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Alexis S. Reed (B.S., Ph.D.)  
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ABSTRACT 

Rapid environmental change in recent decades has challenged Ecologists to focus on 
understanding ecosystem response and physiological functioning in the face of increased 
disturbances.  Understanding physiological responses of trees to disturbance and climatic 
variability can enable researchers to manage ecosystems to ensure continued ecological 
functioning in the future.  In this dissertation, I use classic dendroecology, tree physiology 
theory, original stable isotope methodology, and a novel analytical model to explore the impacts 
of disturbance and climate variability on Quercus species in forested ecosystems in the 
Midwestern U.S.  Anthropogenic land use changes along with increased occurrence of pathogen, 
pest, and climatic disturbance events are impacting forest ecosystems.  A tree’s susceptibility to 
decline following disturbance events must be assessed to understand changes to forest ecosystem 
function and distribution, especially at species boundaries, with predicted future increases in the 
frequency of disturbances such as drought in the Midwestern U.S.  The oak ecosystems of 
eastern Kansas and the mixed oak-hickory forests of northwest Arkansas have experienced high 
levels of climatic variability in the past 5 decades, which have influenced differential 
physiological responses of co-occurring species.  In Chapter 1, I investigate differential 
physiological response to pest and drought disturbances in co-occurring Quercus rubra.  By 
examining growth, stable carbon, oxygen and nitrogen isotopes in tree-rings, and contemporary 
leaf nitrogen dynamics, I show that differential stable carbon and oxygen isotope relationships in 
tree-rings, along with leaf nitrogen relationships, suggest varied susceptibility to disturbance 
among well-interspersed, co-occurring trees.   

The differential responses of co-occurring species may provide insight into future forest 
composition under the prediction of increased disturbance events.  In Chapter 2, I use two co-
occurring species to explore the impacts of climate variability on physiological responses.  I 
investigate climate relationships through growth, stable isotopes in tree-rings, and contemporary 
leaf data in an effort to understand the future of these species at their western range boundaries at 
the prairie-forest ecotone of North America.  I suggest that a typically drought-vulnerable species 
exhibits stable carbon and oxygen isotopic values suggestive of greater water stress relative to a 
less drought-prone oak species and find evidence hinting at differences in factors influencing 
carbon source:sink dynamics related to response to vapor pressure deficit (VPD) and 
photosynthetic regulation.  Comparing these data to the C source:sink dynamics of the more 
drought-tolerant, co-occurring oak leads me to explore nitrogen dynamics in an effort to 
understand the impacts of climate variability on these species’ growth.  The dynamics studied in 
this forest-prairie ecotone at the University of Kansas Field Station provide insight into the 
changing forest dynamics in coming decades under predicted increases in drought disturbance 
events.   

Nonlinear patterns in ecological systems can provide insight into capacity of a system to 
deal with variability.  In Chapter 3, I use simplex and s-map forecasting models to assess 
nonlinearity in growth between healthy and dying trees to determine if nonlinear growth 
dynamics may relate to a tree’s vulnerability to mortality following disturbance events for two 
forested regions in northwestern and west-central Arkansas, USA.   By applying nonlinear 
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forecasting models in a novel manner, I investigate the utility of discerning non-linear vs. linear 
dynamics in growth for understanding forest ecosystem dynamics and predictions of adaptability 
of trees to climatic variability.  I also explore data concatenation, or stringing together of time 
series to increase statistical power, of tree-ring data sets to assess the presence of nonlinearity 
pre- and post-drought disturbance events, and the potential use of concatenation with nonlinear 
forecasting models as a tool for exploring the future of forest ecosystems with predicted 
increases in disturbance events.  I suggest that nonlinear growth dynamics are linked to increased 
capacity to adapt to variability for trees, and discuss why this may be the case. 

Disturbance events are predicted to increase in frequency and duration under future 
climate change.  Maintaining forest ecosystems, and their ability to cope with stress, is thus an 
increasing concern for forest managers.  In Chapter 4, I explore forest management policy and its 
impacts on forest decline events in northwest Arkansas.  I review the management policies of our 
nation’s forests, and suggest adaptive management strategies and monitoring tools for decreasing 
the vulnerability of forests to future disturbance events.  I suggest that management policies 
should address local goals for increasing biodiversity and adaptability of forests in the future and 
recommend ecosystem monitoring tools for forest managers.    

The results of this dissertation suggest that increasing frequency of forest disturbances 
will have significant ramifications for forest ecosystems through impacts on forest 
ecophysiological function, species distribution, and carbon and nutrient cycling.  Detection of 
disturbance vulnerability may help in managers develop strategies for increasing forest 
adaptability to disturbances such as droughts and pest infestations. 
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GENERAL INTRODUCTION 
 

 Disturbance events are part of the natural ecological process governing ecosystems, but 

predicted increases in duration and frequency of disturbances in the future can negatively impact 

forest ecosystems (Dale et al. 2001).  We define disturbance as a sporadic interruption in 

substrate integrity or resource availability, or deviation in environmental conditions, that impacts 

the ecological functioning of an ecosystem, as defined in White and Pickett (year).  Disturbance 

events are not foreign to forest ecosystems and can play a natural and important ecological role, 

but increases can also have major negative implications for ecosystem structure and function 

(Overpeck et al. 1990, Dale et al. 2001).   

Natural cycles such as windthrow events and natural and anthropogenic fires drive gap 

dynamics, thinning of tree stock, and nutrient release cycles that can improve some tree species 

performance (Guyette and Spetich 2004, Spetich 2004).  For example, fires can reduce standing 

stock and release surviving trees from light limitation (Guyette and Spetich 2004).   Cycles of 

disturbance were altered following European settlement in North America, and subsequent 

changes in management and land use resulted in forest structure, species composition, and 

system complexity different from historic forests.   Harvesting and fire suppression following 

European settlement contributed to a change in forest ecosystem dynamics (Strauberg and Hough 

1997, Spetich 2004), but  forest ecosystems are currently experiencing disturbances at spatial 

extents and rates that are unmatched since Earth’s last glaciation event (Overpeck et al. 1990, 

Nave et al. 2011).  Rising global temperatures are expected with changes in climate in the future, 

and an increase in extreme events such as drought, which act as disturbance events negatively 

impacting water and nutrient resources in forest ecosystems, are expected to accompany global 

climate change (Overpeck et al. 1990, IPCC 2007).   
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The increased disturbance frequency predicted with future climate change is expected to 

impact forest ecosystems– evidenced by recent climate change-associated droughts resulting in 

widespread mortality of tree species in the American southwest (Adams et al. 2009).  Also, 

increasingly warm temperatures have been theorized to have influenced major infestations of 

forest pests – evidenced by wide-spread pine mortality resulting from pine bark beetle outbreaks 

associated with warmer temperatures in recent decades (Bentz et al. 2010).  Tree mortality and 

changes in forest carbon and nutrient cycling associated with disturbances could have major 

ramifications for global carbon cycles along with ecosystem services such as recreation, habitat, 

water quality, and timber resources on which local communities rely (Anderson et al. 1976).  

Oak decline is occurring with increasing frequency in North American and European forests 

(Tainter et al. 1990, Oak et al. 1996, Vettraino et al. 2002), and appears linked to climatic change 

(Starkey et al. 2000).  Understanding the impacts of such climate-related disturbances on forest 

function and on forest management strategies is a key concern for climate change scientists and 

forest managers alike.   

In this dissertation, I examine the impacts of disturbance on forest ecosystems at different 

spatial scales (local and regional), at different levels of ecological organization (individual and 

species), and use different analytical techniques (tree-rings, stable isotopes, and forecast 

modeling).  In Chapter 1, I use tree-ring growth, contemporary leaves, and stable carbon (13C), 

oxygen (18O), and nitrogen (15N) isotope ratios, and N dynamics to investigate differential 

growth and mortality resulting from drought and insect infestation on co-occurring northern red 

oak (Quercus rubra).  In Chapter 2, I examine co-occurring Q. rubra and Q. macrocarpa (bur 

oak) responses to climatic variability utilizing past physiological responses to droughts to 

understand species-specific abilities to cope with changes in moisture availability. In Chapter 3, I 
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utilize a forecast modeling in a novel application to investigate underlying growth dynamics 

from trees in two regions in Arkansas, USA, to understand the impacts of disturbance on growth 

and to determine if underlying growth dynamics relate to trees’ abilities to cope with disturbance.  

In Chapter 4, I explore past forest policy management implications for recent decline events 

witnessed in the 21st century, and suggest policy strategies and monitoring tools associated with 

forecast modeling that could assist in increasing forest abilities to cope with disturbance events 

in the future.  In all the research in this dissertation, I employ established ecological and 

dendrochronological (tree-ring) theory to develop and test hypotheses of species’ responses to 

climate variability and disturbance.  Below I briefly outline the climate change motivation of 

each of my research goals and the underlying theoretical motivation, along with a concise 

summary of my main results.   

Chapter 1: Tree-ring and contemporary leaf stable isotopes as indicators of tree growth 

strategies and susceptibility to disturbance 

Forest response to variability has been a focus of dendrochronology since the earliest 

days of the science.  Fritts and Cook (year) analyzed patterns of tree-ring growth and found 

impacts of climate, site, and aspect on growth responses.  Historic climate and atmospheric 

variability can be reconstructed through evidence derived from tree-ring growth and chemical 

composition. Reconstructing historic climate over centuries is founded in the theory of 

uniformitarianism, proposed by 18th century geologist James Hutton, which suggests that the 

natural processes that govern tree-ring development have been consistent through time.  While 

tree-rings can act as a record of past disturbance or variability, they may also provide tools to 

predict the future of forest ecosystem dynamics.   
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Understanding how tree growth strategies may influence tree susceptibility to disturbance 

is an important goal, given projected increases in forest disturbances this century.  In Chapter 1, I 

invoke a region-wide forest disturbance event in an oak-dominated forest in Arkansas, U.S. 

contrasting healthy trees’ responses with co-occurring dying trees’ responses to disturbance.  In 

apparently healthy and dying co-occurring Q. rubra trees, I assess physiological responses to 

climate through tree-ring stable isotopic signatures of carbon (13C), oxygen (18O), and nitrogen 

(15N) along with 13C, 15N and nitrogen (N) dynamics in contemporary leaves.  We contrast 

healthy and dying trees to assess N status as a potential driver of tree carbon (C) dynamics.  My 

goal is to explore the mechanisms driving differential responses to disturbance events to 

understand resilience in apparently healthy trees, while neighboring trees experienced decline 

and mortality in response to the same environmental forcings.   

Environmental stress associated with decreased moisture availability can interrupt tree 

carbon (C) and water relations (reviewed in Billings and Phillips 2011), production and storage 

of sugars, and mineral transport (Houston 1987), generating increased susceptibility to 

opportunistic parasites and secondary stresses (McDowell et al. 2008, Anderegg et al. 2012).  

Decreased tree radial growth is predicted with decreased moisture availability, with greatest 

reduction expected in tree species that are sensitive to drought (Orwig and Abrams 1997, Kolb 

and Adams 2004).  Isotopic theory suggests that13C values of vegetation reflect the ratio of 

internal to atmospheric [CO2] (ci/ca), which depends upon photosynthetic capacity (Amax) and 

stomatal conductance (gs) response to moisture availability (Francey and Farquhar 1982, 

Farquhar et al. 1982, Farquhar et al. 1989).  Variations in 13C of tree-ring -cellulose is 

associated with gs and Amax, thus 13C is often linked to measures of water availability (Leavitt 

and Long 1989, Hubick and Gibson 1993, Saurer et al. 1995) and, less frequently, nitrogen (N) 
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availability which can govern Amax (Gebauer and Schulze 1991).  18O of tree-ring -cellulose 

reflects the isotopic signature of source water, internal exchange of O during organic compound 

formation, evaporative isotopic enrichment of water remaining in the leaf during transpiration, 

and the concurrent isotopic depletion of leaf water as 18O-deplete xylem water is transported to 

the stomate (the Peclet effect, Yakir 1992, Farquhar and Lloyd 1993, Barbour et al. 2002, 

Barbour 2007).  Simultaneous analysis of tree-ring 13C and 18O suggests the importance of 

CO2 source strength (i.e. stomatal conductance, gs) relative to C sink strength (i.e. photosynthetic 

rate, Amax) as limitations to growth (Barbour and Farquhar 2000, Barbour et al. 2002, Cabrera-

Bosquet et al. 2010).  13C, but not 18O, can vary with Amax, and both 13C and 18O can vary 

with changes in gs in response to conditions.  Thus, models predict a positive relationship 

between vegetation 13C and 18O with changing gs, holding all other variables constant 

(Scheidegger et al. 2000, Barbour et al. 2002).  Based on these isotopic theories, decreased 

moisture availability is predicted to result in 13C and 18O enrichment of plant organic matter 

(Barbour et al 2002, Leavitt and Long 1989). 

15N of plant organic matter provides insight into changes in the local N cycle (Robinson 

2001).  Tree-ring 15N has been applied in studies of ecosystem N loss and retention 

(McLauchlan et al. 2007), tree sources of N (Poulson et al. 1995), and the impacts of N 

deposition (Guerrieri et al. 2010) and fertilization (Balster et al. 2010) on tree growth.  The 

influence of N availability on Amax (Evans 1989, Reich et al. 1999) and the association between 

Amax and tree-ring 13C (Farquhar et al. 1982, Dawson and Ehleringer 1993) suggest that 

integrating 15N and N data from tree-rings and leaves with growth patterns and 13C may 

provide insight into tree responses to past and contemporary environments. 
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In Chapter 1, I build on previous research of a recent oak decline event (i.e. Stephen et al. 

2003, Haavik et al. 2008), and expand our understanding of disturbance impacts by incorporating 

tree-ring 18O and N status, and contemporary leaf N dynamics.  I predicted a greater impact of 

drought and insect disturbance on dying trees’ growth rates relative to healthy trees and greater 

13C enrichment of organic matter in dying trees.  I also predicted that N would be a factor 

influencing the C dynamics of these co-occurring Q. rubra. Dying trees exhibited divergent, 

reduced growth following a severe drought and infestation in the mid-1970s. Tree-ring 13C 

exhibited a decline across time in both healthy and dying trees.  When examined in conjunction 

with tree-ring 18O, I found a significant correlation between these variables (P<0.05), consistent 

with great sensitivity to vapor pressure deficit (VPD) and potentially associated with increased 

stomatal control of C dynamics in dying trees.  I find support for a differential C dynamics in 

healthy trees, potentially associated with a greater influence of photosynthetic capacity, via a 

significant, positive relationship (P<0.05) between contemporary leaf 13C and Nmass.   Though 

contemporary leaf data are confounded by the extent of insect infestation in dying trees, in 

conjunction with the significantly greater [N] in tree-rings of dying trees, these data indicate that 

N dynamics differed between these tree health classes for decades prior to the insect outbreak, 

and that N is a strong driver of biomass 13C in healthy trees.  The differential growth, isotopic, 

and N responses in these co-occurring Q. rubra is consistent with differential resilience to 

disturbance events and may provide insight into future management of oak ecosystems, 

economically important species prevalent in the central US.    

 

Chapter 2: Distinct ecophysiological responses of co-occurring oak species to climatic 

variation: using tree-rings and leaf nitrogen status to understand tree carbon dynamics 
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Differential responses to climate variability among co-occurring species can influence 

changes in forest species composition and distribution.  Studies of co-occurring tree species have 

demonstrated differential growth and isotopic trends that shed light on potential changes in 

distributions and physiological responses to climate (Adams and Kolb 2005, Gebrekirstos et al. 

2009).  Trees at the edge of their distributions are expected to express environmental stress to a 

greater degree in their tree-rings (Fritts 1976).  As droughts are predicted to increase in frequency 

and duration in the future in many regions, understanding the impacts of decreased moisture 

availability on co-occurring species is needed to understand potential forest range restrictions or 

changes in ecosystem function in the future.  

In Chapter 2, I examine physiological responses to climate variability in Q. rubra and Q. 

macrocarpa at the University of Kansas Field Station, located at the prairie-forest ecotone of the 

Midwest U.S.  Q. rubra typically occurs on mesic sites, while Q. macrocarpa appear to be more 

drought tolerant (Abrams 1990).  I use growth data along with contemporary leaf 13C, N status, 

and tree-ring 13C and 18O to understand C dynamics in co-occurring tree species.  I predicted 

that Q. rubra would experience greater reduction in radial growth and greater 13C and 18O 

enrichment of tree-rings in response to decreased moisture availability.  Differential 

physiological responses of tree species at the forest boundary may have ramifications for the 

prairie-forest ecotone, and determining the factors that govern C dynamics in these species 

provides insight into their ability to adapt to variable conditions in the future 

I observed greater dependence of Q. macrocarpa growth on precipitation-derived 

moisture availability relative to Q. rubra, contrary to my predictions, which suggests that Q. 

macrocarpa will be more sensitive to such climactic changes.  I found a positive relationship 

between tree-ring 13C and 18O in Q. macrocarpa, a strong indication that the dominant driver 



 

8 
 

of this species’ C dynamics is stomatal regulation of water loss and, concurrently, availability of 

CO2 for fixation within the leaf.  In contrast, Q. rubra exhibited weaker relationships between 

growth and climate measures, and no relationship between tree-ring 13C and 18O, suggesting 

that factors other than stomatal response to water availability is a dominant driver of its C 

dynamics.  Indeed, we observed a significant, negative relationship between leaf 13C and C:N in 

this species, suggesting that Q. rubra leaf 13C and, presumably, tree-ring 13C as well, is linked 

to N availability in a different manner than in Q. macrocarpa, which exhibited a counter-intuitive 

significant, positive relationship between leaf 13C and C:N.  The species-specific physiological 

responses to climate in these co-occurring oak species suggest that increasing drought frequency 

and duration in the future in the region may have great impacts on Q. macrocarpa C dynamics 

relative to Q. rubra, a finding that has implications for oak range restriction and changes in the 

species composition of the prairie-forest ecotone in the future.   

 

Chapter 3: Forest response to disturbance: exploring tree-ring growth patterns with nonlinear 

dynamic models  

Tree rings, as a singular recorder of multiple environmental and anthropological variables 

impacting growth, may be useful tools for assessing a forest’s resilience to disturbance 

(Schweingruber 1996).   I base my predictions on the assumption of stable climate-growth 

relationships over time, which is central to historic climate reconstruction from tree growth 

chronologies (Fritts 1976).  Tree-ring studies are often founded on the principle of 

uniformitarianism, proposed by 18th century geologist James Hutton, to justify the use of growth-

climate relationships to reconstruct past climate conditions (Fritts 1976, Carrer and Urbanati 

2006).  Typically, multivariate regressions or correlations are used to explore growth-climate 
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interactions under the assumption of linear relationships (Fritts 1976, Carrer and Urbanati 2001).  

However, nonlinear growth responses of trees to precipitation and temperature are suggested by 

some dendrochronological research (Graumlich and Brubaker 1986, Graumlich 1991, Driscoll et 

al. 2005).  Shifting correlation analyses have challenged assumptions of stable growth-climate 

relationships by revealing varying climate-growth correlation strengths over time (Carrer and 

Urbanati 2006, Reynolds-Henne et al. 2007), but often these analyses consider only a single 

climate variable and are inadequate for revealing nonlinear responses (Graumlich and Brubaker 

1986, Correr and Urbanatic 2001).   

Forecasting models, invoked in multiple systems ranging from biological (Hsieh et al. 

2005; Sugihara et al. 1996, Glaser et al. 2011) and astronomic (Kilcik et al. 2009) to economic 

(Schittenkopf 2000), are useful for detecting nonlinear dynamics in time series data sets.  In 

Chapter 3, I apply forecasting model techniques in a novel manner to tree-ring time series to 

explore the underlying dynamics of Q. rubra growth from two regions in Arkansas experiencing 

differential disturbance impacts from drought and insect infestation.  Forecast models use time 

lagged growth trajectories to project future growth and validate model accuracy through series 

data excluded from the model (Sugihara et al. 1994).  I use two models: i) simplex models which 

determine the dimensionality of a time-series and ii) S-maps projections which use simplex 

dimensionality as model inputs to detect nonlinear dynamics in time series.   

I predicted that Q. rubra remaining healthy through disturbance events would exhibit 

linear growth dynamics, while neighboring trees that experienced morality will exhibit nonlinear 

growth dynamics.  I also explore the impacts of changing time series input length on detection of 

nonlinear dynamics in an effort to increase the applicability of forecast modeling in tree-ring 

studies.  In contrast to predictions, I find that healthy Q. rubra are more likely to exhibit 
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nonlinear growth dynamics relative to dying trees, consistent with nonlinear dynamics, perhaps 

suggesting that nonlinearity represents an important ability to cope with environmental 

variability.  Evidence supports similar regional ecosystem dynamics among the two study 

regions.  I also find evidence that tree-ring series shorter than 30 years limit our ability to detect 

nonlinear dynamics in time series, even when invoking concatenation as a tool, an important 

consideration for use of these models in the tree-ring community.  I suggest forecast modeling as 

a potential tool for monitoring tree vulnerability to disturbance in Chapter 4 of this dissertation.  

 

Chapter 4: Forest management in the Boston Mountains of Arkansas, U.S.: forest management 

adapting to climate change  

Disturbance is a natural component of forest ecosystems, but an increased frequency and 

severity in disturbances predicted in the future could negatively impact forests.  Implementing 

forest management policies to increase the adaptive abilities of forests to resist and recover from 

disturbance events is an important undertaking.   Adaptive management is founded in learning 

from management decisions and using management opportunities as long-term experiments from 

which we can learn how to improve management strategies as conditions change (Holling 1973, 

1978).  Current disturbance impacts in forest ecosystems can be used as learning opportunities 

and incorporated into policies to increase ecosystem resilience and resistance to disturbance in 

order to maintain forest function in the future.  Resilience is the quick return to pre-disturbance 

structure and condition in a system following disturbance, while resistance is a system’s ability 

to absorb the impacts of disturbance with little change in forest structure or function (Holling 

1973).  
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In Chapter 4 of this dissertation, I use a framework of past forest management to 

demonstrate the need for a change in management strategies applicable to forested lands 

throughout North America.  I employ a case study of oak decline linked to climatic disturbance 

in the Ozark National Forest of northwest Arkansas to demonstrate the link between past 

management and forest decline.   I propose that the challenge of future forest management 

policies is meeting local economic timber needs while promoting forest function in the face of 

climate change uncertainty, which is a common concern between state, federal, and private lands.   

Primary conclusions of this chapter promote 1) developing adaptive management strategies with 

local goal-setting, 2) employing tree growth monitoring to assess tree vulnerability to 

disturbance, and 3) reconciling local timber demands with increased forest resilience and 

resistance in the future.   
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CHAPTER 1: Tree-ring and contemporary leaf stable isotopes as indicators of tree growth 
strategies and susceptibility to disturbance 

 

Abstract 

Understanding how tree growth strategies may influence tree susceptibility to disturbance 

is an important goal given projected increases in forest disturbances this century.  We invoke a 

region-wide forest disturbance event in an oak-dominated forest in Arkansas, USA to explore 

these issues.  In apparently healthy and dying co-occurring Quercus rubra trees, we assess 

historic growth responses to climate, relationships between stable isotopic signatures of carbon 

(13C) and oxygen (18O) in tree-rings, and wood nitrogen (N) and 15N.  We also use 

contemporary leaves of healthy and dying trees to assess N status as a potential driver of tree 

carbon (C) dynamics.  Our goal was to explore the mechanisms driving differential responses to 

disturbance events to understand resilience in apparently healthy tree while neighboring trees 

experienced decline and mortality in response to the same environmental forcings.  Dying trees 

exhibited divergent, reduced growth following a severe drought and infestation in the mid-1970s. 

Tree-ring 13C exhibited a decline across time in both healthy and dying trees.  The relationship 

between tree-ring 13C and 18O was significantly positive (P<0.05) in dying trees, but was not 

expressed in healthy trees, suggesting that dying trees’ C dynamics were controlled to a greater 

extent by response to vapor pressure deficit (VPD) and potentially stomatal regulation than by 

photosynthetic capacity.  In contrast, we observed a significant, positive relationship (P<0.05) 

between contemporary leaf 13C and Nmass in healthy trees, but not in dying trees.  This implies 

that C dynamics in healthy trees is more strongly linked to N status and, perhaps, C sink strength 

compared to dying trees.   The differential growth responses to past climate, isotopic patterns, 

and indices of N status observed in these co-occurring Q. rubra coincide with divergent 
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resilience to disturbance events and may provide clues for how to predict responses to 

disturbances of oak-dominated forests.  Monitoring tree-ring patterns of growth and isotopic 

relationships may help us understand the mechanisms driving tree decline and persistence in the 

future, when disturbance events are predicted to increase.  

 

INTRODUCTION 

 In the coming decades, climate change has the potential to impact North American forests 

by increasing the frequency of disturbance events (McKenney et al. 2007, Woodall et al. 2009).  

Here, a disturbance is defined as an interruption in substrate integrity or resource availability, or 

deviation in environmental conditions, that impacts the ecological functioning of an ecosystem 

(White and Pickett 1985).  We focus on two disturbance factors contributing to or inciting forest 

decline (Manion 1991):  drought and associated insect outbreaks.  Such disturbances can result in 

forest decline and wide-spread mortality (Stephen et al. 2003; Adams et al. 2009).  

Understanding how oak species (Quercus) respond to such events is important, given the genus’ 

wide range (Abrams 1996, Vettraino et al. 2002) and its dominant status in many North 

American forests (Abrams 1992).   

Multiple oak decline events have been observed in recent decades throughout the U.S. 

and Europe (Vettraino et al. 2002, Voelker et al. 2008, Fan et al. 2008).  Oak mortality during 

decline events is often associated with increased susceptibility of trees to secondary factors, 

including fungal root infection (Bruhn et al. 2000, Balci et al. 2003) and insect infestations (Fan 

et al. 2008, Fierke et al. 2005), but climatic events like drought (Houston 1987) are often viewed 

as the underlying mechanism that initiates declines (Tainter et al. 1990, Jenkins and Pallady 

1995).  Environmental stresses imposed by climate can interrupt tree carbon (C) and water 
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relations (Billings and Phillips 2011), production and storage of sugars, and mineral transport 

(Houston 1987), generating increased susceptibility to opportunistic parasites and secondary 

stresses (McDowell et al. 2008, Anderegg et al. 2012).  The specific mechanisms driving 

climate-associated oak decline are not well understood, but appear related to tree C source and 

sink strengths (Manion 1991), as has been suggested for climate-related decline of other tree 

species (McDowell et al. 2008). 

Dendroecological studies can guide our understanding of tree responses to environmental 

cues, and hence the potential drivers of oak decline.  For example, growth indices have provided 

evidence of differential drought responses among co-occurring species (Adams et al. 2009) and 

individuals of the same species (Haavik et al. 2008, Levanic et al. 2011), changes in growth rates 

over time (Johnson and Abrams 2009), and are linked to oak decline susceptibility (Voelker et al. 

2008).  Recent work further emphasizes how a dendroecological approach can help us 

understand historical responses of trees to disturbances such as insect outbreaks (Muzika and 

Liebhold 1999, Girardin et al. 2002, Simard et al. 2008) and elucidate climatic factors that 

appear to increase susceptibility of some trees to insect-related disturbance (Haavik et al. 2008).  

Such an approach is particularly useful when coupled with stable isotopic analyses of tree-rings. 

Stable isotopic signatures of C (13C) and oxygen (18O) of tree-rings (typically the -

cellulose extracted from rings; McCarroll and Loader 2004) can augment the knowledge gained 

from growth patterns by highlighting the drivers of tree C dynamics (Barbour et al. 2001).  

Isotopic theory suggests that the ratio of internal to atmospheric [CO2] (ci/ca) is reflected in 

the13C values of vegetation, which in turn depends upon photosynthetic capacity (Amax) and the 

response of stomatal conductance (gs) to moisture availability (Francey and Farquhar 1982, 

Farquhar et al. 1982, Farquhar et al. 1989).  Because fluctuations of 13C in tree-ring -cellulose 



 

15 
 

are associated with gs and Amax, 13C is often linked to measures of water availability (Leavitt and 

Long 1989, Hubick and Gibson 1993, Saurer et al. 1995) and, less frequently, nitrogen (N) 

availability which can govern Amax (Gebauer and Schulze 1991).   

18O of tree-ring -cellulose reflects the isotopic signature of source water, internal 

exchange of O during organic compound formation, and atmospheric demand for water, which 

results in evaporative isotopic enrichment of water remaining in the leaf during transpiration 

(Yakir 1992, Farquhar and Lloyd 1993, Barbour et al. 2002, Barbour 2007).  Because of the 

linkages between 18O of vegetation and source water, vegetation 18O can reflect rooting depth, 

given that deep water sources are often 18O-depleted relative to shallower water sources (Roden 

et al. 2005, Pataki et al. 2008).  In contrast with 13C, 18O of vegetation is not associated with 

Amax, and hence does not appear linked to plant nutrient status (Scheidegger et al. 2000, Barbour 

et al. 2001, Barbour 2007). 

Recent work demonstrates how simultaneous analysis of tree-ring 13C and 18O can 

suggest the importance of CO2 source strength (i.e. stomatal conductance, gs) relative to C sink 

strength (i.e. photosynthetic rate, Amax) as limitations to growth (Barbour and Farquhar 2000, 

Barbour et al. 2002, Cabrera-Bosquet et al. 2010).  Because 13C, but not 18O, can vary with 

Amax, and both 13C and 18O can vary with stomatal responses to the environment, models 

predict a positive relationship between vegetation 13C and 18O with changing gs, holding all 

other variables constant (Scheidegger et al. 2000, Barbour et al. 2002).  In contrast, models 

predict no relationship between 13C and 18O if Amax changes and all other parameters remain 

constant (Scheidegger et al. 2000, Barbour et al. 2002, Hilasvuori and Berninger 2010).  Such 

analyses thus can reveal the relative extent to which gs vs. Amax govern variation in 13C of tree-

ring -cellulose, and hence the relative degree to which these parameters drive C dynamics and 
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related growth performance.  This is a particularly useful approach among co-occurring trees 

with similar access to light, given the importance of light as a driver of Amax and thus 13C (Yakir 

and Israeli 1995). 

Integrating the stable isotopic signature of nitrogen (N, 15N) of tree-rings into a 

dendroecological approach can further elucidate the drivers of tree responses to variation in 

climate and resource availability across time (Poulson et al. 1995, Amundson et al. 2003, 

Guerrieri et al. 2010).  Biomass 15N provides insight into changes in the local N cycle 

(Robinson 2001).  Although N translocation after wood formation can confound tree-ring [N] 

and 15N (Poulson et al. 1995), tree-ring 15N has been applied in studies of ecosystem N loss 

and retention (McLauchlan et al. 2007), tree sources of N (Poulson et al. 1995), and the impacts 

of N deposition (Guerrieri et al. 2010) and fertilization (Balster et al. 2010) on tree growth.  

Further, linkages between N availability and Amax (Evans 1989, Reich et al. 1999), and Amax and 

tree-ring 13C (Farquhar et al. 1982, Dawson and Ehleringer 1993) suggest that integrating tree-

ring and leaf 15N  and [N] data with both tree-ring growth patterns and 13C likely can further 

clarify tree responses to past and contemporary environments. 

We use dendroecological and stable isotopic approaches, in conjunction with 

contemporary leaf N status, to develop a greater understanding of the ecophysiological 

mechanisms influencing oak susceptibility to drought and subsequent insect outbreak 

disturbance.  We focus on a recent oak decline event associated with rapid population increases 

of a native wood boring insect, the red oak borer (Enaphalodes rufulus (Haldeman) (Coleoptera: 

Cerambycidae)), to elucidate how variation in past and contemporary tree responses to multiple 

environmental cues may relate to susceptibility to disturbance.  This decline event, centered in 

the Boston Mountains of Arkansas, USA followed five decades of cyclical droughts, historically 
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high wood-boring insect infestations from the mid-1970’s through the early 2000’s, and resulted 

in high mortality rates of northern red oak (Quercus rubra L. (Fagaceae)) on a landscape scale 

(Stephen et al. 2003, Muzika and Guyette 2004, Fierke et al. 2005, Fierke et al. 2007, Haavik et 

al. 2011).  Many forest stands experiencing high oak mortality contained multiple, apparently 

healthy trees immediately adjacent to trees experiencing severe crown dieback and subsequent 

mortality.  Poor site quality and even-aged stands may have been contributing factors to the 

decline (Oak et al. 1996), but several studies implicate cyclical drought beginning decades prior 

to observable decline in the region as a key factor determining susceptibility at these sites 

(Tainter et al. 1990, Jenkins and Pallardy 1995, Haavik et al. 2008, Haavik et al. 2010).  Indeed, 

tree-ring growth patterns at these sites suggest that antecedent drought was an important factor 

governing tree susceptibility to insect infestation and eventual mortality (Haavik et al. 2008; 

Haavik et al. 2011).  However, 13C values of -cellulose from tree-rings of more susceptible 

trees did not exhibit the increases one might predict with drought stress from isotopic theory 

(Haavik et al. 2008).  Thus, although drought likely played an important role in governing tree 

response to this oak decline event, the mechanisms governing the variable susceptibility of co-

occurring trees remain unclear. 

Working at the same sites described in Haavik et al. (2008) on an expanded number of 

trees, we explore the role of antecedent climate as a potential driver of tree susceptibility to 

disturbance, and how tree growth strategies may have influenced susceptibility vs. survival.  

Because drought has been implicated as a driver of this decline event (Haavik et al. 2008; Haavik 

et al. 2010), we might anticipate that declining trees’ tree-rings may reveal evidence of different 

water-related growth strategies compared to their surviving neighbors.  We use tree-ring growth 

patterns, as well as 13C and 18O of tree-ring -cellulose to assess the historic, relative 
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importance of gs vs. Amax as drivers of 13C (Barbour and Farquhar 2000, Barbour et al. 2002).  

We also infer how tree N status may have influenced tree survival or mortality during this oak 

decline event.  To our knowledge, this is the first study to incorporate 13C, 18O, and 15N and 

[N] of tree-rings, as well as contemporary leaf N status, to explore tree growth strategies and 

susceptibility to disturbance.  We address three questions relevant for understanding tree 

responses to this oak decline event and, more broadly, oak-dominated forest strategies for coping 

with disturbance: i) Do trees that remained apparently healthy throughout this disturbance exhibit 

different growth responses to antecedent temperature and precipitation than those that suffer 

mortality? ii) Do surviving trees exhibit patterns of 13C and 18O in tree-ring -cellulose 

reflective of different drivers of C dynamics compared to their dying neighbors?  iii) Do tree-

rings or contemporary leaves reveal differences in N dynamics between surviving and dying 

trees, suggestive of different growth strategies between these co-occurring populations? 

 

METHODS 

Sites 

We sampled healthy and dying oaks at three pre-established study sites in the Ozark 

National Forest in northwest Arkansas (UTM Zone 15-S NAD83) (Fierke et al. 2005). The three 

sites, Oark, Fly Gap, and White Rock, were selected on the basis of red oak borer presence.  

Sampling focused on trees sampled from ridge locations, where differences between dying and 

apparently healthy trees were most evident.  Details of site conditions can be obtained in Fierke 

et al. (2007).  Briefly, the three sampling sites are oak-hickory dominated (USDA Forest Service 

1999), support similarly aged oaks (~60 y) on acidic, clay-rich soils with low organic matter 

content (Sander 1965), and are all within 50 km of each other.  Regional climate is temperate 
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with warm summers and mild winters; mean annual temperature is 16 °C.  Mean annual 

precipitation totals 124 cm and falls mostly during spring, summer, and fall.  Bedrock 

composition is comprised of limestone, shale, and sandstone, with cliff elevations reaching up to 

750 m (Adamaski et al. 1995).  

 

Climate data 

Climate records were obtained from the NOAA website (http://www1.ncdc.noaa.gov/ 

pubdata/cirs) for the climate regions of interest.  Total annual precipitation for the years of 

interest was calculated using average precipitation for the calendar year across the four NOAA 

regions encompassed by the sampling area.  Seasonal precipitation was calculated from May-

August as growing season values.  We also calculated precipitation for January to June and for 

July to December, to assess the influence of moisture availability during different periods of 

growth.  Seven periods of interest were determined using NOAA Palmer Drought Severity Index 

(PDSI; Palmer 1965) from regional data (http://www1.ncdc.noaa.gov/pub/data/cirs), consisting 

of alternating periods of extreme wet and dry periods.  Time periods examined and their relative 

wet or dry status were 1952-56 (dry), 1957-59 (wet), 1962-67 (dry), 1972-75 (wet), 1979-81 

(dry), 1992-95 (wet), and 1998-2001 (dry).  Cumulative precipitation values were also averaged 

from each of the seven periods of interest to gain a single climate parameter value for correlation 

analyses with stable isotope data (described below).  Indices of annual, growing season and 

winter values for temperature and PDSI, an index of moisture availability derived from water 

balance equations (Palmer 1965), were developed in the same manner.   
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Sampling procedure and cellulose extraction 

At each site we sampled trees experiencing moderate to heavy levels of red oak borer 

infestation, as well as their apparently healthy neighbors.  Tree health was assessed based on the 

number of borer emergence holes and percent crown cover (Fierke et al. 2007), and we created 

categorical groups of apparently healthy trees (referred to throughout as healthy trees), trees 

exhibiting initial stages of canopy decline (moderately infested trees), and trees experiencing 

severe crown dieback (dying trees).  All trees, regardless of health status, were well-interspersed 

at each sampling site.  In 2002, 2003 and 2007, we felled oaks with similar diameter at breast 

height (DBH) and canopy co-dominance positions (Stephen, unpublished data, Haavik et al. 

2008).  Six healthy trees from Fly Gap were sampled during 2002 and 2003.  At each of three 

sites in 2007, we sampled 2 trees categorized as healthy (6 total), 3 moderately infested (9 total) 

and 3 dying trees (9 total) for a total of 24 trees.  Along with the six trees felled in 2002-2003, 

these trees comprised our 13C and 18O data set (n=30).  We scanned cookies cut from tree boles 

sampled in 2002, 2003, and 2007 into Adobe Acrobat 8 Professional, and we measured and dated 

ring widths using event year markers as outlined in Haavik et al. (2008).  Most trees exhibited 

ring width series from 1930 to date of felling; in two trees from Fly Gap ring widths prior to 

1930 were unavailable due to stand clearcutting in prior decades.  We cross-dated the tree-rings 

using COFECHA software (Holmes 1983), which ensures proper dating through event-year 

comparisons.  We measured tree-ring widths to the nearest 0.01cm for each sample on a total of 

three radii per cookie, and averaged these widths to determine ring width in each year.  Though 

growth patterns were assessed throughout each tree’s life, we isolated tree-rings only from the 

seven periods of climate extremes for isotopic analyses, to maximize the climate signals 

captured.  
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We generated 1 to 2g of whole-wood sawdust using a Dremel tool (Bosch Tool 

Corporation, Chicago, IL) from each cookie for each of the seven time periods, being careful to 

avoid the earlywood visible at the start of each time period to limit the inclusion of C fixed prior 

to the period of interest (McCaroll and Loader 2004).  Sawdust was placed in fiber filter bags 

(ANKOM, Fairport, NY) and heat sealed for -cellulose extraction as per a procedure modified 

from Leavitt and Danzer (1993).  We placed the filter bags into a Soxhlet apparatus, where they 

boiled for 24 hours in a 2:1 mixture of toluene:ethanol, followed by another similar treatment 

with replaced extractant.  After drying, samples were boiled for two successive 24 h periods with 

95% ethanol.  Bags were dried and then boiled for 1 h in a 6 g sodium chlorite, 1 mL glacial 

acetic acid mixture, and 700 mL DI water mixture to extract soluble sugars and low molecular 

mass polysaccharides.  This procedure was performed three times, rinsing samples completely 

between cycles.  Samples were then washed with sodium hydroxide and glacial acetic acid and 

subjected to a final rinsing period.  The remaining -cellulose was then oven dried for 24 hours 

at 70°C. 

In 2007, we collected 5 clusters of full-sun leaves from the top of each felled tree (n=24).  

This sampling scheme ultimately generated leaf samples from 5 healthy trees, 9 trees 

experiencing moderate infestation, and 8 dying trees, reflecting leaf samples later deemed 

unusable during processing.  We stored all leaves in coolers until return to the laboratory, where 

they were frozen in flattened, air-tight bags for later analysis.  We subsequently scanned leaves in 

Adobe Photoshop and calculated leaf area using Image-J software (NIH, Bethesda, MD).  Leaves 

were then dried at 65ºC for >48 h, weighed and ground to produce homogenized samples. 
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Analysis of stable carbon, oxygen and nitrogen isotope ratios  

We weighed -cellulose (0.09-0.11 mg) and whole wood sawdust samples (15-20 mg) 

and placed them into tin capsules for analysis of 13C (-cellulose) and 15N and %N (sawdust).  

Tin capsules were combusted with excess O2 in an elemental analyzer (EA-1100, Carlo Erba, 

Milano, Italy) connected through an open split interface (Conflo II, Finnigan MAT) to an IRMS 

(Delta-S Finningan MAT, Bremen, Germany) at the University of Kansas KPESIL.  Following 

procedures for non-resinous trees like northern red oak (Bukata and Keyser 2005), we did not 

wash sawdust with distilled water prior to N analyses (Doucet et al. 2010).  We loaded 

approximately 1 mg of tree-ring -cellulose into silver capsules for 18O analysis via pyrolysis to 

CO on an elemental analyzer (EA-1110, Carlo Erba, Milano, Italy) coupled with a continuous 

flow mass spectrometer (Delta Plus- Finnigan MAT, Bremen, Germany) at the University of 

Kansas KPESIL.  All leaf samples were analyzed for [C], [N], 13C, and 15N an elemental 

analyzer coupled to an Isotope Ratio Mass Spectrometer (Delta Plus IRMS, Thermofinnigan, San 

Jose, CA) at Kansas State University.  Isotopic values are reported as delta values (in per mil, ‰) 

relative to deviations for international standards (V-PDB for 13C, V-SMOW for 18O, and 

atmospheric N2 for 15N).  

 

Data Analysis 

 We calculated basal area increments for all trees from measurements of ring width and 

DBH measurements using the following formula: 

    (1) 

where Rn represents the radius at the time of felling and Rn-1 the radius of the previous year, with 

the assumption that stem growth approximates the area of a circle (Fritts 1976).  Raw ring-width 
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measurements were standardized to zero to produce ring width indices (RWI) for each individual 

tree.  We calculated both BAI and RWI because of their respective utilities for examining growth 

trends across time (BAI) and the influence of climate on growth (RWI; Johnson and Abrams 

2009).  BAI is generally used in the field of dendroecology to reflect growth over time as a 

standardized measure with juvenile trends removed, while RWI is more typically used for 

examining physiological responses to growth (Esper et al. 2002, Johnson and Abrams 2009). 

At each of the three sites, we used regression analyses to assess relationships between 

these two indices of growth and three climate variables:  PDSI, precipitation, and temperature.  

We calculated four measures of each climate variable, representing annual and seasonal 

averages, the average value for January to December (annual), January to June, July to 

December and June to August to investigate seasonal influences of these variables on tree 

growth.  We did not adjust for multiple comparisons since we used these climate-growth 

relations in a qualitative manner, to assess differential strengths of these relationships with health 

status.  We assessed potential lags in growth responses to climate, but we present here only 

current year growth-climate relationships, which were stronger.  For some analyses, specified in 

our results and discussion, we analyzed the influence of PDSI on growth using PDSI values less 

than two, given our interest in strong drought conditions.  PDSI values of less than two are 

recognized as representing relatively dry conditions (Palmer 1965, Adams and Kolb 2005).  

We used these same climate-related variables to test for their influence on tree-ring stable 

isotopic and [N] data as well.  We employed ANOVA to test for the influence of relatively wet 

vs. dry conditions in our seven time periods of interest on 18O and 13C of tree-ring -cellulose 

and on 15N and N content of tree-ring whole wood (PROC ANOVA, SAS 9.1.3, Cary, NC).  We 

also tested for the influence of site and tree health class on BAI, with BAI adjusted to center 
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values around the site-averaged BAI to provide for robust analysis (Aiken and West 1991).  We 

also used repeated measures ANOVA (PROC MIXED, SAS 9.1.3, Cary, NC) to assess the 

influence of site, health status, time, and their interactions on tree-ring -cellulose 13C and 18O 

and tree-ring wood 15N and [N].  When site was not a significant driver of the response variable, 

we removed it from subsequent tests.  Further, we used correlation analyses to test for 

differences between tree health status in relationships between tree-ring -cellulose 13C and 

18O. 

We also analyzed contemporary leaf data, focusing on healthy (n=6) and dying (n=9) 

trees.  We tested for the influence of site, health status, and their interaction on 2007 leaf sample 

[C], [N], 13C, and 15N using ANOVA.  We used correlation analysis to assess relationships 

between these isotopic signatures and three different measures of leaf N:  Nmass (mg N gleaf-1), 

Narea (mg N mleaf-2), and leaf C:N ratios (by mass).  For all analyses, we determined statistical 

significance at P< 0.05, and report all instances of P<0.10.  All errors presented are one standard 

error of the mean.  

  

RESULTS 

Ring-width and Climate Data  

Ring width indices (RWI) at all sites exhibited more significant relationships with a 

greater diversity of climate variables than BAI (Table 1).  Ring width indices were significantly 

and positively related to indices of precipitation, with climate and growth variables expressed as 

averages across multiple time periods in healthy trees.  Similarly, the relationship between RWI 

and PDSI in multiple time periods exhibited significance in healthy trees at all three sites, but 

fewer such significant relationships were found in dying trees.  Indices of temperature exhibited 
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a negative association with RWI.  In contrast to RWI, and with only one exception, BAI 

exhibited significant relationships only with measures of temperature; these instances of 

statistically significant correlations exhibited generally lower Pearson correlation coefficients 

than with RWI.  Significant correlations between growth and temperature were not observed with 

monthly averages during the first half of each year (January to June), but were evident with 

average temperatures from June to August and average temperatures from July to December. At 

Fly Gap, dying trees exhibited far fewer significant relationships between BAI and climate 

variables.  When we consider all relationships between growth indices and the tested climate-

related variables, healthy trees exhibited 12 more significant relationships than dying trees, and 

these significant growth-climate relationships in healthy trees were of greater significance than in 

dying trees (eight vs. three at P<0.001, eight vs. seven at P<0.01, and 16 vs. ten at P<0.05, Table 

1).   

In normal to relatively dry conditions (PDSI<2, Palmer 1965), we observed significant, 

positive relationships between BAI and PDSI in healthy trees at all sites (Figure 1), although 

PDSI explained only a small fraction of variation in BAI at all sites (White Rock P< 0.10, 

R2=0.02; Fly Gap P<0.02, R2=0.03; Oark P<0.02, R2=0.04;).  Similar relationships were 

observed between BAI and PDSI in dying trees at White Rock and Oark (P<0.04, R2=0.005 and 

P<0.04, R2=0.003, respectively) but not at Fly Gap.  Basal area increment, but not RWI, diverged 

between healthy and dying trees decades prior to mortality (P<0.05; Figure 2). 

 

13C and 18O of tree-ring -cellulose 

Values of 13C for tree-ring -cellulose in all trees varied from -27.3 to -23.0‰.  We 

observed no significant difference in 13C values between healthy and dying trees.  13C values 
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declined significantly across time at all sites (P<0.05) regardless of the relative availability of 

moisture (Figure 3).  13C values exhibited a significant, negative relationship with temperatures 

from June through August when data from trees at all sites were analyzed.  No significant 

relationships were found between 13C and PDSI or precipitation.  18O of tree-ring -cellulose 

varied from 27.5 to 31.8‰ and exhibited a significant, positive relationship with temperature 

(P<0.001), and significant, negative relationships with precipitation (P<0.05) and PDSI (P<0.05) 

were found when examined for all trees at all sites.  An interaction between year, site and 

mortality was a significant determinant of 18O.  18O in tree-rings from Oark were lower in 

healthy trees, exhibiting an ecologically small but significant 0.6‰ difference (29.2±0.2 vs. 

28.6±0.2‰, respectively; P<0.05; Figure 4).  Average 18O of tree-ring -cellulose among both 

healthy and dying trees was significantly depleted at Oark (28.8±0.1‰) compared to White Rock 

and Fly Gap (29.3±0.1‰, P<0.01; 29.2±0.1‰, P<0.05, respectively).  Dying trees exhibited a 

significant, positive relationship between 13C and 18O (P<0.0005, R2=0.15; Figure 5).  The 

correlation between 13C and 18O for healthy trees revealed no significant trend.   

 

Tree-ring and Leaf Nitrogen Dynamics 

We observed a significant difference in tree-ring [N] between dying and healthy trees 

(Figure 6).  Tree-ring [N] exhibited relatively slight variation across time until the final sampling 

period (1998-2001), when those in healthy trees increased 34.8% from their lowest point to 0.115 

mg g-1, and those in dying trees increased 45.6% from their lowest point to 0.143 mg g-1.  There 

were no differences in tree-ring 15N between sites or tree health status.  We observed a positive 

relationship between wood 15N and 13C in -cellulose.  Both whole-wood 15N and -
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cellulose13C exhibit negative relationships across time, so the positive relationship between 

these variable is likely an artifact of the shared trend across time. 

We observed no significant relationship between leaf 13C and 15N values, at any site or 

for any health status, but we observed a significant, positive relationship between leaf 13C and 

leaf Nmass of healthy trees (P<0.05, R2=0.77; Figure 7).  Dying trees and moderately infested 

trees exhibited no relationship between leaf 13C and leaf Nmass.  Leaf 15N was significantly, 

negatively related to leaf C:N ratios across all sites (P<0.05, R2=0.19) with no interaction with 

tree health status.  Nitrogen concentrations in leaves sampled in 2007 ranged from 1.99 to 3.53 

mg g-1 (mass basis, Nmass).  We observed no significant differences in leaf Nmass, Narea, or C:N 

between tree health classes.  We did not observe any site effects on leaf Narea, but on a mass 

basis, we found significant differences in leaf Nmass between Fly Gap and Oark (P<0.005; 

2.89±0.12 and 2.28±0.08 mg g-1, respectively) and between White Rock and Oark (P<0.05; 

2.44±0.12 and 2.28±0.08 mg g-1, respectively).   

 

DISCUSSION 

  Our data suggest that tree susceptibility to disturbance, represented here by cyclical 

drought and wood-boring insect infestation, is linked to divergent tree responses to antecedent 

climatic conditions driving moisture availability and demand, and to tree N status.  We observed 

significant relationships between multiple measures of temperature, precipitation, and PDSI data 

and growth indices more frequently for healthy trees than for their dying counterparts.  

Relationships between tree-ring -cellulose 13C and 18O suggest that healthy and dying trees 

likely experienced different drivers of C dynamics and associated 13C values for decades prior 

to the disturbance.  Differences between healthy and dying tree-ring N are consistent with this 
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hypothesis.  Divergent relationships between contemporary leaf 13C and Narea in healthy and 

dying trees imply, but are not conclusive of, different drivers of C dynamics between these 

populations of co-occurring healthy and dying neighbors.  Below, we examine the concepts of 

climate-growth and N influences on tree C dynamics in more detail. 

 

Growth patterns 

Basal area increment in healthy and dying trees diverged following a severe drought that 

began in 1979 (Figure 2).  These data are consistent with the data reported in Haavik et al. 

(2008), a study taking place at the same sites but examining fewer trees, and indicate that 

drought disturbance decades prior to this oak decline event may have influenced tree 

susceptibility to mortality during the later disturbance (Manion 1991).  Decreased growth has 

been associated with oak decline events in America and Europe (Pedersen 1998, Levanič et al. 

2011) and has been linked to drought (Figure 1; Manion 1991, Klos et al. 2009).  Growth 

suppression in declining oaks a decade prior to mortality and divergent growth rates when 

comparing growth patterns in early life stages of declining vs. healthy trees have been observed 

in other studies (Drobyshev et al. 2007).  Though we observed decreased growth accrual later in 

life for dying trees, DBH was similar among health classes.  This counter-intuitive phenomenon 

may result if dying trees experienced faster growth in earlier decades, as has been observed at 

this site (Haavik et al. 2010) and as a more general phenomenon among trees with relatively 

short lifespans (Black et al. 2008, Johnson and Abrams 2009). 

 Relationships between growth indices and climate-related variables confirm that moisture 

availability and air temperature are both important drivers of growth patterns in these forests.  

Other studies of oak-dominated forests have emphasized the importance of both precipitation and 
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temperature as drivers of growth (Pan et al. 1997, Friedrichs et al. 2009, Hilasvuori and 

Berninger 2010).  Healthy trees’ growth indices, particularly RWI, were more frequently related 

to climate measures than were growth indices of dying trees.  The growth rates of healthy trees 

showed recovery following drought relative to dying trees, consistent with greater ability to cope 

with drought stress in healthy trees (Eilmann and Rigling 2012).  The greater number of highly 

significant relationships between growth indices and climate variables in healthy trees compared 

to dying trees suggests that dying trees’ growth was less responsive to environmental conditions 

potentially due to C limitations.  The negative impacts of drought would not manifest until stored 

C reserves declined, consistent with declining growth observed in dying trees if C stores were 

depleted (Sala et al. 2012).    The mechanisms behind these differences in climatic influence on 

growth between tree health classes remain unclear, as C reserves were not examined in the scope 

of our study, but stable isotopic and N-related data suggest that healthy and dying trees employed 

different growth strategies.   

 

Patterns of tree-ring -cellulose 13C and 18O 

Growth patterns and tree-ring 13C data in isolation from other data sets do little to help us 

understand divergent susceptibilities of neighboring oaks to disturbance in these forests.  If 

drought was indeed an important factor, as suggested by growth patterns, we might expect trees 

susceptible to this disturbance to exhibit elevated 13C values, relative to their healthy neighbors, 

prior to their obvious crown dieback and eventual mortality.  However, expanding the number of 

trees sampled did not alter the earlier conclusions of Haavik et al. (2008), who observed no 

variation in tree-ring -cellulose 13C  at these sites with health status.   Further, like Haavik et 

al. (2008), we observed little variation in 13C with climate parameters typically associated with 
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vegetation 13C signatures (Figure 3).  Although stable isotope theory predicts that tree-ring -

cellulose becomes 13C-enriched with moisture stress (Farquhar and Lloyd 1993), we did not 

observe such responses after the 1979 drought (Figure 4), a phenomenon sometimes reported in 

the literature (Ramesh et al. 1986, Cullen et al. 2007, Haavik et al. 2008).  

Incorporating 18O of tree-ring -cellulose into our analyses can provide clues about the 

mechanisms driving the decades-long, markedly lower growth trajectory of trees destined to die 

during this oak decline event, and about these trees’ growth strategies (Figure 4).  We observed a 

positive relationship between tree-ring -cellulose 13C and 18O in dying trees, but no such 

relationship in apparently healthy trees (Figure 5).  These data suggest that C source-sink 

dynamics in trees that remained healthy during this disturbance were governed less by water 

status than by other factors, presumably those that influence Amax given that this term is the other 

key driver of vegetation 13C signatures (Farquhar et al. 1989, Barbour and Farquhar 2000).  In 

contrast, the significant, positive relationship between tree-ring 13C and 18O in dying trees 

suggests that C source-sink dynamics in these trees were governed to a greater extent by stomatal 

responses to their environment, given that both isotopic signatures are positively influenced by 

stomatal aperture (Barbour et al. 2002).     

 

Antecedent and contemporary tree nitrogen status 

Given the importance of N as a driver of Amax (Evans 1989) and, accordingly, of growth 

(Raison et al. 1990) and vegetation 13C (Korol et al. 1999, Balster et al. 2009, Guerrieri et al. 

2011, Brooks and Mitchell 2011), integrating N dynamics into these analyses may help us 

understand these trees’ responses to their environment and susceptibilities to disturbance.  Tree N 

status may also help us understand why tree-ring 13C in these forests did not vary with moisture 
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availability after a severe drought in 1979 (Figure 6).  Tree-ring N data can be confounded by 

mobility of nitrogenous compounds across tree-rings after wood formation (Poulson et al. 1995), 

but multiple studies have successfully used tree-ring N data to observe changes across time in 

tree N status, particularly when environmental perturbations are sufficiently great to generate a 

strong signal (Sauer et al. 2004, McLauchlan et al. 2007, Balster et al. 2009, Guerrieri et al. 

2010). 

The enhanced tree-ring N of dying relative to healthy trees during and following the 1979 

drought provides a clue about these trees’ response to their environments, and their eventual 

susceptibility to later disturbance.  Given the co-occurring, interspersed nature of healthy and 

dying individuals and their co-dominant canopy status at each site, it is unlikely that these two 

populations experienced differences their environment that drove differences in wood N 

concentration.  Nor do tree-ring 15N data imply that healthy and dying trees obtained N from 

different sources.  We infer that trees dying in the early 2000s either allocated more N to their 

bole wood or took up more available N from the soil after the 1979 drought, compared to their 

healthier neighbors.  Given that allocation of limiting resources to bole wood is a relatively low 

priority for trees, particularly those under stress (Waring and Schlesinger 1985), these data 

suggest that dying trees were less limited in their N than healthier ones. 

It is unclear if tree-ring N does, in fact, reflect different N limitations of these trees, but 

tree-ring N has been linked to N availability in other studies (McLauchlan et al. 2007).  If tree-

ring [N] data are reflective of different N statuses in dying vs. healthy trees, we might expect to 

find other evidence consistent with lower N availability in healthy trees.  Our data provide two 

such pieces of evidence.  First, the lack of a relationship between tree-ring -cellulose 13C and 

18O in healthy trees is suggestive of Amax being a relatively more important driver of those trees’ 
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C dynamics than gs (Barbour et al. 2002).  We might expect such a feature of trees for which N is 

more limiting, given that N can be a key limitation on Amax (Ripullone et al. 2003).  Second, we 

observed a significant, positive relationship between leaf 13C and Nmass in healthy, but not in 

dying, trees (Figure 7).  Such a relationship is consistent with isotopic theory; an increase in N 

can prompt increases in Amax, which, all else equal, is linked to increases in leaf 13C (Barbour et 

al. 2002, Ripullone et al. 2003).  We cannot know if the relationship between leaf 13C and [N] in 

healthy trees existed in past years.  We did not observe such a relationship between tree-ring -

cellulose 13C and tree-ring wood [N], but these analyses likely were confounded by declining 

13C values and increasing [N] in tree-rings of all trees over time.  The significant relationship 

observed in contemporary leaves in healthy trees, however, hints that N is more of a key factor of 

C source-sink dynamics in these trees compared to their dying neighbors.  Alternatively, the oak 

decline event may have altered the physiology of dying trees such that the influence of N on C 

source-sink dynamics was diminished.  Although insect infestation may have masked 

relationships between leaf 13C and [N] in dying trees, the observed relationship in healthy tree 

leaves is consistent with those trees’ lack of significant relationship between tree-ring -cellulose 

13C and 18O and their apparent greater N limitation.  Together, these data sets imply that 

something other than gs – perhaps N – was a more dominant driver of tree-ring -cellulose 13C 

values and C dynamics in healthy trees.   

The mechanisms linking N availability and tree health status are not clear.  Reduced 

nutrient availability typically is linked to increased tree susceptibility to disturbance when C 

reserves are not limited (Matson and Waring 1984).   Nitrogen availability is an important feature 

of tree resistance to disturbance, and enhanced N availability may increase recovery rates in 

surviving trees following an insect infestation (Waring and Pitman 1985).  However, tree C 
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allocation strategies can change with stress, and C reserves allocated to defense compounds and 

hydraulic transport can depend on individual tree reserves, allocation strategies and nutrient 

status (Waring and Pitman 1985, Waring 1987, Sala et al. 2012).  Differences in allocation 

patterns have been hypothesized as an influential factor driving susceptibility of oaks to 

disturbance at these sites (Haavik et al. 2011).  Low C reserves in the presence of excess of N 

can increase tree susceptibility to disturbance-associated mortality (Matson and Waring 1984), 

which may help explain the linkages we observed between N and tree health status.  Further, root 

pathogens such as Armillaria that negatively impact tree growth are active in these forests, and 

although no differences in infection rates of this pathogen have been observed between healthy 

and dying trees in recent events (Kelley et al. 2009), past infections may have impacted C 

reserves differently among these co-occurring oaks.  Though we remain uncertain of the linkages 

between tree N and health status in our study, differential C allocation strategies driven by 

varying degrees of N limitation may have played a role in governing eventual disturbance 

susceptibility.   

 

Conclusion 

These data provide insight into several features of tree responses to disturbance, the 

utility of a multi-isotope approach for understanding the drivers of tree C dynamics, and linkages 

between vegetation N status and variation in vegetation 13C values: 

1) Trees that eventually died during this forest disturbance experienced slower growth 

rates for decades prior to mortality (Figure 2) and exhibited weaker growth- climate 

relationships than their healthier neighbors. 
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2) Relationships between tree-ring -cellulose 13C and 18O suggest that C dynamics of 

healthy trees were dominated more so by leaf C sink strength, Amax, than by gs (Figure 

5).  Correspondingly, contemporary leaf 13C and [N] data imply that healthy trees’ 

leaf 13C values were governed to a larger degree by vegetation N status than in dying 

trees (Figure 7).   

3) Although it remains unclear why healthy trees’ growth was more frequently related to 

climate variables, stable isotope and N data suggest that linkages between climate and 

N availability were more important for healthy trees, which appeared to be more N 

limited than dying trees, than the association of climate and moisture availability. 

4) Tree-ring 13C values do not always vary as predicted with moisture availability, a 

feature that creates challenges for dendroecologists attempting to understand past tree 

responses to their environment.  Our data suggest that N may have been an important 

driver of biomass 13C in healthy trees.  Although isotopic theory predicts that both 

moisture and N can drive biomass 13C, linkages between 13C and N availability are 

discussed relatively infrequently in the literature, and rarely in the context of tree-ring 

studies. 

5) Assessing relationships between tree-ring -cellulose 13C and 18O can provide a 

useful tool for predicting eventual oak susceptibility to oak decline, but the 

mechanisms driving such relationships, or their absence, need further study.  

Experiments in which trees’ gs, Amax, and tissue N concentrations are manipulated via 

N fertilization, and biomass 13C and 18O measured, will be an important means of 

achieving this goal. 
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As disturbance impacts on forests increase in the future, determining the response of trees 

and potential indices to predict decline events will become increasingly important. Our study 

highlights how examining past responses of trees to their environment can provide a greater 

understanding of future forest decline events and disturbance responses among co-occurring 

species. 

 
 
 
 
 
 
 
 
 

TABLES AND FIGURES 
 

 
 



 

36 
 

PDSI

-4 -3 -2 -1 0 1 2

0

10

20

30

Oark, Arkansas

PDSI

-4 -3 -2 -1 0 1 2

B
A

I, 
cm

22

0

10

20

30

Fly Gap, Arkansas

PDSI

-4 -3 -2 -1 0 1 2

B
A

I, 
cm

22

0

10

20

30

1928-2006

Oark, Arkansas

PDSI

-4 -3 -2 -1 0 1 2

0

10

20

30

Fly Gap, Arkansas

PDSI

-4 -3 -2 -1 0 1 2

0

10

20

30

White Rock, Arkansas

PDSI

-4 -3 -2 -1 0 1 2

B
A

I, 
cm

2

0

10

20

30

P<0.02, R2=0.03

P<0.02, R2=0.04

P<0.10, R2=0.02

1928-2006

1928-2006

White Rock, AR
P<0.04, R2=0.005

P<0.04, R2=0.005

 
Figure 1. Basal area increment (BAI) changes with Palmer Drought Severity Index (PDSI) 
during relatively dry periods (PDSI<2) in three forests in Arkansas, USA. White Rock (healthy 
n=2, dying n=3), Fly Gap (healthy n=2, dying n=3), and Oark (healthy n=2, dying n=3) all 
exhibit significant (P<0.05), positive BAI trends for healthy trees and dying trees at White Rock 
and Oark exhibited similar significant trends. Healthy trees are represented by filled symbols and 
dying trees by open symbols.  Trend lines represent linear regressions for healthy trees.  
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Figure 2. Basal area increment (BAI) trends across time at three forested sites in northwest 
Arkansas, USA. Symbols represent healthy (shaded) and dying (open) trees. Error bars are one 
standard error of the mea. Relatively wet and dry time periods are specified in each panel (see 
text for details on condition definitions). 
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Figure 3. 13C of tree-ring -cellulose across time from healthy (n=9, shaded) and dying (n=12, 
dying) trees at three forested sites in northwest Arkansas, USA.  Relatively wet and dry time 
periods are specified in each panel (see text for details on condition definitions).  13C declines 
significantly for both healthy and dying populations. Error bars are one standard error of the 
mean.  .   
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Figure 4. 18O of tree-ring -cellulose from healthy (filled symbol) and dying (open symbil) 
trees from 1952-2000 at three forested sites in Arkansas, USA. Each point represents the mean of 
2 healthy or 3 dying trees, except at Fly Gap which has 5 healthy and 6 dying trees represented in 
the 5 latter time periods. Error bars are one standard error of the mean.  
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Figure 5. Relationship between averaged 13C and 18O of tree-ring -cellulose for seven wet 
and dry period within the specified years in healthy (n=6; filled) and dying (n=9; open) trees in 
three forested sites in Arkansas.  Relationship for dying trees is significant (P<0.05, R2=0.57), 
and represented by the regression line.  Healthy trees exhibit no significant trend. Error bars are 
one standard error of the mean.  
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Figure 6.  Tree-ring [N] in mg g-1 across time periods specified for healthy (n=5, filled symbols) 
and dying (n=9; open symbols) trees from three forested stands in Arkansas. Error bars represent 
one standard error of the mean.   
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Figure 7. Relationship between 13C and Nmass in healthy (P<0.05, R2=0.77; shaded; n=5) and 
dying (open; n=8) trees at three forests in northwest Arkansas, USA.  Points represent the 
average values for each period of interest per health class. Error bars represent one standard error 
of the mean.   
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CHAPTER 2: Distinct ecophysiological responses of co-occurring oak species to climatic 
variation: using tree-rings and leaf nitrogen status to understand tree carbon dynamics 

 
 
Abstract 

Future global climate projections suggest increased frequency and duration of extreme 

climate events such as drought.   Understanding the impacts of decreased moisture availability 

on the differential responses of co-occurring species may provide insight into future forest 

responses to the increased disturbance events likely to accompany increases in drought 

conditions.  Differential physiological responses to climate variability can influence changes in 

forest species composition and distribution.  I use co-occurring Quercus rubra and Q. 

macrocarpa tree-rings and contemporary leaves to understand responses of these species to 

climate at the western edge of their distribution, at the prairie-forest ecotone in North America.  I 

predicted greater influence of decreased moisture availability on growth patterns and stable 

carbon (13C) isotopic enrichment of tree-rings in Q. rubra, a species typically restricted to 

relatively mesic sites, relative to Q. macrocarpa, a species known to tolerate drought conditions. 

We also hypothesized that 13C and 18O of tree-rings would suggest that stomatal conductance 

(gs) governs carbon (C) dynamics in Q. rubra, given that species’ moisture sensitivity, to a 

greater extent than in Q. macrocarpa.  Contrary to my hypothesis, growth of Q. rubra was not as 

sensitive to moisture-related climate variables, or to temperature, as Q. macrocarpa, which 

exhibited significant, negative growth responses to temperature and positive responses to 

moisture availability.  Further, I found 13C enrichment of tree-rings in Q. rubra relative to Q. 

macrocarpa across time, suggesting greater moisture stress experienced by Q. rubra.  A 

significant, positive relationship between 13C and stable oxygen (18O) isotopes in tree-rings of 

Q. macrocarpa suggests a greater influence of gs on C dynamics in that species relative to Q. 
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rubra, which exhibited no such relationship.  Q. rubra tree-ring data suggests that variables 

driving photosynthetic capacity influence tree C dynamics more than variables linked to gs.  

Correspondingly, seasonal leaf 13C was positively linked to leaf N in Q. rubra, consistent with 

isotopic theory and suggesting that enhanced tree-ring 13C  in Q. rubra was driven, at least in 

part, by N availability in that species.  Thus, tree-rings of Q. macrocarpa suggest that this 

species’ C dynamics respond negatively to temperature and are more strongly driven by stomatal 

responses to moisture limitation than Q. rubra, and contemporary leaf samples suggest that this 

species is less able to capitalize on N availability relative to Q. rubra.     

 

INTRODUCTION 

Differential responses to moisture limitation among co-occurring forest tree species 

(Adams 2005, Ciasis et al. 2005, Allen et al. 2010, Dietze et al. 2011) suggest that 

ecophysiological vulnerability to disturbance events such as drought differ among species and 

are likely influences on species boundaries.  Climate change and associated droughts are 

predicted to increasingly impact North American forests through changes in species distribution 

and composition (Allen and Breshears 1998, McKenney et al. 2007), and forest boundaries are 

expected to shift in response to climate change at a rapid rate (DeSantis et al. 2011).  The prairie-

forest boundary of the Midwest U.S. has shifted to the northeast with past climate change, 

allowing for prairie expansion, and similar shifts in forest boundaries are predicted in response to 

anthropogenic climate change, patterns of land use, and disturbance events (Frelich and Reich 

2009).  With predictions of increases of 3-9°C in summer high temperatures in the central U.S. 

during the 21st century (IPCC 2007), a major factor influencing future forest distributions will be 
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drought related changes in mortality related to increased background stress on forest species 

(Breshears 2005).   

Assessing the responses of co-occurring tree species to recent climatic variation may help 

us project those species’ abilities to cope with future climate change (Graumlich 1992, 

Gebrekistos 2009, Adams et al. 2009).  Stem growth, although a relatively low priority for tree 

carbon (C) allocation, is a sensitive recorder of stresses that can change a tree’s C allocation 

strategy and thus patterns of growth (Waring and Pitman 1985, Pedersen 1998).  As such, tree-

ring widths, and the growth indices derived from them (Fritts 1974, Johnson and Abrams 2009), 

can provide valuable information describing how tree species respond to climatic variation.  

Positive increases in growth in North American trees are typically correlated with increased 

moisture availability, while drought and high temperatures often correspond with decreased 

radial growth (Fritts 1974).  For example, positive growth responses to precipitation are recorded 

in tree ring growth of Quercus rubra, which seems especially sensitive to climatic variation 

during the early growing season (Tardif et al. 2006).  Radial tree growth is expected to be less 

sensitive to climatic variability in Quercus macrocarpa, a relatively drought-tolerant species 

compared to co-occurring Q. rubra, which is typically restricted to mesic sites and appears more 

sensitive to water stress (Dickson and Tomlinson 1996, Abrams 1990).   

More refined measures of tree physiological responses to drought can also be key 

indicators of tree response to climate and, more specifically, the moisture limitations that climate 

often imposes. Two distinct drought survival strategies are theorized for trees.  Increased 

stomatal regulation decreases cavitation risks by decreasing water loss, but limits C uptake (the 

C-starvation hypothesis, McDowell et al. 2008).  Alternatively, relative lack of stomatal 

regulation can increase cavitation risk (the cavitation hypothesis; McDowell 2008).  These 
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theories have been linked to tree drought mortality in the American southwest (Adams et al. 

2009), with differential responses noted among co-occurring species.  Though real-time 

measurements of tree physiological responses to environmental conditions are valuable for 

assessing the degree to which different tree species regulate their stomatal responses to water 

demand (Franks et al. 1997, Bond and Kavanaugh 1999, Ward et al. 2002), we often are 

interested in developing long-term data sets describing past tree responses to known climatic 

conditions.  For such analyses, we can use 18O and 13C signatures of tree-rings, or tree-ring -

cellulose, to assess tree physiological responses to past drought (McCarroll and Loader 2004, 

Marshall and Monserud 2006).  Variation in biomass 18O and 13C is linked to vegetation 

responses to the environment during tissue formation in ways that make these values important 

features of understanding tree strategies for coping with water limitation. 

18O in tree-ring -cellulose is influenced by the 18O value of source water, evaporative 

demand at the stomatal aperture, the extent to which relatively 18O-enriched water at the stomatal 

aperture is mixed with 18O-deplete xylem water during transpiration (the Peclet effect; Farquhar 

and Lloyd 1993, Barbour et al. 2000), and biochemical fractionation within the tree during 

cellulose formation (Farquhar and Lloyd 1993, Roden et al. 2000a).  18O of source water is 

dependent on 18O values of input precipitation, evaporative demand on source water, and the 

depth of water source in the soil profile (Roden et al. 2005).  Variation in 18O in precipitation 

results from Rayleigh distillation processes (Dansgaard 1964), and is more directly linked to 

18O values of cellulose if the tree is accessing surface water.  18O of vegetation biomass tends 

to increase with evaporation, and the discrimination against 18O that occurs during that process 

(Shu et al. 2005).  Because of the 18O enrichment that occurs in leaf water with transpiration, 

18O of organic matter is correlated with humidity (Edward and Fritz 1986, DeNiro and Cooper 
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1989, Robertson et al. 2001),temperature (Burk and Stuiver 1981), transpiration rates (Barbour 

et al. 2000), water balance (White et al. 1994) and vapor pressure deficit (Farquhar and Lloyd 

1993, Roden et al. 2000b) – all features linked to or driving evaporative demand.  The relative 

importance of the Peclet effect may be similar in scale to biochemical fractionation (Barbour 

2000), which occurs during the incorporation of oxygen into cellulose and may dampen the 

evaporative signal captured by leaf water 18O (Saurer et al. 1997a).  13C of tree-ring cellulose 

is influenced by the 13C of atmospheric CO2 and the diffusional and enzymatic discrimination 

against 13C during CO2 flow into the leaf and photosynthesis, respectively (Farquhar et al. 1989, 

Warren 2001).  13C of tree-rings is expected to increase with water stress due to enhanced 

stomatal resistance, associated restricted CO2 availability inside the leaf (ci), and resulting 

decreased discrimination against 13C during C assimilation.  As a result, tree-ring 13C values are 

expected to reflect greater 13C incorporation at drier sites (Saurer et al. 1997b).  Other 

environmental factors like temperature, solar irradiation, and nutrient availability also can 

influence 13C due to their effect on photosynthetic capacity and resulting ci (Francey and 

Farquhar 1982).   

Given that both 18O and 13C of vegetation are linked to stomatal regulation, theory 

predicts strong correlations between tree-ring 13C and 18O if stomatal regulation is a dominant 

feature driving C relations within a tree (Barbour et al. 2000, Barbour et al. 2004).  This concept 

has been used in multiple studies assessing the degree to which C source:sink dynamics are 

governed by stomatal conductance (gs) and how leaf ci/ca, the ratio of internal to external CO2 

concentrations, relates to changing relative humidity (Scheidegger et al. 2000, Barbour 2002).  If 

vegetation 18O and 13C are not related, or exhibit a negative relationship, it suggests that Amax, 

or drivers of this factor, play a greater role in C dynamics than gs (Barbour 2002).   
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In addition to tree-ring 18O and 13C, biomass nitrogen (N) concentrations and stable 

isotopic signatures can aid us in understanding the drivers of tree responses to climate.  Nitrogen 

availability is a critical influence on Amax (Gebauer and Schulze 1991, Warren and Adams 2001) 

and as such, can also influence 13C signatures of tree-rings (Guerrieri et al. 2010). Typically N 

is a limiting nutrient in North American forests (Vitousek and Howarth 1991), and perturbations 

to N dynamics can play a large role in forest productivity although their influence on C 

source:sink dynamics (Aber 1992, Norby 1998).  For example, Guerrieri et al. (2010) linked N 

deposition to enriched 13C of tree rings via a greater change in Amax compared to gs.  Leaf N 

concentration can provide information related to the ability of a tree to generate the 

photosynthetic enzyme Rubisco (Field and Mooney 1986) and thus can be a valuable feature of 

studies assessing vegetation 13C.  More generally, integrative measures of vegetation N 

dynamics and N sources such as foliar 15 N (Robinson 2001) can indicate differences in N 

dynamics between individuals that might help us understand variation in vegetation 13C.   

We combine these approaches to examine the responses of co-occurring Quercus 

macrocarpa (bur oak) and Quercus rubra (northern red oak) in the Midwest of North America to 

recent climatic variability.  We use these responses to understand how these two species may 

differ in their strategies for dealing with moisture limitation, which is predicted to increase in the 

region in the coming decades.  The Quercus genus is globally distributed, and though their 

growth is evidently promoted with increasing moisture availability, they typically can prosper in 

spite of periodic drought conditions (Hanson et al 2005).  Quercus spp. in the Midwest, and 

specifically at the tallgrass prairie-forest ecotone, thus are ideal for exploring species’ responses 

to drought, to project changes in function and ultimately in distribution  under predicted future 

increases in drought conditions (IPCC 2007).   
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Using tree-rings from these co-occurring species, we assessed species’ differences in 

radial growth responses to precipitation, temperature and the Palmer Drought Severity Index 

(PDSI), three indicators of environmental conditions during the past several decades.  We then 

use tree-ring 13C and 18O to infer these species’ ecophysiological responses to past moisture 

availability, and data describing contemporary leaf N status to investigate the degree to which 

responses to moisture availability vs. N dynamics govern tree C dynamics.  We use these data as 

a means of projecting these two species’ growth performance in a future warmer and more 

drought-prone climate.  Because Q. rubra typically occurs on relatively mesic sites (Abrams 

1990), we hypothesized 1) that dry conditions would be associated with greater declines in radial 

growth for Q. rubra than for Q. macrocarpa.  Accordingly, we hypothesized 2) that Q. rubra 

would exhibit relative 13C-enrichment in its tree-rings, with that enrichment more pronounced 

during drought years.  Given the relative drought sensitivity of Q. rubra compared to Q. 

macrocarpa, we further hypothesized 3) Q. rubra would exhibit a more robust positive 

relationship between 13C and 18O than Q. macrocarpa, indicative of gs serving as a relatively 

strong influence on Q. rubra C source:sink dynamics, and that Q. macrocarpa C dynamics 

would be driven to a greater extent by N availability, given strong linkages between leaf N and 

Amax. 

 
METHODS 

Site selection 

We sampled three Q. macrocarpa and three Q. rubra at the University of Kansas Field 

Station’s Briedenthal Tract (95°17’W, 38°75’N), a forested stand of mixed hardwoods at the 

prairie-forest ecotone.  Species composition of trees and understory plants suggest this is a high 

quality, relatively old forest that has never been logged (Fitch and Kettle 1988).  We selected co-
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occurring trees of similar diameter at breast height (DBH), all within 500m of each other.  All 

trees serve as co-dominant contributors to the closed canopy forest, and presumably experience 

the same light conditions as a result (Table 1).  The climate is continental with warm summers 

and periodically cold winters. Average annual precipitation is 1003 mm, with most precipitation 

falling in spring and fall with relatively little winter snowfall (Kettle and Whittemore 1991).  

Potential evapotranspiration averages 1200mm annually (Abrams et al. 1986).  Soils are loam 

with high clay content (Oxyaquic Vertic Argiudolls, Soil Survey Staff).  

Tree core sampling and development of growth indices 

Increment borer cores were sampled at breast height (1.7m) in May 2007.  Four cores (12 

mm diameter) per tree were taken from each cardinal direction per tree.  Tree cores were 

mounted, sanded and scanned into Adobe Photoshop.  We used Image-J software to measure ring 

widths (NIH, Bethesda, MD).  Tree-rings were dated using event years, and cross-dated using 

COFECHA (Holmes 1983).  Ring widths for Q. macrocarpa (n=3; 1953-2007) and Q. rubra 

(n=3; 1960-2007) were standardized in ARSTAN software (Cook 1985) to remove non-climatic 

signals from the tree ring series (Pan et al. 1997) and produce a ring width index (RWI) with 

standardized variance (Cook 1985).  Q. rubra ring widths exhibit a negative exponential form 

over time (Pan et al. 1997), supporting the use of the negative exponential regression performed 

in ARSTAN to standardize the oak chronologies; we assumed a similar function was appropriate 

for Q. macrocarpa.  We observed stronger climate-growth relationships using RWI in 

comparison to basal area increment (Visser 1995), thus we present RWI as our growth index of 

interest.  

Tree-ring isotopic analyses 
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We selected seven time periods of particular interest for isotopic analyses, representing 

four dry periods and three wetter periods according to PDSI estimates for the sites (Table 2; 

Haavik et al. 2008).  Each period lasted approximately three years.  Tree-rings were separated 

using a razor blade to extract the years of interest.  Because earlywood can be derived from C 

fixed during the previous growing season (Hill et al. 1995), we were careful to exclude 

earlywood at the beginning of each ring series of interest.   We generated 1 to 2 g of sawdust for 

each period of interest using a Dremel1 tool (Bosch Tool Corporation, Chicago, IL).   

For 13C and 18O analyses, we extracted-cellulose from sawdust samples following 

procedures from Leavitt and Danzer (1993) and McCarroll and Loader (2004).  Briefly, samples 

were soaked and rinsed in a Soxhlet apparatus with toluene:ethanol solution, then soaked and 

rinsed in ethanol to remove lipids and resins.  To remove lignin components, NaClO2 (6-8 g) was 

added to 1mL of CH3COOH and then 700 mL of DI water was added. Samples were washed in 

NaOH solution to remove holocellulose.  Samples were washed multiple times in DI water to 

remove NaOH, and isolated -cellulose was then dried at 60ºC for 24 h.  Approximately 0.10 mg 

-cellulose was weighed into tin capsules for 13C analysis, and approximately 1 mg of -

cellulose was loaded into silver capsules for 18O analysis at the University of Kansas Stable 

Isotope Laboratory.  Samples were analyzed for 13C on a Carlo Erba elemental analyzer (1110 

CHN Combustion Analyzer, Carlo Erba Strumentazione, Milan, Italy) linked to a 

ThermoFinnigan Delta Plus mass spectrometer (Finnigan MAT, Germany, precision +/- 0.13‰) 

and are expressed as deviations from PDB standard (Craig 1957, Farquhar et al 1982).  18O 

analysis via TC/EA-IRMS provided values expressed as deviations from V-SMOW.  Isotopic 

values are presented using the conventional (delta) notation.  
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Contemporary leaf and soil sampling 

Full sun leaves were collected via shot gun sampling in July and September of 2010.  

Leaves were immediately sealed flat in plastic bags and placed in a cooler.  Upon return to the 

lab, we weighed and scanned leaves for area in Image J software (NIH, Maryland, US).  After 

scanning, leaves were dried at 60°C for 48 hours and crushed to a fine powder.  Leaf material 

from five leaves from each tree, except Q. rubra tree three during September which is 

represented by only two leaves, was weighed into tin capsules for 13C, 15N, [C], and [N] 

analyses on the instrumentation used for tree-ring -cellulose 13C analyses. 

Climate Data 

 We obtained average annual temperature, precipitation and PDSI records from the 

National Oceanic and Atmospheric Administration website (http://www1.ncdc.noaa.gov/ 

pubdata/cirs) for the appropriate region in Kansas.  Both precipitation and temperature, along 

with potential evapotranspiration, runoff and soil moisture, are incorporated into a 

meteorological drought measure in PDSI (Palmer 1965, Oladipo 1985).  PDSI is appealing 

because it represents a combination of factors that correspond to the degree of drought severity 

(Alley 1984).   We also developed more refined, seasonal climate indices to assess the influence 

of climate in specified months on radial growth throughout the growing season.  We summed 

precipitation from May to September as growing season values, April to May as pre-growing 

season, April to August as pre-growing in addition to growing season,  August to September as 

late growing season, and October to April as winter precipitation for each of our seven periods of 

interest, in addition to using annual sums.  Indices of annual and various growing season values 

for temperature and PDSI were developed in the same manner.  
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Statistical Analysis 
We corrected tree ring 13C values by an annual correction value of –0.025‰ to account 

for 13C-deplete additions of CO2 to the atmosphere via fossil fuel emissions since 1950 (Francey 

et al. 1999). We assessed the strength of relationships between climate indices and tree radial 

growth with tree growth data ranging 1953 to 2007 for most, but not all, trees (Table 1) using 

Pearson product-moment correlation coefficients.   Lag responses between growth indices and 

the previous year’s environmental data (antecedent climate) were also assessed.  Correlations 

were examined between 13C and 18O of tree-ring a-cellulose and also between leaf 15N and 

13C on tree ring 13C and 18O.  We tested for the influence of moisture availability on radial 

growth and 13C and 18O using ANOVA (PROC ANOVA, SAS 9.1.3, Cary, NC).   Repeated 

measures ANOVA (PROC MIXED, SAS 9.1.3, Cary, NC) was used to assess the influence of 

species, time, and their interactions on tree-ring -cellulose 13C and 18O.  We assessed 

correlation relationships between leaf isotopic signatures and three different measures of leaf N:  

Nmass (mg N gleaf-1), Narea (mg N mleaf-2), and leaf C:N ratios (by mass).  Nmass captures the mg of 

N per g leaf weight and Narea captures mg of N per leaf meter.   ANOVA was also used to test for 

the influence of leaf N and 15N on leaf 13C.  Because individual leaf data were not independent 

of each other, we averaged individual leaf data on a per-tree basis, and performed statistical 

analyses on these averaged data.  This resulted in a reduction in statistical power (n=3).  In 

relevant plots, we display individual leaf data as well to demonstrate the general trends and 

spread of the entire data set. We determined statistical significance at P< 0.05, and report all 

instances of P<0.10.   
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RESULTS 

Radial growth responses to climate 

 Relationships between RWI and the two climate variables most closely related to 

moisture availability, precipitation and PDSI, exhibited more frequent and stronger degrees of 

significance for Q. macrocarpa than for Q. rubra (Table 3).  Averaged RWI for Q. macrocarpa 

and Q. rubra exhibited no significant trends across time, but exhibited significant, positive 

relationships with average annual PDSI (R2=0.52, P<0.0005, n=3 and R2=0.36, P<0.05, n=3, 

respectively).  Precipitation also exhibited significant, positive relationships with RWI in Q. 

macrocarpa and Q. rubra (Table 3).  Temperature was a significant, negative influence on Q. 

macrocarpa RWI, but not Q. rubra.   Linear regressions revealed similar slopes for RWI with 

precipitation, PDSI, and temperature for both species.   Quercus rubra radial growth responses to 

relatively dry conditions did not significantly differ from Q. macrocarpa.   

 

Tree- ring -cellulose 13C and 18O 

Quercus macrocarpa consistently displayed significantly lower 13C values compared to 

Q. rubra (-25.3±0.4 and -24.1±0.1‰, respectively; n=3; Figure 1a).  As with 13C values, Q. 

macrocarpa exhibited consistent 18O-depletion in tree-ring -cellulose relative to Q. rubra, 

(28.0±0.3 and 29.9±0.4‰, respectively; n=3, Figure 1b).   Tree ring -cellulose 13C and 18O 

exhibited no significant relationships with annual or seasonal measures of precipitation, PDSI or 

temperatures in either species (Figure 1a and 1b).  A significant, positive relationship was found 

between 13C and 18O in Q. macrocarpa (R2=0.78, P<0.001; Figure 2).   
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Contemporary leaf data 

    We observed declines in tree-averaged leaf N concentration across the 2010 growing 

season, reflected as increases in leaf C:N ratios (Fig. 3).  Leaf C:N varied from July minimums to 

September maximums in both Q. macrocarpa and Q. rubra (12.97 to 20.47 and 14.05 to 20.63, 

respectively).   July leaf C:N was significantly different between Q. macrocarpa and Q. rubra 

(P<0.005; 14.4±1.1 and 15.4±0.60, respectively), but leaf C:N was not significantly different 

between species in September.  Across both species, the seasonal shift in leaf C:N was associated 

with a concurrent change in leaf 13C (Fig. 4).  In September, we observed a significant, positive 

relationship between Q. macrocarpa leaf 13C and C:N ratio (R2= 0.99, P<0.05; Figure 4a) and a 

significant, negative relationship between Q. rubra leaf 13C and C:N ratio (R2= 0.98, P<0.07; 

Figure 4b).  We observed no significant relationships for either species in July. The [C] of Q. 

macrocarpa leaves was significantly lower than Q. rubra, with an average offset of 1.6 mg C 

gleaf-1  in July and 2.0 mg C gleaf-1 in September.  Leaf Nmass declined significantly between July 

and September in Q. macrocarpa and Q. rubra (3.3±0.1 to 2.5±0.0% and 3.1±0.0 to 2.6±0.1 mg 

N gleaf-1, respectively).  13C values exhibited more enriched values in July than in September in 

Q. macrocarpa and Q. rubra (-28.2±0.2 and -30.1±0.2‰; -27.8±0.3 and -29.0±0.4‰ 

respectively; Figure 4).   

 Leaf 15N ranged from 1.9 to -2.0‰ (mean of -0.7±0.3‰) in July and 0.3 to -2.3‰ 

(mean of -0.6±0.2‰) in September in Q. macrocarpa, and from 1.4 to -1.3‰ (mean of 

0.2±0.2‰) in July and 1.7 to -0.7 (mean of 0.6±0.2‰) in September in Q. rubra.  15N did not 

differ significantly between July and September in either species, but was significantly greater 

for Q. rubra.  Q. macrocarpa and Q. rubra both exhibited near significant relationships between 

15Nand C:N in September (P<0.01, R2=0.98 and P<0.10, R2=0.96, respectively; Fig. 5).   
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DISCUSSION 
 

Tree-ring growth patterns and stable isotopes 

Tree-rings of species at the edge of their range typically exhibit great sensitivity to 

climate (Fritts 1976, LaMarche 1978, Jump et al. 2006), and bole growth exhibits positive 

responses to moisture where this factor is relatively limiting (Fritts 1976, Tardif and Bergeron 

1997).  Quercus rubra typically is found on relatively mesic sites (Abrams 1986), and the Q. 

rubra used in this study occur at the very western edge of their distribution (Sander 1965), where 

annual precipitation is relatively low.  Given these features and the propensity for Q. macrocarpa 

to access relatively deep water sources (Struve 2006) we expected greater growth sensitivity 

during wetter periods and more sharply decreased radial growth during dry conditions in Q. 

rubra relative to Q. macrocarpa.  We did not observe these trends over the ~5 decades of growth 

assessed in this study.   

Relatively deep water within soil profiles frequently exhibits 18O-depletion (Allison 

1983, Barnes and Allison 1983, Kendall and Caldwell 1998).  Though we do not know the 18O 

of shallow vs. deep water sources in these forests, the observed 18O-depletion of Q. macrocarpa 

tree-ring -cellulose is consistent with more deeply rooted Q. macrocarpa (Fig. 1b).  To the 

extent that biomass 13C  reflects integrated tree water relations (Leavitt and Long 1989, 

Ehleringer et al. 2000), tree-ring 13C values further imply that Q. macrocarpa trees experienced 

less moisture stress than Q. rubra (Fig. 1a).  Further, the significant correlation between tree-ring 

13C and 18O in Q. macrocarpa implies that C dynamics in these trees were governed to a large 

extent by stomatal regulation, and less so by drivers of Amax (Barbour et al. 2002); such a 

correlation was not observed in Q. rubra (Fig. 2).  This, combined with the weaker growth 

response of Q. rubra to moisture-related climate parameters (Table 2) suggests that growth of 
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these Q. rubra individuals was influenced by factors other than water relations and associated 

stomatal regulation to a greater degree than neighboring Q. macrocarpa.   

  

Linking contemporary leaf samples to tree-ring data 

 Given the influence of leaf photosynthetic sink strength on biomass 13C (Farquhar et al. 

1982) and the importance of N as a driver of that sink (Evans 1983, Evans 1989, Reich and 

Walters 1994), exploring N dynamics in these trees may provide a means of elucidating the 

relative importance of drivers of growth other than stomatal regulation.  Working with N in tree-

rings can be problematic due to its low concentrations and apparent mobility after ring formation 

(Cutter and Guyette 1993, Poulson 1995) but we can employ contemporary leaf samples from 

these trees to help us understand the relative degree to which N dynamics, vs. stomatal regulation 

of water relations, govern biomass 13C values and, more specifically, C dynamics of these 

species.  We can use these data to infer what may have driven past differences in growth 

dynamics and stable isotopic signatures, now reflected in tree-ring data. 

 The decrease in leaf C:N over time with season was concurrent with an increase in leaf 

13C (Fig. 4).  Tree resorption of multiple compounds may have begun in anticipation of leaf 

senescence by our sampling date in September, possibly driving the higher C:N ratios at that 

time (Killingbeck 1996).  However, mobilization and resorption of C-rich compounds would 

likely result in 13C-enrichment of leaves, not the 13C-depletion observed (Gessler et al. 2009, 

Bruggemann et al. 2011).  The negative relationship between Q. rubra leaf 13C and C:N in 

September (Figure 4b) thus implies that these leaves experienced 13C-enrichment with greater N 

concentrations.  Given the positive influence of leaf N on C fixation rates (Evans 1983, Evan 

1989, Reich et al. 1991), such data are consistent with the idea that discrimination against 13C-
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CO2 during fixation declines as C sink strength increases. In contrast, we observed a non-

significant trend of a positive relationship between Q. macrocarpa leaf 13C and C:N in 

September (Figure 4a).  This counter-intuitive pattern suggests that a factor other than N 

availability is driving biomass 13C and associated C dynamics.  Congruent with this idea is the 

positive relationship between tree-ring 13C and 18O observed in this species, and the associated 

implication that stomatal regulation is more of a driver of C dynamics than drivers of Amax.  

 Nitrogen dynamics also appear to differ between these two species when we explore leaf 

15N.  Both species exhibited a decline in leaf 15N with increasing C:N in September, but not in 

July (Figure 5).  Studies in semi-arid systems have linked low values of biomass C:N to high 

15N (Pataki et al. 2008), with changing slopes of this relationship across seasons (Goedhardt et 

al. 2010).  Data in the current study suggest that such a relationship does not emerge in these tree 

species until late in the growing season.  If the relationships exhibited in September were driven 

by resorption of nitrogenous compounds prior to senescence, we would expect 15N-enrichment as 

leaf C:N increased.  Regardless, in Q. rubra, leaf 15N does not appear linked to resorption 

processes (Kolb and Evans 2002).  Instead, the data imply that trees successful at obtaining 

relatively more N in September acquired N from 15N-enriched sources (Pataki et al. 2008).  Soil 

15N values typically increase with depth in forest soil profiles (Billings and Richter 2006, 

Hobbie and Ouimette 2009), as we observed at this site (data not shown).  We might predict, 

given the propensity of Q. macrocarpa for deep rooting (Abrams 1990, Struve 2006) and its 

generally 18O-depletion in tree-ring -cellulose, that its 15N would also reflect N sources from 

deeper in the soil profile.  However, we observed the opposite trend; Q. rubra leaf 15N was 

significantly greater than Q. macrocarpa.  Mycorrhizal symbionts also likely are relevant to 

these trees’ 15N values given mycorrhizal transfer of 15N-deplete compounds to their hosts 
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(Hogberg et al. 1997, Hobbie et al. 2006), but we know of no study suggesting a different 

propensity for such symbioses between these species.  Species can experience differences in the 

degree to which nitrate is assimilated in the root vs. the shoot (Gebauer and Schultze 1997), 

which in turn can influence foliar 15N (Kolb and Evans 2002); it is feasible that Q. rubra may 

assimilate proportionately less nitrate in its roots, resulting in more 15N-enriched nitrate being 

assimilated in its leaves.  This would result, all else equal, in Q. rubra leaf 15N-enrichment.  

Though these oaks’ leaf 15N values imply different N dynamics between these species, it 

remains unclear why leaf N status of these species’ was linked in divergent ways to leaf 13C. 

 Contemporary leaf data certainly are not a conclusive means of assessing past drivers of 

tree growth.  However, in spite of our inability to elucidate drivers of different N dynamics 

between these species, the leaf data in conjunction with tree-ring data are suggestive of some 

important differences in drivers of C dynamics in these co-occurring oaks.  The September 

values of Q. rubra leaf 13C are linked to leaf N in ways predicted by isotopic theory, and 

suggest that enhanced biomass 13C is driven, in part, by greater N availability.  These data 

provide one line of evidence that biomass 13C in Q. rubra is significantly governed by at least 

one factor governing C sink strength.  This concept corresponds with tree-ring data, which for 

this species suggest that variables driving Amax are likely more tightly linked to tree C dynamics 

than variables linked to gs.  In contrast, Q. macrocarpa tree-ring data suggest that gs is a strong 

driver of biomass 13C and associated C dynamics; correspondingly, Q. macrocarpa leaf data 

indicate no relationship between biomass 13C and N predicted by isotopic theory.   

 

 

 



 

58 
 

Linking past oak performance to future climate change 

The distinct drivers of C dynamics between these two oak species suggested by these data 

have important implications for their ability to persist in this region in a changing climate.  

Climate projections suggest increase frequency of extreme events, elevated maximum 

temperatures, and increased frequency and duration of drought in the Midwest (IPCC 2007).  

The greater dependence of Q. macrocarpa growth on precipitation-derived moisture availability 

relative to Q. rubra, contrary to our predictions, as well as the negative response of Q. 

macrocarpa to temperature, suggests that this species will be more sensitive to such climactic 

changes.  In particular, the positive relationship between tree-ring 13C and 18O in this species is 

a strong indication that the dominant driver of this species’ C dynamics is stomatal regulation of 

water loss and, concurrently, CO2 availability.  In contrast, Q. rubra exhibited weaker 

relationships between RWI and climate parameters.  Further, Q. rubra exhibited no relationship 

between tree-ring 13C and 18O, suggesting that factors other than stomatal response to water 

availability was a dominant driver of its C dynamics.  Indeed, we observed a significant, negative 

relationship between leaf 13C and C:N in this species, suggesting that Q. rubra leaf 13C and, 

presumably, tree-ring 13C as well, is linked to N availability in a different manner than in Q. 

macrocarpa, which exhibited a significant, positive relationship between leaf 13C and C:,N not 

predicted by isotopic theory.    We suggest that further research on C source:sink dynamics, as 

elucidated via relationships between biomass 13C and 18O, and 13C and N status, can help us 

predict drivers of tree species success in an altered climate.   
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TABLES AND FIGURES 
 

Site Age Oldest Tree ring DBH (cm) Height (m) 

Quru1 49 1958 38.6 17.0 

Quru2 41 1966 63.5 15.2 

Quru3 44 1963 58.9 16.6 

Quma1 49 1958 87.6 14.6 

Quma2 55 1952 81.54 17.5 

Quma3 55 1952 79.2 12.1 

 
Table 1. Diameter at breast height (DBH), height, approxmate age of each of the Q. rubra (Quru) 
and Q. macrocarpa (Quma) trees from the University of Kansas Field Station, Kansas, USA.   
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2. Palmer Drought Severity Index (PDSI) for selected periods of interest (drought; 
negative PDSI and wet; positive) derived from National Oceanic and Atmospheric 
Administration climate records.  Values represent monthly values averaged for the specified 
periods (~3 years) for the single climate region encompassing sampling locations at the 
University of Kansas Field Station, Kansas, USA. 

Time Period Drought or Wet Most extreme PDSI Mean monthly 
PDSI±SE 

1952 - 1956 Drought -5.51 -2.57±0.09 

1957 - 1959 Wet 4.71 1.77±0.14 

1962 - 1967 Drought -5.39 -1.52±0.10 

1972 - 1975 Wet 5.58 2.68±0.09 

1979 - 1981 Drought -4.11 -2.09±0.15 

1992 - 1995 Wet 3.75 1.52±0.11 

1998 - 2001 Drought -3.44 -1.16±0.09 
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Figure 1. Quercus rubra and Q. macrocarpa 13C (a) and 18O (b) of -cellulose over time at a 
forested site at the University of Kansas Field Station, Kansas, US. Quma averaged values are 
represented by filled circles and Quru by open circles. Error bars are one standard error of the 
mean.   
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Figure 2. Relationship between tree-ring -cellulose 13C and 18O from Quercus macrocarpa 
(Quma, filled circles, n=3) and Quercus rubra (Quru, open circles, n=3) at a forested site at the 
University of Kansas Field Station, Kansas, US.  Significant linear regression for Quma is 
represented by black line (R2=0.78, P<0.001); Quru does not exhibit a significant relationship. 
Error bars are one standard error of the mean.  
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Figure 3:  Leaf C:N (mass basis) for Q. macrocarpa (Quma, n=3) and Q. rubra (Quru, n=3) 
leaves collected in July and September 2010 at a forested site at the University of Kansas Field 
Station, Kansas, US.  Significant differences were found between Quma and Quru C:N in July 
(P<0.005), but no difference between species in September. Both species exhibited higher C:N in 
September (P<0.05) relative to July. Error bars are one standard error of the mean.   
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Figure 4. Relationship between leaf 13C and C:N for Q. macrocarpa (Quma, n=3) and Q. rubra 
(Quru, n=3) from a forested site at the University of Kansas Field Station, Kansas, US.  Filled 
symbols represent July and open symbols represent September.  Black edged symbols with error 
bars represent individual trees, and gray edged symbols represent individual leaves (5 per tree, 
except for Quru tree 3 in September represented by 2 leaves).  Significant linear regressions of 
tree-level data are represented by black lines.  Error bars are one standard error of the mean.  
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Figure 5: Relationship between leaf 15N and C:N for Q. macrocarpa (Quma, n=3) (a) and Q. 
rubra (Quru, n=3) (b) from a forested site at the University of Kansas Field Station, Kansas, US.  
Quma leaf data are represented by circles and Quru leaf data is represented by triangles. Filled 
symbols represent July and open symbols represent September. Black edged symbols with error 
bars represent individual trees, and gray edged symbols represent individual leaves.  Significant 
linear regressions of tree-level data are represented by black lines.  Error bars are one standard 
error of the mean.   
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CHAPTER 3: Forest response to disturbance: exploring tree-ring growth patterns with 
nonlinear dynamic models 

 
Abstract 

Disturbance events are predicted to increase in the future and can impact forest ecosystem 

distribution and function.  Tree rings, as a singular recorder of multiple environmental and 

anthropological variables impacting growth, may be useful tools for assessing a forest’s 

resilience to disturbance.  I base my predictions on the assumption of stable climate-growth 

relationships over time founded on the principle of uniformitarianism, proposed by 18th century 

geologist James Hutton.  This principle is central to historic climate reconstruction from tree 

growth chronologies.  Nonlinear growth responses of trees to precipitation and temperature and 

shifting correlation analyses are suggested by some dendrochronological research and have 

challenged assumptions of stable growth-climate relationships over time.   The multivariate 

regressions or correlations typically used to explore growth-climate interactions assume a linear 

relationship, but often these analyses consider only a single climate variable and are inadequate 

for revealing nonlinear growth dynamics that may be associated with disturbance impacts in 

forests.  I use two models to assess linear vs. nonlinear growth dynamics of northern red oak 

trees (Quercus rubra) in two forests experiencing a mortality-inducing disturbance event: i) 

simplex models which determine the dimensionality of a time-series and ii) S-maps projections 

which use simplex dimensionality as model inputs to detect nonlinear dynamics in time series.   

I predicted that Q. rubra remaining healthy through the disturbance event would exhibit 

linear growth dynamics, while neighboring trees that experienced morality would exhibit 

nonlinear growth dynamics.  I also predicted that dying trees would exhibit a shift in their growth 

dynamics from linear to non-linear after the disturbance event.  I explored the impacts of 

changing time series length, a key feature of time series models, on detection of nonlinear 
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dynamics in an effort to increase the applicability of forecast modeling in tree-ring studies.  In 

contrast with my hypotheses, I found that healthy Q. rubra are more likely to exhibit nonlinear 

growth dynamics relative to dying trees, whose growth patterns were consistently nonlinear 

throughout their lives.  I also find evidence that tree-ring series shorter than 30 years limit the 

ability to detect nonlinear dynamics in time series, an important consideration for use of these 

models in the tree-ring community.  Nonlinear dynamics in time series of healthy trees may 

represent a greater ability to cope with variability, and thus an ability to capitalize on resource 

pulses, relative to the linear dynamics expressed by dying trees.  I suggest that nonlinear time 

series modeling represents a way forward for dendrochronologists exploring how past patterns of 

tree growth can help us predict forest responses to disturbance events, which are projected to 

increase in frequency and severity in the future.  However, further application of these models in 

forest ecosystem research is needed to increase their applicability in understanding the 

vulnerability of trees to disturbance impacts.   

 

INTRODUCTION 

Forest ecosystems can exhibit strong responses to disturbance events, which may result in 

wide-spread mortality or, more subtly, altered primary productivity of tree species (Breshears et 

al. 2005, Ciasis et al. 2005).  Enhancing the ability of an ecosystem to resist change and maintain 

function in response to variable conditions is the goal of adaptive management (Scheffer et al. 

2009), which is especially important with projected increases in the frequency of disturbance 

events in the coming decades in many forested regions (IPCC 2007).  Disturbance events may be 

broadly defined as periodic interference in the availability of resources, substrate or 

environmental conditions that impact ecological functioning of an ecosystem (White and Pickett 
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1985).   Clear-cutting and fires represent large-scale disturbances that impacted entire forest 

stands particularly during 19th century European settlement of North America (Nave et al. 2011).   

Disturbance events impacting forests are increasing in frequency in North America (Dale et al. 

2001), and appear related to land use change, pollution, and more natural events like pest 

infestations, windthrow, and droughts (Hanson and Weltzin 2000, Haavik et al. 2008, Ulanova 

2000, Dale et al. 2001).  A forest is considered resilient to disturbance if it is able to endure 

disturbance events while maintaining a stable state (Holling 1973), or is able to absorb 

disturbance events with little change in function (Folke et al. 2004).   

Tree ring chronologies may be useful tools for assessing a forest’s resilience to 

disturbance.  Tree-rings have often been employed to understand tree population dynamics, as a 

singular recorder of multiple environmental and anthropological variables impacting growth.  

Tree radial growth is an integrated measure of many factors influencing the carbon (C) 

source/sink dynamics of a tree on an annual basis (Schweingruber 1996), and is particularly 

useful as a measure of the impacts of disturbance and climate factors such as drought, 

temperature and precipitation.  The assumption of stable climate-growth relationships over time 

is central to historic climate reconstruction from tree growth chronologies (Fritts 1976).  Tree-

ring research often uses the principle of uniformitarianism, founded by geologist James Hutton, 

to justify the use of growth-climate relationships to reconstruct past climate conditions (Fritts 

1976, Carrer and Urbanati 2006).  Typically, growth-climate relationships are explored as linear 

relationships through multivariate regressions or correlations (Fritts 1976, Carrer and Urbanati 

2001).  Some dendrochronological studies find evidence of nonlinear growth responses of trees 

to precipitation and temperature, however (Graumlich and Brubaker 1986, Graumlich 1991, 

Driscoll et al. 2005).  The assumption of stable growth-climate relationships has also been 
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challenged through the use of shifting correlation analyses that have revealed varying climate-

growth correlation strengths over time (Carrer and Urbanati 2006, Reynolds-Henne et al. 2007), 

but often these analyses are associated with a single climate variable and are inadequate for 

revealing nonlinear responses (Graumlich and Brubaker 1986, Correr and Urbanatic 2001).   

Forecasting models, invoked in multiple systems ranging from biological (Hsieh et al. 

2005; Sugihara et al. 1996, Glaser et al. 2011) and astronomic (Kilcik et al. 2009) to economic 

(Schittenkopf 2000), are useful for detecting nonlinear dynamics in time series data sets.  To our 

knowledge, these models have not been applied to patterns of tree growth over time in spite of 

their successful application in multiple systems for elucidating distinct patterns of functioning 

between populations.   Forecasting models often require large quantities of data, which can limit 

the number and type of systems in which they are applied.  Tree-ring studies, however, are often 

characterized by relatively lengthy chronologies of growth measurements, ranging from multiple 

decades to centuries.  Concatenation of tree-ring data sets can further increase the statistical 

power of model output, and permits application of forecast modeling even to relatively short 

tree-ring time series (Sugihara 1994; Hsieh et al. 2008).  

We explore disturbance impacts on temporal dynamics of tree growth, and forest 

resilience to disturbance, using a recent, regional scale oak decline event in northwest and west-

central Arkansas, U.S.  The decline and eventual mortality of a significant fraction of northern 

red oaks (Quercus rubra) in these forests was linked to cyclical droughts during the previous 

decades and a subsequent, wood-boring insect outbreak (Stephen et al. 2003, Haavik et al. 2008, 

Haavik et al. 2011, Reed et al. in review).  After a severe drought period, wood-boring insect 

infestations increased in the mid-1970s and tree growth rates declined in severely infested trees.  

These trees eventually experienced mortality in the early 21st century (Stephen et al. 2003).  
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Previous work at one of these sites demonstrates different degrees of influence of stomatal 

control and nitrogen status on the C dynamics of dying and apparently healthy trees across 

multiple decades, implying that these trees employed distinct strategies for growth (Reed et al. in 

review). 

We attempt to relate the impacts of this disturbance event – increased prevalence of 

infestation – on patterns of Q. rubra growth dynamics.   We present forecast modeling as a useful 

tool for understanding tree-ring growth patterns in response to forest disturbance, assess the 

degree to which disturbance signals can be captured as linear vs. nonlinear growth dynamics 

among co-occurring Q. rubra, and determine if trees apparently resilient to these disturbances 

exhibited distinct growth patterns from those that eventually died.  Given the foundational tree-

ring assumption of stable climate-growth relationships over time (Fritts 1976), we hypothesized 

that, if disturbance signals could be captured using forecast modeling, the dynamics of trees that 

remained apparently healthy during the drought and insect infestation would exhibit linear 

dynamics – representing a predictable growth response to environmental conditions – relative to 

neighboring trees which experienced decline.  We also hypothesized that declining or dying trees 

would exhibit a shift to non-linear dynamics after infestation levels increased substantially in the 

1970s.   
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METHODS 

Ecological data 

 We developed ring width indices (RWI) for Q. rubra sampled from two forested regions 

in Arkansas, USA:  the Boston Mountains (Region 1; n=24) and the Ouachita Mountains (Region 

2; n=46).  Detailed site information is available in Fierke et al. (2005).  Briefly, both regions 

experienced hot summers and mild winters with mean annual temperature is 16°C, and wet 

spring and fall seasons result in 124 cm total precipitation in the Boston Mountains and 150 cm 

in the Ouachita Mountains (National Climatic Data Center 2009).  Soils are fine sandy loam in 

Region 1 and Clebit loam soils in Region 2 (Soil Survey 2012).     

We measured ring widths for four radii derived from each of 24 tree cookies from a 2007 

felling in the Boston Mountains, and from two tree cores extracted from 46 trees in the Ouachita 

Mountains, sampled in 2009.  Radii for trees from the Boston Mountains were located along 

each of the four cardinal directions, and cores from Ouachita Mountain trees were extracted from 

east and west directions with adjustments made to avoid reaction wood when needed. We 

assigned each tree a health status classification.  In the Boston Mountains the classification 

integrated percent crown dieback and abundance of wood-boring insect scars (Fierke et al. 

2005); in the Ouachita Mountains, tree health was classified using percent crown cover.  We 

defined class, or health status, of studied trees as healthy in trees with percent crown dieback 

<1% or percent crown cover >99% (class one); declining in trees experiencing moderate levels 

of wood-boring insect infestation and crown dieback or percent crown cover of 33-66% (class 

two); and dying in trees experiencing high levels of boring insect infestations and crown dieback 

>66% or percent crown cover < 44% (class three; Fierke et al. 2005).  
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We measured annual raw ring width using Image-J software (U.S. NIH, Bethesda, MD) 

and standardized these raw measures (mean = one) to generate a ring width index (RWI) for each 

tree.   We analyzed six healthy, nine declining, and nine dying well-interspersed, neighboring 

trees from the Boston Mountains.  Time series for these trees were developed from RWI 

representing the average of the four radii.  For Ouachita Mountain trees, RWI represented the 

average of two cores derived for each of 24 healthy, nine declining, and 13 dying well-

interspersed, neighboring trees.  Our tree-ring growth series all represented at least 50 years of 

growth, but no more than 100 years, due to clear-cutting of the region during 19th century timber 

harvests (Soucy et al. 2005).  

 

Analytical Methods 

Nonlinear models 

Nonlinear forecasting models estimate system dimensionality (simplex models; Sugihara 

and May 1990) and detect nonlinear dynamics (s-maps; Sugihara 1994) using out-of-sample, 

cross-validation forecasting algorithms.  Employing forecasting models avoided the structural 

uncertainty associated with incorrectly specified models which could decrease our ability to 

detect trends (Charles 1998).  However, this approach did not, strictly speaking, test the 

mechanisms involved in state changes, preventing its use for defining the drivers of changes in 

ecosystem stable state dynamics (Scheffer et al. 2009).  Rather, we applied this approach to test 

for relationships between dynamic signatures in time series (i.e., linear vs. nonlinear dynamics) 

and health status of trees.  We analyzed standardized (mean=0, standard deviation =1) first 

differenced time series (difference in xt-1-xt, where x is the RWI, t is a specified time point, and t-

1 is the time point prior to t).  The use of first differences removed secular trends and increased 
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the density of data points, which enabled greater ability to detect attractors (Sugihara and May 

1990).  In this instance, attractors represented the major factors impacting tree population 

dynamics. The use of attractors was based on the concept that, in this case, the pattern of RWI in 

an E-dimensional space will exhibit a trend around a point (the attractor) over a sufficient time 

period, and this trend can be used to forecast the trajectory of tree growth (Lorenz 1963). 

We employed two nonlinear forecasting models to examine dynamics in individual trees: 

simplex projection, which determines dimensionality (Sugihara and May 1990), and sequential, 

locally weighted, global linear maps, or S-maps, which detect nonlinear dynamics of a time 

series (Sugihara 1994). Both simplex projection and S-maps use shadow attractors (Takens 1981, 

Sugihara 1994, Hsieh et al. 2008) to explore signals in one variable, in this instance the time 

series of RWI, to address questions relevant to forest dynamics.  Shadow attractors are 

representations of real attractors and represent a few factors, narrowed down from the vast 

number of factors that can influence a population (Hsieh et al. 2008).  We constructed shadow 

attractors from the lags of time series, and plotted them to produce a trajectory of a population to 

detect underlying dynamics (Glaser et al. 2011).   The use of attractors is a key difference 

between these models and autoregressive models.  Simplex projection and S-maps models are 

both cross-validated using out-of-sample forecasting.  In other words, the process builds a model 

using a portion of our time series, and then forecasts the excluded portion, or prediction vector 

(Sugihara and May 1990).  Optimal models were selected based on criteria introduced below.  In 

addition to our method overview, model elaborations are available in Hsieh et al. 2005 and 

Glaser et al. 2011; here we summarize the models.   
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Simplex projection models 

The reconstructed attractors from individual tree growth series reflected repeating 

patterns underlying tree growth dynamics.  The length of the library vector was directly reflected 

in the number of time lags associated with the series, and the number of time lags was defined as 

E, the embedding dimension. Typical representation of standardized tree-ring growth across time 

produced a one- dimensional display of growth dynamics across a coordinate space represented 

by time (xt).   When series were represented in multiple dimensions, the geometry of repeating 

patterns was detected in a coordinate plot (E=2; xt-1, xt; Fig 1a).  Attractors, or the major factors 

influencing underlying population dynamics, were detected in data sets based on multi-

dimensional lagged-coordinate plots with coherent geometry.  The geometry around attractors 

provided our forecasts, and the forecasting skill associated with each model allowed us to select 

E (for example: E=3; xt-2, xt-1, xt; Fig. 1b).  Repeating patterns are often observed in nature 

(Glaser et al. 2011), and tree-rings were no exception.   

Simplex projection calculates the degrees of freedom of the time series and reduces a 

system into dimensions E which define the shape of the attractor (Hsieh et al. 2008).  Low E 

typically means a system can be explained by a simple model because fewer variables influence 

system dynamics (Hsieh et al. 2008).  Increasing E represented increasing complexity of a 

system and typically implies greater amounts of data are required for reconstructing the 

underlying geometry around attractors relative to lower E (Ruelle 1989, Hsieh et al. 2008).  A 

nearest neighbor algorithm using Euclidean distances is employed to determine trajectories 

around a shadow attractor.  The trajectory of the E+1 nearest neighbors (circles around the 

triangle in Fig1a) is used to produce a forecast.  The more complex a system (higher E), the more 

difficult it would be to develop a model and therefore produce robust predictions for the system.   



 

75 
 

A prediction vector is held out of the model data set and used to cross-validate model 

projections; this vector is not model output.  We performed iterative tests of E (E=1 through 10) 

and use the selection criteria of ρ, the Pearson correlation coefficient found between the observed 

and forecast values of the time series, and the mean absolute error (MAE), found from the 

difference between observed and forecast values.  High ρ and low MAE are used for model 

selection in both simplex projections and S-maps.  We used the first difference, the derivative, to 

run these models.  The highest values of ρ and lowest MAE were used as criterion for selecting E 

values, which were input for our S-maps.  In most cases these values corresponded within the 

same model, but if the highest ρ did not correspond to the lowest MAE for the same model, we 

used ρ as the most weighted model selection criteria. We employed t-tests to test for significant 

differences (P<0.05) in the E values between health classes and between regions 1 and 2 

(SAS Institute Inc. 2004).    

S-maps 

S-maps quantified the degree of nonlinearity in a time series (Casdagli 1992, Sugihara 

1994).   Nonlinear dynamics of a time series were detected if out-of-sample forecasts were better 

modeled by nonlinear rather than linear models as the model adjusted to an increasingly 

nonlinear structure with each iteration.   In S-maps, the library vectors (circles in Fig. 1a) were 

weighted depending on their distance from the prediction vector (triangle). The exponential 

weighting on the S-maps, the nonlinear tuning parameter θ, classified dynamics; when θ=0, the 

data were best modeled with a global linear model, and θ>0 indicated the data were best modeled 

with a local nonlinear model.  The S-maps weighting function (w(d)) was applied as  

w(d)=e -θ d/mean d                                  (2.1) 
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where d was Euclidean distance between the neighboring vector and prediction vector, and mean 

d was the mean distance between neighbors (Sugihara 1994).  When θ=0, all neighbors in the 

area around the prediction vectors were equally weighted and when θ>0, the weighting was 

given by equation 2.1.  The time series was deconstructed into vectors of length E, derived from 

the simplex model, and the geometry of all vectors was used simultaneously to produce one-

year-ahead forecasts.  The forecasted trajectories of the data were used to cross-validate and 

select the best form of the model.   

 The highest value of ρ, the Pearson correlation coefficient, or lowest mean absolute error 

(MAE) were used as selection criteria for the best model.  The degree of nonlinearity in the 

system corresponded to the increase in correlation (Δρ) or decrease in MAE (ΔMAE) associated 

with the forecast: Δρθ= ρθ=best – ρθ=0 and ΔMAEθ=|MAEθ=best – MAEθ=0|, where ρ was the Pearson 

correlation coefficient, and the improvement in ρ was used to detect nonlinear dynamics. Δρ 

represented the degree of nonlinearity.  MAEmin was the lowest mean absolute error used for 

model selection, ΔMAEmin was a measure of nonlinear dynamics, and ΔMAEmin P-value was the 

significance of the improvement in the error between linear and nonlinear models (Hsieh et al. 

2008, Glaser et al. 2011).  Δρθ was tested using Fisher’s Z-test (Kleinbaum et al. 1998) but could 

contain high autocorrelation bias.  We calculated a test MAEθ  for each time series, then 

randomize the time series and recalculate MAEθ for500 iterations to develop a null distribution. 

We tested significance using a bootstrapping procedure and used P<0.1 as our classification of 

nonlinearity (Hsieh and Ohman 2006).  ΔMAE and associated P-values were considered to 

determine the degree of nonlinearity found by the models in our study.  The nonlinear dynamics 

detected by S-maps helped us determine if differences exist among Region 1 and 2 and between 
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health classes, and we used logistic regression to test for relationships between presence of 

nonlinear dynamics and tree health class.   

 

Linking growth dynamics to tree resilience: tree-level dynamics linked to ecosystem response 

We used the classification of linear vs. nonlinear derived from S-maps as a dependent 

variable in a series of logistic regressions.  If we determined significant MAEθ in the 

randomization test, series were classified as nonlinear.  We employed a logistic regression model 

to test for statistical relationships between nonlinear dynamics and health class at the scale of 

each individual tree from each region.  Logistic regressions examined the dynamic signal at the 

whole-tree scale and permitted us to link a tree’s health status with linear or nonlinear dynamics 

exhibited in its growth.  We created a variable to represent classification (0=linear, 1=nonlinear) 

and predicted classification membership through our logistic model.   We analyzed data from the 

Boston and Ouachita Mountains separately and also combined in logistic models, with health 

classes analyzed separately and also with declining and dying trees combined.  The generally 

negative response of declining and dying trees to insect infestation, regardless of infestation 

level, justified our merging of these classes for some tests.  When analyzing regions together, we 

used the equation: 

 Nonlinearity = class+region+region*class       (2.2) 

with the dependent variable of nonlinearity referring to the dynamics of a single tree and the 

independent variables of region (1 and 2) and class as tree health class (SAS 2008).  Recall that 

S-maps, using information obtained from simplex projection, are used to produce the measure ρ, 

with which we judged model forecasting skill.  We did not include trees generating statistically 

non-significant forecast models (ρ not significant at α=0.05) in the logistic regression.  To control 



 

78 
 

for time series length, we created a variable (ts_L) that counts the number of valid data points 

that each tree has, and found that ts_L was not a significant predictor of nonlinearity, suggesting 

that our findings are robust regardless of time series length.  Chi-square statistics were generated, 

with non-significance of the test statistic suggesting that model predictions and observations do 

not differ.   

We also tested for shifts in growth dynamics pre- and post-insect infestation by dividing 

our time series into pre-1979 and post-1981, when infestation levels increased in trees eventually 

declining or dying in the early 2000s.  We created strings of RWI series for each health class, 

separated by region for series prior to 1979 and then for series post-1981, excluding years 1979 

through 1981.  Splitting of the time series reduced the length of our data sets.  For example, we 

had only 25 years of growth in our post-insect infestation time series. As a result, we 

concatenated our data to increase our statistical power and thus our ability to detect trends in data 

(Hsieh, Anderson and Sugihara 2008).  We assumed that the dynamics observed at the scale of 

individual trees were governed by identical dynamic processes in co-occurring trees to justify 

concatenation approaches (Sugihara 1994).  The concatenation resulted in functionally 

lengthened time series with selected time series placed end-to-end.  Simplex projections and S-

maps were reran with end-to-end time series input, which allowed us to examine pre- and post-

insect infestation dynamics and to test the effect of examining a given time period on the 

classification of the dynamics.  The time series were split between library vectors and completely 

out-of-sample prediction vectors such that half of the trees were part of the library while the 

other half would comprise the prediction set.   The library and prediction sets were randomized 

200 times and mean values were calculated.  The disturbance dynamics of wood-boring insects 
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may differ between regions (Haavik et al. 2010), so concatenation within each region was 

applied separately, with tree health classes tested from cross-prediction abilities.   

Dewdrop regression allowed us to determine if trees within a health class and within a 

region exhibited roughly the same trajectory around an attractor, which would signify co-

predictability (Hsieh et al. 2008).   The embedding of multiple, short time series (<25 years with 

our data set) provided a view of the attractor; each embedding produced points on the surfaces of 

the attractor, referred to as dewdrops, and a greater number of series provided more clarity to our 

attractor (Hsieh et al. 2008).  S-maps pairwise predictions between tree health classes are used to 

establish the shape of the attractor developed from dewdrop regression.  The S-maps used with 

concatenated data series permitted us to assess ecosystem-level dynamics derived from 

individual tree level dynamics.  Similar trajectories, judged by low error values, meant high 

cross-predictability between tree health classes.  In our study systems, the underlying influences 

of site dynamics and climate were the same on a regional scale for each the Boston Mountains 

and the Ouachita Mountains samples, supported by cross-predictability of trees within each site.   

 

RESULTS 

Nonlinear classifications 

We found significantly lower mean E values in the Oauchita Mountains relative to the 

Boston Mountains (Fig. 2).  In the Boston Mountains, healthy trees were best represented by 

significantly lower system complexity (lower E) relative to dying trees exhibiting linear 

dynamics (P<0.05; Table 1).  Contrary to our hypotheses, S-maps revealed that healthy trees at 

both the Boston Mountain and Ouachita Mountain sites were more likely to exhibit nonlinear 

dynamics than declining or dying trees (Table 1 and 2; Fig. 3).  The majority of healthy trees 
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(n=6) from the Boston Mountains exhibited nonlinear dynamics (66%; Table 1; Fig. 3).  In the 

Ouachita Mountains 46% of healthy trees (n=24) exhibited nonlinear dynamics, proportionately 

higher than the 11% of declining and 15% of dying trees exhibiting nonlinear dynamics at 

Ouachita (Table 2; Fig. 3).    Significantly higher dimensionality was found in healthy trees 

exhibiting linear dynamics in the Ouachita Mountains relative to declining classes (P<0.005) and 

between dying trees relative to and declining trees exhibiting nonlinear dynamics (P<0.05, Table 

2).  Higher forecasting skill was found in Ouachita relative to Boston Mountain trees (Table 3). 

 

 Logistic regression  

Our logistic regressions revealed that healthy trees were more likely to exhibit nonlinear 

dynamics relative to a merged group of declining and dying trees (Table 3).  We also ran analyses 

with declining and dying trees in separate groups and found similar results. Data further suggest 

that Ouachita trees, regardless of health status, are more likely to be linear than those in the 

Boston Mountains.  Logistic regression revealed no dynamic patterns associated with health 

class when Boston Mountain trees were run in isolation from Ouachita Mountain trees.  Through 

combination of dying and declining tree health classes, we created a more robust data set for 

comparison and found the combined dying and declining classes were statistically more likely to 

be exhibit linear dynamics relative to healthy trees.   

The combination of declining and dying trees was supported by the cross-predictability 

exhibited by the two classes – each were able to predict tree time series of the other class (Prho 

<0.05).  The co-predictability between trees across regions supported that the dynamics observed 

at individual tree scale are governed by identical processes at the regional scale in these forested 

ecosystems.  Concatenation of data revealed no evidence supporting shifts in tree-ring growth 
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dynamics pre- and post-disturbance. In our logistic regressions, we found that ts_L was not a 

significant predictor of nonlinearity, suggesting that our findings were not an artifact of having 

more or less data in some trees.  The regression coefficients of declining and dying trees were 

similar in magnitude and in the same direction, further supporting the robustness of our results.  

 

DISCUSSION 

 Dendrochronology typically attempts to reveal the few, key variables that influence the 

dynamic processes that govern individual tree growth within regions.  For example, we know 

that the strongest growth-climate relationships in Q. rubra at Region 1 occur when using 

monthly May and June precipitation and summer temperatures (Haavik et al. 2011).  A multitude 

of factors including aspect, light availability, inter- and intra-species competition (Fritts 1976) 

and moisture availability (Orwig and Abrams 1997) all may influence growth patterns, and these 

are often explored through linear regressions and correlation analyses.   The methods typically 

used to explore tree growth responses fail to detect nonlinear dynamics because they are imposed 

under the assumption of linearity (Fritts 1976, Briffa 1995, Carrer and Urbanati 2001). The great 

complexity of interactions that influence tree growth (Fritts 1976) makes nonlinear modeling a 

useful tool in reducing the dimensionality down a few factors (E) and in detecting underlying 

patterns.   

 Forecast modeling 

Contrary to our hypotheses, healthy trees exhibited nonlinear growth dynamics and 

declining and dying trees experienced linear growth dynamics throughout their lives.  Nonlinear 

dynamics observed in natural systems have been linked to an increased ability to adapt to 

variable conditions while linear trends may represent decreased adaptive coping abilities) and 
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destabilized population dynamics (Sugihara et al. 1996, Hsieh et al. 2005).  For example, linear 

trends have been linked to a decreased ability to respond to changing conditions in infant heart 

rates (Sugihara et al.1996).  Nonlinear dynamics in fishery populations have been linked to 

human exploitation and destabilization of population dynamics (Hsieh et al. 2006).   Greater 

variation in tree radial growth in response to drought has been associated with higher likelihood 

of experiencing drought-related tree morality (Ogle et al. 2000), which may relate to the 

nonlinear growth dynamics in dying and declining trees observed in our study.  While nonlinear 

growth dynamics need to be further explored to understand their implications for a tree’s ability 

to cope with environmental variability, the differential dynamics we found here between healthy 

trees and dying and declining trees further supports previous research that has found differences 

between trees of different health classes in growth patterns (Haavik et al. 2011) and in C 

source:sink dynamics (Reed et al. in review).   

The number of embedding dimensions (E) might help explain the complexity of the 

system (Casdagli 1992).  For example, an E of five would represent two to four major variables 

governing ecosystem dynamics (Casdagli 1992; Sugihara 1994). The dimensionality of our study 

regions sheds light on the factors that may govern tree C source:sink dynamics, with higher 

dimensionality implying that more variables controlling C dynamics (Table 1; Table 2).  Lower  

complexity in underlying growth dynamics in dying and declining trees would be consistent with 

the idea of a few, major drivers (i.e. drought, insect infestation) of radial growth responses in 

trees that experienced the greatest negative growth response to disturbance, as observed in 

Ouachita Mountain trees (Table 2).  Drought has been a major driver of growth in trees that later 

experienced drought-related mortality (Bigler 2007, 2009).  We do not know why the differences 

in E across health classes were not the same at both sites, differences in climate and productivity 
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are likely at these sites, so it is likely that these trees experience different drivers of and limits to 

growth.  We know the drivers of the insect infestation are different to some extent (Haavik et al. 

2011), so the differences in trends in E with health class might be explained by differences in 

site-specific stresses influencing tree-ring growth.  

 The differential growth dynamics among classes are consistent with different dynamics 

governing the C dynamics of these trees, as explored by Reed et al. (in review) at the Boston 

Mountain sites.  That study demonstrates a stronger influence of leaf nitrogen availability and, 

presumably, associated photosynthetic capacity, on leaf C dynamics in healthy trees.  Dying trees 

exhibited isotopic patterns in their tree-rings suggesting a stronger influence of stomatal 

regulation of C supply on tree C dynamics than in healthy trees (Reed et al. in review).  Though 

nonlinear forecast models cannot elucidate the mechanisms driving distinct, linear vs. nonlinear 

growth dynamics in these trees, the observed differences in growth dynamics between health 

classes are consistent with healthy trees being able to capitalize on some environmental resource 

– perhaps nitrogen.  Soil nitrogen (N) pulse events following precipitation are important for 

resource availability in N-limited ecosystems (Gebauer et al. 2002).  If healthy trees are better 

adapted to variable moisture availability, then they may also be able to capitalize on variable N 

availability to a greater degree than co-occurring, dying and declining trees.  In contrast, 

increased vulnerability to mortality following drought and subsequent insect infestation 

disturbance may result from strictly adhered to, more stable growth strategies that permit little 

capacity for a tree to capitalize on resource pulses.  Further application of forecast modeling on 

tree-ring growth series is required to explore the interaction of nonlinear growth dynamics and 

vulnerability to disturbance impacts.  Such model results are best coupled with empirical studies 

that help us understand the mechanisms driving observed differences in growth dynamics. 
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Growth series dynamics exhibited no shifts when examined for pre-and post-infestation 

dynamics, contrary to our second hypothesis.  We explored concatenated data sets to i) detect 

potential changes in nonlinear dynamics in our time series resulting from disturbance events pre- 

and post- insect infestation and ii) provide a separate analysis of the class dynamics (combining 

all trees of a given class and testing their ability to predict other classes and providing insight 

into the co-predictive abilities of time series).  In this instance, concatenation of our data was not 

helpful in distinguishing a change in growth dynamics, potentially because our time series were 

25 years in length while 30 years is typically the minimum to detect differences in dynamics 

between time series.  However, concatenation of tree-ring time series represents a new technique 

generally applicable for nonlinear forecasting in tree-ring studies.  Detection of nonlinear 

patterns in ecological studies is constrained by the need for long time series (Hsieh et al. 2008), 

but concatenation, or compositing of data sets, may enhance the utility of many tree-ring data 

sets for forecast modeling.  

Conclusion 

  Simplex projections and S-maps helped us discern different growth dynamics among 

declining and dying vs. healthy trees, such that the latter exhibited radial growth suggestive of 

non-linear growth dynamics.  The linear growth dynamics exhibited by declining and dying trees 

suggests that these trees are perhaps less able to respond to environmental variability, and the 

resource pulses that accompany such variability, compared to their healthy counterparts in these 

forest ecosystems (Sugihara et al. 1996).  Our logistic regression approach detected a general 

enhancement in linear behavior in dying trees at the individual tree level.  Although we did not 

find evidence supporting any shifts in growth dynamics pre- and post-infestation in any tree 

healthy class, time-series concatenation may nonetheless be useful for exploring growth 
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dynamics in tree-ring series otherwise too short to consider using with nonlinear models. Overall 

our study explores new methodologies in tree-ring research that may shed light on detection of 

tree growth dynamics in response to disturbance.  Further research is needed to develop forecast 

modeling as a tool for understanding vulnerability and resilience of trees to disturbance impacts 

in the future, and to understand the long-term implications of and mechanisms behind linear vs. 

nonlinear dynamics in tree growth trends.  
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Table 3. Logistic regression analysis of the Boston Mountains (region 1; n=24) and Ouachita 
Mountains (region 2; n=46) in Arkansas, U.S.  Declining and dying trees were combined and 
analyzed with healthy trees; analyses were also performed without combining declining and 
dying trees and results were similar.  Regions were analyzed together thus two model variables 
of class along with region were included in our logistic regressions. The estimate of the 
independent variable, whose real value is either 0 or 1, is shown as an average for each model 
variable. 

Region Model variables Estimate SE Chi-square Pr> ChiSq 
1 Class 0.75 0.62 1.47 0.23 
2 Class 0.75 0.37 5.09 0.02 

1+2 Class 0.88 0.37 5.66 0.02 
 Region 1.16 0.60 3.70 0.05 

 
 
 
 

 
Figure 1: Simplex projection (a) Two-dimensional embedding (E=2) of time lags of a sample 
tree’s growth data from a forested region in northwest Arkansas, U.S.  (b)  Three-dimensional 
embedding (E=3) of time lags of a sample tree’s growth data from a forested region in northwest 
Arkansas, U.S. reveals the geometric pattern forming around an attractor.  Simplex projections 
and s-maps output a forecast based on the library vectors (represented by circles).  A prediction 
vector (represented by the triangle in 1a) is used to judge the forecast skill of the simplex 
projections and used to weight library vectors (neighbors) in S-maps.  
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Figure 2. Embedding dimension (E) for trees from the Boston Mountains (n=24; a) and from the 
Ouachita Mountains (n=46; b) in Arkansas, U.S.  Percent on Y-axes represents the distribution of 
each value of E value across a tree health class, and thus sums may be greater than 100% if the E 
was common among several classes. White bars represent class one trees (healthy), light gray 
bars represent class two (declining), and dark gray bars represent class three tree (dying).  A t-test 
revealed significant differences (P<0.05) in the distribution of E between region 2 and region 1.  
 

 
Figure 3. S-map-classified dynamics from healthy (class 1), declining (class 2) and dying trees 
(class 3) from the Boston Mountains (n=24) and from the Ouachita Mountains (n=46) in 
Arkansas, U.S.  Black bars represent linear dynamics (θ=0) and white bars represent nonlinear 
dynamics (θ >0).   
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CHAPTER 4: Forest management in the Boston Mountains of Arkansas, US: Forest 
management adapting to climate change  

 

Abstract 

Climate change is anticipated to impact North American forests through shifts in species 

distribution and composition in coming decades, as well as through the increased frequency, 

severity, and duration of natural disturbance events.   Disturbance is a natural component of 

forest ecosystems, but an increased frequency and severity in disturbances predicted in the future 

could negatively impact forests.  Implementing forest management policies to increase the 

adaptive abilities of forests to resist and recover from disturbance events is an important 

undertaking in public and private forest lands.   Adaptive management strategies to maintain 

forest ecosystem health use disturbance impacts as learning opportunities and incorporate 

ecosystem resilience into policy.  Such strategies are needed to maintain forest function in the 

future.  In this chapter, I discuss the impacts of past forest management on a national scale and 

local scale in a case study to demonstrate the need for a change in management strategies 

applicable to forested lands throughout the Nation.  I use a case study of oak decline linked to 

climatic disturbance in the Ozark National Forest of northwest Arkansas to demonstrate the link 

between past management and forest decline.   The true challenge of future forest management 

policies is meeting local economic timber needs while promoting forest function in the face of 

climate change uncertainty, which is a common concern between state, federal and private lands.   

Adaptive management strategies and forest monitoring tools examining tree growth and 

ecosystem health are recommended for forest managers and researchers to detect tree 

vulnerability to disturbance.  A goal of this work is to highlight the need for forest management 
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in the face of climate change uncertainties with emphasis placed on local goal-setting related to 

maintaining carbon stocks, biodiversity and monitoring tools.  

 

INTRODUCTION 

Looming shifts in species composition and forest distribution predicted with future 

climate change and increases in disturbance event frequency make adaptive management of 

forests a priority (Hanson et al. 2000, Dale et al. 2001, IPCC 2007, McKenney et al. 2007).  

Disturbance events are naturally occurring in ecosystems, but the predicted increase in frequency 

and duration of disturbance events in the future will impact forest ecosystems to a greater extent 

than in the past (Waring and Schlesinger 1985, Attwalli 1994, Dale 2001).  The history of US 

forest management fails to incorporate uncertainty in conditions or goals related to ecosystem 

adaptability, which will be highlighted in a regional forest decline event. Adaptive management 

uses policy decisions as learning opportunities – at each step in the management process, 

changes in environmental conditions and their impacts on forest ecosystems can be incorporated 

into management strategies (Stankey et al. 2003).  The need for local-scaleforest management 

policy that incorporates climate change uncertainty is critical to the future of forests and tool are 

needed assist with detection of tree susceptibility to disturbance. 

Increasing resilience and resistance of forest ecosystems to future climate change and 

disturbance impacts, which may often be rapid in nature, can be a goal of adaptive management 

(Bolte et al. 2009).  Adaptive management  is intended to decrease the biological and physical 

impacts of climate change on forest ecosystems (Millar et al. 2007) and incorporates 

uncertainties such as disturbance events into the development of management strategies (Millar 

et al. 2007, Lawler et al. 2010).    Potential management actions that could increase ecosystem 
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resistance to disturbance – its ability to absorb disturbance impacts and maintain function and 

structure (Holling 1973) – include increasing biodiversity of tree species and focusing on 

maintaining ecosystem function while selecting trees adapted to hotter, drier conditions in many 

areas (Millar et al. 2007).   Management could also increase ecosystem resilience- its ability to 

recover and quickly achieve pre-disturbance conditions- through increased system complexity or 

species composition (Holling 1973).  

Ecosystem management that incorporates disturbance impacts on ecosystem dynamics 

creates a complex challenge.  Forest ecosystems are comprised of living and abiotic components 

that interact to create complex structure and function.  These systems are vital for North 

American carbon (C) storage and economic use, and are valued by many for their recreational 

qualities (Tansley 1935, Goodale et al. 2002).  Current ecosystem management that considers 

changing climate impacts typically addresses two major goals:  1) increasing forest C stocks in 

an effort to mitigate the impacts of climate change and associated disturbance, and 2) promote 

complexity in structure and biodiversity to increase adaptation to variability (D’Amato et al. 

2011).  While C sequestration rates associated with forests cannot increase at a pace matching 

rising atmospheric CO2 levels (McKinley et al. 2011) , increased resilience and resistance of 

forest ecosystems can help to decrease negative climate change impacts on forests while helping 

ensure forest function in the future (Millar et al. 2007, D’Amato et al. 2011).   

Adaptive management invoking scientific findings may provide insight for achieving 

these goals.  If ecosystem adaptability is not considered in the development of forest 

management policies, ecosystem structure may experience increased vulnerability to disturbance.   

For example, if forest ecosystem management is undertaken with a single goal of increasing C 

stocks, biodiversity decreases and thus adaptability of the ecosystem decreases (D’Amato et al. 
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2011).  Prioritizing adaptive forest management goals with a focus on increasing structural 

complexity, biodiversity and maintaining forest C stores in the future is needed to prepare forest 

ecosystems in the central U.S. for the potentially detrimental impacts of climate change. There 

may be exceptions to the benefits of structural complexity in forest ecosystems in terms of 

increasing resistance or resilience of forest systems to disturbance.  For example, pine-grassland 

restoration in Arkansas simplified forest structure through thinning, fire reintroduction and 

hardwood midstory reduction but made forest stands more resistant to wildfires and to insect 

attacks (Guldin et al. 2004, Hedrick et al. 2007).   Even-aged versus uneven-aged stands and 

simple versus complex ecosystem structure should be addressed at the local scale depending on 

the types of wildlife and the types of disturbance events common in the area.  Most research on 

climate change impacts focuses upon regional consequences (IPCC 2007), but there is still 

uncertainty in the impacts of climate change at any scale (Lawler et al. 2010).   Local adaptive 

management strategies can utilize regional predictions and learn from disturbance impacts to 

implement strategies that are unique for the circumstances encountered in the future (i.e. Stankey 

et al. 2003, Hedrick et al. 2007).  Local management efforts are likely the strongest tools for 

forest management in the face of future uncertainty in conditions (Roe 1997).   

European settlement in North America led to high-grading, or selective cutting of the 

most desirable timber, across the landscape that resulted in heavily cutover conditions where 

most of the trees in the dominant canopy were cut and genetically poor tree stock often remained 

(Strausberg and Hough 1997).  The poor conditions for growth and the susceptibility of these 

stands to fire in the late 19th and early 20th centuries resulted in public outcries for conservation 

of soil, water and wildlife resources (Hirt 1994).  In the early 20th century, national forests were 

initially set aside to safe guard water resources, help overexploited forests recover, and provide 
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recreational and timber harvesting opportunities (Hirt 1994).  During this time period, The Ozark 

National Forest was established in northwest Arkansas (Strausberg and Hough 1997).  The goals 

of fire suppression and reestablishing forest timber stocks led to older, even-aged stands and 

denser timber stocks than were historically observed in the Ozark National Forest and forests 

throughout the eastern US.  

High stocking density and progressive aging of stands manifested in a forest decline 

event in the early 21st century (Soucy et al. 2004).  Forest decline events are typically influenced 

by complex abiotic and biotic factors that result in a loss in vigor and sometimes mortality, and 

may be influenced by background stress (Manion 1991, Van Mantgem et al. 2009).  Shifts in 

forest management in recent decades among federal and state agencies (as well as with 

conservation organizations) highlight how management may be used to promote conservation in 

response to disturbance events (Littell et al. 2012).  Proceeds from timber sales can often be used 

to help defray the cost of restoration work needed to help forests be more resilient to climate 

change (Thill et al. 2004).  Mature markets for forest products provide the revenue needed to 

support restoration work and highlights the importance of balancing timber industry interests and 

increasing forest resilience in the face of climate change.  

Modeling of forest ecosystems may provide useful tools for understanding the impacts of 

management regimes, and allow for uncertainty to be accounted for to some degrees.   Forecast 

modeling may also be a useful tool for managers to detect underlying trends in tree ring growth 

patterns related to tree vulnerability to disturbance.   The goals of this paper are to i) provide a 

brief history of forest management policies impacting North American forests with emphasis on 

northwest Arkansas forests, ii) link implications of past management regimes to recently 
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observed decline events in the Ozark National Forest, and iii) focus on adaptive management 

strategies tools to address predicted increased in disturbance events in the future.  

 

 

DISCUSSION 

History of Ozark National Forest management 

The mid- to late-1800s represented a period of exploitation of forest resources in the 

United States.  Large corporate ownership and unsustainable harvesting of private forests led to 

disruption of prevailing forest ecosystems in many parts of the nation (Hirt 1994).  Unregulated 

harvesting caused instabilities in local economies throughout the U.S. and created boom-and-

bust cycles in the Ozark Plateau forests of northern Arkansas, with wide-spread timber 

harvesting followed by exploitation and industry departure once resources were depleted 

(Anderson 1999; Foti 2004).   Concerns over clean water, wildlife, and recreational space 

following forest clear-cutting raised public awareness of over-harvesting issues (DuPuy 1938, 

Thompson 1980).    

Although conservation of natural resources in national forests was a greater focus in the 

early 20th century, increased preventative measures to combat forest fire irrevocably changed the 

landscape (Guyette and Spetich 2003, Hirt 1994).  Large stocks of debris resulting from logging 

had accumulated following the introduction of industrial harvesting into the virgin forests of 

North America, and this fuel-rich environment was a concern in rural communities.  Increased 

intensity of forest fires following harvesting marked a considerable change in these ecosystems, 

and the prevention of fires was needed to promote rural stability (Guyette and Spetich 2003, 

Engbring et al. 2008).   
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 From the inception of publically owned federal lands in 1891, later called national 

forests, conflicting goals have been set forth for the lands (Hirt 1994).  The Organic Act of 1897 

resulted from concerns over degradation of soils and watersheds and set forth the goals of 

securing water reserves, preserving forests, and ensuring timber supplies (Strausber and Hough 

1997).  The U.S. Congress established reserves to buffer national resources from privatization of 

all natural resources and to ensure that public lands had protection from market interests (Du Puy 

1938, Thompson 1980).  The USFS promoted the multiple-use goals of timber production and 

protection of natural resources for public use through reestablishment of forests and fire 

suppression (DuPuy 1938, Sedjo 2008).  The prioritizing of management goals regarding 

ecosystem health and timber harvesting interests, which can at times contribute to management 

goals together but may also counter each other, is a historic challenged faced in forest 

management.  

The USFS fire suppression policies became common practice in the Ozark National 

Forest around 1910 and had major influences on forest ecosystem processes (Spetich 2004a).  

Suppression of fires led to changes in species composition, tree densities, and understory 

dynamics that further influenced the need for informed management goals to maintain ecosystem 

function (Kabrick et al. 2008, Voelker et al. 2008).  During early forest management in Arkansas, 

fire suppression was a priority along with reestablishment of shortleaf pine forests to provide 

needed saw timber to communities (Strausberg and Hough 1997).  The even-aged stands that 

regenerated on formerly harvested lands were denser than historic forests.  Regular fire intervals 

of three to ten years existed in these forests from earliest European observations (1680) through 

1930, after which fire suppression was enforced and fire intervals increased to 80 years (Spetich 

2004).  High grading and industrial intensification placed a strain on sustainable management of 
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many forests (Strausberg and Hough 1997, Hirt 1994).  The principle of sustainable yield 

implemented during the 1930s (Hirt 1994) transformed the forest products industry into a 

permanent fixture that could persist in a region with the proper management of resources instead 

of a cycle of boom and bust harvesting in the rural landscape.    

 

Forest management following WWII 

Post-war prosperity led to increased demands for housing and timber products and 

resulted in increases in allowable harvests on public lands (Hirt 1994).   Clear cut harvesting was 

used to increase timber volume and decrease expenses; the shift from high grade harvesting 

allowed for increased turnover of timber products through increased efficiency (Sedjo 2008).  

Intensive management efforts in many forests focused on increasing wood production and often 

resulting in even-aged plantation stands typically composed of a single species, often pine in the 

Ozark highlands (Hirt 1994, Strausberg and Hough 1997).  

Intensive harvesting efforts peaked in the 1960s, but USFS policies of the 1960s and 

1970s attempted to focus priority on forest conservation.  The Multiple-Use and Sustainable 

Yield Act of 1964 tried to refocus agency goals and balance timber demands with the protection 

of water and soil resources, but had little effect on harvesting quantities or practices (Haynes 

2007).  The National Environmental Policy Act of 1969 incorporated public and scientific input 

into policy, and the Endangered Species Act of 1973 established protocol for protecting habitats 

(Hirt 1994).  The balancing act between timber and other forest resource protection continues 

through the 1980s, with no significant change in funding allocations within the USFS that would 

signify a shift away from having timber production as a top priority (Sedjo 2008).   Decreases in 
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the harvesting rates in the 1990s took timber production from national forests back to pre-WWII 

harvesting levels.  

Different priorities are often set forth for the USFS with each new presidential 

administration, making it a challenge to maintain long-term goals (Sedjo 2008).  USFS Chief 

Jack Ward Thomas, who served from 1993 to 1996, stated that the fundamental problem for 

policy action within the USFS was the existence of too many laws directing the agency to do too 

many things with no clear establishment of priorities (Sedjo 2008).  This lack of prioritization, 

essentially a historic issue caused by the conflicting goals that have plagued the USFS since its 

inception, becomes more problematic with predicted climate change.  Future changes to forest 

ecosystems may enhance the historical struggle to balance socio-economic and environmental 

goals within timber-oriented management policies in federal, state, and private forests alike.    

 

Setting the stage for Arkansas oak decline 

 Pre-European settlement, Arkansas was 96% forested, but today is only 54% forested 

(Engbring et al. 2008).  Changing composition and structure resulting from management and 

natural, successive processes are apparent in the mixed oak-hickory forests of the Ozark National 

Forest.  Early European settlers in the Ozark National Forest region likely encountered oak 

savannah ecosystems interspersed with conifers and prairie with open canopies resulting from 

fires (Spetich 2004).   In the early part of the 20th century, mild temperatures and moisture 

conditions enabled even-aged stands of northern red oak (Quercus rubra) to become established 

on sites with lower soil water holding capacity (Engbring et al. 2008, Foti 2004).  As even-aged 

stands advanced in aged and tree density was not controlled, forests became vulnerable to oak 
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decline.  Oak decline is a decadal process that has impacted oak ecosystems globally with often 

varied influential factors (Wargo et al. 1983, Vettraino et al. 2002, Voelker 2008).    

Oak decline events have been reported for the past 150 years in the United States 

throughout the mixed oak-hickory forests of Missouri, Arkansas, and the Southeast region 

(Starkey et al. 1989, Starkey et al. 2000, Stephen et al. 2003), as well as in Europe (Vettraino et 

al. 2002).  Cyclical droughts from the 1950s through the early 21th century threatened oak 

forests.  Trees that utilized stored carbohydrates from their root systems to endure early droughts 

may have experienced decreased abilities to survive future drought events, related to the carbon  

starvation hypothesis (McDowell 2008).  Drought stress on Q. rubra likely influenced their 

resource allocation to defensive chemicals and reduced their ability to fight off insects and 

pathogens (Haavik et al. 2011, Kelley et al. 2009). In general, disturbance stresses such as 

drought or warming have been linked to increased mortality events in forest ecosystems, and are 

likely to increase in the future (Van Mantgen 2009).  

Climatic variability was a contributing factor to the current decline of oak forests 

(Woodall et al. 2008).  Stressed trees may have experienced increased vulnerability due to poor 

site quality and even-aged, densely stocked forest conditions (Oak et al. 1996).  Beginning in the 

mid-1980s, increased activity of the red oak borer was also noted (Stephen et al. 2003).  The 

above mentioned factors resulted in a cycle of decreasing vitality that led to large die-offs of 

northern red oak (Quercus rubra) at the start of the 21st century in Ozark highland forests 

(Stephen et al. 2003, Starkey et al. 2000).  Potential adaptive management strategies may be able 

to increase forest structural complexity, decrease tree density, and reinstate fire to the ecosystem 

(Dey et al. 2008) 
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Because droughts are predicted to increase in frequency as precipitation events become 

increasingly intense and the periods between precipitation events extends (IPCC 2007), the use 

of management techniques for decreasing competition stress within forest stands will be needed 

to mitigate the negative effects of climate change upon forested ecosystems (Dey et al. 2008).  

Dwyer et al. (2007) found that experimental thinning of tree stands did not prevent oak decline, 

but thinning may decrease competition between individuals, mitigating competition stresses 

(Brooks and Mitchell 2011).  While thinning may not be a management practice that can increase 

the health and vigor of declining stands, it may be preventative measure to decrease competition 

stress during drought periods (Voelker et al. 2008, Dwyer et al. 2007), perhaps thus preventing 

future decline events.    

 

Accounting for climate change uncertainty  

The forests of today are major players in the climate cycle.  For example, Northern 

Hemisphere forests are able to sequester approximately 12% of human global carbon emissions 

annually (Schimel et al. 2001), or approximately 0.6-0.7 Pt g/yr (Goodale 2002).  Carbon storage 

and sequestration abilities in North American forests are vital management issues in influencing 

global climate, but also in being greatly impacted by climate change (Hicke et al. 2012).  Current 

forest declines and widespread tree mortality events have been observed in the U.S. in response 

to disturbances such as drought and pest infestations (Adams et al. 2009, Hicke et al. 2012), and 

such disturbances can have a major impact on the forest C stocks in the U.S. (Hicke et al. 2012).    

Forest ecosystems may act as C sinks during normal climate conditions, but North 

American and European forests have seen C losses due to drought-associated mortality events 

(Huang et al. 2010, Ciasis et al. 2005).  While forest mortality and conversion to transient sources 



 

101 
 

of C may occur during drought periods, decreasing drought and competition stress through 

management may help in preserving future forest C stocks.  An important consideration may be 

selection of tree species that are more drought resistant (Millar et al. 2007).    

 For improved policy efforts, direct interaction between policy makers, federal and state 

agencies, non-governmental organizations, and scientists may provide the most improvement for 

moving forward on forest management policy that prioritizes adaptive abilities along with C 

storage (Seavy and Howell 2010).  For example, the current joint efforts between the USFS, The 

Nature Conservancy, and other conservation organizations in the Ozark National Forest has 

resulted in proposals for forest landscape restoration that promote biodiversity and ecosystem 

adaptability goals (USFS 2005).   The role of forests as a method of carbon sequestration has 

gained acceptance through such efforts as the Kyoto Protocol, and forest management to 

maximize carbon storage will grow in importance in the future (Thurig and Kaugman 2010).   

However, it remains unclear how adaptive forest management strategies will cope with the 

potentially changing role of North American forest C dynamics in a changing climate. 

Region-wide and nation-wide forest management policies often lack the ability to quickly 

change in response to alterations in conditions (Millar et al. 2007). Also, lessons from local 

management are applicable on a smaller scale (Littell et al. 2010).  With the uncertainty and 

variability surrounding the impacts of climate change, the ability for forest managers and policy 

to adapt quickly to change will be critical. Difficulty in addressing management of forests often 

arises from uncertainty in climate change predictions for these ecosystems (Lawler et al. 2010).  

Extreme events are expected to increase in frequency in many regions.  For example, climate 

projections for Northwestern Arkansas suggest decreased frequency of precipitation and 

increased storm intensity, leading to increased duration of drought in the future (IPCC 2007).  
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Drought is seen as a factor in oak decline events (Wargo 1996), and management of species 

composition and stand densities may decrease the negative impacts of drought on forest 

ecosystems (Kabrick et al. 2008).  Along with stand management to address uncertainty in 

ecosystem response, some tools for managers could consist of ecosystem modeling, tree growth 

modeling, and predict analysis of past tree response climate.  

Modeling efforts have been used successfully to assess forest health and determine 

optimal ecosystem management strategies.  For example, modeling the impacts of differing fire 

regimes can help determine vulnerability of sites to decline events, and thus indicate areas in 

which management regimes such as thinning or changes in fire intervals should be focused 

(Spetich and He 2008).  Process modeling has been proposed as a potential management tool to 

predict the response of tree species to climate change impacts (Johnsen al. 2001).  Understanding 

the underlying dynamics governing tree growth can provide further insight into the response of 

forest ecosystems to climate variability.   Forecast models, for example, can detect nonlinear 

dynamics in tree-ring growth series, and thus may highlight growth strategies linked to resilience 

to disturbance and ability of trees to cope with variable conditions (Reed et al. in prep.).  

Detection of linear dynamics in forest stands can help identify areas that may be vulnerable to 

disturbance associated with predicted climate change in the future (Reed et al. in prep.).   

 

CONCLUSION 

Difficult choices are required by decision makers to face the challenges predicted with 

increased climatic variability and drought in the future (IPCC 2007, Lawler et al. 2010).   The 

historical management regimes of US forests are reflected in Arkansas’s struggle to balance a 

healthy timber industry and climate change uncertainties.  Historic forest management policy in 
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the Ozark National Forest set the stage for oak decline events observed in the early 21th century 

(Stephen et al. 2003, Fierke et al. 2005).  Though this paper focuses on the Ozark National Forest 

as a case study, it is clear that implementing a multiple-use mandate in all U.S. forests, no matter 

their locationwill be made significantly more complex in the face of climate change.  Given the 

demands on US forests, forest adaptive management policy must be developed on a local basis 

with goals focused on maintaining forest resistance and resilience, forest C stock, and timber 

resources for communities.  Reconciling adaptive management and economic demands will be 

vital for determining the fate of national forests in the U.S. under climate change and disturbance 

impacts in the future. 
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GENERAL CONCLUSIONS 

 This dissertation explores the impacts of disturbance events on forest tree functioning.  

Each chapter is rooted in tree physiology and modeling theory, with research motivated by future 

predictions of novel disturbance conditions in forest ecosystems.  The incorporation of tree-rings, 

contemporary leaves, and novel model application provided the means of understanding how 

variation in physiological strategies may be linked to survival during such disturbance events. In 

Chapter 1, differential C dynamics in response to disturbance are derived from tree-ring records 

of tree physiological responses as well as contemporary leaves.  In Chapter 2, I expand on 

concepts of differential C dynamics by increasing the scope of species in my study.  In Chapter 3, 

I use nonlinear dynamic modeling in a novel application to explore underlying radial growth 

dynamics as potential indicators of disturbance susceptibility. Adaptive, local forest management 

policies along with nonlinear growth dynamics as tool for managers are proposed in Chapter 4 as 

a means of maintaining forest functioning under future increases in disturbance.  Overall, my 

data indicate that differential C dynamics relate to differential responses to disturbance events 

within and among tree species, and these differential responses are important considerations for 

the future of forest composition and distribution.  

 My first chapter finds that trees susceptible to disturbance exhibit greater stomatal control 

over C dynamics, while N appears to play a larger role in the C dynamics of trees that remained 

healthy.  The importance of differential controls on C dynamics of co-occurring trees is further 

evidenced by my second chapter, in which Q. macrocarpa exhibited greater sensitivity to 

decrease moisture availability and greater stomatal control over C dynamics relative to co-

occurring Q. rubra (Chapter 2).  Utilizing a conceptual model of 13C and 18O helped to support 

findings in both of the above mentioned studies, relating a significant, positive slope in the 
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relationship to greater stomatal influence on C dynamics.  These chapters are founded in tree 

physiological theory, and inconsistencies provide opportunities to further our understandings of 

tree physiological responses to environmental variability. In Chapter 3, forecast modeling of tree-

ring time series enabled detection of underlying nonlinear dynamics in tree growth, consistent 

with divergent dynamics in trees that are susceptible relative to trees that are resistant to 

disturbance.  Forecast modeling is potentially useful for forest managers and researchers in 

detecting susceptibility to disturbance in forest communities and is incorporated into Chapter 4.  

My final chapter also proposes local-scale adaptive management strategies to counter uncertainty 

related to disturbance impacts on forest ecosystems in future.  I highlight a case study of forest 

decline related to past management and ecosystem-level disturbances to emphasize the 

importance of local goal setting to incorporate community timber demands along with ecosystem 

resilience and resistance in the face of predicted increases in disturbance in the future.  

 Several major conclusions can be taken away from this research. First, approaches that 

employ multiple techniques to detect physiological responses in trees are needed to understand 

the impacts of disturbances on forest ecosystems.  Growth dynamics can provide evidence of 

differential C allocation strategies (Chapter 1) and underling dynamics related to disturbance 

responses (Chapter 3), but further insight into differential responses is gained through stable 

isotopic analysis of wood and leaf material (Chapters 1 and 2).  Decreased growth in trees dying 

after a disturbance event provides little insight into the C dynamics and mechanisms influencing 

differential responses in healthy, neighboring trees.  The employment of tree-ring and leaf stable 

isotopes and N dynamics enables detection of differential factors governing C dynamics in co-

occurring trees and species.  
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Secondly, human management of forests has major implications for forest function 

(Chapter 1 and 4), and must incorporate disturbance uncertainties to ensure ecosystem structure 

and function in the future (Chapter 4).  My work suggests that densely managed stands of even-

aged trees predisposed Q. rubra to the negative disturbance impacts associated with a cycle of 

droughts and subsequent wood-boring insect infestation.  With increasing environmental stress 

predicted with increased disturbance in the future, managing forests must incorporate adaptation, 

uncertainty, and monitoring tools to maintain future forest structure and function.  

Finally, increases in disturbance may have major global implications for future tree range, 

forest C cycling or productivity in North America.  Decreased productivity has already been 

linked to disturbance impacts in forest ecosystems, evidenced by decreased growth rates 

(Chapter 1).  Changes in species range and forest composition can decrease forest structural 

complexity, which has been linked to increased disturbance vulnerability in some systems 

(Chapter 4), and could impact timber and water resources at the local scale. Understanding 

disturbance impacts, which will increase in the future, and incorporating our understanding into 

management efforts, is needed to counter potential negative impacts of disturbance (Chapter 4).   

 Overall, I hope the findings of this dissertation, and the tools and recommendations I 

develop, demonstrate the important role disturbance plays in forest ecosystems now, and the 

likelihood of those impacts in the future.  My dissertation can help guide future research, 

monitoring, and management to further understand the implications of future disturbances for 

forest ecosystems.  Forest ecosystem function under climate change relies upon ecological 

understanding of the underlying mechanisms that govern tree response to disturbance. 
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