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Abstract 

Item response functions of the parametric logistic IRT models follow the logistic form 

which is monotonically increasing. However, item response functions of some real items are 

nonmonotonic which might lead to examinees with lower proficiency levels receiving higher 

scores. This study compared three nonparametric IRF estimation methods—the nonparametric 

smooth regression method, the item-ability regression method, and the B-spline nonparametric 

IRF method—to determine whether they could detect the nonmonotonic IRF accurately using 

simulated data. In addition, these methods were used to identify items with nonmonotonic IRFs 

on real assessments. Results present that three nonparametric methods can detect the 

nonmonotonic IRF equally and each real assessment has some items with nonmonotonic IRFs. 

Investigations on the reasons for and the consequences of the nonmonotonicity were conducted 

for several items and indicate that the nonmonotonicity can affect the fairness and comparability 

of the test score. Thus, the nonmonotonicity should be checked before applying the parametric 

logistic models. 
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  Chapter 1:  Introduction 

Background 

Item response theory (IRT) uses mathematical models to describe the relationship between 

the probability of an examinee’s item responses and latent trait level, the latter referred to as 

proficiency. The regression of the probability of a correct response on the latent trait is called the 

item response function (IRF) (De Ayala, 2008, p. 16; Lord, 1980, p. 12). The most commonly 

used IRT models are the logistic models with one, two, or three parameters. These models have 

two advantages: they can be expressed concisely and parameters estimation is relatively easy. 

These models have proven to be powerful tools through their application in various areas: 

constructing test and item banks, scoring, reporting scores, scaling, equating test scores, applying 

adaptive tests, and identifying differential item functions (De Ayala, 2008, p. 316; Hambleton & 

Swaminathan, 1985, p. 7). 

Before applying the parametric logistic IRT models, two assumptions must be met (Lord, 

1980, p. 15):  local independence and the logistic form of IRFs. Local independence requires the 

number of dimensions in the model matches the number of dimensions in the data. In this study 

only one-dimensional models were considered. The logistic form of IRFs is defined as that the 

IRF of the parametric logistic IRT model follows a logistic form with one to three parameters. 

This logistic form is monotonically increasing, which means that the IRF is not decreasing as the 

latent trait increases (Lord, 1980, p. 12). The fit assessments of the parametric logistic IRT 

models should always include the investigation of whether the model assumptions are met 

(Hambleton & Swaminathan, 1985, p. 151; Hambleton, Swaminathan, & Rogers, 1991, p. 53). 

The model fit is the degree to which the model adequately explains the data. If the models do not 
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fit the data because the assumptions were not met, this issue could lead to reduced validity of 

interpretations one could make from test scores.   

Statement of the Problem 

Parametric logistic IRT model fit. Some statistical tests have been used to provide 

quantitative evidence of the model fit. The most commonly used statistical test is the Pearson 

chi-square test, which compares the observed item score and model predicted item score at 

several proficiency levels (Yen, 1981). McKinley and Mills (1985) and Orlando and Thissen 

(2000) introduced the likelihood-based statistics to access the model fit. Recently, some 

researchers have run the same model fit statistical tests from a Bayesian perspective through the 

posterior predictive model checking method (Glas & Meijer, 2003; Levy, Mislevy, & Sinharay, 

2009). Researchers have applied these statistical tests on the data to provide evidence of the 

model fit (Yen, 1981; Orlando & Thissen, 2000; Glas & Meijer, 2003).  

However, these statistical tests can only answer the global yes/no question about whether 

certain data items fit the model. If the model does not fit with the data, these statistics cannot 

explain why the model is not a good fit. Because of this, an exploratory diagnostic assessment of 

the model fit is needed.  

Applying graphical representation methods may meet the need by providing diagnostic 

information on why the model does not fit the data; in fact, several researchers have presented 

different methods for using graphical representations to address the need (Douglas & Cohen, 

2001; Kingston & Dorans, 1985; Lord, 1970). Graphical representation methods estimate the 

IRF without assuming any of its mathematical form, and then the estimated IRF is compared 

with the parametric logistic IRF. Since estimating IRF without assuming any mathematical form 

is more flexible, practically significant differences between two IRFs are visible and indicate that 
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the parametric logistic model does not fit the data (Junker & Sijtsma, 2001; Molenaar, 2001; 

Sijtsma & Junker, 2006; Stout, 2001). Lord (1970) used the true-score regression method to plot 

the IRF on the scale of the true score and then used a test characteristic curve to transform the 

scale to the theta scale. Later, Kingston and Dorans (1985) used the item-ability regression 

method to estimate IRF. They first estimated theta from the parametric logistic model, and then 

grouped the theta estimates based on empirical experiences. Once this was done, the estimated 

IRF was formed using the ratio of examinees correctly answering the item to examinees 

answering the item. In addition, Douglas and Cohen (2001) used the nonparametric smooth 

regression method to estimate the IRF on the scale of theta based on the examinees’ response 

patterns and sum scores of the test. Research from these graphical representation methods 

provided very useful diagnostic information on the model fit of the parametric logistic IRT 

models of real data (Lord, 1970; Kingston & Dorans, 1985; Douglas & Cohen, 2001).  

Previous research did not focus on assessing the monotonicity of the IRF because the 

simulated data, while not necessarily fitting these parametric logistic IRT models, were 

monotonically increasing. However, researchers did present some real items with nonmonotonic 

IRFs (Kingston & Doran, 1985). 
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Figure 1.Two real items with the nonmonotonic IRF.Reprinted from “The analysis of item-

ability regressions: An exploratory IRT model fit tool,” by N. M. Kingston and N. J. Dorans, 

1985, Applied Psychological Measurement, 4, p. 283. The squares formed the estimated IRF. 

  

A lack of monotonicity might suggest the item is not functioning properly and should be 

removed. Alternatively, if the nonmonotonicity is not properly modeled, examinees with lower 

proficiency levels could receive higher scores. Thus, the author’s study aimed to check whether 

there are IRFs on existing achievement tests that are not monotonically increasing.  

Monotonic IRF checking methods. The model fit checking method focusing on the 

monotonicity of the IRF should be able to estimate the true IRF from the observed data without 

assuming monotonicity. If one item has an obvious nonmonotonic IRF estimated from these 

methods, the nonmonotonic IRF presents that this item does not meet the assumption that the 

IRF is monotonically increasing. Nonparametric smooth regression, item-ability regression, and 

B-spline nonparametric IRT are three methods which can estimate the nonmonotonic IRF. One 

goal of this study was to test whether these three methods can detect the nonmonotonic IRF 

accurately through simulated data.  

Posterior predictive model checking. If the simulated data are studied, then the true IRFs 

are known and can be used to generate the null distribution for evaluating whether the estimated 

IRFs are monotonic. Also, the true IRFs are criteria used to compare three monotonic IRF 
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checking methods and to judge whether these methods detect the nonmonotonic IRF accurately. 

However, under a real data situation, the true IRF can never be known because the latent variable 

cannot be directly observed (Douglas, 1997). Even if one IRF estimated by three monotonic IRF 

checking methods is nonmonotonic, which is different from the IRF of the parametric logistic 

model, it is not true to conclude that the item has nonmonotonic IRF and the parametric logistic 

model does not fit data. One additional step during the real data situation should be conducted to 

judge whether the difference is large enough to conclude that the parametric logistic model is 

misfit. The Posterior predictive model checking (PPMC) method could serve this purpose. 

The PPMC method (Gelman, Meng, & Stern, 1996; Guttman, 1967; Rubin, 1984) is a 

statistical inference method from a Bayesian perspective. It compares the statistic of the observed 

data to the distribution of the same statistic calculated from replicated data. The replicated data 

are generated or predicted by the model being checked and posterior distributions of parameters. 

Glas and Meijer (2003) used this method to analyze the person fit in IRT models; similarly, 

Levy, Mislevy, and Sinharay (2009) used it to check the dimensionality assumption of the 

multidimensional IRT models; and furthermore, Sinharay (2005) used this method to conduct 

several model fit tests of the IRT parametric logistic models. Since the PPMC method is a 

popular and flexible Bayesian model checking tool (Sinharay, 2005), this study used the PPMC 

method to judge whether the IRF is monotonically increasing in the real data study.   

Purpose 

The purposes of this study were to test whether three monotonic IRF checking methods can 

accurately detect the nonmonotonic IRF using simulated data and to apply these methods on real 

data. The three monotonic IRF checking methods are the nonparametric smooth regression 

method, the item-ability regression method, and the B-spline nonparametric IRT method. The 
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PPMC method was used to determine the extent of nonmonotonicity of IRFs estimated by three 

monotonic IRF checking methods in the real data study, which was discussed in more detail in 

the next chapter.  

Variables. The independent variables were three monotonic IRF checking methods. The 

dependent variables were the differences between the estimated IRFs and the true IRFs for the 

simulated data, and the extent of the nonmonotonicity of IRFs estimated by three monotonic IRF 

checking methods for the real data.  

Research questions. This study addressed two research questions: 

1. Can nonparametric smooth regression, item-ability regression, and B-spline 

nonparametric IRT detect the nonmonotonic IRF accurately in a simulated data study? 

2. Do real items with nonmonotonic IRFs exist, and if so, how common are they? 

Hypotheses. The hypotheses, which correspond to the three research questions, were as 

follows: 

1. Nonparametric smooth regression, item-ability regression, and B-spline nonparametric 

IRT can detect the nonmonotonic IRF in a simulated data study equally well. 

2. Real items with the nonmonotonic IRF exist.  

Summary 

This study aimed to identify and compare three monotonic IRF checking methods using 

simulated data. This study also used the PPMC method to determine the extent of the 

nonmonotonicity.  



7 
 

Chapter 2: Literature Review 

This chapter provides background on the estimation of item response function (IRF), a 

discussion of the common assumption among methods used in this study, and a description of 

data features used in this study. Other topics include background on parametric logistic IRT 

models, three methods used to estimate non-monotonic IRFs, and the use of PPMC method for 

judging the nonmonotonicity. 

Background on IRF Estimation 

Researchers have been interested in methods that can estimate IRFs without using the 

parametric logistic IRT models. These models are separated into two categories: parametric 

methods and nonparametric methods. 

Parametric IRF estimation method. One parametric model that allows nonmonotonic 

form is Thissen and Steinberg’s (1984) multiple choice model. This model is an extension of 

Bock’s (1972) and Samejima’s (1979) nominal response model. For an item with m possible 

responses, the probability that a randomly selected examinee with the proficiency   give 

response h (from 1 to m) is as follows: 

 (𝑥 = ℎ| ) =
exp (𝑎ℎ + 𝑐ℎ)

∑ exp (𝑎𝑘 + 𝑐𝑘)
𝑚
𝑘=0

+
dhexp (𝑎0 + 𝑐0)

∑ exp (𝑎𝑘 + 𝑐𝑘)
𝑚
𝑘=0

 .                                (1) 

This model counts the guessing and includes two parts. The first part of the formula is the 

probability of giving response h without guessing. The second part of the formula is the guessing 

probability of giving response h: a0θ+c0, and dh are for the “don’t know” response category, 

which means the examinee is “undecided” of the response to choose (Thissen & Steinberg, 

1984).  

Nonparametric IRF estimation method. Even if Thissen and Steinberg’s (1984) model 

is able to estimate nonmonotonic IRFs, it is still constrained by the parameters and is not very 
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flexible (Junker & Sijtsma, 2001). When the purpose is to check the model fit, more flexible 

methods might be needed. This leads us to nonparametric IRF estimation methods. They are 

known for their flexibility and can be used to check the model fit (Junker & Sijtsma, 2001; 

Molenaar, 2001; Stout, 2001).  

Nonparametric IRF estimation methods are exploratory methods used to assess the fit of the 

parametric logistic IRT models because they can adapt to irregularities in the data (Junker & 

Sijtsma, 2001). Some methods, like the monotone homogeneity method (Junker & Sijtsma, 2001; 

Mokken, 1971), assume the monotonic IRF and cannot be used to detect the items with 

nonmonotonic IRFs. Conversely, five methods do not assume the monotonic IRF and can be 

used to detect items with nonmonotonic IRFs. 

One nonparametric IRF estimation method that does not assume the monotonic IRF came 

from Lord and Novick’s (1968, p. 363) item-test regression method, which estimated the 

proportion of the number of examinees who give the correct response to the number of 

examinees at every observed score per item. Since this method requires a large size sample and 

the item score is regressed on the manifest variable instead of the latent variable, this research 

will not compare the item-test regression method. 

Subsequently, Lord (1970) modified the item-test regression method when he plotted the 

IRF on a scale of the true score through estimating the true-score distribution. The scale was then 

transformed to the theta scale from the true-score scale by the test characteristic curve, a method 

called the true-score regression. However, the true-score distribution estimation might constrain 

the range of the true score and lead to the estimated IRF regressing on a small range of theta. 

These procedures constrained the flexibility of the true-score regression method and thus, this 

research will not compare the true-score regression method. 
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In addition, Kingston and Dorans (1985) used the item-ability regression method to estimate 

IRF. They first estimated theta from the traditional parametric logistic IRT model and then 

grouped the estimated theta into several groups based on empirical experiences. The estimated 

IRF was formed using the ratio of examinees correctly answering the item to examinees 

answering the item. Because the IRF estimation could be affected by the arbitrary theta grouping, 

this item-ability regression method is modified and compared in this research.  

A fourth nonparametric IRF estimation method that does not assume the monotonic IRF 

came from Ramsay (1991) and Douglas and Cohen (2001), who used the nonparametric smooth 

regression method to estimate the IRF on the scale of theta based on the examinees’ response 

patterns and sum scores of the test. The nonparametric smooth regression method is a “relatively 

easy-to-implement nonparametric regression method” and an “exploratory tool for assessing IRF 

monotonicity” (Junker & Sijtsma, 2001, p. 213). Thus, this nonparametric smooth regression 

method is compared in this research. 

Lastly, Rossi, Wang, and Ramsay (2002) presented a nonparametric IRF estimation method 

that used the B-spline basis to form a linear IRF and transformed it into a logistic form. This 

method is flexible to any IRF shape (Rossi et al., 2002; Sijtsma & Junker, 2006). Thus, Rossi et 

al.’s (2002) B-spline nonparametric IRT method is also compared in this research. 

In conclusion, this study compared three nonparametric IRF estimation methods, which do 

not assume the monotonic IRF. These three methods—nonparametric smooth regression method, 

item-ability regression method, and B-spline nonparametric IRT method—were discussed in 

more detail.  
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Common Assumptions and Data Description 

The common assumption of the three nonparametric methods and the parametric logistic 

IRT models is local independence. Because these models are based on a single underling 

construct, local independence is equivalent to unidimensionality (De Ayala, 2008, p.20; Douglas, 

1997; Hambleton & Swaminathan, 1985, p.25; Hambleton et al., 1991, p.10; Lord, 1980, p.16; 

Rossi et. al., 2002; Ramsay, 1996; Sijtsma & Junker, 2006). Unidimensionality states that the 

proficiency to influence the performance of an item is one dimensional. Local independence 

states that the probability of giving one response on one item is independent with the probability 

of giving one response on another item when the proficiency level is held constant (Lord, 1980, 

p.17). All the methods discussed in this study were applied to dichotomous data. The majority of 

the IRT models handle dichotomous data (Hambleton & Swaminathan, 1985, p.34): 1 for correct 

response and 0 for incorrect response (Glöckner-Rist & Hoijtink, 2003). 

Parametric Logistic IRT Models 

The three most commonly used parametric logistic IRT models are the one-, two-, and three 

-parameter logistic model—the 1-PL model, 2-PL model and 3-PL model, respectively (De 

Ayala, 2008, p.152; Hambleton & Swaminathan, 1985, p.34; Hambleton et al., 1991, p.12). 

These three parametric logistic IRT models have similar mathematical expressions, but the 

number of parameters of each model is different.  

The 1-PL model is also called the Rasch model (Rasch, 1960). Subsequently, Birnbaum 

(1968) proposed the 2-PL model and the 3-PL model, which have more parameters and can 

characterize the item more accurately than the 1-PL model. But the 2-PL and the 3-PL model 

also require more data to estimate the parameters. Sometimes the simpler 1-PL model is used 

because of the estimation difficulty of the 2- and 3-PL models. The 1-, 2-, and 3-PL model were 
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used to replace the one-, two-, and three-parameter normal ogive model proposed by Lord (1952) 

because of their simplicity (De Ayala, 2008, p.14). The difference in the parameter values of the 

corresponding normal ogive model and parametric logistic model is less than 0.01 (Lord, 1980, 

p.14).  

The IRF is assumed to follow the mathematical expression of the parametric logistic model 

being used. For example, if the 3-PL model is used, the IRF of the item is assumed to follow the 

3-PL model. The following is the 3-PL model expression. The IRF of 3-PL model follows this 

expression and has a logistic form (Lord, 1980, p.12): 

  ( ) = 𝑐 +
1  𝑐 

1 + exp[   𝑎  (    )] .
                                          ( ) 

The proficiency parameter is θ. The   ( ) is the probability that a randomly selected examinee 

with proficiency θ gives a correct answer to item i. It can also be interpreted as the expectation of 

the item scores of the examinees with proficiency  . The ai, bi, and ci are the item parameters 

which characterize item i; The discriminating parameter is ai. The greater the value of ai, the 

more the item is able to discriminate the examinees according to their proficiency levels. The 

value of ai is proportional to the slope of the IRF at the point of inflection. The item difficulty 

parameter is bi. The greater the value of bi, the more difficult the item is. The value of bi is the 

proficiency level whose   ( ) is the midpoint between lower asymptote and higher asymptote of 

IRF. The guessing parameter is ci, which exists to account for examinee guessing on multiple-

choice items. For example, if an examinee with very low proficiency responds to a four-choice 

item randomly, he or she might have a 25% chance of guessing the right choice. The value of c is 

the lower asymptote of IRF. In the 3-PL model expression, D is a constant and approximately 

equal to 1.702, which is included in the model to keep the value of a calculated from the logistic 
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model on the same scale of the normal ogive model. When the item parameters are known, θ is 

the only parameter influencing the probability of examinees’ responses. 

In the 1-PL model, as are equal for all the items. Often a is set to 0.588 so that D*a will be 

1, but since the scale is arbitrary, this choice is of no significance. The c for every item in the 1-

PL model is equal to 0. Only b characterizes the item. In the 2-PL model, the c for every item is 

equal to 0. The discriminating parameter and difficulty parameter work together to characterize 

the item. Thus, we can get the 1- and 2-PL model from the 3-PL model by fixing some 

parameters at certain values and call the 1- or 2-PL model as a special version of the 3-PL model.  

 

Figure 2.IRFs of parametric logistic models. The doc line is the IRFs of 1-PL model; the 

dash like is the IRF of 2-PL, and 3-PL models are presented. 

 

Figure 2 displayed the IRFs of the 1-, 2-, and 3-PL models. The difficulty parameters for 

three IRFs are equal to 0.5. IRFs of the 2- and 3-PL models’ discrimination parameters are equal 

to 1.25. Lower asymptotes (i.e., guessing parameters) of the 1- and 2-PL models are equal to 0; 

the low asymptote of the 3-PL model is equal to 0.2. If the 1- or 2-PL model is used, then the 
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examinees with the proficiency level θ, equal to the item difficulty level 0.5, will be assumed to 

have a probability of 0.5 to correctly answer this item. If the 3-PL model is used, then the 

examinees with θ equal to 0.5 will be assumed to have a probability of (1-c)/2+c, to correctly 

answer this item. The 2- and 3-PL models discriminate examinees in the mid-proficiency range 

(θ from -2 to 2) better than at extreme proficiency levels. 

All three IRFs of parametric logistic models in Figure 2 are monotonically increasing. IRFs, 

which follow the parametric logistic models, do not decrease as the proficiency level increases. 

For example, if the proficiency level of examinee A is higher than examinee B, the probability 

that examinee A will correctly respond to the item will be higher or equal to the probability that 

examinee B will do so. The mathematical representation of the IRF monotonicity is        

    (  )   (  ). 

However, sometimes the IRFs might decrease as the proficiency level increases at a certain 

proficiency range, like the IRF in Figure 1. In this case, it is not appropriate to use the parametric 

logistic models because the examinees with lower proficiency could receive the higher scores if 

parametric logistic models are used. This research was interested in investigating methods that 

are able to identify the nonmonotonic IRFs. 

Nonparametric Smooth Regression 

The nonparametric smooth regression method has been used in many areas since it was 

proposed by Nadaraya (1964) and Watson (1964). Later, Copas (1983) first applied this method 

to binary data, and Ramsay (1991) was the first to apply this method in the field of 

psychometrics. Additionally, Azzalini, Bowman, and Härdle (1989) and Douglas and Cohen 

(2001) used this method to check the fit of the parametric models but did not focus on the 

monotonicity. Although it has been used in many areas, the basic model of this method is same. 
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In the nonparametric smooth regression method, the (X, Y) will be two random variables 

with a joint bivariate distribution. The J observations are drawn from the joint bivariate 

distribution independently and (xj, yj) is the j-th observation. The regression function of variable 

Y on X is given by the following: 

 [ | = 𝑥] =
∑  (

𝑥  𝑥 

ℎ
)  

 
 = 

∑  (
𝑥  𝑥 

ℎ
) 

 = 

.                                                   ( ) 

If X is a discrete variable and the J observations contain all possible population values of X, K((x-

xj)/h) is equal to 1 when x equals xj and 0 otherwise, but in a real situation J observations only 

contain some of all possible values of X and X might be continuous variable. Thus, we have to 

use some methods to average yjs in the small range around every evaluation point x. The simplest 

way is to divide the range of X into intervals and then average the value of yjs in each interval. 

Since this method is very sensitive to the observations and arbitrarily chosen interval boundaries, 

a better method is to use weights for averaging. When we use weights to average yjs, we set K(u) 

to be a nonnegative symmetric kernel function with mode at 0,which is the monotonic decreasing 

of the absolute value of u (Copas, 1983; Douglas, 1997). In the regression function, h is a 

parameter called the bandwidth, which controls the smoothing amount. The choice of h is a 

trade-off between the fluctuation of the regression function and the bias of the regression 

function estimation. The large bandwidth will increase the effect of xjs far from x on the 

estimation of E[Y|X=x], leading to a very smooth E[Y|X=x] curve and a high bias but low 

random error estimation; and the small bandwidth will decrease the effect of xjs far from x on the 

estimation of E[Y|X=x], leading to a not very smooth E[Y|X=x] curve and a low bias but high 

random error estimation (Copas, 1983; Douglas, 1997). The procedures such as generalized 

cross-validation can be used to estimate the value of h from sample data (Craven & Wahba, 
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1978). Moreover, Ramsay (1991) presented the effect of the choice of h on the smoothing and 

estimation in the graph and suggested an optimal value of h for psychometric binary data.  

Applying to educational dichotomous assessment data. Beyond the general understanding 

of the nonparametric smooth regression method, it is important to understand how to apply it to 

the educational dichotomous assessment data and why it could be used to check the model fit of 

parametric logistic models. To apply the nonparametric smooth regression method in this way, Yi 

should be a binary random variable denoting the score of one item. When Yi is equal to 1, it 

represents that the item has been answered correctly; otherwise Yi is equal to 0. Also, X will be 

the latent trait variable Θ, which influences the item score Y under the assumption of 

unidimensionality. The regression function E[Y|X=x]could be written as P(Θ=θ), which is the 

expression of the IRF. However, the latent trait variable Θ could not be observed directly. An 

estimator  ̂ will replace Θ to get the estimated ̂ ( ̂ =  ). The IRF estimated by the 

nonparametric smooth regression method replaces X with  ̂ in equation 3: 

 ̂ ( ̂ =  ) =
∑  (

    ̂

ℎ
)   

 
 = 

∑  (
    ̂

ℎ
) 

 = 

.                                                 ( ) 

In this research, we use the Gaussian function as the kernel function in equation 4 because it is a 

typical choice of the kernel function (Douglas, 1997): 

 ( ) = exp( 
  

 
) .                                                             ( ) 

In this research, we choose h in equation 4 depending on the sample size (N): h=1.1*N
0.2,

 

because Ramsay (1991) presented that this value worked well under the Gaussian kernel 

function. Ramsay’s TESTGRAF program (2000) also used this value as the default.  
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To explore the convergence of this nonparametric smooth regression method when applied 

to educational dichotomous assessment data, Douglas (1997) has proven that  ̂( ̂ =  ) 

converges to the true IRF with probability 1 as the test length and sample size increase under a 

set of weak assumptions. The longer the test and the larger the sample size,  ̂ ( ̂ =

 ) approaches the true IRF. Furthermore, Douglas (1997) also stated that even if the true IRFs do 

not follow any particular parametric logistic models, the convergence of nonparametric smooth 

regression method is unaffected. Additionally, Douglas (1999) stated that two corresponding 

IRFs estimated from different models with the same response distribution will be nearly identical 

for the long tests. In conclusion, Douglas (1999) assumed that even if two distinct IRFs are 

estimated, only one is correct. Thus, for a given response distribution and a long test, the IRF 

estimated by the less restricted nonparametric smooth regression method is the correct one. 

Moreover, any substantial differences of IRF between the logistic parametric models and the 

nonparametric smooth regression models will demonstrate that the logistic parametric models do 

not fit the data (Douglas & Cohen, 2001).  

Ordinal ability estimation. In order to plot the IRF estimated from the equation 4, an 

estimate of each examinee’s proficiency is needed. The  ̂  (the estimate of the j-th examinee’s 

proficiency) can be calculated by the maximum likelihood method using the parametric logistic 

models. If these models are used to estimate proficiency, we need to assume the parametric 

logistic models fit the data and estimate the item parameters of the parametric logistic models, 

which will narrow the application of the nonparametric smooth regression method. Therefore, we 

use another way to estimate the latent variable, which Douglas (1997) called the ordinal ability 

estimation. 
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In the ordinal ability estimation method, the order of the examinees’ proficiency is the key 

information needed for estimating proficiency (Ramsay, 1991). The sum of item scores is often 

used to order examinees (Douglas and Cohen, 2001). Since the sum of item scores does not 

consider the variation of item psychometric characteristics, Ramsay (1991) stated that the sum of 

item scores is not an ideal indicator for ranking examinees. Therefore, Ramsay (1991) presented 

alternative statistics to rank the examinees. However, Douglas (1997) proved the maximum error 

in proficiency estimation based on the ranking of the sum of item scores converging to 0 with a 

probability of 1 as the test length increases under a set of weak assumptions. Consequently, this 

research uses the order of the sum of item scores to estimate the proficiency. Douglas and Cohen 

(2001) and Ramsay (1991) also used the ordinal ability estimation method to estimate the 

proficiency. The steps to apply the ordinal ability estimation are as follows: 

1. Determine the empirical percentile of the examinee in the latent trait distribution 

using the sum of item scores without including the item score being examined Xn-i (n 

is the number of items and i is the index for the item being examined) because this 

score is locally independent with the IRF of this item.  

2. Use the latent trait distribution G’s inverse function G
-1

 to calculate the proficiency 

based on the empirical percentile. 

It may seem that the choice of the latent trait distribution, G, might affect the proficiency 

estimation and then affect the estimation of IRFs. Actually, it only affects the scale of the 

proficiency variable and does not change the estimation of IRFs (Ramsay, 1991). For example, 

τ=g(θ) is a strictly monotonic transformation of the proficiency variable, θ. Then it becomes: 

 ( ) =  [   ( ( ))] =  [   ( )] =   ( ).                                           ( ) 
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In the formula, for any θ there is a τ corresponded to it with the same probability of success. 

Since the strictly monotonic transformation is used, the order of the proficiency is the only thing 

that affects the probability of success. The change of the proficiency variable scale is like 

plotting the IRF on a different axis (Ramsay, 1991). In this research, we choose the standard 

normal distribution as the latent trait distribution.  

Item-Ability Regression 

The item-ability regression method was first presented by Kingston and Dorans (1985) who 

used it as a graphical technique to examine the fit of the parametric logistic model. In Kingston 

and Dorans’ (1985) study, the proficiency scale is split into 15 equal intervals ranging from -3.0 

to 3.0. In their study,   
 is the number of examinees in the interval i who correctly answered the 

item;   
0is the number of examinees in the interval i who omitted the item; and ni is the number 

of examinees in the i-th interval who answered the item. Once these numbers are calculated, the 

estimated probability of success in interval i was as follows: 

 (       ℎ       𝑎 ) =
  

 +
  

0

 
  

.                                                                ( ). 

Kingston and Dorans (1985) plotted these probabilities “as squares whose areas are 

proportional to ni”(p. 282) and compared these probabilities with the 95% confidence interval of 

the probability of success of the parametric logistic model at the proficiency θi (θi is the midpoint 

of the i-th interval). Since the item-ability regression does not impose any restrictions on the 

shape of IRF, any large difference between the IRF estimated by the item-ability regression 

method and the IRF estimated by the parametric logistic model concludes that the parametric 

logistic model does not fit the data. Kingston and Dorans (1985)  used the number of times that 

the estimated probability of success according to the item-ability regression method was not 
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included in the 95% confidence interval as an indicator that the parametric logistic model did not 

fit the data. However, the 95% confidence interval is estimated by replacing the binomial 

distribution with the symmetric standard normal distribution and the estimation of 15 

probabilities. This estimation is influenced by arbitrary grouping. Most importantly, a large 

sample size is needed (Kingston &Doran, 1985). These two features constrain the flexibility of 

the item-ability regression method.  

To increase the flexibility of this method, R. McKinley (personal communication, spring, 

2010) proposed a modified item-ability regression method. McKinley’s modified item-ability 

regression method calculates prior probability from the empirical proficiency distribution, 

posterior probability of every examinee on each proficiency evaluation node from the prior 

probability, and probabilities of success on these evaluation nodes instead of the proficiency 

intervals from the posterior probabilities and item scores. These probabilities of success form the 

estimated IRF. The following is the introduction of this modified item-ability regression method 

in the order of prior probability calculation, posterior probability calculation using prior 

probabilities, and IRF calculation using posterior probabilities and item scores. 

Prior probability and empirical proficiency distribution. The IRF mathematical form and 

the latent proficiency distribution mathematical form are both unknowns. If one is assumed, the 

other one can be estimated with or without assuming any mathematical form. The IRF 

mathematical form is usually assumed as the parametric logistic model and the latent proficiency 

distribution mathematical form is usually assumed as the standard normal distribution (Woods 

&Thissen, 2006). For example, the nonparametric smooth regression method does not assume 

any mathematical form for the IRF, but assumes the standard normal distribution for the latent 

proficiency distribution. Also, if the IRF is assumed to follow the parametric logistic model, then 
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the latent proficiency distribution can be estimated without assuming any mathematical form. 

This distribution is called the empirical proficiency distribution. 

In order to calculate the empirical proficiency distribution, IRFs are first assumed to follow 

the parametric logistic model and the expectation-maximization (EM) algorithm is applied to 

estimate the item parameters (Bock & Aitkin, 1981). One output of the EM algorithm is the 

empirical proficiency distribution. The probabilities of this distribution are used as priors for 

calculating the posterior probability of every examinee on each proficiency evaluation node in 

item-ability regression. If there are K proficiency evaluation nodes, the prior probability for each 

node is p0k(θk). 

Posterior probability. In posterior probability, yj is the score vector of the examine j for n 

items and uij is the response of the examine j on the item i. Also, Pi(θk) is the probability of 

success of item i at the proficiency level, θk, which is another output of the EM estimation 

algorithm. The conditional probability of the examinee j with the response vector yj under the 

condition that he or she is at the proficiency evaluation node k, and the assumption of the local 

independence is as follows: 

  𝑘(  | 𝑘) = ∏  ( 𝑘)
   (1  

 

 = 

  ( 𝑘))
     .                              ( ) 

Based on Bayes’ theorem (Jacod&Protter, 2003, p.17), the posterior probability of the 

examinee j at the proficiency level k is the following: 

   𝑘( 𝑘|  ) =
  𝑘(  | 𝑘)   0𝑘( 𝑘)

 (  )
 .                                          ( ) 

 (  ) = ∑   𝑘(  | 𝑘)   0𝑘( 𝑘)

 

𝑘= 

 .                                          (1 ) 
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The posterior probability p1jk could be interpreted as a weight of examinee j at the proficiency 

evaluation node k. The sum of p1jk across all the examinees at each proficiency evaluation node 

forms the posterior empirical proficiency frequency distribution and could be interpreted as the 

number of examinees at the proficiency evaluation node k. 

IRF. During estimating IRF, N is the number of examinees, and the estimated probability of 

success at proficiency evaluation node k for item i by the item-ability regression method is as 

follows: 

  ( 𝑘) =
∑    𝑘     

 
 = 

∑    𝑘
 
 = 

 .                                                        (11) 

When an examinee answers item i correctly, his or her uij is equal to 1and the weight counted for 

the numerator. When an examinee answers the item i incorrectly, his or her uij is equal to 0 and 

the weight is not counted for the numerator. Thus, the numerator is the estimated number of 

examinees who answered the i-th item correctly at the proficiency evaluation node k. The 

denominator is the number of examinees at the proficiency level k. Since the estimated 

probabilities of success are calculated using probabilities of the empirical proficiency 

distribution, it is not affected by any arbitrary grouping. Plotting these probabilities will present 

the shape of the estimated IRF in the graph. If the nonmonotonic part of the IRF is obvious, it 

will be noticeable from the shape of plot and indicate this item has a nonmonotonic IRF. 

B-Spline Nonparametric IRT 

The B-spline nonparametric IRT method uses the functional data analysis method to 

estimate the IRF nonparametrically. Rossi et al. (2002) first presented this method as a more 

flexible alternative method compared to the 3-PL model. The following section includes the 

nonparametric model and the estimation procedures of this method. 



22 
 

Nonparametric Model. The B-spline nonparametric IRT method uses the functional data 

analysis method to model the probability of success in a linear regression function. It then 

transforms this linear function into a logistic form to make the probability in the range from 0 to 

1. In this section, the model of this method and the functional data analysis method along with its 

basis function will be introduced. 

Model. The model of the B-spline nonparametric IRT method, which estimates the IRF, is as 

follows: 

 =   
 

1   
      =

exp  

1 + exp  
 .                                            (1 ) 

In this equation, λ is a continuous linear function of theta and needs to be estimated. Also, P is 

the logistic transformation of λ and P is continuous on the scale from 0 and 1(Rossi et al., 2002). 

Since the logistic transformation is a monotonic transformation, P will increase as λ increases. 

However, λ might not increase as theta increases. Thus, the nonmonotonic IRF can be estimated 

by this model. 

The B-spline nonparametric IRT method also uses the logistic form to model the IRF, which 

is the same as the parametric logistic models. A difference between the parametric logistic 

models and this model is that the degree of the linear function is 1 for the parametric logistic 

model, but the degree of the linear function, λ, could be bigger than 1 for the B-spline 

nonparametric IRT model. Another difference is that the form of linear function is fixed with one 

to three parameters for the parametric logistic model, but the form of λ is not constrained and 

nonparametric for the B-spline nonparametric IRT model. If certain constraints are added to λ, 

the parametric logistic models could be considered a special version of the B-spline 

nonparametric IRT’s model. Since the B-spline nonparametric IRT method uses a very general 

model and imposes fewer restrictions on the shape of the IRF (Sijtsma & Junker, 2006), it can be 
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concluded that the parametric logistic model is misfit if it differs substantially from the IRF 

estimated by the B-spline nonparametric IRT method. 

Functional data analysis. The linear function, λ, is estimated through the functional data 

analysis method, which assumes that the function being estimated is smooth (Ramsay & 

Silverman, 1997, p.1). When the function data analysis method is applied to λ estimation, the λ is 

represented as a linear combination of K basis functions, which are preselected known functions: 

  ( ) = ∑   𝑘 ( )𝑘 .

 

𝑘= 

                                                         (1 ) 

In this equation, βikis the coefficient of the basis function B(θ)k. The basis functions are the same 

across different items. The coefficients are different for different items, which are the item 

parameters that need to be estimated.  

There are two types of basis functions: B-spline basis functions for the nonperiodic functions 

and Fourier series functions for the periodic functions (Rossi et al., 2002). The B-spline basis 

functions are used for the estimation in this research.  

B-spline basis functions. The B-spline basis functions are a set of piecewise polynomials 

with the same degree. These polynomials have three properties: nonzero on a few intervals, 

evaluated at any values, and positive on nonzero intervals (de Boor, 2001, p.87; Nürnberger, 

1989). The mathematical expression of these basis functions are below.  

The degree of basis functions is d and U is a set of m+1 nondecreasing knots on θ, 

u0<=u1<=…<=ux<=… <=um. The interval [ux, ux+1) is the x-th knot span. If a knot appears 

several times (i.e.,ux=ux+1…) and their knot spans are equal to 0, this knot is called a multiple 

knot. If a knot appears only once, it is called a simple knot. The knot spans could be equal. These 

equally spaced knots are called uniform knots. Otherwise, the unequally spaced knots are called 
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cardinal knots. The range from u0 to um is the evaluated range and all the B-spline basis functions 

are zero out of evaluated range (de Boor, 2001, p.88).The x-th B-spline basis function of degree 

d is as follows: 

  
 ( ) =

    

       
  

   ( ) +
        

           
    

   ( )        (1 ) 

𝑎     
0( ) = {

1                     

                      ℎ      
 .                                         

This B-spline basis function formula is also called the Cox-de Boor recursion formula (de Boor, 

2001, p.89). This formula shows the recurrence relation of the basis functions because the basis 

functions with different degrees are defined over the same knot span, and higher degree function 

is a function of lower degree ones.  

There is a relationship among the number and degree of the B-spline basis functions, and the 

number of knots. When K is the number of the B-spline basis functions, d is the degree of the B-

spline basis functions and m+1 is the number of knots, then (de Boor, 2001, p. 89) the 

relationship is the following: 

 =  + 1 + ( + 1)   .                                                        (1 ) 

In order to complete the calculation of K B-spline basis functions, another 2*d multiple endpoint 

knots (d multiple knots for each end) are needed. De Boor (2001, p.89) referred to this situation 

as the “not-a-knot” condition.  

Since the B-spline basis functions are piecewise polynomials and zero everywhere except a 

few intervals, it is a very flexible and a computationally convenient tool for the estimation of λ. 

This research uses nine uniformly spaced simple knots ranging from -2.5 to 2.5. The degree of 

the basis function is three and there are 11 B-spline basis functions. Also, another six multiple 

endpoint knots are needed for computations. Figure 3 plots the five B-spline basis functions of 
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degree three defined by the uniform spaced knots -2, 0, and 2,as well as six multiple endpoint 

knots.  

 

Figure 3.B-spline basis function. The five B-spline basis functions of degree three is defined 

by the uniform spaced knots -2, 0 and 2.  

 

Estimation. In order to estimate the IRF using the B-spline nonparametric IRT method, we 

only need to estimate the coefficients of each B-spline basis function. The EM algorithm is used 

for the estimation of these coefficients. The EM algorithm (Bock & Aitkin, 1981) has three parts: 

initialization, expectation phase (E-phase), and maximization phase (M-phase). Initialization 

determines the initial values of the estimated parameters. The E-phase fixes the parameters and 

calculates the expected values of sample distributions frequency. The M-phase maximizes the 

marginal likelihood with respect to the coefficients. After initialization, the E-phase and M-phase 

alternate and the converging criterion is evaluated at the end of the E-phase. If the converging is 

reached, the estimation stops. In addition, the relationship between the smooth and flexibility of 

B-spline nonparametric IRT method should be considered during estimation. Since increasing 

the number of basis functions improves the flexibility but leads to a less smooth IRF, there 
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should be a balance between the smooth and the flexibility. The roughness penalty method could 

be used to find the balance (Ramsay & Silverman, 1997). The roughness penalty method adds a 

roughness measure, which penalizes the curvature of the IRF, to the converging criterion for 

judging the convergence. The following information is an introduction on initialization, E-phase, 

converging criterion, and the M-phase. 

Initialization. In initialization, the vales of the coefficients of every item and the prior 

probability at each evaluation points should be initialized for the calculation in the E-phase. 

Rossi et al. (2002) suggested using the nonparametric smooth regression method to estimate 

initial coefficients and the standard normal distribution to calculate initial prior probabilities.   

To apply the nonparametric smooth regression method for calculating initial coefficients, the 

researcher set Nqp to be the number of theta evaluation points (θ1, θ2, . . .θq, . . .θNqp) for 

estimating the initial values and evaluating the expected sample frequency in E-phase. First, the 

probabilities of success at each proficiency evaluation point of every item are estimated by the 

nonparametric smooth regression method. Then Nqp   
0  for the i-th item at each proficiency 

evaluation point can be calculated from equation 12 using these probabilities. Since  0  are 

linear combinations of K B-spline basis functions and coefficients, it could be interpreted as the 

linear regression model except that the “independent variables” are functions. The values of 

 0  are the dependent variables. The K B-spline basis functions are independent variables. The K 

basis functions evaluated at each theta evaluation point forms a K*Npq matrix, which are the data 

for estimating regression coefficients. Then for every item, initial coefficients,   𝑘
0  , could be 

estimated in the same ways as for linear regression, using the least square or maximum 

likelihood estimation method. These initial coefficients values,   𝑘
0  , are used in E-phases in the 

first cycle.  
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The prior probability of one examinee at the proficiency evaluation point θq, which could be 

interpreted as the weight of θq in the sample empirical latent proficiency distribution, is equal to 

the following: 

 0 
0 =

 0(  )

 
.                                                                 (1 )  

The estimated number of examinees at the evaluated node θq is N
0
(θq) . The total number of 

examinees in the sample is N. To estimate the initial prior probabilities, we could assume that the 

sample empirical latent proficiency distribution is a standard normal distribution (Rossi et al., 

2002). 

It should be noted that the initial estimated number of examinees at the proficiency 

evaluation point θq who give the correct answer to item i is as follows: 

  
0(  ) =   

0(  )   0(  ).                                                 (1 ) 

The sum of N
0
(θq) across ability evaluation points is equal to the sample size. 

E-phase. The E-phase aims to find two expectations using the estimated coefficients (e.g., 

  𝑘
0   for the i-th item) and the prior probability of one examinee at a certain proficiency 

evaluation point (e.g.,  0 
0 of the proficiency evaluation point θq) either from the initialization 

step for the first cycle or from the M-phase for all the other cycles. The two expectations are the 

expectation of the number of examinees at each proficiency evaluation points who answers each 

item (e.g., Ni(θq) for the i-th item), and the expectation of the number of examinees at each 

proficiency evaluation points who answers each item correctly (e.g.,  (  ) for the i-th 

item).These expectations are the expectations of the indicator random variables. Using item i as 

an example, one of the indicator random variables is Gi and gij is the observation of this indicator 

random variable for examinee j. If examinee j answered the item i, gij is equal to 1. Otherwise, gij 
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is equal to 0. Another indicator random variable is Ii and iij is the observation of this indicator 

random variable for examinee j. If examinee j answered the item i correctly, iij is equal to 1. 

Otherwise, iij is equal to 0. 

For each item, the expectations of these two indicator random variables are calculated using 

the posterior probabilities of each examinee at proficiency evaluation points. These posterior 

probabilities for each examinee are calculated from the estimated prior probabilities and 

coefficients. In order to calculate the posterior probabilities, yj is set to be the score vector of the 

examine j for n items and uij is set to be the response of the examine j on the item i. The 

probability of success of item i of an examinee at the proficiency evaluation point θq, Pi(θq) , is 

calculated from equations12 and 13 using the estimated coefficients. When the assumption of the 

local independence is held, then the conditional probability of examinee j with the response 

vector yj, under the condition that he or she is at the proficiency evaluation point θq,is as follows: 

   (  |  ) = ∏  (  )
   

(1  

 

 = 

  (  ))
     .                         (1 ) 

Based on Bayes’ theorem (Jacod & Protter, 2003, p.17), the posterior probability of the examinee 

j at the proficiency evaluation point θq is as follows: 

    =
   (  |  )   0 

∑    (  |  )   0 
   

 = 

 .                                          (1 ) 

In this equation, w0q is the estimated prior probability updated every cycle. The posterior 

probability w1jq could be interpreted as the weight of examinee j at the proficiency evaluation 

point θq. Then for item i, two expectations are as follows: 

  (  ) = ∑        .

 

 = 

                                                            (  ) 
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  (  ) = ∑       

 

 = 

 .                                                            ( 1) 

It should be noted that the sum of indicator function Gi over all the examinees is equal to the 

sum of the number of examinees at each proficiency evaluation point: 

∑   

 

 = 

= ∑   (  )

   

 = 

.                                                         (  ) 

Also, using the expectation of the number of examinees at each proficiency evaluation point, the 

prior probability can be updated. The updated prior probability,  0  
 , of an examinee at the 

proficiency evaluation point θq for item i is as follows: 

 0  
 =

  (  )

∑    
 
 = 

 .                                                              (  ) 

If every examinee answers all the items on the test, the estimated number of examinees at each 

proficiency evaluation point and the updated prior probability are the same across items. Then, 

the calculation formula of the updated prior probabilities is as follows: 

 0 
 =

 (  )

 
 .                                                            (  ) 

Convergence. The log likelihood can be used for judging convergence (Bock & Aitkin, 

1981). The log likelihood is calculated using the updated item coefficients and the updated prior 

probabilities. The log likelihood of this estimation algorithm is as follows: 

 = ∑   [∑      (  |  )

   

 = 

 

 = 

] .                                                (  ) 
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The log likelihood first sums over the Nqp proficiency evaluation points and then sums over the N 

examinees. The roughness measure added to the log likelihood is given by the linear function’s 

squared second derivative after integrating over θ: 

 (  ) = ∫ (
    ( )

   
)   .

 

  

                                                        (  ) 

The larger the number of wiggle in the IRF is, the larger the roughness measure will be. Then the 

converging criterion is: 

 =  ∑   [∑      (  |  )

   

 = 

 

 = 

] +  ∑∫ (
    ( )

   
)   .

 

  

 

 = 

                          (  ) 

In this equation, γ is the smoothing parameter. As γ increases, the roughness measure is more 

significant compared to the log likelihood. Thus, a small roughness measure and smooth λare 

needed. Finally, if γ increases to ∞, the linear function, λ, will be forced to be a straight line and 

the estimated IRF will follow a 2PL model. As γ decreases to 0, the penalty of the curvature 

vanishes and λ can be complex and rough. If the converging criterion in equation 27 is “no 

longer judged to be improving from one iteration to the next and-or item parameters cease to 

change substantially”, the convergence has been reached (Rossi et al., 2002, p. 299). 

M-phase. The M-phase aims to maximize the log likelihood L with respect to the 

coefficients βiks (Rossi et al., 2002). Coefficients that maximize the log likelihood L could be 

solved by letting the first derivative of L be equal to 0. The following equation is an example that 

is used to solve the coefficient of the k-th basis function for item i, βik, which maximizes L by 

letting the first derivative of L be equal to 0. 

  

   𝑘
= ∑[  (  )    (  )    (  )]

   

 = 

   (  )

   𝑘
=  .                          (  ) 
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The Ri(θq) and Ni(θq) are treated as known using the calculation from E-phase, whose values are 

updated every cycle. Ri(θq) and Ni(θq) are dependent on the probabilities of success Pi(θq). Once 

the coefficients βiks are calculated from M-phase, probabilities of success, Pi(θq), will be 

updated, and then Ri(θq) and Ni(θq) can be updated in E-phase.   

Rossi et al. (2002) gave a reexpression of the log likelihood and introduced another way to 

estimate λi(θq) in M-phase if λi(θq) is the parameters that researchers were seeking. This 

reexpression log likelihood   could be interpretedas the sum of the log likelihoods over the Nqp 

proficiency evaluation points. For one proficiency evaluation point θq, the log likelihoods of 

getting Ri(θq) successful events in Ni(θq) trials with the probability of success Pi(θq) is as follows: 

  =   (  )      (  )  (  (  )    (  ))    (1    (  )) .                  (  ) 

The sum log likelihood is also as follows: 

  = ∑   

   

 = 

= ∑[  (  )      (  )  (  (  )    (  )    (1    (  ))] .

   

 = 

      (  ) 

The first derivative of this expression with respect to βik is as same as equation25. 

If λi(θq) is the parameter that researchers are seeking, λi(θq) that maximizes the log likelihood 

  could be solved by letting the first derivative be equal to 0: 

   

   (  )
=   (  )    (  )    (  ) =  .                                 ( 1) 

Then, 

  (  ) =
  (  )

  (  )
 𝑎     (  ) =   

  (  )

1    (  )
 .                         (  ) 

Since λi(θq)s are known, they could be treated as the observations of the dependent variable of a 

linear regression and the coefficients βiks could be calculated as the regression coefficients.   
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Posterior Predictive Model Checking 

The posterior predictive model checking (PPMC) method (Gelman et al., 1996; Guttman, 

1967; Rubin, 1984) is a statistical inference method from a Bayesian perspective. The PPMC 

method is mainly used for checking model fit (Gelman et al., 1996). Guttman (1967) introduced 

this method, and Rubin (1984) applied it to several examples and gave a formal definition. 

Furthermore, Gelman et al. (1996) gave a clear description of this method and applied it to 

several statistical problems. The PPMC method has also been applied in psychometrics to check 

model fit by several researchers (Glas & Meijer, 2003; Levy et al., 2009; Sinharay, 2005; 

Sinharay, Johnson, & Stern, 2006). In this study, PPMC was used to assess the fit of the 

parametric logistic model by focusing on the monotonicity of the parametric logistic model’s 

IRF. The following sections describe this method, introduce the advantages of this method, and 

apply this method to assessing the fit of the parametric logistic model. 

Description of the method. Posterior distribution of unknown parameters. The terms for 

calculating the posterior distribution include: ω, the unknown parameters of the assumed model 

H, and y, the observed data. The prior distribution of the unknown parameters is p(ω)  and the 

likelihood distribution of observed data assuming that the model H is true is p(y|ω) (Sinharay, 

2005; Sinharay et al., 2006). Using Bayes’ theorem (Jacod & Protter, 2003, p.17), the posterior 

distribution of unknown parameters is p(ω|y) and  ( | )     ( | ) ( ).  

Replicated data’s posterior predictive distribution. Another type of data, y
rep

, is called the 

replicated data. The replicated data could be interpreted as the data that will be observed in the 

future or predicted and are then replicated using the same model H and parameters drawn from 

the p(ω| y). The posterior predictive distribution of y
rep

 is as follows: 

 (    | ) = ∫ (    | ) ( | )  .                                                (  ) 
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This distribution was calculated from a Bayesian perspective to eliminate the nuisance 

parameters by integrating them out (Bayarri & Berger, 2000). A statistic that was calculated from 

the observed data is compared to the distribution of the same statistic calculated from the 

replicated data drawn from this distribution. This was done to check the model fit (Gelman et al., 

1996).  

Posterior predictive p-value (PPP-value). PPP-value provides a quantitative measure of the 

degree to which the model is able to capture the features of the observed data, in other words, the 

fit of the model to the observed data. The PPP-value is defined as (Bayarri & Berger, 2000): 

 =  ( (    )   ( )| ) = ∫  (    | )
 (    )  ( )

     .                        (  ) 

In this equation, T(y) is a discrepancy measure which is chosen to address the aspect of the 

model that the researcher is interested in to make inference about the fit and to measure data 

characteristics which cannot be addressed by the probability model (Gelman, Carlin, Stern, & 

Rubin, 2003, p.172). Extreme PPP-values, those close to 0, 1, or both (depending on the nature 

of the discrepancy measure), indicate the model does not fit the data (Sinharay et al., 2006). 

Rubin (1984) suggested a practical way to form the posterior predictive distribution and 

calculate PPP-value, which aims to deal with the difficulty of the analytical calculations of 

equations 33 and 34.The steps of this calculation are as follows: 

1. A total of M simulations ω
1
, ω

2
, …, and ω

M 
is drawn from the posterior distribution, 

p(ω| y), via the Markov Chain Monte Carlo (MCMC) algorithm.  

2. A total of M data sets y
rep,1

, y
rep,2

, …, and y
rep,M 

is drawn from the likelihood 

distribution p(y|ω
m
).  

3. The discrepancy measure is calculated from each replicated data set, T(y
rep,m

).  
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4. PPP-value is equal to the proportion that T(y
rep,m

) is larger than T(y) when T(y) is 

compared to MT(y
rep,m

)s. 

Advantages of the method. The PPMC has three advantages compared to the classic 

model-checking method (Glas & Meijer, 2003; Rubin, 1984; Sinharay, 2005): 

1. The PPMC method works when the theoretical sampling distribution of the statistic is 

unknown. The sampling distribution is not necessary for the PPMC method. 

2. The uncertainty of the parameter estimation is taken into account by integrating over the 

parameters. Rubin (1984) suggested it is “scientifically valuable and appropriate to 

expose this sensitivity” (p.1157).  

3. The procedures of the PPMC method are easily generalized (Glas& Meijer, 2003).    

Application to checking monotonicity of the IRF. The model H in this study was 3-PL 

model. The parameters ω were item parameters, as, bs, cs, and proficiency parameters, θs (e.g., 

ai, bi,, and ci for item i as well as θj for examinee j). The observed data y were the responses of 

examinees for all the items. The discrepancy measure T(y) for the i-th item was as follows: 

  = ∫ ( (  𝑘)   ( )
   

   

)                                                 (  ) 

    𝑎      𝑎        𝑘         𝑚𝑘   (  )   (  )   (  𝑘)     

    𝑎      𝑎       𝑚𝑘          𝑘     (  )   (  )   (  𝑘  )     

𝑎     𝑘   𝑚𝑘      𝑘      𝑘   ( 𝑚𝑘)   (  𝑘  )   (  𝑘)   (  𝑘)      

  𝑘   𝑚𝑘    𝑘   𝑎     𝑘  𝑎       . 
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For item i, Ti was the area of nonmonotonic IRF of this item. It is the area between the straight 

line and the IRF in the oval in Figure 4. 

 

Figure 4.Area of nonmonotonic IRF. The area between the straight line and the IRF in the 

oval is the area of nonmonotonic IRF.  

For the parametric logistic models, Ti of was 0 for every item. Since IRFs that were estimated 

from the nonparametric smooth regression method and the item-ability regression methods were 

not continuous, the numeric integration was used to calculate this area.    

The following were procedures for applying the PPMC method to check the monotonicity of 

IRF (Sinharay et al., 2006): 

1. The MCMC algorithm was used to simulate the posterior distributions of item 

parameters and proficiency parameters using the observed data and the 3-PL model 

(Patz & Junker, 1999).  

2. A total of N θs was drawn from corresponding posterior distributions. The sample 

size was N. For example, θj of the j-th examinee was drawn from the posterior 

distribution p(θj|y).  

3. The item parameters of n items were drawn from their posterior distributions. 
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4. A data set was generated from the 3-PL model using item parameters and proficiency 

parameters.  

5. The discrepancy measure was calculated for this data set and compared with the 

same discrepancy measure calculated from the observed data. 

6. Steps 2 to 5 were repeated for M times to compute the PPP-value for every item. 

Summary 

The IRF could be estimated using both the parametric methods and the nonparametric 

methods. Since the nonparametric methods have few restrictions on the shape of IRFs, some of 

these methods allow nonmonotonic IRFs and can be used as tools to check the monotonicity of 

IRFs. This research investigated three approaches (a) the nonparametric smooth regression 

method, (b) the item-ability regression method, and (c) the B-spline nonparametric IRF method. 

The nonparametric smooth regression method used the order of examinees’ sum scores to 

estimate their proficiency levels and then estimated the IRF using examinees’ responses and 

proficiency estimates. The item-ability regression method formed the IRF by using the ratio of 

examinees correctly answering the item to examinees answering the item at every proficiency 

evaluation node. The B-spline nonparametric IRF method estimated the coefficients of the B-

spline basis functions to form a linear function of proficiency and transformed this linear 

function to a logistic form, which was the model of IRF.  

Once an IRF has been estimated by each of these three nonparametric methods in a real data 

study, the PPMC method was used to judge the degree of the parametric logistic model fit 

focusing on the nonmonotonicity of IRFs. The PPMC method used the replicated data, which 

were generated by the model, and the unknown parameters drawn from the posterior distribution 

to calculate the PPP-value of certain discrepancy measure. Extreme PPP-values indicate that the 
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model does not fit the data. Overall, this study was interested in and explored the area of the 

nonmonotonic IRF for the PPMC method. 
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Chapter 3: Method 

This study included an investigation and comparison of three nonparametric IRF estimation 

methods—the nonparametric smooth regression method, the item-ability regression method, and 

the B-spline nonparametric IRF method—to determine whether they could detect the 

nonmonotonic IRF accurately using simulated data. After a comparison of the three methods, 

identification of items with nonmonotonic IRFs on real assessments using these three methods 

occurred. This chapter includes descriptions of assessments, participants, software, design, 

simulation study and real data study.    

Assessments 

For the real data study, standard end-of-year summative assessments administered to high 

school students across the state were used. Five assessments (three mathematics assessments 

from 2008-2010 and two reading assessments from 2008-2009) were examined. These 

assessments aim to test all the content standards of the high school math and reading curricula 

and only include multiple-choice items that have one correct answer out of the four answer 

choices.  

Participants 

For each assessment, 10,000 high school examinees (grades 9 to 11) who took the state, end-

of-year summative assessment in mathematics or reading were randomly selected. Selected 

participants answered all the items on the assessment. 

Software 

The software used in this research includes BILOG-MG, WinBUGS, Fortran programs, and 

SAS. To implement the EM algorithm for the item-ability regression estimation, BILOG-MG 

was used. BILOG-MG applied the EM estimation algorithm to calculate the prior probability of 
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each proficiency evaluation node for the item-ability regression estimation. WinBUGS was used 

to implement the MCMC algorithm on the real data set. WinBUGS drew item parameters and 

proficiency parameters from the posterior distributions through the MCMC algorithm for the 

PPMC method. Five Fortran programs were written to simulate the data, apply the nonparametric 

smooth regression method, apply the item-ability regression method, apply the B-splines 

nonparametric IRT method, and calculate the area of nonmonotonic IRF. Finally, SAS was used 

to read the output of the Fortran programs and calculate the PPP-values.  

Design 

In the simulation study, an experimental design was used. The independent variable was the 

nonparametric method which was used to estimate the IRFs. The dependent variable was the 

accuracy with which each method can detect the items with nonmonotonic IRFs. The real data 

study was an exploratory study. Real data study aimed to identify the prevalence of 

nonmonotonic IRFs. 

Simulation Study 

The simulation study had three phases: data generation, IRF estimation along with 

nonmonotonic area calculation, and results analysis. The simulated data were generated from two 

models: monotonic IRF and nonmonotonic IRF. Three nonparametric methods were used to 

estimate IRFs of 60 items. The result analyses were consisting of the type I and type II error rate 

calculation and the nonmonotonic area correlation among three nonparametric methods.     

Data generation. In this section, the models and their parameters to generate simulated data 

are introduced. The simulation method and the number of simulated data sets generated are also 

described. These simulated data sets were used to compare three nonparametric methods.  
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Models. Because the 1-PL or 2-PL model is a special version of the 3-PL model, the 3-PL 

model (equation 2) was used to generate responses of items with monotonic IRFs. On the other 

hand, the model for generating responses of items with nonmonotonic IRFs is as follows: 

  ( ) = 𝑐 +
1  𝑐 

1 + exp [ .  𝑎  (   ( + 1. ) + ( +  ))]
.                    (  ) 

These two models all have three item parameters. The difference is that the degree of the 

polynomial in exponential function is 1 for the monotonic model and 3 for the nonmonotonic 

model.  

Proficiency and item parameters. Ten thousand proficiency parameters, θs, were randomly 

drawn from a standard normal distribution. Sixty groups of item parameters were randomly 

selected from the real item parameter estimates of the high school summative mathematics 

assessment. Six groups of item parameters were for the nonmonotonic model and 54 groups of 

item parameters were for the monotonic model. These six groups of item parameters (item 10, 

20, 30, 40, 50, and 60) were selected purposely. Items10 and 20 either have low or high item 

difficulty parameters. Items 30 and 40 either have low or high item discriminate parameters. 

Items 50 and 60 either have low or high item guessing parameters. Table 1 indicated the true 

item parameters for these six items. Figure 5-10 presented the true IRF for these six items.  

Table 1 

True Item Parameters for Nonmonotonic IRFs 

 

Item a b c 

10 0.855 1.654 0.139 

20 0.695 -2.416 0.336 

30 0.369 0.863 0.163 

40 1.8 0.123 0.295 

50 0.833 -1.509 0.089 

60 0.784 -0.841 0.522 
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Figure 5. True IRF of simulated item 10. This item has high item difficulty parameter.  

 

Figure 6. True IRF of simulated item 20. This item has low item difficulty parameter.  
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Figure 7. True IRF of simulated item 30. This item has low item discriminate parameter.  

 

Figure 8. True IRF of simulated item 40. This item has high item discriminate parameter.  
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Figure 9. True IRF of simulated item 50. This item has low item guessing parameter.  

 

Figure 10. True IRF of simulated item 60. This item has high item guessing parameter.  
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Simulation method. The Monte Carlo simulation method was used to generate the data. To 

generate an item’s response, a uniformly distributed random number in the range from 0 to 1 was 

generated first. Then this random number was compared with the probability of success 

calculated from the model. If the probability of success is bigger than the random number, the 

response is 1. Otherwise, the response is 0.  

Replication. For one replication, the responses of 10,000 examinees on a simulated 60-item 

test were generated. The responses of six items were generated from the nonmonotonic model 

and the responses of 54 items were generated from the 3-PL model.  Five hundred replications 

were generated. 

IRF estimation and nonmonotonic area calculation. For every item, three nonparametric 

methods were used to estimate IRF, and numeric integration was used to calculate the area of 

nonmonotonic IRF. In one estimated IRF, there might be several small nonmonotonic IRF parts. 

Therefore, the sum of nonmonotonicity areas in one IRF was considered as the area of 

nonmonotonic IRF. The details about the IRF estimation and area calculation for each method 

are described below. 

Nonparametric smooth regression. One hundred and one evaluation nodes were selected for 

estimating IRFs. These nodes range from -3 to 3 and the intervals between nodes are equal. 

These nodes were also the nodes for the numeric integration to calculate the nonmonotonic area 

of true and estimated IRF. 

Item-ability regression. Since this estimation method needs the empirical proficiency 

distribution probability for each evaluation node from the output of the BILOG-MG program, 

and there were minor changes of the predefined evaluation nodes, which were ranged from -3 to 

3, after the EM-estimation, 101 evaluation nodes are a little bit different from the evaluation 
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nodes of the nonparametric smooth regression and B-splines nonparametric IRT method and the 

intervals between two nodes might not be equal. These nodes were also the nodes for the 

numeric integration to calculate the nonmonotonic area of true and estimated IRF.  

B-splines nonparametric IRT. The model of this method to estimate IRF is the logistic 

transformation of the linear combination of the eleven B-spline basis functions with degree three 

and their coefficients. Nine uniformly spaced simple knots ranging from -3 to 3 and another six 

multiple endpoint knots were selected to estimate the coefficients of these B-spline basis 

functions. One hundred and one evaluation nodes were selected for plotting the IRF. These nodes 

range from -3 to 3 and the intervals between nodes are equal. These nodes are also the nodes for 

the numeric integration to calculate the nonmonotonic area of true and estimated IRF. These 101 

evaluation nodes are the same as the evaluation nodes of the nonparametric smooth regression 

method.  

Results Analysis. The results analysis in the simulation study aimed to compare three 

nonparametric methods. Two criteria were used for comparison: the type I and type II error rate. 

Also the nonmonotonic area correlation aimed to find the similarity and differences among three 

nonparametric methods on nonmonotonicity estimation. 

Before calculating the type I and II error rates, a null distribution of the statistic, the 

nonmonotonic area, should be generated to evaluate whether the estimated IRFs are monotonic. 

This null distribution sets a criterion that if the nonmonotonic area of one IRF is bigger than 

most of the values in the null distribution (e.g., 95%), this IRF is nonmonotonic. A group of 

replicated data should be simulated first to generate a null distribution. Since this is a simulated 

data study and the true parameters are known, these true parameters were used instead of the 

draws from the posterior distribution of parameter estimates in the PPMC method to simulate 
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replicated data. Five hundred replicated data were simulated using the 3-PL model and 60 groups 

of true parameters. Each replicated data has the responses of 10,000 examinees on a simulated 

60-item test. The 60 IRFs were estimated by each nonparametric method and the areas of 

nonmonotonic IRF were calculated in every replicated data. Thus, for one IRF estimated by one 

nonparametric method, there were 500 areas of nonmonotonic IRF, which formed the null 

distribution.   

Once the nonmonotonic area of one IRF was calculated in one replication by one 

nonparametric method, it was compared with the corresponding null distribution to calculate p-

value. P-value equates to the percentage the number of values in the null distribution bigger than 

the nonmonotonic area. If this area is bigger than 95% values in the null distribution and p-value 

of this area is smaller than 0.05, then the item with this area was identified with a nonmonotonic 

IRF. Since the true IRFs are known, this conclusion was compared with the true situation. After 

the comparison was completed, the type I and II error rates of each nonparametric method can be 

calculated. For all 500 replications, there are 30,000 IRFs, which were estimated by one 

nonparametric method, with 60 in one replication. Among these 30,000 items, there are 3,000 

items with nonmonotonic true IRFs and 27,000 items with monotonic true IRFs. The type I error 

rate is equal to the proportion of the number of items whose true IRF is monotonic, but the 

estimated IRF is nonmonotonic to the number of items with monotonic true IRFs (27,000). The 

type II error rate is equal to the proportion of the number of items whose true IRF is 

nonmonotonic, but estimated IRF is monotonic to the number of items with nonmonotonic true 

IRFs (3,000). 

The nonmonotonic area correlation between two nonparametric methods is the correlation of 

30,000 the nonmonotonic area calculated from the simulated data by these two methods. Since 
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there are three nonparametric methods, there are three nonmonotonic area correlations. The high 

correlation indicates the nonmonotonic area estimated by two methods have a similar pattern 

among items. The low correlation indicates the nonmonotonic area estimated by two methods 

have a different pattern among items.  

Real Data Study 

The real data study has three phases: IRF estimation with nonmonotonic area calculation 

phase, items with nonmonotonic IRF identification phase, and nonmonotonic area correlation 

among three nonparametric methods. In the first phase, three nonparametric methods were used 

to estimate the IRFs of items on five end-of-year summative assessments. Then in the second 

phase the PPMC method was used to identify items with nonmonotonic IRFs. After this was 

done, the correlation of nonmonotonic area of real data calculated by three methods were 

calculated which aimed to find the similarity and differences among three nonparametric 

methods on nonmonotonicity estimation in real data study. 

IRF estimation and nonmonotonic area calculation. Three nonparametric methods were 

used to estimate IRFs and the numeric integration was used to calculate the area of 

nonmonotonic IRF. In one estimated IRF, there might be several small nonmonotonic IRF parts. 

Therefore, the sum of nonmonotonicity areas in one IRF is considered as the area of 

nonmonotonic IRF.  For every item, the same IRF estimation and nonmonotonic area calculation 

described earlier in the simulation study section was used.  

Items with nonmonotonic IRF identification. The PPMC method was conducted to 

identify items with nonmonotonic IRFs through drawing parameters from the posterior 

distributions, generating replicated data, IRF estimation and nonmonotonic area calculation, and 

PPP-value calculation. This method started with drawing the item parameters and proficiency 
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parameters from the posterior distributions. Then, the replicated data were generated from the 3-

PL model using these parameters. Once this was done, the IRFs were estimated using three 

nonparametric methods and the nonmonotonic areas were calculated for every replicated data. At 

last, PPP-value using the nonmonotonic area as the discrepancy measure was calculated as a 

criterion to identify the items with nonmonotonic IRFs. The following section aims to describe 

the calculation steps of every part.  

Posterior distribution and parameters. The posterior distributions of item and proficiency 

parameters can be simulated through the MCMC algorithm. WinBUGS was used to apply the 

MCMC algorithm on the real data to simulate the posterior distributions of 3-PL model item 

parameters and the proficiency parameters. The prior distributions used for MCMC algorithm 

were:    (𝑎 )  (   )      (   )  𝑐     𝑎(  1 )     (  1). Sinharay et. al. (2006) stated 

PPMCs are “robust to reasonable changes to the prior distributions” (p. 304). For each end-of-

year summative assessment, two Markov chains with the length of 6,000 were set to apply 

MCMC algorithm in WinBUGS. After these Markov chains converged, 500 groups of item 

parameters and proficiency parameters of 3-PL model were drawn from the posterior 

distributions simulated by the MCMC algorithm. One group of item parameters and proficiency 

parameters contains the parameters of all items on the assessment and 10,000 proficiency 

parameters. 

Replicated data. For every group of draws, a replicated data were generated from the 3-PL 

model using these draws. This replicated data includes the responses of 10,000 examinees on all 

items in one assessment. Thus, 500 groups of draws generate 500 replicated data for every end-

of-year summative assessment. These replicated data count the uncertainty of the estimation 

because they were generated using the draws from the posterior distributions of parameters.  
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IRF estimation and nonmonotonic area calculation. For every replicated data, three 

nonparametric methods were used to estimate IRFs, and the numeric integration was used to 

calculate the area of nonmonotonic IRFs. For every item, the same IRF estimation methods and 

nonmonotonic area calculations utilized in the simulated study were used. Since there are 500 

replicated data for an end-of-year summative assessment, there are 500 estimated IRFs and 

nonmonotonic area values for one item whose IRF was estimated by one nonparametric method. 

Since the nonmonotonic area is the discrepancy measure, an item’s 500 area values formed a 

posterior predictive distribution of this discrepancy measure of one nonparametric method. 

PPP-value calculation. The posterior predictive distributions of the nonmonotonic area 

were used to calculate the PPP-value of every item for each of the three nonparametric methods. 

In order to compute the PPP-value, the nonmonotonic area of an item calculated from the real 

data was compared to its posterior predictive distribution generated from the replicated data. One 

item has three PPP-values corresponding to three nonparametric methods. These PPP-values are 

the criteria to judge whether the item has the nonmonotonic IRF. For example, if the PPP-value 

of one item whose IRF estimated by the nonparametric smooth regression method is an extreme 

value (less than 0.05), then this item was identified as the item with nonmonotonic IRF by the 

nonparametric smooth regression method.    

Nonmonotonic area correlation. The nonmonotonic area correlation between two 

nonparametric methods is the correlation of the nonmonotonic area of all the items on each 

assessment calculated by these two methods. Since there are three nonparametric methods, there 

are three nonmonotonic area correlations for each assessment. The high correlation indicates the 

nonmonotonic area estimated by two methods have a similar pattern among items. The low 
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correlation indicates the nonmonotonic area estimated by two methods have a different pattern 

among items.  

 

Summary 

The method of this research includes two parts: the simulation study and the real data 

study. The simulation study compared three nonparametric methods through simulated data 

generation, IRF estimation with nonmonotonic area calculation, and results analysis. The real 

data study calculated the nonmonotonic area of items on five assessments, identified items with 

nonmonotonic IRF and compared the nonmonotonicity estimation among three nonparametric 

methods. 
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Chapter 4:  Results 

The purposes of this study were to compare three nonparametric methods-the nonparametric 

smooth regression method, the item-ability regression method, and the B-spline nonparametric 

IRF method-in a simulation study and to identify the items with nonmonotonic IRFs on five 

assessments using these nonparametric methods. This chapter presents the comparison results of 

the simulation study and the calculation results of IRFs of real items on five assessments 

focusing on nonmonotonicity. These results were then used to identify the real items with 

nonmonotonic IRFs.  

Simulation Study Results 

Mean and standard deviation of p-value for each simulated item. P-value equates to the 

percentage the number of values in the null distribution bigger than the nonmonotonic area of 

one simulated item. P-value presents the extent of nonmonotonicity. The low p-value represents 

the large nonmonotonic area. Table 2 presents the mean and standard deviation of p-value for 

each simulated item over 500 replications for each method.  
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Table 2 

Mean and Standard Deviation of P-value for Each Simulated Item over 500 replications of Three 

Nonparametric Methods  

 

Item 

Nonparametric Smooth 

Regression 

Item-Ability 

Regression 

B-Splines Nonparametric 

IRT 

MeanP StdP MeanP StdP MeanP StdP 

1 0.496 0.278 0.714 0.383 0.552 0.304 

2 0.505 0.297 0.569 0.342 0.546 0.298 

3 0.504 0.283 0.588 0.365 0.525 0.297 

4 0.501 0.291 0.965 0.179 0.577 0.331 

5 0.510 0.293 0.595 0.368 0.542 0.294 

6 0.482 0.300 0.708 0.387 0.513 0.299 

7 0.494 0.304 0.794 0.3687 0.554 0.340 

8 0.491 0.279 0.779 0.3737 0.539 0.307 

9 0.491 0.284 0.615 0.3737 0.545 0.295 

10 0.264 0.229 0.250 0.2197 0.234 0.211 

11 0.494 0.297 0.967 0.176 0.567 0.334 

12 0.515 0.293 0.733 0.386 0.570 0.315 

13 0.485 0.298 0.633 0.377 0.523 0.292 

14 0.492 0.289 0.527 0.309 0.556 0.286 

15 0.516 0.313 0.994 0.077 0.620 0.369 

16 0.514 0.301 0.992 0.088 0.602 0.353 

17 0.499 0.303 0.994 0.077 0.618 0.357 

18 0.509 0.284 0.681 0.383 0.564 0.314 

19 0.531 0.308 0.923 0.260 0.576 0.330 

20 0.071 0.113 0.472 0.483 0.06 0.099 

21 0.491 0.299 0.978 0.145 0.618 0.351 

22 0.486 0.285 0.517 0.297 0.529 0.287 

23 0.476 0.297 0.615 0.373 0.507 0.306 

24 0.487 0.291 0.906 0.276 0.560 0.349 

25 0.485 0.291 0.831 0.345 0.532 0.320 

26 0.501 0.290 0.661 0.381 0.540 0.303 

27 0.487 0.284 0.635 0.377 0.529 0.286 

28 0.497 0.285 0.815 0.357 0.585 0.336 

29 0.517 0.300 0.590 0.351 0.533 0.306 

30 0.170 0.193 0.073 0.197 0.174 0.177 

31 0.508 0.285 0.612 0.366 0.565 0.317 

32 0.481 0.292 0.710 0.394 0.518 0.311 

33 0.484 0.281 0.544 0.310 0.538 0.274 

34 0.509 0.293 0.988 0.107 0.618 0.349 

35 0.492 0.283 0.727 0.386 0.537 0.314 

36 0.495 0.304 0.996 0.063 0.590 0.352 

37 0.494 0.280 0.537 0.318 0.528 0.280 

38 0.501 0.293 0.588 0.363 0.530 0.291 

39 0.496 0.299 0.718 0.390 0.552 0.320 
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40 0.223 0.216 0.160 0.123 0.178 0.164 

41 0.518 0.306 0.721 0.387 0.589 0.318 

42 0.499 0.288 0.802 0.365 0.544 0.325 

43 0.518 0.309 0.883 0.304 0.596 0.352 

44 0.507 0.294 0.550 0.331 0.540 0.289 

45 0.489 0.288 0.708 0.388 0.522 0.296 

46 0.486 0.285 0.622 0.376 0.546 0.294 

47 0.523 0.294 0.960 0.193 0.630 0.3418 

48 0.497 0.293 0.809 0.354 0.558 0.328 

49 0.530 0.294 0.953 0.207 0.598 0.328 

50 0.030 0.056 0.057 0.230 0.019 0.053 

51 0.503 0.299 0.990 0.098 0.583 0.354 

52 0.494 0.275 0.576 0.364 0.542 0.2872 

53 0.532 0.288 0.668 0.394 0.575 0.312 

54 0.510 0.296 0.708 0.386 0.585 0.328 

55 0.513 0.283 0.694 0.385 0.543 0.303 

56 0.510 0.296 0.922 0.258 0.561 0.335 

57 0.508 0.287 0.751 0.377 0.553 0.315 

58 0.510 0.293 0.547 0.339 0.551 0.296 

59 0.523 0.310 0.936 0.236 0.603 0.330 

60 0.033 0.056 0.053 0.222 0.029 0.060 

 

Table 2 shows the mean p-values of items with true nonmonotonic IRFs are much smaller than 

the mean p-values of the items with true monotonic IRFs although some of them are bigger than 

0.05.   

Type I and type II error rate. The simulation study first compared three nonparametric 

methods using type I error rate and type II error rate as the criteria. For each item with true 

monotonic IRF, the type I error rate is equal to the proportion of the number of replications that 

the estimated IRF is nonmonotonic to the number of replications (500). For each item with true 

nonmonotonic IRF, the type II error rate is equal to the proportion of the number of replications 

that the estimated IRF is monotonic to the number of replications (500). Table 3 includes the 

type I error rate of three nonparametric methods for all items with true nonmonotonic IRFs. 
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Table 3 

Type I Rate of Three Nonparametric Methods for Each Item with True Monotonic IRF 

 

Item 

Nonparametric Smooth 

Regression 

Item-Ability 

Regression 

B-Splines Nonparametric 

IRT 

1 0.028 0.036 0.028 

2 0.05 0.058 0.042 

3 0.04 0.052 0.044 

4 0.06 0.024 0.04 

5 0.05 0.04 0.034 

6 0.062 0.042 0.046 

7 0.062 0.036 0.052 

8 0.048 0.022 0.034 

9 0.05 0.046 0.036 

11 0.044 0.026 0.034 

12 0.05 0.028 0.044 

13 0.068 0.048 0.038 

14 0.056 0.04 0.044 

15 0.034 0.006 0.052 

16 0.06 0.008 0.054 

17 0.058 0.006 0.05 

18 0.042 0.044 0.036 

19 0.058 0.044 0.036 

21 0.048 0.022 0.044 

22 0.058 0.046 0.044 

23 0.068 0.038 0.048 

24 0.062 0.016 0.068 

25 0.062 0.024 0.046 

26 0.048 0.042 0.032 

27 0.054 0.042 0.06 

28 0.038 0.036 0.056 

29 0.044 0.038 0.038 

31 0.04 0.036 0.038 

32 0.062 0.054 0.05 

33 0.042 0.038 0.034 

34 0.048 0.012 0.036 

35 0.044 0.042 0.048 

36 0.044 0.004 0.036 

37 0.034 0.038 0.026 

38 0.05 0.036 0.04 

39 0.062 0.032 0.044 

41 0.062 0.046 0.028 

42 0.038 0.032 0.048 

43 0.07 0.03 0.044 

44 0.052 0.048 0.042 

45 0.056 0.046 0.044 
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46 0.036 0.056 0.034 

47 0.048 0.03 0.028 

48 0.046 0.024 0.04 

49 0.032 0.02 0.03 

51 0.048 0.01 0.058 

52 0.048 0.03 0.034 

53 0.04 0.036 0.044 

54 0.056 0.03 0.044 

55 0.074 0.034 0.052 

56 0.052 0.024 0.044 

57 0.052 0.024 0.046 

58 0.054 0.044 0.054 

59 0.044 0.028 0.034 

 

Table 3 shows that the type I error rate for each item is low. For every item, the type I error rates 

of three nonparametric methods are closely alike. 

Table 4 includes the type II error rate of three nonparametric methods for all items with true 

nonmonotonic IRFs. 

Table 4 

Type II Rate of Three Nonparametric Methods for Each Item with True Nonmonotonic IRF 

 

Item 

Nonparametric Smooth 

Regression 

Item-Ability 

Regression 

B-Splines Nonparametric 

IRT 

10 0.816 0.792 0.824 

20 0.400 0.590 0.332 

30 0.628 0.280 0.750 

40 0.746 0.770 0.700 

50 0.194 0.056 0.072 

60 0.206 0.052 0.166 

 

Table 4 presents that the type II error rates of every nonparametric method are low for items 50 

and 60. On the other hand, the type II error rates of every nonparametric method are relatively 

high for other four items especially items10 and 40. When three nonparametric methods were 

compared for each item, the nonparametric smooth regression method and the B-splines 

nonparametric IRT method have similar type II error rates and the type II error rate of these two 
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methods are higher than the type II error rate of the item-ability regression method except items 

20 and 40.  

Table 5 summaries the average type I and type II error rates of three nonparametric 

methods. 

Table 5 

Average Type I and II Rates of Three Nonparametric Methods 

 

 

Nonparametric 

Smooth Regression 

Item-Ability 

Regression 

B-Splines 

Nonparametric IRT 

Average Type I error 0.051 0.033 0.042 

Average Type II error 0.498 0.423 0.474 

 

The item-ability regression method has the lowest type I and type II error rates (0.033 and 

0.432). The nonparametric smooth regression method has the highest type I and type II error 

rates (0.051 and 0.498). The differences of type I and type II error rates among three methods are 

not large. To sum up, the type II error rate is much higher than the type I error rate of each 

method. 

Estimated IRFs and true IRFs of items with true nonmonotonic IRFs. Figures 11-16 

are the IRFs estimated by three nonparametric methods and the true IRFs of items 10, 20, 30, 40, 

50, and 60 from the replication 200.  
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Figure 11. IRFs estimated by three nonparametric methods for simulated item 10 from 

replication 200. The black line is the true IRF. 

 

 

Figure 12. IRFs estimated by three nonparametric methods for simulated item 20 from 

replication 200. The black line is the true IRF. 
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Figure 13. IRFs estimated by three nonparametric methods for simulated item 30from replication 

200. The black line is the true IRF. 

 

 

Figure 14. IRFs estimated by three nonparametric methods for simulated item 40from replication 

200. The black line is the true IRF. 
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Figure 15. IRFs estimated by three nonparametric methods for simulated item 50from replication 

200. The black line is the true IRF. 

 

 

Figure 16. IRFs estimated by three nonparametric methods for simulated item 60from replication 

200. The black line is the true IRF. 

 

Nonmonotonic area correlation. Table 6 illustrates the nonmonotonic area correlation 
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Table 6 

Nonmonotonic Area Correlation among Three Nonparametric Methods for the Simulated Data 

 

 

Nonparametric Smooth 

Regression 

Item-Ability 

Regression 

B-Splines 

Nonparametric IRT 

Nonparametric Smooth 

Regression  0.510 0.704 

Item-Ability Regression   0.507 

B-Splines 

Nonparametric IRT    

 

The nonmonotonic area correlation between the nonparametric smooth regression method and 

the B-splines nonparametric IRT method is high (0.704). In addition, the nonmonotonic area 

correlation between the nonparametric smooth regression method and the item-ability regression 

method (0.510) and the nonmonotonic area correlation between the B-splines nonparametric IRT 

method and the item-ability regression method (0.507) are similar. The high nonmonotonic 

correlation between the nonparametric smooth regression method and the B-splines 

nonparametric IRT method indicates the nonmonotonic area estimated by these two methods 

have a similar pattern among items. The nonmonotonic area pattern among items estimated by 

the item-ability regression method is not as similar as the nonmonotonic area pattern estimated 

by the nonparametric smooth regression method and the B-splines nonparametric IRT method. 

Real Data Study Results 

The real data study results are presented in order of assessments. For each assessment, the 

PPP-values for every item of three nonparametric methods are presented first, the nonmonotonic 

area correlation of all the items on the assessment among three nonparametric methods is shown 

next, and the IRFs of some items with low PPP-value are presented at last.  

Math assessment A. Table 7 includes the PPP-values of three nonparametric methods for 

each item on this assessment.  
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Table 7 

PPP-Value of Three Nonparametric Methods for Each Item on Math Assessment A  

 

Item 

Nonparametric Smooth 

Regression 

Item-Ability 

Regression 

B-Splines Nonparametric 

IRT 

1 0.256 1.000 0.310 

2 0.426 1.000 0.462 

3 0.776 1.000 0.860 

4 0.030 0.200 0.166 

5 0.014 0.006 0.014 

6 0.044 1.000 0.142 

7 0.384 0.214 0.616 

8 0.746 1.000 0.760 

9 0.542 1.000 0.752 

10 0.302 0.630 0.272 

11 0.098 1.000 0.120 

12 0.588 1.000 0.862 

13 0.296 0.074 0.174 

14 0.318 0.276 0.450 

15 0.278 0.070 0.402 

16 0.834 0.604 0.820 

17 0.432 0.672 0.430 

18 0.554 0.434 0.800 

19 0.866 1.000 0.698 

20 0.260 0.140 0.384 

21 0.900 1.000 1.000 

22 1.000 1.000 1.000 

23 0.916 1.000 1.000 

24 0.318 1.000 0.122 

25 0.722 0.640 0.908 

26 0.348 0.556 0.270 

27 0.428 0.450 0.362 

28 1.000 1.000 0.776 

29 0.180 0.100 0.100 

30 0.384 0.546 0.310 

31 0.914 0.494 1.000 

32 0.196 1.000 0.208 

33 0.036 1.000 0.018 

34 0.704 1.000 0.608 

35 0.158 1.000 0.144 

36 0.072 0.100 0.118 

37 0.000 0.052 0.000 

38 0.640 0.426 0.758 

39 0.862 1.000 0.946 

40 0.220 1.000 0.482 

41 0.610 0.068 0.448 



62 
 

42 0.430 1.000 0.406 

43 0.858 0.154 0.876 

44 0.008 0.000 0.006 

45 0.326 1.000 0.630 

46 0.644 1.000 0.812 

47 0.536 1.000 0.434 

48 0.032 1.000 0.182 

49 0.762 0.914 0.820 

50 0.440 0.470 0.442 

51 0.012 1.000 0.026 

52 0.538 1.000 0.352 

53 0.776 1.000 0.810 

54 0.732 1.000 0.944 

55 0.950 0.534 0.750 

56 0.792 1.000 0.544 

57 0.002 0.000 0.004 

58 0.482 0.234 1.000 

59 0.254 1.000 0.168 

60 0.280 0.142 0.342 

61 0.122 1.000 0.120 

62 0.332 1.000 0.572 

63 0.200 0.412 0.340 

64 0.844 0.056 0.644 

65 0.082 0.318 0.040 

66 0.142 0.332 0.164 

67 0.344 1.000 0.628 

68 0.834 0.376 0.836 

69 0.058 0.000 0.034 

70 0.782 0.544 0.862 

71 0.244 0.522 0.304 

72 0.846 1.000 1.000 

73 0.396 1.000 0.248 

74 0.070 0.166 0.098 

75 0.400 0.110 0.278 

76 0.054 0.474 0.086 

77 0.200 0.104 0.208 

78 0.088 1.000 0.068 

79 0.800 1.000 0.756 

80 0.404 0.342 0.332 

81 0.204 1.000 0.224 

82 0.840 1.000 0.876 

83 0.206 0.196 0.132 
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Nine items are identified with nonmonotonic IRFs by the nonparametric smooth regression 

method, four items are identified with nonmonotonic IRFs by the item-ability regression method, 

and eight items are identified with nonmonotonic IRFs by the B-splines nonparametric IRT 

method. Items 5, 44 and 57 are identified with nonmonotonic IRFs by three methods. Items 37 

and 69 are identified with nonmonotonic IRFs by two methods and the PPP values of the third 

method for these two items are very close to 0.05 (0.052 of the item-ability regression method 

for item 37 and 0.058 of the nonparametric smooth regression method for item 69).  

Table 8 presents the nonmonotonic area correlation among three nonparametric methods. 

The nonmonotonic area correlation between two nonparametric methods is the correlation of the 

nonmonotonic area of all items on the math assessment A calculated by these two methods. 

Table 8 

Nonmonotonic Area Correlation among Three Nonparametric Methods for Math Assessment A 

 

 

Nonparametric Smooth 

Regression 

Item-Ability 

Regression 

B-Splines 

Nonparametric IRT 

Nonparametric Smooth 

Regression  0.857 0.984 

Item-Ability Regression   0.853 

B-Splines 

Nonparametric IRT    

 

The nonmonotonic area correlation between the nonparametric smooth regression method and 

the B-splines nonparametric IRT method is close to 1 (0.984). Also, the nonmonotonic area 

correlation between the nonparametric smooth regression method and the item-ability regression 

method (0.857) and the nonmonotonic area correlation between the B-splines nonparametric IRT 

method and the item-ability regression (0.853) are high and similar. The very high nonmonotonic 

correlation between the nonparametric smooth regression method and the B-splines 

nonparametric IRT method indicates the nonmonotonic area estimated by these two methods 

have a similar pattern among items on the math assessment A. The nonmonotonic area 
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correlations among these three methods are high which indicate that the nonmonotonic area 

patterns among items on the math assessment A estimated by these three methods are similar. 

For example, there are 11 items identified with nonmonotonic IRFs by at least one method and 

the PPP-values of three nonparametric methods for five items are very similar. 

Figures 17-27 present IRFs estimated by three nonparametric methods for items identified 

with nonmonotonic IRFs by at least one method. Figures 17, 18, and 19 present the IRFs for 

items 5, 44 and 57 which are identified with nonmonotonic IRFs by three nonparametric 

methods.  

 

Figure 17.IRFs estimated by three nonparametric methods for item 5 on math A. The PPP-value 

of the item-ability regression method is 0.006. The PPP-value of the B-splines nonparametric 

IRT method is 0.014. The PPP-value of the nonparametric smooth regression method is 0.014. 
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Figure 18. IRFs estimated by three nonparametric methods for item 44 on math A. The PPP-

value of the item-ability regression method is 0.000. The PPP-value of the B-splines 

nonparametric IRT method is 0.006. The PPP-value of the nonparametric smooth regression 

method is 0.008. 

 

 

Figure 19.IRFs estimated by three nonparametric methods for item 57 on math A. The PPP-

value of the item-ability regression method is 0.006. The PPP-value of the B-splines 

nonparametric IRT method is 0.014. The PPP-value of the nonparametric smooth regression 

method is 0.014. 
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For these three items, the IRFs of three nonparametric methods are very similar with the 

exception of the end parts at the very low and high theta range and the nonmonotonic parts of 

IRFs of three methods appear at the same theta range. 

Figures 20 and 21 present the IRFs for items 37 and 69 which are identified with 

nonmonotonic IRFs by two methods and the PPP values of the third method for these two items 

are very close to 0.05. 

 

Figure 20.IRFs estimated by three nonparametric methods for item 37 on math A. The PPP-

value of the item-ability regression method is 0.052. The PPP-value of the B-splines 

nonparametric IRT method is 0.000. The PPP-value of the nonparametric smooth regression 

method is 0.000. 
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Figure 21.IRFs estimated by three nonparametric methods for item 69 on math A.  The PPP-

value of the item-ability regression method is 0.000. The PPP-value of the B-splines 

nonparametric IRT method is 0.034. The PPP-value of the nonparametric smooth regression 

method is 0.058. 

 

For these two items, the differences among the IRFs of three nonparametric methods are small 

and the nonmonotonic part appears at the similar theta range.  

Figures 22-27 present the IRFs of the other items identified with nonmonotonic IRFs by at 

least one method. These items are 4, 6, 33, 48, and 51, 65. 
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Figure 22.IRFs estimated by three nonparametric methods for item 4 on math A. The PPP-value 

of the item-ability regression method is 0.200. The PPP-value of the B-splines nonparametric 

IRT method is 0.166. The PPP-value of the nonparametric smooth regression method is 0.030. 

 

For item 4, the IRFs of three nonparametric methods are very similar with the exception of the 

end parts at the very low and high theta range. The nonmonotonic parts of three IRFs appear at 

the same theta range but not very obvious. 

 

Figure 23.IRFs estimated by three nonparametric methods for item 6 on math A. The PPP-value 

of the item-ability regression method is 1.000. The PPP-value of the B-splines nonparametric 

IRT method is 0.144. The PPP-value of the nonparametric smooth regression method is 0.044. 
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For item 6, the IRFs of the nonparametric smooth regression method and the B-splines 

nonparametric IRT method are similar but are different from the IRF of the item-ability 

regression method at the low theta range. There are several small nonmonotonic parts in the IRFs 

of the nonparametric smooth regression method and the B-spline nonparametric IRT method. 

The IRF of the item-ability regression method is monotonic.  

 

Figure 24.IRFs estimated by three nonparametric methods for item 33 on math A. The PPP-

value of the item-ability regression method is 1.000. The PPP-value of the B-splines 

nonparametric IRT method is 0.018. The PPP-value of the nonparametric smooth regression 

method is 0.036. 
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Figure 25.IRFs estimated by three nonparametric methods for item 48 on math A. The PPP-

value of the item-ability regression method is 1.000. The PPP-value of the B-splines 

nonparametric IRT method is 0. 182. The PPP-value of the nonparametric smooth regression 

method is 0.032. 

 

For item 33 and 48, the IRFs of the nonparametric smooth regression method and the B-splines 

nonparametric IRT method are very similar but are different from the IRF of the item-ability 

regression method at the low theta range. The IRF of the item-ability regression method is 

monotonic. 
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Figure 26.IRFs estimated by three nonparametric methods for item 51 on math A. The PPP-

value of the item-ability regression method is 1.000. The PPP-value of the B-splines 

nonparametric IRT method is 0.026. The PPP-value of the nonparametric smooth regression 

method is 0.012. 

 

For item 51, the IRFs of the nonparametric smooth regression method and the B-splines 

nonparametric IRT method are very similar but are different from the IRF of the item-ability 

regression method at the low theta range. The IRF of the item-ability regression method is 

monotonic.  
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Figure 27.IRFs estimated by three nonparametric methods for item 65 on math A. The PPP-

value of the item-ability regression method is 0.318. The PPP-value of the B-splines 

nonparametric IRT method is 0.040. The PPP-value of the nonparametric smooth regression 

method is 0.082. 

 

For item 65, the IRFs of the nonparametric smooth regression method and the B-splines 

nonparametric IRT method are very similar but are different from the IRF of the item-ability 

regression method at the nonmonotonic part which appears at the low theta range. The 

nonmonotonic part of the IRF of the item-ability regression method is not very obvious.  

Math assessment B. Table 9 includes the PPP-values of three nonparametric methods for 

each item on this assessment.  
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Table 9 

PPP-Value of Three Nonparametric Methods for Each Item on Math Assessment B  

 

Item 

Nonparametric Smooth 

Regression 

Item-Ability 

Regression 

B-Splines Nonparametric 

IRT 

1 0.846 1.000 0.670 

2 0.828 1.000 0.160 

3 0.234 0.140 0.352 

4 0.902 1.000 0.842 

5 0.660 0.562 0.222 

6 0.898 1.000 0.364 

7 0.040 0.102 0.014 

8 0.130 0.110 0.066 

9 0.114 1.000 0.270 

10 0.492 1.000 0.028 

11 0.796 1.000 0.682 

12 0.798 1.000 0.216 

13 0.402 0.414 0.230 

14 0.376 1.000 0.580 

15 0.334 1.000 0.150 

16 0.830 1.000 0.332 

17 0.518 0.344 0.072 

18 0.788 0.270 0.576 

19 0.456 0.108 0.004 

20 0.918 0.390 0.200 

21 0.178 0.408 0.004 

22 0.782 1.000 0.346 

23 0.400 0.042 0.678 

24 0.798 1.000 0.566 

25 0.012 1.000 0.098 

26 0.434 1.000 0.224 

27 0.556 0.010 0.016 

28 0.610 0.246 0.098 

29 0.338 0.022 0.094 

30 0.174 1.000 0.066 

31 0.282 0.312 0.142 

32 0.608 1.000 0.064 

33 0.058 0.058 0.090 

34 0.456 0.508 0.066 

35 0.072 0.140 0.000 

36 0.912 1.000 0.526 

37 0.364 0.212 0.286 

38 0.748 0.418 0.236 

39 0.760 0.118 0.074 

40 0.636 1.000 1.000 

41 0.082 0.000 0.018 
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42 0.668 0.438 0.220 

43 0.646 0.442 0.418 

44 0.776 0.430 0.792 

45 0.724 0.294 0.476 

46 0.430 0.548 0.400 

47 0.470 0.628 0.152 

48 0.072 0.002 0.000 

49 0.594 1.000 1.000 

50 0.970 1.000 0.922 

51 0.944 1.000 0.452 

52 0.272 1.000 0.114 

53 0.694 1.000 0.276 

54 0.638 1.000 0.598 

55 0.410 0.090 0.300 

56 0.902 1.000 0.768 

57 0.588 1.000 0.306 

58 0.388 0.726 0.214 

59 0.352 1.000 0.306 

60 0.932 1.000 0.630 

61 0.850 0.354 0.114 

62 0.746 1.000 0.020 

63 0.626 1.000 0.204 

64 0.504 0.666 0.614 

65 0.308 0.098 0.526 

66 0.180 1.000 0.068 

67 0.964 1.000 0.548 

68 0.376 1.000 0.010 

69 0.252 0.012 0.044 

70 0.918 1.000 0.684 

71 0.476 1.000 0.742 

72 0.472 1.000 0.358 

73 0.408 0.518 0.208 

74 0.814 1.000 0.730 

75 0.842 1.000 0.550 

76 0.338 1.000 0.066 

77 0.444 1.000 1.000 

78 0.654 1.000 0.648 

79 0.782 0.418 0.172 

80 0.310 0.170 0.098 

81 0.850 0.114 0.022 

82 0.408 1.000 0.192 

83 0.368 1.000 0.658 

84 0.002 0.008 0.002 
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Three items are identified with nonmonotonic IRFs by the nonparametric smooth regression 

method, seven items are identified with nonmonotonic IRFs by the item-ability regression 

method, and 13 items are identified with nonmonotonic IRFs by the B-splines nonparametric 

IRT method. Item 84 is identified with nonmonotonic IRFs by three methods. Item 41 and 48 are 

identified with nonmonotonic IRFs by two methods and the PPP value of the third method for 

these two items are close to 0.05 (0.082 of the nonparametric smooth regression method for item 

41 and 0.072 of the nonparametric smooth regression method for item 48).  

Table 10 presents the nonmonotonic area correlation among three nonparametric methods. 

The nonmonotonic area correlation between two nonparametric methods is the correlation of the 

nonmonotonic area of all the items on the math assessment B calculated by these two methods. 

Table 10 

Nonmonotonic Area Correlation among Three Nonparametric Methods for Math Assessment B 

 

 

Nonparametric Smooth 

Regression 

Item-Ability 

Regression 

B-Splines 

Nonparametric IRT 

Nonparametric Smooth 

Regression  0.720 0.782 

Item-Ability Regression   0.670 

B-Splines 

Nonparametric IRT    

 

The nonmonotonic area correlation between the nonparametric smooth regression method and 

the B-splines nonparametric IRT method is the highest (0.784). In addition, the nonmonotonic 

area correlation between the nonparametric smooth regression method and the item-ability 

regression method (0.720) and the nonmonotonic area correlation between the B-splines 

nonparametric IRT method and the item-ability regression method (0.670) are not very high and 

not very similar. Three nonmonotonic correlations of the math assessment B are not as high as 

three nonmonotonic correlations of the math assessment A, which indicate that the 

nonmonotonic area patterns among items on the math assessment B estimated by these three 
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methods are not very similar. For example, there is only one item identified with nonmonotonic 

IRF by three methods out of 16 items identified with nonmonotonic IRFs by at least one method. 

Figures 28-43 present IRFs estimated by three nonparametric methods of items identified 

with nonmonotonic IRFs by at least one method. Figure 28 presents the IRFs of item 84 which is 

identified with nonmonotonic IRF by three nonparametric methods. 

 

Figure 28.IRFs estimated by three nonparametric methods for item 84 on math B. The PPP-value 

of the item-ability regression method is 0.008. The PPP-value of the B-splines nonparametric 

IRT method is 0.002. The PPP-value of the nonparametric smooth regression method is 0.002. 

 

For item 84, the IRFs of three nonparametric methods are very similar with the exception of the 

end parts at the very low and high theta range and the largest nonmonotonic parts of three IRFs 

appear at the same theta range. There are more curvatures in the IRFs of the nonparametric 

smooth regression method and the B-splines nonparametric IRT method at the low and high theta 

range than the IRF of the item-ability regression method.  

Figures 29 and 30 present the IRFs for items 41 and 48 which are identified with 

nonmonotonic IRFs by two methods and the PPP values of the third method for these two items 

are close to 0.05. 
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Figure 29.IRFs estimated by three nonparametric methods for item 41 on math B. The PPP-value 

of the item-ability regression method is 0.000. The PPP-value of the B-splines nonparametric 

IRT method is 0.018. The PPP-value of the nonparametric smooth regression method is 0.082. 

 

 

Figure 30.IRFs estimated by three nonparametric methods for item 48 on math B. The PPP-value 

of the item-ability regression method is 0.002. The PPP-value of the B-splines nonparametric 

IRT method is 0.000. The PPP-value of the nonparametric smooth regression method is 0.072. 

 

For these two items, the differences among the IRFs of three nonparametric methods are small 

and at the end parts at the very low and high theta range. The nonmonotonic parts of three IRFs 

appear at the similar theta range. 
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Figures 31-43 present the IRFs of the other items identified with nonmonotonic IRFs by at 

least one method. These items are 7, 10, 19, 21, 23, 25, 27, 29, 35, 62, 68, 69, and 81. 

 

Figure 31.IRFs estimated by three nonparametric methods for item 7 on math B. The PPP-value 

of the item-ability regression method is 0.102. The PPP-value of the B-splines nonparametric 

IRT method is 0.014. The PPP-value of the nonparametric smooth regression method is 0.040. 

 

 

Figure 32.IRFs estimated by three nonparametric methods for item 27 on math B.  The PPP-

value of the item-ability regression method is 0.010. The PPP-value of the B-splines 

nonparametric IRT method is 0.016. The PPP-value of the nonparametric smooth regression 

method is 0.556. 
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Figure 33.IRFs estimated by three nonparametric methods for item 69 on math B. The PPP-value 

of the item-ability regression method is 0.012. The PPP-value of the B-splines nonparametric 

IRT method is 0.044. The PPP-value of the nonparametric smooth regression method is 0.252. 

 

For items 7, 27 and 69, the IRFs of three nonparametric methods are very similar with the 

exception of the end parts at the very low and high theta range and the largest nonmonotonic 

parts of three IRFs appear at the same theta range, but the nonmonotonicity is not obvious. There 

are more curvatures in the IRFs of the nonparametric smooth regression method and the B-

splines nonparametric IRT method at the very low and high theta range.  
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Figure 34.IRFs estimated by three nonparametric methods for item 10 on math B. The PPP-value 

of the item-ability regression method is 1.000. The PPP-value of the B-splines nonparametric 

IRT method is 0.028. The PPP-value of the nonparametric smooth regression method is 0.492. 

 

 

Figure 35.IRFs estimated by three nonparametric methods for item 21 on math B. The PPP-value 

of the item-ability regression method is 0.408. The PPP-value of the B-splines nonparametric 

IRT method is 0.004. The PPP-value of the nonparametric smooth regression method is 0.178. 
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Figure 36.IRFs estimated by three nonparametric methods for item 68 on math B. The PPP-value 

of the item-ability regression method is 1.000. The PPP-value of the B-splines nonparametric 

IRT method is 0.010. The PPP-value of the nonparametric smooth regression method is 0.376. 

 

 

Figure 37.IRFs estimated by three nonparametric methods for item 81 on math B. The PPP-value 

of the item-ability regression method is 0.114. The PPP-value of the B-splines nonparametric 

IRT method is 0.022. The PPP-value of the nonparametric smooth regression method is 0.850. 

 

For items 10, 21, 68, and 81, the IRFs of the nonparametric smooth regression method and the 

item-ability regression method are very similar but are different from the IRF of the B-splines 
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nonparametric IRT method. The IRFs of the B-splines nonparametric IRT methods for these 

items have curvatures which lead to the low PPP-value. 

 

Figure 38.IRFs estimated by three nonparametric methods for item 19 on math B. The PPP-value 

of the item-ability regression method is 0.108. The PPP-value of the B-splines nonparametric 

IRT method is 0.004. The PPP-value of the nonparametric smooth regression method is 0.456. 

 

For item 19, the IRFs of the nonparametric smooth regression method and the item-ability 

regression method are very similar but are different from the IRF of the B-splines nonparametric 

IRT method at the low theta range which is the range where nonmonotonicity of the IRF of the 

B-splines nonparametric IRT method appears.  
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Figure 39.IRFs estimated by three nonparametric methods for item 23 on math B. The PPP-value 

of the item-ability regression method is 0.042. The PPP-value of the B-splines nonparametric 

IRT method is 0.678. The PPP-value of the nonparametric smooth regression method is 0.400. 

 

For item 23, the IRFs of three nonparametric methods are similar except at the theta range from -

3.0 to -0.6. The nonmonotonic parts of the IRFs of the item-ability regression method is not 

obvious. There are more curvatures in the IRF of the nonparametric smooth regression method at 

the low theta range.  

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-3.0 -2.4 -1.8 -1.2 -0.6 0.0 0.6 1.2 1.8 2.4 3.0

P
ro

b
ab

ili
ty

 o
f 

Su
cc

e
ss

 

Proficiency θ  

Math B Item 23 

IAR

BS

NSR



84 
 

 

Figure 40.IRFs estimated by three nonparametric methods for item 25 on math B. The PPP-value 

of the item-ability regression method is 1.000. The PPP-value of the B-splines nonparametric 

IRT method is 0.098. The PPP-value of the nonparametric smooth regression method is 0.012. 

 

For item 25, the IRFs of the nonparametric smooth regression method and the B-splines 

nonparametric IRT method are very similar but are different from the IRF of item-ability 

regression method at the very low and high theta range. 

 

Figure 41.IRFs estimated by three nonparametric methods for item 29 on math B. The PPP-value 

of the item-ability regression method is 0.022. The PPP-value of the B-splines nonparametric 

IRT method is 0.094. The PPP-value of the nonparametric smooth regression method is 0.338. 
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For item 29, the IRFs of the nonparametric smooth regression method and the item-ability 

regression method are very similar but are different from the IRF of the B-splines nonparametric 

IRT method. The nonmonotonic parts of the IRFs of the nonparametric smooth regression 

method and the item-ability regression method are not obvious. The IRF of the B-splines 

nonparametric IRT method has some curvatures. 

 

Figure 42.IRFs estimated by three nonparametric methods for item 35 on math B. The PPP-value 

of the item-ability regression method is 0.140. The PPP-value of the B-splines nonparametric 

IRT method is 0.000. The PPP-value of the nonparametric smooth regression method is 0.072. 

 

For item 35, the IRFs of the nonparametric smooth regression method and the B-splines 

nonparametric IRT method are very similar but are different from the IRF of the item-ability 

regression method at the very low theta range. 
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Figure 43.IRFs estimated by three nonparametric methods for item 62 on math B. The PPP-value 

of the item-ability regression method is 1.000. The PPP-value of the B-splines nonparametric 

IRT method is 0.020. The PPP-value of the nonparametric smooth regression method is 0.746. 

 

For item 25, the IRFs of three methods are similar except at the low theta range.  

Math assessment C. Table 11 includes the PPP-values of three nonparametric methods for 

each item on this assessment.  
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Table 11 

PPP-Value of Three Nonparametric Methods for Each Item on Math Assessment C  

 

Item 

Nonparametric Smooth 

Regression 

Item-Ability 

Regression 

B-Splines Nonparametric 

IRT 

1 0.970 1.000 1.000 

2 0.012 0.000 0.000 

3 0.694 1.000 1.000 

4 0.378 0.042 0.336 

5 0.906 1.000 0.844 

6 0.848 0.188 0.468 

7 0.044 0.002 0.002 

8 0.990 0.580 0.766 

9 0.034 0.008 0.102 

10 0.572 0.004 0.744 

11 0.190 1.000 0.882 

12 0.736 0.200 0.820 

13 0.200 1.000 0.346 

14 0.970 1.000 0.902 

15 0.696 1.000 0.710 

16 0.736 1.000 0.418 

17 0.964 0.074 0.744 

18 0.236 0.096 0.096 

19 0.864 0.022 0.766 

20 0.022 0.182 0.046 

21 0.568 0.172 0.764 

22 0.176 1.000 0.322 

23 0.380 0.056 0.444 

24 0.046 0.004 0.030 

25 0.038 0.000 0.028 

26 0.068 1.000 0.076 

27 0.614 0.016 0.292 

28 0.552 1.000 0.628 

29 0.018 0.006 0.008 

30 0.368 0.008 0.172 

31 0.022 1.000 0.150 

32 0.784 1.000 0.632 

33 0.212 0.368 0.182 

34 0.000 0.000 0.004 

35 0.428 1.000 0.406 

36 0.362 1.000 0.266 

37 0.278 1.000 0.350 

38 0.964 1.000 0.762 

39 0.964 1.000 0.760 

40 0.074 0.066 0.256 

41 0.570 1.000 0.684 
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42 0.346 0.336 0.628 

43 0.182 0.686 0.690 

44 0.336 0.000 0.074 

45 0.446 0.566 0.734 

46 0.324 0.274 0.392 

47 0.558 1.000 0.514 

48 0.718 0.042 0.718 

49 0.020 0.014 0.234 

50 0.076 0.000 0.018 

51 0.722 1.000 0.862 

52 0.414 1.000 0.498 

53 0.002 0.014 0.000 

54 0.506 0.022 0.414 

55 0.100 0.070 0.256 

56 0.038 0.022 0.090 

57 0.824 0.026 0.540 

58 0.992 1.000 0.832 

59 0.912 1.000 0.662 

60 0.166 0.004 0.056 

61 0.148 1.000 0.074 

62 0.572 0.208 0.552 

63 0.224 0.016 0.206 

64 0.756 1.000 1.000 

65 0.790 1.000 0.656 

66 0.438 1.000 0.596 

67 0.788 1.000 0.708 

68 0.086 0.194 0.260 

69 0.528 1.000 0.374 

70 0.692 1.000 0.538 

71 0.768 0.052 0.678 

72 0.228 1.000 0.532 

73 0.200 0.000 0.154 

74 0.164 0.022 0.192 

75 0.264 0.064 0.568 

76 0.056 0.508 0.080 

77 0.110 1.000 0.402 

78 0.298 1.000 0.486 

79 0.712 1.000 0.746 

80 0.010 0.000 0.000 

81 0.006 0.230 0.006 

82 0.346 1.000 0.568 

83 0.422 0.386 0.776 

84 0.652 1.000 0.708 
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Fourteen items are identified with nonmonotonic IRFs by the nonparametric smooth regression 

method, 25 items are identified with nonmonotonic IRFs by the item-ability regression method, 

and 11 items are identified with nonmonotonic IRFs by the B-splines nonparametric IRT 

method. Items 2, 7 24, 25, 29, 34, 53, and 80 are identified with nonmonotonic IRFs by three 

methods. Also item 50 is identified with nonmonotonic IRF by two methods and the PPP value 

of the third method is very close to 0.05 (0.076 of the nonparametric smooth regression method).  

Table 12 presents the nonmonotonic area correlation among three nonparametric methods. 

The nonmonotonic area correlation between two nonparametric methods is the correlation of the 

nonmonotonic area of all items on the math assessment C calculated by these two methods. 

Table 12 

Nonmonotonic Area Correlation among Three Nonparametric Methods for Math Assessment C 

 

 

Nonparametric Smooth 

Regression 

Item-Ability 

Regression 

B-Splines 

Nonparametric IRT 

Nonparametric Smooth 

Regression  0.614 0.789 

Item-Ability Regression   0.816 

B-Splines 

Nonparametric IRT    

 

The nonmonotonic area correlation between the item-ability regression method and the B-splines 

nonparametric IRT method is highest (0.816). Also, the nonmonotonic area correlation between 

the nonparametric smooth regression method and the B-splines nonparametric IRT method is 

high (0.789). But, the nonmonotonic area correlation between the nonparametric smooth 

regression method and the item-ability regression method (0.614) is not very high which 

indicates that the nonmonotonic area estimated by these two methods do not have a pattern 

among items on the math assessment C as similar as the nonmonotonic area estimated by the 

item-ability regression method and the B-splines nonparametric IRT method.  
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Figures 44-71 present IRFs estimated by three nonparametric methods of items identified 

with nonmonotonic IRFs by at least one method. Figures 44-51 present the IRFs of items2, 7, 24, 

25, 29, 34, 53, and 80 which are identified with nonmonotonic IRFs by three nonparametric 

methods. 

 

Figure 44.IRFs estimated by three nonparametric methods for item 2 on math C. The PPP-value 

of the item-ability regression method is 0.000. The PPP-value of the B-splines nonparametric 

IRT method is 0.000. The PPP-value of the nonparametric smooth regression method is 0.012. 
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Figure 45.IRFs estimated by three nonparametric methods for item 7 on math C. The PPP-value 

of the item-ability regression method is 0.002. The PPP-value of the B-splines nonparametric 

IRT method is 0.002. The PPP-value of the nonparametric smooth regression method is 0.044. 

 

 

Figure 46.IRFs estimated by three nonparametric methods for item 25 on math C. The PPP-value 

of the item-ability regression method is 0.000. The PPP-value of the B-splines nonparametric 

IRT method is 0.028. The PPP-value of the nonparametric smooth regression method is 0.038. 
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Figure 47.IRFs estimated by three nonparametric methods for item 80 on math C.  The PPP-

value of the item-ability regression method is 0.000. The PPP-value of the B-splines 

nonparametric IRT method is 0.000. The PPP-value of the nonparametric smooth regression 

method is 0.010. 

 

For these four items, the IRFs of three nonparametric methods are very similar, especially the 

IRFs of the nonparametric smooth regression method and the B-splines nonparametric IRT 

method, with the exception of the ends parts at the very low and high theta range. The 

nonmonotonic parts of three IRFs appear at the same theta range. 
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Figure 48.IRFs estimated by three nonparametric methods for item 24 on math C. The PPP-value 

of the item-ability regression method is 0.004. The PPP-value of the B-splines nonparametric 

IRT method is 0.030. The PPP-value of the nonparametric smooth regression method is 0.046. 

 

 

Figure 49.IRFs estimated by three nonparametric methods for item 29 on math C. The PPP-value 

of the item-ability regression method is 0.006. The PPP-value of the B-splines nonparametric 

IRT method is 0.008. The PPP-value of the nonparametric smooth regression method is 0.018. 
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Figure 50.IRFs estimated by three nonparametric methods for item 34 on math C. The PPP-value 

of the item-ability regression method is 0.000. The PPP-value of the B-splines nonparametric 

IRT method is 0.004. The PPP-value of the nonparametric smooth regression method is 0.000. 

 

 

Figure 51.IRFs estimated by three nonparametric methods for item 53 on math C. The PPP-value 

of the item-ability regression method is 0.004. The PPP-value of the B-splines nonparametric 

IRT method is 0.030. The PPP-value of the nonparametric smooth regression method is 0.046. 

 

For these four items, the IRFs of the nonparametric smooth regression method and the B-splines 

nonparametric IRT method are very similar but are different from the IRF of the item-ability 
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regression method at the very low and high theta range. The nonmonotonic parts of three IRFs 

appear at the same theta range but the nonmonotonic part of the IRF of the item ability 

regression method is smaller than the nonmonotonic parts of the other two IRFs. 

Figure 52 presents the IRFs for item 50 which is identified as an item with nonmonotonic 

IRF by two methods and the PPP value of the third method is very close to 0.05. 

 

Figure 52.IRFs estimated by three nonparametric methods for item 50 on math C. The PPP-value 

of the item-ability regression method is 0.000. The PPP-value of the B-splines nonparametric 

IRT method is 0.018. The PPP-value of the nonparametric smooth regression method is 0.076. 

 

For item 50, the IRFs of three nonparametric methods are very similar, especially the IRFs of the 

nonparametric smooth regression method and the B-splines nonparametric IRT method, with the 

exception of the end parts at the very low and high theta range. The nonmonotonic parts of three 

IRFs appear at the same theta range. 

Figures 53-71 present the IRFs of the other items identified with nonmonotonic IRFs by at 

least one method. These items are 4, 9, 10, 19, 20, 27, 30, 31, 44, 48, 49, 54, 56, 57, 60, 63, 73, 

74, and 81. 
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Figure 53.IRFs estimated by three nonparametric methods for item 4 on math C. The PPP-value 

of the item-ability regression method is 0.042. The PPP-value of the B-splines nonparametric 

IRT method is 0.336. The PPP-value of the nonparametric smooth regression method is 0.378. 

 

 

Figure 54.IRFs estimated by three nonparametric methods for item 10 on math C. The PPP-value 

of the item-ability regression method is 0.004. The PPP-value of the B-splines nonparametric 

IRT method is 0.744. The PPP-value of the nonparametric smooth regression method is 0.572. 
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Figure 55.IRFs estimated by three nonparametric methods for item 27 on math C. The PPP-value 

of the item-ability regression method is 0.016. The PPP-value of the B-splines nonparametric 

IRT method is 0.292. The PPP-value of the nonparametric smooth regression method is 0.614. 

 

 

Figure 56.IRFs estimated by three nonparametric methods for item 31 on math C.  The PPP-

value of the item-ability regression method is 1.000. The PPP-value of the B-splines 

nonparametric IRT method is 0.150. The PPP-value of the nonparametric smooth regression 

method is 0.022. 
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Figure 57.IRFs estimated by three nonparametric methods for item 48 on math C. The PPP-value 

of the item-ability regression method is 0.042. The PPP-value of the B-splines nonparametric 

IRT method is 0.718. The PPP-value of the nonparametric smooth regression method is 0.718. 

 

 

Figure 58.IRFs estimated by three nonparametric methods for item 54 on math C. The PPP-value 

of the item-ability regression method is 0.022. The PPP-value of the B-splines nonparametric 

IRT method is 0.414. The PPP-value of the nonparametric smooth regression method is 0.506. 

 

For these items, the differences among the IRFs of three nonparametric methods are small. The 

IRFs of the B-splines nonparametric IRT method and the nonparametric smooth regression 
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method are similar and have more curvatures. The nonmonotonic parts of these IRFs are not very 

obvious. 

 

Figure 59.IRFs estimated by three nonparametric methods for item 9 on math C. The PPP-value 

of the item-ability regression method is 0.008. The PPP-value of the B-splines nonparametric 

IRT method is 0.102. The PPP-value of the nonparametric smooth regression method is 0.034. 

 

 

Figure 60.IRFs estimated by three nonparametric methods for item 57 on math C. The PPP-value 

of the item-ability regression method is 0.026. The PPP-value of the B-splines nonparametric 

IRT method is 0.540. The PPP-value of the nonparametric smooth regression method is 0.824. 
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For items 10 and 57, the differences among the IRFs of three nonparametric methods are at the 

low theta range. The IRFs of three nonparametric methods all have a nonmonotonic part which 

appears at the similar high theta range. 

 

Figure 61.IRFs estimated by three nonparametric methods for item 19 on math C.  The PPP-

value of the item-ability regression method is 0.022. The PPP-value of the B-splines 

nonparametric IRT method is 0.766. The PPP-value of the nonparametric smooth regression 

method is 0.864. 
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Figure 62.IRFs estimated by three nonparametric methods for item 49 on math C. The PPP-value 

of the item-ability regression method is 0.014. The PPP-value of the B-splines nonparametric 

IRT method is 0.234. The PPP-value of the nonparametric smooth regression method is 0.020. 

 

 

Figure 63.IRFs estimated by three nonparametric methods for item 63 on math C. The PPP-value 

of the item-ability regression method is 0.016. The PPP-value of the B-splines nonparametric 

IRT method is 0.206. The PPP-value of the nonparametric smooth regression method is 0.224. 

 

For these three items, the differences among the IRFs of three nonparametric methods are small 

and appear at the very low and high theta range. The nonmonotonic parts of three IRFs appear at 
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the similar theta range. For item 49, the nonmonotonic part appears at the middle theta range 

(about -0.6 to 0.6) and for item 19 and 63 the nonmonotonic parts appear at the low theta range. 

 

Figure 64.IRFs estimated by three nonparametric methods for item 20 on math C. The PPP-value 

of the item-ability regression method is 0.182. The PPP-value of the B-splines nonparametric 

IRT method is 0.046. The PPP-value of the nonparametric smooth regression method is 0.022. 

 

 

Figure 65.IRFs estimated by three nonparametric methods for item 30 on math C. The PPP-value 

of the item-ability regression method is 0.008. The PPP-value of the B-splines nonparametric 

IRT method is 0.172. The PPP-value of the nonparametric smooth regression method is 0. 368. 
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Figure 66.IRFs estimated by three nonparametric methods for item 56 on math C. The PPP-value 

of the item-ability regression method is 0.022. The PPP-value of the B-splines nonparametric 

IRT method is 0.090. The PPP-value of the nonparametric smooth regression method is 0.038. 

 

 

Figure 67.IRFs estimated by three nonparametric methods for item 74 on math C. The PPP-value 

of the item-ability regression method is 0.022. The PPP-value of the B-splines nonparametric 

IRT method is 0.192. The PPP-value of the nonparametric smooth regression method is 0.164. 
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Figure 68.IRFs estimated by three nonparametric methods for item 81 on math C. The PPP-value 

of the item-ability regression method is 0.230. The PPP-value of the B-splines nonparametric 

IRT method is 0.006. The PPP-value of the nonparametric smooth regression method is 0.006. 

 

For these items, the IRFs of the nonparametric smooth regression method and the B-splines 

nonparametric IRT method are very similar but are different from the IRF of the item-ability 

regression method at the low theta range. The IRFs of the B-splines nonparametric IRT method 

and the nonparametric smooth regression method have more curvatures. The nonmonotonic part 

of the IRF of the item-ability regression method is smaller than the nonmonotonic parts of the 

IRFs of the other two methods. 
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Figure 69.IRFs estimated by three nonparametric methods for item 44 on math C. The PPP-value 

of the item-ability regression method is 0.000. The PPP-value of the B-splines nonparametric 

IRT method is 0.074. The PPP-value of the nonparametric smooth regression method is 0.336. 

 

 

Figure 70.IRFs estimated by three nonparametric methods for item 60 on math C. The PPP-value 

of the item-ability regression method is 0.004. The PPP-value of the B-splines nonparametric 

IRT method is 0.056. The PPP-value of the nonparametric smooth regression method is 0.166. 
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Figure 71.IRFs estimated by three nonparametric methods for item 73 on math C. The PPP-value 

of the item-ability regression method is 0.000. The PPP-value of the B-splines nonparametric 

IRT method is 0.154. The PPP-value of the nonparametric smooth regression method is 0.200. 

 

For these items, the differences among the IRFs of three nonparametric methods are small. The 

IRFs of the B-splines nonparametric IRT method and the nonparametric smooth regression 

method are similar and have more curvatures. The nonmonotonic parts appear at the similar theta 

range which is the low theta range. 

Reading assessment A. Table 13 includes the PPP-values of three nonparametric methods 

for each item on this assessment.  

 

 

 

 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-3.00 -2.40 -1.80 -1.20 -0.60 0.00 0.60 1.20 1.80 2.40 3.00

P
ro

b
ab

ili
ty

 o
f 

Su
cc

e
ss

 

Proficiency θ  

Math C Item 73 

IAR

BS

NSR



107 
 

Table 13 

PPP-Value of Three Nonparametric Methods for Each Item on Reading Assessment A  

 

Item 

Nonparametric Smooth 

Regression 

Item-Ability 

Regression 

B-Splines Nonparametric 

IRT 

1 0.922 0.508 0.708 

2 0.584 0.294 0.738 

3 0.088 0.032 0.024 

4 0.820 1.000 0.584 

5 0.664 1.000 0.416 

6 0.376 1.000 0.594 

7 0.122 1.000 0.310 

8 0.762 1.000 0.486 

9 0.188 1.000 0.268 

10 0.686 0.520 0.672 

11 0.874 0.368 0.732 

12 0.478 0.330 0.698 

13 0.306 0.136 0.134 

14 0.204 0.296 0.246 

15 0.794 1.000 1.000 

16 0.796 0.408 0.822 

17 0.826 1.000 0.792 

18 0.516 0.326 0.646 

19 0.422 1.000 0.580 

20 0.516 1.000 0.854 

21 0.928 1.000 1.000 

22 0.698 1.000 1.000 

23 0.764 0.218 0.298 

24 0.166 1.000 0.338 

25 0.042 1.000 0.180 

26 0.728 1.000 0.732 

27 0.220 0.360 0.496 

28 0.736 1.000 1.000 

29 0.982 0.398 1.000 

30 0.932 1.000 1.000 

31 0.556 0.586 0.240 

32 0.002 1.000 0.038 

33 0.652 1.000 0.556 

34 0.946 1.000 0.610 

35 0.962 1.000 0.784 

36 0.744 0.560 0.724 

37 0.674 0.696 0.556 

38 0.668 0.174 0.386 

39 0.352 1.000 0.326 

40 1.000 1.000 1.000 

41 0.750 1.000 0.310 
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42 0.358 1.000 0.452 

43 0.726 1.000 0.668 

44 0.408 1.000 0.574 

45 0.828 0.448 0.858 

46 0.098 0.090 0.026 

47 0.670 0.870 0.548 

48 0.500 0.146 0.742 

49 0.172 0.448 0.130 

50 0.356 1.000 0.180 

51 0.614 1.000 0.374 

52 0.928 0.154 1.000 

53 0.646 0.074 0.352 

54 0.586 1.000 0.788 

55 0.394 1.000 0.818 

56 0.314 0.484 0.460 

57 0.112 1.000 0.334 

58 0.694 1.000 1.000 

59 0.760 1.000 1.000 

60 0.802 0.586 0.560 

61 0.158 0.228 0.104 

62 0.292 0.590 0.176 

63 0.232 1.000 0.220 

64 0.080 0.050 0.256 

65 1.000 1.000 1.000 

66 0.962 0.108 1.000 

67 0.570 0.370 0.572 

68 0.760 1.000 1.000 

69 0.306 0.714 0.352 

70 0.346 1.000 0.512 

71 0.000 0.002 0.004 

72 0.322 0.552 0.290 

73 0.450 1.000 0.436 

74 0.208 0.322 0.190 

75 0.774 1.000 1.000 

76 0.814 0.128 0.354 

77 0.266 0.252 0.138 

78 0.846 1.000 1.000 

79 0.658 0.632 0.624 

80 0.162 0.336 0.174 

 

Three items are identified as items with nonmonotonic IRFs by the nonparametric smooth 

regression method, three items are identified with nonmonotonic IRFs by the item-ability 

regression method, and four items are identified with nonmonotonic IRFs by the B-splines 
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nonparametric IRT method. Item 71 is identified with nonmonotonic IRF by three methods. Also 

item 3 is identified with nonmonotonic IRF by two methods and the PPP value of the third 

method is very close to 0.05 (0.088 of the nonparametric smooth regression method).  

Table 14 presents the nonmonotonic area correlation among three nonparametric methods. 

The nonmonotonic area correlation between two nonparametric methods is the correlation of the 

nonmonotonic area of all items on the reading assessment A calculated by these two methods. 

Table 14 

Nonmonotonic Area Correlation among Three Nonparametric Methods for Reading Assessment 

A 

 

 

Nonparametric Smooth 

Regression 

Item-Ability 

Regression 

B-Splines 

Nonparametric IRT 

Nonparametric Smooth 

Regression  0.886 0.952 

Item-Ability Regression   0.897 

B-Splines 

Nonparametric IRT    

 

The nonmonotonic area correlation between the nonparametric smooth regression method and 

the B-splines nonparametric IRT method is close to 1 (0.952). In addition, the nonmonotonic 

area correlation between the nonparametric smooth regression method and the item-ability 

regression method (0.886) and the nonmonotonic area correlation between the B-splines 

nonparametric IRT method and the item-ability regression (0.897) are high and similar. The very 

high nonmonotonic correlation between the nonparametric smooth regression method and the B-

splines nonparametric IRT method indicates the nonmonotonic area estimated by two methods 

have a similar pattern among items on the reading assessment A. The nonmonotonic area 

correlations among these three methods are high which indicate the nonmonotonic area patterns 

among items on reading assessment A estimated by these three methods are similar.  
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Figures 72-77 present the IRFs estimated by three nonparametric methods of items 

identified as items with nonmonotonic IRFs by at least one method. Figure 72 presents the IRFs 

of item 71 which is identified with nonmonotonic IRF by three nonparametric methods.  

 

Figure 72.IRFs estimated by three nonparametric methods for item 71 on reading A. The PPP-

value of the item-ability regression method is 0.002. The PPP-value of the B-splines 

nonparametric IRT method is 0.004. The PPP-value of the nonparametric smooth regression 

method is 0.000. 

 

For item 71, the IRFs of three nonparametric methods are very similar with the exception of the 

parts at the low and high theta range and the nonmonotonic part appears at the same theta range. 

Figure 73 presents the IRFs of item 3 which is identified as an item with nonmonotonic IRF 

by two methods and the PPP value of the third method is very close to 0.05. 
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Figure 73.IRFs estimated by three nonparametric methods for item 3 on reading A. The PPP-

value of the item-ability regression method is 0.032. The PPP-value of the B-splines 

nonparametric IRT method is 0. 024. The PPP-value of the nonparametric smooth regression 

method is 0.088. 

 

For this item, the differences among the IRFs of three nonparametric methods are at the high 

theta range. The IRFs of the nonparametric smooth regression method and the B-splines 

nonparametric IRT method are very similar. The nonmonotonic parts of three IRFs appear at the 

similar theta range.  

Figures 74-77 present the IRFs of the other items identified with nonmonotonic IRFs by 

at least one method. These items are 25, 32, 46, and 64.  
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Figure 74.IRFs estimated by three nonparametric methods for item 25 on reading A. The PPP-

value of the item-ability regression method is 1.000. The PPP-value of the B-splines 

nonparametric IRT method is 0. 180. The PPP-value of the nonparametric smooth regression 

method is 0.042. 

 

 

Figure 75.IRFs estimated by three nonparametric methods for item 32 on reading A. The PPP-

value of the item-ability regression method is 1.000. The PPP-value of the B-splines 

nonparametric IRT method is 0.038. The PPP-value of the nonparametric smooth regression 

method is 0.002. 

 

For item 25 and 32, the IRFs of the nonparametric smooth regression method and the B-splines 

nonparametric IRT method are very similar but are different from the IRF of the item-ability 
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regression method especially at the low theta range. The IRFs of the B-splines nonparametric 

IRT method and the nonparametric smooth regression method have more curvatures. The IRFs 

of the item-ability regression method are monotonic. 

 

Figure 76.IRFs estimated by three nonparametric methods for item 46 on reading A. The PPP-

value of the item-ability regression method is 0.090. The PPP-value of the B-splines 

nonparametric IRT method is 0.026. The PPP-value of the nonparametric smooth regression 

method is 0.098. 
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Figure 77.IRFs estimated by three nonparametric methods for item 64 on reading A.  The PPP-

value of the item-ability regression method is 0.050. The PPP-value of the B-splines 

nonparametric IRT method is 0. 256. The PPP-value of the nonparametric smooth regression 

method is 0.080. 

 

For item 46 and 64, the IRFs of the nonparametric smooth regression method and the B-splines 

nonparametric IRT method are very similar but are different from the IRF of the item-ability 

regression method at the low theta range. The IRFs of the B-splines nonparametric IRT method 

and the nonparametric smooth regression method have more curvatures. The nonmonotonic parts 

of the IRFs of three methods appear at the similar theta range. 

Reading assessment B. Table 15 includes the PPP-values of three nonparametric methods 

for each item on this assessment.  
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Table 15 

PPP-Value of Three Nonparametric Methods for Each Item on Reading Assessment B 

  

Item 

Nonparametric Smooth 

Regression 

Item-Ability 

Regression 

B-Splines Nonparametric 

IRT 

1 0.092 0.138 0.220 

2 0.774 1.000 0.850 

3 0.076 1.000 0.344 

4 0.934 1.000 0.794 

5 0.356 1.000 0.448 

6 0.510 0.064 0.016 

7 1.000 1.000 1.000 

8 0.908 1.000 1.000 

9 0.516 0.276 0.326 

10 0.952 1.000 0.696 

11 0.792 0.128 0.760 

12 0.758 1.000 0.684 

13 0.760 1.000 1.000 

14 0.156 0.776 0.198 

15 0.322 0.058 0.222 

16 0.080 1.000 0.118 

17 0.960 0.550 0.808 

18 0.736 1.000 0.416 

19 0.798 1.000 1.000 

20 0.778 1.000 1.000 

21 0.038 1.000 0.094 

22 0.728 1.000 0.576 

23 0.772 1.000 1.000 

24 0.580 0.372 0.354 

25 0.112 0.262 0.068 

26 0.614 1.000 1.000 

27 0.406 0.242 0.210 

28 0.486 0.202 0.220 

29 0.108 0.258 0.202 

30 0.446 0.136 0.316 

31 0.988 1.000 1.000 

32 0.644 1.000 1.000 

33 0.638 0.706 0.464 

34 0.140 1.000 0.126 

35 0.118 0.326 0.378 

36 0.428 0.192 0.272 

37 0.814 0.598 0.840 

38 0.248 1.000 0.242 

39 0.352 1.000 0.334 

40 0.260 1.000 0.478 

41 0.854 1.000 0.662 
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42 0.116 1.000 0.086 

43 0.960 0.292 1.000 

44 0.532 1.000 0.424 

45 1.000 1.000 1.000 

46 1.000 1.000 1.000 

47 0.248 1.000 0.324 

48 0.020 1.000 0.028 

49 0.168 0.524 0.114 

50 1.000 1.000 1.000 

51 0.282 0.160 0.282 

52 0.134 0.440 0.238 

53 0.560 1.000 0.640 

54 0.340 0.262 0.200 

55 0.708 1.000 0.794 

56 0.834 0.784 0.774 

57 0.128 1.000 0.110 

58 0.356 1.000 0.452 

59 0.818 1.000 0.778 

60 0.072 0.084 0.198 

61 0.470 0.152 0.214 

62 0.542 1.000 0.806 

63 0.442 1.000 0.112 

64 0.038 0.010 0.006 

65 0.812 1.000 0.624 

66 0.650 0.012 0.046 

67 0.722 0.660 0.556 

68 0.564 1.000 0.546 

69 0.788 0.156 0.300 

70 0.806 0.136 0.674 

71 0.084 0.234 0.052 

72 0.196 0.198 0.122 

73 0.612 1.000 0.512 

74 0.070 1.000 0.364 

75 0.926 1.000 0.888 

76 0.404 1.000 0.038 

77 0.580 1.000 1.000 

78 0.846 1.000 1.000 

79 0.946 1.000 1.000 

80 1.000 1.000 0.932 

81 0.794 1.000 0.582 

 

Three items are identified with nonmonotonic IRFs by the nonparametric smooth regression 

method, two items are identified with nonmonotonic IRFs by the item-ability regression method, 
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and five items are identified with nonmonotonic IRFs by the B-splines nonparametric IRT 

method. Item 64 is identified with nonmonotonic IRF by three methods. 

Table 16 presents the nonmonotonic area correlation among three nonparametric methods. 

The nonmonotonic area correlation between two nonparametric methods is the correlation of the 

nonmonotonic area of all items on the reading assessment B calculated by these two methods. 

Table 16 

Nonmonotonic Area Correlation among Three Nonparametric Methods for Reading Assessment 

B 

 

 

Nonparametric Smooth 

Regression 

Item-Ability 

Regression 

B-Splines 

Nonparametric IRT 

Nonparametric Smooth 

Regression  0.441 0.782 

Item-Ability Regression   0.761 

B-Splines 

Nonparametric IRT    

 

The nonmonotonic area correlation between the nonparametric smooth regression method and 

the B-splines nonparametric IRT method is highest (0.782). In addition, the nonmonotonic area 

correlation between the B-splines nonparametric IRT method and the item-ability regression 

method (0.761) is high but the nonmonotonic area correlation between the nonparametric smooth 

regression method and the item-ability regression method (0.441) is not very high. Three 

nonmonotonic correlations of the reading assessment B are not as high as three nonmonotonic 

correlations of the reading assessment A, which indicate that the nonmonotonic area patterns 

among items on the reading assessment B estimated by these three methods are not very similar. 

Figures 78-83 IRFs estimated by three nonparametric methods of items identified with 

nonmonotonic IRFs by at least one method. Figure 78 presents the IRFs of item 64 which is 

identified with nonmonotonic IRF by three nonparametric methods.  
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Figure 78.IRFs estimated by three nonparametric methods for item 64 on reading B. The PPP-

value of the item-ability regression method is 0.010. The PPP-value of the B-splines 

nonparametric IRT method is 0.006. The PPP-value of the nonparametric smooth regression 

method is 0.038. 

 

For item 64, the IRFs of three nonparametric methods are very similar with the exception of the 

end parts at the very low and high theta range and the nonmonotonic parts of three IRFs appear 

at the same theta range. 

Figures 79-83 present the IRFs of the other items identified with nonmonotonic IRFs by at 

least one method. These items are 6, 21, 48, 66, and 76. 
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Figure 79.IRFs estimated by three nonparametric methods for item 6 on reading B. The PPP-

value of the item-ability regression method is 0.064. The PPP-value of the B-splines 

nonparametric IRT method is 0.016. The PPP-value of the nonparametric smooth regression 

method is 0.510. 

 

 

Figure 80.IRFs estimated by three nonparametric methods for item 66 on reading B. The PPP-

value of the item-ability regression method is 0.012. The PPP-value of the B-splines 

nonparametric IRT method is 0.046. The PPP-value of the nonparametric smooth regression 

method is 0.650. 
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For items 6 and 66, the IRFs of three nonparametric methods are very similar with the exception 

of the end parts at the very low and high theta range and the nonmonotonic parts of three IRFs 

appear at the same theta range. 

 

Figure 81.IRFs estimated by three nonparametric methods for item 21 on reading B. The PPP-

value of the item-ability regression method is 1.000. The PPP-value of the B-splines 

nonparametric IRT method is 0.038. The PPP-value of the nonparametric smooth regression 

method is 0.094. 
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Figure 82.IRFs estimated by three nonparametric methods for item 48 on reading B. The PPP-

value of the item-ability regression method is 1.000. The PPP-value of the B-splines 

nonparametric IRT method is 0.028. The PPP-value of the nonparametric smooth regression 

method is 0.020. 

 

 

Figure 83.IRFs estimated by three nonparametric methods for item 76 on reading B. The PPP-

value of the item-ability regression method is 1.000. The PPP-value of the B-splines 

nonparametric IRT method is 0.038. The PPP-value of the nonparametric smooth regression 

method is 0.404. 
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ability regression method especially at the low theta range. The IRFs of the B-splines 

nonparametric IRT method and the nonparametric smooth regression method have more 

curvatures. The IRF of the item-ability regression method is monotonic. 

Summary 

In the simulation study, the type I and type II error rates of three methods are similar. The 

type I error rate is lower than the type II error rate. The item-ability regression method has the 

lowest type I and type II error rates. The nonmonotonic area correlation between the 

nonparametric smooth regression method and the B-splines nonparametric IRT method is 

highest. Each real assessment has several items identified with nonmonotonic IRFs. The math 

assessments have more items with nonmonotonic IRFs than the reading assessments.  
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Chapter 5: Discussion 

The present study aimed to answer the following research questions:  

1. Can nonparametric smooth regression, item-ability regression, and B-spline 

nonparametric IRT detect the nonmonotonic IRF accurately in a simulated data study? 

2. Do real items with nonmonotonic IRFs exist, and if so, how common are they? 

These two research questions are discussed based on the results from the simulation study 

and the real data study. The discussion of the simulation study focuses on comparing three 

nonparametric methods, which corresponds to the first research question. The discussion of the 

real data study focuses on real items identified with nonmonotonic IRFs on five assessments, 

which corresponds to the second research question. Limitations of this study and suggestions for 

further research follow these discussions. Finally, the conclusion provides the implication of this 

study for educational research and practice.  

Nonparametric Methods Comparison in the Simulation Study 

Three nonparametric methods were compared from three aspects. First, three methods were 

compared on how well they identify six items with true nonmonotonic IRFs. Second, the average 

type I and type II error rate of three methods were compared. Third, similarities among the three 

methods on estimating the nonmonotonic area were compared. 

Method comparison on the estimation of items with true nonmonotonic IRFs. Among 

60 simulated items, six of them were generated from the nonmonotonic model (equation 36). The 

type II error rate of one method for one item indicates how well this method identifies one item 

with true nonmonotonic IRF. The type II error rates for the last two items are much lower than 

the type II error rates for the first four items of every method. The last two items have extreme 

item guessing parameters but their item discriminate and difficulty parameters are in the middle 
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range. The other four items either have extreme item difficulty parameter or extreme item 

discriminate parameter. Figures 84, 85, and 86 present the relationship between the type II error 

rate and each true item parameters. 

 

Figure 84. Scatter plot for a and type II error rate for each nonparametric method. Each method 

has six type II error rates correspond to six items with true nonmonotonic IRF.  

 

 

Figure 85. Scatter plot for b and type II error rate for each nonparametric method. Each method 

has six type II error rates correspond to six items with true nonmonotonic IRF.  
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Figure 86. Scatter plot for c and type II error rate for each nonparametric method. Each method 

has six type II error rates correspond to six items with true nonmonotonic IRF.  

 

This result indicates three nonparametric methods can estimate accurately the nonmonotonic 

IRFs of items with middle range item discriminate and difficulty parameters but extreme item 

guessing parameter. One reason is that the guessing parameter did not affect the 

nonmonotonicity estimation of these three methods significantly, when equation 36 was used to 

generate the nonmonotonic data. 

Since the B-splines nonparametric IRT method used the estimation from the nonparametric 

smooth regression method as priors, these two methods have a similar IRF estimation and the 

type II error rate of these two methods for each item are very similar. Moreover, the type II error 

rate of the item-ability regression method for each item is close to the type II error rate of the 

other two methods. Also the mean p-values for six items with true nonmonotonic IRFs are small. 

Thus, these three nonparametric methods can identify the nonmonotonic IRF equally well. 
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Method comparison on the average type I and type II error rate. The differences of the 

average type I and type II error rate among three methods are not large. This result confirms the 

first hypothesis that three nonparametric methods can detect the nonmonotonic IRF equally. 

However, the type II error rate is much higher than the type I error rate of each method. The high 

type II error is equivalent to the low power to identify the nonmonotonicity. This result means 

that the probability that each method identifies a monotonic item as nonmonotonic is very low 

but they sometimes cannot detect nonmonotonicity very well. The reasons might be the 

nonmonotonic models and the extreme item parameters being used for generating data.  

Method comparison on nonmonotonic area correlation. The nonmonotonic area 

correlation is an index of the similarity between two nonparametric methods on estimating the 

nonmonotonic part of IRF. The result of nonmonotonic area correlation indicates nonmonotonic 

area estimated by the nonparametric smooth regression method and the B-splines nonparametric 

IRT method have a similar pattern. The item-ability regression method has fewer similarities 

with these two methods. The reason for the similar estimation pattern between the nonparametric 

smooth regression method and the B-splines nonparametric IRT method is that the B-splines 

nonparametric IRT method used the estimation from the nonparametric smooth regression 

method as priors.  

Real Items Identified with Nonmonotonic IRFs 

IRFs of items on five assessments were estimated by three nonparametric methods. Then 

the PPMC method was used to judge the extent of the nonmonotonicity of IRFs. Each 

assessment has items identified with nonmonotonic IRFs by at least one method. Hambleton and 

Han (2004) have discussed that little attention has been given to investigating the consequences 

of model misfit. Moreover, Hambleton and Swaminathan (1985, p.168) stated that it is always 
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helpful to evaluate the consequences of model misfit whenever possible and that the number of 

investigations should not be limited. Investigation of the consequences of model misfit means 

that the assessment of model fit does not end. A rejection of a model cannot be made by an 

extreme statistical value without assessing the consequences of model misfit. Since the 

nonmonotonic IRF leads to the model misfit, the reasons for and the consequences of the 

nonmonotonic IRF should be investigated. Thus, this study also investigated whether the 

consequences of nonmonotonic IRFs affect the fairness and comparability of the test score. This 

investigation from different aspects was conducted on several items. Since all the real items are 

security items, they are not presented during investigation and explanation. 

In this section, the classification of the nonmonotonic IRFs is discussed first. The items 

identified with nonmonotonic IRFs are grouped by the subjects and discussed from the content 

perspective next. The reasons for and consequences of several items identified with 

nonmonotonic IRFs were carefully examined and presents in both classification part and subject 

discussion part. 

Categories of the real items identified with nonmonotonic IRFs. Two ways of 

classification for items identified with nonmonotonic IRFs are discussed. One way of 

classification is based on the similarity of IRFs from three estimation methods at the 

nonmonotonic part. And the other way of classification is based on the theta range where 

nonmonotonicity appears.  

Separate items identified with nonmonotonic IRFs based on the similarity of IRFs from 

three estimation methods at the nonmonotonic part. Items identified with nonmonotonic IRFs 

can be separated into four categories based on the similarity of IRFs from three estimation 

methods at the nonmonotonic part: (1) IRFs from three estimation methods are very similar at 



128 
 

the nonmonotonic part, (2) IRFs from three estimation methods have the similar theta range 

where the nonmonotonic part appears but are different on this range, (3) IRFs from two 

estimation methods are nonmonotonic and IRF from one estimation method is monotonic, and 

(4) IRF from one estimation method is nonmonotonic and IRFs from two estimation methods are 

monotonic.  

Three nonparametric methods estimated IRF using different models. The IRFs which are 

estimated by the nonparametric smooth regression method and the B-spline nonparametric IRT 

method have more curvatures compared with the IRFs estimated by the item-ability regression 

method. This is the main reason leading to the differences among IRFs from three estimation 

methods. When there is one monotonic IRF, it is usually estimated by the item-ability regression 

method.  

When IRFs from three estimation methods are very similar at the nonmonotonic part, it 

provides convincing evidence that the IRF of this item is nonmonotonic. When there is 

monotonic IRF from one or two estimation methods and the other nonmonotonic IRFs from two 

or one estimation method have a very small nonmonotonic part, these two or one nonmonotonic 

estimated IRFs might be different from the true IRF which might be monotonic. In this situation, 

it might be incorrect to state that the IRF of this item is nonmonotonic because the nonmonotonic 

IRF might be caused by inaccurate estimation.  

Separate items identified with nonmonotonic IRFs based on the theta range where 

nonmonotonicity appears. Items identified with nonmonotonic IRFs can be separated into three 

categories based on the theta range where the largest nonmonotonicity appears: the theta range 

where the largest nonmonotonicity appears is at the low theta range (-3 to 1), the theta range 
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where the largest nonmonotonicity appears is at the middle theta range (-1 to 1), and the theta 

range where the largest nonmonotonicity appears is at the high theta range (1 to 3). 

Table 17 summarizes the number of items identified with nonmonotonic IRFs by at least 

one method on five assessments at each category.  

Table 17 

Number of Items Identified with Nonmonotonic IRFs by at Least One Method at Three 

Categories on Five Assessments 

 

Theta Range Math A Math B Math C Reading A Reading B Sum Percent 

Low 10 15 22 6 6 59 88.06% 

Middle 1 1 3 0 0 5 7.46% 

High 0 0 3 0 0 3 4.48% 

Sum 11 16 28 6 6 67 100% 

 

Most items (88.06%) are at the low theta range category. Only five out of 67 items are at the 

middle theta range category and only three out of 67 items are at the high theta range. The 

nonmonotonicity of some math items identified with nonmonotonic IRFs is at the middle or high 

theta range. But the nonmonotonicity of all reading items identified with nonmonotonic IRFs is 

at the low theta range.  

The items identified with nonmonotonic IRFs at the low theta range category affect the test 

score of students at the low theta range. However, the number of students at the very low theta 

range is not large. The largest nonmonotonic parts of some IRFs of items at this category appear 

at the very low theta range. Moreover, only some IRFs from the three estimation methods of 

these three items are nonmonotonic and one or two IRFs of these items are monotonic. This kind 

of nonmonotonicity might be caused by inaccurate estimation and is different from the true IRFs 

which might be monotonic. Since three nonparametric methods are easily affected by the sample 

size, the small sample size at the very low theta range leads to the inaccurate estimation. The 

nonmonotonicity of these items do not affect the majority of students and the consequence of the 
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nonmonotonicity on test fairness and comparability is not significant. On the other hand, there 

are some items at this category with three IRFs that are very similar at the largest nonmonotonic 

part and the theta range where the largest nonmonotonic part appears covers most part of the low 

theta range. The reasons for and the consequences of this kind of nonmonotonicity should be 

investigated because items identified with this kind of nonmonotonic IRFs can affect a large 

number of students. Item 71 on the reading assessment A is used as an example to investigate the 

reasons for and consequences of this kind of nonmonotonicity. This item asks student the 

meaning of a word appearing in the paragraph. Three options of item 71 are very similar in 

meaning. C is the correct answer but a number of students with low proficiency levels chose A 

and B. This indicates that students understood the context but they did not really understand the 

differences of meanings among these three options. Thus, their probability of success is lower 

than the probability of guessing. This might be the reason for the nonmonotonicity and how it 

affects the proficiency level estimation. The nonmonotonicity of this item can lead to the 

estimated proficiency levels of students with higher proficiency levels lower than their true 

proficiency levels. Figure 87 presents the distracter analysis results of item 71 on the reading 

assessment A using the nonparametric smooth regression method. 
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Figure 87. Distracter analysis results of item 71 on the reading assessment A using the 

nonparametric smooth regression method. Each line is the IRF of each option estimated by the 

nonparametric smooth regression method. 

 

C is the correct options. But the probabilities that students with low proficiency levels chose 

option A and B are higher than the probability of guessing. 

There are a large number of students at the middle and high theta range. Thus, the items 

identified with nonmonotonic IRFs at the middle and high theta range category might lead to 

many students with lower proficiency levels receiving a higher score. Item 7 on the math 

assessment C provides an example of these two categories to investigate the reasons for and 

consequences of the nonmonotonicity. Item 7 on the math assessment C is a difficult item 

because it requires students to find a maximum number in an applied problem. There are two 

numbers (for example 60 and 0.08) both in the questions and options. Most students with middle 

and low proficiency levels just chose two incorrect options, A and B. A is “≤ 60.8” and B is 

“≥60.8”. This pattern indicates that they did not know how to solve the problem. Thus, they used 

another approach to solve this problem. Students just chose the options which are the 
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combination of two numbers in the questions (60.8). Many students with middle proficiency 

levels chose option A (≤ 60.8) because they understood that they had to find a less than 

inequality sign because the problem provides an upper bound and asks for the maximum number 

smaller than the bound. A number of students with lower proficiency levels chose option B 

(≥60.8) because they did not understand the questions and the term “more than” appears in the 

question. This might be the reason for the nonmonotonicity of this item at the low and middle 

theta range, which leads to the estimated proficiency levels of many students lower than their 

true values. The IRF of this item also indicates that students do not guess at random when they 

do not know how to solve the problem. Figure 88 presents the distracter analysis results of item 7 

on the math C assessment using the B-spline nonparametric IRT method. 

 

Figure 88.Distractor analysis results of item 7 on the math assessment C using the B-spline 

nonparametric IRT method. Each line is the IRF of each option estimated by the B-spline 

nonparametric IRT method. 

 

Option C is the correct choice. But option A has a very high probability of success at the middle 

theta range and option B has a very high probability of success at the low theta range. 
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Real items identified with nonmonotonic IRFs on the math and reading assessments. 

Most items identified with nonmonotonic IRFs have one large nonmonotonic part. There are 

some nonmonotonic IRFs have one large and other very small nonmonotonic parts. But these 

nonmonotonic parts might be caused by unsmooth estimation methods. Both math and reading 

assessments have items identified with nonmonotonic IRFs by at least one method. Table 18 

summarizes the number of items and the number of items identified with nonmonotonic IRFs by 

at least one method on each assessment. 

Table 18 

Number of Items and Number of Items Identified with Nonmonotonic IRFs by at Least One 

Method on Five Assessments 

 

 Math A Math B Math C 

Reading 

A 

Reading 

B 

No. of Items Identified with 

Nonmonotonic IRFs  11 16 28 6 6 

No. of Items 83 84 84 80 81 

Percent 13.25% 19.05% 33.33% 7.50% 7.40% 

 

Table 18 shows that every math assessment has more items identified with nonmonotonic IRFs 

than every reading assessment.  

Table 19 includes the number of items and the number of items identified with 

nonmonotonic IRFs by at least one method for each indicator on math assessments.  
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Table 19 

Number of Items and Number of Items Identified with Nonmonotonic IRFs by at Least One 

Method for each Indicator on Math Assessments 

 

Indicator No. of Items Identified with 

Nonmonotonic IRFs 

No. of Items Percent 

M.10.4.2.K5 10 20 50.00% 

M.10.2.3.A2 7 18 38.89% 

M.10.3.3.A1 6 18 33.33% 

M.10.3.4.K6 7 21 33.33% 

M.10.1.4.A1 4 15 26.67% 

M.10.4.2.A1 4 15 26.67% 

M.10.1.3.A1 3 15 20.00% 

M.10.2.2.A2 3 18 16.67% 

M.10.4.1.K3 2 12 16.67% 

M.10.4.2.K4 2 12 16.67% 

M.10.2.3.K6 2 15 13.33% 

M.10.2.2.K3 2 18 11.11% 

M.10.3.4.K4 2 18 11.11% 

M.10.1.2.K3 1 24 4.17% 

M.10.3.1.A1 0 12 0.00% 

 

Indicator M.10.4.2.K5 has the highest percentage (50.00%) of number of items identified with 

nonmonotonic IRFs. Items aligned to this indicator require students to analyze a scatter plot and 

make predictions based on the line of best fit. Ten items aligned to this indicator and identified 

with nonmonotonic IRFs are examined carefully to investigate the reasons for the 

nonmonotonicity. The nonmonotonicity of three items appears at the very low theta range. 

Moreover, only some IRFs from the three estimation methods of these three items are 

nonmonotonic and one or two IRFs of these items are monotonic. This kind of nonmonotonicity 

might be caused by inaccurate estimation and the consequence of the nonmonotonicity on test 

fairness and comparability is not significant. The other seven items can be separate into three 

types based on the reason for nonmonotonicity. Item 27 on math B, item 24 on math C, and item 

50 on math C belong to the first type and ask students estimate points that lie on the line of best 

fit which is not shown but can be modeled based on the scatter plot. Regardless of whether the 
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question of these items includes the term "line of best fit," students with low or low and middle 

proficiency levels chose the option consistent with the estimation based on pattern of the data on 

the scatter plot rather than the line of best fit which should be modeled first. These three items 

ask student to estimate the y-axis value of a given value on x-axis. Students with low or low and 

middle proficiency levels just chose the option that is the smallest number larger than all the 

plotted y-values whose correspond x-values are smaller than the given x-value based on the data 

on the scatter plot. Beside this reason, another reason might also lead to the nonmonotonicity of 

item 50 on math C is that the y-value of the correct option was not marked according to the scale 

on the y-axis. Yet one of the distracters contained a value marked on the y-axis and larger than 

all the plotted y-values whose correspond x-values are smaller than the given x-value. Thus, 

many students in the low and middle theta range chose this option. Consequently, the probability 

of success of students who chose these distractors is lower than the guessing probability and 

affects their proficiency level estimation. Figures 89, 90 and 91 present the distracter analysis 

results of item 27 on the math assessment B, item 24 on the math assessment C and item 50 on 

the math assessment C using the item-ability regression method.  
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Figure 89.Distractor analysis results of item 27 on the math assessment B using the item-ability 

regression method. Each line is the IRF of each option estimated by the item-ability regression 

method. 

 

Figure 90.Distractor analysis results of item 24 on the math assessment C using the item-ability 

regression method. Each line is the IRF of each option estimated by the item-ability regression 

method. 
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Figure 91.Distracter analysis results of item 50 on the math assessment C using the item-ability 

regression method. Each line is the IRF of each option estimated by the item-ability regression 

method. 

 

For item 27 on the math assessment B, option B is the correct choice. But option C has a very 

high probability of success at the low theta range. For item 24 on the math assessment C, option 

C is the correct choice. But the probability of success of option D is increasing as the proficiency 

level increases at the low and middle theta range. For item 50 on the math assessment C, option 

B is the correct choice. But option C has a very high probability of success at the low and middle 

theta range. 

The second type of items identified with nonmonotonic IRFs and aligned to indicator 

M.10.4.2.K5 asks student to choose the equation of the line of best fit. Among 20 items aligned 

to this indicator, these two items (item 69 on math A and item 53 on math C) are the only two 

items asking the equation of the line of best fit. The nonmonotonicity of these two items appears 

at the low theta range and at this range the probabilities of success of other three distractors are 
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higher than the probability of success of the correct option. However, the probability of success 

of one distractor is increasing as the proficiency level increases at the low or low and middle 

theta range as Figure 92 and 93 present. The equation of this distractor has the same slope 

direction as the equation of the correct option but either different slope value for item 69 on math 

A or different slope value and interception value for item 53 on math C. The distractor analysis 

might indicate that student with low proficiency levels understood the concept of the direction of 

the slope but not the value of slope. For item 69 on math A, the slope value of the equation of the 

distracter with increasing probability of success at the low theta range is equal to the unit of the 

scale. Student who chose this distracter might be distracted by the unit of scale and their 

probability of success is lower than the probability of guessing. For item 53 on math C, the y-

value of the intercept of the equation of the correct option is not marked according to the scale on 

the y-axis but the y-value of the intercept of the equation of the distractor with increasing 

probability of success at the low and middle theta range is marked according to the scale on the 

y-axis. Student who chose this distracter might be distracted by the value of the interception and 

their probability of success is lower than the probability of guessing. Figures 82 presents the 

distracter analysis results of item 69 on the math assessment A using the B-spline nonparametric 

IRT method and figure 93 presents item 53 on the math assessment C using the item-ability 

regression method.   
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Figure 92.Distracter analysis results of item 69 on the math assessment A using the B-spline 

nonparametric IRT method. Each line is the IRF of each option estimated by the B-spline 

nonparametric IRT method. 

 

 

Figure 93.Distracter analysis results of item 53 on the math assessment C using the item-ability 

regression method. Each line is the IRF of each option estimated by the item-ability regression 

method. 
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item 53 on the math assessment C, option C is the correct choice. But the probability of success 

of option A is increasing as the proficiency level increases at the low and middle theta range.  

The nonmonotonicity of the third type of items identified with nonmonotonic IRFs and 

aligned to indicator M.10.4.2.K5 appears at the high theta range. The nonmonotonic parts of the 

two items of this type (item 9 and item 57 on math C) are very small as Figure 59 and 60 present. 

The math content experts, who is familiar with math curriculum and involves in math item 

development, commended these two items are good items from the content perspective and the 

reasons for the nonmonotonicity might be the careless of the students with high proficiency 

levels. Since the nonmonotonic parts are small, they are not able to affect the test result 

significantly.  

Indicator M.10.3.3.A1 also has a high percentage (33.33%) of number of items identified 

with nonmonotonic IRFs. This indicator requires students to analyze the impact on the perimeter, 

area, or volume of a geometric figure when one of these measurements is increased or decreased 

by a given factor. In order to answer this kind of items correctly, students need to understand the 

computation of and relationships among distance, area, and volume. Students with proficiency 

levels from about -3 to -1 only chose the options that are the multiples or divisors of the factor, 

indicating they were able to compute the product or quotient of rational numbers. They chose 

options indicating that they had multiplied or divided by a linear factor, but they did not 

apparently understand how to correctly use the linear factor to describe corresponding changes to 

area or volume. This might be the reason for the nonmonotonicity of this kind of items. The 

nonmonotonicity caused by this reason affects the proficiency level estimation of students. For 

students with higher proficiency levels, their estimated proficiency levels might be lower than 

their true proficiency levels. For example, item 57 on math assessment A, item 41 on math 
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assessment B, and item 80 on math assessment C, require students to calculate effects on volume 

given a linear factor of change. Students often selected the option corresponding to the square of 

the factor or the factor itself instead of the cube of the factor. For these three items, the estimated 

IRFs have a similar shape. 

Table 20 includes the number of items and the number of items identified with 

nonmonotonic IRFs by at least one method for each indicator on reading assessments.  

Table 20 

Number of Items and Number of Items Identified with Nonmonotonic IRFs by at Least One 

Method for each Indicator on Reading Assessments 

 

Indicator No. of Items Identified with 

Nonmonotonic IRFs 

No. of Items Percent 

R.11.2.1.1 4 10 40.00% 

R.11.2.1.2 3 10 30.00% 

R.11.1.4.7 2 12 16.67% 

R.11.1.3.1 1 8 12.50% 

R.11.1.4.14 1 8 12.50% 

R.11.1.4.8 1 11 9.09% 

R.11.1.3.3 0 12 0.00% 

R.11.1.3.4 0 12 0.00% 

R.11.1.4.10 0 12 0.00% 

R.11.1.4.11 0 8 0.00% 

R.11.1.4.15 0 8 0.00% 

R.11.1.4.2 0 8 0.00% 

R.11.1.4.5 0 12 0.00% 

R.11.1.4.6 0 12 0.00% 

R.11.1.4.9 0 8 0.00% 

R.11.2.1.3 0 10 0.00% 

 

Indicator R. 11.2.1.1 has the percentage (40.00%) of number of items identified with 

nonmonotonic IRFs. The reading content expert, who is familiar with reading curriculum and 

involves in reading item development, commented that this kind of items is not straightforward 

and requires inference and interpretation of the entire passage which is a higher comprehensive 

skill. This might be the reason for the nonmonotonicity. More studies are needed for the reasons 

for the nonmonotonicity of the items for this indicator. 
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Limitations and Future Studies 

There are several limitations and suggestions for future studies. These limitations and 

suggestions are discussed based on the order of studies: simulation study limitations and real data 

study limitations. 

Simulation study limitations. One limitation of the simulation study is that the evaluation 

nodes of the item-ability regression method were affected by the software BILOG-MG. 

Although the pre-determined quadrature nodes, which are the same as the evaluation nodes of 

the other two methods, were input to BILOG-MG code, the quadrature nodes became different 

after running BILOG-MG because adjust command was used (which adjusts the scale of 

empirical ability distribution). These different nodes were used to estimate IRFs 

nonparametrically. The different nodes added a variable to the comparison among three 

nonparametric methods since IRFs were estimated on different nodes. Therefore, it is hard to 

determine if the differences between the item-ability regression method and the nonparametric 

smooth regression method or the B-spline nonparametric IRT method are caused by the method 

differences itself or the evaluation nodes differences. In order to solve this problem, “noadjust” 

command could be used to run BILOG-MG.  

Additional limitation is related to the models and item parameters used for generating 

nonmonotonic data. The nonmonotonic model used in the simulation study generated IRFs with 

very high probabilities at the low theta range. But the real nonmonotonic IRFs have low 

probabilities at the low theta range. This nonmonotonic model might be different from the real 

situation. Moreover, the change of guessing parameters did not affect the nonmonotonic IRF 

estimation of three methods very much when the nonmonotonic model (equation 36) was used. It 

is hard to use this model to study the relationship between the guessing parameters and the 
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nonmonotonic IRF estimation. In addition, in the simulation study extreme item parameters were 

used to generate nonmonotonic data. However, in the real situation there are few items with 

nonmonotonic IRFs and with extreme item parameters. Using extreme item parameters might 

lead to the comparison among three nonparametric methods lack of generalization. Thus, more 

generalized item parameters and other different nonmonotonic models should be used in future 

studies for method comparison.  

Real data study limitations. First limitation of real data study is that the small sample size 

at the very low theta range leads to inaccurate estimation at this range. Since there are a small 

number of students at the very low theta range and the nonmonotonicity at this range does not 

affect the test result a lot, the evaluation nodes ranging from -2.5 to 3 can be chosen for future 

studies because the large population can lead to more accurate IRF estimation.  

Another limitation is that there are only a few items being examined on the reasons for and 

consequences of the nonmonotonicity. The nonmonotonic parts of the estimated IRFs of items 

examined are large. But there are some items with estimated IRFs with one or several small 

nonmonotonic parts. The reasons for and consequences of these items should also be studied. If 

the consequences are not significant, these items should not be rejected because of the 

nonmonotonicity. 

The third limitation is that the relationship between the indicator and the nonmonotonicity 

was not studied enough. The conclusion will be more convincing if all the items identified with 

nonmonotonic IRFs for one indicator are investigated on the reasons for and consequences of the 

nonmonotonicity as for indicator M.10.4.2.K5. 

The fourth limitation is that the reasons for that there are more math items identified with 

nonmonotonic IRFs than reading items identified with nonmonotonic IRFs are not clear. The 
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further studies should focus on the reasons for this difference based on the investigation of the 

reasons for and consequences of all the math and reading items identified with nonmonotonic 

IRFs. Moreover, the collaboration work of both math and reading content experts is needed 

because the content experts should compare the reasons for and consequences of the 

nonmonotonicity between the math and reading items together.    

Conclusion 

This study first compared the nonparametric smooth regression method, the item-ability 

regression method and the B-spline nonparametric IRT method using simulated data. The 

estimation results of three methods are very similar and indicate three methods can identify the 

nonmonotonic IRF equally well. The item-ability regression method and B-spline nonparametric 

method worked better compared with the nonparametric smooth regression method because their 

type I and II error rates are lower. Subsequently, these three methods were used to estimate the 

IRFs of real items on five assessments. Each assessment has several items identified with 

nonmonotonic IRFs. The math assessment has more items identified with nonmonotonic IRFs 

than the reading assessment. Most nonmonotonicity appears at the low theta range. Some items 

identified with nonmonotonic IRFs can lead to students with higher proficiency levels receiving 

lower scores and these items should be modified in future. In order to avoid nonmonotonicity, 

item writer could write items with more specific questions, less distractions in the graph, and 

mark correct response and distractors all on the y-axis for item with graph based on the 

investigation of the reasons for and consequences of the nonmonotonicity. To summarize, 

looking the sample of real items used in this study, nonmonotonic IRFs are not rare and can 

affect the fairness and comparability of the test score. The nonmonotonicity should be checked 

before applying parametric logistic models. 
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