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Abstract 

 

 

While significant progress has been made in recent years on technology enabled 

assessments (TEAs), including assessment systems that incorporate scaffolding into the 

assessment process, there is a dearth of research regarding psychometric scoring models that 

can be used to fully capture students‘ knowledge, skills and abilities as measured by TEAs.  

This investigation provides a comparison of seven scoring models applied to an operational 

assessment system that incorporates scaffolding into the assessment process and evaluates 

student ability estimates derived from those models from a validity perspective.   

A sequential procedure for fitting and evaluating increasingly complex models was 

conducted.  Specifically, a baseline model that did not account for any scaffolding features in 

the assessment system was established and compared to three additional models that each 

accounted for scaffolding features using a dichotomous, a polytomous and a testlet model 

approach.  Models were compared and evaluated against several criteria including model 

convergence, the amount of information each model provided and the statistical relationships 

between scaled scores and a criterion measure of student ability.  

Based on these criteria, the dichotomous model that accounted for all of the scaffold 

items but ignored local dependence was determined to be the optimal scoring model for the 

assessment system used in this study.  However, if the violation against the local 

independence assumption is deemed unacceptable, it was also concluded that the polytomous 

model for scoring these assessments is a worthwhile and viable alternative.  In any case, the 

scoring models that accounted for the scaffolding features in the assessment system were 

determined to be better overall models than the baseline model that did not account for these 
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features.  It was also determined that the testlet model approach was not a practical or useful 

scoring option for this assessment system.  

Given the purpose of the assessment system used in this study, which is a formative 

tool that also provides instructional opportunities to students during the assessment process, 

the advantages of applying any of these scoring models from a measurement perspective may 

not justify the practical disadvantages.  For instance, a basic percent correct score may be 

completely dependent on the specific items that a student took but it is relatively simple to 

understand and compute.  On the other hand, scaled scores from these scoring models are 

independent of the items from which they were calibrated from, but ability estimates are more 

complex to understand and derive.  As the assessment system used in this study is a low 

stakes environment that is mostly geared towards learning, the benefits of the scoring models 

presented in this study need to be weighed against the practical constraints within an 

operational context with respect to time, cost and resources.  
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Chapter One – Introduction 
 

Context of Study 

 

In 2001, congress passed the No Child Left Behind (NCLB) Act which requires all 

students within each state to be tested on their specific state curriculum standards.  These 

statewide mandated tests are intended to measure student proficiency with respect to state 

standards which is in turn, a reflection of school effectiveness.  As a result of this legislation, 

the need for efficient, precise, and beneficial assessment systems has grown. In other words, 

educators and policymakers need assessment systems that can provide the biggest bang for 

their buck.  Furthermore, educators and researchers have also claimed that assessment 

procedures need to be altered in order to not only provide encouragement and motivation but 

also to ensure that all students will be capable of succeeding (Arter, 2003; Stiggins, 2005).  In 

other words, there is now consensus within the field that assessments need to support and 

encourage learning rather than just measure it.   

In response to this need to support student learning, assessments that provide teachers 

and students with formative data and feedback that can be used to guide teaching and learning 

activities have grown in popularity.  Formative assessment has been defined as a process used 

by teachers and students during instruction that is intended to provide feedback to adjust 

ongoing teaching and learning to improve students‘ achievement of intended instructional 

outcomes (CCSSO, 2006).  Since Black & Wiliam‘s (1998) detailed synthesis of the literature 

on formative assessment which outlined the positive learning effects of formative procedures, 

educators have increasingly integrated tools and assessments to be used formatively into the 

classroom.    
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Advances in technology have only enhanced researchers‘ and policymakers‘ interest 

in advancing the state of assessment tools including those to be used for formative purposes. 

States are increasingly incorporating technology into their testing programs in order to 

provide greater efficiency, to better model effective instructional methods, and to more 

accurately measure student proficiency (Almond et al, 2010, Bechard et al, 2010).  These 

technological innovations have placed the possibility of integrating instruction with 

assessment at the forefront of assessment development (Koedinger, McLaughlin, & 

Heffernan, 2010).  Test developers are beginning to experiment with innovative item types 

that require students to interact and manipulate information on a computer screen while 

demonstrating deeper levels of knowledge and understanding (Almond et al, 2010).  There are 

several types of interactive assessments and assessment strategies made possible through 

technology that have the potential to provide feedback to students and teachers during the 

assessment process (Bechard et al, 2010). One such strategy is to incorporate instruction into 

assessment using scaffolds.    

  Instructionally, scaffolding can be used to help students understand content or 

concepts by providing appropriate supports geared towards their current learning and/or 

cognitive capabilities (Almond et al, 2010). Scaffolding, if applied appropriately to an 

assessment environment, allows for more accurate measurement of students‘ knowledge and 

skills by providing supports to students that allow them to respond to a task at a level that fits 

with the students‘ individual needs and abilities. That is, assessment tasks can be built to 

provide students with the opportunity and choice to engage in construct-relevant supports 

when they encounter an item (Almond et al, 2010).  
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This study utilized data from an existing assessment system, known as the 

Assistments
1
, which currently incorporates scaffolding into the assessment process.  This 

assessment system presents students with published state assessment test items.  If students 

provide a correct response they are given a new one, otherwise they are provided with a small 

―tutoring‖ session.  The tutoring session breaks down the original item into more manageable 

skill-based tasks and provides hints to guide the student if he or she has difficulty.  By doing 

this, the system is able to differentiate students who get the original item wrong at first but 

need different levels of tutoring to get the problem correct eventually (Feng, Heffernan, & 

Koedinger, 2009). 

Research Questions 

As the field of educational assessment continues to evolve in conjunction with 

advancements in technology and assessment systems grow in complexity and value, a need 

exists for developing ways to score these assessments. This study contributes towards 

addressing that need by investigating different scoring models that can be applied to 

scaffolded item types which take into account whether and how a scaffold is used in an item 

response.  Such a scoring model has the potential to provide an efficient measure of student 

ability which may ultimately be used to gage student progress towards end of the year 

assessments.  

The purpose of this research is to help advance the development and use of assessment 

systems that utilize technological innovations and specifically those that incorporate 

scaffolding into the assessment process.  The goal is to make recommendations about optimal  

________________________ 

1
 Data provided by Assistments. © Worcester Polytechnic Institute. www.assistments.org 
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scoring models that can be used for scaffolded assessments based on the characteristics of the 

scaffolds utilized in the example assessment system.  Specifically, the research questions in 

this study are as follows:  

1) What type of model is the optimal scoring model for the scaffolded data provided 

by the Assistments system? 

a. Which scoring model produces the best model fit for the system?  

b. Which scoring model produces the most precise measures of student ability? 

c. Do the benefits associated with the better fitting model outweigh any practical 

concerns due to model complexity? 

2) Is there a relationship between student ability estimates derived from the scoring 

models and a criterion measure of student achievement?   

a. Do any of the scoring models provide student ability estimates that predict a 

criterion measure of student ability better than a simple percent correct score? 

b. Do the models that account for the scaffolding features have a stronger 

relationship with a criterion measure of student achievement than the models 

that do not account for those features? 

c. Do the models that account for the local dependence have a stronger 

relationship with a criterion measure of student achievement than the models 

that do not account for the dependence? 

Significance of Study 

In the current age of accountability, there is an increasing need for teachers to 

assimilate instruction with assessment (Koedinger, McLaughlin, & Heffernan, 2010).  

Teachers need frequent and accurate measurements of their students‘ knowledge, skills and 
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abilities without consuming valuable instruction time.  The use of technology enabled 

assessments has the potential to address these needs (Bechard et al, 2010). Integrating 

scaffolds into assessment tasks which emulate what teachers do in the classrooms provides 

students with individualized instruction while measuring what they know and don‘t know.  In 

order to provide teachers with the most accurate measures of their students‘ abilities, one must 

investigate how these types of scaffolded tasks should be scored.  This investigation 

contributes towards that goal by providing a comparison of scoring models for an operational 

scaffolded assessment system and evaluating student ability estimates derived from those 

models from a validity perspective.   
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Chapter Two - Literature Review  

           

Scaffolding 

 The first use of the term ―scaffolding‖ in psychological research was proposed by 

Wood, Bruner & Ross (1976) to describe the process by which a child or novice is able to 

solve a problem or achieve a goal that would otherwise be beyond the child‘s or novice‘s 

ability.  This process was described as ―…the adult ‗controlling‘ those elements of the task 

that are initially beyond the learner‘s capacity, thus permitting him to concentrate upon and 

complete only those elements that are within his range of competence‖ (p. 90).  While Wood 

et al. (1976) did not explicitly make the connection in their original research, many have since 

connected the concept of scaffolding to Lev Vygotsky‘s 1930‘s concept of the zone of 

proximal development (Cazden, 1979; Bruner, 1986, Holton & Clarke, 2006; McNiell, 

Lizotte, Krajcik, & Marx, 2006; Sharpe, 2006; Shepard, 2005; Wood, 1988). Vygotzky (1978) 

described the zone of proximal development (ZPD) as ―the distance between the actual 

developmental level as determined by independent problem solving and the level of potential 

development as determined through problem solving under adult guidance or in collaboration 

with more capable peers. The zone represents the potential for a child‘s development when 

aided by others‖ (p. 86).  From this, it is clear that the concept of scaffolding was implicit 

within Vygotsky‘s envision.        

More recently, scaffolding has become commonly used in educational contexts to 

describe ―the precise help that enables a learner to achieve a specific goal that would not be 

possible without some kind of support‖ (Sharpe, 2006, p. 212).  Thus, scaffolding in this 

context is the amount of assistance that a learner needs to achieve a goal within the learner‘s 

ZPD.  In other words, if a scaffold is to enhance student learning, it needs to reside within a 
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students‘ current ZPD (McNeil et al., 2006). A scaffold that provides too much support may 

result in a less challenging task and decreased motivation while a scaffold that does not 

provide enough support may result in anxiety and frustration for the learner (McNeil et al., 

2006).  Thus, scaffolding is the means to which learners can reach their potential development 

as hypothesized by their zone of proximal development. 

Features & Characteristics. While the metaphor used to describe how scaffolding is 

applied to the context of learning and development varies across researchers (Stone, 1998a; 

Stone 1998b), there are several key theoretical features and characteristics that are common 

across successful scaffolding systems.  For instance, Puntambekar & Hubscher (2005) 

delineate four central features that are necessary for successful scaffolding: role of the expert, 

shared understanding of the goal, ongoing diagnosis, and fading.  The most critical of these is 

the role of the expert (Puntabmekar & Hubscher, 2005). The traditional concept of scaffolding 

assumed that a single, more knowledgeable person, such as a parent or a teacher, helped an 

individual learner by providing him or her with the appropriate amount of help he or she 

needed to move forward (Wood, et al, 1976). More specifically, Wood et al. (1976) suggest 

that there are six key functions or responsibilities of the expert in scaffolded instruction: (1) 

recruitment, or engaging the learner in a meaningful activity; (2) reduction in degrees of 

freedom, or simplifying the activity into manageable components; (3) direction maintenance, 

or keeping the learner on-task; (4) marking critical features, or emphasizing the main 

elements of the task; (5) frustration control, or attending to the situation so as to reduce the 

frustration level without creating a dependency issue; and (6) demonstration, or providing a 

model of the correct method for the learner (p. 98). 
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Furthermore, scaffolding should incorporate a common understanding of the goal of 

the task between the expert and the learner (Puntambekar & Hubscher, 2005).  Rogoff (1990) 

referred to this as ―intersubjectivity‖ or shared understanding such that both the expert and the 

learner take ownership of the task. Another aspect that is vital to successful scaffolding is the 

role of ongoing diagnosis which provides the expert with information about the learner‘s 

current state of understanding which serves as the basis for a calibrated system of support 

(Puntambekar & Hubscher, 2005). This leads to the final element of successful scaffolding as 

delineated by Puntambekar & Hubscher (2005) which is the fading process of the support 

system.  That is, a transfer of accountability from the expert to the learner needs to occur such 

that the scaffolding can be removed and the learner is capable of independent activity 

(Puntambekar & Hubscher, 2005).  Vygotsky referred to this cognitive process that occurs 

first on an interpsychological plane and then moves on to an intrapsychological plane, 

internalization (Vygotsky, 1978).  Puntambekar & Kolodner (2005) delineated similar 

features but also emphasized a dialogic and interactive component between the expert and 

learner such that interactions can provide ongoing assessment of the learner but also allow the 

learner to be actively engaged in the scaffolding process.      

Scaffolding Schemas.  Researchers have defined and described various schemas to try 

and capture the many facets of scaffolding (Azevedo, 2004; Cagiltay, 2006; Hannafin, 1999; 

Holton, 2006; Pea, 2004).  Drawing on a modified framework originally proposed by Pea 

(2004), the concept of scaffolding can be broken down into several main components which 

are described as the who, what, and how of scaffolding.  In its traditional form, the who of 

scaffolding would have been efficiently explicated as the tutor, adult expert or more 

competent peer (Bruner, 1985).  More recently however, the who of scaffolding has been 
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extended to incorporate internal scaffolders as well as technological scaffolders (e.g., 

Cagiltay, 2006; Holton, 2006).  Holton (2006) proposes that there are three types of 

scaffolders: expert scaffolding, reciprocal scaffolding, and self-scaffolding.  Expert 

scaffolding involves a scaffolder with a primary responsibility to help others learn while 

reciprocal scaffolding involves collaboration with another on a common task such that 

differing ability levels interact to provide a form of scaffolding (Holton, 2006).  Both of these 

definitions are at least partially inherent in the traditional description of scaffolding proposed 

by Wood et al (1976).  However, self-scaffolding is a relatively modern addition to the notion 

of scaffolding and involves situations in which new content is being learned and an individual 

is able to provide scaffolding for him or herself (Holton, 2006).  For example, a learner who 

knows that he or she is primarily a visual learner may draw him or herself a diagram to 

understand the organization of a new concept.  Furthermore, as information technologies 

become integrated into learning environments scaffolding is now being provided by means of 

computer software (Cagiltay, 2006; Quintana et al, 2004; Reiser et al, 2001).  As discussed 

later in this review, software-realized scaffolding attempts to embed the concept of 

scaffolding into a computer-based environment.   

  The what and how of scaffolding are related ideas and described as the functions and 

mechanisms of scaffolding by Hannafin (1999).  That is, the functions emphasize the purpose 

of the scaffold while the mechanisms emphasize the methods through which the scaffolding is 

provided (Hannafin, 1999).  The what and how of scaffolding are typically divided into four 

main categories: conceptual, metacognitive, procedural, and strategic (Azevedo, 2004; 

Cagiltay, 2006; Hannafin, 1999). Conceptual scaffolding helps learners rationalize through 

complex or commonly misunderstood concepts; it guides learners about what to consider as 



10 

 

they reason through a task (Hannafin, 1999). Conceptual scaffolding is frequently 

demonstrated through methods such as providing hints and prompts at appropriate times 

during the learning process, providing outlines or graphical displays of content, and 

highlighting key concepts (Cagiltay, 2006; Hannafin, 1999).  Metacognitive scaffolding 

supports the learner with how to think when learning; it guides learners on how to manage 

their own learning processes (Hannafin, 1999). Methods used to exhibit this type of 

scaffolding include evaluating progress, modeling cognitive strategies, and suggesting self-

regulating strategies and milestones for the learner to consider (Hannafin, 1999).  Learners are 

encouraged to reflect on their own learning processes by answering questions posed by the 

scaffolder and responding to the scaffolder‘s critiques (Cagiltay, 2006; Hannafin, 1999). 

Procedural scaffolding supports the learner with how to utilize resources and tools within a 

particular learning environment (Cagiltay, 2006; Hannafin, 1999).  Hannafin et al point out 

that this type of scaffolding is ―frequently provided to clarify how to return to a desired 

location, how to flag or bookmark locations or resources for subsequent review, or how to 

deploy given tools‘ (1999, p. 133). This type of scaffolding can be operationalized through 

tutoring on given tools, functions, and features.  Finally, strategic scaffolding guides learners 

with how to analyze or approach a learning task or problem (Hannafin, 1999). In other words, 

it supports necessary skills for solving a problem such as identifying, evaluating and applying 

relevant information and knowledge and evaluating alternate problem-solving strategies.  

Methods through which strategic scaffolding can be achieved include providing start-up 

questions to be considered by the learner, alerting learners to helpful resources, or providing 

the learner with worked examples or solution paths of peers or experts (Azevedo, 2004; 

Cagiltay, 2006; Hannafin, 1999).   
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 While other researchers have delineated the who, what and how of scaffolding through 

different schematic themes than those described here, proposed concepts appear to be 

encompassed by the definitions described above in one way or another.  For example, Holton 

(2006) describe the what of scaffolding with two main scaffolding domains: conceptual and 

heuristic.  Holton (2006) explain that conceptual scaffolding emphasizes the development of 

conceptual development or content while heuristic scaffolding emphasizes the development of 

―heuristics for learning or problem solving that transcend specific content‖ (2006, p. 134).  

Clearly both domains described by Holton (2006) can be encompassed by the conceptual and 

strategic categories in the schema presented above.  Other researchers have described the how 

of scaffolding in various ways as well.  For instance, Pea (2004) specifically describes this 

function using two groups of assistance: channeling and focusing, and modeling.  Channeling 

and focusing reduces ―the degrees of freedom for the task at hand‖ and focuses the ―attention 

of the learner by marking relevant task features‖ (Pea, 2004, p. 432). Modeling, on the other 

hand, generally models more advanced solutions to a problem (Pea, 2004).  While these two 

types of assistance may embody mechanisms beyond those described above, the notions 

underlying each can be defined by the schema above.  That is, the methods used to elicit 

conceptual as well as reflective scaffolding are similar to the ideas of channeling and 

focusing; channeling as a way of breaking down a problem into conceptually easier to 

understand parts and focusing as a way of guiding the learner to reflect on his or her own 

attention to the task at hand.   

Computer-based Scaffolding  

 With the advancement of technology as well as increased demands for more ambitious 

learning environments, the idea of scaffolding has been adopted in research on technological 
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supports for instruction in more recent years (Hannafin & Land, 1997; Puntambekar & 

Hubscher, 2005; Quintana et al, 2004, Reiser, 2004).  Researchers in the educational 

technology field posit that software can be used to scaffold students by providing support that 

enables learners to succeed in complex tasks and extend the range of learning experiences 

(Davis & Linn, 2000; Guzdial, 1994; Guzdial & Kehoe, 1998; Reiser, 2002).  In this sense, 

scaffolding refers to cases in which the tool changes the task such that the learner can achieve 

a goal that would otherwise be beyond their own abilities (Reiser, 2004).  While many 

contend that human scaffolding is more beneficial to learners than computerized scaffolding 

due to the human‘s ability to detect subtle cues from the learner (Holton & Clarke, 2006), 

others have recognized that it is not always feasible for experts to provide every learner the 

one-to-one tutoring that may be needed (Cagiltay, 2006; Puntambekar & Hubscher, 2005; 

Stone, 1998a; Stone 1998b).  Furthermore, group work or peer tutoring can also be 

problematic for several reasons.  First of all, peers working together do not necessarily 

intentionally calibrate their level support based on a diagnosis of their partner‘s understanding 

(Puntambekar & Hubscher, 2005).  Secondly, while some peers may be more knowledgeable 

than others, that does not necessarily translate to effective feedback either due to the lack of 

confidence in that knowledge or the lack of verbal skills needed to express that knowledge 

(Puntambekar & Hubscher, 2005).   

In any case, while human scaffolding undoubtedly has its advantages over 

computerized scaffolding, the latter may also provide other benefits that are not apparent in 

the former such as individual tutoring.  As Guzdial (1994) points out, the challenge for 

educational technology researchers is to provide the same scaffolding an effective teacher 

provides in the classroom environment but in a software environment.  In other words, ideally 
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the designer of the software is defining and creating scaffolding as the teacher but through the 

mechanism of the software (Guzdial, 1994). Thus, the goals of computerized scaffolding are 

the same as traditional scaffolding in that it attempts to facilitate student performance and 

learning (Guzdial, 1994).  

Efficacy of Computer-based Scaffolding.  Software designers have argued that 

instructional software tools can support learners by providing needed structure for difficult 

tasks in the form of scaffolds (Davis & Linn, 2000; Guzdial, 1994; Reiser, 2002).  In general, 

ways in which software tools provide support to learners to help them solve complex tasks 

include constraining the task itself, providing organizational structure, making processes and 

strategies more apparent (Puntambekar & Hubscher, 2005), providing feedback and 

suggestions during the learning process, and eliciting articulation (Guzdial, 1994).  While 

research on the direct effects of many of these supports on student performance and learning 

is sparse, the findings that are available are positive.  For example, Davis & Linn (2000) 

studied the effects of the Knowledge Integration Environment (KIE) software which 

incorporates prompts that require students to provide explanations and to reflect on their work 

at selected points of the project.  Their investigations suggest that prompts, tailored to the 

specific task at hand, can influence student performance by lessening the cognitive load on 

students and by reminding them how to accomplish the activity (Davis & Linn, 2000).  Chang 

(2001) compared groups of students that received scaffolding to learn science content versus 

those that did not receive scaffolding within the context of a computer-based concept mapping 

system.  The scaffolding mechanisms in this study were an incomplete framework of an 

expert concept map as well as specific hints and feedback that describe student performance 

in reference to a completed expert concept map.  Their findings suggest that the feedback 
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function may not only reduce the student frustration but also further promote students‘ 

positive attitudes and participation in the map construction process (Chang, 2001).  Thus, it 

appears that integrating scaffolding into software tools has the potential to reduce the 

cognitive complexity of tasks and support correct processes which may help reduce learner 

frustration and help learners develop a positive perspective towards the learning task.    

 With respect to the effects of student learning, Guzdial et al. (1998) sought to support 

students to learn and develop computer programming skills, and their analysis of student 

actions while creating programs suggested that learners using a scaffolded tool produced 

better programs with less effort.  More recently, Koedinger et al. (2010) used quasi-

experimental data from a web-based tool that incorporates scaffolding in the form of 

decomposing the problem into sub-tasks as well as the availability of hints, to analyze the 

learning outcomes of students who used the tool versus those who did not.  Findings indicated 

that students who used the tool performed better on the year-end exam than those who did not 

use it; however, due to the lack of random assignment of students in the study, caution was 

given with regard to implications that the tool caused the difference in performance.  Perhaps 

more compelling is a review of the literature on Cognitive Tutors which are described as 

interactive software learning environments that provide various kinds of assistance to students 

as they learn complex cognitive skills (Koedinger & Aleven, 2007).  While the assistance 

provided in these cognitive tutoring systems are not necessarily referred to as scaffolds, their 

features closely resemble those of traditional scaffolds (e.g., hints and suggestions for correct 

solution paths, error feedback messages).  In summarizing their review, Koedinger & Aleven 

(2007) concluded that classrooms that use Cognitive Tutors show significant learning 

advantages over classrooms that do not involve computer tutors. More importantly, they 
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found that the research provides ―suggestive evidence‖ for positive learning gains for the use 

of on-demand hints as well as for the use of error feedback messages that are intended to 

make learning more explicit (Koedigner & Aleven, 2007).  

While these investigations suggest that computer-based scaffolding can have a 

positive impact on student learning, more research is needed to warrant any conclusions.  

However, it is not surprising that there is a lack of experimental data in this area due to the 

complex nature of the classroom environment and the role that technology plays in that 

environment.  In fact, as Koedinger & Aleven point out, technology should not be thought of 

―as a panacea to the achievement problems in education‖ (2007, p. 491) and that technology 

alone does not increase learning outcomes.  That is, there are many contextual variables that 

can mediate the effects of a technological tool including implementation procedures, teacher 

expertise, support and training, and student readiness to use the tool.  

Features & Characteristics.  Features and characteristics of computer-based 

scaffolds are theoretically the same as those in traditional scaffolding.  In other words, the 

four scaffolding features described previously can potentially be applied to scaffolds provided 

in software tools (Puntambekar & Hubscher, 2005).  For example, the role of the expert in a 

computer-based environment (as mentioned previously) ideally is based on what the teacher 

would provide the learner in the classroom but transmitted through the software tool (Guzdial, 

1994). Shared understanding of the goal of the activity can also be achieved in a computer-

based environment through preparation or staging activities that are intended to set the ―stage‖ 

for the main activity which is typically more complex.  These staging activities can be used to 

set expectations and increase learner motivation (Puntambekar & Hubscher, 2005).  The 

scaffolding features of ongoing diagnosis and fading are more problematic in a computer-
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based tool due their inherent dynamic and adaptive nature.  Puntambekar & Hubscher (2005) 

argue that while many of the tools that purport to provide scaffolding actually don‘t due to 

their lack of adaptability to the student‘s level of understanding.  Tailoring student support has 

most commonly been addressed in scaffolded cognitive tools by embedding the scaffolds 

within the structure of the tool as prompts or as representations (Reiser, 2004). Thus, these 

tools may be adaptable in the sense that they are in the control of the learners who can opt to 

utilize or ignore them.  Pea (2004) explains that there is also concern that many software 

features may function as scaffolds-for-performance such that desired performances are only 

continuously achieved when learners utilize the scaffolds; that is, they do not function as 

scaffolds-with-fading.  However, he further explains that as society increasingly relies on 

technology, the issue of scaffold-fading in software tools may become obsolete. 

Educators, policymakers, and learners need to weigh the perceived risks affiliated with 

the loss of such support with the value of the incremental effort of learning how to do 

the task or activity unaided should such tools and supports ever become inaccessible, 

and the answer has to do with the social and technological assumptions humans make. 

As we approach a world in the coming years with pervasive computing with always-

on Internet access, reliable quality of service networks, and sufficient levels of 

technological fluency, the context assumptions that help shape cultural values for 

distributed intelligence versus scaffolding with fading are changing (Pea, 2004, p. 

442).   

 

Even with, and perhaps due to the apparent complexities involved in operationalizing 

some of the key features of scaffolds within a software system, advances in technology and 

design has necessitated a theoretical framework for developing and evaluating scaffolding 

approaches in software tools (Quintana et al., 2004).  In their proposal for such a theoretical 

framework, Quintana et al. (2004) describe seven guidelines that define ways in which tools 

modify the task to help learners succeed: (1) use representations and language that connect 

with learners‘ prior conceptions; (2) organize tools and interactions with tools around the 
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specific semantics of the discipline; (3) provide multiple representations of the information 

for the learner to explore and manipulate; (4) provide task structure so that learners can 

visualize next steps; (5) embed access to expert guidance; (6) automate nonsalient tasks to 

reduce cognitive load; and (7) facilitate articulation and reflection.  While not necessarily a 

comprehensive list, these guidelines can serve as a basis for understanding the potential a 

software system has to instantiate scaffolding.      

Technology Enabled Assessment 

In response to federally mandated state accountability testing issued by NCLB, state 

departments of education are increasingly pressured to develop more effective and efficient 

strategies for measuring student performance.  However, defining and developing these 

strategies has been a relatively slow process such that current testing methods do not serve the 

educational community as well as they should (Tucker, 2009).  Tucker (2009) further 

discusses the direction of technology and education testing as envisioned by a research 

scientist by the name of Randy Bennett.  Bennett envisioned in the late 1990s while at 

Educational Testing Service (ETS), that educational testing would reinvent itself in three 

stages (Tucker, 2009). The first stage would emphasize the use of technology to automate 

existing testing formats and processes. The second stage would involve using technology to 

develop more sophisticated test items, formats and scoring procedures to more accurately 

measure students‘ skills and abilities. The third stage envisioned was one in which assessment 

and teaching merged for the purposes of differentiating instruction and increasing learning 

outcomes (Tucker, 2009). While many of Bennett‘s envisions have not been fully enacted 

(Tucker, 2009), researchers and state departments of education are increasingly seeking and 
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adopting technological innovations to improve their assessment systems (Almond et al, 2010; 

Bechard et al, 2010; Koedinger, McLaughlin, & Heffernan, 2010; Tucker, 2009).  

Technology enabled assessments (TEAs) are assessments that utilize technology to 

perform some function of the assessment process such as in the administration, scoring, or 

reporting of results (Bechard et al. 2010; Quellmaz & Pelligrino, 2009).  TEAs have the 

capability of using interactive stimulus environments, innovative item formats, a greater range 

of response formats, and can more efficiently score, archive and report assessment results 

(Bechard et al., 2010; Quellmalz & Haertel, 2005).  As such, TEAs are purported to increase 

testing efficiency, model effective teaching practices and provide more accurate 

measurements of student proficiency (Almond, et al; Bechard et al. 2010; Quellmaz & 

Pelligrino, 2009; Tucker, 2009). As Tucker (2009) points out, technology can not only 

dramatically improve assessment practices but more importantly, it can improve teaching and 

learning as well.   

 Aside from increased efficiency and innovation in design, TEAs have the potential to 

reveal cognitive skills and processes that may otherwise be undetected (Quellmalz, 2004). For 

instance, process indicators of performance may be documented that lead up to the final 

answer which could capture how a student arrived at his or her answer (Bennett, Persky, 

Weiss, & Jenkins, 2007).  Similarly, complex cognitive skills such as scientific inquiry skills 

including identifying and evaluating relevant information, planning and conducting 

experiments, and interpreting results, may be more readily accessible through the use of 

technology (Puntambekar & Hubscher (2005).   

 Formative Use of TEAs.  Formative assessments, which are the activities and 

processes undertaken to provide teachers and students feedback intended to differentiate 
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instruction and guide learning activities, can have a positive impact on student outcomes 

(Black & Wiliam, 1998; Kingston & Nash, 2010).  Researchers contend that there are 

promising uses of TEAs for formative purposes (Almond et al, 2010; Koedinger et al, 2010; 

Quellmalz & Pellegrino, 2009; Tucker, 2009) such that technology is now capable of 

supporting the data collection and analysis as well as the individualized feedback and 

scaffolding needed in the formative use of assessment (Brown, Hinze & Pellegrino, 2008). 

Thus, it appears that potential exists to improve student learning outcomes by utilizing 

technological innovations within the formative assessment process.     

As a tool used in the formative process, TEAs can also help promote the integration of 

assessment with instruction.  As schools and teachers struggle to ameliorate the tensions 

associated with high-stakes testing (e.g., loss of instructional time and possible ―teaching to 

the test‖), these tensions beg the question as to how best to achieve accountability while 

maintaining optimal instructional practices (Koedinger, et al., 2010).  As a vehicle for 

differentiated instruction, TEAs used formatively can provide students and teachers with 

direct and specific feedback they need to adjust teaching and learning activities while 

collecting assessment data in preparation for the summative test.  In a sense, technology used 

in the formative assessment process is intended to extend and even emulate good teaching 

practices, not transform or replace them. That is, while the cognitive theory underlying such 

technologies may be intended to transform or enhance instructional practices, the technology 

itself is only meant to facilitate the instantiation of cognitive principles (Quellmalz, 2004; 

Tucker, 2009). 

Scaffolded Assessments.  One strategy used to integrate instruction with assessment 

as well as advance the state of TEAs is to incorporate scaffolding directly into the assessment 
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making the test itself a learning experience (Almond et al., 2010; Bechard et al., 2010; 

Camacho, 2009: Koedinger et al, 2010; Thissen-Roe, Hunt & Minstrell, 2004).  Scaffolds in 

this context, ―allow students who would otherwise get the item wrong to demonstrate what 

they do know about the item/task content‖ (Almond et al., 2010, p. 27).  These scaffolds can 

be viewed as construct relevant supports that can assist students to respond more completely 

to an assessment item.  While expectations for student performance remains the same, the 

opportunity for student responses across the ability continuum (i.e., including low-level 

ability students) is broadened (Almond et al., 2010).    

Arguably one of the most appealing benefits of incorporating scaffolding into an 

assessment system is that the need for student performance data is addressed while 

simultaneously providing instructional assistance to students, thereby preventing the loss of 

instructional time that usually occurs during the assessment (Koedigner et al., 2010). 

Furthermore, Bechard et al., explain how ―current psychometrics and test designs consistently 

yield relatively low levels of precision or high levels of measurement error for students at the 

―extremes‖ of performance‖ (2010, p. 23), including students with disabilities. This lack of 

precision can lead to invalid interpretations of test scores and a misrepresentation of students‘ 

knowledge, skills and abilities which can ultimately lead to teachers making misinformed 

instructional decisions (Bechard et al., 2010).  These researchers further explain that TEAs, 

such as those that incorporate scaffolding, have the potential to extend and adapt student 

performance particularly at the extremes, which can increase test score variability and thereby 

increase the reliability and validity of test score interpretations (Bechard et al, 2010).  

 Specific Examples of Scaffolded Assessments.  There are at least two illustrative 

research projects that explicitly focus on incorporating instructional assistance in the form of 
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scaffolding into an assessment system: Assistments (Feng, Heffernan, & Koedinger, 2006a, 

2006b; Koedinger, McLaughlin, & Heffernan, 2010) and Children‘s Progress Academic 

Assessment (CPAA, Camacho, 2009).  While other assessment or software programs may 

exist that incorporate scaffolding into the assessment process, these were the only two that 

were found in the literature by this researcher that were overtly characterized as assessments 

with scaffolding.  For instance, an innovative program known as the DIAGNOSER (Thissen-

Roe, Hunt & Minstrell, 2004) is a web-based adaptive instructional tool that is used as a 

formative assessment tool to provide continuous feedback to students and teachers.  Although 

this system achieves the goal of merging instruction with assessment, it does so by 

emphasizing student and teacher feedback intended to illustrate student misconceptions about 

―facets‖ of knowledge (Thissen-Roe, Hunt & Minstrell, 2004) rather than through scaffolding.  

Conversely, there are numerous instructional software tools that incorporate various types of 

scaffolding features to assist learners to achieve a specific learning goal such as to design a 

computer program or scientific experiment (e.g., the Biology Guided Interactive Learning 

Environment, Reiser et al., 2001; Learning by Design™, Kolodner et al., 2003; Knowledge 

Integration Environment, Linn,1995; and Model-It, Jackson, Krajcik, et al., 1998, Jackson, 

Stratford et al., 1998); however, none of these tools are specifically intended for the purposes 

of gathering student assessment data.  The focus of the present study is on the Assistments 

system.     

The Assistments System.  The Assistments system is a web-based mathematics 

cognitive tutor developed for middle school students for the purposes of addressing the need 

for assessment while simultaneously providing instruction to students (Koedinger et al., 2010; 

Heffernan & Heffernan, 2008). As such, the self-described name ―Assistment‖ was coined by 
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co-founder of the program, Ken Koedinger to express the assistance that students receive 

during the assessment (Koedinger et al., 2010).   The ultimate goal of the Assistments project 

is to help students increase learning and achieve proficiency on their state accountability test.   

 Assistments function as an assessment tool by collecting data on a variety of metrics 

including the typical correct/incorrect responses to all questions (including scaffolded 

questions described below) but also measures of the amount of assistance needed by a student 

to complete an item in the form of number of hints requested, response time, and number of 

opportunities to practice (Koedinger et al., 2010).  As students complete an Assistment, the 

system gathers information to determine strengths and weaknesses of the individual student as 

well as of the whole class. This information can be used formatively to guide subsequent 

teaching and learning activities (Koedinger et al., 2010). 

Assistments also function as an instructional tool, first by breaking down items into 

requisite skills and knowledge components, and second by providing hints to assist the learner 

throughout the test that are made available upon the learner‘s request (Koedinger et al., 2010).  

These broken down knowledge components, or scaffolded questions, are intended to more 

precisely determine where a student‘s misconception lies if he or she provides an incorrect 

response to an item.  For instance, a geometry question that involves understanding the 

concept of congruency may also require measurement skills (e.g., to understand the concept 

of perimeter) as well as skills in patterns, relations and algebra (e.g., to solve equations).  

While the original item might address congruency, the scaffolded questions would address 

each of these requisite skills needed to answer the original item correctly. Hints, on the other 

hand, are described as ―suggestions on how to proceed and often appear as a definition or 

question similar to what a human tutor might ask or say‖ (Koedinger, 2010, p. 494).  A 
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student can ask for a hint at any time during the assessment when he or she is confused or 

does not know how to proceed.    

Figures 1 – 5 display an example Assistment item (adapted from Heffernan & 

Heffernan, 2008) with accompanying scaffold questions and hints.  The example item is based 

on the concept of congruency of triangles which is broken down into several knowledge 

components that students need to know to be successful on this item.  Specifically, students 

need to know geometry to understand the meaning of congruent triangles; measurement to 

understand what and how to apply the concept of perimeter, as well as patterns, relations and 

algebra to understand how to solve an equation and expressions (Heffernan & Heffernan, 

2008).   
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Figure 1. Example Assistments main item on congruent triangles. Adapted from Heffernan, 

N. & Heffernan, C. (2008). Assistments: Teacher‘s Manual. Retrieved from 

http://teacherwiki. Assistment.org/wiki/images/8/8b/Teachermanualsinglesided.pdf. 
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Figure 2. First scaffold question for the example Assistments item on congruent triangles. 

Adapted from Heffernan, N. & Heffernan, C. (2008). Assistments: Teacher‘s Manual. 

Retrieved from http://teacherwiki.Assistment.org/wiki/images/8/8b/Teachermanualsingle 

sided.pdf. 

 

 This student answered the original item on congruent triangles incorrectly.  He or she 

was then directed towards the first scaffold question which addresses the congruence skill 

(geometry) apart from the other skills required in the original question.  This student answered 

the first scaffold question correctly without the use of any hints. 
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Figure 3. Second scaffold question for the example Assistments item on congruent triangles. 

Adapted from Heffernan, N. & Heffernan, C. (2008). Assistments: Teacher‘s Manual. 

Retrieved from http://teacherwiki.Assistment.org/wiki/images/8/8b/Teachermanualsingle 

sided.pdf. 
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 This student did not know how to answer the second scaffold question (i.e., a 

measurement skill) and requested all three hints available for this question.  The student did 

not select the correct answer and was provided a buggy message that responded to the specific 

error the student made.  The last hint always shows the correct answer so that the student is 

able to move on to the next scaffold question. 

 
 

Figure 4. Third scaffold question for the example Assistments item on congruent triangles. 

Adapted from Heffernan, N. & Heffernan, C. (2008). Assistments: Teacher‘s Manual. 

Retrieved from http://teacherwiki.Assistment.org/wiki/images/8/8b/Teachermanualsingle 

sided.pdf. 

 

 The third scaffold question deals with patterns, relations and algebra.  This student 

answered the question correctly without requesting any hints.  
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Figure 5. Fourth scaffold question for the example Assistments item on congruent triangles. 

Adapted from Heffernan, N. & Heffernan, C. (2008). Assistments: Teacher‘s Manual. 

Retrieved from http://teacherwiki.Assistment.org/wiki/images/8/8b/Teachermanualsingle 

sided.pdf. 

 

 The last scaffold question returns to the original item and asks the student to try it 

again, now with the knowledge and understanding of the individual steps needed to answer it 

correctly.  If the student solved the previous scaffold questions correctly, the last step needed 

is a basic multiplication problem (i.e., 5 x 2).   

The original Assistment items were based on previously published Massachusetts 

Comprehensive Assessment System (MCAS) test items and are both multiple-choice format 
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and open-ended, fill-in-the-blank questions.  As displayed in Figure 6 below, the Assistment 

process can be described as follows: (Koedinger et al., 2010; Feng et al., 2006a; Feng et al., 

2006b; Heffernan & Heffernan, 2008): 

 An item is presented. 

 Student provides correct response: the next item is presented.    

 Student provides incorrect response: a ―tutoring‖ session is provided.  The tutoring 

session involves presenting the student a series of scaffolded questions that break 

the original item down into knowledge components or steps.  The number of 

scaffolded questions associated with each item depends on the number of 

independent skills needed to complete the question. 

 Student does not provide a response. That is, the student is confused and does not 

know how to proceed.  The student has the option to go directly to the scaffolded 

questions to help him know what to do next. 

o The first scaffolded question is presented and the student has the option 

of accessing a number of hints to help him or her determine the correct 

answer to the scaffolded question.  The last hint essentially gives the 

correct answer to the question so that the student does not get become 

frustrated if he or she does not know the correct answer.  

o Once the student has answered all the scaffolded questions, he or she is 

presented with a form of the original item again and given the 

opportunity to respond.   
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Figure 6. Assistments item example flowchart. 

Main Item 

Correct Response Move to next item 

Incorrect Response 
or requested 
"breakdown" 

Scaffolding  process 
begins 

Scaffold 
Item 1 

Hint 1  

Hint 2 

Hint 3 

Scaffold 
Item 2 

Hint 1  

Hint 2 

Hint 3 

Scaffold 
Item 3 

Hint 1  

Hint 2 

Hint 3 

Student responses to 

items and the number 

of hints a student 

accessed are tracked 

for each scaffold item. 

In this diagram, there 

are 3 scaffold items, 

each associated with 

3 possible hints (for 

simplicity).  

However, the 

number of scaffold 

items can vary and 

the number of hints 

associated with 

scaffold items can 

vary.  
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Currently, students receive scores on Assistments based on whether the student 

answered the original item correctly or incorrectly upon the first presentation of that item.  If 

students choose to go directly to the scaffold questions without providing a response, the item 

is scored as incorrect. Thus, any time a student receives assistance, the student does not 

receive any credit on that item regardless of performance on the scaffolded questions.  Keep 

in mind that the teacher also has access to these student performance measures such as the 

number of hints requested and the number of correctly answered scaffold items which can 

effectively be used for formative purposes.  However, the percent correct score for the main 

test items does not account for the amount of assistance needed; if assistance is needed, it is 

reported as incorrect.  In other words, partial credit for scaffolded questions is not given in the 

percent correct score.      

Scoring Scaffolded Assessments.  It is apparent that significant progress has been 

made in recent years in the area of TEAs, particularly illustrated by the innovative assessment 

systems that incorporate scaffolding into the assessment process.  However, the area of 

psychometrics has yet to venture directly into these advancements in technology to determine 

how statistical methods and procedures can be used to fully capture students‘ knowledge, 

skills and abilities as measured by TEAs (Almond et al., 2010; Bechard et al, 2010; Bennett & 

Gitomer, 2009).  As Bennett & Gitomer note, the state of technology and assessment relies 

not only on advances in learning theory, cognitive science and technology but it also depends 

on advancing psychometric approaches that characterize how the student interacts with the 

assessment. Almond et al. (2010) explicitly state this topic as an area of research that is 

needed to advance the state of TEAs.  That is, what types of scoring models can be used, that 
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are currently used in the field or those used in other fields, to provide valid inferences about 

students‘ performance on scaffolded assessments (Almond et al., 2010)?    

While the field of psychometrics has been relatively slow to progress in this area, 

research conducted specifically on the Assistments system has been more advanced.  There is 

a continuous body of research that focuses specifically on predicting state assessment scores 

with the various metrics obtained during the Assistment process.  Methods for predicting state 

exam scores have included using monthly aggregates of Assistments metrics (Anozie & 

Junker, 2006), students‘ skills sets from a Bayes nets approach (Pardos, Heffernan, Anderson 

& Heffernan, 2006), linear growth curve models for student performance (Feng, Heffernan & 

Koedinger, 2006a), a linear logistic test model to account for skill type (Ayers & Junker, 

2006), and the Rasch model for dichotomous responses (Ayers & Junker, 2008).  While each 

of these methods has demonstrated various degrees of success (or non-success) in predicting 

state assessment performance, these researchers continue to seek models that can reduce 

prediction errors and account for the unique instructional features of the system (Ayers & 

Junker, 2006; Feng, Heffernan & Koedinger, 2006).        

Purpose of Research 

The purpose of this research is to help advance the development and use of TEAs, 

specifically those that incorporate scaffolding into the assessment process by comparing 

several different scoring models for an example assessment system and evaluating criterion-

related validity evidence for the scoring models.  Specifically, the research questions in this 

study are as follows: 

1) What type of model is the optimal scoring model for the scaffolded data provided by 

the Assistment system? 
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a. Which scoring model produces the best model fit for the Assistment system?  

b. Which scoring model produces the most precise measures of student ability? 

c. Do the benefits associated with the better fitting model outweigh any practical 

concerns due to model complexity? 

2) Is there a relationship between student ability estimates derived from the scoring 

models and a criterion measure of student achievement?   

a. Do any of the scoring models provide student ability estimates that predict a 

criterion measure of student ability better than a simple percent correct score? 

b. Do the models that account for the scaffolding features have a stronger 

relationship with a criterion measure of student achievement than the models 

that do not account for those features? 

c. Do the models that account for the local dependence have a stronger 

relationship with a criterion measure of student achievement than the models 

that do not account for the dependence? 

As this research is exploratory in nature, formal hypotheses are not presented.  In 

general, as models progress in complexity and account for more specific features of the data, 

it is reasonable to believe that model fit will improve and ability estimates will become more 

precise.  This does not necessarily warrant adoption of a more complex model, rather the 

simpler model may be judged to provide ―accurate enough‖ estimates more efficiently and at 

a more reasonable cost.  In any case, information will be presented for all models and a 

discussion will follow outlining the costs and benefits associated with each.   

Item Response Theory & Assumptions   
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Item response theory (IRT) is now widely used to model data from educational and 

psychological tests, instruments and inventories. IRT is a statistical theory linking a trait (i.e., 

what the test purports to measure) and responses of examinees to assessment items through 

mathematical models.  That is, it models the probability of success on an item given examinee 

traits or ability levels and item characteristics (Hambleton, Swaminathan & Rogers, 1991). 

IRT is based on a monotonically increasing logistic curve known as the item characteristic 

curve (ICC).   

IRT operates under a set of common assumptions and properties. While the 

assumptions of unidimensionality and local independence are often discussed as two 

assumptions, they are, for all intents and purposes, the same.  The unidimensionality 

assumption states that only one trait is measured by the items that make up the test (i.e., the 

test measures only one construct).  Items on a test are considered to be unidimensional when a 

single factor or trait accounts for a substantial portion of the test score variance (Hambleton, 

Swaminathan & Rogers, 1991).  In this sense, all the items are ―tapping‖ into a common 

construct.  The local independence assumption states that item responses are independent of 

each other, given ability.  In other words, the correlation between item responses should equal 

zero when examinee ability is partialed out.  Thus, the abilities that are specified in the model 

are the only factors that influence examinee responses and if the unidimensionality 

assumption holds, then there is only one factor that accounts for the entire latent ability space 

(Hambleton, Swaminathan & Rogers, 1991).  These assumptions are commonly violated one 

in many operational contexts and they are discussed in further detail in subsequent sections of 

this paper.   
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IRT models further maintain two desirable properties when the model fit the data: the 

nature of the ICC and parameter invariance.  The nature of the ICC models the probability of 

success based on a monotonically increasing function such that higher trait or ability levels 

results in a higher probability of success on a given item.  The property of invariance states 

that item parameters are invariant over samples of examinees and ability parameters are 

invariant over samples of items from, within the linear transformation that accounts for the 

arbitrariness of the scale.  That is, the parameters that characterize an item do not depend on 

the ability distribution of the examinees and the parameters that characterize an examinee do 

not depend on the set of test items (Hambleton, Swaminathan & Rogers, 1991).   

IRT models permit one or more traits to be included as well as the use of dichotomous 

or polytomous data.  Thus, there are many different types of item response models that may 

differ in the mathematical form of the item characteristic function or in the number of 

parameters specified in the model (Hambleton, Swaminathan & Rogers, 1991).  However, all 

models contain at least one item parameter and at least one examinee parameter.  Several item 

response models are described in the following sections which focus first on basic 

dichotomous models followed by unidimensional polytomous models, and finally a 

description of a type of multidimensional model known as the testlet model.   

 Dichotomous IRT Models. Dichotomous IRT models describe the nonlinear 

relationship between examinee trait level and the probability of correctly responding to an 

item when the item has only two scoring options (i.e., correct or incorrect; x = 1 or x = 0), 

such as a multiple-choice item with only one correct response. The three most commonly used 

dichotomous IRT models are: 1) the one-parameter logistic model (1PL; Rasch, 1960); 2) the 

two-parameter logistic model (2PL; Birnbaum, 1968); and 3) the three-parameter logistic 
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model (3PL; Birnbaum, 1968).  These models describe the relationship between examinee 

ability, θ, and the probability of a correct response with up to three parameters that 

characterize the item: the level of item difficulty, b, discrimination, a, and examinee guessing 

behavior or the lower    asymptote, c.  

The 1PL Model. The 1PL, or Rasch model (Rasch, 1960) allows for one item 

parameter which describes the level of item difficulty (b) or the location of the position of the 

ICC in relation to the ability scale. Specifically, it is the theta level (θ) that corresponds to the 

point of inflection of the ICC where the probability of answering the item correctly is 0.5.  In 

other words, the difficulty parameter is the value on the ability scale where the ICC slope is 

the steepest. The more difficult the item, the more the ICC shifts farther to the right. The ratio 

between examinee ability level and item difficulty are assumed to be constant in this model.  

Hence, as the b parameter increases, more ability is needed for an examinee to have a 50% 

chance of getting the item correct. The 1PL defines the probability of success (x = 1) for a 

person j with a given ability level (θj) on item i as: 
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where b is the difficulty parameter for item i. 

 The 2PL Model. The 2PL model was proposed by Birnbaum (1968) and allows for an 

additional item parameter which describes the degree to which the item discriminates between 

low ability and high ability examinees.  The discrimination parameter (a) is proportional to 

the slope of the ICC at point b, or the point of inflection on the ability scale (Hambleton, 

Swaminathan & Rogers, 1991).  Thus, the steeper the slope of the ICC, the more useful the 
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item is for distinguishing between high and low ability examinees. The 2PL model defines the 

probability of success as: 
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where a is the discrimination parameter for item i.  An additional element was added to this 

model which is described as a scaling factor, D. It was shown that when D = 1.7, the logistic 

function that this model is based on more closely resembled the normal ogive function 

(Birnbaum, 1968) which was the basis for the original 2PL model proposed by Lord (1952). 

 The 3PL Model. Finally, the 3PL model, also proposed by Birnbaum (1968), extended 

the previous model by further accounting for an item parameter that characterized examinee 

pseudo-guessing behavior (c). The c parameter effects the lower asymptote of the ICC and 

reflects the probability of low ability examinees correctly guessing the answer to an item. For 

instance, on a four option multiple choice item, an examinee will have a 25% chance of 

answering the item correctly simply by randomly choosing one of the options; thus, the lower 

asymptote is adjusted to 0.25 to account for the probability of guessing on this item. The 3PL 

model is displayed in Equation 3 below: 
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Overall, as parameters are added to the model, the more information is needed to 

estimate an examinee‘s probability of success on an item.  A sample dichotomously scored 

item is displayed in Figure 7 below to illustrate how the three parameters impact the ICC. The 

1PL model has a difficulty parameter equal to 1.0; the 2PL includes a discrimination 

parameter equal to 1.5; and the 3PL provides the additional pseudo-guessing parameter set at 

0.2. In the example 1PL model, an examinee with an average ability level (θ = 0.0) has a 50% 
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chance of answering the item correctly.  By adding the discrimination parameter in the 2PL 

model, the slope at that inflexion point becomes steeper; however.  Finally, by accounting for 

potential guessing behavior, the 3PL shifts the lower asymptote upward which means that an 

examinee with average ability actually has a 60% probability of success on the item.  Figure 8 

below displays the same item based on the 3PL model but details the each parameter value. 

 
Figure 7. ICCs of a dichotomously scored item based on the 1PL (b = 0.0), 2PL (a = 1.5) and 

3PL (c = 2.0) 
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Figure 8. ICC of a dichotomously scored item based on the 3PL (b = 0.0, a = 1.5, c = 2.0) 

 

Item & Test Information. In IRT the quality of an item is evaluated on the degree of 

measurement precision that it provides at a given ability level. This precision of measurement 

is known as the item information function (IIF) which indicates how useful an item is at 

differentiating examinees for any given ability level (Reise, Ainsworth & Haviland, 2005).  In 

other words, information functions indicate how useful an item is at distinguishing examinees 

of lower ability levels from those with higher ability levels; the more informative (or useful) 

an item is, the more precise it is at making these distinctions.  Information is a function of 

examinee ability (θ); a particular item could be very informative at some ability levels and 

uninformative at others.  For a dichotomous IRT model, the item information function, I i(θ), 

is expressed as: 
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In general, relatively easy items are more informative for discriminating among 

examinees low on the trait of interest whereas more difficult items are more informative for 

discriminating among examinees high on the trait (Reise, Ainsworth & Haviland, 2005).  For 

every item, as discrimination (a) increases, information increases; as the probability of 

guessing (c) the right answer increases, information decreases; and as difficulty (b) 

approaches ability, information increases (Hambleton, Swaminathan & Rogers, 1991).   

IIFs can be summed across an entire scale or test to create a test information function 

(TIF).  The information function for a test becomes: 
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where I(θ) is simply the sum of all IIFs at θ.  Since the contribution of each item to the TIF is 

independent of other items‘ contribution, items can be evaluated independently.  All things 

equal, adding more items to a test provides increased measurement precision.  In this sense, 

IIFs can be used to evaluate the usefulness of individual items in the context of developing a 

new test or reconstructing an old test.  The ability to add IIFs to create an information 

function for a test is the cornerstone of scale construction in IRT (Reise, Ainsworth & 

Haviland, 2005).   

The amount of information provided by a test at a given ability level, θ, is inversely 

related to the standard error of estimation, or the precision of ability estimation at that point 

on the ability scale. The standard error of estimation is defined as: 
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Polytomous IRT Models. Up until the late 1960‘s, IRT models used to handle 

dichotomous data were sufficient for handling most measurement situations.  When 

polytomous data presented itself, researchers simply dichotomized the data prior to analyses 

and typically used one of the previously described models.  It wasn‘t until Samejima (1969) 

proposed the graded response model which could account for polytomous data such as 

responses from items on a Likert scale, that research in this area started to emerge, at first 

slowly and then with more frequency in the 1980s (van der Linden & Hambleton, 1997).  

Since then many different types and variations of models have been developed to represent 

polytomous data. 

Polytomous IRT models are needed when items are scored according to multiple 

response categories (i.e., not scored simply as right or wrong). For example, polytomous data 

may be obtained from essay type items scored on a rubric, Likert scale items, items with 

possible partial credit such as multiple-step math problems, performance tasks, or portfolio 

assessments. Several benefits may be acquired from administering assessments that use 

polytomous items including: greater efficiency in that fewer polytomous items are typically 

needed to achieve the same degree of reliability as would be obtained with more dichotomous 

items, and certain traits are more easily measured and/or more accurately measured on rating 

scales (van der Ark, 2001).   

Thissen & Steinberg (1986) proposed that polytomous IRT (PIRT) models could be 

classified into two main categories: difference models and divide-by-total models.  Difference 

models include Samejima‘s (1969) graded response model while divide-by-total models are 

commonly represented by the partial credit model (PCM; Masters, 1982) and the generalized 

partial credit model (GPCM; Muraki, 1992). While difference models define the probability 
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of a response in category k as P*(k) – P*(k + 1), divide-by-total models define the probability 

of a response in category k or category k – 1 which results in an exponential that is divided by 

a sum of the total of all the exponentials (Thissen & Steinberg, 1986).  For the purposes of 

this paper, two related types of difference models are presented. 

Graded Response Model. The graded response model (GRM; Samejima, 1969) is 

appropriate to use with items that have two or more ordered response categories such as letter 

grading, performance evaluations, or partial credit given on a problem.  The GRM preserves 

the order of the score category thresholds, unlike the PCM or GPCM.  The GRM models the 

cumulative probability of an examinee obtaining a score in a given category (x) or higher with 

a given ability (θ).  Thus for any item, i, there are xi + 1 scoring categories where xi is the 

highest possible score, 0 is the lowest, and there are xi boundaries between categories.  For 

any given category, the model is the same as the dichotomous 2PL model and is described as,  
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where P*ix(θ) is the probability of scoring in category x or higher, i represents 1 to n number 

of items, and x represents the category boundaries for item i from 0 to the highest possible 

score for item i.  Moreover, ai is the discrimination parameter for item i and bix is the category 

boundary for category x of item i (Samejima, 1969) and D is a scaling constant equal to 1.7.  

Thus, the probability associated with each scoring category is derived by subtracting the 

cumulative probabilities for adjacent categories and can be defined as, 

* *
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Ordinal Response Model. The ordinal response model (ORM) is analogous to the 

GRM (Wang, Bradlow & Wainer, 2005); however, it defines the cumulative probability 
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slightly differently than the conventional form that is commonly used for the GRM.  

Specifically, the ORM models the cumulative probability of an examinee obtaining a score in 

a given category (x) or lower with a given ability (θ).  While the GRM predefines the 

probability of responding in or above the lowest category as equal to 1.0 and the probability 

of responding above the highest category as equal to 0.0, the ORM defines these two 

categories in reverse order.  That is, for the ORM the probability of responding at or below 

the highest category is equal to 1.0 and the probability of responding below the lowest 

category is by definition equal to 0.0.  According to Wang, Bradlow & Wainer (2005), the 

ORM defines the cumulative probability of scoring in a given category (x) or lower 

conditioned on θ as, 

*( )  Ф( ( ))ix x i iP k a b      (9) 

where Ф is the normal cumulative density function and kx, are the latent cutoffs.  The normal 

cumulative density function is approximately equal to the logistic function when θ is 

multiplied by the factor D = 1.7 (Hambleton, Swaminathan & Rogers, 1991).  Thus, for the 

ORM, the probability of scoring in a given category (x) is equal to,   
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Item & Test Information.  Since polytomous IRT models encompass multiple 

parameters to calculate the probability of response categories, producing the IIFs and TIFs is a 

more complex process than the process used for dichotomous IRT models.  The IIF for a 

polytomous item can be defined as (Samejima, 1969),  
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where Pix(θ) is the probability associated with obtaining a category score of x on item i, given 

ability, θ, and P ix(θ) is the first derivative of Pix(θ).  Formula 11 has been shown to be equal 

to,  
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where m is the number of categories and Pik(θ) is the probability that person with a given 

ability θ will be in score category k of item i (Dodd, De Ayala, and Koch, 1995; Veldkamp, 

2003). Similar to the dichotomous TIF, the polytomous TIF is the sum of the IIFs and it is 

related to the standard error of measurement by inversing the TIF.    

Bundle Models.  The models discussed thus far are based on the aforementioned 

assumption of local independence.  That is, item responses are independent of each other, 

given ability, such that the probability of obtaining a set of item responses is equal to the 

product of individual item probabilities.  Fitting standard item response models to groups of 

interdependent items may result in (1) bias in item difficulty estimates, (2) inflated item 

discrimination estimates, (3) overestimation of the precision of ability estimates, and (4) 

overestimation of test reliability and test information (Wang & Wilson, 2005a; Weng, Cheng 

& Wilson, 2005; Zhang, Shen & Cannady, 2000). These biased and overstated estimates can 

lead to inaccurate inferences about the parameters (Sireci, Thissen, & Wainer, 1991; Wainer, 

1995; Wainer & Thissen, 1996; Wang & Wilson, 2005a).  In any case, many operational 

testing situations utilize item groupings that have built in dependencies and do not support the 

assumption of local independence.  Thus, models have been developed to explain item 

dependencies that are unaccounted for by the latent trait by treating a group of interdependent 
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items as a unit where the units are assumed to be locally independent (Hoskens & De Beock, 

1997; Wainer & Kiely, 1987; Wilson & Adams, 1995).   

Units composed of interdependent items have been referred to as subtests (Andrich, 

1985), testlets (Wainer & Kiely, 1987), and item bundles (Rosenbaum, 1988; Wilson & 

Adams, 1995).   Wainer & Kiely (1987) originally denoted the term ―testlet‖ to describe 

locally dependent items in a computerized adaptive testing context that allows for different 

pathways of administered items.  On the other hand, Rosenbaum (1988) coined the term ―item 

bundle‖ to more generally describe items on a test that share a common stimulus or item stem, 

or have similar content or structure.  As Rosenbaum‘s description more closely aligns with the 

type of item grouping that occurs in the Assistments (i.e., original and scaffold items are 

based on common content), the term ―item bundle‖ is used throughout this paper to refer to 

the groups of items that are created by the scaffolding process.   

Rosenbaum (1988) proposed that to account for local item dependence, the local 

independence assumption could be reformulated to describe independence between item 

bundles rather than items themselves (Rosenbaum, 1988). Using the dichotomous Rasch 

model, item bundle models can be described, where xci is a response to item i in bundle c and 

the vector of responses to items in bundle c is xc = (xc1, xc2, …,xclc)' (Wilson and Adams, 

1995). Vector responses can be accumulated into a test response vector denoted x = (x'1, 

x'2,…, x'l)'.  The probability of the item response becomes  
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where δci is the item parameter for item i in bundle c.  Thus, a vector of item parameters 

belonging to each bundle c can be written as δ = (δ΄c1, δ΄c2,…δ΄C)΄.  Based on Rosenbaum 

(1988), bundle independence is then defined as 
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where ξ is the vector of item parameters and xc  is the probability of a bundle response.  

Following Wilson & Adams (1995), methods for analyzing item bundles typically 

adhere to two basic approaches which are characterized as either score-based or item-based.  

Score-based approaches use the summed scores on the items within a bundle as a starting 

point for modeling; these summed scores are then used to correspond to the response 

categories of an artificial polytomous item.  Item-based approaches, on the other hand, use 

item responses to single items as the starting point rather than summed scores.  Response 

patterns of an item bundle are treated as a unit rather than responses to single items (Wang et 

al., 2005; Wilson & Adams, 1995).  Both approaches rely on Rosenbaum‘s theorem for local 

bundle independence described above in that the likelihood of a response vector is the product 

of the probabilities of responses to the bundles rather than items (Wang et al., 2005; Zhang, et 

al., 2010).  Each of these methods is described in more detail in this section.  

Score-based Approaches. The score-based approach typically involves directly 

applying a polytomous IRT model to sets of items so that response patterns of item units are 

treated as categories in one polytomous ―super-item‖ (Sireci, Thissen, & Wainer, 1991; 

Thissen, Steinberg, & Mooney, 1989; Wainer, 1995; Wainer & Kiely, 1987).  Essentially, 

item scores are summed within each bundle such that when total scores are identical, they are 

assigned to the same category (Wang et al., 2005; Zhang, et al., 2010).  The bundle is then 
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scored polytomously and bundle item responses are calibrated using any of the various 

polytomous IRT models such as the GRM, the PCM, or the Rating Scale Model (Andrich, 

1978).  This approach maintains local independence across item bundles while eliminating 

dependencies within bundles which addresses issues related to the overestimation of test 

information that exist when dependencies are ignored.  However, one major shortcoming of 

this method is that information is lost in that the exact response patterns within the bundle 

(Wang et al, 2005; Wang & Wilson, 2005a; Wilson & Adams, 1995).  Thus, it has been 

suggested that the polytomous approach to scoring item bundles might be appropriate when 

the local dependence between items within a bundle is moderate and the test contains a large 

proportion of independent items (Wainer, 1995).  

Item-based Approaches.  Item-based approaches aren‘t as straightforward and vary in 

nature more so than the score-based approaches.  In general, these approaches account for 

local dependency within an item bundle by adding an additional component to the model that 

is either a random effect (Bradlow, Wainer & Wang, 1999; Wainer, Bradlow & Du, 2000; 

Wang, Bradlow, & Wainer, 2002) or a fixed effect (Hoskens & deBoeck, 1997).  The most 

common of these approaches in the educational measurement field is the testlet model 

approach (Rijmen, 2010) which adds a random effect parameter to model the local 

dependence among items within the same bundle (Bradlow, Wainer, & Wang, 1999; Wainer, 

Bradlow, & Du, 2000; Wang, Bradlow, & Wainer, 2002).  The random effect approach 

essentially views local item independence as a person characteristic rather than an item 

characteristic as is the case in the fixed effects approach (Wang & Wilson, 2005b).   

Testlet Response Model.  The Testlet Response Model (TRM) adds a random effect to 

the logit of either the 2PL (Bradlow, Wainer, & Wang, 1999) or the 3PL model (Wainer, 
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Bradlow, & Du, 2000; Wainer & Wang, 2000) to account for the interaction of person j with 

testlet d(i), the testlet that contains item i.  The testlet model approach is essentially a special 

case of the multidimensional IRT model since an additional latent trait is added to the model 

for every random effect component (Zhang, 2010).  The testlet response model based on the 

3PL is written as 
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The testlet parameter γd(i)j is a random effect and its sum over examinees within any 

testlet, is equal to zero (Wainer & Wang, 2000).  The random effect in this model is driven by 

its variance such that if its variance is zero there is no excess local dependence within that 

testlet meaning that the items in the testlet are conditionally independent.  As the variance of 

the effect increases so too does the amount of local dependence (Wainer & Wang, 2000).  The 

variances of the random effects in the 2PL are assumed to be constant across testlets.  Thus, 

while the testlet model based on the 3PL may account for additional variance across testlets 

produced by guessing behavior, ―parameter estimation of this model requires a more 

computationally intensive procedure that samples over the full grid of parameter values‖ 

(Wainer & Wang, 2000, p. 206).    

A simplified testlet model was developed by Wang and Wilson (2005a) known as the 

Rasch Testlet Model which can be can be written as   
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where Pji is the probability that examinee j correctly responds to item i and γd(i)j is a random 

effect for the interaction between person j and testlet d(i) (Wilson & Wang, 2005a). If there 
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are no testlet effects (γd(i)j = 0), equation (16) reduces to the dichotomous Rasch model 

(Wilson & Adams, 2005). 

Compared to the polytomous model approach discussed earlier, the testlet model 

approach has at least one major advantage in that the units of analysis are items rather than 

testlets; thus, the information in the response patterns is not lost (Wang & Wilson, 2005a).  

However, as testlet models require the addition of more parameters (one ability parameter for 

each bundle as well as an ability parameter for the test as a whole), these models can become 

quite complex which can increase time and efficiency in the estimation process (Zhang et al, 

2010).  Therefore, potential benefits of using testlet models should be weighed against the 

added complexity in data analysis (Zhang et al, 2010). 

Item & Test Information.  According to Wainer, Bradlow & Du (2000), IIFs in the 

context of the testlet response model can be defined as, 
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where tij = aj(θi – bj – γid(j)) for the testlet d(j) that includes item j.  Thus, the addition of the 

testlet parameter, γ, relocates the mode of the IIF (Wainer & Wang, 2000).  Repeating this for 

all items within a testlet would produce the testlet information function and for all items 

within a test for the TIF.   

Modeling Assistments Data  

The Assistments data that are the focus of this project consist of dichotomous 

responses to main items, dichotomous responses to scaffold items which assess the sub-skills 

that are required for correctly responding to the main item, dichotomous responses to the 

repeated presentation of the main item (this is always the last item presented in the scaffolding 
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process and simply restates the original item that was presented prior to the scaffolding), and 

a count of the number of hints that the student requested for each item.  Due to the common 

content as well as the nature of the presentation of the items that is created from the 

scaffolding process, local dependency naturally exists in this dataset.  Following Wainer & 

Kiely‘s (1987) outline for analyses in the presence of possible item dependency, data should 

first be fit to any basic dichotomous IRT model, assuming conditional independence and 

ignoring data structure.  If the model does not fit the data, create polytomously scored ―super-

items‖ and apply an ordered response model.  To address potential shortcomings of this latter 

model, (i.e., the loss of information in the response patterns) fit the data to a testlet response 

model to account for the interaction between person j and testlet d(i), where i is an item in 

testlet d (Wainer & Wang, 2000; Wang and Wilson, 2005a). 

Model Comparison.  While all models are wrong, some are useful (Box, 1979) and 

selecting a model can be viewed as approximating reality rather than identifying it (Burnham 

& Anderson, 2003).  The purpose of checking and comparing measurement models is to 

determine which model is most appropriate to use for a given dataset.  For example, a 

particular performance-based assessment that measures students‘ math ability across two 

content sub-domains may be adequately modeled by a simple unidimensional polytomous 

IRT model as well as a more complicated 2-dimensional polytomous model.  However, in 

order to know if the more simplistic unidimensional model is good enough or if a 

multidimensional model is necessary, model comparison techniques need to be employed.  

All things equal, more complex measurement models (i.e., models that incorporate more 

parameters) are intended to account for more of the variation in observed responses and thus 

are intended to provide a more accurate representation of the trait of interest.  On the other 
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hand, adding parameters to model means less data or information for each parameter which 

also increases computation time.  Thus, model complexity is not always desired.  In any case, 

there are several factors such as model simplicity, accessibility and cost-effectiveness that 

need to be considered in the decision to either retain or reject a particular model. Thus, the 

goal of model selection is to identify the most parsimonious model that remains consistent 

with the purpose of the study and adequately accounts for the essential features of the dataset 

(Pitt, Kim & Myung, 2003).   

In the present study, evaluations of models are based on several criteria; however, 

these practical constraints are also considered in the discussion section of this paper. Methods 

for model comparison are discussed in the following chapter.  Also keep in mind that these 

models are evaluated in the context of a specific assessment system that employs a specific 

method for scaffolding.  There are other scaffolding mechanisms that could be applied to an 

assessment system (e.g., hints only or adaptive content) that may fit a different measurement 

model better.   

Summary  

 The concept of scaffolding has been applied to many different types of educational 

contexts with the goal of assisting students achieve their learning goals.  One relatively recent 

application of scaffolding has been within the framework of formative assessment.  Through 

the use of technology, formative assessments have the potential to accomplish the dual goals 

of collecting information with respect to students‘ knowledge, skills and abilities while 

providing students with instructional scaffolding on concepts that they struggle with.  

Allowing students the opportunity to demonstrate what they know (and don‘t know) after 

receiving additional scaffolded assistance, has the benefit of providing teachers with a more 
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detailed, fine-grained analysis of students‘ abilities.  This information can then be used to help 

guide subsequent teaching and learning activities that are geared towards specific areas of 

need for an individual student or a group of students.      

 While the field of technology has made significant advancements towards realizing the 

potential of TEAs, there has not been as much recent research in the psychometrics field to 

accompany these advancements.  One such area that has not been explored is the analysis of 

potential scoring paradigms that can be used to provide valid inferences about students‘ 

performance on scaffolded assessments.  This research focuses on one type of scaffolding that 

is available within a formative assessment framework.  Several IRT based scoring models are 

presented and evaluated including the dichotomous 2PL model, the polytomous ordinal 

response model, and a testlet response model.     
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Chapter Three – Methods 

 

The purpose of this research is to help advance the development and use of TEAs, 

specifically those that incorporate scaffolding into the assessment process by comparing 

measurement models for an assessment that directly account for the scaffolding process.  In 

an effort to identify the optimal scoring model for the scaffolded data provided by the 

Assistment system, this research evaluates four types of scoring models: one that is 

considered the baseline model, and three additional comparison models.  These models are 

evaluated against each other with respect to several different measures of model adequacy.  

Criterion related validity evidence is also presented for the various models to evaluate the 

relationships between model estimates and an external measure of student ability.  This 

chapter describes the participants, instruments, software, model fit and parameter estimation 

procedures, and statistical analyses. 

Participants 

 The participants are a sample of 7
th

 and 8
th

 grade students in mathematics courses 

from an east coast state that were administered Assistments during the 2005-06 school year.  

The Assistments data provided for this research were for 5,910 students that were 

administered at least one Assistment item.  While demographic information was not provided 

for this original dataset, an additional 778 student profiles were provided that had end-of-year 

state assessment scores of which also had demographic information.  It was presumed that 

these additional students were representative of the original dataset and their demographic 

characteristics are provided.  Of these 778 students, 51.0% were female, 59.4% received a 

free or reduced lunch, and 12.3% received special education services.  With respect to 

students‘ race or ethnicity group, 53.0% were white, 27.1% were Hispanic, 12.3% were 
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African American, 7.1% were Asian or Pacific Islander, and 0.6% were Native American.  

The data contained no identifiable information and this research was approved by the 

appropriate human subjects committee. 

 Assistments Data 

 Student responses on Assistments items were gathered by student profiles or 

assignments such that not every student was administered the same set of items.  In other 

words, students completed assignments that comprised a given number of Assistment items 

which differed across assignments.  Thus, while many items were administered to a large 

sample of students other items were administered to a relatively small number of students.  

Student profiles were associated with anywhere between two and 789 main and scaffold 

items; however, the distribution was right skewed with a median of 23 items and the first and 

third quartiles of 11 and 72 items, respectively.  The mean number of items was 58.  While 

concern is warranted for the student profiles that were associated with numbers of items 

greater than say, 250, the sample size criteria discussed in a subsequent section indirectly 

addressed this issue.  The series of data cleaning procedures are discussed next and the 

treatment of missing data is presented in the following section.     

Data Cleaning Procedures. The data were restructured and cleaned for the purposes 

of subsequent analyses using Fortran (Silverfrost Ltd, 2007) programming.  Item bundles 

(main items and corresponding scaffold items) were initially analyzed for small sample sizes 

and bundles for which the main item was administered to less than 200 students were 

removed.  Items were also removed if they did not clearly belong to a set of items based on 

the item identification information; i.e., an original item without any associated scaffold items 

or vice versa.  The number of items provided in the original dataset was 2,914 which was 
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pared down to 1,122 items (261 main items and 861 scaffold items).  The number of scaffold 

items associated with a particular main item ranged from one to 15 items; however, as shown 

in Table 1 below, most item bundles contained between three and six items.  Student profiles 

that only contained data for the items that were deleted were also removed resulting in 5,083 

profiles.   

Table 1 

Frequency of Number of Items per Bundle 

Bundle Size Frequency 

2 11 

3 72 

4 85 

5 56 

6 20 

7 8 

8 4 

9 3 

13 1 

16 1 

Total 261 

 

A more stringent sample size criteria was set to address potential estimation issues 

associated with small sample sizes in the context of complex models as well as issues 

associated with the number of bundles (and thus dimensions) estimated in the testlet models.  

The majority of research that has been conducted in the area of testlet models utilized samples 

sizes that were greater than 500 examinees and more than half of the studies identified in this 

area of research had sample sizes greater than 1,000 (Zhang et al, 2010).  Moreover, Reise 

and Yu (1990) recommended sample sizes of at least 500 to achieve adequate calibration of 

parameters when using polytomous models such as the GRM.  Since two of the models 

evaluated in this study require relatively large samples sizes to achieve adequate calibration, 
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bundles in the original dataset that were administered to less than 450 examinees were 

removed for a total of 36 bundles which is equal to a total of 159 items.  Table 2 below 

displays the number of bundles associated with various sample size categories.  It should also 

be noted that while the research on the stability of parameter estimation using polytomous 

models focuses mostly on sample size, the number of items calibrated is often less than 30 

(see for example, Resise & Yu, 1990; Ankenman & Stone, 1992).  Therefore, reducing the 

number of bundles (i.e., super-polytomous items in the polytomous comparison model) to 36 

should not negatively affect calibration of a polytomous model.  

Table 2  

Number of Bundles Associated with each Sample Size Category and the Total Number of 

Bundles if the Category was Removed. 

 

Sample 

Size 

Number of 

Bundles Affected 

Number of Items 

Affected 

Total Number of 

Bundles if 

Removed 

Total Number of 

Items if 

Removed 

200-300 2 7 259 1115 

301-350 84 364 175 751 

351-400 118 502 57 249 

401-450 21 90 36 159 

451-500 6 30 30 129 

501-1000 9 33 21 96 

1001-1500 14 67 7 29 

1501-2000 7 29 0 0 

Total 261 1122     

 

Reducing the total number of bundles to a more manageable size is also necessary for 

practical limitations associated with estimating complex models in virtually any software 

program.  While some programs theoretically have the potential to estimate large complex 

models (e.g., WinBUGS, Spiegelhalter, Thomas, Best, & Lunn, 2003), the time it would take 

to do so may not be of any practical value.  Other programs that can be used to estimate the 
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testlet models often have a limit to the number of dimensions that a model can have (e.g., 

ConQuest, Wu, Adams & Wilson, 1998).  Therefore, the number of bundles in the present 

study needed to be significantly reduced and setting the sample size criteria to a sufficiently 

large number addressed both estimation issues.   

Furthermore, based on the characteristics of the entire dataset, the average number of 

bundles (i.e., the average number of main items with scaffolding) that a student was 

administered was 23.38; the median was 14 and the mode number of bundles was 20.  

Therefore, within an operational context, the majority of students‘ scores would be based on 

approximately 23 item bundles.  Thus, reducing the dataset to 36 bundles still represents the 

majority of students.   

As a preliminary step in the model analyses procedures, (described in a subsequent 

section), data were calibrated using IRT software.  This analysis indicated that several items 

could not be calibrated due to lack of variance.  In total, four bundles were affected by having 

at least one item with zero variance (responses to the items were either invariably correct or 

incorrect).  These items (and the bundles they were associated with) were removed for the 

final model fit analyses for a final total of 140 items; 32 main items and 108 scaffold items.  

Table 3 below displays the frequencies of bundle sizes for the set of items. 
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Table 3 

Frequency and Number of Items by Bundle Size. 

Bundle 

Size 

Frequency of 

Bundle Size 

Total Number 

of Items 

2 1 2 

3 6 18 

4 13 52 

5 8 40 

6 2 12 

7 1 7 

9 1 9 

Total 32 140 

 

As the matrix of items for students was reduced, the numbers of items per student 

were also reduced.  Student profiles that had response data for fewer than five main items 

were also removed for a total of 2,745 profiles.  The number of total items administered to 

students in the final dataset (140 items; 32 bundles) ranged from 15 to 127 items; however, 

the number of main items administered to students ranged from five to 29.  The mean number 

of total items administered to students was 49 and the median was 41 items; the mean number 

of main items was 11.2 and the median was 10.  Figure 9 below displays the frequency 

distribution of the number of main items administered to students.  This distribution is clearly 

bimodal with most students taking either five or 18 main items (or bundles of items).  The 

majority of the remaining students were administered a number of main items somewhere 

between these two modes. 
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Figure 9. Frequency distribution of the number of main items administered to students. 

Again, as the number of students was reduced, the sample sizes associated with each 

item were also reduced.  In an effort to retain data, no additional items were deleted.  The 

smallest sample size associated with a main item in the final dataset was 301.  While this was 

lower than the original criterion of 450, deleting additional items to retain this criterion would 

have further contributed to fewer items per student and the matrix of data would have 

continued to shrink.  Thus, a sample size criterion of 300 or greater was deemed sufficient for 

the purposes of this study.    

In summary, as part of the data cleaning process, criteria were originally set for the 

removal of items and cases that were associated with an inadequate amount of data in 

accordance with previous research and preliminary item analyses. Based on these criteria a 

dataset of 140 items (32 main items and 108 scaffold items) was derived.  From there, student 
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profiles were evaluated and cases in which students were administered fewer than five main 

items were removed. Thus, the final dataset was based on 32 bundles of items and 2,745 

student profiles.  

Missing Data.  Since none of the students were administered all of the items and 

scaffold items were only presented when the main item was answered correctly, the dataset 

contained a large portion of missing data.  Table 4 below displays the proportions of missing 

data for each of the 32 main items.  There did not appear to be any main items that were 

administered significantly more or less than the others to the sample of students in this study.   

Table 4. 

Number and Proportions of Missing Cases for each Main Item.

Main 

Item 

Number of 

Missing 

Cases 

Proportion of 

Missing Cases 

1 2551 0.69 

2 2453 0.66 

3 2662 0.72 

4 2572 0.70 

5 2600 0.70 

6 3239 0.88 

7 2574 0.70 

8 2624 0.71 

9 2659 0.72 

10 3227 0.87 

11 1997 0.54 

12 2020 0.55 

13 2640 0.71 

14 2018 0.55 

15 2026 0.55 

16 3232 0.87 

 

Main 

Item 

Number of 

Missing 

Cases 

Proportion of 

Missing Cases 

17 1998 0.54 

18 2360 0.64 

19 2464 0.67 

20 2501 0.68 

21 2504 0.68 

22 2768 0.75 

23 3064 0.83 

24 2509 0.68 

25 3233 0.87 

26 3081 0.83 

27 2718 0.73 

28 3214 0.87 

29 2929 0.79 

30 2932 0.79 

31 2933 0.79 

32 2945 0.80 

 



61 

 

Ayers and Junker (2008) conducted IRT modeling on a similar Assistments dataset 

and treated the missing data as completely at random (MCAR) due to the fact  that 

―…problems were assigned to students randomly by the Assistment software from a 

‗curriculum‘ of possible questions designed for all students by their teachers in collaboration 

with project investigators‖ (Ayers & Junker, 2008, p. 976).  However, since the missing 

values on the scaffold items was a systematic function of the response to the main item (i.e., 

students that answered the main item correctly were not presented with any of the scaffold 

items), it was assumed that correct answers would have been provided to the scaffold items 

had they been presented to those who responded correctly to the main item.  This is a 

reasonable assumption given that the scaffold items simply represent the sub-skills needed to 

understand the main item.  Thus, missing values on scaffold items were assigned a 1 (correct 

response) if the response to the corresponding main item was correct. 

Software 

 

 The software programs used in this study included SPSS (IBM: Version 19.0), Fortran 

(Silverfrost Ltd, 2007), BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 1996), 

SCORIGHT 3.0 (Wang, Bradlow & Wainer, 2005), and WinBUGS, (Spiegelhalter, Thomas, 

Best, & Lunn, 2003).  The first program was used to conduct the statistical analyses in the 

second research question; the second program was used to write programs for data cleaning 

purposes (as previously mentioned) and for model fit calculations; and the last three programs 

were used to fit the data to the various scoring models.  The main model fitting analyses were 

performed using SCORIGHT 3.0; however, a brief description of BILOG-MG is also 

provided.   
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BILOG-MG is used to fit unidimensional dichotomous data only and is typically 

employed to estimate the 1-, 2-, and 3PL models. BILOG-MG estimates item parameters 

using marginal maximum likelihood (MML) estimation. In short, this method estimates item 

parameters while integrating out the ability parameters.  Once the item parameters are known, 

the ability parameters are estimated with either Newton-Raphson Maximum likelihood (ML) 

techniques, expected a posteriori (EAP) techniques, or maximum a posteriori (MAP) 

(Hambleton, Swaminathan & Rogers, 1991).  MML estimation procedures uses two methods 

for solving the marginal likelihood equations: expectation maximization (EM) and Newton-

Gauss iterations (Zimowski, Muraki, Mislevy, & Bock, 1996).    

SCORIGHT 3.0 software is designed to facilitate analysis of item response data that 

may contain testlets (Wang, Bradlow & Wainer, 2005).  The program is capable of handling 

both dichotomous and polytomous data that are either independent or nested within bundles.  

The model used for binary data is the 3PL model which can be adjusted to the 2PL as well.  

The model used for polytomous data is the ORM.  SCORIGHT 3.0 employs Bayesian 

estimation techniques to estimate model parameters.  In short, Bayesian methods involve 

modifying the likelihood function to incorporate any prior information that is known about 

model parameters.  In SCORIGHT 3.0, inferences for unknown parameters are obtained by 

drawing samples from their posterior distributions using Markov Chain Monte Carlo 

(MCMC) techniques (Wang, Bradlow & Wainer, 2005).  Further details on estimation 

procedures are provided in a following section.  There are not any limitations explicitly 

mentioned in the SCORIGHT 3.0 user‘s manual on the number of dimensions (therefore, 

bundles) that can be incorporated into the model (Wang, Bradlow & Wainer, 2005).  

WinBUGS is similar to SCORIGHT 3.0 in that it can estimate statistical models, including 
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IRT models, using Bayesian analyses but it has the added flexibility of altering existing code 

to fit variations of models and using different prior information (Curtis, 2010).       

Procedures 

 Research Question 1: What type of model is the optimal scoring model for the 

scaffolded data in the Assistment system?  The first research question is related to 

identifying the most appropriate model for the Assistments data.  To address this question, a 

sequential procedure for fitting and evaluating increasingly complex models is outlined.  A 

baseline model was established and compared to three additional comparison models such 

that the former did not account for any of the scaffolding features or complexities in the 

dataset whereas the latter group of models did, each in a different way.  Specifically, the 

baseline model only accounted for the independent dichotomous responses to the main items 

and does not account for responses to scaffold items, the grouping effect created by the 

scaffolding process, or the number of hints accessed by the student. This model served as the 

baseline for comparison purposes with subsequent models that accounted for these scaffolding 

features.   

The comparison group of models accounted for the scaffolding features first by simply 

including responses to the scaffold items in the model and then by evaluating the items as 

bundles and accounting for the dependency that exists within each of these bundles of items.  

Two different methods that account for local dependence between items were examined. 

Within all of the comparison models, the number of hints a student accessed was also 

evaluated to determine if doing so would improve model convergence, model fit and/or model 

estimates.  This was accomplished by running each of the models twice; once with the 

covariates and once without.  Model evaluations were based on several factors which 
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included: model convergence measures such as statistical detection of convergence and the 

time it takes a model to converge, model estimates, a model fit statistic, and test information 

provided by each model.  Measurement procedures for each of these factors are described in 

detail in later sections.  However, prior to establishing any of the evaluation models (i.e., the 

baseline model and the comparison models), the number of appropriate parameters to be 

incorporated into all models needed to be determined.  Specifically, the 1PL and the 2PL 

models were fit to the data to determine the number of parameters to include in the evaluation 

models.          

The 1PL or the 2PL Model?    

To make sensible comparisons between the various measurement models (e.g., 

dichotomous, polytomous and testlet models) any parameters incorporated in the baseline 

model (e.g., a discrimination parameter) also need to be added to each of the comparison 

models.  In other words, for comparison purposes, the models needed to incorporate the same 

number of parameters.  Thus, the first step that was needed, prior to establishing the baseline 

model or comparison models, was to determine the number of parameters that would be 

included in each of the evaluation models.  That is, would all models be based on the 1PL 

model or the 2PL model?   

In order to determine the number of parameters to be estimated in each of the 

evaluation models, responses were calibrated in BILOG-MG using each model.  ML 

estimation procedures were employed with the theta (θ) scale set at 0,1 (default settings).  The 

number of cycles for the EM algorithm was set at 10 and the number of Newton steps was set 

at 2 (default settings).  To facilitate estimation for both models, item parameter estimates 

obtained from the initial 1PL were provided as starting values for estimating item parameters 
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in the second 1PL model as well as the 2PL model.  These two models were compared with 

respect to relative fit to the data and the model that fits the data better is used as the basis for 

subsequent models.  That is to say, if the 2PL model which accounts for the additional 

discrimination parameter was found to fit the data better, then the discrimination parameter 

will be estimated in all subsequent models.  On the other hand, if the 1PL model fit the data 

better without the additional discrimination parameter, then it will not be estimated in 

subsequent models.  Because the results of these model fit analyses determine the methods to 

be used for all subsequent analyses (i.e., types of models, software and model fit indices), it is 

imperative to evaluate these results prior to explicating further procedures.    

The following model fit procedures were based on the sample size criteria of 450 or 

greater which was equivalent to 159 items total (36 main items and 123 scaffold items).  

However, as mentioned previously, initial analyses indicated that several items could not be 

calibrated due to lack of variance.  These items (and the bundles they were associated with) 

were removed for the final model fit analyses. 

Estimates obtained from the 1PL and 2PL models were evaluated with respect to 

overall model fit as measured by the change in log likelihood estimates, item-by-item fit 

statistics and item residual information.  In general, the 2PL model appeared to fit the data 

better than the 1PL model.  Allowing the slopes to vary in the 2PL model produced a 

statistically significant decrease in the overall misfit as indicated by the -2 log likelihood 

difference for the models (∆χ² = 4548.803, df = 139, p < 0.00001).  Based on item fit statistics 

provided from each model, the 2PL model fit the data better for 87 out of the 140 items as 

shown in Appendix A.  Finally, standardized residuals were calculated from the raw residuals 

for the 32 main items to assess the accuracy of model predictions against the actual data.  The 
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standardized residual is the difference between observed proportions correct on a given item 

and the predicted probability estimated by the model.  This difference is then divided by the 

standard error of the expected proportion correct.  Overall, standardized residuals were much 

smaller for the 2PL model than the 1PL model as shown in Figures 10 and 11 below.  Figure 

12 displays the frequencies of standardized residuals for all items in both models.    

    

 

Figure 10. Standardized residuals for each of the 32 main items estimated with the 1PL model 
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Figure 11. Standardized residuals for each of the 32 main items estimated with the 2PL model 

  

 

Figure 12. Frequencies of standardized residuals for all 32 items in the 1PL and 2PL models 
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Based on these results, the discrimination parameter was included in all of the 

following model fit analyses as it appears to more adequately fit the data than the more 

restrictive 1PL model.  This decision is also consistent with the current scoring methods of the 

MCAS (which are the basis for most Assistments items).  That is, the MCAS multiple-choice 

questions are scaled with the 3PL model whereas the short-answer (fill in the blank) questions 

are scaled using the 2PL model (Massachusetts Department of Education, 2004).  The 3PL 

model was not considered in the present study as the guessing parameter for this assessment is 

presumably very low due to the constructed response nature of many of the test items and the 

scaffolding features which guide students to the correct answer.  Therefore, the 2PL model 

was the basis for all evaluation models.  A detailed discussion of each of these evaluation 

models is provided in the following sections and an outline of the model comparison steps for 

this study is displayed in Table 5 below. 

Table 5. 

 

Outline of Model Evaluation Procedures 

 

Type Description Purpose Model(s) 

    Baseline Model: 

Dichotomous 

Model for Main 

Items 

Main items only; ignores all 

scaffolding features and 

data 

Used as baseline for comparison 

purposes 

2PL 

Comparison 

Models:  

   

Dichotomous 

Model for All Items 

Main and scaffold items 

included but ignores bundle 

structure and hints; hints 

used as a covariate 

Most simplistic model that 

accounts for all item responses  

2PL with 

& without 

covariates 

Polytomous Model Bundle treated as a super-

item polytomously scored; 

hints used as a covariate 

Account for dependencies using a 

fairly complex model but loses 

some information 

ORM 

with & 

without 

covariates 

Testlet Response 

Model  

Random effect added for 

person/bundle interaction; 

hints used as a covariate 

Account for dependencies using a 

complex model but retains 

information 

TRM with 

& without 

covariates 
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Baseline Model.  The baseline, referred to as the 2PL_MainItems model hereafter, 

signifies a simplistic representation of the Assistments data in that it models the responses to 

the main items only without accounting for the scaffold items, the bundle structure that is 

inherent within the scaffolding process or the number of hints a student accessed for a given 

item.  The response data for the main items only, was calibrated to the unidimensional 

dichotomous 2PL model.  Estimation procedures for this model are discussed in a later 

section. 

Comparison Models.  The comparison group of models extends the 2PL_MainItems 

model to assess the scaffolding features of the data first from a local independence 

assumption and second from a local dependence assumption. The first model, referred to 

hereafter as the 2PL_AllItems model, simply extends the 2PL_MainItems model to account 

for the additional scaffold items.  This model assumes local independence between items and 

ignores the item grouping that occurs as a result of the scaffolding process.   

The next two comparison models address the issue of local dependence using two 

different methods; both assume local independence between bundles but account for local 

dependence within bundles.  Specifically, the second comparison model, denoted as the 

ORM, accounted for local item dependence by treating the response patterns of item bundles 

as categories of a polytomous item.  Summed scores were obtained for each item bundle in 

the Assistments data which were then treated as single super-items that were scored 

polytomously using the ORM.  The ORM is the model used in the SCORIGHT 3.0 software 

program.  The third model, known as the Testlet Response Model or TRM, also accounted for 

item dependency within bundles but did so by adding a random effect component to explain 

the interaction between the person and the bundle; i.e., a bundle ability parameter.   
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All three of the comparison models (i.e., the 2PL_AllItems models, the ORMs and the 

TRMs) were evaluated twice; once with covariates and once without.  The average number of 

hints accessed was used as a covariate for both person and item parameters.  That is, an 

average number of hints for a given student (relative to the number of items the student was 

administered) was used as a covariate for estimating student ability.  An average number of 

hints accessed for a given item (relative to the number of students it was administered to) was 

used as a covariate for estimating item difficulty.  The comparison models were calibrated 

both with and without these covariates in an effort to evaluate the value of this data in the 

estimation process.   

 Another approach for incorporating the number of hints into the scoring models could 

have been to employ an item bundle model that allows for both dichotomous and polytomous 

items and assigning partial credit to items based on the number of hints needed to answer an 

item correctly (see for example, Wang & Wilson, 2005a).  However, as the current 

Assistment scoring system automatically assigns a 0 to any scaffold item in which hints were 

accessed, it was not possible to know when a student actually responded correctly to an item 

after receiving hints versus when a student received hints but still responded incorrectly.  

Thus, assigning partial credit based on the number of hints needed to correctly respond to an 

item was not possible for the current project. 

Parameter Estimation.  In order to obtain IRT item parameters for all of the 

evaluation models, the response data from the items was calibrated using SCORIGHT 3.0 

which employs Bayesian estimation techniques.  Since SCORIGHT 3.0 is a general program 

that can facilitate data that is composed of dichotomous or polytomously scored items that are 
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independent or nested within testlets (Wang, Bradlow & Wainer, 2005), it was used to 

estimate all of the evaluation models in this study.   

Overview of Bayesian Inference.  In order to combine information across examinees, 

items and any potential testlets, SCORIGHT 3.0 embeds a hierarchical Bayesian framework 

into the model which allows for more precise estimates (Bradlow et al., 1998; Wang, Bradlow 

& Wainer, 2005).  While a full synopsis is beyond the scope of this paper, in general, 

Bayesian inference rests on Bayes‘ theorem which states that a representation of the 

conditional probability of one event given another in terms of the opposite conditional 

probability (Kim & Bolt, 2007).   

In IRT, information about item and person parameters is reflected in the relative 

likelihoods of these particular parameter values given the observed item response data.  The 

type of IRT model employed (e.g., the 2PL) provides a basis for describing the opposite 

conditional probability (i.e., the probability of observing the item response data given the 

model parameters) (Kim & Bolt, 2007).  In IRT applications, Bayes‘ theorem can be written 

in the form of continuous probability density functions (e.g., the normal density function) 

which represent the relative likelihood of each outcome.  What is referred to as the joint 

posterior density is used to derive estimates of the model parameters.  In order to evaluate the 

joint posterior density, the particular item response model is needed (e.g., the 2PL) as well as 

knowledge about the prior density of the parameters which represents information about the 

relative likelihoods of parameter values prior to data collection (Kim & Bolt, 2007).  

However, even with this information, the exact density of the posterior density is typically 

unknown and difficult to determine; therefore, MCMC sampling procedures are used to 

theoretically reproduce the density by sampling observations with respect to it (for a detailed 
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description of these procedures, see Spiegelhalter, Thomas, Best & Gilks, 1995) (Kim & Bolt, 

2007).  Based on many samples, characteristics of the density can be determined and used as 

the basis for model parameter estimates.  While there are several different sampling 

procedures within MCMC (e.g., Gibbs sampler, Metropolis Hastings), all require specification 

of priors as the prior densities are needed to define the posterior densities (Kim & Bolt, 2007).  

Choosing a prior depends on several factors including the type of distribution of the posterior 

density and the type of model chosen, as well as the desired strength or influence of the priors 

on the posterior density.       

Bayesian Framework in SCORIGHT 3.0.  Within the SCORIGHT 3.0 Bayesian 

framework, prior distributions are asserted for each of the corresponding parameters.  These 

parameters are assumed to be normally distributed as follows, 

θi ~ N(0,1)       (18)  

hj ~ N(μa,σ²a)      (19) 

bj ~ N(μb,σ²b)      (20) 

γid(j) ~ N(0,σ²γ)      (21) 

where hj is equal to the log(aj) (Bradlow et al., 1998; Wang, Bradlow & Wainer, 2005).  

Among these four random effects distributions, two of the means are set to zero and one of 

the variance components is set to one in order to identify the model (Bradlow et al., 1998).  

Furthermore, in SCORIGHT 3.0 covariates can be incorporated into the model via the mean 

of the prior distribution of the item parameters and the ability parameters.  For computation of 

the posterior density function, SCORIGHT 3.0 utilizes MCMC techniques; specifically, it 

employs a combination of the data augmented Gibbs sampler (Tanner & Wong, 1987) and a 
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Metropolis-Hastings step (Hastings, 1970).  For a detailed discussion of posterior 

computation procedures in this software program see Wang, Bradlow & Wainer (2002).   

 Specifying Models in SCORIGHT 3.0.  As mentioned, all evaluation models were 

estimated using SCORIGHT 3.0.  The baseline model and the dichotomous comparison 

model were both based on the dichotomous 2PL model; the polytomous comparison model 

was based on the ORM; and the testlet comparison model was based on the 2PL TRM.  Each 

of these models was specified and convergence was assessed in the SCORIGHT 3.0 program.  

For each model, the following SCORIGHT 3.0 specifications and procedures were employed: 

1. The number of Markov chains to be run was set to three in order to facilitate 

detection of any potential convergence issues.   

2. The number of iterations was set at 10,000 which is a value that has 

previously recommended for MCMC estimation procedures (Sinharay, 

2004).  However, if a model did not converge with 10,000 iterations, this 

number was increased until convergence was reached.  

3. The number of initial draws to be discarded was set to 5,000 in order to 

decrease the likelihood that parameter estimates would be based on draws 

that were sampled prior to model convergence (Wang, Bradlow & Wainer, 

2005). Again, this number changed as the number of iterations increased. 

4. The number of times the posterior draws were recorded was set to 10 to 

decrease the likelihood that the posterior draws kept will be autocorrelated 

(Wang, Bradlow & Wainer, 2005).   

5. SCORIGHT 3.0 was instructed to automatically select starting values for the 

initial parameter estimates.  However, based on convergence results from 
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initial model runs, parameter estimates from previous models that 

successfully converged may be used as starting values for subsequent model 

calibrations if needed. 

6. *The average number of hints a student accessed were incorporated as a 

covariate for estimating person parameters, θ.  

7. *The average number of hints accessed for a given item were incorporated 

as a covariate for estimating item difficulty, bi.  In the polytomous model, 

the average number of hints for each item within the bundle were averaged 

across all items within the bundle. 

*Covariates were not included in the 2PL_MainItems model and each of the 

comparison models was calibrated both with and without the covariates.  

Model Evaluation.  A sequential procedure for assessing each model was conducted.  

Each of the comparison models was compared to the baseline model to determine if 

accounting for the scaffolding features in the Assistments system provided a better model. 

Comparison models were also evaluated against each other to determine if the additional 

complexities provided better models for the data.  Each comparison model was also evaluated 

with respect to the utility of the average number of hints as a covariate.  Models were mainly 

assessed according to model convergence and test information.  Comparisons were also made 

between models that used covariates and those that did not using a model fit statistic.  Model 

fit statistics and parameter estimates are provided for all models as descriptive measures.  

Figure 13 provides a visual display of all model comparisons.  This process ensured that all 

evaluation models were assessed relative to all other potential models evaluated in this study.  
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Figure 13. Model comparison flowchart 

Bayesian Convergence.  As suggested by Wang et al. (2005), convergence was 

assessed by evaluating the similarity of output across the chains for each model; if 

convergence was achieved estimates should be approximately the same for each chain.  To 

statistically assess the similarity of output across chains, the F-test convergence criterion of 

Gelman and Rubin (1993) was calculated for every parameter within each model.  When 

multiple parallel chains are specified, SCORIGHT 3.0 automatically provides this index for 

each parameter in the model.  The Gelman and Rubin (1993) diagnostic, often referred to as 

the potential scale reduction factor (PSRF), is based on the last n iterations in each of m 

parallel chains that each ran for 2n iterations.  The PSRF is then calculated as, 

1 1
  ,                                        (22)

n m B
PSRF

n mn W
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where B is the between-chain variance and W is the within-chain variance (Gelman & Rubin, 

1993).  As chains converge to a common distribution, the between-chain variability should 

become small relative to the within-chain variability and PSRF should be close to 1.0.  

Gelman and Rubin (1993) suggest that PSRF values less than 1.2 indicate reasonable 

convergence.  Conversely, if PSRF is large, this suggests that either the between-chain or the 

within-chain estimates of variance can be further decreased by more simulations, or that 

further simulation will increase the within-chain variance in the case that the simulated 

sequences have not yet sampled from the entire target distribution (Gelman & Rubin, 1998).  

SCORIGHT 3.0 provides the PSRF for the 50% and 97.5% quantiles based on the Student t 

distribution (Wang, Bradlow & Wainer, 2005).  It is recommended that the PSRFs at both 

quantiles be at or below 1.2 (Gelman & Rubin, 1993; Wang, Bradlow & Wainer, 2005).    

Other convergence issues were noted and are described in the next chapter as a point 

of comparison with the other models.  For example, it is of value to know which model 

converged the easiest (i.e., with fewer iterations and/or with fewer Markov chains).  Similarly, 

approximate time for a model to converge was also be tracked as a means to evaluate model 

efficiency.  Once convergence was attained for all of the models, the statistical fit of each 

model was assessed.  

Model Fit. When researchers are interested in finding the best model that fit a 

particular dataset, in the context of several possible models, model comparison techniques can 

be conducted.  There are several different indices that are useful for model comparison 

purposes such as the Pearson χ² test, the likelihood ratio G² statistic, Akaike‘s Information 

Criterion (AIC; Akaike, 1974), Schwarz‘s Bayesian Information Criterion (BIC; Schwarz, 

1978), Bayes Factors (BF; Kass & Raftery, 1995), and the Deviance Information Criterion 
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(DIC; Spiegelhalter, Best, Carlin & van der Linde, 2002). Among these, the Pearson χ² and 

the likelihood ratio G² statistics are only appropriate for comparing nested models; however, 

the other four criteria can be used to compare either nested or non-nested models (Zhu, 2009). 

The AIC and BIC are information-based criteria and are often used when ML estimates of 

model parameters are obtained (Zhu, 2009); although the BIC can also be employed in the 

context of MCMC.  The DIC and BF are two specifically Bayesian criteria used for model 

comparisons when MCMC techniques are used to estimate model parameters (Zhu, 2009).   

As the models in the present study are not nested and Bayesian estimation procedures 

are employed within SCORIGHT 3.0, the DIC was chosen for calculating the fit of each 

model.  However, model fit statistics are based on the assumption that models are fit to the 

same exact dataset.  While the data for this study are based on the same students, the inclusion 

of items differed for each model.  The 2PL_AllItems models and TRMs are fit to 140 items 

whereas the 2PL_MainItems model is fit to 32 dichotomous items and the ORMs are fit to 32 

polytomous items.  Due to the differences in data structures, sensible comparisons using the 

DIC can only be made between the 2PL_AllItems models and the TRMs as well as between 

each model with covariates and without.  For the sake of completeness and descriptive 

information, the DIC was calculated for all of the models that converged.   

 The DIC is similar to other commonly used fit statistics (e.g., the AIC and BIC) in that 

it considers the penalty on model complexity in identifying the preferred model 

(Spiegelhalter, Best, Carlin & van der Linde, 1998).  The DIC is composed of two terms 

which represent model deviance and model complexity (Spiegelhalter et. al, 1998).  The DIC 

is defined as 

( ) DDIC D p                             (23) 
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The first term, ( )D , is a Bayesian measure of fit and is equal to the posterior mean of the 

deviance between the data and the model which is calculated as 

|( ) [ 2 ln  ( | )]yD E f y                 (24) 

where θ represents model parameters and y represents the data.  The second term, Dp , is a 

measure of model complexity and is equal to the difference between the posterior mean of the 

deviance and the deviance at the posterior mean of the parameters which is defined as 

( ) )  (Dp D D      (25) 

where )(D  is the deviance evaluated at the posterior mean, , of the parameters 

(Spiegelhalter et. al, 2002).  The smaller the value of the DIC, the better the model fits the 

data. 

As the SCORIGHT 3.0 does not automatically provide the DIC index, two programs 

were written by the author in Fortran to calculate this statistic from the MCMC output for the 

2PL_MainItems model, the 2PL_AllItems models and the ORMs.  The code for these 

programs is provided in the Appendices.  While a third program was planned to calculate the 

DIC statistic for the TRM models, unfortunately, the output from these models did not follow 

a consistent, pre-defined format and could not be used to calculate the DIC.  This issue is 

discussed in detail in the next chapter.     

 Information.  The models were also evaluated with respect to their information 

functions across the theta scale.  That is IIFs and TIFs were calculated for each of the 

evaluation models to assess the precision of θ estimates produced by each model.   

When local dependencies exist and are not accounted for, it has been found that test 

reliability and test information tends to be overestimated (Wang & Wilson, 2005; Weng, 
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Cheng & Wilson, 2005; Zhang, et al, 2010).  Therefore, it was expected that the dichotomous 

comparison model (which models all of the items but ignores dependencies) would have an 

inflated test reliability estimate.  If either of the item bundle models was able to account for 

the local item dependence and provide an equivalent or better estimate than the inflated 

estimate, then it could be taken as supportive evidence in favor of such a model.   

Research Question 2: Is there a relationship between student ability estimates 

derived from the scoring models and a criterion measure of student achievement?  The 

second research question evaluates one aspect of the validity of interpreting scores from the 

models established in the first research question by determining the degree to which these 

scores relate to subsequent performance on the state‘s end-of-year accountability assessment.  

Criterion-related validity evidence, or external validity, refers to the extent to which test 

scores relate to other measures of the construct being assessed (Messick, 1995).  In this sense, 

evidence for the validity of the construct being measured is supported when scores from the 

assessment can account for the pattern of relationships in the criterion measure.  As one of the 

intended purposes of the Assistments system is to help students prepare for the end-of-year 

state assessments (Heffernan & Heffernan, 2008), it is of value to examine the statistical 

relationships between student performance on the Assistments and their subsequent 

performance on the state assessment.  In this context, student ability estimates that have the 

strongest relationship with scores from the end-of-year accountability exam may be used as 

supportive evidence for the particular scoring model from which the estimates were derived.   

As such, the scoring models were first evaluated against a simple percent correct score 

to determine if student ability estimates calibrated from IRT models more strongly relate to a 

criterion measure of student ability than the percent correct score. Second, statistical 
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relationships were also compared between the 2PL_MainItems model, which did not account 

for any scaffolding features and the comparison models, which did account for these features.  

Finally, statistical relationships were compared between the comparison models to determine 

if accounting for local dependence in the scoring model produced ability estimates that were 

more strongly correlated with a criterion measure than estimates derived from a model that 

ignored the data structure.   

Analyses.  Scaled scores for examinees from each of the evaluation models established 

in the first research question were correlated with end-of-year state assessment scores for a 

subsample of 778 students using SPSS 19.0.  First, a percent correct score was calculated for 

each student in the subsample and this score was also correlated with students‘ state 

assessment scores.  Next, scaled scores from the 2PL_MainItems model, the 2PL_AllItems 

models, the ORMs and the TRMs were each correlated with students‘ state assessment scores.  

Since student-level metrics were either calibrated directly into student ability estimates (e.g., 

responses to scaffold items) or were used to facilitate the estimation process (e.g., number of 

hints used as a covariate), no other variables were included in these models.  As each of the 

models produced scaled scores that encompassed the metrics of interest in this study, deriving 

regression models with multiple predictors was not sought; rather simple correlation 

coefficients were calculated for each set of scores to evaluate the overall relationship between 

model estimates of student ability and student performance on the criterion measure.  This 

made for a matrix of relationships between nine types of scores; a percent correct score, 

scaled scores from each of the seven scoring models, and students‘ state assessment scores.   
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Summary 

 Overall, seven scoring models were fit to the Assistments data using MCMC 

estimation techniques employed in SCORIGHT 3.0 in order to determine which model was 

optimal with respect to model convergence, model fit, and information.  Each of the scoring 

models accounted for the data differently; the 2PL_MainItems model only calibrated data for 

the main items and did not account for any scaffolding features; the 2PL_AllItems models 

accounted for all of the items but ignored local dependence that is created by the scaffolding 

process; the ORMs accounted for local dependence applying a polytomous model to bundle 

summed scores; and the TRMs also accounted for local dependence but did so by adding a 

random effect component to account for bundle ability.  The average number of hints for each 

person and item were provided as covariates in estimating person and item difficulty 

parameter estimates, respectively.  Each of the latter three models was calibrated twice; once 

with covariates and once without covariates.  Statistical relationships between scaled scores 

from each of the scoring models, a percent correct score and a criterion measure of student 

ability were also evaluated.    
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Chapter Four – Results 

 

 The purpose of this research is to help advance the development and use of assessment 

systems that utilize technological innovations and specifically those that incorporate 

scaffolding into the assessment process.  The goal is to make recommendations about optimal 

scoring models that can be used for scaffolded assessments based on the characteristics of the 

scaffolds utilized in the example assessment system.  As such, a number of different models 

were applied to the Assistments data and relevant parameters were estimated for each model 

using MCMC estimation techniques.  Several indices were calculated from the MCMC output 

in order to evaluate and compare the models with respect to convergence, model fit, and 

precision of model estimates.  Finally, criterion related validity evidence was evaluated for the 

person ability parameters from each model using student scores from an external measure of 

student ability as the criterion.  

Research Question 1: What type of model is the optimal scoring model for the scaffolded 

data in the Assistment system?   

The 2PL_MainItems model calibrated parameters for the main items only without 

accounting for the scaffold items or the number of hints a student accessed for each item.  The 

comparison models calibrated parameters for all 140 items (i.e., main and scaffold items) as 

well as the number of hints a student accessed; however, each of the comparison models 

differs with respect to how the scaffold items are accounted for.  The 2PL_AllItems model 

ignores the item grouping that occurs as a result of the scaffolding process while the ORM 

and the TRM represent two different methods of accounting for the local dependence.  Each 

of the comparison models was employed twice; once with and once without incorporating the 

average number of hints a student used in the scaffolding process as a covariate.  In total, the 
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Assistments data were calibrated according to seven different models.  The results of the 

model calibration and convergence process are presented next followed by a summary of 

model estimates, model fit statistics and information functions.    

Convergence.  Model convergence was evaluated from a number of perspectives.  

Convergence was statistically assessed using the PSRF convergence criterion of Gelman and 

Rubin (1993) that is automatically provided by SCORIGHT 3.0 whenever multiple parallel 

chains are specified.  The PSRF was calculated for each estimated parameter at the 50% and 

97.5% quantiles based on the Student t distribution (Wang, Bradlow & Wainer, 2005) after 

discarding the first half of the samples (or the specified number of samples to be discarded).  

However, if multiple chains could not be simultaneously analyzed (due to insufficient 

computer memory) the PSRFs were calculated from retained output.  In addition to the 

PSRFs, other convergence issues such as number of required iterations and amount of time 

needed to converge are discussed with respect to each model in the following sections.   

2PL_MainItems Model.  The 2PL_MainItems model calibrated response data for the 

32 main items only based on the 2PL model and did not account for any scaffolding features.  

Three parallel chains were run for the 2PL_MainItems model, each of which contained 10,000 

draws from the posterior distribution, 5,000 of which were discarded for burn-in.  From the 

last 5,000 iterations, every 10
th

 draw was recorded for a total of 500 retained draws for each 

parameter.  Using these specifications, convergence was attained as indicated by PSRFs equal 

to 1.00 at both quantiles points for both item difficulty (a) and discrimination parameters (b), 

as shown in Table 6 below.  Given the relative simplicity of the model and the small number 

of items being calibrated, it was reasonable to believe that convergence may have been 

achieved with a fewer number of iterations.  Therefore, the model was run a second time with 
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only 3,000 iterations, 1,500 of which were discarded.  Of the 1,500 retained draws, every 10
th

 

draw was recorded for a total of 150 draws for each parameter.  Using this second set of 

specifications, convergence was again attained.       

Table 6. 

Estimation Specifications and PSRFs for the 2PL_MainItems Model 

Model 

Specifications 

PSRF for parameter b PSRF for parameter a Approx. 

Run Time 50% 97.5% 50% 97.5% 

10000/5000/10 1.00 1.00 1.00 1.00 0:25 

3000/1500/10 1.00 1.01 1.00 1.00 0:15 

Note. Model Specifications = number of total iterations/number of iterations discarded for 

burn-in/size of gap between posterior draws recorded 

 

There were no notable convergence issues and the amount of time (hr:min) needed to 

run the model was considerably fast in the context of MCMC estimation.  Specifically, the 

model that iterated 10,000 times took approximately 0:25 minutes to complete; however, as 

was shown by using the second set of model specifications, convergence was met after only 

3,000 iterations.  This second model run only took 0:15 minutes to complete.  While the goal 

of this analysis was not to determine the absolute minimum amount of time that is needed to 

attain convergence, it is sensible to think that 0:15 minutes is the maximum amount of time 

needed for this particular model to converge and that it could be achieved in even fewer 

iterations and chains.  In any case, the 2PL_MainItems model attained convergence in a 

relatively short amount of time with no issue.  

 2PL_AllItems Model.  The 2PL_AllItems model calibrated response data for all 140 

items but did not account for the local dependence created by the scaffolding process.  This 

model was calibrated both with and without incorporating covariates in the estimation 

process.  Similar to the 2PL_MainItems model, three parallel chains were ran, each of which 
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contained 10,000 draws from the posterior distribution, 5,000 of which were discarded for 

burn-in.  From the last 5,000 iterations, every 10
th

 draw was recorded for a total of 500 

retained draws for each parameter.  Using these specifications, convergence was attained for 

the model that incorporated the covariates in the estimation process.  As shown in Table 7 

below, the PSRFs for both item difficulty and discrimination parameters met the criterion of 

less than or equal to 1.2 for the model with covariates; however, the b parameter for the model 

without covariates did not meet this criterion at the 97.5% quantile.  Therefore, this model 

was calibrated a second time with twice as many iterations.  Convergence was attained for the 

model without covariates with 20,000 iterations.     

Table 7. 

Estimation Specifications and PSRFs for each 2PL_AllItems Model 

Model 

Model 

Specifications 

PSRF for parameter b PSRF for parameter a 
Approx. 

Run 

Time 50% 97.5% 50% 97.5% 

2PL_AllItems 

+ cov 

10000/5000/10 1.01 1.05 1.00 1.01 1:50 

      
2PL_AllItems 

10000/5000/10 1.09 1.34 1.01 1.05 2:00 

20000/10000/20 1.00 1.00 1.00 1.00 4:00 

Note. Model Specifications = number of total iterations/number of iterations discarded for 

burn-in/size of gap between posterior draws recorded 

 

Aside from the additional iterations needed for the 2PL model without covariates to 

meet the specified convergence criterion, there were no other convergence issues associated 

with model estimation.  The amount of time a model would run was rounded to the nearest 

quarter of an hour.  The amount of time needed to run each 2PL_AllItems model was 

approximately 2:00 hours.  There was not a significant difference in estimation time between 

the model with covariates and the model without covariates; the model with covariates took 
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about 10 minutes less to complete than the model with covariates.  However, the b parameter 

for the model without covariates did not sufficiently meet the convergence criterion at the 

97.5% quantile.  This model was run a second time with 20,000 iterations which allowed for 

the b parameter to sufficiently converge. The increase in the number of iterations also 

increased the time needed to run the model to approximately 4:00 hours.  Overall, the model 

that incorporated the covariates in the estimation process took less time to complete and 

successfully converge.       

Ordinal Response Model.  The polytomous ORM calibrated response data for the 32 

bundles in order to account for the local dependence between items within a bundle.  Thus, 

summed scores were calculated for item bundles and treated as single super-items that were 

scored polytomously using the ORM.  This model was also calibrated with and without 

incorporating covariates in the estimation process.  The same initial model specifications that 

were applied to the previous two model types were also used for estimating the polytomous 

models.  Convergence was attained for the model that incorporated the covariates in the 

estimation process.  As shown in Table 8 below, the PSRFs for both item difficulty and 

discrimination parameters met the criterion of less than or equal to 1.2 for the model with 

covariates; however, the b parameter for the model without covariates did not meet this 

criterion at the 97.5% quantile.  Similar to the previous 2PL model, the ORM without 

covariates model was calibrated a second time with twice as many iterations.  Again, 

convergence was attained for the model without covariates after 20,000 iterations.     
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Table 8. 

Estimation Specifications and PSRFs for each Ordinal Response Model 

Model 

Model 

Specifications 

PSRF for parameter b PSRF for parameter a Approx. 

Run 

Time 50% 97.5% 50% 97.5% 

ORM + covs 
10000/5000/10 1.01 1.03 1.03 1.11 6:00 

      
ORM  

10000/5000/10 1.07 1.29 1.01 1.03 4:30 

20000/10000/20 1.00 1.01 1.00 1.01 8:15 

Note. Model Specifications = number of total iterations/number of iterations discarded for 

burn-in/size of gap between posterior draws recorded 

 

Once convergence was achieved with the additional number of iterations for the model 

without covariates, there were no other convergence issues associated with model estimation.  

The ORM with covariates took approximately 6:00 hours.  The model that did not use 

covariates in the estimation process appeared to take less time to complete than the model that 

incorporated covariates.  However, the former model did not meet the convergence criterion 

and when it was ran a second time with 20,000 iterations, the length of time to complete 

increased to approximately 8:15 hours.  Thus, the amount of time for the ORM to complete 

and converge was faster for the model that incorporated the covariates in the estimation 

process.   

Testlet Response Model.  The TRM calibrated the response data to all 140 items but 

additionally accounted for a random effect component to explain the interaction between the 

person and the bundle; i.e., a bundle ability parameter.  This random effect component 

essentially accounts for item dependency within bundles but unlike the polytomous approach, 

the TRM does not lose the response patterns to individual items.  However, since each bundle 

ability parameter is treated as an additional dimension in the model, the TRM can become 

quite complex to estimate.  The TRM was calibrated both with and without incorporating 
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covariates in the estimation process.  The same initial model specifications that were applied 

to the previous three model types were also used for estimating the TRMs.   

Convergence was not attained for either the model with covariates or the model 

without covariates. To assist the estimation process, parameter estimates from the 2PL model 

(with covariates) were used as starting values for all subsequent model estimations.  As 

displayed in Table 9 below, the number of iterations was increased ultimately to 100,000 

iterations to try to achieve convergence.  PSRFs were provided for item parameters as well as 

for the variances of each testlet parameter (gamma); however, the convergence indices for the 

variances of gammas are only provided for the final models that used 100,000 iterations.  The 

models that used 50,000 iterations or more could not be estimated when three chains were 

specified due to lack of working memory space using a dual processor P8700 at 2.53GHz.  

Therefore, the model that used 50,000 iterations was estimated with only two chains and 

model run time was approximated for three chains based on the time needed for two chains.  

The model that used 100,000 iterations was estimated one chain at a time; as such, 

SCORIGHT 3.0 could not provide convergence diagnostics as was the case with the other 

models.  For this model, PSRF values were calculated for each set of parameter draws.  While 

item parameters, a and b, finally met the convergence criterion after 100,000 iterations, there 

were at least three testlet parameters that did not converge (based on the PSRF value at the 

50% quantile) for the model that incorporated covariates and one testlet for the model without 

covariates.  As shown in Table 10 below, most testlet parameters did not meet the 

convergence criterion of less than 1.2 at the 97.5% quantile.     
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Table 9. 

Estimation Specifications and PSRFs for each Testlet Response Model 

Model 

Model 

Specifications 

PSRF for parameter b PSRF for parameter a Approx. 

Run 

Time 50% 97.5% 50% 97.5% 

TRM + 

covs 

10000/5000/10* 1.04 1.12 4.66 8.78 5:30 

10000/5000/10 1.01 1.07 4.60 8.69 5:30 

20000/10000/20 1.10 1.21 4.43 7.34 11:00 

50000/40000/20† 1.00 1.01 1.45 2.98 26:00 

  100000/90000/20†† 1.00 1.00 1.00 1.00 51:00 

TRM 

10000/5000/10* 1.17 1.54 6.84 12.28 5:00 

10000/5000/10 1.11 1.52 6.79 12.24 5:00 

20000/10000/20 1.12 1.33 4.46 7.76 10:00 

50000/40000/20† 1.01 1.06 1.82 3.27 25:00 

  100000/90000/20†† 1.00 1.00 1.00 1.00 50:00 

Note. Model Specifications = number of total iterations/number of iterations discarded for 

burn-in/size of gap between posterior draws recorded; *did not use parameter estimates from 

2PL as initial values; all subsequent models were provided these initial values; Appox. Run 

Time = indicates approximate time in hours:minutes for 3 chains; † Due to large amount of 

working memory required for 50000 iterations, only 2 chains were run simultaneously; †† 

Due to large amount of working memory required for 100000 iterations, only 1 chain was run 

at a time 
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Table 10. 

PSRFs for Variances of Gammas for each Testlet Response Model 

 

Bundle # 

TRM + covs TRM  

50% 97.5% 50% 97.5% 

1 1.00 1.01 1.01 2.46 

2 1.00 1.42 1.00 1.00 

3 1.00 1.30 1.00 1.05 

4 1.00 1.11 1.00 1.25 

5 1.00 0.99 1.00 1.00 

6 1.03 2.58 1.02 1.22 

7 1.02 3.42 1.05 2.89 

8 1.00 1.40 1.00 1.52 

9 1.00 1.08 1.00 1.48 

10 1.00 1.38 1.02 2.99 

11 1.00 1.22 1.00 0.97 

12 1.00 1.15 1.00 1.67 

13 1.00 0.98 1.00 1.09 

14 1.00 1.13 1.01 1.68 

15 1.00 1.06 1.00 1.18 

16 1.02 2.30 1.07 4.65 

17 1.00 1.13 1.00 1.07 

18 1.01 1.71 1.01 1.00 

19 1.00 1.14 1.00 0.97 

20 1.00 1.07 1.00 1.01 

21 1.00 1.44 1.00 1.11 

22 2.47 11.51 1.00 1.12 

23 2.04 11.73 1.01 3.22 

24 1.01 3.40 1.01 2.03 

25 1.02 2.17 1.01 1.59 

26 1.00 2.33 2.52 14.47 

27 1.02 2.74 1.00 2.00 

28 1.03 4.64 1.01 2.96 

29 1.00 1.82 1.02 3.33 

30 1.04 3.45 1.01 2.12 

31 2.70 9.93 1.04 4.30 

32 1.11 5.84 1.00 1.59 

Note. Highlighted cells indicate testlets that did not converge 
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Moreover, in evaluating convergence of the testlet effects (variance of gamma, γ), it 

was discovered that at least one bundle in each of the model calibrations (i.e., with and 

without covariates) had estimates that approached infinity.  That is to say, that as the samples 

were drawn from the posterior, these draws appeared to become increasingly larger than the 

last and continued to cycle upwards infinitely.  After 100,000 iterations, these estimates had 

exponents of 63 and greater (e.g., 3.491E+63).  As an example, Figure 14 below displays 

draws from the posterior for the variances of gamma for the first bundle in the dataset.  It is 

easy to see that within the first 5,000 iterations, the algorithm continues to draw larger and 

larger samples from the posterior but then maintains a relatively consistent distribution 

thereafter.  Conversely, Figure 15 below displays draws for the variances of gamma for 

Bundle 26 estimated using the TRM (without covariates).   This bundle never achieves a 

stationary distribution; rather, it continues to cycle upwards with no end in sight.  Similarly, 

Bundle 22 calibrated with the TRM + covs model followed the same infinite cycle pattern as 

shown in Figure 16.  Needless to say, these parameters were not within an interpretable range 

and attempts at rectifying this issue are discussed in the next section.    
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Figure 14. Time-series plot for the variance of gamma for Bundle 1 based on 100,000 

iterations. 

 

 

 

Figure 15. Time-series plot for the variance of gamma for Bundle 26 from the TRM (without 

covariates) model based on 100,000 iterations. 
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Figure 16. Time-series plot for the variance of gamma for Bundle 26 from the TRM + covs 

model based on 100,000 iterations. 

 

Clearly there were several estimation issues associated with calibrating the TRMs.  

The model with the fewest number of iterations (10,000) required more time to complete than 

any of the other previous models and this model was far from converging.  One chain of 

10,000 iterations took approximately 1:40 hours to complete whereas one chain of 100,000 

iterations ran for roughly 16:30 hours.  Moreover, multiple chains could not be estimated in 

the same run for models that used 100,000 iterations (i.e., each chain had to be run separately 

due to lack of sufficient working memory space) and therefore, convergence could not be as 

readily obtained as the other models (i.e., it had to be calculated based on output from each 

chain).  Even after 100,000 iterations, there were a few variances of testlet parameters that did 

not appear to converge at the 50% quantile.  Implications of these results are detailed in the 

next chapter; however, for the sake of completeness, attempts were made to include this 

model in the all of the model analysis procedures.  Issues associated with this model are 
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discussed within each of the following sections and procedures taken to resolve estimation 

difficulties are detailed in the following paragraphs. 

Additional TRM Calibration Procedures.  In an effort to attain convergence and 

reasonable estimates for the testlet parameters, several additional steps were taken towards 

calibrating the data using the TRM.  Solutions were sought first from a software or model 

perspective and second from a data perspective.  First, in order to determine if estimation 

issues may be due to a limitation in the software, the TRM (without covariates) was also run 

in WinBugs software (Spiegelhalter, Thomas, Best, & Lunn, 2003).  Errors occurred when 

this model was run for any number of iterations greater than 1,500.  Furthermore, based on a 

test run of 1,000 iterations that took almost 4 hours to complete, the amount of time estimated 

to complete 100,000 iterations was more than two weeks.  As demonstrated from the 

SCORIGHT 3.0 output, the gamma estimates for some of the testlets were unreasonable and 

may have been causing the errors to occur in the estimation process in WinBugs.  Therefore, 

it was decided that it may not be feasible to estimate the variances of gamma for this 

particular dataset.  As such, these variances were set to equal one and the model was run again 

in WinBugs.  While the model successfully completed after a test run of 5,000 iterations 

(which took approximately five hours to compile and run), the output for the gamma estimates 

could not be opened.  The program attempted to retrieve the output for approximately four 

hours and then indicated that errors had occurred in the process.   

Several changes to the dataset were also made in an effort to resolve the estimation 

issues and with each change, the model was re-run in both software programs.  First, the data 

were cleaned for student profiles that had exact same response patterns.  While it was not 

possible to determine with certainty, it appeared that some groups of students worked together 
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or as a class in responding to the Assistments items and as a result had the same response 

patterns.  This accounted for approximately 10.8% of the data (399 cases).  It was reasonable 

to believe that these response sets may be contributing to an overestimation of the testlet 

effects.  However, results did not improve for either software program after deleting these 

cases.  Some of the gamma estimates in SCORIGHT 3.0 still appeared to approach infinity 

and estimation procedures in WinBugs still resulted in errors.  To potentially help address any 

estimation issues related to missing data, 15 bundles that were administered to fewer than 500 

students were removed from the original dataset (i.e., the dataset with 2,745 student profiles).  

The models were again, re-run in both software programs and the same problems occurred.  

Finally, a sequential deletion of potentially problematic bundles was performed.  Based on the 

SCORIGHT 3.0 output, gamma estimates for Bundles 22, 23, 26 and 31 did not converge.  

These bundles were removed sequentially and after each removal, the model was re-run in 

both programs.  Again, the same estimation difficulties occurred after each bundle was 

removed.   

In the end, an extensive amount of time and effort was undertaken to resolve the 

estimation issues associated with calibrating the TRM.  Unfortunately, none of the steps 

described resulted in a solution.  While a solution for fitting the data to the TRM was not 

determined, valuable information was obtained through this process and implications of these 

results are discussed in the next chapter. 

Summary.  Overall, the 2PL_MainItems model, both 2PL_AllItems models, and both 

polytomous models achieved convergence for all relevant parameters.  The 2PL_MainItems 

model attained convergence with the fewest number of iterations.  The 2PL_AllItems and 

polytomous models that incorporated covariates in the estimation process both met the 
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convergence criterion with 10,000 iterations while their counterparts that did not incorporate 

covariates required additional iterations to achieve convergence.  None of these models had 

any notable convergence issues.  On the other hand, the TRM required almost 10 times as 

many iterations; this was far more difficult for a standard processor to estimate which resulted 

in running one chain at a time.  The TRMs were also the only set of models that were 

specified initial values to assist in the estimation process; random initial values were sufficient 

for the calibrating the other models.  However, even with the initial values and additional 

iterations, conclusive evidence for convergence could not be attained for either of the TRMs 

and some of the testlet parameters obtained from these calibrations were not interpretable.   

Descriptive Statistics. Table 11 below displays the number of students that were 

administered each item as well as the number and percent correct for each item.  This 

descriptive information for the number and percent correct data is summarized in Table 12.  

Overall, with the exception of items 103 through 140, most items appeared to be relatively 

easy with most students responding to correctly to both the main and scaffold items.  The 

average percentage correct for all items was 81.9%; the mean percentage correct for only the 

main items was lower at 70.4%.  There were a number of items that had appeared to be much 

more difficult for students than most of the other items.  For example, less than 19% of 

students answered item 109 correctly.  Similarly, there were five other main items (items 100, 

103, 113, 119 and 138) that had fewer than 40% correct responses.   

The average percentage correct for scaffold items was rather high at 93.4%; however, 

it is important to keep in mind that missing data were recoded such that if a student responded 

correctly to a main item, then his or her responses to the scaffold items were coded as correct.  

Thus, this average percentage correct on scaffold items does not represent only those 
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students‘ responses that went through the scaffolding process; rather it also represents 

assumed student responses for those that did not go through the scaffolding process.  If the 

average were taken from response patterns of students that only responded incorrectly to the 

main item, it would inevitably be lower than 93.4%.       

Item parameter estimates were obtained for each of the evaluation models from the 

SCORIGHT 3.0 output.  Table 13 below displays the average estimates for difficulty, 

discrimination and ability parameters for the 2PL_MainItems model.  Tables 14-16 outline the 

relevant parameter estimates for each of the six comparison models.   

2PL_MainItems Model.  The average difficulty (b) parameter for the 2PL_MainItems 

model was -0.71 which indicates that on average a slightly below average ability level was 

required to have a 50% chance of getting a main item correct.  The average discrimination (a) 

parameter was 2.81 which signifies that, on average, the main items discriminate between low 

and high ability students extremely well.   

2PL_AllItems Model & ORM.  In general, the pattern of average item parameters 

appeared to be fairly consistent for all of the comparison models except for the TRM.  On 

average, the items calibrated by the 2PL_AllItems models and the polytomous ORMs, require 

an average to somewhat below average ability level to have a 50% chance of success.  

Furthermore, the items calibrated by these models also appear to discriminate unusually well.  

The average b parameters for the 2PL_AllItems models had greater negative values than the 

2PL_MainItems model but smaller negative values that the ORMS.  The average 

discrimination parameter was the highest for the 2PL_AllItems and the lowest for the 

polytomous ORMs.  Thus, including the scaffold items in the estimation process increased 

average item discrimination; however, accounting for local dependence using the polytomous 
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approach decreases average a values.  In any case, all of the discrimination estimates 

produced by these models were unusually high, particularly given the relatively low difficulty 

estimates.  Possible explanations for these findings are presented in the discussion section.  It 

should also be noted that adding the covariate into the estimation process of the b parameter 

did not appear to meaningfully impact item parameter estimates. 
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Table 11. 

 

Descriptive Statistics for each Item 

 

Item 

Item 

Indicator* n 

n 

Correct 

Percent 

Correct 

  

Item 

Item 

Indicator* n 

n 

Correct 

Percent 

Correct 

 1 1 1103 1023 92.75 

 

34 1 1020 911 89.31 

2 0 1102 1050 95.28 

 

35 0 1017 971 95.48 

3 0 1101 1053 95.64 

 

36 0 1016 934 91.93 

4 0 1100 1061 96.45 

 

37 0 1015 939 92.51 

5 1 1162 984 84.68 

 

38 0 1015 986 97.14 

6 0 1160 1109 95.60 

 

39 0 1015 983 96.85 

7 0 1159 1080 93.18 

 

40 0 1015 963 94.88 

8 0 1157 1115 96.37 

 

41 1 983 872 88.71 

9 0 1154 1030 89.25 

 

42 0 982 934 95.11 

10 1 975 817 83.79 

 

43 0 980 937 95.61 

11 0 975 881 90.36 

 

44 0 979 955 97.55 

12 0 974 868 89.12 

 

45 1 407 256 62.90 

13 0 966 882 91.30 

 

46 0 406 312 76.85 

14 0 966 881 91.20 

 

47 0 405 329 81.23 

15 1 1071 978 91.32 

 

48 0 402 342 85.07 

16 0 1070 999 93.36 

 

49 1 1623 1457 89.77 

17 0 1069 1046 97.85 

 

50 0 1622 1542 95.07 

18 0 1068 1044 97.75 

 

51 0 1622 1525 94.02 

19 0 1068 1001 93.73 

 

52 0 1621 1590 98.09 

20 0 1068 1043 97.66 

 

53 0 1620 1559 96.23 

21 1 1046 953 91.11 

 

54 1 1612 1459 90.51 

22 0 1047 1009 96.37 

 

55 0 1611 1492 92.61 

23 0 1046 1003 95.89 

 

56 0 1608 1534 95.40 

24 0 1045 1028 98.37 

 

57 0 1607 1504 93.59 

25 0 1045 1031 98.66 

 

58 1 1003 900 89.73 

26 1 377 247 65.52 

 

59 0 1002 953 95.11 

27 0 376 344 91.49 

 

60 0 1002 977 97.50 

28 0 375 313 83.47 

 

61 0 1002 942 94.01 

29 1 1064 834 78.38 

 

62 1 1609 1432 89.00 

30 0 1064 890 83.65 

 

63 0 1607 1495 93.03 

31 0 1053 923 87.65 

 

64 0 1604 1470 91.65 

32 0 1048 966 92.18 

 

65 1 1610 1476 91.68 

33 0 1048 921 87.88 

 

66 0 1608 1535 95.46 
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Table 11 continued. 

 

Descriptive Statistics by Item 

 

Item 

Item 

Indicator* n 

n 

Correct 

Percent 

Correct  Item 

Item 

Indicator* n 

n 

Correct 

Percent 

Correct 
 67 0 1608 1521 94.59 
 

100 1 809 218 26.95 

68 0 1608 1518 94.40 
 

101 0 804 541 67.29 

69 1 301 176 58.47 
 

102 0 801 454 56.68 

70 0 299 227 75.92 
 

103 1 494 196 39.68 

71 0 298 248 83.22 
 

104 0 489 266 54.40 

72 0 296 194 65.54 
 

105 1 1000 682 68.20 

73 0 295 226 76.61 
 

106 0 998 786 78.76 

74 0 293 242 82.59 
 

107 0 992 730 73.59 

75 0 293 268 91.47 
 

108 0 984 816 82.93 

76 0 265 225 84.91 
 

109 1 416 78 18.75 

77 0 291 262 90.03 
 

110 0 408 156 38.24 

78 1 1652 1462 88.50 
 

111 0 375 215 57.33 

79 0 1643 1537 93.55 
 

112 0 387 222 57.36 

80 0 1638 1565 95.54 
 

113 1 541 214 39.56 

81 0 1635 1509 92.29 
 

114 0 532 293 55.08 

82 1 1275 1071 84.00 
 

115 0 518 436 84.17 

83 0 1265 1111 87.83 
 

116 0 517 221 42.75 

84 0 1262 1147 90.89 
 

117 0 502 357 71.12 

85 0 1261 1146 90.88 
 

118 0 496 412 83.06 

86 0 1254 1131 90.19 
 

119 1 886 295 33.30 

87 1 1172 992 84.64 
 

120 0 882 497 56.35 

88 0 1170 1091 93.25 
 

121 0 878 632 71.98 

89 0 1171 1154 98.55 
 

122 0 868 547 63.02 

90 0 1171 1088 92.91 
 

123 1 415 227 54.70 

91 0 1171 1098 93.77 
 

124 0 413 308 74.58 

92 1 1146 1040 90.75 
 

125 0 413 291 70.46 

93 0 1140 1109 97.28 
 

126 1 725 390 53.79 

94 0 1140 1085 95.18 
 

127 0 722 466 64.54 

95 0 1138 1095 96.22 
 

128 0 721 582 80.72 

96 1 1147 1049 91.46 
 

129 0 720 512 71.11 

97 0 1144 1087 95.02 
 

130 0 719 529 73.57 

98 0 1142 1067 93.43 
 

131 1 727 450 61.90 

99 0 1140 1112 97.54 
 

132 0 726 581 80.03 
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Table 11 continued. 

 

Descriptive Statistics by Item 

 

Item 

Item 

Indicator* n 

n 

Correct 

Percent 

Correct 

133 0 723 530 73.31 

134 1 722 340 47.09 

135 0 721 494 68.52 

136 0 720 549 76.25 

137 0 720 517 71.81 

138 1 712 237 33.29 

139 0 712 353 49.58 

140 0 713 527 73.91 

* 1 = main item; 0 = scaffold item 
 

Note. Response data were recoded such that 

correct responses on main items corresponded to 

correct responses on scaffold items. 

 

 

 

Table 12. 

 

Summary Statistics for Original Data (not calibrated with IRT) 

 

Data   Mean Std Dev Min Max 

Bundles 

n 954.98 389.58 265 1652 

n Correct 820.52 424.39 78 1590 

Percent Correct 81.87 17.42 18.75 98.66 

Main Items 

Only 

n 962.66 394.39 301 1652 

n Correct 741.13 455.18 78 1476 

Percent Correct 70.44 23.14 18.75 92.75 

Scaffold 

Items Only 

n 1012.41 175.37 375 1160 

n Correct 948.34 176.16 313 1115 

Percent Correct 93.39 4.05 83.47 98.66 

Students 

n Items 48.71 25.60 15 127 

n Items Correct 41.85 27.78 0 123 

Percent Correct 82.39 23.17 0.00 100 

Note. n = number of students that were administered items; n Items = number of items that 

were administered to students 
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Testlet Response Model.  Conversely, the TRM produced very different results for 

this dataset.  Please note that the TRMs had several estimation issues and a number of the 

bundles did not meet the convergence criterion.  The summary of item parameter estimates is 

only presented for the sake of completeness; however, implications associated with 

interpreting these parameter estimates are discussed in the next chapter.  The average 

difficulty parameter for the TRM was -6.89 suggesting that the items were very easy; that is, 

based on the TRM an ability level at the extreme low end of the ability scale was needed to 

successfully respond to an item.  The average discrimination parameter estimate was 

approximately equal to 1.00 which reflects a more typical level of discrimination.  The fact 

that these results do not follow conventional form for IRT models (i.e., typically easier items 

discriminate less well) warrants even more caution in their interpretation.   

The gamma estimates in the TRMs are not, by themselves, that meaningful.  It is the 

variances of gamma that are useful for describing the amount of local dependence that exists 

in a group of items.  The estimates of the variances of gammas, presented in Table 17, were 

extremely large and for a couple of bundles (bundles 22 and 26) they appeared to approach 

infinity and were not interpretable.  As the testlet effects are relative to the variance of person 

abilities, a variance of gamma equal to 1.0 is considered a large variance (Wang et al., 2002).  

Variances of gamma greater than 2.0 are considered very large testlet effects.  As the smallest 

variance of gamma for the TRMs was approximately 26.0 to 27.0, it is clear that a significant 

amount of local dependence exists in this dataset.   
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Table 13. 

 

Item Parameter Mean, Average Standard Error and Range for the Dichotomous 

2PL_MainItems Model 

 

    Average 

Std Error 

    

  Mean Min Max 

Difficulty (b) -0.711 0.077 -1.344 0.553 

Discrimination (a) 2.814 0.335 0.758 5.662 

 

Table 14. 

 

Item Parameter Mean, Average Standard Error and Range for the Dichotomous 

2PL_AllItems Model 

 

  2PL_AllItems + covs 2PL_AllItems 

Parameter Mean 

Mean 

Std. 

Error Min Max Mean 

Mean 

Std 

Error Min Max 

Difficulty (b) -1.121 0.059 -1.715 -0.129 -1.118 0.056 -1.705 -0.135 

Discrimination (a) 3.813 0.454 1.585 6.937 3.832 0.456 1.604 6.891 

 

Table 15. 

 

Item Parameter Mean, Average Standard Error and Range for the Dichotomous Polytomous 

Ordinal Response Models 

 

  ORM + covs ORM 

Parameter Mean 

Average 

Std Error Min Max Mean 

Average 

Std Error Min Max 

Difficulty (b) -1.829 0.111 -2.592 -0.809 -1.816 0.110 -2.550 -0.814 

Discrimination (a) 1.551 0.136 0.733 2.436 1.551 0.138 0.753 2.447 

Category 

Boundary (k) 1.257 0.127 0.361 2.975 1.216 0.114 0.373 2.952 
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Table 16. 

 

Item Parameter Mean, Average Standard Error and Range for the Dichotomous Testlet 

Response Models 

 

  TRM + covs TRM 

Parameter Mean 

Avg. 

Std 

Error Min Max Mean 

Avg. 

Std 

Error Min Max 

Diff. (b) -6.89 0.64 -9.95 9.72 -6.62 0.55 -9.96 5.69 

Discrim. (a) 0.99 0.91 0.11 13.04 0.77 0.51 0.09 22.41 

Variance of 

gamma (γ) 313.02 132.21 27.62 2983.90 318.24 500.98 25.69 3050.76 

Note. Variance of γ calculations based only on estimates that were less than "infinity" (non-

highlighted cells in Table X). 
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Table 17. 

 

Estimated Variances of Gamma (γ) and Standard Errors for each Bundle   

 

  TRM + covs TRM 

Bundle 

Variance 

of γ 

Standard 

Error 

Variance 

of γ 

Standard 

Error 

1 38.377 3.334 45.336 4.090 

2 45.779 3.621 50.315 4.061 

3 86.961 8.932 100.338 11.576 

4 31.411 2.800 30.900 2.722 

5 27.617 2.591 25.687 2.284 

6 79.764 10.473 82.153 17.750 

7 126.337 14.659 187.647 28.991 

8 47.121 4.706 41.916 3.751 

9 33.744 3.012 31.513 2.946 

10 169.154 31.981 355.768 85.081 

11 29.226 2.221 28.624 2.058 

12 45.391 3.506 49.871 4.162 

13 34.917 3.086 36.164 3.396 

14 61.849 4.927 67.806 5.350 

15 41.198 3.080 45.888 3.212 

16 206.553 40.960 349.580 84.710 

17 47.996 3.683 47.888 3.363 

18 92.655 8.995 111.123 11.284 

19 36.255 3.120 34.886 2.915 

20 34.621 3.030 32.399 2.963 

21 36.540 3.356 39.557 3.753 

22 8.434E+74 2.744E+73 343.774 37.344 

23 2983.899 5.835E+62 3050.763 645.123 

24 462.544 462.544 415.054 68.335 

25 472.987 472.987 313.643 57.053 

26 479.942 479.942 2.530E+46 9.332E+44 

27 520.096 520.096 550.117 5.495E+33 

28 628.768 628.768 801.298 801.298 

29 874.219 508.018 827.175 827.175 

30 738.415 285.956 621.050 621.050 

31 802.642 335.697 707.954 5898.309 

32 386.517 106.212 439.119 5783.179 

Note. Highlighted cells indicate estimates that approached infinity. 
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 Figures 17 and 18 below display the item discrimination parameter and difficulty 

parameter, respectively, for every item calibrated by each of the comparison models.  As 

incorporating the covariate for the b parameter did not appear to change the estimate, only the 

models estimated without covariates are presented.  The 2PL_AllItems models, which ignore 

local dependence, had larger discrimination parameters than the other two models that 

account for local dependence.  This was true for models both with and without covariates.  

Item difficulty estimates for the 2PL_AllItems models and the polytomous ORMs were 

relatively consistent at around zero on the ability scale.  However, as noted earlier, the b 

parameters for the TRM were vastly lower than the other two models.  Again, this was true 

for models both with and without covariates.    

Summary.  In review, the percentage correct scores indicated that most items were 

relatively easy with the exception of a handful of items that had percentages less than 40%.  

Calibrating the Assistments data with IRT models revealed relatively consistent item 

parameters for the 2PL_MainItems model, the 2PL_AllItems models and the polytomous 

ORMs.  In general, the difficulty parameters were at or somewhat below zero indicating that 

an average or somewhat below average ability level was required to have a 50% chance of 

success on an item.  Incorporating the covariate in the estimation process of the b parameter 

did not appear to change the resulting parameter estimates.  While the 2PL_AllItems models 

which included the scaffold items had higher discrimination parameter estimates than the 

2PL_MainItems model or polytomous models, a parameter estimates were relatively high 

across all three types of models.   
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Figure 17. A comparison of item discrimination values for each model that did not 

incorporate covariates in the estimation process. 

 

 

 

 

 
Figure 18. A comparison of item difficulty values for each model that did not incorporate 

covariates in the estimation process. 
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The TRM had several estimation issues rendering interpretation of item parameter 

estimates difficult if not untenable.  The estimates obtained were vastly different from those 

of the other models.  In particular, the b parameter estimates were much lower than the other 

model estimates.  The a parameters for the TRM were also consistently lower than the other 

models.  The estimates of the variances of gamma were extremely large, and in many cases, 

unreasonably large suggesting the presence of significant local dependence.  However, given 

the lack of convergence and interpretable parameter estimates for a number of the bundles, 

direct comparisons between the TRMs and the other evaluation models are not justified. 

Model Fit. The DIC statistic was calculated for the 2PL_MainItems model, the 

2PL_AllItems models and the polytomous ORMs.  Two programs were written in Fortran: 

one to calculate the DIC for the dichotomous models and one for the polytomous models 

which are provided in Appendix B and C, respectively.  The DIC for the TRMs could not be 

obtained from the output provided by the SCORIGHT 3.0 program due to the gamma draws 

that approached infinity.  These estimates, which appeared in both the TRM + covs and the 

TRM, rendered the output unusable.  The amount of space that was allocated for these draws 

was not large enough to retain reasonable formatting.  Values that appeared after those that 

approached infinity (e.g., 3.491E+63) were not differentiated with a space or tab which made 

the matrix of posterior draws completely unusable from a programming standpoint.  As 

described previously, every effort was made to calibrate this model in WinBugs as the DIC is 

automatically calculated in this software program; however, WinBugs was not able to 

successfully calibrate the model.   

Table 18 below summarizes the calculations for the DIC index for the 2PL_MainItems 

model, the 2PL_AllItems models and the polytomous ORM models.  The pD value is 
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typically used to estimate the ‗effective number of parameters‘ and it is equal to the difference 

between the mean of the deviance ( D ) and the deviance at the posterior expectations ( D ).  

Again, it should be noted that due to the differences in data structures, only direct 

comparisons of DIC can be made between the + covs models and their counterparts that did 

not use covariates.  Unfortunately, as DICs for the TRMs could not be calculated, 

comparisons with the 2PL_AllItems models could not be made. 

Table 18.  

Deviance Results for each Evaluation Model 

 

Model D  D  pD DIC 

2PL_MainItems 17848.82 15583.66 2265.16 20113.98 

2PL_AllItems + covs 55826.34 56550.24 -723.90 55102.44 

2PL_AllItems 55819.53 56557.09 -737.55 55081.98 

ORM + covs 36298.60 35714.68 583.92 36882.52 

ORM 36296.34 35732.91 563.43 36859.77 

TRM + covs --- --- --- --- 

TRM --- --- --- --- 

Note. D  = posterior mean of the deviance; D  = deviance at the posterior means; pD = 

measure of model complexity based on difference between D  and D ; DIC = deviance 

information criterion ( D + pD) 

 

For the 2PL_AllItems models and the ORMs, incorporating a covariate into the 

estimation process appeared to worsen the fit of the model.  The difference in DIC values for 

the 2PL_AllItems models with and without covariates was 20.46, in favor of the model that 

did not use covariates.  Similarly, the difference between the two ORMs was 22.75, again in 

favor of the model without covariates.  While it is difficult to evaluate DIC error (Zhu and 

Carlin, 2000), the Bugs Project website (http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/ 

dicpage.shtml) has suggested that differences of 10 or more would be more than substantial 

evidence for model selection.  As mentioned, while the DIC values were readily interpretable 

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/%20dicpage.shtml
http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/%20dicpage.shtml
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for evaluating the utility of the covariates, comparisons of the DICs across the various model 

types are not warranted due to the differing ways in which the data were defined for each 

model.  Explanations and implications of these results are presented in the next chapter.    

Information.  Item and test information functions were calculated for each model.  

The TIFs for each model are displayed in Figure 19.  The solid line in the graph below 

represents the 2PL_MainItems model; the dotted lines signify the 2PL_AllItems models 

which ignore local dependence; and the dashed lines are for the ORMs which account for 

local dependence.  Again, information for the TRM could not be calculated due to the testlet 

effects that were out of reasonable range. The results clearly showed that more information is 

provided by the 2PL_AllItems models when theta is between approximately -2.0 and 0.0.  The 

peak of the 2PL_AllItems curve is much higher reaching a maximum height that is more than 

four times greater than the peak of the of the ORMs.  However, when theta is at the low end 

of the spectrum, i.e., less than -2.50, the ORMs appear to provide more information than the 

2PL_AllItems models.  When theta is average or above average the models seem to provide 

relatively the same amount of information.  The 2PL_MainItems model, not surprisingly, 

provided the least amount of information across the ability scale. 

The TIF for the 2PL_AllItems + covs model completely overlapped with the 

2PL_AllItems model that did not use covariates.  The TIFs for the ORMs were very similar; 

however, the ORM + covs was shifted to the right and had slight spike in information at the 

very low end of the theta scale.  In general, incorporating covariates into the estimation 

process did not appear to significantly impact the amount of information that the test provides. 

Information for each type of scoring model was also calculated for each group of 

items that formed a bundle.  When all items were calibrated using the 2PL_AllItems model, 
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information was summed across each item in the bundle for a total bundle information 

function.  These bundle information functions were compared to the item information 

functions for the polytomous model which are sums of score category information functions.  

Essentially, information is compared across bundles when local dependence is ignored and 

when it is accounted for.  Figures 20 and 21 below display each bundle information function 

for the 2PL_AllItems model (without covariates) and the ORM (without covariates), 

respectively.  The same comparisons are made between these two scoring models and the IIFs 

for the 2PL_MainItems model on a bundle-by-bundle basis and are available in Appendix D.  

In general, the bundle information functions followed the same pattern as the TIFs.  That is, 

for most of the bundles the 2PL_AllItems provided more information when theta was just 

below average than the ORM but the ORM appeared to provide more information at the lower 

end of the ability scale.  There was one bundle (Bundle 19) that the ORM provided slightly 

more information than the 2PL_AllItems but the difference was slight.  A comparison 

between item information functions for the 2PL_MainItems and bundle information for the 

ORM indicated that there were no consistent patterns in the amount of information provided 

by these two scoring models.  That is, for some bundles, accounting only for responses to the 

main item provided more information, while for other bundles, accounting for responses to 

the scaffold items and the local dependence within the bundle provided more information 

across the theta scale.  There were also bundles in which the same amount of information was 

provided by both of these scoring models. 
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Figure 19. Total test information for each scoring model 

 

 

 
Figure 20. Total bundle information for 2PL_AllItems scoring model (without covariates) 

which ignore local dependence 
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Figure 21. Total test information for ORM scoring model (without covariates) which account 

for local dependence 

 

Overall, the 2PL_AllItems provided the most information across the majority of the 

ability scale.  Thus, the models that ignored local dependence provided more information than 

the ORMs that accounted for it.  The loss of response patterns that occurs when summed 

scores are obtained for the polytomous approach resulted in substantial loss of information.  

However, for very low ability examinees, the ORMs provided more information than the 

2PL_AllItems models.  Not surprisingly, the 2PL_MainItems model provided the least 

amount of information across the ability scale.  Incorporating covariates into the estimation 

process did not appear to meaningfully alter model precision.  Comparing bundle information 

functions demonstrated similar patterns for the majority of bundles.  

Research Question 2: Is there a relationship between student ability estimates derived 

from the scoring models and a criterion measure of student achievement?   

Ability estimates from each of the scoring models calibrated in the previous section 

were evaluated to determine the degree to which they related to student performance on a 
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state accountability assessment.  Student ability estimates along with percent correct scores 

derived from the response data were correlated with a criterion measure of student ability 

based on the end-of-year state assessment. Statistical relationships were also computed 

between each of the scoring models and the percent correct score.   

The average number of Assistments items that a student took was approximately 49 

and most students responded correctly to about 42 of those items. Thus, on average students 

appeared to perform well on the items that they were administered.  The range of possible 

scores on the state assessment used in this study is 200 – 280.  There were 778 student 

profiles that had corresponding state test scores.  The mean state test score for this subsample 

of students was 229.13 (sd = 17.11).  While the range of test scores was 204 to 280 which 

mostly covered the range of possible scores; the mean appeared to be below average assuming 

that the average score would be about mid-range. Information regarding average state test 

scores dating back to 2005 could not be retrieved.  As such, it is difficult to make any 

implications about the representativeness of this subsample of students with respect to their 

peers.       

Relationships between Scoring Models.  The correlation matrix, displayed in Table 

19 below, allows for comparisons of the relationships between ability estimates calibrated by 

each model and with the criterion measure.  Statistical relationships between the scoring 

models indicated statistically significant and moderate to strong relationships between 

proficiency estimates from all of the scoring models (except the TRMs) and the percent 

correct metrics.  Correlation coefficients between each the types of scores were all greater 

than 0.88 and all were significant at the p < .001 level.  Thus, scaled scores obtained from the 

IRT models were quite consistent across the model variations and these scaled scores were 
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also strongly related to percent correct metrics.  There did not appear to be any noteworthy 

differences in proficiency estimates between models that ignored local dependence and those 

that accounted for it.  Also, for each type of model, there were no differences between those 

that incorporated a covariate for theta and those that did not.  

The proficiency estimates for the TRMs were included in this analysis but should be 

interpreted with much caution as these models encountered several estimation issues 

including lack of convergence.  These results are presented here to be used as potential 

information to help explain issues associated with this model.  While the relationships 

between proficiency estimates from the TRMs and scores from the other models were 

statistically significant, they were considered trivial or weak at best, with the exception of the 

ORMs.  The correlation coefficients between the TRMs and the ORMs were relatively strong, 

albeit not as strong as those found between the other types of scoring models.  Thus, while 

scaled scores from the TRMs were mostly unrelated to the other types of scores that ignored 

local dependence, they were related to the scores that accounted for local dependence.    

Relationships with Criterion.  The correlation coefficients between state assessment 

scores and seven of the nine different types of scoring metrics ranged from r = 0.50 to 0.63; 

scores from the TRMs had no relationship with state test scores.  These relationships are 

moderate to strong and were statistically significant at the p < .001 level.  The percent correct 

score for all of the items had the strongest relationship with state assessment scores.  

However, the proficiency estimates from the 2PL_AllItems models also had relatively strong 

statistical relationships with the criterion and were only slightly less than that of the percent 

correct score for all items.  The same was true for the ORMs which had coefficients that were 

marginally less than those found for the 2PL_AllItems models.  Interestingly, when the same 
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sets of items (all items or main items only) are calibrated using a 2PL IRT model, the 

proficiency estimates obtained from these calibrations correlate slightly less with the criterion 

than their corresponding percent correct scores.   

Table 19. 

Correlation Coefficients between Scaled Scores Obtained from each Scoring Model, Percent 

Correct Scores and State Test Scores 

 

Model Type 

State 

Test 

Score 

Perc 

Corr_

Main 

Items  

Perc 

Corr_ 

All 

Items 

2PL_

Main 

Items 

2PL_

All 

Items

+ covs 

2PL_

All 

Items 

ORM 

+ 

covs ORM 

TRM 

+ 

covs 

PercCorr_ 

MainItems 
0.597  

       

PercCorr_ 

AllItems  
0.625 0.926 

       

2PL_MainItems 0.500 0.905 0.835 
      

2PL_AllItems + 

covs 
0.606 0.883 0.899 0.908 

     

2PL_AllItems 0.606 0.884 0.900 0.908 1.000 
    

ORM + covs 
0.592 0.924 0.895 0.927 0.969 0.969 

   

ORM 0.591 0.923 0.894 0.927 0.968 0.968 1.000 
  

TRM + covs 0.017 0.127 0.153 0.108 0.111 0.112 0.611 0.611 
 

TRM 0.009 0.110 0.132 0.087 0.090 0.090 0.622 0.622 0.863 

Note. Light grey cells indicate coefficients significant at p ≤ .05; darker grey cells indicate coefficients 

significant at p ≤ .001 

 

To facilitate the interpretation of these correlation coefficients, scatterplots depicting 

each of the scoring metrics against the state test scores are provided in Figures 22 – 26 below.  

While the correlation coefficient between the percent correct scores for all Assistments items 

and the criterion was stronger than those found for the scaled scores, this may be a result of a 

relatively small number of students that had high percent correct scores and also performed 
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extremely well on the state test.  That is to say, this correlation appears to be an average of 

two groups of students: one group that performed poorly on the state test and had a wide 

range of percent correct scores (i.e., practically no relationship), and another group whose 

percent correct scores appeared to be strongly related to state test scores.  On the other hand, 

the relationships between the scaled scores and the criterion appeared to be relatively 

consistent; there did not appear to be two different groups of students.  While there were 

certainly more students that were below average on the ability scale who also scored low on 

the state test, there were not many students that were high on the ability scale but scored low 

on the state test (as was the case for the percent correct scores).  Overall, while the 

coefficients for the scaled scores and the criterion were smaller, there was less dispersion than 

the relationships with the percent correct scores suggesting that the latter correlations may be 

driven by a relatively small group of students that performed well on both measures.    
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Figure 22. Scatterplot of percent correct scores on main items only and state test scores. 

 

 

Figure 23. Scatterplot of percent correct scores on all Assistments items and state test scores. 
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Figure 24. Scatterplot of scaled scores from the 2PL_MainItems model and state test scores. 

 

 

Figure 25. Scatterplot of scaled scores from the 2PL_AllItems model and state test scores. 
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Figure 26. Scatterplot of scaled scores from the ORM and state test scores. 

 

Summary.  Overall, except for the TRMs, the scaled scores from each of the scoring 

models and the percent correct metrics are strongly correlated with each other and moderately 

correlated with state test scores.  The correlation coefficients between the scoring metrics that 

were related to state test scores were all approximately equal to r = 0.6 with the exception of 

the 2PL_MainItems model which was somewhat lower.  While the coefficients for the percent 

correct scores were stronger, they appear to have been driven mostly by a group of students 

that performed well on both metrics.  While the TRMs were not necessarily expected to 

correlate well with any of the other metrics due to the model calibration issues outlined in a 

previous section, it was of interest to note that proficiency estimates from these models only 

correlated well with the other models that also accounted for local dependence (i.e., the 

ORMs).    
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Chapter Five – Discussion 

 

While significant progress has been made in recent years on technology enabled 

assessments (TEAs), including assessment systems that incorporate scaffolding into the 

assessment process, the area of psychometrics has yet to venture directly into these 

advancements in technology to determine how statistical methods and procedures can be used 

to fully capture students‘ knowledge, skills and abilities as measured by TEAs (Almond et al., 

2010; Bechard et al, 2010; Bennett & Gitomer, 2009).  This exploratory investigation has 

contributed towards this advancement by providing a comparison of scoring models for an 

operational scaffolded assessment system, the Assistments system, and by evaluating the 

statistical relationships between scores derived from those models and a criterion measure of 

student ability.     

Two main research questions were addressed in this study.  The first research question 

was aimed at determining which type of scoring model is the optimal model for scoring 

scaffolded assessment data from the Assistments system.  To address this question, a 

sequential procedure for fitting and evaluating increasingly complex models was conducted.  

The 2PL_MainItems model was established and compared to three additional comparison 

models; the 2PL_MainItems model did not account for any of the scaffolding features or 

complexities in the dataset whereas the comparison group of models did, each in a different 

way.  The 2PL_MainItems model only accounted for the independent dichotomous responses 

to the main items and was calibrated using the 2PL model.  The 2PL_AllItems comparison 

model additionally calibrated all of the scaffold items but ignored local dependence that is 

created by the scaffolding process.  The polytomous ORM accounted for local item 

dependence by treating the response patterns of item bundles as categories of a polytomous 
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item.  Finally, the TRM accounted for local dependence within bundles by adding a random 

effect component to explain the interaction between the person and the bundle.  All three of 

the comparison models were evaluated twice; once with the average number of hints accessed 

for a student and for an item as covariates for both person and item parameters in the 

estimation process and once without using any covariates.  A total of seven scoring models 

were calibrated and evaluated with respect to model convergence, model fit, and test 

information.   

The second research question evaluated one aspect of the validity of interpreting 

scores from these seven models by determining the degree to which scores relate to 

subsequent performance on an end-of-year accountability assessment.  The scoring models 

were compared to one another to determine which model produced scores that most strongly 

correlated with students‘ state test scores.  The scoring models were also evaluated against a 

percent correct score to determine if student ability estimates calibrated from IRT models had 

stronger relationships to a criterion measure of student ability than the percent correct score.   

The results of the analyses for each research question are discussed in the following 

sections.  Model convergence issues and implications of non-convergence are discussed first 

followed by a summary of model estimates obtained from each model.  A comparison of 

model fit statistics (where appropriate) and item information is also discussed.  A summary of 

the statistical relationships between all of the scoring models and the criterion measure is also 

discussed.  The models are then summarized and an optimal model is recommended based on 

a comparison of the criteria discussed and practical advantages and disadvantages of 

implementing a scoring model.  Limitations, future research directions and conclusions end 

this chapter.      
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Research Question 1: What type of model is the optimal scoring model for the scaffolded 

data in the Assistments system?   

The Assistments data were calibrated according to seven different models each of 

which accounted for different features of the Assistments system and/or the nature of the data.  

Each of the seven scoring models calibrated in this study were assessed according to 

parameter convergence, model fit, and precision of model estimates.  In addition to a 

discussion regarding parameter estimates from each model, issues, results and implications 

associated with each of the evaluation criteria are discussed next. 

Convergence.  One of the main challenges in using MCMC algorithms is the inherent 

difficulty of assessing the degree to which those algorithms have converged (Sinharay, 2004).  

Convergence is necessary if one is to assume that the sample generated from the MCMC 

algorithm is representative of the posterior distribution of interest (Sinharay, 2004).  In this 

study, convergence was statistically assessed using the PSRF convergence criterion of 

Gelman and Rubin (1993).  The PSRF was calculated for each estimated item parameter at the 

50% and 97.5% quantiles based on the Student t distribution.   

For the 2PL_MainItems model, convergence was readily achieved at both quantile 

points for parameters a and b.  While the 2PL_MainItems model required relatively few 

iterations (3,000 or less), the 2PL_AllItems model (which additionally calibrated the scaffold 

items) required more than three times as many iterations to achieve convergence when 

covariates were included in the estimation process and more than six times as many iterations 

when covariates were not included.  This was not surprising given that the scaffold items 

accounted for 108 additional items; more than four times as many items as the 

2PL_MainItems model.  However, it is interesting to note that incorporating the covariate for 
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the b parameter appeared to facilitate the estimation process for the 2PL_AllItems model.  

The model that did not incorporate these covariates did not meet the convergence criterion 

after the same number of iterations as the model that did incorporate them; the additional 

iterations needed for the model without covariates resulted in a less efficient estimation 

process with respect to time needed for completion.  It should be noted that only the b 

parameter at the 97.5% quantile did not meet the convergence criterion of 1.2 or less and the 

difference between ~1.3 and 1.2 may not be great enough to justify the additional iterations.  

Using other means for assessing convergence (e.g., graphical displays of stability) may result 

in less conservative decisions regarding attainment of convergence.  Similar results were 

found for the polytomous ORMs.  That is, the model with covariates achieved convergence 

after 10,000 iterations while the model without covariates required additional iterations to 

successfully converge on the b parameter.    

Of the models discussed thus far, the 2PL_MainItems model was not surprisingly, the 

most efficient in terms of time needed to achieve convergence.  However, clearly this model 

was the most simplistic and did not account for any of the scaffolding features.  Of the models 

that accounted for the scaffold items, the 2PL_AllItems models, which ignored local 

dependence, took less time to converge than the ORMs, which accounted for local 

dependence.  For both of these types of models, the models that incorporated covariates into 

the estimation process appeared to be more efficient than their counterpart models that did not 

incorporate any covariates.   

The TRM calibration process was vastly different from the other models with respect 

to number of iterations needed and convergence criteria.  Firstly, the TRMs were calibrated 

multiple times, each time with additional iterations up to 100,000 iterations.  Each model run 
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was also conducted using parameter estimates from the 2PL_AllItems model as initial values.  

After 100,000 iterations, the item parameters, a and b, met the convergence criterion; 

however, distributions for the variances of gamma did not appear to converge.  Three bundles 

did not converge at the 50% quantile for the model with covariates and one bundle did not 

converge for the model without covariates.  Most bundles did not meet convergence criterion 

at the 97.5% quantile for both models.  Similar to the other models, the b parameter appeared 

to converge more quickly for the model that incorporated a covariate in the estimation process 

for this parameter.  Conversely, based solely on the number of bundles that did not converge 

at the 50% quantile, the covariate for theta appeared to hinder the estimation process.  In other 

words, the model that incorporated covariates in the estimation process had two more bundles 

that did not converge than the model that did not incorporate covariates.  While this evidence 

is far from substantial, it may suggest that using the number of hints a student accessed during 

the assessment process as a covariate for theta may not be useful for the TRM.  The value of 

this covariate is further discussed in a later section.  

Based on the convergence results for the TRMs, it appeared that some estimates of 

gamma were unreasonably large (i.e., approached infinity) which was inevitably making 

convergence an unattainable goal.  A series of additional steps and analyses were conducted 

to try to rectify this problem unfortunately, with no avail.  While a solution was not found, 

these steps provided some potentially helpful insight into the problem.  For instance, it was 

confirmed that the problem did not stem from one or two ―troublesome‖ bundles.  Each time a 

bundle was removed that was associated with extremely large gammas, another bundle would 

produce ―infinite‖ gammas in the place of previously ―normal‖ estimates.  Possible 

explanations for these seemingly infinitely large testlet effects may reside in the nature of the 
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Assistments system itself and the manner in which data were structured for this study.  These 

suggested explanations are provided in the next section.     

The amount of time required for the TRMs to complete was more than eight times that 

of the polytomous model approach and even then, it did not successfully converge.  

Furthermore, assessing convergence based on multiple chains was more challenging than the 

other models due to the fact that for chains with very large number of iterations, each chain 

had to be run independently and PSRF values had to be calculated from output of each.  

Clearly the complexities associated with this type of model contributed to the convergence 

issues encountered in this study.  In any case, using the output of an MCMC algorithm that 

has not converged may lead to incorrect inferences about the model and its utility (Sinharay, 

2004). A summary of parameter estimates was presented in the results portion of this study 

and is discussed below in order to assist in suggesting possible explanations for the findings.  

However, interpreting these parameters for the purposes of making decisions about scoring 

models is not warranted.   

Overall, as the model increased in complexity, the amount of time required for 

convergence also increased.  All other model criteria aside, the value of accounting for the 

scaffolding features would need to be weighed against the time needed for calibration in order 

to determine which model to choose.  In other words, while ignoring the scaffolding features 

in the Assistments system can result in a model that is quick and easy to calibrate in IRT, the 

value of accounting for those features may be more evident in assessing the precision of 

students‘ scaled scores obtained from those models.     

Descriptive Statistics.  Based on the percent correct scores for all of the items, many 

items were relatively easy for students.  There were also a large number of items that 
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appeared to be more difficult for most students.  Overall, the average percent correct score on 

main items was about 70% which is probably fairly typical for a low stakes assessment that is 

intended to be formative in nature.  In other words, teachers are presumably providing 

instruction on assessed concepts either directly prior to the assessment or even throughout the 

process.  The environment in which students are taking these assessments inevitably impacts 

their performance and items that are more difficult in a standardized testing environment may 

appear to be easier in a non-standardized environment.   

 Item difficulty parameter estimates for each of the evaluation models suggested that in 

general, items required a below average ability level to have a 50% chance of correctly 

responding to an item.  The average difficulty parameter estimate for all of the models was 

below zero.  Again, this was expected given that average percent correct score across items 

was fairly high.  As the models increased in complexity, the average b parameters decreased 

such that the ORMs had a greater negative value than the 2PL_AllItems models which had a 

greater negative value than the 2PL_MainItems model.  A comparison of average b 

parameters from the 2PL_MainItems model to the 2PL_AllItems models suggests that, on 

average, less ability was needed to correctly respond to the full set of items than what was 

needed, on average, to respond to the main items alone.  The scaffold items in general, were 

easier than the main items, which is an expected finding in that the scaffold items are by 

nature subcomponents of the main items.  The differences between b parameters from the 

ORMs and those from the 2PL_AllItems models were slight.  On the other hand, the average 

b parameter for the TRMs was much lower than any of the other models indicating that a 

much lower level of ability was required to answer the items correctly.  This may imply that 

after accounting for a potentially large ―bundle ability parameter‖, the amount of ―overall‖ 
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ability required to correctly respond to an item is minimal.  This explanation is also consistent 

with the large estimates of the variances of gamma.  These findings may indicate that ignoring 

local dependence inflates b parameter estimates.  However, this is not consistent with 

previous research that has found estimation of b parameters to be relatively stable regardless 

of whether or not local dependence is accounted for (Wainer & Wang, 2000; Wang & Wilson, 

2005).  Given the relatively typical testlet contexts described in the previous research, it is not 

clear how b parameters would be impacted in the context of extremely large amounts of local 

dependence.   

Item discrimination parameter estimates for each model were, on average, higher than 

what is typically expected for any assessment but particularly unexpected given the relatively 

low difficulty parameter estimates.  As the typical range of discrimination parameters is from 

0.0 to +2.0, and they are rarely greater than 2.0 (Hambleton, Swaminathan & Rogers, 1991), 

average a parameters of 2.8 and 3.8 in the 2PL_MainItems model and 2PL_AllItems models, 

respectively, are quite surprising. The increase in average a parameters from the 

2PL_MainItems model to the 2PL_AllItems model appears to suggest that the scaffold items 

also discriminate students very well.  When local dependence is accounted for in the ORMs 

and TRMs, these estimates decrease and the average discrimination parameter estimates are 

within the range that is typically found.  Wainer & Wang (2000) investigated changes in item 

parameters from a dichotomous model to a testlet model and found that for some testlets, a 

parameters were over-estimated when local dependence was ignored and for other testlets, 

discrimination was under-estimated.  These researchers suggested that testlet characteristics 

may help explain these differences.  In the present study, all of the discrimination parameters 

were larger when local dependence was ignored than when it was accounted for.  Future 



129 

 

research that describes how characteristics of testlets impact these parameters may help 

provide an explanation for these findings.  

 While summaries of the parameter estimates were presented for the models with 

covariates and the models without covariates, these estimates were not meaningfully different.  

That is, adding the covariate into the estimation process of the b parameter did not appear to 

meaningfully impact the resulting estimates.  This is to be expected if model convergence was 

achieved.  Since covariates were brought into the model via the mean of the prior distribution 

of the item parameters (Wang, Bradlow & Wainer, 2005), the posterior expectations (means) 

are unaffected after the distribution of the parameter has stabilized.   

  As mentioned previously, estimates of gamma and variances of gamma were 

strikingly large.  The smallest variance of gamma was approximately 26 and the largest 

variance was a number to the power of 73.  Again, the distributions of the variances of gamma 

did not converge, it is not appropriate to make conclusions about these parameters; however, 

it is clear that the testlet effects account for a substantial amount of local dependence in the 

data.  Possible explanations for this finding may lie in the nature of the assessment system 

from which the data were collected.  A typical testlet situation is one in which a stimulus or 

stem is presented to a student such as a reading passage, which is followed by a series of 

items that are related to the particular stem.  Thus, the items that refer and relate to the same 

stem are not locally independent of one another and a testlet model may be appropriate.  The 

Assistments‘ scaffolding process creates bundles of items that are clearly not locally 

independent; however, this process may create even more dependencies in the data than the 

typical testlet situation for a couple of reasons.  First, responses to the scaffold items are 

dependent on responses to the main items.  That is, a correct response to a main item 
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automatically directs the student to the next item without going through the scaffolding 

process.  For the purposes of this study, the data were re-coded such that scaffold items were 

assigned correct scores for every correct response to a main item.  While theoretically, this re-

coding is justifiable it may also have created a false inflation of local item dependence.  

Furthermore, response patterns that did contain variation inevitably had a zero score at the 

beginning of each sequence or bundle.  In other words, only students that responded 

incorrectly to the main item were directed through the scaffolding process.  There may also be 

students that even though they know the correct answer to the main item, choose to break the 

item into steps and go through the scaffold items.  These students could contribute to further 

dependency in the data if they answer all of the scaffold items correctly even though they 

technically received an incorrect response to the main item.  In any case, responses to items in 

the Assistments system depend on previous responses to items which undoubtedly impacts the 

amount of local dependence between items.   

Second, the main items may be considered the ―stem‖ or common stimulus to which 

the scaffold items refer or relate to, not unlike the typical testlet situation.  However, unlike 

the typical testlet, the scaffold items are actually parts of the main item or stem.  In other 

words, the scaffold items break down the main items into subcomponents to try and decrease 

the cognitive load on the student.  In a sense, the scaffold items simply repeat different parts 

of the main item.  Thus, the degree to which the content of the main items differs from the 

scaffold items is minimal; the same is true for differences between scaffold items within a 

bundle which also potentially contributes to a greater amount of local dependence than what 

is found in a typical testlet situation.  The combination of multiple levels of dependence (i.e., 

content-based dependency, response-based dependency) coupled with the imputation of 
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correct response patterns to scaffold items for those that responded correctly to a main item, 

most likely can account for the testlet effect sizes seen in this study.                

Model Fit. The model fit statistic used in this study was the DIC which is defined by 

two terms that represent model deviance and model complexity.  Smaller values of DIC 

indicate better-fitting models; therefore, both of the models that did not incorporate covariates 

into the estimation process fit the data better than their counterpart models that did 

incorporate covariates.  This finding was somewhat surprising as previous research has 

demonstrated that adding covariates to a model can decrease the pD and the DIC as a result of 

the covariates explaining a substantial amount of variation in the model (Spiegelhalter, et al., 

1998).  This suggests that the covariates used in the estimation process for item difficulty 

parameters and thetas simply do not help explain variations in model parameters.   

The pD terms for model complexity were, not surprisingly, vastly different across the 

models.  As explained previously, while the models are based on the same sample of students, 

the data were restructured or recoded according to each type of model.  For the purposes of 

evaluating a model that did not account for scaffolding features, the 2PL_MainItems model 

only consisted of responses to main items while the 2PL_AllItems further accounted for the 

108 additional scaffold items.  For the ORMs, responses from all items were recoded into 

summed scores for each bundle.  Thus, each type of model was calibrated on different 

―versions‖ of the same dataset.  Thus, the prior information provided for each model 

calibration may have interacted differently with each restructured dataset.  While the pD value 

was the largest for the 2PL_MainItems model, it most closely resembles the true number of 

effective parameters in the model (θ‘s for each student plus item parameters).  In other words, 

this is the amount of information that is expected to be lost when the point estimates are used 
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as expectations of the saturated model given the number of parameters being estimated 

(Spiegelhalter, et al., 1998; Spiegelhalter, et al., 2002).   However, when the scaffold items are 

added to the calibration process for the 2PL_AllItems models, it appears that there may have 

been a strong conflict between the specified priors (which were the same for the previous 

model) and the data.  As Spiegelhalter, et al. (2002) point out, negative pD values typically 

indicate data/prior conflict or use of a poor estimator of the distribution.  Thus, the prior 

information regarding the scaffold items may need to be specified differently to decrease the 

compromise with the data.   

Finally, when local dependence is accounted for and item bundles are scored 

polytomously, the pD value is positive but smaller than expected given the additional 

threshold parameters estimated for the score category functions.  Spiegelhalter, et al., (1998) 

found that when covariates were added to a model, the pD decreased as a result of the 

covariates explaining a substantial amount of variation in the model.  Thus, when the model 

fully explains the data, the pD value is small. In this respect, it may be that the ORMs fit the 

data quite well since model complexity appeared to be underestimated.  However, it is not 

possible to draw conclusions about model fit without a directly comparable model using the 

same dataset.  

 Overall, based on the DIC statistics derived for the groups of models that were 

comparable, the models without covariates fit the data better than those with covariates.  

While this model evaluation criterion provided information regarding the utility of the 

covariates, or lack thereof, it did not assist with decisions regarding the various model types.  

Information.  The main finding from the item and test information functions for the 

various scoring models was that the 2PL_AllItems models provided considerably more 
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information when theta was between -2.0 and zero than the 2PL_MainItems model or the 

ORMs.  The ORMs, on the other hand, provided more information than the other two types of 

scoring models at the lower end of the ability scale.  This suggests that when the bundles of 

dichotomous items were scored polytomously, they tended to be more precise for very low 

performing examinees than when the bundles were not scored polytomously.  However, for 

examinees that were just below average, the polytomous scoring of bundles reduced the 

amount of information that could be provided.  For many bundles, the amount of information 

provided when the bundles were scored polytomously was less than or the same as the amount 

of information provided by the main items alone.   

The fact that information for the ORMs was generally less than the 2PL_AllItems 

models was not surprising.  Previous research has demonstrated that when dichotomous items 

in a testlet are summed and scored polytomously, information in the exact response patterns is 

lost which results in a lower information curve (Keller, Swaminathan & Sireci., 2003; Wainer 

& Wang, 2000; Wang, Bradlow & Wainer, 2002).  While items that are designed to be scored 

polytomously typically contain more information than items designed to be scored 

dichotomously, a testlet formed from several dichotomous items may not have as much 

information as the set of dichotomous items across the ability scale (Keller, Swaminathan & 

Sireci., 2003).  This has been a main criticism of the polytomous approach to accounting for 

local dependence within bundles of items and it appears to hold true for the present study as 

well.  At the same time, research has also demonstrated that fitting standard item response 

models to groups of interdependent items may result in an overestimation of test information 

(Wang & Wilson, 2005a; Wang, Cheng & Wilson, 2005).  Thus, while some amount of 

information is expected to be lost when groups of dichotomous items are scored polytomous, 
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it is not clear how much is actually lost relative to artificially inflated test information 

obtained using the dichotomous approach.  

The solution to this problem that is typically offered in the research is the testlet model 

approach which utilizes exact response patterns and accounts for local dependence (Bradlow, 

Wainer, & Wang, 1999; Wainer, Bradlow, & Du, 2000; Wainer & Kiely, 1987; Wainer & 

Wang, 2000). While theoretically this solution should apply quite well to the current context, 

unfortunately, the testlet model was not estimable using the Assistments data.      

Research Question 2: Is there a relationship between student ability estimates derived 

from the scoring models and a criterion measure of student achievement?   

 The scaled scores from each of the scoring models as well as percent correct scores 

were assessed against a criterion measure of student ability.  Statistical relationships between 

the different scoring metrics and students‘ corresponding state assessment scores indicated 

that the percent correct score on all of the items yielded the strongest correlation with the 

criterion.  However, scaled scores from the 2PL_AllItems model correlated almost as strongly 

with state test scores as the percent correct score.  In fact, the coefficients for all of the scoring 

models, except the 2PL_MainItems and the TRMs, were within rounding error of one another.   

While scores from the 2PL_MainItems model had a relatively strong relationship with 

state test scores, it was weaker than the other scoring metrics.  Similarly, the relationship 

between 2PL_AllItems scores and the criterion was slightly weaker than the relationship 

between the percent correct score on all the items and the criterion.  The comparisons between 

the percent correct scores and the 2PL models were somewhat surprising as one of the main 

benefits of using IRT is the ability to account for item parameters such as difficulty and 

discrimination in the calibration process.  Furthermore, research on Assistments has 
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specifically demonstrated that accounting for problem difficulty provides more efficient 

estimates of student ability which ultimately leads to more accurate predictions of 

performance on the state accountability test than when percent correct scores were used to 

make these predictions (Ayers & Junker, 2008).  It is possible that if prediction models were 

specifically derived using this data, results and conclusions drawn from those results may be 

different.  Correlation coefficients are limited as statistical indices for validity evidence in that 

they represent an average prediction based on content or skill similarity.  However they don‘t 

reflect the accuracy of identifying students that will pass or fail the criterion measure of 

ability.  Moreover, there appeared to be a relatively small group of students that had high 

percent correct scores and high state assessment scores that was driving this higher than 

expected correlation.  This averaged with the other group of students that did not appear to 

have a relationship between these measures produced a moderately strong correlation for the 

entire sample.  In general, the relationships between the scaled scores and the criterion did not 

produce this pattern; rather they were consistently moderate for the entire sample which lends 

support for the use of IRT calibration.  That is, accounting for item parameters provides a 

more accurate measurement of student ability that is independent of the items from which it 

was calibrated.      

  As the statistical relationships between scores from each of the models correlate 

approximately equally well with the criterion measure, selecting or rejecting a model based 

solely on this information is not necessarily warranted.  Again, this information should be 

used in conjunction with the other measures of model adequacy and precision to determine 

the most appropriate model for the Assistments data.  
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Model Summary & Selection  

 In order to determine the optimal scoring model for the Assistments system, it is 

useful to revisit the purpose and goals of the system.  The Assistments system is a formative 

learning tool that is intended to provide students and teachers feedback regarding students‘ 

strengths and weaknesses while simultaneously offering instructional assistance throughout 

the assessment process.  All of which is intended to help students achieve proficiency on the 

end-of-year accountability test in mathematics.  As such, the Assistments system needs a 

scoring paradigm that accounts for student performance as well as the assistance that a student 

needed during the assessment process that can be used to predict performance on the state 

assessment. 

 The 2PL_MainItems model was clearly the most efficient model to calibrate with 

respect to the time needed to converge.  However, this model did not account for any 

scaffolding features, it provided the least amount of total test information across the ability 

scale, and scaled scores obtained from this model had the weakest relationship with the 

criterion measure of student ability relative to the other scoring models.  The 2PL_AllItems 

models were the second most efficient models to calibrate in terms of convergence time.  

These models accounted for the scaffold items but ignored local dependence that is created by 

the scaffolding process.  However, it provided the most total test information and produced 

scores that had the strongest relationships with the state test scores. The ORMs were the 

second least efficient models to calibrate with respect to successful model completion and 

convergence.  These models most accurately represent the nature of the data in that they 

accounted for the scaffold items and the local dependence that is created by the scaffolding 
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process.  The ORMs came in second to the 2PL_AllItems models with regards to the amount 

of information they provided and the strength of relationships their scaled scores had with the 

criterion.          

 The TRMs were clearly not the optimal models for this particular dataset.  

Theoretically, it was presumed that these models might have been the optimal models given 

their ability to account for local dependence without losing response pattern information.  

However, these models can become quite complex to calibrate as more testlets are added to a 

model which may potentially render them impractical to use in operational contexts that 

involve a large number of testlets.  Even had the model converged after 100,000 iterations, it 

would have been by far the least efficient model in terms of the time required for calibration.  

Furthermore, while parameter estimates based on models that did not successfully converge 

may not be reflective of true parameters, theta estimates that were provided by these models 

had no relationship with the criterion.  Although as noted above, making these comparisons is 

not necessarily appropriate. 

It was also determined that using the average number of hints for persons and items as 

a covariate in the estimation process of the item difficulty parameter and person parameters 

was not that useful.  While the number of hints for items appeared to facilitate convergence of 

the difficulty parameters, overall the models that incorporated covariates fit the data worse 

than those that didn‘t.  Moreover, using the average number of hints as a covariate for person 

parameters, did not strengthen the relationships between these parameters and the criterion.  It 

was decided that from a practical standpoint, using the number of hints as a covariate in the 

estimation process was more effort than any potential benefit; therefore, these models were 

removed from the list of models to consider.   
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 In comparing the remaining models, the Figure 27 below rank ordered each of the 

model evaluation criteria relative to the other models.  Model fit evaluations were not 

included as these comparisons were only appropriate between the covariates versus non-

covariates models.  Since there were three remaining models, each criterion was ranked from 

one to three to show which model was the ―best‖ and which was the ―worst‖.  For example, 

the model that provided the most information was ranked a three while the model that 

provided the least was ranked a one.  The 2PL_AllItems model was ranked the highest with 

respect to the amount of information it provided and the strength of relationship it had with 

the criterion measure of student ability.  While it inevitably took longer to converge than the 

2PL_MainItems model, the value of accounting for the additional scaffold items appears to be 

worth the extra calibration time.  Therefore, based on these evaluation criteria the 

2PL_AllItems model was determined to be the optimal scoring model for the Assistments data 

relative to the other scoring models evaluated in this study.  However, it should be noted that 

the difference between the correlations with the criterion for the 2PL_AllItems and the ORM 

were practically indistinguishable.  Furthermore, while information is inevitably lost in the 

polytomous approach, the loss may be worth the benefit if the violation against the local 

independence assumption is deemed unacceptable.  Therefore, the ORM may be a valuable 

alternative.  
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Figure 27. A rank ordered comparison of models by each evaluation criterion. Convergence = 

time required for model to successfully complete and converge; Information = total test 

information; Relationship with Criterion = based on correlation coefficients which were 

almost indistinguishable between the 2PL_AllItems model and the ORM. 

 

Given the purpose of the Assistment system which is a formative tool that also 

provides instructional opportunities to students during the assessment process, the advantages 

of applying any of these scoring models from a measurement perspective may not justify the 

practical disadvantages.  For instance, the percent correct score may be completely dependent 

on the specific items that a student took but it is relatively simple to understand and compute.  

On the other hand, scaled scores from an IRT model are independent of the items from which 

they were calibrated from, but ability estimates are more complex to understand and derive.  

As the Assistments system is a low stakes environment that is mostly geared towards learning, 

the benefits of the scoring models presented in this study need to be weighed against the 

practical constraints in an operational setting with respect to time, cost and resources.  
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Limitations & Future Research 

 There are several limitations to this study, in addition to those already mentioned, that 

are worth discussing.  First, the results of this study are highly dependent on the specific 

nature of the Assistments system and cannot necessarily be generalized to other types of 

scaffolded assessments.  The models chosen to be evaluated in the present analysis were 

based on the match between the characteristics of the Assistments data and the theoretical 

framework that supports those models.  Other assessment systems that incorporate scaffolds 

may be characterized very differently and thus, may not be appropriate for the models used in 

this study.  While it is reasonable to think that other assessment systems that share similar 

scaffolding features could benefit from the types of models presented here, it is not possible to 

make those generalizations without an empirical investigation.  Furthermore, given the 

formidable estimation issues associated with applying the testlet response model to the 

Assistments data despite the theoretical consistency between the data and the model, it is 

certainly worth examining the use of this type of model in other similar contexts.         

 Second, and similar to the limitation noted by Bolt & Lall (2003) in their evaluation of 

competing IRT models, the model comparison approach conducted in this study assumed that 

one scoring model would be optimal for all items or bundles and for all students.  Particularly 

given that the results of the information functions which were somewhat dependent on 

location of the ability scale, it is conceivable that the optimal ―model‖ is a combination of 

scoring models that maximize information across the ability scale for every bundle of items.  

Of course, the practical constraints in this scenario may far outweigh the benefits.  In any 

case, it should not be assumed that the chosen scoring model is the optimal one for every 
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situation.  A mixtures model approach may actually provide the optimal solution and may be 

an interesting direction for future research.      

Finally, an ongoing concern throughout this study was related to the reliance on 

others‘ data.  The data were obtained from a pre-existing database based on an operational 

assessment system.  While such assessment systems can provide a wealth of data and 

information for a variety of purposes, using others‘ data resources also increases the chances 

for misunderstandings about the data and difficulty in interpreting the data.  Even though 

every effort was made to ensure the data were cleaned and well understood, it cannot be 

determined with absolute certainty that this was the case.         

Conclusions 

 Overall, the goal of model selection to identify the least complex model that adheres to 

the purpose of the assessment system and adequately accounts for the essential features of the 

dataset (Pitt, Kim & Myung, 2003).  The Assistments system is a formative learning tool that 

is intended to help teachers gauge student progress towards the state accountability 

assessment while simultaneously providing students opportunities for additional instruction.  

As such, the costs in terms of time, resources and interpretability of employing a more 

complex model need to be considered against the benefits associated with a given scoring 

model.  For instance, the percent correct score is indeed the simplest indication of student 

performance; however, the benefits of applying an IRT model to assessment data often 

outweigh the simplicity of such measures.  On the other hand, the local dependence that is 

inherent within the scaffolding process may be considered an essential feature that needs to be 

accounted for within a more complex scoring paradigm such as a polytomous model.  
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However, given the increased time, effort and complexity of the model, the costs associated 

with applying a polytomous model may outweigh the benefit of accounting for that feature.   

In this study, the dichotomous model that accounted for both the main items and the 

scaffold items but ignored local dependence was identified as the optimal model.  This 

selection was made on the basis of several criterion including relatively efficient model 

calibration time, maximum information for most ability levels, and a relatively strong 

relationship between its scaled scores and a criterion measure of student ability.  While this 

model does not account for all of the scaffolding features within the Assistments system and it 

ignores an assumption made by the model, it appears to be the simplest model that remains 

consistent with the purposes of the system.  A scoring model that does not account for the 

scaffold items is one that arguably ignores an essential feature of the Assistments and 

provides the least precise estimates of student ability.  The additional complexity that 

accompanies the inclusion of the scaffold items appears to be worth the cost for this 

assessment system.   
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Appendix A 

 

Table 20. 

Item Fit Statistics for the 1PL and 2PL 

  

Item 1PL 2PL ∆χ² 

 
Item 1PL 2PL ∆χ² 

ITEM0001 16.8 15.6 1.2 

 
ITEM0071 23.6 8.2 15.4 

ITEM0002 4.5 2.9 1.6 

 
ITEM0072 18.4 5.7 12.7 

ITEM0003 7.7 5.9 1.8 

 
ITEM0073 20.5 5.9 14.6 

ITEM0004 1.7 2.7 -1 

 
ITEM0074 21.1 11.4 9.7 

ITEM0005 14.8 6 8.8 

 
ITEM0075 8 1.3 6.7 

ITEM0006 2.7 1.5 1.2 

 
ITEM0076 4.2 2.5 1.7 

ITEM0007 6 3.4 2.6 

 
ITEM0077 1.3 0.9 0.4 

ITEM0008 6.6 2.4 4.2 

 
ITEM0078 50.3 43.6 6.7 

ITEM0009 9.5 7.3 2.2 

 
ITEM0079 6.1 4.4 1.7 

ITEM0010 33.9 9.9 24 

 
ITEM0080 4.8 3.4 1.4 

ITEM0011 16.3 24.7 -8.4 

 
ITEM0081 39.6 40.4 -0.8 

ITEM0012 3.4 11.3 -7.9 

 
ITEM0082 62.9 57 5.9 

ITEM0013 6.2 4.8 1.4 

 
ITEM0083 22.1 27.8 -5.7 

ITEM0014 3.9 6.4 -2.5 

 
ITEM0084 11.2 18.5 -7.3 

ITEM0015 5.4 2.6 2.8 

 
ITEM0085 5.3 11.1 -5.8 

ITEM0016 5.1 2.6 2.5 

 
ITEM0086 31 35 -4 

ITEM0017 2.2 4.2 -2 

 
ITEM0087 38.6 17.9 20.7 

ITEM0018 4.9 2 2.9 

 
ITEM0088 1.4 6.2 -4.8 

ITEM0019 7.5 3.2 4.3 

 
ITEM0089 1.1 0.8 0.3 

ITEM0020 0.1 3.7 -3.6 

 
ITEM0090 6.5 8.5 -2 

ITEM0021 10.3 7.7 2.6 

 
ITEM0091 9.9 4 5.9 

ITEM0022 2.7 3.3 -0.6 

 
ITEM0092 3.3 7.2 -3.9 

ITEM0023 3.3 3.6 -0.3 

 
ITEM0093 3.1 7.6 -4.5 

ITEM0024 12.3 1.2 11.1 

 
ITEM0094 6.3 9.7 -3.4 

ITEM0025 1.7 3.7 -2 

 
ITEM0095 0.8 2.2 -1.4 

ITEM0026 7.6 5.1 2.5 

 
ITEM0096 2.8 6 -3.2 

ITEM0027 0.2 0.9 -0.7 

 
ITEM0097 2.1 4.9 -2.8 

ITEM0028 1.1 2.9 -1.8 

 
ITEM0098 7.5 4.9 2.6 

ITEM0029 99.5 3.2 96.3 

 
ITEM0099 1.9 1.7 0.2 

ITEM0030 15.1 13.5 1.6 

 
ITEM0100 42.6 15.5 27.1 

ITEM0031 15.3 10.2 5.1 

 
ITEM0101 15.8 6.5 9.3 

ITEM0032 2 6.6 -4.6 

 
ITEM0102 20.1 7.3 12.8 

ITEM0033 18.4 5.7 12.7 

 
ITEM0103 10 5.6 4.4 

ITEM0034 5.2 9.6 -4.4 

 
ITEM0104 5.9 4.6 1.3 

ITEM0035 2.4 2 0.4 

 
ITEM0105 12.5 15.3 -2.8 

ITEM0036 2.1 4.5 -2.4 

 
ITEM0106 11.5 8.9 2.6 
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Item 1PL 2PL ∆χ² 

 
Item 1PL 2PL ∆χ² 

ITEM0037 2.3 4.3 -2 

 
ITEM0107 14.1 13.7 0.4 

ITEM0038 1 1.3 -0.3 

 
ITEM0108 10.8 4.1 6.7 

ITEM0039 6.4 5 1.4 

 
ITEM0109 2.4 4.5 -2.1 

ITEM0040 0.3 2.3 -2 

 
ITEM0110 18.9 4.5 14.4 

ITEM0041 11 8.9 2.1 

 
ITEM0111 4.2 8.5 -4.3 

ITEM0042 1.2 3.9 -2.7 

 
ITEM0112 9.5 12.5 -3 

ITEM0043 0.9 3.9 -3 

 
ITEM0113 32.8 5.4 27.4 

ITEM0044 5.3 2.8 2.5 

 
ITEM0114 16.4 3.6 12.8 

ITEM0045 11.6 9.4 2.2 

 
ITEM0115 0.9 0.3 0.6 

ITEM0046 3.8 1.9 1.9 

 
ITEM0116 30 5 25 

ITEM0047 1.1 2.1 -1 

 
ITEM0117 9 3.6 5.4 

ITEM0048 0.2 0.7 -0.5 

 
ITEM0118 4.4 5.8 -1.4 

ITEM0049 29 15.7 13.3 

 
ITEM0119 9.9 13.8 -3.9 

ITEM0050 6.6 3.9 2.7 

 
ITEM0120 8.4 8.3 0.1 

ITEM0051 4.6 5.4 -0.8 

 
ITEM0121 16.3 7.8 8.5 

ITEM0052 1.9 0.7 1.2 

 
ITEM0122 17.4 12.5 4.9 

ITEM0053 1.7 3 -1.3 

 
ITEM0123 2.5 5.2 -2.7 

ITEM0054 28.9 8.7 20.2 

 
ITEM0124 4.6 5.8 -1.2 

ITEM0055 10.8 5.4 5.4 

 
ITEM0125 0.9 2.8 -1.9 

ITEM0056 17.3 8.8 8.5 

 
ITEM0126 9.5 7.2 2.3 

ITEM0057 10.5 6.5 4 

 
ITEM0127 10 6.3 3.7 

ITEM0058 9.1 6 3.1 

 
ITEM0128 2.6 3.1 -0.5 

ITEM0059 0.3 1.4 -1.1 

 
ITEM0129 4.5 6 -1.5 

ITEM0060 3.7 2.7 1 

 
ITEM0130 3.5 4.6 -1.1 

ITEM0061 2 2.2 -0.2 

 
ITEM0131 31.2 5.7 25.5 

ITEM0062 59.1 67.9 -8.8 

 
ITEM0132 19.2 7.3 11.9 

ITEM0063 30.4 33.2 -2.8 

 
ITEM0133 17.3 2.3 15 

ITEM0064 58 56.3 1.7 

 
ITEM0134 40.1 7.5 32.6 

ITEM0065 21.5 8.6 12.9 

 
ITEM0135 6.9 3.3 3.6 

ITEM0066 5.3 5 0.3 

 
ITEM0136 15.9 5.2 10.7 

ITEM0067 4.6 3.6 1 

 
ITEM0137 15.1 2.7 12.4 

ITEM0068 3.5 4.5 -1 

 
ITEM0138 13.5 9.1 4.4 

ITEM0069 29.7 24.9 4.8 

 
ITEM0139 40.4 12 28.4 

ITEM0070 29.6 16.3 13.3 

 
ITEM0140 3021.3 600.4 2420.9 
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Appendix B 
PROGRAM DIC_DichotItems 

 

INTEGER :: NITEMS,NDRAWS,NSTDS 

REAL :: P1,P2,L1,L2,SUM_L1,SUM_L2,AVG_L1 

 

REAL,ALLOCATABLE :: ADRAWS(:,:),BDRAWS(:,:),THETADRAWS(:,:) 

REAL,ALLOCATABLE :: APARS(:),BPARS(:),THETAS(:) 

 

INTEGER,ALLOCATABLE :: RESP_ARRAY(:,:) 

 

OPEN (3,FILE="t_DrawsC.txt") 

OPEN (4,FILE="a_DrawsC.txt") 

OPEN (5,FILE="b_DrawsC.txt") 

OPEN (6,FILE="2PL_AllItems.dat") 

OPEN (7,FILE="thetas.txt") 

OPEN (8,FILE="ItemPars.txt") 

OPEN (9,FILE="DIC.OUT") 

 

NITEMS=140; NDRAWS=500;  

NSTDS=2745 

SUM_L1=0.0; AVG_L1=0.0 

SUM_L2=0.0 

 

ALLOCATE 

(ADRAWS(NDRAWS,NITEMS),BDRAWS(NDRAWS,NITEMS),THETADRAWS(NDRAWS,NST

DS)) 

ALLOCATE (RESP_ARRAY(NSTDS,NITEMS)) 

ALLOCATE (APARS(NITEMS),BPARS(NITEMS),THETAS(NSTDS)) 

 

!***READ DATA*** 

DO i=1,NDRAWS 

    READ (3,20) (THETADRAWS(i,k),k=1,NSTDS) 

    20 FORMAT (2745f11.6) 

END DO 

 

DO i=1,NDRAWS 

    READ (4,30) (ADRAWS(i,j),j=1,NITEMS) 

    30 FORMAT (140f11.6) 

END DO 

 

DO i=1,NDRAWS 

    READ (5,40) (BDRAWS(i,j),j=1,NITEMS) 

    40 FORMAT (140f11.6) 

END DO 

 

DO k=1,NSTDS      

    READ (6,50) (RESP_ARRAY(k,j),j=1,NITEMS) 

    50 FORMAT (140i1) 

END DO 
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!***CALCULATE MEAN DEVIANCE*** 

DO i=1,NDRAWS 

    DO k=1,NSTDS 

        DO j=1,NITEMS 

        P1=0.0; L1=0.0 

        P1 = 1/(1+EXP(-((1.7*ADRAWS(i,j))*(THETADRAWS(i,k)-BDRAWS(i,j))))) 

            IF (RESP_ARRAY(k,j) == 1) THEN 

            L1 = (-2*(LOG(.000001+P1))) 

            ELSE IF (RESP_ARRAY(k,j) == 0) THEN 

            L1 = (-2*(LOG(.000001+(1-P1)))) 

            ELSE IF (RESP_ARRAY(k,j) == 9) THEN 

            L1 = 0 

            END IF 

        SUM_L1 = SUM_L1 + L1 

        END DO 

    END DO 

END DO 

 

AVG_L1 = SUM_L1/NDRAWS 

 

!***READ DATA*** 

DO k=1,NSTDS    

    READ (7,60) THETAS(k) 

    60 FORMAT (t7,f11.4) 

END DO 

 

DO j=1,NITEMS 

    READ (8,70) APARS(j),BPARS(j) 

    70 FORMAT (t7,f11.4,t29,f11.4) 

END DO 

 

!***CALCULATE DEVIANCE OF POSTERIOR EXPECTATIONS*** 

DO k=1,NSTDS 

    DO j=1,NITEMS 

    P2=0.0; L2=0.0 

    P2 = 1/(1+EXP(-((1.7*APARS(j))*(THETAS(k)-BPARS(j))))) 

        IF (RESP_ARRAY(k,j) == 1) THEN 

        L2 = (-2*(LOG(.000001+(P2)))) 

        ELSE IF (RESP_ARRAY(k,j) == 0) THEN 

        L2 = (-2*(LOG(.000001+(1-P2)))) 

        ELSE IF (RESP_ARRAY(k,j) == 9) THEN 

        L2 = 0 

        END IF 

    SUM_L2 = SUM_L2 + L2 

    END DO 

END DO 

 

!***CALCULATE DIC*** 

WRITE (9,80)  
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80 FORMAT (3x,"Dbar        D(thetabar)      pD          DIC         "/) 

WRITE(9,90) AVG_L1,SUM_L2,AVG_L1-SUM_L2,(AVG_L1+(AVG_L1-SUM_L2)) 

90 FORMAT (4f12.4) 

     

END PROGRAM 
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Appendix C 

 
PROGRAM DIC_PolyItems 

 

INTEGER :: NDRAWS,NSTDS,NBUNDLES 

REAL :: L1,L2,SUM_L1,SUM_L2,AVG_L1 

 

REAL,ALLOCATABLE :: ADRAWS(:,:),THETADRAWS(:,:),CUTDRAWS(:,:,:),BDRAWS(:,:) 

REAL,ALLOCATABLE :: APARS(:),THETAS(:),CUTPARS(:,:),BPARS(:),TEMP(:) 

 

INTEGER,ALLOCATABLE :: RESP_ARRAY(:,:),ITEMCATS(:),MAXSCORE(:) 

 

OPEN (3,FILE="t_drawsC.txt") 

OPEN (4,FILE="a_drawsC.txt") 

OPEN (5,FILE="b_drawsC.txt") 

OPEN (6,FILE="dr_drawsC.txt") 

OPEN (7,FILE="ORM.dat") 

OPEN (8,FILE="itemcats.TXT") 

OPEN (9,FILE="thetas.txt") 

OPEN (10,FILE="itempars.txt") 

OPEN (11,FILE="cutpars.txt") 

OPEN (12,FILE="DIC_poly.OUT") 

 

NDRAWS=500; NSTDS=2745 

NBUNDLES=32 

SUM_L1=0.0; AVG_L1=0.0 

SUM_L2=0.0 

L1=0.0; L2=0.0 

 

ALLOCATE 

(ADRAWS(NDRAWS,NBUNDLES),THETADRAWS(NDRAWS,NSTDS),CUTDRAWS(NDRAW

S,NBUNDLES,10),BDRAWS(NDRAWS,NBUNDLES)) 

ALLOCATE 

(RESP_ARRAY(NSTDS,NBUNDLES),ITEMCATS(NBUNDLES),MAXSCORE(NBUNDLES)) 

ALLOCATE 

(APARS(NBUNDLES),THETAS(NSTDS),CUTPARS(NBUNDLES,10),BPARS(NBUNDLES)) 

 

!***READ DATA*** 

DO i=1,NDRAWS 

    READ (3,20) (THETADRAWS(i,k),k=1,NSTDS) 

    20 FORMAT (2745f11.6) 

END DO 

 

DO i=1,NDRAWS 

    READ (4,25) (ADRAWS(i,j),j=1,NBUNDLES) 

    25 FORMAT (32f11.6) 

END DO 

 

DO i=1,NDRAWS 

   READ (5,30) (BDRAWS(i,j),j=1,NBUNDLES) 
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   30 FORMAT (32f11.6) 

END DO 

 

DO j=1,NBUNDLES 

    READ (8,35) ITEMCATS(j) 

    MAXSCORE(j) = ITEMCATS(j)+2 

    35 FORMAT (i1) 

END DO 

iSUM = SUM(ITEMCATS) 

ALLOCATE(TEMP(iSUM)) 

 

CUTDRAWS=0.0 

DO i=1,NDRAWS 

    40 FORMAT (107f10.6) 

    READ (6,40) (TEMP(j),j=1,iSUM) 

    iCOUNT=0 

        DO j=1,NBUNDLES 

            DO l=2,ITEMCATS(j)+1 

 iCOUNT=iCOUNT+1 

 CUTDRAWS(i,j,l) = TEMP(iCOUNT) 

        END DO 

    END DO 

END DO 

 

DO k=1,NSTDS      

    READ (7,45) (RESP_ARRAY(k,j),j=1,NBUNDLES) 

    45 FORMAT (32i1) 

END DO 

 

!***CALCULATE MEAN DEVIANCE*** 

DO i=1,NDRAWS 

    DO k=1,NSTDS 

        DO j=1,NBUNDLES 

            IF (RESP_ARRAY(k,j)>0) THEN 

            L1=0.0 

            T=0.0 

            T=1.7*ADRAWS(i,j)*(THETADRAWS(i,k)-BDRAWS(i,j)) 

                 IF (RESP_ARRAY(k,j)==MAXSCORE(j)) THEN 

             PSTAR_BIG=1.0 

             ELSE 

     PSTAR_BIG=1/(1+EXP(-(CUTDRAWS(i,j,RESP_ARRAY(k,j))-T))) 

             END IF 

     IF (RESP_ARRAY(k,j)==1) THEN 

             PSTAR_SMALL = 0.0 

             ELSE 

     PSTAR_SMALL=1/(1+EXP(-(CUTDRAWS(i,j,RESP_ARRAY(k,j)-1)-T))) 

             END IF 

         L1 = -2*LOG(PSTAR_BIG - PSTAR_SMALL) 

             SUM_L1 = SUM_L1 + L1 
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         END IF 

        END DO 

    END DO 

END DO 

 

AVG_L1 = SUM_L1/(NDRAWS) 

 

!***READ DATA*** 

DO k=1,NSTDS    

    READ (9,50) THETAS(k) 

    50 FORMAT (t7,f11.4) 

END DO 

 

DO j=1,NBUNDLES 

    READ (10,55) APARS(j),BPARS(j) 

    55 FORMAT (t7,f11.4,t29,f11.4) 

END DO 

 

CUTPARS=0.0 

DO j=1,NBUNDLES 

   READ (11,60) (CUTPARS(j,l),l=2,ITEMCATS(j)+1) 

   60 FORMAT (1000f11.5) 

END DO 

 

!***CALCULATE DEVIANCE OF POSTERIOR EXPECTATIONS*** 

DO k=1,NSTDS 

    DO j=1,NBUNDLES 

        IF (RESP_ARRAY(k,j)>0) THEN 

        L2=0.0 

        R=0.0 

        R=1.7*APARS(j)*(THETAS(k)-BPARS(j)) 

            IF (RESP_ARRAY(k,j)==MAXSCORE(j)) THEN 

         PSTAR_BIG=1.0 

         ELSE 

 PSTAR_BIG=1/(1 + EXP(-(CUTPARS(j,RESP_ARRAY(k,j)) - R))) 

         END IF 

             IF (RESP_ARRAY(k,j)==1) THEN 

         PSTAR_SMALL = 0.0 

         ELSE 

             PSTAR_SMALL=1/(1 + EXP(-(CUTPARS(j,RESP_ARRAY(k,j)-1) - R))) 

         END IF  

         L2 = -2*LOG(PSTAR_BIG - PSTAR_SMALL)   

         SUM_L2 = SUM_L2 + L2 

        END IF 

    END DO 

END DO 

 

!***CALCULATE DIC*** 

WRITE(12,65) 

65 FORMAT (3x,"Dbar        D(thetabar)      pD          DIC         "/) 
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WRITE(12,70) AVG_L1,SUM_L2,AVG_L1-SUM_L2,(AVG_L1+(AVG_L1-SUM_L2)) 

70 FORMAT (4f12.4) 

     

END PROGRAM 
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Appendix D 

 

 
Figure 28. Information for Bundle 1. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 

 

 

 
Figure 29. Information for Bundle 2. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 
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Figure 30. Information for Bundle 3. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 

 

 

 
Figure 31. Information for Bundle 4. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 

0 

10 

20 

30 

40 

50 

60 

-4
.0

0
 

-3
.2

5
 

-2
.5

0
 

-1
.7

5
 

-1
.0

0
 

-0
.2

5
 

0
.5

0
 

1
.2

5
 

2
.0

0
 

2
.7

5
 

3
.5

0
 

In
fo

rm
at

io
n

 

Theta (θ) 

Bundle 3 

2PL_MainItems 

2PL_AllItems 

ORM 

0 

10 

20 

30 

40 

50 

60 

70 

-4
.0

0
 

-3
.2

5
 

-2
.5

0
 

-1
.7

5
 

-1
.0

0
 

-0
.2

5
 

0
.5

0
 

1
.2

5
 

2
.0

0
 

2
.7

5
 

3
.5

0
 

In
fo

rm
at

io
n

 

Theta (θ) 

Bundle 4 

2PL_MainItems 

2PL_AllItems 

ORM 



164 

 

 
Figure 32. Information for Bundle 5. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 

 

 

 

 
Figure 33. Information for Bundle 6. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 
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Figure 34. Information for Bundle 7. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 

 

 

 
Figure 35. Information for Bundle 8. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 
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Figure 36. Information for Bundle 9. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 

 

 

 
 

Figure 37. Information for Bundle 10. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 
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Figure 38. Information for Bundle 11. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 

 

 

 
Figure 39. Information for Bundle 12. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 
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Figure 40. Information for Bundle 13. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 

 

 

 
Figure 41. Information for Bundle 14. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 
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Figure 42. Information for Bundle 15. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 

 

 

 
Figure 43. Information for Bundle 16. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 
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Figure 44. Information for Bundle 17. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 

 

 

 
Figure 45. Information for Bundle 18. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 
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Figure 46. Information for Bundle 19. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 

 

 

 
Figure 47. Information for Bundle 20. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 
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Figure 48. Information for Bundle 21. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 

 

 

 
 

Figure 49. Information for Bundle 22. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

-4
.0

0
 

-3
.2

5
 

-2
.5

0
 

-1
.7

5
 

-1
.0

0
 

-0
.2

5
 

0
.5

0
 

1
.2

5
 

2
.0

0
 

2
.7

5
 

3
.5

0
 

In
fo

rm
at

io
n

 

Theta (θ) 

Bundle 21 

2PL_MainItems 

2PL_AllItems 

ORM 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

-4
.0

0
 

-3
.2

5
 

-2
.5

0
 

-1
.7

5
 

-1
.0

0
 

-0
.2

5
 

0
.5

0
 

1
.2

5
 

2
.0

0
 

2
.7

5
 

3
.5

0
 

In
fo

rm
at

io
n

 

Theta (θ) 

Bundle 22 

2PL_MainItems 

2PL_AllItems 

ORM 



173 

 

 
Figure 50. Information for Bundle 23. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 

 

 

 
Figure 51. Information for Bundle 24. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 
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Figure 52. Information for Bundle 25. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 

 

 

 
Figure 53. Information for Bundle 26. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 
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Figure 54. Information for Bundle 27. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 

 

 

 
Figure 55. Information for Bundle 28. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 
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Figure 56. Information for Bundle 29. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 

 

 

 
Figure 57. Information for Bundle 30. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 
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Figure 58. Information for Bundle 31. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 

 

 

 
Figure 59. Information for Bundle 32. Bundle defined by a single main item in the 

2PL_MainItems model, the main item plus scaffold items ignoring local dependence in the 

2PL_AllItems model, or the summed scores of main and scaffold items in the ORM. 
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