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ABSTRACT 

Phase-Trafficking Methods in Natural Products, Modulators of Organic Anion Transporting 

Polypeptides from Rollinia emarginata, and Pregnane and Cardiac Glycosides from Asclepias spp. 

Juan J. Araya Barrantes, Ph. D. 

The University of Kansas, 2012 

 

For decades, chemists and medicinal chemists have found in nature the source of inspiration 

for drug discovery and development. This work describes several aspects of the interaction 

between the fields of natural products and medicinal chemistry, from isolation and 

characterization of bioactive molecules to semi-synthetic analogs preparation.  

A new phase-trafficking approach for acidic, basic, and neutral compounds separation from 

organic plant extracts was developed, validated and successfully applied to crude plant extracts. 

This new method could be applied to natural extracts of diverse origin in order to generate better 

quality samples for initial bioassays. Furthermore, this new catch-and-release methodology 

allowed the isolation and identification of three compounds new to the literature from the 

extensively studied ginger rhizomes.  

Using a more traditional bioassay guided fractionation, we have identified six small-molecules 

from Rollinia emarginata that modulate organic anion transporting polypeptide´s (OATPs) 

function. The results of this study show that diverse plant materials are a promising source for 

the isolation of OATP modulating compounds, and that a bioassay-guided approach can be used 
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to efficiently identify selective OATP modulators. In addition, a 1H NMR-based metabolomic 

approach was used as a dereplication tool to study the effect of aqueous green tea extracts on 

OATP1B1-mediated uptake of estrone-3-sulfate. Our findings suggested that not only the gallate 

catechins were important for the observed uptake inhibition, but also compounds theogalline and 

3-p-cumaroyl quinic acid could have been involved. 

A screening against breast cancer cell line Hs578T was conducted with ten plant species from 

the Asclepiadaceae family and, based on our findings, three plants were selected for detailed 

investigation: Asclepias verticillata, Asclepias syriaca, and Asclepias sullivantii. As a result, a 

total of 46 compounds were isolated and identified, half of which represented novel structures. 

The isolates showed a wide variety of structures including pregnane and cardiac glycosides, 

pentacyclic triterpenes, glycosylated flavonoids and lignans, among others. Furthermore, a group 

of cardiac glycosides were found to have strong cytotoxicity selected breast cancer cell lines. 

Finally, using a semi-synthetic approach, cardiac glycoside analogs with modifications in the 

butenolide ring were pursued in order to better understand their SAR. Starting from the 

commercially available trans-aldosterone, the cardiac glycoside core was built up using a 

microwave-promoted allylic oxidation using SeO2 (Riley oxidation). In addition, a microwave-

promoted Miyaura-Suzuki cross-coupling was utilized to obtain the desired 17β-aryl analogs.   
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1.1. Relevance of natural products in medicinal chemistry 

Nature has provided humanity with a large number of medicines for the treatment and 

prevention of multiple diseases. In fact, medicinal plants have been used since ancient times to 

treat ailments in traditional medicine systems like Chinese Materia Medica (1100 BCE) and 

Indian Ayurveda (1000 BCE).1 According to data from the World Health Organization, in some 

Asian and African countries as much as 90% of the population still rely on traditional medicine 

in primary healthcare.2 In the US, more than 40% of the population has reported the use 

complementary or alternative medicine at least once.2 Furthermore, the global herbal 

supplements and remedies market is forecasted to reach US$ 93.15 billion by 2015 despite the 

recent world's economical recession.3 Therefore, it is not surprising that natural products have 

impacted directly or indirectly over 50% of the new chemical entities (NCEs) developed over the 

past four decades (Figure 1-1). Interestingly, this figure increases to 70% if only anti-infective 

agents are taken into consideration and 80% corresponds to anti-cancer agents alone.4, 5 

The history of medicinal chemistry and drug discovery are closely related to the purification of 

active principles from medicinal plants. Prior to the 1800s, remedies were prepared mostly from 

whole plants and no pure entities or drugs were available with the exception of some minerals. 

However, at the beginning of the 19th century, many theorists started clamoring for a switch to 

pure substances instead of the highly variable quality of extracts and tinctures used to that date.1 

Probably the most famous examples are the opium poppy and morphine (Figure 1-2). Opium 

poppy (Papaver somniferum L.) has been used for millennia as a sedative, however it was not 

until 1814 when Jean-Francois Derosne in France and Friedrich Sertürner in Germany 

independently reported the isolation of its active component, morphine.6 After the isolation of 
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morphine, it took more than 100 years to fully elucidate its structure,7, 8 30 additional years to 

confirm the structure by synthesis,9 and an additional 20 years until the discovery of the opioid 

receptors in the brain and the endogenous opioids called endorphins.10, 11 Throughout the years, 

medicinal chemists have learned many lessons from morphine. For instance, the contemporary 

concept of pharmacophore can be recognized in the simpler analogs developed by reducing the 

complexity of morphine, showing that only a portion of the morphine molecule is required for its 

biological activity. Many of those analogs and derivatives are widely used in medicine today 

(Figure 1-3).1 

 

Figure 1-1 All new approved drugs 01/1981−10/2010 by category 

B: Biological N: unmodified natural product, ND: modified natural product, NB: natural product "botanical", S: 

synthetic compound, S* and S*/NM: synthetic compound with natural product pharmacophore, S/NM: synthetic 

compound showing competitive inhibition of the natural product substrate. (Reprinted with permission from Cragg 

and Newman12 Copyright 2012 American Chemical Society.) 
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In addition to morphine, countless examples of medicinally useful natural products could be 

cited here ranging from anticancer agents like taxol and vinblanstine to the lipid-lowering agent 

mevastatin. It is clear that natural products research has had a significant impact on medicinal 

chemistry.13 As accurately described by Carter14 "natural products that are discovered as leads in 

screening may well serve as the starting point for medicinal chemistry programs aimed at 

enhancing their biological profiles". 

   

Figure 1-2 The opium poppy (left) and structure of morphine (right)  

 
Figure 1-3 Examples of drug classes derived from morphine by rational structural modifications 

showing the pharmacophore with bolded atoms  
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1.2. Natural products-based drug lead discovery 

As previously mentioned, nature has been and continues to be one of the best sources of 

biologically active compounds. In fact, only a small portion of the World's biodiversity has been 

explored for biological activity. For example, plants are probably the most studied organisms to 

date, and it is estimated that only 5-15% of the approximately 300,000 species have been 

systematically investigated from their chemical and pharmacological perspective.15, 16 

Furthermore, reinvestigation of previously studied plants using modern techniques, continues to 

produce new bioactive metabolites.17, 18  

There are several characteristics that make natural products so attractive for drug discovery 

including their chemical complexity and diversity and their high biological target selectivity and 

specificity. However, natural compounds present less desirable characteristics as they are usually 

present in small quantities in the producing organism, have poor drug-likeness, and show 

difficult synthetic accessibility.19 Despite the unquestionable importance of natural products as 

sources of new drugs and leads, natural-products based research and discovery (R&D) programs 

in many big pharmaceutical industries have been significantly reduced or shutdown replacing it 

with combinatorial chemistry-based drug discovery programs.19 Hence, there are important 

issues that must be addressed for a successful drug discovery campaign based on natural 

products of plant origin (Figure 1-4) and those are listed in the following sections.17 

 

Figure 1-4 The drug discovery process workflow 
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1.2.1. Biomass procurement: selection, collection, and identification 

The first step in any natural products-based drug discovery program is to choose and obtain the 

plant material. Therefore, proper sample selection using ethnopharmacologic, chemotaxonomic, 

and geographic criteria is fundamental.20, 21 In addition, detailed information about the sample 

collection must be recorded including identification of the organism to the species level by a 

taxonomist, its geographical location, collection date, and a deposit of voucher specimen in a 

recognized herbarium as reference material.22 This information is very important for scaling-up 

purposes as secondary metabolites tend to vary geographically and seasonally, even within 

samples of the same species.17 In summary, a careful selection, collection, and identification can 

provide a reliable source of biomass in order to guarantee access to a potential lead structure for 

medicinal chemistry modifications, target validation, and in vivo studies. 

Finally, after the Rio de Janeiro Convention on Biological Diversity (CBD) in 1992 and other 

documents like the US National Cancer Institute's Letter of Collection, biomass collections now 

require provisions for the country of origin to be equitably compensated for the use and 

commercialization of its biomass.23, 24 In addition, the permits for access, collection, and export 

in developing countries are usually difficult to obtain. Finally, ethnopharmacological and 

traditional knowledge of indigenous people in the use of medicinal plants must be recognized 

and rewarded in case of an economical benefit and commercialization.25, 26 

1.2.2. Extraction 

Extraction methods strongly depend on the nature of the sample and the targeted compound or 

compounds. Typically, an extraction protocol involves the drying and grinding of plant material 
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followed by extraction with a solvent or mixture of solvents. The solvent choice should consider 

the polarity and solubility of the targeted compound or compounds. Also, several extraction 

methods are available including maceration at room temperature, boiling, soxhlet, supercritical 

fluid extraction, sublimation, and steam distillation. The choice of extraction method depends, 

among others, on the stability, desired purity, quantity, and physical and chemical properties of 

the targeted compounds.17 In addition, tannins and complex carbohydrates should be removed 

early in the process either by classic liquid/liquid partition or solid-phase extraction using 

polyamide in order to avoid interference with in vitro assay systems.27 

1.2.3. Screening 

Bioassays use a biological system to detect properties of a sample that can be a pure compound 

or a complex mixture. They could involve in vivo systems (whole organism), ex vivo systems 

(isolated tissues or organs) as in vitro systems (cultured cells). In vitro systems are by far the 

most popular choice for initial screening assays due to their low cost, high speed, and throughput 

formatting. The biological assay of natural products is often not a simple task, especially during 

the initial separation stages. A number of variables need to be considered when conducting 

biological testing of natural products, including the selection of a suitable solvent that can 

dissolve or suspend the sample but which does not interfere with the assay, acidic or basic nature 

of the samples, positive and negative controls, and sensitivity of the assay to detect components 

in a very low concentration. In the last few decades, advances in high throughput screening 

(HTS) have impacted natural products research due to the miniaturization and automation of the 

bioassay process as well as the development of robust, specific, and more sensitive assays.17 
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1.2.4. Bioassay-guided fractionation and isolation 

The isolation of the bioactive components from a complex extract obtained from plant material 

is not an easy task, especially if the active constituent is present in very low amounts. 

Consequently, there is not a single separation technique that can be applied, instead a number of 

fractionation steps are available and each depends on the characteristics of a given extract or 

fraction. Initially, the crude extract is separated into various fractions containing simpler 

mixtures of compounds with similar polarity or molecular size. Fractionation then relies on 

methods like liquid/liquid partition, column chromatography (CC), size-exclusion 

chromatography (SEC), solid-phase extraction (SPE), and others.17 Subsequently, more selective 

purification steps typically follow and are done in a smaller scale and using better resolution 

techniques such as medium pressure column chromatography, reverse- and normal-phase 

automatic flash chromatography, and high-pressure liquid chromatography (HPLC).17 Despite 

the technique or techniques used during the fractionation and purification processes of a given 

extract, a reliable bioassay allows the following of desired activity throughout the separation 

steps to the pure bioactive compounds. 

1.2.5. Dereplication 

Dereplication comprises the identification, partial or total, of a natural product without its 

separation from the original matrix. By this method, the novelty of structures present in a 

biologically active extract can be assessed, hence giving valuable information to move forward 

during an investigation project.28 A successful dereplication strategy can increase the screening 

throughput and enhance the number of novel compounds identified. Several strategies to achieve 
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this goal have been applied using modern separation and spectroscopic technologies such as 

hyphenated techniques and multivariate analysis.17 The earlier includes techniques like HPLC-

MS, HPLC-NMR, GC-MS, and other variants that combine the use of powerful separation 

equipment with an informative spectroscopic tool.29, 30 The multivariate analysis involves a 

metabolomic approach that aims to analyze the whole initial or partially purified crude mixtures 

by means of a statistical comparison of complex spectroscopic data to reveal the presence of 

relevant metabolites. 

1.2.6. Structure elucidation 

The structure elucidation of natural products depends strongly on modern spectroscopic and 

spectrometric methods including high-field nuclear magnetic resonance (NMR) and high-

resolution mass spectrometry (HRMS). Often these techniques give enough information to 

unambiguously assign the structure of a new compound, however ultraviolet-visible (UV-Vis), 

infrared spectroscopy (IR), and physical properties like melting point and optical rotation 

corroborate and support a proposed structure. In addition, X-ray crystallography is a powerful 

technique when crystallization of the sample to a good quality crystal is possible.31 
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1.3. Secondary metabolism in plants 

Proteins, carbohydrates, fats, and nucleic acids are often called "the molecules of life" because 

they are common to most life forms on our planet. Hence, such molecules are collectively 

described as primary metabolites and they are result of primary metabolism. In contrast, there are 

metabolic routes and compounds that have a much more limited distribution in nature and are 

often genus- or family-specific. These types of specialized compounds are called secondary 

metabolites and they represent most of the pharmacologically active natural products. Usually, 

secondary metabolites are derived from a selected number of biogenetic routes that are shared by 

many organisms. Some of the relevant biological routes for the compounds isolated in the 

present study are described next.32, 33 

1.3.1. The shikimate pathway  

The shikimate pathway (Figure 1-5) is employed only by microorganisms and plants and 

produces aromatic compounds. Shikimic acid is the main intermediate in the pathway and was 

originally isolated from plants of Illicium genus (Japanese "shikimi"). The phenylpropane unit 

produced by this route is the basic building block found in many natural products like cinnamic 

acids, coumarins, lignans, and flavonoids. Furthermore, shikimic acid is currently the starting 

material for the synthesis of the antiviral agent oseltamivir (Tamiflu®), first line drug against 

avian influenza, and its main source is the star anise (Illicium verum).32, 33 
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Figure 1-5 Biosynthesis of shikimic acid from phosphoenol pyruvate (PEP) and D-erythrose 4-

phosphate (DAHP: D-arabino-heptulosonic acid 7-phosphate) 

1.3.2. The mevalonate and the methylerythriol phosphate pathways 

Terpenoids are probably one of the largest and most structurally diverse group of natural 

products. They are derived from five carbon units called "isoprene units" and joined together in 

diverse numbers and fashions. The terpenoids are classified according to the number of isoprene 

units present in their structures as hemiterpenes (1 unit), monoterpenes (2 units), sesquiterpenes 

(3 units), diterpenes (4 units), sesterterpenes (5 units), triterpenes (6 units), tetraterpenes (8 

units), and polyterpenes (n units). The basic reactive isoprenic units in the terpenoids 

biosynthetic pathway are dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate 

(IPP) which are produced in the mevalonate (Figure 1-6) or the deoxyxylulose phosphate (Figure 

1-7) pathways.32, 33 
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Figure 1-6 Biosynthesis of dimethylallyl diphosphate (DMAPP) in the mevalonate pathway 

(HMG-CoA: β-hydroxy-β-methylglutaryl coenzyme A, IPP: isopentyl diphosphate) 

 

Figure 1-7 Biosynthesis of dimethylallyl diphosphate (DMAPP) in the deoxyxylulose phosphate 

pathway (IPP: isopentyl diphosphate) 
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1.3.3. The acetate pathway 

The polymerization of acetate units and subsequent modifications give origin to a wide variety 

of compounds ranging from simple fatty acids to complex polyketides. Nature utilizes a series of 

Claisen-type reactions between acetyl-CoA or malonyl-CoA units to form poly-β-keto chains 

that can follow different biosynthetic routes (Figure 1-8). The polyketides constitute a large and 

diverse class of natural products that include simple phenols, anthraquinones, flavonoids (Figure 

1-9), flavonones, chalcones, macrolides, and polyethers. Cannabinoids from Cannabis sativa, the 

anticancer doxorubicin and antibiotic erythromycin are some representative examples of 

medicinal-relevant acetate-pathway derived metabolites.32, 33 

 

Figure 1-8 Basic polymerization reaction in the acetate pathway 
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Figure 1-9 Biosynthesis of flavonoids: a shikimate-acetate mixed pathway 
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1.4. Cardiac glycosides 

Cardiac glycosides have been used during decades to increase heart force contractions.34 This 

group of compounds was initially identified from the poisonous foxglove (Digitalis purpurea L.) 

plant, however a wide variety of structures showing similar pharmacological properties have 

been identified from other plant species (Table 1-1) and from toads of the Buffo species as well. 

Structurally, cardiac glycosides comprise a steroidal core with an unsaturated lactone ring at the 

17-position and often posses a sugar moiety at the 3-position (Figure 1-10). Unlike steroidal 

hormones, cardiac glycosides are characterized by the cis-cis fusion of A/B and C/D rings, but 

trans-cis stereochemistry can be found in compounds from the Asclepiadaceae plant family 

(Figure 1-11). In addition, the lactone ring at the 17-position can be a γ-butenolide or α-pyrone 

ring, giving origin to two major subgroups called cardenolides and bufadienolides respectively 

(Figure 1-10).32 
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Table 1-1 Plant sources of cardiac glycosides* 

Family Genera Main cardenolides 

Apocynaceae Nerium, Acakanthera, 

Strophantus, Thevetia, 

Cerbera 

Oleandrin, neriin, neriantin, odoroside A and 

B, ouabain, cymarin, sarmentocymarin, 

periplocymarin, K-strophantin, thevetin 

Asclepiadaceae Calotropis, Asclepias, 

Periploca, Xysmalobium, 

Gomphocarpus, 

Pregularia, Leptadenia 

Periplocin, strophantidin, strophantidol, 

nigrescin, uzarin, gomphoside, calotropin, 

calctin, vorucharin, uscharin, 2''-oxovurscharin 

Brassicaceae Cheiranthus Chiroide A, cheirotoxin 

Celastraceae Euonymus Eunoside, euobioside, euomonoside 

Fabaceae Coronilla Alloglaucotoxin, corotoxin, coroglaucin 

Moraceae Antiaria Antiarin 

Scrophulariacae Digitalis Digitoxin, gitoxin, gitalin, digoxin, F-gitoin, 

digitonin, lantanoside A-C 

Crassulaceae Kalanchoe, Tylecodon, 

Cotyledon, Bryophyllum 

Lancetoxin A-B, kalanchoside, bryotoxin A-C, 

bryophyllin B, cotiledoside, tyledoside A-D 

Iridaceae Moraea, Homeria Scillirosidin and bovogenin A derivatives 

Liliaceae Convalaria, Urginea, 

Bowiea 

Scillarene A-B, scilliroside, scillarenia, scillia-

cinoside, scilligaucoside, proscillaridin A 

Melianthaceae Melianthus, Bersama Melianthusigenin, bersenogenin, 

berscillogenin 

Ranunculaceae Helleborus, Adonis Helleborein, helleborin, hellebrin, 

helebrigenin, adonidin, adonin, cymarin, 

cymarin, adonitoxin 

Santalaceae Thesium Thesiuside 

* Adapted from Newman et al.35 and Mijatovic et al.36 
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Figure 1-10 General structures of cardenolides and bufadienolides 

 

Figure 1-11 Structures of digitoxin and oleandrin 
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1.4.1. Biosynthesis of cardiac glycosides 

Cardiac glycosides are biosynthesized from cholesterol by a series of steps including 

shortening of the side-chain to a two-carbon α-mehtylketone group, hydroxylation and 

epimerization reactions, and incorporation of two or three carbons to form cardenolides or 

bufadienolides respectively (Figure 1-12).32 Therefore, it is considered that pregnanes are 

intermediates in this biosynthetic pathway. In fact, a large number of plant steroids have been 

described including progesterone.37 

 

Figure 1-12 Proposed biosynthetic pathway of cardiac glycosides 
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1.4.2. Biological activity of cardiac glycosides 

The mechanism of action of cardiac glycosides was discovered by Schatzmann and colleagues 

in 1965 as specific inhibitors of the Na+,K+-ATPase.38 The Na+,K+-ATPase is a ubiquitous 

membrane protein responsible for keeping the cellular membrane potential by actively 

transporting two potassium ions into and three sodium ions out of the cell using energy from 

ATP hydrolysis. The increasing of the force in the cardiac muscle contraction is produced when 

inhibition of the Na+,K+-ATPase by the cardiac glycosides raises the level of sodium ions in 

cardiac myocites. As a result the activity of the Na+,Ca2+ exchanger is reduced and the 

intracellular concentration of Ca2+ is increased leading to a higher contraction (positive 

ionotropic effect).39 In recent years, studies have shown that Na+,K+-ATPase is not only a 

membrane transporter but also a signal transducer that is triggered upon binding of cardiac 

steroids (Figure 1-13). The multiple downstream signals have implications in the regulation of 

cell growth,40 cell motility,41 and apoptosis.42 Furthermore, endogenous cardiotonic steroids have 

been discovered as a novel group of hormones and the biological processes that they regulate are 

being actively investigated; some include regulation of renal sodium transport, arterial pressure, 

cell growth, differentiation, apoptosis and fibrosis, modulation of immunity and carbohydrate 

metabolism, and control of various central nervous functions including behavior.43, 44 
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Figure 1-13 Signal transduction role of the Na+,K+-ATPase (Reproduced with permission from Prassas 

and Diamanis45 Copyright 2012 Nature Reviews Drug Discovery.) 

1.4.3. The Na+,K+-ATPase 

The Na+,K+-ATPase belongs to the P-type family of cation pumps. The X-ray crystal structure 

at 3.5 Å resolution has been published (Protein Data Bank number 3A3Y).46 Structurally, the 

Na+,K+-ATPase is an oligomer composed of at least two subunits: α and β. The α-subunit bears 

binding sites for Na+, K+, Mg2+, ATP, and a highly conserved cardiac glycoside binding site. In 

addition the α-subunit also contains regulatory sites modulated by phosphorylation. Meanwhile, 

the β-subunit has a regulatory chaperone-like activity facilitating the recruitment of the α-

subunit to the plasma membrane and for the occlusion of potassium ions. There are four α- and 

three β-subunit isoforms identified and all possible combinations lead to catalytically competent 

enzymes. In addition, a third subunit type, the FXYD regulatory transmembrane protein family, 

can be associated with functional Na+,K+-ATPase in certain cell types.47 The most common 
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oligomer is α1β1, which is expressed widely unlike other combinations that are more restricted 

to certain tissues. Interestingly, the subunit α4 is exclusively expressed in testes and 

spermatozoids and it has recently been postulated as a viable target for male contraception drug 

development.48, 49 

The Na+,K+-ATPase has a conserved binding site for cardiac glycosides. These types of 

compounds inhibit the pump activity by interacting with the cellular surface binding “groove” 

composed of multiple functional groups in the α-subunit mainly (Figure 1-14).50 Several groups 

have published studies on the binding mode of cardiac glycosides to the Na+,K+-ATPase.51-54  

 

Figure 1-14 The Na+,K+-ATPase binding site for cardiotonic steroids. Ouabain is shown in 

skeletal formula (Reproduced with permission from Cornelius and Mahmmooud54 Copyright 2012 American 

Chemical Society.) 
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1.4.4. Cytotoxic properties of cardiac glycosides 

Cytotoxic properties of cardiac glycosides were reported more than four decades ago.55 

However, the narrow therapeutic window shown by these agents has been considered an 

impossible hurdle to overcome. Nevertheless, after Stenkvist et al.56-58 observed a reduced 

mortality and more benign morphology on breast cancer patients taking digitalis compared to 

control, the interest for the potential anticancer applications of this type of compounds started to 

grow. In fact, it is now established that cardiac glycosides can induce apoptosis and inhibit 

growth of cancer cell lines.39, 59-62 The in vitro and in vivo antiproliferative effect of cardenolides, 

bufadienolides, and semi-synthetic derivatives have been demonstrated against several cancer 

cell lines including breast, ovarian, prostate, melanoma, lung, leukemia, neuroblastoma, renal 

adenocarcinoma, lymphoma, and hepatocellular cancer cell lines.63-69 Although the mechanism 

of action of this type of compound has not been elucidated, there are several hypotheses that are 

summarized in the Table 1-2.  

As mentioned in the previous section, the signaling pathways triggered by the Na+,K+-ATPase 

upon binding of cardiac glycosides have just started to be understood, but it is clear that the 

signaling cascades have not the same final responses in cancer when compared to normal cells. 

Consequently, a differential expression and activity of the Na+,K+-ATPase subunits in tumor 

cells compared with normal cells has been postulated. In fact, expression profiles of the subunits 

of Na+,K+-ATPase have been demonstrated in bladder, gastric, colorectal and non-small-cell 

lung cancer cell lines.43, 45 
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Table 1-2 Proposed cytotoxicity mechanisms-of-action for cardiac glycosides 

Entry Mechanism 

1 Alterations in the homeostasis of K+, Na+ and Ca2+ 

2 Inhibition of TNF/NF-κB pathway70 

3 Alteration of gene expression profiles71 

4 Increased level of p2172 

5 Alterations in membrane fluidity72 

6 Increased expression of FasL73 

7 Increased production of ROS74, 75 

8 Increased regulation of DR4 and DR570 

9 Inhibition of glycolysis76 

10 Inhibition of topoisomerase II77 

 

Despite the increased number of scientists investigating in this field, only one new drug 

candidate has reached clinical trials: the semi-synthetic derivate UNBS1450 obtained from the 

plant Calotropis procera (Figure 1-15).78 The regulatory role of UNBS1450 for several signaling 

pathways involving proliferation and cell death has been recently reported.79, 80 In addition, a 

hot-water extract of Nerium oleander, AnvirzelTM, was advanced to Phase I clinical trials in the 

US for cancer treatment, however no response was found.81 In addition, the ouabain analog 

rostufuroxin (PST 2238) is currently undergoing Phase II trials as an antihypertensive agent.82, 83 

Finally, the classic cardiac glycoside digoxin is currently in Phase II clinical trials for prostate 

cancer.84, 85 
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Figure 1-15 Structure of UNBS1450 currently in phase I clinical trials 

1.4.5. Structure-activity relationships of cardiac glycosides 

The relationship between the structure of cardiac glycosides and their inhibition of the Na+,K+-

ATPase has been described in detailed.86 However, the structural features that trigger the 

signaling cascade without affecting the pumping function of the Na+,K+-ATPase are not equally 

clear. The sugar moiety of the classic cardenolides has been studied by neoglycorandomization 

and glycorandomization, showing that reduction of the potential cardiotoxicity and enhancement 

of cytotoxicity toward malignant cells is, indeed, possible (Figure 1-16).87-89 Although 

modifications to the steroidal core have not been explored as exhaustively as the sugar moiety, 

useful information has been published in the last few decades and it is summarized in Figure 1-
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Figure 1-16 Glycorandomization approach for cardiac glycoside SAR studies 

 

  

Figure 1-17 General SAR of cytotoxic properties of cardiac glycosides 
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Finally, one project described in this dissertation work involves the identification of natural 

products as modulators of organic anion transporting polypeptides (OATPs). Consequently, the 

last few sections of this chapter will be devoted to introduce the structure, function, and 

importance of these transporters. 

1.5. Organic anion transporting polypeptides (OATPs) 

Organic anion transporting polypeptides (OATPs) are membrane transport proteins that belong 

to the solute carrier (SLC) superfamily and are classified within the solute carrier organic anion 

transporter family (SLCO). OATPs mediate the active cellular influx of a variety of amphipatic 

compounds including bile salts, steroid conjugates, thyroid hormones, anionic oligopeptides, and 

several drugs and other xenobiotics. OATPs are selectively expressed in apical and basolateral 

membranes of polarized cells in the liver, kidney, intestine, and blood-brain barrier.91 Absorption 

and distribution of drugs that are substrates of OATPs expressed in the intestinal enterocytes and 

the hepatocytes can be affected directly by OATP modulators. Furthermore, specific-tissue 

expression of OATPs can also affect the distribution of drugs due to interactions with these 

transporters. In fact, inhibition of OATPs can lead, at least partially, to drug-drug and food-drug 

interactions.92-94 More recently, altered expression of certain OATPs in cancer cells has been 

linked with resistance in some types of cancers.95, 96 

1.5.1. Structure of OATPs  

OATPs are transmembrane proteins that can contain 643-722 amino acids. Hydrophathy 

analysis has predicted that this type of proteins should contain 12 transmembrane domains, 

however no experimental evidence exists supporting this prediction (Figure 1-18). Although the 
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OATP-mediated transport mechanism is not completely understood, it seems to be dependent of 

sodium, chloride and potassium gradients, membrane potential and ATP levels.91, 97  

 

Figure 1-18 Predicted model of human OATP1B1 showing twelve transmembrane domains 

(Reproduced from Hagenbuch, B. and Gui, C.91 with permission. Copyright 2008 Informa UK Ltda.) 

1.5.2. Modulation of OATPs 

Despite the importance of regulation and study of OATPs, only a few examples of specific 

modulators of OATPs have been identified to date. Recently, Gui et al. have developed a HTS-

based method to identify specific modulators (OATP1B1 or OATP1B3) allowing use of 

synthetic chemical libraries to search for small-molecules that interact with the OATPs 

function.98 However, this HTS-method is limited and failed to identify modulators for 

OATP1B1. In addition, plant sources can be another source of potential OATPs modulators. In 

fact, herbal extracts used in dietary supplements have been found to affect transport by 

OATP1B1, OATP1B399 and by OATP2B1100 and the interactions between OATPs and fruit 

juices are well-documented.101-104 Also, interactions of OATP1B1 with flavonoids have been 

shown.105 Modulators of specific isoforms of the OATPs could be used as probes to investigate 

specific functions of these transporters. 

glycosylation affected transporter plasma membrane localization. For other members like
OATP1B1 (König et al. 2000b), OATP1B3 (König et al. 2000a) and OATP2B1 (Hänggi
et al. 2006) deglycosylation experiments confirmed that all these OATPs indeed are
glycosylated. However, none of the latter studies attempted to identify the individual
glycosylation sites.

The large extracellular loop 5 contains ten conserved cysteine residues (Hagenbuch and
Meier 2003). In order to investigate the role of these cysteine residues, Hänggi et al. (2006)
constructed a mutant OATP2B1 that was missing the whole extracellular loop 5
and generated ten additional mutant proteins that had the individual cysteine residues in
loop 5 replaced by alanine residues. These constructs were analysed after expression
in Chinese hamster ovary (CHO) cells. The results demonstrated that under normal
conditions all ten cysteine residues in this loop are disulfide-bonded. With the exception of
the two alanine replacements at position 493 and 557 which retained 30–60% of wild-type
OATP2B1 activity and were expressed at about 60% of the wild-type level, all other mutants
were not expressed and showed no transport. Thus, intact disulfide bonds in extracellular
loop 5 seem to be essential for expression of a functional protein at the plasma membrane
(Hänggi et al. 2006).

Several OATPs/Oatps including human OATP1A2, OATP1C1, OATP2B1, OATP4A1,
and OATP6A1 as well as rat and mouse Oatp1a1, mouse Oatp1a4, and rat and mouse
Oatp1b2 have a C-terminal PDZ consensus sequence (Wang et al. 2005a). It has been
shown recently for rat Oatp1a1 that binding to PDZK1 is essential for plasma membrane
localization (Wang et al. 2005a). A similar mechanism could be responsible for the plasma
membrane localization of all OATPs/Oatps that have a C-terminal PDZ consensus
sequence. However, whether this is the case and how other OATPs/Oatps that do not
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Figure 2. Predicted topological model of human OATP1B1 with twelve transmembrane domains.
Amino acids conserved in 77 out of 97 mammalian OATPs/Oatps are indicated in black. Conserved
cysteine residues are given in grey. Three N-glycosylation sites are indicated (Y) in extracellular loops
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2. APPLICATION OF PHASE-TRAFFICKING METHODS TO 

NATURAL PRODUCT ISOLATION 
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2.1. Introduction 

In 1963, R.B. Merrifield revolutionized peptide synthesis by introducing solid-phase reagents. 

This brilliantly simple idea allowed the use of reagents in excess and simplified purification, 

leading to higher yields and fast isolation.106 Subsequent elaboration using combinatorial 

techniques have led to peptide compound libraries of thousands of compounds. Since then, an 

impressive number of inventive modifications have been introduced in a wide range of fields in 

academic and industrial laboratories.107, 108 Particularly, organic chemists have taken advantage of 

specific interactions between small organic molecules and solid-supported reagents (SSR) to 

achieve quick reactions and purification of desired non-peptide products applying creative phase-

switching strategies.109 Furthermore, the isolation process using solid-phase protocols only 

involves simple operations of filtration and solvent removal that are suitable for automation and 

high throughput applications, and has found particular value in combinatorial chemistry 

laboratories.110 Despite the multiple advantages of SSR for isolation of small synthetic organic 

molecules, this method has yet to find application in resolving complex natural product extracts. 

Ion-exchange resins have long been used for purification of particular classes of natural products 

(i.e. quinine111, 112) at a scale only occasionally used in fractionation schemes. Few examples of 

applications to natural products research include recovery and concentration of thiamine from 

rice bran extract,113 isolation of alkaloids from Lindelofia achusoides114 and Aconitum 

septentrionale,115 simultaneous determination of phenolics and alkaloids in methanolic extracts 

of Gentisia species,116 and selective adsorption of tea polyphenols.117 Generally, the use of 

exchange resins as column chromatography components in labor-intensive schemes is a common 

feature in these reports.  
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As mentioned in the previous chapter (Section 1.2), the initial biological activity evaluation of 

crude extracts shows multiple disadvantages that can lead to false-positive and false-negative 

outcomes in both biochemical and cellular screenings, thus reducing the rate of success and 

increasing cost.19 In order to address these difficulties, improved fractionation methods have 

been developed, including pre-treatments to reduce tannins,27 automated fractionation,118 single 

or multiple solid-phase extraction (SPE),119, 120 counter current chromatography (CCC),121 

preparative high pressure liquid chromatography (HPLC) and elaborate applications of complex 

and costly devices. These methods require either a substantial investment or lengthy and tedious 

protocols in the laboratory, preventing their implementation, especially in remote regions of 

current bioprospecting interest. Consequently, the need for applications that can generate 

samples in a convenient and rapid manner with suitable quality for initial bioassay is of great 

current interest. Such a method should not only increase the relative concentration of potentially 

active compounds, but also reduce interference from other components in the initial mixture. 

Also, some additional desirable features would include speed, low cost, be environmentally 

benign, not labor-intensive, and be adaptable to field bioprospecting conditions. To address these 

needs, we designed and optimized a phase-switching application that takes advantage of weak 

ion exchange resins for a simultaneous rapid recovery of neutral, basic, and acidic components 

from crude organic plant extracts.122 
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2.2. Method development 

Normally, the acid-base character of natural products has allowed selective isolation of 

compounds based upon their functional groups by using pH manipulation in liquid-liquid 

partition protocols. However, these more tedious, time consuming, and solvent demanding 

conventional solution-phase chemistries can be replaced in principle with simultaneous catch-

and-release methodologies using immobilized reagents for natural product extract resolution as is 

now commonly done in combinatorial chemistry laboratories for synthetic compounds.123 In our 

study, the appropriate resins were kept separated from one another by the use of porous bags 

dipped simultaneously in the stirred plant extracts. As illustrated in Figure 2-1, groups of acidic 

and basic compounds can be selectively trapped using an appropriate ion-exchange resin, leaving 

behind the neutral compounds in solution so that they can each be recovered by simple 

evaporation. Those operations can, in principle, be adapted to field conditions, far away from the 

home laboratory during bioprospecting activities. 

 

Figure 2-1 Catch-and-release principle of selective separation using ion-exchange resins. In the 

first phase the acidic and basic resins are kept spatially separated by employing porous bags. In 

the second phase the resin bags are withdrawn and separately eluted with appropriate solvents 
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Since spatially separated resins do not interfere with each other’s functions,124 weakly basic 

and weakly acidic resins can be confined into separate “packets” followed by their joint 

immersion into a solution of an organic plant extract allowing for partitioning of its components 

based upon their acid-base characteristics.124 In order to work out the conditions necessary to 

accomplish this and, in order to validate our method, an “artificial extract” was prepared by 

mixing known amounts of neutral, basic, and acidic model compounds (quinine, 3,4,5-

trimethoxybenzoic acid, and methyl 3,4,5-trimethoxybenzoate respectively; Figure 2-2) and this 

mixture was subjected to the separation scheme shown in Figure 2-3 using the polyacrylic-

divinylbenzene resins Dowex® MAC-3 (carboxylic acid functional group) and Dowex® 

Marathon® WBA (dimethylamino functional group). These resins were chosen after preliminary 

experimentation with a variety of resins because of their large exchange capacities, stability over 

a wide pH range, and relative ease of regeneration for repeated use.125, 126 

 

Figure 2-2 Structures of quinine, 3,4,5-trimethoxybenzoic acid, and methyl 3,4,5-

trimethoxybenzoate 
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Figure 2-3 General catch-and-release protocol scheme. The neutral components remain in the 

original methanol-water solution and are recovered by evaporation 

 

The resins were packed into the tea-filter bag and cleaned according to the manufacturer’s 

guidelines prior to conducting the experiment. The adsorption of model compounds was 

followed by HPLC during a 24 hour period (Figure 2-4). Complete sequestration (ca. 98%) of 

acidic and basic compounds from the extract solution (1-2 g in 500 mL of MeOH:H2O 1:1 v/v) 
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compounds was 14% in the same period using a resin-to-sample ratio of 200:1. A simple 

saturation experiment showed that a resin-to-sample ratio smaller than 50:1 failed to achieve 

complete adsorption in a 12 hour period (Figure 2-5). Finally, a change to a water and methanol 

solvent mixture revealed 1:1 (v/v) as the optimum solvent ratio to use during the trapping step, 

showing the best balance of solubilization and polarity while reducing the non-selective 

adsorption of neutral compounds into resins, but still promoting the rapid “switch” of acidic and 

basic organic compounds from solution onto the respective solid phases. 

 

Figure 2-4 Basic (blue diamonds), acidic (red squares), and neutral (green triangles) model 

compound sequestration into solid phase in a 24-hour period 
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Figure 2-5 Saturation curves for 12-hour period adsorption of basic (blue diamonds) and acidic 

(red squares) compounds 

 

After removal of the loaded resins from the processed solution, the neutral fraction was simply 

recovered by removal of solvents under reduced pressure. Acidic and basic fractions were 

released from the corresponding resins by dipping the bags separately in basic and acid solutions 

respectively under optimized conditions. Model compounds in the tested samples were recovered 

in 75%, 91% and 98% yields for neutral, basic, and acidic fractions respectively. In addition, the 

recovered compounds were highly pure based upon HPLC traces (Figure 2-6). These results 

demonstrated that the desired selective separation could be achieved with the proposed 

methodology. Small quantities of the neutral compounds adhered to the resins, presumably due 

to their lipophilic polymeric backbone. If desired, these compounds could be recovered more 

completely by washing the resins with pure solvent before release of the ionic contents. The 

method thus clearly worked efficiently and the next step was to challenge it with a real plant 
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the plant extracts of Skytanthus acutus Meyen (Apocynaceae) and Camellia sinensis L. (Kuntze) 

(Theaceae) were next subjected to similar separation steps. 

 

Figure 2-6 HPLC profile of artificial mixture (A) and recovered fractions: acidic (B), basic (C), 

and neutral (D) 

 

Plant alkaloids exhibit a wide range of potent pharmacological activities and are considered 
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The South American plant S. acutus was used as an alkaloid-containing model plant to test and 

validate our new method in much more complex mixtures. First, the main monoterpene alkaloid 

present in the methanolic extract of S. acutus, skytanthine (2.1, Figure 2-7), was isolated and 

purified using a traditional isolation scheme as described in the literature.128 The structure and 

purity of skytanthine were confirmed by spectroscopic methods namely, 1H, 13C, and 2D NMR as 

well as HRMS. The organic extract of S. acutus was then submitted to the solid-phase separation 

scheme. Skytanthine was successfully removed from the solution and selectively recovered in 

the basic fraction as shown in the LCMS traces in Figure 2-8. Skytanthine lacks a suitable UV 

chromophore but is readily detected in the total ion current LCMS traces. From this it is clear 

that skytanthine, as expected, concentrated in the acidic resin and was extracted therefrom. In 

addition, the recovered basic fraction was comparable with the mixture obtained more 

laboriously by applying a traditional liquid-liquid extraction, by means of LCMS traces (Figure 

2-6) and the yield of the alkaloid-rich fraction from the extract (6.1% compared with 5.4% by the 

traditional partition) was somewhat superior using the new method.  
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Figure 2-7 Structures of recovered compounds using catch-and-release approach from S. acutus 

(2.1) and C. sinensis (2.2-2.6) 
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Figure 2-8 HPLC-MSn (TIC+) traces of S. acutus extract (A), basic (B), acidic (C), and neutral 

fractions (D), and skytanthine (E) 

 

Figure 2-9 HPLC-MSn (TIC+) traces of S. acutus basic extracts using the new solid-phase 

method (A), or traditional extraction method (B), and skytanthine (C) 
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Plant phenolics are a large group of natural products that exhibit a number of useful biological 

activities and are widely distributed in the plant kingdom, including most of the food plants in 

the human diet.129 Green tea catechins have been extensively investigated in the last two decades 

for their biological activities.130-133 Also, green tea is probably the most consumed beverage 

worldwide.134 As green tea contains a significant percentage of the purine alkaloid caffeine this 

species is particularly suitable for the validation of our resin-based separation method. After 

applying the separation scheme to the green tea organic extract, catechins were analyzed by 

HPLC. Adsorption of the four main catechins (EC: epicatechin, 2.3; EGC: epigallocatechin, 2.4; 

ECG: epicatechin gallate, 2.5; and EGCG: epigallocatechin gallate, 2.6) and caffeine (2.2) 

(Figure 2-7) was followed using HPLC as shown in Figure 2-10. Phenolics were rapidly 

sequestered from solution in 6 hours, however only 50% of the caffeine was removed from the 

solution in the same time period. Not surprisingly, the gallate-containing catechins (ECG and 

EGCG) were adsorbed more rapidly and to a greater extent than the non-gallate containing 

counterparts due to their greater acidity. In order to minimize the oxidation of catechins during 

the recovery stage, the original procedure was slightly modified by using an ultrasound bath for 

30 min. three times with portions of acidic solution, instead of leaving the sample in the shaker 

overnight. The resulting catechin-rich fraction (acidic fraction, 26% yield) clearly showed the 

presence of four main catechin peaks in the HPLC trace (Figure 2-10) but only minor amounts of 

caffeine. Meanwhile, caffeine was now incompletely removed by the acidic resin. The recovered 

yield (4.4%) was lower, however, when compared with traditional method (5.5%). In this case, 

yields of both acidic and basic fractions were comparable with traditional liquid/liquid partition 

extraction for caffeine (CHCl3 layer, 5.5%) and catechins (EtOAc layer, 30%) by means of 

HPLC traces.   
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Figure 2-10 HPLC-UV (278 nm) traces of green tea extract (A), basic fraction (B), and acidic 

fraction (C). The peak assignment is based on co-chromatography using standard compounds 
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2.3. Method application: zingerines from Zingiber officinale Roscoe 

As described in the previous section, our catch-and-release methodology showed very 

encouraging results in resolving an artificial mixture of compounds and model plant extracts. 

Hence, in order to expand the scope of our separation procedure, a ginger extract was prepared 

and subjected to a similar separation method, with the goal of purifying its phenolic compounds, 

gingerols and shogaols (Figure 2-11) from the neutral essential oils, a task that typically requires 

a large-scale normal-phase column chromatography that consumes large quantities of 

dichloromethane and acetone. Unlike green tea phenolics, gingerols and shogaols only contain 

one acidic phenolic group; consequently they are less polar and less water-soluble which 

represented a good prospect to test our new methodology. 

Ginger, Zingiber officinale Roscoe (Zingiberaceae), is used worldwide not only as a spice in 

food, but also in various traditional systems of medicine against different ailments such as 

arthritis, rheumatism, infectious diseases, and vomiting.135, 136 The chemistry of ginger has been 

extensively investigated with over 100 compounds identified in both fresh and dried samples.137, 

138 Ginger’s numerous biological activities have been attributed mainly to the gingerols and 

shogaols, the major pungent principles found in both fresh and dried ginger rhizomes.139, 140 

 

Figure 2-11 Representative structure of gingerols and shogaols 
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A methanolic extract of ginger rhizomes was submitted to our separation scheme (Figure 2-3). 

As expected, the basic resin trapped the phenolic compounds, including the main constituents 

including gingerols and shogaols (Figure 2-12). Interestingly, the analysis of LCMS traces of the 

basic fraction revealed the presence of several compounds with odd molecular weight values, 

which prompted us to investigate further the nature of these components because, to our 

knowledge, no nitrogen-containing basic metabolites have been previously reported from ginger. 

After scaling up the separation procedure, we were able to isolate and identify three new 

nitrogenous compounds from ginger that were named [6]-, [8]-, and [10]-zingerines, as they are 

5-(6-amino-9H-purin-9-yl) analogs of [6]-, [8]-, and [10]-gingerols respectively (Figure 2-13). 

Although reported in a small number of microbial and marine products, secondary metabolites 

that contain a purine ring attached to a non-carbohydrate carbon skeleton are very rare in higher 

plants.141, 142 

 

Figure 2-12 HPLC-UV (254 nm) traces of (A) methanolic extract, (B) acidic fraction, (C) 

basic fraction, and (D) neutral fraction obtained from ginger dried rhizome 
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Figure 2-13 Structure of [6]-, [8]-, and [10]-zingerines (2.7-2.9) 
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correlations observed in the HMBC spectrum. Third, the chemical shift of aromatic carbon C-4' 

(s, δC 145.8) suggested that this position was oxygenated. Analogous to [6]-gingerol, two spin 

systems corresponding to a decanyl chain were identified in compound 2.7 based on 1H 1H-

COSY, HSQC and HMBC spectra, showing two distinctive structural features: a ketone group δC 

209.6 (s, C-3) and a methine proton δH 4.91 (m, H-5). Finally, with only two proton signals left 

δH 8.16 (brs, H-4'') and 8.12 (brs, H-8''), five nitrogen atoms, and five carbon signals δC 153.4 (C-

2''), 150.6 (C-4''), 120.4 (C-5''), 157.3 (C-6''), and 142.6 (C-8''); the presence of an adenine ring 

was proposed and supported by ESIMS/MS fragmentation and HMBC spectra. Furthermore, 

adenine substitution at the C-5 position explained satisfactorily the shift to lower filed of H-5 

(m, δH 4.91) when compared with the corresponding signal of [6]-gingerol.143 In addition, the 

structure was confirmed by synthesis (vide infra). After scaling-up the separation protocol, 

compounds 2.8 and 2.9 were isolated showing similar fragmentation patterns in the ESIMS/MS, 

almost identical low field signals in 1H- and 13C NMR spectra (Table 2-1), and differing from 

compound 2.7 only in the number of methylene groups in the aliphatic region. Accordingly, their 

structures 2.8 and 2.9 were assigned relative to that previously described for compound 2.7. 
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Figure 2-14 Proposed fragmentation of [6]-, [8]-, and [10]-zingerines (2.7-2.9) 

 

 

Figure 2-15 Selected COSY (thick bonds) and HMBC (arrows) correlations observed for [6]-

zingerine (2.7) 
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triterpenoids isolated from Cucurbita pepo cv dayangua,141 alachalasine F-G from the fungus 

Podospora vesticola,144 and a limited number of examples from marine sponges.145-147 

Compounds 2.7-2.9 have not been previously reported in the literature and they represent the 

first basic nitrogen-containing secondary metabolites in ginger.148 We named this group of 

compounds zingerines, as they are 5-(6-amino-9H-purin-9-yl) analogs of the commonly found 

gingerols. Compounds 2.7-2.9 were detected in the original extract prior to any purification step 

using targeted LCMS analysis as well as in two extracts prepared from additional commercial 

samples of ginger rizhomes (Figure 2-16). The results showed a strong evidence that the three 

new compounds were not likely to be artifacts of the new isolation process. Interestingly, the 

isolation of zingerines using classic liquid/liquid methodology was unsuccessful presumably due 

to the acidic phenolic group they contain that makes these compounds amphoteric and thus 

soluble in the aqueous phase under basic conditions. Probably, the amphoteric behavior of the 

zingerines coupled with their strong adsorption on silica gel are the two main reasons that have 

prevented their isolation and identification in the previous phytochemical studies of ginger. 
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Figure 2-16 Targeted LCMS traces TIC+ MS^3(m/z 412 to 136.1i) of (A) zingerines-rich 

fraction, (B) basic fraction, (C) methanolic ginger extract lot #E99/03/B8, (D) methanolic ginger 

extract lot #E99/01/B8, and methanolic ginger extract lot #E94/01/B8 
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catalysis increased the yield of the desired product. Using basic conditions, the reaction was 

scaled-up to 90 mg of [6]-shogaol and 45.2 mg (1.2 eq.) of adenine under agitation for 72 h at 

room temperature to obtain compound 2.7 in 36% isolated yield. Similarly, [8]-shogaol (50 mg) 

and [10]-shogaol (50 mg) were subjected to identical reaction conditions thereupon we obtained 

compounds 2.8 and 2.9 in 28% and 30% isolated yield, respectively (Figure 2-17). The 

synthetically obtained products were identical to the ones isolated from ginger plant material by 

means of 1H- and 13C-NMR spectra and HPLC traces (Figure 2-18). This confirmed the proposed 

structures of the zingerines. In addition, both natural and synthetic samples were optically 

inactive demonstrating that the compounds were racemic mixtures. This was confirmed by 

means of chiral HPLC resolution of both synthetic and natural [6]-zingerine, showing two peaks 

with 1:1 area under the curve (AUC) ratio (Figure 2-19). Although natural [6]-zingerine was not 

optically active, an enzymatic origin cannot be ruled out definitively because of the possible 

operation of a retro Michael/Michael type reaction equilibrium leading to racemization under 

experimental conditions. Furthermore, identification of biosynthetic genes and their enzymatic 

products responsible for the origin of zingerines would definitely exclude an artificial genesis. 

Although gingerols are present in relatively high quantities in ginger rhizome, we were unable to 

detect free adenine in the initial extract or basic fraction using LCMS analysis. 



 

 
50 

 

Figure. 2-17 Synthesis of [6]-, [8]-, and [10]-zingerines (2.7-2.9) 

 

Figure 2-18 HPLC trace of [6]-zingerine (2.7) (A) isolated from ginger rhizome, (B) obtained 

by synthesis, (C) co-chromatography of both samples under the same conditions 
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Figure. 2-19 HPLC chiral resolution of [6]-zingerine (2.7) (A) isolated from ginger rhizome 

and (B) obtained by synthesis 
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2.4. Conclusions 

In summary, a new phase-trafficking approach for the separation of acidic, basic, and neutral 

compounds from organic plant extracts was developed, validated and successfully applied not 

only to artificial mixtures of model compounds, but also to crude plant extracts. Furthermore, 

this new catch-and-release methodology allowed for the isolation and identification of three 

compounds new to the literature from the most extensively studied ginger rhizomes. The new 

compounds contain an adenine group attached to the gingerol-type carbon skeleton, an unusual 

structural feature in higher plants. We envision that this new method could be applied more 

widely to natural extracts of diverse origin in order to generate better quality samples for initial 

bioassays. This novel approach offers multiple advantages over traditional extraction methods, as 

it is not labor intensive, makes use of only small quantities of “green” solvents, solid-supported 

reagents can be recycled, are inexpensive and can be easily adapted to field conditions for 

bioprospecting activities.  

This work was published in two separated papers: 

• Araya, J.J.; Montenegro, G.; Mitscher, L.A.; Timmermann, B.N. Application of Phase-

Trafficking Methods to Natural Products Research. J. Nat. Prod. 2010, 73(9), 1568-1572 

• Araya, J.J.; Zhang, H.; Prisinzano, T.E.; Mitscher, L.A.; Timmermann, B.N. Identification of 

Unprecedented Purine-Containing Compounds, the Zingerines, from Ginger Rhizomes 

(Zingiber officinale Roscoe) using a Phase-Trafficking Approach. Phytochemistry. 2011, 72, 

935-941 
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2.5. Experimental data 

2.5.1. General procedures 

1H, 13C NMR, and 2D spectra were recorded with a Bruker DRX-400 instrument (400 MHz 

and 100 MHz, respectively) or a Bruker Avance AV-III 500 instrument with a dual 

carbon/proton cryoprobe (500 MHz and 125 MHz, respectively). The samples were dissolved in 

the appropriate deuterated solvent (CDCl3, CD3OD, C5D5N) and the shifts were expressed in 

parts per million (ppm) relative to residual corresponding protonated solvent as an internal 

standard. Abbreviations are: s, singlet; d, doublet; t, triplet; q, quartet; br, broad. Infrared spectra 

were recorded with a Thermo Nicolet Avatar 380 FT-IR spectrometer and are expressed in wave 

numbers (cm-1). Melting points were determined using an OptiMelt automatic melting point 

apparatus and are uncorrected. High resolution mass spectra were collected using a LCT Premier 

Waters Corp. spectrometer. Optical rotations were measured with a Rudolph RS Autopol IV 

automatic polarimeter. UV-Vis measurements were conducted with a Varian Cary 50 UV-Vis 

spectrophotometer. Agitations of samples were performed with a New Brunswick Scientific 

Excella E1 Platform Shaker. Semi-preparative HPLC was conducted using an Agilent 1200 

HPLC system with a Phenomenex Luna C18 column (5µm, 250×10 mm), flow rate of 4.5 

mL/min (approx. 160 bar), injection volume of 50 µL (ca. 10 mg sample), and UV detection 

using diode array. Preparative HPLC separations were done using an Agilent 1100 HPLC system 

with a Phenomenex Luna C18 (5 µm, 250×21.4 mm), flow rate of 30 mL/min (approx. 60 bar), 

injection volume of 800 µL (ca. 100 mg sample), and UV detection using diode array. Chiral 

HPLC analysis was performed using a Chiralcel OD-H column (No. ODHOCD-LH013) 

purchased from Chiral Technologies Inc. (West Chester, PA) in an Agilent 1100 system and the 
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solvent system used was isocratic hexanes:isopropanol 70:30 (v/v), the flow rate was 0.9 

mL/min, the injection volume was 25 µL, and UV detection at 254 nm. Flash chromatography 

was performed using Sorbent Technologies silica gel (20-40 µm or 12-24 µm) with the noted 

eluent system. Other separations were conducting using Sephadex LH-20 and MCI-gel column 

chromatography with the noted eluent system. Automatic flash chromatography was performed 

using a Teledyne Isco CombiFlash system and pre-packed Gold silica gel column (normal and 

reverse phase) with the indicated solvent system. All other solvents were used without further 

purification or drying procedures unless otherwise noted. Reaction flasks were oven or flame-

dried and cooled under vacuum then purged with argon; all reactions were conducted under 

argon unless otherwise noted. Where indicated, microwave heating was applied using a Biotage 

microwave reactor. 

The following resins and pure compounds were purchased from Sigma-Aldrich (St. Louis, 

MO): DowexTM MarthonTM WBA Anion-Exchange resin (Batch # 13004PC); DowexTM MAC-3 

ion exchange resin (Batch # 13228TD); Quinine anhydrous (Lot code1375702); 3,4,5-

trimethoxybenzoic acid 99% (Batch # 05529MH); Methyl 3,4,5/trimethoxybenzoate 98% (Lot 

S29247-308). Aromatreu® Finum tea filters were purchased from www.cheftools.com. 

2.5.2. Plant Material 

Aerial parts of S. acutus were collected and identified by G. Montenegro, L. Iturriaga and L. 

Gonzalez on December 16, 1995, in Caldera, Chile (26 55’S; 70 67’ W). A voucher specimen 

has been deposited in the herbarium of the Pontificia Universidad Catolica, Santiago, Chile (coll. 

No. 0458). Camellia sinensis biomass was provided by the Royal Estates Tea Company, a 
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Division of Thomas J. Lipton, Co.(Englewood Cliffs, NJ). The green tea blend was labeled 

“Green Research Standard”. Dry powdered ginger rhizomes (150 kg) were purchased from 

Naturex (South Hackensack, NJ) Lot. # E99/03/B8. 

2.5.3. Plant extraction and isolation 

S. acutus and C. sinensis biomass were extracted exhaustively with mixtures of MeOH and 

CH2Cl2 (1:1, v/v), then the organic solvents were removed under vacuum to afford the crude 

organic extract. Each crude extract (2.5 g) was submitted to the general-catch-and-release 

procedure and the resulting fractions were analyzed by LCMS. In addition, a portion of S. acutus 

extract (10 g) was suspended in water and HCl 10% was added dropwise to pH<4, then extracted 

three times with CH2Cl2. The aqueous layer was then neutralized with NH3 conc. to pH>9 and 

extracted again with CH2Cl2. The resulting alkaloid extract (540 mg, 5.4%) was separated using 

silica gel SPE (Phenomenex, 20mm) washed with methanol (100 mL) and followed by methanol 

5% NH3 to obtain the crude skytanthine (2.1) that was finally purified by recrystallization 

(CH2Cl2:Hexanes/ 1:1, m.p. 134.6-135.8°C). The structure was confirmed by 1H NMR, 13C -

NMR, two-dimensional NMR experiments, IR, UV, and HRMS. The data were in agreement 

with those previously reported in the literature.128 Finally, for comparison purposes, the green tea 

extract (2.5 g) was suspended in water and extracted successively with CHCl3 and EtOAc to 

generate caffeine- and catechin-rich fractions respectively. 

Dried ginger rizhome (40 kg) was subjected to a first extraction using CH2Cl2 (130 L) twice 

during 48 h. Removal of the organic solvent under reduced pressure afforded 1.7 kg of CH2Cl2 

extract (4.3 %). The remaining plant material was then subjected to a second extraction using 
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MeOH (130 L) twice during 48h. After concentration under reduced pressure, 1.2 kg of MeOH 

extract residue was obtained (3.0 %). In the same way, two smaller samples (100 g) of ginger 

powder obtained from the same company (Lots # E99/01/B8 and #E94/01/B8) were extracted 

sequentially with CH2Cl2 (500 mL) and MeOH (500 mL) to afford CH2Cl2 and methanolic 

extract respectively. 

2.5.4. General catch-and-release procedure  

A total of 2.5 g of plant organic extract were suspended in 500 mL of MeOH:H2O (1:1 v/v). 

Pre-washed tea bags each containing 20 g of Dowex® Marathon® WBA anion exchange resin or 

20 g of Dowex® MAC-3 cation exchange resin were dipped into the solution and left shaking at 

25 rpm overnight (8-10 hours). Tea bags were then removed and washed with MeOH twice, then 

submitted to recovery conditions. Anion exchange resin was immersed into 500 mL of HCl 2% 

(v/v in MeOH:H2O 1:1) and left overnight under agitation (25 rpm); then the HCl was 

neutralized with NH4OH to pH 6-7, the MeOH removed under reduced pressure, and the aqueous 

phase extracted three times with EtOAc or CH2Cl2. Removal of the separated organic extract 

afforded the phenolic/acidic fraction upon evaporation. Cation exchange resin was immersed into 

500 mL of NH3 2% (v/v in MeOH) and left overnight under agitation and the resulting solution 

was concentrated under reduce pressure to afford the alkaloidal fraction. The original working 

solution was also concentrated under reduced pressure to yield the neutral fraction. 

2.5.5. Artificial extract preparation and separation 

Approximately 100 mg of each of the model compounds (quinine, 3,4,5-trimethoxybenzoic 

acid, and methyl 3,4,5-trimethoxybenzoate) were weighed with an analytical balance, dissolved 
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in 500.0 mL of a mixture of MeOH and H2O 1:1 and submitted to the general catch-and-release 

procedure. During the first 6 hours, every hour a 1.00 mL sample was taken and analyzed using 

HPLC, then additional aliquots were taken after 10 and 24 hours. Concentrations were 

determined by interpolation from a calibration curve prepared for each compound by appropriate 

dilution of a mother solution of 20 mg/mL to final concentrations of 0.1 to 1.0 mg/mL.  

2.5.6. HPLC/MSn analyses  

The on-line HPLC/MSn analyses of extracts and fractions were performed using an Agilent 

1200 Series liquid chromatography system coupled to the Agilent IonTrap LCMS 6310 mass 

spectrometer. The positive ion ESI-MS experimental conditions were as follows: HV capillary 

voltage, 3.5 kV; drying temperature, 350°C; drying gas, 12.0 L/min; nebulizer, 15 psi; and 

capillary exit voltage, 124.8V. The Frag Ampl was set to 1.0V and the smart fragmentation 

function was used (Smart Frag Ampl was 30-200%). HPLC separations were done using an 

Agilent Eclipse XDB-C18 column (5µm, 4.6×150 mm) and the flow rate was 1.0 mL/min 

(approx. 80 bar). The mobile phase for S. acutus samples consisted of a linear gradient of 

acetonitrile and water from 10:90 (v/v) (t=0 min) to 100:0 (t=25 min), then 100:0 until (t=30 

min), and finally 10:90 during 10 min (t=40 min) for recovery. In contrast, the mobile phase 

gradient program for C. sinensis samples was acetonitrile and 5mM formic acid 5:95 (v/v) (t=0 

min), 15:85 (t=15 min), 100:0 (t=35 min) and wash for 5 minutes, and finally recovery to 5:95 

(t=50 min). All samples were dissolved in the mobile phase to a concentration of 1.0 mg/mL and 

filtered using 13 mm filters with 0.45 µm PTFE membranes (VWR). The injection volume was 

25 µL. 
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Targeted analysis of zingerines was programmed as follows: (a) for [6]-zingerine, isolation and 

fragmentation of ions m/z 411-413, then isolation and detection of ion m/z 136.1; (b) for [8]-

zingerine, isolation and fragmentation of ions m/z 439-441, then isolation and detection of ion 

m/z 136.1; (c) for [10]-zingerine, isolation and fragmentation of ions m/z 467-469, then isolation 

and detection of ion m/z 136.1. The HPLC separations were done using an Agilent Eclipse XDB-

C18 column (5µm, 4.6×150 mm) and the flow rate was 1.0 mL/min (approx. 80 bar). The mobile 

phase was a linear gradient of acetonitrile and water from 25:75 (v/v) (t=0 min) to 35:65 (t=5 

min), then 55:45 (t=15 min), 100:0 (t=25 min), and finally recovery to 25:75 (t=35 min). 

2.5.7. Scale-up catch-and-release procedure 

The ginger rhizome was initially extracted with CH2Cl2, and then with methanol. The 

methanolic rhizome extract (100 g) was suspended in 2 L of MeOH:H2O 1:1 mixture (v/v). A 

total of 200 g of prewashed Dowex MAC-3 resin was added to the mixture and left stirring 

overnight. The resin was then filtered off, washed several times with pure MeOH (until the 

filtrate was clear) and the resin was finally left overnight stirring in 2 L of NH3 2% in MeOH. 

The resin was filtered off, and filtrate concentrated under reduced pressure to afford 1.9 g of 

basic fraction residue (1.9 %). 

2.5.8. Isolation of zingerines 

The basic fractions from the general catch-and-release protocol were then separated by 

Sephadex LH-20 column chromatography (100 g) using MeOH as eluent to give 80 fractions (10 

mL each) that were combined into 7 fractions (A-G) according to RP-TLC using MeOH:H2O 4:1 

(v/v) as solvent system. Fraction F (210 mg) was then purified using semipreparative HPLC with 
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a linear gradient program of acetonitrile and water from 25:75 (v/v) (t=0 min) to 35:65 (t=5 min), 

then 55:45 (t=15 min), 100:0 (t=25 min), and finally recovery to 25:75 (t=35 min). Compound 

2.7 (18.2 mg, tR =14.7 min), compound 2.8 (5.2 mg, tR = 19.1 min), and compound 2.9 (4.8 mg, 

tR = 22.5 min) were obtained after removal of the mobile phase under reduce pressure. 

2.5.9. Large scale isolation of shogaols 

Pure [6]-, [8]-, and [10]-shogaol were isolated as described previously and the structures of the 

shogaols were confirmed by spectroscopic methods.143, 149 Briefly, the CH2Cl2 extract was 

submitted to a silica gel column chromatography using hexanes with increasing amounts of 

acetone as solvent system. Shogaol-enriched fractions were obtained by TLC comparison 

(Hexanes:acetone 9:1 v/v as solvent system) with authentic samples and submitted to preparative 

HPLC using mixtures of ACN and H2O as eluent. 

2.5.10. General synthesis of zingerines 

A mixture of shogaol (0.33 mmol) and adenine (0.40 mmol, 1.2 eq.) and Cs2CO3 (5 mg) in 

MeOH:H2O 1:1 (15 mL) was stirred at room temperature for 72 h. Then, organic solvent was 

removed under reduced pressure and filtration, the reaction mixtures were purified by semi 

preparative HPLC to afford the corresponding zingerines. Accordingly, [6]-zingerine (42.7 mg), 

[8]-zingerine (19.4 mg), and [10]-zingerine (19.4 mg) were obtained in 36%, 28%, and 30% 

yields, respectively.  
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[6]-Zingerine (2.7) 5-(6-Amino-9H-purin-9-yl)-1-(4-hydroxy-3-methoxyphenyl)decan-3-one; 

pale yellow oil; [α]D
25=-0.004 (c. 0.03, MeOH); UV (MeOH, c=0.5 mM) λmax nm: 208, 262; IR 

ν cm-1: 3326 (N-H), 3153 (N-H), 1711 (conj. >C=O), 1514 (C=C); 1H NMR(CD3OD, 500 MHz) 

see Table 2-2; 13C NMR (CD3OD, 133 MHz) see Table 2-1; ESIMS m/z 412.3 [M+H]+; 

ESIMS/MS m/z 136.1 [M+H-276.2]; HRMS m/z 412.2362 [M+H]+ (calc. for C22H30N5O2 

412.2349). 

 

[8]-Zingerine (2.8). 5-(6-Amino-9H-purin-9-yl)-1-(4-hydroxy-3-methoxyphenyl)dodecan-3-

one; pale yellow oil; [α]D
25=-0.002 (c. 0.02, MeOH); UV (MeOH, c=0.5 mM) λmax nm: 208, 262; 

IR ν cm-1: 3325 (N-H), 3153 (N-H), 1713 (conj. >C=O), 1513 (C=C); 1H NMR(CD3OD, 500 

MHz) see Table 2-2; 13C NMR (CD3OD, 133 MHz) see Table 2-1; ESIMS m/z 440.3 [M+H]+; 

ESIMS/MS m/z 136.1 [M+H-304.2]; HRMS m/z 440.2695 [M+H]+ (calc. for C24H34N5O3 

440.2662). 

O N
MeO

HO

N

N

N

NH2

2.7

O N
MeO

HO

N

N

N

NH2

2.8



 

 
61 

 

[10]-Zingerine (2.9) 5-(6-Amino-9H-purin-9-yl)-1-(4-hydroxy-3-methoxyphenyl)tetradecan-3-

one; pale yellow oil; [α]D
25= -0.001 (c. 0.02 MeOH); UV (MeOH, c=0.5 mM) λmax nm: 208, 262; 

IR ν cm-1: 3326 (N-H), 3152 (N-H), 1710 (conj. >C=O), 1513 (C=C); 1H NMR(CD3OD, 500 

MHz) and 13C NMR (CD3OD, 133 MHz) see Table 5.1; ESIMS m/z 468.3 [M+H]+; ESIMS/MS 

m/z 136.1 [M+H-332.2]; HRMS m/z 468.2921 [M+H]+ (calc. for C26H38N5O3 468.2975) 
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Table 2-1  13C-NMR Spectroscopic data (500 MHz, CD3OD) for [6]-, [8]-, and [9]-zingerines 
(2.7-2.9) 

Atom 2.7 2.8 2.9 

 δC  δC δC 

1 30.4, CH2 30.4, CH2 30.4, CH2 

2 45.7, CH2 45.7, CH2 45.7, CH2 

3 209.6, C 209.6, C 209.6, CH 

4a 

4b 
47.7, CH2 47.8, CH2 47.8, CH2 

5 54.0, CH 54.0, CH 54.0, CH 

6a 

6b 
35.1, CH2 35.1, CH2 35.1, CH2 

7a 

7b 
32.3, CH2 32.9, CH2 33.2, CH2 

8 26.8, CH2 30.2, CH2 30.6, CH2 

9 23.5, CH2 30.1, CH2 30.5, CH2 

10 14.3, CH3 27.1, CH2 30.5, CH2 

11  23.7, CH2 30.0, CH2 

12  14.5, CH3 27.1, CH2 

13   23.8, CH2 

14   14.6, CH3 

1' 133.7, C 133.7, C 133.7, C 

2' 113.0, CH 113.0, CH 113.0, CH 

3' 148.9, C 148.9, C 148.9, C 

4' 145.8, C 145.9, C 145.9, C 

5' 116.2, CH 116.2, CH 116.2, CH 

6' 121.6, CH 121.6, CH 121.7, CH 

2'' 153.4, C 153.5, C 153.5, C 

4'' 150.6, CH 150.7, CH 150.7, CH 

5'' 120.4, C 120.4, C 120.5, C 

6'' 157.3, C 157.4, C 157.4, C 

8'' 142.6, CH 142.7, CH 142.6, CH 

3'-OMe 56.4, CH3 56.4, CH3 56.4, CH3 
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Table 2-2  1H-NMR Spectroscopic data (500 MHz, CD3OD) for [6]-, [8]-, and [9]-zingerines 
(2.7-2.9) 

Atom 2.7 2.8 2.9 

 δH (J in Hz) δH (J in Hz) δH (J in Hz) 

1 2.67, m 2.68, m 2.67, m 

2 2.67, m 2.68, m 2.67, m 

4a 

4b 

3.39, dd (17.6, 8.8) 

3.05, dd (17.6, 4.7) 

3.40, dd (17.8, 8.9) 

3.05, dd (17.8, 4.8) 

3.39, dd (17.9, 8.7) 

3.05, dd (17.9, 4.9) 

5 4.91, m 4.92, m 4.92, m 

6a 

6b 

1.82, m 

2.08, m 

1.80, m 

2.08, m 

1.80, m 

2.08, m 

7a 

7b 

0.98, m 

1.20, m 
1.24, m 1.24, m 

8 1.20, m 1.24, m 1.24, m 

9 1.20, m 1.24, m 1.24, m 

10 0.81, t (6.9) 1.24, m 1.24, m 

11  1.24, m 1.24, m 

12  0.84, t (7.0) 1.24, m 

13   1.24, m 

14   0.87, t (7.0) 

2' 6.63, d (2.0) 6.63, d (1.8) 6.63, d (1.9) 

5' 6.59, d (8.0) 6.59, d (7.9) 6.59, d (7.9) 

6' 6.44, dd (8.0, 2.0) 6.45, dd (7.9, 1.8) 6.45, dd (7.9, 1.9) 

4'' 8.16, br s 8.16, br s 8.16, br s 

8'' 8.12, br s  8.12, br s 8.12, br s 

3'-OMe 3.76, s 3.76, s 3.76, s 

 



 

 
64 

 

 

 

 

3. BIOASSAY-GUIDED ISOLATION OF MODULATORS OF 

ORGANIC ANION TRANSPORTING POLYPEPTIDES (OATPs) 
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3.1. Introduction 

Organic anion transporting polypeptides (OATPs) comprise a super-family of sodium-

dependent transporters that mediate cellular uptake of many endogenous and exogenous 

substances. The liver-specific OATP1B1 and OATP1B3 are known to be responsible for uptake 

of numerous drugs (Table 3-1) and inhibition of these transporters can potentially lead to drug-

drug interactions or food-drug interactions.150, 151 Furthermore, OATP modulators can be useful 

pharmacologic probes.  

Table 3-1 Substrates of OATP1B1 and OATP1B3 uptake activity. 

OATP1B1  OATP1B3 

Atrovastatin, atrasentan, bosetan, cerivastatin, 

enalapril, fluvastatin, methotrexate, olmesartan, 

pivastatin, pravastatin, rifampicin, rosuvastatin, 

valsartan 

 Digoxin, docetaxel, enalapril, fexofenadine, 

fluvastatin, methotrexate, olmesartan, ouabain, 

paclitaxel, pitavastatin, rifampicin, 

rosuvastatin, valsartan 

 

The main goal of this project was to identify natural product modulators of OATP1B1 and 

OATP1B3 using a bioassay-guided fractionation with a functional transport assay using two 

radioactive-labeled substrates namely, estrone-3-sulfate and estradiol-17β-glucuronide. As 

previously mentioned, plants are potential sources of OATP modulators. For instance, herbal 

extracts used in dietary supplements have been found to affect transport by OATPs and several 

pure secondary metabolites from plants have been shown to interact with OATPs.100-104 Hence, 

extracts and fractions obtained from South American plants were screened for effects on 

OATP1B1- and OATP1B3-mediated uptake of the two-model substrates estradiol-17β-
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glucuronide (E17β) and estrone-3-sulfate (E3S). Several plant species, including Rollinia 

emarginata Schlecht (Annonaceae), showed interesting results, which warranted further 

investigation. The stem bark of this South American species is used in combination with Ilex 

paraguayensis St Hilaire (Aquifoliaceae) (common name: hierba mate), to treat migraine and as 

a relaxant. Antiprotozoal and antifeedant properties have been reported for this species as 

well.152, 153 

This investigation represents the first bioassay-guided isolation strategy for identification of 

OATP modulators.154 The biological evaluation of the isolates included in this chapter was 

conducted by Dr. M. Roth in Dr. B. Hagenbuch's laboratory at the University of Kansas Medical 

Center. 

3.2. Modulators of OATP1B1 and OATP1B3 from Rollinia emarginata 

From the organic extract of R. emarginata, six substrate-specific or transporter-specific 

modulators of OATPs were isolated and identified: the pentacyclic triterpenes ursolic acid (3.1) 

and oleanolic acid (3.2), the diterpene β-sitosterol (3.3), the monoterpene ester 8-trans-p-

coumaroyloxy-α-terpineol (3.4), and the querecetin-glycosides rutin (3.5) and quercetin 3-Ο-α-

L-arabinopyranosyl (1→2) α-L-rhamnopyranoside (3.6) (Figure 3-1). As illustrated in Figure 3-

2, a classic partition scheme was followed and, based on the observed biological activity, the 

attention focused on hexanes and BuOH fractions which allowed for a directed isolation of pure 

compounds. 
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Figure 3-1 Modulators of OATP1B1 and OATP1B3 from R. emarginata 
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During the bioassay-guided isolation, each separation step was followed by functional assays 

performed in triplicate on 96-well plates using aliquots of the original fractions solubilized in 

DMSO. Two model substrates, E17β (OATP1B1: Km = 5.4 µM; OATP1B3: Km = 15.8 µM) and 

E3S (OATP1B1 high affinity component: Km = 0.22 µM; OATP1B3: Km = 58 µM) were used to 

identify substrate-dependent effects on transport.155, 156 Fractions were co-incubated with wild-

type or OATP-expressing cells with uptake buffer containing 0.03 µg/ml plant extracts or 

fractions and 0.1 µM E17β or 1 µM E3S for 5 minutes at 37˚C. Fractions showing promising 

results were further fractionated (Figure 3-3). The initial extract inhibited uptake of both 

substrates by both transporters; however, the hexane (HEX) and butanol (BUOH) fractions both 

showed preferential inhibition of OATP1B1-mediated transport of E17βG. From the HEX 

fraction, four known compounds (3.1-3.4) were isolated and characterized. These compounds 

were identified using spectroscopic data and compared with literature data.157-159 Ursolic acid 

(3.1), oleanolic acid (3.2), and 8-trans-p-coumaroyloxy-α-terpineol (3.4) inhibited OATP1B1 

transport of E17β by more than 50% while having a minimal effect on OATP1B1 transport of 

E3S (Figure 3-3). Interestingly, the butanol subfraction B strongly stimulated uptake of E3S by 

OATP1B3, while inhibiting uptake of E17βG by both OATPs. Purification of components of 

fraction BuOH-B revealed the presence of two known glycosylated flavonoids rutin (3.5) and 

quercetin 3-Ο-α-L-arabinopyranosyl (1→2) α-L-rhamnopyranoside (3.6).159, 160 After testing, it 

was shown that 3.6 was the responsible for the observed activity. 
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Figure 3-3 Effect of R. emarginata extract and its fractions on OATP1B1- and OATP1B3-

mediated uptake of (A) E17β and (B) E3S 
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The ability of ursolic acid (3.1), oleanolic acid (3.2), and 8-trans-p-coumaroyloxy-α-terpineol 

(3.4) to modulate the OATP1B1- and OATP1B3-mediated transport of 0.1 µM E17β or E3S was 

measured for 20 seconds at 37˚C. All three compounds significantly inhibited uptake of E17β by 

OATP1B1 (p < 0.001), while having no effect on uptake by OATP1B3 (Figure 3-4). 

Unfortunately, β-sitosterol (3.3) could not be characterized in detail due to its very low solubility 

in DMSO. 8-trans-p-Coumaroyloxy-α-terpineol (3.4) had a similar effect on the uptake of E3S, 

inhibiting OATP1B1- but not OATP1B3-mediated transport. However, uptake of E3S by both 

transporters was inhibited to an equal extent by ursolic acid (3.1) and oleanolic acid (3.2). 

Inhibition of E17βG transport by OATP1B1 was further studied with a concentration 

dependency. Ursolic acid (3.1) and oleanolic acid (3.2) inhibited uptake of E17β with IC50 values 

of 15.3 µM and 4.2 µM, respectively (Figure 3-5). Although the structure of ursolic acid (3.1) 

and oleanolic acid (3.2) are closely related, the inhibition of substrate uptake by the OATPs was 

not identical showing an interesting structure-activity relationship. In principle, other 

commercially available pentacyclic triterpenes (i.e. betulinic acid) could be used to further 

investigate the interaction of this type of compound with the OATPs. In addition, these 

pentacyclic triterpenes commonly found in edible and medicinal plants like prunes, plums, 

rosemary, and basil have been investigated as chemopreventive agents for cancer and other 

diseases.161-163 The role of OATP modulation by ursolic acid and oleanolic acid in any of these 

reported indications or potential food-drug interaction remains to be determined. 8-trans-p-

Coumaroyloxy-α-terpineol (3.4) was found to be the weakest inhibitor; therefore, the full plateau 

of inhibition could not be determined due to its limited solubility.  
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Figure 3-4 Effect of ursolic acid (3.1), oleanolic acid (3.2), and 8-trans-p-coumaroyloxy-α-

terpineol (3.4) on OATP-mediated uptake 
*** P < 0.001 from the vehicle control), (††† P < 0.001 between OATP1B1 and OATP1B3 
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Figure 3-5 Concentration-dependent effect of ursolic acid (3.1), oleanolic acid (3.2), and 8-

trans-p-coumaroyloxy-α-terpineol (3.4) on OATP1B1-mediated uptake of E17β 

Kinetic analysis of E17G and E3S uptake was performed in the presence of each interacting 

compound or the vehicle control, and results are shown in Table 3-2. The affinity of E17βG for 

OATP1B1 was slightly decreased by each of the four substrates tested. The maximal rate of 

transport (Vmax) was not changed by ursolic acid (3.1) or 8-trans-p-coumaroyloxy-α-terpineol 

(3.4), but was somewhat decreased by both oleanolic acid (3.2) and quercetin 3-Ο-α-L-

arabinopyranosyl (1→2) α-L-rhamnopyranoside (3.6) indicating that none of the observed 

changes reached statistical significance. In initial experiments, ursolic acid (3.1), oleanolic acid 
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(3.2), and 8-trans-p-coumaroyloxy-α-terpineol (3.4) did not alter the low-affinity, high-capacity 

component of OATP1B1-mediated transport of estrone-3-sulfate; therefore only the high-affinity 

component was studied. As for E17β transport, all four compounds caused small but non-

significant decreases in substrate affinity, although none altered the maximal rate of transport. 

Quercetin-3-Ο-α-L-arabinopyranosyl-(1→2)-α-L-rhamnopyranoside (3.6) showed a very 

interesting behavior by stimulating the uptake of E3S by OATP1B3, while inhibiting the uptake 

of the same substrate by OATP1B1. Hence, to further investigate the substrate-dependent effects 

of 3.6, uptake of 0.1 µM E17β or E3S by OATP1B1 and OATP1B3 was measured for 20 

seconds at 37˚C in the presence of increasing concentrations of 3.6. Uptake of E17β was 

inhibited by 3.6 to a similar extent for both transporters (Figure 3-6). OATP1B1-mediated uptake 

of E3S was inhibited to a lesser extent (IC50 = 130 µM). The stimulation of OATP1B3-mediated 

uptake of E3S was also concentration dependent, with an EC50 of 6.8 µM. At concentrations 

higher than 100 µM, the effect of 3.6 on E3S decreased, although it remained stimulatory to the 

highest tested concentration of 1 mM. Quercetin-3-Ο-α-L-arabinopyranosyl-(1→2)-α-L-

rhamnopyranoside (3.6), however, significantly altered the kinetic parameters of OATP1B3-

mediated transport of both model substrates, as illustrated in Figure 3-7. OATP1B3-mediated 

E17β uptake was inhibited in a non-competitive manner. Inclusion of 25 µM (squares) or 75 µM 

(triangles) of 3.6 in the uptake media decreased the maximal rate of transport (Vmax) from 280 ± 

45 to 188 ± 40 (not statistically significant) and 83 ± 9 pmol/mg*min (p < 0.05), respectively. 

Quercetin-3-Ο-α-L-arabinopyranosyl-(1→2)-α-L-rhamnopyranoside (3.6) had no effect on the 

apparent affinity (Km) for E17β (16 ± 9, 17 ± 5, and 18 ± 9 µM, respectively). Uptake of E3S by 
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OATP1B3 was measured in the presence of 50 µM of 3.6 or 1% DMSO. As was the case with 

E17βG, the Vmax was decreased, from 2.12 ± 0.34 to 1.07 ± 0.05 nmol/mg*min (p < 0.05). 

However, the Km was also decreased nearly 10-fold, from 93 ± 38 µM to 15 ± 3 µM (p < 0.005). 

This explains the stimulation of transport seen at low E3S concentrations despite the decrease in 

Vmax. Further investigation of this effect on OATP1B3 revealed that the maximal rate of transport 

(Vmax) was reduced for both substrates (Figure 3-7). The apparent substrate affinity (Km) for 

E17βG was unchanged, causing inhibition of transport at all concentrations studied. In contrast, 

the affinity for E3S was increased 10-fold, leading to stimulation of transport at low substrate 

concentrations, and inhibition of transport at high substrate concentrations.  

 

Figure 3-6 Concentration-dependent effect of quercetin-3-Ο-α-L-arabinopyranosyl-(1→2)-α-

L-rhamnopyranoside (3.6) on OATP-mediated uptake of E17β and E3S. OATP1B1 (A, C) or 

OATP1B3 (C, D)  
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Figure 3-7 Effect of 3.6 on OATP1B3-mediated transport. A. Cells were incubated with 

increasing concentrations of E17β in the presence of 25 μM (squares) or 75 μM (triangles) 3.6, 

or the vehicle control (0.5% DMSO, circles) under initial linear rate conditions. B. Cells were 

incubated with increasing concentrations of E3S in the presence of 50 μM 3.6 (squares) or the 

vehicle control (circles) under initial linear rate conditions 
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The function of transporters can be inhibited or stimulated by a number of mechanisms. 

However, allosteric interaction and competitive inhibition seem to best fit the observed substrate-

dependent and OATP-subtype specific effects for the isolates. There is evidence that OATPs 

have multiple binding sites, therefore a compound may behave differently in two different OATP 

isoforms with different binding sites. This competitive inhibition would be expected to decrease 

affinity for the substrate that shares a binding site, while not affecting the Vmax. As relatively 

weak inhibitors, ursolic acid (3.1), oleanolic acid (3.2), and 8-trans-p-coumaroyloxy-α-terpineol 

(3.4) did not show a statistically significant effect on the kinetic parameters of OATP1B1- or 

OATP1B3-mediated uptake, suggesting that if they are substrates, they have very low-affinity. 

These three compounds may bind to a portion of OATP1B1 or OATP1B3, sterically hindering 

either the binding or the translocation of substrates. In the case of quercetin-3-Ο-α-L-

arabinopyranosyl-(1→2)-α-L-rhamnopyranoside (3.6), this binding could also cause a 

conformational change in OATP1B3 that increases the affinity of the transporter for E3S while 

not affecting the E17β binding site.  

Interestingly, although 3.6 stimulated transport of E3S, the structurally similar 3.5 did not 

show the same effect. Both compounds share the same flavonoid core (quercetin), however the 

identity and connectivity of the sugars in the moiety are different. The three-dimensional 

minimized-energy conformations of 3.5 (red) and 3.6 (blue) (Figure 3-8) were calculated and 

aligned using SYBYL. Clearly, despite the similarity in the carbon-skeletons, the sugar moieties 

have very different conformations and the relative orientation of the aromatic B-ring with respect 

to the flavonoid core plane differs significantly in both structures. Glycosylated flavonoids are 

distributed in higher plants ubiquitously, and many of the fruits and vegetables in our diet 
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contain large amounts of this type of compounds. Flavonoids are better known for their 

antioxidant activity and they are part of many herbal supplements sold over-the-counter. 

Consequently, flavonoid-rich herbals or foods can potentially lead to interactions with drugs that 

are taken up by OATP1B1 or OATP1B3. 

 

Figure 3-8 Conformation of rutin (3.5, blue) and quercetin-3-Ο-α-L-arabinopyranosyl-
(1→2)-α-L-rhamnopyranoside (3.6, red) after MM2 energy minimization protocol using SYBYL 

  

This work represents the first successful bioassay-guided isolation campaign for OATP 

modulator identification from a plant source. We have been able to show that such an approach 

is possible (proof-of-concept) and can be further applied to other OATPs in order to identify 

molecules with interesting effects on this type of transporters. 
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Table 3-2 Kinetics of OATP-mediated transport in the absence and presence of modulators  

OATP1B1    

Substrate Inhibitor Km (µM) Vmax (pmol/mg protein/min) 

E17βG None 7 ± 1 175 ± 11 

 3.1 20 ± 11 217 ± 60 

 3.2 13 ± 3 117 ± 10 

 3.4 36 ± 19 258 ± 86 

 3.6 15 ± 6 92 ± 18 

E3S1 None 0.5 ± 0.1 96 ± 10 

 3.1 0.8 ± 0.1 105 ± 8 

 3.2 0.7 ± 0.1 85 ± 5 

 3.4 1.3 ± 0.3 102 ± 10 

 3.6  0.8 ± 0.2 93 ± 8 

OATP1B3    

Substrate Inhibitor Km (µM) Vmax (pmol/mg protein/min) 

E17βG None 16 ± 9 280 ± 45 

 3.1 n/a n/a 

 3.2 n/a n/a 

 3.4 n/a n/a 

 3.6 (25 µM) 17 ± 5 188 ± 40 

 3.6 (75 µM) 18 ± 9 83 ± 9* 

E3S None 93 ± 38 2120 ± 340 

 3.1 --- --- 

 3.2 --- --- 

 3.4 n/a n/a 

 3.6 (50 µM) 15 ± 3** 1070 ± 50 

All inhibitors were used at 100 µM unless indicated. 1High affinity component; * = p < 0.05; ** = p < 0.005; n/a = 
no significant inhibition of 0.1 µM substrate by 100 µM inhibitor; --- = no apparent inhibition at the concentrations 
required to determine kinetics  
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3.3. Green tea modulation of OATPs: NMR-based metabolomics as a dereplication tool 

Green tea is probably one of the most popular beverages worldwide and its consumption is 

associated with multiple health benefits.164 Catechins, the major metabolites present in green tea, 

are believed to be responsible for most of the biological activities attributed to this beverage. 

Particularly, liver-related disease risks can be reduced by green tea consumption as described by 

a number of clinical and in vitro studies.165-167 Intriguingly, most of the in vitro studies are 

preformed with the purified catechins, especially epigallocatechin gallate (EGCG), even when 

the bioavailability of this type of compounds is extremely low as they are highly metabolized 

before they can reach the bloodstream.168 Although valuable information can be obtained from in 

vitro studies with the purified green tea catechins, it is an over-simplified model when compared 

with whole green tea extracts. Like other herbals, infused green tea contains hundreds of 

compounds and their role in the biological activity is not well understood. In fact, other 

components besides EGCG present in green tea have been shown to alter the catechin absorption 

and disposition.169 Conversely, working with green tea extracts can be very challenging and 

multivariate analysis tools are needed in order to cope with the complexity of the mixtures. For 

instance, a multivariate-approach allowed to assess the quality of 200 kinds of tea using 1H 

NMR.170 Also, GC-MS and 1H NMR-based metabolomics investigation of human urine revealed 

a more comprehensive picture of the metabolic changes suffered after the ingestion of green 

tea.171  

For this project, our objective was to use NMR-based metabolomics as a dereplication tool to 

identify compounds present in aqueous extracts of several commercial green teas responsible for 

inhibition of OATP1B1-mediated E3S uptake. Previous work in our research group has 
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demonstrated the effects of individual green tea catechins over OATPs. ECG and EGCG were 

shown to inhibit the uptake of E3S by OATP1B1.99 The aqueous green tea extracts were 

prepared using hot water as is done for regular tea infusions. A total of 35 commercial samples 

of green tea (Table 3-3, Experimental data) were analyzed using 1H NMR (500 MHz, DMSO-d6) 

(Figure 3-9). 

 

Figure 3-9 Stacked 1H NMR spectra of commercial green tea samples 
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The 1H NMR signals of the main catechins as well as those of caffeine were assigned in the 

complex mixture using purified catechins, 2D NMR experiments, and literature data as 

illustrated in Figure 3-10 (see Table 3-2, Experimental Section).172 In addition, using the residual 

peak from DMSO-d6 as internal standard, the catechins as well as caffeine were quantified as 

described by Pierens et al.173 For validation purposes, caffeine concentration in the samples was 

also determined by standard HPLC analysis and compared with the results obtained by NMR 

(Figure 3-11). 

 

Figure 3-10 1H NMR Signal assignment of catechins and caffeine (EC: epicatechin, EGC: 

epigallocatechin, ECG: epicatechingallate, EGCG: epigallocatechingallate) 
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Figure 3-11 Caffeine concentration calculated using NMR- and HPLC-based methods 

The green tea extracts' ability to inhibit the OATP1B1-mediated uptake of E3S was evaluated 

as described previously. As shown in Figure 3-12, significant variations were observed among 

the analyzed samples that can not be readily explained neither by simple visual inspection of the 

NMR data nor by the EGCG concentration in the samples. If the EGCG concentration in the 

samples is plotted against the inhibition of OATP1B1-mediated E3S uptake, a negative 

relationship is observed with a very poor correlation (R2=0.18), suggesting that other variables 

may be contributing to the measured biological activity (Figure 3-13).  
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Figure 3-12 OATP1B1 uptake inhibition of E3S by commercial green tea sample extracts. 

 

Figure 3-13 OATP1B1-mediated E3S uptake inhibition by commercial green tea samples vs. 

calculated EGCG concentration 
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In order to analyze the entire data set, a multivariate analysis protocol was conducted following 

three steps including data acquisition, data cleaning and transformation (bucketing), and 

multivariate analysis (Figure 3-14). In the case of the green tea 1H NMR data set, the NMR 

spectra were transformed into data amenable for statistical analysis by dividing it into small 

regions containing integral and chemical shift information (bucketing). The resulting data matrix 

was then analyzed using the multivariate partial least squares (PLS). The goal of the multivariate 

analysis was to reduce the number of variables by linear combination of the original buckets 

(spectral regions). Finally, the new variables provided information about the regions of the NMR 

spectrum that were important in order to explain the samples' variability and the relationship 

with the observed property (uptake inhibition). 

 

Figure 3-14 Flow chart showing the steps in a NMR-based metabolomics analysis  

 

First, each 1H NMR spectrum was aligned using the solvent residual peak and the bucketing 

was done using the software AMIX (Bruker) that allowed importing NMR spectra directly from 
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TopSpin (Bruker) acquisition interface. The resulting data matrix (34 samples  × 400 buckets = 

13,600 data points) and the OATP1B1-mediated E3S uptake inhibition were fed into the 

statistical software SIMCA P+. Next, a PLS analysis was performed which, unlike principal 

component analysis (PCA), correlates the NMR bucketing data (matrix) with the OATP1B1 

uptake inhibition (vector). Two new combined variables (t1 and t2) were generated and the 

distribution map of the samples in the new statistical space is shown in Figure 3-15. The variable 

t1 showed a good correlation with the uptake inhibition values (Figure 3-16). Samples with lower 

percentage of inhibition (more active) had negative t1 values and samples with higher percentage 

of inhibition (less active) had positive t1 values. The loading plot of variable t1 (Figure 3-16) 

showed the statistical weights associated with each spectral region or bucket. Negative loading 

values corresponded with regions in the spectrum that are important for stronger inhibition of 

OATP1B1-mediated E3S uptake (lower percentage of uptake inhibition). With those regions 

identified in the spectrum, a more careful analysis of the NMR data can be performed using 2D 

NMR experiments, model compounds, and literature data. As expected, the statistical model 

allowed us to identify signals corresponding to the catechins EGCG and ECG as relevant for 

stronger uptake inhibition. Interestingly, a number of signals in the spectrum not related with 

catechins were also identified. As shown in Figure 3-18, the 2D NMR experiment DQFCOSY 

allowed identification of spin systems associated with p-substituted cinnamic-type fragment and 

polyoxygenated cyclohexene-type structure. The first fragment was identified based on the 

observed trans- and para- coupling constants and the chemical shift suggested a carbonyl-

conjugated system. The CH2-CH-CH-CH-CH2 sequence in the cyclohexane fragment was 

readily identified from the DQFCOSY experiment, however the cyclic structure was suggested 

based on the large geminal coupling observed for the menthylene groups. Based on these 
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fragments, the compounds p-coumaroyl quinic acid and theogalline were proposed as both 

compounds are known to occur in green tea and the 1H NMR signals are consistent with those 

reported in the literature. Although these minor components of green tea were not isolated and 

evaluated as inhibitors of OATP1B1-mediated uptake of E3S to validate the previous hypothesis, 

we demonstrated that a metabolomic analysis could be applied for analysis of complex natural 

products mixtures as a dereplication tool. In fact, only in recent years the potential of 

metabolomic analysis of crude extracts has been recognized and more applications are expected 

to appear in a near future.174 

 

Figure 3-15 PLS t1/t2 score plot of the model for the green tea samples effect on OATP1B1 

mediated E3S uptake 
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Figure 3-16 PLS t1/u1 score plot of the model for the green tea effect on OATP1B1-mediated 

E3S uptake. 
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Figure 3-17 Loading plot of PLS analysis and suggested compounds 
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Figure 3-18 DQFCOSY spectrum for green tea sample P001  
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3.4. Conclusions 

In conclusion, we have identified four natural products that modulate OATP function. Ursolic 

acid, oleanolic acid, and 8-trans-p-coumaroyloxy-α-terpineol, inhibit estradiol-17β-glucuronide 

uptake by OATP1B1 but not by OATP1B3, while ursolic acid and oleanolic acid inhibit estrone-

3-sulfate uptake by both transporters. Quercetin 3-O-α-L-arabinopyranosyl(1→2) α-L-

rhamnopyranoside (3.6) inhibits transport by OATP1B1, but has substrate-dependent effects on 

OATP1B3, non-competitively inhibiting uptake of both substrates at high substrate 

concentrations, but stimulating estrone-3-sulfate uptake at low substrate concentrations by 

increasing affinity. The results of this study show that diverse plant materials are a promising 

source for the isolation of OATP modulating compounds, and that a bioassay-guided approach 

can be used to efficiently identify selective OATP modulators. This work resulted in the 

following publication: 

• Roth, M.; Araya, J.J.; Timmermann, B.N.; Hagenbuch, B. Isolation of modulators of 

the liver specific Organic Anion Transporting Polypeptides (OATPs) 1B1 and 1B3 

from Rollinia emarginata Schlecht (Annonaceae). J. Pharmacol. Exp. Ther. 2011. 

339(2), 624-632 

In addition, a metabolomic approach was used as a dereplication tool to study the effect of 

aqueous green tea extracts on OATP1B1-mediated uptake of estrone-3-sulfate. The partial least 

squares (PLS) multivariate analysis of the 1H NMR data collected for the aqueous green tea 

extracts suggested that not only the gallate catechins were important for the observed uptake 

inhibition, but also the minor compounds theogalline and 3-p-cumaroyl quinic acid.   
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3.5.Experimental data 

3.5.1. General 

See section 2.5.1. for additional general experimental data. [3H]Estrone-3-sulfate (54.3 

Ci/mmol) and [3H]estradiol-17β-glucuronide (41.8 Ci/mmol) were purchased from PerkinElmer 

Life and Analytical Sciences (Boston, MA). Unlabeled estrone-3-sulfate, estradiol-17β-

glucuronide, and rifampicin were purchased from Sigma-Aldrich (St. Louis, MO). MeOD, Pyr-

d5, and DMSO-d6 were purchased from Cambridge Isotopes Inc.  

3.5.2. Plant materials 

Above-ground plant material of Rollinia emarginata was collected and identified in February 

1999 in Argentina by R. Fortunato & A. Cabral (INTA) collection # ARP 613. LAT: 25°14'0''5 

South LON:57°57'0''0 West. RN 86, 2Km NE of Patino, Department Primavera, Province 

Formosa.  

Commercially available samples of green tea (N=34) were purchased from different grocery 

stores and detailed information (brand, lot number, expiration date, etc.) is presented in the Table 

3-2.  

3.5.3. Plant Extraction and Isolation 

Dried and ground plant material (562 g) of R. emarginata was extracted with methanol 

(MeOH) and dichloromethane (CH2Cl2) mixture (1:1, v/v) three times for 24 hour periods at 

room temperature. Organic solvents were removed in vacuo at 35°C; the residue was suspended 

in MeOH:H2O (9:1, v/v) and partitioned with hexanes (HEX fraction). After removal of MeOH, 
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the aqueous layer was extracted successively with CH2Cl2 (CH2Cl2 fraction) and butanol (BUOH 

fraction). The HEX fraction was then subjected to silica gel column chromatography (Si-Gel CC) 

(32-64 µm, 36x460 mm) and eluted with a gradient of hexanes-ethyl acetate (EtOAc) (20:1 to 

0:100, v/v) to afford 20 subfractions (A to T), which were combined according to TLC analysis. 

Subfraction HEX-G (310 mg) was submitted to Si-Gel CC (12-26 µm, 36×230 mm) using a 

gradient of hexanes and acetone (15:1 to 5:1, v/v) to obtain three subfractions (G1-G3). 

Subfraction HEX-G1 (205 mg) was purified using Si-Gel CC (CH2Cl2:EtOAc, 20:1, v/v) to 

afford 3.3 (120 mg).Subfraction HEX-G2 was purified with Si-Gel CC (12-16 µm, 20×460 mm) 

using hexanes, CH2Cl2 and methyl tert-butyl ether (20:15:1, v/v/v) as mobile phase to yield 3.4 

(10.4 mg). Also, subfraction HEX-N (284 mg) was separated using Si-gel CC (32-64µm, 36×230 

mm) and CH2Cl2-EtOAc (10:1, v/v) as a solvent system to yield a mixture of 3.1 and 3.2 (103 

mg) which was resolved by means of semipreparative HPLC (reverse phase C-18, 10×250 mm, 

5µm, solvent A: acetonitrile, solvent B :water, gradient: 80%A to 100%A in 45 minutes). 

Fraction BUOH (19.7 g) was subject to MCI-Gel CHP20P CC (65×350 mm) and eluted with 

various mixtures of water and MeOH (100:0, 25:75, 50:50,75:25, 0:100; v/v) to afford four 

fractions (A-D). Subfraction BUOH-B (2.2g) was submitted to Sephadex LH-20 CC with MeOH 

as a mobile phase and a total of 180 fractions (7.5 mL each) were collected and combined into 

nine fractions (1-9) after TLC analysis. Pigments present in fraction BUOH-B7 (530 mg) were 

removed with a small Si-gel plug using CH2Cl2:MeOH:H2O (4:1:0.1, v/v/v) as eluent to obtain a 

mixture of 3.5 and 3.6 (450 mg). A portion of this mixture (40 mg) was purified using semi 

preparative HPLC (reverse phase C-18, 10×250 mm, 5µm, solvent A: acetonitrile, solvent B: 

water, isocratic 18%A) to afford 3.5 (24 mg) and 3.6 (6.2 mg). The structures of isolated 



 

 
94 

compounds were established by one and two dimension NMR experiments and compared with 

those in literature; IR, UV, and HRMS were also in agreement with the proposed structures.  

The 35 commercial green tea samples (c.a. 5 g) were extracted with 10 mL H2O (70°C, 10 

min). The extracts were concentrated in vacuo and dried overnight at 30°C in a vacuum oven.  

3.5.4. Cell Culture 

Chinese Hamster Ovary (CHO) cells stably transfected with OATP1B1 and OATP1B3 were 

seeded on 24- or 96-well plates and grown to visual confluency (48 to 72 hours). When 

confluent, medium was exchanged for non-selective medium containing 5 mM sodium butyrate, 

to non-specifically induce gene expression. Uptake experiments were performed 24 hours after 

induction.155 

3.5.5. Transport Assays 

Cells were washed three times with pre-warmed uptake buffer (116.4 mM NaCl, 5.3 mM KCl, 

1 mM NaH2PO4, 0.8 mM MgSO4, 5.5 mM D-glucose and 20 mM Hepes, pH adjusted to 7.4 with 

Trizma base). Cells were then incubated with pre-warmed uptake buffer containing the 

radiolabeled substrate. To stop uptake, the substrate solution was aspirated and the cells were 

washed four times with ice-cold uptake buffer. Cells were lysed with 1% Triton X-100 in 

phosphate buffered saline; lysate was used for liquid scintillation counting and protein 

determination using the BCA assay.155 
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3.5.6. Calculation and Statistics 

All calculations were performed using Prism, (GraphPad Software Inc., La Jolla, CA). 

Determination of IC50 values and kinetic parameters was performed within the initial linear 

period of uptake (20 seconds). Statistical significance was determined with 2-way ANOVA 

followed by Bonferroni post-test or two-tailed paired t-test. 

3.5.7. Quantitative NMR experiments 

Each green tea extract (10.0 mg) was dissolved in 0.60 mL of DMSO-d6. NMR experiments 

were performed in a Bruker AVIII 500 instrument with a dual C/H cryoprobe. The number of 

scans for each NMR spectrum was 32 and a delay time of 10 sec. was used to ensure full 

magnetization recovery. A standard solution of caffeine in DMSO-d6 was used to calibrate the 

residual peak of DMSO-d5 and use it as internal reference as described by Pierens et al.173 

3.5.8. HPLC analyses 

Analyses of samples were carried out using a Knauer SmartLine 5000 with a 4.6 × 250 mm 

IRIS Technologies, L.L.C IProSIL 120-5 C18 AQ 5.0 column at room temperature. The mobile 

phase consisted of (A) 0.05% TFA (B) ACN. The gradient was linear from 10 to 25% B in 25 

min, 100% B in 10 min, and recovery to original conditions in 15 min. UV absorption was 

recorded at 278 nm. 

3.5.9. Multivariate analysis 

Data acquisition, processing, and management of the NMR spectra were carried out using the 

TopSpin 2.1 software program (Bruker). Bucketing was performed using AMIX (Bruker) 
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software using the SmartBucketing protocol option. Tables were exported to SIMCA P+ 

software and a PLS analysis was conducted. 
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Table 3-3  Commercial green tea samples coding information 

Sample 
code 

Brand Type Lot./Exp./Other 

P001 Lipton  Green  
P002  Green  
P003  Green  
P004  Green  
P005  Green  
P006 La lucky brand Green, organic No information 
P007 Ineeka/Himalayan Green, organic 8151 
P008 Numi Green, organic B807 
P009 Equal exchange Green, organic No information 
P010 Yogi Tea Green, organic No information 
P011 Equal Exchange Ceylon Green P208069 
P012 Stash Green No information 
P013 Bigleow Green 63919PJ81 
P014 EDEN Green, organic 8249141 
P015 Best Choice Green, organic 61470-0107-WB 
P016 Twinings of London Green J4280578-171 
P017 Bigelow Green, 

decaffeinated 
646094MK8 

P018 Lipton Green SQ3 1526 
P019 Tazo Green L01APR2008 

2712 
P020 Clelestial Seasonings Green 29Jul10C 
P021 Uncle Lee's Tea Green 20121118 
P022 HyVee Green Nov2010 AA 
P023 Kroger Green May28 2010 
P024 Salada Green May23 2010 
P025 Salada Green, 

decaffeinated 
Dec17 2010 

P026 Twinings of Lodon Green, 
decaffeinated 

01665577 

P027 Lipton Green, 
decaffeinated 

1138 

P028 Celestial Seasonings Green, 
decaffeinated 

02Oct10C 

P029 HyVee Green, 
decaffeinated 

Nov2010AA 

P030 Stash Green and white 10/03/2011 
P031 Private Selection White 02/12/2011 
P032 Uncle Lees' Tea White 2013 01 08 
P033 Salada White 42 B8204 
P034 Twinings of London Oolong 01953497 
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Table 3-4  1H NMR-based concentration (as percentage of dry weight) of the main catechins 

and caffeine present in the commercial green tea samples 

Sample code EGCG ECG EGC EC Caffeine 
P001 7.79 2.35 7.85 2.39 4.74 
P002 3.33 0.69 5.54 1.52 5.44 
P003 7.88 1.79 5.03 1.55 4.63 
P004 3.55 1.81 3.14 0.85 5.15 
P005 9.92 2.29 6.17 1.92 5.60 
P006 2.95 0.61 4.87 1.34 4.79 
P007 11.33 2.22 7.06 1.89 6.00 
P008 5.55 0.85 6.96 1.74 5.26 
P009 1.30 0.41 4.36 1.02 5.46 
P010 3.86 0.64 7.10 1.80 4.73 
P011 3.62 0.45 6.08 1.88 4.92 
P012 4.97 1.38 5.99 2.03 5.08 
P013 0.84 0.27 1.27 0.59 0.64 
P014 3.92 1.08 5.02 1.77 4.34 
P015 4.79 1.03 4.53 1.33 5.63 
P016 1.78 0.44 3.83 1.02 4.04 
P017 3.52 0.76 6.28 1.79 4.59 
P018 2.61 0.60 4.33 1.25 3.90 
P019 3.21 0.74 5.34 1.54 4.81 
P020 2.86 0.81 8.62 2.27 8.21 
P021 2.16 0.41 3.04 0.96 0.73 
P022 4.40 1.19 3.18 1.08 0.49 
P023 3.97 1.05 5.66 1.60 0.77 
P024 1.74 0.38 2.73 0.67 0.98 
P025 1.41 0.18 2.56 0.60 0.79 
P026 3.30 0.52 5.32 1.43 5.01 
P027 6.37 3.35 2.53 2.16 6.56 
P028 3.75 1.04 6.10 1.54 5.70 
P029 4.17 1.75 7.93 4.42 6.32 
P030 4.54 0.87 5.32 1.21 5.95 
P031 4.19 0.82 1.17 0.69 6.18 
P032 8.12 1.84 4.91 1.58 5.72 
P033 8.05 2.93 4.89 2.28 6.52 
P034 1.98 0.80 8.26 2.21 6.40 
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4. PREGNANE, CARDIAC GLYCOSIDES, AND OTHER 

COMPOUNDS FROM ASLCEPIAS SPP. 
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4.1. Introduction 

The genus Asclepias is widely distributed across the United States, especially in the Midwest 

geographical region. According to the United States Department of Agriculture Plant Database, 

over 130 plant species and subspecies within this genus have been described in the US territory 

and many of them are endemic to the Great Plains in the central area of the country.175 

Milkweed, the common name of Asclepias, refers to the milky latex that most of the plants 

within this genus exude upon mechanical damage as a mechanism of defense. The production of 

latex is a relatively common mechanism of defense as more than 20,000 species from over 40 

families of angiosperms present this characteristic. The latex is typically composed of rubber, 

various enzymes and proteins as well as secondary metabolites with presumably defensive 

roles.176 In the Asclepias genus, those secondary metabolites are cardenolides and the 

concentration varies greatly among its plant species. Cardenolides and cardiac glycosides are 

known to be highly toxic compounds to animals, including insects, thus providing defense to the 

producing plant against herbivory. Interestingly, the monarch butterfly (Danaus plexippus) has 

evolved to feed from cardenolide-containing plants and sequesters this type of compounds as a 

defensive mechanism defense against higher predators.177 Furthermore, the monarch's Na+,K+-

ATPase, the molecular target of cardenolides, has evolved to become insensitive to cardenolides 

through a mutation in the binding site: asparagine-122 has been replaced by a histidine.178  
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4.1.1. Ethnopharmacology of Asclepias 

The name of the genus Asclepias was given by Lineus inspired by the ancient Greek god of 

medicine, Asclepius, due to the numerous medicinal uses of plants in this genus.179 Considering 

the diversity and abundance of Asclepias species in the US territory, it is not surprising that 

Native Americans have used them as medicine and food for a wide range of health conditions. 

Table 4-1 summarizes the plant species known for these medicinal properties by different Native 

American groups as well as its health-related uses. 

Table 4-1 Medicinal uses of Asclepias species by Native Americans180-183 

Species Native American group Medicinal uses 

A. asperula Navajo, Kayenta, Ramah Respiratory aid, emetic, veterinary aid 

A. auriculata Navajo, Kayenta Respiratory aid 

A. californica Kawaiisu Dermatological aid 

A. cordiflolia Miwok Non specific medicine 

A. cryptoceras Paiute, Northern, Shoshoni Analgesic, dermatological aid, veterinary aid 

A. eriocarpa Costanoan, Mendocino Indian Cold remedy, dermatological aid, respiratory aid. 

A. exaltata Omaha, Ponca Gastrointestinal aid 

A. fascicularis California Indian, Mendocino 

Indian 

Snakebite remedy, poison 

A. hallii Navajo, Kayenta Gynecological aid, veterinary aid 

A. incarnata Chippewa, Iroquois, Meskawaki Pediatric aid, strengthener, dermatological aid, diuretic, 

kidney aid, orthopedic aid, toothache remedy, urinary 

aid, witchcraft medicine, anthelmintic, carminative, 

cathartic, emetic 

A. involucrata Keres, Western, Navajo, 

Kayenta, Zuni 

Gastrointestinal aid, toothache remedy 

A. latifolia Isleta Respiratory aid 

A. nyctaginifolia Navajo, Kayenta Antidiarrheal, pediatric aid 

A. perennis Cherokee Analgesic, dermatological aid, kidney aid, laxative, 

urinary aid, venereal aid, veterinary aid 
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A. pumila Lakota Antidiarrheal, pediatric aid 

A. quadrifolia Cherokee Analgesic, dermatological aid, kidney aid, laxative, 

urinary aid, venereal aid, veterinary aid 

A. speciosa Cheyenne, Flathead, Lakota, 

Miwok, Navajo, Kayenta, 

Okanagan-Colville, Okanagon, 

Paiute, Thompson 

Eye medicine, gastrointestinal aid, dermatological aid, 

emetic, antirheumatic, cough medicine, snakebite 

remedy, tuberculosis medicine, antidiarrheal, venereal 

aid, analgesic, dietary aid 

A. stenophylla Lakota  Dietary aid 

A. subulata Pima Cathartic, emetic, eye medicine, gastrointestinal aid, 

panacea, poison 

A. subverticillata Hopi, Keres, Western Gynecological aid 

A. syriaca Cherokee, Chippewa, Ojibwa, 

Potawatomi, Rappahannock, 

Menominee 

Analgesic, dermatological aid, kidney aid, laxative, 

urinary aid, venereal aid, veterinary aid, antirheumatic 

(external), contraceptive, pulmonary aid, and as food 

A. tuberosa Cherokee, Delaware, Oklahoma, 

Iroquois, Menominee, Mohegan, 

Ramah, Omaha, Ponca, 

Rappahannock 

Analgesic, antidiarrheal, gynecological aid, heart 

medicine, pulmonary aid, antirheumatic, orthopedic 

aid, dermatological aid, pulmonary aid, snakebite 

remedy 

A. verticillata Choctaw, Hopi, Lackota Diaphoretic, snakebite remedy, stimulat, gynecological 

aid, throat aid 

A. viridiflora Blackfoot, Lakota Antirheumatic (external), dermatolgical aid, eye 

medicine, oral aid, pediatric aid, throat aid, 

antidiarrheal, gynecological aid 
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4.1.2. Phytochemistry of Asclepias 

Asclepias is known to contain cardiac and pregnane glycosides, however triterpenes, 

flavonoids, and lignans have also been reported for this genus. Interestingly, only a small 

fraction of the Asclepias species described in the US have been investigated for their chemistry 

or biological properties. A comprehensive revision of phytochemical investigations of Asclepias 

species published to date is presented in Table 4-2 and representative structures are shown in 

Figures 4-2, 4-3, and 4-4. 

Table 4-2 Asclepias species with reported phytochemical studies* 

Species Compound type** References 

A. albicans CG Koike et al.184 

A. amplexicaulis PG Piatak et al.,185 Ahsan et al.186 

A. asperula CG Martin et al.,187 Bartlett et al.188 

A. curassavica PG, CG Li et al.,189, 190 Abe, et al.191, 192 

A. eriocarpa CG Cheung et al.,193 Seiber et al.194 

A. furticosa PG, CG, M, L Warashina and Noro,195, 196 Abe et al.,197 Abe and Yamauchi198 

A. glaucensces CG Fonseca et al.199 

A. humistrata CG Nishio et al.200 

A. incarnata PG, CG Warashina and Noro,201, 202 

A. labriformis CG Seiber et al.194 

A. linaria CG Rodriguezhahn et al.203  

A. syriaca PG, CG, F Warashina and Noro,204, 205 Sikorska,206 Brown et al.,207 Gonnet 

et al.,208 Mitsuhas209 

A. subulata CG Jolad et al.210 

A. tuberosa PG, CG Warashina and Noro,211, 212 Abe and Yamauchi213, 214 

A. vestita CG Cheung et al.215, 216 

* Revision was done in SciFinder using "Asclepias" in title as search criteria. 

** CG: cardiac glycosides, PG: pregnane glycosides, M: megastigmane, F: flavonoid, L: lignan 
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Figure 4-1 Secopregnane glycosides from A. tuberosa211 
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Figure 4-2 Cardiac glycosides and cardenolides from A. curassavica190 
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Figure 4-3 Pregnane glycosides from A. tuberosa213 
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4.2. Project design 

As described in the previous section, Asclepias represents a potentially rich source of bioactive 

natural products that have been under-explored. With the main goal to investigate the 

antiproliferative potential of secondary metabolites present in various species in this genus, we 

conducted this project in four stages as summarized in Figure 4-5 and described in detail in the 

subsequent sections. 

 

Figure 4-4 Asclepias project workflow 

A total of ten plant species namely Asclepias verticillata, A. syriaca, A. sullivantii, A. 

incarnata, A. speciosa, A. tuberosa, Apocynum cannabinum (Apocynacaeae), Cynanchum 

mucronatum, C. boerhaviifolium, and Diplolepis mensiesii were fractionated in small-scale and 

screened for cytotoxicity. Three species, A. verticillata, A. syriaca, and A. sullivantii (Figure 4-

6), were selected for detailed phytochemical investigation and the results are presented in 

sections 4.3, 4.4, and 4.5 respectively. 

4	


Large scale extraction, isolation, identification, and testing	



3	


Screening (HTS) breast cancer cell line Hs578T	



2	


Small scale (100g) extraction and pre-fractionation	



1	


Plant collection of Asclepias species from KS, MO, IO, NE, CO, TX	
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Figure 4-5 Images of (a) Asclepias verticillata, (b) Asclepias sullivantii, and (c) Asclepias 

syriaca * Image Copyright Thomas G. Barnes, University of Kentucky   

a)* b) 

c) 
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4.2.1. Pre-fractionation and screening 

As previously mentioned, biological testing of plant-derived mixtures is often challenging due 

to the low concentration of the active compounds as well as interference by other components in 

the complex mixture.19 Therefore, in order to minimize those problems during the screening 

process, a small-scale (c.a. 100 g dried plant material) extraction and fractionation was 

conducted with each of the ten plant samples investigated (Figure 4-7). The plant material was 

not only partitioned using classic liquid/liquid extraction, but also the CH2Cl2 and BuOH 

fractions were subjected to small normal-phase and reverse-phase column chromatography, 

respectively. Accordingly, 14 samples were generated per plant and a total of 152 fractions were 

subjected to biological evaluation. 

 

Figure 4-6 Small-scale extraction and pre-fractionation scheme   
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4.2.2. HTS cytotoxicity bioassay 

The biological assays for this project were conducted by Dr. Peter McDonald in the High-

Throughput Screening (HTS) laboratory at KU. The cytotoxic studies of plant extracts and 

fractions were carried out in 384-well plates using the paired breast cell lines Hs578T (cancer) 

and Hs578Bst (normal). These cell lines represent a great model for selectivity studies of 

cytotoxic compounds as they originated from the same patient.217 The mother plates were 

prepared in 96-deep-well plates and the extracts and fractions were dissolved in 100% DMSO 

with a final concentration of 10.0 µg/L. Some of the fractions were viscous and difficult to 

handle using the traditional pipetting methods. Therefore, an ECHO system was used to transfer 

the samples from the mother plate to the daughter plates in order to reduce potential errors. The 

ECHO transfer system utilizes sound technology to transfer liquids by the use of radiofrequency 

pulse. The cancer and normal cells were exposed to a series of dilutions in the 0.1-50 µg/L range 

for each sample and incubated for 48h or 72h. The cell viability was then assessed using 

CellTiter-Glo assay. 

The addition of extracts or compounds to cells introduced a small but significant percentage of 

DMSO in the media. Due to the varying cytotoxic effects of DMSO in different cell lines, a 

DMSO tolerance assessment was performed to determine the highest level of DMSO that could 

be tolerated by both cell lines used in this study. Cells were incubated in the presence of various 

DMSO amounts diluted in complete growth medium for 48 hours, and then cell viability was 

assessed using the CellTiter-Glo assay. From these results, 0.5% DMSO was selected as the 

maximum tolerable concentration of DMSO in cell culture medium. In addition, the cells were 

monitored using a microscope (Figures 4-9 and 4-10) 
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Figure 4-7 Bioassay schematic 
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Figure 4-8 Micrograph of breast cancer (Hs578T) cell line (0.5% DMSO, control) 
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Figure 4-9 Micrograph of breast normal (Hs578Bst) cell line (0.5% DMSO, control) 

 

Figure 4-10 presents an example of a complete data set from HTS for one plate containing 88 

samples. The screening results for the 10 plants (a total of 152 extracts and fractions) can be 

found in Table 4-6 (Experimental data). As expected, a wide range of cytotoxicity values 

(expressed as percentage at maximum concentration of 50 µg/L) were observed within the data 

set (Figures 4-11 and 4-12). The average cytotoxicity for cancer and normal cell lines was 43.4% 

and 27.7%, respectively. A total of 44 samples showed more than 70% cytotoxicity against 

malignant cells, however a number of these highly toxic samples were also toxic to normal cells. 

In order to identify possible 'hits' form the data set, selectivity was calculated using the 
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difference in the area under the dose-response curve (AUC) for cancer cells and the AUC for 

normal cells. Hence, positive numbers represent selective toxic samples against malignant cells 

(Figure 4-13). The AUC values were used to calculate selectivity because several samples did 

not show a good dose-response curve preventing the IC50 calculation. 

 

Figure 4-10 HTS cytotoxicity data set output for 88 samples  
(Red color indicates grow inhibition and green color indicates normal grow with respect to control)   
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In general, good dose-response curves were observed, so estimated IC50 values were calculated 

for those samples. For instance, in Figure 4-14 the dose-response curves for A. syriaca fraction 

BuOH-4 is plotted showing a selective inhibition of cancer over normal cells with IC50 values of 

11 and 22 µg/L respectively (selectivity value 22.0). However, the IC50 values were not possible 

to calculate for some samples due to the lack of toxicity or the non-sigmoidal distribution of the 

experimental points. 

 

Figure 4-14 Dose-response curve of sample BuOH-4 from A. syriaca for cancer (Hs578T) and 

normal (Hs578Bst) cell lines (72 h exposure) 

The exposure time of the cells to the plant extracts or fractions was also investigated using 4h, 

24h, 48h, and 72h time points, in order to evaluate the optimal value. As presented in Figure 4-

15, the active fraction BuOH-4 from A. syriaca displayed complete dose-response curves at the 

exposure times of 48h and 72h. However, 4h and 24h exposure times were insufficient to reach 

the plateau at high concentration, hence preventing a reliable IC50 calculation. Therefore, 
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subsequent screenings were only conducted at 48h and 72h. In addition to the negative control 

(0.5% DMSO), four positive controls were used in order to assess the quality of the cytotoxicity 

assay results including doxorubicin, digoxin, digitoxigenin, and ouabain (Figure 4-16).  

 

Figure 4-15 Effect of the exposure time on dose-response curves for sample BuOH-4 from A. 

syriaca (Hs578T cell line) 
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Figure 4-16 Dose-response curves for the positive control (ouabain) 

With reliable bioassay results in hand, the plant selection for further investigation was done 

using both the cytotoxicity against cancer cell lines, and the selectivity against malignant cells 

over normal cells. In addition, ethnopharmacologic and phytochemical reports were also 

considered to move forward with the large-scale extraction and isolation. Based on the results 

obtained three Asclepias spp. were selected including A. verticillata, A. syriaca, and A. 

sullivantii. Each species will be discussed in detail in the following sections. These plants were 

extracted in large scale (~1 kg of dry plant material) and the separation scheme had to be 

accordingly scaled-up. TLC or HPLC comparison with authentic samples of the active fractions 

was used to guide the separation steps during the large-scale isolation.  
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4.3. Verticillosides A-M: pregnane glycosides from Asclepias verticillata L. 

Although A. verticillata did not show strong activity in the initial bioassay results, this species 

was chosen for detailed investigation due to the lack of prior phytochemical reports. 

Interestingly, the initial activity (IC50 = 3.4 µg/L) observed in the crude extract was lost upon 

fractionation and no sub-fraction showed higher toxicity values. A possible explanation could be 

due to synergistic effects among the components in the initial mixture, however no confirmatory 

experiments were done to evaluate this hypothesis. The most active fraction corresponded to 

CH2Cl2-2 (IC50 = 20 µg/L, 93% inhibition), however no compounds were isolated thereafter due 

to the mixture complexity and the relatively small quantity of sample material. Nevertheless, 

from the butanolic layer a total of 13 new pregnane glycosides named verticillosides A-M were 

isolated and identified (Figure 4-17). As mentioned before, this represents the first 

phytochemical investigation for this species.218 The isolates were named verticilloside A (4.1; 38 

mg), B (4.2; 42 mg), C (4.3; 10 mg), D (4.4; 36 mg), E (4.5; 27 mg), F (4.6; 37 mg), G (4.7; 11 

mg), H (4.8; 19 mg), I (4.9; 10 mg), J (4.10; 3 mg), K (4.11; 12 mg), L (4.12; 9 mg), and M 

(4.13; 14 mg).  
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Figure 4-17 Structure of verticillosides A-M (4.1-4.13) 
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4.3.1. Structure Elucidation 

Verticilloside A (4.1) was obtained as a white, amorphous powder. The HRMS displayed a 

[M+Na]+ ion at m/z 1055.5276 consistent with a molecular formula of C50H80NaO22 (calc. 

1055.5039). The 1H NMR spectrum showed four singlet signals (δ 2.49, 2.08, 1.94, 1.35) and an 

olefinic proton (δ 4.99) that indicated the presence of an acylated pregn-5-en-20-one skeleton 

(Table 4-10, Experimental data). The proposed carbon skeleton was supported by the HMBC 

correlations (Figure 4-18) between the proton signal δ 1.94 (Me-18) and the carbon resonances δ 

58.3 (C-13), 73.9 (C-12), 89.8 (C-14), and 92.8 (C-17); and proton signal δ 1.35 (Me-19) and 

carbon resonances of δ 39.2 (C-1), 139.6 (C-5), 44.8 (C-9), and 38.0 (C-10). Also, the HMBC 

correlations between the methyl signal of the acetyl group (δ 2.49) and C-12 (δ 73.9) clarified 

the attachment position of the methyl ester functionality. Finally, 1H,1H DQFCOSY, HSQC and 

HMBC spectra allowed for the full assignment of the 1H and 13C signals (Tables 4-8 and 4-10, 

Experimental Data), and the aglycone moiety was deduced to be metaplexigenin (4.1a). 

Remarkably, the higher-resolution 800 MHz NMR spectra permitted the identification of the 

signals even in highly overlapped regions as shown in Figures 4-19 and 4-20 when compared 

with 500MHz experiments. The NMR data was in good agreement with previously reported 

values for metaplexigenin.202, 219 The initially proposed stereochemistry was based on dipolar 

interactions observed in the ROESY spectrum (Figure 4-21) and further confirmed by X-ray 

crystallography of the aglycone obtained by acid hydrolysis of the glycoside (Figure 4-22). In 

addition, four anomeric protons were observed in the 1H NMR spectrum (δ 5.29, 5.16, 4.90 and 

4.70) suggesting that the same number of sugars were attached at the 3-position. Furthermore, 

the presence of three methyl doublets in the aliphatic region of the 1H NMR spectrum (δ 1.78, 
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1.68 and 1.44) and three methoxy groups (δ 3.96, 3.56 and 3.49), indicated the presence of 6-

deoxy-3-methoxy sugars, commonly found in the Asclepias glycosides. Using 1H,1H DQFCOSY, 

1H,1H-TOCSY, and HSQC-TOCSY spectra (Figure 4-23), the proton spin systems and the 

carbon resonances of each sugar were fully assigned (Tables 4-9 and 4-11, Experimental Data). 

The sugar units were then identified as cymarose, oleandrose, thevetose, and glucose by NMR 

data analysis and comparison with previously reported values. The connectivity of the sugars 

was established by the following key HMBC correlations: cymarose anomeric proton H-1' (δ 

5.29) and C-3 (δ 77.9); oleandrose anomeric proton H-1'' (δ 4.70) and C-4' (δ 83.6); thevetose 

anomeric proton H-1''' (δ 4.90) and C-4'' (δ 83.6), and glucose anomeric proton H-1''' (δ 5.16) 

and C-4'' (δ 83.8) (Figure 4-17). The β-linkages of the four sugars were established by the large 

coupling constants (J = 7.8-9.7) observed for the anomeric protons. Finally, the optical rotation 

of the purified monomeric sugars after acid hydrolysis allowed us to establish the absolute 

configuration D for all the sugars present in this compound. Therefore, the structure of 4.1 was 

determined to be metaplexigenin 3-O-β-D-glucopyranosyl-(1→4)-β-D-thevetopyranosyl-(1→4)-

β-D-oleandropyranosyl-(1→4)-β-D-cymaropyranose. Compound 4.1 represents a previously 

unreported metaplexigenin glycoside that we named verticilloside A. 

 

Figure 4-18 Selected HMBC correlations observed for verticilloside A (4.1) 
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Figure 4-19 HSQC spectra of verticilloside A (4.1) at 500 MHz (left) and 800 MHz (right) 
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Figure 4-20 HMBC spectra of verticilloside A (4.1) at 500 MHz (left) and 800 MHz (right) 

 

Figure 4-21 Selected ROE dipolar couplings of aglycone portion of verticilloside A (4.1) 
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Figure 4-22 ORTEP representation of metaplexigenin (4.1a) obtained by hydrolysis of 

verticilloside A (4.1) 



 

 
128 

 

Figure 4-23 HSQC-TOCSY spectrum of verticilloside A (4.1) 

Verticilloside B (4.2), an amorphous white powder, showed a HRMS [M+Na]+ ion at m/z 

1052.5271, suggesting the same molecular formula of C50H80NaO22 (calc. 1055.5039) as for 

compound 1. First, the aglycone present in 4.2 was determined to be metaplexigenin and it was 

identified as described before. Second, the 1H NMR also showed the presence of four anomeric 

protons (δ 5.27, 5.26, 5.00 and 4.67); however, only the chemical shift of H-1''' changed 

significantly when compared with the anomeric protons of 4.1 (Tables 4-8 and 4-10, 
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Experimental data). After analysis of the spin systems of each sugar aided by 1H,1H-DQFCOSY, 

and 1H,1H-TOCSY and HSQC-TOCSY spectra, the 1H and 13C signals were completely assigned 

and the four sugars were elucidated as cymarose, oleandrose, 6-deoxy-3-O-methyl allopyranose, 

and glucose (Tables 4-9 and 4-11, Experimental data). The HMBC correlations unambiguously 

revealed the connectivity of the sugars: anomeric proton of cymarose H-1' (δ 5.26) with C-3 (δ 

78.1); anomeric proton of oleandrose H-1'' (δ 4.67) and C-4' (δ 84.0); anomeric proton of 6-

deoxy-3-O-methyl allopyranose H-1''' (δ 5.27) and C-4'' (δ 83.7); and anomeric proton of glucose 

H-1''' (δ 5.00) and C-4'' (δ 83.8). As a result, the structure of 4.2 was assigned to be 

metaplexigenin 3-O-β-D-glucopyranosyl-(1→4)-β-(6-deoxy-3-O-methyl)-D-allopyranosyl-

(1→4)-β-D-oleandropyranosyl-(1→4)-β-D-cymaropyranose. 

Verticillosides C (4.3) and D (4.4) were both isolated as white, amorphous powders. The 

HRMS of 4.3 and 4.4 showed very similar [M+Na]+ ions at m/z 1199.5877 and 1199.5841 

respectively, suggesting they both shared the same molecular formula C57H92NaO25 (calc. 

1199.5825). The aglycone structure in both compounds was established to be metaplexigenin 

(vide supra). However, five anomeric protons were identified in the 1H NMR (4.3: δ 5.29, 5.16, 

5.13, 4.89 and 4.68; 4.4: δ 5.29, 5.28, 5.12, 5.01 and 4.67) indicating that each compound 

contained five sugar units. Only one proton signal corresponding to H-1'''' (δ 4.89 in 4.3, and δ 

5.28 in 3.4) was significantly different when comparing the 1H-NMR spectrum of 4.3 and 4.4. 

The 1H,1H DQFCOSY and 1H,1H-TOCSY and HSQC-TOCSY spectra assisted significantly with 

the identification of the spin systems of each sugar as well as with the assignment of all the 1H 

and 13C signals (Tables 4-9 and 4-11, Experimental data). Two units of cymarose and single units 

of oleandrose, thevetose, and glucose were identified in 4.3. On the other hand, the sugars 
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present in 4.4 were found to consist of two units of cymarose and single units of oleandrose, 6-

deoxy-3-O-methyl allopyranose, and glucose. As previously described, HMBC correlations 

allowed for the establishment of the sugar sequence in 4.3: cymarose I anomeric proton H-1' (δ 

5.29) and C-3 (δ 78.0); cymarose II anomeric proton H-1'' (δ 5.13) and C-4' (δ 83.7); oleandrose 

anomeric proton H-1''' (δ 4.68) and C-4'' (δ 83.5); thevetose anomeric proton H-1'''' (δ 4.89) and 

C-4''' (δ 83.6); and glucose anomeric proton H-1'''' (δ 5.16) and C-4'''' (δ 83.6). In the same way, 

the HMBC of 4.4 showed correlations between cymarose I anomeric proton H-1' (δ 5.29) and C-

3 (δ 78.0); cymarose II anomeric proton H-1'' (δ 5.12) and C-4' (δ 83.7); oleandrose anomeric 

proton H-1''' (δ 4.67) and C-4'' (δ 83.5); 6-deoxy-3-O-mehtyl allopyranose anomeric proton H-

1'''' (δ 5.28) and C-4''' (δ 83.3); and glucose anomeric proton H-1'''' (δ 5.01) and C-4'''' (δ 83.6). 

Hence, 4.3 was determined to be metaplexigenin 3-O-β-D-glucopyranosyl-(1→4)-β-D-

thevetopyranosyl-(1→4)-β-D-oleandropyranosyl-(1→4)-β-D-cymaropyranosyl-(1→4)-β-D-

cymaropyranose. Also, 4.4 was established to be metaplexigenin 3-O-β-D-glucopyranosyl-

(1→4)-β-(6-deoxy-3-O-methyl)-D-allopyranosyl-(1→4)-β-D-oleandropyranosyl-(1→4)-β-D-

cymaropyranosyl-(1→4)-β-cymaropyranose. 

Verticilloside E (4.5), isolated as a white amorphous powder, showed a calculated molecular 

formula of C48H80NaO21 based on the observed HRMS ion [M+Na]+ at m/z 1015.5098 (calc. 

1015.5090). The observation in the 1H NMR spectrum of two singlet methyl groups (δ 1.98, 

1.43), a methyl doublet (δ 1.54), an olefinic proton (δ 5.40), and two olefinic carbons (δ 139.5 s 

and 120.2 d) in the 13C NMR suggested the presence of the 20-hydroxy-pregn-5-ene skeleton. 

Using 1H,1H-COSY, HSQC and HMBC spectra, 1H and 13C signals in the pregnane skeleton were 



 

 
131 

unambiguously assigned (Tables 4-8 and 4-12, Experimental data) and allowed for the 

identification of the aglycone as sarcostin. Relative orientation of the hydroxyl group at position 

C-17 was determined as beta based on the X-ray structure of aglycone obtained by acid 

hydrolysis of 4.5 (Figure 4-24). The 1H and 13C NMR data were in good agreement with 

previously reported data for this sarcostin.189 In addition, 4.5 showed four anomeric protons in 

the 1H NMR spectra (δ 5.29, 5.16, 4.90, and 4.70) indicating the presence of four sugars attached 

to the aglycone. The sugars were found to be the same as those present in 4.1 based on their 1H 

and 13C NMR data. Consequently, 4.5 was elucidated as sarcostin 3-O-β-D-glucopyranosyl-

(1→4)-β-D-thevetopyranosyl-(1→4)-β-D-oleandropyranosyl-(1→4)-β-D-cymaropyranose. 

Moreover, verticilloside F (4.6) presented the same calculated molecular formula than 4.5 

(C48H80NaO21) based on the experimental HRMS ion [M+Na]+ at m/z 1015.5153 (calc. 

1015.5090). The 1H and 13C NMR signals of the aglycone portion of 4.5 and 4.6 were almost 

superimposable (Tables 4-8 and 4-12, Experimental data), indicating that 6 also had sarcostin as 

the pregnane core. On the other hand, after full assignment of the 1H and 13C NMR signals using 

2D NMR spectra (Tables 4-10 and 4-13, Experimental data), the four sugars present in 4.6 were 

found to be the same as those present in compound 4.2 by means of comparison of their NMR 

data. Consequently, 4.6 was defined to be sarcostin 3-O-β-D-glucopyranosyl-(1→4)-β-(6-deoxy-

3-O-methyl)-D-allopyranosyl-(1→4)-β-oleandropyranosyl-(1→4)-β-D-cymaropyranose. 
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Figure 4-24 ORTEP representation of sarcostin (4.5a) obtained by hydrolysis of verticilloside 

E (4.5) 

Verticillosides G (4.7) and H (4.8) displayed a HRMS ion [M+Na]+ at m/z 1013.4913 and 

1013.4921 respectively suggesting the same molecular formula of C48H78NaO21 (calc. 1013.4933) 

for both compounds. Similar to compounds 4.1-4.4, three methyl singlets were observed in the 

1H NMR (4.7: δ 2.60, 2.02, 1.42; 4.8: δ 2.65, 2.02, 1.41); however, the acetyl 1H and 13C signals 

were missing in 4.7 and 4.8. Following a similar analysis of the 1H, 13C and 2D NMR data as 

described before, the aglycone present in the two compounds was identified to be 12-O-

deacylmetaplexigenin and the signal assignment was in good agreement with previously reported 

values.202 The 1H and 13C signals were totally assigned for the sugar portion using 2D NMR 

spectra (Tables 4-9 and 4-13, Experimental data). While the sugars in 4.7 were found to be the 

same as in 4.1, the sugars in 4.8 were identical to those present in 4.2 based on their NMR data 

comparison. The structures of 4.7 and 4.8 were determined to be 12-O-deacylmetaplexigenin 3-
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O-β-D-glucopyranosyl-(1→4)-β-D-thevetopyranosyl-(1→4)-β-D-oleandropyranosyl-(1→4)-β-D-

cymaropyranose and 12-O-deacylmetaplexigenin 3-O-β-D-glucopiranosyl-(1→4)-β-D-

thevetopyranosyl-(1→4)-β-D-oleandropyranosyl-(1→4)-β-D-cymaropyranose, respectively. 

Verticilloside I (4.9) had a HRMS ion [M+Na]+ at m/z 1159.5904 indicating a molecular 

formula of C55H92NaO24, (calc. 1159.5876). Complete assignment of 1H and 13C NMR signals 

using 2D NMR (Tables 4-9 and 4-12, Experimental data) showed that the aglycone corresponded 

to 12-O-deacylmetaplexigenin. The five sugars present in 4.9 were identical to those found in 4.4 

and their 1H and 13C sugar signals were almost identical (Tables 4-10 and 4-13, Experimental 

data). Hence, structure of 4.9 was confirmed to be 12-O-deacylmetaplexigenin 3-O-β-D-

glucopyranosyl-(1→4)-β-(6-deoxy-3-O-methyl)-D-allopyranosyl-(1→4)-β-D-oleandropyranosyl-

(1→4)-β-D-cymaropyranosyl-(1→4)-β-D-cymaropyranose. Likewise, verticilloside J (4.10) had 

a molecular formula of C55H90NaO24 on the basis of the observed HRMS ion [M+Na]+ at m/z 

1057.5734 (calc. 1157.5720). Following the complete assignment of 1H and 13C NMR signals 

aided by 2D NMR data (Tables 4-9, 4-10, 4-14, and 4-15; Experimental data), the aglycone was 

found to be sarcostin and the sugars the same as those in 4.4. Hence, 4.10 was determined as 

sarcostin 3-O-β-D-glucopyranosyl-(1→4)-β-(6-deoxy-3-O-methyl)-D-allopyranosyl-(1→4)-β-D-

oleandropyranosyl-(1→4)-β-D-cymaropyranosyl-(1→4)-β-D-cymaropyranose. 

Verticillosides K (4.11) and L (4.12) displayed very similar [M+Na]+ ions at m/z 1119.5337 

and 1119.5364 respectively, thus sharing the same calculated molecular formula of C55H84NaO22 

(calcld 1119.5352). Unlike previously described compounds, 1H NMR spectrum of 4.11 showed 

aromatic signals corresponding to a benzoyl group (δ 8.59, 7.50, and 7.41) and further confirmed 
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by 13C NMR resonances (δ 167.0, 133.6, 132.1, 130.8, and 129.2). The benzoyl group was found 

to be attached to position 12 by means of the observed HMBC correlation between H-12 (δ 5.40) 

and benzoyl carbonyl signal (δ 167.0). The aglycone was established as 12-O-benzoylsarcostin 

based on the HMBC correlations between the proton signal δ 2.24 (H-18) with carbon 

resonances of δ 57.8 (C-13), 75.7 (C-12), 89.0 (C-14), and 89.2 (C-17); and between proton 

signal δ 1.37 (Me-19) and carbon resonances of δ 39.2 (C-1), 139.5 (C-5), 44.5 (C-9), and 37.7 

(C-10). The experimental NMR data (Tables 4-8 and 4-14, Experimental data) of the algycone 

were in good agreement with previously reported values.220 The 1H-NMR and 13C-NMR values 

of the aglycone in compound 4.12 and 4.13 were almost identical to those just described for 4.11, 

indicating that the three compounds share the same aglycone. Furthermore, following full 

assignment of 1H and 13C NMR data using 2D NMR spectra, close comparison of their spectra 

revealed that the sugars present in 4.11 and 4.12 were identical to those present in 4.1 and 4.2, 

respectively. Consequently, the structure of 4.11 was established as 12-O-benzoylsarcostin 3-O-

β-D-glucopyranosyl-(1→4)-β-D-thevetopyranosyl-(1→4)-β-D-oleandropyranosyl-(1→4)-β-D-

cymaropyranose, and structure of 4.12 as sarcostin 3-O-β-D-glucopiranosyl-(1→4)-β-(6-deoxy-

3-O-methyl)-D-allopyranosyl-(1→4)-β-D-oleandropyranosyl-(1→4)-β-D-cymaropyranose. 

Finally, verticilloside M (4.13) had a HRMS [M+Na]+ ion at m/z 1263.6037 (calc. 1263.6138) 

suggesting a molecular formula of C62H96NaO25. As described before, by closed comparison of 

the 1D and 2D NMR spectra, the aglycone was identified to be 12-O-benzoylsarcostin, like in 

compound 4.11. The sugar moiety contained the same sequence of five units as those in 

compound 4.4. Hence, compound 4.13 was identified as 12-O-benzoylsarcostin 3-O-β-D-
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glucopyranosyl-(1→4)-β-(6-deoxy-3-O-methyl)-D-allopyranosyl-(1→4)-β-D-oleandropyranosyl-

(1→4)-β-D-cymaropyranosyl-(1→4)-β-D-cymaropyranose. 

4.3.2. Biological evaluation 

The cytotoxicity of the isolates (4.1-4.13) was evaluated against the paired breast cell lines 

Hs578T (cancer) and Hs578Bst (normal), however no toxicity was observed in the experimental 

concentration range of 0.2-50 µM. 
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4.4. Cytotoxic Cardiac Glycosides and Other Components from Asclepias syriaca L.  

Asclepias syriaca is also known as "common milkweed" and, besides its various medicinal 

uses, it was studied several years ago as an alternative crop for different products such as natural 

rubber from latex, alternative fuels, as well as fibers for paper fabrication; however several 

factors at that time prevented its further commercialization.181, 221 Nevertheless, in recent years A. 

syriaca has received industrial crop status in the United States due to the use of its silky seed 

floss in hypoallergenic pillows, comforters, and insulating fiber manufacture.222 After the 

removal of the floss, the remaining plant biomass is typically disposed without regard of its 

potentially valuable products.223 Furthermore, the boiled young sprouts, floral buds, and 

immature fruits have found historical and contemporary use as food, in the form of soup by the 

Omaha, Dakota, Pawnee, Ponca, and Winnebago tribes.183 The bitter-tasting compounds have 

been shown to be removed by four minutes of boiling and changing the water.181  

Encouraged by the cytotoxicity results observed during the screening of A. syriaca, its 

traditional uses, and by its current industrial interest, in this plant's chemistry was studied in 

further detail. A total of five new compounds were isolated and identified including the cardiac 

glycoside 4.15 (4.5 mg), the quercetin triglycoside 4.19 (24.7 mg), the neolignan 4.20 (16.1 mg), 

the phenylethanoid 4.21 (7.8 mg), and the megastigmane glycoside 4.22 (6.5 mg); along with 19 

known compounds (Figures 4-25 and 4-26). The known compounds included the pentacyclic 

triterpenes α-amyrin (4.23), β-amyrin (4.25), α-amyrin acetate (4.24), β-amyrin acetate (4.26), 

lupeol acetate (4.27), and oleanolic acid (4.28); the cardiac glycosides 3-O-β-D-glucopyranosyl-

(1→4)-6-desoxy-β-D-allopyranosyl uzarigenin (4.14), 3-O-β-D-glucopyranosyl-(1→4)-β-D-

glucpyranosyl uzarigenin (4.16), and desglucouzarin (4.17); the free fatty acids linolenic acid 
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(4.29) and linoleic acid (4.30); the glycosylated flavonoids quercetin 3-O-β-galactopyranosyl-

(1→2)-β-xylopyranoside (4.31), kaempferol 3-O-β-galactopyranosyl-(1→2)-β-xylopyranoside 

(4.18), 3'-O-methyl-quercetin 3-O-β-galactopyranosyl-(1→2)-β-xylopyranoside (4.32), and 

quercetin-3-O-β-galactopyranoside (4.33); the lignans epi-syringaresinol (4.34) and prupaside 

(4.35); the phenolics cis-cinnamic acid (4.36), trans-cinnamic acid (4.37), isovanillinic acid 

(4.38), and 4-(β-glucopyranosyloxy)benzoic acid (4.39). The structures of the new compounds 

were elucidated using a range of spectroscopic techniques, including 1D and 2D NMR and 

HRMS. In the case of the known compounds, their structures were identified by comparison of 

their measured spectroscopic data with literature values.  

As mentioned before, many Asclepias species are an important food source for the Monarch 

butterfly caterpillar and A. syriaca is not an exception. Several authors have suggested that 

flavonoids play an important role in the attraction and oviposition preference for the Monarch 

butterfly.224, 225 Therefore, it is interesting to note that our investigation revealed the presence of 

several glycosylated flavonoids in the aerial parts of this species, however, their ecological role 

remains to be solved. 
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Figure 4-25 Structures of active and new compounds (4.14-4.22) from A. syriaca 
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Figure 4-26 Structures of known compounds (4.23-4.18) from A. syriaca 
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4.4.1. Structure Elucidation 

Compound 4.15 was isolated as a white amorphous powder. The HRMS showed an [M+Na]+ 

ion at m/z 721.3401 suggesting a molecular formula of C35H54NaO14 (calc. 721.3411). The 1H 

NMR spectrum of 4.15 showed the characteristic proton signals of the butenolide ring at δH 6.26 

(dd, J = 1.8, 1.7 Hz, H-22), δH 5.23 (dd, J = 18.3, 1.7 Hz, H-21a), and δH 5.09 (dd, J = 18.3, 1.8 

Hz, H-21b). The cardenolide steroidal tetracyclic ring system was confirmed using the key 

HMBC correlations between CH3-18 (δH 1.22, s, H-18) and C-1, C-2, C-5, and C-10 and CH3-19 

(δH 0.67, s, H-19) and C-12, C-14, C-15, and C-17 (Table 4-16, Experimental Data). Moreover, 

the 1H,1H-COSY, HSQC, and HMBC experiments permitted full assignment of the signals in the 

aglycone which was further identified as 17β-hydroxyuzarigenin. The spectroscopic data of the 

aglycone was in agreement with previously reported values for similar compounds.195, 205 Two 

anomeric proton signals at δH 5.42 (d, J = 7.9 Hz, H-1') and δH 5.10 (d, J = 7.6 Hz, H-1'') and the 

corresponding carbon resonances at δC 99.7 (CH, C-1') and δC 106.8 (CH, C-1''), suggested the 

presence of an equal number of sugar units and, after assignment of the NMR data using 1D and 

2D NMR experiments, these were identified as 6-deoxyallose and glucose, both with a β-linkage 

based on the coupling constants of the anomeric protons. In addition, HMBC correlations 

between H-1' and C-3, and H-1'' and C-4' clearly established the connectivity of the sugars. 

When taken in conjunction with the acid-hydrolysis results (Experimental data), the structure of 

compound 4.15 was determined to be 3-O-β-D-glucopyranosyl-(1→4)-6-deoxy-β-D-

allopyranosyl-17β-hydroxyuzarigenin. Although the 17β-hydroxyuzarigenin has been reported 

with other C-3 sugar moieties,205 compound 4.15 represents a new structure. 
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Compound 4.19 was isolated as a yellow amorphous powder and the molecular formula of 

C32H38NaO21 was suggested based on the HRMS [M+Na]+ ion at m/z 781.1816 (calc. 781.1803). 

Two aromatic rings were assigned by inspection of its 1H NMR data, the first showing two 

signals at δH 6.73 (d, J = 2.2 Hz, H-6) and δH 6.78 (d, J = 2.2 Hz, H-8), the second with three 

signals at δH 8.32 (d, J = 2.3 Hz, H-2'), δH 7.31 (d, J = 8.6 Hz, H-5'), and δH 8.36 (dd, J = 8.6, 2.3 

Hz, H-6'). The presence of 12 aromatic carbon resonances was confirmed by 13C NMR (Table 4-

17, Experimental data). The observed oxygenation pattern in the aromatic rings, the presence of 

an additional carbonyl at δC 179.3 (C-4), and two olefinic carbons at δC 157.5 (C-2) and δC 135.5 

(C-3) suggested the presence of a flavonol carbon skeleton which was further confirmed by 

HMBC correlations and corroborated by comparison with literature data of related structures.226, 

227 In addition, three sugar units were identified based on the presence of the same number of 

anomeric proton signals at δH 6.62 (d, J = 7.7 Hz, H-1''), δH 5.48 (d, J = 7.2, H-1'''), and δH 5.76 

(d, J = 7.8, H-1''''). Using 1D and 2D NMR data, the signals of the sugar units were fully 

assigned (Table 4-18, Experimental data) and their identities were established as β-glucose, β-

galactose, and β-xylose. The correlations observed in the HMBC experiment between the 

glucosyl anomeric proton (H-1'''') and C-7, between the galactosyl anomeric proton (H-1'') and 

C-3, and the xylosyl anomeric proton (H-1''') and C-2'', established the connectivities of the sugar 

units. Consequently, the structure of 4.19 was defined as quercetin-7-O-β-glucopyranosyl-3-O-β-

D-galactopyranosyl-(1→2)-β-D-xylopyranoside. This compound has not been previously 

reported and we named it syriacatin. 

Compound 4.20 was isolated as a white amorphous powder. The HRMS [M+Na]+ ion at m/z 

585.2298 suggested a molecular formula of C29H38NaO11 (calc. 585.2312). Two independent 
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aromatic spin systems were identified in the 1H NMR spectrum: the first with only two signals at 

δH 7.36 (d, J = 1.4 Hz, H-2') and δH 7.41 (d, J = 1.4 Hz, H-6') suggesting a 1,2,3,5-

tetrasubstitution pattern, and the second displaying three signals at δH 7.34 (d, J = 1.6 Hz, H-2), 

δH 7.16 (d, J = 8.6 Hz, H-5) and δH 7.19 (dd, J = 8.6 Hz, 1.6, H-6) indicating a 1,2,4-

trisubstituted ring. The previous observation was further confirmed by assignment of the 

corresponding 12 aromatic carbon resonances aided by HSQC and HMBC spectra (Table 4-18, 

Experimental data). Furthermore, two C3 (propyl) equivalents linked to the aromatic rings were 

identified by means of 1H,1H-COSY and HMBC spectra, suggesting the presence of a lignan 

structure. The first propyl fragment showed two vinylic protons at δH 6.78 (d, J = 16.0 Hz, H-7') 

and δH 6.47 (ddd, J = 16.0, 6.0, 6.0 Hz, H-8') and an oxygenated methylene at δH 4.12 (2H, m, H-

9'). The olefin signals for H-7' and H-8' clearly showed HMBC correlations with C-1' thus 

indicating a linkage to the first aromatic ring. The second propyl equivalent showed two methine 

protons at δH 5.99 (d, J = 6.5 Hz, H-7) and δH 4.08 (m, H-8) and an oxygenated methylene at δH 

4.66, 4.44 (each 1H, m, H-9). The HMBC correlations observed between H-2, H-5, H-6 with C-7 

and H-6' with C-8, as well as the chemical shift of C-7 (δC 88.8, CH), typical of a benzylic ether 

linkage, suggested the presence of a 4',7-epoxy-8,3'-neolignan unit, which was further confirmed 

by NMR data comparison with reported structures containing the same benzofuran neolignan 

skeleton.228, 229 The 7,8-trans relative configuration of the dihydropyran ring was proposed based 

on the coupling constant of H-7 and the NOE signal observed between H-7 and H-9. Also, an 

anomeric proton at δH 5.03 (d, J = 7.6 Hz, H-1'') indicated the presence of a sugar moiety further 

identified as glucose using 2D NMR experiments. Furthermore, the spin system of an n-butoxy 

group was readily identified from a 1H 1H-COSY experiment. Finally, the HMBC correlations 
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observed between the glucose anomeric proton (H-1'') and C-9, and between the 

butoxymethylene (H-1''') and C-9' established the linkage of the sugar and butyl units to the 

neolignan skeleton. Consequently, the structure of 4.20 was determined to be 9'-O-butyl-3-O-

demethyl-9-O-β-D-glucopyranosyl dehydrodiconiferylalcohol, differing from previously 

described neolignans by the presence of an unusual O-butyl substituent.229 Although other plant-

derived metabolites containing n-butyl substituents are known,230, 231 an artificial origin for 

compound 4.20 can not be ruled out as n-butanol was the solvent used during the initial liquid-

liquid partition of the crude extract. 

Compound 4.21 was obtained as an amorphous white powder and displayed an [M+Na]+ ion in 

HRMS at m/z 601.2087 suggesting a molecular formula of C25H38NaO15 (calc. 601.2108). The 

1H NMR showed three aromatic signals for a monosubstituted benzene ring, and two methylene 

signals corresponding to a phenylethanoid group further confirmed by 1H 1H-COSY and HMBC 

correlations. In addition, the 1H NMR spectrum also revealed three anomeric protons at δH 4.83 

(d, J = 7.8 Hz, H-1'), δH 5.33 (d, J = 7.9 Hz, H-1''), and δH 4.88 (d, J = 7.0 Hz, H-1''') that were 

used as starting points to fully characterize each structure using 1H 1H-COSY, HSQC-TOCSY, 

HSQC, and HMBC experiments (Table 4-19, Experimental data). Hence, the sugar moieties 

were identified as β-galactose, β-glucose, and β-xylose. The connectivities of the phenylethanoid 

and sugar moieties were elucidated using the HMBC correlations between the galactosyl 

anomeric proton (H-1') and C-8, the glucosyl anomeric proton H-1'' and C-2', and the xylosyl 

anomeric proton H-1''' and C-6'. Thus, compound 4.21 was determined to be phenylethyl-β-D-

glucopyranosyl-(1→2)-[β-D-xylopyranosyl-(1→6)]-β-D-galactopyranoside and we named it 
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kansanoside A. The occurrence of phenylethanoids is not common in the Asclepiadaceae family 

and this is the first report of this compound class in the Asclepias genus.232, 233 

Finally, compound 4.22, an amorphous white powder, showed a HRMS [M+Na]+ ion at m/z 

689.2974, suggesting a molecular formula of C30H50NaO16 (calc. 689.2974). Three anomeric 

protons at δH 4.87 (d, J = 7.7 Hz, H-1'), δH 5.23 (d, J = 7.8 Hz, H-1''), and δH 4.89 (d, J = 7.0 Hz, 

H-1''') indicated the presence of three sugar units that, after comparison of their NMR data (Table 

4-19, Experimental data) were determined to be the same as those present in compound 4.21. In 

addition, a total of 13 carbons were left to be assigned: four methyls, three methylenes, a 

trisubstituted olefin, two methines, a quaternary carbon, and a conjugated carbonyl. Several 

HMBC correlations suggested a megastigmane carbon skeleton, namely of H-12 with C-1, C-2, 

C-6, and C-13; H-13 with C-1, C-2, C-6, and C-12; H-2 with C-1, C-3, and C-4; H-4 with C-3, 

C-13, and C-6; H-6 with C-1, C-4, C-7, and C-8; and H-10 with C-9, and C-8. The proposed 

skeleton was confirmed by the 1H 1H-COSY crosspeaks showing the spin coupling sequence H-

6, H-7, H-8, H-9, and H-10; as well as allylic coupling (J = 1.2 Hz) between H-13 and H-4. In 

addition, the NMR data were in agreement with reported data for structurally related compounds, 

including the proposed relative configuration.234, 235 Hence, compound 4.22 was established as 9-

hydroxymegastigma-4-en-3-one β-D-glucopyranosyl-(1→2)-[β-D-xylopyranosyl-(1→6)]-β-D-

galactopyranoside and named oreadoside A. Although a couple of reports have identified 

megastigmane glycosides in Asclepias species, this is the first account of this type of compound 

in A. syriaca.214, 236 
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4.4.2. Biological evaluation 

The isolates were screened against the human cancer breast cell line Hs578T; however, only 

compounds showing IC50 < 50 µM were chosen for further testing. Although most of the isolated 

compounds did not show cytotoxicity in our preliminary screening, many of them have been 

reported as biologically active in various tests and could have potential value against other 

disease targets. Particularly, the highly abundant pentacyclic triterpenes have been previously 

reported as chemopreventive,237 anti-inflammatory,238 and as analgesic agents.239, 240 

The isolates that showed activity in the preliminary screening (4.14-4.18) were submitted for 

testing in a panel of three additional breast cancer cell lines (MCF-7, T47D, and Sk-Br-3) and a 

normal breast cell line (Hs578Bst), and the results are shown in Figure 4-27 (Table 4-5, 

Experimental data). In addition, the classic cardiac glycosides digoxin, digitoxigenin, and 

ouabain were included for comparison purposes. The tested compounds displayed cytoxicity in a 

range of 0.59 to 40 µM, compound 4.14 being the most active across the panel of cell lines 

tested. Actually, the cytotoxicity observed for compound 4.14 was comparable to the positive 

controls doxorubicin and digoxin. Cardenolides 4.15-4.17 showed reduced cytotoxicity when 

compared to compound 4.14, revealing the important role of the C-17 configuration as well as 

the nature and number of sugars attached to C-3. In addition, the relative potency of the classic 

cardiac glycosides tested here (ouabain > digoxin > digitoxigenin) is in agreement with 

previously reported data.241, 242 Even though the kaempferol glycoside 4.18 showed cytotoxicity 

during the initial screening (IC50 < 50 µM), further testing reveled low activity (IC50 > 40 µM) in 

all cancer cell lines and a low percentage of inhibition (32.7 ± 2.2%) at maximum concentration 

for the cancer cell line Hs578T. 
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Furthermore, cytotoxicity data from the paired breast human cell lines Hs578T and Hs578Bst 

revealed information about selectivity of tested compounds against malignant cells.217 In our 

assay the tested compounds showed lower IC50 values against the normal cells than cancer cells 

(Figure 4-26), however the toxicity (expressed as percentage of control at maximum 

concentration) was significantly higher in the cancer cells when compared with normal cells 

(Figures 4-27 and 4-28; Table 4-6, Experimental data). Further investigation is needed to explain 

the reason behind this behavior but it can possibly be due to the significant growing rate 

differences between the two cell lines. 
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Figure 4-29 Dose-response curves of compound 4.14 (above) and doxorubicin (below) for the 

paired breast cell lines Hs578T (squares) and Hs578Bst (triangles) 
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4.5. Pregnane and cardiac glycosides from Asclepias sullivantii 

A. sullivantii is commonly known as "prairie milkweed" and is native to the United States and 

Canada. A. sullivantii is listed as a threatened species in the states of Minnesota, Wisconsin, and 

Michigan.175 There are no prior phytochemical reports for this species and information is lacking 

for traditional or medicinal uses. However, very encouraging results during the screening of the 

DCM and BuOH fractions (Table 4-6, Experimental data), lead us to choose this plant for 

detailed investigation. From the BuOH fraction, the known cardiac glycosides glycosides 3-O-β-

D-glucopyranosyl-(1→4)-6-desoxy-β-D-allopyranosyl uzarigenin (4.14; 80 mg) and 3-O-β-D-

glucpyranosyl-(1→4)-β-D-glucpyranosyl uzarigenin (4.16; 5 mg) were identified as well as the 

lignan 9'-O-butyl-3-O-demethyl-9-O-β-D-glucopyranosyl dehydrodiconiferylalcohol (4.20; 6 

mg). These compounds were also found during investigation of A. syriaca. In addition, six new 

pregnane glycosides named sullivantosides A-F (Figure 4-30) were isolated and identified from 

the CH2Cl2 fraction: sullivantoside A (4.50; 9 mg), B (5.51; 7.6 mg), C (5.52; 10 mg), D (5.53; 6 

mg), E (5.54; 4 mg), and F (5.55; 2.5 mg). 
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Figure 4-30 Structures of sullivantosides A-F (4.40-4.45) 
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4.5.1. Structure elucidation 

Sullivantoside A (4.40) was obtained as a white, amorphous powder. The HRMS displayed a 

[M+Na]+ ion at m/z 1195.6150 consistent with a molecular formula of C59H96NaO23 (calc. 

1195.6240). The 1H NMR spectrum showed three methyl-singlet signals at δ 2.24 (s, H-21), 1.54 

(s, H-18), and 1.18 (s, H-19). Based on the observed HMBC correlations between CH3-21 and 

carbon resonances at δ 214.9 (C-20) and 59.3 (C-17), CH3-18 and carbon resonances at δ 55.5 

(C-12), 78.6 (C-13), 59.3 (C-17), and 86.4 (C-14), and CH3-19 and carbon resonances at δ 38.5 

(C-1), 37.0 (C-10), 45.6 (C-5), and 48.5 (C-9) (Figure 4-31); the presence of a pregn-20-one 

skeleton was proposed. Furthermore, the 1H,1H-COSY spectrum allowed identification of the 

spin coupling sequences within the steroidal core (Figure 4-31) which, in combination with the 

HMBC and HSQC spectra, revealed the structure of the aglycone portion (Tables 4-20 and 4-22, 

Experimental data). In addition, an isolated spin system corresponding to a tiglate group was 

identified based on 1H,1H-COSY and this was found to be attached to C-8 by means of the 

observed HMBC correlation between H-12 (δ 5.02, m) and carbonyl resonance of the tigloyl 

group at δ 168.1. Hence, the carbon skeleton was deduced to be 12β-tigloyl-8β,14β-dihydroy-

pregn-20-one, and the NMR data were in good agreement with literature data observed for 

similar compounds.243, 244 The proposed relative configuration was based on dipolar interactions 

observed in the ROESY spectrum (Figure 4-32). In addition, five anomeric protons were 

observed in the 1H NMR spectrum at δ 5.35 (dd, J = 8.2, 1.5, H-1'''), 5.32 (dd, J = 8.1, 1.7 H-1'''), 

5.14 (d, J = 8, H-1'''), 5.14 (br d, J = 9.4, H-1''') and 4.76 (dd, J = 9.8, 1.5, H-1''') suggesting the 

presence of equal number of sugars attached at C-3. Furthermore, the identification of four 

methyl doublet signals in the in the 1H NMR spectrum at δ 1.68 (d, J = 5.3, H-6''''), 1.44 (d, J = 
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6.1, H-6'''), 1.44 (d, J = 6.1, H-6'), and 1.34 (d, J = 6.3, H-6'') as well as three methoxy groups at 

δ 3.65 (s, C-3'-OCH3), 3.65 (s, C-3'''-OCH3) and 3.54(s, C-3''''-OCH3), suggested the presence of 

three 6-deoxy-3-methoxy and one 6-deoxy sugars which commonly occur in Asclepias as 

described previously. Using 1H,1H DQFCOSY, 1H,1H-TOCSY, and HSQC-TOCSY spectra, the 

proton spin systems and the carbon resonances allowed for the full assignment of each sugar 

(Tables 4-21 and 4-23, Experimental data). Comparison of the NMR data with those reported in 

the literature revealed the identity of the sugars as two cymaroses, oleandrose, digitoxose, and 

glucose. The carbon resonances of atom 4 of the 6-deoxysugars were extremely close to each 

other at δ 83.8 (C-4'), 83.6 (C-4''), 83.5 (C-4'''), and 83.5 (C-4'''') limiting the use of HMBC 

correlations between the anomeric proton and these carbons in order to assign the sugars' 

connectivity. Instead, the H-4 signals of each sugar were utilized as they were not so closely 

overlapped and the following correlations observed in the HMBC spectrum allowed for the 

elucidation of the sugar moieties as follows: cymarosyl anomeric proton H-1' (δ 5.32, dd, J = 8.1, 

1.7) and C-3 (δ 76.9), oleandrosyl proton H-4'''' (δ 3.69) and glucosyl anomeric carbon C-1''''' (δ 

104.8); and digitoxyl proton H-4''' (δ 3.45, dd, J = 9.5, 2.5) and oleandrosyl anomeric carbon C-

1'''' (δ 101.8). As the NMR data suggested, the glucose unit was the fifth and terminal sugar, 

hence the sugar moiety was determined to be Glu-Ole-Dig-Cym-Cym. Furthermore, the β-

linkages of the five sugars were established by the large coupling constants (J = 8.0-9.8) 

observed for the anomeric protons. Finally, the optical rotation of the purified monomeric sugars 

after their acid hydrolysis allowed us to establish the absolute configuration D for all the sugars 

present in this compound (see Experimental Section). Therefore, the structure of 4.40 was 

determined to be 12-O-tygloyl-3β,8β,12β,14β-tetrahydroxypregn-20-one-3-O-β-D-
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glucopyranosyl-(1→4)-β-D-oleandropyranosyl-(1→4)-β-D-digitoxypyranosyl-(1→4)-β-D-

cymaropyranosyl-(1→4)-β-D-cymaropyranose. Compound 4.40 was named sullivantoside A. 

 

Figure 4-31 Selected HMBC and 1H,1H-COSY correlations observed for sullivantoside A 

(4.40) 

 

 

Figure 4-32 Selected ROESY dipolar interactions observed for sullivantoside A (4.40) 

Sullivantoside B (4.41) was obtained as a white, amorphous powder. The HRMS displayed a 

[M+Na]+ ion at m/z 1181.6076 consistent with the molecular formula C58H94NaO23 (calc. 
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1181.6084) for). Analysis of the 1H and 13C NMR data permitted the identification of the 

aglycone as the same as in 4.40 (vide supra). In addition, five sugars were identified to be 

present in the structure on the basis of the same number of anomeric protons at δ 5.41 (br d, J = 

9.4, H-1'''), 5.35 (br d, J = 9.7, H-1''), 5.33 (br d, J = 9.8, H-1'), 5.14 (d, J = 7.6, H-1''''') and 4.74 

(br d, J = 9.7, H-1''''). Sugar signals in the 1H and 13C spectra were assigned using 2D NMR 

spectra and the identity of the sugars determined to be two digitoxoses, and single units of 

cymarose, oleandrose, and glucose. As previously described for 4.40, the connectivity of the 

sugars was achieved through the HMBC correlations between cymarosyl anomeric proton H-1' 

(δ 5.33, dd, J = 9.5, 1.6) and C-3 (δ 76.9), oleandrosyl proton H-4'''' (δ 3.67, m) and glucosyl 

anomeric carbon C-1''''' (δ 104.8), digitoxyl-2 proton H-4''' (δ 3.43, dd, J = 9.6, 2.5) and 

oleandrosyl anomeric carbon C-1'''' (δ 101.8), and digitoxyl-1 proton H-4'' (3.50, dd, J = 9.6, 2.5) 

and digitoxyl-2 anomeric carbon C-1''' (δ 100.3). Consequently, the structure of 4.41 was 

determined to be 12-O-tygloyl-3β,8β,12β,14β-tetrahydroxypregn-20-one-3-O-β-D-

glucopyranosyl-(1→4)-β-D-oleandropyranosyl-(1→4)-β-D-digitoxypyranosyl-(1→4)-β-D-

digitoxypyranosyl-(1→4)-β-D-cymaropyranoside. 

Sullivantoside C (4.42) was obtained as a white, amorphous powder. The HRMS displayed a 

[M+Na]+ ion at m/z 1330.7278 consistent with the molecular formula C60H98NaO23 (calc. 

1330.7285). After assignment of the 1H and 13C NMR data of the aglycone portion using 2D 

NMR spectra (Tables 4-20 and 4-22), the signals were almost superimposable to those of 4.40, 

thus it was concluded that both structures shared the same 12-O-tygloyl-3β,8β,12β,14β-

tetrahydroxypregn-20-one steroidal skeleton. Unlike compounds 4.40 and 4.41, this compound 

presented six sugars unit, as six anomeric protons were identified in the 1H NMR spectrum at δ 
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5.30 (dd, J = 9.7, 1.6, H-1'''), 5.16 (d, J = 7.8, H-1'''), 4.93 (dd, J = 9.8, 1.6, H-1'''), 4.91 (dd, J = 

9.8, 1.6, H-1'''), 4.88 (dd, J = 9.7, 1.5, H-1''') and 4.70 (dd, J = 9.7, 1.6, H-1'''). The identity of the 

sugars was determined as a single cymarose, four oleandroses, and one glucose by means of 1H 

and 13C NMR data analysis after all signals were assigned (Tables 4-21 and 4-23) using 1H,1H-

DQFCOSY, 1H,1H-TOCSY, and HSQC-TOCSY spectra. The carbon-4 resonances of the sugar 

units in the 13C NMR spectrum collapsed very close to each other at δ 83.6 (C-4'), 83.6 (C-4''), 

83.6 (C-4'''), 83.4 (C-4''''), and 83.3 (C-4''''') making any HMBC correlation for these carbons 

inconclusive. Nonetheless, it was still possible to determine the sequence of the sugars by key 

HMBC correlations: olandrosyl anomeric proton H-1' (δ 4.88) and carbon C-3 (δ 76.8) of the 

aglycone, the olandrosyl-4 proton H-4''''' (δ 3.75, m) and the terminal glucosyl anomeric carbon 

C-1'''''' (δ 104.4), cymarosyl proton H-4'''' (δ 3.45, m) and the oleandrosyl-4 anomeric carbon C-

1''''' (δ 102.2), leaving two units of oleandrose left to assign at positions 2 and 3. In fact, the 

NMR data of oleandrose-2 and oleandrose-3 units are virtually undistinguishable between one 

another (Tables 4-21 and 4-23). Therefore, the structure of 4.42 was determined to be 12-O-

tygloyl-3β,8β,12β,14β-tetrahydroxypregn-20-one-3-O-β-D-glucopyranosyl-(1→4)-β-D-

oleandropyranosyl-(1→4)-β-D-cymaropyranosyl-(1→4)-β-D-oleandropyranosyl-(1→4)-β-D-

oleandropyranosyl-(1→4)-β-D-oleandropyranose. 

Sullivantoside D (4.43), an amorphous white powder, displayed an HRMS [M+Na]+ ion at m/z 

1113.5798 consistent with the molecular formula C54H90NaO22 (calc. 1113.5821). Although the 

1H and 13C NMR signals were similar to those present in 4.40, the most noticeable change was 

the absence of signals for the tiglate group. In fact, the 13C NMR signals at δ 75.2 (C-12), 57.6 

(C-13), and 27.9 (C-11) as well as the 1H NMR signal at 3.71 (m, H-12) were significantly 
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shifted when compared with the counterparts in 4.40. Aided by 2D NMR spectra, the 1H and 13C 

NMR signals were completely assigned and the structure of the aglycone was elucidated as 

3β,8β,12β,14β-tetrahydroxypregn-20-one. In addition, five anomeric protons were identified in 

the 1H NMR spectrum at δ 5.35 (dd, J = 9.5, 1.6, H-1'''), 5.34 (dd, J = 9.5, 1.7 H-1'''), 5.16 (d, J = 

8.0, H-1'''), 5.14 (br d, J = 9.4, H-1''') and 4.76 (dd, J = 9.8, 1.7, H-1'''). After assignment of the 

1H and 13C NMR of each sugar unit using 2D NMR spectra, the sugar moiety present in this 

compound was determined to be the same as in 4.40 as the values were superimposable. 

Therefore, the structure of 4.43 was determined to be 3β,8β,12β,14β-tetrahydroxypregn-20-one-

3-O-β-D-glucopyranosyl-(1→4)-β-D-oleandropyranosyl-(1→4)-β-D-digitoxypyranosyl-(1→4)-β-

D-cymaropyranosyl-(1→4)-β-D-cymaropyranose 

Sullivantoside E (4.44), an amorphous white powder with a HRMS [M+Na]+ ion at m/z 

1199.5668 consistent with the molecular formula C53H88NaO22 (calc. 1099.5665) was also found 

to have the same aglycone as compound 4.43. The sugar moiety was determined to be equal to 

the one present in compound 4.41 by NMR data comparison. Consequently, compound 4.44 was 

determined to be 3β,8β,12β,14β-tetrahydroxypregn-20-one-3-O-β-D-glucopyranosyl-(1→4)-β-

D-oleandropyranosyl-(1→4)-β-D-digitoxypyranosyl-(1→4)-β-D-digitoxypyranosyl-(1→4)-β-D-

cymaropyranoside. 

Finally, sullivantoside F (4.45) was obtained as a white, amorphous powder. The HRMS 

displayed a [M+Na]+ ion at m/z 1271.6756 consistent with the molecular formula C55H92NaO22 

(calc. 1271.6764). The aglycone was identified as the same as in 4.43 by comparison of the 

assigned 1H and 13C NMR data. Furthermore, the six sugars present in this compound were 
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identical to those described for compound 4.42. Hence, the identity of 4.45 was determined as 

3β,8β,12β,14β-tetrahydroxypregn-20-one-3-O-β-D-glucopyranosyl-(1→4)-β-D-

oleandropyranosyl-(1→4)-β-D-cymaropyranosyl-(1→4)-β-D-oleandropyranosyl-(1→4)-β-D-

oleandropyranosyl -(1→4)-β-D-oleandropyranose. 
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4.6. Conclusions 

A total of nine plant species from the Asclepiadaceae family, including six species in the genus 

Asclepias genus were collected, extracted, fractionated, and screened against the breast cancer 

cell line Hs578T. A number of 'hits' were identified among the evaluated plants and three species 

were selected for detailed investigation. The phytochemical investigation of Asclepias 

verticillata, A. syriaca, and A. sullivantii lead us to isolate and identify a total of 46 compounds, 

half of which represented novel structures. The isolates showed a wide variety of structures 

including pregnane and cardiac glycosides, pentacyclic triterpenes, glycosylated flavonoids and 

lignans, among others. Furthermore, a group of cardiac glycosides were found to have strong 

cytotoxicity against breast cancer cell lines. The present work shows the chemical diversity and 

the medicinal potential of the secondary metabolites present in Asclepias, a widely distributed 

genus in the US Midwest, is poorly investigated. In addition, the elucidation of some of the 

highly complex structures isolated in this study was made possible by selective spectroscopic 

data, including 800 MHz 2D NMR experiments, and X-ray crystallography.  

As a result of this work, two articles were published as follows: 

• Araya, J.J.; Binns, F.; Kindscher, K.; Timmermann, B.N. Verticillosides A-M: 

Polyoxygenated Pregnane Glycosides from Asclepias verticillata L. Phytochemistry. 

2012. In press. 10.1016/j.phytochem.2012.02.019 

• Araya, J.J.; Kindscher, K.; Timmermann, B.N. Cardiac Glycosides and other 

Compounds from Asclepias syriaca J. Nat. Prod. 2012. 75, 400-407  
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4.7. Experimental Data 

4.7.1. Plant Material 

Above ground biomass of A. verticillata was collected on July 10th of 2009 by H. Loring and 

Q. Long in Dog Leg Prairie of the Nelson Environmental Study Area, Lawrence, Kansas (N. 

39.0550 W. 95.1967). Botanical identification was performed by Kelly Kindscher and a voucher 

specimen was deposited in the R.L. McGregor Herbarium (Collection number H. Loring 3559). 

Above ground biomass of A. syriaca was collected on June 17th of 2009 by Q. Long and R. 

Loring. The plant material was collected 100 m. east of NE Ohio and 1400, on 1400 Rd, 

Anderson, Kansas. GPS location of the collection site was latitude: 38.22676°, longitude 

95.20080°. Botanical identification was performed by Kelly Kindscher and a voucher specimen 

was deposited in the McGregor Herbarium of the University of Kansas (H. Loring 3547). Above-

ground biomass (stems, leaves, and flowers) of A. sullivantii was collected on April 24, 2010, by 

Kelly Kindscher. The plant material was collected 2 km northeast of Welda, Kansas. The GPS 

location of the collection site was LAT 38.18052°, LONG 95.27485°. Botanical identification 

was performed by Kelly Kindscher, and a botanical specimen was deposited in the McGregor 

Herbarium of the University of Kansas (Kindscher 4039). 
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4.7.2. Bioassay results 

Table 4-3  Screening IC50 (µg/L), grow inhibition, and selectivity data for extracts and fractions 

using the paired human breast (Hs578T) and cancer (Hs578Bst) cell lines. 

Plant name Ext./Frac. 
Hs587T 

IC50 

Hs578Bst 

IC50 

Hs578T 

In. % 

Hs578Bst 

In. % 
Select.* 

A. verticillata 

Crude 3.4 4.4 96 74 13.56 

HEX >50 NC 61 0 16.91 

DCM 23 NC 26 4 8.69 

DCM-1 22 0.9 34 16 6.29 

DCM-2 20 >50 93 47 14.96 

DCM-3 NC NC 6 18 -10.77 

DCM-4 27 NC 9 30 -3.72 

BUOH 26 NC 18 5 6.25 

BUOH-1 NC NC 1 27 -12.10 

BUOH-2 NC NC 7 24 -10.50 

BUOH-3 NC NC 6 8 -1.87 

BUOH-4 NC NC 10 14 -0.90 

A. syriaca 

Crude NC NC 0 5 -3.99 

HEX NC NC 9 0 2.12 

DCM NC NC 0 0 0.00 

DCM-1 >50 NC 78 12 19.69 

DCM-2 23 >50 85 38 20.52 

DCM-3 12 68 94 72 31.32 

DCM-4 28 26 53 21 11.74 

DCM-5 24 23 68 18 20.52 

BUOH 24 NC 24 0 8.57 

BUOH-1 27 >50 53 32 -5.23 

BUOH-2 24 12 22 39 -12.28 

BUOH-3 >50 >50 81 44 6.18 

BUOH-4 11 22 84 57 22.01 

BUOH-5 20 NC 74 24 25.24 
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A. sullivantii 

Crude NC NC 5 0 -2.29 

HEX 29 NC 67 0 14.88 

DCM NC NC 0 0 -0.16 

DCM-1 27 NC 31 0 9.79 

DCM-2 47 >50 63 15 24.70 

DCM-3 28 >50 93 17 36.32 

DCM-4 30 >50 96 76 15.53 

DCM-5 5 0.9 92 44 34.41 

BUOH NC NC 0 0 -4.81 

BUOH-1 NC NC 0 4 -1.57 

BUOH-2 77.9 1.5 24 14 1.27 

BUOH-3 1.6 NC 0 27 -12.12 

BUOH-4 3.8 <0.5 94 60 24.10 

BUOH-5 39 >50 93 49 6.59 

A. incarnata 

Crude 30 76 98 67 25.89 

HEX 21 NC 37 0 29.88 

DCM NC NC 0 0 -2.72 

DCM-1 27 26 90 47 25.14 

DCM-2 24 25 67 22 21.92 

DCM-3 NC NC 0 5 -4.34 

DCM-4 3.3 NC 92 50 37.59 

DCM-5 23 4898 56 28 5.08 

BUOH 11 3.6 86 47 26.42 

BUOH-1 15 >50 74 44 12.30 

BUOH-2 >50 >50 20 19 1.16 

BUOH-3 26 0.9 9 2 -3.49 

BUOH-4 17 5.9 68 38 6.15 

BUOH-5 4.0 1.5 85 32 45.13 
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A. speciosa 

Crude 80.36 NC 22 8 4.09 

HEX >50 <0.5 24 0 8.81 

DCM >50 <0.5 0 0 -0.07 

DCM-1 25.72 89.6 92 73 18.28 

DCM-2 <0.5 <0.5 0 0 -0.09 

DCM-3 37.1 NC 88 25 25.03 

DCM-4 27.7 NC 61 61 -8.65 

DCM-5 28.5 >50 42 25 -2.17 

BUOH 0.98 <0.5 0 0 -0.45 

BUOH-1 0.30 >50 0 17 -3.20 

BUOH-2 <0.5 11.0 0 0 -0.90 

BUOH-3 8.7 1.8 84 42 15.55 

BUOH-4 9.4 3.0 84 44 19.43 

BUOH-5 1.1 <0.5 0 10 -9.33 

A. tuberosa 

(aerial) 

Crude 1.2 >50 0 2 -8.11 

HEX 37.5 NC 54 29 10.35 

DCM <0.5 19.9 0 38 -8.28 

DCM-1 >50 18.3 0 33 -10.91 

DCM-2 20.6 7.2 74 43 13.59 

DCM-3 >50 21 0 41 -14.91 

DCM-4 >50 19.4 0 32 -12.42 

DCM-5 >50 NC 0 27 -11.80 

BUOH >50 17.2 0 27 -10.45 

BUOH-1 >50 16.3 0 18 -9.59 

BUOH-2 1.0 17.4 3 31 -11.45 

BUOH-3 26.1 22.6 5 24 -7.74 

BUOH-4 0.95 3.0 0 0 -1.17 

BUOH-5 3.0 NC 6 3 -1.89 
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Apocynum 

cannabinum 

Crude 6.6 10.7 88 67 23.03 

HEX >50 >50 41 52 -15.10 

DCM 33 NC 50 14 7.50 

DCM-1 62 26 72 29 19.55 

DCM-2 9.7 9.9 33 41 -3.28 

DCM-3 1.5 2.7 97 78 14.57 

DCM-4 < 0.5 43.1 98 77 17.68 

DCM-5 3.2 4.2 92 74 15.17 

BUOH 1.9 2.5 86 75 10.03 

BUOH-1 >50 NC 76 26 6.16 

BUOH-2 15 21 48 30 10.19 

BUOH-3 15 15 95 65 14.30 

BUOH-4 6.6 10.7 88 67 21.55 

BUOH-5 >50 >50 41 52 20.53 

Cynanchum 

mucronatum 

Crude >50 >50 26 27 5.37 

HEX 31 25 31 6 6.62 

DCM >50 NC 53 29 6.55 

DCM-1 >50 17 72 17 17.47 

DCM-2 >50 26 65 16 13.43 

DCM-3 29 >50 48 12 15.05 

DCM-4 >50 NC 60 53 0.99 

DCM-5 NC NC 20 12 5.11 

BUOH 29 27 36 42 -15.48 

BUOH-1 NC NC 12 45 -12.30 

BUOH-2 27 NC 16 40 -2.91 

BUOH-3 NC NC 19 35 2.27 

BUOH-4 26 NC 6 1 4.23 

BUOH-5 >50 NC 24 0 7.49 
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Cynanchum 

boerhaviifolium 

Crude NC NC 11 11 3.14 

HEX 28 28 45 16 -0.62 

DCM 45 10 55 33 7.52 

DCM-1 18 20 44 29 8.11 

DCM-2 25 NC 62 38 13.86 

DCM-3 35 24 67 5 27.55 

DCM-4 >50 >50 63 35 9.77 

DCM-5 27 26 31 26 -0.37 

BUOH 1.7 5.9 24 36 -11.27 

BUOH-1 16 12 27 41 -12.30 

BUOH-2 NC NC 11 11 -2.91 

BUOH-3 26 NC 8 0 2.27 

BUOH-4 >50 NC 15 0 4.23 

BUOH-5 24 NC 33 0 7.49 

Diplolepis 

mensiesii 

Crude >50 NC 22 17 4.02 

HEX < 0.5 < 0.5 33 21 9.69 

DCM 29 17 18 37 9.44 

DCM-1 49 NC 25 17 5.08 

DCM-2 31 NC 67 6 21.19 

DCM-3 >50 NC 29 0 8.92 

DCM-4 >50 NC 19 5 1.78 

DCM-5 NC NC 7 6 -2.10 

BUOH 5.7 24.9 99 83 -12.34 

BUOH-1 28 5.8 7 18 -3.97 

BUOH-2 17 15 57 7 2.47 

BUOH-3 43 1.0 70 34 14.82 

BUOH-4 27 >50 50 0 17.94 

BUOH-5 19 21 36 26 6.18 

Controls 

Doxorubicin < 0.5 < 0.5    

Digitoxigenin < 0.5 NC 94 27 51.72 

Digoxin < 0.5 NC 91 28 49.11 

Ouabain < 0.5 NC 93 36 26.02 

Withaferin A 2.3 2.8 92 93 4.97 
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Table 4-4.  Cytotoxicity (IC50, µM) values of compounds 4.1-4.13 against breast cancer cell 

lines Hs578T and normal cell line Hs578Bst. 

compound 
cell line 

Hs578T Hs578Bst 

4.1 >50 >50 

4.1a >50 >50 

4.2 >50 >50 

4.3 >50 >50 

4.4 >50 >50 

4.5 >50 >50 

4.5a >50 >50 

4.6 >50 >50 

4.7 >50 >50 

4.8 >50 >50 

4.9 >50 >50 

4.10 >50 >50 

4.11 >50 >50 

4.11a >50 >50 

4.12 >50 >50 

4.13 >50 >50 

Digoxin1 0.1100 ± 0.0059 0.006 ± 0.005 

Doxorubicin1 0.546 ± 0.055 0.18 ± 0.17 
1 Cytotoxicity is the average (N=3, ± SD) of calculated IC50  
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Table 4-5.  Cytotoxicity1 (IC50, µM, ± SD) values of compounds 4.14-4.18 against breast cancer 

cell lines MCF-7, T47D, SK-BR-3, and Hs578T and normal breast cell line 

Hs578Bst. 

Compound 
Cell line 

MCF-7 T47D SK-BR-3 Hs578T Hs578Bst 

4.14 5.3 ± 1.2 1.76 ± 0.21 2.52 ± 0.35 0.593 ± 0.051 0.043 ± 0.010 

4.15 >40 >40 >40 >40 14.2 ± 3.3 

4.16 11.6 ± 2.5 9.5 ± 1.0 19.4 ± 1.6 4.58 ± 0.64 0.76 ± 0.51 

4.17 17.0 ± 4.9 11.7 ± 1.3 18.1 ± 2.2 6.28 ± 0.27 1.05 ± 0.11 

4.18 >40 >40 >40 >40 >40 

Digoxin 4.7 ± 3.0 0.66 ± 0.12 1.08 ± 0.21 0.251 ± 0.026 0.040 ± 0.017 

Digitoxigenin 9.1 ± 2.6 2.53 ± 0.34 4.42 ± 0.51 1.022 ± 0.058 0.15 ± 0.12 

Ouabain 10.6 ± 0.5 0.385 ± 0.026 0.403 ± 0.023 0.1100 ± 0.0059 0.006 ± 0.005 

Doxorubicin 1.54 ± 0.15 1.9 ± 1.1 0.210 ± 0.033 0.546 ± 0.055 0.18 ± 0.17 

1 Cytotoxicity is the average (n=3) of calculated IC50  
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Table 4-6.  Percentage of toxicity (%, ± SD) for compounds 4.14-4.18 for the paired breast cell 

lines Hs578T (cancer) and Hs578Bst (normal). 

Compound 
Cell line 

Hs578T Hs578Bst 

4.14 91.5 ± 3.7 51.7 ± 1.6 

4.15 56 ± 10 38.2 ± 2.7 

4.16 84 ± 11 54.7 ± 1.0 

4.17 85.5 ± 8.2 51.6 ± 1.6 

4.18 32.7 ± 2.2 13.9 ± 3.9 

Digoxin 93.5 ± 2.7 47.7 ± 6.8 

Digitoxigenin 92.3 ± 4.3 49.8 ± 6.9 

Ouabain 93.0 ± 3.8 55.8 ± 4.1 

Doxorubicin 98.32 ± 0.43 64.3 ± 6.1 

1 At maximum concentration (40 µM) expressed as percentage of control (n=3, ± SD) 
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4.7.3. Plant extraction and isolation  

Asclepias verticillata. A. verticillata fresh biomass (5.5 kg) was left to dry at room 

temperature. The dry material (1.2 kg) was then ground to a fine powder and extracted four times 

with a mixture of MeOH and CH2Cl2 (1:1, v/v) at room temperature. The organic solvents (c.a. 

20 L) were removed under reduced pressure to afford 138 g of the crude extract (11.5% w/w of 

dry weight). The organic extract was suspended in MeOH:H2O 9:1 (1 L) and extracted with 

hexanes (500 mL, three times) to give a hexanes fraction. Then, methanol was removed from the 

aqueous layer under reduced pressure, the volume adjusted to 500 mL with distilled water, and 

successively extracted with CH2Cl2 (500 mL, three times) and butanol (500 mL, three times) to 

give dichlorometane and butanolic fractions respectively. The butanolic extract (41 g) was 

suspended in water (500 mL) and adsorbed on a MCI gel (500 g) column, washed with 2 L of 

water, and then eluted with mixtures of water and methanol starting with 10% methanol (v/v in 

H2O) to 100% methanol in 10% step increments (2 L each fraction) to afford a total of 10 

fractions (1-10). Fractions 6-9 were purified as follows: first a sephadex LH-20 (500 g) column 

chromatography using MeOH as eluent, then a silica gel column chromatography using 

CHCl3:MeOH 95:5 (v/v) or CHCl3:MeOH 90:10 (v/v) as mobile phase, and finally semi-

preparative or preparative HPLC chromatography using mixtures of acetonitrile and water for 

elution. A total of 13 pregnane glycosides were isolated and chemically elucidated using 1H-

NMR, 13C-NMR, 2D NMR, IR, UV, and HRMS. 

A. syriaca. The plant's fresh biomass (12 kg) was left to dry at room temperature, then the dry 

material (2.5 kg) was ground to a fine powder and extracted four times with a mixture of MeOH 

and CH2Cl2 (1:1, v/v) at room temperature. The organic solvents (c.a. 20 L) were removed under 
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vacuum to afford 196.1 g (7.8% w/w based on dry biomass) of the crude organic extract. The 

extract was suspended in MeOH and H2O 9:1 (v/v, 1 L) and extracted with hexanes (3x 500 mL). 

After removal of the MeOH, the volume of aqueous residue was adjusted to 500 mL with 

distilled H2O and extracted successively with CH2Cl2 (3x 500 mL) and n-butanol (3x 500 mL) to 

give CH2Cl2 and n-BuOH fractions, respectively. After organic solvent removal, the CH2Cl2 

fraction (32.7 g) was partitioned using silica gel (350 g, 24-40 µm) flash chromatography using 

mixtures of hexanes and EtOAc as mobile phase. The resulting fractions were purified using an 

automated flash chromatography apparatus with pre-packed silica gel columns (CombiFlash 

Teledyne Isco, San Diego, CA) using different solvent systems. A mixture of α- and β-amyrin 

was obtained (1.1 g, 0.04% w/w based on dry biomass) and it was resolved by means of 

semipreparative HPLC for identification (isocratic 90% MeCN and 10% acetone mixture as 

mobile phase during 60 min). Also, a mixture of α- and β-amyrin acetates and lupeol acetate (2.1 

g, 0.08% w/w based on dry biomass) was separated for identification using semipreparative 

HPLC (MeCN and acetone mixture as mobile phase). Finally, oleanolic acid (3.5 g, 0.12% w/w 

based on dry biomass) was obtained by recrystallization (CH2Cl2:MeOH 1:1, v/v). The structures 

of these pentacyclic triterpenes were elucidated using spectroscopic methods and NMR data was 

in agreement with those already reported. The n-BuOH (24.5 g) and H2O (78.0 g) fractions were 

combined, suspended in H2O, adsorbed on MCI gel column (500 g), and eluted using mixtures of 

H2O and MeOH starting with 10% MeOH (v/v) to 100% MeOH in 10% increments (2 L each 

fraction) to afford a total of 10 fractions (BuOH 1-10). Subsequently, fractions BuOH 4-10 were 

purified following the next separation steps: first Sephadex LH-20 (500 g) column 

chromatography (MeOH as eluent), then automated flash chromatography with pre-packed silica 

gel column columns using CHCl3:MeOH:H2O 10:1:0.1 (v/v/v) as mobile phase, and finally 



 

 
171 

semipreparative or preparative HPLC chromatography using mixtures of MeCN (solvent A), 

H2O (solvent B) or 0.1% HCO2H acidified H2O (solvent C) as follows: fractions obtained from 

BuOH-7 were separated using a linear gradient of solvents A:B from 20:80 to 60:40 (v/v) in 40 

min and fractions obtained from BuOH-4 and BuOH-5 were separated using a linear gradient of 

solvents A:C from 5:95 to 25:75 (v/v) in 50 min. Furthermore, fractions BuOH 1-3 were 

subjected to an automated flash chromatography using a reverse phase C18 column (80 g, linear 

gradient 5% MeOH to 50% MeOH in 60 min), then to an automated normal phase flash 

chromatography (EtOAc:MeOH:H2O 88:11:8, v/v/v, with 0.5% of HCO2H as mobile phase), and 

finally purified using semi-preparative or preparative HPLC with a linear gradient of solvents 

A:C from 1:99 to 15:85 in 60 min. From fraction BuOH-7 the known cardiac glycosides 3-O-β-

D-glucopyranosyl-(1→4)-6-deoxy-β-D-allopyranosyluzarigenin (4.14), 3-O-β-D-glucopyranosyl-

(1→4)-β-D-glucopyranosyl uzarigenin (4.17), and deglucouzarin (4.18) were isolated, their 

structures were elucidated using spectroscopic methods and shown to be in agreement with 

literature data. The glycosylated flavonoids quercetin 3-O-β-galactopyranosyl-(1→2)-β-

xylopyranoside (4.31), kaempferol 3-O-β-galactopyranosyl-(1→2)-β-xylopyranoside (4.18), 

quercetin-7-O-β-glucopyranosyl-3-O-β-D-galactopyranosyl-(1→2)-β-D-xylopyranoside (4.19), 

3'-O-methylquercetin 3-O-β-galactopyranosyl-(1→2)-β-xylopyranoside (4.32), and quercetin 3-

O-β-galactopyranoside (4.33) were isolated from fractions BuOH-4 and BuOH-5. In addition, 

from fraction BuOH-7 the known lignans episyringaresinol (4.34) and prupaside (4.35) were 

obtained. The phenylethanoid 4.21 and the megastigmane 4.22 were isolated from fractions 

BuOH-4 and BuOH-5, respectively. Finally, from the highly polar fractions BuOH 1-3 the 

following compounds were purified: trans- and cis- cinnamic acids (4.36 and 4.37 respectively), 
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isovanillinic acid (4.38), and 4-(β-glucopyranosyloxy)benzoic acid (4.39). The structures of the 

new compounds 4.15 and 4.19-4.22, were elucidated using UV, IR, HRMS and NMR 

experiments. 

A. sullivantii. The plant's fresh biomass (5.5 kg) was left to dry at room temperature. The dry 

material (1.12 kg) was then ground to a fine powder and extracted four times with a mixture of 

MeOH and CH2Cl2 (1:1, v/v) at room temperature. The organic solvents (c.a. 10 L) were 

removed under reduced pressure to afford 102 g of the crude extract (9.1% w/w of dry weight). 

The organic extract was suspended in MeOH:H2O 9:1 (1 L) and extracted with hexanes (500 mL, 

three times) to give a hexanes fraction. Then, methanol was removed from the aqueous layer 

under reduced pressure, the volume adjusted to 500 mL with distilled water, and successively 

extracted with CH2Cl2 (500 mL, three times) and butanol (500 mL, three times) to give 

dichloromethane and butanolic fractions respectively. The CH2Cl2 fraction (20g) was subjected 

to a large silica gel CC (200 g) to afford 14 fractions. Subfraction 13 (26.6g) was separated using 

automatic flash chromatography (RP-C18 prepacked column, 200g) using a linear gradient from 

20% MeOH to 100% MeOH in 45 min to give 7 fractions. The subfraction 5 from the previous 

column was subjected to sephadex LH-20 column (MeOH as mobile phase) in order to remove 

pigments and then submitted to preparative HPLC resulting in the isolation of the six new 

compounds sullivantoside A-F (4.40-4.45). The butanolic extract (22.9 g) was suspended in 

water (500 mL) and adsorbed in a MCI gel (500 g) column, washed with 2 L of water, and then 

eluted with mixtures of water and methanol starting with 10% methanol (v/v in H2O) to 100% 

methanol in 10% step increments (2 L each fraction) to afford a total of 10 fractions (1-10). 

Fractions 6-10 were purified as follows: first Sephadex LH-20 (500 g) column chromatography 
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using MeOH as eluent, then silica gel column chromatography using CHCl3:MeOH 95:5 (v/v) or 

CHCl3:MeOH 90:10 (v/v) as mobile phase, and finally semi-preparative or preparative HPLC 

chromatography using mixtures of acetonitrile and water for elution. Using these separation 

steps, the common flavonoid rutin (4.46) was isolated from fraction BuOH 6 and the neolignan 

4.19 and the cardiac glycosides 4.14 and 4.16 were obtained from the fraction BuOH 8. 

4.7.4. Acid hydrolysis of glycosides  

Acid hydrolysis of 4.1-4.13. Hydrolysis of glycosides was conducted as described 

elsewhere.211 Acid hydrolysis of a mixture of 4.1-4.4 (50 mg) afforded the aglycone 

metaplexigenin (4.1a); mixtures of 4.5, 4.6 and 4.10 (50 mg) produced sarcostin (4.5a); a 

mixture of 4.7-4.9 (50 mg) gave 12-O-deacylmetaplexigenin; and a mixture of 4.11-4.13 (50 mg) 

afforded 12-O-benzoylsarcostin (4.11a). The structures of the aglycones were established by 

spectroscopic methods and compared with previously reported data. From the combined aqueous 

layers the following purified sugars were recovered and identified, then identified by comparison 

of spectroscopic data reported in the literature. Optical rotations were measured 24 h after 

dissolution in water providing the following values: D-cymarose [α]D
25 = +50.1 (c. 0.1 H2O); lit. 

+51.6;245 D-thevetoside [α]D
25 = +38.0 (c. 0.1 H2O); lit. +42.3; D-oleandrose [α]D

25 = -9.8 (c. 0.1 

H2O); lit. -10.3;246 (6-deoxy-3-O-methyl)-D-allose [α]D
25 = +3.9 (c. 0.1 H2O) (lit. +5);247 and D-

glucose [α]D
25 = +50 (c. 0.1 H2O) (lit. +56).248 

Acid Hydrolysis of 4.15, 4.19, 4.20, 4.21-4.22. Aliquots of pure compounds (approx. 1-2 mg) 

were hydrolyzed using 3 mL of 1M HCl (dioxane:H2O 1:1, v/v) for 4 hours at 70°C. The 

resulting mixtures were neutralized with 3M NaOH and extracted three times with EtOAc. The 
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aqueous layer was concentrated and the residue was fractionated in a small silica gel column 

using mixtures of CHCl3, MeOH, and H2O. The purified sugars were compared by TLC with 

authentic samples and the optical rotation values were recorded in H2O after equilibration during 

24 h. Compound 4.15 afforded D-glucose [α]D
25 = +50.1 (c 0.1, H2O); 6-deoxy-D-allose [α]D

25 = 

+2.1 (c 0.1, H2O), lit. +2.249 Compound 4.19 afforded D-glucose [α]D
25 = 48.7 (c 0.1, H2O); D-

galactose [α]D
25 = +62.6 (c 0.1, H2O), lit. +84.2;250 and D-xylose [α]D

25 = +18.2 (c 0.1, H2O), lit. 

+19.4.251 Compound 4.20 afforded D-glucose [α]D
25 = +51.3 (c 0.1, H2O), lit. +56.248 Compounds 

4.21-4.22 afforded D-glucose [α]D
25 = +50.4 (c 0.1, H2O); D-galactose [α]D

25 = +68.6 (c 0.1, 

H2O); and D-xylose [α]D
25 = +17.3 (c 0.1, H2O). 

4.7.5. X-ray structure determination.  

Crystallization of the aglycones metaplexigenin (4.1a) and sarcostin (4.5a) was carried out 

using mixtures of CH2Cl2, MeOH, and acetonitrile using a slow evaporation technique. Next, the 

obtained crystals were submitted for X-ray diffraction determination. The crystal structures have 

been deposited at the Cambridge Crystallographic Data Center and allocated the deposition 

number CCDC 840311 and CCDC 840314, respectively 

4.7.6. Cytotoxicity assay.  

Four cancer breast (Hs578T, T47D, Sk-Br-3, and Mcf-7) and one normal breast (Hs578Bst) 

cell lines were seeded in separate 384-well plates (seeding density of 3,000 cells per well, in a 

volume of 30 µL per well) and allowed to attach and grow overnight in a cell incubator. Then, 

compounds were added using a Lybcyte ECHO acoustic liquid handling instrument (14 
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concentrations in the range 0.002-40 µM) and plates were incubated for 72 hours. Next, cell 

viability was determined by adding 10 µL of CellTiter-Glo (CTG) reagent, shaking plates for 2 

minutes followed by reading of luminescence after a 15 minutes stabilizing period. Each dose-

response curve was determined in triplicate. The data were normalized by dividing by the 

median value and IC50 calculations were done using GraphPad Prism software. 

 

 

Verticilloside A (4.1). Amorphous white powder; mp 164.9-166.9°C; [α]D
25 = -14.3 (c. 0.412, 

MeOH); IR νmax (film) cm-1: 3366.6 (OH), 1706.0 (C=O), 1635.8 (C=O), 1158.4 (C-O), 1059.8 

(C-O); UVmax 206.9, 277.5; HRMS m/z: 1055.5276 [M+H]+ (1055.5039 calc. for C50H80NaO22) 

1H and 13C NMR: see Tables 4-7, 4-8, 4-9, and 4-10. 
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Verticilloside B (4.2). Amorphous white powder; mp. 169.8-172.7°C; [α]D
25 = -5.0 (c. 0.735, 

MeOH); IR νmax (film) cm-1: 3394.8 (OH), 1708.6 (C=O), 1635.0 (C=O), 1058.7 (C-O), 1035.2 

(C-O); UVmax (nm, MeOH): 208.3, 267.9; HRMS m/z: 1052.5271 [M+H]+ (1055.5039 calc. for 

C50H80NaO22) 1H and 13C NMR: see Tables 4-7, 4-8, 4-9, and 4-10. 

 

Verticilloside C (4.3). Amorphous white powder; mp 169.0-170.5°C; [α]D
25 = 6.6 (c. 0.378, 

MeOH); IR νmax (film) cm-1: 3389.7 (OH), 1708.7 (C=O), 1644.8 (C=O), 1156.2 (C-O), 1059.8 
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(C-O); UVmax (nm, MeOH): 206.9, 274.1; HRMS m/z: 1199.5877 [M+H]+ (1199.5825 calc. for 

C57H92NaO25) 1H and 13C NMR: see Tables 4-7, 4-8, 4-9, and 4-10. 

 

Verticilloside D (4.4). Amorphous white powder; mp 171.1-175.2°C; [α]D
25 = 31.8 (c. 1.63, 

MeOH); IR νmax (film) cm-1: 3388.7 (OH), 1703.8.0 (C=O), 1642.2 (C=O), 1148.3, 1054.7; 

UVmax (nm, MeOH): 207.0, 282.0; HRMS m/z: 1199.5845 [M+H]+ (1199.5825 calc. for 

C57H92NaO25) 1H and 13C NMR: see Tables 4-7, 4-8, 4-9, and 4-10. 

 

Verticilloside E (4.5). Amorphous white powder; mp 160.1-162.6°C; [α]D
25 = 17.5 (c. 0.48, 

MeOH); IR νmax (film) cm-1: 3378.3 (OH), 1150.1 (C-O), 992.8 (C-O); UVmax (nm, MeOH): 
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207.0, 267.0; HRMS m/z: 1015.5098 [M+H]+ (1015.5090 calc. for C48H80NaO21) 1H and 13C 

NMR: see tables Tables 4-7, 4-8, 4-9, and 4-10. 

 

Verticilloside F (4.6). Amorphous white powder; mp 165.8-167.6°C; [α]D
25 = 21.7 (c. 0.974, 

MeOH); IR νmax (film) cm-1: 3385.3 (OH), 1152.8 (C-O), 996.3 (C-O); UVmax (nm, MeOH): 

207.2, 272.5; HRMS m/z: 1015.5153 [M+H]+ (1015.5090 calc. for C48H80NaO21) 1H and 13C 

NMR: see Tables 4-7, 4-7, 4-11, and 4-12. 

 

Verticilloside G (4.7). Amorphous white powder; mp 157.6-159.8°C; [α]D
25 = 13.6 (c. 0.366, 

MeOH); IR νmax (film) cm-1: 3385.3 (OH), 1685.8 (C=O), 1152.8 (C-O), 996.3 (C-O); UVmax 
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(nm, MeOH): 207.1, 282.0; HRMS m/z: 1013.4913 [M+H]+ (1013.4933 calc. for C48H78NaO21) 

1H and 13C NMR: see Tables 4-7, 4-7, 4-11, and 4-12. 

 

Verticilloside H (4.8). Amorphous white powder; mp 163.1-164.3°C; [α]D
25 = 12.3 (c. 0.674, 

MeOH); IR νmax (film) cm-1: 3425.2 (OH), 1696.5 (C=O), 1152.1 (C-O), 997.4 (C-O); UVmax 

(nm, MeOH): 206.1, 280.7; HRMS m/z: 1013.4921 [M+H]+ (1013.4933 calc. for C48H78NaO21) 

1H and 13C NMR: see Tables 4-7, 4-7, 4-11, and 4-12. 

 

Verticilloside I (4.9). Amorphous white powder; mp 172.2-174.0°C; [α]D
25 = 25.2 (c. 0.447, 

MeOH); IR νmax (film) cm-1: 3391.3 (OH), 1149.6 (C-O), 999.4 (C-O); UVmax (nm, MeOH): 
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206.1, 269.2; HRMS m/z: 1159.5904 [M+H]+ (1159.5876 calc. for C55H92NaO24) 1H and 13C 

NMR: see Tables 4-7, 4-7, 4-11, and 4-12. 

 

Verticilloside J (4.10). Amorphous white powder; mp 170.9-172.1°C; [α]D
25 = 13.1 (c. 0.288, 

MeOH); IR νmax (film) cm-1: 3455.0 (OH), 1154.8 (C-O), 1051.3 (C-O); UVmax (nm, MeOH): 

206.0, 268.9; HRMS m/z: 1057.5734 [M+H]+ (1157.5720 calc. for C55H90NaO24) 1H and 13C 

NMR: see Tables 4-7, 4-7, 4-11, and 4-12. 

 

Verticilloside K (4.11). Amorphous white powder; mp 173.1-174.8°C; [α]D
25 = 53.6 (c. 0.467, 

MeOH); IR νmax (film) cm-1: 3389.0 (OH), 3032.3 (Ar-H), 1732.5 (C=O), 1635.8 (C=O), 1155.5 
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(C-O), 977.7 (C-O); UVmax (nm, MeOH): 204.1, 226.1, 274.1; HRMS m/z: 1119.5337 [M+H]+ 

(1119.5352 calc. for C55H84NaO22) 1H and 13C NMR: see tables Tables 4-7, 4-7, 4-13, and 4-14. 

 

Verticilloside L (4.12). Amorphous white powder; mp 176.8-178.2°C; [α]D
25 = 25.2 (c. 0.254, 

MeOH); IR νmax (film) cm-1: 3340.5 (OH), 3031.8 (Ar-H), 1698.8 (C=O), 1635.8 (C=O), 1153.4 

(C-O), 978.5 (C-O); UVmax (nm, MeOH): 204.0, 226.0, 274.1; HRMS m/z: 1119.5364 [M+H]+ 

(1119.5352 calc. for C55H84NaO22) 1H and 13C NMR: see tables Tables 4-7, 4-7, 4-13, and 4-14. 
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Verticilloside M (4.13). Amorphous white powder; mp 176.8-178.2°C; [α]D
25 = 25.2 (c. 0.254, 

MeOH); IR νmax (film) cm-1: 3340.5 (OH), 3031.8 (Ar-H), 1698.8 (C=O), 1635.8 (C=O), 1153.4 

(C-O), 978.5 (C-O); UVmax (nm, MeOH): 204.0, 226.0, 274.1; HRMS m/z: 1263.6037 [M+H]+ 

(1263.6138 calc. for C62H96NaO25) 1H and 13C NMR: see Tables 4-7, 4-7, 4-13, and 4-14.  

  



 

 
183 

 



 

 
184 

 



 

 
185 

 



 

 
186 

 



 

 
187 

 



 

 
188 

 



 

 
189 

 



 

 
190 

 

  



 

 
191 

 

3-O-β-D-Glucopyranosyl-(1→4)-6-desoxy-β-D-allopyranosyl-17β-hydroxyuzarigenin (4.15). 

Amorphous white powder; mp 263.2-264.8°C; [α]D
25 = -6.7 (c. 0.09, MeOH); IR νmax (film) cm-1: 

3343.6 (OH), 1706.0 (C=O), 1735.8 (C=O), 1158.4, 1059.8; UVmax 217.1 nm; HRMS m/z: 

721.3401 [M+Na]+ (721.3411 calc. for C35H54NaO14) 1H and 13C NMR: see Table 4-15. 

 

Syriacatin (4.19). Amorphous yellow powder; mp 195.6-197.0°C; [α]D
25 = -39.3 (c. 0.38, 

MeOH); IR νmax (film) cm-1: 3282.4 (OH), 1651.6 (C=O), 1044.8, 989.1; UVmax 358.0, 256.9 nm; 

HRMS m/z: 781.1816 [M+Na]+ (781.1803 calc. for C32H38NaO21) 1H and 13C NMR: see Table 4-

16. 
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9'-O-butyl-3-O-demethyl-9-O-β-D-glucopyranosyl dehydrodiconiferyl alcohol (4.20). 

Amorphous white powder; mp 234.2-235.9°C; [α]D
25 = +25.1 (c. 0.72, MeOH); IR νmax (film) cm-

1: 3326.9 (OH), 3025.1 (Ar-H), 1336.3, 1073.6, 1058.5; UVmax 278.9, 220.5 nm; HRMS m/z: 

585.2298 [M+Na]+ (585.2312 calc. for C29H38NaO11) 1H and 13C NMR: see Table 4-17. 

 

Kansanoside A (4.21). Amorphous white powder; mp. 267.2-269.0°C; [α]D
25 = +12.1 (c. 0.28, 

MeOH); IR νmax (film) cm-1: 3310.28 (OH), 1161.4, 1055.5; UVmax 237.9 nm; HRMS m/z: 

601.2087 [M+Na]+ (601.2108 calc. for C25H38NaO15) 1H and 13C NMR: see Table 4-18. 
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Oreadoside A (4.22). Amorphous white powder; mp 254.3-255.9°C; [α]D
25 = -28.9 (c. 0.69, 

MeOH); IR νmax (film) cm-1: 3350.2 (OH), 1642.6 (C=O), 1377.6, 1058.9; UVmax 278.9, 262.0, 

256.0 nm; HRMS m/z: 689.2974 [M+Na]+ (689.2997 calc. for C30H50NaO16) 1H and 13C NMR: 

see Table 4-18. 
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Table 4-15 NMR Spectroscopic Data (500 MHz, C5D5N) for 3-O-β-D-glucopyranosyl-(1→4)-6-
desoxy-β-D-allopyranosyl-17β-hydroxyuzarigenin (4.15)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 4.15 
position δC, type δH (J in Hz) 

1 37.6, CH2 
1.65 m 
0.96 m 

2 30.4, CH2 
2.10 m 
1.66 m 

3 77.5, CH 3.92 m 

4 35.1, CH2 
1.78 m 
1.36 ddd (12.6, 12.5, 11.5) 

5 44.6, CH 0.90 m 

6 29.2, CH2 
1.15 m 
1.10 m 

7 27.3, CH2 
1.12 m 
2.27 m 

8 41.8, CH 1.75 m 
9 50.1, CH 0.79 ddd (12.1, 11.9, 3.2) 
10 36.3, C  

11 21.6, CH2 
1.41 m 
1.11 m 

12 33.6, CH2 
1.06 m 
0.95 m 

13 52.2, C  
14 88.0, C  

15 31.7, CH2 
2.02 m 
2.12 m 

16 37.6, CH2 2.36 m 
17 87.0, C  
18 13.4, CH3 1.22 s 
19 12.5, CH3 0.67 s 
20 173.6, C  

21 73.7, CH2 
5.23 dd (18.3, 1.7) 
5.09 dd (18.3, 1.8) 

22 117.0, CH 6.26 dd (1.8, 1.7) 
23 174.4, C  
   
1' 99.7, CH 5.42 d (7.9) 
2' 72.5, CH 3.96 m 
3' 72.9, CH 5.10 brd (7.8) 
4' 84.0, CH 3.87 dd (9.6, 2.5) 
5' 69.2, CH 4.56 dq (9.4, 6.2, 6.2, 6.2) 
6' 18.9, CH3 1.76 d (6.2) 
   
1'' 106.8, CH 5.10 d (7.6) 
2'' 75.6, CH 4.02 m 
3'' 78.7, CH 4.28 m 
4'' 72.0, CH 4.29 m 
5'' 78.6, CH 3.98 m 

6'' 62.9, CH2 
4.48 ddd (11.8, 5.1, 2.6) 
4.38 ddd (11.8, 5.9, 5.1) 
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Table 4-16 NMR Spectroscopic Data (500 MHz, C5D5N) for syriacatin (4.19) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 4.19 
position δC, type δH (J in Hz) 
2 157.5, C  
3 135.5, C  
4 179.3, C  
4a 107.3, C  
5 162.7, C  
6 100.6, CH 6.73, d (2.2) 
7 164.1, C  
8 94.6, CH 6.78, d (2.2) 
8a 157.1, C  
1' 123.6, C  
2' 118.0, CH 8.32, d (2.3) 
3' 151.1, C  
4' 147.4, C  
5' 116.5, CH 7.31, d (8.6) 
6' 122.9, CH 8.36, dd (8.6, 2.3) 
   
1'' 100.9 6.62, d (7.7) 
2'' 82.2 4.94, dd (9.3, 7.7) 
3'' 76.0 4.30, m 
4'' 70.2 4.57, m 
5'' 79.6 4.15, m 
6'' 62.3 4.33, m 
   
1''' 106.9 5.48,d (7.2) 
2''' 76.1 4.24, m 
3''' 78.2 4.14, m 
4''' 71.4 4.17, m 

5''' 67.6 4.41, m 
3.68, dd (11.2, 9.2)  

   
1'''' 102.1 5.76, d (7.8) 
2'''' 75.2 4.33, m 
3'''' 78.9 4.42, m 
4'''' 71.5 4.36, m 
5'''' 78.3 4.14, m 

6'''' 62.8 4.56, m 
4.42, m 
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Table 4-17  NMR spectroscopic data (500 MHz, C5D5N) for 9'-O-butyl-3-O-demethyl-9-O-β-D-
glucopyranosyl dehydrodiconiferyl alcohol (4.20) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 4.20 
position δC, type δH (J in Hz) 
1 133.3, C  
2 111.2, CH 7.34, d (1.6) 
3 149.1, C  
4 148.5, C  
5 116.8, CH 7.16, d (8.6) 
6 120.1, CH 7.19, dd (8.6, 1.6) 
7 88.8, CH 5.99, d (6.5) 
8 52.5, CH 4.08, m 

9 71.9, CH2 
4.66, m 
4.44, m 

   
1' 132.1, C  
2' 114.9, CH 7.36, d (1.4) 
3' 143.3, C  
4' 148.5, C  
5' 133.0, C  
6' 116.4, CH 7.41, d (1.4) 
7' 130.2, CH 6.78, d (16.0) 
8' 124.9, CH 6.47, ddd (16.0, 6.0, 6.0) 
9' 72.1, CH2 4.12, m 
   
1'' 105.2, CH 5.03, d (7.6) 
2'' 75.5, CH 4.12, m 
3'' 79.0, CH 4.30, m 
4'' 72.0, CH 4.29, m 
5'' 79.1, CH 4.02, m 

6'' 63.0, CH2 
4.65, m 
4.45, m 

OBu   
1'''' 
2'''' 
3'''' 
4'''' 

70.3, CH2 
32.6, CH2 
20.0, CH2 
14.4, CH3 

3.43, dd (6.5, 6.5) 
1.57, dddd (7.5, 7.5, 6.5, 6.5) 
1.37, ddq (7.5, 7.5, 7.3, 7.3, 7.3) 
0.85, dd (7.3, 7.3) 
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Table 4-18  NMR spectroscopic data (500 MHz, C5D5N) for compounds kansanoside A (4.21) 
and oreadoside A (4.22) 

 

 4.21 4.22 
Position δC, type δH (J in Hz) δC, type δH (J in Hz) 
1 139.8, C  36.7, C  
2 130.3, CH 7.32, d (7.2) 48.0, CH2 2.56, d (17.1) 

2.10, d (17.1) 
3 128.0, CH 7.27, dd (7.4, 7.2) 198.9, C  
4 126.8, CH 7.17, dd (7.4, 7.4) 125.5, CH 5.95, br s 
5 130.3, CH 7.32, d (7.2) 166.0, C  
6 128.0, CH 7.27, dd (7.4, 7.2) 51.4, CH 1.82, m 
7 36.9, CH2 3.09, m 26.1, CH2 2.02, m 

1.59, m 
8 71.2, CH2 4.26, m  

3.75, m 
37.6, CH2 1.70, m 

1.80, m 
9   75.4, CH 4.01, m 
10   20.2, CH3 1.34 d (6.2) 
11   26.6, CH3 1.01, s 
12   29.0, CH3 0.93, s 
13   24.8, CH 1.95, d (1.2) 
     
1' 103.2, CH 4.83, d (7.8) 101.3, CH 4.87, d (7.7) 
2' 84.2, CH 4.08, dd (8.8, 7.8) 84.2, CH 4.08, m 
3' 78.2, CH 4.29, m 78.1, CH 4.26, m 
4' 69.7, CH 4.38, m 69.5, CH 4.34, m 
5' 77.2, CH 4.01, m 77.0, CH 4.02, m 
6' 69.8, CH2 4.83, dd (11.5, 2.3) 

4.24, m 
69.9, CH2 4.82, m 

4.21, m 
     
1'' 106.9, CH 5.33, d (7.9) 106.9, CH 5.23, d (7.8) 
2'' 77.2, CH 4.13, m 77.2, CH 4.12, dd (8.9, 7.8) 
3'' 78.5, CH 4.28, m 78.4, CH 4.26, m 
4'' 71.9, CH 4.30, m  71.9, CH 4.30, m  
5'' 79.2, CH 3.98, m 79.2, CH 3.97, ddd (9.4, 

4.6, 2.6) 
6'' 63.1, CH 4.56, dd (11.8, 2.5) 

4.43, dd (11.8, 4.9) 
63.1, CH2 4.54, dd (11.5, 

2.4) 
4.43, dd (11.5, 
4.8)  

     
1''' 105.8, CH 4.88, d (7.0) 105.8, CH 4.89, d (7.0) 
2''' 72.7, CH 4.48, dd (8.5, 7.0) 72.7, CH 4.46, dd (8.4, 7.0) 
3''' 77.2, CH 4.13, m 77.4, CH 4.12, dd (8.4, 3.3) 
4''' 74.8, CH 4.14, m 69.5, CH 4.34, m 
5''' 67.12, CH2 4.30, m  

3.73, m 
66.9, CH2 4.33, m  

3.77, dd (11.8, 
1.4)  
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Sullivantoside A (4.40). Amorphous white powder; mp 141.7-143.0°C; [α]D
25 = -2.8 (c 0.38, 

MeOH); IR νmax (film) cm-1: 3389.3 (OH), 1708.7 (C=O), 1644.8 (C=O), 1156.6 (C-O); HRMS 

m/z: 1195.6150 [M+H]+ (1195.6240 calc. for C59H96NaO23) 1H and 13C NMR: see Tables 4-19, 4-

20, 4-21, and 4-22. 

 

Sullivantoside B (4.41). Amorphous white powder; mp 153.7-154.9°C; [α]D
25 = +18 (c 0.5, 

MeOH); IR νmax (film) cm-1: 3389.7 (OH), 1708.5 (C=O), 1644.6 (C=O), 1156.9 (C-O); HRMS 
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m/z: 1181.6076 [M+H]+ (1181.6084 calc. for C58H94NaO23) 1H and 13C NMR: Tables 4-19, 4-20, 

4-21, and 4-22. 

 

Sullivantoside C (4.42). Amorphous white powder; mp 158.9-160.0°C; [α]D
25 = +15.3 (c 0.45, 

MeOH); IR νmax (film) cm-1: 3389.3 (OH), 1708.7 (C=O), 1644.8 (C=O), 1156.6 (C-O); HRMS 

m/z: 1330.7278 [M+H]+ (1330.7285 calc. for C67H110NaO26) 1H and 13C NMR: see Tables 4-19, 4-

20, 4-21, and 4-22. 
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Sullivantoside D (4.43). Amorphous white powder; mp 155.1-157.0°C; [α]D
25 = -1.6 (c 0.1, 

MeOH); IR νmax (film) cm-1: 3389.3 (OH), 1708.5 (C=O), 1644.5 (C=O), 1156.3 (C-O); HRMS 

m/z: 1113.5798 [M+H]+ (1113.5821 calc. for C55H92NaO23) 1H and 13C NMR: see Tables 4-19, 4-

20, 4-21, and 4-22. 

 

Sullivantoside E (4.44). Amorphous white powder; mp 164.7-165.4°C; [α]D
25 = +15.5 (c 0.2, 

MeOH); IR νmax (film) cm-1: 3389.4 (OH), 1708.3 (C=O), 1644.7 (C=O), 1156.8 (C-O); HRMS 

m/z: 1199.5668 [M+H]+ (1099.5665 calc. for C53H88NaO22) 1H and 13C NMR: Tables 4-19, 4-20, 

4-21, and 4-22. 
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Sullivantoside F (4.45). Amorphous white powder; mp 138.9-140.1°C; [α]D
25 = +20.3 (c. 0.3, 

MeOH); IR νmax (film) cm-1: 3389.2 (OH), 1708.4 (C=O), 1644.9 (C=O), 1156.5 (C-O); HRMS 

m/z: 1271.6756 [M+H]+ (1271.6764 calc. for C62H104NaO25) 1H and 13C NMR: see Tables 4-19, 4-

20, 4-21, and 4-22.   
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Table 4-19  13C-NMR (125 MHz, C5D5N) data for the aglycone part of sullivantosides A-E (4.40-

4.45) 
Atom 4.40 4.41 4.42 4.43 4.44 4.45 
1 38.5, CH2 38.5, CH2 38.4, CH2 38.6, CH2 38.5, CH2 38.6, CH2 
2 29.9, CH2 29.9, CH2 29.9, CH2 30.0, CH2 30.0, CH2 29.9, CH 
3 76.9, CH 76.9, CH 77.3, CH 77.0, CH 76.9, CH 77.2, CH2 
4 34.8, CH2 34.8, CH2 34.8, CH2 34.9, CH2 34.9, CH2 34.9, CH2 
5 45.6, CH 45.6, CH 45.7, CH 45.8, CH 45.7, CH 45.8, CH 
6 25.6, CH2 25.6, CH2 25.7, CH2 25.8, CH2 25.8, CH2 25.9, CH2 
7 35.8, CH2 35.8, CH2 35.9, CH2 36.1, CH2 36.0, CH2 36.8, CH2 
8 76.4, C 76.4, C 76.4, C 76.5, C 76.9, C 76.6, C 
9 48.5, CH 48.1, CH 48.2, CH 48.8, CH 48.5, CH 48.8, CH 
10 37.0, C 37.0, C 37.0, C 37.0, C 37.0, C 37.0, C 
11 24.1, CH2 24.1, CH2 24.1, CH2 27.9, CH2 24.1, CH2 28.0, CH2 
12 78.6, CH 78.6, CH 78.6, CH 75.2, CH 78.6, CH 75.2, CH 
13 55.5, C 55.6, C 55.6, C 57.3, C 57.3, C 57.3, C 
14 86.4, C 86.7, C 86.7, C 86.8, C 86.8, C 86.8, C 
15 36.2, CH2 36.2, CH2 36.3, CH2 36.8, CH2 36.8, CH2 36.8, CH2 
16 25.4, CH2 25.3, CH2 25.4, CH2 25.5, CH2 25.5, CH2 25.5, CH2 
17 59.3, CH 59.5, CH 59.5, CH 59.1, CH 59.2, CH 59.0, CH 
18 13.4, CH3 13.4, CH3 13.4, CH3 12.4, CH3 12.4, CH3 12.4, CH3 
19 13.5, CH3 13.5, CH3 13.6, CH3 13.7, CH3 13.7, CH3 13.7, CH3 
20 214.9, C 214.9, C 215.0, C 217.4, C 217.3, C 217.4, C 
21 32.3, CH3 32.3, CH3 32.3, CH3 32.8, CH3 32.8, CH3 32.8, CH3 
 12-An 12-An 12-An    
1 168.1, C 168.1, C 168.2, C    
2 129.7, C 129.7, C 129.7, C    
3 138.1, CH 138.1, CH 138.1, CH    
4 14.7, CH3 14.7, CH3 14.7, CH3    
5 12.7, CH3 12.7, CH3 12.7, CH3    
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Table 4-20 13C-NMR (125 MHz, C5D5N) data for the sugar moiety of compounds 4.40-4.44 

Atom 4.40 4.41 4.42 4.43 4.44 4.45 
 D-Cym D-Cym D-Ole D-Cym D-Cym D-Ole 
1' 96.3, CH 96.3, CH 98.0, CH 96.2, CH 96.2, CH 97.9, CH 
2' 37.7,CH2 37.7,CH2 38.3,CH2 37.7,CH2 37.7,CH2 38.3,CH2 
3' 78.4, CH 78.4, CH 79.6, CH 78.4, CH 78.4, CH 79.7, CH 
4' 83.8, CH 83.8, CH 83.6, CH 83.8, CH 83.8, CH 83.6, CH 
5' 69.3, CH 69.3, CH 72.2, CH 69.4, CH 69.3, CH 72.2, CH 
6' 19.0 CH3 19.0 CH3 19.1 CH3 19.0 CH3 19.0 CH3 19.1 CH3 
3'-OMe 59.3 CH3 59.2 CH3 57.6 CH3 59.3 CH3 59.2 CH3 57.6 CH3 
 D-Cym D-Dig D-Ole D-Cym D-Dig D-Ole 
1'' 100.9, CH 100.9, CH 100.6, CH 100.9, CH 100.9, CH 100.6, CH 
2'' 37.4, CH2 39.1, CH2 38.2, CH2 37.4, CH2 39.1, CH2 38.2, CH2 
3'' 78.3, CH 67.8, CH 79.5, CH 78.3, CH 67.8, CH 79.5, CH 
4'' 83.5, CH 83.5, CH 83.6, CH 83.5, CH 83.5, CH 83.6, CH 
5'' 69.2, CH 68.9, CH 71.9, CH 69.4, CH 68.9, CH 72.0, CH 
6'' 18.9, CH3 18.8, CH3 19.1, CH3 18.9, CH3 18.8, CH3 19.1, CH3 
3''-OMe 59.3, CH3  57.8, CH3 59.3, CH3  57.8, CH3 
 D-Dig D-Dig D-Ole D-Dig D-Dig D-Ole 
1''' 100.9, CH 100.3, CH 100.6, CH 100.8, CH 100.3, CH 100.6, CH 
2''' 39.4, CH2 39.3, CH2 38.2, CH2 39.4, CH2 39.3, CH2 38.2, CH2 
3''' 67.9, CH 67.9, CH 79.7, CH 67.9, CH 67.9, CH 79.7, CH 
4''' 83.6, CH 83.6, CH 83.6, CH 83.6, CH 83.6, CH 83.6, CH 
5''' 68.8, CH 68.8, CH 72.3, CH 68.8, CH 68.9, CH 72.3, CH 
6''' 18.7, CH3 18.7, CH3 19.2, CH3 18.8, CH3 18.9, CH3 19.2, CH3 
3'''-OMe   57.8, CH3   57.8, CH3 
 D-Ole D-Ole D-Cym D-Ole D-Ole D-Cym 
1'''' 101.8, CH 101.8, CH 98.9, CH 101.8, CH 101.8, CH 98.9, CH 
2'''' 37.4, CH2 37.6, CH2 37.4, CH2 37.6, CH2 37.6, CH2 37.6, CH2 
3'''' 79.6, CH 79.6, CH 78.5, CH 79.6, CH 79.6, CH 78.3, CH 
4'''' 83.5, CH 83.4, CH 83.4, CH 83.5, CH 83.4, CH 83.4, CH 
5'''' 72.3, CH 72.6, CH 69.5, CH 72.3, CH 72.3, CH 69.5, CH 
6'''' 19.2, CH3 19.2, CH3 19.9, CH3 19.2, CH3 19.2, CH3 19.9, CH3 
3''''-OMe 57.6, CH3 57.2, CH3 59.2, CH3 57.6, CH3 57.3, CH3 59.2, CH3 
 D-Glc D-Glc D-Ole D-Glc D-Glc D-Ole 
1''''' 104.8, CH 104.8, CH 102.2, CH 104.8, CH 104.9, CH 102.3, CH 
2''''' 76.1, CH 76.1, CH 37.8, CH2 76.1, CH 76.1, CH 37.8, CH2 
3''''' 79.1, CH 79.1, CH 79.7, CH 79.1, CH 79.1, CH 79.3, CH 
4''''' 72.4, CH 72.4, CH 83.3, CH 72.4, CH 72.4, CH 83.3, CH 
5''''' 78.6, CH 78.6, CH 72.0, CH 78.6, CH 78.6, CH 72.2, CH 
6''''' 63.4, CH2 63.4, CH2 19.2, CH3 63.4, CH2 63.4, CH2 19.2, CH3 
3'''''-OMe   57.6, CH3   57.6, CH3 
   D-Glc   D-Glc 
1''''''   104.4, CH   104.9, CH 
2''''''   76.1, CH   76.1, CH 
3''''''   79.1, CH   79.1, CH 
4''''''   72.4, CH   72.4, CH 
5''''''   78.5, CH   78.5, CH 
6''''''   63.4, CH2   63.4, CH2 
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5. SYNTHETIC METHODS FOR STRUCTURE DIVERSIFICATION 

OF CARDIAC GLYCOSIDES 
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5.1.Introduction 

Nature has provided and continues to provide compounds with extraordinary structural 

complexity and highly selective biological activity that inspire medicinal and organic chemists in 

the drug discovery process.12 In fact, the new combinatorial synthetic approaches include more 

focused libraries (100 to ~3000 plus compounds) that incorporate more "natural-product-

likeness" into compound design. Such approaches, also referred as "diversity-oriented synthesis" 

and "natural-product mimic synthesis", demonstrate that including natural products scaffolds and 

privileged structures into organic synthesis is crucial for small-molecule drug lead 

development.252-256 Furthermore, synthetic modifications of natural products allow investigation 

of SAR and to improve pharmacodynamic and pharmacokinetic properties. 

As described in the previous chapter, in the last few decades, cardiac glycosides have emerged 

as potential anti-cancer agents with a novel mechanism of action. These compounds are currently 

investigated as alternative treatments for cancers that are unresponsive to standard therapies.45 

This growing interest has attracted the attention of various synthetic research groups, targeting 

cardiac glycosides for total synthesis. In fact, the wide variety of natural products with a steroid 

framework including sex hormones, were among the first complex molecules synthesized in 

modern history.257 Total synthesis of Digitalis-type cardiac glycosides typically involves a large 

number of steps making SAR studies difficult.258-260 For instance, the Deslongchamps' research 

group has been using a key polyanionic cyclization between a highly functionalized Nazarov 

substrate and a cyclohexenone followed by intramolecular aldol cyclization to afford the required 

cis-cis configuration (Figure 5-1).261 On the other hand, semi-synthesis is the preferred approach 

to prepare steroids, even in the pharmaceutical industry, taking advantage of readily available 
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steroids with the tetracyclic core already assembled.257 Templeton et al.262 have described the 

oxidative degradation of digitoxin and digitoxigenin using ozonolysis to prepare analogs at C-17, 

however degradation approaches are limited by the availability of the starting materials. In 

contrast, commercially available simple steroids can be used to prepare cardiac glycosides. This 

process requires, however, a C-14 oxidation with inversion of configuration. This transformation 

has been reported by the use of several strategies including remote functionalization,263 SeO2 

allylic oxidation,264 dioxirane-mediated oxyfunctionalization,265 benzyl nitrosoformate [4+2] 

cycloaddition,266 and singlet oxygen addition followed by oxidative fragmentation.267 In 

addition, epimerization at C-5 is a requirement for the formation of Digitalis-type compounds. 

 

Figure 5-1 Representative approach for the total synthesis of Digitalis-type cardenolides  

 

Although the Asclepias cardenolides are structurally similar to those found in Digitalis, the 

first group has not been targeted for semi- or total-synthetic efforts to the same extent as the 

Digitalis-type counterparts and much less is known about their SAR. In the present work, we 

isolated several cardenolides form Asclepias species that showed cytotoxic effects toward 

malignant breast cancer cell lines (Chapter 4). In addition, most of the isolated compounds were 

found in very small quantities preventing their semi-synthetic modifications to further investigate 
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SAR. In order to investigate the biological effects of structural diversification at the 17-position 

of the cardenolides scaffold, we developed synthetic methods toward functionalization of the 

commercially available steroid trans-androsterone as well as an evaluation of palladium-

mediated coupling to install an aryl groups at C-17. 
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5.2. Rationale and synthetic strategy 

Structurally, cardiac glycosides contain three distinct elements: the sugar moiety, the steroidal 

core, and the unsaturated lactone (Figure 5-2). The sugar moiety has been extensively 

investigated using the well-established methodologies of neoglycorandomization and 

glycorandomization. Using this approach, the cardiotoxicity was reduced and selective toxicity 

against cancer cells was enhanced for classic cardenolides scaffolds.87-89, 268 The steroidal core is 

considered the pharmacophore, hence only minor structural modifications have been reported. In 

addition, several modifications to the butenolide ring have been carried out; however, most of the 

analogs were only investigated for their ionotropic activity.269 Therefore, in order to investigate 

the structure diversification of Asclepias-type cardenolides, we started with the development of 

methods to modify the commercially available steroid trans-androsterone as well as an 

evaluation of a palladium-mediated coupling of boronic acids to obtain analogs at C-17 position. 

 

Figure 5-2 Structural regions of cardiac glycosides 
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The structure of cardiac glycosides offer several difficulties from the synthetic point of view, 

but probably assembling the steroidal core bearing eight stereocenters is by far the most 

challenging. Fortunately, a wide variety of steroids are commercially available and can be used 

as starting materials to build up more complex structures such as the cardenolide type molecules. 

As proposed in Figure 5-3, in order to synthesize structurally diverse analogs at position C-17, an 

appropriately functionalized enol-triflate could be subjected to a Suzuki-Miyaura cross-coupling 

with boronic acids.270 Given the large number of commercially available boronic acids and 

boronate ethers, this coupling at a later step gives flexibility for analog preparation. The enol-

triflate can be obtained from the appropriate ketone by KHMDS treatment followed by PhNTf2. 

An allylic oxidation using SeO2 (Riley oxidation) was proposed for the diasteroselective 

installation of the 14β-hydroxyl group from the respective enone. This key oxidation step has 

been employed early by Groszek et al.264 using a similar substrate. This reaction is, however, not 

commonly used probably due to the extended refluxing periods needed for this reaction to take 

place. We proposed in this study the alternative use of microwave irradiation. In addition, the 

synthesis of the protected enone from commercially available trans-androsterone using a 

palladium-mediated oxidative elimination has been previously reported.  
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Figure 5-3 Retrosynthetic analysis for the proposed analogs (P: protecting group) 

5.3. Synthetic efforts towards 17β-aryl analogs  

The proposed synthetic route to obtain the 17β-aryl analogs of cardiac glycosides is shown 

Figure 5-4. The 3-O-acetyl enone 5.2 was prepared in a three-step sequence using a Tsuji-type 

oxidation recently applied by Hilton et al.271 to a similar substrate during the preparation of 

bufadienolide analogs. Treatment of trans-aldosterone (5.1) with acetic anhydride afforded the 3-

O-acetyl-trans-aldosterone quantitatively, which was transformed into the TMS-enol ether using 

KHMDS followed by TMSCl. A palladium-mediated oxidative elimination gave the desired α,β-

unsaturated ketone 5.2 in 54% yield (three steps). Next, the installation of the 14-β-hydroxyl 

group (5.3) was conducted by oxidation with SeO2.264, 272 The relative configuration was 

confirmed by X-ray crystallography (Figure 5-5). In order to explain the observed 

stereoselectivity, the proposed mechanism for this oxidation step involves an initial keto-enol 

tautomerization followed by an ene reaction with SeO2 (Figure 5-6). The resulting allyl selenic 

acid undergoes [2,3] sigmatropic rearrangement to form an allyl selenite ester that can be readily 

hydrolyzed to the corresponding alcohol.273, 274 Although Groszek et al. reported a 60% yield 
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using a similar substrate, in our experiments, the 14-β-hydroxy enone 5.3 was obtained in 40% 

yield from 5.2 under reflux conditions for 6h (20% water in dioxane). Using the same solvent 

system, this reaction was investigated using microwave irradiation (Figure 5-7), which resulted 

in an improvement in the yield to 56% and reducing the reaction time to only 30 minutes. In 

general, microwave irradiation can often replace extended periods of reflux due to the more 

efficient heating.275, 276 Microwave-based acceleration for SeO2 oxidations have not been 

frequently reported.277 The preparation of 5.3 under microwave irradiation allowed for an 

important reduction of reaction time and an increase in the yield when compared with the same 

transformations under reflux conditions and represents an important contribution to the selenium 

chemistry field.  
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Figure 5-4 Synthetic route for proposed analogs (dotted arrows indicated proposed 

conversions) a) Ac2O 2 eq., DMAP cat., CH2Cl2, 18h; b) KHMDS 0.5 M in toluene 1.1 eq., -78°C, THF, 60 min 

then Et3N 1.5 eq, TMSCl 1.1 eq, -78°C to RT, 30 min then workup; c) Pd(OAc)2 1.0 eq, CH2Cl2:MeCN 4:1, 30°C, 

6h; d) SeO2, 1.2 eq, dioxane:H2O 4:1, MW, 110°C, 30 min; e) H2 (balloon), EtOH, 10% Pd/C; f) KHMDS 2.1 eq, -

78°C, THF, 1h; g) PhNTf2 1.1 eq, -78°C to RT, 2h; h) ArB(OH)2 2 eq, Na2CO3 2N 3 eq, Pd(PPh3)4 10 mol%, 

dioxane, MW 170°C, 30 min; i) H2 (balloon), EtOH, 10% Pd/C 
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Figure 5-5 ORTEP representation of compound 5.3 

 

Figure 5-6 Proposed mechanism for the formation of 5.3 
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Figure 5-7 Temperature optimization of SeO2-mediated oxidation under microwave conditions 

Preparation of enol-triflate was attempted by treatment of the ketone 5.15a with KHMDS at a 

low temperature followed by the addition of PhNTf2 as described by Liu and Meinwald.266 In our 

experiment, the reaction conditions afforded an undesired elimination product 5.15a' in 30% 

yield (Figure 5-8). An optimization of the reaction conditions is currently underway to resolve 

this problem. At the same time, a model compound was utilized to investigate the Suzuki-

Miyaura cross-coupling reaction. As shown in Figure 5-9, TBDMS-protected trans-aldosterone 

5.9 was efficiently converted (82%) to the enol-triflate 5.10. With the enol triflate in hand, the 

coupling reaction catalyzed by Pd(PPh3)4 was carried out under microwave irradiation at 170°C 

with moderate yields (30-46%). We observed that temperatures lower than 170°C only afforded 

modest yields (Figure 5-10). We also observed that the use of PdCl2(PPh3)2 as a catalyst did not 

improve the final product yields. Although this reaction conditions can likely be further 

optimized, the MW-based coupling allowed for a quick access to analogs for biological 

evaluation. 
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Figure 5-8 Undesired elimination product during enol-triflate preparation. a) KHMDS 2.1 eq, 

THF, -78°C, 2h, b) PhNTf2 1.1 eq, -78°C, 2h 

 

Figure 5-9 Model Suzuki-Miyaura cross-coupling reaction. a) PhNTf2 1.1 eq, THF, -78°C, then 

KHMDS 1.1 eq, 2h; b) ArB(OH)2 2 eq, Na2CO3 2N 3 eq, Pd(PPh3)4 10 mol%, dioxane, MW 170°C, 30 min 
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Figure 5-10 Suzuki-Miyaura cross-coupling temperature optimization. a) ArB(OH)2 2 eq, Na2CO3 

2N 3 eq, catalyst (cat.) 10 mol%, dioxane, MW, temperature (temp.), 30 min 

 

In addition to the 3-O-acetyl group, we also investigated TMS and TBDMS protecting groups 

at C-3 for the reaction sequences shown in Figures 5-11 and 5-12. Both protecting groups, 

however, were cleaved during the allylic oxidation step when SeO2 was used, presumably due to 

the generation of the acidic byproduct H2SeO2. As anticipated, TBDMS was more resistant to 

this acidic condition when compared with the TMS-protected counterpart; but a more complex 

reaction mixture was obtained due to incomplete oxidation or by TBDMS group cleavage or both 

thus leading to a more complex chromatographic separation. 
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Figure 5-11 Evaluation of 3-O-TMS protected substrate for the proposed reaction sequence. a) 

LDA 3.0 eq., -78°C, THF, 30 min; b) Et3N 4 eq., TMSCl 2.7 eq., -78°C to RT, 30 min then workup; c) Pd(OAc)2 1.0 

eq, CH2Cl2:MeCN 4:1, 30°C, 6h; d) SeO2, 1.2 eq, dioxane:H2O 4:1, MW, 110°C, 30 min 

 

Figure 5-12 Evaluation of 3-O-TBDMS protected substrate for the proposed reaction 

sequence. a) TBDMSCl 1.2 eq, imidazole 3 eq, DMF, RT, 3h; b) LDA 3.0 eq., -78°C, THF, 30 min; b) Et3N 2 eq., 

TMSCl 1.5 eq., -78°C to RT, 30 min then workup; c) Pd(OAc)2 1.0 eq, CH2Cl2:MeCN 4:1, 30°C, 6h; d) SeO2, 1.2 

eq, dioxane:H2O 4:1, MW, 110°C, 30 min 

 

Finally, during the process of microwave-assisted oxidation with SeO2 the enone 5.15a was 

unexpectedly converted to the α,β-unsaturated diketone 5.16 under anhydrous conditions (Figure 

5-13). A plausible mechanism for the formation of this product is shown in Figure 5-14. After 

keto-enol tautomerization, the allylselenic acid intermediate could be formed upon ene reaction 

with SeO2. Rather than hydrolysis to form the alcohol, in anhydrous conditions, a Pummerer-

type rearrangement may have taken place to form the diketone product.  
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Figure 5-13 Preparation of 5.16 a) SeO2, 1.2 eq, dry dioxane, MW, 110°C, 30 min 

 

 

Figure 5-14 Proposed mechanism of reaction for the formation of 5.16   
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5.4. Conclusions and future work 

This work has shown that preparation of structurally diversified cardiac glycoside analogs is 

potentially viable using a semi-synthetic approach from readily commercially available steroids. 

Some of the key transformations investigated include a microwave-promoted allylic oxidation 

using SeO2 (Riley oxidation) and microwave-promoted Miyaura-Suzuki cross-coupling. 

Although the synthesis of the desired analogs has not been completed to date, the findings from 

this work will help future attempts to achieve our initial goals. In the near future, the synthetic 

scheme depicted in Figure 5-4 will be further pursued in order to prepare the desired analogs 

with the goal to evaluate them against breast cancer cell lines Hs578T.  
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5.5. Experimental data 

5.5.1. Materials and methods 

All starting materials, reagents and solvents are commercially available and were used without 

further purification. Flash column chromatography was carried out on Teledyne Isco Automatic 

CombiFlash system (San Diego, CA) using Gold silica gel pre-packed columns, TLC was 

conducted on silica gel 250 micron, F254 plates. 1H NMR spectra were recorded with a 500 MHz 

NMR instrument. Chemical shifts are reported in ppm CHCl3 as an internal standard (CHCl3: 

7.26 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = 

triplet, q = quartet, b = broad, m = multiplet), integration and coupling constants (Hz). 13C NMR 

spectra were recorded with a 126 MHz NMR spectrometer with complete proton decoupling. 

Chemical shifts are reported in ppm with the solvent as internal standard (CHCl3: 77.2 ppm).  

5.5.2. Experimental procedures 

 

3-O-acetyl-3β-dihydroxy-5α-androst-15-en-17-one (5.2). To a solution of trans-androsterone 

(200 mg, 0.69 mmol) DMAP (8 mg, 10 mol%) acetic anhydride (0.16 mL, 1.38 mmol, 2 eq.) 

were added and the reaction mixture was left under stirring conditions for 16h at RT. After the 

starting material was consumed (shown by TLC), the reaction was quenched with NaHCO3 (sat), 

extracted twice with CH2Cl2, and dried over Na2SO4. The acetyl-trans-androsterone was obtained 
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quantitatively (230 mg) as a white powder after organic solvent removal and it was used without 

further purification in the next step: mp 105.0-105.6°C; HRMS m/z 687.4591 [2M+Na] 

(687.4601 calc. for C42H64NaO6); 1H NMR (500 MHz, CDCl3) δ 7.49 (dd, J = 1.1, 6.0, 1H), 6.00 

(dd, J = 3.2, 6.0, 1H), 4.72 – 4.62 (m, 1H), 2.30 – 2.20 (m, 1H), 2.00 (s, 3H), 1.95 (ddd, J = 3.6, 

6.6, 12.7, 1H), 1.88 – 1.65 (m, 3H), 1.65 – 1.55 (m, 2H), 1.55 – 1.42 (m, 1H), 1.42 – 1.26 (m, 

1H), 1.21 (m, 1H), 1.13 – 1.04 (m, 1H), 1.03 (s, 3H), 0.87 (s, 3H), 0.84 – 0.74 (m, 1H); 13C NMR 

(126 MHz, CDCl3) δ 213.30, 170.71, 158.62, 131.72, 73.40, 56.87, 55.57, 51.13, 44.88, 36.44, 

35.89, 33.90, 32.36, 30.70, 29.12, 28.11, 27.37, 21.47, 20.75, 20.19, 12.27. 

A solution of the previously obtained acetyl-trans-androsterone (230 mg, 0.69 mmol) in dry THF 

(3 mL) was cooled down to -78°C, then KHMDS 0.5 M in toluene (1.5 mL, 0.75 mmol, 1.1 eq) 

was added dropwise and the resulting mixture stirred for 1h. Next, Et3N (0.2 mL, 1.38 mmol, 2.0 

eq) and TMSCl (0.15 mL, 0.83 mmol, 1.2 eq) were added to the flask dropwise and stirred for 30 

min. The reaction mixture was then warmed to RT and stirred for an additional 25 min and 

quenched with NaHCO3 (sat). The aqueous layer was extracted twice with EtOAc. The organic 

layer was washed with water, brine, dried over Na2SO4 and concentrated under vacuum. The 

crude TMS-enol ether was then dissolved in CH2Cl2 (3 mL) and CH3CN (1 mL). Next, Pd(OAc)2 

(150 mg, 0.69 mmol, 1.0 eq) was added in one portion and the reaction mixture was stirred for 

6h at 30°C (water bath). Finally, the reaction mixture was filtered through celite and 

concentrated under vacuum. The resulting dark semi-solid was purified by flash column 

chromatography (5-15% EtOAc/Hexanes) to give 123 mg (54%, three steps) of 5.2 as a white 

solid: mp 96.1-98.2 °C; HRMS m/z 683.4276 [2M+Na] (683.4288 calc. for C42H60NaO6); 1H 

NMR (500 MHz, CDCl3) δ 7.49 (dd, J = 1.1, 6.0, 1H), 6.00 (dd, J = 3.2, 6.0, 1H), 4.72 – 4.62 

(m, 1H), 2.30 – 2.20 (m, 1H), 2.00 (s, 3H), 1.95 (ddd, J = 3.6, 6.6, 12.7, 1H), 1.88 – 1.65 (m, 
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5H), 1.65 – 1.55 (m, 2H), 1.55 – 1.42 (m, 3H), 1.42 – 1.26 (m, 3H), 1.21 (ddd, J = 8.7, 12.0, 

12.8, 1H), 1.13 – 1.04 (m, 1H), 1.03 (s, 3H), 0.87 (s, 3H), 0.84 – 0.74 (m, 1H); 13C NMR (126 

MHz, CDCl3) δ 213.30, 170.71, 158.62, 131.72, 73.40, 56.87, 55.57, 51.13, 44.88, 36.44, 35.89, 

33.90, 32.36, 30.70, 29.12, 28.11, 27.37, 21.47, 20.75, 20.19, 12.27. 

 

3-O-acety-3β ,14β-dihydroxy-5α-androst-15-en-17-one (5.3). Compound 5.2 (500 mg, 1.5 

mmol) was dissolved in dioxane:water 1:1 v/v (10 mL) in a 10-20 mL microwave tube. Selenium 

oxide (200 mg, 1.8 mmol, 1.2 eq.) was added and the microwave tube sealed. The reaction 

mixture was then heated for 30 minutes in a microwave reactor to 110 °C. Then, the mixture was 

filtered over celite and concentrated under vacuum. The resulting orange oil was re-dissolved in 

acetone and treated with activated charcoal (50 mg) during 5 min, then filtered and concentrated 

under vacuum to give a pale-yellow oil which was purified by column chromatography (20-30% 

EtOAc/Hexanes) to give 235 mg (56%) of 5.3 as a white powder: mp 143.3-144.9 °C; HRMS 

m/z 715.4180 [2M+Na] (715.4186 calc. for C42H60NaO8); 1H NMR (500 MHz, CDCl3) δ 7.48 (d, 

J = 5.9, 1H), 6.13 (d, J = 5.9, 1H), 4.65 – 4.53 (m, 1H), 2.10-2.16 (m, 1H), 1.94 (s, 3H), 1.83 – 

1.75 (m, 1H), 1.75 – 1.67 (m, 1H), 1.55-1.65 (m, 3H), 1.54 – 1.13 (m, 8H), 1.12 – 1.04 (m, 1H), 

1.02 (s, 3H), 0.89 – 0.80 (m, 2H), 0.74 (s, 3H), 0.68 (ddd, J = 7.7, 12.2, 12.6, 1H); 13C NMR 

(126 MHz, CDCl3) δ 213.23, 170.91, 161.24, 133.15, 83.34, 73.54, 52.20, 46.49, 44.37, 40.79, 

36.75, 36.46, 33.94, 33.24, 28.24, 27.28, 27.11, 21.66, 20.16, 17.68, 11.72. 
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3-O-acety-3β ,14β-dihydroxy-5α-androst-17-one (5.4). Compound 5.3 (100 mg, 0.29 mmol) 

was dissolved in ethanol (10 mL) and 10% Pd/C (10 mg) was added. The mixture was purged 

with H2 balloon and left to stir for 3h, then it was filtered over celite and concentrated under 

vacuum to give 100 mg (99%) of 5.4 as a white powder: mp 145.1-146.2°C; HRMS m/z: 

719.4486 [2M+Na] (719.4499 calc. for C42H64NaO8); 1H NMR (500 MHz, CDCl3) δ 4.74 – 4.65 

(m, 1H), 2.43 – 2.37 (m, 2H), 2.14 (m, 1H), 2.02 (s, 3H), 2.01 – 1.94 (m, 1H), 1.88 – 1.73 (m, 

3H), 1.69 – 1.45 (m, 4H), 1.45 – 1.33 (m, 3H), 1.33 – 1.13 (m, 6H), 1.05 (s, 3H), 1.03 – 0.93 (m, 

2H), 0.83 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 221.34, 170.86, 82.63, 73.48, 53.66, 50.01, 

44.33, 41.42, 36.95, 35.87, 33.89, 33.12, 31.95, 28.22, 27.48, 27.43, 25.64, 21.60, 19.95, 12.94, 

12.23. 

 

3-O-terbutyldimethylsylil-3β-dihydroxy-5α-androst-17-one (5.9). A solution of trans-

androstane (200 mg, 0.69 mmol), TBDMSCl (125 mg, 0.83 mmol, 1.2 eq), and imidazol (140 

mg, 2.07 mmol, 3 eq) in dry DMF (4 mL) was stirred for 3h under Ar. When the starting material 
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was consumed (TLC analysis, 9:1 Hex/EtOAc), the reaction was quenched adding 2 mL of water 

and extracted 3 times with CH2Cl2. The organic layer was washed with water, Na2S2O3 (sat.), 

brine, and dried over Na2SO4. The resulting white solid was purified by column chromatography 

(2% EtOAc/Hexanes) to give 260 mg (93%) of 5.9 as a white powder: mp 161.7-162.2°C; 

HRMS m/z 831.6156 [2M+Na] (831.6119 calc. for C50H88NaO4Si2); 1H NMR (500 MHz, CDCl3) 

δ 3.55 (ddd, J = 15.6, 10.8, 4.7 Hz, 1H), 2.43 (dd, J = 19.3, 8.8 Hz, 1H), 2.11 – 2.01 (m, 1H), 

1.96 – 1.89 (m, 1H), 1.82 – 1.75 (m, 2H), 1.72 – 1.61 (m, 4H), 1.55 – 1.36 (m, 4H), 1.29 (m, 

6H), 1.13 – 1.04 (m, 1H), 0.94 (m, 2H), 0.88 (s, 9H), 0.85 (s, 3H), 0.82 (s, 3H), 0.05 (s, 6H). 13C 

NMR (126 MHz, CDCl3) δ 224.23, 72.02, 54.55, 51.47, 47.85, 45.03, 38.61, 37.14, 35.89, 35.69, 

35.07, 31.89, 31.59, 30.98, 28.47, 25.96, 21.80, 20.50, 18.29, 13.83, 12.37, -4.55, -4.56. 

 

3-O-terbutyldimethylsylil-3β-hydroxy-5α-androst-15-en-17-yl trifluromethanesulfonate 

(5.10). A solution of 5.9 (500 mg, 1.24 mmol) and PhNTf2 (530.2 mg, 1.48 mmol, 1.2 eq) in 

dried THF (20 mL) was cooled down to -78°C and KHMDS 0.5 M in toluene (3 mL, 1.48 mmol, 

1.2 eq) was added dropwise via syringe under Ar. The resulting mixture was stirred at the same 

temperature for 2h. Then, the reaction was quenched by adding NH4Cl (sat.) and extracted twice 

with CH2Cl2. The organic layer was washed with brine and dried over Na2SO4. The solvent was 

removed at reduced pressure and the residue was purified by column chromatography (2% 

EtOAc/Hexanes) to give 540 mg (82%) of 5.10 as a white powder: mp 106.5-107.1 °C; HRMS 
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m/z 1095.5095 [2M+Na] (1095.5105 calc. for C52H86F6O8S2Si2) 1H NMR (500 MHz, CDCl3 δ 

5.55 (dd, J = 3.2, 1.7 Hz, 1H), 3.61 – 3.45 (m, 1H), 2.25 – 2.14 (m, 1H), 2.02 – 1.89 (m, 1H), 

1.77 – 1.57 (m, 6H), 1.57 – 1.49 (m, 3H), 1.48 – 1.22 (m, 6H), 1.14 – 1.00 (m, 2H), 0.95 (s, 3H), 

0.88 (s, 9H), 0.83 (s, 3H), 0.78 – 0.68 (m, 1H), 0.05 (s, 6H); 13C NMR (126 MHz, CDCl3) δ 

159.52, 118.63 (q, CF3, J = 320 Hz), 114.63, 72.12, 54.98, 54.41, 45.35, 45.01, 38.74, 37.04, 

35.89, 33.62, 32.86, 32.00, 31.04, 28.69, 28.56, 26.09, 20.67, 18.42, 15.44, 12.44, -4.42, -4.43. 

General procedure A: Suzuki-Miyaura coupling under microwave irradiation. A solution of 

5.10 (50 mg, 0.18 mmol), the appropriate boronic acid (0.28 mmol, 1.5 eq), Pd(PPh3)4 (0.02 

mmol, 10 mol%) and Na2CO3 2M (0.54 mmol , 3 eq) in dry dioxane (5 mL) were placed in a 

sealed microwave tube. The reaction mixture was heated at 170°C in a microwave reactor for 30 

minutes. The resulting dark solution was filtered through celite and the solvent removed under 

reduced pressure and further purified using column chromatography. 

General procedure B. Deprotection of TMS or TBDMS groups using TBAF. The substrate 

(1 eq) was dissolved in dry THF (2 mL) under Ar. TBAF 1 M in THF (3 eq) was added via 

syringe to the reaction mixture and left for 48h under stirring conditions. The reaction mixture 

was quenched by the addition of 1 mL of water and extracted twice with EtOAc. The organic 

layer was washed with water and brine, dried over Na2SO4, and concentrated under reduced 

pressure. The resulting residue was purified by column chromatography. 
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3β-hydroxy-17-(4-hydroxyphenyl)-5α-androst-15-ene (5.11a). Compound 5.11a was prepared 

following the general procedure A. The crude residue was purified by column chromatography 

(5% EtOAc/Hexanes) to give 26 mg (30%), which were submitted to general procedure B. The 

resulting product was purified using column chromatography (15-25% EtOAc/Hexanes) to 

afford 5.11a as white powder; mp 148.1-150.0 °C; HRMS m/z 755.5015 [2M+Na] (755.5015 

calc. for C50H68NaO4); 1H NMR (500 MHz, CDCl3) δ 7.24 – 7.23 (m, 2H), 6.75 – 6.73 (m, 2H), 

5.80 – 5.75 (m, 1H), 3.50 – 3.40 (m, 1H), 2.22 – 2.12 (m, 2H), 1.98 (m, 2H), 1.81 – 1.54 (m, 

6H), 1.54 – 1.17 (m, 9H), 1.12-1.02 (m, 2H), 0.98 (s, 3H), 0.84 (s, 3H); 13C NMR (126 MHz, 

CDCl3) δ 154.61, 154.44, 128.11, 125.74, 115.10, 71.38, 57.75, 54.94, 47.49, 45.42, 38.83, 

37.17, 35.86, 35.76, 34.23, 32.12, 32.07, 31.56, 28.88, 26.12, 26.10, 18.46, 16.83, 12.53. 
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3β-hydroxy-17-(3-pyridiyl)-5α-androst-15-ene (5.11b). Compound 5.11b was prepared 

following the general procedure A. The crude residue was purified by column chromatography 

(5-10% EtOAc/Hexanes) to give 30 mg (36%), which were submitted to general procedure B. 

The resulting product was purified using column chromatography (15-25% EtOAc/Hexanes) to 

afford 5.11a as white powder: mp 154.1-155.5 °C; HRMS m/z 352.2676 [M+H] (352.2640 calc. 

for C24H34NO); 1H NMR (500 MHz, CDCl3) δ 8.67 (d, J = 1.3 Hz, 1H), 8.53 (d, J = 4.9 Hz, 1H), 

8.19 (d, J = 8.1 Hz, 1H), 7.70 (dd, J = 8.0, 5.5 Hz, 1H), 6.25 (dd, J = 3.3, 1.8 Hz, 1H), 3.66 – 

3.54 (m, 1H), 2.37 – 2.28 (m, 1H), 2.14 – 2.03 (m, 1H), 2.02 – 1.96 (m, 1H), 1.88 – 1.78 (m, 

1H), 1.78 – 1.54 (m, 6H), 1.49 – 1.38 (m, 3H), 1.38 – 1.22 (m, 4H), 1.19 – 1.10 (m, 1H), 1.03 (s, 

3H), 1.01 – 0.95 (m, 1H), 0.87 (s, 3H), 0.83 – 0.72 (m, 2H); 13C NMR (126 MHz, CDCl3) δ 

148.92, 140.56, 139.99, 139.83, 136.66, 134.85, 125.83, 71.32, 57.56, 54.52, 47.82, 45.14, 38.22, 

36.90, 35.81, 35.26, 34.01, 32.25, 31.87, 31.57, 28.62, 21.19, 16.86, 12.44. 

 

 

3β-hydroxy-17-(2-furanyl)-5α-androst-15-ene (5.11c). Compound 5.11c was prepared 

following the general procedure A. The crude residue was purified by column chromatography 

(5-10% EtOAc/Hexanes) to give 38 mg (47%), which were submitted to general procedure B. 

The resulting product was purified using column chromatography (15-25% EtOAc/Hexanes) to 

afford 5.11c as a white powder: mp 137.9-138.6 °C; HRMS m/z 703.4712 [2M+Na] (703.4702 

5.11c
HO

O
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calc. for C46H64NaO4); 1H NMR (500 MHz, CDCl3) δ 7.35 (dd, J = 2.7, 2.6 Hz, 1H), 6.38 – 6.33 

(m, 1H), 6.28 – 6.24 (m, 1H), 6.08 – 6.02 (m, 1H), 3.67 – 3.54 (m, 1H), 2.28 – 2.19 (m, 1H), 

2.18 – 2.11 (m, 1H), 2.01 – 1.92 (m, 1H), 1.86 – 1.77 (m, 1H), 1.72 (m, 2H), 1.68 – 1.37 (m, 

9H), 1.35 – 1.23 (m, 2H), 1.21 – 1.10 (m, 2H), 1.08 – 0.97 (m, 1H), 0.95 (s, 3H), 0.86 (s, 3H), 

0.82 – 0.72 (m, 1H); 13C NMR (126 MHz, CDCl3) δ 151.70, 144.59, 141.36, 125.04, 110.98, 

105.23, 71.46, 56.97, 54.86, 46.71, 45.18, 38.34, 36.94, 35.83, 35.66, 34.01, 32.05, 31.64, 31.59, 

28.78, 21.44, 16.69, 12.45. 

 

 

3β-hydroxy-17-(3-furanyl)-5α-androst-15-ene (5.11d). Compound 5.11d was prepared 

following the general procedure A. The crude residue was purified by column chromatography 

(5-10% EtOAc/Hexanes) to give 35 mg (45%), which were submitted to general procedure B. 

The resulting product was purified using column chromatography (15-25% EtOAc/Hexanes) to 

afford 5.11d as a white powder: mp 119.0-120.1 °C; HRMS m/z 703.4716 [2M+Na] (703.4702 

calc. for C46H64NaO4); 1H NMR (500 MHz, CDCl3) δ 7.46 (s, 1H), 7.36 – 7.34 (m, 1H), 6.47 

(dd, J = 1.8, 0.8 Hz, 1H), 5.81 (dd, J = 3.2, 1.9 Hz, 1H), 3.65 – 3.55 (m, 1H), 2.22 – 2.14 (m, 

1H), 2.02 – 1.86 (m, 1H), 1.81 (dd, J = 12.5, 1.8 Hz, 1H), 1.73-1.56 (m, 2H), 1.69 – 1.57 (m, 

4H), 1.53 – 1.38 (m, 4H), 1.37 – 1.20 (m, 4H), 1.19 – 1.08 (m, 1H), 1.07 – 0.96 (m, 1H), 0.92 (s, 

3H), 0.86 (s, 3H), 0.85 – 0.83 (m, 1H); 13C NMR (126 MHz, CDCl3) δ 146.19, 142.73, 137.60, 

5.11d

HO

O
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125.28, 121.49, 109.48, 71.46, 57.17, 54.89, 46.70, 45.18, 38.35, 36.95, 35.73, 35.68, 34.10, 

32.03, 31.65, 31.53, 28.79, 21.45, 16.44, 12.46. 

 

3-O-terbutyldimethylsylil-3β-hydroxy-17-(4-hydroxyphenyl)-5α-androst-15-ene (5.12a). 

Compound 5.12a was prepared following the general procedure A. The crude residue was 

purified by column chromatography (5% EtOAc/Hexanes) to give 26 mg (30%) as white 

powder; mp 163.1-164.8 °C; HRMS m/z 983.6733 [2M+Na] (983.6745 calc. for C62H96O4Si2) 1H 

NMR (500 MHz, CDCl3) δ 7.26 – 7.22 (m, 2H), 6.78 – 6.74 (m, 2H), 5.80 – 5.75 (m, 1H), 3.60 – 

3.50 (m, 1H), 2.22 – 2.12 (m, 2H), 1.98 (m, 2H), 1.81 – 1.54 (m, 6H), 1.54 – 1.17 (m, 9H), 1.12-

1.02 (m, 2H), 0.98 (s, 3H), 0.89 (s, 9H), 0.84 (s, 3H), 0.05 (s, 6H); 13C NMR (126 MHz, CDCl3) 

δ 154.61, 154.44, 128.11, 125.74, 115.10, 72.38, 57.75, 54.94, 47.49, 45.42, 38.83, 37.17, 35.86, 

35.76, 34.23, 32.12, 32.07, 31.56, 28.88, 26.12, 26.10, 21.40, 18.46, 16.83, 12.53, -4.41. 
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3-O-trimethylsylil-3β-dihydroxy-5α-androst-15-en-17-one (5.13). To a solution of DIPA (0.29 

mL, 2.1 mmol, 3 eq) in THF (3 mL) at -78°C, was added a solution of BuLi 1.6 M in hexanes 

(1.32 mL, 2.1 mmol, 3 eq) dropwise via syringe under Ar and the resulting mixture was stirred 

for 15 min. A solution of trans-androstane (210 mg, 0.7 mmol) in THF (1.5 mL) was added 

dropwise over 30 min period, and the reaction mixture was stirred at -78°C for an additional 15 

min. Then, Et3N (0.39 mL, 2.8 mmol, 4 eq) and TMSCl (0.27 mL, 1.9 mmol, 2.7 eq) were added 

dropwise via syringe. The mixture was warmed to RT, stirred for additional 25 min, quenched 

with NaHCO3 (sat.) and extracted twice with EtOAc. The organic layer was washed with water 

and brine, dried over Na2SO4, and concentrated under reduced pressure. The crude enol ether was 

then dissolved in CH2Cl2 (3 mL) and CH3CN (1 mL) under Ar. Next Pd(OAc)2 (160 mg, 0.7 

mmol, 1 eq) was added in one portion and the mixture was stirred for 6 h at 30°C. The resulting 

dark solution was filtered through celite and concentrated under reduced pressure. The dark 

semi-solid was purified by column chromatography (5-15% EtOAc/Hexanes) to give 170 mg of 

5.13 (68%, three steps) as a white powder; mp 153.2-154 °C; HRMS m/z 743.4836 [2M+Na] 

(743.4867 calc. for C44H72NaO4Si2). 1H NMR (500 MHz, CDCl3) δ 7.44 (dd, J = 1.1, 6.0, 1H), 

6.02 (dd, J = 3.2, 6.0, 1H), 3.55 (ddd, J = 15.6, 10.8, 4.7 Hz, 1H), 2.43 (dd, J = 19.3, 8.8 Hz, 

1H), 2.11 – 2.01 (m, 1H), 1.96 – 1.89 (m, 1H), 1.72 – 1.61 (m, 2H), 1.55 – 1.36 (m, 2H), 1.29 

(m, 4H), 1.13 – 1.04 (m, 1H), 0.88 (s, 9H), 0.85 (s, 3H), 0.82 (s, 3H), 0.05 (s, 6H). 13C NMR 

(126 MHz, CDCl3) δ 213.30, 158.56, 131.33, 72.02, 54.55, 51.47, 47.85, 45.03, 38.61, 37.14, 

35.89, 35.69, 35.07, 30.98, 28.47, 25.96, 20.50, 18.29, 12.37, 0.14. 
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3β ,14β-dihydroxy-5α-androst-15-en-17-one (5.14a). Compound 5.13 (180 mg, 0.5 mmol) was 

dissolved in dioxane (4 mL) and water (1 mL). Then, SeO2 (590 mg, 6.0 mmol, 1.2 eq) was 

added and the RM was refluxed for 6h under Ar. The reaction mixture was then left to cool to 

RT and filtered over celite and concentrated under reduced pressure to a third of the original 

volume and extracted twice with CH2Cl2. Organic layers were washed with water, brine, dried 

over Na2SO4, and concentrated under reduced pressure. The resulting orange oil was purified by 

column chromatography (40-60% EtOAc/Hexanes) to give 60.4 mg of 5.14a (40%) as a white 

powder: mp 167.3-168.9 °C; HRMS m/z 631.3886 [2M+Na] (631.3975 calc. for C38H56NaO6) 1H 

NMR (500 MHz, CDCl3) δ 7.61 – 7.50 (m, 1H), 6.21 (dd, J = 15.5, 5.1 Hz, 1H), 3.66 – 3.51 (m, 

1H), 2.26 – 2.14 (m, 1H), 1.92 – 1.83 (m, 1H), 1.83 – 1.71 (m, 2H), 1.70 – 1.64 (m, 1H), 1.64 – 

1.50 (m, 7H), 1.45 – 1.22 (m, 10H), 1.09 (d, J = 6.1 Hz, 3H), 1.07 – 1.03 (m, 1H), 0.96 – 0.83 

(m, 3H), 0.79 (s, 2H), 0.77 – 0.69 (m, 1H); 13C NMR (126 MHz, CDCl3) δ 213.24, 161.25, 

133.00, 83.31, 71.23, 52.16, 46.46, 44.49, 40.80, 37.99, 36.70, 36.63, 33.14, 31.24, 28.28, 27.11, 

20.14, 17.68, 11.76. In addition, 315 mg of unprotected starting material 5.14b (22%) were 

recovered from the reaction mixture. 
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3-O-trimethylsylil-3β-dihydroxy-5α-androst-15-en-17-one (5.15). To a solution of DIPA 

(0.16mL, 1.5 mmol, 1.5 eq) in THF (3 mL) at -78°C, was added a solution of BuLi 1.6 M in 

hexanes (0.94 mL, 1.5 mmol, 3 eq) dropwise via syringe under Ar and the resulting mixture was 

stirred for 15 min. A solution of 5.9 (280 mg, 0.7 mmol) in THF (1.5 mL) was added dropwise 

over 30 min period, and the reaction mixture was stirred at -78°C an additional 15 min. Next, 

Et3N (0.19 mL, 1.4 mmol, 2 eq) and TMSCl (0.14 mL, 1.0 mmol, 1.5 eq) were added dropwise 

via syringe. The mixture was warmed to RT, stirred for 25 min more, quenched with NaHCO3 

(sat.) and extracted twice with EtOAc. The organic layer was washed with water and brine, dried 

over Na2SO4, and concentrated under reduced pressure. The crude enol ether was then dissolved 

in CH2Cl2 (3 mL) and CH3CN (1 mL) under Ar. Then, Pd(OAc)2 (160 mg, 0.7 mmol, 1 eq) was 

added in one portion and the mixture stirred for 6 h at 30°C. The resulting dark solution was 

filtered through celite and concentrated under reduced pressure. The dark semi-solid was purified 

by column chromatography (5-15% EtOAc/Hexanes) to give 170 mg of 5.15 (60%, three steps) 

as a white powder; mp 125.0-126.3 °C; HRMS m/z 831.6156 [2M+Na] (831.6119 calc. for 

C50H88NaO4Si2. 
1H NMR (500 MHz, CDCl3) δ 7.45 (dd, J = 1.1, 5.9, 1H), 6.01 (dd, J = 3.2, 5.9, 

1H), 3.54 (ddd, J = 15.6, 10.8, 4.7 Hz, 1H) δ 3.55 (ddd, J = 15.6, 10.8, 4.7 Hz, 1H), 2.43 (dd, J = 

19.3, 8.8 Hz, 1H), 2.11 – 2.01 (m, 1H), 1.96 – 1.89 (m, 1H), 1.82 – 1.75 (m, 2H), 1.72 – 1.61 (m, 

3H), 1.55 – 1.36 (m, 4H), 1.29 (m, 4H), 1.13 – 1.04 (m, 1H), 0.94 (m, 3H), 0.88 (s, 9H), 0.85 (s, 
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3H), 0.82 (s, 3H), 0.05 (s, 6H). 13C NMR (126 MHz, CDCl3) δ 213.30, 158.56, 131.33, 72.02, 

54.55, 51.47, 47.85, 45.03, 38.61, 37.14, 35.89, 35.69, 35.07, 31.59, 25.96, 21.80, 20.50, 18.29, 

13.83, 12.37, -4.55, -4.56. 

 

3-O-terbutyldimethylsylil-3β ,14β-dihydroxy-5α-androst-15-en-17-one (5.15a). Compound 

5.15 (180 mg, 0.5 mmol) was dissolved in dioxane (4 mL) and water (1 mL). Next, SeO2 (59 mg, 

0.60 mmol, 1.2 eq) was added and the RM was refluxed for 6h under Ar. The reaction mixture 

was then left to cool to RT and filtered over celite and concentrated under reduced pressure to a 

third of the original volume and extracted twice with CH2Cl2. Organic layers were washed with 

water, brine, dried over Na2SO4, and concentrated under reduced pressure. The resulting orange 

oil was purified by column chromatography (40-60% EtOAc/Hexanes) to give 60.4 mg of 5.14a 

(40%) as a white powder: mp 128.1-129.3 °C; HRMS m/z 831.6156 [2M+Na] (831.6119 calc. 

for C50H88NaO4Si2. 
1H NMR (500 MHz, CDCl3) δ 3.55 (ddd, J = 15.6, 10.8, 4.7 Hz, 1H), 2.43 

(dd, J = 19.3, 8.8 Hz, 1H), 2.11 – 2.01 (m, 1H), 1.96 – 1.89 (m, 1H), 1.82 – 1.75 (m, 2H), 1.72 – 

1.61 (m, 3H), 1.56 (s, 4H), 1.55 – 1.36 (m, 4H), 1.29 (dddd, J = 26.6, 21.9, 13.3, 2.7 Hz, 9H), 

1.13 – 1.04 (m, 1H), 0.94 (ddd, J = 23.5, 8.2, 1.9 Hz, 3H), 0.88 (s, 6H), 0.85 (s, 3H), 0.82 (s, 

2H), 0.05 (s, 6H). 13C NMR (126 MHz, CDCl3) δ 72.02, 54.55, 51.47, 47.85, 45.03, 38.61, 

37.14, 35.89, 35.69, 35.07, 31.89, 31.59, 30.98, 28.47, 25.96, 21.80, 20.50, 18.29, 13.83, 12.37, -

4.55, -4.56. 
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3-O-acetyl-3β-hydroxy-5α-androst-14,16-dien-17-yl trifluromethanesulfonate (5.15a'). A 

solution of 5.15 (50 mg, 0.12 mmol) in dried THF (2 mL) was cooled down to -78°C and 

KHMDS 0.5 M in toluene (0.5 mL, 25 mmol, 2.1 eq) was added dropwise via syringe under Ar 

and the mixture was left to stir for 1 h. Then, a solution PhNTf2 (51.4 mg, 0.14 mmol, 1.2 eq) in 

THF (1 mL) was added dropwise and left to stir at the same temperature for 2 h. Next, the 

reaction was quenched by adding NH4Cl (sat.) and extracted twice with CH2Cl2. The organic 

layer was washed with brine and dried over Na2SO4. The solvent was removed at reduced 

pressure and the residue was purified by column chromatography (2% EtOAc/Hexanes) to give 

38.5 mg (60%) of 5.15a as a white powder: mp 108.5-109.1 °C; HRMS m/z 1091.4783 [2M+Na] 

(1091.4792 calc. for C52H82F6NaO8S2Si2); 1H NMR (500 MHz, CDCl3 δ 6.08 (dd, J = 10.2, 2.9 

Hz, 1H), 5.73 (dd, J = 5.2, 2.9 Hz, 1H), 3.63 (ddd, J = 16.0, 11.1, 4.8 Hz, 1H), 2.19 (ddd, J = 

11.1, 5.8, 1.9 Hz, 2H), 2.05 – 1.96 (m, 1H), 1.96 – 1.88 (m, 1H), 1.87 – 1.78 (m, 2H), 1.74 (ddd, 

J = 13.8, 8.7, 3.2 Hz, 1H), 1.70 – 1.57 (m, 3H), 1.51 – 1.29 (m, 8H), 1.12 (s, 3H), 0.91 (s, 5H), 

0.86 (s, 2H), 0.71 – 0.62 (m, 1H), 0.10 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 160.29, 156.11, 

118.70 (CF3, q, J = 319.4)114.99, 114.00, 71.56, 57.49, 50.72, 44.67, 37.85, 37.39, 36.12, 35.63, 

34.60, 31.28, 28.90, 28.20, 25.84, 25.76, 20.77, 17.42, 12.48, -2.80, -3.48. 
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3-O-Trimethylsylil-14-O-trimethylsylil-3β ,14β-dihydroxy-5α-androst-14-en-16,17-dione 

(5.16). In a microwave tube, compound 5.15 (20 mg, 0.05 mmol) and SeO2 (16.6 mg, 0.15 

mmol, 3 eq) were added followed by 1 mL of dry dioxane. The reaction mixture was heated in a 

microwave reaction at 110°C for 10 min. The product was filtered through celite and 

concentrated under reduced pressure. The resulting orange oil was purified by column 

chromatography (20-30% EtOAc/Hexanes) to give 12 mg of 5.16 (60%) as a white powder mp 

165.9-166.6°C; HRMS m/z 855.5384 [2M+Na] (855.5391 calc. for C50H80NaO6Si2) 
1H NMR 

(500 MHz, CDCl3) δ 6.54 (d, J = 1.5 Hz, 1H), 3.61 – 3.50 (m, 1H), 2.58 (dd, J = 7.5, 5.4 Hz, 

1H), 2.03 – 1.87 (m, 2H), 1.85 – 1.67 (m, 3H), 1.62 – 1.31 (m, 8H), 1.29 (s, 3H), 1.13 (ddd, J = 

14.8, 6.1, 6.0 Hz, 1H), 1.13 (ddd, J = 14.8, 6.1, 6.0 Hz, 1H), 0.99 (ddd, J = 11.6, 5.7, 3.3 Hz, 

1H), 0.92 (s, 3H), 0.88 (s, 9H), 0.05 (s, 6H); 13C NMR (126 MHz, CDCl3) δ 203.41, 190.58, 

188.20, 127.88, 71.73, 55.18, 46.44, 44.35, 38.42, 37.62, 36.98, 36.77, 33.33, 31.89, 28.54, 

27.65, 26.05, 20.33, 19.74, 18.38, 12.29, -4.44, -4.45.  
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