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Abstract

Determining anomalies in data streams that are collected and transformed from

various types of networks has recently attracted significant research interest.

Principal Component Analysis (PCA) is arguably the most widely applied un-

supervised anomaly detection technique for networked data streams due to its

simplicity and efficiency. However, none of existing PCA based approaches ad-

dresses the problem of identifying the sources that contribute most to the ob-

served anomaly, or anomaly localization. In this paper, we first proposed a

novel joint sparse PCA method to perform anomaly detection and localization

for network data streams. Our key observation is that we can detect anoma-

lies and localize anomalous sources by identifying a low dimensional abnormal

subspace that captures the abnormal behavior of data. To better capture the

sources of anomalies, we incorporated the structure of the network stream data

in our anomaly localization framework. Also, an extended version of PCA, multi-

dimensional KLE, was introduced to stabilize the localization performance. We

performed comprehensive experimental studies on four real-world data sets from

different application domains and compared our proposed techniques with sev-

eral state-of-the-arts. Our experimental studies demonstrate the utility of the

proposed methods.
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Chapter 1

Introduction

Anomaly detection is an important problem that has been researched within diverse research

areas and application domains. Anomaly detection refers to detecting the abnormal patterns

in data that do not conform to established normal behavior. Those non-conforming patterns

are referred to as outliers, change, deviation, surprise, aberrant, peculiarity, intrusion, etc.

Over time, anomaly detection in data streams that are collected and transformed from

various types of networks has recently attracted significant research interest in the data

mining community [5, 24, 51, 59]. Applications of the work could be found in network traffic

data [59], sensor network streams [5], social networks [51], cloud computing [44], and finance

networks [24] among others. The importance of anomaly detection in network data stream is

due to the fact that anomalies in network data stream is significant and critical information

in a wide variety of application domains. For example, anomalous network traffic usually

results from malicious activity such as break-ins and computer abuse which are interesting

form a computer security perspective. An anomalous event in optical sensor network could

mean that something is on fire. Anomalies in video surveillance may indicate insertion of

foreign objects.

Besides anomaly detection, another outstanding data analysis issue is anomaly localiza-

tion, where we aim to discover the specific sources that contribute most to the observed
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anomalies. Anomaly localization in network data streams is apparently critical to many

applications, including monitoring the state of buildings [58] to find the anomalous compo-

nents, or locating the sites for flooding and forest fires [14]. In the stock market, pinpointing

the change points in a set of stock price time series is also critical for making intelligent trad-

ing decisions [37]. For network security, localizing the sources of the most serious threats in

computer networks helps quickly and accurately repair and ensure security in networks [32].

Principal Component Analysis (PCA) is arguably the most widely applied unsupervised

anomaly detection technique for network data streams [21, 32, 33]. However, a fundamen-

tal problem of PCA, as claimed in [48], is that the current PCA based anomaly detection

methods can not be applied to anomaly localization. Our key observation is that the major

obstacle for extending the PCA technique to anomaly localization lies in the high dimen-

sionality of the abnormal space. If we manage to identify a low dimensional approximation

of the high dimensional abnormal subspace using a few sources, we “localize” the abnormal

sources. The starting point of our investigation hence is the recently studied sparse PCA

framework [62] where PCA is formalized in a sparse regression problem where each principle

component (PC) is a sparse linear combination of the original sources. However, sparse PCA

does not fit directly into our problems in that sparse PCA enforces sparsity randomly in the

normal and abnormal subspaces. In my thesis, we explore several directions in improving

sparse PCA for anomaly detection and localization.

First, we develop a new regularization scheme to simultaneously calculate the normal

subspace and the sparse abnormal subspace. In the normal subspace, we do not add any

regularization but use the same normal subspace as ordinary PCA for anomaly detection. In

the abnormal subspace, we enforce that different PCs share the same sparse structure hence

it is able to do anomaly localization. We call this method joint space PCA (JSPCA).

Second, we observe that abnormal streams are usually correlated to each other. For

example in stock market, index changes in different countries are often correlated. For

incorporating stream correlation in anomaly localization we design a graph guided sparse
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PCA (GJSPCA) technique. Our experimental studies demonstrate the effectiveness of the

proposed approaches on three real-world data sets from financial markets, wireless sensor

networks, and machinery operating condition studies.

Another drawback of PCA is it only considers the spatial correlation between different

streams but ignores the temporal correlation between different time stamps [4]. In order

to overcome this problem, we introduce a multi-dimensional Karhunen Loève Expansion

(KLE) as an extension of PCA to take care of both temporal and spacial correlations. PCA

is a special case of multi-dimensional KLE with only spacial dimension. The corresponding

methods are called joint space KLE (JSKLE) and graph guided sparse KLE (GJSKLE)

respectively. The experiments proves that the JSKLE and GJSKLE stabilizes localization

performance effectively when considering both spatial and temporal correlations.

The remainder of the thesis is organized as follows. In chapter 2, we present related work

of anomaly localization. In chapter 3, we discuss the challenge of applying PCA to anomaly

localization. In chapter 4 we introduce the formulation of JSPCA and GJSPCA, and their

extended version JSKLE, GJSKLE, and the related optimization algorithm. We present our

experimental study in chapter 5 and conclude in chapter 6.
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Chapter 2

Related Work

Anomaly detection and localization has been the topic of a number of articles and books.

Next, I will first introduced several techniques used in anomaly detection and anomaly

localization. A variety of anomaly detection and localization techniques have been developed

in several research communities, some are specifically for certain application domain, some

are generic and applicable for many domain. Then we will cover the applications of these

techniques. Anomaly detection and localization have extensive use in a wide variety of

applications such as intrusion detection for computer security, fraud detection for credit

cards, insurance or health care, fault detection in condition monitoring systems and so on.

2.1 Current Anomaly Detection Techniques

There are a variety of methodologies used to do anomaly detection. Here we focus on

data mining-based anomaly detection techniques. Data mining techniques are well suited to

anomaly detection problem because it is a process of extracting “patterns” from large volume

of data. Specifically, when applied to network anomaly detection, data mining techniques

construct models that could automatically discover the consistent and useful patterns of

normal behaviors from the network data, and use these patterns to recognize anomalies and

intrusions.
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Based on whether data samples are labeled or not, the approaches fall into two categories:

supervised anomaly detection and unsupervised anomaly detection. Supervised outlier de-

tection techniques require the availability of a labeled training data set with labeled instances

for the normal as well as the outlier class. In such techniques, predictive models are built for

both normal and outlier classes. Any unseen data instance is compared against the two mod-

els to determine which class it belongs to. There are two major issues in supervised learning

algorithms. First, training data is imbalanced because the anomalous instances are far fewer

compared to the normal instances. Second, obtaining accurate labels is usually challenging.

Other than these two issues, the supervised anomaly detection problem is similar to building

predictive models.

Most supervised anomaly detection algorithms are classification based. In the training

phase, a classifier is learned using the available labeled training data. In the testing phase,

a test instance is classified as normal or anomalous using the classifier. Popular classifiers

include neural network, Bayesian network, Support Vector Machines and ruled based. A

neural network is trained on the normal training data to learn the different normal classes

and then each test instance is provided as an input to the neural network. If the network

accepts the test input, it is normal and if the network rejects a test input, it is an anomaly

[25, 40]. Bayesian networks have also been widely used. A basic technique using a naive

Bayesian network estimates the posterior probability of observing a class label (from a set of

normal class labels and the anomaly class label), given a test data instance. The class label

with largest posterior is chosen as the predicted class for the given test instance [54, 55].

Support Vector Machines (SVMs) have been applied to anomaly detection in the one-class

setting since 1995. Such techniques use one class learning techniques for SVM and learn a

region that contains the training data instances (a boundary). If a test instance falls within

the learnt region, it is declared as normal, else it is declared as anomalous [46, 60]. Rule

based anomaly detection techniques learn rules that capture the normal behavior of a system.

A test instance that is not covered by any such rule is considered as an anomaly [56, 50].
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An unsupervised outlier detection technique makes no assumption about the availability

of labeled training data. Thus, these techniques are more widely applicable. Several unsu-

pervised techniques make the basic assumptions such that the majority of the instances in

the data set are normal. Nearest neighbor based techniques, clustering, statistical model and

spectrum anomaly detection are most popular unsupervised anomaly detection techniques.

Nearest neighbor based techniques based on an assumption that normal data instances oc-

cur in dense neighborhoods, while anomalies occur far from their closest neighbors. Basic

nearest neighbor anomaly detection techniques can be broadly grouped into two categories:

anomaly score is the distance of data instance to its kth nearest neighbor, or computed as

the density of the data instance. Clustering based techniques usually consist of two steps.

First, the data is clustered using a clustering algorithm such as k-means, Expectation Maxi-

mization and DBSCAN. In the second step, for each data instance, its distance to its closest

cluster centroid is calculated as its anomaly score [15, 35, 17]. Statistical techniques usually

have some assumption on the distribution of given data. By applying statical inference test

we determine if an unseen instance is normal or abnormal. Normal instances occur in high

probability regions of the statistical model while anomalies occur in a low probability regions

of the stochastic model [18, 52]. Spectral anomaly detection techniques try to find a lower

dimensional subspace in which normal instances and anomalies appear significantly different.

Principal Component Analysis is the most widely used. Principal Components capture the

normal and abnormal behaviors underlying the data and projection of data instances on

principal components is used to make detection decision [21].

From another point of view, based on the data used in detection procedure, anomaly

detection from network data streams are divided into two categories: those at the source

level and those at the network level. The source level anomaly detection approaches embed

detection algorithm at each stream source, resulting in a fully distributed anomaly detection

system [19, 34, 44]. Detection is based on individual data and decision is made for each

source. The major problems of these approaches are two folds: some source level anomalies
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may not be indicative of network level anomalies due to the ignorance of the rest of the

network [21], and there may not be available space to perform anomaly detection in each

source. To improve source level anomaly localization methods, several algorithms have been

recently proposed to anomaly at the network level. The network level anomaly detection

approaches take the whole network into consideration. Since the decision is made based on

the entire network, the network level anomaly detection approaches are not as knowledgeable

about any source specifics. This leads to one of the major restrictions: they usually fail to

pinpoint which sources should be responsible for the anomalies, that is, anomaly localization.

2.2 Current Anomaly Localization Techniques

Source level anomaly detection embeds detection algorithm at each stream source and makes

decision for each source. Hence anomaly detection and anomaly localization are finished in

one step. For network level anomaly detection, anomaly localization is an additional step

after anomaly detection. More specifically, network level anomaly detection is a binary

decision such that whether the whole network is normal or abnormal. If the network is

abnormal, we need to go one step further to determine which sources are responsible for the

observed anomaly.

Some algorithms have been recently proposed to localize anomaly at the network level.

Brauckhoff [3] applied association rule mining to network traffic data to extract abnormal

flows from the large set of candidate flows. Their work is based on the assumption that

anomalies often result in many flows with similar characteristics. Such an assumption holds

in network traffic data streams but may not be true in other data streams such as finance

data. Keogh et al.[30] proposed a nearest neighbor based approach to identify abnormal

subsequences within univariate time series data by sliding windows. They extracted all

possible subsequences and located the one with the largest Euclidean distance from its closest

non-overlapping subsequences. However, the method only works for univariate time series
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generated from a single source. In addition, if the data is distributed on a non-Euclidean

manifold, two subsequences may appear deceptively close as measured by their Euclidean

distance [53]. L. Fong et al.developed a nonparametric change-point test based on U-statistics

to detect and localize change-points in high-dimensional network traffic data [38]. The

limitation is that the method is specifically designed for the Denial of Service (DOS) attack

in communication networks and cannot be generalized to other types of network data streams

easily.

Most related to our work, Ide et al.[22, 23] measured the change of neighborhood graph

for each source to perform anomaly localization and developed a method called Stochastic

Nearest Neighbor (SNN). Hirose et al.[20] designed an algorithm named Eigen Equation

Compression (EEC) to localize anomalies by measuring the deviation of covariance matrix

of neighborhood sources. In these two studies, we have to build a neighborhood graph for

each source for each time interval, which is unlikely to scale to a large number of sources. In

[28], we proposed a two step approach that first computed normal subspace from ordinary

PCA and then derived a sparse abnormal subspace on the residual data subtracted from the

original data.

2.3 Applications of Anomaly Detection and Anomaly

Localization

Applications of anomaly detection could be found in computer related system [59], sensor

network streams [5], social networks [51], cloud computing [44], and finance networks [24]

among others.

Detection of malicious activity in computer related system refers to intrusion detection.

The malicious activities include flood-type attack, break-ins, and other forms of computer

abuse. These attacks are different from the normal behavior of the computer system, and

hence anomaly detection techniques are applicable in intrusion detection domain. There
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are multiple data sources for intrusion detection and the common ones are at host level

and network level. Based on the sources, Intrusion Detection System (IDS) are grouped into

Host-Based IDS and Network-Based IDS. These intrusion detection systems were responsible

for the security of an individual (host) machine instead of the security of the network as a

whole. In contrast to a host-based IDS, a network-based IDS monitors and protects the

network as a whole. The key challenge for intrusion detection is the large volume of data.

Such data usually involves thousands of connections so the anomaly detection techniques

need to be computationally efficient to handle these large sized inputs.

Fraud detection is another anomaly detection application which is applicable to many

industries including banking and financial sectors, insurance, credit card companies, stock

market and more [47, 45]. The fraud cases have to be detected from the available huge data

sets such as the logged data and user behaviors. The types of frauds mostly discussed in

recent papers are credit card frauds, mobile phone frauds, and insurance claim fraud. The

most important requirement of anomaly detection techniques in this domain is to detect

fraud in an online manner and as early as possible.

Anomaly detection and localization involving image data are are either interested in

motion detection and localization (changes in an image over time) or in abnormal regions

detection and localization on the static image [39, 6]. Image data has spatial as well as

temporal characteristics, hence anomaly analysis has to be done in both spatial and temporal

domain. One of the key challenges in this domain is the large size of the input. When dealing

with video data, online techniques are required.

When applied to sensor network, anomaly detection and localization are usually respon-

sible to detect faulty sensor from sensor network or detect events that are interesting for

analysis. For instance, anomaly detection is a critical step in nature disaster monitoring

including flooding and forest fire monitoring. Due to severe sensor resource constraints, the

anomaly detection and localization techniques need to be power efficient. Another challenge

is data is collected in a distributed fashion, and hence a distributed data mining approach
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is required to analyze the data [7, 57].

Anomaly detection has also been applied to several other domains such as detecting novel

topics or events a collection of documents or news articles, detecting anomalies in biological

data, detecting users whose behavior deviates from the usual behavior in a social network.
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Chapter 3

Preliminaries

We introduce the notations used in this paper and background information regarding PCA

and sparse PCA.

3.1 Notation

We use uppercase calligraphic letters such as X to denote a matrix and bold lowercase letters

such as x to denote a vector. Greek letters such as λ1, λ2 are Lagrangian multipliers. ⟨A,B⟩

represents the matrix inner product defined as ⟨A,B⟩=tr(ATB) where tr represents the

matrix trace. Given a matrix X we use xij to denote the entry of X at the ith row and jth

column. We use xi to represent the ith entry of a vector x. ||x||p = (
∑n

i=1 |xi|p)
1
p denotes

the lp norm of the vector x ∈ Rn. Given a matrix X ∈ Rn×p, ∥X∥1,q =
∑n

i=1 ∥x̃i∥q is the

l1/lq norm of the matrix X, where x̃i is the ith row of X in column vector form. Unless

stated otherwise, all vectors are column vectors. In Table 3.1, we summarize the notations

in our paper.
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Table 3.1: Notations in the paper.

Symbol Notation
S a set S
X matrix X
xij the entry of the ith row and the jth entry of matrix X
x a column vector x
xi the ith entry of the vector x
xi the ith column of the matrix X
x̃i ith row of X in column vector form

3.2 Network Data Streams

Our work focuses on data streams that are collected from multiple sources. We call the set

of data stream sources together as a network since we often have information regarding the

structure of the sources.

Following [10], Network Data Streams are multi-variate time series S from p sources

where S = {Si(t)} and i ∈ [1, p]. p is the dimensionality of the network data streams. Each

function Si : R → R is a source. A source is also called a “node” in the communication

network community and a “feature” in the data mining and machine learning community.

Typically we focus on time series sampled at (synchronized) discrete time stamps {t1, t2, . . . , tn}.

In such cases, the network data streams are represented as a matrix X = (xi,j) where

i ∈ [1, n], j ∈ [1, p] and xi,j is the reading of the stream source j at the time sample ti.

3.3 Applying PCA for Anomaly Localization

Our goal is to explore a Principal Component Analysis (PCA) based method for performing

anomaly detection and localization simultaneously. PCA based anomaly detection technique

has been widely investigated in [32, 21, 33]. In applying PCA to anomaly detection, one first

constructs the normal subspace V1 by the top k PCs and the abnormal subspace V2 by the

remaining PCs, then projects the original data on V(1) and V(2) as:

X = XV(1)V(1)T +XV(2)V(2)T = Xn +Xa (3.1)
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where X ∈ Rn×p is the data matrix with n time stamps from p data sources, Xn and Xa are

the projections ofX on normal subspace and abnormal subspace respectively. The underlying

assumption of PCA based anomaly detection is thatXn corresponds to the regular trends and

Xa captures the abnormal behaviors in the data streams. By performing statistical testing

on the squared prediction error SPE = tr(XT
aXa), one determines whether an anomaly

happens [21, 32]. The larger SPE is, the more likely an anomaly exists.

Although PCA has been widely studied for anomaly detection, it is not applicable for

anomaly localization. The fundamental problem, as claimed in [48], lies in the fact that there

is no direct mapping between two subspaces V(1), V(2) and the data sources. Specifically,

let V(2) = [vk+1, · · · ,vp] be the abnormal subspace spanned by the last p − k PCs, Xa is

essentially an aggregated operation that performs linear combination of all the data sources,

as follows:

Xa = XV(2)V
T
(2)

=

[
p∑

j=1

xjṽ
T
j ṽ1, · · · ,

p∑
j=1

xjṽ
T
j ṽi, · · · ,

p∑
j=1

xjṽ
T
j ṽp−k

]
(3.2)

where xj is the data from the jth source and ṽj is the jth row of V2 in column vector form.

Considering the ith column of Xa with the value
∑p

j=1 xjṽjṽ
T
i , there is no correspondence

between the original ith column ofX and ith column ofXa. Such an aggregation makes PCA

difficult to identify the particular sources that are responsible for the observed anomalies.

Although all the previous works claim PCA based anomaly detection methods cannot

do localization, we solve the problem of anomaly localization in a reverse way. Instead of

locating the anomalies directly, we filter normal sources to identify anomalies by employing

the fact that normal subspace captures the general trend of data and normal sources have

little or no projection on abnormal subspace. The following provides a necessary condition

for data sources to have no projection on abnormal subspace.

Suppose I = {i|ṽi = 0} is the set that contains all the indices for the zero rows of

V(2), then ∀t ∈ S, xt has no projection on the abnormal subspace. In other words, these

sources have no contribution to the abnormal behavior. Consider the squared prediction
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error SPE = tr(XT
aXa) and plug equation 3.2 in:

tr(XT
aXa) = tr(XaX

T
a )

= tr(VT
2X

TXV2)

= tr((
∑p

j=1 xjṽ
T
j )

T (
∑p

j=1 xjṽ
T
j ))

=

p∑
i=1

p∑
j=1

tr(ṽix
T
i xjṽ

T
j )

=
∑
i/∈I

∑
j /∈I

(xT
i xjṽ

T
j ṽi).

(3.3)

From equation (3.3), it is clear that ∀i ∈ I, the data xi from source i has no projection

on abnormal subspace and hence would be excluded from the statistics used for anomaly

detection. We call such a pattern with an entire row with zeros “joint sparsity”.

Unfortunately ordinary PCA does not guarantee any sparsity in PCs. Sparse PCA is a

recently developed algorithms where each PC is a sparse linear combination of the original

sources [62]. However existing sparse PCA method has no guarantee that different PCs share

the same sparse representation and hence has no guarantee for the joint sparsity.

To illustrate the point, we show the following example of anomaly detection and anomaly

localization in network data streams. This example will be used in the following chapters as

well.

We plot the normalized stock index streams of eight countries over a period of three

months in Figure 3.1. We notice an anomaly in the marked window between time stamps 25

and 42. In that window sources 1, 4, 5, 6, 8 (denoted by dotted lines) are normal sources.

Sources 2, 3, 7 (denoted by solid lines) are abnormal ones since they have a different trend

from that of the other sources. In the marked window, the three abnormal sources clearly

share the same increasing trend while the rest share a decreasing trend.

we plotted the entries of each PC for ordinary PCA and for sparse PCA (figure 3.2) for

the stock data set shown in figure 3.1. White blocks indicate zero entries and the darker

color indicates a larger absolute loading. Sparse PCA produces sparse entries but that alone
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Figure 3.1: Illustration of time-evolving stock indices data

does not indicate sources that contribute most to the observed anomaly.

Below we present our extensions of PCA that enable us to reduce dimensionality in the

abnormal subspace.
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Figure 3.2: Comparing PCA and Sparse PCA.
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Chapter 4

Sparse PCA for Anomaly Localization

In this section, we propose a novel regularization framework called joint sparse PCA (JSPCA)

to enforce joint sparsity in PCs in the abnormal space while preserving the PCs in the normal

subspace so that we can perform simultaneous anomaly detection and anomaly localization.

Then we consider the network topology in the original data and incorporate such topology

into JSPCA and develop an approach named Graph JSPCA (GJSPCA). We also extend

JSPCA and GJSPCA to JSKLE and GJSKLE, which taking the temporal correlation into

account as well as spatial correlation considered in JSPCA and GJSPCA.

4.1 Joint Sparse PCA

Our objective here is to derive a set of PCs V = [V(1),V(3)] such that V(1) is the normal

subspace andV(3) is a sparse approximation of the abnormal subspace with the joint sparsity.

The following regularization framework guarantees the two properties simultaneously:

min
V(1),V(3)

1

2
||X−XV(1)V(1)T −XV(3)V(3)T ||2F + λ||V(3)||1,2

s.t. VTV = Ip×p.

(4.1)
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Figure 4.1: Demonstration of JSPCA on three network data streams with one anomaly (solid
line) and two normal streams (dot lines).

Using one variable V, we simplify equation (4.1) as:

min
V

1

2
||X−XVVT ||2F + λ||W ◦V||1,2

s.t. VTV = Ip×p.
(4.2)

Here ◦ is the Hadamard product operator (entry-wise product), λ is a scalar controlling the

balance between sparse and fitness, W = [w̃1, · · · , w̃p]
T with w̃j is defined below:

w̃j = [0, · · · , 0︸ ︷︷ ︸
k

, 1, · · · , 1︸ ︷︷ ︸
p−k

]T , j = 1, · · · , p. (4.3)

The regularization term ∥W◦V∥1,2 is a L1/L2 penalty which enforces joint sparsity for each

source across in the abnormal subspace spanned by the remaining p−k principal components.

The major disadvantage of equation (4.2) is that it poses a difficult optimization problem

since the first term (the trace norm) is concave and the second term (the L1/L2 norm) is con-

vex. The similar situation was first investigated in sparse PCA [62] with elastic net penalty

[61], in which two variables and an alternative optimization algorithm were introduced. Here

we share the first least square loss term but with a different regularization term. Motivated
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by [62], we consider a relaxed version:

min
A,B

1

2
||X−XBAT ||2F + λ||W ◦B||1,2

s.t. ATA = Ip×p,

(4.4)

Where A,B ∈ Rp×p. The advantage of the new formalization is two folds: first, equation

(4.4) is convex to each subproblem when fixing one variable and optimizing the other. As

asserted in [62] disregarding the Lasso penalty, the solution of equation (4.4) corresponds to

exact PCA; second, we only impose penalty on the remaining p − k PCs and preserve the

top k PCs representing the normal subspace from ordinary PCA. Such a formalization will

guarantee that we have the ordinary normal subspace for anomaly detection and the sparse

abnormal subspace for anomaly localization. Note that Jenatton et al.recently proposed a

structured sparse PCA [26], which is similar to our formalization. But their structure is

defined on groups and cannot be directly applied for anomaly localization.

Figure 4.3 demonstrates the principal components generated from JSPCA for the stock

market data shown in figure 3.1. Joint sparsity across the PCs in abnormal subspace pin-

points the abnormal sources 2,3,7 by filtering out normal sources 1, 4, 5, 6, 8. Such result

matches the truth in figure 3.1.

4.2 Anomaly Scoring

To quantitatively measure the degree of anomalies for each source, we define anomaly score

and normalized anomaly score as following.

Definition 4.2.1 Given p sources and the abnormal subspace V(3) = [vk+1, · · · ,vp] from

JSPCA, the anomaly score for source i, i = 1 · · · p is defined on the L1 norm of the ith row
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Figure 4.2: Comparing different anomaly localization methods. From left to right: PCA, sparse
PCA, JSPCA, and GJSPCA.
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Figure 4.3: Comparing joint sparse PCA (JSPCA) and graph joint sparse PCA (GJSPCA).

of V(3), divided by the size of the row:

ζi =

p∑
j=k+1

|ṽij|

p− k
, (4.5)
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where ṽij is the ith entry of vj.

For each input data matrix X, (4.5) results in a vector ζ = [ζ1, · · · , ζp]T of anomaly

scores. The normalized score for source i is defined as:

ζ̃i = ζi/max{ζi, i = 1, · · · p}.

A higher score indicates a higher probability that a source is abnormal. We show the

anomaly scores obtained from PCA, SPCA, JSPCA, for the stock data in Figure 4.2. JSPCA

succeeds to localize three anomalies by assigning nonzero scores to anomalous sources and

zero to normal ones, while PCA and SPCA both fail. With abnormal scores, we can rank

abnormality or generate ROC curve to evaluate localization performance. Bellow, we give a

skeleton of algorithm for computing abnormal score and the detailed optimization algorithm

is introduced later.

Algorithm 1 Anomaly Localization with JSPCA

1: Input: X, k and λ1.
2: Output: anomaly scores.
3: Calculate a set of PCs V = [V(1),V(3)] (matrix B in equation (4.4)), V(1) is normal

subspace, V(3) is abnormal subspace with joint sparsity;
4: Compute abnormal score for each source by the definition (4.2.1);

4.3 Graph Guided Joint Sparse PCA

In many real-world applications, the sources generating the data streams may have structure,

which may or may not change with time. As the example mentioned in figure 3.1, stock

indices from source 2, 3 and 7 are closely correlated over a long time interval. If source 2 and

3 are anomalies as demonstrated in Figure 4.3, it is very likely that source 7 is an anomaly

as well. This observation motivates us to develop a regularization framework that enforce

smoothness across features. In particular, we model the structure among sources with an

undirected graph, where each node represents a source and each edge encodes a possible
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structure relationship. We hypothesize that incorporating structure information of sources

we can build a more accurate and reliable anomaly localization model. Below, we introduce

the graph guided joint sparse PCA, which effectively encodes the structure information in

the anomaly localization framework.

To achieve the goal of smoothness of features, we add an extended l2 (Tikhonov) regu-

larization factor on the graph laplacian regularized matrix norm of the p−k PCs. This is an

extension of the l2 norm regularized Laplacian on a single vector in [12]. With this addition,

we obtain the following optimization problem:

min
A,B

1

2
||X−XBAT ||2F + λ1∥W ◦B∥1,2+

1
2
λ2tr((W ◦B)TL(W ◦B))

s.t. ATA = Ip×p,

(4.6)

,

where L is the Laplacian of a graph that captures the correlation structure of sources

[12].

In Figure 4.3 we show the comparison of applying JSPCA and GJSPCA on the data

shown in figure 3.1. Both JSPCA and GJSPCA correctly localize the abnormal sources

2,3,7. Comparing JSPCA and GJSPCA, we observe that in GJSPCA the entry values

corresponding to the three abnormal sources 2,3,7 are closer (a.k.a. smoothness in the

feature space). In the raw data, we observe that sources 2,3,7 share an increasing trend.

The smoothness is the reflection of the shared trend and helps highlight the abnormal source

7. As evaluated in our experimental study, GJSPCA outperforms JSPCA. We believe that

the additional structure information utilized in GJSPCA helps.

The same observation is also shown in Figure 4.2. Comparing JSPCA and GJSPCA

we find that JSPCA assigns higher anomaly scores to source 2 and 3 but a lower score to

source 7, and GJSPCA has smooth effect on the abnormal scores. It assigns similar scores

for the three sources. The similar scores demonstrate the effect of smooth regularization
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Figure 4.4: From left to right: PC space for JSKLE and GJSKLE, abnormal score for
JSKLE, and GJSKLE.

term induced by the graph Laplacian. The smoothness also sheds light on the reason why

GJSPCA outperforms JSPCA a little in anomaly localization in our detailed experimental

evaluation.

4.4 Extension with Karhunen Loève Expansion

In this section, we extend our previous work with multi-dimensional discrete KLE. KLE was

first considered as a representation of a stochastic process on an infinite linear combination

of orthogonal functions [16], and usually named as continuous KLE. Later on, discrete KLE

was then given [31] and the its one dimensional version (PCA) has been successfully applied

to a broad domain of applications [32, 11]. The advantage of KLE over PCA is that KLE
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takes both spatial and temporal correlation into consideration while PCA only considers the

spatial correlation.

In [4], Brauckhoff et al. claimed that by extending PCA to KLE, they stabilized the

anomaly detection performance and solved the sensitivity problem of PCA when changing

the number of principal components representing the normal subspace [48]. Since JSPCA

and GJSPCA are based on PCA, they both involve the same problem proposed in [48].

Therefore, we extend our regularization framework to KLE, called JSKLE and GJSKLE

respectively towards the goal of stabilizing localization performance, which is illustrated in

our experimental studies.

Generalize PCA to KLE amounts for expanding the original data matrix X ∈ Rn×p to

X′ ∈ R(n−N+1)×pN in both spatial and temporal domain as follows:

X′T =



x1(1) · · · x1(t) · · · x1(n−N + 1)

..

.
. . .

..

.
. . .

..

.

x1(N) · · · x1(t+N − 1) · · · x1(n)

.

.

.
. . .

.

.

.
. . .

..

.

xp(1) · · · xp(t) · · · xp(n−N + 1)

.

..
. . .

.

..
. . .

.

..

xp(N) · · · xp(t+N − 1) · · · xp(n)



(4.7)

where N is the offset moving forward in temporal domain.

Our staring point is a one dimensional stochastic process x(t) with zero mean over time

interval t ∈ [a, b]. By the definition of KLE, x(t) admits a decomposition [49]:

x(t) =
∞∑
i=1

αiψi(t) (4.8)

where αi are pairwise uncorrelated random variables and the function ψi(t) are continuous
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orthogonal deterministic functions such that

ˆ
D

ψi(t)ψj(t)dt = δij

δij =

 0 if i ̸= j

1 if i = j
(4.9)

Suppose Kx(t, s) is the continuous covariance function of x(t), s.t.: Kx(t, s) = E[X(t)X(s)),

ψi are eigenfunctions of Kx(., .) and derived by solving the Fredholm integral equation:

ˆ b

a

Kx(t, s)ψj(s)ds = λiψi(t) (4.10)

The uncorrelated random coefficients αi are calculated as αi =
´ b

a
x(t)ψi(t)dt.

In real world applications, we can only access to discrete and finite processes. When

applying to a discrete and finite process, KLE discretizes the parameter t to obtain the

discrete version on temporal domain. Suppose a continuous stochastic process x(t) is sampled

at an equal interval △t and a n dimension vector x is

x = [x(1), x(2) . . . x(n)]T (4.11)

where n = b−a
△t

. In discrete version, covariance function Kx(t, s) turns into covariance matrix:

Γxx = E(xxT ) (4.12)

To estimate the covariance matrix Γxx, we use sliding window averaging algorithm as the

covariance estimator [41]. In this algorithm, computation of the estimated covariance matrix

essentially involves the averaging of outer products of a sliding window over x. More specif-

ically, a window of fixed size N moves forward in x. Each time it forms a N -dimensional

vector and the outer product is calculated. Averaging those outer products over all the
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vectors yields the estimated covariance matrix.

Definition 4.4.1 Given a scaler time series x, the estimate of covariance matrix Γxx using

a sliding window approach is defined as:

Γxx =
n−N+1∑

i=1

xixi
T (4.13)

where xi = [xi, xi+1, . . . , xi+N−1]
T is the subvector of vector x with length N . A normalization

factor is ignored, since it is irrelevant for the eigenvectors of Γxx.

The summation function in (4.13) can be given in matrix format Γxx = XTX, with the

following expanded data matrix X from a single vector x in (4.11):

XT =



x(1) x(2) . . . x(n−N + 1)

x(2) x(3) . . . x(n−N + 2)

...
...

. . .
...

x(N) x(N + 1) . . . x(n)


(4.14)

The integral equation (4.10) becomes a matrix eigenvector problem to solve the KLE

vector (or principal component) associated with X: Γxxψi = λiψi

The eigenvectors ψi capture the temporal correlation of one discrete stochastic process

(one stream) while the ordinary PCA we refereed previously, considers the spatial correlation

among different streams. In order to take both temporal and spatial correlation into account,

we extended KLE from one dimension to multi-dimensions to deal with multiple stochastic

processes.

From [49], a p-dimensional stochastic process from p sources is defined: X = [xT
1 ,x

T
2 , · · ·xT

p ]
T .

The ith component xi from the ith source takes the form in (4.11). Followed the equation

(4.12), covariance matrix is defined as:

ΓXX = E(XXT ) (4.15)

25



with the following covariance structure:

ΓXX =


Γx1x1 · · · Γx1xp

...
. . .

...

Γxpx1 · · · Γxpxp


Consider the covariance matrix estimator for one dimension KLE in equation (4.14) and

its corresponding data matrix format in (4.14), we have the data matrix X ′ for multi-

dimensional KLE defined in (4.7). The corresponding eigen vectors, which can be found

by solving ΓXXψi = λiψi considering both the temporal and spatial correlation.

However, it is nontrivial to adopt the regularization framework proposed in (4.4) and (4.6)

to expanded data matrix X ′ because the data stream from each source has been extended

from a vector to a matrix. The model parameters corresponding to each source also become a

matrix, namely B = [BT
1 , B

T
2 , · · · , BT

p ]
T where Bi is a N by pN matrix. The top k PCs of B

representing the normal subspace in regular PCA will become kN PCs after KLE extension.

Similarly, abnormal subspace is the rest (p− k)N PCs of B. More specifically, we consider

the following optimization problem similar to the objective of JSKLE:

min
A,B

1

2
||X′ −X′BAT ||2F + λ1

p∑
j=1

||Wj ◦Bj||F

s.t. ATA = IpN×pN ,

(4.16)

where Wj ∈ {0, 1}N×pN is the jth matrix block of WT = [W1,W2, · · · ,Wp] similar to (4.3)

with first kN columns being 0s and the rest being 1s:

Wj =


0 · · · 0 1 · · · 1

...
. . .

...
...

. . .
...

0 · · · 0 1 · · · 1


For GJSKLE, we have to adjust the structured trace regularization component for ex-
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tended data. Since each source has been extended to multiple streams, we take average

values across the N extended streams and make the average values smooth according to the

network topology. More formally, considering the following objective:

min
A,B

1

2
||X′ −X′BAT ||2F + λ1

p∑
j=1

||Wj ◦Bj||F

1
2N
λ2tr((W ◦B)TP TLP (W ◦B))

s.t. ATA = IpN×pN ,

(4.17)

where P ∈ {0, 1}p×pN is used to summing each block of B and defined as:

P =



1 · · · 1 0 · · · 0 · · · 0 · · · 0

0 · · · 0 1 · · · 1 · · · 0 · · · 0

...
. . .

...
...

. . .
...

. . .
...

. . .
...

0 · · · 0 0 · · · 0 · · · 1 · · · 1


In Figure 4.4, we show the PC space computed from JSKLE and GJSKLE. There are

two principal components representing the normal subspace and the rests presenting the ab-

normal subspace. Both JSKLE and GJSKLE highlight the abnormal sources while GJSKLE

shows a smooth effect on 3 abnormal sources 2, 3, 7.

For JSKLE and GJSKLE, the definition of abnormal score is a little different from that of

JSPCA and GJSPCA. Suppose the abnormal subspace is given byV(3)T = [V(3)
1,V

(3)
2, · · · ,V(3)

p]

(the rest (p − k)N columns of B from (4.16) or (4.17)), the anomaly score for source

i, i = 1 · · · p is

ζi =
||V(3)

i ||1
(p− k)N

(4.18)

where V
(3)
i is the ith matrix block of V(3).

Abnormal scores computed by JSKLE and GJSKLE are shown in Figure 4.4. JSKLE

and GJSKLE performs similarly to JSPCA and GJSPCA but they are insensitive to the

number of PCs representing the normal subspace, which will be studied in our experimental
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studies.

4.5 Optimization Algorithms

We present our optimization technique to solve equations (4.4), (4.6), (4.16) and (4.17)

based on accelerated gradient descent [43] and projected gradient scheme [2]. Since (4.16)

and (4.17) are similar to (4.4) and (4.6), our following discussion will focus on (4.4) and

(4.6). The solutions for (4.16) and (4.17) can be obtained by the same procedure with only

minor changes on calculating gradient and gradient projection.

Although equations (4.4) and (4.6) are not joint convex for A and B, they are convex for

A and B individually. The algorithm solves A, B iteratively and achieves a local optimum.

A given B: If B is fixed, we obtain the optimal A analytically. Ignoring the regulariza-

tion part, equation (4.4) and equation (4.6) degenerate to

min
A

1
2
||X−XBAT ||2F

s.t. ATA = Ip×p.
(4.19)

The solution is obtained by a reduced rank form of the Procrustes Rotation. We compute

the SVD of GB to obtain the solution where G = XTX is the gram matrix:

GB = UDVT

Â = UVT .
(4.20)

Solution in the form of Procrustes Rotation is widely discussed, see [62] for example for a

detailed discussion.

B given A: If A is fixed, we consider equation (4.6) only since equation (4.4) is a special

28



case of equation (4.6) when λ2 = 0, Now the optimization problem becomes:

min
A,B

1

2
||X−XBAT ||2F + λ1∥W ◦B∥1,2+

1
2
λ2tr((W ◦B)TL(W ◦B)).

(4.21)

Equation (4.21) can be rewritten as min
B

F (B)
def
= f(B) + R(B) , where f(B) takes the

smooth part of equation(4.21)

f(B) =
1

2
||X′ −X′BAT ||2F +

1

2
λ2tr((W ◦B)TL(W ◦B)) (4.22)

and R(B) takes the nonsmooth part, R(B) = λ1||W ◦B||1,2 . It is easy to verify that (4.22)

is a convex and smooth function over B with Lipschitz continuous gradient and the gradient

of f is: ∇f(B) = G(B−A) + λ2L(W ◦B).

Considering the minimization problem of the smooth function f(B) using the first order

gradient descent method, it is well known that the gradient step has the following update at

step i+ 1 with step size 1/Li:

Bi+1 = Bi −
1

Li

∇f(Bi). (4.23)

In [1, 43], it has shown that the gradient step equation (4.23) can be reformulated as a linear

approximation of the function f at point Bi regularized by a quadratic proximal term as

Bi = argmin
B

fLi
(B,Bi), where

fLi
(B,Bi) = f(Bi) + ⟨B−Bi,∇f(Bi)⟩+

Li

2
∥B−Bi∥2F (4.24)

Based on the relationship, we combine equations (4.24) and R(B) together to formalize the
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generalized gradient update step:

QLi
(B,Bi) = fLi

(B,Bi) + λ1||W ◦B||1,2

qLi
(Bi) = argmin

B
QLi

(B,Bi).
(4.25)

The insight of such a formalization is that by exploring the structure of regularization R(.)

we can easily solve the optimization in equation (4.25), then the convergence rate is the same

as that of gradient decent method. Rewriting the optimization problem in equation(4.25)

and ignoring terms that do not depend on B, the objective can be expressed as:

qLi
(Bi) = argmin

B∈M
(
1

2
∥B− (Bi −

1

Li

∇f(Bi))∥2F +
λ1
Li

||W ◦B||1,2). (4.26)

With ordinary first order gradient method for smooth problems, the convergence rate is

O(1/
√
ϵ) [43] where ϵ is the desired accuracy. In order to have a better convergence rate,

we apply the Nestrerov accelerated gradient descent method [43] with O(1/
√
ϵ) convergence

rate, and solve the generalized gradient update step in equation (4.25) for each gradient

update step. Such a procedure has demonstrated scalability and fast convergence in solving

various sparse learning formulations [9, 27, 36]. Below we present the accelerated projected

gradient algorithm. The stopping criterion is that the change of the objective values in two

successive steps is less than a predefined threshold (e.g. 10−5).

Now we focus on how to solve the generalized gradient update in equation (4.26). Let

C = Bi − 1
Li
∇f(Bi) and λ̄ = λ1/Li, equation (4.26) can be represented as:

qLi
(Bi) = argmin

B
(1
2
||B−C||2F + λ̄||W ◦B||1,2)

= argmin
b̃1,··· ,b̃p

∑p
j=1(

1
2
||b̃j − c̃j||22 + λ̄||w̃j ◦ b̃j||2)

(4.27)

where b̃T
j , c̃

T
j and w̃T

j ∈ Rp are row vectors denoting the jth row of matrices B, C and W.

By the additivity of equation (4.27), we decompose equation (4.27) into p subproblems. For
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Algorithm 2 Accelerated Projected Gradient Descent

1: Input: B0,W ∈ Rp×p, L1 > 0, F (.), QL(., .) and max-iter.
2: Output: B.
3: Initialize B1 := B0, t−1 := 0, t0 := 1;
4: for i = 1 to max-iter do
5: αi := (ti−2 − 1)/ti−1;
6: S := Bi + αi(Bi −Bi−1);
7: while (true) do
8: Compute qLi

(S) in Eq. (4.26);
9: if F (qLi

(S)) > QLi
(qLi

(S), S) then
10: Li := 2× Li;
11: else
12: break;
13: end if
14: end while
15: Bi+1 := qLi

(S), Li+1 := Li;
16: ti :=

1
2
(1 +

√
1 + 4t2i−1);

17: if (Convergence) then
18: B := Bi+1, break;
19: end if
20: end for
21: return B;
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each subproblem, we ignore the row index j:

min
b

1

2
||b− c||22 + λ̄||w ◦ b||2. (4.28)

The following theorem provides the analytical solution of equation (4.28).

Theorem 4.5.1 Given λ̄,w = [01×k,11×(p−k)]
T and c = [cT1 , c

T
2 ]

T where c1 = [c1, · · · , ck]T ,

c2 = [ck+1, · · · , cp]T and k is the number of PCs representing the normal subspace, the optimal

solution for (4.28) b∗ = [b∗
1
T ,b∗

2
T ]T is given by:

b∗
1 = c1

and

b∗
2 =

 (1− λ̄
||c2||2 )c2 ||c2||2 > λ̄

0 otherwise.
(4.29)

Proof 4.5.1 By the definition of the l2 norm, the equation (4.28) can be rewritten as:

min
b1,b2

1

2
||b1 − c1||22 +

1

2
||b2 − c2||22 + λ̄||b2||2 (4.30)

where b = [bT
1 ,b

T
2 ]

T . The solution can be found by decomposing (4.30) into two subproblems

and solving one ordinary least square problem and one least square problem with l2 norm

regularization. Since there is no regularization on b1 and the two subproblems are indepen-

dent, the optimal solution of the ordinary least square problem is b∗
1 = c1. With optimal b∗

1,

(4.30) degenerates to

min
b2

1

2
||b2 − c2||22 + λ̄||b2||2. (4.31)

The analytical solution of equation (4.31) is given in equation (4.29) and can be found by

forming Lagrangian dual. A detailed proof can be found in [36].

For JSKLE and GJSKLE, we perform the similar procedure but on a set of matrices Bi ∈

RN×(p−k)N due to the KL expansion. Then the solution B∗ = [B∗
1, · · · ,B∗

p]
T of (4.16) and
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(4.17) given A is obtained:

B∗
i =


(1− λ̄√

tr(CiCT
i )
)Ci

√
tr(CiCT

i ) > λ̄

0 otherwise

(4.32)

where Ci is the ith matrix block of C = [C1,C2, · · · ,Cp]
T = B − 1

L
∇f(B), and B is

computed from (4.25), (4.27) in an extended data matrix and principal components.

Algorithm 3 Graph Joint Sparse PCA (GJSPCA)

1: Input: X, k, λ1, λ2 and max iter.
2: Output: B.
3: A := Ip×p,G := XTX;
4: for iter = 1 to max iter do
5: Compute B given A using Algorithm 2;
6: Compute A given B via (4.20);
7: if (Converge) then
8: break;
9: end if
10: end for
11: return B;

We summarize what is briefly discussed previously for GJSPCA in the algorithm below.

Note that JSPCA is a special case of GJSPCA, we obtain the algorithm for JSPCA by

setting λ2 = 0. For JSKLE and GJSKLE, the only changes are the gradient of smooth parts

in the objective (4.16), (4.17) and projected gradient given by (4.32).

Given data matrix X ∈ Rn×p and the number of PCs representing normal subspace k

and regularization parameters λ1, λ2, GJSPCA optimizes two matrix variables alternatively

and returns the matrix B composed of ordinary PCs representing normal subspace and joint

sparse PCs representing the abnormal subspace.
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Chapter 5

Evaluation

We have conducted extensive experiments with three real-world data sets to evaluate the

performance of JSPCA and GJSPCA on anomaly localization. We implemented our version

of two state-of-the-art anomaly localization methods at the network level: stochastic nearest

neighbor (SNN) [23] and eigen equation compression (EEC) [20] since no executables were

provided by the original authors. We implemented all four methods with Matlab and per-

formed all experiments on a desktop machine with 6 GB memory and a Intel core i7 2.66

GHz CPU.

5.1 Data Sets

We used four real-world data sets from different application domains. For each data set, we

singled out several intervals with anomalies. The anomalies are either labeled by the original

data provided or manually labeled by ourselves when no labeling is provided. Note that we

are only interested in the intervals where anomalies really exist since we focus on localizing

anomalies. We used a sliding window with fixed size L and offset L/2 to create multiple

data windows from the given intervals. The sliding window moves forward with the offset

L/2 until it reaches the end of the intervals. We run all four methods on each data window

to evaluate and compare their performances.
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To run GJSPCA we calculated the pair-wise correlation between any two sources within

the window. We produced a correlation graph for the data streams with a correlation

threshold δ in that if the correlation between two sources is greater than δ, we connect the

two sources with an edge. This construction is meaningful because for highly correlated data,

streams influence each other and such influence has been shown critical for better anomaly

localization, as evaluated in our experimental studies.

Below we briefly discuss the data collection and data preprocessing procedures for the

three data sets. In Table 5.1, we list the intervals that we selected, the dimensionality of the

network data streams, the sliding window size L, and the total number of data windows W

for each data set. For KDD99 intrusion data set, T is the number of connections and p is

the number of features.

Table 5.1: Characteristics of Data Sets. D: Data sets. D1: Stock Indices, D2: Sensor, D3:
MotorCurrent, D4: Network Traffic. T : total number of time stamps, p: dimensionality of the
network data streams, I: total number of intervals for anomaly localization, Indices: starting
point and ending point of the intervals for anomaly localization, W : total number of data windows
for anomaly localization, W2: total number of data windows for anomaly detection L: sliding
window size, -: not applicable.

D T p I Indices W1 W2 L
D1 2396 8 4 [261-300], [361- 400] 12 - 20

[761-800], [1631-1670]
D2 11000 7 4 [2371-2530],[3346-3550] 37 1099 20

[7191-7215], [8841-8870]
D3 3000 20 1 [1-1500] 29 119 50
D4

(DOS) 391458 41 1 [1-391458] - - -
(Probe) 4107 41 1 [1-4107] - - -
(U2R) 52 41 1 [1-52] - - -
(R21) 1126 41 1 [1-1126] - - -

The Stock Indices Data Set: The stock indices data set includes 8 stock market

index streams from 8 countries: Brazil (Brazil Bovespa), Mexico (Bolsa IPC), Argentina

(MERVAL), USA (S&P 500 Composite), Canada (S&P TSX Composite), HK (Heng Seng),

China (SSE Composite), and Japan (NIKKEI 225). Each stock market index stream contains
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2396 stamps recording the daily stock price indices from January 1st 2001 to March 5th 2010.

Since this data set has no ground truth, we manually labeled all the daily indices for the

selected intervals. In our labeling we followed the criteria list in [8] where small turbulence

and co-movements of most markets are considered as normal, dramatic price changes or

significance deviation from the co-movement trend (e.g. one index goes up while the others

in the market drop down) are considered as abnormal.

The Sun Spot Sensor Data Set: We collected a sensor data set in a car trial for

transport chain security validation using seven wireless Sun Small Programmable Object

Technologies (SPOTs). Each SPOT contains a 3-axis accelerometer sensor. In our data

collection, seven Sun SPOTs were fixed in separated boxes and were loaded on the back seat

of a car. Each Sun SPOTs recorded the magnitude of accelerations along x, y, z axis with

a sample rate of 390ms. We simulated a few abnormal events including box removal and

replacement, rotation and flipping. The overall acceleration
√
(x2 + y2 + z2) was used to

detect the designed anomalous events.

The Motor Current Data Set: The Motor Current Data is the current observation

generated by the state space simulations available at UCR Time Series Archive [29]. The

anomalies are the simulated machinery failure in different components of a machine. The cur-

rent value was observed from 21 different motor operating conditions, including one healthy

operating mode and 20 faulty modes. For each motor operating condition, 20 time series

were recorded with a length of 1,500 samples. Therefore, there are 20 normal time series

and 400 abnormal time series altogether.

In our evaluation, we randomly extracted 20 time series out of 420 with the length 1500.

10 time series are from normal series and the rest are from abnormal series. Hence A data

matrix with size 1500 × 20 are used for anomaly localization. For anomaly detection, we

concatenate the data matrix for anomaly localization with all the 20 normal series to make

a new data matrix with size 3000× 20.

KDDCup 99 Intrusion Detection Data Set: The KDDCup99 intrusion detection

36



data set is obtained from UCI Repository [13]. The 10% training data set consisting of

494,021 connection records is used. Each connection can be classified as normal traffic or

one of 22 different classes of attacks. All attacks fall into four main categories: Denial-

of-service (DOS), Remote-to-local (R2L), User-to-root (U2R), and Probing (Probe). For

each connection, 41 features are recorded, including 7 discrete features and 34 continuous

features. Since our algorithm is calculated for continuous features, the discrete features

such as protocol (TCP/UDP/ICMP), service type (http/ftp/telnet/...) and TCP status flag

(SF/REJ/...) are mapped into distinct positive integers from 0 to W − 1 (W is the number

of states for a specific discrete feature). For three features spanning over a very large range,

namely “duration”, “src bytes” and “dst bytes”, logarithmic scale is applied to reduce the

ranges. Finally all the 41 features are linearly scaled to the range [0,1]. The task of anomaly

localization on the intrusion detection data set is to identify the set of features most relevant

to a specific anomaly, which is similar to feature selection.

5.2 Experimental Protocol

5.2.1 Localization Model Construction

For each data set, a sliding window with length L and offset L/2 is used to create multiple

data windows. Each data window is a data matrix with size L × p, in which p is the

dimensionality of network data streams. On Each data matrix, localization algorithms are

run to generate an abnormal score vector ζ̃ = [ζ̃1, · · · , ζ̃p]T with the size 1×p. The ith entry

of the score vector corresponds to the abnormal score of the ith source and represents the

probability that the source is abnormal.

With the sliding windows moving forward, we generated W1 data windows and an ab-

normal score matrix with the size W1× p was obtained as well finally. W1 is the number of

data window for localization and p is the number of sources. By comparing with a a cut-off

threshold between [0, 1], a localization prediction matrix with size W1 × p was obtained.
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Each entry in the prediction matrix is 0 or 1 to indicate whether the source is normal or

abnormal.

5.2.2 Detection Model Construction

For anomaly detection, we only tested on sensor dataset and motorcurrent dataset. Manually

labeling the whole stock market dataset is a huge amount of work therefore we only zoomed

in four abnormal intervals (as shown in table 5.1) and tested anomaly localization algorithms

on them.

One should notice that when labeling the abnormal intervals for localization tests, each

source is labeled as 1 or 0 in each time window, indicating the specific source is abnormal

or normal. However, when testing the anomaly detection performance, each time window is

labeled as 0 or 1, indicating the entire time window is normal or abnormal. This is because

PCA based methods is used to detect whether there is anomaly existing in the whole network.

The time window is labeled as 1 if there is one (or more than one) source(s) acts abnormal.

For anomaly detection test, a sliding window with length L and offset L/2 is also used

but in the entire dataset to create multiple data windows. In each data window, JSPCA is

used to calculate a residual, which will be discussed in next section. For the entire dataset, a

residual vector with size W2 is generated and then compared with a threshold to determine

if these specific time windows are normal or abnormal.

5.2.3 Model Evaluation

We used the standard ROC curves and area under ROC curve (AUC) to evaluate anomaly

localization and detection performance.

For anomaly localization, comparing the localization prediction matrix with the ground

truth matrix resulted in a pair of true positive rate (TPR) and false positive rate (FPR),

where TPR is the total number of true detected abnormal sources over the total number of

abnormal sources, and FPR is the total number of incorrect detected abnormal sources over
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the total number of normal sources in W1 windows. By changing the threshold from 0 to 1,

we obtained the ROC curve and the AUC value.

To obtain ROC curve for anomaly detection, we changed the threshold from 0 to the

maximum of residual and compared the threshold with the residual vector to get a series of

FPR and TPR.

For network traffic data set, we evaluated our method in a qualitative way because there

is no ground truth about which features contribute to the observed anomaly, also there is

no way to do manually label. For each category of anomaly, we show the abnormal score of

each feature and analyze with some prior knowledge such as what is the cause of a specific

attack, and how this attack effects the 41 features. To better demonstrate the effectiveness

of JSPCA and GJSPCA on network traffic data set, we also compare our results with those

obtained from other feature selection methods such as performance based ranking method

(PBRM) and Support Vector Decision Function Ranking Method (SVDFRM) [42].

5.2.4 Parameter Selection

We have several parameters to tune when doing anomaly localization. However, the change

of parameters has no effect on the performance of anomaly detection (except the number of

principal components k representing normal subspace) because the normal subspace has no

regularization. Since the emphasis of our work is on anomaly localization, we do not analyze

the sensitivity of detection results on k but just choose the number k which is best to do

anomaly localization.

To do anomaly localization, we have two parameters to tune in JSPCA: λ1: controlling

the sparsity, and k: the dimension of normal subspace. GJSPCA has two more parameters:

λ2: controlling the smoothness, and δ, the correlation threshold to construct the correlation

graph. JSKLE and GJSKLE introduce one more parameter: the temporal offset N . For the

other two methods, we need to select the number of neighbors k for SSN and the number of

clusters c for EEC. We first performed a grid search for each method to identify the optimal
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Table 5.2: Optimal parameters combinations on three data sets. J:JSPCA, GJ: GJSPCA,
JK:JSKLE, GJK: GJSKLE. The best temporal offset is 2 for all data sets

λ1 k λ2 δ
Data set J GJ JK GJK J GJ JK GJK GJ GJK GJ GJK
Stock 2−3 2−4 2−3 2−4 1 1 2 2 2−4 2−4 0.6 0.5
Sensor 2−7 2−5 2−6 2−5 1 1 2 2 2−6 2−6 0.6 0.7
Motor 2−2 2−2 2−2 2−2 5 5 7 8 2−8 2−8 0.5 0.6

parameters and then compared the performance.

For each data set, we tuned λ1, λ2 within {2−8, 2−7, · · · , 28}, δ from 0.1 to 0.9. k was

tuned from 1 to 4 for the stock market and sensor data, and from 2 to 7 for the motor

current data. , N was tuned from 2 to 5 for KLE based methods. All the ranges were set

by empirical knowledge. Our empirical study showed that the performance did not change

significantly as the parameters vary in a wide range, which reduced the parameter search

space significantly.

Table 5.2 lists the best parameter combination for JSPCA, GJSPCA, JSKLE and GJSKLE.

For SNN, we tuned the number of neighbors k in the range 2 ∼ 6 (for stock index data set

and sensor data) and in the range 2 ∼ 10 (for motorcurrent data) respectively. For EEC

method, the number of clusters c was tuned between 2 ∼ 4.

5.3 Anomaly Detection Performance

In this section, anomaly detection performance of JSPCA was evaluated on sensor dataset

and motorCurrent dataset. The result is shown in figure 5.1. JSPCA does anomaly detection

in the same way as PCA. Both of them use the first k principal components as normal

subspace. As we mentioned in previous chapter, in the normal subspace we did not add any

regularization and hence JSPCA has the same normal subspace as ordinary PCA. Therefore

its anomaly detection performance is the same (closed) as that of PCA.

JSPCA first calculated the principal component matrix: the first k columns as ordinary
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Figure 5.1: ROC curve for anomaly detection on sensor dataset and motorCurrent dataset.
AUC for sensor dataset is 0.7832, for motorCurrent dataset is 0.9688

normal subspace and the left n − k columns as joint sparse abnormal subspace. Then the

normal subspace was used for anomaly detection . By projecting data onto normal subspace,

the normal (modeled) component of data was extracted. The difference between original data

and normal part of data is called the residual, corresponding to the anomalies and noise.

Frobenius norm of residual(also called square prediction error (SPE)) was then calculated

and taken as a useful statistic for detecting abnormal changes. A larger SPE indicates the

higher probability there is an anomaly. Different thresholds were used to generate ROC

curve, shown in figure 5.1.

GJSPCA constructs the same normal subspace as JSPCA, and hence the anomaly de-

tection performance is the same and doesn’t show here.

5.4 Anomaly Localization Performance

In Figure 5.2, we show the performances for four methods on three different data sets. JSPCA

and GJSPCA clearly outperform the other two methods. The AUC value of JSPCA and

GJSPCA are both above 0.85 on three data sets, while that of EEC and SNN are around

[0.5 ∼ 0.6]. The first figure shows the four ROC curves for stock indices data. JSPCA

and GJSPCA are comparable although GJSPCA is slightly better. SNN performs worst on
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Figure 5.2: ROC curves and AUC for different methods on three data sets. From left to right:
ROC for the stock indices data, ROC for the sensor data, ROC curve for MotorCurrent data
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Figure 5.3: ROC curve for KLE extension methods on three data sets. From left to right:
ROC for the stock indices data, ROC for the sensor data, ROC curve for MotorCurrent data

this dataset with around 0.5 AUC value. ECC outperforms SNN at first, but SNN catches

up when FPR equals 0,63 and then stays better afterward. For the sensor dataset,SNN

outperforms ECC with a 0.33 AUC difference. On the last dataset, motorcurrent dataset,

SNN are ECC are comparable.

Both SNN and ECC are calculating abnormal score based on the deviation of neighbor-

hood graph and the graph is constructed from covariance matrix. The reason they perform

different in different dataset, in my mind, is ECC based on the assumption that the data

is from Gaussian distribution and abnormal score is calculated from distribution while SNN

has no assumption. When the specific dataset is approximately Gaussian distributed, ECC

is able to have a better performance and wise versa.

Compared with JSPCA, GJSPCA is slightly better, which supports our hypothesis on the

importance of incorporating the structure information of network data streams into anomaly

localization.
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Figure 5.4: AUC for different methods on three data sets
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Figure 5.5: pairwise ANOVA testing

We also test our KL extension of localization methods: JSKLE, GJSKLE. In Figure 5.3,

we show the performance of JSKLE and GJSKLE in comparison with JSPCA and GJSPCA

with N = 2.

With ANOVA (analysis of variance) test on JSPCA and GJSPCA (figure 5.5), we found

the F-ratio is 0.03 and p value is 0.8637. ANOVA test on GJSPCA and GJSKLE returns

a F value as 0.01 and a p value as 0.9408. Both of the p values are not small enough to

conclude statistical significance. Hence we conclude that KLE extension does not outperform

PCA based methods on anomaly localization. However, KLE extension stabilizes localization

performance, which will be shown in the section 5.6.

For the pairs with and without graph guided (JSPCA and GJSPCA, JSKLE and GJSKLE),

both p value are smaller than 0.5. The probability that JSKLE and GJSKLE are different

reaches 66% and that of JSPCA and GJSPCA is also above half. We conclude that structure

information of network data streams improves localization performance to some degree.

As mentioned earlier, anomaly localization on the KDDCUP 99 intrusion detection data
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Figure 5.6: Anomaly Localization Performance of GJSPCA, Stochastic Nearest Neighbor-
hood, Eigen-Equation Compression on Network Intrusion Data Set(DoS Attack)
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Figure 5.7: Most relevant features selected for different attacks

set performs as a feature relevant analysis. Localizing abnormal data streams amounts to

identifying features most related to a specific anomaly. More specifically, our algorithm aims

to identify a set of relevant features among all the 41 features for each type of attacks. The

features are indexed and given in Table 5.3.

In Figure 5.6, we show the abnormal scores for the 41 features under the attack of

Denial of Service (DOS) computed by SNN, EEC and GJSPCA respectively. Since four

joint sparse methods provide similar abnormal scores, we just show the result of GJSPCA

in figure 5.6. Feature 5, 6, 23, 24, 32, 33 are the most relevant for DOS attack, which is

reasonable since the nature of DOS attacks involves many connections to some host(s) in a

very short period of time. In Table 5.7, we summarize the most relevant features for each

attack obtained by GJSPCA, and two feature ranking algorithms described [42]: performance

based ranking method (PBRM) and Support Vector Decision Function Ranking Method
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Table 5.3: Features Indexes in KDD 99 Intrusion Detection Data set

List of Features
Basic Features 1. duration, 2. protocol type, 3. service, 4. flag, 5. source bytes, 6.

destination bytes
Content Fea-
tures

7. land, 8. wrong fragment, 9. urgent, 10. hot, 11. failed logins, 12.
logged in, 13. # compromised, 14. root shell, 15. su attempted, 16. #
root 17. # file creations, 18. # shells, 19. # access files, 20. # outbound
cmds, 21. is host login, 22. is guest login

Traffic Features 23. count, 24. srv count 25. serror rate 26. srv serror rate, 27. rerror
rate, 28. srv rerror rate, 29. same srv rate, 30. diff srv rate, 31. srv diff
host rate

Host-based Traf-
fic Features

32. dst host count, 33. dst host srv count, 34. dst host same srv rate,
35. same srv rate, 36. dst host same src port rate, 37. dst host srv diff
host rate, 38. dst host serror rate, 39. dst host srv serror rate, 40. dst
host rerror rate, 41. dst host srv rerror rate
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Figure 5.8: Left: original data in time interval [2001, 3300] in sensor dataset. Right: time
series of abnormal score calculated from left figure (with window size 20 and offset 10)

(SVDFRM). GJSPCA and the two baseline methods produce large consistent results.

5.5 Trend Analysis on Abnormal Score

Trend estimation is a statistical technique to aid interpretation of data. When a series of

measurements of a process are treated as a time series, the trend can be used to make and

justify statements about tendencies in the data. In particular, it is useful to determine if

measurements exhibit an increasing or decreasing trend which is statistically distinguished
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Figure 5.9: Left: original data in time interval [7391, 8000] in sensor dataset. Right: time
series of abnormal score calculated from left figure (with window size 20 and offset 10)
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Figure 5.10: Left: original data in motorcurrent dataset. Right: time series of abnormal
score calculated from left figure (with window size 50 and offset 25)

from random behavior.

By the definition of abnormal score in section 4.4, there is an abnormal score for each

window. As the window moving forward, we have a set of abnormal scores. It is natural to

view the abnormal score with different moving windows as a time series, in which each time

point corresponds to a window. An interesting question is to identify the trend of abnormal

score so that we can more deeply understand the abnormal events in data streams.

In Figure 5.8, we show the sensor data in time interval [2001, 3300] (S7 is the abnormal

source) and the abnormal score plot. From the Figure, we observe that when no anomalies

happen, the abnormal score is always 0; however, once anomalies happen, the score suddenly
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Figure 5.11: Left: original data in time interval [341, 420] on stock market dataset. Right:
time series of abnormal score calculated from left figure (with window size 20 and offset 5)

jumps to a high value. We carefully examined the trend in right panel of Figure 5.8 and

found no significant increasing or decreasing trend. A possible reason is that the abnormal

events that we simulated (e.g. removing a sensor out or flip a sensor) significantly deviate

from normal patterns. All the abnormal events generate large abnormal scores and there is

no clear trend. Similarly, we show another abnormal score plot in Figure 5.9 where S4 is the

anomaly. There is still no obvious trend on the abnormal score values.

In Figure 5.10, we demonstrate the original motor current data and the abnormal score

plot. To better demonstrate the change of abnormal score, we rearranged the normal and

abnormal time series to include both normal intervals and abnormal intervals. The abnormal

intervals are [500, 1000] and [1500, 2000] and the abnormal sources are D2 and D4. From

the Figure, we observe that the abnormal score is decreasing gradually and then increasing

excluding a few spikes in the abnormal interval. An interesting pattern is that there is a

sharp decreasing and then sharp increasing in the abnormal intervals. The explanation is

that the abnormal events happened only at peak points (as shown in the left figure) and the

rest readings are normal.

We show the similar study on stock index dataset. In Figure 5.11, the left is the original

data and we use one representative normal index as common trend and the rest two are

anomalies. The right panel shows the abnormal score. Obviously, when the other indices
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are co-evolving as the common trend evolves; the abnormal score is low, otherwise high. In

general, the trend of anomaly 2 is decreasing since it becomes more and closer to common

trend while the trend for anomaly 1 is increasing though there is a sharp decreasing at the

last point.

5.6 Sensitivity of Parameter

The performances of different methods depend on the parameter selection. In this section,

we evaluated the sensitivity of our methods to different modeling parameters. In order to

do so, we selected one parameter at a time, systematically changed its value while fixing

the others at their optimal values. Although our approaches have more parameters than

the other two methods, the sensitivity analysis shows that performances of our methods are

remarkably stable over a wide range of parameters. Next we show the sensitivity study on

the stock indices data set for the parameters λ1 and λ2, δ, k. Similar results are observed

on the other two data sets.

In Figure 5.12, we show the stability by changing λ1 in GJSPCA. We observe that AUC

is quite stable over a wide range of λ1. A similar phenomenon is also observed when changing

λ2. On the middle part of figure 5.12, we performed sensitivity analysis on parameter δ. We

observe that AUC remains stable for δ ∈ [0.15, 0.6]. When δ = 0, the graph is a complete

graph and the smoothness regularization will penalize the loadings of each source across the

PCs to be similar each other. Hence very low δ leads to a worse performance. On the other

hand, when δ = 1, the graph is just a set of isolated sources. The structure information is

missing, therefore the performance is not optimal.

An important parameter in PCA based anomaly detection is k, the number of PCs

spanning the normal subspace. In [48], Ringberg et al.claimed that the anomaly detection

performance was very sensitive to k. From the right part of figure 5.12, it is clear that

GJSPCA is still sensitive to the dimension of normal subspace. More specifically, the overall
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Figure 5.12: From left to right, sensitivity analysis of GSPCA on λ1, λ2, δ, and the dimension of
the normal subspace.

AUC gradually decreases from 0.96 to 0.72 as k changes from 1 to 3 and then increases to

0.77 at k = 4. However even in the worst case k = 3 it still has a good performance with

AUC= 0.73.

Figure 5.13 shows the parameters sensitivity of KL extension and demonstrates that the

effectiveness of KLE to stabilize performance.. The most noticeable improvement is the

sensitivity of k shown in the last figure. Compared with PCA based method, GJSKLE

successfully stabiles the localization performance when k changes. For k ∈ [1, 4], AUC

remains above 0.9. Specifically, For k = 2, AUC has a 5% increase to 0.94, compared with

the worst case 0.89 for k = 4. KL extension also has a considerable stabilizing effect on

sensitivity with δ changing. When δ changes from 0 to 1 with step 0.1, AUC increases to
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Figure 5.13: From left to right, sensitivity analysis of GJSKLE on λ1, λ2, δ, and the dimension of
the normal subspace.
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Figure 5.14: Sensitivity analysis of GJSKLE on N.

its optimum 0.94 at δ = 0.5, and then decreases 3% to its minimum 0.91 at δ = 1. The

sharp decrease in the range [0, 0, 1] and [0.6, 1] in the last figure of 5.12 becomes much more

50



moderate.

JSKLE and GJSKLE involves one more parameter: the temporal correlation range N .

To test the sensitivity of N , we repeated the experiments of KLE with different N from 1 to

5 on the finance data set. Note that (G)JSPCA is a special case of (G)JSKLE when N = 1.

The result is shown in 5.14. With the changing of N , AUC performance is very stable. The

difference between the optimal case (N = 1) and the worse case (N = 5) is just 0.07. It may

be apparent that N = 1 (degenerated to (G)JSPCA) is better than other cases. However by

selecting N = 2, AUC of GJSKLE is stabilized when changing δ and dimension of normal

space, as we can see the difference in last two figures of 5.13.
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