
Syst. Biol. 60(2):161–174, 2011
c© The Author(s) 2011. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved.

For Permissions, please email: journals.permissions@oup.com
DOI:10.1093/sysbio/syq088
Advance Access publication on January 12, 2011

What’s in a Likelihood? Simple Models of Protein Evolution and the Contribution of
Structurally Viable Reconstructions to the Likelihood

CLEMENS LAKNER1,2,∗ , MARK T. HOLDER3, NICK GOLDMAN4, AND GAVIN J. P. NAYLOR2

1Department of Biological Science, Section of Ecology and Evolution and 2Department of Scientific Computing, Florida State University, Tallahassee, FL
32306-4120, USA; 3Department of Ecology and Evolution, University of Kansas, 6031 Haworth, 1200 Sunnyside Avenue, Lawrence, KS 66045; and

4European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK;
∗Correspondence to be sent to: Department of Biological Science, Section of Ecology and Evolution, Florida State University, Tallahassee,

FL 32306-4120, USA; E-mail: lakner@scs.fsu.edu.

Received 29 November 2009; reviews returned 22 March 2010; accepted 19 November 2010
Associate Editor: Olivier Gascuel

Abstract.—Most phylogenetic models of protein evolution assume that sites are independent and identically distributed.
Interactions between sites are ignored, and the likelihood can be conveniently calculated as the product of the individual
site likelihoods. The calculation considers all possible transition paths (also called substitution histories or mappings) that
are consistent with the observed states at the terminals, and the probability density of any particular reconstruction depends
on the substitution model. The likelihood is the integral of the probability density of each substitution history taken over
all possible histories that are consistent with the observed data. We investigated the extent to which transition paths that
are incompatible with a protein’s three-dimensional structure contribute to the likelihood. Several empirical amino acid
models were tested for sequence pairs of different degrees of divergence. When simulating substitutional histories starting
from a real sequence, the structural integrity of the simulated sequences quickly disintegrated. This result indicates that
simple models are clearly unable to capture the constraints on sequence evolution. However, when we sampled transition
paths between real sequences from the posterior probability distribution according to these same models, we found that
the sampled histories were largely consistent with the tertiary structure. This suggests that simple empirical substitution
models may be adequate for interpolating changes between observed sequences during phylogenetic inference despite
the fact that the models cannot predict the effects of structural constraints from first principles. This study is significant
because it provides a quantitative assessment of the biological realism of substitution models from the perspective of protein
structure, and it provides insight on the prospects for improving models of protein sequence evolution. [Ancestral state
reconstruction; empirical amino acid models; maximum likelihood; phylogenetics; protein structure.]

Most commonly employed models of sequence evo-
lution are based on the assumption that all sites are in-
dependent and identically distributed (i.i.d.). The i.i.d.
component of stochastic substitution models is statisti-
cally convenient because it greatly reduces the number
of parameters to be estimated from the data. It is also
computationally useful because it allows us to calculate
the likelihood for different sites separately (enabling
the calculation of the likelihood to be completed in an
amount of time that is proportional to the number of
sites). Nevertheless, the i.i.d. assumption seems biolog-
ically implausible. If a protein must maintain its func-
tional integrity over an evolutionary trajectory, then
the set of acceptable substitutions must be restricted. It
would seem that certain substitutions would be toler-
ated at some sites but not at others. Furthermore, the
kinds of substitutions that would be tolerated at a site
would depend on the residues’ biochemical environ-
ment (commonly referred to as context dependence) and
on the configuration of residues at other sites in the
protein. Consequently, Wang and Pollock (2005) argue
that “Most evolutionary analyses rely on the assump-
tion that the probabilities of substitution at each site
are independent of substitutions at other sites, although
protein structure and function result from interactions
among amino acids, and this assumption cannot be true
in principle.” Thus, it would seem that modeling the se-
quence of substitutions occurring over an evolutionary
trajectory would involve computing a series of complex
interacting dependencies that could not possibly be

captured by simple i.i.d. models. Yet, this is exactly what
is done, and in a great many cases, it yields phyloge-
netic trees that seem sensible. How could i.i.d. models
be so effective in the face of what seems to be such a
complex problem? One possible way out of the conun-
drum is to suppose that there are a few critically impor-
tant sites that exhibit strongly nonlinear dependencies
required to maintain the structural and functional in-
tegrity of proteins, but these are vastly outnumbered by
sites that show no such dependency.

Several researchers have devised schemes to capture
heterogeneous processes of substitution. For example,
the gamma model introduced by Yang (1993, 1994)
allows sites to evolve at different rates and almost
always leads to significant improvements in likelihoods.
Koshi et al. (1997) and Koshi and Goldstein (1998) pro-
posed mechanistic models that consider the fitness ef-
fects of amino acid substitutions in different parts of the
protein. Their models assume several classes of sites that
evolve according to different substitution matrices. Sim-
ilarly, the PASSML model (“Phylogeny and Secondary
Structure using Maximum Likelihood;” Lio et al. 1998;
Lio and Goldman 1999) is a hidden Markov model
where the local structural environments are character-
ized by different substitution matrices. The probability
that a site evolves according to certain process influ-
ences the corresponding probability at adjacent sites.
However, spatial interactions between distant residues
are ignored. Other studies have been conducted to try to
identify pairwise dependencies between more distant
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residues that would serve to maintain structural and
functional integrity of proteins. For example, Pollock
and Taylor (1997) and Pollock et al. (1999) developed
a phylogeny-based approach to identify correlated
changes.

More recent efforts have approached the problem
in an explicitly integrated way where the focus is no
longer on modeling the evolution of individual sites,
but on the viability of the entire string that makes up
the folded protein. Notably, Robinson et al. (2003) and
Rodrigue et al. (2005) pioneered a Bayesian approach
that takes into account the compatibility of all implied
ancestral sequences with the crystal structure of a pro-
tein. The underlying idea of their models is to constrain
the implied ancestors to sequences that fit the tertiary
structure. To do this, the substitution rate is decom-
posed into a mutation rate and a fitness term (for a
review, see Thorne 2007). In other words, the rate of
each mutation is weighted by a function of the differ-
ence in fitness before and after the mutation. The term
“fitness” is used here as compatible with the structure as
determined by an energy function. The evaluation of
the fitness introduces dependence among sites because
the energy function acts on the complete string. As a
consequence, the states of the Markov chain are now
complete sequences as opposed to individual amino
acids. Rodrigue et al. (2006) found that the improved
fit of the structure-aware models they used was mild
when compared with rich independent sites models.
Moreover, in a model testing comparison, they were
outperformed by empirical amino acid models that al-
lowed for among-site rate variation.

Empirical amino acid models constitute rate matri-
ces and state frequencies that, in most cases, have been
estimated via maximum likelihood (ML) for large rep-
resentative data sets (for a Bayesian approach, see
Huelsenbeck et al. 2008). The rate matrices reflect the
20 × 20 instantaneous rates of change between the
amino acids. The rates are derived empirically and rep-
resent averages, scored over many different proteins,
and within any given protein, over many different sites.
Each of these sites likely has its own set of constraints
and context dependencies. As such these average val-
ues, while providing accurate descriptions for hypothet-
ical average cases, can be woefully inappropriate when
applied to specific sites that have constraints that do not
conform to the average. Examples of such matrices for
water-soluble proteins are the PAM (Dayhoff et al. 1978,
derived using maximum parsimony), JTT (Jones et al.
1992b), BLOSUM (Henikoff and Henikoff 1992), WAG
(Whelan and Goldman 2001), and LG (Le and Gascuel
2008) models. Similarly, mtREV (Adachi and Hasegawa
1996) and mtMAM (Cao et al. 1998; Yang et al. 1998)
were specifically devised for mitochondrial proteins.

In order to perform the likelihood calculations, most
i.i.d. phylogenetic models use a matrix of instantaneous
rates of change between residues to produce a transition
probability matrix. Implicitly, the transition probabili-
ties consider all possible pathways; for instance, at a
single site, the probability associated with an A → G

transition would consider all substitution histories—
including those that involve more than one change
(e.g., A → C → G). The probability of a path through
sequence space with the two terminal sequences as be-
ginning and end points depends on the substitution
model. The likelihood is the integral over this distri-
bution of path probabilities. Most substitution histories
that are included in the integration are not biologically
sensible because most of the paths through protein-
sequence space will visit structurally inviable sequences
(and thus require a number of selectively deleterious
intermediates). For closely related sequences—that are
truly only a few substitutions apart—most substitution
histories that require a multitude of hidden changes will
be assigned a very small probability and their contribu-
tion to the likelihood will be negligible.

Here, we set out to explore the question: “Are likeli-
hood calculations under simple empirical i.i.d. models
dominated by substitution histories that require ances-
tral states that result in unstable or potentially misfolded
proteins?” We address this question by sampling substi-
tution histories directly from their posterior distribution
and subsequently evaluating the ancestral sequences for
their sequence-to-structure fit. Structural viability is as-
sessed with a protein threading approach. We make no
attempt to test for function, but we assume that struc-
tural stability and specificity are minimal requirements
for functioning proteins.

METHODS

Data Preparation

We selected short to medium length (≤ 153 residues)
monomeric proteins (Table 1) for which representa-
tive crystal structures are available in the Protein Data
Bank (PDB; Berman et al. 2000). Specifically, we used
vertebrate parvalbumin A, myoglobin, lysozyme c,
and bacterial 6-hydroxymethyl-7,8-dihydropterin py-
rophosphokinase (HPPK). Table 1 details the PDB
identifier, source organism, number of residues, and
resolution for each structure. For each protein, we first
aligned a pair of divergent sequences (Table 2): Leopard
Shark (Triakis semifasciata) and Black Rat (Rattus rattus)
for parvalbumin, American Alligator (Alligator mis-
sissippiensis) and Burchell’s Zebra (Equus burchelli) for
myoglobin, Human and Green Turtle (Chelonia mydas)
for lysozyme, and Vibrio cholerae and Salmonella typhi for
HPPK. The sequence pair for HPPK represents a subset
of the data set used by Rodrigue et al. (2006). Due to
the difficulties associated with incorporating gaps into
the phylogenetic model and the energy calculations we
restricted all analyses to gapless alignments.

In order to assess the impact of improved taxon sam-
pling on the structural compatibility of the mappings,
we augmented our pairwise alignments with addi-
tional sequences. Due to the computational burden,
we only examined three- and four-taxon trees. The
four-taxon case allowed for a basic analysis of the re-
lationship between sequence-to-structure fit and tree
topology estimation. The additional sequences (with
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TABLE 1. Crystal structures used for the simulations

Protein PDB ID Source Length Resolution (Å)

Parvalbumin A 5PAL, 1RTP Leopard Shark, Black Rat 109 1.54, 2.0
Myoglobin 1LHS Loggerhead Sea Turtle 153 2.0
Lysozyme c 1JSF Human 130 1.15
HPPK 1HKA Escherichia coli 158 1.50

their UniProtKB or GenBank accession numbers) were
Amphiuma means (PRVA AMPME) and Latimeria chalum-
nae (PRVA LATCH) for parvalbumin, Struthio camelus
(MYG STRCA) and Rattus norvegicus (MYG RAT) for
myoglobin, Bufo andrewsi (LYS BUFAN) and Camelus
dromedarius (LYSC CAMDR) for lysozyme, and
Aeromonas salmonicida (YP 001140682.1) and Pectobac-
terium atrosepticum (CAG76218.1) for HPPK. ML
branch length estimates for all trees are provided
in the online Supplementary material (available at
www.systematicbiology.org). Alignments and trees
are also available from TreeBase (Sanderson et al.
1994, study accession: http://purl.org/phylo/treebase/
phylows/study/TB2:S11030).

Reference sequences.—One of the simplifying assump-
tions of the models proposed by Robinson et al. (2003)
and Rodrigue et al. (2005) is that the protein structure
remains constant across the tree. To assess the variation
in sequence-to-structure fit that we should expect to
see when we fit sequences onto a fixed structure, we
evaluated sequences from several species in addition
to the sequences from the organisms listed above. This
allowed us to interpret the structural viability of the
simulated ancestors in the context of a reference dis-
tribution. It is clear that this reference is incomplete,
but it provides a sense of the range of scores that is at
least displayed by real sequences that fold into the given
structure. For HPPK, we chose the sequences from the
data set in Rodrigue et al. (2006). For lysozyme (and
possibly HPPK), the reference set contains paralogs. We
found no indication that these sequences would pref-
erentially fold into different structures. A complete list
of reference-sequence identifiers can be found in the
online Supplementary Material.

Likelihood Calculations and Data Augmentation

The models tested here were Poisson (Bishop and
Friday 1987), WAG, and LG. The Poisson model is the
amino acid equivalent of the Jukes and Cantor (1969)
nucleotide substitution model where all substitution
rates and equilibrium frequencies are equal. On a given

tree ψ the actual likelihood p(D|M,ψ) is related to the
so called augmented likelihood p(D,φ|M,ψ) via (unob-
served) substitution histories φ

p(D|M,ψ) =
∫

Φ

p(D,φ|M,ψ)dφ, (1)

where Φ denotes the set of all possible transition paths
and M stands for the fixed parameters of the model
(Mateiu and Rannala 2006; Rodrigue et al. 2007, 2008).
We use the terms substitution histories (Rodrigue et al.
2005), mappings (Nielsen 2001), and transition paths
(Jensen and Pedersen 2000; Pedersen and Jensen 2001;
Robinson et al. 2003) synonymously. One mapping in-
cludes a sequence of events and associated times for all
sites of the alignment. For a single branch, the likeli-
hood is the probability of observing the root sequence
s0 (given the state frequencies of the model) multiplied
by the probability of all possible transition paths to the
descendant sequence s1

p(s0, s1|M,ν) = p(s0|M)
∫

Φ

p(s1,φ|s0,M,ν)dφ, (2)

where ν denotes the length of the branch.

Constrained simulations.—We followed the approach de-
scribed in Nielsen (2001) to sample 500 substitution
histories from the distribution p(s1,φ|s0,M,ν). The pro-
cess at each site of a substitution history is simply a
realization of the continuous-time Markov chain that
starts in the observed state of the ancestral sequence
and ends in the state of the descendant sequence. Sub-
stitution histories for a branch were obtained as follows:
first, events were sampled separately for all sites. Then,
all site events were combined, resulting in histories that
connect the terminal sequences through a series of one-
step neighbors (Fig. 1). These ancestral sequences were
subsequently evaluated for their compatibility with the
crystal structure. In the four-taxon case, we sampled 500
histories for each of the three unrooted topologies.

For all models, the ML branch length was found to be
a good estimator of the mean number of substitutions

TABLE 2. Sequence pairs used for the simulations

Protein s0 Swissprot s1 Swissprot (%)
accession number accession number sequence identity

Parvalbumin A Leopard Shark P30563 Black Rat P02625 58.7
Myoglobin American Alligator P02200 Burchell’s Zebra P68083 63.4
Lysozyme c Human P84492 Green Turtle P61626 62.3
HPPK Vibrio cholerae Q9KUC9 Salmonella typhi Q8Z9C4 55.1

http://purl.org/phylo/treebase/phylows/study/TB2:S11030
http://purl.org/phylo/treebase/phylows/study/TB2:S11030
http://www.systematicbiology.org
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FIGURE 1. Example of a transition path between two hypothetical sequences s0 (AMYL) and s1 (GTYI). A mapping is generated for each
site according to Nielsen (2001). Sorting all site events by their times results in a history that connects the terminals through a series of one
step neighbors (a1 to a6). These ancestral sequences (along with s0 and s1) are subsequently evaluated for their compatibility with the crystal
structure using a pseudo-energy (PE) score.

over mappings drawn from the posterior. Sampling
from the joint posterior of branch lengths and substitu-
tion histories would have required us to specify a prior
over branch lengths. To avoid this, we further simpli-
fied our approach by fixing the branch lengths to the
ML estimates (it should perhaps be noted that the ML
estimate of the branch length is not the same as the pos-
terior mean of the number of substitutions for a given
branch length). For each sequence pair and model, we
used PAML 4 (Yang 2007) to infer the ML branch lengths
(Table 3).

Unconstrained simulations.—In the constrained simula-
tions, both endpoints of the branch were real sequences.
To test the efficacy of the model to maintain structural
compatibility without constraining the simulation to
end in a predetermined end state (s1 in Table 2), we
sampled from the distribution p(φ|s0,M,ν). For each
model, we performed 500 simulations with the same
expected number of substitutions as above (Table 3). To
test the behavior in the limit, when the sequence is effec-
tively randomized (and the composition corresponds to
the equilibrium amino acid frequencies implied by the
model), 100 simulations were performed for each model
on an unbounded branch of length 30.0. This describes
the situation where each site underwent a large number
of substitutions on the branch between two terminal
sequences, effectively removing all phylogenetic signal.

Evaluation of Sequence-to-Structure Fit

An ideal protein design procedure should generate
sequences that are compatible with the native confor-

TABLE 3. Branch lengths ν (expected number of substitutions per
site) and likelihoods for the sequence pairs under different models

Protein ν −lnL
Poisson WAG LG Poisson WAG LG

Parvalbumin A 0.54166 0.54033 0.58710 532.923 478.894 482.838
Myoglobin 0.46225 0.46228 0.49951 723.726 668.858 665.950
Lysozyme c 0.48017 0.51281 0.54236 619.853 594.483 601.541
HPPK 0.60856 0.66055 0.72945 791.087 741.261 735.662

mation (stability) and incompatible with other structures
(specificity, for a detailed treatment of the subject, see
Koehl and Levitt 1999a,b). If the sampled ancestral se-
quences are to be compatible with the structure of the
wild types, they must fulfill these criteria as well. Three
approaches were taken to evaluate the compatibility
of the sampled sequences with the crystal structures.
First, we used empirically derived contact potentials to
assess sequence-structure compatibility. These so-called
knowledge-based potentials were used to calculate the
pseudo-energy (PE), which is tightly correlated with
the free energy of the sequence in the final folded form.
Second, in order to test for structural specificity, we esti-
mated the PE distribution for 10,000 shuffled sequences
on each native structure (Table 1). Third, as an addi-
tional measure for specificity, we compared the PE of
each sampled sequence on the native conformation to
its PE scores on a set of misfolded decoys (see below).
Sequence shuffling was used to test if a particular ar-
rangement of residues had a significantly better fit to
the structure than random sequences of the same com-
position. The decoys, on the other hand, were used to
evaluate if a sequence was significantly more compati-
ble with a particular structure than with other compact
(but misfolded) conformations (local energy minima).
For the shuffled sequences, we calculated the Z-score
(in the sense of Bowie et al. 1991) only with respect to
the native structure as

Zs =
ε− x̄s

σs
, (3)

where ε is the PE of the native sequence, x̄s is the aver-
age PE of the shuffled sequences, and σs is the standard
deviation of the PE scores of the shuffled sequences (all
on the native structure).

We further define Zd as the energy gap between a
sequence on the native structure and its average PE
on the set of misfolded decoys, expressed in standard
deviations:

Zd =
ε− x̄d

σd
. (4)

Here, x̄d denotes the average PE of a sequence on the set
of decoys and σd is the standard deviation. Note that Zs
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is only defined with respect to the native conformation
(but multiple sequences), whereas Zd is defined for one
sequence on a set of different conformations (see Chiu
and Goldstein 1998, for a summary of the different uses
of the term Z-score in the protein structure literature).

We used three coarse-grained, residue-level energy
functions to calculate PE scores. First, we employed
the pairwise contact potential derived by Bastolla et al.
(2001), which was used as described in Rodrigue et al.
(2005). The second energy function, previously used by
Robinson et al. (2003), is based on several statistical
potentials estimated for different degrees of separation
within the sequence. In addition to the pair-potential
term (Epair), it also includes a solvent accessibility term
(Esolv; Jones et al. 1992a; Jones 1998, 1999). We calculated
the overall energy as a combination of the two terms as
follows (based on Jones et al. 1992a):

PE= Epair + wEsolv, (5)

where w = σEpair/σEsolv denotes the ratio of the standard
deviations of the terms over all decoys (PEd), or over a
large number of shuffled versions of a sequence (PEs).
Finally, we used the THOM2 threading model (Meller
and Elber 2001), implemented in the software package
LOOPP (version 2.000, http://www.cs.cornell.edu
/home/meller/loopp/loopp-v2.000 doc.html). Side
chain centers of mass were calculated for all residues of
the misfolded decoys and stored in a coordinate-library
input file for LOOPP. We modified the source code to in-
corporate our Z-score calculations. However, the actual
energy evaluations of LOOPP were kept unchanged.

Decoy sets.—For each protein, 1000 independent confor-
mations were sampled using the Rosetta (version 2.3,
available at http://www.rosettacommons.org) ab initio
folding algorithm (Simons et al. 1997; Rohl et al. 2004).
In each case, predictions were based on the native
amino acid sequences for the structures listed in Table 1.
Fragments for the ab initio protocol were obtained from
the Robetta Full-chain Protein Structure Prediction Server
(http://robetta.bakerlab.org, Kim et al. 2004). The ini-
tial step of the Rosetta de novo folding algorithm in-
volves sampling of conformational energy minima with
a coarse-grained energy function (for an accessible de-
scription, see Das and Baker 2008). Decoys were refined
in full-atom mode using the relax protocol (for de-
tails, see Misura and Baker 2005). During the full-atom
refinement, Rosetta builds complete side chains and
optimizes backbone torsion angles and side chain pack-
ing. The options used for Rosetta’s relax mode were
−farlx,−fa input,−ex1,−ex2, and−stringent relax. From
the full-atom models, we computed the side chain cen-
ters of mass for the contact-distance thresholds used
in the Jones and THOM2 potentials. Consequently, af-
ter fixing bond lengths and angles (−idealize), we ap-
plied the same optimization process to the wild-type
structures.

RESULTS

For all investigated sequence pairs, the ancestral se-
quences were largely compatible with the crystal struc-
ture when an empirical amino acid model was used.
However, sequences resulting from the unbounded sim-
ulations lost their structural integrity relatively quickly.
The difference between sequence pairs and unbounded
simulations indicates that our i.i.d. models are much too
simple to allow for robust extrapolation. However, for
the tested degree of divergence, the wild-type sequences
at the terminals constrain phylogenetic inferences in
such a way that the implied ancestors still largely fit the
three-dimensional structure. The results were qualita-
tively similar for all energy functions though only the
results of the Jones energy function are reported here.
All branches are scaled to a relative branch length of 1.0.
Absolute branch lengths for sequence pairs are reported
in Table 3. Edge lengths for all other trees can be found
in the online Supplementary material. In the plots, black
dots adjacent to the y-axis represent scores of reference
wild-type sequences, and the horizontal lines indicate
the minimum and maximum of these scores.

Sequence Pairs

Constrained simulations.—We first describe the results
for the simulations on the branches that connect the se-
quence pairs listed in Table 2. Under the Poisson model,
there was an obvious decrease in sequence-to-structure
fit at the center of the branch (Fig. 2, left column). How-
ever, because the simulation was conditional on ending
in the amino acid state of the second sequence, the en-
ergies and Z-scores (online Supplementary material)
recovered toward the end of the branch. It seems rea-
sonable to assume that in nature the ancestral states
should be no less compatible with the structure than
the terminals. Thus, we interpret an increase in the pre-
dicted PE of sequences as one approaches the middle
of the branch as evidence for model misspecification.
These sequences are more heavily influenced by the
model than sequences near the tips because only se-
quences a few substitutions away from the empirically
observed sequences will be seen near the end points of a
branch (when the end points are constrained to match a
known sequence). For WAG and LG (Fig. 2, middle and
right columns, respectively), the plots resemble what
one would expect from a structurally aware model (e.g.,
Robinson et al. 2003; Rodrigue et al. 2005)—ancestral
sequences that are all largely compatible with the crystal
structure. Figure 2 also shows the median and spread of
the sample. For all models and data sets, the spread of
the distribution was wider in the middle of the branch.
It was also wider for the Poisson model than for the
empirical models.

Unconstrained simulations.—We now describe the re-
sults for the simulations that were started from the
same wild-type sequences as above but which were not

http://robetta.bakerlab.org
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FIGURE 2. Pseudo-energies (PEd) of 500 transition paths (gray). Each path consists of a series of one-step neighbors that connect the terminal
sequences (Table 2). Black dots adjacent to the y-axis represent PEd scores of reference wild-type sequences, and the black horizontal lines
traversing each of the plots indicate the minimum and maximum of these scores. Branch lengths are scaled to 1.0, absolute values are listed in
Table 3. Each row shows the results for a single protein: (a-c) HPPK, (d-f) parvalbumin, (g-i) lysozyme, and (j-l) myoglobin. Under the Poisson
model (a, d, g, j), ancestors that were closer to the terminals were compatible with the structure, but the fit deteriorated toward the center of
the branch. This effect was also observed under the WAG (b, e, h, k) and LG models (c, f, i, l), but to a lesser extent. For all models, the PEd
scores appeared to be “rescued” by the terminals. The spread was greater for the Poisson model than for the two empirical models. The box
plots summarize the values at regular intervals along the relative branch lengths. Whiskers extend to the most extreme data point still within
1.5 times the interquartile range from the box. See text for details.

constrained to end in the second wild-type sequence
after the same expected number of substitutions per
site. This approach is commonly used to simulate phy-
logenetic data sets. Figure 3 shows that the average
structural compatibility of the mutated sequences de-
teriorated steadily. The slope of the curve depended
on the model: sequences obtained by introducing sub-

stitutions according to the Poisson model (Fig. 3, left
column) lost their structural compatibility more quickly
than when the WAG or LG models were used (middle
and right columns, respectively). This pattern was also
reflected in both the shuffling and the decoy Z-scores
(online Supplementary material). This is in clear con-
trast to the results above where the simulations were
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FIGURE 3. Pseudo-energies for 500 mappings where the end state was not constrained (gray). Each path consists of a series of one-step
neighbors starting from the rst sequence of the pairs listed in Table 2. Under the Poisson model (a, d, g, j), sequence-to-structure fit deteriorated
quickly. The same effect was observed for WAG (b, e, h, k) and LG (c, f, i, l). The slope was less steep under WAG and LG, which could indicate
that these models are a better description of the real substitution process than Poisson. The spread was greater for the Poisson model than for
WAG and LG. The situation displayed here reflects the structural implications of simulating data sets under such a model. As in Figure 2, black
dots adjacent to the y-axis represent PEd scores of reference wild-type sequences, the horizontal lines indicate the minimum and maximum of
these scores. Branch lengths are scaled to 1.0, absolute values are listed in Table 3, and whiskers extend to the most extreme data point still
within 1.5 times the interquartile range from the box. See text for details.

“anchored” at both end points. Even when an empiri-
cal substitution model was used, the sequences quickly
lost their compatibility with the structure. This means
that good phylogenetic i.i.d. models may be appropriate
for interpolating structurally viable ancestors between
wild-type sequences, but that the situation is quite dif-
ferent for extrapolating what a sequence would look
like after expected 0.5 substitutions per site.

Unbounded simulations were also performed on a
longer branch that corresponded to 30 substitutions
per site. When the substitution process is saturated, all
amino acids occur according to their stationary state fre-
quencies in the model at each sequence position. As the
sequences reach a composition that is consistent with
the stationary state frequencies of the model, the shuf-
fling Z-scores are expected to approach zero: a random
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FIGURE 4. Average PEs (a, b) and Zs scores (c, d) for 100 samples from the posterior distribution of mappings where the end state was not
constrained are shown for HPPK (a, c) and parvalbumin (b, d). The absolute branch length is 30 expected substitutions per site. At the end of
the branch, the substitution process is saturated and all amino acids occur according to their stationary state frequencies in the model at each
sequence position. The PEs scores equilibrated at a value that depended on the substitution model and the length of the protein. As expected,
when the composition corresponded to the stationary state frequencies of the model, the Zs scores approached zero, irrespective of substitution
model and sequence length.

sequence should not fit the native structure any better
or worse on than any shuffled versions of that sequence.
The mean values illustrated in Figure 4 show that the
Zs scores indeed approached zero for all models. At
the point where the sequences were essentially random
draws from the equilibrium frequencies of the model,
all sequences were highly nonspecific. Similarly, the PE
scores are expected to reach an equilibrium once the
substitution process has reached saturation. It is clear
from Figure 4 that this value depended on the substitu-
tion model (and the length of the protein).

Additional Taxa, Alternative Topologies

Our results for trees with three and four taxa clearly
demonstrate the implications of improved taxon sam-
pling. Additional sequences that are known to fold into
the same structure improved the structural compatibil-
ity of the transition paths. In our examples, this held true
despite the expected increase in patristic distances be-
tween the original sequence pairs. The added sequences
provided information about other residues that may be
observed at variable positions and thus informed the
model about the possible nature of the unobserved sub-
stitutions. For all our three-taxon data sets, the transition
paths were highly compatible with the structure when
an empirical model was used (see online Supplementary
material).

Figure 5 shows the improvement in PEs scores for
HPPK + Poisson for three taxa (b–e) compared with the
initial two taxa (a). Although the sum of the branches
between Vibrio and Salmonella increased (b), the PEs
scores of the ancestral sequences improved after adding
Aeromonas. Panels (c) and (d) show the PEs scores along
the Vibrio and Salmonella branches, respectively. Panel
(e) shows the PEs scores for the branch leading to the
newly added taxon Aeromonas.

On the four-taxon tree (f–k), where the fourth se-
quence (Pectobacterium) breaks the still relatively long
branch to Salmonella, the sequence-to-structure fit of
the substitution histories was improved further. Panels
(f, g, h) show the PEs scores along the path from Vibrio
(f) to Salmonella (h). PEs scores for the branches leading
to Aeromonas and Pectobacterium are plotted in panels (i)
and (k), respectively.

Because likelihood-based phylogenetic inference tech-
niques base their calculations on partial likelihoods as-
sociated with ancestral nodes, the result that simple i.i.d.
models can produce reasonable ancestral sequences is
encouraging. The models are clearly not perfect, but
they may be “good enough” to produce accurate tree
inference. However, effects of unreasonable evolution-
ary trajectories on topology estimation are difficult
to generalize. Although the mappings on all the ML
trees (which were also the biologically most reasonable
trees) showed improved sequence:structure fit, this ef-
fect was mild when compared with the alternative tree
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FIGURE 5. The effect of breaking long branches through improved taxon sampling for HPPK under the Poisson model. a) The case for two
taxa: the PEs scores for the Salmonella-Vibrio branch (ML branch length 0.609 expected substitutions per site) are shown. (b-e) The case for three
taxa: panel (b) illustrates the ML branch lengths when the Aeromonas sequence was added to the two-taxon data set. PEs scores for the branches
from the internal node to Vibrio (c), Salmonella (d), and Aeromonas (e) are shown. (f-k) The case for four taxa: panel (j) depicts the ML tree with
branch lengths when Pectobacterium was added to the three-taxon data set. The remaining panels show the PEs scores for the internal branch
(g) and the branches leading to Vibrio (f), Salmonella (h), Aeromonas (i), and Pectobacterium (k). Even though the patristic distance between Vibrio
and Salmonella increased as taxa were added, the sequence-to-structure fit of the transition paths improved. The additional sequences informed
the model about the nature of the unobserved changes. In keeping with previous gures, black dots adjacent to the y-axis represent PEs scores of
reference wild-type sequences, the horizontal lines indicate the minimum and maximum of these scores. Branch lengths are scaled to 1.0, and
whiskers extend to the most extreme data point still within 1.5 times the interquartile range from the box. See text for details.

topologies. As a general result, we observed that for
trees that were based on the same data and the same
model, structural compatibility simply tended to de-
crease on longer branches. In our examples, the trees
with lower ML scores had extremely short internal

branches and long terminal edges. It is conceivable that
an incorrect topology comprising short branches may
induce a higher percentage of structurally viable recon-
structions than a correct topology. Preferring tree esti-
mates based on structural compatibility could unduly
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FIGURE 6. PEs scores of 500 most parsimonious mappings. a)
HPPK. b) Parvalbumin. c) Lysozyme. d) Myoglobin. The box plots
summarize the values at regular intervals and indicate that the
sequence-to-structure fit did not systematically get better (or worse)
toward the center of the branch. Whiskers extend to the most ex-
treme data point still within 1.5 times the interquartile range from the
box.

favor tree estimates with short branch lengths. How-
ever, methods (such as parsimony) that place a pre-
mium on short tree lengths are prone to tree estimation
errors.

Figure 6 shows a sample of 500 most parsimonious
paths connecting s0 and s1 (Table 2). Sequence-to-
structure fit did not systematically get worse (or better)
toward the center of the branch, and the most parsimo-
nious paths were mostly comprised of sequences that
fitted the structure well. This suggests that the ener-
getically unfavorable sequences from the model-based
mappings were primarily due to amino acids that were
not observed at any of the terminals (at the correspond-
ing sites). In the remainder, we will refer to these amino
acids as “extra” or “unobserved” amino acids.

To further investigate the importance of the states
the model suggested for the hidden substitutions, we
grouped individual sequences from the mappings by
the number of extra amino acids they contained (Fig. 7).
For two taxa, it is apparent that for both Poisson (a) and
LG (d), the number of extra amino acids is negatively
correlated with sequence:structure fit. From a structural
perspective, LG clearly resulted in better choices than
Poisson.

For LG, and to a lesser extent Poisson, the PEs scores
of sequences with the same number of extra amino
acids improved when taxa were added (b, e: three
taxa. c, f: four taxa). Adding evenly sampled sequences

added information about the capacity of a site to tolerate
changes. For two taxa, the capacity of a site to tolerate
substitutions may be over- or underestimated: some
sites appeared variable with two taxa, but the added
taxa implied that the site was actually evolutionarily
conserved (and therefore perhaps structurally impor-
tant). Thus, for more taxa mappings at these sites un-
derwent fewer substitutions to extra amino acids. On
the other hand, some sites appeared conserved for two
taxa but were variable for four taxa for which map-
pings often involved more substitutions to unobserved
residues. These are likely to be sites that are more tol-
erant to changes. The PEs scores presented in the up-
per row of Figure 7 correspond to the ones shown in
Figure 5.

It can also be seen that, across the tree, more extra
amino acids co-occurred in sequences on the two-taxon
tree than on the four-taxon tree. This was partly be-
cause there were now three (panels b and e) or four
(c and f) choices at each site, but it was likely also a
consequence of tree structure. Even though, overall,
there were more hidden changes on the bigger tree,
many of them occurred at only a few very variable
sites dispersed across the tree. Others preferentially oc-
curred on different branches of the tree. For four taxa,
we used the mappings on the ML trees whose topology
was the same for all models. See Fig. 5 (j) for Pois-
son and online Supplementary material for LG branch
lengths.

DISCUSSION

Our study suggests that wild-type protein sequences
that are as little as 55% identical can constrain phy-
logenetic likelihood inference to implied ancestors that
are largely compatible with the three-dimensional struc-
ture. This is especially true for some of the more recently
proposed empirical amino acid models.

In our examples, given the same data and inference
model, structural compatibility of the mappings was
negatively correlated with branch length. If a conven-
tional model were to be simply guided by structural
compatibility, it would preferentially assign higher
probabilities to trees without long edges. This could po-
tentially exacerbate phylogenetic pathologies like long
branch attraction. This problem is most pronounced
in maximum parsimony. The observation that most
parsimoniuous ancestral reconstructions of distantly re-
lated sequences are often found to be compatible with
the structure is likely not because they are correct, but
rather because they are combinations of states that are
observed at the terminals, which are inherently predis-
posed to be structurally viable (Williams et al. 2006).
We believe that likelihood models can be improved by
incorporating site-specific constraints imposed by the
local biochemical environment directly into the substi-
tution process (e.g., Le and Gascuel 2010).

A number of empirical studies have found ancestral
protein sequences inferred with maximum parsimony
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FIGURE 7. Individual sequences from the 500 mappings were grouped by the number of positions whose amino acids differed from those
observed at any of the terminals (“extra” amino acids) and plotted against their PEs scores. (a, d) Two taxa. (b, e) Three taxa. (c, f) Four taxa.
Both Poisson (a, b, c) and LG (d, e, f) showed a negative correlation between sequence-to-structure fit and the number of extra amino acids in a
sequence. However, from a structural perspective, LG suggested more favorable substitutions than Poisson. As taxa were added, sequences with
the same number of extra amino acids tended to exhibit better sequence-to-structure fits. In addition, there was a tendency for the number of
extra amino acids to diminish as the number of taxa was increased. These issues are further developed in the text. Box widths are proportional to
the square roots of the number of sequences in a group, and n denotes the total number of sequences collectively implied over all 500 mappings.
For four taxa, we used the ML trees whose topology was the same for both models. Whiskers extend to the most extreme data point still within
1.5 times the interquartile range from the box (outliers not shown). Results are only shown for HPPK; similar patterns were seen for the other
data sets examined.

or ML methods to be functional (e.g., Chang et al.
(2002)). The accuracy of ancestral-state inference meth-
ods has been a subject of critical evaluation (e.g., Collins
et al. 1994; Krishnan et al. 2004; Pollock and Chang
2007). Williams et al. (2006) simulated thermodynami-
cally stable sequences on a phylogeny and subsequently
compared the structural compatibility of reconstructed
ancestral sequences with the “true” simulated ances-
tral sequences. They found that parsimony and ML
reconstructions were biased toward higher thermosta-
bility. In our study, different draws from the posterior
distribution of mappings tended to result in sequences
with reasonable free energies (compared with extant
sequences). This result is in line with what Williams
et al. (2006) observed for Bayesian reconstructions of
ancestral protein sequences. Our results also suggest
that most parsimonious reconstructions are likely to be
structurally viable. However, even if this holds up under
a more discerning measure of sequence to-structure-fit,
and if these sequences would indeed turn out to be
functional, realistic interpolation of unobserved states
can only be accomplished with model-based meth-
ods. Ideally, such a model would be able to predict
states that should be expected at certain positions (which
may later be supported when new sequences are added
to the tree).

Perhaps counterintuitively, preliminary results for
four-taxon trees suggest that even though accounting
for rate hetogeneity improves the likelihood, it may

be slightly detrimental for sequence-to-structure com-
patibility. This effect was very mild and needs further
investigation but can be explained by the fact that rate
variation led to increased branch lengths and thus more
multiple substitutions (see Fig. 35 of the online Supple-
mentary material, results were similar for all trees and
proteins). Site-specific rates were estimated with PAML
(using a discretized gamma distribution with 30 cate-
gories) with the empirical Bayesian approach described
in Yang and Wang (1995). If this is corroborated by fur-
ther work, then the better fit to the data associated with
gamma distributed rates may result in a more realistic
description of the number of changes but compromise
the structural integrity of the molecule. This is a con-
sequence of the discrepancy between model assump-
tions and the criteria used to evaluate the biological
integrity.

To rigorously test if a sequence would fold into a
given structure would require much more careful eval-
uation than the relatively simple residue-based energy
functions used here. It is possible that the current ap-
proach is too coarse-grained and thus not discerning
enough to pick up the negative fitness effects of some of
the substitutions. If this is the case, then residue-based
contact potentials may not be sufficiently powerful to
significantly improve phylogenetic inference. All atom
energy functions have been shown to be more accurate;
however, they require computationally expensive mod-
eling of protein structure. The burden introduced by
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computing transition rates between full sequences is al-
ready prohibitive for topology inference (the transition
kernel for amino acid sequences becomes a 20N × 20N

matrix). As stated by Koehl and Levitt (1999b) to rigor-
ously address this problem, simultaneous exploration of
both the sequence space and the conformation space is
required. Evaluating all sequences for their specificity is
an additional expensive step, which has so far not been
implemented in any of the structure-aware phylogenetic
models.

Clearly, the degree of sequence divergence was
limited in our study. It is reasonable to assume that
structure-aware models could potentially improve in-
ferences for very distantly related sequences. However,
the applicability of such models for highly diver-
gent data sets is met by a few serious obstacles.
Above all, sequence-length polymorphism is diffi-
cult to accommodate because it invariably leads to
unequal lengths of the chosen representative structure
and some members of the data set. In phylogenetic
analyses, missing data are commonly treated as am-
biguous data. This means that gaps could be “filled”
with any of the residues with equal probability. How-
ever, it would clearly be inappropriate to introduce
a “dummy” residue for every gap when calculat-
ing sequence-to-structure energies. When sequences
are evaluated for their structural fitness, they need
to be threaded onto the crystal structure. Sometimes
gaps are modeled as an additional character state
(e.g., Rivas and Eddy 2008) but this is controversial
because the molecular evolutionary causes of inser-
tion and deletion are diverse and need to be modeled
accordingly.

Furthermore, computationally expensive (and poten-
tially inaccurate) modeling may be needed to “insert”
or “delete” residues from the structure. Decisions about
how to deal with additional sites will have to be made
if structure-aware models are used for more divergent
data sets. Choi et al. (2008) recently addressed the prob-
lem of calculating equilibrium frequencies for sequences
of different lengths in the context of residue interdepen-
dence, but the structural aspect of the problem remains.
It seems plausible that the analysis could be restricted
to subsets of the structure that are not interacting with
each other (this problem is related to the fact that inter-
actions with other proteins are not considered by look-
ing at the crystal structure alone). It should be noted that
for deeper divergences another fundamental assump-
tion, that the overall structure remains constant across
the subtree, may be violated.

It has been demonstrated (e.g., Hillis 1998; Pollock
et al. 2002; Zwickl and Hillis 2002; Hillis et al. 2003) that
dense taxon sampling significantly improves phyloge-
netic estimates. Our study underscores the importance
of dense taxon sampling by providing evidence that the
data at the terminals have an important effect on the
structural viability of the implied ancestors. In general,
for shallow divergences, the inference will mainly be
driven by the data. However, as sequences become more
divergent, the model becomes more and more important

because it provides a weighting for the different paths
the evolutionary process could have taken through se-
quence space. Our results show that simple empirical
models alone are not good enough to allow for reliable
extrapolation. If sequences are truly separated by a large
number of substitutions, the capability to interpolate re-
alistic sequences along the internodes is likely to be sim-
ilarly compromised.

Finally, we think that it is important to further pursue
the incorporation of structural information into phy-
logenetic models—especially when simulating realistic
protein sequences. In principle, models that accurately
evaluate the fitness of complete sequences should be
the most realistic attempt to explain molecular evolu-
tion. Given the complexities of such models and the
good performance of simpler models demonstrated in
this study, we suspect that a directed effort in mod-
eling site-specific constraints imposed by local bio-
chemistry is a promising avenue for phylogenetic tree
inference.
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