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Abstract 

 Shear-wave (S-wave) velocity can be directly correlated to material stiffness making 

it a valuable physical property that has found uses in construction, engineering, and envi-

ronmental projects.  This study compares three different methods, Multichannel Analysis 

of Surface Waves (MASW), S-wave tomography, and downhole seismic for measuring 

S-wave velocities, investigates and identifies the differences among the methods’ results, 

and prioritizes the different methods for S-wave use at the U. S. Army’s Yuma Proving 

Grounds (YPG) north of Yuma, AZ.  A large signal-to-noise ratio and a layered 

depositional architecture at the study site gives the MASW method much potential, but 

higher-mode energy resulting from velocity discontinuities reduces the effectiveness of 

the method shallower than 20 ft. First arrival analysis provides evidence of a velocity 

discontinuity within the first 10 feet of unconsolidated sediment.  S-wave first arrivals 

were picked using impulsive sledgehammer data which were then used for both 

tomographic inversion and refraction analysis.  Three-component downhole seismic data 

were collected by using a locking geophone coupled with the borehole casing to estimate 

seismic velocities directly. This study helps to identify the strengths and weaknesses of 

each of these methods at sites similar to YPG. MASW results show a low-velocity layer 

at a depth of about 50 feet that is verified by downhole seismic data and is undetectable 

through traditional refraction tomography.  However S-wave refraction tomography 

provides more convincing results at shallow depths where the MASW method fails.  

Using both methods in an integrated fashion provide the most accurate depiction of S-

wave velocity characteristics in the shallow unconsolidated sediments at YPG. 
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Introduction 

 Over the past 20 years, information gleaned from shallow seismic S-wave velocities 

has become more available for use in disciplines ranging from environmental geophysics 

to civil engineering.  A variety of geophysical techniques has been developed to 

determine S-wave velocities and each method has its strengths and weaknesses in various 

geologic settings.  The purpose of this research is to determine the most accurate method 

for determining near-surface S-wave velocities for unconsolidated sediments within the 

U.S. Army’s Yuma Proving Grounds, Arizona.  

Seismic-wave velocities in rocks are directly related to their physical properties 

and are used to provide valuable insights about the rock’s mechanical and petrologic 

properties (Grant and West, 1965).  Compressional waves (P-waves) propagate by 

changing the rock’s volume, while S-waves distort the rock matrix, leaving the volume 

unchanged  (Helbig, 1986).  When the deformation is entirely elastic the stress applied to 

a body is proportional to the resulting strain, the ratio of stress to strain is called the 

modulus.  Moduli are somewhat analogous to the spring constant in Hooke’s law where a 

force acting on a spring causes it to compress or expand: 

 F = -sx (1) 

Here, F is the restoring force, s is the spring constant, and x is the resulting displacement 

from equilibrium.  As long as the deformation is elastic (Figure 1), the displacement of 

the spring is proportional to the force applied to it by a factor of s.  The two principal 

moduli of interest in seismology when discussing velocity are the bulk modulus, k, and 

the shear modulus,  : 
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Here, V is volume, and P is pressure.  P-wave velocities vary with changes in the bulk 

modulus, shear modulus, and density, while S-wave velocity changes depend only on the 

shear modulus and density (Sheriff, 1991): 
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Here, VP is P-wave velocity, VS is S-wave velocity and ρ is density.  The fact that S-wave 

velocity is independent of a material’s compressibility allows for direct comparison to the 

material’s stiffness.  Because of this correlation, S-wave velocity measurements are 

useful for investigating the mechanical-strength properties of the near surface materials. 

 

Figure 1:  Once the stress-strain relationship becomes non-linear, plastic deformation 

occurs and potential energy is not entirely conserved. 

 

 Recent catastrophic earthquakes in China, Haiti and Japan have underscored the 

urgency to minimize damage by proper selection of building sites (Anbazhagan and 

Sithram, 2008) and construction practices.  The International Building Code has 

standardized characterizing earthquake risk with the VS
30

 rating system which is the 
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average S-wave velocity in the shallowest 30 meters of the subsurface.  Studies have 

linked low S-wave velocities in surface sediments overlying bedrock with relative 

amplification of ground motion during earthquakes (Borcherdt, 1994).  For example, the 

VS
30

 system would rank an area with an average S-wave velocity of 600 ft/sec in the top 

30 meters as having a relatively high risk for amplifying destructive earthquake waves 

(Hunter et al., 2010).  S-wave studies have also been used to identify subsidence and 

liquefaction risks for wind-turbine installation (Park and Miller, 2005), investigate 

potential for levee failure (Ivanov et al., 2006a) and identify subsidence risks from 

dissolution features (Miller et al., 2009). 

 One of the first geophysical methods used to characterize the subsurface as early as 

the 1920’s was the P-wave refraction method (Green, 1974).  This method assumes that 

the first coherent wavelet recorded on a trace traveled the highest velocity path from 

source to receiver.  It can be generated either by a wavefront arriving directly from the 

seismic source, or by energy refracted at depth by a velocity contrast, usually associated 

with an interface between a change in material (Figure 2A).  Refraction tomography, an 

extension of the refraction method, has become more popular as computer power has 

increased, (Stewart, 1991). 

 With diving-wave tomography first-arrival travel times are used in a similar fashion 

to a traditional refraction survey, however the ray paths are expected to bend without 

necessarily following a discrete refracting interface (Figure 2B).  Next, a generalized 

initial velocity model of the subsurface is estimated and divided into discrete cells. A 

refraction survey is then simulated with survey parameters mimicking the dataset that 

was used to pick the measured first arrivals, populating each cell with a travel time based 
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on that cell’s velocity.  From each simulated receiver, the path back to the source with the 

shortest travel time is retraced, this is called a ray path.  The calculated travel time from 

the model is compared with the observed travel time from the real data, and the velocities 

along the ray path are updated in the next iteration to minimize the difference in ray path 

travel time.  This process occurs over several iterations and is intended to converge on a 

model that accurately represents the subsurface (Vidale, 1998).  

 

 

Figure 2:  Depiction of velocity structures resulting in refracted first arrivals (A) and 

diving-wave first arrivals (B).  In the refraction case, the velocity increases stepwise with 

depth, while the diving wave scenario assumes a linearly increasing velocity function. 
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 The primary reason S-wave refraction tomography is a viable method in this study 

is that diving-wave tomography can be used in a geologic setting like at the YPG where 

impedance contrasts in the subsurface are not large enough to image within the depths of 

interest using reflection seismology (Figure 3).  A walkaway S-wave survey was 

conducted at the field site and no reflections in the upper 150 ft were detected. 

 S-wave tomography works exactly the same way as P-wave tomography, except S-

wave tomography uses S-wave first arrival times which are normally not the first arriving 

energy on a seismogram.  With up to 800 ft of receiver offset, the depth of investigation 

can be estimated down  to 200 ft using a rule-of-thumb that the depth of investigation is 

approximately one-quarter of the spread length (Palmer, 1981).  Some potential 

difficulties with using S-wave tomography include misidentifying S-wave first arrivals 

and converging to a non-unique solution during the inversion process.   

 In the past 20 years, surface waves, a component of the wavefield typically regarded 

as noise by petroleum geophysicists, have become extremely useful for estimating 

shallow S-wave velocities (Stokoe and Nazarian., 1983).  There are two types of surface 

waves, Love waves, and Rayleigh waves.  Rayleigh waves are a result of constructive 

interference between P- and S-waves reflected from the free-surface boundary (Ewing et 

al., 1959).  This interference pattern results in a wavefront with retrograde-elliptical 

particle motion that propagates radially from the source, but within half of a wavelength 

from the surface.  In the case where velocity increases with depth discretely, each 

frequency component of the Rayleigh wave has a unique phase velocity.  The phase 

velocity of a given frequency component of the Rayleigh wave is determined by the 

thickness of the layer in which it propagates, as well as the P-wave velocity, S-wave 
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velocity and the density of that layer.  By measuring the phase velocity for each 

frequency and holding the rest of these values constant (Xia et al. 1999) S-wave 

velocities can be solved through the process of inversion. 

 

Figure 3:  Example of a raw shot gather generated with a shear block and sledgehammer, 

collected with horizontal geophones oriented parallel with the long axis of the shear 

block.  Due to the lack of useable reflection information within the depth of interest, 

MASW and S-wave tomography were chosen as the primary methods for this project. 

 

 In this thesis, both surface wave inversion and refraction tomography  methods are 

tested against the results of two downhole seismic surveys.  A downhole seismic survey 

can be used to calculate velocity of material between a receiver at depth and a source near 

the surface of the borehole.  The concept of a downhole seismic survey is much simpler 

and measurement accuracy generally better than either MASW or tomography, and is 
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generally assumed to provide “ground truth” for correlating with other surface 

geophysical surveys (Crice, 2011).  Unfortunately this assertion is based on some 

assumptions that do not always hold true.  These sources of error will be discussed later.  

Comparison of the results of the downhole seismic surveys with the results from MASW 

and tomography provide insight into the quality of results from each method. 

 

Geologic Background:  Yuma Proving Grounds  

 The data used in this project were collected at a site at the Yuma Proving Grounds 

(YPG) within a valley south of the Trigo Peaks mountain range in Southwestern Arizona 

(Figure 4).  The data collection site is located where the distal edge of a modern alluvial 

fan grades into alluvial plain sediments (Figure 5)(McDonald et al., 2009).  These 

sediments are likely to have been transported predominantly by gravity flow, based on 

the volcanic nature of the surrounding mountains (Eberly and Stanly, 1978), abundance 

of fine grained material (Miller et al. 2010) and the persistent regional arid climate 

(Reading, 1996).   

 Part of the scope of work detailed for the Kansas Geological Survey at the YPG 

entailed drilling a number of boreholes for sampling purposes.  Sampling success in each 

borehole was somewhat variable due to the combination of very fine sediment, the dry 

conditions, and the sonic drilling technique in these very dry conditions.  However, the 

on-site geologist was able to evaluate the lithology of the samples that were recovered 

(Miller et al., 2010).  A lithochart was created based on the sampling report, only two 

wells were successfully sampled beyond 40 ft (Figure 6).  In general the materials varied 

significantly within the upper 40 ft.  Materials were classified by variations of clay 
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content, the remainder of the clastic material ranged from silt to gravel.  The most notable 

features in the upper 40 feet were infrequent sand lenses.   Beyond 50 feet clay content 

increased significantly.  This material consisted of coarsening upward, poorly sorted 

subrounded to subangular sediments ranging from gravel to clay  (Miller et al., 2010). 

 Modern depositional processes that have shaped the topography of Southwestern 

Arizona are characteristic of regional block faulting (Reading, 1996).  After the decline 

of the Laramide orogeny, between 53 and 26 million years ago, subaerial fanglomerates 

and associated lake beds were deposited within topographic lows on older bedrock 

surfaces in southwestern Arizona.  At the end of this period, magmatism increased 

dramatically, causing regional heating of the crust, plutonism, and minor mineralization.  

Volcanic tuffs and breccia flows altered the previously established drainage systems, 

shifting the depositional patterns. Sediments deposited during this time are mostly of 

lacustrine and fluvial origin and are intercalated with volcanic extrusions. This period of 

tectonism is known as the Mid-Tertiary orogeny (Eberly and Stanley, 1978). 

 After the Mid-Tertiary Orogeny began to slow, relative sea level fall created an 

expansive unconformity around 17 million years ago. Volcanic activity and fanglomerate 

deposition continued as before, but this time was accompanied by regional extension.  

Regional block faulting began in the late Miocene, which created the structures that now 

dominate the present day topography.  Horst-and-graben development altered the 

previous drainage patterns, allowing sediment shed directly from horsts to be deposited in 

adjacent grabens, leaving each basin with unique depositional environments.  Around 10 

to 6 million years ago, faulting began to wane, and smaller basins began to coalesce 

allowing exterior drainage systems to develop (Eberly and Stanley, 1978).  
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Figure 4: Location map describing geographic area of the survey and layout of seismic 

lines as well as borehole positions.  Station numbers increase to the northwest.  Images 

are from Google maps. 
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Figure 5:  Figure representing surface geology after McDonald et al., (2009) and 

interpreted generalized cross section suggesting stratigraphic relationships between the 

facies listed here (not to scale).  The YPG site is located where the distal portion of an 

alluvial fan grades into alluvial terrace. 
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Multichannel Analysis of Surface Waves 

Introduction 

 The MASW method estimates S-wave velocities by exploiting the dispersive 

nature of Rayleigh waves through mathematical inversion (Park et al., 1999; Xia et al. 

1999).  Rayleigh waves are the result of the combination of evanescent P- and vertical S-

waves in the vicinity of a free surface-boundary (Ewing et al., 1959).  Because these 

waves only exist within close proximity to the free surface, they cannot propagate 

spherically as body waves do.  The vast majority of energy from Rayleigh waves only 

penetrates to depths of about one half of a wavelength. 

 In a typical geologic setting, velocity increases with depth.  If this is the case 

Rayleigh waves with long wavelengths propagate through deeper layers with higher 

velocities, while high frequencies are confined to the shallower layers with relatively low 

velocities.  This makes the Rayleigh wave dispersive (Babuska and Cara, 1991).  

According to Xia et al. (1999), the S-wave velocity of each layer is the most sensitive 

parameter controlling the phase velocities of the Rayleigh wave.  This allows dispersive 

Rayleigh waves to be exploited to solve for subsurface S-wave velocities.  The process of 

estimating these velocities involves three steps:  acquisition of the Rayleigh wave data, 

calculating dispersion curves as a function of phase velocity and frequency, and inversion 

of the S-wave velocity profile from the calculated dispersion curve.  The components of a 

typical overtone image used for estimating dispersion curves are illustrated in Figure 7. 

 The MASW method allows for use of many channels in surface wave inversion, 

as opposed to the two channels used for spectral analysis of surface waves (SASW), 

MASW’s predecessor (Stokoe and Nazarian, 1983).  The biggest advantage of using 
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multiple channels is the ability to manually interpret the dispersion curves in phase 

velocity-frequency space (Park et al, 1999).  Another advantage of using multiple 

channels is that undesirable portions of the wavefield such as cultural noise, backscatter, 

and air waves can be identified and dealt with appropriately (Park et al, 1999). 

Figure 7:  Figure illustrating the components of an overtone image.  The overtone image 

represents the surface wave once it has been transformed from the offset-time domain (x-

t) to the phase velocity-frequency (v-w) domain.  A represents the energy found in the 

fundamental mode.  B represents energy found in higher modes.  C is the dispersion 

curve that has been picked for inversion at this location. 

 

 

 Since its inception, the MASW method has been identified as an extremely robust 

tool for providing S-wave velocity information or simply searching for anomalies in the 

shallow subsurface (Miller et al. 1999).  The rest of the acquisition system is widely 

available due to the popularity of traditional CMP reflection surveys.  In fact, the 
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acquisition equipment and parameters are similar enough that traditional CMP reflection 

data can be reprocessed using the MASW method (Socco et al., 2009).  Due to the high 

number of channels traditionally employed with CMP reflection methods, receivers with 

appropriate offsets for the MASW method can be extracted from these datasets and 

processed using MASW to determine S-wave velocity structure to supplement data 

originally acquired for P-wave reflection (Socco et al., 2009).  However, geophones with 

an optimal natural frequency for a particular reflection survey may not sample the 

necessary lower frequencies of the surface wave to sample the desired depth of 

investigation. 

 Analysis of S-wave velocity anomalies for detecting voids in the near surface has 

become increasingly popular in the past 20 years (Miller et al., 2009, Nolan et al., 2011).  

A void has S-wave velocity of zero because it is filled with air or water, a medium with 

no shear strength.  Considering the material encasing the void, it should be detectable as 

an anomalous low in the S-wave velocity field.  Increased strain due to loading between 

sidewall supports has been shown to increase the S-wave velocity immediately above 

voids (Miller et al., 2009; Sloan et al., 2010).  Together, these phenomena cause voids to 

appear as dipole anomalies in the S-wave velocity field.   

 The SurfSeis software package developed by the Kansas Geological Survey 

(KGS) was used to process the MASW data discussed in this study.  Developed alongside 

the MASW method, SurfSeis was designed to make the entire processing flow user 

friendly.  For this project, SurfSeis was used for dispersion-curve analysis, surface-wave 

inversion, and generation of S-wave velocity profiles.  To pick data points to use in the 

inversion process, the data must be transformed and displayed in the frequency-phase 



 

15 
 

velocity domain.  Some methods available include the f-k transform (Gabriels et al. 1987) 

and slant stacking (McMechan and Yedlin, 1981).  The method used in the SurfSeis 

software was developed by the Kansas Geological Survey (KGS) and transforms seismic 

data from the offset-time domain (x-t) to the phase velocity-frequency (v-w) domain.   

 

Data acquisition 

 Data from the YPG were acquired in such a way that a large database of seismic 

data was available for various near-surface seismic processing methods.  These data were 

collected primarily for general site characterization and to provide a baseline for future 

projects that the YPG may host.  The portion of the YPG dataset used in this section was 

collected in a fashion similar to many shallow CMP reflection surveys.  A total of 6 lines 

was collected with 4.5 Hz vertical geophones using a rubber-band accelerated weight 

drop as a source.  Generally frequencies as low as one and a half octaves below a 

geophone’s natural frequency can be used for most MASW analysis (Ivanov et al., 2008).  

For this project only two lines were used for comparison purposes, lines 2 and 3. 

 There were 340 total receiver stations and 190 shot stations, three shots were 

recorded individually at each shot station.  Seismographs used were 24 channel 

Geometrics Geodes with 24-bit analog-to-digital (A/D) conversion.  With 24 bits of A/D 

conversion a wide range of particle motion can be differentiated between the noise floor 

of the built in amplifiers and the maximum output of these amplifiers (Steeples, 1998). 

The seismographs were connected with Ethernet cables which were linked with the 
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doghouse equipment mounted in a customized John Deere Gator (Figure 8). 

 

Figure 8: Photographs from the site.  A.) Stations were flagged before data collection 

began.  B.)  loose surface material was removed to improve geophone coupling.  C.) 

Seismographs were networked together.  D.) Seismographs were linked to the doghouse 

equipment contained within the John Deere Gator.  The Seismic source used was a 

customized Rubber Band Accelerated Weight Drop (RAWD) attached to a Bobcat 

Toolcat. 
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 For MASW, the number of channels used is not as important as the maximum and 

minimum offset of the receiver spread (Park et al., 2001).  The quality of the 

fundamental-mode dispersion curve is influenced by where the surface wave is sampled 

in space.  A general rule of thumb for choosing maximum and minimum offset distances 

is to make the spread length approximately equal to the depth of interest, and the 

minimum offset should be about half of that distance away from the source (Xu et al., 

2006).  This rule of thumb is very general and should be used primarily for getting an 

idea of the parameters needed.  Use of this rule of thumb without in-field testing may 

inadequately sample the surface waves (Park et al., 2001).  Improper spatial sampling of 

surface waves may result in a depiction of the fundamental mode lacking higher 

frequencies, which will lead to erroneous dispersion curves when they are automatically 

picked (Ivanov et al., 2008; O’Neill and Matsuoka, 2005). 

 Changing the maximum and minimum geophone offsets can have a variety of 

effects on the resulting dispersion curves.  Reducing the spread length reduces the 

amount of horizontal averaging that is inherent to the MASW method.  This would 

improve the lateral resolution of the final pseudo 2-D S-wave velocity profile, but may 

result in poor images of the fundamental mode.  A larger spread generally refines the 

image of the fundamental mode, most noticeably in the phase-velocity domain.  By using 

a larger spread length while maintaining the receiver station interval the fundamental 

mode becomes more distinguishable from higher modes (Park et al., 2001; O’Neill and 

Matsuoka, 2005). 

 Parameters that can vary when considering receiver offset or spread length 

include the minimum offset (x1), maximum offset (x2), receiver spacing (dx), and the 



 

18 
 

number of channels (N), which is a factor of dx and total spread length (X) (Figure 9).  

Park et al. (2001) proved that increasing the number of channels increases resolution of 

the fundamental mode, when holding x1 and dx constant.  In a similar experiment, Park et 

al. (2001) held x1 and x2 constant and allowed N and dx to vary.  As the number of 

channels decreases and dx increases, spatial aliasing occurs, which can create artifacts 

with low phase velocities easily mistaken for the fundamental mode. 

 

Figure 9: A schematic representing the different terms used to describe channel offsets.  

X1: minimum offset, x2, maximum offset, dx: receiver spacing, X: total spread length. 

 

 The testing for this project was designed to determine the most appropriate offset 

window for maximizing resolution of the fundamental mode while avoiding near-field 

and far-field effects.  The method described in this section is modeled after Ivanov et al. 

(2008), by holding dx constant while N, x1, and x2 are allowed to vary throughout the 

testing process.  With a fixed dx, the distance between the source and the first receiver is 

important parameter that must be selected to avoid introducing near-field and far-field 

effects.  When the distance between the source and minimum receiver offset is smaller 

than the longest wavelength of the fundamental mode, the low frequencies in the 
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Rayleigh wave are not well developed; this is referred to as the near-field effect (Heisey 

et. a.l, 1982).  Far-field effects include attenuation of higher frequencies, and increased 

energy in the higher modes (Ivanov et al., 2008). 

 In-field testing is paramount to ensure that high-quality data is collected (Park et al., 

2001; Ivanov et al., 2008).  For this study, the collected data at the YPG was recorded 

using a traditional fixed-spread setup with more channels and offsets than necessary for a 

usual MASW survey.  To maintain consistency from shot location to shot location, a 

minimum and maximum offset was selected for the optimum spread length and used 

throughout the processing phase to avoid creating artifacts due to spread-length changes.  

To choose the spread length, a wide variety of maximum and minimum offsets was tested 

and evaluated based on the character of the fundamental-mode dispersion curve.  Criteria 

for evaluating fundamental-mode character included maximizing bandwidth while 

minimizing overlap of energy with higher modes.  If the frequencies necessary for 

sampling the depth of interest could not be recorded, then different ranges of acquisition 

parameters were tested to determine if the frequencies of interest were not present.  

 Beginning the offset testing for the YPG dataset, Figures 10a-10h show dispersion 

curves generated with offset windows where the first receiver is immediately next to the 

source (x1=0), x2 ranges from 52 ft to 400 ft, and N scales with x2.  Subsequent Figures 

(Figures 11a-14h) are arranged with increasing x1 but use the same spread lengths (X) to 

test overtone images through various combinations of x1 and x2.  Near-field effects 

dominate the overtone images for spread ranges from 52 ft to 400 ft (Figures 10a-10h).  

Most notably, a lack of low frequencies in the fundamental mode with no useable energy 

below 10 Hz is evidence of near-field effects (Figure 13a). 
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 As the spread length increases, more low frequencies are evident on the overtone 

images (Figure 12a-12e).  The dispersion curve resulting from offset parameters using the 

initial rule of thumb is shown in Figure 14b.  Higher-mode energy appears to be shifting 

the dispersion curve towards lower phase velocities.  The spread geometry suggested by 

the rule of thumb does not resolve the fundamental mode well enough to separate it from 

the very energetic higher modes.  Automatic picking of the fundamental mode from this 

overtone image would produce erroneous dispersion curve picks between 20 and 40 Hz.  

It is difficult to reduce the energy of the higher mode, but the resolution of each mode can 

be increased to minimize the interference between fundamental and higher modes 

(Figures 11a-11b).  Each spread with an x1 of 100 ft (Figures 12a-12h) seems to minimize 

the higher-mode interference best while avoiding influence of far-field effects. 

 The offset window chosen for picking dispersion curves for the entire dataset was 

100-400 ft (Figure 10f).  This offset seemed to provide reasonable fundamental mode 

resolution while minimizing the influence of the energetic higher mode.  Dispersion 

curves resulting from this offset also possess higher energy levels in the 30-40 Hz range 

and push the useable bandwidth down to as low as 6 Hz.  Based on the half-wavelength 

approximation, the depths of investigation for these data are between 15 and 140 ft which 

more than span the depth of interest for this project.  According to Ivanov et al., (2008) 

increasing the spread length and source offset distance may reduce higher-mode energy.  

This suggestion is consistent with these overtone images for any given x1.  However, 

increasing x1 and X to very long source offsets (Figures 12h-14h) increases low-

frequency higher-mode energy. 
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Dispersion Curve Picking 

 Parameters used for automatic dispersion curve picking must be adjusted 

appropriately to ensure that each curve is picked accurately.  The two selectable 

parameters in this phase of processing are the number of points automatically picked, and 

the percentage of curve smoothing applied to the automatic curve picking.  SurfSeis will 

pick points on the dispersion curve by identifying points with the highest amplitude 

within the bounded areas selected by the user.  Selection of the proper bounding areas is 

extremely important to help separate the fundamental mode from the energetic higher 

modes in the case of the YPG dataset.  Because the software only targets amplitude 

maxima, boundaries isolating the fundamental mode keep the program from 

automatically picking higher modes. 

 The automatic dispersion curve picking parameters used for the YPG dataset 

constrained the software to 20 points with 5% curve smoothing.  Increasing the 

smoothing constraint to 15 % makes the automatically picked dispersion curve linear, 

deviating from the interpreted trend of the fundamental mode.  Automatic picking with 

no smoothing is preferable in cases where the fundamental mode is energetic and noise 

free, but smoothing can be useful in some cases where fundamental mode is obscured by 

noise or higher-mode energy 

 Using the source offset range of 100 to 400 ft the fundamental mode can be 

picked with confidence between 6 and 35 Hz on every overtone image, and up to 45 Hz 

and even 55 Hz in many locations.  The fundamental mode is dominated by energetic 

higher modes at these higher frequencies.  The amplitude of higher-mode energy 

fluctuates between 20 and 30 Hz at different locations, leaving the fundamental mode 
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with a much larger signal (Figure 15) while partially obscuring the fundamental mode in 

others (Figure 16).  The higher mode almost completely obscures the fundamental mode 

from 30 to 60 Hz, making the inversion results of the upper 20 ft much less reliable. In 

other instances the higher mode has less energy in a specific frequency range, giving it a 

“spotty” character on the overtone images (Figure 17).  These breaks in higher mode 

energy provide confidence in interpreting dispersion curves on data where the 

fundamental mode is less energetic.  Most of the dispersion curve points were picked 

where the fundamental mode represented less than 50% of the amplitude observed on 

overtone images in the lower frequency portion. 

 

 

 
Figure 15.  Overtone image displaying relatively high energy in the fundamental mode 

out to 33 Hz. 
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Figure 16.  Overtone image with relatively high energy in the higher mode, reducing 

confidence of fundamental mode picks above 20 Hz.  Notice that the difference between 

the fundamental mode dispersion curve picks shows very little difference from Figure 15. 
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Figure 17.  This overtone image is an example where certain frequency components of 

the higher mode have less energy than the fundamental mode, allowing glimpses of the 

fundamental mode as is depicted in the red circles.  These overtone images are rare 

throughout both lines, but can be used to verify the position of the fundamental mode 

when picks are made on overtone images with lower signal-to-noise ratios. 
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Inversion 

 Dispersion curves interpreted from the overtone images were inverted using an 

initial model with ten layers.  The layer thicknesses in the model gradually increased 

from 3 ft to 18 ft on a logarithmic scale.  Ten layers with increasing thicknesses are the 

default initial model for SurfSeis, based on the assumption that ten layers is more than 

enough to accurately discretize the subsurface (Xia et al., 1999).    The root-mean-square 

(RMS) error between the measured data points and modeled dispersion curve points 

generally converged to within 1% of each other after 10 iterations.  The initial velocity 

model for each location was calculated based on the range of frequencies present in the 

sampled surface wave.  According to Ewing et al. (1957), Rayleigh wave phase velocities 

relate to S-wave velocities by approximately: 

          (6) 

where    is phase velocity and    is S-wave velocity.  This relationship was used to 

estimate the initial S-wave velocity for each layer.  Assuming that a Rayleigh wave 

travelling at a specific phase velocity penetrates about one half of a wavelength, these 

phase velocities can be used to estimate S-wave velocities for each layer in the initial 

model. 
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Results 

 Once the inversion process is completed, the resulting velocity profiles are 

combined to produce the pseudo 2-D velocity profiles displayed in Figure 18.  Laterally 

the S-wave velocity changes very little, but clearly there is a low-velocity layer appearing 

at around 50 ft deep.  Xia et al., (2005) demonstrated that the MASW method can image 

low-velocity layers with variation down to 2% when compared with S-wave velocities 

from borehole data.  The low-velocity layer in that case was about 25% lower than the 

velocity of the overlying layer, and was contingent on extreme accuracy of dispersion 

curve picks. 

 Verification of the low-velocity layer is possible with downhole seismic-velocity 

analysis.  There appears to be a depression on line 3 between station 3175 and 3215 

(Figure 18).  This may be an ancient channel filled with the material that the high-

velocity layer is composed of.  This interpretation is reasonable because the depositional 

environment within the Yuma basin has been documented as an alluvial terrace (Eberly 

and Stanley, 1978; McDonald, 2009).  The dispersion curves support the presence of this 

channel with higher phase velocities than the rest of the line around 10 Hz, corresponding 

to the higher S-wave velocities around 70 ft in the vicinity of the channel. 
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Figure 18:  Pseudo 2-D S-wave velocity profile resulting from MASW inversion.  

Notable features include a high-velocity layer overlaying a low-velocity layer.  There 

appears to be an incision into the low-velocity layer indicated by the red line (line 3). 
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 Vertical resolution in the MASW method has been proven to be directly related to 

how well-defined the fundamental mode is on the overtone image in the phase-velocity 

domain (Xia et al., 2005).  If the image of the fundamental mode were infinitely thin in 

the phase-velocity domain on the overtone image, the dispersion curve points would be 

infinitely accurate to the true model, and the inversion algorithm would recover the true 

S-wave velocities with 100% accuracy (Xia et al., 2005).  This implies that the vertical 

error, or vertical resolution of a dataset is directly related to the range of phase velocities 

within the high amplitude portion of the overtone image along a given frequency.  

Vertical resolution during the inversion process is determined by the thickness of each 

layer, while horizontal resolution can be as high as 1/6
th

 of the spread length (Ivanov et 

al., 2006c).  In this case, the thicknesses of the 10 layers ranged from 3 to 17 feet, and 

1/6
th

 of the spread gives a horizontal resolution of 50 ft. 
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S-wave Tomography 

Introduction 

 The basic idea of tomography was established in the early 1900’s when Johann 

Radon showed that the inside of an object can be imaged if projections through the object 

can be measured (Stewart, 1991).  The practice of tomography has become well 

established in modern medical imaging.  The success of medical tomographic methods 

has made CAT scans (Computed Axial Tomography) and MRIs (Magnetic Resonance 

Imaging) household names (Stewart, 1991).  Tomography has found much success in 

geophysics as well, though the method is more challenging geometrically (Kanli, 2008).  

In fact, it has become common practice to run geological core samples through CAT 

scans to help determine composition and image bedforms for oil exploration (Stewart, 

1991).   

 Medical tomography has advantages over seismic tomography through smaller 

scale, limited range of media, and fully-encompassing receiver geometry.  Medical 

tomography generates images on the scale of millimeters, while the scale for seismic 

tomography generally ranges from meters to tens of kilometers.  X-rays are assumed to 

be non-dispersive, while that assumption cannot be made with seismic waves (Stewart, 

1991).  The frequencies analyzed in these methods are affected by scale as well, where 

the short ray paths in medical tomography allow much higher frequencies than are 

typically sampled with seismic tomography (Kanli, 2008).  The largest advantage that 

medical tomography has over seismic tomography is acquisition geometry.  In medical 

tomography, sources and receivers are in place in a complete circle around a sample, 

sampling ray paths from 360 degrees around the object to be imaged (Kanli, 2008). 
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 In geophysics, an optimized geometry would involve sources and receivers in two 

boreholes and on the surface.  Typical seismic tomography confines sources and 

receivers to the surface, which presents significant challenges for the method such as 

insufficient ray coverage and multiple arrival paths (Kanli, 2008, Crice, 2011).  By 

restricting sources and receivers to the surface, the method is forced to rely on diving ray 

paths that originate from the surface and return to the receivers on the surface.   Diving-

ray tomography relies on the assumption that velocity increases with depth, and has the 

best ray coverage when using an initial model with linear velocity functions rather than 

homogenous layers (Kanli, 2009). 

 Seismic diving-wave tomography has great difficulty imaging hidden layers and 

low-velocity layers.  The hidden-layer phenomenon occurs when the velocity of one layer 

of rock is lower than the velocity of layer below it with a much higher velocity, enabling 

refractions from the higher-velocity layer to arrive before refractions from the lower-

velocity layer (Ivanov et al., 2006b).  Velocity inversions cannot be imaged for a similar 

reason, seismic energy preferentially propagates through faster layers, reducing ray 

coverage in areas with relatively low velocities.  On a seismogram the first arrivals from 

the faster layer above the low-velocity layer will always arrive sooner than signal from 

the slower layer (Kanli, 2008). 

 To image the media that the seismic waves are propagating through with 

tomography, ray paths must be modeled in space to associate with their respective 

measured travel times.  To do this, Vidale’s expanding-time-field method (Vidale, 1988) 

is used to calculate the travel time from the cells directly adjacent to the source, to the 

cells directly surrounding them.  By applying Hyugen’s principle, these adjacent cells are 
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treated as new point sources and travel times for each cell are calculated as the wavefront 

propagates through the velocity model.  This is the forward modeling step (Kanli, 2008).  

To determine the ray paths of the first arrivals for the inversion process, the ray paths 

with the minimum travel times must be selected.  This is accomplished by following the 

steepest gradient in travel time from the receiver back to the source (Kanli, 2008).  Once 

the ray paths are calculated, the velocity for each cell through which a ray has passed is 

slightly modified in an attempt to bring the calculated travel times closer to those 

observed.  There are a number of different methods for correcting these velocities.  

Examples include the simplest form, back projection, and the more accurate simultaneous 

iterative reconstruction method or SIRT (Stewart, 1991; Kanli, 2008). 

 

Data Acquisition and Interpretation 

 The S-wave refraction tomography data were acquired with parameters similar to 

the data used for MASW.  The source was a 16 lb sledgehammer striking a shear block 

(Figure 19).  14 Hz Geospace horizontal geophones were used in conjunction with the 

Geometrics Geode seismograph system described in the previous section.  Both the 

geophones and the shear block were oriented perpendicular to the lines.  240 channels 

recorded energy from receivers spaced at 4 ft intervals.  The source interval was 96 ft 

which provided sufficient ray coverage to reduce nonuniquness during the inversion 

process.  To identify the first arrivals for each trace, shots with the same source 

orientation and location were stacked and a filtered with a high cut filter beginning at 55 

Hz.  The filter rolloff extended to 100 Hz to minimize altering the phase of the first 

arrivals.  This provided high-quality first-arrival events as far as 500 ft from the source.  
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The first-arrival times were picked using KGS SeisUtilities and exported to a file format 

useable by the KGS software TomSeis.  All data used in this section comes from line 3, 

results for line 2 are similar to line 3 and therefore prove no additional information. 

 

Figure 19:  Picture of a shear block used to generate S-waves.  The device consists of a 

block of wood capped with steel plates with teeth for gripping the earth on both ends.  

Either end of the block is struck to generate S-waves. The person swinging the hammer 

stands on the block to improve coupling and reduce the risk of inelastic deformation.  

 

Initial Velocity Model Selection 

 Conventional refraction analysis is based on abrupt velocity discontinuities.  The 

refraction model assumes the near surface is discretized into homogenous layers where 

the velocity increases suddenly at layer boundaries.  First arrivals, in this case, would 

arrive along linear trends.  Diving-ray tomography provides raypath modeling for cases 

where first arrivals are not perfectly linear, which is often the case.  For diving-ray 

tomography to work, velocities must increase monotonically with depth (Kanli, 2009). 

 Though the true shallow velocity structure is likely to be a combination of both 

discretized and linear velocity gradients, assumptions must be made based on local 
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geologic information to select an initial velocity model that will lead to the true solution.  

For example, an area consisting entirely of unconsolidated sediment should have 

velocities that increase linearly with depth due to compaction.  However, a two-layer 

refraction model may better represent abrupt velocity changes between two layers, for 

example where caliche layers have developed in otherwise unconsolidated sediments 

(Ivanov et al., 2006b; Kanli, 2009).  The true solution may be a combination of these two 

models, which is considered in this study as well. 

 

Refraction velocity model 

 One method for determining an appropriate initial model is conventional 

refraction analysis (Kanli, 2009).  This approach provides a good approximation when 

observed first arrivals appear to be composed of distinct linear segments (Figure 20).  

The linearity of the first arrivals observed in these data suggests that refraction analysis 

may provide a reasonable initial velocity model.  The refraction-based initial model in 

this study consists of two layers consistent with the two distinct linear first-arrival 

patterns observed on shot gathers.  The velocities for the first and second layers were 

calculated where V0 = 800 ft/sec and V1 = 1700 ft/sec.  The depth of the first layer (z) was 

calculated by: 

    
   

 
 √
     

     
 (7) 

where XC is the crossover distance, which is 28 ft (Figure 20).  These values yield a 

thickness of 2 ft for the first layer.  Beyond 28 ft, the first arrivals follow a consistent 

velocity trend approximately 1700 ft/sec (Figure 21).  Based on a range of seismograms, 
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an initial model was generated with an 8 ft deep layer with a velocity of 800 ft/sec, a 

halfspace with a velocity of 1700 ft/sec, and 8 ft by 8 ft cell size. 

 Manual adjustments optimized the initial model, so the inversion reached a 

solution in as few iterations as possible.  The refraction-based initial model in this study 

was created by comparing observed and calculated travel times after the first forward 

model, modifying the model slightly, and repeating the process until the calculated first 

arrivals reasonably matched (Figure 22) (Ivanov et al., 2006b).  This model is 

homogenous with a velocity of 1700 ft/sec below the 8 ft thick surface layer of material 

with a velocity of 800 ft/sec.  Upon completion of the first forward model, the RMS error 

between observed and calculated first arrivals is less than 6 ms, meaning that the model 

was initially close to being a reasonable solution for the tomographic inversion.  

However, it is geologically unreasonable that unconsolidated sediments at this site would 

be so homogenous, especially when the grain size can vary significantly within a few feet 

(Reading, 1996).  After the initial inversion step, the step function is smoothed into a 

velocity gradient, increasing the RMS error by a factor of five.  Through successive 

iterations the velocity model converges on the final solution (Figure 23). 
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Figure 20:  S-wave data collected along line 3.  A 60 Hz high-cut was filter applied to 

image first arrivals at far offsets.  First-arrival picks represented by green boxes. 

 

 

 

 

 

 
Figure 21:  First arrivals displayed on the raw data from line 3.  The linear pattern of first 

arrivals is consistent throughout lines 2 and 3.  The longer offsets were picked with the 

aid of a high cut filter.  This linear trend suggests use of the refraction model is 

appropriate. 

XC = 28 ft 
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Figure 23:  Final solution to the refraction-based initial model.  The step velocity 

function is completely smoothed over, even after adjusting the parameters in an attempt 

to preserve a step-like velocity function throughout the inversion process. 

 

Linear velocity model 

 Knowing the shallow material in the study area site consists of unconsolidated 

alluvial sediments above the water table (Miller et al., 2010), the initial assumptions were 

that seismic velocity would increase linearly with depth (Kanli, 2009).  The shallowest 

velocity in the linear velocity function begins at 1300 ft/sec and increases linearly to 5300 

ft/sec at the deepest layer.  The initial RMS error from the first forward model is 14 ms, 

larger than the first forward model of the refraction-based initial velocity model.  The 

observed and calculated first-arrival trends are different (Figure 24).  However, the 

inversion process converges on a solution within 10 iterations with a total RMS error of 4 

ms.  The solution is strikingly similar to the solution from the refraction-based initial 

model, but with somewhat lower velocities (Figure 25).
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Figure 25:  The initial linear velocity model and corresponding solution.  The solution 

converged within 10 iterations and has a final RMS error less than 4 ms. 

 

 

Model based on MASW 

 Having applied two traditional methods of developing initial velocity models, the 

next step is to use a model based on the MASW results discussed previously.  Stabilizing 

devices (damping and smoothing effects) provide only qualitative a priori information, 

and the two previous models are based only on geologic assumptions. Using MASW 

results integrates geologic data derived from the site (Ivanov et al., 2006b).  The top 12 

rows of cells in the model were based on the MASW results, while the deeper portion 

was increased linearly to 3000 ft/sec. 

 There was a striking similarity between the calculated and the observed arrival-

time trends (Figure 26).  This model was not subjected to the same preconditioning as the 
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previous models, and there were no adjustments based on forward models.  Within the 

first iteration the model seems to fit very well, though the initial RMS error is 23 ms.  

The crossover distance is larger for the first arrivals from the MASW-based model, 

suggesting that the MASW results place the 1700 ft/sec layer deeper than the refraction 

analysis.  This occurs due to the higher mode obscuring the higher frequency portion of 

the fundamental mode.  The layer below the 1700 ft/sec layer is not represented in these 

arrival times because the back-projected ray paths do not penetrate the lower velocity 

layer, even though the velocity gradient is gentle and based on real data (Figure 27).  

Once the inversion is completed, the low-velocity layer is removed (Figure 28). 

  



 

46 
 

  

F
ig

u
re

 2
6

: 
 T

h
is

 f
ig

u
re

 i
ll

u
st

ra
te

s 
th

e 
d
if

fe
re

n
ce

 b
et

w
ee

n
 c

al
cu

la
te

d
 a

n
d
 o

b
se

rv
ed

 f
ir

st
 a

rr
iv

al
s 

fr
o
m

 t
h
e 

in
it

ia
l 

m
o
d
el

 d
er

iv
ed

 

fr
o
m

 t
h
e 

M
A

S
W

 r
es

u
lt

s.
  

T
h
o
u
g
h
 t

h
e 

tr
en

d
s 

ar
e 

si
m

il
ar

, 
th

er
e 

is
 s

ti
ll

 2
4
 m

s 
R

M
S

 e
rr

o
r 

b
et

w
ee

n
 t

h
e 

o
b
se

rv
ed

 a
n
d
 c

al
cu

la
te

d
 

fi
rs

t 
ar

ri
v
al

s.
 



 

47 
 

 

Figure 27:  The ray tracing portion of the first forward model uses the MASW results.  

The computed ray paths representing the calculated first arrivals do not penetrate the low-

velocity layer located at 56 ft depth.  This yields calculated first arrivals very similar to 

the refraction-based initial model because the ray paths are similar.  Upon the next 

iteration, the low-velocity layer is smoothed away, and the inversion proceeds with a 

velocity-gradient model. 

 

Figure 28:  The solution for the initial model based on MASW results.  The high velocity 

layer beginning at 40 ft has been highly distorted. 
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Results 

 Seismic tomography is a powerful tool, though construction of the initial model at 

this site is largely dependant on a priori information and the final solution must be 

geologically reasonable.  During the iterative process of manipulating damping and 

smoothing parameters to converge on a solution, it is easy to steer the inversion towards a 

solution that is far from the true solution.  The interpreter’s influence can affect every 

step from picking the first arrivals to the final solution produced. 

 The best initial-model approximation is the refraction model.  Based on the 

geology of the site, a linear velocity gradient was expected to provide a better 

approximation of the velocity structure than the refraction model.  However, once the 

tomographic inversion began, the sharp velocity contrast became diffuse as a result of the 

defined smoothing constraints (Figure 23).  The linear velocity function was more 

difficult to match to the distinctly linear first-arrival patterns, but the inversion process 

converged on a solution similar to that of the refraction model. 
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Downhole Survey 

Introduction 

 Generally, surface geophysical methods are employed as a way to examine 

subsurface geologic structures and material properties while avoiding the environmental 

and financial costs of widespread invasive testing.  Physical properties measured using 

surface geophysical methods can be verified or calibrated using borehole measurements.  

A downhole seismic survey allows direct measurements of travel times from a source at 

the surface to a geophone at depth in a borehole.  Average and interval velocities can be 

calculated for materials surrounding the borehole (Sheriff, 1991).  Compared to crosshole 

surveys, attenuation and natural filtering of the near-surface earth can significantly alter 

the characteristics of the first arrival from trace to trace, and more significantly from one 

borehole location to another.  However, the near vertical ray paths of a downhole survey 

nearly eliminate the issues related to refracted first arrivals from a relatively fast layer. 
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Data Acquisition 

 A Geostuff brand three-component downhole 10 Hz geophone with a mechanical 

locking mechanism was used as the receiver for the downhole survey (Figure 29), the 

seismograph was a Geometrics Geode, and the source was a 16 lb sledgehammer striking 

a shear block and a steel plate.  The geophone was lowered into the borehole down to 95 

ft in well FT7 and 100 ft in well FT13.  Once all of the shots were completed at each 

depth, the receiver was then raised one 5 ft interval to the next receiver depth.  The cable 

was given slack once the geophone was locked into place to reduce noise traveling 

through the cable to the geophone (Hardage, 1983). 

 

Figure 29:  Image of the Geostuff brand three-component downhole geophone (10 Hz) 

with Kevlar cable and controller used for this survey. 
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 At each depth the sledgehammer struck a steel plate with a vertical swing to 

generate P-waves, and then struck each side of the shear block to generate S-waves with 

opposite polarities.  Each shot was repeated until the plate or shear block had adequate 

coupling to produce a high-quality first arrival.  Most of the S-wave first arrivals would 

not have been identifiable without the recording first arrivals with opposite polarity to 

compare to (Figure 30). 

 

Figure 30:  Example of two shot records from the same location where hammer swings 

struck opposite ends of the shear block.  The large signal and wavelets of opposing 

polarity in channel one at 59 ms suggest that this is the S-wave first arrival. 
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Data Processing 

 In an ideal downhole S-wave survey, one of the horizontal components of the 

downhole geophone should be aligned parallel to the shear block to sample the maximum 

amount S-wave energy propagating this way.  This alignment provides for easier 

interpretation and eliminates problems caused by anisotropy (Crice, 2011).  However, if 

the geophone is allowed to rotate freely in the borehole over the course of a survey it is 

difficult to know the orientation of the geophone relative to the shear block without 

vector analysis of the shot record in the field or reading a compass attached to the 

geophone.  This survey was conducted without physically orienting the geophone.  

Fortunately the S-wave first arrivals were still sampled by both horizontal geophone 

components, even at oblique angles, and interpreted based on the reverse polarity test. 

 The first phase in processing the downhole dataset was to identify the S-wave 

arrivals.  Through careful examination of each record, the filename, trace number, and 

source orientation were recorded for the clearest S-wave arrival at each depth.  Due to the 

random orientation of the geophone, the most recognizable S-wave arrival was identified 

for each depth sampled using the reverse-polarity test (Figure 30).  These values are 

displayed in tables 1 and 2.  The creation of gathers is described in appendix A. 
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 Geometries must be defined to calculate distances between the source and 

receiver accurately (Figure 31).  Depths were recorded from the top of the borehole 

casing, which was 1.5 ft above the ground.  Source locations were 10 ft away from each 

borehole. For deeper surveys, the difference between the measured depth (z) and the 

actual diagonal ray path from the source to the receiver (d) is negligible, but in the near 

surface the source offset is important to consider for shallower receiver locations.  Using 

these parameters the recorded depths were converted into diagonal distances (Equation 

8).  The calculated values (Tables 3-6) were used in conjunction with first arrival picks to 

calculate average and interval velocities. 

    √(        )   (     )  (8) 

 The diagonal ray path (d) is the shortest distance between the source and the 

receiver.  Theoretically the first arrival of a wavefront from the source should take this 

path to the receiver.  Velocities were calculated for each depth using first arrival times for 

each trace.  To accurately pick S-wave first arrivals, a substantial amount of gain was 

applied to the record, differentiating the onset of the first arrival from the background 

noise.  To improve the consistency of the P-wave arrival picks, the pick was made at the 

first zero crossing of the wavelet.  Then the average amount of time between the zero 

crossing and the true first break seen on traces with high signal-to-noise ratio was 

subtracted from that time.  In this study the average time used was 4.5 ms.  This method 

assumes the wavelet phase and frequency bandwidth does not change from trace to trace 

(Figure 32; Figure 33).  The first arrivals were picked using this method because the first 

arrivals were indistinguishable from noise even with high gain applied. 
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Figure 31:  This figure depicts the geometric relationship among components of the 

downhole survey.  
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Results 

 Once first arrivals were picked, average (Figure 34) and interval velocities (Figure 

35) were calculated (Tables 3-6).  Average velocities were calculated using the picked 

arrival times as well as the distances between the source at the surface and the receiver in 

the borehole.  Average velocity is the mean of all of the velocities of the material 

between the surface and the receiver depth.  Interval velocity is the measure of material 

velocity between two receiver depths (Sheriff, 1991). 

 Several sources of error must be considered in borehole calculations.  Sources of 

error in the time domain considered here include picking error, time break inconsistency, 

and sampling interval.  Sources of error in depth measurements include measurement 

accuracy, cable stretch, and cable tightening.  Also, in downhole S-wave gathers, the 

shape of the first-arrival wavelet phase seems to vary with depth.  This changes the first 

break of the wavelet and must be factored in as a source of error. 

 A previous downhole study by the KGS used a geophone at the surface for quality 

control of the time break consistency showed an average error of about 1 ms.  The 

sampling interval of the seismograph for the YPG downhole survey was 1/16
th

 ms, giving 

an error of 1/16
th

 ms which is insignificant relative to the other sources of error in the 

time domain.  The geophone depth from the top of the borehole casing was estimated to 

possess an error of less than ¼ of an inch.  Using a Kevlar cable with a relatively light 

geophone at depths shallower than 100 ft makes cable-stretch error negligible.  Because 

relatively light geophones allow for a some cable tightening an error of of 1 inch of cable 

tightening at maximum depth was estimated.  To estimate human error that might alter 
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picks based on how the phase or signal quality of the first arrival from trace to trace, the 

maximum standard deviation of a set of 5 picks was factored into the error of each trace. 

 The P-wave data is of higher quality than the S-wave data.  Between 80 and 100 

ft, the shear-first arrival wavelet has a consistent phase and bandwidth, but at shallower 

depths the phase and frequency content of the wavelet varies and is difficult to pick 

consistently.  This is the primary source of error for the S-wave data.  No first arrivals 

were even picked for the S-wave data in well FT7 above 25 ft, these arrivals do not 

appear to represent the S-wave and are possibly the result of P-wave interference due to 

the oblique ray path from the source to receiver.  However, both P and S-wave first-

arrivals show a change in trends between 50 and 40 ft, suggesting a velocity inversion.  

P-wave arrivals from well FT13 show a change in wavelet characteristics between 50 and 

70 ft which may result from sediment failing to backfill around the borehole casing 

(Hardage, 1983, pg 70).  It is clearly evident from the change in P-wave and S-wave first-

arrival trends that there is a velocity inversion around 50 ft. 
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Tables 

 

Table 1:  Files determined to have the best representation of S-wave first arrivals for well 

FT7. 

 

Measured 
Depth 

File 
Used 

Orientation 
of Shear 

block 
Trace 
used 

  95 4002 SN 3 

90 4008 NS 3 

85 4018 NS 3 

80 4026 NS 3 

75 4030 NS 3 

70 4039 NS 1 

65 4043 NS 1 

60 4052 NS 1 

55 4056 NS 1 

50 4069 WE 1 

45 4072 NS 3 

40 4085 EW 3 

35 4092 SN 3 

30 4104 NS 1 

25 4115 SN 1 

20 4122 NS 1 

15 4126 NS 1 

10 4135 NS 1 

5 4139 NS 1 

 

  



 

62 
 

Table 2:  Files determined to have the best representation of S-wave first arrivals for well 

FT13. 

 

  Measured 
Depth 

File 
Used 

Orientation 
of Shear 

block 

Trace 
used 

100 4145 NS 3 

95 4150 NS 3 

90 4154 NS 3 

85 4160 NS 3 

80 4168 WE 3 

75 4172 NS 1 

70 4177 SN 1 

65 4181 EW 3 

60 4188 EW 3 

55 4195 EW 3 

50 4202 EW 1 

45 4205 NS 1 

40 4219 WE 3 

35 4223 NS 1 

30 4230 EW 1 

25 4236 WE 1 

20 4240 EW 1 

15 4243 NS 3 

10 4250 WE 1 

5 4254 EW 1 
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Table 3: P-wave velocities for well FT7. 

 

Record 
Pick 
(ms) 

Depth 
(ft) 

Total 
Distance 

(ft) 

Average 
Velocity 

(ft/s) 

Interval 
Velocity 

(ft/s) 

4000 33.25 95 94 2860 2860 

4006 31.5 90 89 2860 2220 

4016 29.25 85 84 2910 3650 

4024 27.88 80 79 2870 2350 

4028 25.75 75 74 2910 3070 

4037 24.12 70 69 2900 2360 

4041 22 65 64 2950 3330 

4050 20.5 60 59 2930 4000 

4054 19.25 55 54 2860 1780 

4061 17 50 50 2940 2860 

4070 15.25 45 45 2950 5750 

4079 14.38 40 40 2780 6580 

4088 13.62 35 35 2570 4030 

4093 12.38 30 30 2420 4000 

4102 11.38 25 26 2200 7940 

4111 10.75 20 21 1860 2920 

4120 9.38 15 17 1600 4000 

4133 8.38 10 13 1190 1770 

  7.25 5 11 690 1520 
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Table 4:  P-wave velocities for well FT13. 

 

Record 
Pick 
(ms) 

Depth 
(ft) 

Total 
Distance 

(ft) 

Average 
Velocity 

(ft/s) 

Interval 
Velocity 

(ft/s) 

  33.25 100 99 3010 4970 

4000 32.25 95 94 2950 1810 

4006 29.5 90 89 3050 3310 

4016 28 85 84 3040 3310 

4024 26.5 80 79 3020 1650 

4028 23.5 75 74 3190 5630 

4037 22.62 70 69 3090 3610 

4041 21.25 65 64 3060 2470 

4050 19.25 60 59 3120 2460 

4054 17.25 55 54 3190 2450 

4061 15.25 50 50 3280 5620 

4070 14.38 45 45 3130 3520 

4079 13 40 40 3080 4300 

4088 11.88 35 35 2950 2700 

4093 10.12 30 30 2960 7520 

4102 9.5 25 26 2630 4510 

4111 8.5 20 21 2350 498 

4120   15 17 No pick No pick 

4133   10 13 No pick No pick 

 
  5 11 No pick No pick 
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Table 5:  S-wave velocities for well FT7. 

 

Pick 
(ms) 

Depth 
(ft) 

Total 
Distance 

(ft) 

Average 
Velocity 

(ft/s) 

Interval 
Velocity 

(ft/s) 

56.5 95 94 1680 1810 

53.75 90 89 1670 1810 

51 85 84 1670 1800 

48.25 80 79 1660 1800 

45.5 75 74 1650 1800 

42.75 70 69 1640 1800 

40 65 64 1620 2620 

38.12 60 59 1570 2390 

36.06 55 54 1530 2380 

34 50 50 1470 1860 

31.38 45 45 1430 4300 

30.25 40 40 1320 3210 

28.75 35 35 1220 1190 

24.75 30 30 1210 188 

  25 26 No pick No pick 

  20 21 No pick No pick 

  15 17 No pick No pick 

  10 13 No pick No pick 

  5 11 No pick No pick 
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Table 6:  S-wave velocities for well FT13. 

 

Pick 
(ms) 

Depth 
(ft) 

Total 
Distance 

(ft) 

Average 
Velocity 

(ft/s) 

Interval 
Velocity 

(ft/s) 

60.25 100 99 1660 1990 

57.75 95 94 1650 2330 

55.62 90 89 1620 1730 

52.75 85 84 1610 1730 

49.88 80 79 1600 2330 

47.75 75 74 1570 2320 

45.62 70 69 1530 2090 

43.25 65 64 1500 1130 

38.88 60 59 1540 2620 

37 55 54 1490 1400 

33.5 50 50 1490 1780 

30.75 45 45 1460 2570 

28.86 40 40 1390 2550 

26.97 35 35 1300 1060 

22.5 30 30 1330 5300 

21.62 25 26 1160 4030 

20.5 20 21 976 2820 

19 15 17 789 4180 

18.12 10 13 552 1130 

15.88 5 11 315 667 
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General Discussion 

 Each method compared in this study has inherent strengths and weaknesses.  At 

this site within the YPG, The MASW method is able to image a low-velocity layer which 

S-wave tomography is incapable of doing.  However, the higher frequencies necessary to 

image the shallowest 20 ft are dominated by higher-mode energy, while refraction and 

tomography is able to detect a large velocity contrast within the shallowest 10 ft. 

 The MASW results indicate that the S-wave velocity begins to decrease below 50 

feet (Figure 18).  The downhole survey results support the presence of a velocity 

inversion below 50 ft depth.  The low-velocity layer is most clearly evidenced by the 

change in the average velocity trends to overall slower velocities at 50 ft (Figure 34).  

This change in the velocity trend is expressed in the downhole gathers (Figure 32; Figure 

33), where the trend of first arrivals changes slope at approximately 50 ft depth on each 

gather.  The interval velocities are much more sporadic and have much larger error bars, 

however, these measurements show a general velocity inversion beginning at about 50 

feet (Figure 35). 

 According to the lithological sampling (Figure 6) The S-wave velocity inversion 

at 50 ft corresponds to an increase in clay content to over 80% consistently.  This 

contradicts laboratory measurements indicating that VP/VS ratios should increase with 

clay content (Prasad et al., 2005).  However the laboratory samples were created 

artificially, and the authors admit that further studies are necessary to determine the 

effects depositional fabrics may have on rock properties under near-surface conditions.  

For example, clay rich sediment deposited as part of a gravity flow event which are later 

dessicated may have different velocities than sediments with the same clay content 
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deposited by fluvial events.  More extensive P-wave velocity and anisotropy analysis 

may provide more insight into the true rock properties in this area.    

 Though MASW and downhole seismic provide valuable information at depth, site 

limitations make these measurements less convincing at the shallowest depths.  The 

MASW method has limited resolution in the upper 20 ft due to dominant higher-mode 

energy above 30 Hz at this site.  Downhole measurements shallower than 25 feet are the 

least representative of true geology.  Above 25 ft the angle of incidence for arriving 

wavefronts exceeds 20 degrees.  Also, the annular space between the borehole and the 

casing undergoes more mechanical deformation at shallower depths as material infilling 

occurs in unconsolidated sediment. 

 Refraction calculations gave evidence for a shallow velocity contrast between 800 

ft/sec and 1700 ft/sec within the first 8 ft (Figure 22).  Before the first round of 

tomographic inversion the model based on refraction analysis was already a viable 

solution with only 5 ms RMS error between calculated and measured first arrivals.  The 

first arrival trends generated by the first round of the MASW-based model were very 

similar (Figure 26), but the 1700 ft/sec layer appeared to be too deep to match the 

measured first arrivals on the first iteration.  The refraction-based solution had the least 

amount of error (4 ms) and the best ray coverage (Figure 23).  Refraction analysis and 

refraction-based tomography provide more believable results at shallower depths than 

MASW or downhole seismic due to site-specific limitations. 

 The geology of the shallow subsurface at the YPG provides challenges for each of 

the geophysical methods tested in this study.  Fortunately, the depths that each method is 
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unable to resolve do not overlap.  In situations where one method is weak, it makes sense 

to supplement that method with results from a method that is stronger in that situation.  

For this reason the best method for determining S-wave velocities for shallow 

unconsolidated sediment at the YPG involves a combination of MASW and refraction 

analysis.  Refraction analysis provides the most accurate S-wave velocity estimation for 

the upper 20 ft, while MASW can accurately estimate S-wave velocities between 20 and 

100 ft. 

 Shallow velocity contrasts and velocity reversals have been proven to excite 

higher modes in surface waves (O’Neill and Matuoka, 2005).  If the velocity increase 

above 20 ft is correct, then it may be the reason that higher modes surface waves are so 

prevalent at YPG and MASW is unable to confidently resolve velocities at these depths.  

To test this, synthetic seismic data were created using two velocity models.  A 2-layer 

model based solely on refraction analysis (Figure 36), and a 4 layer model based on a 

combination of refraction analysis and the velocity inversion estimated with MASW 

(Figure 37).  The 2-layer model resembles the phase velocity trends and higher-mode 

energy content of real data (Figure 36).  The addition of the velocity inversion detected 

with MASW adds details that more closely match the real dispersion image, such as 

lowered phase velocity at lower frequencies.  Synthetic seismic models based on shallow 

velocity information from S-wave refraction analysis and deeper velocity information 

based on MASW create dispersion images that closely resemble data collected at YPG. 
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Conclusions 

 A number of geophysical methods was applied to the study area at the Yuma 

Proving Grounds to determine the best method for determining S-wave velocities of these 

shallow unconsolidated sediments.  The methods considered in this paper are MASW, S-

wave refraction tomography, and downhole seismic.  The objectives of this study were to 

compare strengths and weaknesses of three different geophysical methods and determine 

the most accurate depiction of S-wave velocities in the subsurface.   

 The MASW inversion of the fundamental mode consistently provided evidence of 

a velocity inversion beginning around 50 ft into the subsurface that is confirmed by 

downhole seismic analysis.  MASW was also able to image what might be a paleo-

channel within the low-velocity layer.  The MASW method at this site displays a higher 

mode with a significant amount of energy.  A shallow velocity contrast may be exciting 

higher mode Rayleigh waves. 

 While both methods generally agree on the range of velocities in the upper 50 ft 

of material, the MASW method shows uncertainty in the upper 20 ft is where the greatest 

uncertainty for the MASW method lies due to the overwhelming energy of the higher 

mode.  S-wave refraction indicates that the S-wave velocity increases from 800 ft/sec to 

1700 ft/sec within the first 8 ft, but cannot successfully resolve low-velocity layers.  In 

this case the best course of action is to supplement areas where one method is weak with 

another method’s strengths.  The most accurate measurement of S-wave velocities in 

shallow unconsolidated sediments at the YPG site is achieved by combining the shallow 

velocity information provided by refraction tomography with the deeper velocities 

calculated through MASW.  
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Appendix A:  Creation of Downhole Gathers 

 This appendix describes the method by which the raw downhole data were 

reorganized into P and S-wave gathers using the KGS software. There was no software 

platform developed at the KGS specifically for processing borehole data, the method 

described here was developed under the guidance of Shelby Peterie, a geophysicist 

employed at the KGS. 

 First, extract each trace selected in tables 1 and 2 and re-sort them into a single 

gather.  All of the processing in this project was done with KGS software which uses a 

standardized KGS data format.  The header words used in the KGS format record 

geometric-location variables such as trace number, file number, and station number.  

Beginning with the earliest record with a desirable S-wave arrival (tables 1-2), the 

selected trace was cut from the original file and placed in a new master file using KGS 

SeisUtilities.  Then the next record was opened and the chosen trace was cut and 

appended to the master file.  This process was repeated for each record in the tables 

created during the selection process. 

 Once the master file was created, the header words had to be manipulated to view 

the traces in a single window.  To do this, the WinSeis module “trhdchng.exe” was used 

to change the last trace flag to 0 (header word 88) and the source sequence number to 2, 

an arbitrary number (header word 92).  The source sequence number is the only digital 

record of the file number, making notes such as tables 1 and 2 vital for recording the 

traces and file numbers used in this process. 
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Appendix B:  Synthetic Modeling 

 To investigate the validity of the velocities estimated by the methods tested in this 

study, a couple of models were created to generate synthetic seismic data for comparison 

with data collected at the YPG.  Dispersion images created for MASW analysis 

demonstrate that surface-wave energy at the YPG site is transferred to successively 

higher modes at increasing frequencies.  It has been shown that higher-mode energy 

dominates the surface wave at sites with large stiffness contrasts and/or velocity reversals 

(O’Neill and Matsuoka, 2005).  Both of the geophysical methods tested in this study 

suggest that these conditions exist at the YPG site.  These models were created to 

compare the effects the estimated velocity structures have on surface wave modal energy 

partitioning. 

 The 2-layer model was created using P and S-wave velocities calculated through 

refraction analysis.  This places a velocity contrast 10 ft deep, followed by a homogenous 

half space (Figure 36).  When the synthetic seismic data is viewed in the phase velocity, 

frequency domain, higher-mode energy is excited for frequencies above 35 Hz.  The 

same frequency range in the dispersion image from real data shows higher-mode energy 

with similar phase velocities (Figure 36).  The shallow velocity contrast indicated by 

refraction analysis seems to be responsible for the higher mode surface-wave energy that 

is prevalent at this site. 

 A 4-layer model (Figure 37) was created by combining the shallow velocity 

contrast indicated by the refraction method with the low-velocity layer shown by the 

MASW results and the downhole seismic.  The reduced phase velocities between 10 and 
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15 Hz are a result of surface waves with these frequencies propagating through the lower 

velocity layer.  The velocity structure in the 4-layer model also excites the second higher 

mode more than the 2-layer model.    

 The P and S wave velocities for these models were determined using refraction 

analysis, MASW results.  These velocities yield Poisson’s ratios that are anomalously 

low for unconsolidated material with such high clay content (Prasad et al.2005).  More 

extensive velocity analysis would be beneficial to more accurately measure P and S-wave 

velocities for future modeling efforts.  These velocities could then be used to create more 

elaborate modeled data in an effort to bring the modeled dispersion images closer to the 

measured dispersion images.  However, the velocity structures used to create the 

synthetic data (Figure 36; Figure 37) generate dispersion images with phase velocities 

and modal energy partitioning similar to dispersion images created using real data from 

YPG (Figure 36). 
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