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Abstract

This dissertation focuses on the explicit grounding of reasoning in evidence directly 

sensed from the physical world. Based on evidence from human problem solving and 

successes, this is a straightforward basis for reasoning: to solve problems in the 

physical world, the information required for solving them must also come from the 

physical world. What is less straightforward is how to structure the path from 

evidence to conclusions. Many approaches have been applied to evidence-based 

reasoning, including probabilistic graphical models and Dempster-Shafer theory. 

However, with some exceptions, these traditional approaches are often employed to 

establish confidence in a single binary conclusion, like whether or not there is a 

blizzard, rather than developing complex groups of scalar conclusions, like where a 

blizzard’s center is, what area it covers, how strong it is, and what components it has. 

To form conclusions of the latter kind, we employ and further develop the approach 

of Computational Argumentation.

Specifically, this dissertation develops a novel approach to evidence-based 

argumentation called Evidentialist Foundationalist Argumentation (EFA). The 

method is a formal instantiation of the well-established Argumentation Service 

Platform with Integrated Components (ASPIC) framework. There are two primary 

approaches to Computational Argumentation. One approach is structured 

argumentation where arguments are structured with premises, inference rules, 
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conclusions, and arguments based on the conclusions of other arguments, creating a 

tree-like structure. The other approach is abstract argumentation where arguments 

interact at a higher level through an attack relation. ASPIC unifies the two 

approaches. EFA instantiates ASPIC specifically for the purpose of reasoning about 

physical evidence in the form of sensor data. By restricting ASPIC specifically to 

sensor data, special philosophical and computational advantages are gained. 

Specifically, all premises in the system (evidence) can be treated as firmly grounded 

axioms and all arguments’ conclusions can be numerically calculated directly from 

their premises.

EFA could be used as the basis for well-justified, transparent reasoning in many 

domains including engineering, law, business, medicine, politics, and education. To 

test its utility as a basis for Computational Argumentation, we apply EFA to a Multi-

Agent System working in the problem domain of Sensor Webs on the specific 

problem of Decentralized Sensor Fusion. In the Multi-Agent Decentralized Sensor 

Fusion problem, groups of individual agents are assigned to sensor stations that are 

distributed across a geographical area, forming a Sensor Web. The goal of the system 

is to strategically share sensor readings between agents to increase the accuracy of 

each individual agent’s model of the geophysical sensing situation. For example, if 

there is a severe storm, a goal may be for each agent to have an accurate model of the 

storm’s heading, severity, and focal points of activity. Also, since the agents are 

controlling a Sensor Web, another goal is to use communication judiciously so as to 

use power efficiently.
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To meet these goals, we design a Multi-Agent System called Investigative 

Argumentation-based Negotiating Agents (IANA). Agents in IANA use EFA as the 

basis for establishing arguments to model geophysical situations. Upon gathering 

evidence in the form of sensor readings, the agents form evidence-based arguments 

using EFA. The agents systematically compare the conclusions of their arguments to 

other agents. If the agents sufficiently agree on the geophysical situation, they end 

communication. If they disagree, then they share the evidence for their conclusions, 

consuming communication resources with the goal of increasing accuracy. They 

execute this interaction using a Share on Disagreement (SoD) protocol.

IANA is evaluated against two other Multi-Agent System approaches on the basis 

of accuracy and communication costs, using historical real-world weather data. The 

first approach is all-to-all communication, called the Complete Data Sharing (CDS) 

approach. In this system, agents share all observations, maximizing accuracy but at a 

high communication cost. The second approach is based on Kalman Filtering of 

conclusions and is called the Conclusion Negotiation Only (CNO) approach. In this 

system, agents do not share any observations, and instead try to infer the geophysical 

state based only on each other’s conclusions. This approach saves communication 

costs but sacrifices accuracy.

The results of these experiments have been statistically analyzed using omega-

squared effect sizes produced by ANOVA with p-values < 0.05. The IANA system 

was found to outperform the CDS system for message cost with high effect sizes. The 

CDS system outperformed the IANA system for accuracy with only small effect 
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sizes. The IANA system was found to outperform the CNO system for accuracy with 

mostly high and medium effect sizes. The CNO system outperformed the IANA 

system for message costs with only small effect sizes. Given these results, the IANA 

system is preferable for most of the testing scenarios for the problem solved in this 

dissertation.
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1 Introduction

1.1 Motivation

A quintessential goal for Multi-Agent Systems (MAS) is to share limited resources 

among multiple autonomous agents in an effort to collectively achieve one or more 

common goals. The participation of multiple agents is typically required to achieve 

those goals. Some examples of limited shared resources are an individual agent’s 

time, processing power, or battery power. Other examples are external physical 

resources such as sensors, physical space, communication channels, or tools. 

Anything with limited accessibility that an agent or group of agents can utilize to 

accomplish a goal can be thought of as a limited resource. Maximally utilizing the 

group’s limited resources to realize the group’s common goals is a frequently 

contemplated challenge in MAS.

In current practice, Multi-Agent Systems are typically designed from the top down 

with specific cooperative goals in mind. Multiple agents are often used because the 

goals are complex and distributed in nature. Sometimes these goals can be achieved 

more easily from the perspective of multiple autonomous entities rather than from the 

perspective of one complicated entity. Having multiple agents also allows for graceful 

degradation of the system, should problems occur, whereas centralized systems have 
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a single point of failure.

One useful application for Multi-Agent Systems is in the problem domain of 

Decentralized Sensor Fusion (Rosencrantz et al., 2003). In Decentralized Sensor 

Fusion, multiple independent entities attempt to strategically share observations in a 

way that maximizes the accuracy of their individual models of the overall situation. 

This may be used by sensors spread across a geographical landscape to build 

individual models of a weather situation such as distributed blizzard intensity or 

tornado locations. The goal in this situation is to maximize the model accuracy for 

each individual agent. 

Distributed sensors have several advantages which will be detailed in our 

Background chapter. One disadvantage they have is that communication between 

sensors consumes energy, for example battery life. This cost can be called 

communication cost, which will be formally defined in our Materials chapter. 

Communication cost is necessary for achieving model accuracy. An open question is 

how best to balance the two.

One approach is to share all observations among all agents. This guarantees that 

maximum model accuracy will be achieved but at the price of  incurring maximum 

communication cost. We call this approach Complete Data Sharing (CDS). Another 

approach is for agents to build models based on their own individual observations and 

only share the conclusions of their models with each other. It could combine these 

model conclusions using a sophisticated combination algorithm like  Kalman 

Filtering (Olfati-Saber, 2007). This comes at the cost of possibly reducing model 
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accuracy but also possibly lowering communication cost in comparison to CDS. We 

will call this approach Conclusion Negotiation Only (CNO).

Given these two extremes, there is a possibility for a hybrid approach that 

strategically shares some observations but only when sharing those observations has 

the potential to increase accuracy. The hybrid approach we propose is based on 

Computational Argumentation (Prakken, 2010). This approach takes advantage of the 

fact that arguments are structured as premises that lead to conclusions. In this 

proposed system, observations are a type of premise and weather models are a type of 

conclusion. The formal components of the approach will be detailed in later chapters 

but the basic idea can be illustrated with an informal example.

The practical idea behind the strategy is that if agents sufficiently agree on their 

general conclusions, they do not need to share the details of how they reached their 

conclusions. For example, if two human experts (for example, doctors) agree on their 

conclusion as to which detailed operation is right for a situation, it is not necessary 

that they share the studies that lead them each individually to that conclusion. It is not 

unless there is a disagreement that the experts should share their evidence and come 

to a consensus about whose conclusion has the most evidence. This scenario is 

illustrated in Figure 1. In the same way, if agents in a Sensor Web basically agree on 

their conclusion as to what is happening in the current geophysical situation, then it is 

not necessary that they share the observations that led them to their conclusions. We 

will call this approach Investigative Argumentation-based Negotiating Agents 

(IANA). 
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Figure 1. Often two human experts only need to share the evidence for their 
conclusions if they disagree.

The hypothesized advantage of this approach is conceptually illustrated in Figure 

2. A certain amount of data exchange is necessary to achieve the total accuracy for an 

environmental model. However, at some point the data exchanged can become 

irrelevant to the accuracy of the model. The data may be redundant. Or the data may 

not meet certain conditions and thus become irrelevant. At this point, the accuracy 

plateaus and further exchange of data results in diminishing returns. For an approach 

that shares no observations but instead shares conclusions (CNO), the accuracy 

reached may be far from the maximum possible. For an approach that shares all 

observations (CDS), maximum accuracy may be reached but at the cost of sharing far 
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more data than necessary. For an approach that only shares observations when 

conclusions are in disagreement (IANA), close to maximum accuracy may be 

reached and with much lower communication cost.

Accuracy Acquired

Communication Required

No Sharing Complete SharingArgumentation

Data Acquired
Information Units

Figure 2. The conceptual advantage of an argumentation-based approach.

The goal of this dissertation is to formally test these hypothesized advantages. In 

the next section, we will formally established our research hypotheses.

1.2 Research Hypotheses

To evaluate our formal research hypotheses, we will perform a set of experiments. All 

of the experiments will follow a similar setup. Sensor Webs will be arranged in a grid 

pattern and each sensor pod (a heterogenous set of sensors) in the grid will be 
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associated with an agent. Each sensor pod will be given access to a snapshot of real-

world data associated with its geographical position, drawn from a historical real-

world weather scenario. Agents will communicate with each other using one of the 

three strategies outlined in the previous section: CDS, CNO, or IANA. In the 

meantime, an Evaluator agent will be given all the data so that it can generate a 

complete model of the weather scenario for accuracy comparisons. The performance 

of each system will be evaluated in terms of multiple accuracy and communication 

metrics, which will be detailed in the Materials chapter.

For the purpose of explaining our research hypotheses, we will briefly explain 

communication metrics here. Message cost is the total size in bytes of messages 

exchanged by a system multiplied by the distance between the nodes exchanging 

each individual message (since distance increases the power needed for an exchange). 

Message amount is the total number of messages exchanged by a system.

To statistically test the strength of the advantages of one system over another on a 

metric, ANOVA will be used to produce both the p-values and the effect sizes to 

evaluate the advantages. We used the effect size categorization of Cohen (1988) to 

judge the magnitude of the effect sizes. According to Cohen, effect sizes of 0.4 or less 

have a "small" effect, 0.4 to 0.8 have a "medium" effect, and 0.8 to infinity have a 

"large" effect. The effect size categorizations recommended by Cohen are still widely 

used in modern research across many fields (Kotrlik et al., 2003). They are illustrated 

graphically in Figure 3.



7

-0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

25 30 35 40 45 50Ef
fe

ct
 S

ize
 o

f C
DS

 S
up

er
-R

eg
io

n 
Ac

cu
ra

cy
 A

dv
an

ta
ge

Grid Size

Small

Medium

Large

Figure 3. Widely used effect size categorizations.

For these experiments, the IANA system will use a Share on Disagreement (SoD) 

protocol, which will be explained in detail in a later chapter. The basic principle of 

this protocol is that agents will only communicate their observations if they 

sufficiently disagree about the conclusions produced by their models.

1.2.1 COMPLETE DATA SHARING

The Complete Data Sharing (CDS) system shares all sensor observations between 

all agents. It is our hypothesis that CDS will perform better than IANA for all 

accuracy metrics as well as a message amount metric. We think CDS will have 

higher accuracy because it is guaranteed to have 100% accuracy and it is unlikely 

that IANA can save communication costs without lowering accuracy. We think 

CDS will send fewer messages because IANA’s SoD protocol requires it to send 
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many small messages in order to minimize the exchange of large messages.

However, we also predict that these advantages will all have a small effect size. 

We think the accuracy advantage will be small because, while IANA will 

probably make some mistakes, its SoD protocol should prevent agents from 

diverging too much from each other, which should usually ensure high accuracy. 

We think the message amount advantage will be small because CDS is still 

initiating the same number of exchanges as IANA. IANA is just sending a few 

more messages.

It is also our hypothesis that IANA will perform better than CDS for the 

message cost metric and that this advantage will have a large effect size. We 

think this because the CDS solution sends all observations to all other agents, 

even if those agents do not need those observations to reach similar conclusions 

and even if those observations are ultimately irrelevant to forming a conclusion. 

Since IANA is specifically designed to avoid this unnecessary communication, we 

believe that its communication costs should be much lower.

If these hypotheses are true, it can be argued that, unless maximal accuracy and 

minimal message amount are required for a system, it is more suitable to use 

IANA than CDS, due to the strong advantages given by the lower message cost.

1.2.2 CONCLUSION NEGOTIATION ONLY

The Conclusion Negotiation Only (CNO) system shares only high-level 

conclusions produced by individual agent models between agents. The agents 

then combine their conclusions using Kalman Filtering. It is our hypothesis that 



9

CNO will perform better than IANA for all communication metrics. We think 

CNO will have fewer message costs and lower message amount because, 

intuitively, its protocol requires fewer messages and smaller messages.

However, we also predict that these advantages will all have a small effect size. 

We think the communication advantage will be small because, while IANA will 

use slightly more messages when exchanging observations it will also refrain 

from sending observations when agents sufficiently agree using its SoD protocol.

It is also our hypothesis that IANA will perform better than CNO for the 

accuracy metrics and that this advantage will have a large effect size. We think 

this because IANA’s agents put more effort into reaching consensus by sharing 

observations when they disagree, as per the SoD protocol.

If these hypotheses are true, then it can be argued that, unless minimal 

communication costs are required by a system and lower accuracy is acceptable, it 

is more suitable to use IANA than CNO, due to the strong advantages given by 

the higher accuracy of IANA.

1.3 Organization

The rest of the chapters of this dissertation are organized as follows:

• In Background and Related Work, we will establish the Sensor Web 

problem domain and the formal Computational Argumentation concepts that 

underpin our approach, including a detailed overview of the ASPIC 

framework (Prakken, 2010).
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• In Evidentialist Foundationalist Argumentation (EFA), we will formally 

establish the evidence-based argumentation approach as a unique instantiation 

of the ASPIC framework and its use in the Sensor Web problem domain.

• In Experiments, we will describ the technologies used to perform our 

experiments.

• In Investigative Argumentation-based Negotiating Agents (IANA), we 

will explain how our multi-agent system is designed to use EFA and the Share 

on Disagreement (SoD) protocol.

• In Complete Data Sharing (CDS), we will present the design of our 

competitive complete sharing system and report on the experimental results 

of the comparison to IANA.

• In Conclusion Negotiation Only (CNO), we will explain the design of our 

competitive Kalman Filtering based conclusion negotiating system and report 

the experimental results of the comparison to IANA.

• In Conclusion, we will evaluate the results of our experiments and speculate 

on potential applications of the IANA approach to multi-agent Sensor Webs 

and the EFA approach to argumentation.
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2 Background and Related Work
This dissertation is the result of the integration of the fields of Sensor Webs and 

Computational Argumentation. The current characteristics of each field and their 

relation to our own work are described in this chapter.

2.1 Sensor Webs

A succinct definition of the Sensor Web concept can be found on the NASA Jet 

Propulsion Laboratory’s (JPL) Sensor Web site:

“A networked set of instruments in which information from one or more 

sensors is automatically used to reconfigure the remainder of the 

sensors” (JPL, 2009).

While the concept itself is straightforward, it has taken many different 

manifestations since its conception by Delin et al. (1999). The Sensor Web concept is 

intentionally broad and abstract (so as to allow any set of sensors to be included under 

the general term) but this broadness has also lead to some confusion in the literature 

as to what exactly a concrete, real-world Sensor Web is.

Different groups, over different periods of time, have offered different concrete 

realizations of what precisely the quintessential example of a Sensor Web is. Some 
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believe the wireless networking concept is at its core (Seada et al., 2006). Others 

emphasize the system of systems concept (Delin et al., 2005). Still others emphasize 

the quality of intra-web communications as the distinguishing property (Sherwood et 

al., 2007).

It may be useful if researchers specify which facet of the core Sensor Web concept 

they are tackling. That is, instead of referring to “Sensor Web” proper, researchers 

could formally establish the different sub-fields that have arisen out of the original 

Sensor Web concept.

Perhaps the Sensor Web concept has outgrown the phase in which it refers to any 

one sub-discipline. Much like the concept of Artificial Intelligence (AI) before it, 

which was once only associated with the computation of formal logic, it may be 

useful for the area of Sensor Web research now stand for a set sub-disciplines 

centered around a core concept (just as AI research now includes such disparate areas 

from logic as evolutionary algorithms and computer vision).

In the following sections, we catalogue some of the different manifestations the 

Sensor Web has taken, which have been successful, and the particular subfields of 

Sensor Web development that are the focus of our research.

2.1.1 THE IN-SITU SENSOR WEB

The first popular conception of the Sensor Web was the in-situ Sensor Web. It is 

meant to refer to the fact that the sensors in this type of Sensor Web are placed in the 

very environment that they are meant to be sensing, as opposed to sensors which 
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measure remotely, such as those in satellites.

The primary advantages of this in-situ placement, as compared to remote 

measurements, are:

‣ Continuous presence in the sensing environment

‣ Higher measurement accuracy due to proximity to the measured phenomenon

‣ Higher measurement resolution (assuming a higher density of sensor placement 

than the resolution of the remote method being compared)

Also, some measurements, such as soil moisture or seismic readings, are very 

difficult to sense remotely, making in-situ sensors the only viable method of obtaining 

those types of observations.

A concise argument for the efficacy of the in-situ Sensor Web as compared to lone 

in-situ sensors is given by Delin (2002) and is characterized in Figure 4.

Single, Expensive Sensor Pod

?
?

✓

Multiple, Cheap Sensor Pods

Figure 4. Single sensors lack the advantage of sensing the spatial relationship 
between measurements.
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A disadvantage of using a single sensor is that it receives a minimum amount of 

spatial information. This results in a minimum amount of information about any kind 

of vector fields within the sensing environment, including cyclonic winds, 

temperature gradients, and hydrologic water movement (Delin et al., 2004).

The individual physical nodes in a Sensor Web are called pods, as a single pod can 

be associated with multiple sensors. Basically, a pod consists of one or more sensors, 

a communication component, and a processing component. For the purpose of 

discussing communication issues, calling them pods also distinguishes them from 

nodes which could be either single pods or entire Sensor Webs.

The most commonly proposed method for inter-pod communication in an in-situ 

Sensor Web is pod-to-pod routing. The reason for this being that direct transmission 

from the transmitting pod to the receiving pod is more power intensive than passing 

the message between pods. This is because the power required to transmit increases 

by a polynomial factor with distance, as given by the equation in Figure 5, where D is 

distance, λ is wavelength, the P’s are power transmitted and received, and m is a 

constant ranging from 2 to 4, depending on the environment (Delin et al., 2001). For 

this reason, hopping the data between pods is more power efficient.
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R

D

Figure 5. The power required to transmit over distance D increases by a 
polynomial factor as D increases. Hopping the data by a distance of R  from pod 
to pod is more power efficient than directly transmitting the data over distance D.

This situation is an exemplar illustration of how attempts at physical 

implementation of a hardware concept provide important feedback on the overall 

design. A more comprehensive delineation of what has been learned from attempts at 

implementing concrete Sensor Webs can be found in (Delin et al., 2005). We will 

provide a slightly broader overview of how the physical concept of the in-situ Sensor 

Web has evolved in this section.

Delin et al. (2000) initially conceptualized the in-situ Sensor Web pod as a small 

device (the size of a gum ball container), that could be scattered over a sensing 

landscape, such as a forest or the surface of Mars, creating a continual sensing 

presence that could be relayed back to mission control via a mother or portal pod.

One of the primary advantages of this pod concept was that it was low cost. This is 

why the pods could be scattered in a relatively unstructured manner, thus providing a 

variety of spatial sensing configurations. Pods like these could be thought of almost 
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like a type of sensing “ammunition” that could be shot or painted across a landscape, 

providing instant sensing awareness wherever they landed. Another advantage of 

their low cost was that they could be “reseeded” into an in-situ Sensor Web that had 

pods that had failed (Delin et al., 2001). In this way, in-situ Sensor Webs could be 

healed much the same way as the human body heals: not by repairing dead cells but 

by simply discarding them and replacing them with new cells.

Preliminary lab experiments demonstrated that the gum ball sized pods were able 

to execute the multi-hop communication protocol well. As different pods in the web 

were relocated, it was demonstrated that they could resiliently reform the 

communication fabric and relay all pod readings to the portal pod, which was 

connected to a laptop (Delin et al., 2000). Given that these tests likely took place in 

an indoor environment, this pod design could still be an important consideration for 

indoor in-situ Sensor Webs.

However, after a few years of experience deploying Sensor Webs for use by 

collaborators in outdoor environments, Delin’s team concluded that the gum ball 

sized pod design simply was not well suited for the types of outdoor environments 

encountered at least on Earth. They presented a set of realizations as a result of this 

experience that amounted to a strong discouragement from the idea of using gum ball 

sized pods for out-door in-situ Sensor Web applications (Delin et al., 2005).

Delin et al. (2005) delineate four major problems with the scattered gum ball sized 

pod design. The first three are related to hardware design limitations related to the 

small gum ball size:
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‣ Power: The larger the volume in the pod, the more volume is available for 

battery technology. The power required for wireless communication with other 

nodes dictates a lower bound on how much power is required for the system. 

Also, since solar power is currently the most practical method of energy 

harvesting to recharge the pod batteries, the smaller the surface area of the pod, 

the less energy it can harvest.

‣ Antenna: The laws of physics dictate the appropriate antenna geometry for a 

given operating frequency. Antenna sizes cannot shrink if a particular 

communication range is desired. And most of the reported real-world 

deployments required communication ranges of at least tens of meters.

‣ Sensors: Small pods are ideal for measuring simple parameters (temperature, 

humidity, light, etc.). However more complicated transducers, such as those used 

for soil moisture measurement (which sometimes must stretch as far as half a 

meter under ground), gas sensing (which often require a certain volume of gas), 

or seismometers (which require a certain mass for appropriate mechanical 

resonant frequencies) put another lower bound on how small a pod can be. There 

is little to be gained from shrinking the pod platform if the sensors themselves 

remain the limiting size element.

The last is related to environmental limitations with the imagined scattering 

method of gum ball pod deployment:

‣ Placement: Most applications require tracking specific pod locations to a high 

precision. It is therefore highly unlikely that any wireless sensor network will 
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simply be sprinkled over large areas. In addition, coupling sensors into the 

environment will also prevent such a passive deployment. For example, neither 

subterranean nor seismic sensors can be deployed by a sprinkling technique, as 

both require laborious efforts for appropriate sensor mounting. There are also 

applications, particularly those involving agriculture, where pod placements must 

be compatible with existing operations, such as harvesting. Pod placement very 

close to the ground can also limit transmission distance.

As a result of these limitations, the actual Sensor Webs that Delin’s team deployed 

in outdoor areas took a larger, more rugged design. The pods were placed on firmly 

grounded stands and their circuitry was encased in a rigid box, with only the sensor 

detection mechanism reaching outside. The pods used in other in-situ Sensor Webs 

have similar design likely for similar reasons (Kedar et al., 2008).

These new Sensor Web pods were used, with little or no modification between 

applications, in deployments in botanical gardens in temperate climates, for 

biological sensing in Antarctic climates, and in hydrological recharge basins in desert 

climates.

Another example of a real-world in-situ Sensor Web application that required 

relatively large Sensor Web pods is documented in (Heavner et al., 2008). Their 

approach shows full realization of the limitations of smaller sensor pods and therefore 

favors larger ones. The large solar panels used are an issue directly addressed by 

Delin et al. (2005).
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2.1.2 WEB OF WEBS

As mentioned earlier, each pod in an in-situ Sensor Web, as well as the entire in-situ 

Sensor Web itself, can be thought of as a node in a single unified communications 

fabric. This concept is illustrated in Figure 6.

Figure 6. Sensor Webs can be conceptualized as a web of webs.

Using this model, even remote sensors like satellites can be included in the larger 

Sensor Web structure. This structure of substructures is a familiar concept as it is, in 

many ways, directly analogous to the structure of the Internet, where multiple local 

networks are connected in a hierarchy to other networks. Also analogous to the 

Internet is the fact that sensors in different sub-webs can perform tasks for each other 

despite the fact that they are in different local webs. So if an in-situ ground sensor 
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wants to task a satellite to focus its measurements in a certain area using certain 

instrument, it can do so and vice-versa. These two nodes in the super-web structure 

can also share information so that the observations of one can affect the other.

A common remote sensing technology to use within a web of webs is satellite 

technology. One of the Sensor Webs to make use of the web of webs concept is the 

Optimized Autonomous Space In-situ Sensor-Web (OASIS) (Kedar et al., 2008). The 

point of the OASIS Sensor Web is to sense volcanic activity. Similar to the proposed 

Sensor Web application, the purpose is hazard sensing to facilitate early emergency 

response. Their prototype is deployed on Mount St. Helens.

What makes OASIS unique is its use of the EO-1 satellite to coordinate the 

communication resources and power usage of the in-situ web. In turn, the in-situ web 

also tasks the EO-1 satellite with requests to sense specific areas on the volcano. 

Thus, a feedback loop between the two webs is formed, where the EO-1 satellite can 

be thought of as a single-pod web (Sherwood et al., 2007).

2.1.3 CORE METRICS

The primary resource involved in Sensor Web management is power, often battery 

power. Most other resource concerns are reducible to power concerns in some way. 

For example, both communication costs (the resource consumed when agents 

communicate) and mobility concerns can be reduced to power concerns because the 

reason one would want to minimize communication and mobility is to minimize 

power usage. This relationship is illustrated in Figure 7.
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Figure 7. Power is the driving force behind any resource management concern in 
a Sensor Web.

The quantity and quality of data obtained by a Sensor Web are also critical. The 

acquisition of sensor information lies behind the very motivation for deploying the 

Sensor Web.

A system could be judged by:

‣ How much data it gathers: Does the system gather enough data to make good 

judgements and be useful as an instrument?

‣ How well it interprets the data: Is the system able to find meaningful patterns 

within data and extract important summaries of those patterns that highlight the 

most important data or trends in data?

‣ How saturated the web is with important data: Does every node know what it 

needs to know to sense effectively?
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Especially in systems that are meant to detect hazards, response time could be an 

important consideration. Also, the faster a system can process sensing data, the more 

processing tasks for which it can be responsible.

In practice, most modern systems do not yet consider speed an important criteria. 

This is because most modern application areas involve the sensing of phenomena that 

take several hours and sometimes several days to transpire. Examples include 

flooding (Delin et al., 2004), biological activity (Delin et al., 2003), or geological 

activity (Kendar, 2008). These processes typically take more than enough time for 

modern processors and communications systems to manage sensing data. However, 

future applications, such as Intelligent Transportation Systems, may require faster 

response time.

2.1.4 INTELLIGENT SYSTEMS

There have been a few approaches to applying intelligence to the configuration of 

Sensor Webs. Lou et al. (2008) use a centralized intelligent system to configure a 

Sensor Web that responds to forest fires. Williams et al. (2008) apply intelligence to 

snowmobiles in their study of mobile Sensor Webs. They have implemented an 

effective method for routing the paths taken by the snowmobiles in moving from one 

difficult terrain to another.

As stated in the Introduction, in practice, many Multi-Agent Systems are also 

effective for collaborative goals such as those found in Sensor Webs. Multiple agents 

are often used because the problem to be solved is complex and distributed in nature. 
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These problems typically can more easily be solved from the perspective of multiple 

autonomous entities rather than from the perspective of one very complicated entity. 

Having multiple agents also allows for graceful degradation of the system, should 

problems occur, whereas centralized systems have a single point of failure (Weiss, 

1999; Poslad, 2007; Aldewereld et al., 2008; Jong, 2008).

One example of an agent approach to Sensor Webs is the use of a science agent 

currently installed on one of NASA’s satellites (Sherwood et al., 2007). Also, there 

are also many Multi-Agent approaches to configuring Sensor Webs (Otte et al., 2008; 

Tsatsoulis, 2008; Tynan et al., 2008; Witt et al., 2008).

Notably, none of the reviewed approaches provide quantitative tests of the 

mechanisms they used, as we will provide in our work. Also, none of the above 

approaches attempt to use structured evidence-based argumentation-based 

mechanisms as the basis for their Sensor Web conflict-resolution process. This makes 

our approach novel within Sensor Web work. Another advantage of our approach is 

the use of the agent middleware Jadex (Jadex, 2009). This allows us to focus on 

standardized high-level agent design which can be more easily transmitted to other 

researchers than ad-hoc Multi-Agent Systems.

2.1.5 SENSOR FUSION

The Sensor Web architecture provides many possible applications. For the purpose of 

this dissertation, we will focus on the specific application of Decentralized Sensor 

Fusion. In this application, distributed sensor pods have individual information 
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databases. Their goal is to maximize the accuracy of each individual’s overall model 

of a sensing situation, as shown in Figure 8. This type of distribution is analogous to 

information management in human society, where each individual must be taught and 

observe for themselves because no single individual can be responsible for all 

actions. We will use our proposed IANA system to solve the Decentralized Sensor 

Fusion problem for producing accurate models of a weather sensing situation.
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Figure 8. The goal of the Decentralized Sensor Fusion problem is to have 
accurate modeling in all of the individual Sensor Web participants.

An example of another multi-agent Decentralized Sensor Fusion system can be 

found in Pavlin et al. (2010). Like IANA, the system is used to create an accurate 

model of a sensing situation distributed across a group of agents attached to different 

sensors. An example used in Pavlin et al. (2010) is gas detection and an example in 

the related approach of Pavlin et al. (2006) is fire detection. They use a probabilistic 

Bayesian approach for inference, so, unlike our approach, continuous scalar values 

cannot be produced by their system.
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In addition to Bayesian approaches, another popular Sensor Fusion approach is the 

application of Dempster-Shafer evidence theory, such as the systems employed by 

Basir et al. (2007) or Hong et al. (2009). The approach of Hong et al. (2009) in 

particular is applied to the situational sensing problem of sensing events in a “Smart 

Home”. Also, Dempster-Shafer applications employ inference trees, just as EFA and 

Bayesian approaches do. Similar to Bayesian approaches, Dempster-Shafer 

approaches, as employed by these papers, cannot directly produce continuous scalar 

values or data structures that represent detailed models.

A type of Sensor Fusion approach that can process and produce continuous scalar 

data, is Distributed Kalman Filtering (Gan et al., 2001; Olfati-Saber, 2005; Olfati-

Saber, 2007). Due to its ability to process continuous data, Distributed Kalman 

Filtering (DKF) is an ideal competitor for our system and a Kalman Filtering 

approach is used in the competing CNO system. However, these approaches are all 

applied to the Sensor Fusion problem of tracking a moving target rather than 

situational modelling, so we will be developing the CNO system ourselves. 

2.2 Argumentation

Argumentation, as opposed to formal (deductive) logic, has been favored in the areas 

of law, philosophy, and artificial intelligence due to the following two properties that 

it does not share with formal (deductive) logic:

‣ Defeasibility: Conclusions about complex environments are often tentative in 
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nature. The limited knowledge an agent can have about an environment is 

demonstrated by the frame problem (Minsky, 1975). Allowing knowledge to be 

used now and revised later frees an agent from being logically paralyzed when it 

does not have certain knowledge but without being ignorantly misinformed if that 

knowledge can be revised by later observations or conversations with other 

agents. An agent can make use of the knowledge it has without being limited by 

that knowledge if it becomes better informed later.

‣ Inclusion of Probable Conclusions: Deductive knowledge systems only allow 

certain conclusions. Uncertain conclusions, no matter how probable, are 

deductively invalid. However, most conclusions that an agent, whether human or 

computational, can make about a complex environment are tentative in nature. 

Further observation may reveal a conclusion to be improbable or even false. But 

integrating their current knowledge to form the most probable conclusions can 

help agents make better informed decisions than they would otherwise, and 

importantly, can lead to further investigation to increase or decrease the agent’s 

certainty of those conclusions.

The basic structure of an argument as developed in the philosophical tradition can 

be seen in Figure 9.
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Figure 9. Basic Argument Structure.

All philosophical arguments have the following components (Hurley, 2003):

‣ Premises: The pieces of information, which, when combined with each other 

and the inference rule, lead to the conclusion.

‣ Inference Rule: The connective by which the premises validate the conclusion. 

This is often implicit in human argumentation but must always be made explicit 

in Computational Argumentation.

‣ Conclusion: The assertion that the premises justify. Like premises, conclusions 

are units of information and therefore can be used as the premises of other 

arguments. All arguments have only one conclusion. If a proposal contains more 

than one conclusion, it has more than one argument.

The following is an example of a simple philosophical argument:

Premise 1. The sun has risen every day I have checked for it 

Premise 2. I have no reason to think it will not rise again 

Conclusion. The sun will rise again tomorrow
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Modern interest in argumentation, whether rhetorical, legal, or computational 

inspired many developments from Stephen Toulmin. Toulmin’s Model of Argument 

(Toulmin, 1958) was first presented as a basis for the analysis of legal arguments. It 

was later championed by rhetorical scholars and now has been used by Computer 

Scientists in the development of Computational Argumentation.

Much of Computational Argumentation, in its current form, was also inspired by 

the work of (Dung et al., 1995). It has since received significant development by 

researchers committed to the topic (Amgoud et al., 2000; McBurney, 2002; Reed et 

al., 2007; Rahwan et al., 2007).

At least three conferences focused on Computational Argumentation have been 

developed and meet regularly (at the time of this writing): Argumentation in Multi-

Agent Systems (ArgMAS, 2009), Computational Models of Natural Argument 

(CMNA, 2009), and Computational Models of Argument (COMMA, 2009).

Interest in Computational Argumentation has lead to the development of at least 

one committed project, the Argumentation Service Platform with Integrated 

Components (ASPIC), which was funded by the European Union (ASPIC, 2009). 

ASPIC, in turn, resulted in the ASPIC argumentation framework, which is the basis 

for the Evidentialist Foundationalist Argumentation (EFA) used in this work. The 

ASPIC framework will be described in detail in the rest of this chapter.

2.2.1 THE ASPIC FRAMEWORK

In Prakken (2010), the ASPIC framework of Amgoud et al. (2006) was extended and 
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unified with work in abstract argumentation initiated by Dung (1995), as well as 

many approaches to argumentation with structured arguments (Pollock, 1994; 

Vreeswijk, 1997; Amgoud et al., 2006; Caminada et al., 2007; Gordon et al., 2007; 

Dung et al., 2009). The framework defines arguments as inference trees formed by 

applying strict and defeasible inference rules. It also provides classifications of 

different types of premises that can be used to support an argument, taken from a 

knowledge base. It also provides various classifications of attack and defeat, 

depending on whether premises, rules, or conclusions are attacked. Finally, it satisfies 

many rationality postulates. Given these features, ASPIC is a comprehensive 

framework which can be used to formally connect and contrast many different 

approaches to argumentation. ASPIC can also be used as the foundation for defining 

and classifying new types of argumentation and contrasting them with other 

approaches.

Prakken (2010) distinguishes between an argumentation system (AS), an 

argumentation theory (AT), and an abstract argumentation framework (AF). 

Specifically, an AT includes an AS as a member and an AF corresponds to an AT. An 

AS is used to define the way that structured arguments can be formed. An AT is used 

to associate an AS with a knowledge base and an argument ordering. And an AF is 

used to specify a relation by which arguments produced by an AT can defeat each 

other.

Prakken’s definitions will be used as the foundation to define the AS, AT, and AF 

used in this dissertation. For the sake of completeness, relevant definitions from 
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Prakken (2010) will be reproduced here.

2.2.2 ARGUMENTATION SYSTEM

The first relevant concept is that of AS.

Definition 1: [Argumentation System] An argumentation system is a tuple AS = 

(L, Contr, R, ≤) where

• L is a logical language

• Contr is a contrariness function from L to 2L

• R = Rs ∪ Rd is a set of strict (Rs) and defeasible (Rd)  inference rules 

such that 

Rs ∩ Rd = ∅

• ≤ is a partial preorder on Rd

The contrariness function can be used to distinguish the concepts of contrary and 

contradictory statements. In propositional logic, only the concept of contradictory 

statements is allowed. But in argumentation systems, the concept of contrary 

statements is meaningful.
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Definition 2: [Contrariness Function] Let L, a set, be a logical language. A 

contrariness function Contr maps L to 2L. If p ∈ Contr(q), then if q ∉ Contr(p) 

then p is called the contrary of q, otherwise p and q are called contradictory. The 

latter case is denoted by p = -q (i.e. p ∈ Contr(q) and q ∈ Contr(p)).

For example, if Contr(q) = {p, t, r} and Contr(p) = ∅ in an AS, then the 

instantiation of both p and q by that AS means that p is contrary to q in that 

instantiated set. This is useful for representing the situation where p can be used to 

counter q but q cannot be used to counter p. For example, when p represents an 

exception to a rule that produces q. In addition to this useful purpose, contrariness 

functions can also be used to specify a consistent language set.

Definition 3: [Consistent Language Set] Let P ⊆ L. P is consistent iff ∄ p, q ∈ P 

such that p ∈ Contr(q). Otherwise, P is inconsistent.

Rules are used to infer a consequent from a set of antecedents. Arguments are built 

by applying inference rules to subsets of L.
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Definition 4: [Strict and Defeasible Rules] Let p0,…, pn be elements of L.

• A strict rule has the form p0, …, pn → q, informally meaning that if p0, 

…, pn hold, then without exception it holds that q

• A defeasible rule has the form p0, …, pn ⇒ q, informally meaning that if 

p0, …, pn hold, then presumably it holds that q

Strict rules can be used to represent a deductive relationship between consequent 

and antecedents. Defeasible rules can be used to represent an inductive relationship 

between consequent and antecedents. This distinction will be important for the AS 

proposed by this dissertation.

The next relevant definition is about the knowledge base used for antecedents and 

consequents in an AS.

Definition 5: [Knowledge Base] A knowledge base in an argumentation system 

(L, Contr, R, ≤) is a pair (K, ≤ʹ) where K ⊆ L and ≤′ is a partial preorder on K \ Kn. 

Here K = Kn ∪ Kp ∪ Ka ∪ Ki where these subsets of K are disjoint and

• Kn is a set of (necessary) axioms. Intuitively, arguments cannot be 

attacked on their axiom premises.

• Kp is a set of ordinary premises. Intuitively, arguments can be attacked on 
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their ordinary premises, and whether this results in defeat must be 

determined by comparing the attacker and the attacked premise

• Ka is a set of assumptions. Intuitively, arguments can be attacked on their 

assumptions, where these attacks always succeed.

• Ki is a set of issues. Intuitively, arguments of which the premises include 

an issue are never acceptable. An issue must always be backed with a 

further argument.

Prakken (2010) defines argument using a single definition. For the sake of having 

access to necessary distinctions in the current work, Prakken’s argument definition 

will be organized into sub-definitions, while retaining the same content and meaning. 

For all of the argument definitions, the following functions will be used: Prem returns 

all the formulas K (called premises) use to build an argument, Conc returns its 

conclusion, Sub returns all its sub-arguments, DefRules returns all the defeasible rules 

of the argument and, finally, TopRule returns the last inference rule used by the 

argument.

Definition 6: [Premise-Encapsulating Argument] A premise encapsulating 

argument A is:

p if p ∈K with:

Prem(A) = {p},

Conc(A) = p,
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Sub(A) = {p},

DefRules(A) = ∅,

TopRule(A) = undefined.

One purpose of the premise-encapsulating argument is to provide a way to 

recursively define strict-topped and defeasible-topped arguments, whether they are 

based directly on members of K or on the conclusions of other strict-topped or 

defeasible-topped arguments.

Definition 7: [Strict-Topped Argument] A strict-topped argument A is:

A0, …, An → q if A0, …, An are arguments such that there exists a strict rule

Conc(A0), …, Conc(An)  → q in Rs,

Prem(A) = Prem(A0) ∪ … ∪ Prem(An),

Conc(A) = q,

Sub(A) = Sub(A0) ∪ . . . ∪ Sub(An) ∪ {A},

DefRules(A) = DefRules(A0) ∪ . . . ∪ DefRules(An),

TopRule(A) = Conc(A0), . . . Conc(An) → q.

The defining quality of a strict-topped argument A is that it employs a strict rule 
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for TopRule(A). As it can be observed in the definition, only TopRule(A) is required 

to be strict. Defeasible rules may be used in the arguments of Sub(A).

Definition 8: [Defeasible-Topped Argument] A defeasible-topped argument A is:

A0, …, An ⇒ q if A0, …, An are arguments such that there exists a defeasible 

rule

Conc(A0), …, Conc(An)  ⇒ q in Rd,

Prem(A) = Prem(A0) ∪ … ∪ Prem(An),

Conc(A) = q,

Sub(A) = Sub(A0) ∪ . . . ∪ Sub(An) ∪ {A},

DefRules(A) = DefRules(A0) ∪ . . . ∪ DefRules(An) ∪ 

{Conc(A0), …, Conc(An) ⇒ q},

TopRule(A) = Conc(A0), . . . Conc(An) ⇒ q.

A defeasible-topped argument A has the same qualities as a strict-topped argument 

with the exception that TopRule(A) is defeasible and DefRules(A) includes 

TopRule(A) as a member.  The inclusion of TopRule(A) as a member of DefRules(A) 

reveals how DefRules(A) is populated for arguments for which A is a sub-argument. 

The final inclusive definition can now be introduced.
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Definition 9: [Argument] An argument A is a premise-encapsulating argument, a 

strict-topped argument, or a defeasible-topped argument.

From these definitions, it is clear that strict-topped and defeasible-topped 

arguments can be used to form an arbitrarily large inference tree structure with the 

conclusions of sub-arguments serving as the premises of larger arguments, as shown 

in Figure 10. Prakken (2010) also introduces some useful distinguishing properties 

for arguments. These properties reveal an important role for the DefRules function in 

previous definitions.

Figure 10. Arguments in ASPIC can have arbitrarily large hierarchies of sub 
arguments leading to a final conclusion.
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Definition 10: [Argument Properties] An argument A is

• strict if DefRules(A) = ∅ 

• defeasible if DefRules(A) ≠ ∅

• firm if Prem(A) ⊆ Kn

• plausible if Prem(A) ⊈ Kn

So premise-encapsulating arguments and strict-topped arguments with only 

premise-encapsulating arguments or other strict-topped arguments as sub-arguments 

can be called strict.  All other arguments are defeasible. And arguments with Conc(A) 

∈ Kn with only other such arguments as sub-arguments (or no sub-arguments, in the 

case of eligible premise-encapsulating arguments) can be called firm. All other 

arguments are plausible.

With these argument properties defined, important distinctions can be made 

between entire argumentation theories. As will be explained later, such distinctions 

can be made between the AT defined in this dissertation and an AT defined in Prakken 

(2010) based on Dung (2009).

2.2.3 ARGUMENTATION THEORY

The preceding definitions lay most of the foundation for formally defining the 

concept of AT. All that is left to define is the concept of admissible argument 
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orderings . Here, ⪯ is a partial preorder such that A ⪯ B means that B is at least as 

‘good’ as A. And A ≺ B means that A ⪯ B and B ⋠ A, meaning that A can be strictly 

ordered lower than B (Prakken, 2010).

Definition 11: [Admissible Argument Orderings] Let ! be a set of arguments. 

Then a partial preorder ⪯ on ! is an admissible argument ordering iff

(1) if B is firm and strict and A is defeasible or plausible, then A ≺ B

(2) if A = A0, …, An → q then for all 1 ≤ i ≤ n, A ⪯ Ai and for some 1 ≤ i ≤ n, 

Ai ⪯ A. 

As stated in Prakken (2010), the first condition says that strict-and-firm arguments 

are stronger than all other arguments, while the second condition says that a strict 

inference cannot make an argument weaker or stronger. Now the concept of AT can 

be defined.
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Definition 12: [Argumentation Theory] An argumentation theory is the triplet AT 

= (AS, KB, ⪯) where AS is an argumentation system, KB is a knowledge base in 

AS and ⪯ is an argument ordering on the set of all arguments that can be 

constructed from KB in AS (henceforth called the set of arguments on the basis of 

AT).

2.2.4 ABSTRACT ARGUMENTATION FRAMEWORK

The final concept to be defined is that of the AF. This is used to specify the defeat 

relations for an AT. Prakken (2010) comprehensively formalizes three different 

methods for both attack and successful defeat following an attack. These three 

methods are centered around the three different properties of an argument that can be 

attacked: its premises, its use of an inference rule, or its conclusion. In the application 

of the AF defined for this dissertation, only attack and defeat on conclusions is 

relevant, so only the definitions related to them will be reproduced from Prakken 

(2010). A complete treatment of all types of possible attack and defeat, refer to 

Prakken (2010).

Definition 13: [Rebutting Attack] Argument A rebuts argument B (on Bʹ) iff 

Conc(A) ∈ Contr(q) for some Bʹ ∈ Sub(B) of the form Bʺ0, …, Bʺn ⇒ q. In such 

a case, A contrary-rebuts B iff Conc(A) is a contrary of q.
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This defines the attack of a conclusion within B on the basis of a conclusion within 

A being contrary to it. Prakken also defines the concept of an undermining attack on 

the premises of an argument, which excludes axiom premises. In the AT used by the 

current work, all bottom-level premises are considered axioms, so this attack is not 

applicable. Prakken also defines the concept of an undercutting attack on the use of 

an inference rule by an argument in the case of an exception. In the AT used by the 

current work, rule exceptions are not needed to incorporate defeasibility, so this attack 

is not applicable either.

Definition 14: [Successful Rebuttal] Argument A successfully rebuts argument B 

if A rebuts B on Bʹ and either A contrary-rebuts Bʹ or A ⋠ Bʹ.

In the AT used by the current work, all rebuttals will be made on the basis of 

ordering. Prakken also defines successful undermining which is not applicable to the 

AT used by the current work since that attack is not applicable.

Definition 15: [Defeat] Argument A defeats argument B iff no premise of A is an 

issue and A undercuts or successfully rebuts or successfully undermines B. 

Argument A strictly defeats argument B if A defeats B and B does not defeat A.

As expected from previous statements, only defeats based on successful rebuttals 

are applicable for the AT used in the current work. With all of the previous definitions 



41

established, the final central concept of AF from Prakken’s framework can be 

defined.

Definition 16: [Abstract Argumentation Framework] An abstract argumentation 

framework (AF) corresponding to an argumentation theory AT is a pair <!, Def> 

such that:

• ! is the set of arguments on the basis of AT as defined by Definition 12

• Def is the relation on ! given by Definition 15

This final definition from Prakken (2010) unifies the overall framework with Dung 

(1995) and many other important works in argumentation that have been based on it. 

Prakken (2010) expands on these basic definitions to show how this overall 

framework can be used to meet several rationality postulates.

Prakken also shows that the Assumption-Based Argumentation (ABA) used in 

Dung (2009) is a special case of this overall framework with only strict inference 

rules, only assumption-type premises, and no preferences. This means that all 

arguments in ABA are strict and plausible. The approach used in the current work, 

called Evidentialist Foundationalist Argumentation (EFA), is also a special case of 

Prakken’s overall framework with only defeasible inference rules, only axiom-type 

premises, no partial preorder on K, and several other properties that will be discussed 

in detail in the next section. This means that all arguments in EFA are defeasible and 
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firm, making ABA and EFA exemplar contrasts to each other under Prakken’s 

classifications.
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3 Evidentialist Foundationalist 

Argumentation
We will now extend the ASPIC framework described in the previous chapter to 

establish a new type of Computational Argumentation approach called Evidentialist 

Foundationalist Argumentation (EFA), as first described in Redford and Agah 

(2012). EFA is inspired by the reasoning used in Evidentialist epistemology, as found 

in the philosophical work of Conee et al. (2004). Evidentialist epistemologies are 

focused on the use of evidence to establish claims. EFA can be seen as a formal 

complement of other approaches to evidence-based argumentation which may be 

compatible with ASPIC but have not yet been formally unified with it (Oren et al., 

2007; Oren et al., 2008; Ontañón et al., 2010). 

Evidence is a central concern in argumentation generally, particularly in the 

domain of law. One notable approach is Bex et al. (2003), which generalizes different 

evidential argument schemes used in law for the purpose of applying them to sense-

making systems using the domain independent sense-making tool Araucaria (Reed et 

al., 2001). The schemes were generalized in the same style as schemes eventually 

compiled in Walton et al. (2008). Sense-making systems aid human users in properly 

reasoning about an issue. The insights of Bex et al. (2003) can be seen as 

complementary to sense-making systems that organize evidence in other domains 
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such as the clinical decision support (CDS) system implemented by Fox et al. (2010) 

in the domain of medicine. It is our intention that EFA will eventually provide an 

additional tool to sense-making systems for evidence evaluation, specifically for 

evidence that can be called quantifiable and verifiable, as will be defined and 

discussed later. Another approach to evidence-based reasoning in the domain of law 

is automated legal reasoning on a given evidential knowledge base. An approach of 

this kind can be found in Keppens et al. (2003), which uses a knowledge base of 

evidence to automatically generate crime scene scenarios and is a type of automated 

Decisions Support System (DSS). Another automated evidence-based DSS can be 

found in Liu et al. (2008), in the domain of business.

EFA complements such systems by providing a general framework for evidence-

based reasoning which is relevant to legal and business reasoning but also 

encompasses evidence-based reasoning that could be applied to other domains such 

as medicine, engineering, science, and politics. This dissertation presents one type of 

engineering application in the domain of Sensor Webs. The purpose of EFA, as 

presented in this dissertation, is not to supplant other types of argumentation (or even 

other approaches to evidence) that can be expressed using the ASPIC framework. It is 

to provide an argumentation tool specifically for dealing with knowledge bases of 

quantified sensor data. A knowledge base that is limited to this type of data has 

special properties that the EFA approach can utilize.
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3.1 Core Concepts

The title and basic principles of this approach are inspired by an epistemological 

position that, in the philosophical literature, is called “Evidentialist Foundationalism”, 

“Foundational Evidentialism”, or just “Evidentialism”  (Black, 2008; Conee et al., 

2004; Poston, 2007; Wampler-Doty, 2010). The central idea of the Evidentialist 

approach to epistemology is that all of an agent’s justified beliefs are based on 

evidence. Or more formally: Agent S is justified in believing proposition p at time t if 

and only if S’s evidence for p at t supports believing p.

To stress the importance of evidence as the foundation for arguments used in this 

system, the name Evidentialist Foundationalist Argumentation (EFA) will be used. 

Also, the incorporation of the term “Foundationalist” highlights the association of this 

argumentation theory with the epistemological position of Foundationalism, which is 

summarized in Haack (2009). The exclusive use of firm arguments by an 

epistemology is a type of Foundationalism.

3.1.1 QUANTIFIABILITY AND VERIFIABILITY

Two of the central requirements of EFA are that evidence should be quantifiable and 

verifiable. They will be semi-formally defined now.
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Definition 17: [Quantifiability] Let P be the set of all propositions. p ∈ P is 

quantifiable iff p can be represented by a series (b0,…,bn) where bi ∈ {0,1}.

By this definition, a proposition is quantifiable if it can be represented by a series 

of bits. So a temperature sensor reading, a digital photograph, or a recorded sound are 

all types of quantifiable propositions. In addition, any string is quantifiable. Also, the 

results of any calculations in a computer system are quantifiable. Any datum that can 

be represented by bits in a computer system is quantifiable.

Definition 18: [Verifiability] Let Q = {q : q is quantifiable}. Let a sensor be any 

device that quantifies environmental input. p ∈ Q is verifiable iff p is directly 

produced by a sensor.

And, by extension, these two foundational definitions can be used to define 

evidence.

Definition 19: [Evidence] Let E = {e : e is verifiable}. p ∈ P is evidence iff p ∈ E. 

When interpreted as directly representing only a sensor reading, E ⊆ Kn.

By Definition 18, a proposition is verifiable if it is a quantifiable proposition 

produced directly by a sensor. This includes data traditionally labeled as sensor data 
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such as video, digital photographs, temperature sensor data, wind sensor data, or air 

pressure sensor data.

It is important to clarify what this evidence actually directly represents. For 

example, if a temperature sensor reads 35 degrees celsius at the coordinate (54, 45) at 

time 12:01, this in not direct evidence that any of those values actually reflect reality. 

Perfect sensors are, for all practical purposes, impossible. The temperature may have 

actually been 2 degrees colder, the location may have actually been a few meters 

further in both directions, and the time may have actually been 12:00:56. But this is 

direct evidence that the sensor read those first values. Sensor data are direct evidence 

of what sensors read, as opposed to direct evidence of what actually happened. 

Arguments about what actually happened are defeasible arguments based on sensor 

data. Using this interpretation of evidence, E ⊆ Kn. Meaning, evidence, as defined 

and interpreted here, is treated as a type of axiom, where axiom is taken to mean “a 

self-evident truth that requires no proof ”. The reading of a sensor at a certain point in 

time will never change. It will always be true that the sensor read that reading at some 

time. That is why sensor readings can be classified as axioms.

In addition to including traditional sensor data, Definition 18 also includes input 

not traditionally labeled as sensor data, such as input from a mouse and keyboard. By 

this definition, the string “Unicorns exist”, as typed into a text file or website forum, 

is considered verifiable. This definition may at first appear to counter-intuitively 

support the policy that simply typing “Unicorns exist” can be considered direct 
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evidence that unicorns exist. It does not. That string is merely direct timestamped 

evidence that someone typed “Unicorns exist” (or wrote a program to produce the 

string). If desired, this evidence can then be used to support a defeasible EFA 

argument that unicorns exist. But such an argument would not come close to having 

the strength of an EFA argument that could be constructed for an entity such as bears 

or bacteria. Specific types of EFA arguments and their associated strengths will be 

defined later.

Definition 18 can also include evidence indirectly related to human cognition and 

emotion. For example, fMRI scans and recorded spoken reports of emotions can be 

used as evidence to form a defeasible argument that a person experienced a certain 

emotion at a certain time. While emotions themselves cannot be used to directly 

justify arguments in EFA, defeasible arguments that are about emotions (such as what 

should be done in a situation to cause someone to experience happiness) can include 

indirect evidence for emotions.

An objection can be made to the requirement of quantifiability. This requirement 

causes EFA to exclude many types of physical items that have traditionally been 

considered “evidence”, such as written documents, polaroid pictures, stone tablets, 

and ancient artifacts. Indeed, such items must be excluded from EFA because it is a 

computational system and such objects cannot be directly interpreted by a 

computational system. However, because all of these types of items can be rapidly 

represented by quantified data produced by sensors such as digital cameras, flatbed 

scanners, and even three-dimensional scanners, their exclusion from being directly 
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included as evidence is only a temporary barrier to their representation within EFA.

These restrictions on what can be called evidence bring with them some useful 

properties. One is that all conclusions in EFA are quantifiable and can be calculated 

directly from evidence. Another is that all arguments are either firmly based on 

axioms from Kn or are derived from the conclusions of such arguments.

3.1.2 EFA ARGUMENTATION THEORY

With the concepts of evidence and quantifiable propositions used by EFA defined it 

will now be unified with the framework of Prakken (2010) to form an AT, starting 

with the rules used in EFA.

Definition 20: [Calculation Rule] Let Q be the set of all quantifiable propositions. 

Given r ∈ Rd, r is a calculation rule iff r can be represented by a tuple (Gate, 

Calc) such that

• Gate is a gate function that maps Q to {0, 1}. Gate(p) returns 1 if p fits 

the criteria of Gate and 0 otherwise

• Calc is a conclusion calculation function that maps 2Q to Q. Given S ⊆ 

Q, Calc(S) returns a conclusion q

• Given p0, …, pn , if Gate(pi) holds ∀pi  and Calc({p0, …, pn}) = q, then 

it can be said that p0, …, pn ⇒ q
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So premises are only accepted by a calculation rule if they meet the criteria of the 

Gate function. Once they are accepted, they can be used to calculate the conclusion of 

the rule using the Calc function. This allows the calculation of an arbitrarily complex 

conclusion in the set of Q based on premises that have been vetted by an arbitrarily 

complex Gate function. Through the concept of the calculation rule, EFA formalizes a 

method to calculate conclusions directly from their premises. With these concepts 

defined, the argumentation system used in EFA can be specified using the form 

specified by Definition 1.

Definition 21: [EFA Argumentation System] An EFA system is an argumentation 

system AS = (L, Contr, R, ≤) where

• L = Q

• Contr is a contrariness function from Q to 2Q

• R = Rc where Rc is a set of calculation rules

• ≤ = ∅

So the logical language is Q and Contr maps quantifiable conclusions to other sets 

of quantifiable conclusions. Contrariness in EFA will be used to define argument 

growth in EFA later. All rules used by an EFA system must be calculation rules. The 

partial preorder for defeasible rules is empty because all ordering can be done 



51

through argument strengths. With the EFA system defined, evidence-based arguments 

can now be defined based on the forms of Definitions 6-9.

Definition 22: [Evidence-Based Argument] Let E be the set of all evidence. 

Let Rc be the set of all calculation rules. An argument A is an evidence-based 

argument iff

• Prem(A) ⊆  E

• Conc(A) ∈ Q

• ∀Ai ∈ Sub(A), Ai is an evidence-based argument

• if A is not a premise-encapsulating argument, then TopRule(A) ∈ Rc

So evidence-based arguments are either defeasible arguments firmly grounded in 

evidence, or based on other such arguments. And any rules that are employed by such 

arguments must be calculation rules. The strength of an evidence-based argument, 

which is integral to ordering arguments, can now be defined.

Definition 23: [Strength] Let A be an evidence-based argument. The strength of A 

is |Prem(A)|, the cardinality of its supporting premises. The strength of A is given 

by the function Strength(A).
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So the strength of arguments in EFA is equivalent to the size of the set of their 

supporting premises. At first glance, this may appear to be an overly simplistic 

definition of argument strength, incapable of handling complex argument strength 

issues. However, some reflection on how arguments are formed reveals it is not. 

Through the use of an arbitrarily complex Gate function employed by the calculation 

rules used to build arguments, an EFA AS has fine-grained control over what 

evidence can be employed as a premise to an argument. This has the potential to 

cause arguments to differ dramatically in strength, sometimes by orders of 

magnitude, all based on what evidence can be used to support them by meeting the 

criteria of the particular Gate function in question.  

Also, it is important to remember that this definition of argument strength is 

applied specifically in the formal domain of arguments built on quantifiable and 

verifiable evidence. The premises of EFA are not qualitative, nuanced opinions that 

can be subjectively interpreted as having varying levels of strength: they are direct 

sensor readings. In such a framework, the sheer volume of independent sensor 

readings fitting a specific criteria create the fabric on which higher-level reasoning is 

built. This concept of strength can be used to specify an ordering of arguments based 

on the form of Definition 11.

It can be argued that using the summation of evidence for argument strength is 

inappropriate since, for example, the summation of evidence in a Sensor Web is 

sensitive to the distribution of the sensors. For example, assume that there are two 

different geographical areas, the first area having a higher density of sensors than the 
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second area. For two equivalent blizzards, the first area will have more evidence (and 

therefore a higher argument strength) than the second area. And, therefore, 

emergency personnel may unfairly give preference to the first area. This example 

does not negate the validity of using summation of evidence as the basis of argument 

strength. The reason is, without a higher density of sensors in the second area, there is 

no way to justify that its blizzard is as strong as the one in the first area. The readings 

in the second area could also happen for a blizzard that is decisively weaker than the 

one in the first area. Therefore, if emergency personnel want to eliminate the 

possibility of bias, the solution is not to disregard the practice of using evidence 

summation as the basis of argument strength: the solution is to add more sensors to 

the second area so that the two areas have equal sensor density. Because without that 

modification and the subsequent evidence it would provide, there is no way to 

distinguish whether the blizzard in the second area is the same strength, stronger, or 

weaker. If the emergency personnel refuse to do this or cannot afford to, then they 

must accept the possibility of responding to a weak blizzard because they have to test 

for a strong one. There is no getting around the fact that, without evidence provided 

by a higher density Sensor Web or some other sensing source, there simply is no way 

to know.
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Definition 24: [Evidence Amount Ordering] Let ! be a set of evidence-based 

arguments. Then a partial preorder ⪯ on ! is an evidence amount ordering iff

(1) A ≺ B iff Strength(A) < Strength(B)

(2) A ⪯ B iff Strength(A) ≤ Strength(B)

This definition clearly fits the admissible argument ordering criteria in Definition 

11, since those restrictions are only applied to strict rules and no strict rules are used 

in EFA. With an argument ordering specified, EFA theories can no be defined using 

the form specified by Definition 12.

Definition 25: [EFA Argumentation Theory] An EFA theory is an argumentation 

theory AT = (AS, KB, ⪯) where AS is an EFA system, KB ⊆  E is a knowledge 

base in AS, and ⪯ is an evidence amount ordering. 

Given this definition for an EFA theory, Definition 16 as reproduced from 

Prakken (2010) holds without modification, demonstrating the utility of Prakken’s 

definitions. Namely, given arguments A and B from an EFA theory, A defeats B if 

Conc(A) is a contrary of any of the conclusions of B’s sub-arguments and B ≺ A 

(Strength(B) < Strength(A)). If Strength(A) = Strength(B) and both arguments attack 

each other, then by Prakken’s definitions neither argument defeats and the situation 
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can  be informally considered a tie.

An important purpose for EFA is to aid in investigations undertaken by agents. 

Evidence-based arguments are used as a basis for building and storing knowledge. 

When arguments come into conflict, such as when two different arguments propose 

two different opposing actions for an agent, then the conflict can be resolved using 

evidence amount ordering. The evidence amount ordering is likely to be useful 

because arguments cannot gain strength without gaining premises. And an agent 

cannot gain premises for its arguments without discovering evidence that meets the 

criteria of the Gate function used in the calculation rules of the evidence-based 

arguments.

This highlights the importance of building an effective Gate function. For 

example, in many agent system applications, it would be undesirable to have very 

similar evidence count twice for the same argument. For example, if an agent is 

advancing the argument that a wide field of land has a high temperature, it would 

likely be undesirable to allow an agent to read multiple temperature readings in one 

location within a matter of a few seconds and count each individual reading as a new 

piece of supporting evidence for its argument. A good Gate function would accept 

only one such reading and reject others as too similar to the first reading.

With the formal foundations of generalized EFA established, the specific 

application used in this work can be specified.
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3.2 Application to Sensor Webs

The general definitions from the previous section can be applied to any area to which 

sensor evidence from the physical world is relevant. As detailed before, this includes 

the domains of medicine, engineering, science, and politics. In this section, the 

general definitions will be applied to the Sensor Web problem domain, as first 

described in Redford and Agah (2010). This requires the instantiation of concrete data 

structures that meet the requirement of the formal definitions. It also requires data 

structures for creating new arguments as new evidence is gathered by the agents in 

the system.

In the application of EFA to Sensor Webs, all arguments represent geophysical 

events which cover a specific geographical area and have certain physical properties. 

Here the type of evidence used by the system is established. The evidence-based 

arguments and sub-arguments used by the system are also established.

3.2.1 OBSERVATIONS

As specified in Definition 22, all premises for evidence-based arguments must be 

evidence as defined in Definition 19. The evidence used in this application is in 

the form of observations in the form of a tuple (W, V, L), where W is a weather 

property, V is a floating point scalar value, and L is a location. As required by 

Definition 19, these observations come from sensors. For the experiments in this 
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paper, W is either wind chill, wind speed, or visibility. V is the value associated 

with that property, degrees celsius for wind chill, kilometers per hour for wind 

speed, and meters of viewable distance for visibility. L is a 2-dimensional global 

coordinate. For example, “(wind chill, 40.1, (54, 49)” and “(wind speed, 35, (35, 

40))” are valid observations. Examples of the observation types, as they will be 

referenced visually, are shown in Figure 11. 

wind chill -30℃ @ (55, 42)

visibility 200 m @ (54, 49)

wind speed 40 km/h @ (55, 49)

Figure 11. Example observations, the form of evidence in this application.

3.2.2 FIELDS

A field is an evidence-based argument whose calculation rule’s conclusion is a tuple 

(R, C, S), where R is a circular region, C is a weather condition, and S is a strength 

value. R is a tuple (L, r) where L is a 2-dimensional global coordinate and r is a radius 

in kilometers. C is a tuple (W, Op, V) where W is a weather property as explained in 

the previous section, Op is a comparison operator, and V is a value as explained in the 

previous section. S is the strength value of the argument. For example, “([(55, 56), 

3.2], [wind speed, ≥, 35.0], 44)” is a valid field conclusion, stating that a field for 
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wind speed greater than 35 km/h exists at (55, 56) covering a radius of 3.2 with a 

strength of 44 matching observations. An example of a field, as it could be 

represented visually, is shown in Figure 12.

4

Figure 12. Visual example of a Low Wind Chill Field with strength 4.

The field’s calculation rule’s Gate function, matching the form specified in 

Definition 20, requires observations to (1) meet the observation field’s weather 

condition, (2) be physically close enough to previously accepted premise 

observations, and (3) be distinct enough from previously accepted premise 

observations. The calculation rule’s Calc function uses the premises of the field to 

geometrically calculate the region and cumulatively calculate the strength for the 

field’s conclusion.

A simple field argument is shown in Figure 13. In the figure, multiple wind chill 

observations meeting the criteria of the field’s Gate function are used to calculate the 

conclusion for a Low Wind Chill Field using the Calc function. In practice, fields can 

actually contain hundreds of observation premises spread across a wide geographical 

area. For example, on one of the largest maps used for preliminary testing of EFA, a 

high wind speed field in the middle of a sizable blizzard associated with the weather 
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condition “(wind speed, >, 40)” produced fields with a strength of 523 spread across 

a region with a 20 km radius. This example argument conceptually matches with the 

visual representation shown in Figure 12.

Low Wind Chill Field

wind chill ≤ -30℃
closeness ≤ 10 km
closeness ≥ .1 km

C
al

c

Gate

wind chill -30℃ @ (54, 49)

wind chill -30℃ @ (52, 46)

wind chill -30℃ @ (53, 48)

wind chill -30℃ @ (55, 49)

Low Wind Chill Field

(53.5, 47.5), 1 km

wind chill ≤ -30℃
4

Figure 13. Example field argument.

3.2.3 PHENOMENA

A phenomenon is an evidence-based argument whose calculation rule’s conclusion is 

a tuple (R, C, S), with the same type of values as used for field arguments, except that 

C is a set of weather conditions rather than a single weather condition. Another 

difference between a field and a phenomenon is that a phenomenon has one or more 

fields as sub-arguments, each matching one of the weather conditions in C. 

Phenomena represent high-level weather occurrences like blizzards, hurricanes, or 

thunderstorms. The only type of phenomena used for experiments in this dissertation 

are blizzards. A blizzard has a value of C corresponding to the conditions “wind chill 

≤ -30 degrees celsius”, “wind speed ≥ 40 kilometers per hour”, and “visibility ≤ 400 

meters”, which are the conditions for a blizzard as specified by Environment Canada 

(2011). An example of a phenomenon, as it could be represented visually, is shown in 

Figure Figure 14. In the figure, the model contains low wind chill fields in green, 
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high wind speed fields in blue, and low visibility fields in red. A blizzard 

phenomenon is labeled with a dashed brown line, supported by underlying fields of 

all three types. All fields and phenomena are associated with the numerical strength 

of evidence supporting them.

5

28

31

12
4

2

5

75
121

Figure 14. Visual example of a Blizzard Phenomenon with strength 121, along 
with its supporting fields.

A phenomenon’s calculation rule’s Gate function requires the conclusions 

calculated from its field sub-arguments’ premises to (1) meet one of the 

phenomenon’s weather conditions, (2) be physically close enough to the regions of 

previously accepted field arguments, and (3) be distant enough from previously 

accepted field arguments with the same weather conditions. The calculation rule’s 

Calc function uses the conclusions calculated from the premises of the accepted field 

arguments to geometrically calculate the region and cumulatively calculate the 
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strength for the phenomenon’s conclusion.

A simple phenomenon argument is shown in Figure 15. Note that only the field 

conclusions of the fields in Figure 15 are shown to allow for space. In the actual 

system, the field arguments, as shown in Figure 13, would also be part of the 

phenomenon  argument as its sub-arguments. In practice, phenomena can actually 

contain multiple field conclusion premises of the same type. For example, two large 

high wind speed field conclusions can cover a large area containing 10 different low 

visibility field conclusions, making them all part of the same blizzard argument since 

the high wind speed fields overlap with the various low visibility fields.

Blizzard

wind chill fields ≤ -30℃
wind speed fields ≥ 40 km/h

visibility fields ≤ 400 m
closeness ≤ 10 km
closeness ≥ .1 km

C
al

c

Gate

Blizzard

(53.2, 46.6), 2.3 km

280

Low Wind Chill Field

(53.5, 47.5), 1 km

wind chill ≤ -30℃
280

High Wind Speed Field

(55.5, 49.0), 3 km

wind speed ≥ 40 km/h

150

Low Visibility Field

(51.0, 44.3), 4 km

visibility ≤ 400 m

390

Figure 15. Example phenomenon argument.

It can be argued that the system could benefit from the use of fuzzy logic, which 

has been employed successfully in many practical engineering applications for 

decades (Fox, 1981; Madau et al., 1993; So et al., 1993). For example, given a 

weather condition of “wind speed ≥ 40 km/h” and an observation with a wind speed 
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of 39.9999, the observation would be rejected by the current version of the system. A 

fuzzy logic version of this system could include that observation under fuzzy 

membership.

There are two reasons why fuzzy logic is not used in this dissertation. The primary 

reason is that the official definition of “blizzard” given by Environment Canada 

(2011) is not defined in fuzzy terms. Since the definitions given by meteorological 

organizations have strict cutoff points, so does this system.

The other reason is that, for this application, we think that the information a fuzzy 

system would communicate can still be captured by this system. This is because all 

categorization systems, even fuzzy systems, must have some implicit cutoff point at 

which they stop accepting membership. For example, we can assume that the system 

is redefined to use “wind speed ≥ 50 km/h” and allow fuzzy membership from 40 

km/h to 50 km/h. In this case, a reading of 39.9999 wind speed would still be 

rejected, as shown in Figure 16. Even fuzzy systems have implicit boundaries.

Figure 16. Even fuzzy systems have implicit boundaries.

While fuzzy systems obviously have many useful engineering applications, they 
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do not appear to be necessary for this application. Using the techniques already 

provided by this system, the type of information that a fuzzy system would provide 

(e.g. “low wind speed”, “high wind speed”, and a linear gradation between) can still 

be fully distinguished simply by categorizing the relevant property in the same way a 

fuzzy system would. For example, if the average wind speed of a blizzard is 50 km/h 

or higher it can be said to have “high wind speed”. If it is only 40 km/h, it can be said 

to have “low wind speed”. If it is between 40 km/h and 50 km/h, it can be treated 

accordingly linearly on the scale between the two. This can all be captured by a linear 

function in an Inference node or an Argument’s conclusion calculation function. An 

explicitly fuzzy system is not necessary for this distinction if making it is somehow 

useful to the agents’ conclusions. For this application, the distinction between “low” 

and “high” wind speeds among accepted observations does not seem useful or 

necessary. 

Rather, fuzzy systems seem to excel in applications where systems need to 

gracefully switch between two different modes because human users require gradual 

change for safety or aesthetic reasons, such as in anti-lock brakes or camera focusing 

(Madau et al., 1993; So et al., 1993). Such time sensitive gradation to meet human 

sensibilities is not necessary for this application, which is primarily meant to calculate 

and categorize relatively slow-changing weather properties over time (on a scale of 

minutes rather than seconds or milliseconds).
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3.2.4 COLLECTIONS

In terms of the implementation of EFA theory, enough details have been specified. 

However another type of notable data structure is required for the efficient 

implementation of this system and deserves  mention. 

As agents in using this EFA theory gather observations, they feed those 

observations to collections which dynamically re-evaluate what fields and 

phenomena can be formed from the collected observations. For example, disparate 

wind speed observations may start far enough apart that they can be used to create 

their own separate field arguments. However, as an agent continues to feed new wind 

speed observations to the field collection, these observations may be merged into a 

single field argument, due to meeting the closeness constraints of its Gate function 

when combined with the new wind speed observations. Such a scenario is shown in 

Figure 17. Collections allow constant re-evaluation of the arguments that can be 

formed by an agent as it gathers new observations.
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observation addition and 
argument 

re-evaluation

Figure 17. As new observations are added to a collection, the collection re-

evaluates the possible arguments that can be formed.
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4 Experiments
In this chapter, we will describe the materials used in our experimental setup. 

Specifically, we will explain where our real-world data comes from and what tools 

were used to develop the Multi-Agent Systems tested. We will also present the 

technical details of the metrics used.

4.1 Technology

Our goal for the experiments was to test the ability of a Multi-Agent System to 

accurately characterize the properties of blizzard conditions. The first step was to 

determine the quantitative evidential conditions for a blizzard. From the definition of 

blizzard by Environment Canada (2011), we used the conditions of wind speeds 40 

km/h or higher and visibility 400 m or less for at least 4 hours. Because we wanted to 

track the worst blizzards as well as challenge the reasoning capabilities of our sensor 

agents, we added the additional condition of wind chill dropping to -30 degrees 

celsius or lower.

Because our work concerns in-situ Sensor Webs, which cover a broad 

geographical area, in addition to scalar values for sensor readings, we also had to 

consider the spatial properties of blizzards. We defined a blizzard spatially as the 

union of overlapping geographical areas with the scalar properties mentioned above. 
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To rigorously test the validity of our systems, we also define the concept of a near-

blizzard as a weather scenario where some but not all of the above scalar conditions 

occur or all of them occur but do not geographically overlap. Finally, a non-blizzard 

is defined as a weather scenario where only one or none of the above scalar 

conditions occur.

Using the weather functions of Wolfram Mathematica (2011), we retrieved the 

historical wind speed, visibility, and wind chill data for 30 blizzards, 30 near-

blizzards, and 30 non-blizzards from various locations including Russia, China, and 

the United States that occurred from the years 2000-2010. The data are based on the 

historical data taken from geographically distributed weather stations in these 

countries. An example of retrieved Mathematica data and how it could be modeled by 

an agent who has received some of its observations is shown in Figure 18. 

Figure 18. Example of historical weather data and how it could be modeled by an 
agent who has received some of its observations.
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We also wanted to test the scalability of the agent systems so we tested each 

scenario for agent population sizes of 25, 36, and 49. Perfect squares were chosen to 

maintain a square shape to the grid of in-situ sensors associated with the agents. As 

mentioned earlier, each sensor station is associated with a single agent. These grid 

sizes were chosen because they represent perfect square grids of increasing size. This 

results in a total of 270 test scenarios.

The EFA evidence-based argument construction and reasoning used by our agent 

systems were developed in Java and can be used independently from the agent 

systems. Due to the hierarchical and extendible nature of the classes implemented, the 

system relies heavily on inheritance and generics.

The agents systems used for the experiments were built using the  Jadex BDI 

Agent System (Jadex, 2011). Jadex is built on top of the Jade Java Agent 

Development Framework (Jade, 2011).

Jade provides an Agent Management System (AMS) on which agents run. Agents 

find each other using a Directory Facilitator (DF) . In the tested systems, the DF 

associates agent coordinates with their agent ID. Jade implements FIPA-ACL 

compliant messages, which are used by both tested systems. The use of FIPA-ACL 

by the implemented agents to register with and search the Jade DF is shown in Figure 

19.
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Figure 19. Example of FIPA-ACL messages used by the implemented agent 

systems.

Jade has been developed to run on mobile devices with batteries, low processing 

power, and wireless communication such as basic cell phones, so implementing it on 

in-situ sensors that communicate wirelessly in real time is possible.

4.2 Metrics

Our experiments evaluate and analyze the performance of a group of agents, each of 

which is associated with sensors in a grid, forming an in-situ sensor web. Each sensor 

in the grid has access to wind chill, visibility, and wind speed data. As described in 

the previous section, data are is provided by Wolfram Mathematica (2011). The goal 

of the agents is to achieve the highest possible global accuracy, i.e., the accuracy of 

each individual agent’s model of the geophysical situation. Since each agent only has 

access to the observations of its individual sensors, it must communicate with the 
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other agents to have an accurate model. We have established a number of metrics by 

which to measure the performance of the agents in this experimental setup.

Whenever the agents communicate, there is a message cost associated with their 

communication. This message cost is the length of the string required to represent the 

message, multiplied by the Euclidean distance between the two communicating 

agents. This definition is based directly on the underlying real world technology that 

would be used to implement the agents on actual sensors using radio communication. 

The length of the string represents how many bytes would be needed to transmit the 

message. The bytes break down into bits. Each bit transmitted translates directly into 

battery power the sensor would consume while transmitting the bit. The Euclidean 

distance represents the radius of the broadcast a sensor would have to extend with its 

radio communication to reach the other agent. The greater the broadcast radius, the 

more power the sensor will consume. This distance cost will apply to each bit of data 

transmitted, which is why the Euclidean distance is multiplied by the length of the 

string. The conceptual basis for message cost is shown in Figure 20. The message 

amount metric is just the total number of messages sent.
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SensorAgent

Message Cost

SensorAgent

s = 20

d =
 7

“wind chill -30℃ @ (54, 49)”

d⋅s

Figure 20. Message cost is calculated as the distance of communication times the 
length of the string communicated.

The total accuracy of each individual agent’s model, represented by a set of (R, C, 

S) tuples, is determined by its similarity to the evaluator agent’s model. The similarity 

of an agent’s model to the evaluator agent’s model is an average of the similarity 

between the regions and strengths of each model. The similarity of two regions is the 

area of their intersection divided by the area of their union. The similarity of two 

strengths is the smaller strength divided by the larger strength. Only the regions and 

strengths of fields using the same weather condition are compared. Whenever 

similarity between two sets of fields and phenomena are calculated, the most similar 

fields and phenomena are compared and eliminated first. If the agent’s model 
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disagrees with the evaluator agent’s model on the number of fields or phenomena, a 

penalty of zero is applied to the average. For example, if the agent thinks there are 

four fields and the evaluator thinks there are five, the agent can achieve at most 80% 

similarity. All similarity values are percentages. The total accuracy metric is 

illustrated in Figure 21.
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Figure 21. The total accuracy metric requires correspondence between each 
individual component in an agent’s model with the evaluator’s model, making it 

the most detailed accuracy metric. 

The super region of an agent’s model is calculated by combining all of its field and 

phenomenon sub-regions into the largest encompassing region. For the CNO agent 
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system, the Rʹ produced by the agent’s Kalman Filter is simply evaluated directly. 

The super region accuracy of each individual agent’s model is the similarity of its 

super region to the super region of the evaluator agent’s model. The super region 

accuracy metric is illustrated in Figure 22.
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Figure 22. The super region accuracy metric requires correspondence between an 
agent’s calculation of the largest encompassing reason of its model’s components 

with the evaluator’s. 

The super strength of an agent’s model is produced by summing all of the 

strengths of its fields and phenomena. For the CNO agent system, the Sʹ produced by 

the agent’s Kalman Filter is simply evaluated directly. The super strength accuracy 
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of each individual agent’s model is the similarity of its super strength to the super 

strength of the evaluator agent’s model. The super strength accuracy metric is 

illustrated in Figure 23.
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Figure 23. The super strength accuracy metric requires correspondence between 
an agent’s calculation of the total strength of its model’s components with the 

evaluator’s. 

All of the message-related metrics are summed over all agents in the multi-agent 

system. All of the accuracy metrics are averaged over all agents. This provides a way 

of measuring the performance of the entire agent system.

The only types of observations, and therefore the only type of fields, used in these 
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experiments are wind speed, wind chill, and visibility. The only type of phenomena 

tracked are blizzards.
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5 Investigative 

Argumentation-based 

Negotiating Agents 
In this chapter, we will detail the research approach of Investigative 

Argumentation-based Negotiating Agents (IANA). This system is utilized in the 

problem domain of Sensor Webs. In the proposed problem, in-situ sensors are spread 

out in a grid across a wide geographical area. Each sensor outpost in the grid is 

assumed to have three sensors: wind chill, wind speed, and visibility. Each sensor 

outpost is associated with a single agent. Individual agents in the grid can 

communicate with other agents through wireless communication. In this way, the 

agents form a Sensor Web.

The goal of individual agents is to have as accurate a model of the current weather 

situation as possible, while minimizing communication costs to save battery power. 

Given a single point of time, the goal of the agent system is to maximize the accuracy 

of each individual agent’s model by strategically sharing observations between 

agents. This goal represents a type of Decentralized Sensor Fusion (Rosencrantz et 

al., 2003).

In IANA, the Directory Facilitator (DF) associates agent coordinates with their 
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agent ID. Jade implements FIPA-ACL compliant messages, which are used in IANA. 

The use of FIPA-ACL by the implemented agents to register with and search the Jade 

DF is shown in Figure 19.

In addition to the DF, there are two other types of agents used in the experiments: 

the sensor agents and the evaluator. A sensor agent is allocated to each sensor outpost 

location on the grid. The evaluator is a special type of agent that is given all of the 

weather data from Wolfram Mathematica for the current scenario. The evaluator uses 

this data to produce the correct arguments and resulting conclusions that can be 

formed from that evidence. When all of the sensor agents have finished 

communicating, they send their final argument conclusions to the evaluator agent. 

The evaluator agent judges the overall performance of the agent system based on 

criteria that will be specified in the Metric section of the Materials chapter.

The sensor agents in IANA attempt to solve the task of maximizing accuracy while 

minimizing message cost in two primary stages. In the first stage, a sensor agent 

reads its three local observations (wind speed, wind chill, visibility) and adds them to 

a collection. The agent then checks  the collection to see if any of these observations 

resulted in the formation of a new field argument. If none of them resulted in a new 

field arguments, the agent does not contact any other agents and simply waits to be 

contacted by other agents who were able to create field arguments. On the other hand, 

if any observations did result in the formation of a new field argument, the agent 

enters into the second stage of the algorithm. The practical idea behind this first stage 

is that an agent should only attempt to communicate observations that are relevant to 
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building an argument.

In the second stage, the agent generates a situation summary from its collection, 

which is the tuple (P, F, S, R). P is the number of phenomena in the collection. F is 

itself a tuple (Wc, Ws, V) where Wc is the number of low wind chill fields, Ws is the 

number of high wind speed fields, and V is the number of low visibility fields. S is 

the combined strength of all arguments in the collection, representing the total 

evidence of the collection, called the super strength. R is the minimum circular region 

that can encompass all of the observations in the collection, called the super region.

The agent then enters into what will be called the Share on Disagreement (SoD) 

protocol with each of the other agents in the system. In the SoD protocol, the Initiator 

agent sequentially shares each individual item in the situation summary with the 

Participant agent. The situation summary tuple has been strategically ordered to place 

the most important and most contentious (most likely to cause disagreement) items 

first. This is meant to minimize time spent communicating. If, at any point in the 

protocol, the Participant disagrees on an item in the situation summary, the Initiator 

sends its relevant observations. Whether a disagreement has occurred depends on the 

item in question: for P and F, the items must match exactly; for S and R, 75% 

similarity is acceptable grounds for agreement due to its high performance in 

preliminary testing. This protocol is shown in Figure 24.



79

SoD-Protocol

Initiator Participant

verify
numPhenomena

disconfirm

confirm
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superStrength
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superRegion
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confirm

send-observations

Figure 24. The SoD protocol used by IANA.

The inspiration for the SoD protocol (which depends on the use of EFA) comes 

from the practical maxim: if agents sufficiently agree on their general conclusions, 

they do not need to share the premises that caused them to reached those conclusions. 

As referenced in the Introduction and Figure 1, if two human experts (for example, 

doctors) agree on their conclusion as to which detailed action is best for a situation, it 

is not necessary that they share the studies that lead them each individually to that 

conclusion. It is not unless their is a disagreement that experts should share their 
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evidence and come to a consensus about whose conclusion has the most evidence. In 

the same way, if agents in a Sensor Web basically agree on their conclusion as to 

what is happening in the current geophysical situation, then it is not necessary that 

they share the observations that led them to their conclusions.

This is one of the strengths of  argumentation: the ability to summarize the results 

of an argument using its conclusion while still having access to the premises used to 

produce that summary, if necessary. Exchanging the content of conclusions through 

situation summaries saves message costs if the agents agree; but having access to the 

premises leading to those conclusions saves accuracy if the agents disagree. 

Examples of agents in both disagreement and agreement situations are shown in 

Figures 25 and 26, respectively.
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Initiator  Participant
agent10 | Initiating SoD with agent14

agent14 | Participating in SoD with agent10
agent10 | Confirming: 1

agent14 | Received: 1
agent14 | Confirming

agent10 | Confirming: 2
agent14 | Received: 2
agent14 | Confirming

agent10 | Confirming: 1
agent14 | Received: 1
agent14 | [Disconfirming]

agent10 | [Disconfirmed]
agent10 | Sending Observations:
[{Visibility : 5.63 @ (2, 2)}, 
{WindChill : -10.58 @ (2, 2)}]

agent14 | Received Observations:
[{Visibility : 5.63 @ (2, 2)}, 
{WindChill : -10.58 @ (2, 2)}]

Disagreement

Figure 25. Example of SoD disagreement situation in actual IANA execution.

Initiator  Participant
agent13 | Initiating SoD with agent12

agent12 | Participating in SoD with agent13
agent13 | Confirming: 1

agent12 | Received: 1
agent12 | Confirming

agent13 | Confirming: 2
agent12 | Received: 2
agent12 | Confirming

agent13 | Confirming: 1
agent12 | Received: 1
agent12 | Confirming

agent13 | Confirming: 1
agent12 | Received: 1
agent12 | Confirming

agent13 | Confirming: 8
agent12 | Received: 8
agent12 | Confirming

agent13 | Confirming: {2.3r @ (1, 1)}
agent12 | Received: {2.3r @ (1, 1)}
agent12 | [Confirming Final]

agent13 | [Full Confirmation]

Agreement

Figure 26. Example of SoD agreement situation in actual IANA execution.



82

After all the sensor agents have completed the SoD protocol, they send their final 

set of (R, C, S) tuples from the conclusions of the field and phenomenon arguments 

produced by their collections to the evaluator. The evaluator then evaluates the 

performance of the agent system based on the overall performance of all agents in the 

system.
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6 Complete Data Sharing
The Complete Data Sharing (CDS) system shares all sensor observations 

between all agents. It is our hypothesis that CDS will perform better than IANA 

for all accuracy metrics as well as a message amount metric. However, we also 

predict that these advantages will all have a small effect size. It is also our 

hypothesis that IANA will perform better than CDS for the message cost metric 

and that this advantage will have a large effect size.

If these hypotheses are true, then one can argue that, unless maximal accuracy 

and minimal message amount are required for a system, it is more suitable to use 

IANA than CDS, due to the strong advantages given by the lower message cost.

In this chapter, we will describe the overall design of the CDS system. Then we 

will present the experimental results for all metrics, and present the data and graphs 

for the means, standard deviations, p-values, and effect sizes for each system and 

agent amount. These descriptions and experiments first appeared in Redford and 

Agah (2011).

6.1 Design

The primary strategy of the CDS is straightforward: all sensor agents in the system 

share their three observations (wind speed, wind chill, visibility) at their sensor’s 

location with all other agents. 
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The interactions of the sensor agents with the DF are the same as those used in 

IANA and shown in Figure 19. The interactions the sensor agents have with each 

other and the evaluator are shown in Figure 27. Each sensor agent sends its 

observations to all the other  sensor agents. Once all sensor agents have sent their 

observations, each sensor agent sends its resulting conclusions to the evaluator.

For each SensorAgenti in grid:

SensorAgenti

Inform([observations])

SensorAgentj

1) Send observations to each other 
SensorAgentj 

SensorAgenti

Inform([conclusions])

2) Once all agents have sent observations, 
send conclusions to Evaluator

Evaluator

Figure 27. The interactions between agents in CDS.

The advantage of this approach is that it guarantees that all agents will end the 

experiment with models 100% similar to the evaluator agent’s model and will thus 

produce a score of 100% accuracy for the agent system as a whole for all accuracy 

metrics. Another advantage of this system in comparison to IANA is that it will have 

a lower message amount. Agents in IANA use a protocol that requires the exchange 

of multiple messages between the same agents, whereas agents in CDS send only a 

single message to each other agent containing their observations. The disadvantage of 
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this approach is that it also guarantees that the agent system will have a message cost 

that is O(N2), where N is the number of agents. The purpose of these experiments is 

to determine the extent of these advantages and disadvantages.

The individual agents in CDS will not have access to any kind of evidence-based 

reasoning during an experiment. They simply collect and communicate their 

observations to each other. It is only after an experiment is completed that they feed 

their observations to a phenomenon collection and send the conclusions to the 

evaluator agent for evaluation.

6.2 Comparison

Agents in the CDS system always send the same observations for the same amount of 

message costs for every experimental execution on any geophysical situation. For this 

reason, we only needed to execute a CDS system for a particular agent amount on 

each of the 90 geophysical situations once (30 each of different Blizzard, Near-

Blizzard, and Non-Blizzard conditions).

CDS has the same metric results no matter if it is working on blizzards, near-

blizzards, or non-blizzards. Meaning: it will always have the same accuracy, message 

cost, and message amount for any given set of situation data. The reason is because 

all of the agents will always share all of their observations with all the other agents, 

giving only one possible resulting database and communication pattern for all of the 

agents in the system. Because of this, only one set of CDS data is represented per 
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metric.

Agents in the IANA system vary in the amount of messages they send to each 

other depending on the order in which they communicate. Sometimes groups of 

agents reach a consensus sooner because they communicate in an order that causes 

mutual consensus. Sometimes this early consensus is premature and causes low 

accuracy. Sometimes this early consensus is fortuitous and causes high accuracy 

while maintaining low message costs. Because of the variations in time before 

consensus for agents, we execute an IANA system for a particulate agent population 

size ten times for each of the 90 geophysical situations. As discussed in Section 6, this 

choice produced sufficiently high statistical significance given the random variations 

in the measured metrics.

However, IANA performs differently depending on whether it is working on a 

blizzard, near-blizzard, and non-blizzard. For example, non-blizzard geophysical 

situations require less communication for IANA because fewer arguments can be 

built because less data is applicable to building any field that can be associated with a 

blizzard. For this reason, different IANA data are presented for different geophysical 

situations.

6.2.1 MESSAGE COST

Figure 28 shows the means and standard deviations over all the experiments for 

message cost. As predicted, the CDS message costs were significantly higher than 

those for IANA; and the IANA message costs reduced as the activity level of the 
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geophysical situation decreased (e.g., situations with blizzards required more 

communication than situations with non-blizzards).

Figure 29 illustrates the effect size of the lower message cost advantage that IANA 

has over CDS, as produced by ANOVA. As predicted by our hypothesis, all of these 

effect sizes are large (above 0.8) with the exception of IANA’s performance for 

blizzards with 25 agents which was still 0.78, a near-large effect size. The ANOVA 

established these effect sizes with a p-value less than 0.001, giving them greater than 

99.9% confidence.

Figure 28. Message Cost Means and Standard Deviations.
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Figure 29. Effect Size of IANA Message Cost Advantage.

6.2.2 MESSAGE AMOUNT

Figure 30 shows the means and standard deviations for message amount. As 

predicted, IANA generally performed worse, using more messages due to its 

negotiation protocol, with the exception of its performance in the non-blizzard 

situations, where, surprisingly, it performed slightly better than CDS.

Figure 31 shows the effect size of the lower message amounts. For blizzards and 

near-blizzards, CDS had the advantage. For non-blizzards, IANA had the advantage.  

As predicted by our hypothesis, the effect size advantages of CDS were small (0.4 or 

smaller). The ANOVA established these effect sizes with a p-value less than 0.01, 

giving them greater than 99% confidence.
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Figure 30. Message Amount Means and Standard Deviations.

Figure 31. Effect Size of Message Amount Difference.
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6.2.3 TOTAL ACCURACY

Figure 32 shows the means and standard deviations for total accuracy. As predicted, 

CDS performed at 100% accuracy for all geophysical situations with IANA usually 

lagging behind, with the exception of its performance on non-blizzards, which had 

produced nearly the same accuracy as CDS.

Figure 33 shows the effect size of the higher total accuracies that CDS had over 

IANA. As predicted by our hypothesis, all of these effect sizes were small (below 0.4, 

indeed, below 0.2). The ANOVA established these effect sizes with a p-value less 

than 0.01, giving them greater than 99% confidence, with the exception of the 

performance on non-blizzards, where confidence was only 50% because IANA 

scored so highly that its performance was nearly indistinguishable from CDS.
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Figure 32. Total Accuracy Means and Standard Deviations.

Figure 33. Effect Size of CDS Total Accuracy Advantage.
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6.2.4 SUPER REGION ACCURACY

Figure 34 shows the means and standard deviations for super region accuracy. As 

predicted, CDS performed at 100% accuracy for all geophysical situations with 

IANA usually lagging behind.

Figure 35 shows the effect size of the higher super region accuracies that CDS had 

over IANA. As predicted by our hypothesis, all of these effect sizes were small 

(below 0.4, indeed, below 0.1). The ANOVA established these effect sizes with a p-

value less than 0.01, giving them greater than 99% confidence, with the exception of 

the performance on non-blizzards, where IANA again scored so highly that its 

performance was nearly indistinguishable from CDS.

Figure 34. Super Region Means and Standard Deviations.
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Figure 35. Effect Size of CDS Super Region Accuracy Advantage.

6.2.5 SUPER STRENGTH ACCURACY

Figure 36 shows the means and standard deviations for super strength accuracy. As 

predicted, CDS performed at 100% accuracy for all geophysical situations with 

IANA usually lagging behind.

Figure 37 shows the effect size of the higher super strength accuracies that CDS 

had over IANA. As predicted by our hypothesis, all of these effect sizes were small 

(below 0.4). The ANOVA established these effect sizes with a p-value less than 0.01, 

giving them greater than 99% confidence, with the exception of the performance on 

non-blizzards, where IANA again scored so highly that its performance was nearly 

indistinguishable from CDS.
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Figure 36. Super Strength Accuracy Means and Standard Deviations.

Figure 37. Effect Size of CDS Super Strength Accuracy Advantage.
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6.3 Summary

As hypothesized, CDS was found to have a small effect size advantage in terms of 

accuracy and message amount, while IANA had a large effect size advantage in 

terms of message cost. This means that unless considerably higher message cost is 

acceptable to achieve maximal accuracy and minimal message amount, it is more 

suitable to use IANA than CDS, due to its nearly maximal accuracy and nearly 

minimal message amount and considerably lower message cost. A lower message 

cost means less time spent broadcasting messages which in turn means less power 

consumption. In other words, CDS is marginally more accurate and uses marginally 

fewer messages but has a huge cost in terms of total message size.
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7 Conclusion Negotiation Only
The Conclusion Negotiation Only (CNO) system shares only high-level 

conclusions produced from individual agent models between agents. The agents 

then combine their conclusions using Kalman Filtering. It is our hypothesis that 

CNO will perform better than IANA for all communication metrics. We think 

CNO will have fewer message costs and lower message amount because, 

intuitively, its protocol requires fewer messages and smaller messages. It is also 

our hypothesis that IANA will perform better than CNO for the accuracy metrics 

and that this advantage will have a large effect size.

If these hypotheses are true, then one can argue that, unless minimal 

communication costs are required by a system and lower accuracy is acceptable, it 

is more suitable to use IANA than CNO, due to the strong advantages given by 

the higher accuracy of IANA. The descriptions and experiments in this chapter first 

appeared in Redford and Agah (2012).

7.1 Design

The CDS system presented a logical competitor for IANA. It shared all observations 

and always attained full accuracy in comparison to the evaluator agent’s model but 

with significantly higher message costs. For the CNO competitor, a literature survey 

was done to search for published strategies in the problem domain of Decentralized 
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Sensor Fusion.

7.1.1 SEARCHING FOR A COMPETITOR

In order to qualify as a competitor, the candidate system needed to be able to (1) use 

quantifiable observations to reach conclusions and (2) produce a detailed set of (R, C, 

S) tuples as produced by the conclusions of field and phenomenon arguments in the 

collections used by IANA agents employing EFA. Condition 2 is necessary because 

that is the information by which the evaluator agent judges the accuracy of the agent 

system’s models.

The multi-agent Sensor Fusion system used in Pavlin et al. (2010) at first appears 

relevant as a competitor. Similar to IANA, the system is dedicated to the 

Decentralized Sensor Fusion problem domain. Also like IANA, the system is used to 

create an accurate model of a sensing situation distributed across a group of agents 

attached to different sensors. An example used in Pavlin et al. (2010) is gas detection 

and an example in the related approach of Pavlin et al. (2006) is fire detection. 

Finally, the inference trees they use have a distinct resemblance to the inference trees 

used in the framework of Prakken (2010) on which IANA’s EFA is formally based. 

However, the Bayesian approach they employ limits the applicability of their 

approach in an important way: it cannot meet condition 2 specified above. 

Continuous scalar values cannot be produced by the Bayesian approach they employ: 

only probability values can. Technically, boolean or probabilistic values can be used 

to represent scalar values and, indeed, boolean values are used to do so inside of 
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computing systems. But the approach in Pavlin et al. (2010) does not directly 

implement such a conversion and, as a result, the system appears to be unable to meet 

condition 2 at the present time.

In addition to Bayesian approaches, another popular Sensor Fusion approach is the 

application of Dempster-Shafer evidence theory, such as the ones employed by Basir 

et al. (2007) or Hong et al. (2009). The approach of Hong et al. (2009) in particular is 

applied to the situational sensing problem of sensing events in a “Smart Home”. Also, 

Dempster-Shafer applications employ inference trees, just as EFA and Bayesian 

approaches do. However, like the Bayesian approaches, the Dempster-Shafer 

approaches, as employed by these papers, cannot directly produce continuous scalar 

values or data structures that represent detailed models. So they similarly cannot meet 

condition 2.

A type of Sensor Fusion approach that can process and produce continuous scalar 

data, allowing it to meet both conditions 1 and 2, is Distributed Kalman Filtering 

(Gan et al., 2001; Olfati-Saber, 2005; Olfati-Saber, 2007). Due to its ability to process 

continuous data, Distributed Kalman Filtering (DKF), appears to be the most suitable 

approach of those surveyed. However, the reviewed approaches are all applied to the 

Sensor Fusion problem of tracking a moving target. This problem is different than 

situation modeling problem solved by IANA. Therefore, the methods of the reviewed 

approaches could not be directly applied as competitors and it was necessary to 

develop a new Kalman Filtering system for the situation modeling problem.
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7.1.2 BUILDING A COMPETITOR

Kalman Filters are employed by sensors in Decentralized Sensor Fusion applications 

to reach consensus on a set of values. For this reason, a reasonable application for 

Kalman Filters is in reaching consensus on the situation summary tuple (P, F, S, R). 

This meets the goal of having lower communication costs than IANA, since agents in 

the system will only exchange situation summaries and not observations. Since only 

the conclusions of the agents are negotiated in this agent system, summarized in the 

form of the situation summary, it will be called the Conclusion Negotiating Only 

(CNO) system.

Like IANA, this approach also has two stages. The first stage will be the same as 

that used by IANA: the agents read their three local observations. To avoid having to 

create an entirely new inference architecture, the sensor agents in CNO are granted an 

EFA argument collection data structure in order to build their initial conclusions. If 

the sensor agent’s granted collection results in the formation of a new field argument, 

it enters the second stage of communication. If not, it waits for communications from 

sensor agents who did form new field arguments, as is done in IANA.

In the second stage, eligible sensor agents send their situation summary to all other 

agents as a single message. This requires fewer messages and less communication 

than IANA since situation summaries are smaller than observations. Each sensor 

agent in the system takes its list of (P, F, S, R) situation summary tuples and applies a 
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Kalman Filter across each value of the list. This allows the agent to develop 

consensus values (Pʹ, Fʹ, Sʹ, Rʹ) for the situation summary or, in full detail: (Pʹ, (Wcʹ, 

Wsʹ, Vʹ), Sʹ, Rʹ). From these consensus values, the sensor agent infers what regions 

and strengths should be defined as estimations for each of the (R, C, S) tuples 

required by the evaluator using geometric calculation algorithms. For example, if the 

consensus value for Pʹ is 2 and the agent only has one (R, C, S) tuple representing a 

phenomenon, it estimates the values of a new (R, C, S) tuple distributing unused 

values of Sʹ, the consensus super strength, and keeping within the bounds of Rʹ, the 

consensus super region. If, on the other hand, the consensus value for Pʹ is 2 and the 

agent has three (R, C, S) tuples representing phenomena, it combines the regions and 

strengths of two of the tuples into a single S value and R value (the value of C will be 

the same). Values from Fʹ are used to make the same types of geometric inferences 

for their (R, C, S) tuples for each individual type of field in (Wcʹ, Wsʹ, Vʹ).

After all the sensor agents have completed their Kalman Filter calculations and (R, 

C, S) tuple estimates, they send their final set of (R, C, S) tuples to the evaluator. The 

evaluator then evaluates the performance of the agent system based on the overall 

performance of all agents in the system.

Initial testing of this approach found that the accuracy of the CNO system was 

unacceptably low if zero communication was allowed between the sensor agents 

before forming their situation summaries. Intuitively, this makes sense. If a sensor 

agent is allowed to summarize the entire sensing situation using only their local 

observations, they are summarizing based on sensor readings in a single geographical 
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location. Applying a Kalman Filter to a set of such summaries would lead to an 

unacceptable consensus, especially for the value of R, the super region, which is 

derived from location based data. Under such circumstances, the only value of R that 

each sensor agent could have is a circle around its own location.

Due to the low accuracy performance that results from using zero observation 

communication, some minimal observation sharing is incorporated between the first 

and second stages of communication. Specifically, after reading its three 

observations, if a CNO sensor agent has two or more observations that can be used to 

build a field argument, it randomly selects one of those observations and sends it. If 

the CNO sensor agent has a single relevant observation, it sends that observation if 

both X ≡ 0 (mod 2) and Y ≡ 0 (mod 2) where (X, Y) are the value of its sensor’s 

geographical coordinate. These specific calculations were used because they allowed 

CNO to have lower communication costs than IANA in preliminary testing while still 

having comparable accuracy. Similarly evenly distributed calculations could be used 

if the in-situ sensors were not on a square grid. After this minimal sharing stage is 

complete, CNO agents enter the second stage of Kalman Filtering on the situation 

summary tuples as explained. It is still valid to call this approach Conclusion 

Negotiating Only because only the conclusions of situation summary tuples are 

negotiated by the agents’ Kalman Filters.

7.2 Random Observation Priming

Based on preliminary testing, the CNO approach performs best if agents in the 
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system prime themselves with some random observations from across the in-situ 

sensor grid. This allows the CNO approach to better compete with IANA and is an 

acceptable precondition so long as IANA is given the same advantage. Therefore, for 

the experimental setup, it is assumed that all agents in both systems first randomly 

exchange some observations to prime their knowledge bases prior to executing their 

respective communication protocols. All evaluations are done after this random 

priming takes place.

While this random priming is helpful, the percentage of observations shared before 

evaluation should be as minimal as possible to allow CNO to strongly compete. 

Otherwise, the differences between IANA and CNO will be difficult to distinguish 

from the random priming. To find an acceptable percentage of random observations, 

some preliminary comparisons were made between the performance of CNO and the 

performance of a system that only performed the random priming. For these 

preliminary comparisons, this system is referred to as Random Only. It is unnecessary 

to include IANA in these comparisons because, as shown in the Complete Data 

Sharing chapter, IANA can achieve 80% or higher accuracy without random 

observation priming.

For these preliminary comparisons, 10 Blizzard scenarios from the data from 

Wolfram Mathematica (2011) were tested for both CNO and Random using square 

grids of 49 agents. This combination of scenarios and agent grids were tested for 

random priming percentages from 0% to 100%. So, for 0%, the agents exchanged 0% 

of random observations prior to executing their situation modeling protocol (or just 
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doing nothing in the case of Random Only). And for 10%, they exchanged 10% of 

random observations prior to executing, etc. Figure 38 shows the means and standard 

deviations for the two systems for each random priming percentage. As it can be 

seen, the advantage of CNO versus Random is most pronounced for the lower 

percentages of random observations primed. Intuitively, this makes sense because, 

along with its communication protocol and Kalman Filtering, CNO should infer 

much more accurate conclusions than a system that just exchanged some random 

observations between sensors with no additional communication or processing. A 

good percentage of random observations to grant both CNO and IANA appears to be 

30% observations given. This allows CNO to attain greater than 75% accuracy, which 

is intuitively “average”. Allowing more random observations to be primed makes 

CNO less distinguishable in performance from Random Only, which is undesirable.

Figure 38. Mean Total Accuracy for increasing random priming observation 
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percentages.

The effect size advantage of CNO over Random Only in Figure 38 can be seen in 

Figure 39. This reveals that all advantages for CNO can be classified as “high”, 

except for 100% observations given, which results in such similarly high accuracies 

that CNO only has a “low” effect size over Random. Since effect size is “high” for all 

other values, we will select 30% observations primed to be used for all other 

experiments in this paper since that is the minimum amount that gives CNO greater 

than 75% accuracy.

Figure 39. Effect Size of IANA Message Cost Advantage.

7.3 Comparison

Given the results of the preliminary comparisons in the previous section both CNO 
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and IANA will prime their systems by exchanging 30% of random observations 

across the entire in-situ sensor agent grid prior to the full metric experiments for all 

scenarios.

For the metric experiments, three different types of historical real-world scenario 

data were taken from Wolfram Mathematica (2011): Blizzards, Near-Blizzards, and 

Non-Blizzards. In Blizzard scenarios, a definite and large overlap of high wind speed, 

low wind chill, and low visibility values, constituting one or more large blizzards, 

exists on the map. In Near-Blizzard scenarios, large patches of such values exist but 

do not always overlap to form blizzards. In Non-Blizzard scenarios, almost no 

patches of such values exist and blizzards are never present. For these experiments, 

30 Blizzards, 30 Near-Blizzards, and 30 Near-Blizzards were selected from real-

world weather situations from Russia, China, and the United States using historical 

weather data from 2000 to 2010. For each real-world scenario, both CNO’s and 

IANA’s agents use the same pseudo-random number generator seeds to ensure they 

prime themselves with exactly the same random observations from that scenario.

To test scalability, each of these 90 scenarios were tested for three different in-situ 

Sensor Web grid sizes: 25 sensor stations, 36 sensor stations, and 49 sensor stations. 

As mentioned earlier, each sensor station is associated with a single agent. These grid 

sizes were chosen because they represent perfect square grids of increasing size. This 

results in a total of 270 test situations.

For each of the 270 test situations, only a single CNO experiment is performed. 

This is because, given a particular scenario, CNO’s sensor agents will always make 
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the same local observations and, given the same random seed for priming, they will 

always start with the same random observations for a scenario. Thus, given a 

particular scenario and random seed, CNO’s sensor agents will always exchange the 

same scenario summaries and Kalman Filtering on those summaries will always 

produce the same results.

However, for each of the 270 test situations, 10 IANA experiments are performed. 

This is because sensor agents in IANA may produce different conclusions depending 

on what order the agents in the system execute the SoD protocol. This can be 

explained with the following hypothetical scenario. An agent A starts with all three of 

its local observations as relevant and agent B starts with zero of its local observations 

as relevant. If, at the start of the simulation, A is the first agent that contacts agent B, 

the agents are guaranteed to disagree because A will have one of each type of field 

argument and B will have zero field arguments. Therefore, A will send the relatively 

large message containing all three of its observations. However, if other agents near A 

had contacted B first, it is likely that they will agree and the observation exchange 

will not occur. Depending on the combination of agent communications, more or less 

communication may have taken place. Also, more or less premature agreements 

between agents may have taken place, resulting in more or less accuracy.

With the experiments performed for the 270 CNO tests and and 2700 IANA tests, 

the comparative performance of the two systems will now be analyzed using each 

metric.
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7.3.1 MESSAGE COST

Figure 40 shows the means and standard deviations over all the experiments for 

message cost. As predicted, for each individual type of scenario, CNO performs 

better than IANA. For Blizzards (represented by a circle), CNO’s message cost was 

directly below IANA’s. The same pattern holds for Near-Blizzards and Non-

Blizzards: for each type of scenario, CNO’s performance was better than IANA’s. 

The SoD protocol used by IANA uses more communication than CNO’s simple 

situation summary exchanges (along with a few single observation exchanges).

However, also as predicted, the omega-squared effect size of this lower 

communication cost advantage is very low, far below 0.1 and close to 0.0, as can be 

seen in Figure 41. This means that, from the perspective of omega-squared effect 

size, CNO’s victory was extremely small, an almost imperceptible advantage.

Figure 40. Message Cost Means and Standard Deviations.
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Figure 41. Effect Size of CNO Message Cost Advantage.

7.3.2 MESSAGE AMOUNT

Figure 42 shows the means and standard deviations for message amount. As 

predicted, IANA performed worse, using more messages due to its SoD protocol, 

which exchanges many small messages to verify agreement or disagreement.

Figure 43 shows the omega-squared effect size of CNO’s lower message amount 

advantage. As predicted by our hypothesis, the effect size for CNO on Near-Blizzards 

and Non-Blizzards were undeniably small (0.4 or smaller). However for Blizzards, 

the results were not as predicted by our hypothesis. The effect size was very close to 

0.4, and in the case of the 35 sensor grid, higher than 0.4, making the effect size 

advantage for Blizzards barely medium. This means that, if low message amount is 

absolutely necessary for an application, and a high amount of sensing situations are 
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expected (Blizzard scenarios in this case), there is a medium effect-size advantage to 

using CNO’s situation summary exchange combined with Kalman Filtering 

approach.

Figure 42. Message Amount Means and Standard Deviations.
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Figure 43. Effect Size of CNO Message Amount Advantage.

7.3.3 TOTAL ACCURACY

Figure 44 shows the means and standard deviations for mean total accuracy. As 

predicted, IANA had a higher accuracy for all sensing scenarios. In addition, its 

accuracy was always over 90% and close to 100% in many cases. CNO was never 

quite able to achieve mean accuracy over 90% and was typically closer to 70%.

Figure 45 shows the effect size of the higher total accuracies that IANA had over 

CNO. As predicted by our hypothesis, the effects size advantage for IANA for 

Blizzards and Near-Blizzards was always large or very close to large (above 0.8 or 

very close to 0.8). This was also true for Non-Blizzards where the sensor grid size 

was 49. However, for Non-Blizzards where the grid size was 25 or 49, the results 

were not as predicted by our hypothesis. For the agent grid size of 25, the effect size 
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advantage of IANA was only small and for the agent grid size of 36, the advantage 

was only medium.

Referring back to Figure 44 and comparing the two systems for Non-Blizzards for 

grid sizes 25 and 36 reveals why this is the case. For both situations, the standard 

deviations were unusually high. The accuracy for CNO varied largely in these 

situations, from about 70% to 100% and from about 55% to 100%, respectively.

Intuitively, this makes sense because, for the Non-Blizzard scenario, very few 

observations meet any kind of relevant conditions related to fields or phenomena. So 

it is understandable that, in these scenarios, the CNO system could infer very badly or 

very well, depending on whether it was lucky enough to reach the correct Kalman 

Filtering consensus on all of the very few relevant areas of interest or only about 55 

to 70 percent of them.

It is noteworthy that, despite these two anomalous low effect sizes: for the tested 

scenarios, IANA always has a higher mean accuracy than CNO, almost always with a 

large or nearly large effect size, and always has a mean accuracy higher than 90%. 

For these reasons, despite the two anomalous low effect sizes, IANA is still 

recommended over CNO if high detailed model accuracy has any significance to an 

application. It is also noteworthy that the scenarios that these low effect sizes 

occurred for were the Non-Blizzard scenarios, which are scenarios where only a low 

amount of sensing situations are occurring.
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Figure 44. Total Accuracy Means and Standard Deviations.

Figure 45. Effect Size of IANA Total Accuracy Advantage.

7.3.4 SUPER REGION ACCURACY

Figure 46 shows the means and standard deviations for super region accuracy. As 
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predicted, IANA had higher accuracy for all sensing scenarios.

Figure 47 shows the effect size of the higher super region accuracies that IANA 

had over CNO. Contrary to our hypothesis, the super region accuracy for IANA did 

not have a high effect size advantage over CNO. In fact, the effect size advantage for 

all scenarios and grid sizes was close to medium (about 0.4).

Combining this result with the message amount effect size results from Figure 31 

allows an interesting conclusion. If an application meets the following conditions, it 

may be reasonable to use CNO rather than IANA:

1) All that is needed is a reported super region of overall high sensing activity 

(i.e., a detailed account of the sensing situation, as provided by total 

accuracy, is not required).

2) High accuracy for this super region is not absolutely necessary.

3) Low message amount is absolutely necessary.

4) A high amount of sensing activity (e.g., as would happen in a Blizzard 

scenario) is expected. If an application does not meet all of these special 

conditions, IANA should be preferred, due to its large effect size accuracy 

advantages and small effect size communication disadvantages under all 

other tested circumstances.

It should be noted that the standard deviations in Figure 46 for CNO are 

significantly larger for CNO than for IANA. Due to this, if consistency in super 

region accuracy is important to an application, IANA should be preferred. Finally, 

despite only having a medium effect size advantage over CNO, IANA still has higher 
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super region accuracy than CNO, so if high super region accuracy is important for an 

application, IANA should be preferred.

Figure 46. Super Region Means and Standard Deviations.

Figure 47. Effect Size of IANA Super Region Accuracy Advantage.
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7.3.5 SUPER STRENGTH ACCURACY

Figure 48 shows the means and standard deviations for super strength accuracy. As 

predicted, IANA had higher accuracy for all sensing scenarios.

Figure 49 shows the effect size of the higher super strength accuracies that IANA 

had over CNO. As predicted by our hypothesis, the effects size advantage for IANA 

for Blizzards where the sensor grid size was 36 or 49 was very close to large (close to 

0.8). Contrary to our hypothesis, the super strength accuracy for IANA did not have a 

high effect size advantage over CNO for any other scenarios. For grid size 36 and 49 

on Near-Blizzards, and grid size 25 for Blizzards, the effect size was medium. For all 

other scenarios, the effect size was small. Also, unlike the super region accuracies for 

CNO, the standard deviations in Figure 48 are comparable to (though still generally 

larger than) those of IANA.

However, it should be noted that all of IANA’s mean super region accuracies are 

higher than 85% and, with the exception of Non-Blizzards, CNO’s accuracies are all 

about 75% or lower. For Non-Blizzards, IANA’s accuracies are still higher than 

CNO’s but CNO’s all indeed average at 90% or above.

Some reflection on the nature of the super strength metric is relevant as well. The 

super strength metric is a sum total of relevant observations in the scenario 

(observations that can be used to build arguments for blizzards or their field sub-

arguments). As such, the super strength metric is only a single value. For a sensor 

grid of size 25, the highest possible super strength value is 75, since at most 3 
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observations per sensor are relevant. For a sensor grid of size 49, the highest possible 

value is 147. 

As observed earlier, the scenario type that CNO performed best on in comparison 

to IANA was Non-Blizzard. We have referred back to the data the evaluator used to 

judge super strength in the Non-Blizzard scenarios. The highest possible super 

strength value in these scenarios for the sensor grid size of 49 was 14. The value was 

lower for smaller sensor grid sizes and often zero. For comparison, in the Near-

Blizzard scenarios, the highest super strength value for the sensor grid size of 49 was 

48. The value was usually 20 or higher for a grid size of 49 and 10 or higher for other 

grid sizes.

As the Bayesian and Dempster-Shafer approaches to Sensor Fusion demonstrate, 

sometimes detection versus non-detection is an important issue in-situational 

modeling (Prakken, 2010; Hong et al., 2009). But it should be noted that this is 

basically the type of situational modeling that the Non-Blizzard scenario begins to 

reduce to for the metric of super strength. As opposed to the Blizzard and Near-

Blizzard scenarios, for which super strength modelling is actually an issue of both 

detecting activity and accurately judging its magnitude.

In summary, this was still a victory for IANA but, for Near-Blizzards and Non-

Blizzards, not as strong a victory as predicted.
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Figure 48. Super Strength Accuracy Means and Standard Deviations.

Figure 49. Effect Size of IANA Super Strength Accuracy Advantage.

7.4 Summary

Matching closely to the hypothesis, IANA was found to outperform the Kalman 
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Filtering system in terms of total accuracy with mostly large and medium effect sizes. 

To summarize the results of the CNO experiments: if low message amount is 

absolutely necessary and a high amount of sensing activity is expected, then the 

Kalman Filtering approach used had acceptable accuracy (though still lower accuracy 

than IANA) when used for overall general values like super region and super 

strength. However, if the primary concern is message cost, then IANA is clearly the 

better choice, especially if a highly detailed and accurate model of the situation is 

required. It should also be noted that random observation priming was necessary 

prior to the execution of the Kalman Filtering approach to achieve acceptable (~70%) 

accuracy results. As shown in the Complete Data Sharing chapter, this priming is not 

necessary for IANA using the SoD protocol to achieve high (~90%) accuracy results. 

And with priming, IANA achieved nearly perfect (~95%) accuracy results.
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8 Conclusion

8.1 Contributions

This dissertation makes multiple theoretical contributions. Its theoretical 

contributions are primarily in the field of Computational Argumentation. In the 

chapter Evidentialist Foundationalist Argumentation (EFA), we formally established 

a new type of evidence-based argumentation. This argumentation is theoretically 

interesting because it is based solely on sensor observations from the physical world. 

Its possible applications reach beyond Sensor Webs to other domains of engineering 

as well as the areas of law, business, medicine, politics, and education. EFA is a 

unique instantiation of the well-established ASPIC framework for argumentation 

(Prakken, 2010). This dissertation also makes theoretical contributions to Sensor 

Webs by providing a new type of Sensor Fusion protocol and mechanism through 

IANA, which was detailed in the chapter Investigative Argumentation-based 

Negotiating Agents. A final major theoretical contribution is that IANA provides a 

concrete implementation and application of EFA.

EFA can be seen as representative of the Evidentialist approach to epistemology 

(Conee et al., 2004). EFA appears to be the first approach to Computational 

Argumentation explicitly based on Evidentialist epistemology. Also, since EFA has 
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been shown to be an extension of the ASPIC framework, it inherits the satisfaction of 

all the rationality postulates that the framework satisfies in Prakken (2010). Some 

specific contributions of EFA are the properties of quantifiable and verifiable 

evidence and a special type of defeasible rule called a calculation rule which is 

specifically applicable to quantified premises. Through the concept of the calculation 

rule, EFA formalizes a way to calculate conclusions directly from their premises. 

Through Prakken’s framework, EFA can be employed in conjunction with the 

traditional concerns of attack and defeat in the Computational Argumentation 

literature, using evidence amount ordering.

This dissertation also makes multiple experimental contributions are to the fields 

of Computational Argumentation, Sensor Webs, and Multi-Agent Systems. It 

provides experimental justification for the usefulness of Computational 

Argumentation. It provides a comparison of argumentation (IANA), complete sharing 

(CDS), and Kalman Filtering (CNO) approaches for Sensor Fusion. It provides an 

experimental demonstration of the utility of Sensor Webs. And finally, It provides an 

experimental demonstration of the utility of Multi-Agent Systems. These 

experimental contributions are found in the chapters titled Experiments, Complete 

Data Sharing, and Conclusion Negotiation Only.

As hypothesized, CDS was found to have a small effect size advantage in terms of 

accuracy and message amount, while IANA had a large effect size advantage in 

terms of message cost. This means that unless considerably higher message cost is 

acceptable to achieve maximal accuracy and minimal message amount, it is more 
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suitable to use IANA than CDS, due to its nearly maximal accuracy and nearly 

minimal message amount and considerably lower message cost. A lower message 

cost means less time spent broadcasting messages which in turn means less power 

consumption. In other words, CDS is marginally more accurate and uses marginally 

fewer messages but has a huge cost in terms of total message size.

Matching closely to the hypothesis, IANA was found to outperform the Kalman 

Filtering system in terms of total accuracy with mostly high and medium effect sizes. 

To summarize the results of the CNO experiments: if low message amount is 

absolutely necessary and a high amount of sensing activity is expected, then the 

Kalman Filtering approach used had acceptable accuracy (though still lower accuracy 

than IANA) when used for overall general values like super region and super 

strength. However, if the primary concern is message cost, then IANA is clearly the 

better choice, especially if a highly detailed and accurate model of the situation is 

required. It should also be noted that random observation priming was necessary 

prior to the execution of the Kalman Filtering approach to achieve acceptable (~70%) 

accuracy results. As shown in the Complete Data Sharing chapter, this priming is not 

necessary for IANA using the SoD protocol to achieve high (~90%) accuracy results. 

And with priming, IANA achieved nearly perfect (~95%) accuracy results.

8.2 Limitations and Future Work

There are many ways that EFA could be further extended and investigated. There are 

many other types of geophysical phenomena that could be monitored using the 
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Sensor Fusion approach of EFA using the SoD protocol, such as volcanos (Kedar et 

al., 2008) and earthquakes (Scott et al., 2004). For such applications, EFA using the 

SoD protocol could be experimentally tested against other competitors in Sensor 

Fusion such as other approaches to Kalman Filtering using the metrics employed here 

or other metrics to be defined. There are also completely different types of Sensor 

Web modeling applications that EFA could be applied to, such as ‘Smart Home’ 

monitoring (Hong et al., 2009) or engine fault detection (Basir et al., 2007). Also, 

Sensor Webs are just one type of application for EFA. Given that it is founded on the 

concept of organizing quantifiable and verifiable evidence, it has applicability to a 

wide variety of fields, since such evidence plays some role in most scientific and 

engineering applications and even in business applications. For example, EFA could 

have direct applications to the organization and investigation of electronic health 

records.

Also, it is noteworthy that in our experimental implementation of EFA, the 

calculation rules we used assumed complete and accurate data. Calculation rules 

could also be developed for detecting and correcting for missing or inaccurate sensor 

information. The communication order used in IANA’s execution of the SoD protocol 

was also linear in nature. It is plausible that the order of selection of communication 

partners could improve performance if it were based on the geometry of the expected 

argument conclusions. For example, for the circular regions used in this application, it 

may be most advantageous for agents to communicate first in a circular pattern to 

agents that are far away from them.
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Finally, many theoretical extensions to EFA are possible. The use of the many 

possible specific types of calculation rules can be explored. Specific groups of 

calculation rule types could possibly be generalized. The relationship between 

calculation rules and traditional rules in argumentation can be explored. One issue of 

interest is what kind of isomorphism can be established between traditional rules and 

calculation rules, assuming the use of a knowledge base with quantifiable members. 

The framework could possibly be formally extended in such a way that calculation 

rules can be calculated by other calculation rules, a concern related to the derivation 

of defeasible inference rules found in Prakken et al. (1997). Also, the use of the 

evidence amount ordering preference can be explored theoretically. Because 

evidence-based arguments can differ dramatically in their strength based on the Gate 

function employed by their calculation rule, sometimes by orders of magnitude, this 

is related to the theoretical question of just how much stronger one argument is than 

another, and what practical implications this may have for the use of arguments with 

strengths that are orders of magnitude smaller or larger than other arguments. Another 

important theoretical question is when it is appropriate to investigate in an attempt to 

find evidence to build the strength of an evidence-based argument that currently has a 

low strength compared to a competing argument that currently attacks and defeats it. 

Also, different types of evidence-based sub-arguments could be explored and 

generalized. Here, the question of whether there are certain evidence-based 

arguments that are broadly employed as sub-arguments to larger evidence-based 

arguments across a wide variety of problem domains is relevant. This direction of 
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inquiry is related to the many important argument pattern generalizations, for 

example those made in Bex et al. (2003) and Walton et al. (2008), except specifically 

applied to arguments built on quantifiable and verifiable evidence as defined in this 

dissertation.

8.2.1 ARGUMENTATION-BASED NEGOTIATION

A natural future application of EFA is Argumentation-Based Negotiation (ABN), 

where agents negotiate the use of a resource based on the arguments they have for 

using it. Using evidence amount ordering, combined with calculation rule gate 

functions, agents can collaboratively agree on which agent has the greater argument 

for utilizing a resource.

Specifically, at the beginning of the conflict leading to the need for negotiation, 

each agent begins with a database of arguments and a leading argument about the 

conflict. This is exemplified in the Sensor Web domain in Figure 50, where two 

agents are negotiating over the use of a wind sensor.

Figure 50. Each agent presents its argument for the use of the wind sensor.
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The agents could just decide which agent gets to use the resource based solely on 

comparative argument strengths. However, this could potentially miss important 

opportunities. What if Agent B has evidence that would make Agent A’s argument 

stronger or vice-versa? Or what if, upon exchanging evidence, Agent A finds an 

argument in its database that would make it prefer using a different resource, leading 

to the mutually beneficial situation where Agent A concedes and Agent B may take 

the resource originally in conflict? The modification of argument databases based on 

exchanged evidence can lead to many useful and unpredictable consequences. 

Therefore, it may be important that the agents extract and exchange the evidence used 

in their arguments to update their respective databases. This situation is shown in 

Figure 51.

Figure 51. Each agent extracts the evidence used for its own argument and shares 
it with the other agent. The agents then update the arguments in their argument 

databases using the new evidence.

Another advantage of sharing evidence is that, upon its exchange, the agents 
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would have all the information necessary to reach mutual agreement. While other 

negotiation protocols focus on competition, this protocol focuses on consensus and 

cooperation. The final expected result of such a negotiation is shown in Figure 52.

Figure 52. Following the exchange of evidence, the agents are able to reach 
consensus on the decision of which agent should receive the resource.

This future work is possible using this dissertation as a foundation for 

implementing arguments in EFA. Another important extension would be developing a 

database data structure to store agent argument collections. Agreement could still be 

determined using the SoD protocol. For example, if one agent agreed that the other 

agent needed the resource more urgently, it could simply acquiesce. A new protocol 

would be needed for the exchange and reevaluation step, should the agents disagree. 

Finally, a new concrete problem domain would need to be determined as a basis for 

experiment.
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