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Abstract

Using Monte Carlo experiments, I address two issues in demand analysis. The first
relates to the performance of local flexible functional forms in recovering the time-
varying elasticities of a true model, and in correctly identifying goods as complements,
substitutes, normal or inferior. The problem is illustrated with the nonlinear almost
ideal demand system (NLAI) and the Rotterdam model (RM). For the AIDS, I also
consider two versions of its linear approximation: one with simple formulas (LAISF)
and the other with corrected formulas (LAICF). The second issue concerns the ability
of the flexible functional structures to satisfy theoretical regularity in terms of the
Slutsky matrix being negative semi-definite at each time period of time.

I tackle these issues in the framework of structural time series models, comput-
ing the relevant time-varying elasticities by means of Kalman filtered and smoothed
coefficients. The estimated time-varying coefficients are obtained under the pure
random walk and the local trend hypotheses. I find that both the NLAI and the
RM qualitatively perform well in approximating the signs of the time-varying income
and substitution elasticities. Quantitatively, the RM tends to produce values of the
time-varying elasticity of substitution close to the true ones within separable util-
ity branches while the NLAI tends to produce overestimating values. On the other
hand, the RM produces time-varying income elasticities with values close to the true
ones while the NLAI tends to produce constant values over time. The LAISF model
qualitatively performs similarly to the NLAI, but the LAICF does not. Finally, the
NLAI achieves higher levels of the regularity index under the local trend specification
while the RM achieves higher regularity levels under the random walk specification.
In contrast, the LAISF and the LAICF models achieve lower levels of regularity un-
der both specifications of the time-varying coefficients. Globally, the LAICF which
widely adopted in applied work performs poorly compared to the RM and the NLAI.
These findings are robust to different values of the time-varying parameters in the
utility function. Two implications emerge from this research. First, the LAICF model
should be considered as a model on its own rather than as an approximation of the
NLAI. Second, the choice between an AIDS-type model and the RM should be moti-
vated by their performance with respect to the properties a hypothesized true model
for the data at hand, especially when working with real data.
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1

Introduction and Motivation

This dissertation research is aimed at evaluating the performance of alternative

demand structures in presence of shifting consumer preferences. Accounting for pref-

erence shifting factors in demand analysis is important for two major reasons. First,

it allows to deepen our understanding of consumer behavior outside the neoclassical

framework of fixed tastes. Further, the analysis helps break with the old tradition of

considering the subject as pertaining to social disciplines other than economics. The

analysis will feature shocks to the parameters in models of consumer preferences in

the framework of local flexible functional forms.

Among the local flexible functional forms, the almost ideal demand system (AIDS)

of Deaton and Muellbauer (1980a,b), especially in its linear form, and the Rotterdam

model (Barten, 1964, 1968, 1977; Theil, 1965, 1975a,b) have been widely adopted

in applied research. Their attractiveness is explained by the fact that both demand

specifications share desirable properties not possessed by other local flexible functional

forms such as the Generalized Leontief (Diewert, 1971) and the Translog (Christensen

et al., 1975): local flexibility, consistency with demand theory, linearity and parsimony

with respect to the parameters. They also have identical data requirement so that

no additional variable is required in order to estimate one specification whenever the

estimation of the other is possible.
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However, the two specifications lead to different results in some applications (Al-

ston and Chalfant, 1991), prompting the question of the appropriateness of each

specification for a given dataset. Nevertheless, the choice of either model for empir-

ical applications has been purely arbitrary and possibly motivated by the personal

acquaintance of the researcher with each of them. This is understandable since eco-

nomic theory does not provide a basis to ex ante discriminate among the flexible

functional forms in general, and between the AIDS and the Rotterdam model (RM)

in particular.

The observed discrepancies between the outcomes from the two specifications raise

the issue of adopting a research strategy that allows to discriminate between them

not only based on the demand properties contained in the specific dataset, but also

on their consistency with the particular maximization problem that has produced or

that is believed to have produced the data. Thus, choosing the best approximating

structure for the true underlying model should be the result of a well-defined method-

ology that straightforwardly establishes the true properties contained in the data as a

benchmark. This applies whether consumer preferences are postulated to be fixed as

in the neoclassical demand theory or otherwise subject to shifts of a specific nature.

Alston and Chalfant (1993) developed a statistical test of the linear-approximate

AIDS against the RM. The test was then applied to the meat demand in the United

States. The test concluded in favor of the acceptance of the RM, rejecting the

AIDS. The same conclusion obtained with Barten (1993)’s test. However, the au-

thors pointed out that their finding could not be interpreted as an evidence of the

superiority of the RM on the AIDS in a general way. Moreover, their test may lead

to a different conclusion if applied to a different data set.
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On the other hand, Barnett and Seck (2008) conducted a Monte Carlo comparison

of the nonlinear AIDS, the linear-approximate AIDS and the RM. They sought to

determine which of the three specifications could perform better in terms of the

ability to recover the elasticities of the true demand system. Their finding was that

both the AIDS and the RM performed well when substitution among goods was low

or moderately high. However, the nonlinear AIDS model performed better when

the substitution among goods was very high. Finally, the RM performed better at

recovering the true elasticities within separable branches of a utility function.

It is noteworthy that both papers postulated constant parameters in the demand

functions and the underlying utility functions. However, when using real data, the

consistency of the demand estimates can be compromised if one wrongly assumes the

constancy of the parameters while they are actually random or varying over time. In

this case the constant-coefficient model will not only fail to capture the possible long-

run dynamics in the data but also will produce a poor approximation to the underlying

data generation process (Leybourne, 1993). In addition, it is important that more

investigation be conducted in order to determine whether or not the advantages of

one demand specification on the other can be preserved when the constant-parameters

assumption is abandoned in a Monte Carlo study.

The goal of this dissertation research is to contribute to the assessment of the

performance of the nonlinear AIDS, the linear-approximate AIDS and the Rotterdam

model when the coefficients of the demand system are permitted to vary over time. To

the best of my knowledge, the assessment of the performance of these demand spec-

ifications under time-varying parameters has not been attempted yet. This research

will contribute to the literature by filling the gap.
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The motivation for undertaking this study can be put forth into a twofold ar-

gument. First, the real world economic system is constantly subject to shocks that

translate into technological and institutional changes as well as shifts in consumer

preferences. The interaction of these shocks leads to more or less permanent changes

in economic behavioral relationships. Therefore, assuming time-varying parameters

helps to capture dynamics of specific nature in these economic relationships. Second,

both the RM and the AIDS are local first-order Taylor series approximations that

are intended to approximate a true demand system derived from any utility maxi-

mization problem. When fitting the data to any of these flexible functional forms,

an implicit assumption is that there exists an unknown true function of the variables

of interest(e.g.: quantities and prices) that has generated the observed data given a

set of parameters. Since the approximation provided by each functional form is only

locally valid, assuming a single value for the parameter vector is unlikely to provide

an adequate approximation of the true demand system that underlines the observed

data. This idea has been expressed for the RM by Barnett (1979b) and Bryon (1984),

and for the AIDS by Leybourne (1993).

I shall conduct the analysis in the framework of Harvey (1989)’s structural time

series models. I first assume a pure random walk process for the parameters in the

demand systems and compute the time-varying elasticities accordingly. Second, I

assume a local trend model specification where the time-varying intercept is specified

as a random walk with drift, with the drift itself being a random walk. The two

approaches have been respectively used by Leybourne (1993) and Mazzocchi (2003)

to estimate time-varying parameters in the linear-approximate AIDS. However, none

of the papers attempted to compare the performance of the linear-approximate AIDS

neither to that of the nonlinear AIDS nor to that of the RM.
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The scope of the results in this dissertation will be limited to the approximating

time-varying elasticities (elasticities of substitution, income and compensated price

elasticities) with counterpart in the set of relevant elasticities derived from the true

model. The approximating time-varying elasticities will be calculated using the es-

timated time-varying coefficients in each demand specification. I shall estimate the

time-varying coefficients in each demand system by the Kalman filter and pass them

through the Kalman smoother for their revision.

The dissertation research is divided in five chapters, including this introduction.

Chapter 2 provides the literature review on accounting for shifting consumer prefer-

ences in demand analysis. A distinction is made between the effects on preferences

of exogenous variables and the shocks to the parameters of the utility function. The

analysis is then applied to the weak separable-branch utility tree by assuming that the

parameters in the utility function vary over time according to a random walk process.

The problem of time-varying parameters is considered in Chapter 3 for the two most

used local flexible functional forms in empirical demand analysis, the AIDS and the

RM. Chapter 4 presents the data generation procedure and the estimation method for

the time-varying coefficients in AIDS and the RM as well as the estimation results. A

discussion of the results and their robustness with respect to the performance of each

demand system to recover the characteristics of the true demand system is presented

in this chapter as well. Chapter 5 concludes the dissertation with a discussion of the

implications of the findings, and ends with a brief outline of the future directions of

the research.
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2

Accounting for Varying Preferences in Demand Analysis

2.1 Introduction

It is a common knowledge today that the restrictions of the neoclassical con-

sumer theory are unrealistic and that factors other than prices and income play an

important role in the consumer’s decision making process. Both economic and econo-

metric theories recognize that technological and institutional shocks to an economy,

together with shifts in consumer preferences may lead to permanent changes in eco-

nomic behavioral relationships. Other sources of variations in economic behavioral

relationships include model misspecification, nonlinearities, aggregation and the use

of proxy variables in econometric models.

However, most of applications in empirical demand analysis continue to postu-

late fixed consumer preferences. Reluctance to account for preference shifting factors

may be attributed to what Scitovsky (1945) qualified as the fear that such an account

would wreak havoc on the whole theory of choice. The success obtained by economists

in explaining human behavior under the neoclassical postulates may also be consid-

ered as a plausible reason. Why would we abandon a postulate with which we have

been so successful? However, this does not preclude the requirement of consistency

between real economic behaviors and the factors that are more likely to explain them.
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Assuming varying or shifting preferences allows to analyze the effects of exogenous

factors on consumers’ behavior that cannot otherwise be captured under the neoclas-

sical demand theory’s fixed preferences hypothesis. Therefore, incorporating these

variables in the analysis permits to explore and understand their interaction with

consumers’ tastes. For example, one can easily explain the impact on consumers’

demand of advertisement, health and socio-demographic factors, interdependence of

consumers’ behavior and shocks to the economic system. Finally, accounting for ex-

ogenous factors and related shocks in demand analysis may also allows to explain the

observed patterns in consumption and to capture the underlying dynamics.

There exists an extensive literature on accounting for taste changing factors and

shocks to consumers’ preferences both in static demand analysis and in dynamic

demand analysis. Modeling the effects of exogenous shocks and shifting factors on

consumers’ preferences has consisted either in explicitly accounting for them in the

consumer’s optimization problem or in hypothesizing their impact on the parameters

that determine consumers’ tastes, or both. The next section reviews major contribu-

tions and trends in this literature.

2.2 Modeling shifting tastes in consumer demand literature

There are two approaches in the literature when it comes to accounting for taste

changing factors in consumer demand analysis. The first is based on the premise that

preference acquisitions arise as part of socialization and persistence of consumption

habits. This approach hinges on the concept of interdependent preferences under

which an individual’s preferences depend on the consumption decisions of all the

individuals in the society where his of her consumption decisions take place.

7



Gaertner (1974) and Pollak (1976, 1978) provided a theoretical framework for

analyzing preference interdependence using the linear expenditure system (LES). In

this framework, a consumer’s preferences are assumed to depend on past consumption

decisions of all the other individuals in the society. A special case of interdependent

preferences is that of the habit formation hypothesis which postulates that an indi-

vidual’s preferences depend only on his or her past consumption decisions. This is

referred as the myopic habit formation, in contrast to the rational habit formation

which refers to a consumer who is not only backward looking but also forward looking.

In a rather game theoretic framework, Karni and Schmeidler (1990) considered

interdependent preferences as based on a simultaneous determination of consumption

by individuals in different social groups, allowing individuals to anticipate the actions

of others. Their analysis of interdependent preferences hinges on the concept of ex-

tended commodities, defined as commodities that have social attributes in addition

to standard attributes such as physical characteristics, delivery date, location or the

state of nature if the good is a contingent commodity [see for example Malinvaud

(1985)]. In this analysis, the social attributes of an extended commodity consist of

information concerning its users and information concerning the users of other com-

modities. Sobel (2005) also considered interdependent preferences in a game theoretic

framework, but as resulting from intrinsic reciprocity or consumer altruism. Under

this assumption, an individual whose preferences reflect intrinsic reciprocity will sac-

rifice his or her own material consumption to increase the material consumption of

others in response to kind behavior while, at the same time, he or she will be willing

to sacrifice material consumption of others in response to unkind behavior.

8



Alessie and Kapteyn (1991) and Kapteyn et al. (1997) provided an empirical

econometric treatment of interdependent preferences using the almost ideal demand

system (AIDS) and the LES model and respectively. Considering three taste shifters,

namely demographic factors, habit formation and preference interdependence, Alessie

and Kapteyn (1991) found that all three shifters had significant effects. On the other

hand, Kapteyn et al. (1997) estimated the LES that incorporated preference interde-

pendence by using a cross-sectional data on consumer expenditure. They concluded

that the interdependence of preferences was an important determinant of consumer

behavior. Beside the difference in the functional forms used for the demand system,

the two papers differed in the way of modeling the interdependence of preference.

While Alessie and Kapteyn (1991) specified the current household budget share as

a function of mean budget share in the household’s reference group, Kapteyn et al.

(1997) made the parameters in the LES to depend on the current quantities in the

household’s reference group.

The second approach to modeling variable preferences consists in considering

the changes caused by exogenous factors in the parameters of the utility function.

Ichimura (1950) and Tintner (1952) were the first to introduce this approach by ex-

plicitly expressing the shifts in demand functions in terms of the parameters of the

utility functions. The idea is that the parameters of the utility function depend on

the variations in the preference shifting variables. In a series of papers, Basmann

(1954–1955, 1956, 1972) and Basmann et al. (2009) have considered prices and in-

come as well as factors such as family size, schooling of the head of household, and

other socioeconomic factors as preference shifting factors.
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More specifically, Basmann et al. (2009) specifies a price-dependent direct util-

ity function, the generalized Fechner-Thurstone (GFT) utility function, in which the

parameters are functions of prices, income and other attributes that may impact con-

sumer preferences. This strand of research shows that assuming the dependence of

the parameters of the utility function on exogenous preference shifting variables does

not contradict any of the deducted propositions of the neoclassic theory of consumer

demand. Especially, the marginal conditions for maximum welfare1 are satisfied inde-

pendently of whether or not preferences are affected by exogenous factors2. However,

demand functions derived from a utility function such as the GFT do not possess

some of the nice properties of demand theory, such as the Slutsky symmetry that

needs to be imposed.

Following Basmann and also Barten (1977), Brown and Lee (2002) considered

a demographic variable as an argument in the consumer utility function to analyze

its impact on marginal utilities in the Rotterdam model. The effect of the demo-

graphic variable is specified through a fundamental relationship between the price

effect and the effect of the demographic variable on marginal utilities. More specif-

ically, the change in the demographic variable was viewed as resulting in changes

in adjusted prices, the latter being decomposed into actual price changes minus

preference-variable-induced changes in marginal utilities. In an application to the

demand of fruit, the demographic variable was found to have a significant effect on

the demand of 3 out of 5 fruit included in the model. However the effect on marginal

utilities was significant only for one of the fruit.

1 The first condition is that of equal marginal rates of substitution between any pair of goods
for any consumer who consumes both goods. The second condition is that of the equality between
marginal rate of substitution between any two goods and the marginal technical rate of transforma-
tion between any two firms producing both goods.

2 Somehow, this is the modern answer to Scitovsky (1945)’s argument.
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Other exogenous factors that affect the parameters of consumers’ preferences over

goods are the strategies of the sellers to influence the willingness of consumers to-

wards their products through advertising campaigns. As Basmann (1956) put it,

“advertising costs are incurred by a seller in an effort to secure a favorable change in

consumers’ subjective evaluation of the commodity he offers for sale; in terms of eco-

nomic theory, the seller seeks by advertising his goods and services to increase their

marginal utilities of consumers with respect to the marginal utilities of commodities

offered by other sellers”. The parameters in the utility function may then be viewed

as depending on sellers’ advertising expenditures. Different ways of accounting for

advertisement in demand analysis are found in Theil (1980b,a) and Duffy (1987, 1989,

1995) in the framework of both the Rotterdam model and the AIDS.

An important distinction needs to be pointed out between preference shifting fac-

tors that can more likely be observed such as prices, income and socio-demographic

factors, and those that cannot be observed or that may be observed with consid-

erable amount of measurement errors such as sellers’ advertising expenditures and

other shocks to the economy. For example, it’s more reasonable to think that because

each seller aims to obtain a favorable change in the consumers’ subjective evaluation

towards the commodity he or she sells, this can only be done to the detriment of

goods that are sold by other sellers. Therefore, advertising strategies are antagonistic

among the sellers of substitute goods and not always sympathetic among sellers of

complementary goods. As a result, advertising expenditures that are aimed at influ-

encing the marginal utilities of goods are less likely to be known with certainty and,

to the best, more likely to be measured with errors.
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Easily observable preference shifting factors such as demographic factors are more

relevant for the analysis of shifts in static demand functions with constant properties;

although the parameters in such demand functions may assume different values as a

result of variations in the exogenous variables. However, exogenous factors that are

subject to measurement errors or those that can be modeled as stochastic processes

need an appropriate treatment. For example, Basmann (1985) explored the effect of

stochastic taste shifters where the change in marginal rates of substitution is expressed

as a multiplicative function with a systematic component and a stochastic component

that can be modeled as a stationary process. In this specification the systematic

factors satisfy the necessary and sufficient conditions to be the marginal utilities of a

direct utility function that are free of stochastic parameters.

2.2.1 The time-varying parameter case

Preference shifters that affect marginal utilities may be considered as inducing

changes over time through the parameters of the utility function on which depend

marginal utilities. Barnett (1979b) considered a utility function that depended on a

vector of stochastic preference shifting variables. He also showed that the parameters

of the demand system derived from these preferences vary over time. Although this

problem was theoretically studied in the framework of the Rotterdam model, the

approach has never been attempted in applied work. In the contrary, the AIDS has

received attention in this matter. Empirical studies with time-varying parameters

in the AIDS model include Leybourne (1993) and Mazzocchi (2003). However, none

of these papers explicitly postulated time-varying parameters in the utility function

underlying their demand systems.
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It is foremostly important to point out that assuming a time-varying structure in

the parameters of demand functions would be reasonable only if the underlying prefer-

ences share the time-varying properties in their formulation. In addition, introducing

time-varying parameters in demand analysis inescapably implies the recognition that

the indifferent maps from which the demand functions are derived depend on time-

varying parameters. This should not be surprising since the indifference maps and the

corresponding demand functions share the same set of parameters, the characteristics

of which jointly describe the state of consumer preferences.

2.3 The approach of this dissertation

I shall consider stochastic preference shifting factors that affect the parameters of

the marginal utilities. My approach differs from Basmann (1985)’s in two aspects.

First, I will not allow the multiplicative stochastic component in the expression of the

marginal rates of substitution. Therefore, the focus will be only on systematic part.

Second, the stochastic shocks to preferences will be modeled in a way to affect the pa-

rameters of the marginal rates of substitution over time. I shall assume that only the

process that govern such stochastic shocks is relevant for the time-varying structure

of the parameters in the utility function. This results in time-varying parameter indif-

ference maps and demand systems. The approach used in this dissertation also differs

from Barnett (1979b)’s in that I explicitly assume a time-varying stochastic process

for the preference shifting variables and estimate the implied time-varying parameters

in the demand functions. It is noteworthy that time-varying marginal utilities can

obtain from Basmann’s approach if one assumes a time-varying stochastic process for

the stochastic component of the marginal utilities.
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When preference shifting variables are perfectly observable, the properties of the

demand functions derived from the corresponding preference ordering may be consid-

ered as producing demand elasticities that are constant over time. Of course, such a

result assumes that the parameters of the utility function are fixed. The time-varying

approach to the parameters in the utility function has the advantage of accounting for

stochastic shocks to preferences that are more general in nature. In fact this approach

permits to obtain a time path of demand elasticities, while allowing to explain how

the marginal rate of substitution between any pair of goods evolves over time. As a

result, the analyst will be able to observe how likely it is to substitute one good for

another over time.

I shall explicitly assume time-varying parameters and apply the analysis to a

known utility function. My purpose is to establish a framework for the comparison

of approximating demand specifications with time-varying parameters. I shall use

the properties of the demand system derived from such a known utility function with

time-varying parameters as a benchmark and assess the performance of the AIDS and

the Rotterdam model in recovering them.

It is important to mention that the kind of time-varying coefficients (TVC) struc-

ture that is specified for the parameter vector in this dissertation differs from other

possible specifications in the literature. For example, in the case of random coeffi-

cients, a random shock produces the time variations around a common average value

of the coefficient vector. The coefficient vector thus attains a value different from the

average parameter vector at any time period. A selected number of papers in this

literature include Swamy and Mehta (1975), Swamy and Tinsley (1980), Pratt and

Schlaifer (1984, 1988), and Swamy and Tavlas (1995).
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The coefficients in this specification have a real-world interpretation, as sums of

three distinct components (Swamy and Tavlas, 2003): one corresponding to a di-

rect effect of true value of a regressor on the true value of the dependent variable, a

second part capturing omitted-variable biases, and a third part capturing the effect

of mismeasuring the regressor. A simplest way to differentiate time-varying coeffi-

cients based on a Markov process-type specification and the random specification is

to think of the coefficients in the random coefficient models as fluctuating around an

average values that is common for all the time periods. Time-varying parameters are

considered in the next section for the consumer maximization problem.

2.4 Introducing time-varying parameters in the utility function

From the onset of this section, I shall point out that the neoclassical theory of

consumer demand hinges on four essential well-defined and regular functions (the

direct utility function, the indirect utility function, the expenditure function and the

distance function). These functions are alternatively used to characterize consumer

preferences.

Useful duality relationships that relate these functions help specify four major

categories of demand functions: ordinary demand functions, compensated demand

functions, inverse demand functions and inverse compensated demand functions. Four

important results of the duality theory, namely the Ville-Roy identity, the Hotelling-

Wold identity, the Shephard lemma and the Shephard-Hanoch lemma, are used to

derive the four major demand functions categories from the duality relationships

defined among the four neoclassical functions listed above.
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Ordinary demand functions are expressed as the partial derivatives of the indirect

utility function using the Ville-Roy identity; inverse demand functions are derived by

using the dual result to the Ville-Roy identity, the Hotelling-Wold identity, as the

partial derivatives of the direct utility function; compensated demand functions are

derived by using the Shephard lemma which states that the inverse demand functions

are partial derivatives of the expenditure function.

Finally, the inverse compensated demand functions are derived by applying the

Shephard-Hanoch lemma, which is dual to the Shephard lemma, to the distance

function. One interesting feature of the demand functions derived from the duality

relationships is that they have the same functional forms: the direct and inverse

demand function on one hand, and the compensated and the inverse compensated

demand functions on the other hand. For a recent review of consumer theory, see

Barnett and Serlertis (2008) and Barnett and Serletis (2009a,b).

I shall illustrate the problem of maximizing consumer time-varying parameters

preferences with the direct utility function. Consider a consumer whose objective is

to maximize his or her preferences under the assumption of time-varying parameters.

Let x = (x1, x2, · · · , xn) be a vector in the consumer’s commodity space. To account

for variable preferences, I shall assume that the parameters of the utility function

depend on a vector of time-varying stochastic taste determining factors that affect

consumer’s preferences over time. Therefore, these factors induce stochastic shocks

into consumers’ preference since they are assumed to be governed by a time-varying

stochastic process.
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Since the realized values of the preference shifting factors may not be known with

certainty, and this is more likely to be the case in practice, I shall assume that only

the nature of the stochastic process that govern the preference shifting shocks is

relevant to the time-varying structure of the parameters in the utility function. More

specifically, I shall assume that the parameters in the time-varying-parameter utility

function follow the same stochastic process as the taste determining shocks, and that

the realized value of the parameter vector at any time t uniquely determines the form

of the utility function to be maximized by the consumer at that very specific time

period. Therefore the consumer can be seen as having a family of utility functions and

that he or she maximizes, at each time period t=1,2, . . . ,T, the one that is selected

by the realization of the stochastic process governing the parameter vector.

I shall also assume that the parameters in the utility function follow a first or-

der Markov process. However, a more general process such as an autoregressive or

a moving average process of lower order can be postulated as well. The parameter

variations are then seen as including a dominant component which is a realization of

a stochastic process, in addition of whatever fixed components that may be related to

observable factors. The stochastic part of the variation in the parameters is dominant

in the sense that it determines the time path of the parameter vector. This consid-

eration allows to include the constant-parameters case as a special case. Assuming

that the parameter vector in the utility function is governed by a first order Markov

process or by an autoregressive process of lower order naturally applies to models of

time series.
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In the case of a purely random walk process the consumer’s problem can be defined

as that of maximizing the time-varying-parameter utility function:

ut = u (xt; Θt)

subject to

p′txt = mt

Θt = Θt−1 + εΘ,t

(2.4.1)

where Θt = (θ1t, θ2t, · · · , θnt) is the vector of parameters that describe the form of the

ordinal utility function at each time period t = 1, 2, ..., T ; pt = (p1t, p2t, · · · , pnt) is

the price vector and mt is the consumer’s expenditure. The specification in equation

(2.4.1) implies that only the parameters of the utility function are time-varying and

that the functional form of the utility function is time-invariant. This assumption

allows to derive a unique functional form of the demand functions and consider their

time-varying properties only as a result of the time-varying structure inherited by

their parameters from the parameters of the utility function.

It is assumed that the specification of the time-varying structure of the parameter

vector is such that the utility function ut possesses nice properties at each time period

t, that is ut is assumed to be a well-behaved function that satisfies all the regular-

ity conditions of consumer demand theory(increasingness, quasiconcavity, continuity,

etc.). This implies that any theoretical constraint on the parameters of the utility

function should hold at every single time period. In addition, the shocks to the pa-

rameter vector affect the marginal utilities and hence translate into demand functions

with time-varying parameters.
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2.4.1 Implications on the properties of demand functions

If one assumes that the parameters of the utility function just introduced are

constant over time, then the analysis will reduce to the traditional framework of the

neoclassical theory of consumer’s demand. In such a framework consumer preferences

are time-invariant and the utility function that is being maximized may be seen as

preselected by fixing the value of its parameter vector once and for all. It is clear

that the consumer’s behavioral model that is based on this approach is a special case

of the model that postulates time-varying parameters preferences. As a result, the

implications of the consumer theory in the two approaches differ only in the fact that

the properties (i.e. the elasticities) of the model are constants under fixed preferences

whilst they are time series under the time-varying-parameter approach.

2.5 Illustration: The WS-Branch Utility Tree

The above considerations need to be illustrated with a known functional form that

will serve as the true utility function. For this purpose, the weakly separable (WS-)

branch utility function will be used. Given the implications of assuming time-varying

parameters in the utility functions as outlined in the previous section, I shall only

discuss the constant-parameters case in what follows.

The WS-branch utility function was first introduced by Barnett (1977) and sub-

sequently used by Barnett and Choi (1989) as the underlying true utility function in

testing weak separability in four demand specifications. This utility function, which

is a macroutility function over quantity aggregator functions, is a flexible blockwise

weakly separable utility function when defined over no more than two blocks with

a total of two goods in each block. The constant-parameter homothetic form of the

WS-branch utility function with two blocks q1 and q2 is defined as follows:
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U = U(q1(x1, x2), q2(x3)) = A
[
A11q

2ρ
1 + 2A12q

ρ
1q
ρ
2 + A22q

2ρ
2

](1/2ρ)
(2.5.1)

where ρ < 0.5, the constants Aij > 0 are elements of a symmetric matrix such

that Aij = Aji and
∑

i

∑
j Aij = 1. The constant A > 0 produces a monotonic

transformation of the utility function and thus can be normalized to 1 without loss of

generality. Assume that there are only three goods and that the first block consists

of the two first goods x1 and x2 while the second block consists only of the third

good, x3. Then the sub-utility functions q1 and q2 are defined as follows in terms

of the vector of supernumerary quantities y = x − α, where x = (x1, x2, x3) and

α = (α1, α2, α3) is a vector of translation parameters:

q1 = q1(x1, x2) = B
[
B11y

2δ
1 + 2B12y

δ
1y

δ
2 +B22y

2δ
2

](1/2δ)
(2.5.2)

q2 = q2(x3) = y3 − α3 (2.5.3)

where δ < 0.5, Bkl > 0 for k,l = 1,2, Bkl = Blk for k 6=l and
∑

k

∑
lBkl = 1. Notice

that the specification of the aggregator function q1 in equation (2.5.2) is the same as

the specification of the macroutility function (2.5.1). Therefore, both functions share

the same properties. For example, both functions are monotone and quasi-concave

as a result of the restrictions on their parameters. These restrictions insure their

theoretical regularity as well.
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In the utility function specifications (2.5.1) - (2.5.3) the supernumerary goods

y1 and y2 are weakly separable from the supernumerary good y3. However, it is

worthwhile noting that the WS-branch utility function contains a number of special

cases. First, blockwise strong separability obtains when the interaction terms A12 and

A21 equal to zero, which also implies additive separability in the two blockings q1 and

q2 . Second, when B12 = B21 = 0 the aggregator function q1 is additively separable

in y1 and y2, and therefore y1 and y2 are blockwise strongly separable. Third, the

pure CES utility function obtains when ρ = δ and all the interaction terms in both

the macrofunction U and the aggregator function q1 are simultaneously zero. Finally,

the Cobb-Douglas utility function obtains when all the interaction terms are zero and

when ρ = δ = 0 in the limit.

Barnett and Choi (1989) have shown that the elasticity of substitution between

the two sub-utility aggregator functions is given by

ξ12 =
1

(1− ρ+R)
(2.5.4)

where

R = −ρ A11A22 − A2
12

(A11(
q2
q1

)−ρ + A12)(A12 + A22(
q2
q1

)ρ)
(2.5.5)

Since the sub-utility function q1 shares the same properties as the macrofunction

U, it follows that the elasticity of substitution between the supernumerary goods y1

and y2 is given by the formula below (see also Hjertstrand (2009)):

ξ∗12 =
1

(1− δ +R∗)
(2.5.6)
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where

R∗ = −δ B11B22 −B2
12

(B11(
y2
y1

)−δ +B12)(B12 +B22(
y2
y1

)δ)
(2.5.7)

Barnett and Choi (1989) have also shown that the elasticity of substitution be-

tween the elementary goods xi and xj obtains from the elasticity of substitution be-

tween the supernumerary quantities, say ξij . Namely, the elasticity of substitution,

σij, between xi and xj and the income elasticity of demand, ηj, for the elementary

quantity xj (j = 1,2,3) are respectively

σij = ξij

(
1

1− p′α

)
(xi − αi)(xj − αj)

xjxi
(2.5.8)

and

ηj =

(
1

1− p′α

)
xj − αj
xj

(2.5.9)

where p = (p1, p2, p3) is the income normalized price vector, p/m, and m = p′x is

total expenditure. However this formula applies only when α1 = α2 = 0 or when the

aggregate function is defined in terms of the supernumerary quantities as in equations

(2.5.2) and (2.5.3)[ See Theorem 2.2 in Barnett and Choi (1989)].

Two demand systems, one for the aggregate quantities and one for the supernu-

merary quantities, can be derived from two utility maximization problems related

to the WS-branch model. First, the aggregate quantities obtain from maximizing

the macroutility function with respect to an appropriate income constraint. Second,

the supernumerary quantities are chosen by maximizing the corresponding sub-utility

function for each group of goods with respect to the group supernumerary income.

Finally, the elementary quantities are derived from their relationship with the super-

22



numerary quantities and the committed consumptions. Barnett (1977) and Barnett

and Choi (1989) provided the details regarding these two optimization problems,

which relate to the two-stage budgeting procedure.

Seck (2006) and Barnett and Seck (2008) used the WS-branch utility function as

the true underlying utility function to test the ability of the AIDS model of Deaton

and Muellbauer (1980a,b) and the Rotterdam model developed by Barten (1964, 1968,

1977) and Theil (1965, 1971, 1975a,b) to recover the true elasticities of substitution.

Their analysis is based on the static specifications of both the AIDS model and the

Rotterdam model with constant parameters. My aim in this dissertation research is

to conduct a similar analysis by assuming time-varying parameters in both the AIDS

and the Rotterdam model.

2.5.1 Time-Varying parameter specification

All the parameters in the model will be assumed to vary over time except ρ in the

macroutility function (2.5.1) and δ in the microutility function (2.5.2). This time-

varying specification is sufficient to obtain the time-varying properties of the derived

marginal rates of substitution and demand functions. Note that Barnett (1977) does

not make any assumption on the time variability of the parameters of the WS-branch

utility function, especially that of the derived elasticity of substitution.

Assuming time variation in the model’s parameters requires the specification of

how the parameters change over time, and the resulting utility function shall have a

time subscript to show its dependence on the time-varying parameter. I shall assume

that the parameters in the WS-branch utility tree vary over time according to a pure

random walk process.
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It shall be noted that the time-varying assumption applies to the identified sub-

set of the parameters of the utility function rather than the derived elasticities of

substitution between aggregate quantities in the macrofunction or between the su-

pernumerary quantities in the microutility function q1. However, the change in the

elasticities of substitution obtain over time through the time-varying characteristics

of the parameters in the macroutility function and the microutility function. This is

easily seen from the fact that the quantities R and R∗ in equations (2.5.5) and (2.5.7)

are now time varying through their dependence on the time-varying parameters of

the utility functions. Finally, the elasticity of substitution between the elementary

quantities xi and xj obtains from the derived time-varying elasticity of substitution

between the supernumerary quantities yj and yj.

The time-varying cross-price elasticities obtain from the same formula as their

constant counterparts which are derived from the Allen-Uzawa elasticities of substi-

tution based on their relationship with cross-price elasticities and expenditure share

(Barnett and Choi, 1989). The only difference is that the elasticity of substitution

between the elementary quantities which is a component of this formula is now time-

varying. It should be noted that the time variation in the demand elasticities is an

implied property rather than the result of the direct and explicit realization of a

stochastic process.

The time-varying compensated elasticity of the demand for the elementary good

xi with respect to price pj is then given by

η∗ij,t = σij,twj,t (2.5.10)

where wj = pjxj/
∑

k pkxk is the expenditure share for the elementary good xj.
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It is important to note that the formulas for the income elasticities of the ele-

mentary goods xj, j =1,2,3, do not explicitly depend on time varying parameters.

Their time-varying versions obtain by means of their indirect relationship with the

time-varying parameters of the utility function through the optimal prices. In fact,

the optimal prices obtain from the consumer maximization problem with the WS-

branch utility function and thus depend on the time-varying parameters in the utility

function. Moreover, the optimal prices also depend on the elasticities of substitution

between the supernumerary quantities y1 and y2 on the one hand, and between the

aggregator functions q1 and q2 on the other hand. In the framework that I’m consid-

ering in this dissertation, the two elasticities of substitution are assumed to be time

varying. It then follows that their stochastic properties indirectly affect the income

elasticities as well.
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3

Time-Varying Parameters in the AIDS and the RM

3.1 Introduction

The analysis of time-varying coefficients demand systems is introduced in the gen-

eral framework of Harvey (1989)’s structural time series models. The rationale behind

such models is that observations are made up of an underlying level or permanent

component that can be modeled as a random walk, and an irregular or transitory

component that can be specified as a white noise process. These models are usually

augmented to account for seasonal and cyclical effects. To allow for the discounting

of past observations, the parameters in the structural time series models are allowed

to vary over time. This makes the time series models to be regarded as regressions

with time-varying parameters.

Chavas (1983) was the first to estimate a time-varying coefficients demand system

using the Kalman filter. The parameter vector in the demand system was assumed

to be generated by a stochastic difference equation and to depend on non-stochastic

variables. The author claimed that this specification is more general in that it includes

the constant-parameter model as a special case. However, the paper did not feature

any of the flexible functional forms commonly used in empirical demand analysis.

The next sections explore the specification of the structural time-varying coefficients

demand systems featuring the AIDS and the Rotterdam model.
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3.2 The AIDS and Rotterdam models

I shall introduce the AIDS and the Rotterdam model with constant parameters

and explore their respective properties. The time-varying properties of each demand

system obtain by adding a time subscript to their parameters.

3.2.1 The AIDS Model

The constant-coefficients specification of the AIDS was introduced by Deaton and

Muellbauer (1980a) based on the price-independent generalized logarithmic (PIGLOG)

class of preferences, allowing exact aggregation over consumers, and represented via

the cost function. The logarithm of the PIGLOG cost function is defined as a convex

combination of the logarithms of a subsistence function a(p) and a bliss function b(p),

that is

logc(u, p) = (1− u)log {a(p)}+ ulog {b(p)} (3.2.1)

where the functional forms of the subsistence function and the bliss function are

respectively

loga(p) = a0 +
∑
k

αklogpk +
1

2

∑
k

∑
j

γ∗kjlogpklogpj (3.2.2)

and

logb(p) = loga(p) + β0
∏
k

pβkk . (3.2.3)
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The almost ideal demand system cost function, with parameters αi, βi and γ∗ij, is

then written as

logc(u, p) = a0 +
∑
k

αklogpk +
1

2

∑
k

∑
j

γ∗kj log pklogpj + uβ0
∏
k

pβkk (3.2.4)

The cost function in equation (3.2.4) is linearly homogeneous provided that
∑

i αi =

1 and
∑

j γ
∗
kj =

∑
k γ
∗
kj =

∑
j βj = 0, and possesses enough parameters to be a flexible

functional form. The AIDS demand functions are derived from equation (3.2.4) by

applying the Shephard lemma. For each good i in the demand system, the logarithmic

differentiation gives the budget share as a function of prices and utility. By further

exploiting the relationship between the cost function and the indirect utility function,

Deaton and Muellbauer (1980a) produced the following AIDS demand functions in

budget share form

wi = αi +
∑
j

γijlogpj + βilog
( x
P

)
. (3.2.5)

where wi is the budget share of good i, x is aggregate consumer expenditure on the

n goods and P is the translog price index defined by

logP = α0 +
∑
k

αklogpk +
1

2

∑
k

∑
j

γkjlogpklogpj (3.2.6)

For estimation purposes, especially when prices are closely collinear, Deaton and

Muellbauer (1980a) suggested to replace the translog price index in equation (3.2.6)

by the Stone’s geometric price index
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P ∗ =
n∏
i=1

pwi
i , (3.2.7)

the logarithmic expression of which is

logP ∗ =
n∑
i=1

wilogpi. (3.2.8)

The use of Stone’s price produces what is known as the linear-approximate AIDS

(LA-AIDS). The ith equation in this linear demand system is:

wi = αi +
∑
j

γijlogpj + βilog
( x

P ∗

)
(3.2.9)

It is noteworthy that other linearizations of the AIDS in equation (3.2.5) can be

produced by using other price indices such as the Törnqvist price index (Diewert,

1976) and the modified Stone price indexes (Moschini, 1995).

The following constraints are imposed on the parameters of both the nonlinear

and the linear-approximate AIDS models to satisfy respectively linear homogeneity,

adding-up and Slutsky symmetry:

n∑
i=1

γ∗ij = 0 =
n∑
i=1

βi (3.2.10)

n∑
i=1

αi = 1 (3.2.11)

γ∗ij = γ∗ji (3.2.12)
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Deaton and Muellbauer (1980a) pointed out the striking similarity of the AIDS,

when expressed in its first-differenced form, with the Rotterdam model that is dis-

cussed in the next subsection. They showed that the AIDS model in its first-

differenced form has exactly the same right hand size as the Rotterdam model.

3.2.2 The Rotterdam model

The Rotterdam model, originated by Barten (1964) and Theil (1965), is one of

the popularly used functional form in empirical demand analysis. Although it came

under criticism almost a decade after its inception, a number of researchers did strug-

gle to prove its merits and its consistency with demand theory. For example, it was

shown to be flexible (Barnett, 1984; Mountain, 1988), to have negligible approxima-

tion errors and to be able to mimic any functional form (Barnett, 1979b, 1981; Bryon,

1984). Barnett (1979a,b) also showed that the Rotterdam model is derivable at the

aggregate level under weaker assumptions than those needed to empirically acquire

usable theoretical result at the aggregate level than other models. Mountain (1988)

proved the same result for an individual consumer by considering the problem in the

variable space.

I shall consider the absolute price version of the Rotterdam model, defined as

widlogxi = θidlogQ+
n∑
j=1

πijdlogpj (3.2.13)

where dlogQ represents the change in real income and defines the Divisia (1925)’s

quantity index, that is

dlogQ = dlogy − dlogP =
n∑
j=1

wjdlogxj, (3.2.14)
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which is defined as the difference between the logarithmic change in income and the

budget-share-weighted average of the n logged price changes that defines the Divisia

price index,

dlogP =
n∑
j=1

wjdlogpj. (3.2.15)

In terms of finite changes, equation (3.2.13) can be written as

witDqt = θiDQt +
n∑
j=1

πijDpjt, i = 1, . . . , n, (3.2.16)

where wit = (1/2)(wi,t−1 +wi,t) is an arithmetic average of the ith good income share

over two successive time periods t and t−1; πij is the Slustky coefficient that gives the

total substitution effect of the change in the price of good j on the demand for good

i; DQt is the finite change version of the Divisia quantity index in equation (3.2.15).

The income effect of the n price changes on the demand for good i is given by θi.

When the parameters θi and πij are treated as constants, the model is referred to as

the absolute price Rotterdam model. For estimation purpose, a stochastic version of

equation (3.2.16) is specified by adding an uncorrelated zero mean disturbance term

to each equation as follows:

witDqt = θiDQt +
n∑
j=1

πijDpjt + νit (3.2.17)

For more details on the derivation of the Rotterdam model, see Barten (1964),

Theil (1965, 1971, 1975a,b, 1980a,b), Barnett (1979b), and Barnett and Serlertis

(2008).
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The following restrictions are imposed on the coefficients in order for the the

Rotterdam model to satisfy Engel aggregation, linear homogeneity and symmetry are

respectively:

n∑
i=1

θi = 1;
∑
i

πij = 0 (3.2.18)

n∑
i=1

πij = 0 (3.2.19)

πij = πji (3.2.20)

When time-varying parameters are assumed in the Rotterdam model, a time sub-

script is added to each parameter in the above restrictions. In this case, the restric-

tions have to hold at every single period. The next section explores the specification

of time-varying coefficients (TVC) in both the AIDS and the Rotterdam model (RM).

3.3 Structural time-varying coefficients AIDS and RM

In this section, I shall consider the AIDS and the Rotterdam model in the frame-

work of Harvey (1989)’s structural time series models. This framework allows the

time-varying specification of the parameters in each demand function and their esti-

mation by means of the Kalman filter, after appropriately representing the demand

systems in a state space form.
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3.3.1 The structural TVC AIDS

The time-varying coefficient AIDS in its linearized version has been estimated by

Leybourne (1993) and Mazzocchi (2003). Leybourne specified a random walk struc-

ture for all the time-varying parameters, including the intercepts. However, Mazzoc-

chi incorporated Harvey’s approach, by extending the static linear model accordingly

and by estimating a local trend model. In contrast to Leybourne who estimated

the model equation by equation, Mazzocchi jointly estimated the parameters of the

demand system by considering the cross-equation restrictions on the time-varying co-

efficients. In the n-goods unrestricted model, the demand equation for the ith good

is given by

wit = µit +
n∑
j=1

γijtlogpjt + βitlog

(
xt
P ∗t

)
+ φit + uit (3.3.1)

where wit, xt and P ∗t are defined as in the constant-coefficients model; µit and the φit’s

are respectively the time-varying intercept and the seasonal components. Finally, uit

is a error term that is assumed to be a random noise process. Following Harvey

(1989), the time-varying intercept is specified as a random walk with drift, with the

drift itself following a pure random walk process. On the other hand, the seasonal

dummies, φit’s, are constrained to sum to zero over a year. All the price and income

coefficients in equation (3.3.1) are assumed to follow pure random walk processes.

From the similarity between the nonlinear AIDS in equation (3.2.5) and the linear-

approximate AIDS in equation (3.2.9), the structural time-varying coefficient specifi-

cation for the nonlinear AIDS obtains by using the appropriate price index in equation

(3.3.1), that is the translog price index Pt defined in equation ( 3.2.6), to obtain:
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wit = αit +
n∑
j=1

γijtlogpjt + βitlog

(
xt
Pt

)
+ φit + uit (3.3.2)

The restrictions in equations (3.2.10), (3.2.11) and (3.2.12) apply to both models

in equations (3.3.2) and (3.3.1) and are assumed to hold for every time period t =

1, . . . , T .

3.3.2 The Structural TVC Rotterdam model

One important feature of the Rotterdam is that the constancy of its parameters

obtains by assuming constant mean functions involved in the formulas of its maro-

coefficients. However, Barnett (1979a,b) has shown that the macrocoefficients in the

Rotterdam model are not necessarily constant. In contrast, they vary over time and

are income proportional-weighted theoretical population averages of microcoefficients.

Regardless of this important theoretical finding, the Rotterdam model’s coeffi-

cients have continued to be considered as constants during estimation. On the other

hand, Barnett (1981) advocated testing for parameters constancy whenever the model

is used. However, with modern computer capabilities and the advances in numerical

methods, the computational difficulties involved in estimating evolving coefficients in

the Rotterdam model can be easily overcome.

By admitting stochastic microparameters and macroparameters in the Rotterdam

model, the implicit assumption is that the coefficients of the utility function that

the Rotterdam is approximating are also stochastic. However, the neoclassical theory

leaves open the question of how consumer preferences are affected by exogenous factors

over time.
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I shall assume that shocks to preferences reflect into the utility function in the

form of time-varying parameters. Hence the Rotterdam model is theoretically well

suited to incorporate the analysis of change in preferences over time, the form of

which I assume to be of time-varying parameters nature in the framework of Harvey

(1989)’s structural time series models. The specification of the ith equation in the

structural time-varying coefficients Rotterdam model is given in equation (3.3.3) as

follows:

witDqit = $it + θitDQt +
n∑
j=1

πijtDpjt + ψit + νit (3.3.3)

where wit, DQt, Dpt are defined as in the constant-coefficients case. The time-varying

coefficients $it and ψit’s have the same meaning and follow the same stochastic pro-

cesses as µit and the φit’s in equation (3.3.1). Each of the time-varying coefficients

θit and πijt’s follows a pure random walk process.

The next section discusses the state space representation of the structural time

series AIDS and Rotterdam models, a framework that allows to estimate their time-

varying parameters using the Kalman filter. I shall consider two specifications of the

time-varying parameters in the demand system: a model where all the parameters

are assumed to follow a random walk process and a model where the intercept in

each demand equation is assumed to follow a random walk with drift while all the

other parameters follow a pure random walk process. The first model specification is

referred to as the random walk model (RWM) while the second model is referred to as

the local trend model (LTM). The estimation results in Chapter 4 will be presented

for each of the two models.
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3.4 State space Representation of the AIDS and the RM

3.4.1 Introduction

The state space representation of any model consists of two equations. The first

equation, known as measurement equation, relates the observables yt to the typically

unobservable state vector, xt. The second equation, known as the state or transition

equation, describes how the state vector evolves over time. The errors in both the

measurement equation and the state equation are usually assumed to be independent,

zero-mean and normally distributed. State space models are treated in more details

by Harvey (1989), and Durbin and Koopman (2001).

Consider the following state space representation of the demand system:

yt = Ztαt + wt

αt+1 = Stαt + vt

(3.4.1)

For an n-goods demand system, the n × 1 vector yt is the vector of the dependent

variables in the demand system, the m vector αt is the state vector of the m unknown

parameters for t =1, . . . , T. The state space representation above has two matrices.

The n × m matrix Zt contains all the exogenous variables of the system while the

m ×m matrix St is the transition matrix that links the state vector at time period

t+1 to its current value, and the entries of which are supposed to be known.

It is worthy pointing out that although the state variables αt are generally unob-

servable, they are known to be generated by a first-order Markov process as defined

by the transition equation. Finally, the n× 1 vector wt and the m× 1 vector vt are

the serially independent error vectors in the measurement equation and the transition

equation respectively, with zero means and respective nonnegative definite covariance

matrices Ht and Qt, that is
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E(wt) = 0 and V ar(wt) = Ht; E(vt) = 0 and V ar(vt) = Qt; t = 1, . . . , T,

(3.4.2)

where Ht and Qt are respectively of order n × n and m ×m. In addition, the error

vectors in the state space model are assumed to be independent of each other at all

time points, that is

E(wtv
′

t) = 0 (3.4.3)

In what follows I shall provide the explicit formulation of different matrices in the

state space model as they relate to the AIDS and the Rotterdam model. Although I

shall only consider two specifications of the parameters’ time varying structure, other

stochastic processes can be specified for the time-varying coefficients as well, such

as the autoregressive structure in Chavas (1983). While the random walk structure

assumes that the coefficients in the model are varying violently over time, the autore-

gressive structure of second order, for example, assumes a slow drift in the coefficients

over time (Saris, 1973).

Following Mazzocchi (2003), the homogeneity and symmetry restrictions are im-

posed by modifying the measurement equation and the transition equation accord-

ingly. This procedure contrasts with the one suggested by Doran (1992) and Doran

and Rambaldi (1997), consisting in augmenting the measurement equation prior to

estimation of the state space model. The restrictions on the parameters of the de-

mand systems shall be imposed to hold at each single time period. The random walk

model and the local trend model are described for both the AIDS and the Rotterdam

model in the next two subsections.
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3.4.2 The Random Walk Model

I shall provide the matrices of the state space representation of the models with the

restrictions imposed on the parameters. However, when linear homogeneity is imposed

the disturbances become linearly dependent and their covariance matrix becomes

singular. In order to circumvent this problem, one equation must be deleted from the

demand system prior to estimation as suggested by Barten (1969). The parameters

of the deleted equation will then be recovered by using the imposed restrictions or by

estimating the system with a different equation deleted.

3.4.2.1 Representation of the structural TVC AIDS

In the 3-goods case, the measurement equation, with homogeneity and symmetry

imposed on the coefficients and the third equation deleted, is as follows for every t :

 w1t

w2t

 =

 1 log
(
p1t
p3t

)
log
(
p2t
p3t

)
log
(
mt

Pt

)
0 0 0

0 0 log
(
p1t
p3t

)
0 1 log

(
p2t
p3t

)
log
(
mt

Pt

)
×



α1,t

γ11,t

γ12,t

β1,t

α2,t

γ22,t

β2,t



+

 ε1,t

ε2,t



The transition equation is given by
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

α1,t

γ11,t

γ12,t

β1,t

α2,t

γ22,t

β2,t



=



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1





α1,t−1

γ11,t−1

γ12,t−1

β1,t−1

α2,t−1

γ22,t−1

β2,t−1



+



eα1
t

eγ11t

eγ12t

eβ1t

eα2
t

eγ22t

eβ2t



3.4.2.2 Representation of the structural TVC RM

When linear homogeneity is imposed the ith equation of (3.3.3) in the n-goods

model becomes

witDqit = $it + θitDQt +
n−1∑
j=1

πijt(Dpjt −Dpn,t) + ψit + νit (3.4.4)

With the constant and the seasonal dummies dropped from equation (3.4.4), the

measurement equation of the state space representation of the Rotterdam model can

be expressed explicitly as follows, in the 3-goods case when symmetry is imposed and

the third equation deleted:

 w1,tDq1,t

w2,tDq2,t

 =

 DQt (Dp1 −Dp3) (Dp2 −Dp3) 0 0

0 0 (Dp1 −Dp3) DQt (Dp3 −Dp3)

×
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

θ1,t

π11,t

π12,t

θ2,t

π22,t


+

 ν1,t

ν2,t



and the transition equation in matrix form is given ∀t by



θ1,t

π11,t

π12,t

θ2,t

π22,t


=



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1





θ1,t−1

π11,t−1

π12,t−1

θ2,t−1

π22,t−1


+



eθ1t

eπ11t

eπ12t

eθ2t

eπ22t


3.4.3 The Local Trend Model

The local trend model assumes that the intercept in each equation of both the

AIDS and the Rotterdam model follows a random walk process with a drift, that is

µit = µi,t−1 + λi,t−1 + eµit

λit = λi,t−1 + eλit

(3.4.5)

for the ith equation in the AIDS, and

$it = $i,t−1 + ωi,t−1 + e$it

ωit = ωi,t−1 + eωit

(3.4.6)
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for the ith equation in the Rotterdam model. All the other parameters of the de-

mand systems follow the random walk process as in the random walk model. The

measurement and transition equations are modified accordingly.

3.5 Elasticities in the AIDS and Rotterdam Model

The developments in this section are based on the constant-coefficients versions

of both the AIDS and the Rotterdam model. The formulas naturally apply to the

structural time series models of Section 3.3 by using the time-varying coefficients

estimated for this purpose. The resulting elasticities are therefore time series rather

than simple constants.

3.5.1 Demand elasticities in the AIDS

Both price and income elasticities in the PIGLOG AIDS model can be straight-

forwardly computed with formulas that use the estimated values of the parameters

in the demand system. The income elasticity of good i is given by

ηi = 1 +
βi
wi
. (3.5.1)

The Marshallian elasticity for good i with respect to the price of good j is given

by

ηij = −δij +
1

wi

[
γij − βi

(
αj +

n∑
k=1

γjklogpk

)]
(3.5.2)

where δij is the delta Kronecker that is equal to 1 if i = j and 0 otherwise. The

corresponding compensated price elasticity is

η∗ij = ηij + wjηi = ηij + wj

(
1 +

βi
wi

)
. (3.5.3)
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However, when the Stone’s price index is used to produce the linear-approximate

AIDS, the above elasticities formulas have been shown to be inappropriate. More

specifically, Moschini (1995) pointed out that the Stone’s price index is not invariant

to changes in the units of measurement. Therefore, its use as an approximation of the

translog price aggregator results in a linear model that is not equivalent to the initial

model when prices are scaled. This leads to a biased estimation of the behavioral

parameters of the underlying model. On the other hand, Green and Alston (1990)

pointed out the differences between the Marshallian elasticities in equation (3.5.2)

and the Stone-index-corrected ones. They argued that these differences carry over

directly into the calculations of the compensated cross-price elasticities. They derived

a system of n2 simultaneous equations of the uncompensated demand elasticities

where each uncompensated cross-price elasticity is expressed in terms of itself and all

the other elasticities. The typical equation in this system of equations is

ηij = −δij +
γij
wi
− βi
wi

{
wj +

∑
k

wklogpk(ηkj + δkj)

}
(3.5.4)

In matrix form, the system of uncompensated cross-price elasticities can be rep-

resented as follows:

E = A− (bc)[E + I], (3.5.5)

where A is an n × n matrix with typical entry aij = −δij + (γij/wi) − βi(wj/wi); b

is a n × 1 vector with typical element bi = βi/wi; c is a 1 × n vector with elements

cj = wjlogpj , j = 1,2, . . . , n and I is an n × n identity matrix. Finally, E is an

n × n matrix of uncompensated price elasticities with typical entry ηij. Solving for

[ηij] yields
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E = [bc+I]−1[A + I]− I (3.5.6)

As described above for the uncompensated price elasticity, ηij, the income elas-

ticity of good i also depends on its own value and on the other income elasticities

in the linear-approximate AIDS when the derivative of the Stone’s price index with

respect to income is accounted for in the calculations (Green and Alston, 1991). The

following expression relates ηi to the other income elasticities:

ηi = 1 +
βi
wi

[
1−

∑
j

wjlogpj(ηj − 1)

]
(3.5.7)

The corresponding n-equations system can be written in matrix form as:

n = b - bcn (3.5.8)

where b and c are defined as previously and n is an n×1 vector of income elasticities

with components ni = ηi − 1. Solving equation (3.5.8) for n yields

n = [I+bc]−1b (3.5.9)

It is important to mention that the above corrected formulas obtain, as mentioned

by Green and Alston (1990), only if the budget shares in the Stone’s price index are

treated as exogenous. However, Alston et al. (1994) have shown in a Monte Carlo

study that if the nonlinear AIDS is viewed as the underlying demand system and that

the linear-approximate AIDS is indeed an approximation of it, the simple formulas

of elasticities in equations (3.5.1) − (3.5.3) provide a good approximation. In such a

case, there is no need to use the corrected formulas.
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Table 3.1. Time-varying demand elasticities in the AI and the Rotter-
dam models

Model ηit ηijt η∗ijt

Rotterdam µit

wit
πijt−µitwjt

wit

πijt

wit

AI Model 1 + βit

wit
−δijt +

γijt
wit
− βitαjt

wit
ηijt + wjt

(
1 + βit

wit

)
− βit

wit

∑
k γkjtlnpkt

LA AI model 1+ −δijt +
γijt
wit
− β

i
wjt
wit

ηijt + wjtηit

βit

wit

[
1−

∑
jt wjtlnpjt(ηjt − 1)

]
− βit

wit
[
∑
k wktlnpkt(ηkjt + δkjt)]

The time-varying income and price elasticities obtain by straightforwardly apply-

ing the formulas derived for the constant-parameters AIDS, and replacing the constant

parameters by the time-varying parameters. Table 3.1 summarizes the formulas for

the time-varying income and price elasticities.

3.5.2 Demand elasticities in the Rotterdam model

Table 3.1 also shows the income and price elasticities for the time-varying pa-

rameter Rotterdam model. These are just the same formulas as those used for the

constant-parameter Rotterdam model in which time-varying parameters are used in-

stead.

3.5.3 Elasticities of substitution in the AIDS and Rotterdam Model

The concept of the elasticity of substitution was first introduced by Hicks (1932)

to analyze changes in capital and labor income shares. This measure has a straight-

forward economic interpretation that, in the case of a two-variables production/utility

function, the relative income share of factor/good i increases if the elasticity of sub-

stitution is greater than one and decreases when the elasticity of substitution is less

than one.
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Of the two generalizations of the Hickian concept to more than two variables by

Hicks and Allen (1934), Allen (1938) and Uzawa (1962), namely the Hick’s elasticity

of substitution (HES) and the Allen-Uzawa elasticity of substitution (AUES), the

second has been extensively used as a standard statistics in empirical studies in both

production and consumption. The AUES between inputs or commodities i and j is

expressed in terms of the cost function as follows

σAUij (p, u) =
C(p, u)Cij(p, u)

Ci(p, u)Cj(p, u)
) =

εij(p, u)

wj(p, u)
(3.5.10)

where C(p, u) is the cost function and the subscripts on C(p, u) are the partial deriva-

tives with respect to the relevant prices; εij(p, u) is the Hicskian compensated elastic-

ity of good i with respect to the price of good j; and wj(p, u) is good j’s expenditure

share. The cost function in equation (3.5.10) depends on the price vector p and

the utility level u and is assumed to satisfy all the regularity conditions. A regular

cost function is continuous, nondecreasing, linearly homogeneous and concave in p,

increasing in u and twice continuously differentiable.

The AUES reduces to the original Hicksian concept in the two-dimensional case.

However Blackorby and Russell (1989) recommend against the use of the AUES be-

cause it preserves none of the salient properties of the Hicksian concept, in general.

More specifically, they argue that the AUES is not a measure of the ease of substi-

tution; it provides no information about relative income shares; and cannot be in-

terpreted as a logarithmic derivative of a quantity ratio with respect to the marginal

rate of substitution. They conclude that the AUES has no meaning as a quantitative

measure and adds no information to that already contained in the compensated price

elasticity as a qualitative measure.
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In contrast, the Morishima elasticity of substitution (MES), independently intro-

duced by Morishima (1967) and Blackorby and Russell (1975) does preserve the salient

characteristics of the original Hicksian concept. This measure of the elasticity of sub-

stitution is both quantitatively meaningful and qualitatively informative. Moreover,

it is a measure of curvature or ease of substitution and a logarithmic derivative of a

quantity ratio with respect to marginal rate of substitution (Blackorby and Russell

(1981, 1989) and Blackorby et al. (2007)).

The formula to calculate the MES between goods i and j is given by

σMij =
piCij(p, u)

Cj(p, u
)− piCii(p, u)

Ci(p, u
) = εij(p, u)− εii(p, u), (3.5.11)

which is nothing but the difference between the compensated cross-price elasticity,

εij(p, u), and the own-price elasticity, εii(p, u).

Both the MES and the AUES are used to classify inputs/goods as substitutes or

complements; although they yield different stratification sets in general (Barnett and

Serlertis, 2008). In fact, two Allen substitutes goods must be Morishima substitutes

while two Allen complements may be Morishima substitutes.

I shall use the Morishima concept to characterize the time-varying elasticities of

substitution. The compensated time-varying price elasticities will be obtained prior

to the computation of all the relevant MES. However, this concept is used here under

the reserve of the criticism formulated by de la Grandville (1997) on its interpretation

by Blackorby and Russell (1989) as a measure of curvature. In fact, de la Grandville

(1997) showed that there is no direct nor inverse relationship between the concept of

elasticity of substitution and that of the curvature of the isoquant or the indifference

curve. de la Grandville (1997) suggested that the concept of elasticity of substitution

be interpreted as a measure of efficiency rather than a measure of curvature.
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4

Estimation Method and Results

4.1 Introduction

Empirical demand system analysis with time-varying parameters usually proceeds

by first choosing the functional form for demand curves and by specifying a time-

varying structure for the parameters to be estimated. It is also customary to check

how well the time-varying parameter specification fits the data compared to the con-

stant parameter version or the dynamic specification of the selected functional form.

However, such a comparison needs to be conducted with caution for two reasons.

First, both the constant parameter model and the time-varying parameter model are

assumed to approximate the true model that is supposed to have generated the data

being analyzed. But since the true model is usually unknown to the researcher so

as to serve as the benchmark for the comparison, the conclusion of the analysis may

be questioned. In addition, the conclusion may vary from one dataset to another.

Second, the ignorance of the true model makes unrealistic the comparison of the per-

formance of alternative functional forms for the demand system that may be applied

to the same dataset. More specifically, it is unrealistic to compare the performance

of one functional form to that of another when the parameters of the underlying true

model are unknown.

47



In this chapter I shall conduct a Monte Carlo investigation of the performance of

the AIDS and the Rotterdam model to recover the time-varying properties of the data

generated from the true model, that I have specified to be the WS-branch utility tree.

Such an exercise is more reasonable since the use of real data may lead to different

conclusions when different dataset are used. Seck (2006) and Barnett and Seck (2008)

used the same approach to compare the performance of the AIDS and the Rotterdam

model with constant parameters. Barnett (1977)’s WS-branch utility function also

served as the true underlying model for data generation.

This chapter is organized as follows. Section 4.2 presents the data generation

procedure for the Monte Carlo experiments, and the estimation method is discussed

in section 4.3. In section 4.4, the time-varying elasticities are presented. These elas-

ticities are computed by using the values of the time-varying coefficients obtained

for each demand system. The results are presented in the perspective of the perfor-

mance of each individual demand system to recover the time-varying elasticities of the

true model. The focus is on the ability to recover the signs of the true time-varying

elasticities (qualitative performance) and to produce approximations of time-varying

elasticities the values of which are close to the true ones (quantintative performamce).

Section 4.5 reviews the performance of each model with respect to the theoretical reg-

ularity. A regularity index is thus calculated for each time period under the random

walk specification and under the local trend model for each demand system. The com-

parison of the performance of each demand system to that of the other specifications

is presented in section 4.6. Section 4.7 presents the results from a robustness-check

Monte Carlo experiment. In this experiment, different paths of the time varying

parameters in the utility function are used to generate the data.
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4.2 Description of the data generation procedure

This section explains the steps used to generate the data for the Monte Carlo

simulations. In this process, all the parameters in the utility functions in equations

(2.5.1) and (2.5.2), except ρ and δ, are assumed to be time varying. The constancy

of δ and ρ is assumed for convenience, since these parameters can be set time-varying

as well. The reference dataset is generated by means of the following 12 steps:

Step 1 : Set the value of the elasticity of substitution between the supernumerary

quantities y1 and y2 in the microutility function in equation (2.5.2) for each

time period, t = 1, 2, ...,T., where T = 60.

Step 2 : Generate the stochastic process for the time-varying parameters in the

microutility function q1. The parameters B11,t,B12,t,B21,t and B22,t are assumed

to follow a random walk process and are constrained so that they satisfy the

condition
∑

k

∑
lBkl,t = 1 in each time period. In addition to this condition,

B12,t and B21,t are constrained to be equal to each other at each time period by

the symmetry condition. Under these constraints only the stochastic processes

of B11,t and B12,t are needed to trace out the complete time-varying structure

of the parameters in the utility function.

Step 3 : Obtain the ratio between the two supernumerary quantities y1 and y2 at

each time period from the formula of the elasticity of substitution between the

two supernumerary quantities, using the values set in Step 1.
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Step 4 : Generate the first order autoregressive time series for the two supernumerary

quantities y1 and y2 and the supernumerary income m1t
1 and adjust the two

supernumerary quantities time series so that the ratio y2/y1 corresponds to the

one obtained in Step 3 at each time period.

Step 5: Use the first order conditions for maximizing q1
2 and the supernumerary

budget constraint to solve for the price system (p1t, p2t), ∀t.

Step 6 : Calculate the aggregate quantity q1 at every time period and the corre-

sponding price index using the Fisher factor reversal test.

Step 7 : Set the value of the elasticity of substitution between the two aggregate

quantities q1 and q2 in the WS-branch utility function in equation (2.5.1) and

solve for the ratio q2/q1 from equation (2.5.4) for each time period t = 1,2,...,T.

Step 8 : Generate the time path for the time-varying parameters in the macroutil-

ity function. As for the time-varying parameters in the microutility function,

the parameter vector in the macroutility function is assumed to follow a ran-

dom walk process. The time-varying parameters are set in such a way that∑
i

∑
j Aij,t = 1 and A12,t = A21,t. ∀t. The only constant parameter in the

macroutility function is ρ.

Step 9 : Generate the supernumerary quantity y3 = q2 according a first order autore-

gressive process3 and adjust the resulting time series so that the ratio q2t/q1t

corresponds to the ratio obtained in Step 7.

1 The autoregressive models for the supernumerary quantities and income are the following: y1t =
2 + 0.75y1,t−1 + e1t; y2t = 1 + 0.739y2,t−1 + e2t; m1t = 125 + 0.98m1,t−1 + e3t where e1t, e2t and e3t
are zero mean and serially uncorrelated normal error terms with variance 1.

2 See Barnett and Choi (1989)
3 y3t = 3 + 0.69y3,t−1 + e4t
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Step 10 : Solve for p3t from the first order conditions for the maximization of the

macroutility function4.

Step 11 : Set the value of α1,α2 and α3 and obtain the elementary quantities x1t,

x2t and x3t from their relationships with the supernumerary quantities, that

is xi = yi + αi
5, i=1,2,3 and calculate total expenditure on the elementary

quantities.

Step 12 : Add noises to the elementary quantities x1t, x2t and x3t that constitute the

reference dataset and estimate the time varying parameters of the resulting de-

mand system, bootstrapping the model 2000 times while recalculating the total

expenditure on x1t, x2t and x3t. For the bootstrap procedure I have generated

three vectors of 2000 seeds each to use in generating the random numbers that

are added as shocks to the reference data. Relevant elasticities are calculated

and stored at each replication from the estimated time-varying parameters. Fi-

nally, the income and compensated price elasticities as well as the elasticities

of substitution at each time period are calculated as the averages of the values

stored during the bootstrap procedure.

The true time-varying elasticities will be presented together with their approx-

imations from the four demand systems in section 4.4. It is noteworthy that the

true time-varying elasticities of substitution and income elasticities will be obtained

in application of formulas in equations (2.5.4), (2.5.6), (2.5.8) and (2.5.9). The true

time-varying cross-price elasticities will be obtained by using the relationship between

the Allen-Uzawa elasticity of substitution and the Hicksian demand elasticities.

4 See Barnett and Choi (1989) for the specification of this utility maximization problem.
5 The values used to generate the data are: α1 = 1, α2 = 10 and α3 = 4. This specification is

used for the random walk model. For the local trend model, each of the αi’s is specified as a random
walk plus a shift, where the shift itself follows a random walk process.
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4.3 The Estimation method

I estimate the time-varying parameters by the Kalman (1960)’s filter and then

pass the filtered estimates through a Kalman smoothing algorithm in order to revise

them. The Kalman filter is a sequential procedure for computing the optimal estimate

of the state vector at time t using all the information available at time t, given some

priors on the initial state and the covariance matrix. The Kalman smoother, on the

other hand, is a backward procedure starting from the Kalman filtered state vector

to produce smoothed estimates using all the available information in the data.

The following set of equations describes the Kalman recursion (Durbin and Koop-

man, 2001):

υt = yt − Ztat, Ft = ZtPtZ
′
t +Ht,

Kt = StPtZ
′
tF
−1
t , Lt = St −KtZt, t = 1, . . . , T,

at+1 = Stat +Ktυt, Pt+1 = StPtL
′
t +Qt,

(4.3.1)

where a1 and P1 are respectively the mean and covariance matrix of the initial state

vector, Zt, St, Pt, αt are as defined in equation (3.4.1); and Ht and Qt as defined in

equation (3.4.2).

The contemporaneous filtering equations are given by

υt = yt − Ztαt, Ft = ZtPtZ
′
t +Ht,

at|t = at +MtF
−1
t υt, Pt|t = Pt −MtF

−1
t M

′
, t = 1, . . . , T,

at+1 = Stat|t, StPt|tS
′
t +Qt,

(4.3.2)

where a1 and P1 are given and Mt = PtZ
′
t is a matrix of order m× p, and at and at|t

are m× 1 vectors.
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On the other hands, the smoothing recursion is defined by the following equations:

rt−1 = Z
′
tF
−1
t υt + L

′
trt, Nt−1 = Z

′
tF
−1
t Zt + L

′
tNtLt

α̂t = at + Ptrt−1, Vt = Pt − PtNt−1Pt

(4.3.3)

with rT = 0. The m×1 vector rt in equation (4.3.3) is a weighted sum of innovations

υh occurring after t-1 for j = 1, . . . , T. The m×m matrix Vt is the covariance matrix

of the m × 1 vector of smoothed states α̂t. It is noteworthy that the smoothing

recursion in (4.3.3) is referred to as the fixed interval smoother (de Jong, 1988, 1989;

Kohn and Ansley, 1989; Durbin and Koopman, 2001) and that it differs from the

classical fixed interval smoother suggested by Anderson and Moore (1979). However,

this smoothing recursion can be derived from the one in Anderson and Moore (1979)

as detailed by Durbin and Koopman (2001).

Under the normality assumption for the disturbance vectors wt and vt in equations

(3.4.1), the distribution generated by the Kalman filter is given by

yt|y1, y2, . . . , yt−1 ∼ N(Z
′

tαt,Λt) (4.3.4)

where Λt = Z
′
tPt|t−1Zt +Qt. The essential part of the likelihood function for the full

sample, which is the objective function of the Kalman filter(smoother) is therefore

−1

2

∑
t

log|Λt| −
1

2

∑
t

(yt − Z
′

tαt|t−1)
′
Λ−1t (yt − Z

′

tαt). (4.3.5)

I shall give the results from the above estimation method in the next section.

The estimation was performed by using the exact Kalman filter (Koopman, 1997)

for initial states and variances and implemented using the RATS software (Doan,

2010b,a, 2011; Estima, 2007a,b).
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The AIDS models have been estimated in first-differenced form by assuming time-

varying coefficients rather than constant coefficients like, for example, in Deaton and

Muellbauer (1980a), Eales and Unnevehr (1988), Moschini and Meilke (1989), Brester

and Wohlgenant (1991) and Alston and Chalfant (1993). An intercept is included in

each demand equation.

4.4 Estimated values of the time varying elasticities

4.4.1 The RM approximation

The Rotterdam model correctly approximated the true time-varying elasticities

of substitution with positive values at each time period. However, the approximating

values were closer to the true ones only for the goods withing the same sub-aggregation

group under the random walk specification than under the local trend model speci-

fication. Under the local trend model specification, the approximating values of the

within-group time-varying elasticity of substitution tended to overestimate the true

ones, especially when the values of the true time-varying elasticity were low (see Table

4.1). The model tended to underestimate the values of the elasticities of substitution

for goods in different sub-aggregation groups under both the random walk specifi-

cation and the local trend model specification. Nonetheless, the gap between the

values of the true time-varying elasticities of substitution and the approximating val-

ues was smaller under the random walk specification when the true values were less

than unity. Regardless of the magnitude of the approximating values, the Rotterdam

model correctly identified each of the pair of goods (x1, x2), (x1, x3) and (x2, x3) as

substitutes.
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The Rotterdam model also approximated the true time-varying income elasticities

with the correct positive sign. Under both the random walk specification and the local

trend model specification, the Rotterdam model identified x1, x2 and x3 as normal

goods. In addition, each good was correctly identified as a necessity good or a luxury

good. For most of the time periods, the approximating values of the time-varying

income elasticities were close to the values of the true time-varying income elasticities.

Finally, the Rotterdam model correctly identified the pairs (x1, x2), (x1, x3) and

(x2, x3) as substitutes by providing positive values of the time-varying compensated

cross-price elasticities. The only exception occurred for x2 and x3 under the random

walk specification for two consecutive time periods (see Table 4.9).

4.4.2 The AIDS model approximation

All the approximating values of the time-varying elasticities of substitution were

positive both under the random walk specification and the local trend model speci-

fication. The model tended to overestimate the values of the time-varying elasticity

of substitution (ESUB) within the same utility branch under both specifications of

the structural time series demand system. For goods in different branches the results

from the two specifications of the time-varying coefficients had different profiles. For

example, the model tended to overestimate the values of the time-varying elasticity of

substitution between x2 and x3 under the random walk specification while it tended

to underestimate the true values of the same time-varying elasticity under the local

trend model specification.
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Table 4.1. True and approximating values of σ12,t at selected time pe-
riods

Random Walk Model Local Trend Model

Period True RM NLAI LAISF LAICF True RM NLAI LAISF LAICF

1 0.399 0.303 1.638 -0.372 0.337 0.165 0.138 0.439 -0.910 -0.131
2 0.393 0.343 1.643 -0.420 0.307 0.184 0.114 0.419 -1.001 -0.182
3 0.386 0.342 1.636 -0.358 0.340 0.195 0.115 1.101 -0.975 -0.171
4 0.384 0.322 1.574 -0.227 0.392 0.203 0.142 1.100 -1.039 -0.213
5 0.413 0.321 1.617 -0.348 0.341 0.154 0.151 1.113 -1.077 -0.224
6 0.369 0.335 1.623 -0.359 0.337 0.169 0.152 1.109 -1.119 -0.236
7 0.329 0.314 1.538 -0.147 0.419 0.154 0.149 1.070 -1.098 -0.226
8 0.382 0.301 1.551 -0.183 0.383 0.107 0.156 1.078 -1.113 -0.231
9 0.329 0.298 1.523 -0.136 0.426 0.125 0.153 1.087 -1.289 -0.336

10 0.271 0.303 1.581 -0.266 0.376 0.115 0.146 1.083 -1.209 -0.288
11 0.273 0.311 1.555 -0.206 0.416 0.133 0.139 1.080 -1.097 -0.222
12 0.273 0.316 1.615 -0.320 0.357 0.078 0.136 1.068 -1.007 -0.167
13 0.405 0.334 1.640 -0.372 0.339 0.087 0.127 1.069 -1.007 -0.168
14 0.305 0.339 1.622 -0.372 0.336 0.067 0.122 1.064 -0.918 -0.113
15 0.266 0.346 1.687 -0.425 0.313 0.105 0.124 1.064 -0.999 -0.157
16 0.262 0.318 1.511 -0.139 0.429 0.069 0.120 1.065 -1.063 -0.191
17 0.387 0.312 1.639 -0.351 0.333 0.087 0.117 1.059 -1.004 -0.157
18 0.369 0.344 1.647 -0.415 0.288 0.101 0.117 1.062 -1.109 -0.218
19 0.370 0.351 1.665 -0.399 0.284 0.087 0.117 1.062 -1.093 -0.207
20 0.386 0.345 1.629 -0.344 0.319 0.106 0.114 1.053 -1.118 -0.223
21 0.380 0.342 1.639 -0.392 0.290 0.083 0.118 1.054 -1.043 -0.179
22 0.361 0.352 1.679 -0.408 0.263 0.075 0.118 1.056 -1.128 -0.226
23 0.373 0.363 1.687 -0.453 0.241 0.054 0.112 1.054 -1.035 -0.170
24 0.329 0.372 1.707 -0.478 0.212 0.125 0.110 1.054 -1.089 -0.204
25 0.404 0.374 1.696 -0.428 0.225 0.070 0.112 1.057 -1.152 -0.234
26 0.507 0.376 1.717 -0.506 0.209 0.088 0.110 1.058 -1.246 -0.292
27 0.465 0.368 1.668 -0.427 0.261 0.084 0.113 1.059 -1.268 -0.303
28 0.388 0.355 1.668 -0.417 0.301 0.085 0.115 1.060 -1.399 -0.378
29 0.373 0.345 1.641 -0.360 0.326 0.055 0.119 1.062 -1.330 -0.334
30 0.340 0.336 1.602 -0.347 0.321 0.062 0.124 1.052 -1.409 -0.379
36 0.429 0.306 1.573 -0.248 0.395 0.061 0.139 1.057 -1.666 -0.526
42 0.360 0.328 1.615 -0.316 0.389 0.061 0.158 1.064 -1.890 -0.651
48 0.341 0.346 1.649 -0.399 0.351 0.090 0.149 1.065 -1.925 -0.675
54 0.361 0.351 1.601 -0.324 0.381 0.060 0.154 1.068 -2.040 -0.734
60 0.406 0.327 1.631 -0.356 0.371 0.070 0.175 1.080 -2.505 -0.996

Notes:

RM = Rotterdam model

NLAI = Nonlinear AI model

LAISF = Linear-Approximate AIDS with simple formulas

LAICF = Linear-approximate AI model with corrected formulas from Green and Alston (1990, 1991)
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Table 4.2. True and approximating values of σ13,t at selected time pe-
riods

Random Walk Model Local Trend Model

Period True RM NLAI LAISF LAICF True RM NLAI LAISF LAICF

1 0.154 0.596 0.164 -0.303 0.467 3.050 0.301 1.060 1.250 1.289
2 0.595 0.771 0.195 -0.259 0.481 3.069 0.275 1.077 1.328 1.376
3 0.840 0.746 0.217 -0.223 0.494 2.964 0.405 1.082 1.461 1.408
4 1.122 0.673 0.348 -0.028 0.564 3.008 0.444 1.094 1.518 1.454
5 2.103 0.676 0.213 -0.237 0.487 3.002 0.455 1.254 1.464 1.422
6 2.002 0.746 0.199 -0.248 0.483 3.060 0.405 1.218 1.389 1.357
7 1.945 0.572 0.520 0.225 0.658 3.014 0.436 1.306 1.575 1.515
8 1.551 0.423 0.620 0.360 0.721 2.908 0.554 1.342 1.655 1.579
9 1.835 0.440 0.461 0.145 0.624 3.017 0.561 1.302 1.592 1.526

10 1.958 0.570 0.323 -0.067 0.552 3.008 0.531 1.294 1.573 1.510
11 1.134 0.655 0.296 -0.102 0.544 3.027 0.465 1.235 1.442 1.398
12 0.801 0.679 0.270 -0.143 0.526 2.946 0.433 1.253 1.481 1.432
13 1.306 0.726 0.187 -0.267 0.481 2.979 0.486 1.297 1.575 1.513
14 1.834 0.761 0.196 -0.255 0.486 2.848 0.583 1.365 1.729 1.644
15 2.387 0.747 0.217 -0.224 0.496 2.957 0.577 1.291 1.562 1.501
16 2.137 0.622 0.439 0.112 0.615 2.821 0.614 1.425 1.855 1.752
17 2.389 0.581 0.336 -0.051 0.556 2.744 0.760 1.426 1.863 1.757
18 2.256 0.614 0.365 -0.003 0.570 2.513 0.886 1.591 2.224 2.066
19 2.165 0.537 0.501 0.184 0.646 2.691 1.047 1.575 2.196 2.041
20 1.530 0.505 0.450 0.124 0.614 2.766 1.033 1.573 2.192 2.038
21 1.434 0.521 0.448 0.123 0.616 2.765 1.038 1.581 2.208 2.052
22 1.258 0.455 0.594 0.320 0.695 2.892 0.999 1.527 2.099 1.958
23 0.830 0.407 0.579 0.310 0.687 2.727 1.019 1.602 2.265 2.100
24 0.944 0.381 0.638 0.393 0.722 2.647 1.082 1.589 2.244 2.081
25 1.022 0.327 0.706 0.498 0.762 1.967 1.210 1.763 2.631 2.410
26 0.659 0.344 0.588 0.318 0.692 2.745 1.209 1.588 2.242 2.078
27 0.682 0.427 0.530 0.238 0.663 2.399 1.253 1.826 2.767 2.527
28 0.568 0.547 0.259 -0.166 0.505 2.833 1.233 1.571 2.204 2.046
29 0.430 0.676 0.303 -0.097 0.534 2.678 1.058 1.586 2.235 2.074
30 0.616 0.636 0.348 -0.027 0.561 2.712 1.066 1.580 2.222 2.063
36 1.391 0.684 0.245 -0.180 0.515 2.417 1.310 1.789 2.717 2.485
42 2.245 0.785 0.175 -0.283 0.496 2.948 1.132 1.491 2.039 1.906
48 2.897 0.746 0.201 -0.244 0.518 2.951 1.260 1.735 2.588 2.373
54 3.053 0.852 0.137 -0.340 0.475 2.657 1.534 1.905 2.966 2.695
60 2.762 0.905 0.008 -0.532 0.402 2.445 1.894 2.304 3.862 3.458

Notes:

RM = Rotterdam model

NLAI = Nonlinear AI model

LAISF = Linear-Approximate AIDS with simple formulas

LAICF = Linear-approximate AI model with corrected formulas from Green and Alston (1990, 1991)
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With regard to income elasticities, the AIDS model produced approximations

that had positive values at each time period for the three goods. However, the model

tended to produce time-varying income elasticities with unitary values(see Tables

4.4, 4.5 and 4.6). When the values of the true time-varying income elasticities were

less the one, the approximating values overestimated the true values, and the gap

was smaller only when the true values were very close to 1. On the other hand, the

approximating values underestimated the true ones when the true values were greater

than one. In this case the model failed to capture very high values of the time-varying

income elasticities (see for example Table 4.6).

The nonlinear AIDS identified all the pairs of goods (x1, x2), (x1, x3) and (x2, x3) as

substitutes under the random walk specification, with exception for few time periods

at the end of sample for (x1, x3). In these cases, the two goods were identified as

complements. Under the local trend model specification, the compensated TVC cross-

price elasticities between x1 and x2 and between x1 and x3 had the correct positive sign

at each time periods. However, the model produced an approximation of the time-

varying cross-price elasticity between x2 and x3 the values of which were negative for

most of the time periods. Thus, x2 and x3 were wrongly identified as complements

for most of the time periods.

4.4.3 The LAISF model approximation

The LAISF model produced an approximation of the TVC ESUB between x1 and

x2 the values of which were negative under both stochastic specifications of the time-

varying coefficients in the demand system. The true TVC ESUB between x1 and x3

is approximated with positive values under the local trend model specification, but

with both negative and positive values under the random walk specification.
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Table 4.3. True and approximating values of σ23,t at selected time pe-
riods

Random Walk Model Local Trend Model

Period True RM NLAI LAISF LAICF True RM NLAI LAISF LAICF

1 0.909 0.251 1.934 0.263 0.266 1.711 0.226 0.573 -0.410 -0.394
2 0.934 0.292 1.939 0.238 0.240 1.767 0.194 1.076 -0.333 -0.377
3 0.876 0.292 1.923 0.277 0.279 1.812 0.171 1.079 -0.351 -0.396
4 0.635 0.271 1.826 0.352 0.352 1.861 0.168 1.082 -0.429 -0.474
5 0.873 0.270 1.903 0.280 0.283 1.845 0.201 1.071 -0.472 -0.517
6 0.915 0.284 1.912 0.273 0.276 1.885 0.219 1.047 -0.438 -0.484
7 0.436 0.262 1.757 0.409 0.405 1.872 0.220 1.056 -0.436 -0.483
8 0.309 0.248 1.761 0.390 0.384 2.066 0.214 1.069 -0.500 -0.547
9 0.488 0.245 1.747 0.407 0.404 1.802 0.213 1.063 -0.463 -0.511

10 0.773 0.251 1.840 0.332 0.332 1.801 0.207 1.056 -0.426 -0.474
11 0.970 0.259 1.813 0.363 0.363 1.541 0.205 1.044 -0.423 -0.470
12 0.889 0.265 1.889 0.301 0.300 1.492 0.207 1.052 -0.365 -0.412
13 1.088 0.283 1.933 0.269 0.269 1.413 0.203 1.036 -0.410 -0.457
14 0.956 0.289 1.913 0.267 0.267 1.463 0.196 1.040 -0.459 -0.507
15 0.896 0.295 1.983 0.249 0.247 1.342 0.204 1.029 -0.619 -0.668
16 0.500 0.267 1.738 0.404 0.401 1.375 0.219 1.027 -0.572 -0.622
17 0.586 0.260 1.909 0.293 0.292 1.533 0.229 1.030 -0.634 -0.685
18 0.518 0.292 1.918 0.254 0.252 1.584 0.225 1.030 -0.630 -0.680
19 0.330 0.299 1.916 0.272 0.268 1.686 0.225 1.027 -0.608 -0.659
20 0.371 0.292 1.881 0.300 0.296 1.531 0.221 1.023 -0.619 -0.670
21 0.432 0.290 1.896 0.273 0.269 1.509 0.219 1.029 -0.662 -0.714
22 0.281 0.299 1.920 0.270 0.263 1.011 0.228 1.017 -0.737 -0.790
23 0.301 0.309 1.936 0.248 0.241 1.485 0.240 1.028 -0.637 -0.689
24 0.245 0.318 1.951 0.230 0.222 1.373 0.233 1.018 -0.849 -0.904
25 0.166 0.319 1.927 0.256 0.247 1.708 0.238 1.034 -0.715 -0.769
26 0.265 0.321 1.970 0.217 0.210 1.676 0.240 1.034 -0.737 -0.791
27 0.332 0.315 1.919 0.258 0.251 1.771 0.223 1.037 -0.812 -0.865
28 0.667 0.303 1.956 0.253 0.252 1.738 0.227 1.029 -0.903 -0.958
29 0.595 0.294 1.916 0.284 0.282 1.807 0.242 1.034 -0.947 -1.001
30 0.529 0.284 1.866 0.284 0.282 2.052 0.261 1.038 -0.891 -0.945
36 0.968 0.254 1.841 0.333 0.336 2.162 0.266 1.053 -1.037 -1.089
42 1.149 0.277 1.904 0.300 0.299 2.614 0.266 1.064 -1.016 -1.067
48 1.433 0.295 1.943 0.255 0.250 2.269 0.237 1.040 -1.430 -1.482
54 1.157 0.300 1.895 0.285 0.288 2.261 0.300 1.035 -1.731 -1.784
60 1.171 0.277 1.949 0.259 0.266 2.851 0.313 1.063 -1.737 -1.737

Notes:

RM = Rotterdam model

NLAI = Nonlinear AI model

LAISF = Linear-Approximate AIDS with simple formulas

LAICF = Linear-approximate AI model with corrected formulas from Green and Alston (1990, 1991)
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Table 4.4. True and approximating values of η1t at selected time peri-
ods

Random Walk Model Local Trend Model

Period True NLAI LAISF LAICF RM True NLAI LAISF LAICF RM

1 1.039 1.0003 1.072 0.074 1.054 1.000 1.0001 1.027 0.027 0.998
2 1.041 1.0003 1.072 0.075 1.028 1.001 1.0001 1.027 0.027 0.994
3 1.043 1.0003 1.072 0.075 1.030 0.997 1.0001 1.028 0.029 0.995
4 1.062 1.0003 1.073 0.078 1.040 0.995 1.0000 1.028 0.029 0.992
5 1.045 1.0003 1.072 0.076 1.040 0.996 1.0002 1.028 0.029 0.991
6 1.042 1.0003 1.072 0.076 1.031 0.996 1.0002 1.028 0.029 0.992
7 1.094 1.0003 1.075 0.082 1.055 0.991 1.0002 1.028 0.028 0.990
8 1.127 1.0004 1.077 0.086 1.094 0.992 1.0002 1.028 0.028 0.986
9 1.083 1.0003 1.075 0.080 1.089 0.990 1.0002 1.028 0.028 0.985

10 1.054 1.0003 1.073 0.077 1.057 0.987 1.0002 1.028 0.028 0.986
11 1.044 1.0003 1.073 0.075 1.044 0.978 1.0002 1.028 0.028 0.986
12 1.043 1.0003 1.072 0.076 1.040 0.984 1.0002 1.028 0.028 0.986
13 1.035 1.0003 1.072 0.074 1.033 0.984 1.0002 1.028 0.028 0.986
14 1.038 1.0003 1.072 0.074 1.029 0.985 1.0002 1.028 0.028 0.985
15 1.040 1.0003 1.072 0.075 1.029 0.990 1.0002 1.028 0.028 0.986
16 1.076 1.0003 1.074 0.079 1.047 0.987 1.0002 1.028 0.028 0.986
17 1.060 1.0003 1.073 0.078 1.054 0.992 1.0002 1.028 0.028 0.985
18 1.067 1.0003 1.073 0.079 1.044 0.993 1.0002 1.028 0.028 0.982
19 1.094 1.0003 1.074 0.082 1.056 0.998 1.0002 1.028 0.028 0.981
20 1.084 1.0003 1.074 0.081 1.063 0.995 1.0002 1.028 0.028 0.981
21 1.082 1.0003 1.074 0.081 1.059 0.994 1.0002 1.028 0.028 0.980
22 1.117 1.0004 1.076 0.086 1.074 0.996 1.0002 1.028 0.028 0.980
23 1.112 1.0004 1.076 0.086 1.088 0.996 1.0002 1.028 0.028 0.981
24 1.136 1.0004 1.077 0.088 1.097 0.996 1.0002 1.028 0.028 0.980
25 1.179 1.0004 1.080 0.092 1.127 0.998 1.0002 1.028 0.028 0.980
26 1.115 1.0003 1.076 0.086 1.116 0.998 1.0002 1.028 0.028 0.980
27 1.098 1.0003 1.075 0.084 1.080 0.993 1.0002 1.028 0.028 0.979
28 1.052 1.0003 1.072 0.077 1.053 0.988 1.0002 1.028 0.028 0.978
29 1.057 1.0003 1.072 0.078 1.036 0.987 1.0002 1.028 0.028 0.978
30 1.064 1.0003 1.073 0.079 1.042 0.986 1.0002 1.028 0.028 0.977
36 1.043 1.0003 1.072 0.075 1.042 0.970 1.0002 1.027 0.028 0.974
42 1.030 1.0003 1.072 0.071 1.029 0.966 1.0002 1.027 0.028 0.972
48 1.024 1.0003 1.072 0.069 1.029 0.958 1.0002 1.027 0.028 0.970
54 1.030 1.0003 1.072 0.070 1.021 0.963 1.0002 1.027 0.027 0.968
60 1.028 1.0003 1.071 0.070 1.021 0.967 1.0002 1.027 0.027 0.966

Notes:

RM = Rotterdam model

NLAI = Nonlinear AI model

LAISF = Linear-Approximate AIDS with simple formulas

LAICF = Linear-approximate AI model with corrected formulas from Green and Alston (1990, 1991)
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Although the positive values under the local trend specification tended to under-

estimate the values of the true TVC ESUB between x1 and x3, the gap between the

approximating values and the true values tended to be small when the true values

ranged from 2.0 to 2.9. The approximation of the time-varying elasticity of substitu-

tion between x2 and x3 had values with opposite signs under the two specifications

of the time-varying coefficients in the demand system. It has positive but underes-

timating values under the random walk specification, but negative values under the

local trend specification.

The model produced positive values of the time-varying income elasticities for all

the three goods under both specifications of the time-varying coefficients. While all

the goods are correctly identifies as normal, the ability to classify them as luxuries

or normal necessities differed under the two specifications. Under the random walk

specification, the model produced a correct income classification of the three goods

as luxury good and necessity goods respectively. However, the approximating values

tended to be close to the true ones for the time-varying income elasticity of x1 while

those of the time varying income elasticities of x2 and x3 tended to respectively un-

derestimate and overestimate the true ones. On the other hand, the model produced

a correct income classification only for x2 under the local trend specification.

As far as the compensated cross-price elasticities are concerned, the LAISF model

produced time-varying values with opposite signs under the random walk specifica-

tion and under the local trend model specification for x1 and x2. These goods were

identified as substitutes under the random walk specification. However, they were

identified as complements under the local trend specification. Finally, x1 and x3 on

the one hand and x2 and x3 on the other hand, were wrongly classified as complements

under both specifications of the time-varying coefficients in the demand system.
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Table 4.5. True and approximating values of η2t at selected time peri-
ods

Random Walk Model Local Trend Model

Period True NLAI LAISF LAICF RM True NLAI LAISF LAICF RM

1 0.449 0.996 0.279 -0.745 0.380 0.544 0.991 0.211 -0.794 0.571
2 0.485 0.996 0.255 -0.777 0.441 0.487 0.992 0.326 -0.677 0.580
3 0.470 0.996 0.283 -0.749 0.440 0.522 0.993 0.203 -0.803 0.604
4 0.435 0.997 0.356 -0.681 0.409 0.566 0.992 0.161 -0.846 0.643
5 0.497 0.996 0.291 -0.746 0.407 0.586 0.984 0.163 -0.845 0.659
6 0.487 0.996 0.286 -0.748 0.429 0.589 0.984 0.136 -0.872 0.669
7 0.420 0.997 0.392 -0.657 0.396 0.612 0.983 0.115 -0.893 0.688
8 0.435 0.997 0.366 -0.697 0.374 0.630 0.982 0.086 -0.923 0.707
9 0.405 0.997 0.407 -0.635 0.369 0.619 0.983 0.095 -0.914 0.715

10 0.444 0.997 0.333 -0.704 0.378 0.614 0.983 0.083 -0.926 0.716
11 0.424 0.997 0.366 -0.653 0.392 0.668 0.981 0.005 -1.006 0.751
12 0.434 0.996 0.304 -0.725 0.400 0.602 0.982 0.039 -0.971 0.769
13 0.471 0.996 0.276 -0.747 0.428 0.595 0.983 0.089 -0.921 0.736
14 0.440 0.996 0.279 -0.745 0.436 0.533 0.984 0.129 -0.880 0.701
15 0.430 0.996 0.241 -0.790 0.445 0.499 0.984 0.125 -0.884 0.687
16 0.351 0.997 0.405 -0.630 0.402 0.494 0.984 0.166 -0.842 0.672
17 0.433 0.996 0.281 -0.767 0.393 0.529 0.984 0.129 -0.880 0.671
18 0.439 0.996 0.253 -0.804 0.441 0.530 0.983 0.102 -0.906 0.697
19 0.436 0.996 0.251 -0.821 0.451 0.510 0.984 0.126 -0.882 0.697
20 0.426 0.996 0.285 -0.778 0.441 0.551 0.983 0.079 -0.930 0.706
21 0.458 0.996 0.261 -0.806 0.438 0.569 0.983 0.086 -0.923 0.722
22 0.476 0.996 0.239 -0.848 0.452 0.581 0.983 0.075 -0.935 0.724
23 0.491 0.996 0.211 -0.881 0.467 0.559 0.984 0.108 -0.902 0.715
24 0.489 0.996 0.194 -0.909 0.480 0.568 0.983 0.070 -0.940 0.717
25 0.455 0.996 0.208 -0.900 0.481 0.513 0.984 0.112 -0.897 0.715
26 0.479 0.996 0.182 -0.914 0.485 0.540 0.983 0.086 -0.924 0.710
27 0.456 0.996 0.235 -0.845 0.476 0.568 0.983 0.056 -0.954 0.732
28 0.449 0.996 0.248 -0.802 0.457 0.596 0.982 0.013 -0.999 0.761
29 0.442 0.996 0.280 -0.769 0.444 0.618 0.982 0.002 -1.009 0.784
30 0.426 0.996 0.297 -0.752 0.429 0.644 0.981 -0.056 -1.067 0.810
36 0.446 0.997 0.347 -0.675 0.384 0.781 0.980 -0.134 -1.144 0.882
42 0.411 0.996 0.302 -0.689 0.418 0.736 0.978 -0.240 -1.251 0.962
48 0.463 0.996 0.262 -0.715 0.445 0.838 0.976 -0.323 -1.332 1.051
54 0.438 0.996 0.305 -0.685 0.454 0.887 0.975 -0.396 -1.403 1.096
60 0.456 0.996 0.287 -0.705 0.418 0.968 0.973 -0.501 -1.508 1.167

Notes:

RM = Rotterdam model

NLAI = Nonlinear AI model

LAISF = Linear-Approximate AIDS with simple formulas

LAICF = Linear-approximate AI model with corrected formulas from Green and Alston (1990, 1991)
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Table 4.6. True and approximating values of η3t at selected time peri-
ods

Random Walk Model Local Trend Model

Period True NLAI LAISF LAICF RM True NLAI LAISF LAICF RM

1 0.695 0.997 0.213 -0.818 0.697 1.809 1.009 0.963 -0.032 1.932
2 0.645 0.997 0.241 -0.799 0.923 2.290 1.011 0.953 -0.043 2.270
3 0.633 0.997 0.264 -0.776 0.890 2.491 1.011 1.062 0.064 2.391
4 0.504 0.997 0.390 -0.652 0.798 2.652 1.018 1.073 0.075 2.597
5 0.594 0.997 0.253 -0.793 0.801 2.419 1.027 1.073 0.075 2.643
6 0.635 0.997 0.248 -0.795 0.887 2.187 1.024 1.063 0.065 2.367
7 0.358 0.998 0.555 -0.488 0.671 2.955 1.033 1.093 0.095 2.580
8 0.254 0.999 0.632 -0.414 0.464 3.023 1.039 1.109 0.111 3.300
9 0.412 0.998 0.507 -0.534 0.487 3.115 1.036 1.099 0.101 3.345

10 0.574 0.997 0.361 -0.682 0.670 3.314 1.035 1.095 0.097 3.160
11 0.756 0.997 0.341 -0.683 0.773 3.294 1.028 1.075 0.077 2.761
12 0.698 0.997 0.314 -0.719 0.806 3.175 1.031 1.081 0.083 2.571
13 0.766 0.997 0.234 -0.794 0.865 3.659 1.036 1.095 0.097 2.888
14 0.742 0.997 0.243 -0.786 0.910 4.457 1.043 1.118 0.121 3.481
15 0.706 0.997 0.263 -0.773 0.891 3.431 1.033 1.093 0.096 3.444
16 0.495 0.998 0.484 -0.553 0.736 5.020 1.048 1.137 0.140 3.669
17 0.480 0.998 0.374 -0.677 0.681 4.126 1.048 1.140 0.143 4.554
18 0.402 0.997 0.409 -0.646 0.719 5.160 1.067 1.195 0.199 5.319
19 0.267 0.998 0.524 -0.532 0.617 4.301 1.065 1.193 0.197 6.295
20 0.308 0.998 0.493 -0.560 0.578 4.450 1.065 1.192 0.196 6.217
21 0.317 0.998 0.491 -0.565 0.607 4.687 1.066 1.194 0.198 6.251
22 0.210 0.998 0.616 -0.437 0.513 3.828 1.061 1.177 0.182 6.009
23 0.218 0.999 0.613 -0.442 0.451 4.452 1.070 1.203 0.208 6.135
24 0.184 0.998 0.666 -0.386 0.417 4.370 1.068 1.200 0.205 6.523
25 0.143 0.999 0.737 -0.307 0.348 5.483 1.089 1.261 0.266 7.307
26 0.205 0.998 0.617 -0.439 0.370 4.182 1.068 1.202 0.207 7.301
27 0.259 0.998 0.562 -0.493 0.477 6.466 1.096 1.281 0.287 7.550
28 0.508 0.997 0.304 -0.751 0.637 5.407 1.066 1.195 0.200 7.428
29 0.485 0.997 0.346 -0.707 0.803 5.639 1.068 1.198 0.203 6.359
30 0.445 0.997 0.392 -0.658 0.749 5.511 1.067 1.196 0.201 6.412
36 0.716 0.997 0.289 -0.739 0.810 10.394 1.093 1.272 0.277 7.918
42 0.917 0.997 0.222 -0.765 0.941 7.461 1.057 1.168 0.172 6.849
48 0.965 0.997 0.247 -0.725 0.891 12.152 1.085 1.252 0.258 7.630
54 0.898 0.997 0.185 -0.801 1.028 12.881 1.105 1.310 0.317 9.300
60 0.878 0.996 0.062 -0.924 1.096 15.777 1.151 1.447 0.457 11.498

Notes:

RM = Rotterdam model

NLAI = Nonlinear AI model

LAISF = Linear-Approximate AIDS with simple formulas

LAICF = Linear-approximate AI model with corrected formulas from Green and Alston (1990, 1991)
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Table 4.7. True and approximating values of η∗12,t at selected time pe-
riods

Random Walk Model Local Trend Model

Period True NLAI LAISF LAICF RM True NLAI LAISF LAICF RM

1 0.015 0.066 0.016 -0.025 0.013 0.008 0.013 0.024 -0.008 0.044
2 0.015 0.065 0.015 -0.025 0.012 0.006 0.019 0.030 -0.008 0.048
3 0.015 0.067 0.016 -0.025 0.012 0.006 0.016 -0.004 -0.040 0.006
4 0.017 0.072 0.021 -0.026 0.012 0.006 0.015 -0.005 -0.040 0.005
5 0.016 0.067 0.017 -0.025 0.012 0.007 0.037 -0.005 -0.039 0.004
6 0.014 0.067 0.017 -0.025 0.012 0.007 0.036 -0.006 -0.040 0.004
7 0.015 0.075 0.023 -0.026 0.013 0.005 0.035 -0.006 -0.039 0.004
8 0.017 0.074 0.020 -0.027 0.013 0.005 0.034 -0.006 -0.038 0.005
9 0.016 0.076 0.024 -0.026 0.013 0.005 0.034 -0.006 -0.038 0.005

10 0.011 0.070 0.019 -0.026 0.013 0.003 0.033 -0.006 -0.038 0.004
11 0.012 0.072 0.022 -0.026 0.012 0.003 0.031 -0.008 -0.038 0.004
12 0.011 0.068 0.018 -0.026 0.012 0.003 0.032 -0.007 -0.038 0.004
13 0.016 0.066 0.016 -0.025 0.012 0.004 0.033 -0.006 -0.038 0.004
14 0.012 0.066 0.016 -0.025 0.012 0.002 0.034 -0.004 -0.037 0.004
15 0.010 0.064 0.014 -0.025 0.012 0.003 0.034 -0.004 -0.037 0.004
16 0.012 0.075 0.024 -0.026 0.012 0.002 0.036 -0.003 -0.037 0.004
17 0.015 0.067 0.016 -0.026 0.013 0.003 0.034 -0.004 -0.037 0.004
18 0.014 0.065 0.015 -0.026 0.012 0.002 0.033 -0.005 -0.037 0.004
19 0.014 0.066 0.014 -0.026 0.013 0.003 0.034 -0.004 -0.037 0.004
20 0.015 0.067 0.016 -0.026 0.013 0.003 0.032 -0.005 -0.037 0.003
21 0.014 0.066 0.015 -0.026 0.013 0.003 0.033 -0.005 -0.037 0.003
22 0.013 0.066 0.013 -0.027 0.013 0.003 0.032 -0.005 -0.037 0.003
23 0.013 0.065 0.012 -0.026 0.013 0.003 0.033 -0.004 -0.037 0.003
24 0.011 0.065 0.010 -0.027 0.013 0.002 0.032 -0.006 -0.037 0.003
25 0.014 0.066 0.010 -0.028 0.013 0.002 0.033 -0.004 -0.037 0.003
26 0.017 0.063 0.010 -0.027 0.013 0.004 0.032 -0.005 -0.037 0.003
27 0.017 0.065 0.013 -0.026 0.013 0.002 0.031 -0.006 -0.036 0.003
28 0.014 0.065 0.015 -0.025 0.012 0.002 0.030 -0.007 -0.036 0.003
29 0.014 0.067 0.016 -0.026 0.012 0.002 0.030 -0.007 -0.036 0.003
30 0.014 0.068 0.017 -0.026 0.012 0.002 0.028 -0.009 -0.036 0.003
36 0.018 0.071 0.020 -0.026 0.012 0.001 0.026 -0.010 -0.036 0.003
42 0.014 0.068 0.018 -0.026 0.012 0.002 0.024 -0.013 -0.036 0.003
48 0.013 0.065 0.015 -0.026 0.012 0.001 0.023 -0.014 -0.036 0.003
54 0.015 0.068 0.018 -0.025 0.012 0.001 0.022 -0.015 -0.036 0.003
60 0.016 0.067 0.017 -0.025 0.012 0.001 0.020 -0.016 -0.035 0.003

Notes:

RM = Rotterdam model

NLAI = Nonlinear AI model

LAISF = Linear-Approximate AIDS with simple formulas

LAICF = Linear-approximate AI model with corrected formulas from Green and Alston (1990, 1991)
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4.4.4 LAICF model approximation

The LAICF model produced approximations the values of which had opposite

signs under the two specifications of the parameters in the demand system, for the

time-varying elasticities of substitution between x1 and x2 on the one hand, and

between x2 and x3 on the other hand. Only the elasticity between x1 and x3 was

approximated with positive values at each time period. However, these values tend

to underestimate the true ones.

Regarding the time-varying income elasticities, the model correctly identified x1

as a normal goods under both specifications of the time-varying coefficients in the

demand system. It also correctly identified x3 as a normal good but under the local

trend model specification only. The good x2 was wrongly identified as an inferior good

under both specification of the time-varying coefficients. In fact the approximations

produced by the LAICF model for the time-varying income elasticity for x2 had

negative values at each single time period.

Based on the compensated time-varying cross-price elasticities, the LAICF cor-

rectly identified only x1 and x3 as substitutes under the local trend specification by

approximating the relevant time-varying cross-price elasticity with positive values.

In all the remaining cases, the goods were wrongly identified as complements. The

approximating values of the corresponding time-varying cross-price elasticities were

in fact negative at each single time period (Tables 4.7, 4.8 and 4.9).

It is important to keep in mind that all the true time-varying elasticities have

positive values at every single period. Therefore, an approximation with negative

values lead to wrong qualitative conclusion. This is a very important fact to note

because the LAICF is the most used demand specification in empirical analysis.
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Table 4.8. True and approximating values of η∗13,t at selected time pe-
riods

Random Walk Model Local Trend Model

Period True NLAI LAISF LAICF RM True NLAI LAISF LAICF RM

1 0.101 0.005 0.027 -0.026 0.039 0.056 0.020 0.025 0.005 0.005
2 0.100 0.007 0.029 -0.026 0.038 0.043 0.015 0.020 0.005 0.004
3 0.100 0.009 0.031 -0.026 0.039 0.039 0.014 0.020 0.006 0.006
4 0.096 0.019 0.042 -0.027 0.039 0.036 0.013 0.018 0.006 0.006
5 0.094 0.008 0.030 -0.026 0.039 0.038 0.016 0.019 0.006 0.006
6 0.099 0.008 0.030 -0.026 0.039 0.045 0.018 0.021 0.006 0.006
7 0.097 0.041 0.066 -0.029 0.039 0.031 0.013 0.017 0.006 0.006
8 0.088 0.063 0.091 -0.031 0.041 0.027 0.012 0.015 0.006 0.006
9 0.100 0.032 0.057 -0.028 0.041 0.031 0.013 0.016 0.006 0.006

10 0.110 0.016 0.039 -0.027 0.040 0.031 0.013 0.017 0.006 0.006
11 0.136 0.014 0.036 -0.026 0.039 0.040 0.016 0.019 0.006 0.006
12 0.118 0.012 0.034 -0.026 0.039 0.036 0.015 0.018 0.006 0.006
13 0.118 0.007 0.028 -0.025 0.039 0.031 0.013 0.017 0.006 0.006
14 0.112 0.007 0.029 -0.026 0.038 0.024 0.011 0.014 0.006 0.006
15 0.110 0.009 0.031 -0.026 0.038 0.031 0.013 0.017 0.006 0.006
16 0.111 0.028 0.053 -0.028 0.039 0.020 0.010 0.013 0.006 0.006
17 0.087 0.018 0.041 -0.027 0.039 0.020 0.010 0.013 0.006 0.006
18 0.082 0.022 0.045 -0.028 0.039 0.013 0.008 0.011 0.006 0.006
19 0.070 0.038 0.063 -0.029 0.039 0.014 0.008 0.011 0.006 0.006
20 0.071 0.031 0.056 -0.029 0.040 0.015 0.008 0.011 0.006 0.006
21 0.078 0.032 0.056 -0.029 0.040 0.014 0.008 0.011 0.006 0.006
22 0.068 0.057 0.084 -0.031 0.040 0.016 0.008 0.012 0.006 0.006
23 0.069 0.056 0.083 -0.031 0.041 0.014 0.008 0.011 0.006 0.006
24 0.068 0.072 0.101 -0.032 0.041 0.013 0.008 0.011 0.006 0.006
25 0.064 0.099 0.131 -0.034 0.042 0.008 0.007 0.010 0.006 0.006
26 0.063 0.057 0.084 -0.031 0.042 0.014 0.008 0.011 0.006 0.006
27 0.071 0.044 0.070 -0.030 0.040 0.009 0.006 0.009 0.006 0.006
28 0.086 0.012 0.034 -0.027 0.039 0.015 0.008 0.011 0.006 0.006
29 0.083 0.015 0.038 -0.027 0.039 0.014 0.008 0.011 0.005 0.006
30 0.083 0.019 0.043 -0.028 0.039 0.014 0.008 0.011 0.005 0.006
36 0.120 0.010 0.032 -0.026 0.039 0.009 0.006 0.010 0.006 0.006
42 0.139 0.006 0.027 -0.024 0.038 0.018 0.009 0.012 0.005 0.006
48 0.158 0.007 0.029 -0.023 0.038 0.012 0.007 0.010 0.005 0.006
54 0.125 0.004 0.025 -0.024 0.038 0.009 0.006 0.009 0.005 0.006
60 0.106 -0.002 0.019 -0.023 0.038 0.005 0.005 0.008 0.005 0.005

Notes:

RM = Rotterdam model

NLAI = Nonlinear AI model

LAISF = Linear-Approximate AIDS with simple formulas

LAICF = Linear-approximate AI model with corrected formulas from Green and Alston (1990, 1991)
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Table 4.9. True and approximating values of η∗23,t at selected time pe-
riods

Random Walk Model Local Trend Model

Period True NLAI LAISF LAICF RM True NLAI LAISF LAICF RM

1 0.043 0.201 -0.062 -0.062 2.0E-05 0.031 0.058 -0.020 0.009 0.037
2 0.047 0.207 -0.066 -0.060 1.1E-05 0.021 0.043 -0.014 0.005 0.028
3 0.045 0.204 -0.061 -0.057 1.6E-05 0.020 0.050 -0.076 -0.053 0.017
4 0.039 0.198 -0.046 -0.046 1.5E-05 0.020 0.048 -0.084 -0.059 0.018
5 0.045 0.201 -0.060 -0.053 1.2E-05 0.022 0.003 -0.066 -0.060 0.018
6 0.046 0.203 -0.061 -0.056 1.9E-05 0.027 0.005 -0.069 -0.061 0.018
7 0.037 0.214 -0.031 -0.034 2.7E-05 0.019 0.000 -0.071 -0.064 0.019
8 0.034 0.243 -0.028 -0.029 1.3E-05 0.017 -0.003 -0.074 -0.067 0.019
9 0.037 0.202 -0.031 -0.037 2.3E-06 0.019 0.001 -0.073 -0.065 0.019

10 0.046 0.201 -0.051 -0.049 1.3E-05 0.020 0.001 -0.074 -0.066 0.019
11 0.055 0.191 -0.045 -0.056 7.0E-06 0.027 0.003 -0.081 -0.070 0.019
12 0.049 0.202 -0.057 -0.058 1.1E-05 0.022 0.002 -0.078 -0.068 0.020
13 0.054 0.202 -0.063 -0.065 2.6E-05 0.019 0.001 -0.073 -0.065 0.019
14 0.048 0.203 -0.062 -0.064 1.6E-05 0.013 0.001 -0.070 -0.062 0.018
15 0.046 0.212 -0.068 -0.063 1.5E-05 0.016 0.003 -0.070 -0.062 0.018
16 0.036 0.198 -0.033 -0.042 -5.9E-06 0.010 0.000 -0.066 -0.060 0.017
17 0.036 0.214 -0.059 -0.047 -1.3E-05 0.010 0.000 -0.070 -0.063 0.016
18 0.034 0.224 -0.062 -0.044 1.2E-05 0.007 -0.002 -0.072 -0.066 0.017
19 0.028 0.241 -0.058 -0.035 1.9E-05 0.007 -0.001 -0.070 -0.063 0.017
20 0.028 0.227 -0.054 -0.038 1.5E-05 0.008 -0.001 -0.074 -0.066 0.017
21 0.033 0.233 -0.058 -0.037 1.6E-05 0.008 -0.001 -0.074 -0.066 0.017
22 0.029 0.263 -0.056 -0.027 8.2E-06 0.010 -0.001 -0.075 -0.067 0.017
23 0.030 0.268 -0.062 -0.027 1.3E-05 0.008 -0.001 -0.072 -0.065 0.017
24 0.029 0.289 -0.063 -0.023 2.2E-05 0.008 -0.001 -0.075 -0.068 0.017
25 0.025 0.314 -0.054 -0.018 9.1E-06 0.004 -0.002 -0.072 -0.067 0.017
26 0.027 0.275 -0.068 -0.027 9.9E-06 0.008 -0.001 -0.074 -0.066 0.017
27 0.030 0.251 -0.060 -0.033 2.1E-05 0.005 -0.002 -0.076 -0.070 0.017
28 0.037 0.214 -0.065 -0.050 2.1E-05 0.009 -0.001 -0.080 -0.071 0.018
29 0.035 0.211 -0.059 -0.047 1.5E-05 0.008 -0.001 -0.081 -0.071 0.019
30 0.033 0.212 -0.056 -0.045 1.9E-05 0.009 -0.001 -0.086 -0.075 0.019
36 0.051 0.191 -0.051 -0.057 1.4E-05 0.007 -0.001 -0.092 -0.082 0.020
42 0.055 0.196 -0.059 -0.082 1.1E-05 0.013 0.000 -0.102 -0.084 0.021
48 0.071 0.206 -0.065 -0.095 1.1E-05 0.010 -0.002 -0.108 -0.091 0.023
54 0.053 0.193 -0.059 -0.080 1.6E-05 0.008 -0.003 -0.114 -0.097 0.023
60 0.047 0.191 -0.064 -0.082 2.5E-05 0.005 -0.005 -0.122 -0.105 0.025

Notes:

RM = Rotterdam model

NLAI = Nonlinear AI model

LAISF = Linear-Approximate AIDS with simple formulas

LAICF = Linear-approximate AI model with corrected formulas from Green and Alston (1990, 1991)
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4.5 Regularity condition assessment

The regularity condition is defined as the non-violation of the negative semi-

definiteness of the Slutsky matrix. Rather than being imposed as this the case for

the other restrictions on the coefficients of the demand system (Engel aggregation,

linear homogeneity and symmetry), negative semi-definiteness of the Slutsky matrix

is usually just checked after estimation. In the case of a three-goods demand system

where the third equation is dropped due to the imposition of linear homogeneity, the

regularity condition is defined below for both the AI model and the Rotterdam model.

In the AIDS model, the Slutsky matrix is negative semi-definite at each time

period t if

η∗11t < 0 and

∣∣∣∣∣∣∣
η∗11t η∗12t

η∗21t η∗22t

∣∣∣∣∣∣∣ = η∗11tη
∗
22t − η∗21tη∗12t > 0. (4.5.1)

However, for the Rotterdam model one must have

π11t < 0 and

∣∣∣∣∣∣∣
π11t π12t

π21t π22t

∣∣∣∣∣∣∣ = π11tπ22t − π21tπ12t > 0. (4.5.2)

I shall report the percentage of replications producing the non-violation of the

negative semi-definiteness as an index of regularity for each time period t = 1, ..., T .

Table 4.10 reports the regularity index for the nonlinear AIDS, the linear-approximate

AIDS with simple formulas, the linear-approximate AIDS with corrected formulas and

the Rotterdam model. For each model, I calculated the regularity score under both

specifications of the time-varying coefficients in the demand system.

68



Table 4.10. Regularity index by model and TVC specification

NLAI LAISF LAICF RM

Period RWM LTM RWM LTM RWM LTM RWM LTM

1 84.3 72.5 47.8 53.3 66.9 51.7 100.0 98.0
2 86.1 71.9 50.0 62.4 64.8 60.3 100.0 98.1
3 87.6 71.9 49.1 40.8 66.6 34.8 100.0 96.1
4 95.3 71.3 56.1 39.5 71.7 32.8 100.0 95.9
5 87.7 96.2 48.8 40.6 67.0 32.7 100.0 95.4
6 85.0 95.9 48.7 35.5 66.7 28.6 100.0 95.3
7 96.5 95.9 73.2 37.2 75.2 28.4 100.0 94.2
8 96.1 95.4 71.3 38.2 73.1 26.8 100.0 95.3
9 96.5 95.4 67.4 38.9 75.7 27.9 100.0 95.3

10 93.4 95.5 54.7 37.8 70.8 27.3 100.0 95.3
11 94.3 94.3 52.1 29.4 72.6 21.8 100.0 95.4
12 91.7 94.8 52.3 33.3 68.0 24.1 100.0 95.5
13 87.0 96.0 48.8 38.2 65.8 27.9 100.0 95.3
14 86.5 96.4 49.1 44.1 65.9 31.9 100.0 95.3
15 88.2 96.2 52.1 42.1 64.7 31.7 100.0 95.2
16 96.3 96.4 67.7 50.2 75.4 36.3 100.0 95.2
17 93.4 96.1 57.8 46.8 67.0 32.9 100.0 94.5
18 91.8 95.8 60.7 47.8 64.6 30.7 100.0 94.3
19 94.4 96.2 67.2 50.7 65.0 32.8 100.0 93.6
20 94.7 95.4 65.6 46.5 66.5 28.9 100.0 93.7
21 93.7 95.7 63.0 46.8 65.2 29.5 100.0 93.3
22 94.8 95.3 65.7 44.5 64.5 29.0 100.0 93.1
23 93.8 96.1 64.7 49.3 62.5 31.1 100.0 92.8
24 94.2 95.6 61.4 45.9 61.1 28.2 100.0 93.2
25 94.3 96.2 61.9 52.5 62.2 31.3 100.0 93.1
26 93.9 95.8 63.2 48.1 61.2 29.8 100.0 91.9
27 94.3 95.3 65.0 49.5 63.6 28.1 100.0 91.1
28 90.0 94.2 53.4 42.2 64.8 25.0 100.0 91.0
29 91.7 93.9 54.9 42.2 66.8 24.3 100.0 91.1
30 92.6 93.3 55.5 37.6 67.6 21.4 100.0 90.9
36 90.9 91.5 48.6 35.8 71.2 18.3 100.0 91.2
42 86.6 90.4 48.1 25.1 68.3 14.1 100.0 91.9
48 88.5 88.2 53.2 27.0 65.3 12.3 100.0 91.8
54 83.0 87.2 46.3 26.6 68.1 11.0 100.0 92.0
60 64.7 85.8 42.8 28.3 67.2 9.8 100.0 92.1

Notes:

RM = Rotterdam model

NLAI = Nonlinear AI model

LAISF = Linear-Approximate AIDS with simple formulas

LAICF = Linear-approximate AI model with corrected formulas from Green and Alston (1990, 1991)

RWM = Random walk model

LTM = Local trend model
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4.5.1 The Rotterdam model

The Rotterdam model satisfied the regularity condition under the random walk

specification for every single replication and at every single time period. The reg-

ularity index is thus equal to 100, meaning that the Slutsky matrix was negative

semi-definite for each replication of the bootstrap procedure and at every time pe-

riod. Under the local trend model specification, the regularity index ranged from 91

to 98 by time period, showing that a minimum of 91% of the replications per time

period satisfied the negative semi-definiteness condition of the Slutsky matrix.

4.5.2 The NLAI model

The NLAI achieved a minimum of the regularity index per time period of 64.7%

and 71.3% respectively under the random walk specification and under the local trend

model specification. The maximum regularity index was not very different under the

two time-varying coefficients specification hypotheses (96.5% versus 96.4%). However,

the regularity index was higher for most of the time periods under the local trend

specification than it was under the random walk specification.

4.5.3 The LAISF model

The LAISF model achieved higher minimum and maximum values of the regular-

ity index per time period under the random walk mode than under the local trend

specification. A minimum of 20% of replications satisfied the regularity condition

per time period under the local trend model, while the minimum was 41% of the

replications under the random walk specification. The maximum regularity index per

time period was also higher under the random walk specification(73.2%) than under

the local trend model specification (62.4%).
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4.5.4 The LAICF model

The LAICF model achieved a minimum regularity index as low as 9.8 under the

local trend model, compared to 60.6 under the random walk specification of the time-

varying parameters in the demand system. The maximum number of replications per

time period that satisfied the regularity condition was also higher under the random

walk model (76.0) than under the local trend model specification (60.3).

4.6 Discussion of the Results

This section shall focus on the discussion of the results from the previous section

and assess the performance of each of the four models in recovering the characteristics

of the true time-varying parameters elasticities. The following criteria are used to

compare the performance of each model:

• consistency of the sign of the approximating values of the time-varying elastici-

ties under different specifications of the time-varying parameters in the demand

system, in agreement with the sign of the values of the true time-varying elas-

ticities;

• closeness of the approximating values to the true values of the time-varying

elasticities. This will be assessed by construction a 95% confidence intervals

and checking whether or not the values of the true time-varying elasticity are

inside the confidence interval;

• the ability of the approximating demand system to produce time-varying elas-

ticities that reflect the variations in the true time-varying elasticities over time

and that mimic the behavior of the paths of true time-varying elasticities;
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• higher regularity index, which demonstrates the ability of the approximating

demand models to conform to demand theory.

4.6.1 The Rotterdam model versus the Nonlinear AIDS

The approximation of the time-varying elasticity of substitution between x1 and x2

from the Rotterdam model had values that stayed close to the values of the true elas-

ticity of substitution (Figure 4.1). In contrast, the values produced by the nonlinear

AI model overestimated the true ones. Although the true values of the within-group

time-varying elasticity of substitution were inside the 95% confidence intervals con-

tructed for the approximations from the two models, the Rotterdam model tended

to produce the approximation with more precision (see Figures A.1 and A.2). The

nonlinear AI model tended to produce values that had more variability under the ran-

dom walk specification than under the local trend model specification. On the other

hand, the Rotterdam model tended to produce an approximation of the within-group

time-varying elasticity that mimic the evolution of the true time-varying elasticity of

substitution over time, but with a smoother path. However, none of the two mod-

els produced good approximations of the between-groups time-varying elasticities of

substitution. Nevertheless, the approximations produced by both models correctly

identified the signs of all the values of the time-varying elasticities of substitution.

Figures 4.2 and A.3 show that the time-varying income elasticities produced by

the Rotterdam model track fairly well the evolution of the true time-varying income

elasticities and that they are close to the true ones. In contrast, the nonlinear AIDS

tended to produce time-varying income elasticities the values of which were close to

unity. In addition, the model failed to capture very high values of income elasticities.
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Figure 4.1. Path of the elasticities of substitution

Random Walk Model Local Trend Model
σ12,t

σ13,t

σ23,t
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Figure 4.2. Path of the income elasticities

Random Walk Model Local Trend Model
η1t

η2t

η3t

74



Finally, Figure 4.3 reveals that the values of the time-varying compensated cross-

price elasticity between goods in the same sub-aggregation group were close to the

true ones for the Rotterdam model than for the nonlinear AIDS. In addition, the

nonlinear AIDS produced more negative values for the cross-price time-varying elas-

ticities between good in different sub-aggregation groups. This behavior suggests

that the model wrongly identified goods as complements where the values of the true

time-varying elasticities indicated that the two goods were substitutes.

4.6.2 The LAISF and the LAICF versus the Nonlinear AIDS

It is not easy, in light the results from the previous chapter, to straightforwardly

determine whether the LAISF model and the LAICF model provide better approx-

imation of the time-varying elasticities produced by the nonlinear AIDS. In some

cases, the two linear versions of the nonlinear AIDS produced elasticities that were

close to the true time-varying elasticities (i.e. the time-varying elasticity of substi-

tution between x1 and x3 under the local trend model specification). In some other

cases, one or the other of the linear approximate AIDS, or both, produced elasticities

with different sign from those produced by the nonlinear AI model.

4.6.3 The LAISF versus the LAICF

The LAISF model and the LAICF model tended to produce a same stratification of

goods based on the time-varying elasticities under the local trend model specification

and a divergent stratification under the random walk specification. The values of

the time-varying elasticities in either case differed considerably in most of the cases.

However, the two model estimated very close values of the time-varying elasticity

of substitution between x2 and x3 under the random walk specification of the time-

varying coefficients in the demand system.
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Figure 4.3. Path of the compensated cross-price elasticities
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Figure 4.4. Path of σ12,t: Rotterdam Model and LAICF Model
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4.6.4 The LAISF and the LAICF vs. the Rotterdam model

The LAISF model tended to produce time-varying income elasticities with same

signs as those produced by the Rotterdam model. This is not the case for the LAICF

model that produced negative values for most of the time-varying income elasticities.

This observation also holds for the cross-price time-varying elasticities under the

random walk specification. When the true elasticity of substitution were very high,

the LAISF and the LAICF produce approximations that were closer to the true

values than were those produced by the Rotterdam model. This was the case for the

time-varying elasticity of substitution between x1 and x3 under the local trend model

specification (Table 4.3). Under the random walk specification, the LAICF produced

values of this time-varying elasticity that are comparable to both the true values and

the approximation from the Rotterdam model as shown in Figure 4.4.
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4.7 Robustness Checks

The previous sections presented and discussed the results from my main Monte

Carlo experiment. I shall recall three important results from this experiment. First,

the Rotterdam model performed better than the linear-approximate AIDS at recov-

ering the time-varying elasticities. In particular, the RM was able to display similar

paths of the income elasticities than did any of the alternative demand specifications.

Second, the RM performed better in terms of the theoretical regularity that was

defined as the negative semi-definiteness of the Slutsky matrix at each time period.

Third, the LAICF poorly approximated the nonlinear AIDS model. These results are

very important since the LAICF model is the most adopted demand specification in

empirical studies.

In this section, I shall conduct an alternative Monte Carlo experiment to check

the robustness of the previous results. This experiment uses the same autoregressive

models for the supernumerary income and quantities. The key difference with the

main experiment is that the time-varying parameters A11,t, A12,t, A22,t, B11,t, B12,t,

and B22,t are now generated by random walk processes that are different from those

in the main experiment. Figure 4.5 display the time paths of the time-varying param-

eters for both experiments. Once again, the parameters δ and ρ were set to constant

values, for convenience. Moreover, their values are the same as in the main Monte

Carlo experiment. The committed quantities α1, α2 and α3 were respectively set to

1, 25 and 15 to obtain the first data set on the elementary quantities x1 x1 and x1.

To obtain the second data set on elementary quantities, the committed quantities

were specified as local trends, following exactly the same stochastic processes as in

the main experiment.

78



Figure 4.5. Paths of the TVP in the utility functions
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The specification of the time-varying parameters in the robustness-check Monte

Carlo experiment is such that the optimal prices are different from those in the main

experiment. I shall recall that the WS-branch utility function produces indirect de-

mands functions, resulting from a two-stage budgeting procedure. The elementary

quantities are then obtained from their relationships with the supernumerary quanti-

ties that enter as arguments in the utility function. In what follows, I shall assess the

qualitative and quantitative performance of each model under this new Monte Carlo

experiment.
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4.7.1 Qualitative performance

The RM and the nonlinear AIDS qualitatively performed well at correctively re-

covering the positive sign of all the time-varying elasticities. This is true under both

specifications of the time-varying coefficients in the demand system. However, the

LAISF performed better on all the time-varying elasticities only under the RWM,

while correctly recovering the positive sign of only four out of nine time-varying elas-

ticities at every time period under the LTM. Table 4.11 shows that, under the LTM,

the LAISF model approximated two elasticities with the wrong sign at each time

period, and three elasticities with negative as well as positive values.

The LAICF model produced only two time-varying elasticities the values of which

have the correct sign under the two specifications of the time-varying coefficients

in the demand system. For the remaining time-varying elasticities, the signs of the

approximating values are either opposite under the two specifications at each time

period (4 elasticities) or with the wrong negative sign at every time period under

both the RWM and the LTM (1 elasticity). Finally, Table 4.11 shows that the model

produced two approximating elasticities with some values having the correct (positive)

sign while some other values had the wrong (negative) sign.

It is important to point out again that the LAICF model is the most used de-

mand specification in empirical analyses, compared to the Rotterdam model and the

nonlinear AIDS model. The important message conveyed by Table 4.11 is that the

Rotterdam model qualitatively performed better than the LAICF. This is consistent

with the conclusion from the main Monte Carlo experiment. In addition, the LAICF

model poorly approximated the qualitative properties of the nonlinear AIDS model

as this was the case in the main experiment.
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Table 4.11. Robustness checks: Signs of the time-varying elasticities

TVP Elasticity NLAI LAISF LAICF RM

RWM LTM RWM LTM RWM LTM RWM LTM

σ12t + ∀t + ∀t + ∀t − ∀t + ∀t + and − + ∀t + ∀t
σ13t + ∀t + ∀t + ∀t + ∀t + ∀t + ∀t + ∀t + ∀t
σ23t + ∀t + ∀t + ∀t + and − + ∀t + and − + ∀t + ∀t

η1t + ∀t + ∀t + ∀t + ∀t + ∀t + ∀t + ∀t + ∀t
η2t + ∀t + ∀t + ∀t + and − − ∀t − ∀t + ∀t + ∀t
η3t + ∀t + ∀t + ∀t + ∀t − ∀t + ∀t + ∀t + ∀t

η∗12t + ∀t + ∀t + ∀t + and − + ∀t − ∀t + ∀t + ∀t
η∗13t + ∀t + ∀t + ∀t + ∀t − ∀t + ∀t + ∀t + ∀t
η∗23t + ∀t + ∀t + ∀t − ∀t + ∀t − ∀t + ∀t + ∀t

4.7.2 Quantitative performance

4.7.2.1 Time-varying elasticities of substitution

Under the random walk model specification, the RM, the NLAI model and the

LAISF model produced approximations of the within-branch elasticity of substitution

with values less than unity as the true ones. However, the values of the approximation

produced by the Rotterdam model are closer to the true ones than are those from the

NLAI and the LAISF. On the other hand, the LAICF produced an approximation

with values greater than one at every time period. This is important to mention

because the values of the time-varying elasticity of substitution higher than unity

mean that, all else, the LAICF model will lead to a different conclusion in terms of

the income shares of goods, compared to the other true models.
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Table 4.12 shows that, under the random walk model, the Rotterdam model ap-

proximated the cross-branch elasticities of substitution with values less than unity

when the true values were less than unity (σ23,t), and with values greater than one

when the true values were greater than one (σ13,t). However, the approximating val-

ues underestimated the true ones in both cases. All the three versions of the AIDS

model produced approximating time-varying cross-branch elasticities of substitution

with values less than one when the true values were greater than one (σ13,t), and with

values greater than one when the true values were less than one (σ23,t). This leads to

a wrong conclusion in terms of the goods’ income shares.

Under the local trend model, the RM and the nonlinear AIDS approximated the

within-branch elasticity of substitution with values less than one like in the true

model, while the LAICF produced both positive values (that were less than unity)

as well as negative values. On the other hand, the LAISF produced a time-varying

elasticity with negative values at each time period.

The AIDS models produced approximations of σ13,t with values greater than one,

like the true values. However, the approximating values tended to underestimate the

true ones; but the LAISF model produced some values very close to the true ones.

The RM produced an approximation with 62% of values that were greater than one.

On the other hand, the RM produced an approximation of σ23,t with 22% of values

greater than one, although these values tended to underestimate the true ones. The

NLAI produced an approximation of σ23,t the values of which were less than one.

Finally, the LAISF and the LAICF produced approximations with negative values

and positive values. The positive values of these approximations are all less than one.

82



Table 4.12. Robustness checks: TVC elasticities of substitution at se-
lected periods

Random Walk Model Local Trend Model

Period True RM NLAI LAISF LAICF True RM NLAI LAISF LAICF

σ12,t

1 0.246 0.534 0.943 0.596 1.036 0.116 0.629 1.109 -0.283 0.481
2 0.241 0.546 0.947 0.613 1.036 0.141 0.685 0.927 -0.453 0.397
3 0.224 0.501 0.950 0.666 1.029 0.169 0.764 0.868 -0.624 0.320
4 0.253 0.494 0.945 0.622 1.034 0.170 0.781 0.862 -0.629 0.314
6 0.184 0.468 0.952 0.700 1.026 0.125 0.711 0.860 -0.536 0.363
9 0.227 0.559 0.945 0.603 1.038 0.038 0.875 0.702 -1.311 0.067

12 0.248 0.517 0.946 0.615 1.035 0.054 0.648 0.830 -0.394 0.421
18 0.197 0.505 0.949 0.641 1.032 0.081 0.643 0.787 -0.643 0.339
24 0.205 0.510 0.948 0.638 1.032 0.112 0.681 0.758 -0.843 0.254
36 0.230 0.485 0.946 0.662 1.030 0.044 0.742 0.755 -0.898 0.233
48 0.248 0.569 0.942 0.557 1.043 0.073 0.899 0.698 -1.345 0.047
60 0.263 0.536 0.946 0.604 1.035 0.055 1.041 0.650 -1.721 -0.098

σ13,t

1 3.006 1.300 0.430 0.303 0.905 2.992 0.389 1.210 1.515 1.342
2 2.951 1.291 0.433 0.308 0.905 3.008 0.421 1.126 1.527 1.366
3 2.844 1.282 0.438 0.318 0.905 3.006 0.423 1.089 1.494 1.341
4 2.940 1.305 0.411 0.281 0.901 3.021 0.384 1.076 1.418 1.290
6 2.881 1.239 0.475 0.369 0.911 3.033 0.493 1.131 1.608 1.415
9 3.037 1.192 0.481 0.373 0.913 3.013 0.478 1.090 1.529 1.362

12 3.035 1.153 0.478 0.366 0.913 2.872 0.603 1.141 1.818 1.552
18 2.824 1.395 0.365 0.223 0.893 2.941 0.923 1.160 2.143 1.763
24 2.770 1.316 0.418 0.291 0.902 2.875 0.996 1.138 1.977 1.653
36 3.025 1.204 0.465 0.352 0.910 2.900 1.472 1.220 2.594 2.053
48 3.245 1.305 0.415 0.282 0.904 2.998 1.189 1.194 2.423 1.939
60 2.878 1.542 0.313 0.155 0.885 2.911 2.016 1.361 3.627 2.720

σ23,t

1 0.883 0.476 2.175 1.941 1.925 1.113 0.674 1.133 0.380 0.336
2 0.836 0.489 2.147 1.916 1.901 1.334 0.734 0.974 0.290 0.248
3 0.696 0.440 2.032 1.812 1.806 1.553 0.816 0.978 0.216 0.169
4 0.865 0.433 2.137 1.904 1.892 1.523 0.829 0.966 0.225 0.178
6 0.638 0.404 1.937 1.734 1.733 1.460 0.759 0.914 0.240 0.195
9 0.747 0.379 2.003 1.797 1.788 1.358 0.719 0.926 0.290 0.243

12 0.853 0.455 2.105 1.887 1.870 1.110 0.699 0.975 0.276 0.225
18 0.631 0.448 2.136 1.891 1.886 1.335 0.701 0.948 0.143 0.087
24 0.619 0.451 2.103 1.873 1.864 1.442 0.730 0.925 0.080 0.022
36 0.736 0.422 2.018 1.808 1.799 1.472 0.817 0.971 -0.046 -0.106
48 0.956 0.514 2.272 2.027 2.003 1.979 0.962 0.912 -0.217 -0.277
60 0.870 0.484 2.249 1.987 1.974 2.521 1.149 0.981 -0.565 -0.634
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4.7.2.2 Time-varying income elasticities

The Rotterdam model produced time-varying income elasticities the values of

which tended to be close to the true ones under the two specifications of the time-

varying coefficients in the demand system. In particular, Table 4.13 shows that the

Rotterdam model has the ability to produce good approximation even for very high

values of the time-varying income elasticities. This is illustrated by the time-varying

elasticity of x3 under the LTM. The NLAI model tended to produce the values of

income elasticities with values close to one, as in the main Monte Carlo experiment.

The LAISF model produced an approximation of the time-varying income elastic-

ity for x1, η1t, with values that underestimated the true ones. The models produced

positive overestimating approximating values for η2t under the RWM and both neg-

ative as well as positive but underestimating values under the LTM (Table 4.13).

Finally, the approximating time-varying income elasticity for x3 underestimated the

true values under the RWM and the LTM.

Turning to the performance of the LAICF, the approximating time-varying in-

come elasticity of x1 obtained from this model tended to be around 0.06 under the

RWM and around 0.02 under the LTM. In addition to the fact the values of this time-

varying income elasticity tended to be constant over time, they all underestimated the

true values. Furthermore, the model produced an approximating time-varying income

elasticity of x2 with negative values at each time period under the two specifications

of the time-varying coefficients. Finally, the approximating time-varying income elas-

ticity of x3 had negative values at each time period under the RWM. Under the LTM,

the values of this time-varying elasticity are positive but they underestimate the true

ones (see Table 4.13).
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Table 4.13. Robustness checks: TVC income elasticities at selected
periods

Random Walk Model Local Trend Model

Period True NLAI LAISF LAICF RM True NLAI LAISF LAICF RM

η1t

1 1.031 1.000 1.060 0.058 1.057 0.981 1.000 1.021 0.021 0.989
2 1.033 1.000 1.060 0.058 1.056 0.977 1.000 1.021 0.021 0.984
3 1.043 1.000 1.061 0.059 1.062 0.976 1.000 1.021 0.021 0.981
4 1.034 1.000 1.060 0.058 1.061 0.978 1.000 1.021 0.021 0.983
6 1.052 1.000 1.062 0.060 1.070 0.969 1.000 1.020 0.021 0.978
9 1.042 1.000 1.061 0.060 1.077 0.961 1.000 1.020 0.021 0.981

12 1.033 1.000 1.061 0.059 1.070 0.963 1.000 1.020 0.021 0.977
18 1.042 1.000 1.060 0.059 1.055 0.972 1.000 1.020 0.020 0.967
24 1.041 1.000 1.061 0.059 1.059 0.967 1.000 1.020 0.020 0.965
36 1.042 1.000 1.061 0.059 1.070 0.952 1.000 1.020 0.020 0.960
48 1.027 1.000 1.060 0.057 1.053 0.948 1.000 1.020 0.020 0.958
60 1.032 1.000 1.060 0.057 1.044 0.955 1.000 1.020 0.020 0.952

η2t

1 0.303 0.998 0.571 -0.412 0.296 0.365 0.985 0.186 -0.834 0.478
2 0.293 0.998 0.589 -0.396 0.305 0.433 0.983 0.097 -0.923 0.522
3 0.255 0.998 0.653 -0.337 0.273 0.504 0.985 -0.009 -1.033 0.591
4 0.304 0.998 0.602 -0.384 0.269 0.493 0.985 -0.015 -1.040 0.628
6 0.233 0.998 0.691 -0.303 0.250 0.466 0.981 0.046 -0.976 0.583
9 0.256 0.998 0.647 -0.343 0.235 0.433 0.985 0.092 -0.930 0.557

12 0.290 0.998 0.590 -0.396 0.284 0.372 0.987 0.138 -0.883 0.548
18 0.233 0.998 0.627 -0.364 0.277 0.441 0.983 -0.035 -1.061 0.631
24 0.232 0.998 0.621 -0.370 0.280 0.485 0.982 -0.162 -1.194 0.689
36 0.253 0.998 0.646 -0.342 0.262 0.483 0.981 -0.185 -1.213 0.736
48 0.302 0.997 0.523 -0.453 0.321 0.625 0.976 -0.463 -1.497 0.894
60 0.312 0.998 0.585 -0.396 0.299 0.827 0.973 -0.694 -1.728 1.040

η3t

1 0.965 0.998 0.393 -0.581 0.621 2.506 1.015 1.210 0.220 2.021
2 0.960 0.998 0.397 -0.579 0.616 2.643 1.030 1.196 0.202 2.201
3 0.926 0.998 0.403 -0.579 0.611 2.415 1.028 1.187 0.193 2.212
4 0.952 0.998 0.372 -0.605 0.624 2.154 1.024 1.161 0.166 1.965
6 0.906 0.998 0.446 -0.541 0.589 3.150 1.037 1.230 0.237 2.514
9 0.946 0.998 0.452 -0.531 0.564 3.277 1.032 1.203 0.209 2.421

12 0.973 0.998 0.449 -0.529 0.544 4.489 1.046 1.308 0.317 3.043
18 0.910 0.998 0.320 -0.663 0.670 4.730 1.073 1.428 0.441 4.711
24 0.930 0.998 0.381 -0.604 0.629 4.375 1.061 1.368 0.381 5.058
36 0.946 0.998 0.434 -0.547 0.571 8.314 1.100 1.596 0.613 7.474
48 0.980 0.998 0.376 -0.590 0.624 7.507 1.089 1.534 0.550 6.020
60 0.943 0.998 0.260 -0.704 0.747 10.64 1.163 1.976 1.001 10.30
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One of the findings from the main Monte Carlo experiment was that the Rotter-

dam model had the ability to capture the variations in the true time-varying elastici-

ties and to mimic their time paths. The results from the robustness-check experiment

lead to the same evidence. It can be seen from Table 4.13 that the Rotterdam model

approximated the high values of the time-varying income elasticity of x3 quite well.

To show the ability of this model to approximate the true time-varying income elas-

ticities with closer values and to mimic their paths, I have displayed three of the six

income elasticities that are considered in the analysis in Figure 4.6. The approx-

imations from the Rotterdam model and the linear-approximate AIDS model with

corrected formulas are shown together with the true time-varying income elasticities.

It can be seen from Figure 4.6 that the RM produced an approximation of η1t

with values close to the true ones under the LTM specification. Moreover, the path

of the approximating time-varying elasticity tracked that of the true one. However,

while the true time-varying income elasticity displayed some variations over time, the

approximation from the Rotterdam model tended to smooth them out. In contrast,

the LAICF produced an approximation of η1t that is off track and the values of which

tended to be constant over time.

Figure 4.6 also shows that the RM performed better for the two other time-varying

income elasticities. For example, while the approximating elasticity from the RM had

positive values and tracked the path of η2t fairly well under the random walk model,

the LAICF approximation had negative values at every single time period. Finally,

the RM approximated the high-valued income elasticity η3t and tracked its path very

well. Although the approximating elasticity produced by the LAICF showed some

variations over time in this case, its paths is smoother with values too low compared

to those of the true elasticity and those of the RM approximation.
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Figure 4.6. Robustness checks: Selected time-varying income elasticities
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The next subsection is devoted to the robustness checks for the compensated

cross-price time-varying elasticities. As in the main Monte Carlo experiment, the most

important concern is about the ability of each model to identify goods as complements

of substitutes. I shall nevertheless briefly comment on the values of the time-varying

cross-price elasticities.
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4.7.2.3 Time-varying cross-price elasticities

Comparing the RM and the LAICF model, it follows from Table 4.14 that the RM

approximated all the compensated cross-price elasticities with positive values. How-

ever, the approximating values tended to overestimated the true ones. The LAICF

model produced three time-varying cross-price elasticities with negative values for all

the time periods. It is important to keep in mind that values of the true time-varying

cross-price elasticities are all positive at each single time period. The negative values

of the approximating time-varying elasticities means that the LAICF wrongly identi-

fies substitute goods as complement goods. For the cases where the LAICF produced

positive values of the time-varying price elasticities, the values are either constant

over time (η∗12,t under the RWM and η∗13,t under the LTM) or overly overestimating

(η∗23,t under the RWM). It is noteworthy that the RM also produced a time-varying

cross-price elasticity which tended to be equal to 0.01 for every time period (η∗13,t

under the LTM).

The NLAI model produced approximations with positive values that tended to

overestimate the true values for the goods in the same sub-aggregation group. For

the goods in different groups, the NLAI model tended to underestimate the true

values of η∗13,t and to overestimate the true values of η∗23,t. The LAISF model also pro-

duced time-varying cross-price elasticities with positive values, except one elasticity

under the local trend model. Table 4.14 shows that the LAISF model produced an

approximation of the time-varying cross-price elasticity between x1 an x2 the values

of which are comparable to those produced by the NLAI model. For the goods in dif-

ferent aggregation groups, the approximating values produced by the LAISF either

overestimated or underestimated the approximating values from the NLAI model,

depending on the specification of the time-varying parameters in the utility function.
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Table 4.14. Robustness checks: TVC cross-price elasticities at selected
time periods

Random Walk Model Local Trend Model

Period True NLAI LAISF LAICF RM True NLAI LAISF LAICF RM

η∗12,t

1 0.009 0.036 0.041 0.003 0.019 0.004 0.034 0.015 -0.016 0.020
2 0.009 0.038 0.042 0.003 0.019 0.004 0.025 0.011 -0.016 0.020
3 0.010 0.045 0.050 0.003 0.019 0.004 0.021 0.008 -0.016 0.020
4 0.010 0.039 0.044 0.003 0.019 0.004 0.021 0.008 -0.016 0.019
6 0.009 0.050 0.056 0.003 0.019 0.003 0.022 0.010 -0.016 0.018
9 0.007 0.044 0.049 0.003 0.019 0.002 0.022 0.011 -0.016 0.018

12 0.010 0.038 0.043 0.003 0.019 0.002 0.023 0.013 -0.016 0.018
18 0.008 0.042 0.047 0.003 0.018 0.002 0.018 0.009 -0.015 0.015
24 0.009 0.041 0.046 0.003 0.019 0.002 0.016 0.006 -0.015 0.015
36 0.010 0.044 0.049 0.003 0.019 0.001 0.015 0.006 -0.015 0.015
48 0.008 0.033 0.037 0.003 0.018 0.001 0.012 0.002 -0.015 0.015
60 0.010 0.038 0.042 0.003 0.018 0.001 0.009 0.000 -0.015 0.015

η∗13,t

1 0.191 0.026 0.061 -0.008 0.084 0.074 0.030 0.034 0.009 0.010
2 0.189 0.026 0.061 -0.008 0.084 0.069 0.025 0.032 0.008 0.010
3 0.184 0.027 0.062 -0.008 0.085 0.073 0.026 0.034 0.008 0.010
4 0.181 0.024 0.058 -0.008 0.085 0.086 0.030 0.038 0.008 0.010
6 0.200 0.031 0.067 -0.008 0.085 0.061 0.022 0.029 0.008 0.010
9 0.214 0.032 0.068 -0.008 0.086 0.069 0.024 0.032 0.008 0.010

12 0.212 0.032 0.067 -0.008 0.085 0.043 0.017 0.024 0.008 0.010
18 0.160 0.019 0.053 -0.008 0.084 0.032 0.012 0.019 0.008 0.010
24 0.172 0.025 0.059 -0.008 0.084 0.036 0.014 0.021 0.008 0.010
36 0.206 0.030 0.065 -0.008 0.085 0.023 0.009 0.016 0.008 0.010
48 0.201 0.025 0.059 -0.008 0.084 0.026 0.010 0.017 0.008 0.010
60 0.150 0.015 0.049 -0.008 0.083 0.014 0.006 0.013 0.008 0.010

η∗23,t

1 0.056 0.818 0.602 0.573 0.028 0.027 0.034 -0.069 -0.058 0.034
2 0.053 0.789 0.581 0.551 0.029 0.030 0.037 -0.078 -0.061 0.036
3 0.045 0.676 0.501 0.463 0.026 0.038 0.071 -0.090 -0.068 0.039
4 0.053 0.760 0.560 0.530 0.026 0.043 0.076 -0.091 -0.066 0.040
6 0.044 0.615 0.458 0.414 0.024 0.029 0.035 -0.084 -0.065 0.034
9 0.053 0.691 0.511 0.471 0.022 0.031 0.061 -0.078 -0.061 0.031

12 0.060 0.792 0.582 0.548 0.027 0.017 0.060 -0.074 -0.059 0.030
18 0.036 0.712 0.527 0.496 0.026 0.014 0.055 -0.088 -0.065 0.026
24 0.038 0.730 0.540 0.507 0.027 0.018 0.067 -0.101 -0.072 0.024
36 0.050 0.691 0.511 0.473 0.025 0.012 0.061 -0.104 -0.077 0.025
48 0.059 0.901 0.661 0.638 0.030 0.017 0.073 -0.130 -0.090 0.030
60 0.045 0.782 0.577 0.553 0.028 0.012 0.080 -0.150 -0.105 0.034
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4.7.3 Regularity condition

Table 4.15 shows that the RM and the LAICF model satisfied the regularity

condition− the negative semi-definiteness of the Slutsky matrix− at every replication

and every time period under the RWM. Under this specification of the time-varying

coefficients in the demand system, the NLAI and the LAICF models satisfied the

theoretical regularity condition for more than 99% of the replications at each time

period. Table 4.15 also shows that, under the LTM, the Rotterdam model achieved

the highest levels of the regularity index − more than 99% − at every single time

period, compared to the other models. In particular, the levels of the regularity index

that were achieved by the LAICF model were the lowest at each time period.

Table 4.15. Robustness checks: Regularity index by model and TVC
specification

NLAI LAISF LAICF RM

Period RWM LTM RWM LTM RWM LTM RWM LTM

1 99.3 92.2 99.6 92.8 100.0 89.6 100.0 99.8
2 99.5 92.3 99.8 86.5 100.0 82.8 100.0 99.7
3 99.9 90.5 99.9 79.1 100.0 75.8 100.0 99.7
4 99.5 90.1 99.7 79.6 100.0 74.6 100.0 99.7
5 99.6 93.0 99.8 88.3 100.0 82.7 100.0 99.6
6 100.0 90.4 100.0 85.6 100.0 80.9 100.0 99.6
7 99.9 93.0 100.0 90.0 100.0 86.2 100.0 99.7
8 100.0 92.8 100.0 90.0 100.0 86.3 100.0 99.7
9 99.9 92.5 99.9 88.0 100.0 83.8 100.0 99.6

10 99.9 92.1 100.0 87.6 100.0 83.7 100.0 99.8
11 99.8 92.2 99.9 88.8 100.0 84.3 100.0 99.8
12 99.7 93.7 99.9 91.7 100.0 86.8 100.0 99.8
18 99.6 88.5 99.6 83.5 100.0 74.7 100.0 99.3
24 99.7 85.3 99.8 74.5 100.0 64.7 100.0 99.3
30 99.8 85.3 99.9 77.3 100.0 65.1 100.0 99.9
36 99.8 84.4 99.9 76.2 100.0 64.8 100.0 99.9
42 99.4 80.1 99.6 66.8 100.0 53.2 100.0 99.8
48 98.7 78.3 99.2 59.3 100.0 47.4 100.0 99.8
54 99.6 76.9 99.8 60.7 100.0 45.9 100.0 99.9
60 98.9 73.9 98.9 50.8 100.0 37.6 100.0 99.9
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4.7.4 Final remarks on robustness checks

As a concluding remark to the robustness-check experiment, I shall say that its

results support the findings from the main Monte Carlo experiment. In terms of the

comparison between the Rotterdam model and the LAICF model, the new experiment

shows that the RM performed better than the LAICF both in recovering the signs

of the values of the time-varying elasticities and in producing the elasticity values

that are close to the true ones. This experiment has also shown that the NLAI

and the LAISF produced values of income and substitution time-varying elasticities

that tended to be constant over time. But this is exactly one of the conclusions that

emerged from the main Monte Carlo experiment. This experiment has also confirmed

the ability of the RM to produce time-varying income elasticities that track the paths

of the true ones, and the values of which are close to the true ones.

In terms of theoretical regularity, Table 4.15 showed that the four demand specifi-

cations achieved similar levels of theoretical regularity under the random walk model.

However, the Rotterdam model and the LAICF model slightly performed better than

the nonlinear AIDS model and the LAISF model. The performance of the four models

under the local trend model, on the other hand, clearly shows the superiority of the

Rotterdam model over the other three demand specifications. In fact, the Rotterdam

model satisfied the negative semi-definiteness of the Slutsky matrix in more than 99%

of the replications at every time period. However, each version of the AIDS demand

specification achieved lower regularity levels compared to those of the Rotterdam

model at every single time period. More importantly, the regularity index for the

LAICF model is the lowest at each time period.
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5

Conclusion

In this chapter, I shall review and summarize the results of my research, identify

the main methods used and discuss the implications of the findings.

The main focus of this dissertation research was to assess the performance of the

most used local flexible functional forms in demand analysis, namely the AIDS in

its linearized form and the Rotterdam model, in recovering the elasticities of a true

demand system when the parameters are varying over time. Monte Carlo simulations

were used to generate data from a known utility function, the weak separable-branch

utility tree. Two specifications of the time-varying parameters in the utility function

were considered, resulting in two data sets on quantities demanded, prices and total

expenditure. The first data set was generated by assuming that all the parameters

in the true utility function follow a random walk process. The quantities in the

second data set were generated as the sum of two components: a random-walk-with-

drift component and a supernumerary-quantity component. Relevant time-varying

elasticities for the true demand system were then obtained accordingly.
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Four steps were used to assess the performance of the approximating demand sys-

tems: (i) estimate the time-varying coefficients using the Kalman filter and smoother

by bootstrapping each demand specification; (ii) obtain the approximating time-

varying elasticities by using the estimated time-varying coefficients; (iii) compare the

performance of each model with respect to the values and paths of the the true time-

varying elasticities; (iv) assess the ability of each approximating demand system to

conform to demand theory by calculating a regularity index at each time period.

The results of the research were classified in terms of the sign and magnitude

of the values of the approximating time-varying elasticities. The two classifications

corresponded respectively to a qualitative assessment and a quantitative assessment

of the performance of each approximating demand system. A particular attention was

paid to the ability of each approximating demand system to perform in a consistent

way under both specifications of the time-varying parameters. Based on the sign of

the approximating values, goods were identified as substitutes, complements, normal

or inferior. However, the magnitude of the approximating values was used to assess

how close they are to the true ones.

Both the Rotterdam model and the NLAI model tended to provide a correct qual-

itative classification of goods based on the income elasticities and the elasticities of

substitution at each time period. However, the Rotterdam model correctly identified

goods as normal necessities or luxuries while the NLAI model failed to do so in most

of the cases. For the cross-price-elasticities-based classification, the Rotterdam model

tended to produce correct classification compared to the NLAI model. The LAICF

model, which is widely used in applied research than the NLAI model, poorly ap-

proximated the NLAI model and performed poorly at recovering the true values of

the time-varying elasticities in most of the cases.
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On the other hand, the LAISF model qualitatively performed in the same way

as the NLAI model only for the time-varying income elasticities. However, the ap-

proximation of the other time-varying elasticities was not consistent under the two

specifications of the time-varying coefficients in the demand system. The consistency

was evaluated in terms of the signs of the elasticity values under the two specifications

of the time-varying parameters.

Concerning the magnitude of the estimated time-varying elasticities, the Rotter-

dam model tended to produce values of the time-varying elasticity of substitution

that were close to the true ones within the branches of the utility function. In con-

trast, the NLAI tended to overestimate the values of the within-branch time-varying

elasticity of substitution. Both models tended to produce poor approximations of the

across-branch elasticities of substitution. On the other hand, the Rotterdam model

tended to produce time-varying income elasticities that mimicked the paths of the

true elasticities and the values of which were very close to the true ones. The NLAI

tended to produce constant values over time and failed to capture very high values of

time-varying income elasticities. Moreover, the NLAI overestimated the values of the

time-varying cross-price elasticities within the branch of the utility function, while

the Rotterdam model produced an approximation the values of which were close to

the true ones.

To check the robustness of the above results, I conducted a new Monte Carlo

experiment where I used different values of the time-varying parameters in the utility

function. The results from this new experiment supported the conclusions from the

main Monte Carlo experiment. More specifically, the RM performed better than all

the other models, especially the LAICF. However, the LAICF was able to achieve

similar levels of theoretical regularity as the RM under the RWM specification.
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The findings in this dissertations lead to two important implications for the de-

mand analysis with time-varying coefficients. First, with regard to the performance

of the LAICF model, this model should not be considered as an approximation to

the NLAI model. It should, in contrast, be considered as a model on its own. This

is important since its outcomes may considerably differ from those of the NLAI with

regard to the signs of the estimated time-varying parameters and elasticities on the

one hand, and their magnitude on the other hand.

The second implication relates to the choice between an AIDS-type specification

and the Rotterdam model in empirical studies. An important recommendation is

that such a choice be made with respect to the performance of each model to better

approximate the properties of an hypothesized true model. However, the results

in this dissertation may be dependent on the structure of the true model and the

particular Monte Carlo experiment that was implemented. Therefore, caution should

be used in selecting the correct functional structure that is intended to approximate

the properties that are contained in a given data set.

It is noteworthy that the comparison of the performance among different models

included in this research mainly focused on how they can approximate the true model

qualitatively and quantitatively. However, the comparison cannot be limited to the

sole performance of this nature. A broad range of aspects can be considered as

well. For example, future research efforts to assess the performance of the AIDS-

type models and the Rotterdam model may focus on the forecasting abilities of each

model. In the specific case of time-varying parameters, the two models can be judged

in terms of their ability to produce time series of elasticities that recover the time

series properties of the true time-varying elasticities.
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Figure A.1. Time-varying elasticities of substitution in the RM
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Figure A.2. Time-varying elasticities of substitution in the NLAI model
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Figure A.3. Time-varying income elasticities in the RM
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