAp (Expr n) (Expr n)

| ELam [n] (Expr n)

| ELet IsRec [(n, Expr n)] (Expr n)

type Expression = Expr Name

data AnnExpr a n = Ann a (AnnExpr’ a n)

data AnnExpr’ a n

= AConst String

| AVar n

| AAp (AnnExpr a n) (AnnExpr a n)

| ALam [n] (AnnExpr a n)

| ALet IsRec [(n, AnnExpr a n)] (AnnExpr a n)

They remark that Expr n is almost isomorphic to AnnExpr () n, but they decide to keep

the separate data types. They lament the dilemma: either juggle the duplicate sets of

constructors or obfuscate the code with ubiquitous () values and patterns. They prefer the

sets of constructors, even without the assistance of hcompos.

Note how the mutual recursion between AnnExpr and AnnExpr’ annotates each node in the

representation with a value of type a. Jones and Lester use this in order to cache the results

of the free variables analysis within the representation. As part of their modularity theme,

they remark that they rely on the cached results in other parts of their compiler as well.

Even though the AnnExpr and AnnExpr’ data types are mutually recursive, the arguments

to hcompos in the following definitions are simple monomorphic functions like in all the

examples prior to the previous section. This is possible because each of the mutually re-

cursive data types only occurs in the other: all recursive occurrences within each data type
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are occurrences of the same type. One reasonable variation that would require the sup-

port for mutually recursive data types addin the previous section would use a fresh data

type instead of tuples to structure each declaration. In that case, the AnnExpr’ data types

would recur both at AnnExpr and also at this new data type for declarations; therefore uses

of hcompos for the AnnExpr’ that automate the cases for lets would require a polymorphic

function type. The other enrichment from Section 6, compound recursive fields, is already

present in the let constructors, so the Par1 enrichment will be used. This will not be evi-

dent in the following definitions though, since it is silently handled by the yoko Template

Haskell. In particular, the let constructors’ field for the definitions will be represented with

the type Par1 [] (Par1 ((,) n) (Rec . . . )). Both [] and (,) n are covariant functors, so

the Traversable instances required by the Par1 instance for hcompos are available—hcompos

is readily applicable in the definitions below.

Step One: Caching the Set of Free Variables

The first function in the chain computes a subterm’s free variables and caches the result at

each node using the AnnExpr type. The entire function definition of Jones and Lester [23]

is in the top half of Listing 7.1. Since AnnExpr is essentially a pair, the function can be

understood in two parts. The first part determines a terms’ free variables and the second

part converts that term in the Expr type to an analogous term in the AnnExpr’ type. This is

clear in the cases for EConst and EVar. For the EAp case, it becomes apparent that these two

parts happen simultaneously, since only one recursive call is necessary per subterm. Indeed,

this case and the EConst case are structurally recursive in the first part and tag homomorphic

in the second part. The ELam and ELet cases are more complicated because those syntactic

constructors involve binders that affect the computation of free variables. However, they are

both still computing two parts.

The part of the freeVars definition that computes the free variables could be automated for

the EConst and EAp constructors using just the techniques of instant-generics. Because
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Listing 7.1: The old and new freeVars functions.

freeVars ∷ Expression → AnnExpr (Set Name) Name

freeVars = w where

w (EConst k) = Ann Set.empty (AConst k)

w (EVar v) = Ann (Set.singleton v) (AVar v)

w (EAp e1 e2) = Ann (free1 ‘Set.union‘ free2) (AAp e1’ e2’)

where e1’@(Ann free1 _) = w e1

e2’@(Ann free2 _) = w e2

w (ELam args body) = Ann (Set.difference bFree argSet) (ALam args body’)

where argSet = Set.fromList args

Ann bFree body’ = w body

w (ELet isRec ds body) =

Ann (dsFree ‘Set.union‘ bFree’) (ALet isRec (zip binders rhrss’) body’)

where binderSet = Set.fromList $ map fst ds

rhss’ = map (w ○ snd) ds

rhssFree = Set.unions $ map (λ(Ann a _) → a) rhss’

dsFree = (if isRec then (‘Set.difference‘ binderSet) else id) rhssFree

body’@(Ann bFree _) = w body

bFree’ = bFree ‘Set.difference‘ binderSet

----------------------------------------

freeVars ∷ Expression → AnnExpr (Set Name) Name

freeVars = runIdentity ○ w where

w e = (λx → Ann (alg x) x) <$> hcompos w (disband e)

alg (A.Const _) = Set.empty

alg (A.Var v) = Set.singleton v

alg (A.App (Ann free1 _) (Ann free2 _)) = free1 ‘Set.union‘ free2

alg (A.Lam ags (Ann bFree _)) = bFree ‘Set.difference‘ argSet

where argSet = Set.fromList args

alg (A.Let isRec ds (Ann bFree _)) = dsFree ‘Set.union‘ bFree’

where binderSet = Set.fromList $ map fst ds

rhssFree = Set.unions $ map (λ(_, Ann a _) → a) ds

dsFree = (if isRec then (‘Set.difference‘ binderSet) else id) rhssFree

bFree’ = bFree ‘Set.difference‘ binderSet
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the two parts of the function share a recursive component, the generic part would map

an AnnExpr’ (Set Name) Name to Set Name; it would be defined based on the structure of

AnnExpr’, with special cases for the constructors involving with variables: EVar, ELam, and

ELet. I omit this automation from my lambda lifter both because it is of little immediate

benefit and because this generic programming is not enabled by my technical contributions.

Instead, the point I intend to emphasize is that, with hcompos, the programmer no longer

needs to explicitly map the Expr constructors to the AnnExpr’ constructors one-by-one.

I use the same Expr and AnnExpr data types in my implementation of freeVars, given in the

bottom half of Listing 7.1; my function has the same type as does theirs. However, because I

am using hcompos, I define the data types in separate modules as previously discussed, so that

I can give the corresponding constructors the same names. I import the modules qualified;

I write, e.g. E.Const and A.Const where Jones and Lester wrote EConst and AConst. The

simple Template Haskell splices yokoTH ’’Expr, yokoTH ’’AnnExpr, and yokoTH ’’AnnExpr’

derive all of the necessary fields types and yoko instances.

The yoko interface and the hcompos operator allow me to totally automate the part of

the freeVars function that converts between the Expr and AnnExpr’ data types. Whereas

every case of the old definition maps an Expr constructor to the corresponding AnnExpr’

constructor, my definition only explicitly computes the free variables for each constructor.

Specifically, the local definition of w uses hcompos to simultaneously convert the recursive

fields of the input Expr value and also convert its constructors to the AnnExpr’ data type.

The w function then applies the local function alg in order to compute the free variables for

the current node from those of its subterms. In alg, I explicitly implement the part of the

function that computes free variables in the same way as did Jones and Lester. Again, this

part could be partially automated without using my specific contributions. I call the function

alg because it behaves like the algebra argument to a catamorphism1. Since hcompos recurs

1It actually behaves like a paramorphism, though the original subterm is not needed for this part of the
function.
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into the structure first, my computation of free variables uses only the recursive results at

each subterm. The old function could be similarly reorganized, but without using hcompos

to automate the conversion, it would result in duplicated pattern matching.

Comparing the two definitions of freeVars in Listing 7.1 shows yet again that hcompos can

be used to simplify functions that convert between similar data types. In this example,

Jones and Lester designed a variant of a data type that adds annotations to every node.

The Haskell type system does not naturally accomodate this sort of derived data type. The

original authors lament this fact, but choose to manage the duplicate set of constructors

anyway. This evidences another way that such pairs of similar data types arise naturally in

practice, and also that it is natural to name their constructors almost identically.

Though hcompos simplifies the freeVars function significantly, it makes an even bigger dif-

ference for abstract and collectSC_e functions. This is because those functions are less

specific to binding, and so all cases except the one for lambda are tag homomorphic.

Step Two: Discarding the Extraneous Caches

After caching the free variables in each constructor, Jones and Lester use that information

in the second pass to replace all of the lambdas with β-equivalent applications of supercom-

binators. Their definition of the abstract function is again above my own in Listing 7.2.

Excepting the abandonment of the cache, all non-lambda cases are simply tag homomorphic

conversions back to the Expr data type. Instead of caching the data at every constructor,

they could have fused the freeVars and abstract functions together, using a Writer monad

to temporarily accumulate the computed free variables. However, the original authors men-

tion that the freeVars function was used in other parts of their compiler, where its cached

results might not have been immediately discarded.

Defining the two functions separately makes abstract burdensome to define. Indeed, the

original authors relegate all cases except the lambda case to the appendix of their paper,

which reinforces my general claim that programmers find tag homomorphism tedious to
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Listing 7.2: The old and new abstract functions.

abstract ∷ AnnExpr (Set Name) Name → Expression

abstract (_ , AConst k) = EConst k

abstract (_ , AVar v) = EVar v

abstract (_ , AAp e1 e2) = EAp (abstract e1) (abstract e2)

abstract (free, ALam args body) = foldl EAp sc $ map EVar fvList

where fvList = Set.toList free

sc = ELam (fvList ++ args) (abstract body)

abstract (_ , ALet isRec ds body) =

ELet isRec (map (second abstract) ds) (abstract body)

----------------------------------------

abstract ∷ AnnExpr (Set Name) Name → AnnLam (Set Name) Name

abstract = runIdentity ○ w where

w (Ann free e) = precise_case (hcompos w) e $ one $

λ(A.Lam_ args body) → AL.Lam free args <$> w body

handle manually! They discuss only the lambda case, as it is the only interesting one. It

replaces each lambda with a supercombinator (computed by the recursive call to abstract)

applied to the required free variables as determined by the cached set of names. This

transformation preserves functional equivalence.

My version of abstract has a different type that reflects a slight change. It uses the AnnLam

data type, which is defined in its own module as follows.

data AnnLam a n

= Const String

| Var n

| App (AnnLam a n) (AnnLam a n)

| Lam a [n] (AnnLam a n)

| Let IsRec [(n, AnnLam a n)] (AnnLam a n)

I refer to its constructors as if I imported the module qualified with the prefix AL. This

derived data type also adds an annotation to the Expr data type, but only to the lambda

constructor. I use this data type as the codomain of abstract instead of converting back to

Expr since this type is more precise. In the range of the original abstract, it is unclear which

applications are from the original program and which were added in order to be explicit
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about lambda’s dependencies on their lexical environment. My version uses the AnnLam data

type to retain the cached annotation of free variables in order to preserve the distinction

between original and generated applications. As the case for lambdas in the old abstract

function shows, the set of free variables is the nub of the necessary information. So I define

my abstract as a conversion from the fully annotated AnnExpr data type to the minimally

annotated AnnLam data type.

I defer actually replacing the lambda with an equivalent applied supercombinator until the

last step in the lambda lifting chain. This is in accord with the theme of modularity that

Jones and Lester maintained in their paper: other functions in the compiler may also benefit

from retaining annotations only on lambdas. Those authors may have done the same if it

were as easy for them to manage multiple derivatives of Expr. I have the additional benefit

of hcompos, which nearly renders my abstract function a one-liner. Note that my version

would be no more complicated if I immediately implemented the transformation back to

Expr; only the right-hand side of the A.Lam_ alternative would need to change.

Step Three: Extracting the Supercombinators

The final step in lambda lifting function extracts the annotated lambdas out as top-level

supercombinator declarations. The old and new definitions of the collectSC_e are in List-

ing 7.3. Both definitions use the same monad, which just provides a supply of fresh names

with a state monad effect and collects the generated supercombinator definitions in a list as

an output monad effect. I leave out the standard definitions of newName and tell.

Although the old ELet case is slightly obfuscated by the need to traverse the structure of its

list of definitions, it is tag homormphic like all other the cases except lambda. Therefore,

the simplification due to hcomps is again drastic: it automates all but the interesting case.

That case is slightly different in the new version only because I updated it to include the

transformation that I deferred from the abstract function. The lambda case now uses the

cached set of free variables to replace the original lambda, as did the old abstract function.
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Listing 7.3: The old and new collectSC e functions.

collectSCs_e ∷ Expression → M Expression

collectSCs_e = w where

w (EConst k) = return $ EConst k

w (EVar v) = return $ EVar v

w (EAp e1 e2) = EAp <$> w e1 <*> w e2

w (ELam args body) = do

body’ <- w body

name <- newName "SC"

tell [(name, args, body’)]

return $ EConst name

w (ELet isRec ds body) = ELet isRec <$>

mapM (λ(name, rhs) → (,) name <$> w rhs) ds <*> w body

----------------------------------------

collectSCs_e ∷ AnnLam (Set Name) Name → M (SC Name)

collectSCs_e = w where

w e = precise_case (hcompos collectSCs_e) e $ one $

λ(AL.Lam_ free args body) → do

body’ <- w body

name <- newName "SC"

tell [(name, free ++ args, body’)]

return $ foldl SC.App (SC.SC n) $ map SC.Var free

Each lambda becomes an application of a reference to the newly generated supercombinator

with the requisite variables from the original lambda’s environment as arguments. As a

consequence, the range of collectSCs_e—and of the entire lambda lifting function—will not

contain any lambdas. Jones and Lester lamented that it would require another data type

declaration in order enforce this invariant in the type system. And that was the extent

of their discussion: the idea of managing even a third data type was too unbearable to

seriously consider. With hcompos, though, it is easy to use the following data type as the

precise codomain of collectSCs_e.

data SC n

= Const String

| Var n

| App (SC n) (SC n)

| SC n

| Let IsRec [(n, SC n)] (SC n)
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The SC data type is simply a variant of Expr in which the Lam constructor is replaced with a

constructor SC that models references to top-level supercombinator declarations.

Summary

I reimplemented the lambda lifter of Jones and Lester [23] using more precise types while

also drastically simplifying the definitions. My principal technical contributions, the yoko

generic view and the hcompos operator, made possible both the precise types and the simpli-

fication. Jones and Lester originally designed the data types in this example as a minimal

but expressive internal representation of functional programs. As such, they are relatively

small with five constructors, three of which directly involve variables or binding. Even so,

the hcompos operator can automate 13 out of 15 cases across all three functions that would

have otherwise required manual conversion between the data types. Moreover, lambda lifting

is an important and established algorithm, and its definition benefits both from the use of

precise types and the automation enabled by hcompos.

This example introduced an interesting new scenario that naturally gives rise to data types

with similar constructors with similar names. That a total of three such scenarios that I

have identified within this dissertation.

1. The most common scenario involves unequal instantiations of a parametric data type.

The fmap method is a good example of a function that converts between two such data

types.

2. The precise codomain of most previous examples have been (manually) derived from

the domain by adding or removing a few constructors. In particular, a conversion’s

precise codomain can gaurantee that a constructor from the domain does not occur in

its range.

3. The new scenario involves derived data types that annotate the original constructors.

My definition of the freeVars function shows that the current definition of hcompos
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can automate a conversion from a data type to one that is annotated uniformly at

each node (AnnExpr). My definition of the abstract function then showed that the

partitioning of precise_case can also be used in order to handle a data type that

annotates just a few constructors (AnnLam). More sophisticated variants of hcompos

could more fully automate the ad-hoc addition of fields for annotations, but the need

for that is not yet clear.

Another important compiler phase that exhibits the new source of tag homorphisms is type

reconstruction. Such a pass converts an external syntax that allows some (or all) type dec-

larations, annotations, and instantiation to be omitted into an internal syntax that carries

those types as annotations. Both options are appropriate: while every node in the representa-

tion could cache its type, the internal syntax could instead cache the type only at a minimum

number of essential positions (like lambdas’ domains) if a more compact representation were

preferred.

These specifically identified scenarios give rise to conversions between data types with many

similar constructors. Functions impelementing those conversions can be automated with

hcompos, which establishes many basic opportunities to use hcompos. With the developments

of Section 6, these conversions can additionally involve complex data types, including mutual

recursion and compound recursive fields, and support for indexed data types looks promis-

ing. Thus, the third claim has been thoroughly evidenced by the examples throughout this

dissertation; hcompos is not just for toy examples.

7.4 Comparison to nanopass

Claim Enhanced with the hcompos operator, standard Haskell mechanisms support the

static and strong typing and automation of the nanopass methodology better than does the

Scheme implementation of Sarkar et al. [39]. I make no claim about relative efficiency.
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I observe that the Haskell type system is significantly more expressive than the Scheme type

system. My task here is therefore to show that hcompos provides automation comparable to

that of the pass expander. Sarkar et al. [39] summarize the main features of their extension

to the basic notion of micropass with the following sentence.

A nanopass compiler differs from a micropass compiler in three ways: (1) the

intermediate-language grammars are formally specified and enforced; (2) each

pass needs to contain traversal code only for forms that undergo meaningful

transformation; and (3) the intermediate code is represented more efficiently as

records, although all interaction with the programmer is still via the [Scheme]

s-expression syntax.

My contributions mimic the first two improvements in Haskell. Sarkar et al. had to use an

additional mechanism to specify and statically enforce the grammars within the dynami-

cally typed Scheme language. Because I use Haskell instead of Scheme, I specify grammars

naturally as data types and so adherence to those grammars is automatically enforced by

the Haskell’s static and strong typing. Those authors also develop their pass expander in

order to simplify the definition of passes from the micro- to the nano-scale by omitting tag

homomorphic cases. My technical contributions overcome the challenges of implementing

the pass expander in the static and strong typing of Haskell’s data types. Though I have not

focused on their third difference, efficiency, I partly chose instant-generics as a foundation

for my techniques because it is comparatively more efficient than other generic programming

methods. I briefly discuss the technical details at the end of this section.

In this section, I visit each technical feature that Sarkar et al. explain in their paper and

compare to the corresponding feature I have demonstrated in this dissertation. In accord

with their own high-level summary of the differences between micropasses and nanopasses,

I partition my discussion of their features into two classes: those features that help the

123



programmer specify and enforce adherence to grammars and those features that help with

the definition of functions that consume and produce terms from those grammars.

Specifying and Enforcing Grammars

The developers of nanopasses began by enriching Scheme with a mechanism for declaring

intermediate languages. For example, the following is a declaration listed in Figure 2 in their

paper [39].

(define-language L0 over

(b in boolean)

(n in integer)

(x in variable)

where

(Program Expr)

(e body in Expr

b n x

(if e1 e2 e3)

(seq c1 e2) ⇒ (begin c1 e2)

(lambda (x ...) body)

(e0 e1 ...))

(c in Cmd

(set! x e)

(seq c1 c2) ⇒ (begin c1 c2)))

The define-language construct is their mechanism for encoding grammars in their toolset.

The above declaration encodes the following grammar in BNF with the Kleene star.

L0 → Program

Program → Expr

Expr → boolean | integer | var

| (if Expr Expr Expr )

| (seq Cmd Expr )

| (lambda (var ∗) Expr )

| (Expr (Expr ∗))

Cmd → (set! var Expr )

| (seq Cmd Cmd )
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Excepting their use of declared meta-variables to specify occurrences of terminals and non-

terminals, this is a transliteration. The remaining difference in information content is the

two ⇒ annotations on the seq productions. Sarkar et al. call these properties ; I discuss them

below.

Language definitions like this one are used to specify the “input” and “output” languages of

each nanopass. Using that information, the nanopass compiler enforces that the result of a

nanopass must adhere to the grammar encoded by the pass’s output language. Languages

serve the same purpose for passes as domain and codomains serve for functions in Haskell.

The correspondence between a language declaration and a Haskell data type declaration is

well-understood; grammars are regularly encoded as data types in Haskell [22, §2.6]. The L0

data type would be declared as follows.

type L0 = Program

type Program = Expr

data Expr

= Boolean Bool | Integer Integer | Variable String

| If Expr Expr Expr

| Seq_Expr Cmd Expr

| Lambda [String] Expr

| App Expr [Expr]

data Cmd

= SetBang String Expr

| Seq_Cmd Cmd Cmd

Any pass would be a function using the L0 data type as its domain or codomain. In this

way, Haskell data types and its static and strong typing subsumes the nanopass “templating

mechanism” for enforcing that inputs and outputs of passes always adhere to the grammars

of the corresponding intermediate languages. Note that this naturally gives rise to mutually

recursive data types.
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There are four differences between the define-language construct and Haskell data types:

1. the use of meta-variables,

2. the allowance of one productions without a leading terminal,

3. the unrestricted reuse of constructor names,

4. the language inheritance, and

5. the “properties” (like ⇒ in L0 above).

The first two of these are just issues of syntactic sugar. In particular, a constuctor name must

be provided for each variant of a data type. This is a small inconvenience compared to the

naked productions for literal values and applications in the declare-langauge declaration.

The second two deserve discussion.

I have already discussed that the FindDC algorithm used in the generic definition of hcompos

requires that two constructors in separate data types must have the same exact name if they

are supposed to correspond automatically. This is why I have declared data types in separate

modules: use of hcompos requires the constructor names to be equivalent, but Haskell does

not allow the same constructor name to be declared twice in the same module. On the

one hand, this again just an issue of convenience. On the other hand, it is a heavyweight

inconvience. To allow a similar convenience, the FindDC algorithm could be refined with a

weaker prerequisite. For example, it could conservatively ignore prefixes or suffixes when

comparing one fields type’s Tag against another.

In order to achieve the full benefits of the nanopass methodology in the original Scheme imple-

mentation, the programmer can define similar grammars as extensions of existing grammars.

For this reason, a define-language declaration can be specified as a series of modifications

(i.e. deletions, additions, adjustments) to each production of some other language that was
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already defined. This mechanism is referred to as language inheritance and is just a nota-

tional convenience. The pass expander will work for any two similar types, just like hcompos.

This importantly provides more modularity by reducing coupling. With language inheri-

tance, one of the languages must be identified as a derivative of the other. Without it,

neither needs to be considered the ancestor of the other. Thus language inheritance is con-

sidered an overspecification. Its only comparative benefit is that it can avoid repeating the

declaration of the shared constructors. I have not developed it, but it seems simple to define

Template Haskell combinators to provide a comparable interface for the user’s convenience.

The issue of properties is the only significant difference between nanopass languages and

Haskell data types. Sarkar et al. [39] refer to various kinds of properties, but only demonstrate

the ⇒ “translates-to” property. In the example language L0, this property means that both

seq constructs have equivalent semantics as the Scheme constructor begin; it is just ordering

evaluation. Properties like this support features of nanopasses that I am not trying to

emulate, such as inferring a interpreter for the entire language. I am interested only in the

automation of their pass expander, as I discuss in the next subsection.

Defining Functions over Terms Adhering to Grammars

A nanopass is defined with a define-pass declaration. These include three parts: an input

language, an output language, and a set of transformation clauses. Each transformatoin

clause specifies how the pass transforms a non-terminal from the input language into the

output language. Thus, the analog of passes in Haskell are just functions between two data

types that model grammars.
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There are notable parallels between the Haskell mechanisms for function definition and these

three features of nanopasses:

1. the void and datum languages,

2. the subpatterns for results of structural recursion, and

3. the pass expander.

The void and datum are primitive languages built-in to the nanopass approach. They are

used for the definition of passes that are run only for side-effects or result in some value

that need not adhere to a grammar. As an example, a pretty-printing pass might target

the void language, since it could just use IO effects to print the term to the screen, or

datum if it built and returned a string value. Programmers comfortable with Haskell would

immediately recognize that the void language corresponds to the type m () for whicher

monad m supports the necessary side-effects. And since Haskell functions are not as restricted

as the define-pass syntax, there is no need for an analog of datum, data types encoding

languages are just types like any other.

The nanopass system includes syntactic mechanisms for invoking transformations on sub-

terms as part of the pattern matching process. All but one of their variants for this syntax

are directly supported by the GHC language extension for view patterns, which allow ar-

bitrary functions to be embedded with patterns. The unique syntax not supported allows

the programmer to omit the name of the transformation, which is then determined by the

involved input and output languages if only one such transformation exists. Since this is

an instance of types determining values, it is related to the general notions of Haskell type

classes and generic programming. I will only observe that the complete omission of the name

is more similar of the recent implicit calculus of d. S. Oliveira et al. [11]. Like many other

mismatched features, lack of support for this variant is a minor inconvenience. The Haskell
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view patterns almost totally subsume this nanopass feature. Moreover, since passes are im-

plemented as genuine Haskell functions, they could be defined with recursion combinators

such as the cata- or para-morphism that provide the same code concision and are commonly

automated via generic programming.

The only crucial nanopass feature missing from GHC Haskell is the pass expander. In the

implementation of Sarkar et al., this is a code generator that fills in missing transformation

cases in define-pass declaration based on the corresponding input and output languages’

define-language definitions. It just generates tag homomorphic cases; the hcompos operator

provides the exact same automation. The only difference is that the define-pass syntax

looks more natural than the precise_case syntax and that the pass expander is invoked

implicitly for all uses of define-pass. On the other hand, the Haskell nanopasses are just

normal functions, so they invoke hcompos explicitly and use precise_case for the cases that

are not tag homormophic in order to avoid type errors. As I have shown throughout this

disseration, that is merely an inconvenience.

GHC Haskell in combination with my generic definition of hcompos subsumes almost every

benefit of the original nanopasses implemention in Scheme. The missing features are all minor

inconveniences along the lines of syntactic sugar. This discussion has therefore evidenced

the second claim.

7.5 Final Evaluation

I repeat my claims here for ease of reference.

1. The hcompos operator provides the programmer with more automation than does the

compos operator of Bringert and Ranta [7].

2. Enhanced with the hcompos operator, standard Haskell mechanisms support the static

and strong typing and automation of the nanopass methodology better than does the

Scheme implementation of Sarkar et al. [39]. I make no claim about relative efficiency.
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3. The hcompos operator can be used to define non-trivial functions.

4. The benefit of hcompos as summarized by the other three claims is greater than its

detriments.

I have designed these claims so that they emphasize the worthwhileness of my hcompos

operator. The operator enables the established benefits of the nanopass methodology. It

surpasses the usefulness of the compos operator, which is implemented by many Haskell

generic programming libraries. It can be used within defintions of non-trivial functions like

lambda lifting without necessarily changing the overall shape of the conventional definition—

not to mention the myriad smaller examples from earlier chapters. And though it likely brings

inefficiency for run-time and adds noise to the type errors, its detriments are not extreme

enough to outweight the benefits of its automation. Furthermore, it will likely benefit from

the advances with respect to efficiency and domain-specific type errors that I anticipate for

future ESDLs in Haskell, which is still an active field of research.

I have focused on the hcompos operator because it is the culmination of my technical contribu-

tions. Even so, the delayed representation (i.e. fields types) and the precise_case operator

for partitioning those disbanded data types can be useful independently of hcompos. Specifi-

cally, Example 2.1 shows that precise_case can be used to enable use of instant-generics

techniques that exhibit fine-grained typing concerns. My first solution of Example 2.3 also

indicates that fields types can be used to extricate a complex case from larger definitions as

a separate declaration with an indicative type. Recall how just the types of llVar and llLam

reflect the expected semantics of each function’s argument.

In this chapter, I have evidenced that programmers can use the technical contributions of my

dissertation to simplify their function definitions and that these benefits are not unique to

toy examples. My hcompos operator generalizes the compos operator of Bringert and Ranta

[7] in order to support automation of conversions between two similar types. The resulting

automation drastically reduces the cost of using more precise types throughout an entire
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program, which provides the engineering benefits of the nanopass methodology of Sarkar

et al. [39] to Haskell programmers. The underlying ideas make it easier for programmers

working in statically- and strongly-typed functional languages like Haskell to use more precise

types.
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8 Related Work

The two works most related to mine are that of Bringert and Ranta [7] and that of Sarkar

et al. [39], which are thoroughly discussed in Section 2. Many existing generic programming

techniques can generically define compos, so programmers can often use it “for free” to

improve the modularity of their definitions. I add heterogeneity to compos in order to make

its benefits available when defining the property-establishing functions that are pervasive in

exactly typed programs. The most important resulting benefit is that hcompos serves as an

analog of the pass expander of Sarkar et al..

I divide the other related works into methods for exact types and generic programming

techniques deserving more discussion.

8.1 Exact Types

While the most exact possible types require type dependency, I am interested in the best

approximation supported by mainstream non-dependent types. Even so, I believe my basic

approach may be adapted to the dependent setting, where a notion similar to type exactness

is known as adequacy [19]. In the non-dependent setting, however, I have unfortunately

found little research on exact types and their software engineering benefits. The major

works are Turner’s total functional programming Turner [45] and generalized algebraic data

types (GADTs) [48].

Exact types are essential for Turner’s total functional programming, in which every function

must be total. Specifically, all patterns must be exhaustive and all recursion well-founded.

Without termination guarantees, exhaustive pattern matching could be trivially achieved

by just diverging in what would be the omitted cases for non-exhaustive patterns. In this

dissertation, I have adopted the stance of Danielsson et al. [12] and consider the challenges of

exact types without concern for termination. The major benefit of exact types is that they

make it straight-forward for patterns to be exhaustive without having to pass around handlers
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for the “error” cases, since such cases are eliminated upstream by property-establishing

functions.

The investigation of Turner’s ideas seems to have faltered. I suspect that the Draconian

requirement of termination lead researchers to embrace dependent types, as in Coq or Agda.

Once termination is required, dependent typing is a natural addition in order to enjoy the

Curry-Howard isomorphism. Moreover, if programmers want to use general recursion instead

of being restricted to primitive combinators for recursion (such as catamorphism, paramor-

phism, anamorphism, apomorphism; see Meijer et al. [35]), the type-checker must then

include a termination checker (and productivity checker for codata), which can sometimes

be satisfied far more directly with the use of dependent types [6].

A significant advance in the type exactness of functional programs was the recent adoption

of GADTs from type theory. A constructor of such a data type can restrict zero or more of

the data type’s type parameters. Those restricted parameters are called indexes while unre-

stricted parameters are called uniform parameters. Conventionally, constructors restrict the

indexes by specifying equalities amongst them and possibly other concrete types. In Haskell,

however, the restriction mechanism used by GADT constructors is naturally generalized to

employ the qualified type mechanism. Accordingly, GADTs and equality constraints were

simultaneously added to Haskell.

GADTs simulate type dependency in Haskell by providing local type refinement : within the

alternative of a case for a GADT constructor, the indexes of that constructor’s data type are

refined by the constructor’s type context. In this way, values (i.e. the GADT constructor)

determine types (i.e. the indexes). Even this restricted form of type dependency allows for

much more exact types; c.f. the recent work of Lindley [28]. I will discuss GADTs further

in the next section, but the basic observation is that my work is an extension of generic

programming, and the generic programming support for GADTs is nascent.
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In this dissertation, I have focused on a particular kind of type exactness: subsets of con-

structors. I have found two principal existing approaches to explicit support for subsets

of constructors (in statically-typed languages), one exemplified by the Common Algebraic

Specification Language (Casl) [36] and one that seems unique to the OCaml programming

language [27]. Casl and some other specification languages (e.g. PVS [37]) support named

declaration of constructor subsets by declaring data types as non-disjoint unions of smaller

data types [36, §4]. In a hypothetical Casl-Haskell pidgin language, this corresponds to

data type declarations like the following.

data List a = Nil | data (NeList a)

data NeList a = Cons a (List a)

This approach requires the subsets of data types to be identified a priori and invasively

incorporated into the declaration of the data type itself. For example, the Casl approach

cannot be used to characterize subsets of data types defined in libraries, since their declara-

tion cannot be changed. Such immodularity is unacceptable for programming in the large.

In contrast, my approach is applicable to library data types, because constructor subsets

are anonymous and do not affect the original data type declaration. This is made possible

by the Tag, Codomain, DC, and DT type families, and it is made practical by generating those

instances as well as the related fields types for the user with Template Haskell, which is a

common and accepted dependency for Haskell generic programming.

In OCaml, polymorphic variants allow any name, called a variant, to occur as if it were

a constructor [18]. Both polymorphic variants and yoko’s disbanded data types provide

anonymous subsets of constructors. However, polymorphic variants, as a widely-applicable

feature, intentionally model subsets with less exact types. In particular, an occurrence of a

variant is polymorphic in its codomain. It constructs any data type that has a constructor

with the same name and compatible fields. Fields types, on the other hand, are associated

with an original data type via the Codomain type family.
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The type-indexed coproducts of Kiselyov et al. [25, §C] are also similar to polymorphic

variants. They are a more restricted version of yoko’s sums and provide a capability similar

to implicit partitioning. Where :+: models union of sums in yoko, the operator of the same

name in the work of Kiselyov et al. [25] specifically models a type-level cons and is therefore

not associative.

The recent work on data kinds by Yorgey et al. [55] promotes constructors to types that

superficially seem related to my notion of a fields type. These type-level constructors of data

kinds, though, already have a notion of corresponding term-level value, the singleton types

[15].

In summary, interest in exact types has been dominated by dependent types. Turner was

interested in absolute correctness so he required termination, but it seems that total pro-

gramming without dependent types was unfruitful. Moreover, dependent type theory is

making headway into even non-dependent language, by ways of mechanisms like GADTs

in Haskell. However, as I have shown in this dissertation in the spirit of Sarkar et al. [39],

even providing support for subsets of constructors, which is rare and underdeveloped at the

language-level, can provide significant software engineering benefits.

8.2 Generic Programming

All of my technical contributions involve generic programming in Haskell, which is an ac-

tive and rather mature area of research. I will limit this discussion to the approaches most

related to yoko’s instant-generics foundations: I omit the informative historical trajec-

tory along SYB [26], PolyP [20], Generic Haskell [10], and many others. I detailed the

instant-generics approach itself in Section 3.3.

Generic programming techniques are broadly characterized by the universe of type that can

represent (i.e. manipulate generically). yoko has the same universe as instant-generics,

with more complete support for compound recursive fields. I believe yoko’s enhancements
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are orthogonal to other extensions of instant-generics and will investigate integration

as future work. I also believe that some generic programming techniques not based on

instant-generics also admit extensions comparable to mine. These beliefs are rooted

in the simplicity and orthogonality of my basic idea of focusing on constructor names as

compared to existing approaches.

Nested Recursion and GADTs

The most exact types supported by Haskell require sophisticated data types not in the

yoko universe. In particular, nested recursion [5] and GADTs are crucial to encoding many

interesting properties, such as well-scoped and/or well-typed term representations. While

some uses of these features can be forced into the yoko representation types, current research,

like that of Magalhães and Jeuring [29], is investigating more natural representations. One

derivative of instant-generics that is better suited for these features is generic-deriving

[30], which was recently integrated with GHC. Most of the generic-deriving representation

types are simple liftings of the instant-generics types from the kind * to the kind *→*.

The generic-deriving approach only represents type constructors, but it interprets * types

as *→* types that do not use the type parameter. Since type parameters are a prerequisite

for nested recursion and GADTs, a representation designed for *→* types more naturally

handles such sophisticated data types. I emphasize again that my essential idea of reflecting

constructor names is orthogonal to these libraries’ foundations and so I anticipate that they

could be easily extended in the same way as instant-generics. Indeed, the step from

instant-generics to the the work of Magalhães and Jeuring [29] is very incremental; the

corresponding adjustment to yoko was brief and my initial investigations seem promising.

Binding

One important generic programming feature that is less obviously compatible with my ex-

tensions is automatic support for binding. Since much of the advanced generic programming

research is motivated by providing functionality for the various intermediate representations
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within compilers, some generic support for binding constructs is of particular interest. This

is another active field of research with many open questions, but the unbound [52] library has

explored one effective option. It adds a few special-purpose representation types to the basic

ones like sums and products. These new representation types serve as a small type-level DSL

for specifying binding within the data type definitions. For example, there is a primitive type

for variable occurrences and a primitive type for scoped variable bindings. If a data type

definition uses these primitives appropriately (and its other structure is conventionally rep-

resentable), then the unbound library provides such nominal functions as capture-avoiding

substitution and α-equivalence. Since unbound is not rooted in instant-generics, it is

less obvious if it is amenable to my yoko extensions. In addition, I am not sure how yoko

would interact with the notion of primitive, non-structural representation types (e.g. those

for names and binders). Other (non-generic programming) approaches to binding also have

similarly primitive data types, such as the Var constructor central to PHOAS [9] and the

name and multi-bindings of Hobbits [53]. If these approaches to binding representation were

to be combined with a generic programming technique similar to instant-generics, the

result would involve non-structural representation types as in unbound. Thus, the combina-

tion of yoko with non-structural representation types is an important direction for future

investigation.

Abstracting over Recursive Occurrences

One criticism by reviewers of my work has called for further justification of my choice of

instant-generics as a generic basis. In particular, there are many similar approaches based

on the notion of viewing regular data types as fixed points of functors [35, 41, 16, 46, 54],

which the reviewers correctly observed would more naturally accommodate some of the yoko

definitions. For example, in the fixed point of a functor approach, the MapRs class would

instead just be Traversable. In short, my response to this criticism is that the development

based on instant-generics is more accessible and best emphasizes the crucial features of
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the yoko extensions. Also, knowing that nested recursion (which is not “regular”) could lend

further exactness, I wanted to avoid a technique that was fundamentally opposed to it.

The fixed point of functors approach to regular data types is educational and powerful.

Viewing data types in this way explains some common functional programming concepts,

such as folds, in a fundamentally general framework. Moreover, the open recursion (which

is not actually recursion) inherent to the approach has many well-documented modularity

benefits [4, 43, 47]. This open recursion and its various reflections at the value-level are

the basic technique that provides the characteristic extensibility of two-level data types [41],

which are data types that are explicitly defined as the fixed point of a functor. In particular,

functors can be combined with the functor sum operator before being closed with the fixed

point.

The most developed work along this vein is by Bahr and Hvitved [4], who improve upon

the techniques summarized by Swierstra [44], making them more robust and usable in non-

trivial programs beyond the academic examples of Wadler’s “expression problem” [50]. In

particular, they demonstrate how some extensible definitions of functions (i.e. algebras) can

be almost directly reused on multiple similar data types within a hypothetical compiler

pipeline. Moreover, their principle contribution is to identify a subset of algebras, which

they call term homomorphisms, that exhibit some more useful properties. For example,

term homomorphism compose just like functions. They also integrate well with annotation

techniques common to the fixed point of functors approaches. The characteristic example

of a term homomorphism is an elaboration, such as the one converting a let to an applied

lambda.

For my comparative purpose, it is most interesting to note that term homomorphisms can

define property-establishing functions. For example, the let elaborator guarantees the ab-

sence of the lets in the range. This looks as follows in a simplified form using a simple algebra

instead of an explicit term homomorphism.
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newtype Fix f = In (f (Fix f))

cata ∷ Functor f ⇒ (f a → a) → Fix f → a

data (:+:) f g a = L (f a) | R (g a) -- as in instant-generics

data Let r = Let String r r

data ULC r = Var String | Lam String r | App r r

elab ∷ Fix (Let :+: ULC) → Fix ULC

elab = cata $ λe → case e of

L (Let s rhs body) → App (In (Lam s body)) rhs

R ulc → ulc

Note in particular that elab’s codomain is an exact type, unequal but similar to its do-

main. Using an improved version of the injection and projection techniques summarized by

Swierstra [44], this function can be given a polymorphic type, so that it becomes generic

in way comparable but distinct from the genericity of instant-generics. With that type,

elab would be applicable to any two-level type that included both Let and ULC as summand

functors, and it would effectively remove the Let summand. Because of this functionality,

two-level data types with overloaded injection and projection seems comparable to yoko.

The reviewers’ criticism becomes: “you should explain why you did not build on top of the

two-level types techniques”. My response is two-fold.

� Two-level data types are burdensome and obfuscated to work with compared to directly-

recursive data types. I wanted to avoid that noise when presenting my ideas.

� I have simultaneously shown that two-level types are not a prerequisite for my tech-

niques; yoko works with directly-recursive data types.

That last point is crucial. In particulary, every functor is also a conventional data type,

and so my techniques can potentially be used in conjuction with two-level data types! For

example, consider if the user had factored the syntactic functors differently, choosing to

group variable occurrences with lets instead of with lambdas and applications. (Note that
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this pairing of lets and variables would be quite natural in anticipation of a lambda-lifting

stage.)

data Let2 r = Let String r r | Var String

data ULC2 r = Lam String r | App r r

elab2 ∷ Fix (Let2 :+: ULC2) → Fix ???

With this factoring, the elab2 function can no longer just remove the Let2 summand; the

lambdas still need variable occurrence in the terms. The use of two-level data types requires

the user to factor the intended conventional data type into summand functors a priori. This

is comparable to the short-coming of the Casl approach where the user had to identify the

subsets of constructors a priori. This is avoided by my fields type, which are the ultimate

and atomic factors.

The observation that fields types are the atomic factoring highlights the fact that my dis-

banded data types—the sums of fields types—are analogous to two-level types. Users of

two-level types could adopt the same extreme and only put one constructor in each sum-

mand functor. Now the main difference is the fact that two-level types are built as fixed

points of “openly recursive” summed functors while disbanded data types are simply sums

of fields types that have the recursion built-in. The only major consequence is that every

fields type is bound to a particular data type because that data type occurs directly as the

recursive components of the fields type. For a summand functor, the recursive is abstract,

so a particular functor does not determine a two-level data type.

The independence of a summand functor from any particular two-level data type is key to

the modularity benefits of the two-level approach. In particular, the same summand functor

can occur in multiple two-level data types and functionality (e.g. as algebras) specific to

just that summand functor can be applied to those two-level data types. For example, Bahr

and Hvitved show how to reuse pretty-printer algebras across multiple two-level data types
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that include some of the same summand functors. This capability addresses a major part of

Wadler’s expression problem.

As implemented in my work, yoko is not intended to the expression problem. I learned

during my experiences with the expression problem (e.g. [16]) that the obfuscation inherent

to two-level types is not obviously worth the extra modularity. I wanted yoko to be a

more lightweight mechanism that solves the similar problem of reducing costs of converting

between similar data types a là Sarkar et al. [39]. Even so, I invented a use of type families

to abstract over recursive occurrences in field types without lifting to functors. I later found

a similar use of type families in the work of Jeltsch [21, §3.2]. This is a more lightweight

solution compared to conventional two-level types, but the typing concerns become delicate.

It is an interesting avenue of future work.

Still, instead of enriching yoko to address the expression problem, I can apply yoko to two-

level data types. While the current implementation can not directly convert between a fixed

point involving the Let2 summand and one involding Let, the basic automation—matching

on constructor names—still applies. I am very confident the small technical mismatches

(e.g. dealing with Fix and :+:) could be overcome. It would be fruitful to combine yokoś

genericity with that of two-level types, since the two provide incomparable functionalities.

In particular, the reuse of a single algebra (e.g. for pretty-printing) at multiple data types

within the pipeline is a kind of reuse not currently provided by instant-generics or yoko.
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9 Conclusion

I have explained my technical contributions and shown that they satisfy my stated objective:

they make it easier for programmers working in statically- and strongly-typed functional lan-

guages like Haskell to use more precise types. The key idea is to encode the programmer’s

intended correspondence between the constructors of similar data types in order to provide

a very reusable operator for homomorphically converting between the two types. This re-

duces the cost of precisely-typed programming by recovering the level of reusability that was

previously confined to imprecise types. In particular, my work provides a level of datatype-

agnostic reuse characteristic of generic programming. As a result, Haskell programmers need

no longer face the trade-off between reusability and assurance when leveraging precise types

in a large program. The conversion definitions are concise, modular, and cheap to write as

needed.

I have presented my techniques and implemented them in the Haskell programming language,

but the fundamental ideas are applicable to any statically- and strongly-typed programming

functional language with algebraic data types. Haskell’s rich type features do, however,

allow an implementation of my ideas mostly within the language—implementations in other

languages may require more, possibly external, metaprogramming. I have implemented my

ideas in a Haskell library available at http://hackage.haskell.org/package/yoko.

With respect to the field of generic programming, my contributions are three-fold. First, I

provide lightweight support for constructor subsets. Beyond its own independent benefits,

the constructor subset mechanism enables the use of my second contribution, a reusable

operator for tag homomorphisms. The generic homomorphism hcompos factors out a pattern

in the definition of functions that convert between data types with analogous constructors:

constructors that have the same intended semantics. My generic programming technique is

the first that can convert between distinct but similar genuine Haskell data types; it is a

generalization of the compos operator of Bringert and Ranta [7] to support unequal domain
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and codomain. It thereby adds precisely-typed programming as a compelling application

area for generic programming. My work specifically allows the fundamental ideas of generic

programming approaches like instant-generics [8] and compos to be applied in the context

of precisely-typed programming without requiring obfuscation as severe as the two-level type

approaches like that of Bahr and Hvitved [4].

With respect to the field of precisely-typed programming, my contribution is to port the

pass expander of Sarkar et al. [39] from the dialect of Scheme to Haskell. This enables

the improved assurance of precise types without sacrificing maintainability, which usually

prevents precise types from being used in large programs. I demonstrated the technique

with many small examples and two large examples of lambda-lifting functions that encode

the resulting absence of lambdas with their precise codomain type. Because of the use of my

hcompos operator, these definitions are concise and modular, referencing only constructors

for variables and binders (i.e. variables and lambdas in my examples).

I plan two main avenues for future work. As I discussed in Section 7.2, the viability of using

my existing yoko library in actual programs would be drastically increased by two improve-

ments that are already of independent interest to the general haskell generic programming

community. First, the time and space overhead of methods based on the fundamental ideas

of instant-generics needs to be better reduced by the GHC optimizer. Second, with the

advent of type-level programming in GHC Haskell, as used by my yoko library, type errors

are exhibiting a poor signal-to-noise. Improving the overhead and quality of type errors due

to type-level programming are both active research problems that would also benefit the

users of my techniques. The second avenue is specific to my work. The benefits of yoko are

in many ways orthogonal to solutions to Wadler’s expression problem, such as the work of

Bahr and Hvitved [4]. Enhancing yoko with comparable features and/or developing means

to use both approaches simultaneously would yield a more comprehensive framework for

precisely-typed programming in Haskell.
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[54] A. R. Yakushev, S. Holdermans, A. Löh, and J. Jeuring. Generic programming with

fixed points for mutually recursive datatypes. In 14th ACM SIGPLAN International

Conference on Functional Programming, pages 233–244, 2009.

[55] B. A. Yorgey, S. Weirich, J. Cretin, S. Peyton Jones, D. Vytiniotis, and J. P. Magalhães.
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