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Abstract 

        The type III secretion system (T3SS) is a bacterial injection system expressed by many 

Gram-negative bacteria. During the last two decades, the repertoire of T3SS effectors has been 

greatly explored, and several mechanisms of these effectors have been discovered. The identified 

host targets of T3SS effectors are involved in different biological events including cytoskeleton 

rearrangement, cellular signaling, transcription and protein degradation. A/E (attaching and 

effacing) pathogens including EHEC (Enterohaemorrhaigic E. coli), EPEC (Enteropathogenic E. 

coli) and C. rodentium (Citrobacter rodentium), a pathogen of mice, inhibit NF-κB 

transcriptional activity by employing unidentified T3SS effectors. However, the identity of these 

effector(s) was unknown. In this thesis, my goals were to identify T3SS effectors from attaching 

and effacing (A/E) pathogens responsible for modulating NF-κB activation and reveal the 

working mechanism of these identified effectors.  

       In the first project, NleH1 and NleH2, which share C-termini similarity with the S. flexneri 

T3SS effector OspG, were studied. OspG targets ubiquitin-conjugating enzyme UbcH5 to 

prevent IκBα degredation, which results in the inhibition of NF-κB activation. We discovered 

that both NleH1 and NleH2 interact with the N-terminus of ribosomal protein S3 (RPS3) after 

their translocation into host cells. RPS3 is a non-Rel NF-κB subunit which promotes the DNA 

binding affinity of NF-κB. We found that NleH1, but not NleH2, blocks the nuclear translocation 

of RPS3 stimulated by TNF and by bacterial infection. By this process, NleH1 selectively 

attenuates RPS3-mediated NF-κB dependent gene transcription. In addition, we discovered NleH 

proteins as Ser/Thr kinases and that kinase activity is critical for the effect of NleH1 on RPS3.   
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         By collaborating with Dr. Lenardo’s group in National Institute of Allergy and Infectious 

Diseases (NIAID), we discovered that RPS3 is inducibly associated with and phosphorylated by 

IKKβ at serine 209 (S209) and that NleH1 efficiently blocks this phosphorylation. Moreover, by 

using a gnotobiotic pig model, we found piglets infected with wild-type E. coli O157:H7 exhibits 

diffuse and low intensity phospho-RPS3 staining. Surprisingly, although infection by ΔnleH1 

EHEC causes mild diarrhea and displays significantly reduced bacterial colonization in piglets, 

this mutant becomes hypervirulent to the host, as infected piglets die more rapidly and develop 

systemic intoxication compared to infection with the wild-type strain. Therefore, our data 

suggests a complex role for NleH1 in mediating bacterial virulence in the host to maximize 

bacterial survival and growth.  

        In the second project, we identified NleB, another T3SS effector known to target NF-κB 

activation, as an O-GlcNAc (O-linked N-acetylglucosamine) transferase. We found NleB 

directly interacts with host glycolytic protein GAPDH (Glyceraldehyde 3-phosphate 

dehydrogenase) and O-GlcNAcylates GAPDH during infection. GAPDH has many 

nonglycolytic roles and is involved in a broad range of biological events, such as transcription, 

cell signaling, membrane integrity and cell survivial. In our study, we demonstrated an essential 

role for GAPDH in NF-κB activation. We found that GAPDH serves as a co-activator of TRAF2 

(TNF receptor-associated factor 2) and promotes TRAF2 polyubiquitination under stress 

conditions. Targeting the catalytic site C150 of GAPDH by a chemical inhibitor or by site-

directed mutagenesis specifically impairs TNF-induced TRAF2 polyubiquitination and NF-κB 

activation. This function is unrelated to glycolysis, as targeting the rate-limiting glycolytic 

enzymes does not imipair TRAF2 activation and only leads to a moderate inhibition on NF-κB 

activation, which is likely due to an unrelated mechanism. Moreover, O-GlcNAcylated GAPDH 
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fails to interact with TRAF2 resulting in the attenuation of TRAF2 polyubiquitination. 

Eliminating the O-GlcNAc transferase activity of NleB by mutating its catalytic sites or by 

deleting the nucleotide sugar-binding domain abolishes the effect of NleB on NF-κB activation 

and reduces bacteria colonization of mice. Taken together, our studies suggest an integral role of 

the metabolic protein GAPDH in the NF-κB signaling pathway and that the T3SS effector NleB 

O-GlcNAcylates GAPDH to prevent the participation of GAPDH in NF-κB signaling.  
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Chapter I: Introduction 

Attaching and Effacing Escherichia coli 

Escherichia coli (E.coli) is one of the most studied microorganism. It has been used as a 

model organism for a variety of biological purposes. Recent studies showed that E. coli is an 

extremely versatile organism with high genome plasticity (Hacker et al., 1997). Studies in E.coli 

K12 strains demonstrated that bacterial genome contains mobile genetic elements such as phages, 

transposons and plasmids (Blattner et al., 1997). These elements are responsible for acquisition 

or loss of pathogenicity islands and have diverse pathogenic consequences. Therefore, 

pathogenic E. coli is believed to have evolved from non-pathogenic strains by horizontal DNA 

transfer among different bacterial strains.  

Non-pathogenic E.coli includes bacterial strains such as commensal E.coli in gut flora and 

engineered strains used in the laboratories or industries. Pathogenic E.coli strains are those 

causing certain diseases such as diarrhea, meningitis, sepsis or urinary tract infection (Yamamoto 

et al., 1990). Pathogenic E. coli are catagorized by serogroups (O antigens) or serotypes (O or H 

antigens). Recently, some strains have also been profiled by virulence factors contributing to 

specific types of diseases (Pupo et al., 1997). Currently, there are at least nine types of 

pathogenic E.coli identified including uropathogenic (UPEC) or neonatal meningitis/sepsis-

causing E.coli (NMEC). The other seven are enteropathogenic E. coli (EPEC), 

enterohaemorrhaigic E. coli (EHEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. coli 

(EIEC), enteroaggregative E. coli (EAEC), atypical enteropathogenic E. coli (aEPEC or ATEC) 

and diffusely adhering E. coli (DAEC), which are all intestinal pathogens and cause diarrhea 

(Kaper et al., 2004).   
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Recent studies have defined a group of pathogenic E.coli strains as Attaching and Effacing 

(A/E) Escherichia coli, including the human pathogens EPEC, shiga-producing E.coli strains 

such as EHEC, and the mouse-specific strain Citrobacter rodentium (C. rodentium) (Mundy et 

al., 2005; Schmidt, 2010). This group of bacteria induces signal transduction pathways leading to 

the rearrangement of cytoskeleton and causes A/E lesions (Kodama, 2002). A/E lesions result 

from localized intestinal microvilli destruction and the subsequent formation of a pedestal-like 

projection in the gut mucosa of human and animal hosts  (Schmidt, 2010) .  A/E lesions normally 

contain cytoskeletal components from host cells such as actin, ezrin, myosin light chain and 

molecules associated with polymerized actin structures (Fig. 1) (Finlay et al., 1992; Yuhan et al., 

1997). This pedestal-like projection pushes bacteria slightly above the cell’s surface (Fig. 1). All 

factors from bacteria contributing to the formation of A/E lesion are found in the pathogenic 

island locus of enterocyte effacement (LEE), which encodes over 20 proteins including type III 

secretion system (T3SS) proteins, intimin, gene regulators and chaperons (Tobe et al., 1999). As 

most A/E strains are extracellular bacteria, they often subvert host intracellular signaling 

cascades to facilitate their survival in the host.  

Similar strategies are employed by EPEC and EHEC to colonize the host, although the 

pathogenical consequences are variable. EPEC were first isolated in 1940 and experimentally 

demonstrated as intestinal pathogens in 1978 by using EPEC O127:H6 strain E2348/69 (Spears 

et al., 2006). EHEC were isolated from individual patients in 1982. Since then, EHEC have 

emerged as a global health threat. The main sources of EPEC and EHEC transmission are food, 

dairy products, animal contact and water (Kaper et al., 2004). EPEC cause diarrhea and
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Fig. 1.  A/E pathogens induce cytoskeleton rearrangement to form pedestal-like projection.  A: 

steps of EPEC adherence. 1. Initial adhesion; 2. Translocation of bacterial proteins by T3SS; 3. 

Pedestal formation.  
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gastroenteritis in infants in developing countries, whereas the infection of EHEC results in the 

development of bloody diarrhea and diarrhea-associated haemolytic uraemic syndrome (HUS). 

EPEC and EHEC are typical bacteria inducing A/E lesions in concert with pedestal formation. 

The colonization factors from these two strains include adhesins, flagella and T3SS. However, 

EPEC may encode more types of fimbrial adhesins compared to EHEC (Johnson and Nolan, 

2009). Many EPEC strains contain a plasmid called E. coli adherence factor (EAF), which has an 

operon encoding the type IV bundle-forming pilus (BFP) (Stone et al., 1996). BFP, which is 

regulated by a transcriptional activator called plasmid encoded regulator (Per), is important for 

EPEC binding to the host cells. BFP may not be important for initial bacterial binding to host 

cells, but rather for the interaction between bacteria. It has been found BFP is important for the 

formation of bacterial aggregates at the late stage of infection (Hicks et al., 1998). The functional 

BFP is critical for EPEC virulence as a mutation in the bfpF gene severely impairs EPEC’s 

abilities to cause diarrhea in vivo (Bieber et al., 1998). In contrast, EHEC do not carry the EAF 

plasmid and do not express Bfp. However, EHEC have two fimbriae operons lpf and lpfA, which 

are similar with the long polar fimbriae (LPF) of Salmonella but not found in EPEC (Baumler et 

al., 1996).  

The type of EHEC is usually defined by their O (LPS, Liposaccharides) and H (flagella) antigens. 

After gastrointestinal infection with EHEC, patients develop HUS and thrombotic 

thrombocytopenic purpura (TTP) (Karmali, 1989). HUS, characterized by microvascular thrombi 

and swollen endothelial cells, is caused by Shiga toxins (Stx) (O'Brien et al., 1992). Therefore, 

EHEC are also called Stx-producing E.coli. In EHEC O157 strains, they are two different Shiga 

toxins, Stx1 and Stx2. Shiga toxins are A1B5 toxins, consisting of a 32 kDa catalytic A subunit 

and five 7.7 kDa binding B subunits (Ling et al., 1998). Stx B subunits bind with their receptor
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glycosphingolipid globotriaosylceramid (Gb3) on the surface of host cells. Gb3 is expressed 

more abundantly on glomerular endothelial cells and tubular epithelial cells in human kidney 

than other types of cells (Meyers and Kaplan, 2000).  The expression level of Gb3 varies in cells, 

which might contribute to their different susceptibility to Stx (Louise and Obrig, 1991). Once Stx 

is internalized by clathrin-dependent endocytosis, the toxins are transported to the endoplasmic 

reticulum (ER) and Golgi apparatus (Sandvig et al., 1992).  In the cytoplasm, the Stx A subunit 

specifically targets 28S eukaryotic rRNA by its N-glycosidase activity and inhibits protein 

synthesis in host cells (Saxena et al., 1989). This leads to a ribotoxic-stress response, which can 

cause intestinal and endothelial cell apoptosis and death. The cell death will in turn induce 

inflammation and leads to severe tissue damage in the host.  

Different serotypes of EHEC also contain a highly conserved protein named hemolysin 

(Brunder et al., 1999). Although the role of hemolysin in pathogenesis is not entirely clear, 

studies suggest hemolysin can facilitate bacterial growth in the gut by promoting iron 

metabolism (Law and Kelly, 1995). Of note, the homolog of EHEC hemolysin is the RTX 

(repeats in the structural toxin) family of pore-forming toxins, which are widely present in Gram-

negative bacteria (Schmidt et al., 1995; Welch, 1991).  

C. rodentium is a mouse pathogen inducing A/E lesion formation during infection (Mundy et 

al., 2005). C. rodentium infects the lumen of the intestine and results in the colonic hyperplasia. 

C. rodentium encodes similar genes as EPEC and EHEC inducing A/E lesions such as LEE 

pathogenicity island (Garmendia et al., 2005). The entire life cycle of C.rodentium in the host is 

around 21-28 days post infection (pi) followed by host-mediated clearance. The mechanism of 

this clearance is not well understood; however, it is related to the host adaptive immunity 

(Vallance et al., 2002). The pathogenesis of C. rodentium in different genetic background of 
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mice varies significantly (Mundy et al., 2005). While C3H/HeJ strain shows high colonic 

hyperplasia and high mortality, some other strains such as C57BL/6, NIH Swiss and Balb/c 

strains generally show limited or no mortality (Mundy et al., 2005).  The convenience of 

manipulating both bacteria and host make C.rodentium an excellent model for studying the 

interaction between A/E pathogens and host. 

Type III Secretion System 

Since its discovery in the early of 1990s, T3SS has been found to be widely present in Gram-

negative pathogens (Rosqvist et al., 1994). T3SS is a molecular syringe, which secretes effector 

proteins from the bacterial cytoplasm into host cells (Erhardt et al., 2010). All A/E pathogens 

contain T3SS, which is important for the pathogenicity (Schmidt, 2010). According to studies 

completed in Salmonella, the overall structure of T3SS apparatus is similar to the bacterial 

flagellum (Fig. 2) (Cornelis, 2006; Tampakaki et al., 2004). The basal structure of T3SS 

apparatus consists of a pair of pentameric rings on both the inner and outer membranes of 

bacteria composed of over twenty proteins (Cornelis, 2006). The extracellular portion of T3SS 

apparatus is a needle-like structure and the length varies in different bacterial families (Cornelis, 

2006). There are tip proteins at the top of T3SS needle responsible for forming a pore in 

eukaryotic cell membranes, which allows T3SS effectors to be delivered into the host cells 

(Kimbrough and Miller, 2002).  

The repertoire of T3SS effectors has been greatly expanded in the past two decades. In A/E 

pathogens, it is clear that the T3SS and several effectors are encoded on a pathogenicity island 

termed the ‘locus of enterocyte effacement’ (LEE), whose genomic structure, function, and 

regulation are well conserved among all the characterized A/E pathogens (McDaniel et al., 

1995). In addition, over 20 other secreted proteins (non-LEE-encoded effectors; Nles) encoded 
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by genes in multiple pathogenicity islands located throughout the EHEC genome have also been 

described (Deng et al., 2004). A bioinformatics study recently employed homology searches 

against other bacterial effectors to identify 39 secreted/translocated effectors encoded in the 

EHEC Sakai genome (Tobe et al., 2006). In addition, several studies have reported the 

importance of Nles to virulence (Wong et al., 2011).  

Translocators 

In EPEC and EHEC, the LEE island encodes over 40 proteins important for the T3SS 

secretion system such as Esp (E.coli secreted protein) A, EspB and EspD proteins; effectors such 

as EspF, EspG, EspH and Map (Mitochondrial associated proteins); a bacterial outer membrane 

adhesin known as intimin and its receptor Tir (Translocated Intimin Receptor); regulatory 

proteins Ler (LEE-encoded regulator) and GrlA/GrlR (Wong et al., 2011).  EspA, a highly 

secreted protein with a molecular weight of 25 KD, is a major structural component of T3SS 

needle complex (Kenny et al., 1996). EspA is a homopolymer and can form sheath-like filaments, 

which directly interact with the needle-forming protein EscF directly (Daniell et al., 2001; 

Sekiya et al., 2001). Remarkably, the architecture of EspA filaments are almost identical with 

Salmonella flagellar filaments (Daniell et al., 2001). Although highly secreted, EspA is not 

detected in host cells (Kenny et al., 1997). Therefore, EspA filaments provide a molecular link 

between the bacteria and the host cell. Mutation in the espA gene impairs T3SS and renders 

bacteria avirulent in vivo (Abe et al., 1998).  

     EspB as well as EspD are both T3SS translocator proteins that induce A/E lesion formation 

during infection (Lai et al., 1997; Taylor et al., 1998). Neither of them is a component of EspA 

filaments (Knutton et al., 1998). EspB localizes between the cell membrane and cytoplasm of 

host 
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Fig. 2: EPEC type III secretion apparatus. The apparatus includes inner and outer membrane 

rings, a connector form by E.coli secretion complex (Esc) proteins, an EspA-formed filamentous 

tube and pores on host cell membranes formed by EspB and EspD. Tir is inserted into host 

membrane, where it will interact with bacterial outer membrane protein intimin. Type III 

effectors are translocated into cytoplasm through the apparatus. 
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cells (Knutton et al., 1998). The function of EspB has been demonstrated in different studies, 

although mechanisms are still not clear. Overexpression of EspB in HeLa cells disrupts 

filamentous actin distribution (Taylor et al., 1998). In addition, EspB is involved in forming a 

pore in the host membrane to support delivery of other T3SS effectors (Kenny and Finlay, 1995). 

EspB is critical for A/E pathogen pathogenesis, as deletion of the espB gene eliminates their 

ability to form A/E lesions and cause diseases (Abe et al., 1998). Unlike EspB, EspD is secreted 

into the extracellular milieu and is inserted into host cell membrane but is not found in the host 

cytoplasm (Wachter et al., 1999). Recently, EspD was demonstrated to be a homodimer and also 

forms a pore on host membrane (Dasanayake et al., 2011). Although a detailed mechanism of 

EspD is not clear, EspD is essential for A/E lesion formation on intestinal cells (Lai et al., 1997).  

EscN is known to function as a T3SS ATPase with chaperones to release their secretion 

substrate (Akeda and Galan, 2005). Structure analysis showed that EscN shares a structural 

homology with the α/β-subunit of F1-ATPase (Zarivach et al., 2007). Deletion of escN from 

bacteria results in hypersecretion of T3SS effectors (Deng et al., 2004).  

Adherence and cytoskeleton rearrangement 

The intimate adherence of A/E pathogens is mediated by the outer membrane adhesin knon as 

intimin (Jerse et al., 1990). Intimin is encoded by the eae gene in the LEE island (Jerse et al., 

1990). Mutation or deletion of intimin in A/E pathogenic strains significantly reduces A/E 

pathogen adherence ability, induces immature A/E lesion formation and attenuates bacterial 

virulence in both human and animal models (Dean-Nystrom et al., 1998; Donnenberg et al., 1993; 

McKee and O'Brien, 1995). Intimin interacts with T3SS effector Tir, which localizes on the tip 

of the A/E lesion and links the bacteria and host cells together (Kenny et al., 1997). Before 

translocating into the host cell, Tir is an unphosphorylated protein with a molecular weight of 78 
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kD. However, once inserted into the host membrane, Tir becomes tyrosine phosphorylated and 

its molecule weight shifts to 90 kD (DeVinney et al., 1999a). In EPEC, this phosphorylation is 

mediated by eukaryotic Src-family kinase c-Fyn at tyrosine 474 (Phillips et al., 2004). The 

phosphorylated Tir binds cellular protein Nck (non-catalytic region of tyrosine kinase) and 

trigger actin polymerization by activating the Nck-WASP (Wiskott-Aldrich syndrome protein) -

Arp (Actin-related proteins) 2/3 cascade (Phillips et al., 2004). However, studies from EHEC 

showed that although the Tir-intimin interaction is required for EHEC adherence to epithelial 

cells, Tir does not undergo tyrosine phosphorylation (DeVinney et al., 1999b). Therefore, the 

role of Tir phosphorylation in A/E pathogen-induced pathogenesis is still unclear.  

In addition to the interaction with intimin and triggering actin rearrangement, Tir is also 

involved in the phosphoinositide (PI) metabolism (Sason et al., 2009). Tir catalyzes the exchange 

between phosphtidylinositol 4,5-bisphophate [PI(4,5)P2] and phosphtidylinositol 3,4,5-

bisphophate [PI(3,4,5)P3] through recruiting host phosphoinositide-3-kinase (PI3K) and/or 

inositol-5-phosphatase SHIP2. The role of Tir-mediated phosphoinositide metabolism in 

EPEC/EHEC pathogenesis has not yet been identified.  

Besides Tir, other T3SS effectors also induce host cell cytoskeleton rearrangement. EPEC 

EspF or EHEC EspFu (a homolog of EspF in EHEC) recruits and activates the actin 

polymerization regulator N-WASP (Cheng et al., 2008; Sallee et al., 2008). Interestingly, EspF is 

also suggested to be a multifunctional protein involved in different biological events such as 

apoptosis, mitochondria dysfunction and membrane remodeling (Dean and Kenny, 2009).     

The function of EspG/EspG2 on the cytoskeleton was predicted by its homology with Shigella 

T3SS effector VirA (Virulence gene A) (Yoshida et al., 2006).  It has been shown that VirA can 

interact with microtubules and destabilize the microtubules by its cysteine protease activity both 
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in vitro and in vivo (Yoshida et al., 2002). Although EspG interacts with microtubules, the 

destabilization of microtubules by EspG/EspG2 is controversial (Hardwidge et al., 2005; 

Matsuzawa et al., 2004; Selyunin et al., 2011). However, EspG interacts with Arf GTPases (ADP 

ribosylation factor Guanosine-5'-triphosphatases) and p21-activated kinases (PAKs) (Selyunin et 

al., 2011). The interaction between EspG and Arf GTPases results in the blockage of GTPase 

hydrolysis on Arf GTPases, which is essential for golgi vesicle trafficking (Selyunin et al., 

2011). In contrast, EspG activates PAK kinase activity and regulates different signaling 

pathways. Therefore, EspG is suggested to act like a catalytic scaffold and regulate 

endomembrane trafficking.  

Anti-phagocytosis 

Phagocytosis is the process by which bacteria are engulfed by host cell membrane and 

destroyed in the internal phagosome of immune cells. Phagocytosis is a multi-step process 

initiated by surface receptors and driven by remodeling of the cytoskeleton. There are two well-

characterized receptors, complement receptor 3 (CR3) which binds with complement fragment 

C3bi and Fc gamma receptors (FcγR) which binds with IgG (Griffin, 1981). Several 

EPEC/EHEC T3SS effectors are suggested to play roles in blocking internalization of IgG-

opsonized particles (Celli et al., 2001).  In EPEC, the N-termini of EspF is required for inhibiting 

PI3K-mediated phagocytosis into macrophage and M cells (Martinez-Argudo et al., 2007; 

Quitard et al., 2006).  EspJ inhibits both CR3- and IgG-mediated phagocytosis (Marches et al., 

2008). Interestingly, EspF is required for inhibition of phagocytosis as only deletion of espf but 

not espJ in EPEC abolishes the inhibitory effect (Marches et al., 2008).  Other effectors also 

contribute to anti-phagocytosis of A/E pathogens. EspH inhibits phagocytosis in both epithelial 

cells and macrophage (Dong et al., 2010). EspH binds with multiple RhoGEFs DH-PH domains 
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and prevents Rho activation, which subsequently leads to the interruption of actin local 

reorganization and inhibits phagocytosis. Recently, EspB was shown to interact with myosin and 

interrupt myosin and actin interaction (Iizumi et al., 2007). The myosin-binding region on EspB 

is required for EPEC-mediated phagocytosis suppression but is not essential for T3SS function 

and its induction of actin polymerization.    

Cell survival and apoptosis  

Infection by EPEC and EHEC induces apoptosis of epithelial cells (Abul-Milh et al., 2001). 

EPEC strains lacking espA, espB or espD fail to kill cells, likely due to their inability to adhere to 

host cells (Crane et al., 2001). Translocated EspF, but not secreted EspF induces apoptosis in 

host cells (Crane et al., 2001; Holmes et al., 2010). Deletion of espF in EPEC results in a similar 

deficiency in inducing apoptosis compared to T3SS deficient strains. The mechanism of EspF-

induced apoptosis is still unknown but it might be related to its function on mitochondria. 

Mitochondrial associated protein (Map) contains mitochondrial targeting sequence and is 

imported into mitochondria (Kenny and Jepson, 2000). Map import is regulated by the 

mitochondrial outer membrane translocase (Tom) and the matrix chaperone, mtHsp70 

(Papatheodorou et al., 2006) of host cells. Imported Map disrupts mitochondrial membrane 

potential and induces cell death.  

Several T3SS effectors from EPEC and EHEC also have anti-apoptotic functions, which are 

believed to promote overall bacterial survival and colonization. A ΔespZ EPEC strain induces a 

strong cytotoxic  effect on epithelial cells and shows a marked reduction in colonization (Shames 

et al., 2010). EspZ appears to interact with CD98 (Cluster of Differentiation 98), which can 

activate focal adhesion kinase (FAK) signaling and increase host cell survival. NleH1 and NleH2 

interact with the anti-apoptotic protein Bax inhibitor-1 (BI-1) and block multiple apoptotic 
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pathways (Hemrajani et al., 2010). Deletion of nleh1 and nleh2 from EPEC induces strong 

apoptosis in epithelial cells. In addition, the PDZ (PSD-95/Discs-large/ZO-1) domain of 

NHERF2 (Na+/H+ exchanger regulatory factor 2) interacts with NleH proteins and blocks their 

anti-apoptotic function (Martinez et al., 2010).  

NF-κB transcription factors 

In the past three decades, NF-κB (nuclear factor-kappaB) has been the most extensively 

studied transcriptional factor family (Hayden and Ghosh, 2008). NF-κB is involved in a broad 

range of biological events such as development, inflammation and immunity. NF-κB 

transcription factors are evolutionarily conserved. In mammals, there are five members in the 

NF-κB family: RelA (p65), p50, p52, RelB and c-Rel (Ghosh et al., 1998). In Drosophila, the 

NF-κB family includes two proteins dorsal and DIF, which are functionally similar to p65, and 

the NF-κB precursor protein named Relish respectively (Huguet et al., 1997). Each factor can 

form either homo- or heterodimers with other members through a C-terminal dimerization 

domain (DD) (Huang et al., 1997; Huang et al., 2005). The dimerization results in the formation 

of fifteen different dimers with distinct stabilities and functions (Gilmore, 2006). For instance, 

p50:RelA heterodimer is more stable than the p50 or RelA homodimer. Moreover, these 

combinations of dimers also have cell type or tissue specificities, and therefore contribute to 

distinct roles of NF-κB in different cells and tissues (Hagemann et al., 2008; Lenardo and 

Baltimore, 1989).  

Under normal conditions, NF-κB is usually sequestered by its inhibitor IκB (inhibitor of NF-

kappaB) in the cytoplasm by the formation of IκB: NF-κB complexes (Whiteside et al., 1997). 

The classical IκB proteins include three proteins: IκBα, IκBβ and IκBε (Beg and Baldwin, 1993).  

The most clear mechanism of IκB is from studies of IκBα. IκBα inhibits NF-κB activity by 



 

 16 

binding with p50:RelA heterodimer, mainly to mask the NLS (nuclear localization signal) region 

on RelA (Jacobs and Harrison, 1998). In addition, the binding of IκBα also converts RelA into a 

conformation unfavorable to DNA binding. Although both IκBβ and IκBε can also bind with 

RelA and some other NF-κB members, the mechanism is not clear and will not be addressed 

here (Li and Nabel, 1997; Malek et al., 2003).  

After receiving activation signals, serines 32 and 36 of IκBα are phosphorylated by the 

upstream IKK (inhibitor of NF-kappaB kinase) kinase complexes (Brown et al., 1995). The 

phosphorylated IκBα will be recognized by SCFβ-TrCP (Skp1-Cul1-F-box protein F-box/WD repeat-

containing protein) E3 ligase, which catalyes the polyubiquitination of IκBα leading to IκBα 

degradation by the 26S proteasome (Chen, 2005). Free NF-κB will enter into the nucleus and 

bind with κB DNA sites in thousands of gene promoters and enhancer regions (Fig. 3) (Pahl, 

1999). The κB DNA sites usually contain 9 to 11 nucleotides with the consensus sequence: 5’-

GGGRNWYYCC-3’ (where R=A/G; N=A/C/G/T; W=A/T; Y=C/T). NF-κB recognizes 5’-GG 

or –GGG sequence and the N-terminal domain (NTD) of NF-κB binds with acidic DNA (Sen 

and Baltimore, 1986). Binding of NF-κB with DNA requires post-translational modification of 

NF-κB proteins. Monomethylation of Lysine (K) 37 on RelA is required for RelA:DNA binding 

in response to TNF (tumor necrosis factor) and IL(Interleukin)-1 stimulation (Ea and Baltimore, 

2009). The phosphorylation of Serine 276 on RelA by host kinases such as PKA (Protein Kinase 

A) is also essential for NF-κB activation as mutating serine to alanine significantly attenuates 

NF-κB activity (Reber et al., 2009; Vermeulen et al., 2003). In addition to post-translational 

modification, recent studies showed that the binding of NF-κB:DNA is also mediated by other 

proteins. RPS3 (ribosomal protein subunit 3) interacts with RelA via its KH (K Homology) 

domain and specifies p50:RelA:DNA binding (Wan et al., 2007). In fact, the phosphorylation of 
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RelA at Ser276 also recruits acetytransferase CBP/p300, which can regulate NF-κB activity 

(Zhong et al., 1998).  

Interplays between NF-κB and microbes 

Bacteria are known to cause inflammation in the host due to aberrant activation of the host 

immune system.  Despite the fact that many of inflammatory cytokines are regulated by NF-κB, 

the role of NF-κB in controlling pathogen infection and preventing the host from pathogen-

induced acute intestinal injury has been demonstrated. Transplantation of RelA-deficient fetal 

liver cells to lethally irradiated mice significantly increases the host susceptibility to leishmania 

infection (Mise-Omata et al., 2009). Macrophages in transplanted mice fail to be activated and 

therefore can not be recruited to infection sites or secrete anti-bacterial cytokines. In another 

study, overexpression of RelA by an adenoviral vector in wild-type but not in tnf-/- mice 

promotes their resistance to Pseudomonas aeruginosa infection, which is due to the role of RelA 

in regulating TNF expression (Sadikot et al., 2006).  

Mice deficient in p50 have been widely used in innate host defense studies as they do not 

show abnormalities in phenotype compared to the wild-type mice (Sha et al., 1995). Infections of 

p50-/- mice with Listeria monocytogenes and Streptococcus pneumoniae result in greater 

bacterial colonization, wider systemic distribution of bacteria and more severe inflammation in 

the host (Sha et al., 1995). Similarly, infection of p50-/- mice with Mycobacterium tuberculosis 

causes multifocal necrotic pulmonary lesions or lobar pneumonia. Expression of genes regulated 

by NF-κB and important for controlling M. tuberculosis infection such as IL-2, IFN (Interferon)-

γ and TNF is significantly down-regulated in p50-/- mice (Yamada et al., 2001). Finally, infection 

of p50-/- mice with C. rodentium exhibits a greater bacterial burden and a longer infection cycle 
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in the intestine (Dennis et al., 2008). This is likely due to the defect of leukocyte recruitment to 

the infection site in p50-/- mice.  

Other NF-κB members also contribute to the host defense against bacterial infection. Mice 

lacking c-Rel fail to produce TNF in response to L. monocytogenes infection, which is due to the 

inactivation of macrophages (Mason et al., 2002). Neutrophils in RelB-/- mice infected by L. 

monocytogenes can not be recruited to infection sites and are therefore highly susceptible to the 

bacterial infection (Weih et al., 1995). In addition, RelB-/- mice fail to produce IFN-γ to activate 

natural killer cell and become susceptible to Toxoplasma gondii infection (Caamano et al., 1999)  

Besides its role in preventing pathogen infection, NF-κB is also critical for keeping gut 

homeostasis by maintaining the balance between commensal bacteria and the host. The 

mammalian gastrointestinal tract is colonized by over 1013 microbial organisms (Kau et al., 

2011). As the intestine is the central organ in keeping host nutrition and energy balance, gut 

microbes as well as intestinal pathogens have the potential to disrupt normal function in intestine 

and cause damage in other organs (Littman and Pamer, 2011). Conditional knockout of NEMO 

(NF-kappa-B essential modulator) in young mice, in which NF-κB function is only abolished in 

intestinal epithelial cells, induces strong apoptosis in these cells and disrupts epithelial barriers 

(Nenci et al., 2007). This leads to the translocation of gut commensal bacteria into the mucosa 

and circulatory system, which contribute to sustaining inflammation and severe colitis. A similar 

phenotype has also been observed in mice lacking both IKKα and IKKβ (Egan et al., 2004). 

These data indicate the importance of NF-κB in keeping intestinal homeostasis under normal 

resting condition.  

NF-κB signaling pathways  
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During the past two decades, the knowledge of innate immunity has been expanded 

(Medzhitov and Janeway, 2000b). It is now clear that the innate immune system is the first line 

of host defense and induces rapid, non-specific responses against pathogen infection. The central 

idea in innate immunity is the pattern recognition theory, which can partially explain how host 

cells detect pathogen products and initiate immune responses (Medzhitov and Janeway, 2000a). 

The recognition of pathogen products known as PAMPs (pathogen associated molecular patterns) 

including LPS (liposaccharides) and flagellin is mediated by pattern recognition receptors (PRRs) 

including TLRs (Toll-like receptors), NLRs (NOD-like receptors) and RLRs (RIG-I-like 

receptors) (Kabelitz and Medzhitov, 2007). Once these PRRs bind with their ligands, multiple 

signaling pathways will be activated, which result in the induction of cytokines or anti-microbial 

peptides. Secreted cytokines including TNF and IL-1 can subsequently bind with their receptors 

such as TNFR and IL-1R, which further enhance the innate immune response. Transcription of 

many cytokines and anti-microbial peptide are regulated by NF-κB transcriptional factors 

indicating that the NF-κB family is essential for innate immune response. There are classical and 

alternative NF-κB pathways (Karin, 1999). Activation of classical NF-κB pathway is usually 

mediated via TLRs, TNFR or IL-1R. The signaling induces IKKβ phosphorylation, which can 

catalyze IκBα degradation and release RelA/p50 heterodimer into nucleus. The alternative 

pathway can be triggered by receptors including CD40, LTbR (Lymphotoxin beta receptor) and 

BAFF-R (B cell-activating factor-receptor). In this pathway, NIK (Nck Interacting Kinase) and 

IKKα will be activated and subsequently catalyze the NF-κB precursor protein p100 processing 

into p52, which will translocate to nucleus with RelB as heterodimers (Demchenko et al., 2010). 

We will focus on the classic pathway in this dissertation due to our research interests and space 

limitation.  
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Activation of NF-κB by TLRs and IL-1R is dependent on the signaling of MyD88 (myeloid 

differentiation primary response 88) and TRIF (TIR domain-containing adaptor gene inducing 

IFN-β) (Fig. 3). So far, only TLR3 has been suggested to utilize TRIF to activate NF-κB, while 

other TLRs appear to be dependent on MyD88 (Fitzgerald et al., 2003; McWhirter et al., 2004; 

Yamamoto et al., 2002). The cytoplasmic portion of TLRs contains Toll/IL-1R (TIR) homology 

domain, which can interact with MyD88 and TRIF (Akira, 2003; Kaisho and Akira, 2001). 

MyD88 and TRIF signaling also require another critical protein family the TNF receptor-

associated factor (TRAF) family (Gohda et al., 2004). Seven TRAF proteins (TRAF1-7) have 

been identified in this family (Xu et al., 2004). Except for TRAF1, the N-termini of TRAFs 

contain a conserved RING (Really Interesting New Gene) finger domain, which is responsible 

for TRAF protein self-ubiquitination and E3 ligase activity (Li et al., 2002). The C-termini of 

TRAFs also contain a conserved TRAF domain responsible for binding with multiple proteins 

including receptors, adaptor proteins and kinases (Pineda et al., 2007). MyD88 and TRIF recruit 

TRAF6, which binds with IRAK (IL-1 receptor associated kinase). Recruited TRAF6 will 

undergo self-ubiquitination and promote phosphorylation of TAK1 (transforming growth factor-

activated protein kinase 1) and polyubiquitination of IKKγ/NEMO. TAK1 normally binds with 

its cofactors TAB (TAK1-binding proteins) 1 and TAB 2 (Wang et al., 2001). It has been known 

that TAK1/TAB 1/TAB 2 complex is able to activate IKK in the presence of TRAF6 and Ubc 13 

(Ubiquitin carrier protein 13). Recently, several studies showed that free K63 polyubiquitin 

chains generated by TRAF6 directly activate TAK1 by binding with TAB2 (Xia et al., 2009). 

Interestingly, the free K63 polyubiquitin chains also can activate IKK complex through direct  

binding with NEMO, whereas autoubiquitinated TRAF6 is unable to do so. Similar results were 

also reported in cells stimulated by IL-1β but not by TNF (Xu et al., 2009). Activated TAK1 
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Fig.3. The TLRs/IL-1R- and TNF-NF-κB signaling pathways.   
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subsequently phosphorylates IKKα at Ser 176 and 180 or IKKβ at Ser 177 and 181, which are 

residues positioned in the activation loop of IKKs (Ninomiya-Tsuji et al., 1999; Wang et al., 

2001). The exact function of NEMO in NF-κB activation is still not clear and studies have 

shown NEMO lacks catalytic properties to activate NF-κB (Legarda-Addison et al., 2009). It has 

been suggested polyubiquitination of NEMO might recruit the TAK1 complex to the IKK 

complex and allow TAK1 to phosphorylate IKK kinases (Xia et al., 2009). In addition, a NEMO 

deficient cell line fails to activate NF-κB upon stimulation indicating NEMO is important for 

NF-κB activation.  

TNF is another major mediator of NF-κB activation. TNF belongs to a family with more than 

twenty homologues such as lymphotoxin α, CD40 ligand and Fas ligand (Darnay and Aggarwal, 

1999). There are also more than forty members in the TNF receptor superfamily, which includes 

TNF-R1, TNF-R2, Fas, CD30, CD40, TRAIL (TNF-related apoptosis-inducing ligand) receptors 

and RNAK (Receptor activator of nuclear factor kappa-B). Many of TNF receptors have their 

own ligands, while TNF-R1 and TNF-R2 share TNF. Both TNF-R1 and TNF-R2 contain 

domains responsible for binding intracellular adaptor proteins, which can link the TNF 

stimulation to the activation of downstream signaling pathways (Rickert et al., 2011). However, 

TNF-R1 contains a unique death domain (DD) of approximately 80 amino acids. The DD is 

associated with multiple proteins involved in cell death and therefore activation of TNF-R1 

mediated signaling pathway strongly induces cell death (Jiang et al., 1999).  

After the engagement with ligands, TNF receptors recruit TRAF2 and/or TRAF5 protein(s) 

and form multiple protein complexes (Fig. 3). Current studies suggest only TNF-R1 binds 

TRAF2 through its adaptor protein TNF receptor-associated death domain (TRADD), whereas 

other TNF receptors bind TRAF2 directly (Hsu et al., 1995).  Like TRAF6, TRAF2 also  
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undergoes self-ubiquitination and can recruit other signaling molecules such as RIP1 (receptor-

interacting protein 1) kinase and cIAPs (inhibitor of apoptosis). Both TRAF2 and cIAP are able 

to polyubiquitinate RIP1 (Receptor-interacting protein 1) kinase at Lys 377 residue, which might 

be required for binding with TAB 2 Zinc finger to recruit the TAK1/TAB 1/TAB 2 complex (Xu 

et al., 2009). The activated TAK1 will in turn phosphorylate IKKβ and activates downstream 

IκBα:NF-κB complex.  

Modulation of NF-κB by T3SS effectors 

As mentioned before, pathogens have developed multiple strategies to inhibit host defense. 

Inhibition of NF-κB has been revealed as a powerful way for pathogens to attenuate the pro-

inflammatory response. T3SS is a main strategy utilized by Gram-negative bacteria to modulate 

NF-κB activation. One of the earliest studies was of the YopJ  (Yersinia outer protein J) protein 

of Yersinia pestis, which now is categorized in the YopJ superfamily including Salmonella AvrA 

(avirulence protein A), Vibrio VopJ (Vibrio outer protein J), Aeromonas AopP (avirulence outer 

protein P) and Pseudomonas HopZ family (Ma et al., 2006). Although initially considered as a 

cysteine protease, YopJ is an acetyltransferase and inhibits activation of both NF-κB and MAPK 

(mitogen-activated protein kinase) signaling pathways (Orth et al., 1999). YopJ utilizes an acetyl 

group from the metabolite acetyl-CoA to cause the acetylation on Ser/Thr residues located in the 

activation loop of MKKs and IKKβ kinases (Mukherjee et al., 2006). This acetylation prevents 

Ser/Thr phosphorylation, which results in the inhibition of MAPK and NF-κB signaling pathway 

activation. In addition, YopJ also targets other signaling molecules in the NF-κB pathway. YopJ 

is a deubiquitinating enzyme and removes both K48 and K63-linked ubiquitin chains from 

TRAF2 and TRAF6 to prevent NF-κB activation from TLR signaling (Zhou et al., 2005). 

Mutation of predicted protease catalytic residue cysteine 172 to alanine abolishes YopJ’s 
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deubiquitinating enzyme activity. Interestingly, YopJ’s inhibitory effect is also required to 

activate host NLRP3 (NLR family, pyrin domain containing 3)/ASC (apoptosis-associated 

speck-like protein containing a CARD)/caspase-1 inflammasome and induce apoptosis in 

macrophage (Zheng et al., 2011). In addition, hypersecretion of YopJ in Y. pseudotuberculosis 

attenuates bacterial virulence in mice (Brodsky and Medzhitov, 2008). These data indicate a 

complex system in pathogens to control their cytotoxicity to the host during infection in order to 

reach their maximal virulence. 

Other members in the YopJ superfamily also target NF-κB. Salmonella AvrA also acetylates 

MAPKKs to inhibit JNK (c-Jun N-terminal kinases) and NF-κB signaling pathways (Jones et al., 

2008). While it is clear that the acetylation of MAPKKs tends to inhibit the activation of JNK 

pathway, how this acetylation contributes to AvrA-mediated inhibition of NF-κB activation is 

still not clear. However, AvrA is demonstrated to be a deubiquitylase and removes ubiquitin 

from IκBα to inhibit NF-κB pathway activation (Collier-Hyams et al., 2002). VopA from Vibrio 

parahemeolyticus acetylates a conserved lysine residue in the catalytic loop of MAPKKs, which 

blocks ATP (adenosine triphosphate) binding to the kinases and results in the inactivation of 

MAPKKs (Trosky et al., 2007).  

T3SS effectors from enteropathogenic bacteria also target the NF-κB pathway. S. flexneri 

OspG (outer Shigella protein G) binds ubiquitin-conjugating enzymes (E2s) to prevent 

ubiquitination and degradation of IκBα (Kim et al., 2005a). S. flexneri OspF is a dually specific 

phosphatase and dephosphorylates MAPK kinases in the nucleus. The dephosphorylated MAPK 

fails to phosphorylate histone H3 at Ser10, which is important for the recruitment of NF-κB to 

the chromatin (Arbibe et al., 2007). Consequently, OspF inhibits NF-κB mediated gene 

expression and attenuates the host innate immune response. S. flexneri IpaH9.8 (Invasion 
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plasmid antigen H 9.8) possesses E3 ligase activity and interacts with NEMO and ABIN-1 

(Ashida et al., 2010). ABIN-1 (A20 binding and inhibitor of NF-κB) is a ubiquitin-binding 

adaptor protein and normally binds NEMO. Through ABIN-1, IpaH9.8 promotes NEMO 

ubiquitination and degradation, thus leading to the inactivation of the NF-κB signaling pathway.  

T3SS effectors from A/E pathogens targeting NF-κB signaling pathway have also been 

demonstrated. NleE from EPEC/EHEC has been suggested to inhibit IκBα degradation by 

preventing IKKβ activation (Nadler et al., 2010; Newton et al., 2010). The most current studies 

have shown that NleE is a methyltransferase that specifically methylates zinc-coordinating 

cysteines 673/692 in Npl4 zinc finger (NZF) domains of TAB2/TAB3 (Zhang et al., 2012). The 

methylated NZF domains of TAB2/3 show a deficiency in binding with zinc ions as well as 

binding with ubiquitin chains to impair the signaling of NF-κB pathway. NleB is suggested to 

block TNF-induced NF-κB activation without detailed mechanism (Nadler et al., 2010). NleC is 

a Zn-dependent protease that specifically cleaves the N-termini of RelA and inhibits RelA 

nuclear translocation upon stimulation (Baruch et al., 2011; Yen et al., 2010). NleC efficiently 

inhibits TNF-induced IL-8 secretion and cooperates with other effectors such as NleE and NleD 

to inhibi the host innate immune response. Interestingly, the Tir protein of EPEC is associated 

with TRAF2 and induces its degradation independent from the host ubiquitin-26S proteasome 

system (Ruchaud-Sparagano et al., 2011). This study also suggested Tir plays a minor role in 

inhibition of NF-κB activation.  

In this thesis, I studied the functions of T3SS effectors NleH (NleH1 and NleH2) and NleB 

during bacterial infection. I demonstrated that NleH1 but not NleH2 is a virulence factor 

contributing to bacterial colonization in vivo. By performing proteomic screens, I demonstrated 

while both NleH proteins are able to interact with NF-κB non-Rel subunit RPS3, only NleH1 
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inhibits RPS3 nuclear translocation induced by TNF stimulation or bacterial infection. The 

prevention of RPS3 nuclear translocation by NleH1 specifically attenuates the NF-κB activation. 

Furthermore, NleH1 specifically blocks IKKβ-mediated RPS3 phosphorylation at Ser 209, which 

is required for RPS3 nuclear translocation.  Deletion of nleH1 from E.coli O157:H7 produces a 

hypervirulent phenotype in a gnotobiotic piglet model of Shiga toxin-producing E. coli infection, 

which indicates a complex mechanism utilized by bacteria to colonize the host.   

I also elucidated the mechanism of another effector NleB, which has been shown to target the 

NF-κB pathway. I demonstrated that NleB is an O-GlcNAc transferase and utilizes UDP-

GlcNAc sugar from the hexamine biosysthesis pathway to O-GlcNAcylate the host glycolytic 

protein GAPDH (Glyceraldehyde 3-phosphate dehydrogenase). I further identified that GAPDH 

directly interacts with TRAF2 and serves as a co-activator to promote TRAF2 polyubiquitination 

in response to stress stimulation. NleB-mediated GAPDH O-GlcNAcylation prevents the 

interaction of GAPDH with TRAF2 and inhibits TRAF2 polyubiquitination, which subsequently 

leads to the attenuation of NF-κB activation. These studies indicated several novel mechanisms 

for bacterial manipulation of the NF-κB signaling pathway to dampen the host immune response. 
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Chapter II: Bacterial Effector Binding to Ribosomal Protein S3 Subverts NF-κB Function 

Abstract 

Enteric bacterial pathogens cause food borne disease, which constitutes an enormous 

economic and health burden. Enterohemorrhagic Escherichia coli (EHEC) causes a severe 

bloody diarrhea following transmission to humans through various means, including 

contaminated beef and vegetable products, water, or through contact with animals. EHEC also 

causes a potentially fatal kidney disease (hemolytic uremic syndrome) for which there is no 

effective treatment or prophylaxis. EHEC and other enteric pathogens (e.g., enteropathogenic E. 

coli (EPEC), Salmonella, Shigella, Yersinia) utilize a type III secretion system (T3SS) to inject 

virulence proteins (effectors) into host cells. While it is known that T3SS effectors subvert host 

cell function to promote diarrheal disease and bacterial transmission, in many cases, the 

mechanisms by which these effectors bind to host proteins and disrupt the normal function of 

intestinal epithelial cells have not been completely characterized. In this study, we present 

evidence that the E. coli O157:H7 nleH1 and nleH2 genes encode T3SS effectors that bind to the 

human ribosomal protein S3 (RPS3), a subunit of nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-κB) transcriptional complexes. NleH1 and NleH2 co-localized with RPS3 

in the cytoplasm, but not in cell nuclei. The N-terminal region of both NleH1 and NleH2 was 

required for binding to the N-terminus of RPS3. NleH1 and NleH2 are autophosphorylated 

Ser/Thr protein kinases, but their binding to RPS3 is independent of kinase activity. NleH1, but 

not NleH2, reduced the nuclear abundance of RPS3 without altering the p50 or p65 NF-κB 

subunits or affecting the phosphorylation state or abundance of the inhibitory NF-κB chaperone 

IκBα NleH1 repressed the transcription of a RPS3/NF-κB-dependent reporter plasmid, but did 
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not inhibit the transcription of RPS3-independent reporters. In contrast, NleH2 stimulated RPS3-

dependent transcription, as well as an AP-1-dependent reporter. We identified a region of NleH1 

(N40-K45) that is at least partially responsible for the inhibitory activity of NleH1 toward RPS3. 

Deleting nleH1 from E. coli O157:H7 produced a hypervirulent phenotype in a gnotobiotic piglet 

model of Shiga toxin-producing E. coli infection. We suggest that NleH may disrupt host innate 

immune responses by binding to a cofactor of host transcriptional complexes. 
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Introduction 

Diarrheal disease caused by enteric bacteria is an important endemic health threat and a major 

source of food borne disease (Clarke, 2001). Over 76 million cases of diarrheal disease and 5,000 

deaths result from food borne illness in the United States annually (Centers for Disease Control 

and Prevention). Diarrheagenic strains of E. coli contribute greatly to the enormous economic 

and health burden of food borne disease. Enteropathogenic E. coli (EPEC) is a frequent cause of 

infantile diarrhea, while enterohemorrhagic E. coli (EHEC) has emerged as an important cause 

of hemorrhagic colitis in developed countries (Garmendia et al., 2005). Often transmitted to 

humans through consumption of fruit juice, raw/undercooked meat, and vegetables contaminated 

with manure, EHEC is especially important because it is the leading cause of pediatric renal 

failure (hemolytic uremic syndrome; HUS). 

EHEC adheres to intestinal enterocytes and produces a characteristic attaching/effacing (A/E) 

lesion resulting from localized intestinal microvilli destruction and the formation of a pedestal-

like projection composed of epithelial-derived cytoskeletal components (Donnenberg et al., 

1997). EHEC virulence proteins (effectors) are translocated directly into intestinal epithelial cells 

through a type III secretion system (T3SS;(Hueck, 1998)). The T3SS is a molecular syringe, 

widely conserved among animal and plant pathogens, that directs the active transport of effectors 

into host cells. The EHEC T3SS and several effectors are encoded on a pathogenicity island 

termed the ‘locus of enterocyte effacement’ (LEE;(Hueck, 1998)), whose genomic structure, 

function, and regulation are well conserved among the characterized A/E pathogens (i.e. EHEC, 

EPEC, Citrobacter rodentium). Over 20 other secreted proteins (non-LEE-encoded effectors; 

Nles) encoded by genes in multiple pathogenicity islands located throughout the EHEC genome 

have also been described (Deng et al., 2004). A bioinformatics study recently employed 
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homology searches against other bacterial effectors to identify 39 secreted/translocated effectors 

encoded in the EHEC Sakai genome (Tobe et al., 2006). Several studies have reported the 

importance of Nles to virulence (Campellone et al., 2004; Deng et al., 2004; Echtenkamp et al., 

2008; Gruenheid et al., 2004; Marches et al., 2008; Marches et al., 2003; Marches et al., 2005). 

Intestinal epithelial cells have evolved mechanisms to prevent infection by pathogens by 

inhibiting bacterial colonization and by interacting with the underlying immune system (Oswald, 

2006). Paneth cells located at the base of intestinal crypts produce proinflammatory cytokines 

and express Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD) 

proteins. NOD proteins recognize pathogen-associated molecular patterns (PAMPs) and promote 

activation of host proinflammatory signaling pathways (Abreu et al., 2005), many of which are 

regulated by the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). PAMP 

detection typically initiates a signal transduction cascade that promotes polyubiquitination of the 

inhibitor of NF-κB (IκB)-kinase-γ complex (NEMO), ultimately leading to NF-κB activation 

through the degradation of the inhibitory NF-κB chaperone IκBα. IκBα masks the nuclear 

localization signal (NLS) of p65, yet leaves the p50 nuclear localization signal exposed, 

permitting flux of IκBα/NF-κB complexes between the nucleus and the cytoplasm (Ghosh and 

Karin, 2002). IκBα degradation shifts the balance to favor increased nuclear localization of NF-

κB. 

NF-κB homo- and hetero-dimers (typically composed of the p50 and p65 subunits) bind to 

DNA (κB sites) within target gene promoters and regulate transcription by recruiting co-

activator/repressor molecules (Wan et al., 2007). It is not completely clear how diverse stimuli 

generate unique transcriptional responses in different cells and tissues (Hayden and Ghosh, 

2008). However, the recent discovery of a non-Rel NF-κB subunit, RPS3, which guides NF-κB 
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to specific κB sites after specific cellular stimuli, has shed some light on this issue. RPS3 was 

detected as a major co-purifying molecule with the p65 NF-κB subunit (Wan et al., 2007). The 

N-terminal region of RPS3, notably the KH domain, is required for binding to the N-terminal 

portion of p65 (Wan et al., 2007). RPS3 forms a complex with p65 that significantly increases 

the affinity of NF-κB complexes for a subset of target genes and provides a mechanism by which 

selected promoters could be activated in response to specific stimuli (Wan et al., 2007). 

The identity and underlying mechanism of action of E. coli PAMPs and effector proteins that 

respectively stimulate vs. repress host innate immunity have been incompletely characterized. E. 

coli flagellin induces secretion of interleukin (IL)-8 from intestinal epithelial cells (Ruchaud-

Sparagano et al., 2007). However, IL-8 secretion is inhibited relatively early during infection by 

the delivery of one or more unidentified T3SS effectors (Khan et al., 2008; Ruchaud-Sparagano 

et al., 2007). These effectors are believed to function by preventing the degradation of IκBα, to 

reduce NF-κB translocation into the nucleus (Ruchaud-Sparagano et al., 2007). That the nuclear 

abundance of NF-κB and its affinity for DNA are increased at early stages of infection, without 

concomitant increases in IL-8 expression (Hauf and Chakraborty, 2003; Ruchaud-Sparagano et 

al., 2007; Savkovic et al., 1997), may also suggest effector-mediated inhibition of innate 

responses. Despite significant effort, how T3SS effectors coordinate their activities to suppress 

the potent host inflammatory response normally induced by flagellin and other PAMPs remains 

incompletely characterized. 

E. coli O157:H7 EDL933 contains two copies of the nleH gene, designated nleH1 (Z0989) and 

nleH2 (Z6021). Each gene encodes predicted protein products with significant sequence 

similarity to Shigella OspG (Garcia-Angulo et al., 2008; Hemrajani et al., 2008; Tobe et al., 

2006) , a protein known to interfere with NF-κB activation (Kim et al., 2005a). C. rodentium, a 
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pathogen of mice that shares many pathogenic strategies with EHEC, rapidly induces the nuclear 

translocation of NF-κB in host cells (Khan et al., 2006). C. rodentium NleH has been shown to 

play an important role in the colonization of animal hosts and in altering NF-κB activity 

(Hemrajani et al., 2008). We therefore undertook a biochemical analysis of the host binding 

partners and mechanism of action of the E. coli O157:H7 effectors NleH1 and NleH2 to 

understand better how bacterial effectors modulate host innate immunity. In this study we show 

that the E. coli O157:H7 NleH proteins play an important role in host-pathogen interactions by 

binding to the human ribosomal protein S3 (RPS3), a newly identified subunit of NF-κB (Wan et 

al., 2007). Our results suggest a potentially novel mechanism for bacterial effector-mediated 

disruption of host innate responses to infection. 

Results 

NleH1 and NleH2 are injected into host cells by the T3SS.  Recent proteomic (Deng et al., 

2003) and bioinformatic (Tobe et al., 2006) screens identified a repertoire of novel T3SS-

effectors encoded on pathogenicity islands throughout EHEC genomes in non-locus of 

enterocyte effacement pathogenicity islands. Among these, E. coli O157:H7 strain EDL933 

contains two copies of the nleH gene, designated nleH1 (Z0989) and nleH2 (Z6021), which are 

predicted to encode T3SS substrates (Deng et al., 2003). NleH1 (293 amino acids) and NleH2 

(303 amino acids) are 84% identical and encoded on distinct, non-LEE pathogenicity islands (O-

islands 36 and 71, respectively) from which other T3SS-effectors with proven roles in bacterial 

virulence (e.g. NleA, NleD) are expressed (Kim et al., 2007; Marches et al., 2005). Others have 

noted NleH sequence similarity to Shigella flexneri OspG and serine/threonine protein kinases of 

Yersinia spp (Tobe et al., 2006).  

Both NleH1 and NleH2 contain a lysine residue (K159 and K169, respectively) present in a 
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Ser/Thr protein kinase domain that based on homology to Shigella OspG, may function as the 

catalytic site of kinase activity. Despite 84% shared identity, NleH1 differs from NleH2 in that 

NleH1 lacks a 10 amino acid insertion containing putative SH2 and PKA-interaction domains 

(Figure 1A). NleH1 also possesses several potential Ser/Thr phosphorylation sites lacking in 

NleH2. 

Other A/E pathogens also encode multiple copies of nleH. The EHEC Sakai strain encodes 

nleH1 and nleH2 (Tobe et al., 2006). The recently sequenced EPEC 2348/69 encodes three 

copies of nleH, one of which may be a pseudogene (Iguchi et al., 2009). nleH genes are present 

in other EPEC genomes, including B171 and E22 (Iguchi et al., 2009; Rasko et al., 2008). NleH1 

and NleH2 are also 83% identical to NleH encoded by C. rodentium (Hemrajani et al., 2008). 

Only one copy of NleH is present in C. rodentium (Garcia-Angulo et al., 2008). This copy of 

NleH appears to be more similar to EHEC NleH1 than to NleH2, as it lacks the 10 amino-acid 

insertion that is present in EHEC NleH2, but absent in NleH1(Garcia-Angulo et al., 2008). 

To determine if EHEC NleH1 and/or NleH2 are translocated into host cells by the E. coli 

T3SS, we constructed fusions to the TEM-1 β-lactamase. This reporter system has proven robust 

for assaying effector translocation into host cells (Charpentier and Oswald, 2004). These 

constructs were introduced into both wild type and ΔescN EPEC, a strain deficient in T3SS 

function that is commonly used to evaluate the dependence of A/E pathogen effector 

translocation on the T3SS. These strains were used to infect HeLa cells loaded with the 

CCF2/AM substrate. We used a fluorescence microplate reader to quantify β-lactamase activity 

in host cells after a 4 h infection. While NleH1- and NleH2-TEM were expressed at similar 

levels in both wild type and ΔescN EPEC (Figure 1B), the proteins were detectably translocated 

into mammalian cells only by wild type (p<0.001, ANOVA), indicating, as predicted from 
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studies of C. rodentium NleH (Garcia-Angulo et al., 2008), that both EHEC NleH1 and NleH2 

are translocated into host cells by the T3SS (Figure 1C). 

To validate these data and begin to determine the subcellular localization of NleH1 and 

NleH2, we constructed fusions to the FLAG epitope in pFLAG-CTC, expressed these plasmids 

in EHEC, and infected HeLa cells. After 4 h, we removed the extracellular bacteria and subjected 

the cell lysates to immunoblotting. The expected distribution of calnexin and tubulin validated 

the integrity of membrane and cytoplasmic fractions, respectively. NleH1 and NleH2 were 

detected in both the host cytoplasmic and membrane fractions (Figure 2A). We obtained similar 

data after we fractionated host cells infected with EPEC strains expressing FLAG fusions to 

NleH1 and NleH2 (Figure 1D). We also employed immunofluorescence microscopy to assess the 

intracellular localization of NleH1 and NleH2 by infecting HeLa cells with EHEC strains 

expressing either NleH1 or NleH2 fused to the FLAG epitope. NleH1 and NleH2 both localized 

to the cell periphery and around, but not in, the host nucleus (Figure 2B). 

NleH1 and NleH2 bind the human RPS3. To identify eukaryotic cell binding partners of NleH, 

we used purified His-NleH1 to isolate mammalian proteins that bind to this effector. We 

incubated His-NleH1 with HeLa cell lysates and captured His-NleH1 and any co-purifying host 

proteins through passage over Ni-NTA agarose resin (Figure 3A). Using mass spectrometry, we 

identified a protein with an apparent molecular mass of ~28 kDa that selectively eluted with 

NleH1 in affinity purification experiments as RPS3, a nucleic acid- binding KH domain protein 

implicated in DNA repair (Yacoub et al., 1996), and the regulation of NF-κB-dependent 

transcription (Wan et al., 2007). 

To verify that RPS3 interacts with NleH1 (Figure 4A), we used an α-RPS3 antibody to 

immunoprecipitate RPS3 from cell lysates obtained after infection with EPEC UMD207 [eae-/ 
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Fig.4. NleH amino acid sequences and T3SS-dependent translocation. A. E. coli EDL933 NleH1 

(Z0989) and NleH2 (Z6021) amino acid sequences. Asterisks indicate identical residues. Amino 

acids differing between NleH1 and NleH2 are indicated in red. The lysine residue implicated in 

autophosphorylation activity is depicted in blue. B. Immunoblotting of bacterial lysates for 

NleH1- and NleH2-TEM expression in wild type (wt) or T3SS-deficient ΔescN EPEC (T3SS). 

Blots were probed with α-TEM antibody. C. β-lactamase activity (arbitrary units) in HeLa cells 

loaded with CCF2/AM substrate and infected for 4 h with wt or ΔescN EPEC (T3SS) strains 

expressing NleH1- or NleH2-TEM fusions. Asterisks indicate significantly different β-lactamase 

activity compared with uninfected samples (p<0.05, ANOVA). D. Immunoblot analysis of 

cytoplasmic and membrane HeLa cell fractions following infection with EPEC strains expressing 

NleH1- or NleH2-FLAG. Blots were probed with α-FLAG, α-tubulin, and α-calnexin antibodies. 
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Fig. 5. Translocation of NleH proteins. A. Immunoblot analysis of cytoplasmic and membrane 

HeLa cell fractions following infection with EHEC strains expressing NleH1- or NleH2-FLAG 

fusions. Blots were probed with α-FLAG, α-tubulin, and α-calnexin antibodies. B. 

Immunofluorescence microscopy analysis of NleH localization. HeLa cells were infected with 

EHEC ΔescN (left), EHEC/pnleH1-FLAG (middle), or EHEC/pnleH2-FLAG (right) and stained 

with DAPI (blue) and an α-FLAG monoclonal antibody (green). 
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Fig. 6. Binding specificity of NleH. A. Affinity enrichment of HeLa proteins with affinity for 

His-NleH1. HeLa cell lysates were incubated with purified His-NleH1 pre-bound to Ni-NTA 

agarose, eluted with imidazole, and analyzed by SDS-PAGE. Samples included HeLa lysate + 

His-NleH1 (lane 1), His-NleH1 (lane 2), and HeLa lysate (lane 3). Bands identified by mass 

spectrometry as NleH1 and RPS3 are indicated. B. NleH does not bind RPS16. HeLa cells were 

infected with EPEC expressing NleH1-FLAG and immunoprecipitated with α-RPS3 (left) or α-

RPS16 (right) antibodies. The top and middle panels depict the abundance of RPS3 and RPS16 

in the cell lysate, whereas the bottom panel depicts an α-FLAG immunoblot of the 

immunoprecipitated samples. Similar results were obtained with NleH2-FLAG. C. NleF does not 

bind RPS3. HeLa cells were infected with EPEC expressing FLAG (left) or NleF-FLAG (right) 

and immunoprecipitated with α-RPS3 antibody. The top panel depicts RPS3 in the cell lysates 

whereas the middle and bottom panels depict samples immunoprecipitated with α-FLAG 

antibody and subsequently immunoblotted for FLAG and RPS3, respectively. 
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bfp-;(Anantha et al., 1998)] strains expressing FLAG-tagged NleH1, NleH2, or a control FLAG 

epitope. We used this strain because it lacks both the intimin protein and the bundle-forming 

pilus (BFP), thus facilitating removal of the bacteria after infection, to reduce potential 

contamination of translocated, immunoprecipitated NleH with bacterial proteins. Both NleH1 

and NleH2 co-immunoprecipitated RPS3, supporting the affinity purification data (Figure 4B). 

Likewise, immunoprecipitated RPS3 selectively enriched for translocated NleH1 and NleH2 

(Figure 4C). 

To provide additional evidence for the specificity of NleH-RPS3 binding, we assessed the 

ability of NleH1 to bind to a different ribosomal protein, RPS16. We determined that NleH1 did 

not significantly bind to RPS16 (Figure 3B). Similarly, we assessed the ability of a different 

EHEC effector protein, NleF (Echtenkamp et al., 2008), to interact with RPS3. We determined 

that NleF could not effectively immunoprecipitate RPS3 following its translocation into host 

cells (Figure 3C). 

RPS3 binds directly to the p65 NF-κB subunit (Wan et al., 2007). We therefore tested whether 

NleH associated with other NF-κB proteins through RPS3 interaction. Immunoprecipitation of 

NleH1 and NleH2 also enriched for the NF-κB subunits p50 and p65 (Figure 4D). We also 

performed experiments by depleting RPS3 from cell lysates using an a-RPS3 antibody. When 

these RPS3-depleted cell lysates were immunoprecipitated for NleH, we were no longer able to 

detect either p50 or p65 (data not shown), further substantiating that NleH interacts indirectly 

with NF-κB via binding to RPS3. 

Because of the homology between NleH and Shigella OspG, a protein that binds ubiquitin-

conjugating enzymes (E2s), including UbcH5 and UbcH7 (Kim et al., 2005a), we also tested if 

NleH interacted with the host ubiquitin machinery. To do this we immunoprecipitated NleH1 
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from cell lysates and performed immunoblotting experiments to detect ubiquitination of NleH1 

or its binding to Ub-associated proteins. We did not obtain evidence of such interactions (data 

not shown). Taken together, these biochemical data suggest that NleH1 and NleH2 possess a 

novel host substrate, RPS3, a protein that interacts with NF-κB to regulate mammalian 

transcription. 

BiFC analysis of NleH-RPS3 interaction. We next sought to confirm immunoprecipitation 

data with an additional protein interaction assay, bimolecular fluorescence complementation 

(BiFC). BiFC assays are based on the reconstitution of two fragments of the enhanced yellow 

fluorescent protein (eYFP) when they are brought in close proximity by an interaction between 

proteins fused to the YFP fragments (Figure 5A; (Hu et al., 2002; Hu and Kerppola, 2003)). 

Protein-protein interactions generate a fluorescent signal at the site of the protein complex, 

permitting quantification or direct visualization of the interaction. 

We based our design of NleH and RPS3 BiFC constructs on the BiFC assay originally developed 

by Hu et al. (Hu et al., 2005, 2006). This design utilizes Venus, an enhanced yellow fluorescent 

protein (eYFP) variant, which emits strong fluorescence (Hu et al., 2002) without requiring 

significant protein over-expression (Kerppola, 2006). We generated protein chimeras with split 

N- and C-terminal fragments (VN and VC, respectively), of eYFP. Then we designed plasmids 

to contain a linker region between the eYFP fragment and a multi-cloning site. HA epitope tags 

were added to facilitate detection with immunoblotting. We also constructed fusions to actin, a 

protein often used as a positive control in BiFC assays, as well as fusions to RPS3 and NleH1 

and NleH2 (Figure 5B). These constructs were transfected into HeLa cells and analyzed 48 h 

post-transfection. 

The reconstitution of eYFP mediated by interaction between the N- and C-termini of actin 
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Fig.7. NleH1 and NleH2 bind to the host RPS3. A. RPS3 amino acid sequence. Tryptic peptides 

identified by mass spectrometry are indicated in red. B. Immunoprecipitation of RPS3 from 

HeLa cells by translocated NleH1- and NleH2-FLAG following infection with EPEC UMD207. 

Samples were immunoprecipitated with α-FLAG antibody and immunoblotted for RPS3. The 

lower panel indicates the RPS3 abundance in the cell lysates. C. Immunoprecipitation of NleH1- 

and NleH2-FLAG from HeLa cells by RPS3 following infection with EPEC UMD207. Samples 

were immunoprecipitated with α-RPS3 antibody and immunoblotted for FLAG to detect NleH. 

The lower panel demonstrates the equal enrichment of RPS3 among samples following α-RPS3 

immunoprecipitation. D. Enrichment of the p50 and p65 NF-κB subunits by NleH1 and NleH2. 

Samples were immunoprecipitated with α-FLAG antibody and immunoblotted for p50 (top) and 

p65 (bottom). 
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generated intense fluorescence (Figure 5C). In contrast, the expression of individual constructs or 

constructs lacking both actin fragments did not generate significant fluorescence. We then 

examined the potential for interaction between RPS3 and NleH1 or NleH2. The co-expression of 

eYFP chimeras of RPS3 and both NleH1 and NleH2 also reconstituted YFP fluorescence 

(p<0.001, ANOVA), whereas transfection of individual plasmids did not (Figure 5C), suggesting 

that both NleH1 and NleH2 bind RPS3 in mammalian cells. Similar data were obtained 

irrespective of the position of the eYFP fusion relative to NleH or RPS3 (e.g. compare Figure 

5C, lanes G–H and K–L). In addition, we used confocal immunofluorescence microscopy after 

infecting cells with EPEC strains expressing NleH1- or NleH2-FLAG to determine that both 

NleH1 and NleH2 co-localize with endogenous RPS3 in the cytoplasm (Figure 5D). These 

microscopy data support the previously described biochemical analyses that showed an 

interaction between NleH and RPS3. 

NleH N-termini bind to the N-terminus of RPS3. To map the binding domain of RPS3 on 

NleH1 and NleH2, we carried out a structure-function study with deletions of RPS3 that 

encompass the known functional domains of this protein (Figure 6A). Co-immunoprecipitation 

experiments revealed that the region of RPS3 (AAs 1–41) N-terminal to the KH domain is 

required for RPS3 binding to both NleH1 and NleH2 (Figure 6B). A similar analysis revealed 

that the N-termini of NleH1 and NleH2 (AAs 1–139 and 1–149, respectively) were required for 

binding to RPS3 (Figure 6C). 

NleH1 and NleH2 are autophosphorylated Ser/Thr protein kinases. Given the sequence 

conservation between NleH and a domain implicated in the autophosphorylation and kinase 

activities of Shigella OspG (Kim et al., 2005a; Tobe et al., 2006), we examined if NleH1 and 

NleH2 are also Ser/Thr protein kinases. We purified His-NleH1 and NleH2, as well as NleH site-



 

 47 

directed mutants in which a lysine residue was mutated to alanine [NleH1(K159A) and 

NleH2(K169A)]. By performing Pro-Q staining of purified proteins, we determined that, similar 

to OspG, both NleH1 and NleH2 are autophosphorylated (Figure 7A). We also used these 

proteins to assay for phosphorylation of the myelin basic protein (MBP), a commonly used 

substrate in protein phosphorylation assays. Both wild-type NleH1 and NleH2, but not the site 

directed mutants [NleH1(K159A) or NleH2(K169A)], phosphorylated MBP in vitro (Figure 7B), 

suggesting that NleH1 and NleH2 possess kinase activity. 

RPS3 is phosphorylated by the extracellular signal-regulated kinase 1 (ERK1) on T42 (Kim et 

al., 2005b). This event is necessary for RPS3 nuclear translocation in response to DNA damage 

(Yadavilli et al., 2007) and may play a role in the transcriptional activities of RPS3 (Wan et al., 

2007). The non-ribosomal fraction of RPS3 is also phosphorylated by PKCδ on S6 and T221 to 

promote its nuclear translocation (Kim et al., 2009). To determine if NleH kinase activity is 

essential to RPS3 binding, we immunoprecipitated RPS3 and interrogated the samples for the 

presence of wild type or kinase-deficient NleH1/NleH2. We observed that NleH-RPS3 binding 

was independent of NleH kinase activity (Figure 6D).  

To determine if NleH could phosphorylate RPS3, we conducted in vitro kinase assays with 

NleH and RPR3 and analyzed the results by immunoblotting with an α-phospho-Ser/Thr-specific 

antibody (the utility of which for RPS3 phosphorylation studies has been documented previously 

(Kim et al., 2009), following separation by SDS-PAGE. We determined that while NleH1 and 

NleH2 could phosphorylate MBP, and ERK1 could phosphorylate RPS3, NleH1 and NleH2 had 

no detectable ability to phosphorylate RPS3 (data not shown). Overall, these data suggest that the 

NleH-RPS3 interaction is independent of NleH kinase activity. Further, they leave open the 

possibility that NleH effectors may be multifunctional proteins with the capacity to target 



 

 48 

Fig. 8 Bimolecular fluorescence complementation analysis of NleH-RPS3 interaction. A. BiFC 

schematic. Protein-protein interaction promotes the reconstitution of a functional fluorophore, 

measured as an increase in the YFP:CFP emission ratio. B. Experimental design of NleH- and 

RPS3-eYFP fusions. VN, N-terminus (AAs 1–173) of Venus fluorescence protein; VC, C-

terminus (AAs 155–238) of Venus fluorescence protein. C. Relative fluorescence intensity 

resulting from the co-transfection of the indicated NleH- and RPS3-eYFP plasmid combinations 

(n = 3). Asterisks indicate significantly different fluorescence intensity compared with uninfected 

samples (p<0.05, ANOVA). D. Confocal immunofluorescence microscopy analysis of NleH and 

RPS3 co-localization. HeLa cells were infected with EPEC strains expressing NleH1- or NleH2-

FLAG and stained with DAPI (blue), α-FLAG (green), and α-RPS3 (red) antibodies. Two 

representative cells are shown for each infection condition. 
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Fig. 9. N-termini of NleH1 and NleH2 bind to the N-terminus of RPS3. A. Design of RPS3 and 

NleH protein truncations. The amino acids present in each truncation are indicated to the left of 

the figure. The death (pink), KH (green), and DNA-repair (blue) domains of RPS3 are indicated. 

The white box depicts the 10 amino acids lacking in NleH1 but present in NleH2. B. Co-

immunoprecipitation of NleH1- (top) and NleH2-HA (middle) with RPS3-FLAG truncations. 

Samples were immunoprecipitated with α-FLAG antibody to capture RPS3 and immunoblotted 

for HA to detect NleH. The bottom panel depicts the expression levels of the RPS3-FLAG 

truncations. C. Co-immunoprecipitation of RPS3-FLAG with NleH1- and NleH2-HA 

truncations. Samples were immunoprecipitated with α-HA antibody to capture NleH and 

immunoblotted for FLAG to detect RPS3. The lower panel depicts the expression levels of the 

NleH truncations. D. Immunoprecipitation of RPS3-FLAG with NleH1(K159A)-HA and 

NleH2(K169A)-HA. Samples were immunoprecipitated with α-HA antibody to capture NleH 

and immunoblotted for FLAG to detect RPS3. The lower panel depicts the expression levels of 

RPS3 in cell lysates. 
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multiple host regulatory pathways. 

NleH1 reduces the nuclear abundance of RPS3. RPS3 translocates to the nucleus after 

stimulation with tumor necrosis factor-alpha (TNF-α). NleH1 and NleH2 bind to the N-terminus 

of RPS3, potentially masking its putative nuclear localization signal. To determine if NleH 

binding to RPS3 inhibits translocation of RPS3 into the nucleus, we first used 

immunofluorescence microscopy to evaluate the relative abundance of nuclear vs. cytoplasmic 

RPS3. The percentage of cells containing predominantly nuclear RPS3 was significantly reduced 

in cells infected with wild type (8±3%) vs. ΔescN EHEC (36±10%; p = 0.01, t-test), suggesting 

an EHEC T3SS effector alters RPS3 nuclear abundance (Figure 8A-B). 

We evaluated the relative abundance of nuclear vs. cytoplasmic RPS3 in 293T cells in the 

presence or absence of transfected NleH1- and NleH2-HA with or without 1 h stimulation with 

100 ng/µl TNF-α. We subsequently fractionated the cells to separate nuclear from cytoplasmic 

components. We quantified poly(ADP-ribose) polymerase (PARP) and tubulin abundance to 

normalize the concentrations of nuclear and cytoplasmic subcellular protein fractions. The lack 

of PARP in the cytoplasmic fraction and the lack of tubulin in the nuclear fraction demonstrated 

52the absence of cross-contamination between the fractions (Figure 9A). As expected from 

previous reports utilizing similar treatment conditions (Wan et al., 2007), the nuclear abundance 

of both RPS3 and p65 significantly increased after stimulation with TNF-α. Most notably, the 

nuclear abundance of RPS3 was significantly reduced in samples containing NleH1, while 

nuclear p65 and cytoplasmic concentrations of both RPS3 and p65 were unchanged. NleH1 and 

NleH2 were expressed equally among all samples, but were detected only in the cytoplasm, 

rather than the nuclear fraction (Figure 9A), consistent with immunofluorescence microscopy 

data. 
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Quantitative analysis of RPS3 abundance (based on densitometry analysis of immunoblots) 

revealed that NleH1 significantly reduced (~65%) the relative abundance of nuclear RPS3 

(Figure 9B, p<0.001, ANOVA) after stimulation with TNF-α. In contrast, NleH2 transfection did 

not significantly alter RPS3 nuclear abundance. Neither protein altered the nuclear abundance of 

the NF-κB p65 subunit (Figure 10A). The nuclear abundance of p50 was also unchanged as a 

function of NleH expression (data not shown), indicating that NleH1 activity is specific to RPS3. 

The kinase activity of NleH1 was important for its ability to reduce RPS3 nuclear abundance, as 

the effect of transfecting NleH1(K159A) was not significantly different from that of transfecting 

the HA control plasmid (Figure 9B). 

Immunofluorescence microscopy analyses support these biochemical data. We observed that 

RPS3 translocated into the nuclei of HeLa cells after TNF-α stimulation. The nuclear 

translocation of RPS3 was inhibited in cells infected with EPEC expressing NleH1-FLAG, but 

not NleH2-FLAG, relative to uninfected controls (Figure 10B). We also used an α-p65 antibody 

for immunoprecipitation of nuclear extracts to validate further that the impact of NleH1 on 

reducing RPS3 nuclear abundance would alter the nuclear association of RPS3 with p65. Our 

analysis of immunoprecipitated nuclear p65 samples indicated a reduced abundance of RPS3 in 

samples co-transfected with NleH1, but not NleH2, relative to an HA epitope control (Figure 

10C), also suggesting that NleH1 could interfere with RPS3-p65 interactions by reducing RPS3 

nuclear abundance. 

To test further the hypothesis that NleH1 reduces RPS3 nuclear abundance, we also quantified 

changes in nuclear RPS3 after infecting HeLa cells with EHEC strains possessing or lacking 

nleH1 and/or nleH2 constructed using lambda Red mutagenesis (Datsenko and Wanner, 2000). 

After 3 h of infection, bacteria were killed with antibiotics and TNF-α was added at 100 ng/ml 



 

 54 

Fig. 10. NleH1 and NleH2 are autophosphorylated Ser/Thr protein kinases. A. 

Autophosphorylation assay of His-NleH1 and NleH2, and site-directed mutants NleH1(K159A) 

and NleH2(K169A). Blots were stained with Pro-Q. B. Phosphorylation of myelin basic protein 

(MBP) by wild-type NleH1 and NleH2, but not the site-directed mutants NleH1(K159A) and 

NleH2(K169A). Blots were probed with α-His and α-phospho-Ser/Thr antibodies. 
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Fig.11. T3SS effector(s) inhibit RPS3 nuclear translocation. A. Immunofluorescence microscopy 

analysis of RPS3 nuclear abundance in HeLa cells infected with wild type (wt) or ΔescN EHEC. 

B. Quantification of the % of cells containing predominantly nuclear RPS3 (n = 100 cells). 

Asterisks indicate significantly different compared with wild-type infection (p<0.05, t-test). 
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Fig. 12. NleH1 reduces the nuclear abundance of RPS3. A. Immunoblot analysis of cytoplasmic 

and nuclear fractions of 293T cells transfected with NleH1, NleH2, or an HA-epitope control, in 

the presence or absence of TNF-α (100 ng/ml) stimulation for 1 h. Blots were probed with α-

RPS3, α-p65, α-HA, α-tubulin, and α-PARP monoclonal antibodies. B. Quantification (n≥4) of 

the fold-increase in nuclear RPS3 as assessed by densitometry analysis of immunoblots in the 

absence (open bars) or presence (black bars) of TNF-α stimulation. RPS3 signal intensity was 

normalized to tubulin (cytoplasmic) and PARP (nuclear). Asterisks indicate significantly 

different compared with HA transfection (p<0.05, ANOVA). C. Quantification of the fold-

increase in nuclear RPS3 following a 3 h infection of HeLa cells with E. coli O157:H7 EDL933 

strains possessing or lacking nleH1 and/or nleH2, as well as with strains complemented with the 

indicated NleH plasmids (n = 3). Asterisks indicate significantly different compared with wild-

type infection (p<0.05, ANOVA). D. Immunoblot analysis of IκBα phosphorylation induced by 

TNF-α (left) or PMA (right), and total IκBα, in the presence or absence of NleH. E. Immunoblot 

analysis of the impact of C. rodentium NleH and EHEC NleH1 truncations and site-directed 

mutants on RPS3 nuclear abundance. Blots were probed with α-HA (top), α-RPS (middle), and 

α-PARP (bottom) monoclonal antibodies. The HA-input panel depicts the expression levels of 

the indicated constructs. The α-RPS panel depicts the nuclear abundance of RPS3 after 

stimulation with TNF-α in 293T cells transfected with the indicated constructs. The α-PARP 

signal was used for normalization of immunoblot signal intensities. F. Quantification (n = 3) of 

the fold-increase in nuclear RPS3 as assessed by immunoblotting in the presence of the indicated 

NleH expression plasmids. Asterisks indicate significantly different compared with NleH1 

transfection (p<0.05, ANOVA).
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Fig. 13. NleH1 reduces the nuclear abundance of RPS3. A. Quantification (n = 4) of the fold-

increase in nuclear p65 as assessed from immunoblotting, in the absence (open bars) or presence 

(black bars) of TNF-α stimulation. p65 signal intensity was normalized to PARP. B. 

Immunofluorescence microscopy analysis of NleH and RPS3 localization as a function of TNF-α 

stimulation. HeLa cells were infected for 3 h with EPEC strains expressing NleH1- or NleH2-

FLAG, treated with TNF-α (100 ng/ml) for 1 h, and stained with DAPI (blue), a-FLAG (green), 

and a-RPS3 (red) monoclonal antibodies. C. Immunoprecipitation of nuclear extracts with α-p65 

antibody. Immunoprecipitated samples were immunoblotted for p65 and RPS3 in samples 

transfected with the indicated plasmids, in the absence or presence of TNF-α stimulation. The 

numbers below the gel indicate the relative RPS3 signal intensity (normalized to PARP). D. 

Immunoprecipitation of RPS3 with C. rodentium NleH and EHEC NleH1 site-directed mutants. 

293T cells were transfected with the indicated plasmids for 48 h and immunoprecipitated with an 

α-HA antibody. Immunoprecipitated samples were immunoblotted for RPS3 and HA. The top 

panel indicates immunoprecipitated RPS3 as a function of plasmid transfection (N.S. is a non-

specific band, used for normalization of sample loading). The middle and bottom panels indicate 

RPS3 and HA abundance in the cell lysates, respectively. 
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for 1 h to stimulate RPS3 nuclear translocation. Infection with ΔnleH1 EHEC failed to inhibit 

RPS3 nuclear translocation, whereas infection with ΔnleH2 was not significantly different from 

wild type EHEC (Figure 9C). Our analysis of the ΔnleH1ΔnleH2 mutant also indicated that 

NleH1 is the EHEC effector primarily responsible for reducing the nuclear abundance of RPS3. 

Complementing nleH mutants with corresponding NleH-FLAG plasmids confirmed the 

dependence of alterations in RPS3 nuclear abundance upon NleH1 (Figure 9C). Neither NleH1 

nor NleH2 impaired the TNF-α or phorbol 12-myristate 13-acetate (PMA)-induced 

phosphorylation of IκBα, nor did they alter total IκBα concentrations (Figure 9D), suggesting 

that unlike OspG, NleH1 and NleH2 do not alter the degradation of the inhibitory IκBα subunit. 

Overall, these data support a role for NleH1, but not NleH2, in the reduction of RPS3 nuclear 

abundance, without significant impact on other NF-κB subunits. While the NleH1 K159 residue 

was non-essential for RPS3 binding, it was important to the ability of NleH1 to reduce RPS3 

nuclear abundance, suggesting that other host proteins or translocated effectors may be involved. 

Functional differences between NleH1 and NleH2. Because our binding studies suggested 

that both NleH1 and NleH2 bind to RPS3, we were somewhat surprised to observe that only 

NleH1, and not NleH2, reduced RPS3 nuclear abundance. To begin to elucidate the functional 

differences between these two effectors, we sought to generate and characterize mutations in 

NleH1 that would still be competent for RPS3 binding, yet would fail to alter RPS3 nuclear 

abundance. Because we observed that NleH binding to RPS3 is mediated by the N-terminus, we 

targeted this region for mutagenesis and focused on several amino acids that differ between 

NleH1 and NleH2. 

We first confirmed that C. rodentium NleH, which appears to be more similar to EHEC NleH1 

than NleH2, also reduced RPS3 nuclear abundance (Figure 5E–F). By transfecting individually 
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the N- (AAs 1–129) and C-terminal (AAs 130–293) regions of NleH1, we also determined that 

the N-terminus of NleH1 was sufficient to reduce RPS3 nuclear abundance. We then constructed 

NleH1 mutants in which residues of NleH1 were swapped for those appearing in NleH2. These 

point mutants (Y5S; N40S,A42T,K45T; and A100T,A101T,M102I,I106S) were expressed at 

similar levels as wild type NleH1 and were able to bind RPS3 (Figure 9E and 10D). We 

determined that mutating the N40,A42,K45 region of NleH1 to S40,T42,T45 was sufficient to 

prevent the NleH1-mediated inhibition of RPS3 nuclear abundance (Figure 9E–F). Mutating the 

A100,A101,M102,I106 region had a modest, but statistically insignificant influence on NleH1 

activity, whereas we found that mutating Y5 had no impact on NleH1 activity. Since C. 

rodentium NleH appears to have similar activity to EHEC NleH1, modulating RPS3 dynamics 

may be a strategy employed by multiple A/E pathogens. 

NleH1 and NleH2 differentially regulate NF-κB-dependent transcriptional activity. After 

translocating into the nucleus, RPS3 selectively alters the expression of a subset of κB-dependent 

gene promoters to generate specific transcriptional responses to diverse extracellular signals 

(Wan et al., 2007). p65 binding to κB sites in IκBα, IL-8, and IL-2 promoters is significantly 

reduced in RPS3-knockdown cells, whereas RPS3-independent genes (e.g. CD25 and CD69) are 

unaffected. This observation suggests that selective gene expression is due to differing 

requirements of specific promoter sites for the RPS3 subunit of NF-κB. Because NleH1 and 

NleH2 bind to RPS3, with NleH1 reducing its nuclear abundance, and because RPS3 regulates 

NF-κB activity, we hypothesized that NleH1 and/or NleH2 might also alter NF-κB dependent 

transcription. 

To test this hypothesis, we co-transfected HeLa cells with a firefly luciferase construct driven 

by a consensus κB site previously demonstrated to be responsive to RPS3, to measure NF-κB 
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activity. For data normalization, we used a renilla luciferase plasmid. We quantified luciferase 

activity and then calculated the fold-induction of NF-κB activity relative to unstimulated or 

uninfected cells. 

Treating cells with TNF-α stimulated NF-κB-dependent luciferase activity ~12-fold (Figure 

11A). Transfecting RPS3 siRNA reduced RPS3 protein abundance to ~20% of native levels 

(Figure S6A) and reduced the effect of TNF-α stimulation ~4-fold (Figures 11A and 12B), 

confirming the sensitivity of the luciferase assay and importantly, the significant dependence 

upon RPS3 for efficient NF-κB transcription from this κB site (Figure 11A). We infected HeLa 

cells with wild type and T3SS-deficient ΔescN EHEC. Our findings confirmed previous 

observations that T3SS effectors inhibit NF-κB (Figure 6A, p<0.001, ANOVA; [20]). We 

discovered that deleting nleH1, but not nleH2, prevented EHEC from suppressing NF-κB activity 

(p = 0.002), indicating that NleH1 inhibits NF-κB-dependent transcription. By complementing 

the nleH mutants with corresponding NleH-FLAG plasmids, we also confirmed the dependence 

of alterations in RPS3/NF-κB-dependent luciferase activity upon NleH (Figure 11A). 

We obtained similar data after transfecting 293T cells with NleH1 and NleH2 and stimulating 

these cells with TNF-α. By transfecting nleH1, we were able to inhibit NF-κB activity to ~45% 

of native levels (Figure 11B; p<0.001, ANOVA). In contrast, transfecting nleH2 stimulated NF-

κB activity by ~20%. We observed the differential activity of NleH1 vs. NleH2 even after we 

introduced additional RPS3 via transfection of RPS3-FLAG (Figure 12C). This activity was also 

dose-dependent with respect to the amount of transfected NleH (Figure 12D). By mutating the 

NleH1 K159 residue to alanine [NleH1(K159)], we eliminated NleH1-mediated NF-κB 

inhibition (Figure 11B). 

Furthermore, neither NleH1 nor NleH2 altered CD25- or IL-2R-dependent luciferase 
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expression. As these reporters are known to be RPS3-independent(Wan et al., 2007), these 

results further demonstrate the specificity of NleH for RPS3 (Figure 11C). Transfecting NleH2 

increased the activity of an AP-1-dependent luciferase reporter, suggesting a potential target for 

this effector. 

To extend our findings and to confirm that that activity of NleH1 is restricted to specific 

RPS3/NF-κB promoters, we performed RT-PCR to assess NleH regulation of several genes (IL-8, 

NFKBIA, and TNFIAP3) that are important to the innate response to infection and whose 

transcription is altered by rps3 knockdown. IL-8 gene transcription was activated by infection 

with wild-type EHEC, as expected. This activation was further increased after infecting cells 

with either ΔescN or ΔnleH1, but not ΔnleH2, indicating that a T3SS effector, most likely NleH1, 

inhibits IL-8 transcription (Figure 11D). Additionally, transcription of both the NFKBIA and 

TNFIAP3 genes were upregulated more in ΔescN and ΔnleH1, compared with wild-type and 

ΔnleH2 infections, also suggesting a role for NleH1 in transcriptional inhibition of these RPS3- 
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Fig. 14. NleH effectors alter host NF-κB activity. A. Relative NF-κB activity (compared with 

uninfected cells) as a function of TNF-α stimulation, siRNA transfection, and/or infection with 

EHEC strains possessing or lacking nleH1 and/or nleH2 (n≥4). HeLa cells were co-transfected 

with a firefly luciferase construct driven by a consensus κB site and a renilla luciferase plasmid, 

cultured for 36 h, and then infected with EHEC strains for 3 h in the presence or absence of 

TNF-α stimulation or silencing with rps3 siRNA. Asterisks indicate significantly different 

compared with wild-type infection (p<0.05, ANOVA). B. Relative NF-κB activity in 293T cells 

transfected with the indicated NleH plasmids (n = 4). After 36 h, cells were stimulated with 

TNF-α (100 ng/ml, 1 h). Asterisks indicate significantly different compared with HA transfection 

(p<0.05, ANOVA). C. Impact of NleH1 and NleH2 on CD25 (left), IL-2R (middle), and AP-1 

(right)-dependent luciferase reporter activity. 293T cells were transfected with the indicated 

reporter plasmids and treated with either TNF-α (CD-25 and IL-2R) or PMA (AP-1) 36 h post-

transfection (n = 3). Asterisks indicate significantly different compared with HA transfection 

(p<0.05, ANOVA). D. Relative transcript abundance, relative to uninfected cells assessed by 

RT-PCR analysis of 293T cells infected for 4 h with the indicated bacterial strains. IL-8, 

NFKBIA, and TNFIAP3 data were normalized to GAPDH expression. E. Relative transcript 

abundance in 293T cells after 48 h transfection with HA, NleH1-HA, NleH2-HA, and RPS3-

specific or sequence-scrambled (ns) siRNA constructs. IL-8, PLK1, CENPE, and IRF4 data were 

normalized to GAPDH expression. F. Impact of C. rodentium NleH and EHEC NleH1 

truncations and site-directed mutants on RPS3/NF-κB-dependent transcriptional activity. 

Experiments were performed as described in panel B, using the plasmids indicated on the x-axis 

(n = 3). Asterisks indicate significantly different compared with NleH1 transfection (p<0.05, 

ANOVA). 
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Fig.15. Differential impact of NleH1 and NleH2 on NF-κB activity. A. Immunoblot analysis of 

RPS3 abundance after siRNA treatment. The numbers below the gel indicate the relative RPS3 

signal intensity after normalization to tubulin. B. NF-κB activity (% activity compared to 

untreated samples) as a function of transfection with rps3 siRNA (open squares) and non-specific 

siRNA (closed squares). C. NF-κB activity as a function of transfection with RPS3-FLAG, in the 

presence of co-transfected HA (open circles), NleH1-HA (open squares), or NleH2-HA (closed 

squares). D. NF-κB activity as a function of transfection with HA (open circles), NleH1-HA 

(open squares), or NleH2-HA (closed squares). 
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dependent genes. 

To confirm further the role of NleH1 in inhibiting RPS3-dependent gene expression, we also 

performed transfection experiments. Transfecting RPS3 siRNA into 293T cells inhibited IL-8 

expression ~4.5-fold (Figure 11E). Transfecting NleH1, but not NleH2 reproduced this 

phenotype. The transcription of both PLK1 and CENPE, two genes involved in NF-κB activation 

(Guo et al., 2004), was also inhibited by rps3 knockdown and by NleH1, but not by a sequence-

scrambled siRNA or by NleH2. In contrast, transcription of IRF4, an RPS3-indepenent gene, was 

unaffected. Overall, these infection and transfection experiments suggest that NleH1 specifically 

inhibits RPS3-dependent gene expression. 

We also analyzed site-directed NleH1 mutants to extend our findings that suggest NleH1 and 

NleH2 have differential influence on NF-κB activity. Similar to RPS3 nuclear abundance data 

obtained after transfection with different NleH1 point mutants (Figure 9E–F), co-transfecting 

NleH1(N40S,A42T,K45T) abolished NleH1 inhibitory activity, whereas mutating either the Y5 

or the A100,A101,M102,I106 region did not prevent NleH1 from inhibiting NF-κB (Figure 11F). 

We wished to determine the extent to which NleH1 and NleH2 are conserved among other 

A/E pathogens. We first noted that C. rodentium NleH was also able to reduce RPS3 nuclear 

abundance (Figure 9E–F) and to inhibit RPS3/NF-κB luciferase activity (Figure 11B). We 

cloned nleH from other O157:H7 and O88:H25 strains and tested their ability to inhibit 

RPS3/NF-κB luciferase activity by transfecting them into 293T cells. NleH cloned from other 

O157:H7 inhibited NF-κB activity to the same magnitude as EDL933 NleH1 (92–96% of 

EDL933 activity; data not shown). NleH cloned from O88:H25 strains also inhibited NF-κB 

activity, but to a lesser extent (74–78% of EDL933). Overall, these data demonstrate that NleH-

mediated inhibition of RPS3/NF-κB transcriptional activity is not restricted to EDL933, but 
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rather is conserved in non-O157 STEC and in C. rodentium. 

E. coli O157:H7 ΔnleH1 is hypervirulent in gnotobiotic piglets. The 1-day-old gnotobiotic 

pig is a robust model organism for studying human EHEC disease (Baker et al., 2007). Piglets 

challenged with EHEC develop diarrhea as a result of intimate bacterial attachment to the 

mucosal surfaces of the terminal ileum and large bowel. Infected piglets also develop fatal 

central nervous system (CNS) disease several days after inoculation (Francis et al., 1989)[46], an 

important, yet underappreciated side effect of hemolytic uremic syndrome (HUS; (Robson et al., 

1991)). Anatomically and physiologically similar to human children, piglets develop CNS 

symptoms and intestinal lesions develop over a similar time course following the onset of 

diarrhea. EHEC infection of gnotobiotic piglets can be used to evaluate the contribution of 

virulence factors to host colonization and disease (Baker et al., 2007). 

To measure the contribution of NleH1 and NleH2 to EHEC virulence in vivo, we orally 

infected gnotobiotic piglets at 24 h of age with 2*108 CFUs of wild type EHEC EDL933, 

ΔnleH1, or ΔnleH2 (n = 5－6/group). Piglets were observed every 4 h for signs of diarrhea, 

dehydration, and neurological signs of disease. Piglets infected with wild-type EHEC succumbed 

to infection over a ~7-day period (Figure 13A, filled circles). Piglets infected with ΔnleH1 (open 

circles), but not ΔnleH2 (open squares), died more rapidly (Figure 13A; p = 0.004, Kruskal-

Wallis test). ΔnleH1 induced rapid and severe clinical signs of disease consistent with an 

inflammatory response (Figure 13B, left; p = 0.02), yet caused little diarrhea (Figure 13B, right; 

p = 0.01) and displayed significantly reduced colonization (Figure 13C; p = 0.001). In contrast, 

ΔnleH2 had no effect on clinical outcome, though colonization of the piglet colon was reduced 

~10-fold. 



 

 72 

Discussion 

PAMP recognition by TLRs transduces signals that activate and bind NF-κB to DNA (κB sites) 

within target gene promoters to regulate transcription by recruiting co-activators or co-repressors 

(Wan et al., 2007). Activation typically proceeds via degradation of the inhibitory NF-κB 

chaperone IκBα, favoring the nuclear localization of NF-κB. Bacterial pathogens inject effector 

proteins into host cells to inhibit the innate immune response by interfering with NF-κB 

activation (Bhavsar et al., 2007). For example, Shigella OspG is a protein kinase that binds to 

ubiquitinylated ubiquitin-conjugating enzymes (E2s) to block degradation of IκBα, an event that 

ultimately inhibits NF-κB activity. OspF is a phosphatase that targets MAPKs to prevent histone 

phosphorylation and dampen transcription at NF-κB-dependent promoters (Arbibe et al., 2007). 

OspB and OspF also interact with the retinoblastoma protein, possibly to facilitate chromatin 

remodelling and diminish inflammatory cytokine production (Zurawski et al., 2009). Yersinia 

YopJ inhibits the NF-κB pathway by inhibiting MAPKKs (Mukherjee et al., 2006). The 

Salmonella SseL effector is a deubiquitinating enzyme that impairs IκBα ubiquitination and 

degradation, thus reducing the production of NF-κB-dependent cytokines (Le Negrate et al., 

2008). Mice lacking the p50 subunit of NF-κB (p50�/�) do not clear a C. rodentium infection 

within the duration of the experiment (Dennis et al., 2008), indicating a critical role for NF-κB in 

host-defense against A/E pathogens. While the details have yet to be unravelled completely, 

EHEC T3SS effectors are suggested as key factors for bacterial inhibition of the host immune 

response. 

Over a dozen ribosomal proteins that play significant roles in gene-specific transcriptional and 

translational regulation have been described (Lindstrom, 2009; Warner and McIntosh, 2009). For 

example, RPL7 binds the Vitamin D receptor to regulate gene transcription. Both RPL23 and 
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RPS9 interact with the nucleolar chaperone protein B23. B23, also termed 

NPM/nucleophosmin/NO38, is a cofactor of the zinc-finger protein Miz1, a regulator of cell 

proliferation (Wanzel et al., 2008). RPL11 binds directly to Myc and inhibits its transcriptional 

activation activity (Dai et al., 2007). Thus, the idea that ribosomal proteins also function in the 

nucleus to regulate transcription is well established, although until now, the targeting of these 

proteins by bacterial pathogens to subvert host cell functions was not. 

By using several protein-interaction technologies, we determined that the translocated EHEC 

effectors NleH1 and NleH2 bind directly to the NF-κB non-Rel subunit, RPS3. NleH1 and 

NleH2 both interact with RPS3 through the binding of their N-termini to the N-terminal region 

of RPS3 that contains a putative nuclear localization signal (NLS). NleH1, but not NleH2, 

significantly reduced the nuclear abundance of RPS3, but had little influence upon other NF-κB 

subunits (e.g. p50 or p65). Using site-directed mutagenesis, we characterized a region of NleH1 

(N40-K45) that is at least partially responsible for the inhibitory activity of this protein toward 

RPS3. By cloning and transfecting nleH from other O157 and non-O157 STEC, we 

demonstrated that NleH1 is present in other strains of significance to human health. 

Although NleH1 and NleH2 are autophosphorylated proteins with Ser/Thr protein kinase 

activity, neither protein appeared to have the ability to phosphorylate RPS3. While the NleH1 

K159 residue was non-essential for RPS3 binding, it was important to the ability of NleH1 to 

reduce RPS3 nuclear abundance, leaving open the possibility that other host proteins or 

translocated effectors may also be involved. Surprisingly, both the full-length and the isolated N-

terminus of NleH1 (residues 1–139) inhibited RPS3 nuclear localization, while full-length NleH1 

K159A site-directed mutant did not. Thus, NleH kinase activities may target another host protein 

with a role in RPS3 translocation, suggesting that NleH may be a multi-functional protein. We 
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speculate that the K159A mutant may have an altered structure or have reduced ability to bind 

other cellular factors that affect RPS3 activities. 

Others and we have shown that NleH localizes to both host membranes and the cytosol 

following translocation (Garcia-Angulo et al., 2008). It is possible that the subcellular 

distribution of NleH may change to associate with the non-ribosomal pool of RPS3. It will be 

interesting to determine if mutating K159 somehow inhibits the ability of NleH to interact with a 

host protein needed for enrichment into the cytosol, a requirement that the isolated NleH N-

terminus may not face. 

The cellular factors governing the nuclear import of RPS3 are not completely understood. Its 

nuclear entry is thought to depend upon the phosphorylation of the T42 residue by the 

extracellular signal-regulated kinase (ERK)(Caamano et al., 1999). However, other reports 

suggest that PKCδ phosphorylates RPS3 on S6 and T221, resulting in RPS3 nuclear mobilization 

to participate in DNA repair activities (Kim et al., 2005b). Furthermore, the role of RPS3 

phosphorylation in its interaction with NF-κB has not yet been studied in detail. As EPEC T3SS 

effectors have been shown to inhibit the phosphorylation-associated activation of ERK and p38 

MAPK pathways (Ruchaud-Sparagano et al., 2007), it will be of interest to learn if there may be 

a link between NleH and ERK/MAPK pathways, some of which might also alter RPS3 function. 

Despite the significant sequence identity among NleH1, NleH2 and OspG, a protein kinase 

which blocks degradation of IκBα, NleH1 or NleH2 did not appear to have the ability to alter 

IκBα degradation or to interact with the host ubiquitin machinery. However, it remains to be 

determined if NleH might associate with other E2 enzymes not studied in our assays. Notably, 

unlike NleH1 and NleH2, OspG does not possess the N-terminal region responsible for binding 

to RPS3, which might explain its differential activities and host targets. 



 

 75 

Previous studies have elegantly shown that while A/E pathogens induce host IL-8 expression 

through both MAPK and TLR5-dependent activation of NF-κB, translocated effectors also 

down-regulate IL-8 at early stages of infection (Khan et al., 2008; Kim et al., 2007). However, 

only traditional NF-κB Rel proteins have been characterized in these studies. It is significant that 

these Rel proteins are associated with only ~60% of canonical- or related-κB sites (Martone et al., 

2003). Thus, additional regulatory components, including RPS3, may contribute to high affinity 

DNA binding at various promoters (Wan et al., 2007). Our results suggest that NleH1, but not 

NleH2, down-regulates NF-κB activity at RPS3-dependent, but not RPS-independent promoters. 

We propose that NleH1-reduction of RPS3 nuclear abundance in response to PAMP detection 

may explain previously documented findings that IL-8 expression is suppressed at early stages of 

infection, even in the context of NF-κB Rel protein nuclear translocation and increased DNA-

binding activity. 

A Shigella OspG homolog in EHEC strain 11128 of E. coli serogroup O111 was recently 

described as a translocated effector (Nobe et al., 2009). This protein is somewhat distantly 

related (~30% identity) to NleH1 or NleH2 and lacks the N-terminal domain of NleH that is 

responsible for binding to RPS3. In this work, EHEC OspG was not found to inhibit significantly 

NF-κB activity. These authors showed that an EHEC T3SS effector, but not OspG, inhibited p65 

nuclear translocation and E. coli strain 13369 altered IκBα degradation at 1 h post-infection. It 

was also previously shown that NleH2, rather than NleH1, is encoded by EHEC strains of the 

O111 serotype (Ogura et al., 2007). As we have shown that NleH1, but not NleH2, inhibits the 

contribution of RPS3 to NF-κB activity, it is perhaps not surprising that inhibition of NF-κB was 

not observed in the O111 strains recently examined. Consistent with these studies (Nobe et al., 

2009), we also failed to observe a role for NleH in inhibiting p65 nuclear translocation. However, 
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Fig .16. Infection of gnotobiotic piglets with EHEC. A. Survival analysis of gnotobiotic piglets 

as a function of time post-inoculation with EHEC strains possessing or lacking nleH1 or nleH2. 

B. Quantification of piglet clinical outcome (left) and extent of diarrheal disease following 

EHEC challenge (right). C. Quantification of EHEC colonization of piglet colonic tissue 

(CFUs/g colon). 
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our analysis of NleH is limited to RPS3-dependent κB promoters and we consider it likely that 

other T3SS effectors will be discovered to inhibit NF-κB through other mechanisms. 

While we did not observe NleH2 to inhibit RPS3 function, it may influence NF-κB through an 

alternative mechanism or affect other host signal transduction networks. Interestingly, NleH2 

increased the activity of an AP-1-dependent luciferase reporter. EHEC infection has been shown 

to induce the phosphorylation of multiple MAPKs, including ERK1/2, p38, and JNK, which in 

turn induce AP-1 activation at later stages of infection (Dahan et al., 2002). There are multiple 

transcription factor binding sites in the IL-8 promoter, including both AP-1 and NF-κB (Mukaida 

et al., 1994). NleH1 and NleH2 may potentially target different host signal transduction 

pathways to contribute to the suppression of host innate responses to infection. 

It was previously reported that an ‘espG/orf3Δcore’ EPEC mutant deficient in 

‘EspG/Orf3/EspH/CesF/Map/CesT/Tir/Intimin’did not differ from wild-type EPEC in its 

ability to inhibit IL-8 secretion from Caco-2 cells (Ruchaud-Sparagano et al., 2007). Because this 

mutant also lacked the chaperone CesT, it was predicted to be deficient in translocation of other 

effectors, including NleH. Thus, it was postulated that inhibition of IL-8 secretion might be due 

to a different non-LEE T3SS-dependent effector (Anantha et al., 1998). However, others 

reported that deletion of nleH in C. rodentium reduced TNF-α expression in infected mice, as 

compared with wild-type C. rodentium infection (Hemrajani et al., 2008). These contrasting 

results may also be a function of the different assay systems, cell types, and animal models 

employed. For example, it has been reported that the in vivo effect of NleH may be variable with 

respect to the host animal under investigation. Deleting both nleH1 and nleH2 from E. coli 

O157:H7 caused increased shedding compared with the parental strain in Friesian bull calves, yet 

had a reduced competitive advantage in mixed infections of lambs. 
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Our analysis of EHEC strains deleted for nleH1 and nleH2 in gnotobiotic piglets support a role 

for NleH1 in modulating the host innate response to infection. Previous studies have reported 

that severe HUS correlates with increased inflammation induced by STEC infection. 

Chemokines produced in response to bacterial PAMPs have been reported to lead to the 

stimulation and subsequent basolateral-to-apical transmigration of neutrophils, inducing 

concomitant translocation of Shiga-like toxins in the opposite direction (Hurley et al., 2001). 

Shiga toxin attachment to monocytes and macrophages can stimulate TNF-α, IL-1 and IL-6 

secretion, subsequently increasing globotriaosylceramide (Gb3) expression on endothelial cell 

membranes (Stricklett et al., 2002). Intimin-negative STEC that lack the LEE (and thus are 

unlikely to translocate Nles) induce higher neutrophil migration and higher IL-8 secretion 

compared with intimin-positive STEC (Hurley et al., 2001). It should be noted that the primary 

cause of death in the gnotobiotic piglet model we employed is a manifestation of systemic 

intoxication, rather than diarrheal disease. As deleting nleH1 relieved the inhibition of NF-κB-

dependent IL-8 gene expression in our in vitro assays, it is possible that deleting nleH1 could 

lead to greater neutrophil activation and Stx influx into the circulatory system. 

Our findings suggest a novel mechanism for bacterial manipulation of the host response and 

demonstrate the direct binding of a bacterial effector to an NF-κB subunit. NF-κB is a major 

regulator of not only acute antimicrobial responses, but also adaptive immune responses. A 

growing number of cellular factors that govern the selective binding of NF-κB to different 

promoters (Wang et al., 2007; Wright and Duckett, 2009), combined with the discovery of novel 

bacterial effectors, provide us with significant opportunity to understand how pathogens subvert 

the host response to infection. 
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Experimental procedures 

Ethics statement 

 

All animal experiments were performed according to Institutional Animal Care and Use 

Committee-approved protocols (Animal Welfare Assurance no. A3958-01). 

 

Materials 

 

The TEM-1 fusion cloning vector pCX340 was a generous gift from E. Oswald. Chemicals 

were used according to manufacturers' recommendations and were obtained from Sigma, except 

for the following: myelin basic protein (New England Biolabs), Erk1 kinase (Cell Signaling), 

QuikChange Site-Directed Mutagenesis Kit (Stratagene), Dual-Luciferase Reporter Assay 

System (Promega), CCF2-AM Loading Kit (Invitrogen), Ni-NTA agarose (Qiagen), protein G 

agarose (Fisher), TNF-α (Genscript), RPS3 siRNA (Santa Cruz Biotechnology), and FuGene 

(Roche). Antibodies were obtained from the following sources: calnexin, His, FLAG, HA, β-

actin, and tubulin (Sigma), phospho-Ser/Thr (Abcam), RPS3 (PrimmBiotech Inc.), RPS16 

(Abnova), TEM (QED bioscience), p50/p105, p65, IκBα ubiquitin (Genscript), PARP (BD 

Biosciences), and phospho-IκBα (Cell Signaling). 

 

Bacterial strains, plasmids, and oligonucleotides 

 

The bacterial strains and plasmids used in this study are described in Table 1. The 

oligonucleotides used in this study are described in Table 2. The deletion of individual nleH1 and 
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nleH2 genes, and the construction of a ΔnleH1ΔnleH2 mutant was performed using lambda Red-

mediated mutagenesis (Datsenko and Wanner, 2000) in E. coli O157:H7 EDL933 by replacing 

nleH1 and/or nleH2 with a kanamycin resistance marker, using plasmid pKD46 to generate the 

deletion cassettes. Gene replacements were confirmed with multiple PCRs and by RT-PCR. The 

bacterial growth kinetics, bacterial adherence to host cells, and Tir translocation into host cells 

did not differ significantly among nleH mutants and the parental strains. 

 

Effector translocation assays 

 

NleH-TEM fusions were constructed by cloning nleH1 and nleH2 into pCX340. For assaying 

NleH-TEM translocation, plasmids were introduced into wild type and ΔescN EPEC and used to 

infect HeLa cells for 4 h in DMEM supplemented with 1 mM IPTG. Cells were washed and 

loaded with CCF2/AM. Fluorescence was evaluated after cells were illuminated at 409 nm 

(Charpentier and Oswald, 2004). NleH-FLAG fusions were constructed by cloning nleH1 and 

nleH2 into pFLAG-CTC (Sigma). HeLa cell monolayers were infected with EPEC strains (MOI 

~100) for 4 h, washed, trypsinized, and resuspended in homogenization buffer (3 mM imidazole 

[pH 7.4], 250 mM sucrose, 0.5 mM EDTA). Cells were mechanically disrupted by vigorous 

passage through 22- and 27-gauge needles. Low-speed centrifugation (3,000 g, 15′) was applied 

to the homogenate to pellet the bacteria, unbroken HeLa cells, host nuclei, and cytoskeletal 

components. The supernatant was then subjected to ultracentrifugation (100,000 g, 1 h) to 

separate insoluble host cell membranes from soluble cytosolic proteins. The resulting fractions 

were resolved by SDS-PAGE (10% polyacrylamide) and transferred to nitrocellulose for 

Western blot analysis. 



 

 82 

Table 1. Strains and plasmids utilized in this study.  

 

Strain or plasmid Description Reference 

Strains   

Escherichia coli BL21(DE3) E. coli F- ompT hsdSB (rB
-mB

-) gal dcm (DE3) Novagen 

BL21(DE3)/pNleH1-pET28a His-NleH1 This study 

BL21(DE3)/pNleH2-pET28a His-NleH2 This study 

BL21(DE3)/pNleH1(K159A)-pET28a His-NleH1 K159A mutant This study 

BL21(DE3)/pNleH2(K169A)-pET28a His-NleH2 K169A mutant This study 

EPEC E2348/69 wild type E. coli O127:H6 isolate (Levine et al., 1978) 

E2348/69ΔescN EPEC T3SS mutant (Gauthier et al., 2003) 

E2348/69/pNleH1-FLAG  EPEC expressing NleH1-FLAG This study 

E2348/69 ΔescN/pNleH1-FLAG  T3SS EPEC expressing NleH1-FLAG This study 

E2348/69/pNleH2-FLAG  EPEC expressing NleH2-FLAG This study 

E2348/69 ΔescN/pNleH2-FLAG  T3SS EPEC expressing NleH2-FLAG This study 

E2348/69/pNleH1-TEM  EPEC expressing NleH1-TEM This study 

E2348/69 ΔescN/pNleH1-TEM T3SS EPEC expressing NleH1-TEM This study 

E2348/69/pNleH2-TEM  EPEC expressing NleH2-TEM This study 

E2348/69 ΔescN/pNleH2-TEM T3SS EPEC expressing NleH2-TEM This study 

E2348/69/pNleH1(K159A)-TEM  EPEC expressing NleH1(K159A)-TEM This study 

E2348/69 ΔescN/pNleH1(K159A)-TEM T3SS EPEC expressing NleH1(K159A)-TEM This study 

E2348/69/pNleH2(K169A)-TEM  EPEC expressing NleH2(K169A)-TEM This study 

E2348/69 ΔescN/pNleH2(K169A)-TEM T3SS EPEC expressing NleH2(K169A)-TEM This study 

E2348/69/pTEM  EPEC expressing TEM This study 

E2348/69 ΔescN/pTEM  T3SS EPEC expressing TEM This study 

EPEC UMD207 EPEC bfp-eae- (Donnenberg and Kaper, 1991) 

EPEC UMD207/pNleH1-FLAG UMD207 expressing NleH1-FLAG This study 

EPEC UMD207/pNleH2-FLAG UMD207 expressing NleH2-FLAG This study 

EPEC UMD207/pNleH1(K159A)-FLAG UMD207 expressing NleH1(K159A)-FLAG This study 

EPEC UMD207/pNleH2(K169A)-FLAG UMD207 expressing NleH2(K169A)-FLAG This study 

EPEC UMD207/pFLAG UMD207 expressing FLAG This study 

EPEC UMD207/pnleF-FLAG UMD207 expressing NleF-FLAG (Echtenkamp et al., 2008) 

EHEC EDL933 wild type E. coli O157:H7 isolate CDC 
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EDL933 ΔescN EHEC T3SS mutant J. Puente 

EDL933 ΔnleH1  EHEC nleH1 deletion This study 

EDL933 ΔnleH2  EHEC nleH2 deletion This study 

EDL933 ΔnleH1ΔnleH2  EHEC nleH1nleH2 deletion This study 

EDL933/pNleH1-FLAG EHEC expressing NleH1-FLAG This study 

EDL933/pNleH2-FLAG EHEC expressing NleH2-FLAG This study 

EDL933/pFLAG EHEC expressing FLAG This study 

EDL933 ΔnleH1/pNleH1-FLAG EHEC nleH1 deletion expressing NleH1-FLAG This study 

EDL933 ΔnleH2/pNleH2-FLAG EHEC nleH2 deletion expressing NleH2-FLAG This study 

EDL933 ΔnleH1/pNleH1-FLAG(K159A) EHEC nleH1 deletion expressing NleH1(K159A)-FLAG This study 

EDL933 ΔnleH2/pNleH2-FLAG(K169A) EHEC nleH2 deletion expressing NleH2(K169A)-FLAG This study 

   

Plasmids   

pCX340 TEM-1 reporter plasmid (Charpentier and Oswald, 2004) 

NleH1-TEM NleH1-TEM This study 

NleH2-TEM NleH2-TEM This study 

pET28a Bacterial hexahistidine fusion expression Novagen 

NleH1-pET28a His-NleH1 This study 

NleH2-pET28a His-NleH2 This study 

NleH1(K159A)-pET28a His-NleH1 K159A mutant This study 

NleH2(K169A)-pET28a His-NleH2 K169A mutant This study 

pFLAG-CTC Bacterial FLAG fusion protein expression Sigma 

NleH1-pFLAG-CTC NleH1-FLAG This study 

NleH2-pFLAG-CTC NleH2-FLAG This study 

NleH1(K159A)-pFLAG-CTC NleH1(K159A)-FLAG This study 

NleH2 (K169A)-pFLAG-CTC NleH2(K169A)-FLAG This study 

NleF-pFLAG-CTC NleF-FLAG (Echtenkamp et al., 2008) 

p3XFLAG Mammalian FLAG fusion expression Sigma 

RPS3-p3XFLAG FLAG-RPS3 (Wan et al., 2007) 

RPS3(1-101)-p3XFLAG FLAG RPS3 (AAs 1-101) (Wan et al., 2007) 

RPS3(ΔKH)-p3XFLAG FLAG RPS3 (lacking KH domain AAs  41-111) (Wan et al., 2007) 

RPS3(41-243)-p3XFLAG FLAG RPS3 (AAs 41-243) (Wan et al., 2007) 

RPS3(112-243)-p3XFLAG FLAG RPS3 (AAs 112-243) (Wan et al., 2007) 

κB (5X)-luc Firefly luciferase driven by RPS3/NF-κB-dependent κB site Promega 



 

 84 

pTKRL-luc Renilla luciferase Promega 

IL-2R-luc Firefly luciferase driven by IL-2R promoter (Wan et al., 2007) 

CD25-luc Firefly luciferase driven by CD25-promoter (Wan et al., 2007) 

AP-1-luc Firefly luciferase driven by AP-1-promoter (Wan et al., 2007) 

pKD46 Lambda Red mediated mutagenesis (Datsenko and Wanner, 2000) 

VN Venus fluorescence protein (AAs 1-173) (Nagai et al., 2002) 

VC Venus fluorescence protein (AAs 155-238) (Nagai et al., 2002) 

VN-actin Venus fluorescence protein (AAs 1-173 fused to human actin) (Nagai et al., 2002) 

VC-actin Venus (AAs 155-238 fused to human actin (Nagai et al., 2002) 

VN-NleH1 Venus 1-173 fused to NleH1 This study 

VC-NleH1 Venus 155-238 fused to NleH1 This study 

VN-NleH2 Venus 1-173 fused to NleH2 This study 

VC-NleH2 Venus 155-238 fused to NleH2 This study 

VN-RPS3 Venus 1-173 fused to RPS3 This study 

VC-RPS3 Venus 155-238 fused to RPS3 This study 

VN-NleH1(1-129) Venus 1-173 fused to NleH1 AAs 1-129AA This study 

VN-NleH1(130-293) Venus 1-173 fused to NleH1 AAs 130-293 AA This study 

VN-NleH2(1-139) Venus 1-173 fused to NleH2 AAs 1-139AA This study 

VN-NleH2(140-303) Venus 1-173 fused to NleH2 AAs 140-303 This study 

VN-Citro-NleH Venus 1-173 fused to C. rodentium NleH This study 

VN-NleH1(Y5S) Venus 1-173 fused to NleH1(Y5S)  This study 

VN-NleH1(N40S,A42T,K45T) Venus 1-173 fused to NleH1(N40S,A42T,K45T) This study 

VN-NleH1 (A100T,A101T,M102I,I106S) Venus 1-173 fused to NleH1(A100T,A101T,M102I,I106S) This study 



 

 85 

Table 2. Oligonucleotides used in this study.  

Primer Sequence (5’-3’) 

NleH1 XhoI-f -FLAG/HA G2CTCGAGATGT2ATCGC2ATAT2CTGTA3T3G3 

NleH1 BamHI-f-His G4ATC2ATGT2ATCGC2ATAT2CTGTA3T3G3 

NleH1 KpnI-r-FLAG C2G2TAC2A2T4ACT2A2TAC2ACACTA2TA2GATCT2GCT3C2GC2 

NleH1 XhoI-r-His C3TCGAGA2T4ACT2A2TAC2ACACTA2TA2GATCT2GCT3C2GC2 

NleH2 XhoI-f-FLAG/HA G2CTCGAGATGT2ATCGC3TCT2CTATA3T3G3 

NleH2 BamHI-f-His G4ATC2ATGT2ATCGC3TCT2CTATA3T3G3 

NleH2 KpnI-r-FLAG C2G2TAC2TATCT2ACT2A2TACTACACTA2TA2GATC2AGCT3C2 

NleH2 XhoI-r-His C3TCGAGTATCT2ACT2A2TACTACACTA2TA2GATC2AGCT3C2 

NleH2 XmaI-r C5G3TATCT2ACT2A2TACTACACTA2TA2GATC2AGCT3C2 

NleH1 XhoI-f  CTCGAGATGT2ATCGC2ATAT2CTG 

NleH1 NdeI-f-TEM GCCATATGT2ATCGC2ATAT2CTGTA3T3G3 

NleH1 KpnI-r-TEM GCG2TAC2A2T4ACT2A2TAC2ACACTA2TA2G 

NleH2 NdeI-f-TEM GC2ATATGT2ATCGC3TCT2CTATA3T3G2 

NleH2 KpnI-r-TEM GCG2TAC2TATCT2ACT2A2TACTACACTA2TA2G 

NleH1 K159A-f  GCA2CA4GTC2TG2CGATGT3ACTACATCTC 

NleH1 K159A-r GAGATGTAGTA3CATCGC2AG2ACT4GT2GC 

NleH2 K169A–f  CA2CA4GTGT2G2CGATGT3ACTATATCTC 

NleH2 K169A–r  GAGATATAGTA3CATCGC2A2CACT4GT2G 

RPS3 XhoI-f-HA GC2TCGAGATG2CAGTGCA3TATC2A2GA2GAG2 

RPS3 NotI-r-HA GCGCG2C2GCT2ATGCTGTG4ACTG2CTG4C 

NleH1 NotI-r-HA C2GCG2C2GCT2A3T4ACT2A2TAC2ACACTA2TA2G 

NleH2 NotI-r-HA C2GCG2C2GCT2ATATCT2ACT2A2TACTACAC 

NleH1 pKD4-f  TGTATGT2ATCGC2ATAT2CTGTA3T3G3ATGT2CTGTGTAG2CTG2AGCTGCT2CG 

NleH1 pKD4-r  GATA4T2ACTA3T4ACT2A2TAC2ACACTA2TA2GCATATGA2TATC2TC2T2AG 

NleH2 pKD4-f  C2TCT2CTATA3T3G3ATGT2CATG2A2T2CT3A2CGTGTAG2CTG2AGCTGCT2C 

NleH2 pKD4-r  A2TACTACACTA2TA2GATC2AGCT3C2TC2GTGATA2GCATATGA2TATC2TC2T2A 

NleH1 N-term-NotI-r-HA GCGCG2C2GCT2A2TAGTC2ACACTCG2TA2CTCTG2CG 

NleH1 C-term-XhoI-f-HA  GC2TCGAGATGA2CAG2T2GTCAGTAC2TG2TA2TG 

NleH2 N-term-NotI-r-HA GCGCG2C2GCT2AGT2GCTA2C3TCG2CA2CTCTGAT2G 

NleH2 C-term-XhoI-f-HA GC2TCGAGATGA2TA3TCAC3GTGC2AG2TA2TG 

NleH1 Y5S-f ATGT2ATCGC2ATCT2CTGTA3T3G3ATGT2C 
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NleH1 Y5S-r GA2CATC3A3T3ACAGA2GATG2CGATA2CAT 

NleH1 N40S-f GC2GT2CAT2CTGATAGCG3ACGCA2GTA2CG2T2G2C 

NleH1 N40S-r GC2A2C2GT2ACT2GCGTC3GCTATCAGA2TGA2CG2C 

NleH1 A100T-f CAC2AGTGAGCACGACTATAGA3GAG2CTCTGT2CAT2CGA2C 

NleH1 A100T-f GT2CGA2TGA2CAGAGC2TCT3CTATAGTCGTGCTCACTG2TG 

GAPDH RT-f AC2AG2TG2TCTC2TCTGACT2C 

GAPDH RT-r GTG2TCGT2GAG2GCA2TG 

IL-8 RT-f CTG2C2GTG2CTCTCT2G 

IL-8 RT-r C2T2G2CA4CTGCAC2T2 

NFKBIA RT-f C5TACAC2T2GC2TGTG 

NFKBIA RT-r TCAGCAC3A2G2ACAC2A2 

TNFIAP3 RT-f T2GC2TCATGCATGC2ACT2 

TNFIAP3 RT-r AGCA3GC4GT3CA2CA 

PLK1 RT-f GAG2AG2A3GC3TGACTGA 

PLK1 RT-r GCAGC2A2GCACA2T3GC 

CENPE RT-f GC2A2GACG2AC2A2GCA 

CENPE RT-r TGCT2GTAGCTGCGCT2C2T  

IRF4 RT-f TG2T2GC2AG2TGACAG2A2 

IRF4 RT-r TC2AG2T2GCTG2CGTCATA 
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Protein purification 

 

nleH1 and nleH2 were cloned into pET-28a and expressed in E. coli BL21(DE3). 250 ml of 

bacterial culture were grown to an OD600 of 0.6, when IPTG was added to 1 mM. After 4 h 

additional growth, cells were pelleted and resuspended in 25 ml cold PBS. Cells were sonicated 

and centrifuged to clarify the supernatant. The supernatant was added to pre-equilibrated Ni-

NTA agarose and incubated for 2 h. The slurry was washed 5 times with 60 mM imidazole, 500 

mM NaCl, 20 mM Tris HCl pH 7.9, eluted in 1 M imidazole, 1 M NaCl, 40 mM Tris HCl pH 7.9, 

and analyzed on 12% SDS-PAGE. 

 

Affinity columns 

 

Thirty confluent 150 mM dishes of HeLa cells were washed with PBS and lysed in 20 ml of 

binding buffer [150 mM NaCl, 20 mM Tris (pH 8.0), 1% Triton X-100]. After centrifugation 

(5,000 g, 4°C, 10′), 10 ml of the supernatant was transferred to a 15 ml conical tube containing 

300 µl Ni-NTA agarose in the presence or absence of 500 µg purified His-NleH1. After 

incubation for 1 h at 4°C, the columns were washed with binding buffer and then eluted with 

increasing concentrations of imidazole (0–300 mM). Fractions were analyzed by SDS-PAGE and 

staining with Coomassie Blue G-250. 

 

Protein identification by LC-ESI-MS/MS 

 

Bands excised from protein gels were digested in-gel with trypsin at 37°C overnight. The 
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tryptic peptide solution was transferred to a microcentrifuge tube, extracted with 1% formic acid, 

2% acetonitrile in water, followed by extraction with 50% acetonitrile. Both extracts were 

combined, concentrated, and suspended in 3% acetonitrile, 0.1% formic acid. Peptide analysis 

was performed using LC-ESIMS/MS. Peptides were desalted in-line and concentrated with RP-

Trap Symmetry300 C18 column, 5 µm NanoEase (Waters), and separated using a C18 RP 

PepMap capillary column on a CapLC (Dionex). The eluted ions were analyzed by one full 

precursor MS scan (400–1500 m/z), followed by four MS/MS scans of the most abundant ions 

detected in the MS scan. Spectra were obtained in the positive ion mode with a nano ESI-Q-Tof 

micro mass spectrometer (Micromass). A peak list (PKL format) was generated to identify +1 or 

multiple charged precursor ions from the mass spectrometry data file. Mascot server v2.2 

(www.matrix-science.com) in MS/MS ion search mode was applied to conduct peptide matches 

(peptide masses and sequence tags) and protein searches against NCBInr v20080110. 

 

Immunoprecipitation and immunoblotting 

 

Bacterial strains were grown in Luria–Bertani (LB) broth, at 37°C in 5% CO2 without shaking. 

HeLa cells were grown in Dulbecco's minimal Eagle medium (DMEM) supplemented with 10% 

heat-inactivated fetal calf serum (FCS). Cell culture media was replaced with DMEM 3 h prior to 

infection. Overnight bacterial cultures were diluted 1:10 into DMEM, incubated 3 h at 37°C in 

5% CO2 (to ‘pre-activate’ the T3SS; (Dean et al., 2006)[72]) and used to infect two 150 mm 

dishes of ~80% confluent HeLa cells at a multiplicity of infection of ~50. Cells were harvested 

after a 4 h infection by washing them 3 times with PBS to remove bacteria. Cells were scraped 

into PBS, pooled, centrifuged (1,500 g, 5′), resuspended in PBS, and recentrifuged. The 
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supernatant was removed and cells were lysed in RIPA [150 mM NaCl, 50 mM Tris pH 8.0, 0.4 

mM EDTA, 10% glycerol, 1% Nonident P-40 (NP-40)], followed by brief vortexing and rotation 

for 30′ at 4°C. The supernatant was transferred to a tube containing protein G sepharose 

(prewashed in RIPA) and incubated for 1 h at 4°C. Samples were centrifuged (1,500 g, 5′), 

transferred to prewashed α-FLAG resin, and incubated with rotation overnight at 4°C. FLAG 

resin was washed with RIPA and resuspended in 500 µl RIPA (without NP-40). The resin was 

centrifuged (2,000 g, 5′) and the supernatant was removed with a 29-gauge needle. NleH-FLAG 

and associated proteins were eluted from the resin by adding 72 µg FLAG peptide (in 200 µl 

RIPA) and incubating with rotation for 1 h at 4°C. The resin was centrifuged (2,000 g, 5′), and 

the supernatant was transferred to a fresh tube, precipitated with trichloroacetic acid (TCA), and 

resuspended in SDS-PAGE buffer. IP samples were interrogated for the presence of NleH-FLAG 

and RPS3 by Western blotting. 

Equal amounts of protein from cell lysates (50 µg) and IPs (5 µg) were separated by SDS-

PAGE, transferred to nitrocellulose, blocked in Odyssey blocking buffer, double-probed 

overnight with mouse-α-FLAG and rabbit-α-RPS3 1° antibodies, washed in PBS, and then 

incubated for 30′ with Alexa Fluor 680/750 goat-α-rabbit and goat-α-mouse 2° antibodies at 

room temperature. After rinsing in PBS, blots were imaged with an Odyssey infrared imaging 

system (Li-Cor). For immunoprecipitation experiments with transfected RPS3 and NleH 

plasmids, 293T cells were incubated in 6-well plates and transfected with 1 µg total plasmid 

using FuGene. 

 

Bimolecular fluorescence complementation 
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HeLa cells were cultured in DMEM supplemented with 10% FCS and co-transfected with a 

pair of BiFC plasmids (100–250 ng each) representing NleH and RPS3 truncations cloned as 

fusions to the N- or C-terminus of Venus eYFP (designated VN and VC). The fluorescence 

intensities derived from BiFC (due to effector-host protein binding) were measured after 48 h 

incubation using appropriate filters (excitation: 500/20 nm; emission: 535/30 nm). 

 

Immunofluorescence microscopy 

 

HeLa and 293T cells were grown on glass coverslips in 24-well tissue culture plates and 

infected for 4 h with overnight cultures of indicated bacterial strains (MOI~20–50). After 

infection, cells were washed 3 times in PBS containing Ca2+/Mg2+ and fixed in 2.5% 

paraformaldehyde. Cells were permeabilized in 0.1% saponin in PBS, blocked with 5% goat 

serum, and incubated with α-FLAG (1:1,000), and α-RPS3 (1:200) primary antibodies for 1 h at 

room temperature. The cells were washed with PBS and probed with Alexa Fluor 488- and 594-

conjugated secondary antibodies (1:1,000, 1 h) and DAPI (1 µg/ml, 2′). For experiments 

involving transfection, 1 µg total plasmid suspended in Fugene was used and cells were typically 

immunostained 48 h post-transfection. Coverslips were mounted in Mowiol and samples were 

visualized using a LSM 510 Laser Scanning Microscope (Carl Zeiss). 

 

In vitro kinase assays 

 

Kinase assays were performed by incubating His-NleH proteins (10 ng/µl) with myelin basic 

protein (MBP, 100 ng/µl) in 50 mM Tris-HCl, pH 7.6, 5 mM MgCl2, 1 mM DTT, 1 mM ATP, at 
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30°C for 1 h. Phosphorylation was monitored by separating the samples by SDS-PAGE and 

Western blotting with an a-phospho-Ser/Thr-specific antibody [40] and Pro-Q staining. As a 

positive control in the assay, ERK1 was used at a concentration of 5 ng/µl, as it is known to 

phosphorylate MBP. 

 

RPS3 nuclear translocation 

 

Cytosolic and nuclear protein extracts were prepared from HeLa or 293T cells transfected with 

NleH plasmids or infected with nleH mutants as previously described (Wan et al., 2007). TNF-α 

stimulation (1 h, 100 ng/ml) was used to promote RPS3 translocation into the nucleus. Data were 

analyzed by Western blotting for nuclear RPS3. PARP and tubulin were used to normalize the 

protein concentrations of nuclear and cytoplasmic fractions, respectively. 

 

Luciferase assays 

 

HeLa or 293T cells were co-transfected at a ratio of 10:1 (1.0 µg total DNA) with a firefly 

luciferase construct driven by a consensus κB site, together with the renilla luciferase pTKRL 

plasmid (Promega), cultured for 36–48 h, and then infected with EHEC strains for 3 h, in the 

presence or absence of TNF-α stimulation (κB, CD25, IL-2R reporters) or PMA (AP-1 reporter) 

or silencing with rps3 siRNA. Cells were lysed with passive lysis buffer and lysates were 

analyzed by using the Dual-Luciferase Kit (Promega) with firefly fluorescence units (FU) 

normalized to renilla FU. The fold-induction was calculated as [relative FU stimulated)/(relative 

FU unstimulated] samples. Luciferase assays were performed in triplicate with at least three 
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independently transfected cell populations. 

 

RT-PCR 

 

cDNA was prepared from 1 µg RNA by using the Superscript First Strand System (Invitrogen) 

with oligo (dT) primer. Real-time PCR was performed in triplicate using a SYBR Green PCR 

Master Mix (Ambion) in a Fast 7500 sequence-detection system (Applied Biosystems). Relative 

transcription levels were calculated by using the ΔΔCt method. 

 

Gnotobiotic piglet infections 

 

Gnotobiotic piglets were delivered into germ-free incubators through sterile closed 

hysterotomy of pregnant sows. Piglets were separated into individual compartments without 

regard to sex, fed individually with a sterile commercial piglet formula (SPF-Lac; PetAg, Inc.), 

and inoculated at 24 h of age with 3 ml tryptic soy broth containing 1*108 CFUs of wild type, Δ

nleH1, or ΔnleH2 E. coli O157:H7 EDL933. Piglets were observed every 4 h for signs of 

diarrhea, dehydration, and neurological signs of disease (head tilt, circling, lethargy, inability to 

stand, lateral recumbency and paddling). When piglets developed severe dehydration, lethargy or 

CNS disease, they were euthanized and subjected to postmortem examination. Animals that did 

not become lethargic or dehydrated were euthanized after 8 d. Spiral colon specimens were 

collected at necropsy, split longitudinally, rinsed in PBS to remove feces, diluted 1:10 (w/v) in 

PBS, ground, normalized to tissue weight, serially diluted, and cultured to quantify the extent of 

intestinal colonization. Data were normalized by tissue weight. 
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Statistical analyses 

 

NleH translocation, BiFC, RPS3 immunoblotting, luciferase, and RT-PCR assays were 

analyzed statistically using one-way ANOVA. RPS3 immunofluorescence data were analyzed 

with t-tests. Gnotobiotic piglet data were analyzed with the Kruskal-Wallis Test. p-values<0.05 

were considered significant. 
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Chapter III: IKK phosphorylation regulates RPS3 nuclear translocation and NF-κB 

function during infection with Escherichia coli strain O157:H7 

 

Abstract 

 

      NF-κB is a major gene regulator in immune responses, and ribosomal protein S3 (RPS3) is 

an NF-κB subunit that directs specific gene transcription. However, it is unknown how nuclear 

translocation of RPS3 is regulated. Here we report that phosphorylation of RPS3 Ser209 by the 

kinase IKKβ was crucial for nuclear localization of RPS3 in response to activating stimuli. 

Moreover, virulence protein NleH1 of the foodborne pathogen Escherichia coli strain O157:H7 

specifically inhibited phosphorylation of RPS3 Ser209 and blocked RPS3 function, thereby 

promoting bacterial colonization and diarrhea but resulting in less mortality in a gnotobiotic 

piglet-infection model. Thus, the IKKβ-dependent modification of a specific amino acid in RPS3 

promoted specific NF-κB functions that underlie the molecular pathogenetic mechanisms of E. 

coli O157:H7. 
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Introduction 

The pleiotropic transcription factor NF-κB regulates crucial cellular functions, and diverse 

stimuli activate NF-κB, which in turn regulates a vast array of genetic targets (Lenardo and 

Baltimore, 1989; Vallabhapurapu and Karin, 2009). The best-known mammalian NF-κB sub-

units are the Rel proteins, including RelA (p65), RelB, c-Rel, p50 and p52 (Chen and Greene, 

2004; Rothwarf and Karin, 1999). However, ribosomal protein S3 (RPS3) has been shown to be 

a key non-Rel subunit of certain native NF-κB complexes (Wan et al., 2007). RPS3 is defined as 

a ‘specifier’ subunit of NF-κB, because it facilitates high-affinity binding of DNA and thus 

determines the regulatory specificity of NF-κB for selected target genes (Wan and Lenardo, 

2009). The regulation of NF-κB by RPS3 governs key physiological processes, including 

expression of the immunoglobulin-κ light-chain gene and receptor editing in B cells (Cadera et 

al., 2009; Mukherjee et al., 2006), cytokine production in T cells (Mukherjee et al., 2006), and 

host defense against enterohemorrhagic Escherichia coli (Gao et al., 2009). In particular, the 

type III secretion system effector protein NleH1 of E. coli strain O157:H7 selectively blocks the 

transcription of NF-κB target genes by attenuating nuclear translocation of RPS3 without affect-

ing p65 localization (Gao et al., 2009). Nonetheless, how specific NF-κB-activating signals 

induce the nuclear translocation of RPS3 is unknown. 

 Extraribosomal functions have been ascribed to ribosomal proteins(Warner and McIntosh, 

2009). In addition to binding RNA in the 40S ribosomal subunit, RPS3 participates in 

transcription (Wan et al., 2007), DNA repair (Hegde et al., 2004; Kim et al., 1995) and apoptosis 

(Jang et al., 2004). Whether or not RPS3 is phosphorylated has been controversial (Abe et al., 

1998; Kim et al., 2005b; Kim et al., 2009; Leader, 1980; Shin et al., 2009). As kinase cascades 

have a critical role in NF-κB regulation, we assessed whether RPS3 is phosphorylated in the 
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context of NF-κB activation and sought to identify the responsible kinase (Karin and Ben-Neriah, 

2000). Additionally, we aimed to define a regulatory role for the C-terminal tail of RPS3, whose 

function was unknown.  

Here we show that the kinase IKKβ (inhibitor of κB (IκB) kinase-β) phosphorylated RPS3 at 

Ser209. This phosphorylation enhanced the association of RPS3 with importin-α, which 

mediated the entry RPS3 into the karyopherin pathway for nuclear translocation. Furthermore, 

the E. coli NleH1 effector protein specifically inhibited RPS3 Ser209, which shows how E. coli 

O157:H7 inhibits this important innate immune response mechanism. 

Results 

RPS3 phosphorylation in response to NF-κB activation. To determine whether RPS3 is 

phosphorylated during NF-κB activation, we did 32P-labeling experiments with human 

embryonic kidney HEK293T cells stimulated with tumor necrosis factor (TNF). Whereas RPS3 

was scarcely phosphorylated at all in unstimulated cells, we observed a considerable increase in 

the incorporation of 32P after TNF stimulation despite no increase in RPS3 protein (Fig. 14a). To 

determine which RPS3 residues were phosphorylated, we immunoprecipitated RPS3 from either 

resting or stimulated cells, followed by immunoblot analysis with phosphorylation-specific 

antibodies. Both TNF and phorbol myristate acetate (PMA) plus ionomycin stimulated rapid 

phosphorylation and degradation of IκBα within 5 min, accompanied by phosphorylation of 

serine residues of RPS3 (Fig. 14b and data not shown), similar to the in vivo labeling. We did 

not detect phosphorylation of tyrosine or threonine residues of RPS3 (Fig. 14b).  

RPS3-IKKβ interaction. Activation of IKK, which consists of a regulatory subunit (IKKγ)  
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Fig. 17. RPS3 is phosphorylated and associates with IKKβ in response to NF-κB activation. (a) 

32P-labeling assay of HEK293T cells stimulated for 0–30 min (above lanes) with TNF (20 

ng/ml), followed by immunoprecipitation (IP) of whole-cell lysates with antibody to RPS3 (anti-

RPS3) and autoradiography (top) or immunoblot analysis with anti-RPS3 (bottom). (b) 

Immunoassay of whole-cell lysates of Jurkat cells stimulated for 0–15 min (above lanes) with 

TNF and analyzed by immunoblot for total or phosphorylated (p-) proteins directly (Input) or 

after immunoprecipitation with anti-RPS3. (c) Immunoprecipitation and immunoblot analysis of 

the interaction between hemagglutinin (HA)-tagged RPS3 and Flag-tagged IKKβ in HEK293T 

cells. (d) Immunoassay of whole-cell lysates of Jurkat cells stimulated as in b and analyzed by 

immunoblot for IKKα, IKKβ or RPS3 directly or after immunoprecipitation with anti-RPS3. 

Data are representative of at least two independent experiments. 

 

 

 

 

 

 

 

 

 

 



 

 99 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 100 

and two catalytic subunits (IKKα and IKKβ), is critical for the phosphorylation and dispatch of 

the inhibitory IκB proteins and the liberation of NF-κB (Israel, 2000; Karin, 1999; Scheidereit, 

2006). Given that RPS3 can be found in the cytoplasmic p65-p50-IκBα inhibitory complex in 

resting cells (Wan et al., 2007), we hypothesized that activated IKKβ might also bind to and 

phosphorylate RPS3. First, we found that ectopically expressed IKKβ and RPS3 interacted (Fig. 

14c). We next examined resting Jurkat human T lymphocyte cells and detected modest 

interaction of endogenous IKKβ and RPS3 (Fig. 14d), which potentially accounted for the basal 

transcription of NF-κB required for cell proliferation and survival. The RPS3-IKKβ association 

was augmented after TNF stimulation, peaking at 10 min (Fig. 14d), with kinetics similar to 

those of serine phosphorylation of RPS3 (Fig. 14b). In contrast, there was no detectable 

interaction between RPS3 and IKKα (Fig. 14d). 

Nuclear translocation of RPS3 requires IKK.To determine whether the RPS3-IKKβ 

interaction was required for nuclear translocation of RPS3, we knocked down expression of 

IKKα or IKKβ with small interfering RNA (siRNA; Fig. 15) and then monitored stimulation-

induced nuclear migration of RPS3 by confocal microscopy. Both TNF and PMA plus 

ionomycin triggered nuclear translocation of RPS3 in Jurkat cells transfected with a nonspecific 

siRNA with a scrambled sequence6 (Fig. 16a). Nuclear translocation of RPS3 was impaired only 

slightly, if at all, by silencing of IKKα. Conversely, knockdown of IKKβ attenuated 60–70% of 

the nuclear accumulation of RPS3 after stimulation (Fig. 16a). Immunoblot analysis of nuclear 

fractions confirmed that full expression of IKKβ, but not of IKKα, was necessary for activation-

induced nuclear translocation of RPS3 (Fig. 16b). Control immunoblot analysis showed that 

nuclear translocation of p65 was blocked under the same conditions (Fig. 16b).  

We next examined the nuclear translocation of RPS3 in cells ectopically expressing either 
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‘kinase-dead’ (SSAA) or constitutively active (SSEE) mutant IKKβ proteins. As expected, the 

SSEE IKKβ mutant induced NF-κB-dependent luciferase reporter activity, but the SSAA IKKβ 

mutant did not (Fig. 16c, left). Although RPS3 remained cytosolic in cells expressing the SSAA 

IKKβ mutant (Fig. 16c, right), a substantial proportion of RPS3 translocated to the nucleus in 

cells expressing the SSEE IKKβ mutant (Fig. 16c, right). There were five times as many cells 

containing detectable nuclear RPS3 in populations expressing the SSEE IKKβ mutant as in 

populations expressing the SSAA IKKβ mutant (Fig. 16d and Fig. 17). Thus, IKKβ activity is 

necessary and sufficient for nuclear translocation of RPS3 in response to NF-κB-activating 

stimuli.  

IκBα degradation and nuclear translocation of RPS3. Importin-α regulates the nuclear 

importation of NF-κB Rel subunits (Fagerlund et al., 2005; Fagerlund et al., 2008). RPS3 has a 

nuclear-localization signal sequence, and its nuclear translocation occurs in parallel to but 

independently of p65 translocation (Wan et al., 2007). We envisioned that RPS3 could also use 

the importin-α–importin-β pathway. Consistent with our hypothesis, the association of RPS3 

with importin-α was enhanced in TNF-stimulated cells, but its association with importin-β was 

not (Fig. 18a). Therefore, we assessed whether the binding of RPS3 to importin-α was essential 

for nuclear translocation during NF-κB activation. 

As IκBα degradation is a prerequisite for unmasking of the nuclear-localization signal of p65, 

and both RPS3 and IκBα bind to p65 in the cytoplasmic inhibitory complex, we assessed 

whether IκBα degradation was required for the liberation of RPS3. We measured the association 

of RPS3 with importin-α in HEK293T cells overexpressingwild-type IκBα or an IκBα mutant 

(SSAA) that is resistant to IKKβ-induced phosphorylation and degradation. In cells transfected 

with wild-type IκBα, TNF stimulation augmented the interaction of RPS3 and importin-α to a 
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Fig. 18. Knockdown of IKKα and IKKβ in Jurkat cells. Immunoblot for IKKα, IKKβ, IκBα and 

β-actin in Jurkat cells transfected with scrambled nonspecific (NS), IKKα, or IKKβ siRNAs. The 

data represent four independent experiments. 
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Fig. 19. RPS3 nuclear translocation requires IKK. (a) Confocal microscopy (left) of RPS3 (red) 

and counterstained nuclei (blue) in Jurkat cells transfected for 72 h with siRNA specific for 

IKKα or IKKβ or scrambled nonspecific siRNA (NSp), then left untreated (Unstim) or 

stimulated with TNF (50 ng/ml) or with PMA (50 ng/ml) plus ionomycin (1.5 mM; PMA+I). 

Original magnification, ×630. Right, quantification of cells with nuclear RPS3. (b) Immunoblot 

analysis of whole-cell lysates (WCL) or nuclear subcellular fractions (Nuc) of Jurkat cells 

transfected with siRNA (top) and then left unstimulated (−) or stimulated for 30 min with TNF 

(T) or PMA plus ionomycin (P). (c) NF-κB luciferase assay (left) of Jurkat cells transfected with 

empty vector (Vec) or plasmid encoding Flag-tagged SSAA or SSEE IKKβ mutant together with 

a luciferase reporter driven by 5× immunoglobulin κB sites, and immunoblot analysis (right) of 

cytosolic (C) and nuclear (N) subcellular fractions of Jurkat cells overexpressing Flag-tagged 

IKKβ constructs. Heat-shock protein 90 (hsp90) and poly(ADP-ribose) (PARP) serve as 

cytosolic and nuclear markers, respectively, and/or loading controls throughout. (d) 

Quantification of Jurkat cells with nuclear RPS3 with (Flag+) or without (Flag−) expression of 

Flag-tagged IKKβ, assessed by confocal microscopy after fixation and staining for RPS3, Flag 

and nuclei. Data are representative of three (a,d), two (b) or four (c) independent experiments 

with at least 200 cells each (mean and s.d. in a,d; mean and s.d. of triplicates in c). 
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Fig. 20. Representative immunofluorescence images of Jurkat cells overexpressing constructive 

active (SSEE) or kinase-dead (SSAA) IKKβ construct. Jurkat cells overexpressing indicated 

Flag-IKKβ constructs were analyzed by confocal microscopy following fixation and staining for 

RPS3, Flag, and nuclei. Representative Flag positive (top) and Flag negative (bottom) cells from 

at least 200 cells in two independent experiments were shown, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 107 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 108 

Fig. 21. Importin-α-mediated nuclear translocation of RPS3 is dependent on degradation of 

IκBα. (a) Immunoassay of whole-cell lysates of Jurkat cells stimulated for 0–15 min with TNF 

and analyzed by immunoblot for importin-α (Imp-α), importin-β (Imp-β) or RPS3 directly or 

after immunoprecipitation with anti-RPS3. (b) Immunoprecipitation and immunoblot analysis of 

the association of endogenous importin-α or importin-β with RPS3 in Jurkat cells overexpressing 

hemagglutinin-tagged wild-type IκBα or SSAA IκBα mutant and stimulated for 0–45 min with 

TNF. (c) Immunoassay of whole-cell lysates of Jurkat cells transfected for 72 h with nonspecific 

or IκBα-specific siRNA, then analyzed by immunoblot for importin-α or RPS3 directly or after 

immunoprecipitation with anti-RPS3. (d) Immunoblot analysis of cytosolic (Cyt) and nuclear 

(Nuc) subcellular fractions of Jurkat cells transfected with nonspecific or IκBα-specific siRNA. 

(e) Immunoassay of whole-cell lysates of Jurkat cells given no pretreatment (−) or pretreated for 

2 h (+) with 800 mM sodium pervanadate (Pv), followed by no stimulation or 30 min of TNF 

stimulation, then analyzed by immunoblot directly or after immunoprecipitation with anti-RPS3. 

Data are representative of at least two experiments. 
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degree similar to that in untransfected cells. In contrast, we observed that the RPS3–importin-α 

association was abolished by the presence of nondegradable IκBα (Fig. 18b). 

To determine whether IκBα is the only cytoplasmic barrier that precludes the nuclear 

translocation of RPS3, we measured both the RPS3–importin-α association and nuclear RPS3 

after diminishing IκBα expression. In contrast to nonspecific siRNA, siRNA targeting IκBα 

resulted in complete depletion of IκBα in Jurkat cells (Fig. 18c, Input). Nevertheless, the RPS3–

importin-α association was not augmented (Fig. 18c), nor did we detect substantial nuclear RPS3 

(Fig. 18d). Moreover, cells treated with sodium pervanadate to induce IκBα degradation through 

an IKK-independent mechanism25–27 did not show more association between RPS3 and 

importin-α (Fig. 18e and Fig. 19b) or nuclear accumulation of RPS3, despite complete 

degradation of IκBα (Fig. 19c). We further determined whether a subsequent NF-κB-activation 

signal independently promoted the association of importin-α with RPS3 and nuclear transport of 

RPS3 after IκBα degradation. We found that TNF stimulation after sodium pervanadate 

treatment was required for the RPS3–importin-α association, similar to TNF stimulation alone 

(Fig. 18e). Thus, phosphorylation and degradation of IκBα itself is required but not sufficient for 

the association of RPS3 with importin-α followed by nuclear translocation of RPS3. Instead, an 

additional signal, possibly phosphorylation of RPS3 by IKKβ, is required. 

IKKβ phosphorylates RPS3 at Ser209. Although originally defined as the kinase that 

phosphorylates IκB (Karin, 1999), IKKβ also phosphorylates unrelated substrates, including 14-

3-3β and Bcl-10, which lack the IKK consensus motif (DpSGΨXpS/T, where ‘pS’ indicates a 

phosphorylated serine residue, ‘Ψ’ indicates a hydrophobic residue, ‘X’ indicates any residue, 

and ‘pS/T’ indicates a phosphorylated serine or threonine residue) (Wegener et al., 2006). We 

therefore hypothesized that IKKβ might directly phosphorylate RPS3. By in vitro kinase assays 
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with recombinant IKK and RPS3 proteins, we observed considerable incorporation of 32P into 

autophosphorylated IKKα and IKKβ (Fig. 20a, lanes 2–7), as well as a phosphorylated 

glutathione S-transferase (GST)-tagged IκBα peptide of amino acids 1–54 (Fig. 21), but not into 

GST protein alone (Fig. 20a, lanes 3 and 6), when we used either IKKα or IKKβ. We discovered 

that GST-RPS3 was phosphorylated by IKKβ but not by IKKα in vitro (Fig. 20a, lanes 4 and 7). 

To identify the RPS3 amino acid residue (or residues) phosphorylated by IKKβ, we analyzed 

in vitro–phosphorylated RPS3 by liquid chromatography–tandem mass spectrometry. The results 

indicated that IKKβ phosphorylated Ser209, located in the C terminus of RPS3 (Fig. 20b). 

Amino acid sequence alignment of RPS3 showed that Ser209 is conserved in many species 

throughout phylogeny, except Caenorhabditis elegans and Schizosaccharomyces pombe, two 

organisms that do not have the NF-κB signaling pathway (Fig. 22). 

To verify biochemically that Ser209 is an IKKβ substrate, we did 32P-labeling in vitro kinase 

assays with recombinant wild-type RPS3 or a mutant RPS3 with substitution of the serine at 

position 209 with alanine (S209A). This RPS3(S209A) mutant had less IKKβ-mediated 

phosphorylation than did wild-type RPS3 (Fig. 20c). There might have been alternative 

phosphorylation sites under these conditions, given the modest residual phosphorylation of RPS3 

(Fig. 20c). RPS3 Ser209 is not in a conventional IKK recognition motif but is instead in a 

sequence motif (XXXpS/TXXE) that is potentially recognized by casein kinase II (CK2). 

Although IKKβ kinase can show CK2-like phosphorylation specificity, no CK2 protein contami-

nant was detectable in our recombinant IKK protein preparations (Fig. 23). Thus, the than to any 

trace amount of CK2 bound to IKK proteins. To determine whether Ser209 is the critical site at 

which IKKβ phosphorylates RPS3 in living cells, we transfected Flag-tagged wild-type RPS3 or 

RPS3(S209A) into cells alone or together with IKKβ. Indeed, we observed that 
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Fig. 22. Sodium pervanadate (Pv) treatment induces IκBα degradation, but not nuclear 

phosphorylation of RPS3 Ser209 was due to the alternative specificity of the IKKβ kinase rather 

translocation of RPS3 in Jurkat cells. (a) Jurkat cells were treated with indicated concentration of 

Pv for 2 h, and whole-cell lysates were immunoblotted as indicated. β-actin was used as a 

loading control. (b) Jurkat cells were treated with or without 800 µM sodium pervanadate (Pv) 

for 2 h, and wholecell lysates were immunoblotted directly or after immunoprecipitation (IP) 

with anti-RPS3 antibody for importin-α (imp-α), RPS3 and IκBα. (c) Immunoblotting of 

cytosolic (Cyto) and nuclear (Nuc) subcellular fractions derived from Jurkat cells treated with or 

without 800 µM sodium pervanadate (Pv) for 2 h. Hsp90 and PARP served as the cytosolic and 

nuclear markers and loading controls, respectively. The data represent at least two independent 

experiments. 
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Fig. 23. IKKβ phosphorylates RPS3 at Ser209. (a) Autoradiography (above) and Coomassie blue 

staining (below) of in vitro kinase assays with recombinant GST or GST-RPS3 plus recombinant 

human IKKα (rIKKα) or IKKβ (rIKKβ); p-IKKα and p-IKKβ (right) indicate 

autophosphorylated IKK proteins, and p-RPS3 indicates phosphorylated RPS3. (b) In vitro 

kinase assay of recombinant RPS3 protein with recombinant human IKKβ; after digestion, 

samples were enriched for phosphorylated peptides by TiO2 and were fragmented by a mass 

spectrometer; intensity of ions is presented relative to the tallest peak in the spectrum, set as 

100%. The spectrum of the 1+ fragment ion displays indicative of KPLPDHVpSIVEPK, based 

on a Mascot algorithm database search. The y6 ion (red) shows incorporation of the site of 

phosphorylation (the sixth amino acid from the C terminus of the fragment), further confirmed 

by the loss of H3PO4 from several ions. Top, RPS3 with characterized domains (NLS, nuclear 

localization signal; KH, K homology) and the IKKβ Ser209 phosphorylation site in red. (c) 

Autoradiography (above) and Coomassie blue staining (below) of in vitro kinase assays with 

GST-tagged recombinant wild-type RPS3 or RPS3(S209A) plus recombinant human IKKβ. (d) 

Immunoprecipitation and immunoblot analysis of the serine phosphorylation of ectopically 

expressed RPS3 in HEK293T cells transfected with a plasmid expressing Flag-tagged wild-type 

RPS3 or RPS3(S209A) with or without a plasmid expressing IKKβ. (e) Immunoblot analysis 

(below) of phosphorylated and total RPS3 in whole-cell lysates or Jurkat cells stimulated for 0–

30 min with TNF; above, densitometry, normalized as the intensity of each phosphorylated RPS3 

band to the corresponding total RPS3 band and presented as the ratio of phosphorylated RPS3 to 

RPS3 relative to that of unstimulated cells. Data are representative of four (a,e) or two (b–d) 

independent experiments. 
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Fig. 24. The recombinant IKKβ phosphorylates IκBα (1-54) in vitro. Autoradiograph (top) and 

Coomassie blue-stained gel (bottom) of in vitro kinase assays performed with recombinant GST 

or GST- IκBα (1-54) protein using recombinant human IKKβ as kinase. Filled and open symbols 

indicate autophosphorylated IKKα and phosphorylated IκBα, respectively. The data represent 

three independent experiments. 
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Fig. 25. Serine 209 of RPS3 is conserved in many species. Alignment of the C-terminal tail 

region of RPS3 from different species. The serine 209 residue conserved in many species is 

indicated in red. 
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overexpression of IKKβ enhanced the phosphorylation of Flag-tagged RPS3, but 

phosphorylation was effectively eliminated by the S209A substitution (Fig. 20d), which 

indicated that Ser209 is the main target site for IKKβ phosphorylation. We next generated an 

antibody to RPS3 phosphorylated at Ser209 and confirmed that endogenous RPS3 was 

phosphorylated at Ser209 in a time-dependent manner after TNF stimulation (Fig. 20e). Thus, 

the C-terminal tail of RPS3 potentially contains an important regulatory site. 

Phosphorylation of RPS3 and its NF-κB function. We next assessed whether Ser209 

phosphorylation has a role in the nuclear translocation of RPS3 during NF-κB activation. We 

prepared subcellular fractions of cells transfected with wild-type RPS3 or RPS3(S209A) and 

analyzed them by immunoblot for heat-shock protein 90 (a cytoplasmic protein) and poly(ADP-

ribose) polymerase (a nuclear protein); the results confirmed clean separation (Fig. 21a). As 

expected, stimulation with PMA plus ionomycin triggered nuclear translocation of Flag-tagged 

wild-type RPS3 (Fig. 21a). However, nuclear translocation of RPS3(S209A) was attenuated (Fig. 

21a). We also tested the effect of activating NF-κB via overexpression of IKKβ on the nuclear 

translocation of RPS3. IKKβ overexpression activated NF-κB, as measured by luciferase assay 

(Fig. 24), and also induced the nuclear translocation of wild-type RPS3 but not of RPS3(S209A) 

(Fig. 21b). These data suggest that phosphorylation of Ser209 is critical for the nuclear 

translocation of RPS3 induced by activation of NF-κB. 

To examine the role of phosphorylation of RPS3 Ser209 in its NF-κB function (Ruchaud-

Sparagano et al., 2011; Wan et al., 2007; Wan and Lenardo, 2010), we silenced endogenous 

RPS3 expression with siRNA targeting the 3’ untranslated region (3’ UTR) of RPS3 mRNA, 

followed by complementation with either wild-type RPS3 or RPS3(S209A) via transfection. As 

expected, RPS3-specific siRNA resulted in a much lower abundance of endogenous RPS3 than 
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did nonspecific siRNA, but it did not affect the robust expression of Flag-tagged RPS3 expressed 

from a transfected construct lacking the 3’ UTR (Fig. 21c). We also found that knockdown of 

RPS3 resulted in less TNF-induced expression of a luciferase construct driven by 

immunoglobulin κB sites6 (Fig. 21d). The impaired luciferase signal caused by RPS3 deficiency 

was completely restored by transfection of wild-type RPS3 but not by transfection of 

RPS3(S209A) (Fig. 21d), despite their equivalent expression (Fig. 21c). Moreover, the failure of 

RPS3(S209A) to restore luciferase activity did not result from defective translation, as green 

fluorescent protein, produced normally from a transiently transfected expression construct, was 

similar in cells complemented with wild-type or RPS3(S029A) (Fig. 25). Together these data 

suggest that phosphorylation of RPS3 Ser209 is critical for NF-κB activity involving the 

canonical immunoglobulin κB site. 

We next used chromatin immunoprecipitation to determine whether phosphorylation of 

Ser209 affected the recruitment of RPS3 and p65 to specific κB sites in intact chromatin during 

NF-κB activation. In cells in which RPS3 was knocked down, PMA plus ionomycin stimulated 

the recruitment of ectopically expressed, Flag-tagged wild-type RPS3, but not of RPS3(S209A), 

to the κB sites of the promoters of the genes encoding IκBα (NFKBIA) and interleukin 8 (IL8; 

Fig. 21e). Although expression of RPS3(S209A) had no effect on the nuclear translocation of 

p65, it substantially attenuated the recruitment of p65 (Fig. 21e). Additional experiments showed 

that the attraction of p65 to the promoters of RPS3-independent NF-κB target genes such as 

CD25 was greater (Fig. 26), consistent with published observations6. There was not much 

recruitment of Flag-tagged RPS3 or p65 to the β-actin (ACTB) promoter, which lacks κB sites 

(Fig. 21e), which suggested the recruitment was specific for the κB site. Thus, the recruitment of 

RPS3 as well as the contingent recruitment of p65 to key promoters depended on Ser209. 
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Secretion of IL-8 induced by stimulation with a T cell antigen receptor (TCR) agonist or with 

PMA plus ionomycin was diminished as a consequence of less recruitment of RPS3 and/or p65 

to the κB sites of IL8 in the presence of RPS3(S209A) than in the presence of wild-type RPS3 

(Fig. 27). However, cell surface expression of CD25 was similar in cells transfected with wild-

type RPS3 or RPS3(S209A) (Fig. 28). Therefore, phosphorylation of RPS3 Ser209 by IKKβ is 

apparently required by RPS3 in directing NF-κB to a specific subset of target genes. 

NleH1 inhibits RPS3 phosphorylation in vitro. Enterohemorrhagic E. coli pathogens are 

important causative agents of both food-borne disease and pediatric renal failure (Sears and 

Kaper, 1996). These pathogens use type III secretion systems to inject effector proteins directly 

into intestinal epithelial cells (Cornelis, 2010); a subset of the injected effector proteins inhibit 

NF-κB-dependent innate responses (Baruch et al., 2011; Nadler et al., 2010; Newton et al., 2010; 

Royan et al., 2010; Vossenkamper et al., 2010; Yen et al., 2010). The effector protein NleH1 of 

E. coli strain O157:H7 EDL933 binds to RPS3 and attenuates the nuclear translocation of RPS3, 

thus impairing RPS3-dependent NF-κB signaling (Gao et al., 2009). We therefore hypothesized 

that NleH1 may function by inhibiting phosphorylation of RPS3 Ser209. As expected, 

transfection of increasing amounts of plasmid encoding hemagglutinin-tagged NleH1 blocked 

TNF-induced activation of NF-κB in a dose-dependent manner9 (Fig. 29a,b). Notably, NleH1 

decreased both TNF-induced and basal phosphorylation of RPS3 to roughly 20% of the 

phosphorylation obtained with vehicle control (Fig. 29c). Expression of NleH1 did not interfere 

with either TNF-induced activation of IKK or degradation IκBα (Fig. 29c), consistent with the 

lack of effect of NleH1 on p65 nuclear translocation9. 

To determine if NleH1 inhibits RPS3 phosphorylation, we infected HeLa human cervical 

cancer cells with E. coli O157:H7 with or without the gene encoding NleH1 (ΔnleH1) or with E. 
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coli O157:H7 lacking a functional type III secretion system unable to inject NleH1 into mam-

malian cells (ΔescN). In uninfected cells, TNF treatment stimulated a sevenfold increase in 

phosphorylation of RPS3 Ser209 that peaked at 30 min (Fig. 29d). In contrast, phosphorylation 

of RPS3 Ser209 was substantially impaired in cells infected with wild-type E. coli O157:H7 (Fig. 

29d). However, TNF-induced phosphorylation of RPS3 Ser209 was unimpaired in cells infected 

with either ΔnleH1 or ΔescN E. coli O157:H7 (Fig. 29d). Wild-type E. coli O157:H7 

substantially attenuates TNF-induced nuclear translocation of RPS3, but ΔnleH1 and ΔescN E. 

coli O157:H7 do not (Sekiya et al., 2001). The parallel between RPS3 phosphorylation and its 

nuclear translocation during E. coli infection provides evidence in the context of an NF-κB-

dependent disease process that phosphorylation of RPS3 Ser209 is important for nuclear 

translocation. 

Our discovery that NleH1 inhibited the phosphorylation of RPS3 Ser209 suggested that it should 

also blocks RPS3-dependent transcription of NF-κB target genes (such as IL8, NFKBIA and 

TNFAIP3). Indeed, these genes were only modestly upregulated in cells infected with wild-type 

E. coli O157:H7 but were substantially induced in cells infected with either ΔnleH1 or ΔescN E. 

coli O157:H7 (Fig. 29e). In contrast, deleting NleH1 had no effect on the expression of RPS3-

independent genes, including CD25 and TNFSF13B (Fig. 30). Together these results 

demonstrate that NleH1 specifically inhibits the protective immune response by directly blocking 

phosphorylation of RPS3 Ser209 and thereby impairing critical RPS3-dependent NF-κB target 

genes. 

NleH1 inhibits phosphorylation of RPS3 Ser209 in vivo. A gnotobiotic piglet-infection 

model has been used before to show that piglets infected with ΔnleH1 E. coli O157:H7 die more 

rapidly than do those infected with wild-type E. coli O157:H7. Piglets infected with ΔnleH1 
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Fig. 26. No CK2 contaminant in the recombinant IKK proteins. IKKα or IKKβ recombinant 

proteins (1 µg each), and 15 µg of whole-cell lysate from HEK 293T cells (293WCL) were 

separated by SDS-PAGE, followed by immunoblotted with antibodies specific for IKKα/β or 

CK2α. The data represent two independent experiments. 
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Fig. 27. Activation of NF-κB by IKKβ overexpression. NF-κB luciferase assay (mean and s.d., 

n=3) using Jurkat cells transfected with empty vector pcDNA or pcDNAIKKβ plasmids together 

with a 5 x Ig κB sites-driven luciferase reporter gene. Representative results from at least four 

independent experiments were shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 127 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 128 

Fig. 28. The S209A mutation of RPS3 does not impair translation. Jurkat cells, transfected with 

siRNA specifically targeting the 3’ untranslated region of RPS3 mRNA for 48 h, were 

transfected again with the same siRNA plus wild-type or S209A mutant Flag-RPS3 constructs 

together with pEGFP plasmid. 24 h later, GFP expression was assessed by flow cytometer. 

Numbers indicate the percentage of GFP-positive cells, gated on living cells. Representative 

plots from three independent experiments were shown. 
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Fig. 29. The S209A mutation of RPS3 does not attenuate the recruitment of endogenous p65 to 

the RPS3-independent CD25 κB promoter. Jurkat cells transfected with RPS3-3’ UTR siRNA 

and Flag-tagged wild-type (WT) or S209A mutant RPS3 constructs were left untreated or 

stimulated with 50 ng/ml PMA plus 1.5 µM ionomycin (PMA+I) for 2 h. The cell extracts were 

analyzed by chromatin immunoprecipitation assays of the recruitment of endogenous p65 to the 

κB region of CD25 promoter. p65-bound DNA was analyzed by quantitative real-time PCR 

(primers, above diagrams) and normalized to the input DNA, and the cells transfected with Flag-

tagged WT RPS3 construct and untreated (mean and S.D., n=3). Data are from one 

representative of two independent experiments. * P <0.05, Student’s t-test. 
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Fig. 30. The S209A mutation of RPS3 attenuates the T cell receptor engagement-induced IL-8 

expression in Jurkat cells. Jurkat cells transfected with RPS3-3’ UTR siRNA and Flag-tagged 

wild-type (WT) or S209A mutant RPS3 constructs were left unstimulated (Unstim) or stimulated 

with 1 µg/ml of anti-CD3/CD28, or 50 ng/ml PMA plus 1.5 µM ionomycin (PMA+I) for 24 h. 

The IL-8 in the supernatant was measured by ELISA (mean and s.d., n=3). ND, not detected. The 

data represent two independent experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 133 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 134 

Fig. 31. The S209A mutation of RPS3 does not attenuate the T cell receptor engagement-induced 

CD25 expression in Jurkat cells. Jurkat cells transfected with RPS3-3’ UTR siRNA and Flag-

tagged wild-type (WT) or S209A mutant RPS3 constructs were left unstimulated (Unstim) or 

stimulated with 1 µg/ml of anti-CD3/CD28, or 50 ng/ml PMA plus 1.5 µM ionomycin (PMA/I) 

for 12 h. The induced CD25 expression on the cell surface was stained with PE-conjugated anti-

CD25 antibody and analyzed by flow cytometer. The percentage of viable cells with CD25 

positive were shown (mean and s.d., n=3). 
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develop clinical disease consistent with a robust inflammatory response, but with less bacterial 

colonization and little diarrhea (Sekiya et al., 2001). Although it seemed paradoxical on the basis 

of our cell culture data (Fig. 29d), we hypothesized that NleH1 blocks phosphorylation of RPS3 

Ser209 in vivo, thereby preventing nuclear translocation of RPS3 in infected piglets. We isolated 

piglet colons at necropsy and analyzed them by immunohistochemistry with our antibody to 

phosphorylated RPS3. Consistent with in vitro data, piglets infected with wild-type E. coli 

O157:H7 showed diffuse and low-intensity staining of phosphorylated RPS3, whereas in piglets 

infected with ΔnleH1 E. coli O157:H7, phosphorylated RPS3 expression was florid and intense 

(Fig. 29f). These data demonstrate that NleH1 inhibits phosphorylation of RPS3 Ser209 both in 

vitro and in vivo, which might benefit the bacterium in colonization and transmission. 

 

NleH1 steers IKKβ substrate specificity. NleH1 is an autophosphorylated serine-threonine 

kinase that depends on its lysine residue at position 159 (Sekiya et al., 2001). To explore the 

mechanism by which NleH1 inhibits phosphorylation of RPS3 Ser209, we first did an in vitro 

kinase assay with purified wild-type histidine-tagged NleH1 and mutant histidine-tagged NleH1 

with substitution of the lysine at position 159 with alanine (NleH1(K159A)); our results 

confirmed that NleH1 was autophosphorylated and that NleH1(K159A) was a ‘kinase-dead’ 

mutant (Fig. 31a). To determine whether its kinase activity was required for NleH1 to inhibit 

IKKβ phosphorylation of RPS3 on Ser209, we ectopically expressed wild-type NleH1or 

NleH1(K159A) in HEK293T cells. Expression of wild-type NleH1 resulted in much less TNF-

induced phosphorylation of RPS3 Ser209, whereas expression of NleH1(K159A) failed to do so 

(Fig. 31b). Thus, the kinase activity of NleH1 is needed to protect RPS3 from IKKβ-mediated 

phosphorylation. 
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Citrobacter rodentium is a mouse pathogen that shares pathogenic strategies with E. coli 

(Deng et al., 2003); most notably for our investigation, C. rodentium NleH inhibits the nuclear 

translocation of RPS3 and RPS3-dependent NF-κB luciferase activity to an extent equivalent to 

that of E. coli NleH1 (Gao et al., 2009). We assayed phosphorylation of RPS3 Ser209 in HeLa 

cells infected with various C. rodentium strains. In uninfected cells, cells stimulated with TNF 

had three- to fivefold more phosphorylation of RPS3 Ser209 than did unstimulated cells (Fig. 

31c). Such augmentation of RPS3 phosphorylation was about 60% lower after infection with 

wild-type C. rodentium (Fig. 31c). However, RPS3 phosphorylation was enhanced in cells 

infected with a C. rodentium strain lacking NleH (ΔnleH; Fig. 31c). We further examined the 

role of NleH1 kinase activity using the C. rodentium ΔnleH strain as a background on which to 

express either wild-type NleH1 or NleH1(K159A). Complementation of the ΔnleH mutant with 

wild-type NleH1 almost completely abolished TNF-induced phosphorylation of RPS3 Ser209, 

whereas complementation with NleH1(K159A) failed to inhibit RPS3 phosphorylation (Fig. 31c). 

Collectively, these results demonstrate that the kinase activity of NleH1 is needed to block the 

phosphorylation of RPS3 Ser209. 

We next assessed whether the inhibitory activity of NleH1 was sufficiently robust to impair 

the substantial nuclear translocation of RPS3 trigged by the constitutively active SSEE IKKβ 

mutant (Fig. 16d). We found that ectopic expression of either wild-type or SSEE IKKβ triggered 

more nuclear translocation of RPS3 than did the kinase-dead SSAA IKKβ mutant (Fig. 31d). The 

nuclear accumulation of RPS3 was substantially retarded by infection of cells with wild-type E. 

coli O157:H7 (Fig. 31d). In contrast, infection with either ΔnleH1 or ΔescN E. coli O157:H7 

impaired the nuclear translocation of RPS3 only slightly in cells expressing either wild-type 

IKKβ or the SSEE IKKβ mutant (Fig. 31d). As expected, infection with E. coli did not affect the 
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nuclear translocation of RPS3 in cells expressing the SSAA IKKβ mutant, in which NF-κB 

signaling was low (Fig. 31d). Thus, during infection, NleH1 is sufficiently potent to inhibit the 

nuclear translocation of RPS3 even in cells expressing constitutively activate IKKβ. 

We assessed whether NleH1 directly phosphorylated IKKβ, thus inhibiting IKKβ-mediated 

phosphorylation of RPS3 Ser209. We did in vitro kinase assays with immunoprecipitated Flag-

tagged IKKβ with substitution of the lysine at position 44 with alanine as the substrate and 

recombinant histidine-tagged NleH1 as kinase, so that autophosphorylation of IKKβ would not 

obscure NleH1-induced phosphorylation. However, we did not observe any detectable incor-

poration of 32P into IKKβ (Fig. 32), which thus ruled out this possibility. 

We then tested the hypothesis that NleH1 might alter IKKβ substrate specificity. For this we 

did in vitro kinase assays with both CK2 and IKK substrates for IKKβ. As expected, IKKβ 

phosphorylated RPS3 (Fig. 31e, lane 7) and a GST-tagged IκBα peptide of amino acids 1–54 

(Fig. 31e, lane 9), which demonstrated that it has substrate specificity for either CK2 or IKK. 

Preincubation of IKKβ with NleH1 resulted in less IKKβ-mediated phosphorylation of RPS3 

(CK2 kinase specificity) but not IKKβ-mediated phosphorylation of GST-IκBα (IKK kinase 

specificity; Fig. 31e). Control experiments showed no NleH1-mediated phosphorylation or 

autophosphorylation of RPS3 or GST-IκBα (Fig. 31e). Together these results indicate that NleH1 

blocks the CK2 substrate specificity of IKKβ, thus inhibiting IKKβ-mediated phosphorylation of 

RPS3 Ser209. This represents a previously unknown strategy by which E. coli O157:H7 alters 

the host innate immune response. 

 

Discussion 

RPS3 functions as an associated subunit that confers regulatory specificity on NF-κB (Wan et al., 
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2007). Here we sought to elucidate how NF-κB-activation signaling triggers RPS3 to translocate 

and participate in NF-κB function in the nucleus. We have demonstrated that IKKβ-mediated 

phosphorylation of RPS3 Ser209 represents a critical determinant in governing its nuclear import 

and have thus identified a previously unknown mechanism behind the regulatory specificity of 

NF-κB. IKKβ is the main kinase that phosphorylates IκB proteins in the classical NF-κB 

pathway, leading to their subsequent degradation (Hacker and Karin, 2006). Notably, RPS3 has 

no consensus IKK motif; instead, Ser209 is centered on a consensus CK2 motif. The observation 

that human IKKβ has CK2-like phosphorylation specificity (Shaul et al., 2008) coincides with 

our evidence that recombinant IKKβ phosphorylated RPS3, but IKKα did not. We found that this 

phosphorylation was a critical modulation for the nuclear translocation of RPS3 (via importin-α) 

and engagement in specific NF-κB transcription. CK2 is known to phosphorylate p65 and to bind 

to and phosphorylate IKKβ (Chantome et al., 2004; Wang et al., 2000; Yu et al., 2006); however, 

we ruled out the possibility that the IKKβ-bound CK2 accounted for the observed RPS3 

phosphorylation because we detected no CK2 in the IKKβ preparations used for the in vitro 

kinase assay. Because RPS3 has only the CK2 motif and does not have a traditional IKK motif, 

this regulatory function of RPS3 could explain why IKK has the ability to phosphorylate 

alternative substrates. 

More notably, we have elucidated how RPS3 is biochemically integrated into NF-κB-activation 

signaling in a manner that is pivotal for the pathogenesis of food-borne pathogen E. coli 

O157:H7. IKKβ-mediated phosphorylation of RPS3 Ser209 is a critical signaling event 

modulated by this pathogen to subvert host NF-κB signaling. The bacterial effector NleH1 

specifically binds to RPS3 once it is injected into host cells and profoundly suppresses NF-κB

and its attendant protective immune responses (Gao et al., 2009). Our data have now shown that 
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Fig. 32. The bacterial effector protein NleH1 blocks RPS3 S209 phosphorylation. (a) 293T cells 

were transfected with control VN-HA or NleH1-HA plasmids and whole cell lysates were 

derived and immunoblotted for HA and β-actin as a loading control. (b) NF-κB luciferase assay 

(mean and s.d., n = 3) using 293T cells transfected with control VN-HA or NleH1-HA plasmids 

together with a 5 × Ig κB site-driven luciferase reporter gene. (c) 293T cells were stimulated with 

(+) or without (-) 50 ng/ml of TNF for 15 min. The derived whole cell lysates were 

immunoblotted for S209 phosphorylated RPS3 (p-RPS3) and indicated proteins. β-actin served 

as a loading control. (d) HeLa cells were left uninfected (Uninf) or infected for 3 h with wild-

type (WT) E. coli O157:H7 or strains with isogenic deletions in the escN (ΔescN) or nleH1 

(ΔnleH1) genes, followed by TNF treatment for the indicated periods. Whole cell lysates were 

extracted and immunoblotted with antibodies specific for normal RPS3 or S209 phosphorylated 

RPS3 (left). Densitometry of all bands was performed, and the intensity of each p-RPS3 band 

was normalized to corresponding RPS3 band. The fold change of p-RPS3/RPS3 was further 

normalized to the 0-min samples (set as 1.0) in cells infected with the indicated E. coli O157:H7 

strains (right). (e) Transcript abundance relative to uninfected cells assessed by RT-PCR analysis 

of HeLa cells infected for 3 h with E. coli O157:H7 strains as in (d). The relative mRNA 

abundance of IL8, TNFAIP3, and NFKBIA were normalized to GAPDH expression (mean and 

s.d., n = 3). (f) Immunohistochemistry for S209 phosphorylated RPS3 in paraffin-embedded 

piglet colons derived from gnotobiotic piglets infected with E. coli O157:H7 EDL933 strains 

possessing (WT) or lacking NleH1 (ΔnleH1), using phospho-RPS3 antibody and 3,3′-

diaminobenzidine as a substrate (brown). Nuclei were counterstained with hematoxylin (blue). 

Size bar represents 25 µm. Representative images from two piglets are shown. Data are 

representative of two (a, c), four (b), three (d, e), and six (f) independent experiments. 
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Fig. 33. A subset of certain NF-κB target gene transcription is not impaired by NleH1. HeLa 

cells were left uninfected (Uninf) or infected for 3 h with wildtype (WT) E. coli O157:H7 or 

stains isogenic deletions in the escN (∆escN) or nleH1 (∆nleH1) genes. Transcript abundance of 

TNFSF13B, IFNGR2, and CD25 relative to uninfected cells assessed by RT-PCR analysis. The 

relative mRNA abundance were normalized to GAPDH expression (mean and s.d., n=3). The 

data represent two independent experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 143 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 144 

Fig. 34. NleH1 alters the substrate specificity of IKKβ to block IKKβ-mediated phosphorylation 

of RPS3. (a) Autoradiography (left) and Coomassie blue staining (right) of in vitro kinase assays 

with recombinant histidine-tagged (His-) NleH1 or NleH1(K159A), showing autophosphorylated 

NleH1 (p-NleH1) and total NleH1 (right margin). (b) Immunoblot analysis (above) of whole-cell 

lysates of HeLa cells overexpressing hemagglutinin-tagged control protein (−), wild-type NleH1 

or NleH1(K159A), left unstimulated (−) or stimulated for 30 min (+) with TNF (50 ng/ml). 

Below, densitometry, normalized and presented as in Figure 20d (c) Immunoblot analysis 

(above) of whole-cell lysates of HeLa cells left uninfected or infected for 3 h with wild-type or 

ΔnleH C. rodentium or with ΔnleH C. rodentium complemented with wild-type NleH1 

(ΔnleH+nleH1) or NleH1(K159A) (ΔnleH+nleH1(K159A)), followed by TNF treatment for 30 

min. Below, densitometry, normalized as in Figure 20d and presented as the ratio of 

phosphorylated RPS3 to RPS3 relative to that in untreated cells without infection, set as 1. (d) 

Immunoblot analysis (above) of nuclear proteins from HeLa cells transfected for 48 h with Flag-

tagged IKKβ constructs (top), then left uninfected (Mock) or infected for 3 h with wild-type, 

ΔescN or ΔnleH1 E. coli O157:H7. Below, densitometry, normalized as the intensity of each 

RPS3 band to the corresponding PARP band and presented as the change in nuclear RPS3 

relative to that in mock-infected cells, set as 1. (e) Autoradiography (left) and Coomassie blue 

staining (right) of in vitro kinase assays with recombinant RPS3 or GST-tagged IκBα peptide of 

amino acids 1–54 (GST-IκBα (1–54)) as the substrate and recombinant NleH1 or human IKKβ 

as the kinase. Data are representative of at least of two experiments. 
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Fig. 35. NleH1 does not phosphorylate IKKβ in vitro. HEK 293T cells were transfected with 

IKKβ (K44A)-Flag construct. In 24 h, the cells were lysed and followed by an 

immunoprecipitation with anti-Flag or isotype control (iso) antibodies. The immunoprecipitants 

were used as substrate in in vitro kinase assays with either wild-type or kinase dead (K159A) 

NleH1 proteins as kinases. The proteins were separated by SDS-PAGE and followed by 

autoradiograph (top). The expression and immunoprecipitated IKKβ (K44A)-Flag proteins were 

immunoblotted with anti-Flag antibody (bottom). The data represent two independent 

experiments. 
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NleH1 selectively inhibited RPS3 phosphorylation, thus retarding its nuclear translocation and 

subsequent NF-κB function without altering other NF-κB signaling. Although NleH1 did not 

directly phosphorylate IKKβ, its kinase activity was needed to inhibit IKKβ-mediated phos-

phorylation of RPS3 Ser209. Many bacterial pathogens have products that target key kinases to 

inactivate the kinases in host cells, whereas E. coli O157:H7 used NleH1 to steer the substrate 

specificity of IKKβ, thus specifically fine-tuning host NF-κB signaling. This could represent a 

previously unknown strategy for fine-tuning host NF-κB signaling that could be shared by other 

pathogens. Our data have provided new insight into the poorly understood action mechanism of 

most type III secretion system effectors. 

NleH1 attenuated the transcription of RPS3-dependent target genes but not all NF-κB target 

genes, in particular those genes associated with acute proinflammatory responses, including IL8 

and TNF. In contrast, NleH1 did not block nuclear translocation of NF-κB p65, which suggests 

that certain p65-dependent but RPS3-independent NF-κB target genes might thus be beneficial 

for the replication and dissemination of E. coli O157:H7 in the host. By selectively inhibiting 

RPS3 and its attendant NF-κB function with NleH1, the pathogen achieves the ability to increase 

colonization and diarrhea while limiting the mortality of the host. This seemingly paradoxical 

combination of effects make sense given that the greater bacterial load and diarrhea together with 

survival of the infected host would promote the spreading of the bacteria among a population of 

susceptible organisms. Such complex and paradoxical pathological effects that influence the 

spread of disease are often poorly understood at the molecular level. We have elucidated how 

alterations in selective NF-κB function, achieved by impeding RPS3 but not altering the nuclear 

translocation of p65, can influence specific cytokines that affect bacterial colonization, diarrheal 

disease and mortality. It may be fruitful while attempting to understand other infectious and 
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autoimmune diseases involving NF-κB to consider selective effects of subunits such as RPS3 in 

addition to global inhibition of NF-κB. 

 

Experimental procedures 

 

Cells and reagents 

 

Jurkat E6.1, HEK293T and HeLa cells were cultured in RPMI-1640 medium and DMEM 

supplemented with 10% (vol/vol) FCS and 2 mM glutamine, plus penicillin and streptomycin 

(100 U/ml each). Anti-IκBα (C-21; sc-371), anti-p65 (C-20; sc-372) and antibody to 

phosphoryalted threonine (H-2; sc-5267) were from Santa Cruz Biotechnology; anti-β-actin (AC-

15; A5441), anti-Flag (M2; F3165), anti-hemagglutinin (HA-7; H3663), anti-importin-α (IM-75; 

I1784) and anti-importin-β (31H4, I2534) were from Sigma; anti-PARP (C2-10; 556362), anti-

IKKα (B78-1; 556532) and anti-IKKβ (24; 611254) were from BD Pharmingen; anti-CK2α (31; 

611610) and anti-hsp90 (68; 610418) were from BD Transduction Laboratories; antibody to 

phosphorylated IκBα (5A5; 9246S) and antibody to phosphorylated IKKα-IKKβ (16A6; 2697S) 

were from Cell Signaling Technology; antibody to phosphorylated serine (AB1603) and 

antibody to phosphorylated tyrosine (4G10; 05-777) were from Millipore. Rabbit polyclonal 

antiserum to RPS3 has been described6. Rabbit polyclonal antibody specific for RPS3 

phosphorylated at Ser209 was generated and affinity-purified by Primm Biotech with the peptide 

NH2-CKPLPDHV(Sp)IVE-COOH. 

 

Plasmid constructs. 
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The constructs for Flag-tagged SSEE and SSAA IKKβ mutants and the hemagglutinin-tagged 

SSAA IκBα mutant were provided by C. Wu and U. Siebenlist, respectively. The plasmids for 

hemagglutinin-tagged IκBα and Flag-tagged IKKβ with the K44A substitution were from 

Addgene44, 45. The plasmids for Flag-tagged RPS3, GST-tagged RPS3 and hemagglutinin-

tagged RPS3, control VN protein and NleH1 have been described6, 9. RPS3(S209A) was 

generated by site-directed mutagenesis with the Quick Change Kit (Stratagene) with primers 5′-

CTGCCTGACCACGTGGCCATTGTGGAACCCAAA-3′ (forward) and 5′-TTTGGGTTCC- 

ACAATGGCCACGTGGTCAGGCAG-3′ (reverse). All mutants were verified by DNA 

sequencing. 

 

32P in vivo labeling. 

 

HEK293T cells were labeled for 2 h with [32P]orthophosphate (2 mCi/ml; PerkinElmer) in 

phosphate-free medium (Invitrogen). Cells were then left untreated or were treated for the 

appropriate time with TNF (50 ng/ml; R&D Systems). Cell lysates were prepared and used for 

immunoprecipitation with anti-RPS3. 

 

In vitro kinase assay. 

 

Kinase-active recombinant IKKβ and IKKα proteins were from Active Motif and Millipore, 

respectively. Bacterially purified GST, GST-IκBα (amino acids 1–54), wild-type GST-RPS3, 

mutant GST-RPS3 or RPS3 from which the tag was cleaved served as substrates. In vitro kinase 
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assays were done as described29. Enzyme (100 ng) and substrate (2 µg) were incubated together 

in IKK reaction buffer (25 mM Tris-HCl, pH 8.0, 50 mM KCl, 10 mM MgCl2, 1 mM 

dithiothreitol, 1 mM Na3VO4 and 1 mM ATP) or NleH1 reaction buffer (50 mM Tris-HCl, pH 

7.6, 5 mM MgCl2, 1 mM dithiothreitol and 1 mM ATP), with 0.5 µCi [γ-32P]ATP (GE 

Healthcare) added for 30 min at 37 °C. Reactions were resolved by SDS–PAGE and visualized 

by autoradiography. 

 

Liquid chromatography–tandem mass spectrometry. 

 

GST or GST-RPS3 was incubated with recombinant IKKβ protein as described above in in 

vitro kinase assay reactions without [γ-32P]ATP labeling. Reactions were separated by SDS-

PAGE and gels were stained with colloidal blue (Invitrogen). The corresponding protein 

fragments were excised and digested with trypsin, followed by liquid chromatography–tandem 

mass spectrometry at the Yale Cancer Center Mass Spectrometry Resource. 

 

RNA-mediated interference and transfection. 

 

The siRNA sense-strand sequences were as follows: IKKα, 5′-AUGACAGAGAAU- 

GAUCAUGUUCUGC-3′; IKKβ, 5′-GCAGCAAGGAGAACAGAGGUUAAUA-3′; IκBα, 5′-

GAGCUCCGAGACUUUCGAGGAAAUA-3′; RPS3-3′ UTR, 5′-GGAUGUUGCUCUCUA- 

AAGACC-3′ (Invitrogen). Transient transfection of siRNA and DNA constructs into Jurkat cells 

and HEK293T cells has been described (Wan et al., 2007). 
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Subcellular fractionation. 

 

Differential centrifugation was used for subcellular fractionation as described (Wan et al., 

2007). Cells were resuspended for 5 min at 4 °C in ice-cold buffer A (10 mM HEPES, pH 7.9, 10 

mM KCl, 1.5 mM MgCl2, 0.1 mM EDTA, 0.5 mM dithothreitol, 0.4% (vol/vol) NP-40, 0.5 mM 

phenylmethyl sulfonyl fluoride and complete protease inhibitor 'cocktail'). Lysates were 

centrifuged for 3 min at 500g and 4 °C, and supernatants were collected as cytosolic fractions. 

Pellets were incubated for 10 min at 4 °C in buffer C (20 mM HEPES, pH 7.9, 420 mM NaCl, 

1.5 mM MgCl2, 25% (vol/vol) glycerol, 0.5 mM PMSF, 0.2 mM EDTA, 0.5 mM dithiothreitol 

and complete protease inhibitor 'cocktail'). Supernatants were collected as nuclear fractions after 

centrifugation for 10 min at 13,800g and 4 °C.Luciferase reporter gene assays. 

These assays were done as described (Wan et al., 2007). Cells were cotransfected with firefly 

luciferase constructs driven by various promoters and the renilla luciferase plasmid pTKRL at a 

ratio of 10:1, together with the appropraite plasmid. Cells were cultured for 1–2 d and then were 

stimulated (in triplicate) before being collected. Lysates were analyzed with a Dual-Luciferase 

kit (Promega). 

 

Chromatin immunoprecipitation. 

 

These assays were done as described (Wan et al., 2007). The primers used to amplify the 

promoter region adjacent to the κB sites of IL8 and NFKBIA, as well as ACTB have been 

described (Wan et al., 2007). 
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Immunofluorescence microscopy. 

 

Confocal microscopy was done as described (Wan et al., 2007). Cells were fixed with 4% 

(vol/vol) paraformaldehyde in PBS and then mounted with Cellspin onto slides. Fixed cells were 

then made permeable with 0.05% (vol/vol) Triton X-100 in PBS and were stained for 40 min 

with fluorescein isothiocyanate–conjugated donkey antibody to rabbit immunoglobin G (711-

096-152; Jackson Laboratory) and rabbit anti-RPS3 (Primm Biotech) or Alexa Fluor 594–

conjugated goat antibody to mouse immunoglobin G1 (A21125; Invitrogen) and anti-Flag (M2; 

F3165; Sigma) and were incubated for 5 min at 25 °C together with Hoechst 33342 (1 µg/ml; 

Sigma). Slides were then rinsed three times with PBS and were mounted with covers for 

fluorescence microscopy. 

 

Immunoprecipitation and immunoblot analysis. 

 

Cells were lysed for 30 min on ice by 0.4 ml modified radioimmunoprecipitation assay buffer 

(50 mM Tris-HCl, pH 7.4, 1% (vol/vol) Nonidet-P40, 0.25% (wt/vol) sodium deoxycholate, 150 

mM NaCl, 1 mM EDTA, 1 mM phenylmethyl sulfonyl fluoride, 1 mM Na3VO4 and 1 mM NaF) 

supplemented with 1× protease inhibitor 'cocktail' (Roche) and 1× phosphatase inhibitor 

'cocktail' set I (EMD Biosciences). Lysates were centrifuged for 10 min at 10,000g and 4 °C for 

removal of insoluble material. After normalization of protein concentrations, lysates were 

subjected to immunoprecipitation by the addition of the appropriate antibody (10 mg/ml) plus 30 

ml of protein G–agarose (Roche), followed by rotation for at least 2 h at 4 °C. Precipitates were 

washed at least five times with cold lysis buffer, followed by separation by SDS-PAGE under 
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reducing and denaturing conditions. Nitrocellulose membranes were blocked in 5% (wt/vol) 

nonfat milk in 0.1% (vol/vol) Tween 20 in PBS, then were probed with the appropriate 

antibodies as described6. For immunoblot analysis of phosphorylated proteins, gels were 

transferred to methanol-treated polyvinylidene chloride membranes, retreated with methanol and 

dried for 30 min. Blots were blocked in 5% (wt/vol) bovine serum albumin in 0.1% (vol/vol) 

Tween 20 in Tris-buffered saline and were probed with the appropriate antibodies as described46. 

Bands were imaged by the Super Signaling system (Pierce) according to the manufacturer's 

instructions. 

 

Enzyme-linked immunosorbent assay. 

 

Interleukin 8 in supernatants of Jurkat cell cultures was measured with a Human IL-8 ELISA 

Ready-SET-Go! kit according to the manufacturer's instructions (eBioscience). 

 

Cell Infection. 

 

HeLa cells were infected with E. coli O157:H7 or C. rodentium as described (Gao et al., 2009). 

 

Immunohistochemistry. 

 

Gnotobiotic piglets were infected with E. coli O157:H7 as described (Gao et al., 2009). Spiral 

colon specimens collected at necropsy were embedded in paraffin. Paraffin sectioning and 

immunohistochemical staining with antibody to phosphorylated RPS3 were done by Histoserv.



 

 155 

Chapter IV: Bacterial effector glycosyltransferase activity reveals an integral role for 

GAPDH in innate immunity 

 

Abstract  

 

  Here we studied the mechanism of how the T3SS effector NleB targets the NF--κB 

signaling pathway. We identified the host glycolytic protein GAPDH as a eukaryotic interaction 

partner for NleB, which lead us to identify an integral role for GAPDH in the NF-κB signaling 

pathway. GAPDH interacts with TRAF2 and co-activates TRAF2 under stess conditions. We 

further demonstrated that NleB is an O-GlcNAc transferase and O-GlcNAclates GAPDH during 

bacterial infection. The NleB-mediated O-GlcNAcylation of GAPDH disrupts the formation of 

the GAPDH-TRAF2 complex resulting in the attenuation of TRAF2 polyubiquitination and NF-

κB activation. Eliminating the O-GlcNAc transferase activity abolishes the inhibitory effect of 

NleB on NF-κB activation and reduces the bacterial colonization ability in the host.  
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Introduction 

Infectious diarrhea constitutes a major endemic health threat and an increasingly frequent and 

deadly source of food- and water-borne illness. The Shiga toxin-producing Escherichia coli 

(STEC), a type of enterohemorrhagic E. coli (EHEC) are especially significant because they 

cause a type of renal failure (hemolytic uremic syndrome; HUS) for which therapy is limited. 

Furthermore, these infections are difficult to treat because antibiotics are contraindicated. A 

related attaching/effacing (A/E) pathogen, enteropathogenic E. coli (EPEC), is an important 

cause of infantile diarrhea.  

These human pathogens, as well as C. rodentium, a mouse pathogen that shares virulence 

strategies with E. coli (Deng et al., 2003), adhere to intestinal enterocytes and translocate 

virulence proteins (effectors) directly into intestinal epithelial cells through a type III secretion 

system (T3SS, (Cornelis, 2010)). Translocated T3SS effectors subvert host cell function by 

disrupting epithelial barrier function, altering ion channel/water pump activity, degrading 

absorptive microvilli, and suppressing innate immune responses. 

The knowledge of how T3SS effectors modulate the innate immune system, especially 

pathways regulated by the transcription factor NF-κB, has been expanded during past decades 

(Rahman and McFadden, 2011). In A/E pathogens, we have reported NleH1 from EPEC/EHEC 

specifically targets IKKβ-mediated non-Rel subunit Ribosomal protein S3 (RPS3) 

phosphorylation and subsequently blocks RPS3 nucleular translocation (Gao et al., 2009; Wan et 

al., 2011). The reduction of RPS3 nucleular translocation during cytokine stimulation or bacterial 

infection impairs NF-κB activation. Recently, NleC is a Zn-dependent protease that specifically 

cleaves the N-termini of RelA and inhibits RelA nucleular translocation upon stimulation 
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(Pearson et al., 2011; Shames et al., 2010; Yen et al., 2010). The latest studies showed that NleE 

is a methyltransferase that specifically methylates zinc-coordinating cysteines 673/692 in Npl4 

zinc finger (NZF) domains of TAB2/TAB3 (Zhang et al., 2012). The methylated NZF domains 

of TAB2/3 show a defect in binding zinc ions as well as binding with ubiquitin chains to impair 

the signalling of the NF-κB pathway. 

NleB is a T3SS-translocated effector that is highly conserved among the A/E pathogens. 

NleB-deficient C. rodentium do not cause mortality (Wickham et al., 2007b) or significant 

colonic hyperplasia (Kelly et al., 2006) in mice. These bacteria also suffer drastically reduced 

colonization, indicating the importance of NleB to C. rodentium virulence. While the function of 

NleB is unclear, the presence of NleB is a signature of STEC strains with high virulence in 

humans (Bugarel et al., 2010). NleB is strongly associated with human STEC outbreaks and the 

subsequent development of HUS (Wickham et al., 2006). Additionally, the presence of NleB in 

atypical EPEC strains is associated with diarrheal disease (Bugarel et al., 2010). Thus, it is clear 

that NleB plays an important role in the virulence of A/E pathogens. While NleB is not similar to 

proteins of known function and no functional domains in NleB have been identified, two recent 

studies suggest that a function of NleB may be to suppress NF-κB activation (Nadler et al., 2010; 

Newton et al., 2010). Here, we demonstrate that NleB is an O-GlcNAc transferase that utilizes 

UDP-GlcNAc (Uridine diphosphate N-acetylglucosamine) from the host hexamine biosynthesis 

pathway (HBP) to target GAPDH. We provide the evidence that GAPDH is a co-activator of 

TRAF2 and the O-GlcNAcylation of GAPDH mediated by NleB prevents its function in TRAF2 

activation and alter NF-κB signalling.  
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Results 

NleB inhibits NF-κB activation by inhibiting TRAF2 polyubiquitination. Recent 

studies have identified NleB as a virulence factor required for bacterial colonization and 

transmission (Kelly et al., 2006; Wickham et al., 2007a). In agreement with previous studies, we 

found that the colonization of C57BL/6J mice by wild-type (WT) C. rodentium is significantly 

greater than that of either ΔescN or ΔnleB C. rodentium (Fig. 36A). Complementing the ΔnleB C. 

rodentium strain (ΔnleB/pnleB) restored bacterial colonization to a magnitude comparable to the 

wild-type strain. Additionally, TNF concentrations in sera are significantly higher in mice 

infected with wild-type C. rodentium, as compared with mice infected with ΔnleB (Fig. 36B), 

which indicates that NleB contributes to bacterial-induced inflammation in the host. NleB has 

been suggested to inhibit TNF-induced NF-κB activation, but the mechanism is unclear (Nadler 

et al., 2010; Newton et al., 2010). To confirm these data, we transfected HeLa cells with NleB-

HA or an HA-epitope control plasmid and then stimulated these cells with TNF and subsequently 

examined the extent of IκBα degradation. Consistent with previous studies (Nadler et al., 2010; 

Newton et al., 2010), we found that NleB prevents TNF-induced IκBα degradation and the 

subsequent translocation of the NF-kB p65 subunit to the nucleus (Fig. 37A).  

After stimulation with TNF, the cytosolic death domain of the TNF receptor-1 (TNF-R1) 

recruits molecules such as the TNFR-associated death domain protein (TRADD), the TNFR 

associated factor 2 (TRAF2) and receptor-interacting protein 1 (RIP1) to form multiple protein 

complexes that subsequently activate the NF-κB pathway (Chen and Goeddel, 2002). During this 

process, TRAF2, an E3 ubiquitin ligase, quickly becomes polyubiquitinated and activates the 

kinase RIP1. As NleB has been proposed to target the initial events of TNF-NF-κB signaling, we 

therefore examined whether NleB affects TRAF2 polyubiquitination. Because of the difficulty in 
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detecting endogenous TRAF2 in HeLa cells, we co-transfected a TRAF2-FLAG expression 

plasmid with C. rodentium NleB-HA or an HA-epitope control plasmid. TRAF2 

polyubiquitination was strongly induced by TNF in control cells (Fig. 37D). By contrast, cells 

transfected with NleB-HA exhibited significantly reduced TRAF2 polyubiquitination (Fig. 37D). 

Surprisingly, TRADD was still recruited to TRAF2 in the presence of NleB (Fig. 37D), 

indicating the molecular target of NleB might instead be a co-activator of TRAF2 

polyubiquitination  

To assess the impact of NleB on TRAF2 stability, we transfected HeLa cells with TRAF2-

FLAG and then infected these cells with C. rodentium strains possessing or lacking NleB. 

Infecting cells with ΔnleB C. rodentium strain quickly induced TRAF2 protein degradation (Fig. 

37B), with almost complete TRAF2 degradation observed after 3 h infection. By contrast, 

TRAF2 was stable in cells infected with either wild-type (WT) or ΔnleB/pnleB C. rodentium 

(Fig. 37B). The dynamics of TRAF2 protein degradation was synergized with the NF-κB 

inhibitor, IκBα protein degradation (Fig. 37B). ΔnleB C. rodentium failed to induce TRAF2 

degradtion in cells transfected with TRAF2 ΔRING mutant, which can not become 

polyubiquitinated (Fig. 37C, (Chen, 2005; Shi and Kehrl, 2003)). The 26S proteasome inhibitor 

MG-132 stabilized TRAF2 during bacterial infection (Fig. 37E). Therefore, our data suggested 

TRAF2 degradation induced by the bacterial infection is clearly dependent on the host ubiquitin-

26S proteasome system, which is consistent with previous studies (Brown et al., 2001). As we 

expected, TRAF2 polyubiquitination is prevented in cells infected by WT or ΔnleB/pnleB C. 

rodentium but not ΔnleB C. rodentium strain (Fig. 37E).  Taken together, our results suggested 

NleB might target a missing co-activator(s) of TRAF2 to prevent its polyubiquitination upon 

TNF stimulation or bacterial infection, which subsequently results in the attenuation of NF-κB 
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activation.  

NleB interacts with GAPDH. As we did not obtain evidence that NleB binds TRAF2 (Fig. 

37D), we conducted a proteomic screen to identify NleB interaction partner(s).  By using an 

NleB-FLAG affinity column, we identified a HeLa cell protein of ~ 37 kDa that specifically 

interacted with immobilized NleB (Fig. 38A). By using mass spectrometry, we identified this 

protein as glyceraldehyde 3-phosphate dehydrogenase (GAPDH; Fig. 38B), an integral 

component of the glycolysis pathway.  

We confirmed the association of NleB with endogenous GAPDH by performing 

immunoprecipitation assays. Infecting HeLa cells with C. rodentium strains expressing either 

NleB-FLAG or NleC-FLAG showed that NleB, but not NleC immunoprecipitates with GAPDH 

(Fig. 38C). GAPDH also co-immunoprecipitates with ectopically-expressed NleB-HA, but not 

with an HA-epitope control (Fig. 38D). Our in vitro pulldown assay with recombinant proteins 

showed that NleB-FLAG but not NleC-FLAG binds directly to GAPDH (Fig. 38E). 

GAPDH converts glyceraldehyde-3-phosphate to D-glycerate 1,3-bisphospate and generates 

NADH from NAD+ in the sixth  step of glycolysis (Sirover, 1999; Tristan et al., 2011). Besides 

its glycolytic function, GAPDH is also involved in a broad range of biological events (Sirover, 

2011; Tristan et al., 2011). Over-expressing GAPDH induces apoptosis and results in GAPDH 

localization to the nucleus (Dastoor and Dreyer, 2001; Tajima et al., 1999). GAPDH can bind to 

and protect telomere DNA from degradation in the presence of DNA damaging agents 

(Sundararaj et al., 2004). GAPDH also accumulates in the mitochondria of cells with DNA 

damage, where it induces a pro-apoptotic mitochondrial membrane permeabilization (Tarze et 

al., 2007).  

Some apoptotic stimuli generate nitric oxide, which causes GAPDH S-nitrosylation on its 
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catalytic cysteine residue (Chen and Goeddel, 2002). Nitrosylated GAPDH (SNO-GAPDH) 

binds the E3 ubiquitin-protein ligase Siah1, allowing both proteins to enter the nucleus. While 

Siah1 binding and GAPDH S-nitrosylation do not have a significant impact on overall glycolytic 

activity (Chen and Goeddel, 2002), elevated glucose concentrations increase Siah1 expression 

and promote its binding to GAPDH (Yego et al., 2009). Nuclear GAPDH can also function as a 

trans-nitrosylase, with targets that include the histone deacetylating enzymes SIRT1 and HDAC2 

(Kornberg et al., 2010).  

To test whether Cys 150 (C150) is essential for NleB-GAPDH binding, we performed an in 

vitro pulldown assay. Our data showed that both GAPDH WT and C150S, which replaces 

cysteine with serine, are both able to interact with NleB in vitro (Fig. 38F). Likewise, treatment 

with iodoacetate (IA), which modifies the SH-group of the active-site GAPDH cysteine and 

prevents disulfide bond formation, also does not interrupt GAPDH-NleB interaction in vitro (Fig. 

38G). In addition, NleB does not alter GAPDH enzymatic activity or the total ATP level in cells 

(data not shown), which indicates that this NleB-GAPDH interaction is unlikely to alter host 

metabolism. Taken together, our data strongly suggested GAPDH is the eukaryotic interaction 

partner for NleB. 

GAPDH is required for TNF-induced NF-κB activation. The involvement of GAPDH in 

stress-responsive pathways has been identified in eukaryotic cells (Colell et al., 2009; Hara et al., 

2005; Mookherjee et al., 2009; Morigasaki et al., 2008). Interestingly, GAPDH is also predicted 

to participate in the NF-κB signaling pathway (Bouwmeester et al., 2004; Mookherjee et al., 

2009). We therefore hypothesized GAPDH might be important for NF-κB activation. We first 

performed a “Loss-of-Function” assay by knocking down endogenous GAPDH protein. 
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Fig.36 NleB is a bacterial virulence factor. A. Colonization (CFUs / 100mg mouse feces) of 

indicated C. rodentium strains (7 d post-gavage) in C57BL/6J mice (n = 6/group). B. TNF-α 

concentration in serum samples from mice uninfected or infected with different C.rodentium 

strains.  
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Fig. 37. NleB inhibits NF-κB activation by inhibiting TRAF2 polyubiquitination. A. Western-

blot analysis of IκBα degradation and p65 nuclear translocation stimulated by TNF with or 

without the presence of NleB. B. Stabilization of TRAF2 during infection. HeLa cells were 

transfected with 1 µg of TRAF2-FLAG expression plasmids and infected with different C. 

rodentium strains for 1 or 3 h. The amount of NleB protein translocated into the cytosol of host 

cells is indicated as NleB-FLAG. C. Effect of TRAF2 RING domain on TRAF2 protein 

stabilization during bacterial infection. HeLa cells transfected with either TRAF2-FLAG or 

ΔRING TRAF2-FLAG expression plasmid were infected with C. rodentium for 3 h. D. 

Immunoprecipitation of TRAF2-FLAG was performed to assess whether NleB targets TRAF2. 

Samples were immunoprecipitated by α-FLAG antibody to capture TRAF2 and immunoblotted 

for TRADD, FLAG to detect TRAF2, ubiquitin to detect polyubiquitin chain and HA to detect 

NleB. The bottom panel depicts the expression levels of the TRADD, TRAF2, NleB and Actin.  

E. Polyubiquitination of TRAF2 during the bacterial infection. HeLa cells transfected with 

TRAF2-FLAG were pre-treated with MG-132 for 2 h and infected with C. rodentium strains as 

indicated for 1 or 3 h. TRAF2 was immunoprecipitated and subjected to western-blot analysis for 

TRAF2 polyubiquitination. 
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Fig. 38. NleB interacts with host glycolytic protein GAPDH. A. Affinity enrichment of HeLa 

proteins with NleB-FLAG. Upper panel: HeLa cell lysates were incubated with purified NleB-

FLAG pre-bound to FLAG M2 beads and analyzed by SDS-PAGE. Samples included M2 beads 

(lane 1), NleB-FLAG + M2 beads (lane 2), HeLa lysate + M2 beads (lane 3) and HeLa lysate + 

NleB-FLAG + M2 beads (Lane 4). Protein band cut for mass spectrometry was indicated with 

Asterisk. Lower pannel: samples from the affinity column assay were analyzed by western-blot 

with α-GAPDH antibody.  B. GAPDH amino acid sequence. Tryptic peptides identified by mass 

spectrometry are indicated in red. C. Immunoprecipitation of GAPDH from HeLa cells by 

translocated NleB-FLAG or NleC-FLAG by C. rodentium infection for 1 or 3 h. Samples were 

immunoprecipitated with α-GAPDH antibody and immunoblotted with FLAG and GAPDH. D. 

Co-immunoprecipitation of GAPDH with HA or NleB-HA plasmids. Samples were 

immunoprecipitated with α-GAPDH antibody to capture endogenous GAPDH and 

immunoblotted for HA to detect NleB. E. In vitro pulldown assay was conducted to examine the 

interaction between NleB and GAPDH. The FLAG-tagged NleB or NleC proteins were coupled 

to M2 beads and incubated with GAPDH. The bound proteins and flow-through (F.T) were 

analyzed by SDS-PAGE and subjected to IRDye Blue protein stain (LI-COR Bioscience). F. 

GAPDH enzymatic activity of HeLa cells treated or non-treated with GAPDH inhibitor IA was 

measured as described in experimental procedures. G. The effect of IA on the interaction binding 

between GAPDH and NleB-FLAG was measured by in vitro pulldown assay. GAPDH proteins 

were incubated with M2 beads alone or M2 beads pre-binding with NleB-FLAG. GAPDH 

protein treated with IA was indicated.   
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 The depletion of GAPDH activates multiple stress-induced signaling pathways (Fig. 39A). This 

is likely due to the production of reactive oxygen species (ROS) and the release of cytochrome c 

from mitochondria (Fig. 39B and C). These data indicated that the presence of GAPDH is 

required to keep cellular homeostasis possibly by maintaining mitochondria membrane integrity 

(Tarze et al., 2007). Moreover, in GAPDH knocking-down cells, complementing with either 

GAPDH WT or C150S prevents the release of cytochrome c and reduces the activation of stress-

responsive pathways (Fig. 39C and D). Knocking down endogenous GAPDH in cells as well as 

complementing these cells with GAPDH C150S results in 30 % decrease in cellular ATP amount, 

whereas complementing with GAPDH WT and another mutant K160R slightly increase the ATP 

amount compared to the control (Fig. 39E). This is likely due to the role of GAPDH in 

glycolysis. Thus, our “Loss-of-Function” experiments did not indicate a specific role for 

GAPDH in the NF-κB pathway other than keeping cellular homeostasis. However, we found 

complementation with the GAPDH C150S expression plasmid specifically attenuates TNF-

induced IκBα degradation and NF-κB activation (Fig. 40A). We therefore hypothesized that the 

C150 of GAPDH might be required for NF-κB activation upon TNF stimulation. 

          To test this hypothesis, we pre-treated HeLa cells with GAPDH inhibitor IA for 20’ 

followed by TNF stimulation. To evaluate the effect of glycolysis on TNF-induced NF-κB 

activation, we also pre-treated cells with hexokinase inhibitor 2-deoxy-D-glucose (2-DG) or the 

pyruvate kinase (PK) inhibitor potassium oxalate (P.Ox). As shown in Fig. 40D, treatment with 

P.Ox or 2DG results in over 80 % ATP depletion in cells, whereas a 40 % decrease in ATP 

amount was seen in IA-treated cells. However, treatment of IA leads to a significant inhibition 

on GAPDH enzymatic activity compared to that in P.Ox or 2-DG-treated cells (Fig. 40B). After 

TNF treatment, cell samples were collected and subjected to microarray and real-time PCR (RT-
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PCR) analysis. Both our microarray (data not shown) and real-time PCR results showed that all 

NF-κB-mediated genes induced by TNF are significantly inhibited by the treatment of IA (Fig. 

41A). Inhibition of glycolysis by 2-DG or P.Ox leads to a moderate inhibition of NF-κB 

activation but not as significant as that with IA treatment (Fig. 41A). Similar results were also 

observed in our luciferase assays (Fig. 40C).  

To exclude the possibility of off-target effects, we further performed luciferase analysis and 

RT-PCR in cells complemented with GAPDH WT or C150S. Our luciferase data showed that 

complementing with GAPDH C150S plasmid attenuates NF-κB activation induced by TNF 

whereas complementation with GAPDH WT plasmid slightly enhances NF-κB activation if there 

is any (Fig. 41B). In contrast, AP-1 luciferase activity stimulated by TNF is affected by neither 

GAPDH (Fig. 41B).  

         We further found TNF-induced phosphorylation of IKKβ but not p38 is attenuated by 

GAPDH C150S (Fig. 41C). This is consistent with our results that complementation with 

GAPDH C150S attenuates TNF-induced IκBα degradation (Fig. 40A). Likewise, TNF fails to 

induce IκBα degradation and IKKβ phosphorylation in IA-treated cells but not in P.Ox- or non-

treated cells, whereas phosphorylation of p38 and JNK is not affected (Fig. 41D). Taken together, 

our results suggest that GAPDH has a non-glycolytic role in regulating the NF-κB signaling 

pathway.  

 

GAPDH interacts with and activates TRAF2. TRAF2 shares significant structure 

similarity with Siah1 (Reed and Ely, 2002). Siah1, an E3 ligase belonging to the  
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Fig. 39. Knockdown of GAPDH disrupts cellular homeostasis. A. Luciferase activities as a 

function of GAPDH knockdown. ns: non-specific. B. ROS production after GAPDH knockdown 

was evaluated as described in experimental procedures. C. Western-blot analysis of the release of 

cytochrome C. HeLa cells were co-transfected with GAPDH 3’-UTR siRNAs and GAPDH-Myc 

or GAPDH-C150S-Myc. Cell lysates were harvested and subjected to mitochondria fractionation. 

The amount of cytochrome C in the cytosol fraction was analyzed by monoclonal α-cytochrome 

C antibody. D. NF-κB luciferase activities as the function of GAPDH complementary. E. ATP 

levels in GAPDH knockdown HeLa cells with or without complementation of different GAPDH 

expression plasmids.  
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Fig. 40. GAPDH C150 residue is important for NF-κB activation. A. IκBα degradation in HeLa 

cells induced by TNF. Endogenous GAPDH was knocked down in HeLa cells, and 

complemented with indicated GAPDH plasmids. Cells were stimulated with TNF and analyzed 

by western-blot for protein expression as indicated. B-C.  ATP levels, GAPDH activities and 

NF-κB luciferase activities in HeLa cells treated different drugs as indicated.  
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Fig. 41. GAPDH is essential for TNF-induced NF-κB activation.  A. Heatmap showing results of 

RT-PCR analysis measruing the expression of NF-κB dependent or independent genes after 

different treatments. Hela cells were treated with indicated drugs before stimulation with TNF 

(10 ng/ml, 20’). Data are presented as mean + SEM, n = 3. B. NF-κB and AP-1 luciferase 

activities as the function of GAPDH or GAPDH C150S complementation. Data are presented as 

mean + SEM, n = 3. *P < 0.05. C. Analysis of IKKβ phosphorylation in GAPDH knockdown 

cells complemented with GAPDH or GAPDH C150S. HeLa cells were co-transfected with or 

without GAPDH siRNA. Meanwhile, IKKβ-FLAG with GAPDH-Myc or GAPDH-C150S-Myc 

plasmids were also introduced into the GAPDH knockdown cells before stimulated with TNF. D. 

Effects of the drugs on multiple cellular signaling pathways. HeLa cells were treated with 

indicated drugs before stimulated with TNF. Cell lysates were analyzed by SDS-PAGE and 

immunoblotted for indicated antibodies. 
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Siah/Sina family, interacts with and is stabilized by GAPDH under stress (Hara et al., 2005). 

Interestingly, Siah1 and TRAF2 can both interact with the Peg3/Pw1 protein to activate NF-κB 

(Relaix et al., 1998). Therefore, we hypothesized that GAPDH interacts with TRAF2 under 

stress conditions. Co-transfection of TRAF2 with GAPDH plasmids showed that TRAF2 is 

associated with GAPDH WT (Fig. 42A). This association is enhanced upon TNF stimulation and 

is interrupted by treatment with IA (Fig. 43A). Endogenous GAPDH was also 

immunoprecipitated by TRAF2 upon TNF stimulation (Fig. 42B). Our in vitro pulldown assays 

showed that only TRAF2 interacts directly with GAPDH and not NleB, which is consistent with 

our previous data (Fig. 42C and 37D). The ΔRING domain of TRAF2 is not required for this 

interaction as ΔRING TRAF2 is still able to immunoprecipitate GAPDH (Fig. 42D). GAPDH 

C150S appears to be important for GAPDH-TRAF2 interaction as GAPDH C150S fails to 

immunoprecipitate TRAF2 in our co-transfection experiments (Fig. 42A and D). To our surprise, 

not even a basal level of interaction between TRAF2 and GAPDH C150S could be detected (Fig. 

42A). To further investigate whether GAPDH C150S can interact with TRAF2, we conducted an 

in vitro pulldown assay. We replaced the His-Tag on GAPDH and its mutant C150S with 

different epitope tags for use in our in vitro pulldown assay with TRAF2-His protein. However, 

we did not get proteins expressed in our hands. We therefore deciced to employ  an alternative 

strategy by using GAPDH inhibitor IA based on the fact that both IA treatment and the C150S 

mutant block GAPDH-TRAF2 interaction in vivo. GAPDH proteins treated with different 

concentration of IA are still able to interact with TRAF2 in vitro (Fig. 43B). Therefore, our data 

suggested that C150 is crucial for the interaction of GAPDH with TRAF2 in vivo. There might 

be additional domain(s) on GAPDH responsible for the binding with TRAF2. We are currently 

mapping the domains on TRAF2 respobsible for the interaction. 
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We next investigated whether this GAPDH-TRAF2 interaction is important for TRAF2 

activation in response to TNF stimulation. We knocked down the endogenous GAPDH level by 

siRNAs and complemented with TRAF2-FLAG plus GAPDH WT or C150S plasmids. TNF 

stimulation, TRAF2 polyubiquitination is significantly induced in groups with GAPDH WT and 

the control group following TNF stimulation (Fig. 42E). In contrast, TNF-induced TRAF2 

polyubiquitination in cells complemented with GAPDH C150S or treated with IA is significantly 

attenuated (Fig. 42E). This is not related to the alteration of the cellular energy level, as 

treatment with  P.Ox does not impair TRAF2 polyubiquitination. Therefore, our results indicate 

that GAPDH physically interacts with TRAF2 and the recruitment of GAPDH is dependent upon 

its C150 in vivo and is enhanced by TNF stimulation.   

  

NleB is a glycosyltransferase and O-GlcNAcylates GAPDH. Bioinformatic prediction 

suggested NleB is a glycosyltransferase (GT) belonging to the GT-A clan, GT-8 family. This 

group of glycosyltransferases  is characterized by a DXD motif critical for the binding of a 

catalytic divalent cation such as Mn2+ (Liu and Mushegian, 2003). In addition, this group of 

glycosyltransferase also employs the Rossmann-like fold responsible for the nucleotide sugar 

binding. NleB contains multiple Rossman-like folds localizing at its N-terminus followed by a 

DXD motif (221DAD223) (Fig. 44A). This DAD motif is conserved in NleB homologs within 

enteropathogenic bacteria (Fig. 44B). Therefore, we hypothesized that NleB is a 

glycosyltransferase.  

In eukaryotic cells, O-linked-N-acetylglucosamine (O-GlcNAc) is involved in regulating 

cellular signaling network including the NF-κB signalling pathway (Yang et al., 2008; Zachara 

and Hart, 2006). O-GlcNAcylation is highly regulated by two enzymes, O-GlcNAc transferase  
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Fig. 42. GAPDH physically interacts with TRAF2.  A-B. HeLa cells were transfected with 

TRAF2-FLAG or co-transfected with TRAF2-FLAG and GAPDH-Myc. HeLa cells was 

immunoprecipitated by α-FLAG antibody to capture TRAF2-FLAG and immunoblotted for α-

Myc antibody to detect GAPDH-Myc or α-GAPDH antibody to detect endogenous GAPDH. 

TNF stimulation was indicated at the top of each figure. C. In vitro pulldown assay for the 

interaction between TRAF2 and GAPDH. TRAF2-His protein was coupled with Ni-NTA 

agarose and incubated with GAPDH or NleB-FLAG + 1mM UDP-GlcNAc. D. 

Immunoprecipitation of TRAF2- or ΔRING TAF2-FLAG was performed with the α-FLAG 

antibody. Samples were analyzed by SDS-PAGE and immunoblotted for α-Myc for detecting 

GAPDH-Myc. E. GAPDH activates TRAF2 polyubiquitination. HeLa cells were introduced a 

combination of plasmids and siRNAs as indicated. After 60 h incubation, cells were treated with 

or without indicated drugs. Cell lysate aliquots were subjected to different immunoprecipitation 

analysis. Cell lysates was immunoprecipitated by the α-FLAG antibody and immunoblotted for 

ubiquitin and GAPDH-Myc. Another immunoprecipitation was conducted by α-Myc antibody 

and immunoblotted for O-GlcNAc and OGT. The endogenous GAPDH and OGT expression was 

also showed for protein expression controls.  
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Fig. 43. IA impairs TRAF2-GAPDH interaction in vivo but not in vitro. A. HeLa cells were 

treated with IA or P.Ox before TNF stimulation for indicated time. Cells were then subjected to 

TRAF2-FLAG immunoprecipitation and detected for the endogenous GAPDH by the α-GAPDH 

antibody. B. In vitro pulldown assay for assessing the effect of IA on the interaction between 

GAPDH and TRAF2. TRAF2-His was pre-bound with Ni-NTA agarose and incubated with 

GAPDH. The bound proteins were analyzed by SDS-PAGE and protein gel staining. The amount 

of IA added to the reaction is indicated.  
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Fig. 44. Bioinformatic analysis of NleB. A. Predicted motifs on the NleB protein. B. Sequence 

alignment of NleB from C. rodentium, EHEC, EPEC and Salmonella by using Clustal W. The 

red box indicates the conserved DAD motif in NleB with its homologues.  
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(OGT) and O-GlcNAcase (OGA) (Hart et al., 2007). OGT catalyzes the transfer of N-

acetylglucosamine from UDP-GlcNAc to the hydroxyl oxygen of serine or threonine, whereas 

OGA removes O-GlcNAc from targeted proteins. As targeting for similar sites on serine or 

threonine, O-GlcNAcylation is found to compete with phosphorylation, which often leads to the 

function switch of proteins. By using O-GlcNAc enzymatic in vitro labeling system, we found 

recombinant NleB-FLAG protein strongly O-GlcNAcylate GAPDH protein (Fig. 45A). We 

confirmed this result by using antibodies specifically recognizing O-GlcNAcylation sites on 

proteins (Fig. 45B). Notably, the intensity of NleB-mediated O-GlcNAcylation on GAPDH is 

correlated with the concentration of UDP-GlcNAc, which further indicates NleB is an O-

GlcNAc transferase (Fig. 45C). To investigate whether NleB is able to O-GlcNAcylate GAPDH 

during bacterial infection, we performed a time-course infection experiment by using C. 

rodentium strains. At 3 h post infection, we found O-GlcNAcylation of GAPDH is strongly 

induced only in cells with WT C.rodentium infection, whereas no significant O-GlcNAcylation 

signal on GAPDH can be detected in the group infected with the ΔnleB C.rodentium (Fig. 45D). 

Moreover, while TNF alone does not induce GAPDH O-GlcNAcylation, GAPDH from cells 

transfected with NleB plasmid is clearly O-GlcNAcylated (Fig. 45E). Although GAPDH O-

GlcNAcylation has been reported before (Park et al., 2009), we could not detect any significant 

O-GlcNAcylation signal from GAPDH without NleB in our experimental systems. Notably, 

immunoprecipitation of GAPDH does not pull down the host OGT protein in our hands, which 

indicates that GAPDH O-GlcNAcylation is specifically mediated by NleB (Fig. 45E). We also 

found NleB is able to O-GlcNAcylate the GAPDH C150S mutant, which is consistent with our 

previous results that C150 residue is not required for the interaction of GAPDH with NleB (Fig. 

45E).  
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To confirm NleB is an O-GlcNAc transferase, we mutated the predicted catalytic site 

221DAD223 on NleB to 221AAA223 (NleB DAD→AAA). We found the NleB DAD→AAA mutant 

fails to O-GlcNAcylate GAPDH both in vitro and in vivo (Fig. 45E and 46A). Intriguingly, 

mutating 221DAD223 to 221AAA223 causes a slower mobililty of the protein on SDS-PAGE (Fig. 

45E and 46A). As we expected, disruption of Rossmann-like folds of NleB (Δ202 NleB) 

prevents O-GlcNAcylation of GAPDH (Figure 45E). OGA catalyzes the cleavage of O-GlcNAc 

from modified proteins (Hart et al., 2007). Treatment of cells with an OGA enzyme inhibitor 

thiamet G (TMG) blocks the cleavage and significantly increases the O-GlcNAcylation level of 

cellular proteins (Fig. 46A). We therefore decided to test whether O-GlcNAcylation of GAPDH 

by NleB is enhanced by the treatment with TMG. We found O-GlcNAcylation of GAPDH 

mediated by NleB is significantly increased with the TMG treatment (Fig. 46A). In contrast, the 

NleB DAD→AAA mutant does not O-GlcNAcylate GAPDH in cells treated with TMG, which 

indicates that this DAD motif is essential for the O-GlcNAc transferase activity of NleB. Taken 

together, our data strongly suggests NleB is an O-GlcNAc transferase and uses UDP-GlcNAc 

sugars to modify GAPDH protein in the host. 

 

NleB disrupts the interaction between GAPDH and TRAF2 through its O-GlcNAc 

transferase activity. Our in vitro data showed that the addition of UDP-GlcNAc molecules 

increases the interaction between GAPDH and NleB, which indicates O-GlcNAc transferase 

activity might promote the interaction between NleB and GAPDH (Fig. 47A). 

Immunoprecipitation of GAPDH also showed that the amount of NleB associated with GAPDH 

is increased by the TMG treatment (Fig. 46A). Interestingly, in our in vitro pulldown assay by 

which NleB-FLAG, GAPDH and TRAF-His proteins were incubated together, we found that 
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NleB-FLAG is pulled down by TRAF2-His without the presence of UDP-GlcNAc (Fig. 46C). 

As NleB does not interact with TRAF2 even in the presence of UDP-GlcNAc, this association of 

NleB with TRAF2 in vitro must be through GAPDH (Fig. 42C).  In contrast, when UDP-

GlcNAc is present, decreased amount of NleB-FLAG and GAPDH is able to be pulled down by 

TRAF2-His and  an increased amount of NleB and GAPDH proteins can be detected in the flow-

through. Remarkably, only disassociated GAPDH shows a strong signal of O-GlcNAcylation 

compared to the GAPDH bound to TRAF2. Therefore, we hypothesized that NleB might interact 

with GAPDH to disrupt the formation of TRAF2-GAPDH complex through its O-GlcNAc 

transferase activity. In our TRAF2 immunoprecipitation assay, we found that much less GAPDH 

is associated with TRAF2 in the presence of NleB compared to the control, which is consistent 

with our in vitro data (Fig. 42E). The interaction between GAPDH and TRAF2 is not interrupted 

by the presence of the NleB DAD→AAA mutant, which is likely due to the disassociation of the 

NleB DAD→AAA mutant with GAPDH (Fig. 42E). Interestingly, the NleB DAD→AAA 

mutant displays a significantly different intracellular localization pattern compared to the NleB 

WT and does not co-localize with GAPDH (Fig. 46B). Therefore, our results indicated NleB 

prevents GAPDH-TRAF2 interaction through its O-GlcNAc transferase activity. Meanwhile, we 

are investigating whether NleB will have a more significant phenotype upon disrupting the 

interaction between TRAF2 and GAPDH by the treatment with TMG in vivo, which we believe 

can further support our results.  

      The O-GlcNAc transferase activity is required for the function of NleB on NF-κB. To 

evaluate whether O-GlcNAc transferase activity of NleB is important for its virulence in the host, 

we infected mice with the ΔnleB/pnleB C. rodentium strain or the ΔnleB/pNleB-DAD→AAA C. 

rodentium strain. Mice infected with the ΔnleB/pNleB-DAD→AAA C. rodentium strain shows  
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Fig. 45. NleB O-GlcNAcylates GAPDH. A-B. Detection of GAPDH O-GlcNAcylation of NleB 

through the Click-iTTm O-GlcNAcylation system or α-GlcNAc antibody as described in 

experimental procedures. C. Detection of GAPDH O-GlcNAcylation by NleB with an increased 

amount of UDP-GlcNAc. NleB- and NleC-FLAG proteins were incubated with GAPDH protein 

with the indicated amount of UDP-GlcNAc. Proteins were analyzed by SDS-PAGE and 

immunoblotted for the O-GlcNAcylation by the α-GlcNAc antibody. D. Analysis of GAPDH O-

GlcNAcylation during the bacterial infection. HeLa cells were infected with C. rodentium WT or

ΔnleB strain for 1 or 3 h. Cell lysates were immunoprecipitated with α-GAPDH antibody and 

analyzed for the O-GlcNAcylation level. E. Analysis of GAPDH O-GlcNAcylation by NleB 

mutants. FLAG-NleB WT and mutants were purified and incubated with GAPDH. The incubated 

proteins were analyzed by SDS-PAGE and immunobloted with α-GlcNAc, α-FLAG and α-

GAPDH antibodies.    
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Fig. 46. The The O-GlcNAc transferase activity is essential for the function of NleB on NF-κB.  

A. HeLa cells were co-transfected with NleB-HA, TRAF2-FLAG and GAPDH-Myc expression 

plasmids for 60 h and treated with TMG for 8 h before stimulated with or without TNF. Cell 

lysates were immunoprecipitated for TRAF2-FLAG or GAPDH-Myc to detect TRAF2 

polyubiquitination or GAPDH O-GlcNAcylation and NleB-HA individually. Cell lysates were 

also immunoblotted for the global O-GlcNAc level and other protein levels as indicated. B. 

NleB(DAD) mutant does not colocalize with GAPDH. HeLa cells were transfected with NleB-

GFP plasmids (green) and stained with α-GAPDH antibody (red). C. In vitro pulldown were 

performed to assess whether NleB prevents the interaction between GAPDH and TRAF2 through 

its O-GlcNAc transferase activity. TRAF2-His was coupled with Ni-NTA beads and incubated 

with NleB-FLAG and GAPDH proteins. UDP-GlcNAc was added at the final concentration of 

1mM in the indicated group. The bound and flow-through protein were analyzed by SDS-PAGE 

and subjected for both gel staining and O-GlcNAcylation with the α-GlcNAc antibody. D. 

Colonization (CFUs / g mouse colon) of indicated C. rodentium strains (7 d post-gavage) in 

C57BL/6J mice. E. Analysis of AP-1 luciferase activity in the presence of NleB with the 

treatment of TMG. HeLa cells were co-transfected with luciferase reporters and NleB-HA or 

control plasmids for 60 h, and treated with TMG for 8 h before the stimulation of TNF for 20’. 
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more than a 2 log reduction in bacterial colonization number compared to mice infected with the 

ΔnleB/pNleB C. rodentium strain (Fig. 46D). Therefore, the O-GlcNAc transferase activity of 

NleB enhaces bacterial virulence in the host.  

We next examined whether this NleB-mediated O-GlcNAcylation of GAPDH is essential for 

the effect of NleB on NF-κB activation. In contrast to WT, the NleB DAD→AAA mutant does 

not prevent IκBα degradation or NF-κB activation stimulated by TNF (Fig. 46A). Disruption of 

Rossmann-like folds also fails to block IκBα degradation and p65 nuclear translocation (Fig. 

47B). TRAF2 polyubiquitination is not impaired by the NleB DAD-AAA mutant upon TNF 

stimulation, which is in contrast with NleB WT (Fig. 42E). Furthermore, NleB WT completely 

abolishes TRAF2 polyubiquitination induced by TNF in TMG-treated cells whereas the 

DAD→AAA mutant does not show any effect (Fig. 46A). We next found that although TMG 

treatment alone does not prevent IκBα degradation and NF-κB activation, it stabilizes IκBα in 

the presence of NleB but not the NleB DAD-AAA mutant (Fig. 46A). Our luciferase assays also 

showed that NleB exhibits an augmented inhibitory effect on NF-κB activation in cells treated 

with TMG (Fig. 46E). We observed an increased NF-κB activity promoted by TMG treatment, 

which is in consistent with previous reports (Kawauchi et al., 2008; Yang et al., 2008). In 

contrast, neither NleB nor TMG can alter the TNF-induced AP-1 activation (Fig. 47C). 

Therefore, our data suggest the O-GlcNAc transferase activity is essential for NleB to inhibit 

NF-κB activation and enhances its virulence in the host.  

Discussion  

     In this study, we have shown that the bacterial T3SS effector NleB physically interacts  
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Fig. 47. The O-GlcNAc transferase activity promotes the interaction between NleB and GAPDH.  

A. In vitro analysis of the interaction between NleB and GAPDH in the presence of UDP-

GlcNAc. NleB-FLAG protein was pre-bound with M2 beads and incubated with GAPDH. The 

addition of 1mM UDP-GlcNAc in the reaction was indicated. The bound and flow-through 

proteins were analyzed by SDS-PAGE and gel staining. B. Western-blot analysis of IκBα 

degradation and p65 nuclear translocation stimulated by TNF with Δ202 NleB deletion mutant.  

C. Analysis of AP-1 luciferase activity in the presence of NleB with the treatment of TMG 
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with the host glycolytic protein GAPDH.  This observation lead us to identify an integral role for 

GAPDH in the NF--κB signaling pathway. GAPDH directly interacts with TRAF2 and serves as 

a co-activator of TRAF2 upon TNF stimulation and bacterial infection. We further demonstrated 

that NleB possesses O-GlcNAc transferase activity and O-GlcNAcylates GAPDH during the 

infection. This NleB-mediated GAPDH GlcNAcylation disrupts GAPDH-TRAF2 interaction 

resulting in the attenuation of TRAF2 polyubiquitination and NF-κB activation. Loss of its O-

GlcNAc tranferase activity eliminates the inhibitory effect of NleB on NF-κB activation and 

reduces the bacterial colonization ability in hosts (Fig. 48).  

Instead of being considered as separate components in the glycolytic pathway, multiple 

glycolytic proteins have been found to participate in non-metabolic cellular events (Kim and 

Dang, 2005). Previous studies have indicated GAPDH is involved in a wide range of biological 

events such as transcriptional regulation, vesicle trafficking and cell survival (Tristan et al., 

2011). Several recent studies have also shown that GAPDH might be involved in immune 

signaling pathways. By screening cellular factors involved in the TNF/NF-κB pathway, 

Bouwmeester et al reported that GAPDH is associated with NF-κB family member C-Rel and 

NF-κB signaling molecules (Bouwmeester et al., 2004). In another study, Mookherjee et al also 

predicted GAPDH interacts with molecules involved in the NF-κB signaling pathway. Recently, 

Hara et al reported that C150 residue of GAPDH becomes S-nitrosylated under stress conditions, 

which enables GAPDH to interact with an E3 ligase Siah1 (Hara et al., 2005). The GAPDH-

Siah1 complex then translocates into the nucleus, where Siah1 is stabilized and induces apoptosis 

in cells. Polekhina et al reported the substrate binding domains (SBD) from TRAF proteins share 

significant structure similarity with Siah/Sina-family proteins (Polekhina et al., 2002). Both 

Siah1 and TRAF2 can interact with Peg3/Pw1 to induce NF-κB activation (Relaix et al., 2000). 
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Fig. 48. Working model for the role of GAPDH in the NF-κB signaling pathway and how NleB 

targets GAPDH to attenuate the activation of TRAF2. GAPDH is recruited to TRAF2 through an 

as-yet-unknown mechanism, which might be dependent upon the modification of C150 residue.  
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In our study, we demonstrated an interaction between GAPDH and TRAF2, which further 

suggests that Siah1 and TRAF2 might share common biochemical features (Polekhina et al., 

2002). The binding of GAPDH to TRAF2 is enhanced under stress conditions, which is similar 

to the interaction between Siah1 and GAPDH. As blocking the interaction between GAPDH-

TRAF2 does not impair the recruitment of TRADD to TRAF2, our data therefore suggest that 

GAPDH is a co-activator of TRAF2.  We are currently investigating whether binding of TRAF2 

by TRADD is required for GAPDH-TRAF2 interaction through “loss of function” assays. The 

other important experiment we are conducting now is the in vitro TRAF2 ubiquitination assay, 

which will allow us to directly evaluate the role of GAPDH and/or NleB on TRAF2 

polyubiquitination. Nevertheless, our data suggest that there might be a hierarchical network of 

multiple factor recruitment to TRAF2 upon stimulation, which is essential for the regulation of 

TRAF2 activation.    

Our studies demonstrated that the C150 residue is essential for promoting the GAPDH and 

TRAF2 interaction. This is consistent with previous studies, which also showed the cysteine 

residue in the catalytic center is important for non-glycolytic function of GAPDH (Colell et al., 

2007; Hara et al., 2005). Although it is still not clear how this cysteine contributes to GAPDH 

involvement in these processes, the catalytic residue is redox-sensitive and often modified under 

stress conditions. Hara et al showed that nitric oxide synthase (NOS) S-nitrosylates GAPDH at 

C150 (Hara et al., 2005). The nitrosylated C150 promotes the interaction between GAPDH and 

Siah1. In yeast, the oxidation of C152 residue in the GAPDH homologue Tdh1 enhances its 

interaction with Mcs4 (Morigasaki et al., 2008). Complementation with the Tdh1 C152S mutant 

fails to repeat the oxdative modification and impairs the phosphorelay signaling in the stress-

responsive pathways. These modifications generally have a mild effect in glycolysis, but are 



 

 198 

essential for non-metabolic functions of GAPDH. It will be interesting to study whether the 

C150 undergoes any specific modification under our experimental conditions.  

Different studies have shown that cellular signaling and metabolism are tightly linked 

(Wellen and Thompson, 2012). Metabolite-modification such as glycosylation and acetylation is 

known to regulate different cellular signaling pathways. O-GlcNAcylation is one of the major 

glycosylations mediated by UDP-GlcNAc, which is the final product of the hexosamine 

biosynthetic pathway (Hart et al., 2011). Evidences that O-GlcNAcylation is important in 

regulating immune signaling pathways are emerging. It has been demonstrated that enhanced 

glucose metabolism induces O-GlcNAcylation of NF-κB components and increases NF-κB 

activity (Kawauchi et al., 2008, 2009; Yang et al., 2008). Recently, Pathak et al reported an 

increased O-GlcNAcylation on TAB1 upon IL-1β stimulation, which is essential for TAK1 

kinase activation (Pathak et al., 2012). In an agreement with previous studies, we also found that 

a high glucose concentration (data not shown) or increasing the O-GlcNAcylation level of 

cellular proteins by the treatment with TMG enhances NF-κB activity in response to TNF 

stimulation. Most importantly, we demonstrated here that GAPDH is O-GlcNAcylated by NleB. 

The O-GlcNAcylated GAPDH shows decreased binding ability with TRAF2. The O-

GlcNAcylation of GAPDH mediated by OGT at the Thr 227 residue has been reported before 

(Park et al., 2009). This modification is required for GAPDH nuclear translocation by disrupting 

GAPDH homo-tetramer formation. Thus, this O-GlcNAcylation might induce a protein 

conformational change in GAPDH and regulate its function. Although we did not detect OGT-

mediated GAPDH O-GlcNAcylation, it is possibly due to the variation in experimental 

conditions. Therefore, the O-GlcNAcylation of GAPDH is likely to be only mediated by NleB in 

our experiments. Moreover, treatment with the OGA inhibitor TMG enhances O-GlcNAcylation 
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of GAPDH by NleB, which indicates O-GlcNAcylation of GAPDH is dynamically regulated by 

NleB and OGA in host cells. Several evidences suggest the effect of NleB on NF-κB is tightly 

linked with its O-GlcNAc transferase activity on GAPDH. First, a less amount of GAPDH 

proteins are able to bind with TRAF2 in the presence of NleB, which attenuates TRAF2 

polyubiquitination. This is similar with GAPDH C150S, which we found fails to bind with 

TRAF2 and facilitate its polyubiquitination in vivo. Also, an increased inhibition of TRAF2 

polyubiquitination is associated with an enhanced GAPDH O-GlcNAcylation by NleB under the 

treatment with TMG. Second, neither the NleB DAD→AAA mutant nor Δ202 NleB is able to O-

GlcNAcylate GAPDH and both are not capable of  inhibiting NF-κB activation. Of note, there is 

another DXD motif 93DGD95 in NleB. However, this motif is unlikely to be essential for NleB 

function as a mutant with the deletion of 120 amino acids from the N-terminus still can O-

GlcNAcylate GAPDH and blocks NF-κB activation (data not shown). Current efforts are also 

focusing on the identification of NleB-mediated O-GlcNAcylation site(s) on GAPDH, which can 

help us further elucidate not only how NleB functions with GAPDH, but also the mechanism of 

how GAPDH and TRAF2 interact.  

So far, several bacterial toxins have been demonstrated as glycosyltransfeases (Belyi and 

Aktories, 2010). Clostridial toxins glucosylate GTPases of the Rho and Ras superfamily at 

threonine residues and inhibit GTPase activation (Kelly and LaMont, 2008). Notably, α-toxin 

from C. novyi uses UDP-GlcNAc as the sugar donor and O-GlcNAcylates Rho subfamily 

proteins at Thr 35 or 37 depending on the target (Selzer et al., 1996). Lgt proteins from 

Legionella pneumophila are also glucosylating toxins and glucosylate eukaryotic elongation 

factor 1A (eEF1A) at serine 53, which leads to the interruption of protein biosynthesis and cell 

death (Belyi et al., 2006). These toxins all belong to the GT-A family of glycosyltransferases 
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(Belyi and Aktories, 2010). Typical characteristics of these toxins include at least one 

Rossmann-like fold and DXD motif. Replacing these residues results in significant reduction in 

transferase activities, which is also consistent with our observation on NleB. Surprisingly, 

mutating 221DAD223 on NleB to 221AAA223 causes slower protein mobility on SDS-PAGE 

compared to WT, which indicates the mutation of the DAD motif might accompany with the 

alteration in protein structures.  

In A/E pathogens, multiple Nle proteins have been reported to modulate the NF-κB 

signaling pathway (Wong et al., 2011). Our discovery that NleB utilizes the host metabolic 

product UDP-GlcNAc to disrupt the formation of TRAF2 complex suggested a novel mechanism 

for T3SS effectors to dampen the host immune signaling pathways. As the flux of hexamine 

biosynthesis is closely related to the cellular glucose concentration, it will be interesting to 

determine whether the virulence of NleB can be associated with host metabolic switches. 

However, metabolic switches in the host usually lead to a complicated change in the both host 

immune system and the intestinal microbiota community (Kau et al., 2011). Therefore, better 

animal models are required to further evaluate the function of NleB and other effectors in 

different physiological conditions. 

 

Experimental procedures    

 

All animal experiments were performed according to Institutional Animal Care and Use 

Committee-approved protocols. 

 

Bacterial strains and plasmids 
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C. Rodentium and ΔnleB C. Rodentium strains were described in previous studies (Gao et al., 

2009). FLAG-TRAF2 expression plasmid was obtained from Addgene (plasmid #20229). 

FLAG-ΔRING-TRAF2 expression plasmid was a gift from Dr. Francis Chan (University of 

Massachusetts).  Myc-GAPDH, Myc-GAPDH-C150S and HA-GAPDH-K160R expression 

plasmids were kindly provided by Dr. Akira Sawa (Johns Hopkins Univerisity).  

 

Reagents 

 

Chemicals were used according to manufacturers' recommendations and were obtained from 

Sigma, except for the following: QuikChange Site-Directed Mutagenesis Kit (Stratagene), Dual-

Luciferase Reporter Assay System (Promega), Ni-NTA agarose (Qiagen), protein G agarose 

(Fisher), TNF (Cell Signaling), FuGene (Roche), lipofectamine 2000 (Invitrogen). Antibodies 

were obtained from the following sources: His, FLAG, HA (Sigma), Ubiquitin, β-actin, tubulin, 

GAPDH, O-GlcNAc CTD110.6 (Santa Cruz Biotechnology), p65, IκBα, TRADD, PARP, Myc 

(Cell Signaling). Purified TRAF2-His (ab84725) and GAPDH (ab77109) proteins were obtained 

from Abcam. OGA inhibitor TMG was kindly provided by Dr. Chad Slawson (University of 

Kansas Medical Center). 

 

Protein purification 

 

For the purification of NleB fusion proteins, 500 ml of the C.rodentium containing the 

FLAG-CTC plasmid encoding NleB or its mutation or truncations was induced by IPTG at the 
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final concentration of 1mM. After 4 h additional growth, cells were pelleted. The protein 

extraction was following step 1 and 2 of the protocol from the protein solubilization and 

renaturation Kit (Cell Biolabs, AKR-110). After renaturation, 100 µl FLAG M2 beads (Sigma, 

A2220) were added into the supernatant and proteins were purified according to the protocol 

offered by Sigma (A2220).  

 

RNA interference 

 

For RNA interference (RNAi), 3 pmol of scramble siRNAs or siRNAs against GAPDH were 

transfected into HeLa cells by lipofectamine 2000 (Invitrogen). The transfection mixture was 

replaced with complete growth media after 6 hr and cells were incubated for a further 60 h (37  

°C, 5 % CO2) prior to the harvest. Specificity of knockdown was confirmed by western-blot with 

specific antibodies. The siRNA sense-strand sequences were as follows: GAPDH 3’ UTR-1: 5’- 

AGCACAAGAGGAAGAGA- GAGACCCU-3’, GAPDH 3’ UTR-2: 5’- CAUGUACCAUCA- 

AUAAAGUACCCUG, GAPDH 3’ UTR-3: CUCCUCACAGUUGCCAUGUAGACCC. 

 

Immunoprecipitation and immunoblotting.  

 

Immunoprecipitation was performed as described before (Gao et al., 2009). Cell lysates 

were analyzed by SDS-PAGE and immunoblotted with monoclonal anti-O-GlcNAc antibody 

(CTD110.6) or monoclonal anti-GAPDH antibody at room temperature for 2 h. For TMG 

treatment, cells were treated with TMG for 8 h and were harvested for immunoprecipitation or 

immunoblotting. After rinsing in PBS, blots were imaged with an Odyssey infrared imaging 
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system (Li-Cor).  

 

Immunofluorescence microscopy.  

 

HeLa cells were grown on glass coverslips in 24-well tissue culture plates. Cells were 

transfected with 1µg NleB-GFP plasmids and incubated for 60 h. After that, cells were 

permeabilized in 0.1 % saponin in PBS, blocked with 5 % goat serum, and incubated with α-

GAPDH (1:1,000) primary antibodies for 1 h at room temperature. The cells were washed with 

PBS and probed with 594-conjugated secondary antibodies (1:1,000, 1 h) and DAPI (1 µg/ml, 

2’). Coverslips were mounted in Mowiol and samples were visualized using a LSM 510 Laser 

Scanning Microscope (Carl Zeiss). 

 

Affinity columns and Protein identification by LC-ESI-MS/MS 

 

Both affinity columns and LC-ESI-MS/MS were conducted as described before (Gao et al., 

2009). Briefly, bands excised from protein gels were digested in-gel with trypsin at 37°C 

overnight. The tryptic peptide solution was transferred to a microcentrifuge tube, extracted with 

1% formic acid, 2% acetonitrile in water, followed by extraction with 50% acetonitrile. Both 

extracts were combined, concentrated, and suspended in 3% acetonitrile, 0.1% formic acid. 

Peptide analysis was performed using LC-ESIMS/MS. Peptides were desalted in-line and 

concentrated with RP-Trap Symmetry300 C18 column, 5 µm NanoEase (Waters), and separated 

using a C18 RP PepMap capillary column on a CapLC (Dionex). The eluted ions were analyzed 

by one full precursor MS scan (400–1500 m/z), followed by four MS/MS scans of the most 
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abundant ions detected in the MS scan. Spectra were obtained in the positive ion mode with a 

nano ESI-Q-Tof micro mass spectrometer (Micromass). A peak list (PKL format) was generated 

to identify +1 or multiple charged precursor ions from the mass spectrometry data file. Mascot 

server v2.2 in MS/MS ion search mode was applied to conduct peptide matches (peptide masses 

and sequence tags) and protein searches against NCBInr v20080110. 

 

In vitro O-GlcNAc assay 

 

0.5 µg of purified NleB-FLAG or NleC-FLAG proteins with 0.5 µg of GAPDH protein 

were pre-incubated in 4 °C for O/N in the presence of 1mM UDP-GlcNAc. The O-GlcNAcylated 

proteins were detected by click-iT™ O-GlcNAc Enzymatic Labeling System (mp 33368) and 

Click-iT™ Tetramethylrhodamine (TAMRA) Protein Analysis Detection Kit (mp 33370). For 

the alternative in vitro O-GlcNAcylation assay, same amount of proteins were pre-incubated in 

the reaction buffer (50 mM Tris–HCl, pH 7.5, 1 mM DTT, 10 mM MnCl2) for 4 h at room 

temperature with UDP-GlcNAc. After that, reactions were stopped by adding 2 x SDS–PAGE 

sample buffer, resolved by SDS-PAGE and probed with appropriate antibodies.  

 

Measurement of GAPDH enzymatic activity  

GAPDH activity was measured by using fluorescence-based assay kit (KDalertTM GAPDH, 

Ambion). Briefly, 104 cells were treated with or without 10 mM GAPDH inhibitor IA for 40 

mins.  Cells were resuspended in ice-cold Cell Lysis Buffer and incubated for 20 mins. 10 µl 

aliquots of each sample were transferred to each well of the 96-well plate containing 90 µl of the 

master mix. The change of fluorescence was measured every 4 mins by using a fluorescence 
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reader. The GAPDH activity of the samples was determined compared to the standard curve. The 

relative fold was determined by comparing with negative control samples. 

 

RT-PCR  

 

We performed real-time PCR assays in a Power SYBR Green PCR Master Mix (Applied 

Biosystems). 

 

Luciferase assay 

 

Luciferase assays were conducted as described (Gao et al., 2009). Briefly, HeLa cells were 

co-transfected at a ratio of 10:1 (1.0 µg total DNA) with a luciferase reporter construct together 

with the renilla luciferase pTKRL plasmid (Promega), cultured for 48 h, in the presence or 

absence of TNF. Cells were lysed with passive lysis buffer and lysates were analyzed according 

to the protocol from Dual-Luciferase Kit (Promega). The fold-induction was calculated as 

[relative FU stimulated)/(relative FU unstimulated] samples. Luciferase assays were performed 

in triplicate with at least three independently transfected cell populations.  

 

Measurement of ROS production 

 

        HeLa cells transfected with scramble or GAPDH 3’UTR siRNAs were harvested and 

analyzed for the concentration of H2O2 (STA-343, Cell Biolabs) and the ratio of 

NADP+/NADPH (NC9531485, Fisher Scientific) by the individual kit according to 
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manufactures’ protocols.  

 

Mitochondria fractionation 

 

       HeLa cells were cotransfected with 3 pmol scramble or GAPDH 3’UTR siRNAs with 

GAPDH expression plasmids for 60 h. After that, cells were harvested and a total number of 107 

cells were subjected to the mitochondria fractionation by the Mitochondria Isolation Kit (#89874, 

Thermo Scientific). Cell extracts were analyzd by SDS-PAGE and immunoblotted with 

appropriate antibodies.  

 

Enzyme-linked immunosorbent assay. 

 

TNF-alpha concentration in mice serum samples were measured with a mouse TNF-alpha 

Quantikine ELISA Kit from R&D according to the manufacturer's instructions (MTA00B). 

 

Statistical analyses.  

 

      RT-PCR results were analyzed statistically using one-way ANOVA. Luciferase assay data 

was analyzed with t-tests. 
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Chapter V: Conclusions  

 

To survive and grow in the host, A/E pathogens employ T3SS effectors to inhibit host innate 

immune responses. However, which T3SS effectors contribute to this process have not yet been 

identified. In this thesis, we discovered the mechanism of how the T3SS effectors NleH1 and 

NleB modulate the host NF-κB signaling pathway to inhibit host innate immune responses.  

There are two copies of NleH (NleH1 and NleH2) in EPEC and EHEC, whereas only one 

copy of NleH has been discovered in C. rodentium and it is more closely related to NleH1 based 

on sequence similarity. The C-terminal of NleH proteins share similarity in amino acid sequence 

with the Shigella T3SS effector OspG.  OspG targets ubiquitin E2 enzymes and prevents IκBα 

degradation. Through proteomic screening, we found that NleH proteins interact with the non-

Rel NF-κB subunit RPS3. The binding of NleH1 with RPS3 prevents RPS3 nuclear translocation 

upon TNF stimulation or bacterial infection. Targeting RPS3 by NleH1 subsequently leads to the 

inactivation of NF-κB. The modulation of NleH on NF-κB has also been identified from other 

studies (Royan et al., 2010). In these studies, NleH proteins were found to stabilize IκBα 

degradation induced by EPEC. Although our studies did not produce similar results, this might 

be due to different experimental conditions. Therefore, NleH might target different steps in NF-

κB signaling pathway to inhibit its activation. In addition, NleH proteins are Ser/Thr kinases and 

the kinase activity is important for NleH1 to inhibit RPS3 nuclear translocation. However, there 

is no evidence from our experiments suggesting that NleH proteins are able to phosphorylate 

RPS3 protein. Therefore, there might be other unidentified host proteins serving as NleH kinase 

substrates.  Although the activation of RPS3 is dependent upon IKKβ-mediated phosphorylation 

at Ser 209, other eukaryotic factors may also contribute to RPS3 activation. Thus, identifying 
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these proteins will be important not only for a better understanding of NleH working mechanism, 

but also for further understanding of how RPS3 is involved in NF-κB signaling pathway. 

Targets for NleH are not limited to RPS3. During the course of this study, others reported 

that several other eukaryotic proteins are associated with NleH effectors. NleH proteins 

physically interact with Bax inhibitor-1 (Bl-1) by binding with the N-terminal 40 amino acids of 

Bl-1 (Hemrajani et al., 2010). Bl-1 is an evolutionarily conserved apoptosis inhibitor, which 

targets the apoptotic proteins Bcl-2 and Bcl-xL (Robinson et al., 2011). The binding of Bl-I 

enables NleH proteins to inhibit procaspase-3 cleavage and apoptosis during EPEC infection. 

Therefore, this study suggested NleH proteins have cytoprotective function in host cells, which 

can facilitate EPEC colonization.  In contrast to our results, it appears that the kinase activity is 

not essential for NleH anti-apoptotic activity. This difference indicates that the kinase activity of 

NleH might determine their various functions in host cells. The anti-apoptosis function of NleH 

was also reported in another study, in which they found that expression of NleH prevents cells 

from apoptosis induced by C. difficile toxin B (TcdB) (Robinson et al., 2010).   

  NleH1 also interacts with host membrane protein Na+/H+ exchanger regulatory factor 2 

(NHERF2) (Martinez et al., 2010). NHERF2 belongs to NHERF protein family, which contains 

NHERF1-4 (Donowitz et al., 2005). NHERFs are plasma membrane proteins found abundantly 

in the mammalian small intestine and colon. Interestingly, two other T3SS effectors, Map and 

EspI, also interact with NHERF2. This interaction is dependent upon the C-terminal class I PSD-

95/Disc Large/ZO-1 (PDZ)-binding motif, which is found on all three T3SS effectors. NHERF2 

serves as a scaffold protein on the plasma membrane to regulate effector protein function. 

Specifically, overexpression of NleH1 attenuates the anti-apoptotic activity of NleH1, which 

indicates there might be a complex regulatory mechanism of NleH in host cells.  
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  In the second part of this thesis, we tried to understand the mechanism of how NleB targets 

the NF-κB signaling pathway. These studies lead us to identify the integral role of GAPDH in 

the NF-κB signaling pathway. GAPDH is a glycolytic protein that catalyzes the sixth step of 

glycolysis. However, the non-glycolytic role of GAPDH has also been explored during last 

decade. In our studies, we found GAPDH directly interacts with the TRAF2 protein and 

facilitates its polyubiquitinaton under stress conditions. The participation of GAPDH in the NF-

κB signaling pathway has been predicted before. Although we demonstrated here that GAPDH is 

involved in the TNF-NF-κB signaling pathway through TRAF2, we also have preliminary results 

showing GAPDH is able to interact with TRAF6 (data not presented). As TRAF proteins are 

critical signaling molecules regulating multiple innate signaling pathways in host cells, it will be 

interesting to examine whether GAPDH possesses high binding affinities with different TRAF 

proteins and how this will contribute to different roles of GAPDH in host immune system.  

Our in vivo data suggested that GAPDH C150 is crucial for the recruitment of GAPDH to 

TRAF2, although not likely to be essential for the binding of two proteins. The modification of 

C150 has been reported in different studies and appears to be important for GAPDH’s non-

glycolytic functions.  It also will be interesting to determine whether there is a modification on 

C150 after TNF stimulation or bacterial infection and how this modification regulates the 

GAPDH recruitment to TRAF2. 

In this study, we also demonstrated NleB is an O-GlcNAc transferase. We found NleB is able 

to O-GlcNAcylate GAPDH to interrupt the interaction of GAPDH with TRAF2, which 

subsequently results in the inactivation of TRAF2 upon TNF stimulation or bacterial infection. 

To our knowledge, NleB is the first T3SS effector identified with O-GlcNAc transferase activity. 

Unfortunately, we have not identified the O-GlcNAc site(s) on GAPDH by NleB here. As O-
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GlcNAc is able to compete with phosphorylation on Ser/Thr residue, it will also be interesting to 

test how the addition of sugars on the residue(s) is able to disrupt GAPDH-TRAF2 interaction.  

This deserves further efforts as it will greatly advance our knowledge on the virulence 

mechanism of NleB.  

 By the time we reported the function of NleH1 on NF-κB in 2009, we were the first group to 

identify a T3SS effector in A/E pathogens targeting the NF-κB signaling pathway. Since then, 

other T3SS effectors in A/E pathogens, which target NF-κB signaling pathway, have also been 

identified. In this thesis, we provided two novel mechanisms from T3SS effectors NleH1 and 

NleB for the manipulation of the host response. We hope these studies will benefit us to 

understand the virulence of A/E pathogens and contribute to the development of any potential 

therapy in the future.  
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