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Abstract: 
The metric cube is a kind of graph of meters proposed as a complement to the types of metric 
spaces that have already been put forth in music-theoretic scholarship, particularly by Richard 
Cohn. Whereas Cohn's most recent kind of metric space (2001) can compare meters only if they 
interpret the same time span, metric cubes permit the comparison of meters that interpret 
different time spans. Furthermore, a metric cube posits a different kind of adjacency relation: while 
Cohn's most recent metric space connects two meters if their ordered pulse representations differ 
by only one pulse, a metric cube connects two meters if their ordered factor representations differ 
by only one factor. Metric cubes, and metric operations that act on the contents of a cube, reveal 
patterns of metric structure in three works by Brahms: the first movement of the Third Symphony 
op. 90, the third movement of the Second Symphony op. 73, and the last two movements of the 
Second String Quartet op. 51/2. These analyses also suggest correspondences in these movements 
between metric relationships and relationships of key, harmony, and form. 
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Metric Cubes in Some Music of Brahms† 

Scott Murphy 

 

 Richard Cohn’s recent work in the area of meter has, among other accomplishments, brought 

meters on a more equal ontological footing with pitches, pitch classes, pitch-class collections (chords, 

melodies, and so forth), and many other musical “objects” that music-theoretical research has—for 

decades or, in some cases, centuries—compared with various kinds of relations, placed into sets, 

arranged into geometric spaces, or acted upon with mathematical groups. This reification of a meter as 

an object or “state”—more precisely, as a set of hierarchically ordered durations or pulses—admittedly 

belies many of its primary characteristics, particularly the dependence of its actualization upon temporal 

flow within a significant time span1, and the sense that it “is more an aspect of the behaviour of 

performers and listeners than an aspect of the music itself” (London 2001a).2 However, the benefits of 

reifying meters in this manner for both work-based analysis and repertoire-based theory are beginning to 

emerge. Contributing to work-based analysis, Cohn’s two different metric spaces in turn set the stage for 

a metric drama in the Scherzo from Beethoven’s Ninth Symphony (1992a), and facilitate analogies 

between metric relationships and trajectories with those in other domains in certain works of Brahms 

(2001). Justin London (2004, 89-99) enlists the relation of metric depth to narrate an analytical account 

of another movement from Beethoven, the first movement of the Fifth Symphony. Furthermore, Daphne 

Leong (2007) employs the four symmetries of a square to relate meters to one another in Humperdinck’s 

Hansel und Gretel and Wagner’s Parsifal, and convincingly finds that “certain metric symmetries 

associate with certain dramatic ones.” 

With regard to repertoire-based theory, I have also postulated elsewhere that a meter centrally 

located among all a common-practice work’s meters in a certain metric space is typically the work’s 

primary meter (Murphy 2007). However, the particular metric space that accommodates the widest 
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application of this “metric-tonicization” theory to the common-practice repertoire is not one of Cohn’s 

metric spaces, but an expanded version of one of them. This hints at the value of continuing to explore 

new kinds of metrical relationships, which may, in turn, facilitate significant observations of the metrical 

contents of a single musical work, or of the metrical contents of a musical corpus, that could form the 

foundation for novel analytical insights or original theories of metrical practice. The purpose of this 

article is to introduce and explore the analytical utility of another kind of metric space, the metric cube, 

which is intended to complement the types of metric relations and metric spaces that already exist, and 

help metric theory catch up with pitch-class set theory in terms of the diversity of ways in which its 

objects may be compared with one another. After reviewing Cohn’s two kinds of metric space in Part I, 

and carving out a place among them for metric cubes in Part II, Parts III and IV analyze the third 

movement of the Second Symphony, and the conclusion of the Second String Quartet, respectively, 

using metric cubes in tandem with other metric spaces. Toward the end of the second analysis, I will 

suggest a less restrictive form of metric-cube space that is influenced by Leong’s research, and offer an 

analytical observation suggestive of further research. 

 

I: Cohn’s Two Metric Spaces {A-head} 

 

 In his article on the Menuetto from Mozart’s Symphony No. 40, Cohn (1992b) defines a metric 

interpretation of a time span L, where L is an integer greater than 1, as a set of pulses represented as 

integer factors of L ordered from low to high that includes 1 and L. For example, <1, 2, 4, 12>, <1, 6, 

12> and <1, 4, 6, 12> are metric interpretations of 12. A notational demonstration of each of these 

metric interpretations, where the time span L is equal to a dotted-whole note, is provided in Example 1. 

As counterexamples, <1, 4, 8, 12> and <2, 3, 6, 12> are not metric interpretations; the former contains 

an integer that is not a factor of 12, and the latter does not contain 1. The number of integers in a metric 
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interpretation specifies its number of levels. For example, <1, 2, 4, 12> and <1, 4, 6, 12> each has four 

levels, while <1, 6, 12> has three. A metric interpretation is consonant when the division of each integer 

(save 1) by the integer immediately smaller than it yields an integer. For example, <1, 2, 4, 12> and <1, 

6, 12> are consonant, but <1, 4, 6, 12> is not, since 6 divided by 4 is not an integer. A consonant metric 

interpretation is fully consonant when the division of each integer (save 1) by the integer immediately 

smaller than it yields a prime number. For example, <1, 2, 4, 12> is fully consonant, but <1, 6, 12> is 

not, since 6 divided by 1 yields 6, which is not prime. In his research, Cohn has focused solely on fully 

consonant metric interpretations where the only prime-number factors between adjacent pulses are 2 

and/or 3; in other words, L is equal to 2m3n, where m and n are non-negative integers. From henceforth, I 

will use the word “meter” to mean a fully consonant metric interpretation whose factors between 

adjacent pulses are 2 and/or 3. 

 Another way to represent a meter is to list in order its prime-number factors such that the first 

factor is the length of the second pulse divided by that of the first, the second factor is the length of the 

third pulse divided by that of the second, and so on. For example, <1, 2, 4, 12> can be represented as 

[223]. This is the approach taken in Cohn’s analytical study of the Scherzo of Beethoven’s Ninth 

Symphony (1992a), with the exception of the ordering of the factors: one adopting the methodology of 

the Beethoven study would express <1, 2, 4, 12> as [322]. In this case, the left-to-right sequence 

conveys an ordering of division rather than grouping, in that the 12-unit span is first divided in three 

equal parts, then these parts are themselves divided into two equal parts, and lastly two equal parts yet 

again. I will abide by both the notation of the Beethoven article—what I will call the factor 

representation of a meter (e.g. [322])—and the notation of the Mozart article—what I will refer to as a 

pulse representation of a meter (e.g. <1, 2, 4, 12>)—despite the retrograde relationship between their 

orthographies. Cohn’s Beethoven article also introduces the following terms: a meter whose factors are 
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all 2 is considered pure duple, whereas a meter whose factors are all 3 is considered pure triple, and all 

other meters are mixed, in that they contain at least one factor of 2 and one factor of 3. 

The metric relations that constitute what I will call Cohn’s Type I metric space are few but 

broad: all pure duple meters are equivalent, all pure triple meters are equivalent, all mixed meters are 

equivalent, and each of the two sets of pure n-tuple meters is adjacent to the set of mixed meters. These 

relations arrange all possible meters into the three-node graph shown in Figure 1. Cohn illustrates how 

the metric drama of Beethoven’s scherzo unfolds in this metric space; in one instance, he shows how the 

middle term in this three-term series—the set of mixed meters—serves as a way station between the 

extremes, resulting in a smooth “modulation” from pure duple to pure triple. Although this space 

includes any possible meter, its relatively small size proffers only three different “distance relations” 

between any two meters: distance of zero (i.e. equivalent), distance of one (i.e. adjacent), or distance of 

two (i.e. neither equivalent nor adjacent). Hence, while one may dramatize motions through this space, 

the range of theatrical expression is significantly limited. 

Cohn’s second kind of metric relation leads to what Cohn formally christened a “metric space” 

in his article “On Complex Hemiolas, Ski-Hill Graphs, and Metric Spaces” (2001), and what I will call 

Cohn’s Type II metric space. First, for two meters to be what I will call commensurable—that is, to be 

able to be related to one another—in this Type II metric space, they must be meters interpreting the 

same time span. (Commensurability is not an issue in Cohn’s Type I metric space, since any meter may 

be related to any other.) Here, it is prudent to return to the pulse representation of a meter from the 

Mozart article, for all commensurable meters in this Type II metric space must share two pulses: what 

Cohn calls the unit pulse (1 in the pulse representation) and the span pulse (L in the pulse 

representation).3 For example, <1, 2, 4, 12> and <1, 2, 6, 12> are commensurable in a metric space of 

this second type, since both interpret a time span of 12. This relative exclusivity immediately 

distinguishes it from the first metric space. Second, two commensurable meters are considered in an 
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adjacency relation if their ordered pulse representations differ by only one pulse. For example, <1, 2, 4, 

12> and <1, 2, 6, 12> are adjacent, since they differ only by the third pulse: 4 in the first, 6 in the 

second. There are only three distinct meters that interpret a time span of 12: <1, 2, 4, 12>, <1, 2, 6, 12>, 

and <1, 3, 6, 12>, and Figure 2a provides the metric space they form under the adjacency as defined 

above. Figure 2a also provides the factor representation of these three meters. (The adjacency relation 

may also be defined on the factor representation: two meters are adjacent if the swapping of two 

dissimilar adjacent factors changes one of the two factor representations into the other.) Thus, Cohn’s 

Type II metric space takes a step forward in compensating for the inability of the Type I metric space to 

distinguish among the many different varieties of mixed meters. Furthermore, the particular space in 

Figure 2a applies to a number of works in the common-practice repertoire: Cohn remarks that the 

“interplay between the three symmetrical partitions of a 12-unit span is quite common in nineteenth-

century music” (2001, 296). 

However, as with the space in Figure 1, the space in Figure 2a conveys little information about 

its members relative to the entire graph and relative to one another. Relative to the entire graph, there are 

only two distinct locations on the graph when symmetries are factored out: the center, and the 

periphery.4 Between any two meters, there are only three distance relations of zero, one, and two. These 

may be calculated in two different ways that, in the case of Figure 2a, arrive at the same result. The first 

is a dissimilar-pulse distance relation. For example, <1, 2, 4, 12> and <1, 3, 6, 12> are at a distance of 

two under the dissimilar-pulse distance relation, since they differ by two pulses. The second is a graph-

theoretic distance relation. The adjacency relation of minimal-pulse difference creates a connected 

graph of commensurable meters in which the graph-theoretic distance between any two meters equals 

the fewest number of edges (i.e. connections between vertices) that must be traversed by a path from one 

meter to the other. For example, <1, 2, 4, 12> and <1, 3, 6, 12> are at a distance of two under the graph-

theoretic distance relation, since the shortest path between <1, 2, 4, 12> and <1, 3, 6, 12> in Figure 2a 

Murphy, Scott.  “Metric Cubes in Some Music of Brahms,” Journal of Music Theory 53/1 (Spring, 2009): 1-56.  
Publisher’s official version http://dx.doi.org/10.1215/00222909-2009-020. Open Access version: http://hdl.handle.net/1808/9937.



 6 

involves two edges. Hence, Cohn’s christening of the relationship between <1, 2, 4, 12> and <1, 3, 6, 

12> a “double hemiola” reflects both kinds of distance relation (1992b, 13). 

However, in his “Complex Hemiolas” article, Cohn observes that meters interpreting a time span 

of 2m3n in which both m and n are greater than 1 form Type II graphs that break out of the one-

dimensional design of graphs like Figure 2a. For example, there are six different meters that interpret a 

span of 36 (2232). Figure 2b shows the metric space these six commensurable meters form under the 

adjacency relation of minimal-pulse difference. Accordingly, the degree of differentiation among 

meters, and thus the capacity for information, in Figure 2b is higher than that of Figure 2a. Cohn also 

recognizes that, for graphs such as Figure 2b where both m and n are greater than 1, dissimilar-pulse 

distance relations and graph-theoretic distance relations present different measurements in some cases. 

For example, the one case of divergence in Figure 2b is the distance between <1, 2, 4, 12, 36> and <1, 3, 

9, 18, 36>, which is three in terms of dissimilar-pulse distance but four in terms of graph-theoretic 

distance. Cohn ultimately adopts the latter, which overall avails a slightly higher number of distance 

relations that may be reckoned between any two meters.5 This number (minus the relation of 

equivalence, or a distance of zero) equals the graph’s diameter, which is the longest distance between 

any two vertices. For Cohn’s Type II metric space, the diameter is mn. For example, in Figure 2a, m = 2 

and n = 1, hence the graph’s diameter is two (2*1); in Figure 2b, m = 2 and n = 2, hence the graph’s 

diameter is four (2*2). In general, the larger mn is, the larger the metric space becomes, thus providing 

more differentiation among constituent meters. This includes more information about their distances 

from one another, and positions relative to the entire graph: note that, factoring out symmetries, Figure 

2b has three distinct locations—central, peripheral, and in between—where Figure 2a has two. However, 

the larger the metric space becomes, the fewer works in the common-practice repertoire may capitalize 

upon its size. 

 

Murphy, Scott.  “Metric Cubes in Some Music of Brahms,” Journal of Music Theory 53/1 (Spring, 2009): 1-56.  
Publisher’s official version http://dx.doi.org/10.1215/00222909-2009-020. Open Access version: http://hdl.handle.net/1808/9937.



 7 

II. Metric Cubes and Metric Operations {A-head} 

 

 I imagine Cohn’s two kinds of metric space at the relative extremes of a meta-space. In one 

corner of this meta-space is his Type I metric space, which admits any meter but distinguishes them 

coarsely at best. In another corner of this meta-space is his Type II metric space, which provides each 

meter with its own place in a potentially wide terrain but requires that every inhabitant of this terrain be 

of the same species.6 I propose a third metric space, dubbed a metric cube, that seeks to complement 

these two spaces by finding a compromise between them. (Here, “cube” is shorthand for “hypercube,” a 

generalization of the familiar three-dimensional cube to any number of dimensions.) Meters must meet 

two criteria in order to be commensurable within a metric cube. First, each meter in a metric cube must 

have the same number of levels. (Therefore, metric cubes, like Cohn’s Type II metric spaces, 

complement approaches such as London’s “metric flux,” (2004, 89-99) which relate meters to one 

another by the difference in the number of levels.) Yet each meter in its pulse representation need not 

consist entirely of integers, nor begin with 1, nor end with the same time span as the others in the cube. 

(The first two liberties are cosmetic—used to provide a closer correlation between the real numbers 

representing pulses and the traditional fractions of American and German durational nomenclature—but 

the third liberty provides the true difference from Cohn’s Type II metric space.) Second, all meters in a 

metric cube have exactly one identical pulse—the common pulse—on the same level. Numerous works 

from the common-practice repertoire, where at least a single pulse is maintained explicitly or implicitly 

throughout, meet this requirement. 

 As an example, the meters of <1/4, 1/2, 1>, <1/4, 1/2, 1 1/2>, <1/4, 3/4, 1 1/2>, and <1/4, 3/4, 9/4> 

fully constitute a metric cube of four members, since these are the only meters that have three levels, and 

have the same pulse—1/4—on the first level.7 If the common pulse of 1/4 represents a notated quarter 

note, these four meters correspond to the time signatures of 4/4, 3/2, 6/4, and 9/4, respectively.  This 
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four-member cube is particularly appropriate to represent some of the metric variety in the first 

movement of Brahms’s Third Symphony. Example 2 offers four excerpts from the exposition of this 

movement, each of which exhibit one of the four meters listed above.8 I have categorized each of these 

meters in two ways: by its association with either the first theme in the primary zone or the first theme in 

the secondary zone, and by its relative prominence and salience within the first category. The prevailing 

meter and notated time signature of the first theme in the primary zone is 6/4 (Example 2a), although it 

famously begins briefly with music in 3/2 (Example 2b); therefore, I will consider the former primary 

and the latter secondary. The first theme of the secondary zone operates mainly in 9/4 (Example 2c), but 

duple groupings appear intermittently, notably in m. 46 (Example 2d); therefore, I will consider the 

former primary and the latter secondary. 

 The factor representations of the members of this four-member cube, in the order they are listed 

in Example 2, are [23], [32], [33], and [22]. The first two meters are mixed, the third is pure triple, and 

the last is pure duple. In Cohn’s Type II metric space, two meters form an adjacency relation if their 

ordered pulse representations differ by only one pulse; however, in a metric cube, two meters form an 

adjacency relation if their ordered factor representations differ by only one factor. In the case of this 

four-member cube, [22] is adjacent to both [23] and [32], and [33] is also adjacent to both [23] and [32]. 

These relations mold the space into the form of a square, as shown in Figure 3. In graph-theoretic 

parlance, a square is a 2-cube, where an n-cube is a hypercube of n dimensions, an n-regular graph 

(meaning that each vertex is connected to n other vertices) of 2n vertices and 2n-1n edges. A metric n-

cube contains meters of n factors, and n+1 levels. For example, the metric 3-cube contains the meters of 

[222], [223], [232], [233], [322], [323], [332], and [333], each of which represents a meter of four levels. 

Figure 4 provides two graphic realizations of this metric 3-cube: one planar (Figure 4a), and one drawn 

as a traditional cube (Figure 4b). Whereas cubes have been employed to model relations among pitch-

class sets, they have not, to my knowledge, been called upon to model relations among meters.9 
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The metric cube well supplements Cohn’s two metric spaces. On the one hand, a metric cube can 

probably admit many of a common-practice work’s different meters. A considerable weakness of 

Cohn’s second space is that it does not admit pure duple meters, which are the most frequent in the 

common-practice repertoire.10 On the other hand, a metric cube differentiates among many of a work’s 

meters, which Cohn’s first space does only minimally. Each meter has its own place in the cube, thus 

potentially resulting in a space whose size is roughly proportional to a work’s metric diversity. 

Furthermore, mixed meters of different time spans cannot be distinguished in Cohn’s first space or 

compared in his second, but the cube permits both of these actions. 

As with Cohn’s Type II metric space, one can display the constituency of metric cubes either in the form 

of a graph of meters or a graph of pulses. Cohn calls the graph of pulses that corresponds to his Type II 

metric space a “ski-hill graph,” where the pulses are arranged by duple and triple factors, and the unit 

and span pulses serve as lower and upper boundaries of the graph, respectively.  Figure 5 provides the 

ski-hill graph that corresponds to the metric space of Figure 2b, where the vertices, representing pulse 

durations, are displayed as numbers rather than particular notated values to correspond with the pulse 

notation in Figure 2b.  Each of the six paths of five durations that begins with the span pulse and ends 

with the unit pulse corresponds to one of the six meters in Figure 2b. The graph of pulses that 

correspondingly displays all the meters of a metric cube is very similar to a ski-hill graph, with the 

exception that it pinches at one place—the common pulse—instead of two places. Figure 6a displays the 

graph of pulses that corresponds to the metric 2-cube of Figure 3, using the common pulse and pulse 

nomenclature chosen for Example 2. Each of the four paths of three durations that begins at the bottom 

and ends at the top corresponds to one of the four meters in Example 2. Furthermore, the pinch may 

occur at the top, bottom, or anywhere in between. Therefore, Figures 6b and 6c are also pulse-graph 

realizations of the metric 2-cube in Figure 3, but with common pulses on different hierarchical levels. 
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This flexibility allows cubes to model “bottom-up,” “top-down,” or “middle-out” means of organizing 

the metrical hierarchy.11 

Returning to the Brahms analysis, the metric 2-cube of Example 3 places the two primary theme 

meters of [23] and [32] at opposite corners, and the two secondary theme meters of [22] and [33] also at 

opposite corners. Although this symmetry accords with the thematic design of Brahms’s exposition, it 

cuts across other, perhaps more intuitive, ways of interpreting these pairs: [23] and [32] form a single 

(2:3) hemiola and are thus adjacent in Cohn’s Type II metric space, while [22] and [33] are not 

commensurable in Cohn’s Type II metric space and are maximally distant in his Type I metric space. 

Another conceptualization of the experience of hemiola may provide some assistance in illuminating 

this symmetry. On the one hand, the adjacency of meters in a single-hemiola relationship in Cohn’s 

Type II metric space conveys a sense of “smoothness” through the turnover of a single pulse. We only 

need to re-entrain to a single different pulse; all other pulses remain locked in. On the other hand, 

consider the ramifications of this single-pulse change on the experience of duple and triple periodicities. 

During the 3/2 meter in Example 2b, the listener can experience the quarter notes as grouped into twos, 

and this slower grouping (which, in this case, is the tactus) as further grouped into threes. When the 

meter shifts to 6/4 in Example 2a, the listener may experience a double transformation of these 

periodicities: the quarter notes are now grouped into threes, and this slower grouping (which, in this 

case, is still likely to be felt as the tactus) is now grouped into twos. 

Where one could interpret these periodicities as simply swapping positions (“a reordering of the 

initial division of the bar,” as Walter Frisch (1990, 156) characterizes the hemiola that opens Brahms’s 

Third), one may also preserve the integrity of the position of each factor and experience a modification 

of both periodicities, invoking a stronger sense of alteration than if only one periodicity were changed 

from duple to triple, or vice versa.12  Although not hemiolic, the metric change in the secondary theme 

also goes through a comparable double transformation of its own: whereas Example 2c groups the 
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quarter note into threes, and then this slower grouping is further grouped into threes, Example 2d groups 

the quarter note into twos, and then this slower grouping is further grouped into twos. In the case of both 

thematic zones, duple periodicities both above and below the tactus are transformed into triple 

periodicities, or vice versa. Therefore, one may hear the unusual metric changes of the secondary theme 

as divulging, through a transformational likeness, a latent aspect of the primary theme’s familiar 

hemiola. 

Example 3 offers an analogy using registral harmony and voice leading that may buttress this 

method of interpretation, and which has some bearing on this music of Brahms in particular. Examples 

3a and 3b portray a neo-Riemannian parallel operation from an F-major triad to an F-minor triad, or vice 

versa. With regard to pitch content, the progression is relatively smooth, as two out of the three pitches 

stay put. But with regard to the two intervals between adjacent pitches as ordered in register, both 

intervals have been changed: each major third becomes a minor third, and each minor third becomes a 

major third. One mere change of note begets two changes of interval. Again, one can conceive (this 

time, dualistically) of these intervals as simply swapping positions, as shown in Example 3a. However, 

the fact that the second chord is more commonly described as a minor triad, instead of a “triad with the 

major third now on top,” suggests the ability to keep transformational streams from crossing, as depicted 

in Example 3b, at least with regards to pitch relationships. This analogy maps metric pulse to registral 

pitch, and periodicity factor to registral intervals, particularly duple groupings to minor thirds and triple 

groupings to major thirds, although the reverse mapping would work as well. Therefore, the pitch 

equivalent to the metric relation in the secondary zone is given in Example 3c. Whereas the quarter note 

served as the common pulse in the excerpts of Example 2, the note F below middle C serves as the 

common note in the three progressions of Example 3. The resultant progression of Example 3c is 

between an F augmented triad and a F diminished triad—two “pure harmonies” generated by a single 

interval—but can be heard in the same manner as Example 3b: each major third becomes a minor third, 
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or each minor third becomes a major third. Hence, more voices may be moving, but the intervallic 

toggling is identical.13 

Examples 3a (or 3b) and 3c both occur in Brahms’s movement in a rare but pronounced dotted-

whole-note harmonic rhythm, and each progression only appears in the movement to usher in the 

corresponding thematic zone whose primary and secondary meters it analogizes. Example 3a or 3b, the 

shift between F-major and F-minor triads, occurs (albeit in pitch-class space) at the outset of the first 

theme of the primary zone, as shown in Example 2b. (The only other foreground parallel operation in 

the movement—E-flat major to E-flat minor—occurs in mm. 110-11, when the first theme of the 

primary zone returns as part of the retransition that heralds the recapitulation.) In her exploration of 

narrative agendas in this symphony, Susan McClary (1993, 336-42) attributes this major-minor clash to 

the chief dilemma of the symphony’s heroic, masculine protagonist, who is represented by the primary 

theme. Example 3c, the shift between an augmented triad and a diminished triad, only occurs in the 

movement (albeit enharmonically) atop the harmonic progression that immediately precedes the first 

theme of the secondary zone in both exposition and recapitulation; Example 4 shows its guise in the 

exposition, and the boxed-in area highlights the moment where Example 3c is most conspicuously  

heard. Some authors have acknowledged the similarities between Example 4 and the Sirens’ music from 

the opening of Wagner’s Tannhäuser.14 Furthermore, Hermann Krestchmar (1890, 300; translated in 

Gillespie 1990, 136) referred to the secondary zone as consisting of a “group of Delilah-figures,” in 

which the first theme (whose opening is provided in Example 2c) is “the most seductive.” McClary 

(1993, 338) has picked up on these references, deliberately associating the first themes in the primary 

and secondary zones with both the Tannhäuser-Venus and Samson-Delilah pairs. This metrical and 

harmonic analysis seems to support her narrative reading. The “feminine” theme’s pairing of 9/4 and 

4/4, along with the striking harmonic progression enclosed in Example 4, appears on the surface to be 

considerably more exotic than the stock hemiolic pairing of 6/4 and 3/2, along with the major-minor 
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shift, in the “masculine” theme. This creates an outward disconnect between the two themes, not unlike 

Tannhäuser’s demands to be released from the Venusberg or Samson’s initial thwarting of Delilah’s 

scheming; both men ostensibly shrug their lovers off. Yet the cube analysis reveals that the mild-

mannered hemiola and valiant P transformation have a close and underhanded affinity with the alluring 

9/4–4/4 pairing and the Siren-like progression than what appears at first blush, not unlike how 

Tannhäuser scandalizes those at the singing contest with his “Hymn to Venus” or how Samson 

eventually relents; both men are still inwardly and tragically tied to their corresponding temptresses. 

Compared to Cohn’s Type II metric space, the metric cube arguably has a higher applicability to 

the common-practice repertoire, as it can accommodate ubiquitous pure duple meters, and it requires one 

common pulse instead of two. Yet how does the metric cube match up regarding the amount of 

information it may relay? Here again, the metric cube serves not so much to improve upon, but to 

complement, metric spaces already proposed. On the one hand, the ratio of the number of graph-

theoretic distance relations to the number of meters in the graph is generally lower for the metric cube. 

For example, the eight-meter cube in Figure 4b has three non-zero graph-theoretic distance relations (a 

ratio of 3:8), whereas the six-meter Type II metric space in Figure 2b has four (a ratio of 2:3). Moreover, 

a cubic graph is perfectly symmetrical; therefore, there is only one distinct location in such a space, 

versus the multiple distinct locations in Cohn’s Type II metric spaces. However, one may orient a metric 

n-cube with the pure meters on the ends, thus creating n+1 distinct locations ordered in between the pure 

ends representing “degrees of mixture.” This is the orientation chosen for Figure 4b, whereby the four 

horizontal levels on the two-dimensional page represent, from top to bottom, pure duple, two-thirds 

duple (or one-third triple), two-thirds triple (or one-third duple), and pure triple. (Furthermore, all of the 

meters of the same degree of mixture in a metric cube correspond one-to-one to all of the 

commensurable meters in some Type II metric space. Therefore, any Type II metric space is a subgraph 

of some metric cube, and any metric cube is the non-overlapping union of Type II metric spaces.) 
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On the other hand, a metric cube supplies a kind of informational specificity not allowed in any 

of the previously discussed spaces: its distance relation can be a bijective function, or, following David 

Lewin’s choice of parlance, an operation (1987, 3). A factor representation of a meter that uses only two 

prime-number factors is essentially an ordered string of bits, where each factor must be one of two 

values.15 Lewin 1995 proposed a type of operation that acts on such binary-code states: a series of 0s and 

1s in which a 1 toggles the bit in the corresponding position, and a 0 keeps it unchanged. With regard to 

a factor representation of meter, a 1 would toggle a periodicity factor from duple to triple, or vice 

versa.16 For example, [222] changes to [223] under the operation <001> (the angle brackets are intended 

to set the operational label apart from the metric label). Or, to revisit the Brahms Third metric 

transformations, the <11> transforms the primary theme’s [23] and [32] meters into one another, as well 

as the secondary theme’s [22] and [33] into one another. Figure 7 presents these relationships in the 

form of isographic networks. The fact that <11> is a “polar” operation since all layers are toggled (or, 

equivalently, that both thematic zones contain “metric cube poles”) signifies that both zones achieve 

maximal metrical variety (within the realm of duples and triples, of course) in how first the quarter note 

is grouped, and then how the group of quarter notes is grouped. 

For an n-cube, there are 2n such operations, they form a direct product group of (C2)n, and, 

together with the metric states in an n-cube, they fashion an example of Lewin’s Generalized Interval 

System (1987, 26). While the group structure is important, I also appreciate the fact that these toggling 

operations simply allow for a kind of precision unavailable in other metric spaces: that, for all meters 

and “intervals,” there is a unique meter which lies a certain “interval” away from a given meter.17 Yet 

the traditional graph-theoretic distance relations on metric cubes may yield significant analytical results 

as well. Each of the two analyses that follow capitalize on these two kinds of metric-cube relations: 

many performances of the third movement of Brahms’s Second Symphony feature “stepwise” distances 
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between adjacent meters, and the conclusion of Brahms’s Second String Quartet achieves a distinctive 

recurring pattern of operations as its metric content unfolds. 

 

III: Second Symphony, op. 73, iii  {A-head} 

 

The first order of business in applying a metric cube to the entire third movement, Allegretto 

grazioso (Quasi Andantino), of Brahms’s Second Symphony is deciding upon a common pulse. The 

movement involves tempo changes among its sections that are not uncommon in some minuet-trio-

minuet or scherzo-trio-scherzo designs, but Brahms turns these familiar designs inside out. As 

Rheinhold Brinkmann explains, “it is not a triple scherzo with two trio sections but the opposite: a 

primary, twice repeated trio-like movement with two (non-identical) scherzo-like contrasting sections” 

(1995, 164). Frisch (1996, 80) has labeled these five sections ABA’CA’’,18 and Example 5 provides 

excerpts of the movement that outline this form, and serve as reference points for my subsequent 

analysis. Many scholars, perhaps David Epstein most notably,19 assert that tempo changes within a 

movement, or even between movements, do not necessarily have to be restraining walls for a common 

pulse: perhaps the composer’s indication, a particular performance, or communal performance practice 

simply redresses the common pulse in another notational garment through the use of a simple 

proportional relationship between the two tempi. Initially, Brahms provided exact ratios between the 

movement’s Allegretto (A) tempo and the tempi of both scherzo sections (B and C), each marked Presto 

ma non assai: going into B, the first Presto, quarter becomes half; going into C, the second Presto, 

quarter becomes dotted quarter. However, Brahms then asked Simrock, the publisher of the symphony, 

to withdraw the second ratio: “Beim zweiten Presto (3/8) steht doch nicht mehr: Q. = Q. Da soll nichts 

stehen. [In the second Presto (3/8), this does not suit any longer: Q. = Q. Nothing should be there.]” 

(Brahms 1917, 79). David Epstein endorsed the ratio that Brahms omitted for multiple reasons, 
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including the priming of the proportional relationship by an incessant triplet motive in the latter part of 

the A’ section (Example 5f) whose durations and three-note stepwise descents would carry over into the 

C section under the Q. = Q proportion.20 Thus Epstein’s common pulse, which “never alters from section 

to section, though the tempo changes” (1996, 266), is the Allegretto’s quarter note, and the tactus for the 

entire movement. 

However, Bernard Sherman disagrees with Epstein’s interpretation of tempo in this movement in 

particular, and uses the opportunity to reexamine the benefits of proportional tempos in general:  

 
The advantages of proportional tempo relationships are, as Epstein has explained, that they 
create continuity of motion and add to the unity of a work. But this explanation emphasizes the 
role of tempo as a structural device. For most musicians, the choice of tempo has at least as much 
to do with expression as with structure. For this reason, proportions also have disadvantages. 
Sometimes one wants to emphasize not continuities of motion, but rather contrasts. Moreover, 
sometimes insisting on proportions can force one to take a tempo that does not suit the 
expressive character of a particular section. The latter reason may be why Brahms removed the 
proportional indication for the second Presto in the Allegretto of the Second Symphony—it may 
have felt too slow when played that way. Most conductors seem to think so, Epstein himself 
acknowledges it, and the score has at least one clue suggesting a faster tempo [the four measures 
ending C and preceding A’’ are labeled with “poco a poco”]. Unifying the movement’s pulse 
may, in the end, have seemed less important to Brahms than having a suitably fast speed for the 
Presto. (Sherman 2003, 111)  
 

Figure 8 provides a chart that displays the A and C tempi of sixty-six commercial recordings of 

the movement, plus that of one tempo recommendation in prose (Del Mar 1993, 36), which I will refer 

to as a “recording” in a virtual sense just for efficiency’s sake. (A list of the recordings is provided in an 

appendix.) The X axis represents the metronome marking for the quarter note of the opening A tempo, 

the Y axis represents the metronome marking for the 3/8 measure in the C section, and each point 

represents a pair of tempi projected by a recording.21 The lower solid diagonal line in the graph 

represents Epstein’s recommendation that the A’s quarter note equal C’s dotted quarter note, and the 

dashed diagonal lines on either side represent a 5% “just noticeable difference” from this proportion. 

The graph shows that, at least among these sixty-seven surveyed tempo pairs, none approximates 
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Epstein’s proportion.22 This supports Sherman’s view that “many conductors seem to think” that the C 

section should be relatively faster than what Epstein prescribes.23 

Yet a disavowal of one proportion, either by Brahms or by a consensus among conductors, does 

not necessarily discount other possible proportional relationships between the A and C tempi. The 

higher solid diagonal line in the graph of Figure 8 demarcates a 3:4 proportion between the metronome 

values of the quarter note in the A section and those of the dotted quarter note in the C section. (Again, 

the flanking dashed lines indicate a just noticeable difference of 5%.) In other terms, this line represents 

those tempo pairs where the eighths in both B and C Prestos are equivalent, since Brahms maintained 

that the eighth note in the B Presto is half the duration of an Allegretto eighth note. Epstein disapproves 

of the 3:4 proportion as “unlikely on the grounds of musical feeling alone, not to mention other paths of 

logic, for the tempo of the second Presto in this case becomes something of a rush” (Epstein 1995, 536). 

Indeed, of the thirty-six recordings that fall outside of the ±5% band surrounding the 3:4 proportion, 

twenty-six opt for a C Presto tempo that is slower than what would match a 3:4 proportion. However, 

twenty-nine recordings—slightly under half of those surveyed—fall within the band, and another five 

fall short of the band by 1%. Furthermore, both the mean (-2.1%) and the median (-2.9%) of the ratios of 

the sixty-seven recordings do not exceed the 5% just noticeable difference of this tempo proportion. This 

general consensus suggests that one can choose absolute tempos that, as Sherman advises, “suit the 

expressive character” of this movement’s various sections (if those conductors whose performances fall 

within the band are deemed capable adjudicators of such things) and achieve a proportional 

relationship.24 I intend this survey not as an inherent criticism of Epstein’s interpretation as an outlier 

among many other conductors’ interpretations; after all, interpretations outlying a communal norm do 

not necessarily have less aesthetic value or merit. Rather, this survey is a means to define my analytical 

subject as not only Brahms’s movement, but also as any one of a number of its performances (or, if the 
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reader permits, an “average” performance based on the aforementioned mean or median) that clearly 

projects a 3:4 diminution of the tactus into the C Presto.  

Using this proportion, the common pulse uniting the sections is therefore not found on the tactus 

level, but on a submetrical level: the duration of a sixteenth note in the A sections, or, equivalently, the 

duration of an eighth note in both the B and C Presto sections. Admittedly, the sixteenth-note duration 

appears only intermittently during the A sections: nearly all performances interpret the opening and 

recurrent grace notes as sixteenths,25 and the transition from the A’ section into the C Presto pits dotted-

eighth/sixteenth rhythms directly against the eighth-note triplet rhythm that Epstein focuses upon. 

However, if it is allowed as the common pulse, then the second and last step is to determine the smallest 

cube that encapsulates as much of the movement’s metric variety as possible.26 The common pulse is 

quite quick, and, although the B Presto bifurcates this pulse with dotted rhythms in mm. 51-54 and mm. 

57-60, it is never trifurcated. Therefore, it makes sense to treat the common pulse as the fastest common 

pulse in a “bottom-up” cube. A survey of the meters in the movement reveals that the music supports 

multiple metric hierarchies that consistently engage up to four additional levels of metric periodicity 

above this common pulse; therefore, a metric 4-cube is best suited.27 

Figure 9 provides an overall view of the movement’s metric content and the metric operations 

that relate adjacent meters.  Columns of durational symbols and integers display five pulses within the 

representative meter of each of the nine passages labeled by measure numbers above and formal labels 

and corresponding examples below; the integers in these columns represent the number of notated 

measures in the pulse. A set of three short vertical lines in between two pulse values signifies a triple-

ratio relation between adjacent pulses; duple-ratio relations, as the unmarked of the two ratios, are 

therefore not displayed. This information is then summarized in the meter’s factor representation. For 

example, reading the [2322] label of the opening A section left-to-right corresponds to reading the 

column below it top-to-down: not triple, triple, not triple, not triple. The hairpins indicate which pulses 
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change, and if they increase or decrease in duration, in a metric-state progression. The bottom (quickest) 

level of pulses is easily seen as the common pulse, since it is the only level without hairpins. By 

displaying each pulse, the original notated durations are preserved, yet the horizontal alignment 

automatically performs the notational conversion into and out of the B and C Prestos. The operations on 

top of the figure track the toggling of ratios. 

Of the sixteen possible meters in this metric cube, this movement employs five: one that is pure 

duple ([2222]), three that are three-fourths duple ([2322], [3222], and [2223]), and one that is equal parts 

duple and triple ([2323]). In Figure 9, these different degrees of mixture are displayed by vertical height 

comparable to Figure 4b. These five different 4-cube meters account for nearly all of the movement’s 

metric content.28 The operations that describe metric successions into and within both B and C Prestos 

are all “stepwise,” in that each operation contains a single 1, signifying that only one factor in the metric 

hierarchy is toggled at a time. Moreover, the metric changes initially within each of the Presto sections 

([2222] to [3222] in B, and [2323] to [2223] in C) are similar, in that both return the meter to a degree of 

mixture equivalent to, but with a hierarchical distribution different from, that of the A sections’ [2322]. 

Skewed triangles highlight these corresponding metric progressions in Figure 9. 

Therefore, a 3:4 proportion generates multiple stepwise metric-cube transitions in the movement 

and correspondences between metric progression and formal design, offering impressions of both 

continuity and unity that Epstein values, but from a different perspective. However, as this perspective is 

probably less familiar and perhaps less intuitive, closer examinations of the first (A!B) and sixth 

(A’!C) metric transitions may help to communicate the narrative of “smoothness.” Each of the A 

sections is best represented by [2322], the meter that groups 3/4 Allegretto measures in twos, although 

two-measure groups do not conspicuously persist throughout the entirety of the A sections. When the B 

section begins, the triple factor between the Allegretto’s beat and measure levels toggles to duple, and 

the music becomes pure duple. Recall that the single hemiola’s alteration of a single pulse duration 
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changes two periodicity factors; somewhat dually, a toggling of a single factor may, via a “ripple 

effect,” change two or more pulse durations. Such is the case here, as a stepwise operation replaces both 

the Allegretto’s dotted-half (metric) and dotted-whole (hypermetric) pulses with their undotted 

counterparts (two-measure and four-measure periodicities in the B Presto notation)—this double 

replacement is illustrated in Figure 9 with two hairpins between the first two columns. Yet my sense of 

this metric transition (with the shift to a constant eighth-note pulse aside) is less one of overhaul and 

more one of ease, and this sense is captured better with the single factor turnover than the double pulse 

turnover. 

Since the single toggle from A’ to C is submetrical, the ripple effect is more pronounced, as all 

of the pulses in the hierarchy, save the common pulse, are replaced by new pulses: note the four hairpins 

in between the A’ and C columns in Figure 9. However, the “intervallic” structure of the meter largely 

remains intact. This can be most easily experienced if the C Presto tactus pulse is three-halves, rather 

than three-fourths, the duration of the Allegretto tactus pulse.  (Particularly when using the “average” 

Allegretto tempo of q = 90, the C Presto tactus tempos of q. = 120 and h. = 60 are equally plausible.) This 

would group two C Presto measures into a single, slower beat, and would result in a duple division 

below the beat, and, if the beat is conceived of as a quarter-note duration, 3/4 measures grouped in twos 

above the beat, which is exactly the metrical hierarchy that surrounds the beat in the Allegretto. The only 

difference between the two meters is the submetrical level below the duple division of the beat.29 The 

sensation that the C Presto is a slower version of the same meter found in the A sections is supported by 

two 3:2 pitch expansions of Allegretto material to begin the C Presto, both shown in Example 6. First, 

the highest note in each of five notated two-measure groups starting in m. 132 duplicates the first five 

notes of the Allegretto theme after a 3:2 reduction. Second, mm. 126-31 function as a hypermetric 

anacrusis to the C section, since changes of key and orchestration dictate that the duple grouping at the 

highest level of the [2323] hierarchy best fits mm. 132-55. (This is the reason for the omission of mm. 
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126-31 from Figure 9.) The descent D-C-B-A, emphasized by accents, matches a 3:2 expansion of the 

D-C-B-A eighth-note descent in the A section; in terms of the C Presto’s “slower 3/4,” both also begin 

on downbeats in the triple beat groupings and in weak hypermeasures in the duple measure groupings. 

Epstein argued that the metric transitions in this movement using his preferred 1:1 ratio are 

“natural” and “comfortable,” 30 whereas he shunned the 3:4 proportion as lacking such properties. On the 

one hand, my analysis above suggests how, from a metric-cube vantage point, a 3:4-proportioned 

performance may also achieve a smooth and internally consistent flow from one meter to the next. On 

the other hand, the change of tactus that all of the surveyed conductors summon when entering the C 

Presto produces a palpable, undeniable contrast with what came before; in these terms, the C Presto 

operates on a different plane from that of the B Presto, which continues the Allegretto tactus. London 

has argued convincingly how alterations of the tactus are more conspicuous than alterations of other 

pulses. This sense of contrast resonates to some degree with Sherman’s notion, quoted earlier, that 

“sometimes one wants to emphasize not continuities of motion, but rather contrasts.” However, in 

making this statement in the context of the disadvantages of tempo proportions, Sherman implies that 

tempo proportions and expressive contrasts are mutually exclusive. As way of an analogy, the 

relationship between two pitches or two tonal centers may be measured precisely yet still heard as 

contrasting. For example, interpreters of the tonal plan of this G-major movement have found certain 

key choices to be decidedly unusual: Knapp considers the A-major key in the opening of the C Presto 

(mm. 132-55) as “wrong,”31 and Brinkmann (as one of many) hears the F{sharp}-major key in the 

opening of the A’’ section as “striking.”32 Tovey (1981, 206-7) interprets these keys as “the most 

unorthodox possible” and “remote,” respectively. These interpretations follow, at least in part, from the 

atypical stepwise key relationships to the movement’s tonic, instead of more customary fifth or third 

relations, as well as the fact that material first presented in tonic is being transposed further away from 

tonic when it is restated later in the movement. Metric theory may not be as advanced as tonal theory in 
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specifying common-practice conventions and contraventions, but, in lieu of this, a 3:4-proportioned 

performance of this movement establishes two significant metric contrasts that are analogous to, and 

thereby glean some of their features from, these two tonal contrasts.33 

As shown in Figure 9, three meters in the movement are mixed one-fourth triple and three-

fourths duple: the [2322] of the A sections, the B Presto’s [3222], and the C Presto’s [2223]. Therefore, 

they may be arranged in a Cohn Type II metric space where m = 1 and n = 3, and the span pulse is 24 

times (3123) the duration of the unit pulse. However, in another article (Murphy 2007, 338-39), I have 

generalized this type of space further by arranging the meters into a linear pattern based on duple 

relations among their characteristic “triple-count” frequencies. This allows nearly all of the entire C 

section to be represented by the triple-count relation between the Presto’s notated eighth note and dotted 

quarter (or, equivalently, between the Allegretto’s notated sixteenth note and dotted eighth). Figure 10a 

arranges these three triple-count frequencies into a linear graph using a duple-factor adjacency relation: 

the notated values refer to the Allegretto notation, and not to the Presto conversion. The A theme’s 

triple-count, established by the movement’s form as the characteristic triple-count of the movement’s 

most primary or representative meter (the Allegretto’s 3/4), is centrally located in Figure 10a.34 

However, its centrality is asymmetrical: the C Presto’s triple count is four times as quick as the tonic 

triple count. Moreover, the triple-count pulse that would fill the gap in between—within either a bit of 

6/8 in the A sections or a bit of notated 3/4 in the C Presto—is entirely absent in the movement, as 

represented by the blank vertex. Therefore, the double hemiola, compounded by the conspicuous lacuna, 

isolates the C Presto’s meter. Following Lewin and Cohn, who analogize such linear distributions of 

meters with segments of perfect fifths, the asymmetrical metric graph of Figure 10a neatly matches the 

asymmetrical graph of keys in Figure 10b, both in graphic form as well as synchrony between the meters 

and keys during the movement.35 The move to [3222] and its half-as-fast triple count in m. 51 of the B 

Presto coincides with the move to the key of C major; both the subdominant shift and single hemiola 
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with the A’s [2322] ruffle few feathers.36 The sudden lurch to the four-times-as-fast of a triple count to 

start the C Presto, and the unprepared shift to the “wrong” key of A major six measures later correspond 

analogously.37 Furthermore, the key of A major does not function as double dominant leading to the key 

of D major, nor is this dominant key ever assigned a theme or tonicized for longer than a couple of 

measures during the entire movement; hence the blank vertex in Figure 10b, and the further 

estrangement and “wrongness” of A major. 

The contrast of the F{sharp}-major key in the A’’ section (m. 194ff.) plays out somewhat 

differently than the contrast of the A-major key in the C Presto (m. 132ff.), although each tonicized 

pitch is a single diatonic step from the movement’s tonic of G. First, the transposition relatively far from 

tonic, and relatively late in the movement, of primary material that has already been heard multiple 

times in tonic alludes to a similar practice in some Classical rondos and sonata-rondos of Mozart and 

Beethoven.38 But a semitonal transposition in particular augments a curious paradox: the key is at once 

considerably distant, if gauging tonal distance by perfect fifths and/or thirds, and maximally proximal, if 

gauging distance by semitones.39 The latter measure, abetted by no change in mode, permits the 

semitonal transposition to be interpreted as a substitute, even while the former measure creates a 

suspicious, mysterious, or magical aura around the surrogate.40 Performances that create a 3:4 tempo 

proportion conjure a similar paradox in duration-space right before the F{sharp}-major substitution. 

Example 7 reproduces mm. 172-95, the bulk of which provides the retransition from the end of the C 

Presto to the A’’ section. Starting in m. 180, the meter begins to support a notated quarter-note pulse 

through the close imitation of the C-B-A-E motive among the strings, and even a notated half-note pulse 

through this motive’s descending octave transpositions. This gives the impression of another metric 

retransition highly comparable to the one that prepared the Allegretto’s [2322] meter at the end of the B 

Presto (mm. 101-6, Example 5e), although this one requires a double toggle or, equivalently, a double 

hemiola. An analogous tonal retransition certainly appears possible, even probable, as the A-minor 
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chord of mm. 176-79 could easily function as a harmonic pivot from the E-minor tonicization in mm. 

172-75 back to G major, just as the same music served to return the B Presto to the key of G major in 

mm. 87-88. Example 8 offers a recomposition that sees both metric and tonal retransitions through to a 

normative G-major return of the initial Allegretto theme. 

However, once m. 188 arrives, neither of these apparent retransitions follows through in such a 

conventional manner: the tonal center swerves from the brink of G back toward E, if only temporarily, 

and the groupings of notated eighth notes swerve from the brink of twos and fours back toward threes, if 

only temporarily. (The harmonic shift is not quite as abrupt as the metric shift: savvy listeners will 

probably interpret the F{sharp}-half-diminished chord in mm. 184-87 to be more likely as predominant 

in E and less likely as dominant substitute in G.) As shown with the parenthetical tempo indications in 

Example 7, a typical 3:4-proportioned performance keeps the eighth note at the same value into m. 188, 

equates the dotted-quarter duration to the quarter duration into m. 190, and gradually (poco a poco) 

decreases the tempo in some manner during mm. 190-93 before A’’ and its Tempo primo arrive in m. 

194. This means that the repeated top-voice Bs in mm. 188-89, clearly anticipating the initial A theme, 

are 4/3 faster than their Allegretto-paced counterparts. Likewise, before any rallentando, the notated 

eighth notes in mm. 190-91 are 4/3 faster than the eighth notes of the Allegretto tempo, presented as 

usual by the ‘cellos in m. 194ff. This is the one moment in the movement where single-bowed staccato 

eighth notes can be as crisp as the ‘cellos’ pizzicato notes; the upper strings in many performances of 

mm. 190-91 seem to anticipate, with clearly detached articulation, the ‘cellos’ plucking of mm. 190-191. 

Both of these connections can create the impression that the A theme, including its various metric levels, 

is beginning to return, but it is just a bit too fast, analogous to the fact that F{sharp} major is just a bit 

too low, thus invoking a similar paradox in the metrical realm. Of course, a C Presto tempo slower than 

that of a 3:4-proportioned performance (but faster than Epstein’s recommendation) can still achieve this 

same close-but-not-quite experience, and even make the analogy tighter, if one wants to fret about the 
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precise numerical ratio between the referential frequency and its substitute. However, I prefer the 3:4-

proportioned performance, in that the sensations of both paradoxes can be precisely measured with two 

familiar intervals and therefore experienced in relative terms: just as the mediant of G becomes the 

subdominant of F{sharp} in mm. 188-94, the duration of one-half of an Allegretto eighth note (the q ! h  
conversion at m. 33 and the equivalence of the Prestos’ eighth notes) becomes two-thirds of an eighth 

note in mm. 190-91 (the  q. ! q conversion at m. 190). In Epstein’s interpretation, m. 190 restores the 

Allegretto tempo exactly, just as the previous retransition did at the end of the B Presto, and no 

rallentando (even poco a poco) is required. While I appreciate the neatness of Epstein’s retransition, I 

prefer a performance of this retransition in which pitch and time seem to collude with one another in 

creating contrast and novelty. 

 

IV. String Quartet No. 2, op. 51/2, iv {A-head} 

 

There is one clear choice for this finale’s common pulse, at least before the slight but nonetheless 

significant tempo changes of the coda: eighth notes permeate at least two-thirds of its measures, and all 

other durations in the movement are multiples of the eighth note. The smallest cube that best captures 

the wealth of metric variety in this movement is a “bottom-up” 3-cube with the eighth note as the 

common, and fastest, pulse. Brahms uses six of the eight meters in this 3-cube at least once in the 

movement, and all six appear during the 100-measure sonata-form exposition. In other words, this 

exposition explores six of the eight possible ways, within binary and ternary means of metric 

organization, to group eighth notes, to group this group, and then to group this group of groups. This 

degree of metric diversity, as quantified by how much of a metric 3-cube is utilized, is rather unusual 

among Brahms’s sonata-form expositions. However, similar to a metric/tonal tradeoff Cohn recognizes 

in Brahms’s “Von ewiger Liebe” (2001, 312) and Carl Schachter notes in a passage from the first 
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movement of Brahms’s Second Symphony (1983, 60; cited in Cohn 2001, 312-13), this diversity may be 

interpreted as compensation in the metric realm for one of Brahms’s most tonally conservative of 

expositions. The primary theme (mm. 1-37) is firmly grounded in A minor, the eight-measure transition 

(mm. 37-44) makes a beeline for the dominant of C major, and the secondary theme group (mm. 44-100) 

hardly wavers in its support of the key of C major, which is reinforced by “three cadential closes,” as 

Arnold Whittall (1987, 159) hears it. Here, the exposition’s metrical scheme and key scheme do not 

collude with one another but instead complement one another with regards to the complexity of their 

content. 

Figure 11 arranges these six meters in the order in which they first appear in the movement, and 

Example 9 provides scores of most of the corresponding measures that convey these meters.41 Since the 

first two meters partially overlap, their ordering is determined by when all of the pulse durations have 

fully transpired: the [322] (3/2 meter + eighths) of the first violin is finished by the end of m. 2, whereas 

the [332] (9/4 meter + eighths) of the other three instruments does not wrap up until the end of m. 3. 

(Unlike those in the Second Symphony analysis, the slowest pulses of two of the meters in Figure 11—

[322] and [323]—are not periodic. However, I will still treat them as four-level meters, given the clear 

delimitations of these slowest pulses by the music that surrounds them.) Like Figure 9, the horizontal 

position of a meter’s label represents its degree of mixture. Figure 11 reveals a pattern in the chronology 

of the introduction of new meters. In general, the operations oscillate between stepwise (<100> or 

<010>) and polar (<111>) metric distances; more particularly, the operations form a palindrome. The 

stepwise distances associate two meters that are already bundled together somehow: in the case of the 

first two pairs, by immediate succession or simultaneity; in the case of the last pair, through clearest 

association with themes that frame the second part of Brahms’s two-part exposition. The first two 

stepwise toggles can be readily heard as expansions. First, the descending arpeggiation through an A-

minor chord on the half-note third level of [322] in the first violin’s first two measures is inverted and 
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augmented by 3:2 on the dotted-half-note third level of [332] in the cello’s first three measures. Second, 

the first violin’s [223] in mm. 9-12 seamlessly transforms into a stretched-out [323] accompaniment that 

conforms to a return of three-bar phrasing in mm. 13-15. As with the succession of meters in the 

symphonic movement examined earlier, the succession of new meters in this finale’s exposition alters 

the degree of mixture incrementally, depicted by the gentle rises and falls of the metric labels’ horizontal 

positions in Figure 11. 

Two meters in this 3-cube are missing: the pure triple [333] is predictably absent, and the 

movement also lacks [233]. However, in music of the previous movement (Quasi minuetto, moderato), 

“all the groupings are by threes,” as Daniel Gregory Mason (1933, 104) describes it. This minuet both 

begins and ends with the same music in small-ternary form. Taken from the end of the movement, 

Example 10 displays the six measures that begin this small ternary’s exposition and the nine measures 

that begin its contrasting middle. If the triplet eighth is treated as the fastest and common pulse in a 3-

cube, then mm. 134-9 articulate a [333] meter and, owing to the pacing of the descending bass 

tetrachord and the exact repetition within mm. 153-5 that contravenes the prevailing [333], mm. 152-57 

compresses the meter to [233].  

Although these are the two missing 3-cube meters from the finale, how might these two third-

movement meters be related to the six of the finale? One solution is to apply Leong’s concept of “metric 

shapes” to metric cubes. Leong’s model “expands the metric states that can be considered” (2007, 

forthcoming) by removing the restrictions that two meters, in order to be related to one another, need to 

1) share two pulses (Cohn’s unit and span pulse), or even one pulse (my common pulse), and 2) be 

fully consonant. However, it should be noted that her second slackening offers more of an expansion 

than the first, since all three approaches (Cohn’s, mine, and Leong’s) set requirements of comparable 

stringency for commensurability among fully consonant meters. For Cohn and myself, meters are 

commensurable if they have one or two shared pulses with limits on which levels those shared pulses 
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reside; for Leong, meters are commensurable if they have the same shape as visualized upon a form of a 

ski-hill graph extended without boundaries. She proposes four relations among commensurable meters 

that correspond to four symmetries of a square: identity, rotation by 180°, vertical reflection, and 

horizontal reflection. Alongside Leong’s symmetry relations, I propose adding “toggling relations” that 

specify a relationship between two fully consonant meters with the same number of levels. For example, 

the [233] of mm. 152-57 in the third movement and the [322] of the first violin’s first two measures in 

the finale would be related by the toggling relation <111>, regardless of the tempo of these meters and 

the number of shared pulses. Admittedly, toggling relations require fully consonant meters, whereas 

Leong’s symmetry relations do not, but the trade-off seems worth it: toggling relations make 

commensurable any two fully consonant meters with the same number of levels. Figure 12 displays the 

toggling relations between adjacent meters (again, ordered by their initial appearances) in the small 

ternary that ends the third movement and the sonata-form exposition that begins the finale. Not only are 

the third movement’s [333] and [233] the two 3-cube meters missing from the finale, but they also 

anticipate the same pattern of alternating stepwise and polar relations among the first appearances of 

meters in the finale’s exposition. Furthermore, the sequence of seven relations among the eight meters 

begins and ends with the same series: <100>, <111>, <010>. (Note, however, that the highest turnover 

of pulses from one new meter to the next—the vertical stack of three hairpins in Figure 12—occurs only 

between the movements.) 

Another solution does not require invoking the greater generality but less precision of toggling 

relations: the eight meters of Figure 12 could be commensurable within the proposed 3-cube if the 

common pulse of the two third movement meters—the triplet eighth note—equals the common pulse of 

the six finale meters—the eighth note. Although many performances opt for a finale tempo that sets its 

eighth note appreciably shorter in duration than that of the third movement’s triplet eighth note, 

commercial recordings from at least four quartets (Vertavo, Verdi, Melos, Alban Berg) achieve this 
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equivalence within a just noticeable difference of 5%, and two others (Colorado and Cleveland) exceed 

this range by no more than 1%. Not only do the toggling relations of Figure 12 become toggling 

operations under this proportion, thereby increasing the distinctiveness of the sequence of meters, but 

the common pulse also permits the metaphorical motions through metric space between the two 

movements to be more precisely gauged. The first violin’s three eighth notes in the finale’s pivotal pick-

up measure facilitate this connection: their stepwise anacrustic ascent atop the treble-clef staff harkens 

back to similar motives from the main theme of the Menuetto, especially when the performer gives them 

equal weight instead of augmenting the bowing of up-down-up-(then down on the first downbeat) with 

stresses on the downbows. This allows the triple grouping of the common pulse to function as a brief but 

nonetheless salient reference to the meters of the previous movement; this grouping is then transformed 

and recontextualized as the finale gets underway. Such a reference is analogous to how Brahms begins a 

number of the finales of his multi-movement instrumental works with a short but clear reference to the 

concluding key of the penultimate movement, thus signposting the path blazed by the two movements 

through tonal space.42 However, in the case of op. 51/2, both the penultimate and final movements are in 

the same key and mode; this tonal and modal redundancy between successive movements is 

considerably less common in Brahms’s multi-movement instrumental works than in comparable 

Classical-era works.43 Once again, the considerable variety of meters within the confines of a metric 3-

cube may be interpreted to compensate for an atypical restraint of tonal Wanderlust; earlier, the 

compensation was within a movement, but here it involves two successive movements. 

Each of these solutions has its strengths and weaknesses: for example, although toggling 

operations provide a higher degree of distinctiveness than that afforded by the Leong-inspired toggling 

relations, such relations are not confined to a particular tempo relation between movements. And this is 

how it should be: I speculate that the more complementary perspectives that metric theory invites and 

accommodates, the better it will be able to reveal trends among repertoires, offer unique hermeneutic 
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insights, model musical perceptions, and expand musical conceptions. To demonstrate the need for more 

perspectives, I offer one final analytical point on the finale of op. 51/2 that appropriates aspects from 

both Cohn’s ski-hill graphs and my metric cubes, and yet requires a space for its observations that falls 

short of either of them. It begins with the observation that the form of this finale follows a rotational 

design, provided in tabular form in Figure 13, that incorporates both sonata and rondo components.44 

Rotations 1 and 3 resemble textbook instances of a sonata-form exposition and recapitulation. Rotation 

2, however, begins more like a second exposition rather than a development, as it presents both another 

statement of the primary theme group in A minor and another statement of the first module (S1.1) of the 

secondary theme group, which, although in F major instead of C major, is kept intact and not altered as 

one might expect in a P-S developmental rotation. Only after this second statement of S1.1 does the 

music begin to behave in a developmental fashion, subjecting S1.2 to sequential activity characteristic of 

what William Caplin (following Erwin Ratz) calls a “core” (1998, 141-47). Thus, the first two rotations 

present S1.1 initially in secondary keys of C and F, which symmetrically frame the main key of A to 

which S1.1 is transposed during its third appearance in the third rotation. 

Yet, just as S1.1 finds its way to P1’s one and only key (the movement’s tonic key of A) toward 

the end of the movement, P1 finds its way to S1.1’s one and only meter (the movement’s “tonic meter” of 

duply-grouped 3/4 measures) toward the end of the movement;45 furthermore, as with the tonal journey 

of S1.1, the metric journey of P1 involves two way stations that are symmetrically positioned around the 

eventual destination. Figure 14a provides a graph of pulses that are germane to S1.1’s metric 

transformations, and Figure 14b provides an analogous graph of diatonic pitch classes. The path on the 

right side of Figure 14a—the meter with the pulses quarter, half and dotted whole—represents the meter 

of P1’s first two bars in the melody of the first violin. The left path—the meter with the pulses quarter, 

dotted half, and three dotted halves—represents the three-bar phrasing of P1’s accompaniment in the first 
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rotation. The middle path—the meter with the pulses quarter, dotted half, and dotted whole—is S1.1’s 

meter throughout the movement. 

In the first rotation, both of these flanking meters are present within P1. In the second rotation, P1 

trades its distinctive three-bar phrases for four-bar phrases, thus replacing the three-dotted-halves pulse 

with the dotted-whole pulse (as shown in Figure 14a by the pulse exchange !), as four-measure groups 

also convey two-measure groups. Although this brings P1’s meter closer to that of S1.1, it still includes 

the distinctive hemiola and its half-note pulse. In the third rotation, P1 returns to three-bar phrases. Yet 

P1’s accompaniment changes from plain chordal trochees to a compression of P1’s first five notes that 

works as a new bass line in counterpoint with the original P1. This suggests a way for P1 to maintain the 

“sawtooth” contour characteristic of the theme while converting its half note pulse to a dotted-half pulse 

(as shown by the pulse exchange " in Figure 14a). The final statement of P1 at the end of the fourth 

rotation employs both of these exchanges: the first violin co-opts and then further continues the 

compression of P1 first suggested by the bass line in the beginning of the third rotation, thus putting P1 

into an uncontested 3/4 meter for the first time in the movement, and the measures are also grouped in 

twos and fours. Therefore, just as S1.1 was first presented in the movement’s mediant and submediant 

keys (the left and right paths of Figure 14b) before arriving in the centrally located tonic key (where P1 

has been all along, represented by the middle path of Figure 14b), P1 first adopts flanking meters (the 

left and right paths in Figure 14a) before arriving in the centrally located meter (where S1.1 has been all 

along, represented by the middle path of Figure 14a). P1’s metric journey is summarized in Example 11. 

Furthermore, this transformation of P1 in the movement’s coda brings this theme closer not only 

to S1.1’s meter, but also to S1.1’s melodic shape. To be sure, the initial presentations of P1 and S1.1 bear a 

hidden similarity: a pitch-to-rhythm reduction in the style of Maury Yeston (1976, 4 ff.) reveals that 

S1.1’s chord tones outline a descending triadic arpeggiation in half notes that resembles the same 

descending triadic arpeggiation in P1, as shown in Example 12a. However, the compressed version of P1 
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in the coda bears even a stronger similarity of contour to S1.1 over more measures, as proposed in 

Example 12b. 

On the one hand, Figure 14a is not quite a ski-hill graph: the pulse that would make it so, a span-

pulse duration equal to three dotted whole notes, is not offered by S1.1 nor by some instances of P1. 

Therefore, in trying to model this relationship using existing metric approaches, pulse exchange ! is 

perhaps better understood as a “stepwise toggle”—exchanging a triple grouping of the dotted half note 

for its duple grouping—rather than as a single hemiola. On the other hand, a “stepwise toggle” cannot 

represent pulse exchange ". Although, by adding a whole-note pulse, Figure 14a would contain all the 

pulses of a “bottom-up” 2-cube with the quarter note as the common pulse, pulse exchange " still covers 

a distance of two in the cube, but only a distance of one—a single hemiola—in Cohn’s Type II metric 

space. And yet the symmetrical flanking is unambiguous: as the opening measures of P1’s melody 

progress through the movement, its hypermetric pulse decreases by a factor of 3:2 (from three-measure 

phrases to two-measure phrases), and its tactus pulse increases by a factor of 3:2 (from the half note to 

the dotted half note), thus matching S1.1’s meter. While metric cubes and Cohn’s metric spaces cannot 

quite offer an environment in which this symmetry is transparent, perhaps another metric geometry can. 

This, however, becomes the topic of another paper. 

Murphy, Scott.  “Metric Cubes in Some Music of Brahms,” Journal of Music Theory 53/1 (Spring, 2009): 1-56.  
Publisher’s official version http://dx.doi.org/10.1215/00222909-2009-020. Open Access version: http://hdl.handle.net/1808/9937.



 33 

APPENDIX 
 
Orchestra Conductor Year A q =  C q. =  % # 4/3A 

and C 
% # A 
and C 
(Epstein) 

BBC Beˇlohlávek 1998 104 119 -16.8 12.4 
Suisse Romande Ansermet 1963 93 106 -16.7 12.5 
Seito Kinen  Ozawa 1991 98 114 -13.7 14.7 
Staatskapelle Dresden Sanderling 1972 90 106 -13.5 14.9 
Royal Phil Judd 1994 94 113 -11.5 16.3 
National Bordeaux Aquitaine Lombard 1990 93 112 -10.4 17.2 
Philharmonia of London Klemperer 1958 89 107 -10.3 17.3 
Los Angeles Phil Guilini 1981 89 107 -10.2 17.3 
New York Phil Masur 1992 95 115 -10.2 17.4 
Vienna Monteux 1963 97 117 -9.7 17.8 
London Phil Alsop 2005 94 115 -9.6 17.8 
London Haitink 2003 93 113 -9.4 17.9 
San Francisco Monteux 1951 96 117 -9.1 18.2 
San Francisco Monteux 1945 101 124 -8.6 18.5 
Academy of St. Martin in the Fields Marriner 1998 99 121 -8.5 18.6 
Philadelphia Muti 1988 93 115 -7.6 19.3 
Cleveland Ashkenazy 1990 93 115 -7.6 19.3 
Israel Phil Mehta 1992 95 118 -7.0 19.7 
Amsterdam Concertgebouw Beinum 1955 94 118 -6.2 20.3 
Berlin Karajan 1986 90 113 -6.2 20.3 
Vienna Kertész 1965 98 123 -6.0 20.5 
Berlin  Böhm 1950 85 107 -5.6 20.8 
Danish Radio Horenstein 1972 92 116 -5.5 20.9 
Stuttgart Radio Celibidache 1975 93 117 -5.4 21.0 
London Classical Players Norrington 1993 103 131 -5.4 21.0 
Chicago Barenboim 1993 89 113 -5.3 21.0 
Del Mar 1993 88 112 -4.8 21.4 
London Järvi 1988 90 115 -4.6 21.5 
Scottish Chamber Mackerras 1997 100 128 -4.4 21.7 
Berlin Abbado 1988 89 114 -4.4 21.7 
Philadelphia Ormandy 1966 87 111 -4.2 21.9 
Utah Abravanel 1977 90 115 -3.8 22.2 
Royal Concertgebouw Chailly 1989 93 120 -3.1 22.7 
Cleveland Szell 1967 89 115 -2.9 22.8 
Royal Phil Pesek 1992 91 119 -1.7 23.7 
Berlin Karajan 1978 94 123 -1.4 24.0 
Boston Munch 1956 99 130 -1.3 24.0 
London Phil Sawallisch 1999 92 121 -1.2 24.1 
Boston Leinsdorf 1965 85 112 -0.9 24.3 
Mexico City Phil Lozano 1994 89 118 -0.8 24.4 
Pittsburgh Steinberg 1963 103 136 -0.7 24.4 
Berlin  Harnoncourt 1997 87 115 -0.6 24.6 
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APPENDIX (continued) 
 
Orchestra Conductor Year A q =  C q. =  % # 4/3A 

and C 
% # A 
and C 
(Epstein) 

Milwaukee Delfs 2005 92 122 -0.3 24.8 
New York Walter 1956 91 122 0.3 25.2 
Vienna Böhm 1976 87 116 0.3 25.2 
Stuttgart Radio Schuricht 1954 80 107 0.4 25.3 
Royal Concertgebouw Kondrashin 1975 85 113 0.6 25.4 
Brussels BRT Rahbari 1990 89 120 0.8 25.6 
Houston Eschenbach 1993 90 121 1.1 25.8 
Vienna Bernstein 1994 89 122 2.2 26.6 
Amsterdam Concertgebouw Mengelberg 1940 93 127 2.4 26.8 
New York  Rodzinski 1950 94 128 2.9 27.1 
Vienna Kubelik 1959 92 126 2.9 27.2 
Berlin Furtwängler 1952 88 121 3.6 27.7 
Boston Haitink 1991 83 114 3.8 27.8 
Chicago Solti 1979 87 121 4.1 28.1 
NBC Toscanini 1952 89 124 4.8 28.6 
Berlin Kempe 1957 88 125 6.6 30.0 
Royal Philharmonic Beecham 1959 83 118 6.8 30.1 
New York  Bernstein 1962 91 132 8.1 31.0 
London Philharmonic Weingartner 1940 89 129 8.3 31.2 
Bamberg Swarovsky 1970 81 119 9.5 32.1 
Vienna Furtwängler 1945 86 128 10.6 33.0 
Philadelphia Stokowski 1929 78 116 10.9 33.2 
London Philharmonic Beecham 1946 84 128 12.2 34.2 
New York Damrosch 1928 81 124 12.9 34.7 
Berlin Jochum 1951 84 135 17.5 38.1 
       
 Mean 1974 91 119 -2.1  
 Median 1975 90 118 -2.9  
  

Murphy, Scott.  “Metric Cubes in Some Music of Brahms,” Journal of Music Theory 53/1 (Spring, 2009): 1-56.  
Publisher’s official version http://dx.doi.org/10.1215/00222909-2009-020. Open Access version: http://hdl.handle.net/1808/9937.



 35 

NOTES 

                                                

† I am grateful to Justin London, Daphne Leong, and two anonymous reviewers for their 

comments on and criticisms of this research, and especially to Richard Cohn for his guidance and 

encouragement. 

1 See Hasty 1997 for a thorough discussion of the philosophical issues underlying this quality of 

meter.  

2 London acknowledges that this notion originates, in its modern psychological conception, with 

Gjerdingen 1989, who defined meter as “a mode of attending.” One may also say that the concept of 

pitch class is “a mode of attending” more so than something in “the music itself,” so perhaps meter is in 

familiar company. 

3 Sometimes the unit pulse is not articulated in the music, as in the “Von ewiger Liebe” analysis 

from Cohn 2001. This broadens the number of meters that could be potentially compared using this 

approach. 

4 Nonetheless, the fact that, of the three meters, only one is located in the center helps to make 

my “metric-tonicization” theory (Murphy 2007) non-trivial. 

5 Cohn speaks of the graph-theoretic distance relation providing “finer distinctions” (2001, 301) 

than those offered by dissimilar-pulse distance relations (as shown in his example 4c on p. 300). While 

this is true, the comparative applies to a small minority of instances in which a more complex ratio (like 

9:4) holds between two pulse durations on the same level. For example, distance between the two 

peripheral meters of Figure 2b (<1, 2, 4, 12, 36> and <1, 3, 9, 18, 36>) is three in terms of dissimilar-

pulse distance but four in terms of graph-theoretic distance. In fact, one may erase the distinction by 

redesigning the dissimilar-pulse distance relation as a 3:2 distance relation, in which the distance 

between meters equals the minimum number of times the 3:2 ratio (or its reciprocal) is needed to 

Murphy, Scott.  “Metric Cubes in Some Music of Brahms,” Journal of Music Theory 53/1 (Spring, 2009): 1-56.  
Publisher’s official version http://dx.doi.org/10.1215/00222909-2009-020. Open Access version: http://hdl.handle.net/1808/9937.



 36 

                                                                                                                                                                   

convert the levels of one meter to the other. For example, in converting <1, 2, 4, 12, 36> and <1, 3, 9, 

18, 36>, four 3:2 ratios are required: one each for 2 to 3 and 12 to 18, and two for 4 to 9. 

However, in his (as I count them) ten analytical observations regarding the Dvorak Scherzo 

(2001, 311-2), only one of them invokes the discrepancy between dissimilar-pulse distance and graph-

theoretic distance: the upper strings move farther from the bass according to graph-theoretic distance but 

not according to dissimilar-pulse distance. Furthermore, this observation is unrelated to Cohn’s primary 

finding: “whereas previously [the violins] stood in a symmetrical relationship to the cello around the 

central D state of the wind, now they stand in a symmetrical relationship with the more remote double 

bass, around the same central state.” I suggest that, in most situations, dissimilar-pulse distance may 

ably serve as a rough approximate of graph-theoretic distance: only one of the fifteen (6 choose 2) meter 

pairs in the Type II graph interpreting a span of 36 (Figure 2b) invokes this discrepancy, and only five of 

the forty-five (10 choose 2) pairs in the Type II graph interpreting a span of 72 (the one Cohn uses for 

the Dvorak Scherzo) invokes this discrepancy. 

For the sake of completeness, I postulate that the dissimilar-pulse distance relation will always 

create a well-formed metric space (in the mathematical, not the musical, sense), after using a computer 

to confirm that the relation abides by the triangle inequality for Type II spaces interpreting spans of 36 

and 72. The triangle inequality states that, for any vertices A, B, and C, the sum of the distance between 

A and B and the distance between B and C should always be greater than or equal to the distance 

between A and C. 

6 Pun intended. Using factor representation, [223], [232], and [322] are the three meters that 

interpret a span of 12. This trio is analogous to the three species of a perfect fourth from Medieval music 

theory, where “3” maps to a minor second, and “2” maps to a major second. Furthermore, the 

constituents of both (factors of 2 and 3 in a 12-span meter, and the tone and semitone in the perfect 
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fourth) accrue multiplicatively to fill the span if one considers rational pitch intervals: for example, a 9/8 

major second, a 256/243 minor second, and a 4/3 perfect fourth. 

7 These are also the four ars nova prolations of Johannes des Muris and Philippe de Vitry. 

8 Following Lewin and Cohn, this style of analyzing meters permits a secondary meter to earn a 

rank of “metrical state” that is just as high as that of the primary meter against which it is juxtaposed or 

superimposed, such that the two phenomena are in the same class despite any hierarchical relationship 

between them. This style is categorically different from (and intended as a complement to) the style of 

analyzing meters where a secondary meter becomes figure against the primary meter’s ground, as in 

Krebs’s (1999) study of metrical dissonance in Schumann’s music. Ng (2006, 67) nicely summarizes the 

relationship between these two styles in the context of Lewin’s “transformational attitude.” 

9 Douthett and Steinbach (1998, 253) discover that the six triads of any hexatonic system 

(defined in Cohn 1996), together with the two augmented triads whose union forms the hexatonic 

collection of the chosen system, form a cube under the adjacency relation of single semitonal 

displacement. These cubes are further explored in Cohn 1998 and Cohn 2000; the name “hexatonic 

cube,” plus a discussion of its graph-theoretic dual, appears in Douthett 2008, 94-96. 

10 I thank Joti Rockwell for pointing this out to me, and stimulating this inquiry. 

11 These three terms come from London 2001b: “The beat level of the metric hierarchy serves as 

the temporal anchor for the other levels. Thus neither a ‘top-down’ approach (where one starts with the 

duration of an entire measure or larger unit and then proceeds to partition that span into beats, and those 

beats into subdivisions) nor a ‘bottom-up’ approach (where one starts with the shortest durations present 

on the musical surface, combines them into beats, and those beats into measures and so forth) is quite 

right. Rather, a sort of ‘middle-out’ perspective on metre seems most consonant with the way we attend 

to (as well as represent) rhythmic events.” See London 2004, 44 (Figure 2.6) for examples of metric 
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graphs or “trees” that are “middle-out.” However, London is speaking of the primacy of the tactus as the 

common pulse when downplaying ‘top-down’ and ‘bottom-up,’ but a metric-cube analysis certainly 

does not have to locate the tactus on a middle layer, suggesting that one can maintain the primacy of the 

tactus and still (from a metric-cube perspective) examine the music from all three perspectives equally.  

12 This is made more evident by a typical performance’s tactus, which both changes from 

quarter-note to a dotted-quarter-note duration, and stands in between the two metric levels in question. 

13 The difference between my dissimilar-factor distance relation and Cohn’s dissimilar-pulse 

distance relation is somewhat analogous to the difference between John Roeder’s (1987) and Clifton 

Callender’s  (2004) geometric configurations of ordered pitch class sets. As Callendar explains it, “The 

biggest difference between the two spaces…is that distance in T-class space [Callender’s space] 

measures how far the voices move, whereas OI-space [Roeder’s space] measures how much the 

intervals change.” (12-13) In Roeder’s space, the distance separating a diminished triad and an 

augmented triad is equivalent to the distance separating a major and minor triad, whereas the former 

distance is twice the latter in Callender’s space. A couple sentences later, Callendar continues: 

“Depending on the analytical focus, either space may be more suitable than the other.” (13) This 

statement applies just as well to Cohn’s Type II metric spaces and my metric cubes. 

14 As reported by David Brodbeck (1990, 67), J.A. Fuller-Maitland (1911, 149) is an early 

Brahms scholar who makes this observation in print. Robert Bailey (1990, 405) also acknowledges the 

strong similarity. Raymond Knapp (2001, 140-45) goes one step further and recognizes that the Brahms 

allusion is not exactly equivalent to Wagner’s: in Example 4 the A in the signaling harmony on the 

downbeats of mm. 32 and 34 would need to be a G{sharp}. Rather, he hears Brahms’s chord as a hybrid 

of Wagner’s “Sirens” chord and a similarly treated major-seventh chord in the first movement of 
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Beethoven’s Eroica. The slight difference between Wagner’s and Brahms’s music allows my analogy to 

attain greater clarity. 

15 Cohn (2000, 95-96), following personal communication from Jack Douthett, proposes this 

binary-code manner of representing the eight triads in a “hexatonic cube.” 

16 While binary and ternary metric divisions/groupings are perhaps not opposites in the same 

manner as the opposites that Lewin’s binary-code operations toggle between in his Babbitt analyses 

(presence of an attack vs. absence of an attack on a particular time point, or a performer’s participation 

vs. being tacet in a particular movement), there is a long tradition of considering binary and ternary 

ratios as contraries: for example, Johannes de Muris uses the term “oppositum” when referring to 

binary’s relationship to ternary (1972, 69), and Moritz Hauptmann (1888, 189-92) understands triple 

meter to be in opposition to duple meter, forming a thesis-antithesis pair in his dialectical system. 

17 This is a paraphrase of Lewin’s Condition B to which GISs are subject (1987, 26). 

18 He admits that the “interpeneteration and variation of material among the segments of the 

structure are really too extensive to permit even so general a schematic formation.” 

19 Epstein’s investigation of tempo proportions begins as one component of Epstein 1979 and is 

explored more thoroughly in Epstein 1995. 

20 “Brahms has further prepared us to feel the second Presto move at the pulse of the preceding 

Tempo I by varying the motive of Tempo I to include a triplet….The triplet passage, begun in m. 114, 

extends 12 bars to the end of Tempo I. By virtue of the 1:1 relation in pulse, the triplets move at the 

same speed as the three notes in a bar of the 3/8 Presto. Thus the Presto tempo feels natural, for it 

continues the prior pulse.” (Epstein 1995, 536) 

21 These tempi were determined from markers placed in digital audio files created by tapping the 

quarter-note pulse of mm. 1-8, and the notated dotted quarter pulse for mm. 126-144. The application 
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Peak rounds the markers to the nearest thousandth of a second. The timespans between adjacent markers 

are calculated, and the average of only those timespans that do not exceed one standard deviation of the 

set of differences is then used to calculate the tempo. This keeps occasional tempo fluctuations, both in 

the recordings and in my unavoidably less-than-perfect tapping, from significantly altering the overall 

tempo. For example, Harnoncourt, in his 1997 recording with the Berlin Philharmonic, considerably 

stretches out the third beats of mm. 4 and 6 to 15% and 20%, respectively, of the average duration of the 

other beats in the first half; these timespans were discarded by the standard-deviation method. 

(However, such deviant timespans still may affect the overall tempo, as all timespans are used to 

calculate the standard deviation.) 

22 According to Steve Haflich and Lora Gingerich Dobos, Epstein conducted Brahms’s Second 

Symphony with the MIT Symphony Orchestra at least in 1973, if not also as part of other concert 

seasons. However, despite the generous efforts of MIT’s current music librarian, Peter Munstedt, and 

Epstein’s daughter Eve, no recording has been located to determine whether or not Epstein put his 

proposed tempo proportion into his own performance practice. 

23 Views from non-conductors support this view as well. Although Kalbeck called the C Presto a 

“prickelnder Geschwinder-Walzer” (Kalbeck 1910, 171; translated as “pungent quick-waltz” by Peter 

Palmer in Brinkmann 1995, 160), others tend to view the C Presto as a scherzo, such as Brinkmann: 

“The second quick dance comes around in m. 156 to the character of the scherzo.” (1995, 162) 

Following Brinkmann, who compares the characters of the third movements of Brahms’s and 

Beethoven’s third symphonies, Knapp (2001, 182) likens the short-long rhythms of mm. 144-147 in the 

Brahms movement to those of mm. 373ff in the Beethoven movement. If one adopts Beethoven’s 

metronome marking for his scherzo, the tempo for Brahms’s Allegretto would have to run at a blistering 

pace of q = 116 to incorporate both Epstein’s proportion and this intertextual allusion. 

Murphy, Scott.  “Metric Cubes in Some Music of Brahms,” Journal of Music Theory 53/1 (Spring, 2009): 1-56.  
Publisher’s official version http://dx.doi.org/10.1215/00222909-2009-020. Open Access version: http://hdl.handle.net/1808/9937.



 41 

                                                                                                                                                                   

24 If the Allegretto and C Presto tempi are chosen solely based on the optimal suitability of each 

section’s expressive character (assuming that the average of the collective wisdom of the sixty-seven 

surveyed conductors determines this optimization), then these two variables should be independent of 

one another. However, there is a modest correlation between these two tempi among the sixty-seven 

surveyed recordings; the Pearson product-moment correlation coefficient (r) is .26, and it increases to 

.36 with the elimination of three (less than 5% of the total) outliers. 

25 A few recordings interpret the grace note as shorter than a sixteenth note. For example, 

Stokowski’s 1929 recording with the Philadelphia Orchestra consistently interprets the grace notes 

closer to one-sixth, rather than to one-fourth, of the duration of the Allegretto quarter note. 

26 For London, the presence or absence of regular sixteenth-note divisions of the quarter-note 

tactus in the A sections amounts to two different kinds of meter. The fact that the sixteenths do not 

pervade the A section would lead London to say that the meter is different from a hypothetical A section 

in which a sixteenth-note pulse was continuously heard. To reconcile London’s finer definition of meter 

with the broader brush strokes used in Figure 9 et al., my meter of a section may be considered as the 

union—the “maximum representative meter”—of all of the pulses in the “London meters” in the section. 

However, each of the A sections also features intermittent eighth-note triplets that my choice of common 

pulse inherently cannot account for: small but nonetheless significant collateral damage resulting from a 

focus on those performances that opt for the 3:4 proportion. If a maximum representative meter is to be 

a fully consonant meter, then its creation may have to be regulated according to its broader analytical 

utility, such as possessing the common pulse. For example, a metric-cube analysis using Epstein’s 

proportion would instead welcome the eighth-triplet pulse and reject the sixteenth-note pulse in the 

maximum representative meter of the A section. The submetrical dissonance between these two 

mutually exclusive pulses, indirect in the A section but direct in the A’ music preceding the C Presto 
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(see Example 5f), may be fancifully heard as a compositional analogue to the conflict between Epstein’s 

and the “average” conductor’s C Presto eighth-note durations, and to the conflict between the two 

possible maximum representative meters of the A sections. 

27 London 2002 argues that pitch-class space and metric space are inherently non-isomorphic 

because the former, at least in the form of the equal-tempered toroidal Tonnetz, is non-planar while the 

latter, at least in the form of metric pulse durations connected by factors of twos and threes, is planar. 

While metric 2-cubes and 3-cubes are planar (as evidenced by Figures 3 and 4a), all metric n-cubes 

where n!4 are non-planar. 

28 If one uses the average tempo of the interpretations documented in the Appendix (Allegretto’s 

q = 91), then all of the pulses in all of the meters analyzed in Figure 9 fit within a “temporal envelope” 

ranging from 100 milliseconds to 6 seconds, which, according to London 2004, defines the upper and 

lower limits of meter. This also holds true for the previous analysis of op. 90, i, as well as the upcoming 

analysis of op. 51/2, iii and iv, assuming typical tempos (h. " 60 for the former and the same for the 

finale of the latter). 

29 A variation on metric-cube analysis uses not a fixed common pulse as a point of reference for 

each meter in the cube, but rather the work’s tactus or other contextually-defined time span, even though 

its duration may increase or decrease over the course of the work. If the tactus is used as the point of 

reference in constructing an analysis of this movement akin to Figure 9, then a couple benefits 

immediately become available: one could account for the changes between duple and triple subdivisions 

of the tactus in the A sections (particularly A’), and one would not need to fret over whether or not the 

sixteenth note is indeed a unifying pulse for the movement. Related to this second point, a 3-cube with 

the tactus as the second fastest pulse rather than a 4-cube would more efficiently represent the metric 

variety in the movement. However, one would need to choose between tactus durations of a one- or a 
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two-measure span for the C Presto. (It is presumed that the tactus remains unchanged entering the B 

Presto.) A two-measure tactus for the C Presto results in the same exact analysis as Figure 9. Therefore, 

the “stepwise” operation <0001> connecting A’ and C well captures the interpretation that “the only 

difference between the two meters is the submetrical level below the duple division of the beat,” despite 

the change of tactus from A’ to C. However, if a one-measure tactus is used for C, then the “stepwise” 

operation that occurs at five other metric transitions no longer holds from A’ to C. Yet the fact that a 

significant stretch of music in the C Presto (mm. 144-180) can be heard as a compression of material 

from the B Presto (mm. 51-87) supports this interpretation. Furthermore, a “stepwise” narrative re-

engages in the transition to A’’: stepping over the “false retransition” of mm. 180-87, a <010> operation 

transforms the [223] of mm. 156-79 into the [233] of mm. 188-189, then a <001> transforms this [233] 

meter into the [232] of mm. 190-191 and A’’. I am indebted to an anonymous reader for making this 

suggestion. 

30 Epstein 1995, 537: “By virtue of the 1:1 relation in pulse, the triplets move at the same speed 

as the three notes in a bar of the 3/8 presto. Thus the Presto tempo feels natural, for it continues the prior 

pulse.” (536) “Tempo I [the A’ section] cadences via a ritard; the return to the prevalent beat at the 

Presto effects a return to a prior state. The readiness potential for this return is cued not only by the prior 

pulse itself, but also by the triplet feeling that closes Tempo I, since the triplets are congruent with a bar 

of Presto II. The transition thus feels comfortable, psychologically and physiologically comfortable, a 

feeling abetted by biochemical effectors such as endorphins and other neurotransmitters that are intrinsic 

to this process.” 

31 “In the second Presto, the shift [in tempo] is even more dramatic, since the first statement of 

the main theme is omitted, and since the remainder is prefaced by twelve bars of the secondary theme in 

the wrong key.” (Knapp 1997, 155) 
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32 “The striking F-sharp major in the strings, with the pizzicato bass, in the third movement’s 

closing section is plainly analogous to the opening movement’s second theme in F-sharp major (mm. 

74ff.), whose elegiac dance character recalls Brahms’s Liebeslieder-Walzer, and which also is played 

over a pizzicato bass.” (Brinkmann 1995, 169) 

33 In addition to Lewin 1981 and Cohn 2001, recent analytical studies of selected works by 

Brahms, such as Smith 2001, McClelland 2004 and 2005, and Smith 2006, have recognized 

synchronicities and concerted interaction between consonant or tonic pitch states and consonant or 

primary metrical phenomena, and between dissonant or non-tonic pitch states and dissonant or 

secondary metrical phenomena. 

34 This is the correspondence between “logical tonic” and “rhetorical tonic” meters that I have 

found in many works of Brahms and other nineteenth-century composers (Murphy 2007). 

35 The orientation of the analogy between triple-count frequency and pitch frequency is inverted 

from that which is used in Cohn 2001 and Murphy 2007, but matches the analogical mapping used in 

Lewin 1981. 

36 The single hemiola between the Allegretto’s [2322] and the [3222] in mm. 51-62 of the B 

Presto is not heard in direct succession; the pure duple [2222] that opens the B Presto in m. 33 splits 

their metric-cube distance of two and makes the metric-cube progression stepwise (and arguably even 

smoother than without it). In this context, [2222] is analogous to a “coupling chord,” defined by 

Douthett and Steinbach (1998, 253) as a symmetrical sonority, such as an augmented triad or diminished 

seventh chord, that connects via a “smallest-step relation” two other chords in the same equivalence 

class that do not form the “smallest-step” relation on their own. Indeed, mm. 49-50 include a Gaug triad 

that allows the immediately preceding G-major triad to pass to the C-major triad of m. 51 with entirely 

semitonal motion in its upper voice leading; this is the only augmented triad in the entire movement. 
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37 One of the most immediate ways to experience the degree of “large-scale dissonance” (to 

borrow a phrase that Charles Rosen (1988, 229) uses to characterize subordinate-theme modulations) of 

the C Presto’s tempo in relation to the Allegretto’s tempo is to employ an extreme form of Andrew 

Imbrie’s “conservative” hearing, which pushes an entrainment to a particular metrical framework “as far 

forward as possible to see how long one could cling to an established pattern.” (Imbrie 1973, 65) To do 

so, continue to beat the Allegretto tactus and 3/4 meter as the C Presto begins during one of the many 

performances (see Appendix) in which C’s tactus frequency is 4/3 that of A’s. Two forms of disparity 

arise: the double-hemiola incongruity, and the strong urge to short circuit and restart the Allegretto 

periodicities every six Presto measures, since [2322] and [2323] have different hypermetric durations. I 

believe such conscious sensations of conflict are akin to the experience of A major as a “wrong” key. 

38 Semitonal transpositions in particular of the refrain late in a rondo or sonata-rondo movement 

can be found, for example, in the second movement of Mozart’s Sonata for Keyboard and Violin in 

E{flat} Major, K. 481 (A{flat} major ! A major), and in the finales to Beethoven’s Piano Sonata op. 7 

(E{flat} major ! E major) and First Piano Concerto (C major ! B major). 

39 This is, in some sense, the paradox Lewin 1984 uncovers in Parsifal concerning the pitch D 

and its chromatic variants. 

40 Bass 1988 discusses semitonal substitutions or “shadows” of diatonic key areas in music of 

Prokofiev and Shostakovich, and McCreless 1996, inter alia, responds to Bass’s ideas. 

41 In most of these cases, both the metrical hierarchy and the placement of the strong beats of the 

hierarchy are transparent. However, while mm. 91-96 clearly project a [222] pure duple meter, there are 

multiple plausible downbeats of the whole-note pulse, the slowest pulse in this meter. David Clampitt, in 

personal communication, has argued for the placement of the second beat of m. 91 on a 2/4 downbeat 
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for multiple reasons, including the fact that the high A makes more sense as part of a 4-3 suspension, 

and the change of meter on the downbeat of m. 98 is also a 2/4 downbeat with this approach. 

42 In op. 38, the E-major tonic that ends the penultimate movement functions as dominant of the 

supertonic A-minor triad that opens the G-major finale. In op. 51/1, the finale’s opening motive begins 

as if in F minor, the key and mode of the previous movement, but then this music is quickly repositioned 

as subdominant in the finale’s key of C minor. In op. 68, the penultimate movement concludes in 

A{flat} major, and the finale begins with bass pitches C, B{flat}, and A{flat}, which transform into the 

opening of a descending lament tetrachord in the finale’s key of C minor. In op. 88, the penultimate 

movement concludes in A major, and the F-major finale begins with a tonic triad in first inversion; the 

common bass note of A serves as the link. In op. 90, the penultimate movement is in C minor, and the 

finale starts with the pitches C, B, and C, which are soon subsumed within the finale’s tonality of F 

minor. In op. 108, the penultimate movement ends on an F{sharp}-minor tonic, and the finale begins on 

the dominant of D minor; the distant tonal relationship between the movements is facilitated by the two 

common tones of A and C{sharp}. This technique is not restricted to the final two movements: for 

example, in the four-movement op. 34, the second movement concludes in A{flat} major, then the F-

minor third movement begins with bass Cs and an arpeggiation through an A{flat}-major triad. 

43 Among thirty-seven of Brahms’s multi-movement instrumental works (opp. 1, 2, 5, 8, 15, 16, 

18, 25, 26, 34, 38, 40, 51/1, 51/2, 60, 67, 68, 73, 77, 78, 83, 87, 88, 90, 98, 99, 100, 101, 102, 108, 11, 

111, 114, 115, 120/1, 120/2), there are 107 pairs of successive movements, and only twelve of these 

pairs (11%) employ the same key and mode to end the first movement of the pair and begin the second 

movement of the pair.  
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44 The analysis and its notation in Figure 13 adopts, as well as an analysis of a work from no 

earlier than the 1860s can, the Sonata Theory of Hepokoski and Darcy 2006. Following Whittall’s 

(1987) interpretation of “three cadential closes,” I propose the first of them in m. 71 as the EEC. 

45 This dualistic relationship between tonality and meter also adds yet another common feature 

between the first movement of Beethoven’s op. 132 and the finale of Brahms’s op. 51/2. Both are in the 

key of A minor, and both can be interpreted to have three expositions. In both cases, each of the three 

expositions begin with P material; however, Brahms’s statements are all in A minor, whereas 

Beethoven’s second exposition begins with a transposition of P material to E minor. In both cases, the 

first two of the three expositions present the first S theme in C major and F major (the order is reversed 

in the Brahms from the Beethoven), and the third exposition presents the first S theme in A major. Both 

Beethoven and Brahms assign a quick-moving, hocket-like accompaniment to the same pair of 

instruments for the first two presentations of the first S theme: second violin and viola for the C-major 

theme, and viola and ‘cello for the F-major theme. More relevant to the key-meter analogy I propose in 

the Brahms movement is the fact that the S theme is always presented in a 4+4 antecedent-consequent 

grouping, whereas the P theme uses a sentence structure early in the movement and only assumes more 

of a periodic structure toward the end of the movement. Therefore, while the first S theme finally arrives 

at the key best associated with the P theme only after exploring other tonal options, the P theme finally 

arrives at a periodic structure best associated with the first S theme only after exploring other options of 

form and grouping. In Beethoven’s movement, the significance of the symmetry of F and C around A, as 

well as the P theme’s formal transformations, are explored in detail by Robert Morgan (2003, 35 and 

38). 
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Example 1 

Three metrical interpretations of a dotted whole-note span (L = w. = 12, e = 1) 

 

  Fully 

a. <1, 2, 4, 12> Consonant  Consonant 

 w. 

 h    h    h 

 q  q  q  q  q  q  Yes Yes 

 e e e e e e e e e e e e 

 

b. <1, 6, 12> 

 w. 

 h.      h.       Yes No 

 e e e e e e e e e e e e 

 

c. <1, 4, 6, 12> 

 w. 

 h.      h. 

 h    h    h    No No 

 e e e e e e e e e e e e 
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Figure 1 
Cohn’s Type I metric space 
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Figure 2a 
One example of Cohn’s Type II metric space 
 

 

 

 

 

 

 

<1, 2, 4, 12> 
[322] 

 

<1, 2, 6, 12> 
[232] 

 

<1, 3, 6, 12> 

[223] 
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Figure 2b 
Another example of Cohn’s Type II metric space 
 

 

 

 

 

 

 

<1, 2, 4, 12, 36> 

[3322] 

<1, 2, 6, 18, 36> 

[2332] 

<1, 3, 6, 12, 36> 

[3223] 

<1, 2, 6, 12, 36> 

[3232] 

<1, 3, 6, 18, 36> 

[2323] 

<1, 3, 9, 18, 36> 

[2233] 
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Example 2 
Four meters in Brahms, Third Symphony, first movement 
 
Example 2a 
Primary theme’s primary meter (PtPm): 6/4, <1/4, 3/4, 1 1/2>, [23] (mm. 7-8 given as one example) 
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Example 2b 
Primary theme’s secondary meter (PtSm): 3/2, <1/4, 1/2, 1 1/2>, [32] (mm. 3-4 given as one example) 
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Example 2c 
Secondary theme’s primary meter (StPm): 9/4, <1/4, 3/4, 9/4>, [33] (mm. 36-37 as one example) 
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Example 2d 
Secondary theme’s secondary meter (StSm): 4/4, <1/4, 2/4, 1>, [22] (m. 46 as one example) 
 

Fl., Ob. Cl., Bsn. Fl., Cl., Bsn.Fl., Ob.
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Figure 3 
A 2-cube 
 

[22] [23] 

[32] [33]  
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Figure 4a 
A planar 3-cube 
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Figure 4b 
A non-planar 3-cube 
 

 

 

 

 

 

 

[222] 

[232] 

[332] 

[322] 

[333] 

[233] [323] 

[223] 

Murphy, Scott.  “Metric Cubes in Some Music of Brahms,” Journal of Music Theory 53/1 (Spring, 2009): 1-56.  
Publisher’s official version http://dx.doi.org/10.1215/00222909-2009-020. Open Access version: http://hdl.handle.net/1808/9937.



 12 

Figure 5 
Ski-hill graph that corresponds to Figure 2b 
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Figure 6a 
The “bottom-up” graph of pulses that corresponds to Figure 3 and uses the common pulse and pulse 
nomenclature of Example 2 
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Figure 6b 
A “top-down” graph of pulses that corresponds to Figure 3 
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Figure 6c 
A “middle-out” graph of pulses that corresponds to Figure 3 
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Example 3 
Comparison of two harmonic relations and their intervallic transformations. (Thin brackets indicate 
minor thirds, thick brackets indicate major thirds.) 
 
Example 3a 
Intervals remain unchanged, swap positions 
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Example 3b 
Intervals toggle, remain in same positions 
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Example 3c 
Intervals toggle, remain in same positions 

Murphy, Scott.  “Metric Cubes in Some Music of Brahms,” Journal of Music Theory 53/1 (Spring, 2009): 1-56.  
Publisher’s official version http://dx.doi.org/10.1215/00222909-2009-020. Open Access version: http://hdl.handle.net/1808/9937.



 19 

 

 
Example 4 
Brahms, Third Symphony, first movement, mm. 31-36 
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Figure 7 
Isographic networks of meters from the first movement of Brahms’s Third Symphony 
 

 

 <11> 

 [23] [32] 

 PtPm (Ex. 2a) PtSm (Ex. 2b) 

  <11> 

 [33] [22] 

 StPm (Ex. 2c)   StSm (Ex. 2d) 
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Example 5 
Brahms, Second Symphony, third movement, excerpts 
 
Example 5a 
Measures 1-8 (opening of A) 
 

Example 5b 
Measures 33-40 (opening of B) 
 
 

Example 5c 
Measures 51-62 (continuation of B) 
 

 
Example 5d 
Measures 63-70 (continuation of B) 
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Example 5e 
Measures 101-6 (retransition from B to A’) 

Example 5f 
Measures 114-117 (part of A’) 
 

 
Example 5g 
Measures 132-144 (beginning of C) 
 

Example 5h 
Measures 156-163 (continuation of C) 
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Figure 8 
Chart of tempi in sixty-seven interpretations of Brahms, Second Symphony, third movement 
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Figure 9 
Analysis of 4-cube meters and intervening operations in Brahms, Second Symphony, third movement 

 
 <0100> <1000> <1000> <0100>  <0000> <0001> <0100> <0101> 

 

mm. 1-32 33-48 51-62 63-90, 93-100 101-6 107-25 132-55 156-79 194-240 

  [2222]  [2222]      

 [2322]  [3222]  [2322] [2322]  [2223] [2322] 

       [2323]   

 

 2 4 6 4 6 2 12 8 2 

   |||   

 h. (1) 2 2 2 3 h. (1) 6 4 h. (1) 

 |||    ||| ||| |||  ||| 

 q h (1) h (1) h (1) h (1) q 2 2 q 

 

 e q q q q e q. (1) q. (1) e 

       ||| ||| 

 x e e e e x e e x 

 

 A B   retrans. A’ C  A’’ 
Ex. 5a Ex. 5b Ex. 5c Ex. 5d Ex. 5e Ex. 5g Ex. 5h 
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Example 6 
Comparison of opening of C Presto with Allegretto motives 
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Figure 10 
Comparison of a metric space with a segment of fifths 
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Example 7 
Brahms, Second Symphony, first movement, mm. 172-95 
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Example 8 
Recomposition of retransition following mm. 180-87 
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Figure 11 
Succession of first appearances of 3-cube meters and intervening transformations in Brahms, Second 
String Quartet, fourth movement, with the eighth note as the common pulse 

 
 <010> <111> <100> <111> <010> 

 
1-2 (Vln. I) 1-6 (others) 9-12 (Vln. I) 13-15 (Vln. I) 37-58 91-96 

       [222] 

  [322]  [223]  [232] 

  [332]  [323] 

  

 w. (2) 3 2 3 2 w 

 ||| |||  |||    

 h  h. (1) h. (1) h. (1) h. (1) h 

  |||   |||   

 q q q. q. q q 

   ||| ||| 

 e e e e e e 
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Example 9 
Brahms, Second String Quartet, fourth movement, excerpts 
 
Example 9a 
Measures 1-17 

 
Example 9b 
Measures 41-49 
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Example 9c 
Measures 90-99 
 
 

 
Example 10 
Brahms, Second String Quartet, third movement, excerpts 
 
Example 10a 
Measures 134-39 
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Example 10b 
Measures 148-57 
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Figure 12 
Succession of first appearances of 3-cube meters and intervening transformations in Brahms, Second 
String Quartet, end of the third movement and beginning of the fourth movement 
 

 

 
 III  IV 

 
 <100> <111> <010> <111> <100> <111> <010> 

 
 134-39 152-57 1-2 (Vln. I) 1-6 (others) 9-12 (Vln. I) 13-15 (Vln. I) 37-58 91-96 

        [222] 

   [322]  [223]  [232] 

  [233]  [332]  [323]  

 [333] 

  

 3 2 w. (2) 3 2 3 2 w 

 |||  ||| |||  |||    

 h. (1) h. (1) h  h. (1) h. (1) h. (1) h. (1) h 

 ||| |||  |||   |||   

 q q q q q. q. q q 

 ||| |||   ||| ||| 

 3e 3e e e e e e e 

 

Figure 12. Succession of first appearances of 3-cube meters and intervening 

transformations in Brahms, Second String Quartet, end of the third movement and 

beginning of the fourth movement 
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Figure 13 
Formal outline of Brahms, Second String Quartet, fourth movement 
 

R1  1-25 25-37 37-44 44-57 58-71 71-90 91-100 100-115 

 P1.1 P1.2 TR S1.1 S1.2 C1.1 C1.2 RT 

 Am  Am !CM CM CM CM CM !Am 

         

R2 116-129 129-140 140-143 143-160 161-173   173-197 

 P1.1 P1.2 TR S1.1 S1.2 dev.   RT 

 Am !FM FM FM !F{sharp}m  !Am 

         

R3 198-222 222-234 234-237 238-250 251-264 264-283 284-293  

 P1.1 P1.2 TR S1.1 S1.2 C1.1 C1.2  

 Am Am !AM AM AM AM AM  

        

R4 293-333        

 P1.1        

 AM 

        

 334-359        

 P1.1        

 Am 
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Figure 14a 
A graph of pulses 
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Figure 14b 
A graph of diatonic pitch classes analogous to Figure 14a 

 

C 

E 

G A 

F 

Murphy, Scott.  “Metric Cubes in Some Music of Brahms,” Journal of Music Theory 53/1 (Spring, 2009): 1-56.  
Publisher’s official version http://dx.doi.org/10.1215/00222909-2009-020. Open Access version: http://hdl.handle.net/1808/9937.



 37 

 
 

Example 11 
P1’s metric journey 
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Example 12 
Comparisons between opening measures of P1 and S1.1 themes 
 
Example 12a 
[no caption] 
 

 
 

 
 

 
 

 
 
Example 12b 
[no caption] 
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