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Abstract

Migrating functionality from software to hardware has historically held the promise of enhancing

performance through exploiting the inherent parallel nature of hardware. Many early exploratory

efforts in repartitioning traditional software based services into hardware were hampered by

expensive ASIC development costs. Recent advancements in FPGA technology have made it

more economically feasible to explore migrating functionality across the hardware/software

boundary. The flexibility of the FPGA fabric and availability of configurable soft IP components

has opened the potential to rapidly and economically investigate different hardware/software

partitions. Within the real time operating systems community, there has been continued interest in

applying hardware/software co-design approaches to address scheduling issues such as latency

and jitter. Many hardware based approaches have been reported to reduce the latency of

computing the scheduling decision function itself. However continued adherence to classic

scheduler invocation mechanisms can still allow variable latencies to creep into the time taken to

make the scheduling decision, and ultimately into application timelines. This dissertation

explores how hardware/software co-design can be applied past the scheduling decision itself to

also reduce the non-predictable delays associated with interrupts and timers. By expanding the

window of hardware/software co-design to these invocation mechanisms, we seek to understand if

the jitter introduced by classical hardware/software partitionings can be removed from the

timelines of critical real time user processes. This dissertation makes a case for resetting the

classic boundaries of software thread level scheduling, software timers, hardware timers and

interrupts. We show that reworking the boundaries of the scheduling invocation mechanisms

helps to rectify the current imbalance of traditional hardware invocation mechanisms (timers and

interrupts) and software scheduling policy (operating system scheduler). We re-factor these

mechanisms into a unified hardware software priority scheduling model to facilitate
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improvements in performance, timeliness and determinism in all domains of computing. This

dissertation demonstrates and prototypes the creation of a new framework that effects this basic

policy change. The advantage of this approach lies within its ability to unify, simplify and allow

for more control within the operating systems scheduling policy.
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Chapter 1

Introduction

1.1 Operating Systems: A New Level of Portability

Operating systems are arguably the most fundamental system software component within

modern computing systems. A fundamental role of the operating system is to abstract and

manage the underlying hardware resources of the system [3]. Operating systems abstract the

underlying system hardware resources through the formation of a virtual machine. Client

processes interact with the virtual machine through a set of Application Programming Interfaces

(APIs). These APIs allow access to the hardware resources.

The role of the operating system as virtual machine traces its lineage back to the pioneering

work of the IBM OS/360 [4][5]. The OS/360 was a batch processing operating system made for

IBM’s System/360 Mainframe computer announced in 1964. IBM’s system software designers

sought to enable programmers to easily port both legacy and new application code across an

emerging family of new machine architectures. This early work freed programmers from having

to rework source code to match each different machine’s low level platform specific hardware

organization. Current operating systems such as Linux and Windows have evolved from this early

work to bring the same benefits of portability to all users. The development of operating systems
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Figure 1.1: Operating System Abstractions

was important because operating systems brought portability, higher level functionality and

decreased design time to all types of systems.

1.2 Overhead: The Cost of Portability

As a general rule, the benefits of portability and abstractions come at a tradeoff of decreased

performance[6]. Operating systems are not immune from this tradeoff. As executable programs,

they require processing time that takes away from cycles available for executing the application

program. Thus operating system execution time is generally referred to as overhead. The actual

overhead incurred by any operating system can vary based on changing system loads, and is also

dependent on a machines specific hardware organization.

For a large family of general purpose computing applications, the overhead and variance

introduced by the operating system are an acceptable tradeoff when compared to the benefits

provided through abstraction and reuse [7]. However, for certain classes of applications, such as
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those found in real time systems, the overhead and variance negatively affect the overall quality of

service that can be provided by the system. Operating systems researchers of embedded and real

time systems have historically sought to deliver operating systems that merge the benefits of

portability and abstraction associated with general purpose operating systems, but with reduced

latency and minimal jitter necessary for meeting real time requirements [8].

One of the primary resources that operating systems manage is the CPU itself. In today’s

complex systems, there can often be hundreds of processes competing for time on the CPU. To

manage time sharing of processes on the CPU, the operating system runs a scheduling algorithm.

Significant research over the last 30 years has been devoted to developing fair and appropriate

scheduling algorithms. The scheduler as a program requires CPU cycles to run its scheduling

algorithm. Thus, the act of running the scheduler itself can result in performance degradations for

the application programs. To minimize this effect user-level thread scheduling frameworks [9]

have been developed to allow groups of threads to schedule themselves. These frameworks allow

the use of special scheduling algorithms that are optimized for known thread requirements and

interactions of the program rather than relying on a one size fits all approach to scheduling.

Others have worked on making the operating system scheduler as fast as possible. Ingo

Molnar created a new scheduler in Linux[10], termed the O(1) scheduler, to make scheduling

decisions in constant time. The name O(1) can be misleading as the scheduler still has O(n)

timings for certain actions such as interrupt processing. However, the most frequent decision of

the scheduler, what thread should run next, is constant time, or O(1), with respect to the number

of threads in the system. This capability is important for real time systems that require very

precise timing of the scheduled applications. Any jitter introduced is essentially unwanted

variation in timing for a periodic real time thread [11]. To further lessen the impact of the

scheduler, later versions of Linux replaced the O(1) scheduler with the CFS, Completely Fair

Scheduler[12]. This scheduler uses a more complex data structure, a red-black tree, to shorten

more scheduling operations from O(N) to O(log n).
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1.3 Invocation Mechanisms: A Lasting Hardware Legacy

Even though the O(1) scheduler reduces the time taken to run the software scheduling

algorithm, additional overhead and variance can still be introduced when the scheduler is invoked

using historical invocation mechanisms. As an example, countdown timers are a familiar trigger

for invoking a scheduling decision in Linux. In a classic configuration, the timer computes a

periodic interrupt that represents a jiffy. During each jiffy interrupt, timers are checked and

expired timers are executed[13]. This introduction of time keeping as a service of the operating

system causes an additional overhead and variance because of a periodic interrupt.

In addition, interrupts are by definition asynchronous invocation mechanisms, and can have

fairly high processing overhead in modern computers[14]. A fundamental problem arises when

using interrupts as invocation mechanisms when very precise scheduling is required. The

interrupts stop the CPU before determining if a scheduling decision is required. Since some real

time threads could be a higher priority than interrupts, stopping the CPU to make a decision

causes jitter in the system.

There have been various software approaches used to explore how to lessen the overhead of

servicing interrupts. RTLinux[15] attempts to reduce the overhead of interrupts by creating an

additional register that allows the system software to quickly determine if the interrupt is

attempting to invoke real time or non-real time processing. The PREEMPT RT patch[16] for the

Linux kernel takes another software approach. This approach queues the interrupt in thread

context quickly, returning to a new scheduling decision, and possibly the previous task. These

software approaches attempt to minimize the overhead and jitter of checking the interrupt, but

they cannot fully eliminate it.

Scheduling policy is actually a combination of two scheduling mechanisms. This is true for

most types of computing policies. The policies are first dictated by the design of the hardware

they run on, and second, by the design of the software built to run on top of the hardware[17]. In
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scheduling policy, design is first dictated by the age old concept of hardware interrupts, and

secondly, by the software-based operating system scheduler. The design of the hardware can often

limit what is possible with software.

1.4 Hardware Software Co-design: An Answer?

This overhead and jitter caused by interrupts and the operating system itself take away

processing time and add timing uncertainty into the applications[18]. To eliminate this type of

overhead and jitter altogether cannot be achieved through software methods along, and requires

modifications to the underlying hardware micro-architecture. While researchers have long been

aware of the effects of inefficient invocation mechanisms, and overhead of running the scheduler,

the cost of refactoring these functions into special purpose hardware have been prohibitive. Chip

manufacturers are understandably reluctant to change baseline hardware designs, as these changes

would have an unacceptably large economic impact on system and application software. Creating

additional application-specific integrated circuit (ASIC) accelerators can also address the

problem, but they generally have non-recurring engineering costs in the millions of dollars range

[19] [20].

Recently, modern FPGAs have emerged that contain significant gate densities, diffused

components such as processors, and distributed SRAM based memories to form complete

multiprocessor systems on chip (MPSoPC) architectures[21]. Many embedded systems designers

are turning towards FPGAs to replace more expensive ASICS. FPGAs also represent convenient

testbeds for exploring migration of functionality across the software/hardware boundary[22].

Thus FPGA’s represent convenient sandboxes that can be used to explore different hardware

software partitionings in a quick and cost effective way. The growing adoption of FPGA’s as

hardware infrastructure within embedded systems then makes any exploratory work performed on

an FPGA available for use within these fielded systems. The Hybridthread system[23] is a great
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example of this exploration in embedded systems. Through the use of FPGAs the Hybridthreads

project has reimagined what an operating system looks like by transitioning many functions into

hardware, such as Scheduling, Mutexes and Condition Variables. This dissertation uses an FPGA

and the basis of Hybridthreads to explore and propose a new hardware/software repartitioning of

the scheduling algorithm, and the invocation mechanisms to enhance the traditional scheduling

goals of efficiency, timeliness, and predictability.

We perform our explorations under the constraint of not degrading the benefits associated

with portability and software reuse. These benefits have been at historical odds with the timing

constraints under which application designers typically must operate within the fields of

embedded and real time systems. We believe a new framework can be designed that achieves both

attributes by working within the framework of Linux. Our approach is to not alter or change the

policies or API interfaces of Linux, but rather the mechanism used to invoke them. This allows

our platform to enable desirable real-time capabilities into the general purpose operating system.

To validate the findings in this work, a wide range of tests have been run to evaluate different

performance characteristics of the new scheduling framework. The benchmarks have been

selected to show the effects on scheduling overhead, multi threaded performance, timing

accuracy, interrupt latency, interrupt control, and real time performance. These tests include

standard Linux benchmarks and programs such as Hackbench[24] and Apache[25] web server.

1.5 Dissertation Contributions

The contributions of this dissertation are:

• Integrating interrupts into the HybridThreads[26] [27] operating system scheduler

• Porting the HybridThreads operating system kernel to the Linux Platform

• Redesigning the interrupt and scheduler from the HybridThreads operation system into a
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unified scheduler to maximize results for lowest hardware cost

• Demonstrating and evaluating the effects of the unified model on common domain specific

use cases to previous approaches
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Chapter 2

Background

Operating systems continue to be a important and popular area of research due to their impact

on system performance. Recently the switch from scalar to manycore systems has reinvigorated

research on how the operating system should be restructured to better support scalable numbers of

heterogeneous processor resources. Central to these efforts are how the new requirements of

heterogeneous manycores will redefine the role and structure of the scheduler. The historical

objective of scheduling threads and processes on a single shared CPU was to increase the overall

utilization of the CPU. The switch to heterogeneous manycores is now causing researchers to

modify this objective function to minimize application latencies and not simply maximize the

utilization of a single shared resource. This is moving the scheduler towards the roll of a

dispatcher and bringing in scheduling latency issues that have been a driving scheduling research

within the discipline of embedded and real time systems . While traditionally limited to only

specialized embedded systems, real time functionality is now been sought in all domains of

computing.

There are many different ways to define a real-time system. A popular definition is “A

real-time system is one in which the correctness of the system depends not only on the logical

result of computation, but also on the time at which the results are generated”[28]. Generally
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there are two separate categories of real time, hard real time and soft real time. Hard real time is

when a missed deadline results in catastrophic failure, like the loss of life. Soft real time is when

missed deadlines generally result in bad user experience, such as skipping frames in multimedia

video. Operating systems are striving to be better equipped to handle real time tasks by improving

real time operating system performance metrics that include task switch time, interrupt latency,

preemption time, system call processing time, and overall run-time efficiency[29].

Another reoccurring theme in operating system research is the need for flexibility in design

and implementation of operating systems. A research operating system, K42 [30], was made to

show this need. This research operating system is designed for flexibility and monitoring. Its

subsystems are replaceable, and the core system has the monitoring infrastructure to rapidly

evaluate new research ideas. It has shown the fault of today’s operating system in their utilization

of nonflexible techniques like global data structures and global policies. K42 is only one of many

other research operating systems, like Exokernel [31], Spin [32], Vino [33] which illustrate

similar weaknesses in current operating system approaches.

Flexible component based operating systems generally start with a very small, fast and

efficient core, and expand on this through additional components. The SPACE project [34] takes

this approach in a new operating system abstraction, and is identified as a sub-micro kernel. It

takes scheduling out of the base kernel, aside from a very simple priority mapping of processes

groups, and lets an application decide its interaction inside the process group. This can be

beneficial from an application stand point as it can define the interaction between its threads.

Priority, and other scheduling models, may not extract maximum performance from these

applications.

A lot of the need for flexibility in an operating system comes from the additional overhead

incurred by every additional component. This has become apparent in super computer designs.

Recent studies[35] have even shown that operating system overhead on supercomputing clusters

affect performance so much that if a system is designed to dedicate and isolate operating system
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overhead, they can often achieve higher performance. This is done by designating one processor

of a multiprocessor node to not perform normal computation and only handle operating system

tasks, rather then trying to distribute the task to node running the application.

Another group, lead by Jean-Charles Tournier[36], has discussed the flexibility of an

a-la-carte operating system, or an operating system that can be dynamically built with the services

needed by the system. This way, systems such as supercomputers, the example in the paper, have

a more flexible model to eliminate costly scheduling algorithms, software timers, time slicing or

other unneeded components. They discuss Puma[37], a lightweight operating system for

massively parallel systems developed at Sandia National Laboratories. Puma is a small operating

system consisting of the quintessential kernel (Q-Kernel), the process control thread (PCT) and

the application processes(AP). This design allows for adaptation and elimination of the PCT, or

scheduling thread, if the system calls for it.

In a newer approach to supercomputing, the BEE2 project[38] has looked at a massively

temporal and spatial parallel system consisting of FPGAs. They have discussed many problems

from their concept of stream-based computing. The most notable is that the high bandwidth

nature of data through FPGAs causes hard real-time requirements into operating systems and

applications. Without real-time processing, the CPU backs ups requests and must pause the

FPGA from processing to catch up. Most of these real time requirements come from message

passing. The predictability of operating systems highly affect message passing performance, as

the slowest node of a computational cluster will cause others to idle to its speed during

synchronization. To avoid problems they have even chosen to only run the Linux kernel on one

node per board of five FPGAS. The other FPGAs run a micro kernel that is a slave to the Linux

FPGA to help better keep real-time requirements.

Another example of the effect of scheduling overhead is the HPC-Colony project[39], a

collaboration between Lawrence Livermore National Laboratory, the University of Illinois and

IBM which is funded by the Department of Energys Office of Science under the FastOS
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program[40]. This project is focused on services and interfaces for systems with 100,000+

processors. The project clearly defines problems in supercomputing domains with respect to

operating systems. They point out that Operating System processes and scheduling are much too

coarse-grained to allow accurate load balancing. In fact, the time wasted by the scheduler in

deciding the load balance often negates the benefit of load balancing.

In the same manner that super computing application exposes scheduling issues, multi

threading has many issues with respect to the scheduler[41]. Unfortunately, these are exceedingly

hard to quantize because of non-determinism of multi threaded systems. Projects, such as

LITMUSRT (Linux Testbed for multiprocessor Scheduling in Real-Time systems)[42], have

developed entire systems just to try and predictably measure this non-determinism. They establish

that the four sources of overhead of relevance are task preemption, migration costs, context

switching and scheduling overhead. They specifically leave out interrupts, going to lengths to try

and avoid them and other background activities in their system. They do this by booting into

single user mode to start only a minimal set of tasks. They establish in multiprocessor systems

that migration costs between processors have the highest impact in terms of performance.

Preemption and scheduling overhead are identified as sources for easy improvement because they

cause performance issues when scaling algorithms from tens to thousands of cores.

With respect to real-time systems, most traditionalists have ignored multi threading and

multiprocessor systems due to the lack of predictability inherent in the asynchronous models.

Some use multiprocessor systems, but limit the real-time applications to run on an isolated

CPU[43]. Redhawk Linux[44] is another example that uses this shielded processor approach to

achieve sub 1 millisecond response times on Linux. This helps to deal with the scalability issues

on scheduling algorithms on significant number of processor[45]. Recent work on this area[41]

suggests that solutions to this problem involve a move to deterministic switching and scheduling,

allowing multiple real-time tasks to complete deterministically, if deadlines have been proved

feasible.
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Most of this research points toward the idea of a low latency scheduler. Most future direction

of scheduling based research is summed up well by a group at Princeton University[46]. They

reiterate the idea of a new hardware/software contract. Software is to expose as much parallelism

through threads, and hardware is suppose to provide facilities to provide low latency scheduling

so as to not hinder multi threaded software. It is expressed as a chicken and egg problem. Due to

the overhead of multi threading, software developers often do not develop multi threaded software

because it can often be slower than single threaded software. This is generally true only when the

number of threads is greater than the number of cores available. In the same way, hardware

designers are reluctant to design high numbers of cores into processors because software cannot

yet use them efficiently.

Most experts agree that to properly make a low latency scheduler, hardware must be

utilized[47]. Migrating operating system functionality into hardware is not a new approach used

in the world of computing. Virtual Memory is a great example of another subsystem that has a

hardware component. This is generally due to the high cost of a software implementation. Virtual

memory in software requires twice the amount of memory accesses. One memory access is to

look up the translation from virtual to physical, and the additional access is to read the physical

memory. However, with a processor memory unit, this cost is greatly reduced when a cache hit is

made. Performance is not the only benefit of hardware. Power issues, a key in the embedded

market, has given support for operating system hardware development. As embedded devices

strive for power efficiency, they look to the obvious advantage of hardware over software in this

realm. Elais T. Silva Jr et al. [48] show many reasons for the case of middleware services in

hardware. They have developed a hardware core for Task Scheduling and Communication on top

of the Java Real Time Specification and the FemtoJava Processor. They find that a hardware

scheduler gives a more fine grain control to throttling processors, and can significantly increase

energy savings and battery life.
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2.1 Timers

Research in scheduling affects other areas, especially the area of timers. This is because the

design of most general purpose operating systems use periodic timers to regain control of the

system and measure the passage of time. This is quickly being determined as inefficient by many

recent efforts because this is a use of timers to do synchronous polling, which is known to be

inefficient as compared to asynchronous interrupts.

Many describe this as the failure of the timing tick[49]. The tick fails mostly due to the

resolution of the timer. For example Unix 6 in 1976 used a tick rate of 60 hz[50]. While this has

increased slightly, it is common for operating systems to have a 100 hz timer frequency. This has

been nearly unchanged for decades. This leads to failure in multiple arenas[51]. In the embedded

environment, power consumption has been tied to periodic timers. Every tick in the system must

wake up and waste power while taking care of operating system components dependent on the

tick. The solutions for the failure of the timer tick all point to eliminating this polling at an

operating system level and pushing it down to the hardware. This is done with one-shot timers,

although some operating system components need to be redesigned to work with them. These

timers along with other operating system overhead eliminate help to reduce System Noise[52] to

a minimum.

2.2 Interrupts

Interrupts, since their invention, have been both a blessing and a curse to real-time designers.

Although originally designed to facilitate real-time functionally by reducing latency through their

asynchronous nature, they have inherent drawbacks from a software point of view[53]. They are

generally non-portable across compilers and hardware platforms. Interrupts tend to expose race

conditions in software due to unpredictability. There is a need to design interrupts and interrupt

software in a safe and structured way. As more real time tasks move into software, even more care
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is needed to interact with interrupts. One manifestation of interrupt problems is interrupt

overload[54]. Newer hardware interfaces, such as the Universal Serial Bus(USB)and Gigabit

Ethernet, have high requirements on maximum interrupt frequency. Respectively, they can

generate on the order of 100,000 and 1,000,000 interrupts a second, and can pose significant

challenges for real-time systems[55]. This can cause many system problems, including the highly

publicized denial of service attacks. These attacks take form when enough persistent network

traffic causes millions of interrupts, exposing faults in how the operating system deals with

scheduling these interrupts, and processing network data. Some work has been done to mitigate

these effects in software. The Linux kernel has added the NAPI (”New API”)[56] as a device

packet processing framework that can switch drivers into polling mode during periods of high

traffic.

Care must, also, be taken in the testing of interrupts. Tests designed to test interrupts should

be random in nature[57]. They should be done with random uncorrelated events and stress the

system to help establish failure events. Current interrupt semantics challenge predictability and

timeliness by allowing asynchronous interrupts to temporarily stop the execution of the

application program. This, in return, introduces additional delays in terms of costly exception

processing and context switching. The performance degradation due to context switches will

continue to grow as next generation CPUs, with ever deeper pipelines and hierarchical caches,

introduce more states that must be saved during a context switch. Additionally, the interrupt

requests are serviced outside the system scheduler, and are not deterministically considered with

threads and processes within the ready-to-run scheduler queue.

There are three approaches to minimizing this effect. An operating system can process the

whole interrupt every time it is stopped. A simple approach, but causing lots of jitter to threads at

the advantage of short interrupt latency.

Most research in real-time operating systems (RTOSs) attempt to minimize the overhead of

exception processing and reduce the nondeterministic jitter by only executing a small portion of
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the interrupt service, routing the ”top half” of the routine. This top half typically saves data to a

buffer and schedules the ”bottom half” to process the data. This approach is a balance of thread

latency versus interrupt latency.

Lastly, the PREEMPT RT patch for Linux and other efforts [58] [59] simply marks an

interrupt as an enqueue thread operation and continues. Unfortunately, this approach must allow

the asynchronous request to occur and suffer the overhead and jitter of marking the interrupt as

pending. Due to the adherence of the current interrupt semantics, research in pure software-based

techniques has reached a plateau. This approach sacrifices interrupt latency significantly in efforts

to lower thread latency. The latency of ISR can become 3-10 times higher even if parts of the ISR

processing are outsourced to an external co-processor[60].

Research efforts like the SLOTH kernel[61] [62] take the opposite approach. Rather than

moving interrupts into thread context, they have moved threads into interrupt context. This avoids

interrupt latency, the main penalty of moving interrupts into thread. In fact, it shrink overall

latency considerably, considering the system scheduler becomes a multiple priority level interrupt

controller. It does have a few major drawbacks in that it is limited to the number of threads by the

interrupt levels in a system, and all threads must have a run to completion semantics without

blocking.

2.3 Linux

This plateau of software schedulers is now commonly found in general purpose schedulers. A

great example of a general purpose scheduler can be seen in the Linux operating system. Linux

was originally created by Linus Torvalds for use on his personal computer. It has since become a

community open source effort, and today reflects a lot of the widely accepted ideas about what an

operating system should be. It, currently, has made much progress in both the server and

embedded market, along with the original desktop market for which it was written. Its scheduler
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Figure 2.1: Traditional Scheduler Model

has many artifacts of the original hardware interrupt semantics, most notably the introduction of

softirqs and tasklets. Softirqs and tasklets are typically used in the traditional top and bottom half

interrupt paradigm. While the initial processing of an IRQ is in a dedicated response handler, the

majority of the work is typically performed at a later time in a softirq and tasklet. This has the

advantage of reenabling interrupts and even scaling softirqs or tasklets across multiple CPUs for

the majority of the work. However, this has shown how software has been used to redefine legacy

scheduling policy.

With speed and efficiency increases in computer technology, computers are doing even more

work. However this makes scheduling the work an even more difficult task. This is shown by the

ever evolving nature of the Linux scheduler. There has been much improvement recently, lead by

Ingo Molnar. Ingo Molnar [10] started by identifying six sources of long latencies in the Linux

kernel. He has established patches that have been incorporated into the mainstream kernel to fix

problems. The problems Ingo identified include calls to the disk buffer cache, memory page

management, /proc file system, VGA subsystem, large processes and the keyboard driver. His
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work has been adopted and methods extended through other patches relating to timing and

scheduling, such as the UTIME patch, developed at the University of Kansas[63]. UTIME adds

higher resolution timers into Linux. This is supplemented by many other projects, such as Rapid

Reaction Linux[64], which further improves upon these results through precalculating delays in

processing. Ingo Molnar makes a permanent mark on the Linux kernel history with his O(1)

scheduler introduced in the 2.6 version of the kernel. This scheduler accomplishes constant time

operations through a trade off of memory for speed. This change from v2.4 kernel has increased

the schedulers ability to handle a greater number of processes without performance degradation.

Much of this timing improvement has evolved into real time distributions of Linux like KU

Real Time Linux (KURT), RTLinux [65] and Timesys Linux [66]. These projects have

accomplished progress in speeding up real time[15] performance. To give better control to

application developers, an extension known as the Real Time Application Interface(RTAI)[67],

was made as a real-time extension to the linux kernel. These new APIs allow real-time

applications to run with strict timing constraints. These APIs have been utilized in many real time

systems involving motion control [68].

The KURT project has had further expansion into hardware through a hardware scheduler

module as seen through a recent thesis[69]. Feasibility of a hardware scheduler with the Linux

kernel is shown. Performance is not significantly improved in its design, although a distinct

improvement in worst-case scenario time is shown with the hardware scheduler.

Efforts in Linux have continued into new ideas and these continue to evolve projects like

HRTimers[70]. HRTimers further develop multiple timer systems that respond to the accuracy

needs of different applications. Not all timers are created equal. Some are just timeouts for

networking, and device drivers that rarely occur and do not need high resolution. Others are used

to schedule more important events, and need more accurate precision. By creating multiple

systems with different resolutions, overhead versus accuracy can be balanced.

More recently, the PREEMPT RT patch[71] for the Linux Kernel has been the widest used
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kernel for Linux real time systems. The PREEMPT RT is a combination of many previous ideas

of lower latency and preemptable kernel patches[72]. The biggest idea behind the PREEMPT RT

patch is to minimize the amount of kernel code that is non-preemptable. This results in priority

inheritance for many in-kernel spinlocks and semaphores to allow preemption. Many other

critical sections are also shortened, deferred or made preemptable. In addition, interrupts become

preemptable and can run in process context, allowing scheduling on the same priority level as

threads. The PREEMPT RT patch is one of the best approximations in comparison to some

hardware schedulers. It generally represents a plateau of what is possible in minimizing interrupt

jitter[73]. While it does not completely eliminate interrupt jitter because hardware interrupts still

cause the CPU to stop, it does the bare minimum to schedule the thread that services the interrupt.

After this, it goes back to the highest priority process.

Despite these improvements, the Linux scheduler still adds overhead to the system. This

project focuses on moving key aspects of the scheduler into hardware, primarily the run queue

and the decision of what should be scheduled next. This improvement allows the CPU time

consumed by the operating system scheduler to be reduced and made available to other processes.

2.4 Hardware Schedulers

Hardware scheduling has also been a popular research topic in the areas of real time and

embedded systems. With well co-designed hardware cores, the minimum level of jitter and

overhead can be significantly reduced [74][75][76]. However, despite this effort, most of the work

has not made an impact on mainstream computing. The questions of why and what can be

improved must be asked of these projects.

There are many different parts of scheduling to try to improve with hardware. Invocation

methods, scheduling algorithms and context switching make up the majority of time when doing

scheduling. While most historical hardware schedulers have focused on moving the scheduling
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algorithm to hardware, this research takes a different approach in that the focus is on all of the

invocation mechanisms. There has been little research into context switching, because it generally

needs a major architectural change in processors. Most of the original hardware scheduling units

involve complex hardware sorters to compare thread priority. Originally, work is done to

minimize sorting size in hardware but to keep the speed in insertion and extraction from the

hardware sorting mechanism[77]. A few examples of the first hardware scheduling systems

follow.

The Spring Kernel and Scheduling Co-Processor[78] is a project from the University of

Massachusetts seeking to enhance real time scheduling. The Spring Kernel is designed for

meeting hard real-time deadlines. The process sends scheduling requests to the kernel which can

only be accepted for execution if the deadline constraints are possible. From this work, they

design a scheduling co-processor showing significant improvements to scheduling. They even

recommend incorporation of this scheduling co-processor into general purpose processors, calling

it analogous to special purpose hardware for branch prediction[79]. This project starts a base line

for future endeavors. As hardware design techniques and technologies improve it gives way to

easier and larger hardware schedulers.

Sergio Saez of the Universidad Politecnice de Valencia proposes a circuit solution of a

sophisticated interrupt controller used as a scheduler[80]. It combines systolic arrays to achieve

constant time decisions. They propose a few advancements to real time deadlines. One

advancement is keeping deadline information in the hardware and looking for slack between

deadlines. This slack can be used to run lower priority processes with early deadlines. His designs

show the advantages and disadvantages of hardware schedulers with lots of process state

information. Although deadline information allows better hard real-time performance, the size

and complexity trade off makes it unsuitable for general purpose systems.

A group from Mlardalens University has created their ASIC hardware scheduler[81]. It can

handle up to 64 tasks at eight priority levels that can be mapped on up to three CPUs. Most of the
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communication between the processor and scheduler are done through interrupts and 4-6 bus

accesses to registers. It introduces new ideas on multiple CPU systems. However, its register

system has issues with atomic operations and extra care has to be given to this design. This

project shows how a hardware scheduler can support a tickless kernel. It determines a time model

for comparison of real-time systems and explores new hardware accelerated operating system

functions like semaphores.

Paul Kohout with the University of Maryland[47] has also designed and simulated a Real time

Task Manager (RTM) that takes the most common RTOS operations, like task scheduling, time

management and event management. It implements static priority scheduling for up to 64 threads.

His design differs from existing approaches, by taking a more minimalistic design. He has a

status and a timer register for each priority level. No other information is kept about priority

levels. In simulation, he shows results of 80-90% speed up in common scheduling tasks, even

though the hardware design is also very small. However, the system is lacking in that it is not

designed to accommodate interrupts. Although never actually implemented, this design

characterizes a base for this dissertation. The design is being expanded to a larger and more

general system while being implemented.

Early implementation of hardware schedulers focuses on a limited scope system that is as fast

as possible [75]. It usually includes a limited amount of threads and utilizes a great number of

hardware resources to achieve this goal. Generally these implementations require additional

hardware resources for each additional thread in the system because of the use of systolic

arrays[82]. With significant hardware resources needed, much planning is needed to implement

this type of system. This leans away from the idea of a general purpose system. This thesis seeks

to minimize hardware resources, only using hardware when there is a specific advantage to it.

After these initial designs, complex hardware scheduling designs evolve that begin to involve

interrupts and timers. A group from Georgia Tech[83] takes a look at moving the scheduler and

the periodic timer tick into hardware with interrupts at eight priority levels. Their scheduler is
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flexible and can be configured to three algorithms: Priority, Earliest Deadline First and Rate

Monotonic. This is an advantage provided by their hardware platform of FPGAs. The speed

development and dynamic programmability of FPGA allow their scheduler to be reprogrammed

to the best algorithm. Their synthesis hardware supports up to 16 tasks and eight external

interrupt sources. It is fairly extensive hardware and supports queue operations in hardware. This

advanced functionality has not been seen in previous generation projects due to lack of hardware

resources. This work improves hardware schedulers to a more modern scheduler design with run

queues and sleep queues. This group’s work shows significant improvement over earlier designs

and has set the foundation for future works.

More recently, a project called Hybridthreads[23] takes a more general approach to the

problem. The Hybridthreads project originated at the University of Kansas and has recently

migrated to the University of Arkansas. The Hybridthreads group created a hardware scheduler

and operating system that abstracted the notion of thread. This thread can be either a hardware or

software thread and is treated the same through the operating system. Hybridthreads are a unique

approach to hardware scheduling as it is geared toward FPGA hybrid hardware software systems.

Its hardware design is also unique in it is similar to the O(1) linux schedulers. It has a queue for

each priority level and is extremely fast and efficient in scheduling operations. The Hybridthreads

system has expanded into semaphores, timers and interrupts to support its hardware scheduler,

and extends its new hardware/software neutral threaded computational model.

This thesis is a branch off of the Hybridthreads project at the University of Kansas. One of

many projects taking the concepts of Hybridthreads and extending them [84]. The lessons learned

from creating a efficient, timely, and predictable hardware operating system in a hybrid

environment of hardware and software are being applied towards more general systems. More

specifically, Hybridthreads is ported to a mainstream platform, Linux. The knowledge learned

from this is used to redesign for software threads, removing the ability to support hardware

threads. Although new FPGA computational models are being developed and advancing quickly,
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their affect on general computing in the near future will probably be limited, hence, the redesign

of a scheduler to focus on software threads. The goal of this dissertation is to show that the

inclusion of a lightweight hardware scheduling core into the next generation of processor is

merited due to the increase in performance and response of all types of systems.
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Chapter 3

Solution

3.1 Problem Statement

Question: How can the knowledge gained from real-time hardware scheduler research be used

to improve a general-purpose operating system?

Hypothesis: Unifying scheduling policy by merging the mechanisms of hardware interrupts,

timers, and a software scheduler through creation of new hardware will facilitate improvements to

scheduling policy in efficiency, timeliness and predictability, while maintaining a full featured

general purpose scheduler.

3.2 Hybridthreads

Microkernels are changing the design of operating systems, however FPGAs are making it

easier to change the hardware software boundary in today’s operating systems. FPGAs do this by

allowing quick turn-around between hardware design and implementation. The logic fabric of an

FPGA can be reprogrammed in seconds, although typically taking a few hours to synthesize the

logic gates from hardware description languages. This new hardware testing paradigm has led to
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Figure 3.1: Hybridthreads Design

much experimentation in the hardware software boundary for a kernel. The Hybridthreads

microkernel from the University of Kansas[85] is a development of this new process. Through

experimentation with the hardware software boundary of operating system, the Hybridthreads

kernel was developed as an FPGA operating system that maximizes the parallel nature of its

specialized hardware circuit to execute common operating system tasks.

Each of these common system tasks are completed in an independent hardware core. The

cores independent design allow them to act in parallel. The hardware cores can communicate with

each other without processor intervention, enabling a variety of improvements. These

improvements include faster and more predictable responses from operating system service to

advanced interaction with specialized hardware cores[85]. The Hybridthreads system has

improved performance and predictability of the operating system through moving specialized

pieces of an operating system into hardware. Utilization of these hardware components to

off-load scheduling decisions has been shown to be a practical way to reduce OS jitter[85].

The Hybridthreads system is built with predictability as a design goal. The modules have

deterministic execution times and can all act in parallel to each other. They do not depend on the

CPU for execution and lack global shared data structures. The Hybridthreads operating system is

shown in Figure 3.1 and currently contains dedicated hardware components including:

• Thread Manager
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• Thread Scheduler

• Synchronization Manager

• Condition Variable Manager

With the exception of virtual memory, which typically has its own hardware unit, these cores

form a basic microkernel. These dedicated cores are programmed in VHDL. They are

implemented as custom finite-state machines, realized in hardware on an FPGA. The

Hybridthreads cores communicate over the FPGA’s internal bus and work together to form the

standard set of Operating System primitives, while being able to act independently of each other.

3.2.1 Memory Mapped I/O

Communication and interaction between Hybridthreads components happen through memory

mapped I/O over the system bus. The Hybridthreads system exploits the design of the master

memory bus to do the majority of its operations atomically through a load command. System

buses are typically designed to be atomic, only allowing a single operation at a time and blocking

access until that operation is done. Essentially, Hybridthreads is using the parallel arbitration

mechanism of the system bus, rather that establishing a software protocol to accomplish the same

idea. Parameters for the call are encoded into the lower bits of the load address, and the return of

the load indicate the results of this single atomic operation. This can be seen through a typical

memory map, as seen in Figure 3.2

While this operation does have the advantage of being atomic, it limits the amount and size of

arguments as a tradeoff for defined memory space. This can be seen in Figure 3.2. The Thread

Scheduler has been assigned 65KB of address space, giving it 16 bits of possible arguments. This

16 bits of arguments can be divided among command and arguments. In addition, the CBIS has

been assigned 1MB of address space, giving it 20 bits of possible arguments. Considering the

practical maximum of a 32 bit system, assigning 2GB or half the address space, gives 31 bits of
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Main Memory

Unused Space

Thread Scheduler

Thread Manager

CBIS (Interrupt controller)

Unused

0x00000000

0x3FFFFFFF

0x70000000

0x7000FFFF

0x7001FFFF

0x7011FFFF

0xFFFFFFFF

Figure 3.2: Address Map

arguments. Giving the thread scheduler, this amount of space would allow us to have 16

commands, 1024 priority levels, and 131072 threads. While this can be a slight constraint in a 32

bit system, 64 bit systems relax most of the design challenges this proposes. The extra address

space in a 64 bit system allows larger parameters without monopolizing the address space.

Alternatively, this limit can be worked around with store commands, which not only have an

address, but a value, thus doubling the amount of data one can send atomically. This extra

encoding comes at a cost because store commands do not allow a return value.

Memory mapped interface operating services have an advantage of allowing access from

software and hardware services. These hardware services, including operating system

components and other devices, can request service without stopping the CPU. This direct

hardware to hardware interaction for operating system services can facilitate new and interesting

interactions between hardware, including in Heterogeneous computing environments. In the

growing embedded System on a Chip market, this could include advanced interaction with
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Graphic Processing Units(GPUs)[86], Digital Signal Processors(DSPs)[87] and Modems[88].

The design of Hybridthreads takes full advantage of direct hardware to hardware

communications, with scheduling commands flowing from the synchronization, interrupt and

timer cores directly to the thread scheduler.

3.2.2 Thread Manager

The first core of Hybridthreads is the thread manager. The thread manager is responsible for

creating, deleting and maintaining state for the threads in the system. Internally, the thread

manager keeps track of state information, including running, suspended, exited or ready-to-run,

and parent/child relationship. The thread manager is, also, a liaison to the thread scheduler

because many thread management operations result in a scheduling decision. The thread manager

has two internal data structures, the thread status array and the thread identifier stack.

The thread identifier stack is a data structure that keeps track of unused thread IDs. It does

this through a LIFO (Last In First Out) stack created in a BRAM. When initialized, all the free

thread IDs are written into the BRAM in order. The stack pointer is initialized to the final entry.

As requests for new threads come in, the stack pointer, stored in a register, is deferenced into the

BRAM to grab the top of the stack. This value is returned for the new thread and the stack pointer

is decremented to the next BRAM value. As threads are deleted, the stack pointer is incremented

and the deleted thread ID is placed in the BRAM at the new stack pointer address for reuse.

The Thread Status Array, as seen in Table 3.1, is responsible for storing all the parameters and

run time status of a specific thread. It is implemented in a BRAM , with the thread ID as the

index. This includes thread ID, parent/child information, joinability, and exit status. Commands

to change and look up these data are simple reads and writes from the BRAM with the thread ID

as the index. This information is shared with the thread scheduler through the BRAM second

access port. This allows the thread scheduler to check on thread validity without contacting the

thread manager.
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Table 3.1: Thread Status and Identifier BRAM Layout

Field Width Bits
Stack Thread ID Entry 8 bits 0-7
Unused 8 bits 8-15
ParentID 8 bits 16-23
Detached 1 bit 24
Joined 1 bit 25
Used 1 bit 26
Exited 1 bit 27
Unused 4 bits 28-31

To save space and be more efficient in the FPGA implementation, the Thread Status and

Thread Identifier array share the same BRAM, as seen in Table 3.1. Xilinx Virtex 2 Pro has a

32-bit wide BRAM, natively. Since the arrays require 8 and 12 bits respectively, they can be

compressed into one BRAM. Conceptually, they are treated separate, but in the implementation

are shared. This does limit simultaneous access to the BRAM, but normal operations can serialize

their access.

Internally, a finite state machine responds to commands and compiles information into these

two data structures that are shared with the thread scheduler. For example, a Create call will cause

the Thread Manager to communicate that the thread needs to be enqueued with the scheduler.

These states form all the basic commands to create, delete and change status on threads. There

are, also, control signals that go between the thread manager and the thread scheduler, as shown

in Figure 3.3. These signals tell the scheduler when to update its status. A list of the thread

manager operations is in Table 3.2

3.2.3 Hardware Thread Interface (HWTI)

The Hybridthreads Thread Manager supports an abstract notion of a threads. The Threads

Manager implements a pthread interface to support software threads. In addition, it can support
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Figure 3.3: Block Diagram of Thread Manager and Scheduler

hardware threads. The concept of hardware threads is a bit different because hardware threads are

on uninterruptible and dedicated hardware computational units. The Thread Manager and the

other cores allow these hardware threads to interact with operating system primitive through the

Hardware Thread Interface (HWTI) core. This is a hardware core that abstracts access to thread

and synchronization operations. Allowing access to the same primitives, such as mutexes,

through a similar interface helps in porting algorithms from hardware to software. Increasingly,

complex interactions of specialized hardware units with the operating system are allowed with

operating system primitives accessible without interrupts.
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Table 3.2: Thread Manager Commands

Command Description
Create Create new thread and Reserve a new TID
Current Returns the current thread running
Next Gets the next thread to be run and sets it to current thread
Clear Deletes and thread and recycles TID
Is Queued Query if thread is in ready to run queue
Yield Yield Current thread to other threads of same priority
Exit Ends thread and notifies parent of exit status
Join Blocks parent thread until child exits
Detach Changes from joinable to detached thread

3.2.4 Thread Scheduler

Originally, the Hybridthreads system uses a simple FIFO scheduler built into the Thread

Manager[89]. However this poses a problem in which the storage for thread management and

scheduling operations are in the same state machine and these operations cannot happen in

parallel. To accommodate for more complex schedulers, the Hybridthreads teams decide to

separate the scheduling mechanism into a coprocessor. This thread scheduler can act

independently, but is often controlled by the thread manager through a special interface as to not

monopolize the system bus. This, also, allows a convenient interface for multiple scheduling

algorithms, since the scheduling algorithm is in a separate core. The growth of partially

reconfigurable FPGAs[90][91][92] allows changing the algorithm at run-time.

The second core in the Hybridthreads system is the thread scheduler. The thread scheduler

works in combination with the thread manager to control which thread is running on the CPU. It

is internally organized like the O(1) scheduler of Linux. It keeps track of a doubly linked list for

each priority level and uses a high speed priority encoder to determine the highest outstanding

priority in the system. It shares information with the thread manager through a few signals and a

shared BRAM. In addition, it has two additional data structures, a priority BRAM and another

thread scheduling parameter BRAM.
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Table 3.3: Thread Manager and Thread Scheduler Shared Signals

Signal Width
Next CPU Thread ID 8 bits
Current CPU Thread ID 8 bits
Command 12 bits

Table 3.4: Thread Scheduling Parameter BRAM

Field Width Bits
Queued 1 bit 0
Priority Level 8 bits 1-8
Ready to Run Queue Next Pointer 8 bits 9-16
Ready to Run Queue Previous Pointer 8 bits 17-24
Unused 7 bits 25-31

The shared signals are Next CPU Thread ID, Current CPU Thread ID and Command.

Next CPU Thread ID is a signal from the thread scheduler to the thread manager, indicating the

next highest priority thread to be run. Current CPU Thread ID is a signal from the thread

manager to the thread scheduler, indicating the currently running thread. These two signals are

constantly monitored to determine the Next Thread, of higher priority than the current thread.

When this happens, a traditional interrupt is sent to the CPU to kick off changing threads. The

Command signal includes both an action, Enqueue Request or Dequeue Request and a datum

value, a thread ID. These commands are done when the a thread manager operation needs to

enqueue or dequeue a thread, such as a delete thread call would dequeue a thread. This command

signal will kick off the appropriate thread scheduler logic to respond to the command.

The Priority BRAM, seen in table 3.5, is used to keep track of the data of the threads at each

priority level. It does this through a doubly linked list of each priority. The data structure is

indexed by priority level. The entry for each priority level contains a head and tail pointer to the

list of threads currently queued at that priority level.
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Table 3.5: Priority BRAM

Field Width Bits
Priority Queue Head Pointer 8 bits 0-7
Priority Queue Tail Pointer 8 bits 8-15
Unused 16 bits 16-31

These head and tail pointers point into the Thread Scheduling Parameter BRAM, seen in

Table 3.4, which is indexed by thread ID. The entries in this BRAM are priority, parameters,

previous thread, and next thread, creating a doubly linked list of all threads in a priority level.

Most operations are fairly quick given this doubly linked list. To add a thread to the queue, simply

deference the priority of the thread into the priority BRAM to find the tail pointer of the priority

list. With that tail pointer, index into the thread scheduling parameter BRAM and change the next

pointer in that entry to the newly added thread. Change the tail pointer to the thread being added

in the priority BRAM to complete the operation. More complex operations like dequeue, require

walking the list to find the entry and removing it. This is still fairly fast, given that the list is in

local BRAM memory.

A 256 bit register keeps track of the priorities with enqueued threads. The priority register is

updated on each thread operation to reflect the current state of the doubly linked priority list. If a

priority level has no threads in the list because no threads are ready to run, the corresponding bit

in this register will be 0. If the priority level has threads ready to be run, the corresponding bit in

the register will be 1.

A high speed encoder takes this 256 bit register and determines the highest bit set to 1. It

outputs the number of this highest bit as an integer representing the index of the highest priority

in the queue. This highest priority level is compared to the priority level of the current running

thread. If priority indicates a switch in running process, the thread scheduler will directly

interrupt the CPU and switch to the new thread. In parallel, it will fetch the Thread ID of the

pending processes from the priority BRAM head pointer for that priority level. The high speed

43



Table 3.6: Thread Scheduler Commands

Command Description
Enqueue Add thread to ready to run queue
Dequeue Remove thread from the ready to run queue
Get Entry Return a threads attributes
Toggle Preemption Allow the scheduler to preempt the CPU
Get Priority Sets a thread’s priority
Set Priority Sets a thread’s priority
Is Queued Test if thread is Queued
Is Empty Status Bit to see if threads are queued
Set SchedParam Return Scheduling Parameter Entry
Set Idle Thread Set Idle Thread ID
Get Idle Thread Set Idle Thread ID

priority encoder is able to calculate the highest priority level very fast in 5 clock cycles. This

allows for extremely fast and jitter free scheduling decisions.

The biggest advantage of this scheduler is that preemption only happens when a thread

change is in-progress. Scheduling operations do not speculatively have to include a check for

preemption with calls to the core schedule function. The preemption check is always done in

parallel. The thread scheduler allows many standard thread management calls to enqueue,

dequeue and set priority over the memory bus, allowing both hardware and software to do

scheduling operations. The operations of the thread scheduler are listed in Table 3.6

3.2.5 Linux Software Modifications

To get the Thread Scheduler and Thread Manager ported into Linux, many adjustments had to

be made to the Linux kernel. This includes modifications to both the Linux Scheduling function,

as seen in Table 3.7, and to the internal Linux structures
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Table 3.7: Modified Scheduler Functions

Command Description
sched init Initialization of Scheduler
enqueue task Add a task into scheduling queue
dequeue task Remove a task from scheduling queue
requeue task Move a task to the back of its priority queue
sched fork Creation of a thread
sched exit Thread ending execution
scheduler tick Periodic timer tick for updating jiffy
schedule Decide and switch threads
thread scheduler interrupt Custom Interrupt Handler for the Thread Scheduler

3.2.5.1 Data Structures

To support the Thread Manager, first, a correlation between the Linux thread ID and the

Hybridthreads hardware thread ID must be made. This is done by adding a hardware thread ID

integer to the task struct for each linux thread. This allows the internal scheduling functions to

easily access the Hybridthreads hardware thread ID. Secondly, a hardwareIDtoTaskStruct

mapping table is created. This table is updated upon creation or deletion of a thread. During calls

to the Hybridthreads cores, a call typically feeds in a hardware ID, or gets a hardware ID in

return. The task struct pointer allows a software call to easily get the hardware ID to make the

call. If a call returns a hardware ID, the hardwareIDtoTaskStruct makes conversion easy.

3.2.5.2 Functions Modifications

The basic linux scheduling functions map easily to the previous Hybridthreads Operating

System. Sched init initializes the hardware cores along with the rest of the linux scheduling code.

Sched fork and sched exit are modified to map task struct to hardware ID, and call the create and

delete commands to the thread scheduler. Enqueue task, dequeue task, and requeue task map

directly onto hardware calls. The biggest changes to the kernel come in the schedule call. In the

Hybridthreads version schedule becomes a null function. In software, schedule is typically called
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Table 3.8: Mutex BRAM

Field Width Bits
Mutex Queue Head Pointer 8 bits 0-7
Mutex Queue Tail Pointer 8 bits 8-15
Unused 16 bits 16-31

Table 3.9: Thread BRAM

Field Width Bits
Mutex Queue Next Pointer 8 bits 0-7
Mutex Queue Previous Pointer 8 bits 8-15
Unused 16 bits 16-31

to see if a context switch is needed. In the hardware case, this decision is always happening in

parallel and does not need to be executed in software. When a scheduling change is needed, the

thread scheduler interrupt handler will happen and will context switch to the next highest priority

in the system. Thread scheduler interrupt uses similar code to the context switch code at the end

of the schedule call to do this.

3.2.6 Synchronization Manager

The Synchronization Manager is a separate hardware unit to help facilitate synchronization

between threads. The manager implements POSIX compliant [93] mutexes are accessible as

memory-mapped I/O Commands. The recursive and non-recursive mutexes support locking and

unlocking. When locking an already locked mutex, the scheduler will block the current thread

until the mutex is free. All the commands are done through a single atomic read instruction on the

bus, allowing for simple atomic mutexes. Similar to the thread schedulers, the synchronization

manager has two data structures to keep track of mutexes, a mutex BRAM and a thread BRAM.

The mutex BRAM is indexed by the mutex ID, and contains a head and tail pointers to a

linked list of threads blocked by the mutex. The thread BRAM is indexed by thread and

46



Table 3.10: Synchronization Manager Commands

Command Description
Lock Blocks thread until mutex can be locked
Try-Lock Try to lock mutex, but do not block
Unlock Unlocks a mutex, enqueue next owner
Owner TID of owner of Mutex
Kind Type of Mutex, FAST, RECURSIVE
Count Recursive count of the Mutex

completes the doubly linked list through its previous entry and next entry for each thread.

A call to lock a mutex essentially indexes in the mutex BRAM. If free, the thread ID of the

calling thread is marked as the owner of the mutex. If already locked, the thread is added to the

doubly linked list through manipulation of the tail pointer, and updating the previous tail pointer

thread to point to the newly queued thread. Other operations are fairly similar to the other

hardware core, and simple involve manipulating the linked list in local BRAM memory.

As mutexes are unlocked, the synchronization manager will directly issue a call to the thread

manager to enqueue the next waiting thread. This causes a parallel scheduling decision and

possibly a preemption of the current thread.

With this internal organization, the synchronization manger is very fast and completes

operations in 5 clock cycles or less. This, combined with the single atomic read instruction on the

bus, allow for incredibly efficient synchronization. A list of the operations of the synchronization

manager is included in Table 3.10.

3.2.7 Condition Variable Manager

Similar to the synchronization manager, the condition variable manager helps facilitate

coordination between threads. It implements the concept of POSIX compliant condition variables

and allows the management of scheduling threads based on the condition variables. A condition
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Table 3.11: Condition Variable Manager Commands

Command Description
Wait Blocks thread until condition is meet
Signal Signal and unblock single thread on condition
Broadcast Signal and unblock all threads on condition

variable allows a thread to wait on a certain condition to exist. Many threads can block on the

same condition and eventually the condition is signaled or broadcasted. A signal will enqueue a

signal thread waiting, while a broadcast will enqueue all threads waiting. Like the

synchronization manager, it directly communicates to the thread scheduler dequeuing and

enqueueing threads as the condition variable paradigm dictates.

The condition variable manager has data structures similar to the synchronization manager.

Through the use of BRAMs, a linked list of the threads, waiting on a condition variable is made

and the threads are dequeued from that list as signal or broadcast operations are made. This is

done through a condition variable BRAM, containing the head and tail pointer of the doubly

linked list, and a Thread BRAM containing the next pointer. Most operations for the Condition

Variable manager are fast, however a broadcast call can take additional time, depending on the

number of threads that need to be enqueued. The operations of the condition variable manager are

listed in Table 3.11

3.3 Extensions to Hybridthreads

From these original cores, this work extends Hybridthreads through a new CPU Bypass

Interrupt Scheduler (CBIS) for interrupt management. The original Timer Core for Hybridthreads

is also extended for better integration with Linux.
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Figure 3.4: CPU Bypass Interrupt Scheduler

3.3.1 CPU Bypass Interrupt Scheduler (CBIS)

The CBIS, in combination with the hardware thread scheduler, allows the concept of a unified

priority model. Because interrupts go into the CBIS and directly to the thread scheduler over the

bus, the CPU does not need to process the interrupt, unless the thread scheduler determines that

the interrupt threads are a higher priority than the running threads. Essentially, this brings a new

unified priority model that allows a programmer the choice to have interrupts at high priority,

emulating a traditional system, or intermixed with real time threads.
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Table 3.12: CPU Bypass Interrupt Scheduler Commands

Command Description
associate Blocks thread until interrupt occurs
enable Enables an interrupt
disable Disables an interrupt
clear Clears pending interrupt bit
read associated Returns thread ID associated to thread
read pending Reads status of pending interrupt registers
read enabled Reads status of enabled interrupt registers

Table 3.13: CBIS BRAM

Field Width Bits
Reserved 1 bits 0
Thread ID 8 bits 1-8
Unused 23 bits 9-31

3.3.1.1 Overview

The design of the CBIS is fairly simple and a list of the operations of the CPU Bypass

Interrupt Schedulers is included in Table 3.12. A block diagram of the CBIS can be seen in Figure

3.4. The CBIS consists of two data structures, an interrupt reservation table BRAM and an

interrupt capture logic.

The interrupt reservation table is a simple BRAM that is indexed by an interrupt number. In

each entry, there is a marker if the interrupt is reserved, and what thread ID is associated with that

interrupt. This interrupt reservation table is updated on the blocking associate command.

Essentially, an interrupt processing thread will atomically execute the associate call while waiting

for more interrupts. During the associate call, the CBIS will check if there is a pending interrupt.

If there is a pending interrupt, the call will return immediately for processing. Otherwise, the

thread will be blocked and associated with the interrupt in the internal BRAM. The thread

scheduler will run another thread until an interrupt occurs.
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The second data structure is the interrupt capture logic. Similar to most interrupt controllers,

the interrupt capture logic responds to either a level triggered interrupt or an edge triggered

interrupt. Once an interrupt is noticed, a pending bit is set. This pending bit is logically ANDed

with the enabled bit. An enabled bit is only set when an interrupt has been associated with it. The

combination of these tell the CBIS when an interrupt should be processed. This logic is fed

through a priority encoder to go from the interrupt line to highest interrupt number pending.

When the interrupt happens, the priority encoder determines the number of the interrupt to be

processed. This kicks off the control FSM and indexes into the BRAM to receive the thread

associated with the interrupt. This thread is sent to the thread scheduler to be enqueued. Typically,

once the thread scheduler decides to run the interrupt service thread, the thread will clear the

pending bit, do the work of the interrupt, and reassociate to the interrupt completing the cycle.

3.3.1.2 Hardware Implementation

The CBIS is implemented on a Xilinx ML310 platform. The core is written in VHDL and

follows Xilinx’s OPB User Core Template. The OPB, On Chip Peripheral Bus, is Xilinx’s way to

create custom core and have them access the same address spaces as the PowerPC 405 chip. The

OPB bus is 32 bits and supports multiple master devices along with slave devices. This OPB bus

is available on many Xilinx Platforms.

For our CBIS implementation, there will need to be responses for a slave device in order to

read commands and responses for a master device in order to write to the bus to communicate

with the Thread Scheduler. The VHDL implementation instantiates an OPB Master core with the

IPIC bus interfaces, as seen in Table 3.14. This interfaces arbitrates bus access and translates

commands into easier signals.

To first respond to commands from the bus, the CBIS will watch for the Bus2IP RdReq line to

go high, indicating that someone on the bus has requested access to an address in our assigned

range. When the pin goes high, the CBIS immediately pulls the IP2Bus ToutSup line high to
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Figure 3.5: CBIS Address Breakdown

prevent a timeout. By default, the Xilinx bus will fail a transaction that takes longer than 8 clock

cycles, if IP2Bus ToutSup is not high. While some of the transactions are less than 8 clock cycles,

pulling IP2Bus ToutSup high while we are busy is simplified by not being timed out. In parallel

to this, the address lines are now valid and the CBIS triggers its finite state machine to start

processing the command.

From the 32 address lines, the address data are logically sorted into groups that represent the

command and arguments as describe previously in the Memory Mapped IO section. The CBIS

breakdown of the address can be seen in Figure 3.5. The bottom 4 bits of the bus form the

commands, allowing up to 16 commands. The second 12 bits form the thread ID parameter for

the commands, allowing 4096 threads. The next 8 bits form the interrupt ID parameter, allowing

up to 256 interrupts. In total, there are 24 bits of address space used by the CBIS, taking 16MB of

the space away from the total of 4GB in the 32 bit system.
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At this point, the finite state machine decides what state to jump into from idle. Some

commands are very simple and just modify or return the status of a register. The enable, disable

and clear commands simply update a register. This is done by feeding the parameters of the

command into the register latching the results. The read pending and read enable return the

current value of that register. To return the status of a register, the CBIS follows the Xilinx

paradigm and connects the output of the register to the IP2Bus Data lines, raises the

IP2Bus RdAck, and lowers the IP2Bus ToutSup back to 0. This completes a full read cycle for

these simple commands. For the simple command the finite state machine never leaves the idle

state. Everything is done in the single clock cycle with no need to leave the idle state.

For more advanced commands, the finite state machine must read and write to the Xilinx

Block Ram, BRAM, data storage. A Xilinx BRAM is a dual ported memory that is hard coded

into the FPGA Fabric. BRAMs are configurable to many different sizes and can be combined into

larger BRAMs. The signal to control a BRAM is seen in Table 3.16. The CBIS only uses a single

port of the BRAM and uses it to store thread data that are associated with the interrupt. The

BRAM has a few additional complexities to note. To read from the BRAM requires two cycles, a

setup cycle and an idle cycle. The next cycle has the data available. This expands the finite state

machines to handle this extra BRAM complexity.

The first command that can write to the BRAM is the Associate Command. On the associate

command, the thread parameter is first compared to the corresponding bit in the pending interrupt

register to see if there is a pending interrupt. If not, it raises BRAM WEN A to indicate a write,

uses the interrupt parameter as the address to BRAM Addr A and the thread parameter as the

value in BRAM Din A. This signals are held for a full clock cycle, the associate write state, to

commit them to the BRAM.

The second command that will access the BRAM is the read associated command, which will

return the thread currently associated with an interrupt. From idle, the CBIS jump into the

rtn thread bram. This sets up the BRAM for reading by raising BRAM EN A and setting the
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interrupt parameter for BRAM Addr A. Then the CBIS transitions into the rtn thread idle state,

allowing for the 2 cycle read from the Xilinx BRAM. Lastly, the CBIS transitions into the

rtn thread bus which connects the BRAM Dout A pins to the IP2Bus Data to return the BRAM

value over the bus.

Lastly, outside of the commands, an asynchronous interrupt can trigger the FSM machine to

change. When an interrupt occurs, it is latched in the pending interrupts registers. This triggers

the interrupt logic, as seen in Figure 3.6. The pending interrupts are ANDed with the enabled

interrupts and feed into the priority encoder. This priority encoder changes from an interrupt pin

number into an integer. When this priority encoder outputs an integer the CBIS FSM transitions

from idle into interrupt read bram to process the interrupt. In the interrupt read bram the highest

interrupt pending integer is connected into the BRAM Addr A while the BRAM EN A is pulled
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#define CBIS_BASE_ADDRESS 0x71000000

#define COMMAND_SHIFT 0
#define COMMAND_MASK 0x0000000F
#define THREAD_SHIFT 4
#define THREAD_MASK 0x00000FFF
#define INTR_SHIFT 16
#define INTR_MASK 0x000000FF

#define CBIS_COMMAND(command, thread, intr) \
CBIS_BASE_ADDRESS |
(((command)&COMMAND_MASK)<<COMMAND_SHIFT) |
(((thread)&THREAD_MASK)<<THREAD_SHIFT)) |
(((intr)&INTR_MASK)<<INTR_SHIFT))

Figure 3.7: Memory Mapped I/O Macro

high to signal a read. The FSM transitions into the interrupt read bram idle and waits an idle

cycle because of the BRAM 2 cycle read. Lastly, the FSM transitions into the

interrupt add thread state in which it combines the base address of the Thread Scheduler and the

output of the BRAM on BRAM Dout A to form an address for writing to the bus. This address is

connected to IP2IP Addr. The IP2Bus MstRdReq is pulled high, indicating a read request

generated to the thread scheduler. These are held until Bus2IP MstAck or Bus2IP MstTimeOut is

pulled high, indicating a Acknowledgement or a Timeout. With the response, the pending bit is

cleared and waiting for more interrupts.

3.3.1.3 Software Implementation

The software implementation of the CBIS starts with memory mapped I/O. Essentially, the

CBIS has software pieces to generate addresses for specific commands. As shown in Figure 3.5, a

command to the CBIS consist of a base address, thread parameter, interrupt parameter, and

command parameter. To form the full address, the command parameter is added to the thread

parameter multiplied by 24, the interrupt parameter multiplied by 216, and the base address of the
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void interrupt_thread( int interrupt )
{

while(true)
{

associate( interrupt )

//Service Routine
}

}

Figure 3.8: CBIS Interrupt Loop

void associate( int interrupt )
{

int thread = get_thread_id();p
if( CBIS_COMMAND(ASSOCIATE, thread, interrupt) )
{

//Already have pending interrupt service immediately
return;

}
else
{

// Block thread and allow others to run
dequeue_thread(thread);

}
}

Figure 3.9: Associate Call

CBIS. This forms the address for a read command, which is deferenced to make a call to the

CBIS. Because of careful choice of the size of the parameters in multiples of 2 and the base

address having all lower bits as 0, we can speed up this process of adding and multiplying these 4

items. Multiplying by powers of 2 turns into bit shifts and adding turns into logic OR. Figure 3.7

illustrates the code macro to generate the addresses. Each parameter is masked into range, then

shifted and logically ORed together to form the final address.

With this memory mapped I/O macro, most of the accessor functions to the CBIS become

wrappers around this macro. The associate command has a bit more logic because of how it
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changes interrupts. When a device registers an interrupt service routine, the CBIS will take the

handler function and start a new thread for it. The pseudo-code for the thread looks like Figure

3.8. The thread is a loop of associating for the interrupt, blocking on the call until an interrupt

happens and calling the service routine in response.

The internals to the associate command look similar to Figure 3.9. With the thread ID of the

interrupt thread, an associate call command is made. This hardware call will return a 1, if a

pending interrupt is outstanding with the software, immediately returning to process the interrupt.

If the hardware call return 0, indicating a successful association, the software will call a

dequeue thread function to the scheduler. This will stop the interrupt thread from running until

the CBIS hardware calls add thread in response to an interrupt.

3.3.2 Timer Core

The timer core is a separate hardware unit to help facilitate threads blocking on timers. It

takes requests for threads to block waiting on a timer. When the timer expires, it calls the thread

scheduler to make that thread eligible to run again. Internally, it contains one data structure and

timer list BRAM.

This timer list BRAM is index by a timer ID. Each entry contains a previous and next pointer,

along with a clock cycle of expiration. These pointers make a doubly linked list of timers in

sorted order of expiration. When a timer is added into the list, the core iterates through the list to

add it in order. The head of the list, or the first to expire, stores its clock cycle of expiration in a

register. There is an on chip counter that is compared with this value every clock cycle. Once the

timer has expired, an add thread call to the scheduler is made, and the core retrieves the next timer

that will expire. After a little more list maintenance, the timer core is waiting for the next timer to

expire. The operations for the Timer Core are listed in Table 3.17
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Figure 3.10: Unified Scheduler Model

3.4 Unified Interrupt and Scheduling Controller

After applying the knowledge learned from the CBIS and Hybridthreads, it is decided to

design another core with a few different design constraints. Hybridthreads are meant for hybrid

hardware/software FPGA type systems. While this is an interesting paradigm, typically, FPGAs

are used for prototyping and early development system. Once the hardware has matured, it is

typically reenvisioned in an ASIC. The concept of changing hardware threads and their

interaction does not make sense for most general purpose systems. Most general purpose systems
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routinely have only changing software due to cost. As a result, the Hybridthreads design is taken

and adapted to a pure software solution. This has many effects on the size and functionality of

this system. The unified scheduler interrupt controller is the evolution of Hybridthreads to a

software only system.

The goal of the software only solution is to simplify the hardware to the bare minimum that

will make a performance impact. Each call to the hardware scheduler is evaluated for the split of

work between the hardware and software portion of the call. For most of the calls, this

dissertation’s adaptation of the Hybridthreads hardware removed most of the linked list hardware

manipulation. While useful and needed when hardware threads are present, the linked list

manipulation can often piggyback onto the ends of software scheduling calls at little impact to the

predictability.

Through removing list manipulation, the software thread only solution is a simplification of

the previous Hybridthreads scheduler design. The scheduler portion just consists of enough

information to make and accelerate a scheduling decisions. Since scheduling activities are only

invoked from software and interrupts to change the software running, some of the thread and

priority linked lists can remain in main CPU memory. This means it needs to know the current

running thread and a list of the ready to run queue. The list of the ready to run queue includes the

first thread in each linked list per priority level. Since inter-level process switching is initiated by

a software yield command, timer interrupt, disk interrupt, or another blocking call, processing this

linked list for each priority level in software saves a significant amount of logic. The standard

implementation has a large state machine to perform linked list manipulation from the BRAM.

The unified implementation only keeps the ready to run information stored in a BRAM, and there

is a corresponding bitfield of occupied priority levels. Like the previous Hybridthreads scheduler,

a priority encoder determines the top bit of this bitfield to determine the top priority of the thread

ready to run next. This is seen as the Software Task Priorities block in Figure 3.11.

To integrate interrupts into this logic a similar top interrupt priority is determined. First a table
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Figure 3.11: Unified Scheduler Interrupt Controller

mapping interrupt thread IDs and priority is made. This is done in a BRAM similar to the

previous CBIS. Interrupt detection logic is ANDed with Enabled and then priority encoded to find

the outstanding interrupts. This outstanding interrupt number is used to index the table and

lookup the priority of the interrupt to be added to a interrupt priority bitfield. Similar to the

scheduler, this interrupt priority bitfield is priority encoded to determine the highest priority

interrupt. This is seen as the Pending Interrupt Priorities block in Figure 3.11.

The timer portions function in a similar way as the interrupt. A group of timers, their

priorities, and thread associations are stored in a BRAM As the timers expire, the priority is

added to the timer interrupt priority bitfield. This bitfield is priority encoded into the highest

priority timer thread register, as seen as the Expired Timer Priority block in Figure 3.11

The combination of these three highest priority threads ready to run, and the knowledge of the

current thread and its priority, allow this Unified Scheduler Interrupt Controller to have enough

information to make scheduling decisions, as seen in Figure 3.11. With a portion of the logic

removed, is this still a scheduler? The Unified Scheduler Interrupt Controller is a hybrid scheduler

and interrupt controller. Although, the design leans closer to an interrupt controller. It is a balance
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of keeping more information available for making scheduling decisions outside the CPU.
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Table 3.14: Xilink IPIC Bus Interface[1]

Signal Name Range I/O Description
Bus2IP Addr 0:C <bus> AWIDTH-1 I Address to User Logic
Bus2IP BE 0:C <bus> DWIDTH/8-1 I Byte enables to User Logic
Bus2IP Burst none I Burst-mode qualifier to User Logic
Bus2IP Clk none I IPIC clock. Identical to the <bus>clock
Bus2IP CE 0:C NUM CE-1 I chip enable to User Logic
Bus2IP CS 0:C NUM CS-1 I chip select to User Logic
Bus2IP Data 0:C <bus> DWIDTH-1 I Data to User Logic
Bus2IP Freeze none I Tells the User Logic to freeze
Bus2IP RdCE 0:C NUM CE-1 I Read enables to User Logic
Bus2IP Reset none I Signal to reset the User Logic
Bus2IP RNW none I Read/Not Write Signal to User Logic
Bus2IP WrCE 0:C NUM CE-1 I Write enables to User Logic
IP2Bus Ack none O Acknowledgement from User Logic
IP2Bus Data 0:C <bus> DWIDTH-1 O Data from IP
IP2Bus Error none O Error response
IP2Bus Intr 0:C IP INTR NUM-1 O Interrupt event signals from User Logic
IP2Bus PostedWrInh none O Posted write inhibit from User Logic
IP2Bus Retry none O Retry response from User Logic
IP2Bus ToutSup none O Timeout suppress from User Logic
Bus2IP MstError none I Master Error from IPIF
Bus2IP MstLastAck none I Master Last Acknowledge from IPIF
Bus2IP MstAck none I Master Acknowledge from IPIF
Bus2IP MstRetry none I Master Retry from IPIF
Bus2IP MstTimeOut none I Master Timeout from IPIF
IP2Bus Addr 0:C <bus> AWIDTH-1 O <bus>address for the master transaction
IP2Bus Clk none O Future signal to allow for dualclock- domain
IP2Bus MstBE 0:C <bus> DWIDTH/8-1 O Byte-enables qualifiers from User Logic
IP2Bus MstBurst none O Burst qualifier from User Logic
IP2Bus MstBusLock none O Bus-lock qualifier from User Logic
IP2Bus MstReq none O Master request from User Logic
IP2Bus MstRNW none O Read/Not Write from User Logic
IP2IP Addr 0:C <bus> AWIDTH-1 O Device address for the master transaction
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Table 3.15: CBIS FSM states

State Description
idle Default idle state
associate write Check Pending and Write to BRAM
interrupt read bram Index into BRAM based on highest interrupt pending
interrupt read bram idle Wait idle cycle for BRAM
interrupt add thread Write to bus for addThread command
rtn thread bram Setup BRAM for reading
rtn thread idle Idle cycle for BRAM read
rtn thread bus Return result of BRAM read on bus

Table 3.16: Xilink BRAM Interface[2]

Signal Name Interface I/O Description
BRAM Rst A Port A I BRAM Reset, Active High
BRAM Clk A Port A I BRAM Clock
BRAM EN A Port A I BRAM Enable, Active High
BRAM WEN A Port A I BRAM Write Enable, Active High
BRAM Addr A Port A I BRAM Address
BRAM Din A Port A O BRAM Data Input
BRAM Dout A Port A I BRAM Data Output
BRAM Rst B Port B I BRAM Reset, Active High
BRAM Clk B Port B I BRAM Clock
BRAM EN B Port B I BRAM Enable, Active High
BRAM WEN B Port B I BRAM Write Enable, Active High
BRAM Addr B Port B I BRAM Address
BRAM Din B Port B O BRAM Data Output
BRAM Dout B Port B I BRAM Data Input

Table 3.17: Timer Commands

Command Description
addTimer Sleep a thread for specified clock cycles
timerStatus Number of clock cycles remaining until wake up
cancelTimer Cancel timer in progress
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Table 3.18: Unified Scheduler Commands

Command Description
Current Returns the current thread running
Next Get the next thread to be run and sets it to current thread
SetThread Sets a thread to the top of it’s priority level in the ready to run queue
Associate Block thread until interrupt occurs
Clear Clears pending interrupt bit
Read Reads status of pending interrupt bit
addTimer Sleep a thread for x clock cycles
timerStatus Number of clock cycles remaining until wake up
cancelTimer Cancel timer in progress
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Chapter 4

Evaluation

We evaluate our hypothesis that the unified hardware software scheduling policy has larger

performance benefit compared to it’s hardware cost by experimentation. In particular we perform

a comparative analysis of efficiency and effectiveness across four different configurations, all

based on a standard Linux kernel. All analysis was performed on a Xilinx ML310 platform[94].

The Hybridthreads kernel as well as all hardware modifications for this work were implemented

in VHDL. All interfaces to the hardware resident components are register-based and accessible by

the PowerPC processor across a standard bus (OPB). All tests were conducted with the Power PC

core running at 100 MHz. The Linux 2.4 kernel was ported onto the PPC, and then additional

modifications to the lower level mechanisms were performed to invoke the hardware mechanisms

of the modified Hybridthreads kernel. The use of the older 2.4 instead of a more recent Linux

kernel was an imposed limitation of using the ML310 board. Xilinx only provides a Board

Support Package(BSP) for the 2.4 Linux kernel. A rudimentary 2.6 kernel for the ML310 board

does exist, but it does not support a hard disk, network, video and other peripherals needed for

many of the testing scenarios below.

These tests run on 4 different systems for comparison and evaluation as listed in Table 4.1.

The systems show a progression of different ways to reduce the performance on impact of the
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Table 4.1: Test Systems

System Full Hardware OS Partial Hardware OS Interrupts as Threads
Base Linux No No No
PREEMPT RT No No Yes
Unified No Yes Yes
HybridThreads Yes Yes Yes

scheulder and interrupts. The base control system is the pure software Linux 2.4 kernel. The

PREEMPT RT system is also a software system, but adds in a better scheduler and the interrupts

as threads concept. The Unified system takes this one step further by integrating the Scheduler

and Interrupt Controller into a single hardware core. Lastly, the Hybridthreads system completes

the hardware software transition by integrating a majority of its OS primitives into hardware.

A part of this work was modifying the existing hardware based Hybridthreads scheduler. The

original hardware based scheduler included additional logic to handle the scheduling of custom

accelerator threads synthesized as hardware circuits. The original scheduler was re-designed and

simplified to schedule only software threads. The resulting Unified Scheduler Interrupt Controller

resulted from this redesign as a minimalistic approach to hardware schedulers. Reducing the size

of the original cores and reducing the amount of linked list logic significantly reduced the size of

the original scheduler core. The Unified Scheduler Interrupt Controller was then integrated into

the Linux Kernel as our second test system.

We wanted to run our applications on the original Linux 2.4 Kernel unaltered for comparative

purposes. We also wanted to perform as fair a comparison as possible, which motivated us to use

the PREEMPT RT patch. The PREEMPT RT patch represents as close an approximation as is

possible using software methods to mimic the hardware based Unified Scheduler Interrupt

Controller. The PREEMPT RT patch is mainly a 2.6 kernel patch and was not available for our

2.4.18 kernel. To circumvent this issue we performed an approximate port of the patch. The

approximation used for testing on the older 2.4.18 PREEMPT patch, along with a backporting of
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Table 4.2: Test Scenarios

Test Type Description
Base Operation Overhead Measurements of frequent scheduling calls
Overhead of an Interrupt Overhead Impact of interrupts on high-priority threads
Hackbench Overhead Measurement of overall scheduling overhead
Dhrystone MIPS Overhead Measurement of overall performance
Apache Benchmark Latency Measurement of network response for Web Pages
Cost of Timer Latency Measurement of Timer impact on high-priority threads
Balancing Processing and Interrupts Latency Performance under DDoS attack

the code enabled interrupts to be preemptable and runnable within a processes context. While not

an exact match of the PREEMPT RT, it non the less gives a fair approximation of a pure software

configuration to minimize jitter. This represents our fourth and final system.

A basic Linux userspace was compiled for the board for testing purposed along with our

benchmarks. All tests were run on all four systems. The first system consists of an unmodified

Linux system. The second system is the 2.4.18 PREEMPT RT approximation port. The third

system is the Hybridthreads implementation of Linux. The final system is the Unified System.

The tests are divided into two broad categories labeled Efficiency and Control. They are further

separated by synthetic benchmarks versus real scenarios. Lastly, in the conclusion, a hardware

evaluation compares the size of hardware and relates it to the performance gains found.

4.1 Efficiency

4.1.1 Base Operation Timings

The first benchmark is a synthetic benchmark for analyzing various scheduling operation

latencies. Timing is achieved by calling an on-chip counter at the beginning and end of each

scheduling operation. The length value reported is an average over a set of 100,000

measurements. The operations being measured are the schedule call, an interrupt and the
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addThread call. While schedule and addThread are simple operations to measure, the interrupt is

more difficult. The interrupt is timed by reading the on-chip counter and then triggering an

interrupt with a memory-mapped I/O call. Once the interrupt handler answers the interrupt, the

counter is again read and the delay value computed.

4.1.1.1 Analysis

Figure 4.1 shows the results of this test. The two software schedulers, Software and

PREEMPT RT, show similar timing delays. This is to be expected as the PREEMPT RT kernel

only minimally changes the base scheduler call. The two hardware schedulers show an

improvement of approximately 20 microseconds, This represents about a 50% reduction in

latency compared to the two software schedulers. This can be attributed to the fact that the

hardware based systems have already identified the next highest priority thread to be scheduled

before the run sched call is invoked. Conversely, the software schedulers must performing

iterative processing to determine the next scheduling decision.

The interrupt latency timing results show a similar trend. The two software schedulers show

similar timings with PREEMPT RT, a slight 0.5 microseconds faster. The hardware schedulers

both finish approximately 10 microseconds faster, or in 45% of the software scheduler times. It is

worth pointing out that the software system shows a slight advantage over the hardware systems

in the time taken to deliver the interrupt to the CPU. The hardware based systems route the

interrupt request through an additional hardware module before it is delivered to the CPU. The

PREEMPT RT Kernel adds a small delay to change the interrupt into the context of a user

process. Even with the delay, the PREEMPT RT patch shows a 0.5 microsecond faster response

that the software scheduler without the patch. Overall the software schedulers, after interrupting

the CPU, must perform processing to decide if the interrupt should be delayed. This extra

processing causes an increase in interrupt latency when compared with the hardware based

Hybridthreads and Unified Scheduler Interrupt Controller systems.
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Figure 4.1: Base Operation Timings

Finally, addThread shows the best result for the Hybridthreads, with a 5x latency reduction

compared to the software approaches, and a 3x reduction compared to the Unified Scheduler

Interrupt Controller system. This is a result of the Hybridthreads system performing the

addThread command in hardware, including manipulation of the linked list in the priority queue.

Latency reductions are further achieved by eliminating the need to perform accesses to the main

memory. The Unified system takes a hybrid approach by doing most of the work in software with

only the last few steps in hardware. This saves still provides latency reduction when compared to

the software approaches. The two software kernels are the slowest, with none of the work

accelerated by hardware.
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4.1.2 Overhead of an Interrupt

This benchmark shows the effect of high priority interrupts on the throughput of a critical

process. Interrupts asynchronously trigger workloads of device drivers which run at higher

priority than application threads in the system. The unified hardware software priority model and

PREEMPT RT help to relieve this interference of general execution from interrupts by allowing

system designers to set interrupt priority with respect to software threads priority. The hardware

scheduler goes one step further by not having to interrupt the CPU to mark an interrupt pending.

PREEMPT RT still must minimally interrupt the CPU to mark each pending interrupt.

This additional control is demonstrated through the overhead of an interrupt benchmark. This

benchmark consists of two simple programs. The first simulates a generic application program by

timing a simple loop that performs integer operations. The loop is unrolled until the program size

is approximately 16Kb, the same size of the PowerPC instruction cache. Integer operations are

performed across a 16Kb memory segment, the same size as the data cache. This is unrolling is

done to try and keep the program running in purely cache memory, avoiding some of the

uncertainty associated with slower memory accesses due to unpredictable cache misses. The

second program provides stimulus by triggering a hardware core that was designed to generate

periodic interrupts. To demonstrate the effect of a top-half interrupt routine, the servicing routine

for these interrupts is kept very small and only increments a count of the interrupts received.

The benchmark is run under three scenarios. In the first scenario no interrupts are generated.

This provides a base case for evaluating the performance degradation in the presence of

interrupts. The second scenario models a fairly low rate of interrupts, 10 per second. The third

increases the interrupt rate to 30 per second. 10 and 30 were chosen because they were measured

as an average idle network interrupts on the system.
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Figure 4.2: Overhead of Interrupt

4.1.2.1 Analysis

The benchmark results show fairly predictable behaviors given the design on the individuals

systems. The raw performance run shows no difference between the 4 systems. This is expected

as the performance number is from a single threaded benchmark in a otherwise idle system. The

operating system should have little effect on the performance of a run without interrupts. Next the

interrupts at 10 Hz run shows how the systems react slightly differently to this low priority

interrupt. The traditional Linux system shows a degradation of 3%. This degradation can be

attributed to the overhead in processing the interrupts. The PREEMPT RT system does quite a bit

better only showing a 0.5% decrease in performance at 10 interrupts a second. PREEMPT RT still

does stop the processor during an interrupt, but for only minimal processing. The difference in

processing makes it faster than the base Linux system. Next the HThreads and the Unified system
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show almost no change in performance as they are within 0.05% of the original numbers. Given

the setup of this system, with interrupts lower priority then the performance thread, interrupts are

essentially ignored. They should have no effect on the performance. Moving on to the interrupts

at 30Hz run, we see a continuation of what has happened in the 10Hz run. The base Linux system

has a 7% drop from the baseline performance and PREEMPT RT patch has a 1.5% drop. The

Hthreads and Unified system, once again, have little to no effect on overall performance.

These results reconfirm the theoretical design of the hardware schedulers, CPUs are

interrupted only when a higher priority process or interrupt is ready to run on them. They never

stop to check or decide if they should switch. This is a stark comparison to the software

schedulers who are only trying to work around the limitations of the hardware designs they run

on. PREEMPT RT is one of the best software designs to avoid this and while it does noticeably

better than the base Linux system, it cannot fully match the hardware schedulers.

4.1.3 Hackbench

Hackbench is a standard benchmark used for evaluating different Linux schedulers[24]. It was

developed by Rusty Russel for performance testing of the Linux 2.4 kernel scheduler in

comparison to what is now the scheduler in the Linux 2.6 kernel. It has served as a major

benchmark for showing the performance improvements in the Linux 2.6 kernel. Hackbench can

be described as a producer and consumer test. Producers provide data as fast as consumers can

handle using a greedy algorithm. Hackbench creates producer and consumer threads in groups of

20. For this benchmark, Hackbench is run many times with varying amounts of threads in order to

compare the Traditional, PREEMPT RT, Hthread and unified kernels.

4.1.3.1 Analysis

The results in Figure 4.3 show an evaluation of the four schedulers. Since hackbench is

primarily a series of calls invoking the scheduler, it can yield insight into the efficiency of each of
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Figure 4.3: Hackbench

our scheduler configurations. Both hardware schedulers show a 40% decrease in scheduling time

across the board compared to the software scheduler within the PREEMPT RT patch, with a

slight gain as the number of threads increases. The PREEMPT RT kernel enjoys approximately a

20% decrease compared to the standard software scheduler. Given that hackbench is a very

scheduler intensive benchmark, these improved results correlate with earlier scheduling timing,

with the exception of PREEMPT RT. While the calls measured earlier show PREEMPT RT at the

same, this benchmarks seems to be faster due to other kernel efficiencies in PREEMPT RT. This

is likely due to file and pipe operations between threads.
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Figure 4.4: Dhrystone MIPS

4.1.4 Dhrystone MIPS

Dhrystone MIPS is a standard synthetic benchmark made by Reinhol P. Weicker[95]. It

measures the ability to process integer programming in a standard way. It is been used for many

years to evaluate the performance of processors. It is a measure of the number of Dhrystones per

second executed with a Dhrystone being the iteration of the main code loop. It is used here to

evaluate the single threaded performance affect of the schedulers.

4.1.4.1 Analysis

The results in Figure 4.4 show that there is little to no advantage in the different types of

schedulers. All end up in the 466 Dhrystone MIPS range, with variance of 1 Dhrystone MIPs.
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Table 4.3: Apache Benchmark Averages

System Average
Software 69.89ms
Preempt RT 63.86ms
HThreads 54.98ms
Unified 54.85ms

Dhrysone MIPs is a single threaded benchmark. In a system with only one thread running, the

scheduler should not impact this benchmark, as shown in the results. More complex systems with

multiple threads will have different results.

4.2 Control

4.2.1 Web Server

Websites are a very common asynchronous workload for servers. A Web server waits for

asynchronous requests on the network adapter. In response to these requests, it serves Web pages

and files. It can handle many concurrent connections and deliver many files at once. This

workload represents a very asynchronous multithreaded simulation.

To test this work flow, an Apache Webserver is compiled for the device. The Apache HTTP

server benchmarking tool, AB (Apache Benchmark)[25], is used to test the throughput on the

device for Apache Webserver. A simple webpage is served up, and a second computer is used to

test the throughput and latency of the Webserver. The primary objective of this benchmark is to

compare the variation in latencies between the approaches when running an the Apache

Webserver.
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Figure 4.5: Apache Benchmark

4.2.1.1 Analysis

The results of AB are shown in Figure 4.5. A histogram of the timings is shown from 70,000

results. As a note, the last bucket in the histogram includes a few outliers up to 250 milliseconds

from the software kernel. This modification makes the histogram not drawn to scale in order to

make the histogram a bit more readable. Lastly, it is important to note that the frequency count

axis is on the logarithmic scale.

Several interesting results can be seen from the histogram. First, the average response time is

actually fairly close between the systems. The Unified and Hybridthreads system had similar

averages of 59.98 and 59.85 milliseconds. PREEMPT RT has a slightly slower 61.86 millisecond

average and the base Linux system was the slowest at 63.89 milliseconds.

The second interesting results is the worst case response time. The worst case response time is
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critically important in real-time scenarios. A single delayed result can be an incorrect result.

Worst case response time on the base linux system was poor compared to the unified and

hybridthreads systems. The slowest base Linux response was 2.5 times as long as the slowest

hybridthreads and unified response. In fact, 9% of the responses on the base Linux system came

in slower than the slowest unified and hybridthreads response. PREEMPT RT improved upon the

base Linux system, but still had a poor worst case response time. The longest PREEMPT RT

result was 20% slower than the unified and hybridthreads systems. 3% of the total PREEMPT RT

responses came in slower than the slowest unified and hybridthreads response.

Overall, this is a good benchmark to demonstrate how the randomness of jitter affect the

performance of a system. There are many causes of random jitter that create these distribution of

responses. Network hardware, interrupt, cache misses and many other complex systems can add

jitter to a system. However, the hybridthreads and unified system show that they have reduced the

overall jitter of the system through careful reduction of scheduling jitter. This is especially

apparent with the reduction of worst case execution time.

4.2.2 Cost of a Timers

While external interrupts are a common source of jitter, timers also add to the problem.

Depending on the system hardware implementation of timers, they can contribute significantly to

the jitter in a system without respect to priority. Most general purpose operating systems set the

timers to generate periodic interrupts. During these periodic interrupts the operating system

checks to make sure timers have not expired. Alternatively, they can sort timers and put the

closest expiring timer in a processor timer interrupt. Due to hardware limitations, many of these

timers are often multiplexed onto the same hardware timer interrupt without respect for the

priority of the timer. This causes problems that, when the task with low priority is preempted, a

timer for that task can still be set to go off at the interrupt level, and be queued in the kernel.

Unimportant timers, such as TCP timeouts and low priority periodic checks, cause unnecessary
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Figure 4.6: Cost of a Timer

jitter in the system through hardware timers interrupting higher priority processes.

This benchmark shows the effects of timer overhead. The benchmark emulates a conceptual

embedded device that is decoding an MP3, a soft real-time use case[96], and periodically checks

for network updates. The periodic task is set up to decode MP3 frames every 26.12 ms at a high

priority. During this decoding, TCP timeouts are simulated from a low priority process by trying

to connect repeatedly to an unresponsive computer. The TCP timeout is adjusted to randomize its

affect on the MP3 decoding. Although the TCP process is a lower priority, the network adapter

driver is not adjusted from its original form. The time to decode each MP3 frame is measured and

plotted in a histogram. This benchmark is run on the four schedulers to measure their effects on

decode time. In PREEMPT RT and the hardware schedulers, the interrupt priority is set lower

than the decode priority.
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Table 4.4: Cost of a Timer Averages

System Average
Software 12.92ms
Preempt RT 11.76ms
HThreads 11.69ms
Unified 11.68ms

4.2.2.1 Analysis

The next benchmark tries to show the ability for a lower priority process to subvert the

priority model utilizing timers. The results are shown in a histogram in Figure 4.6. The histogram

shows two important ideas. There is some natural variance in decoding MP3s. Different frames

have different complexities and can thus take different times to decode. This is seen across all

schedulers. Both of the hardware schedulers show similar histogram curves with the

PREEMPT RT having only a few frames take slightly longer to decode. This is attributed to the

minimal interrupt processing of PREEMPT RT. Lastly, the traditional linux kernel has results in

Figure 4.6, showing the unpredictability added to the system by a seemly harmless timer into a

traditional scheduling model.

4.2.3 Balancing Processing and Interrupts

Many systems are susceptible to interrupt overload. Interrupt overload is a condition in which

the frequency of interrupts to the system is significantly beyond the capacity to process those

interrupts. Interrupt overload will often cause failure of a device because the massive amounts of

requests will be queued in the system until the system runs out of memory or other resources.

This eventually runs into design constraints, like static number of buffers or file handles.

Misbehaving and faulty hardware can cause interrupt overload. However, Denial of Service

(DoS) attacks are the most commonly known cause of interrupt overload. Thousands of PCs will
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Figure 4.7: Interrupt Overload

try to repeatedly request data from a web server simultaneously resulting in the failure of the Web

Server. With network cards and other interrupt generating devices becoming capable of tens to

hundreds of thousands of interrupts a second, it can become necessary to balance the initial

processing of these interrupts versus the completion of software work. The unified scheduling

model allows users to manipulate network interrupt priorities to balance processing requests.

To model the flexibility of defense against interrupt overload, and specifically a DoS attack,

the second benchmark consists of a simple Webserver that listens for connections and starts a

thread to answer the requests from that connection. Another computer is generating and trying to

complete these connections at a specified rate. From this second computer, successful requests are

measured.
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4.2.3.1 Analysis

The last benchmark show a case of interrupt overload, or more specifically, a DoS attack.

Figure 4.7 shows the number of completed requests versus total number of requests. The results

in Figure 4.7, interestingly, illustrate results similar to the previous test. The PREEMPT RT only

suffers mildly. The original scheduler suffers much more dramatically once this experiment is

past the maximum capacity of the system, approximately 120 requests per second. In the extreme

case of 250 requests per second, the traditional system fails during the test because of memory

constraints and the inherent preference of interrupt processing. The hardware scheduler maintains

near the maximum throughput. A bit of processing is lost, likely due to packet loss causing minor

overhead.
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Chapter 5

Conclusion

This dissertation explores the benefits of a minimal hardware scheduler in general purpose

computing, breaking the traditional mold of the hardware interrupt paradigm, and unifying

hardware and software scheduling. The HybridThreads kernel is ported to Linux, showing its

versatility to integrate into a general purpose operating system. Interrupts are integrated into the

Hybridthreads kernel, allowing thread level control over the priority of interrupts. Finally, the

Hybridthreads cores are reenvisioned and redesigned to apply better to software only systems,

forming the Unified Scheduler Interrupt Controller. These hardware operating system schedulers

are benchmarked and analyzed to breakdown the performance difference between the two

Table 5.1: Hybridthreads Hardware Sizes

Core Slices
Mutex 344 Slices
Conditional 294 Slices
Thread Manager 500 Slices
Scheduler 1455 Slices
Timer Queue 842 Slices
CBIS 667 Slices
Total 4102 Slices
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approaches in comparison to an older traditional Linux kernel and a backport of the

PREEMPT RT kernel.

The experiments illustrate that both hardware kernels show performance advantages over both

software linux kernels. The efficiency benchmarks show that, in raw scheduling benchmarks, this

Unified scheduler has a 50% speed increase on the order of tens of microseconds. Benchmarks

with heavily scheduling, like Hackbench, saw 40% speed increases. However, PREEMPT RT

also saw a 20% speed increase over the legacy kernel. While these are increases in heavy

scheduling, typical multithreaded scenarios show a more moderate increase because scheduling is

only a small fraction of their overhead. The biggest benefit from this design is shown as jitter

reduction in the control benchmarks. This jitter reduction has a wide range of effects in real-time

performance. The scheduling of interrupts, often the largest source of jitter in operating system,

extends the ability of systems to more and more real time tasks. In addition, interrupt overload

can be migrated by these thread level scheduling semantics, helping to avoid common problems

like DDOS attacks.

These scheduler gains are small and noteworthy, but at what cost? All hardware additions

must be evaluated for the performance measurement versus the hardware cost (gates and power).

The industry and the open market are the best reference to evaluate this ratio. Intel’s lead chip

designer, Anand Chandrasehker, recently shared his “One Percent” design rule in reference to

their latest microprocessors. The “One Percent” rule states that adding new features to most

processors require that a one percent increase in performance results in no more than one percent

of power increase [97]. Intel’s latest microprocessor are actually more limited by power than in

cost, and are making many of the design decisions in their latest “Core” micro processors to

minimize power. This is true for many processors these days, as they approach 100+ watts of

peak power[98]. While the test setup does not allow us to evaluate power, the gate count of the

Hardware Cores versus the processor should give a rough estimate of the power consumption.

In evaluating the hardware cores, the cost in size and power of such a device should be very

83



Table 5.2: Unified Hardware Size

Core Slices
Unified 887 Slices

small. From Table 5.1, the total original Hybridthreads system is approximately 4102 slices. Table

5.2 shows that the size of the unified model reduces this to 887 slices on a Xilinx Virtex 2 pro.

The 887 slices of Xilinx Virtex logic has a very rough estimate of 100,000-300,000 gates

needed to implement it in a traditional ASIC design. This is an order of magnitude simpler than

some of the more complex hardware schedulers[89], and small enough that it would take into

account only a small portion of the gates on a system on a chip. Even simple modern processors

have a range of 25 to 100 million gates.

With this hardware cost in mind, is this hardware scheduler a good choice for next generation

processors? It speeds up scheduling, but has a much smaller speedup on the overall system. It

reduces jitter slightly better than one of the best software approximations in PREEMPT RT.

There seems to be value in the Unified Scheduler Interrupt Controller, given the hardware cost,

but not overwhelmingly so as it is. While next generation processors likely do not need hardware

schedulers like Hybridthreads, developing smarter interrupt controllers to integrate with thread

scheduling and timers seem appropriate, even if the full Unified Scheduler Interrupt Controller is

not included.
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