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As part of another study, we estimated the marginal
likelihoods of trees using different proposal algorithms
and discovered repeatable discrepancies that implied
that the published Hastings ratio for a proposal mech-
anism used in many Bayesian phylogenetic analyses is
incorrect. In this article, we derive the correct Hastings
ratio for the (Larget and Simon, 1999) “LOCAL move
without a molecular clock.” The derivation illustrates
how a recently described method for determining the
acceptance probabilities for proposals in Markov chain
Monte Carlo (Green, 2003) provides an intuitive method
for calculating Hastings ratios. Although the use of the
previously reported Hastings ratio could result in a bias
toward shorter branch lengths, the effect is very minor
and is overwhelmed by the information contained within
even small data sets.

Markov chain Monte Carlo (MCMC) methods are
widely used to explore posterior probability densities by
simulating a walk through tree/model space (Simon and
Larget, 2001; Huelsenbeck and Ronquist, 2001). Many
MCMC simulations employ the Metropolis-Hastings al-
gorithm, which uses a stochastic function to propose a
new state, x′, for the chain based upon the current state,
x. The “state of the chain” refers to the values of all of
the parameters in the model (including branch lengths
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for the tree). Let q (x, dx′) denote the probability density
of proposing a move from x → x′. The Metropolis algo-
rithm (Metropolis et al., 1953) is limited to simulation
schemes in which q (x, dx′) = q (x′, dx). Hastings (1970)
significantly eased the task of implementating MCMC
methods by modifying the Metropolis algorithm to al-
low for the use of asymmetric proposal densities. If one
is sampling the posterior density (which is proportional
to the product of the likelihood, L, and the prior prob-
ability density, p), then the probability of accepting a
proposal, α(x, x′), in the Metropolis-Hastings algorithm
is:

α(x, x′) = min
{

1,
[L(x′)
L(x)

][
p(x′)
p(x)

][
q (x′, dx)
q (x, dx′)

]}
(1)

The factor q (x′, dx)/q (x, dx′) is referred to as the Hastings
ratio.

SUMMARY OF GREEN’S CONSTRUCTIVE METHOD
FOR CALCULATING ACCEPTANCE PROBABILITIES

Green (2003: Section 2.2) generalized the calcula-
tion of acceptance ratios to cover both the Metropolis-
Hastings algorithm as well as proposals that implement
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the reversible-jump techniques to sample models of dif-
fering dimensions (Green, 1995). Green (2003: Section
2.2) describes the calculation of the acceptance proba-
bility in terms of every parameter and random number
that must be drawn when performing a move. This de-
scription makes the connection between MCMC theory
and the implementation of a proposal in software more
explicit. Starting from state x, a set of random num-
ber(s), u, is generated using a probability distribution
with the joint probability density g(u). Given these ran-
dom number(s), a deterministic function generates the
proposed state: x′ = h(x, u). To calculate α(x, x′) we must
consider the move that would exactly reverse the effects
of the forward move. To propose x′ → x, a new set of
random numbers, u′, are generated according to a (po-
tentially different) distribution with density g′(u′). These
random numbers and the state x′ are transformed by an-
other deterministic function to produce a proposed state
identical to the original state: x = h′(x′, u′). In Green’s
(2003) formulation, the Hastings ratio is replaced by
factors that depend upon g(u), g′(u′), and the absolute
value of the Jacobian of the transformation from {x, u} to
{x′, u′}

α(x, x′) = min
{

1,
[L(x′)
L(x)

][
p(x′)
p(x)

][
g′(u′)
g(u)

]
|J |

}
(2)

where J = det[ ∂(x′,u′)
∂(x,u) ]. This presentation is easier to fol-

low than previous formulations because the variables in
the equation mirror those that one would use when im-
plementing the algorithm in a computer program.

LARGET-SIMON LOCAL MOVE

Larget and Simon (1999) introduced four MCMC pro-
posals for moving through the space of phylogenetic
trees: GLOBAL and LOCAL, on clocklike and nonclock
trees. Their LOCAL, nonclock move starts by select-
ing an internal branch in the tree at random (all in-
ternal branches have an equal probability of being se-
lected). One node at the end of the branch is randomly
assigned the label i , and the other is referred to as j
(Fig. 1; note that these labels correspond to u and v in
the original description, but we will instead use u to re-
fer the the random numbers generated during the pro-
posal algorithm). One of the nodes adjacent to i (but
not node j) is randomly chosen and labeled a . Simi-
larly, a node adjacent to j is labeled c. The associated
branch lengths are denoted wai , wi j , and w jc . Calculation
of the acceptance probability for x → x′ is most easily
accomplished if the fundamental parameters are taken
to be the path lengths from a to each of the other 3
nodes: x = {wai , wa j , wac} and x′ = {w′

ai , w′
a j , w′

ac}. Note
that wa j = wai + wi j and wac = wai + wi j + w jc (the wac
path length was referred to as m by Larget and Si-
mon). This reparameterization does not affect the calcu-
lations (because the Jacobian for this reparameterization
is 1).

FIGURE 1. Illustration of the notation used to describe the LOCAL
move. The panel labeled “Before” shows a tree before a LOCAL move.
The panel labeled “After” shows one of the possible trees that can be
produced by a LOCAL move if node j is moved. In this example, the
topology of the tree has changed.

The LOCAL move uses two Uniform (0, 1) random
variables, u = {u1, u2} and u′ = {u′

1, u′
2}. The densities

g(u) and g′(u′) will both be equal to 1, and, thus, will
cancel out in the calculation of α(x, x′).

After the random numbers are generated, the next step
is to rescale the a to c path length:

w′
ac = waceλ(u1−0.5) (3)

where λ is a user-specified tuning parameter for the
move. Next, either i or j is selected as a node to move.
For simplicity we will consider the case in which j is the
node that is repositioned (all results hold in the case of i
being selected as well). The other central node (i in our
case) will maintain its relative position on the path from
a to c:

w′
ai = wai eλ(u1−0.5) (4)

The new path distance from a to the “sliding” node is
determined by repositioning the node uniformly along
the newly proposed w′

ac path:

w′
a j = u2waceλ(u1−0.5) (5)

If the new path length from a to j is less than w′
ai , then

a topological change has been proposed and the pro-
posed branch lengths can be recovered from the newly
proposed path lengths given in Equations 3–5:

w′
j i = w′

ai − w′
a j (6)

w′
ic = w′

ac − w′
ai (7)
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Note that, in the case of a topological move, the reverse
move requires the selection of the same set of nodes, but
node i must be chosen as the node to reposition in the
second step of the LOCAL move. This does not affect
the acceptance probability because both i and j have
equal probability of being selected for repositioning. If
w′

a j > w′
ai , then the topology does not change and the

proposed branches are:

w′
i j = w′

a j − w′
ai (8)

w′
jc = w′

ac − w′
a j (9)

Acceptance Probability Calculation for the LOCAL Move

The Jacobian that appears in Equation 2 is the deter-
minant of the matrix of partial derivatives of x′ and u′
with respect to x and u. Thus, we must derive equations
for u′ in terms of x and u. The rescaling for the reverse
move must recreate the original a to c path length:

wac = w′
aceλ(u′

1 − 0.5) (10)

= waceλ(u1 − 0.5)eλ(u′
1−0.5) (11)

thus:

u′
1 = 1 − u1 (12)

The value u′
2 required for the x′ → x proposal is sim-

ply the original path length from a to j expressed as a
proportion of the a to c path length:

u′
2 = wa j

wac
(13)

For the sake of brevity, we can denote the multiplier of
the a to c path length as r ; note that r = eλ(u1−0.5) = (w′

ac
wac

).
Differentiating Equations 3, 4, 5, 12, and 13 yields the
necessary Jacobian:

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂w′
ai

∂wai

∂w′
a j

∂wai

∂w′
ac

∂wai

∂u′
1

∂wai

∂u′
2

∂wai

∂w′
ai

∂wa j

∂w′
a j

∂wa j

∂w′
ac

∂wa j

∂u′
1

∂wa j

∂u′
2

∂wa j

∂w′
ai

∂wac

∂w′
a j

∂wac

∂w′
ac

∂wac

∂u′
1

∂wac

∂u′
2

∂wac

∂w′
ai

∂u1

∂w′
a j

∂u1

∂w′
ac

∂u1

∂u′
1

∂u1

∂u′
2

∂u1

∂w′
ai

∂u2

∂w′
a j

∂u2

∂w′
ac

∂u2

∂u′
1

∂u2

∂u′
2

∂u2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r 0 0 0 0

0 0 0 0
1

wac

0 u2r r 0
−wa j

w2
ac

λwai r u2λwacr λwacr −1 0

0 wacr 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= r × −1

wac
× wacr × −r

J = r3 (14)

Because the uniform g(u) and g′(u′) do not contribute
to the acceptance probability, the Hastings ratio for the
move is r3. The previous derivation can be made al-
gebraically simpler if the path-length multiplier, r , is
treated as a random variable directly with density λ/r
on the interval (e−λ/2, eλ/2). The tradeoff for a simpler al-
gebraic expression for the Jacobian is the need to derive
the density of r .

IMPLICATIONS

The use of an incorrect Hastings ratio has the potential
to profoundly affect MCMC analyses. The LOCAL pro-
posal is used in BAMBE (Simon and Larget, 2001) and ac-
counts for roughly 38% of the tree-changing proposals by
default in MRBAYES (Huelsenbeck and Ronquist, 2001).
Note that other software packages for Bayesian phy-
logenetics, such as BEAST (Drummond and Rambaut,
2003) or BAli-Phy (Redelings and Suchard, 2005), do
not rely on the LOCAL move. The Hastings ratio that
was originally reported for the LOCAL move was too
small by a factor of r . Because r is greater than 1 when-
ever a proposal increases the length of the path from
node a to c, the acceptance probability for proposals that
increase the tree length will be too low. These moves
will be rejected too often. Conversely, using the incor-
rect Hastings ratio will cause moves that shorten the
tree to be accepted more frequently than in a correct im-
plementation. Thus, using the incorrect Hastings ratio
is similar to performing MCMC using the correct Hast-
ings ratio, but with an altered prior on branch lengths
which favors short branch lengths more strongly than
the intended prior (the effects of the incorrect Hastings
ratio cannot be emulated exactly by specifying an altered
prior because the three edges involved in the LOCAL
move change with each iteration of the MCMC). These
effects can be detected by running an MCMC chain with-
out data and examining the marginal distribution of the
branch lengths; software that implements the incorrect
Hastings ratio will result in biased (low) estimates of
the branch lengths when compared to the prior distri-
bution on branch lengths. Because the effects are sim-
ilar to the choice of an alternate, but still vague, prior,
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FIGURE 2. Quantile-quantile plots comparing correct and incorrect posterior samples. The plot on the left compares the posterior distributions
of the internal branch length from a four-taxon tree for data sampled from the prior distribution. The plot on the right compares the posterior
distribution of the internal branch length for a data set with 100 simulated sites.

the implications of using r2 as the Hastings ratio for the
LOCAL move will typically be negligible if there is a
moderate (or large) amount of data. Using the incorrect
acceptance probabilities has only an indirect effect on es-
timated clade probabilities. Chains run under the prior
distribution (with no data) using the incorrect accep-
tance probability still sample all possible tree topologies
equally.

We examined the effects of the incorrect acceptance
probability in two cases. In both cases, the LOCAL
move was the only proposal used (after the burnin
stage) to modify the tree and branch lengths. Figure 2
shows quantile-quantile plots of the internal branch
length in a four-taxon tree for two data sets based
on posterior samples from MCMC runs that used the
LOCAL move with the correct (r3) and incorrect (r2)
Hastings ratio. Quantile-quantile plots are an effective
way to compare two different probability distributions.
A quantile-quantile plot of two samples of equal size
is simply a scatterplot of the sorted samples. Plots of
points drawn from the same distribution have high prob-
ability of falling close to the line y = x (with greater
variability in the tails), whereas marked curvature in
the plots indicate differences between the two distri-
butions. One data set is empty and the resultant sam-
ple is taken from a prior distribution with independent
uniform (0,10) branch lengths and a uniform proba-
bility on the three unrooted tree topologies, under the
Jukes-Cantor likelihood model. The second data set con-
tains 100 sites simulated using the Jukes-Cantor model
evaluated using the same prior as the first data set.
The plot of points sampled from the prior is markedly
curved and is consistent with the r2 sample being skewed
toward 0 relative to the r3 sample. In contrast, the
plot of points from the data set with 100 sites is quite
straight and the bias remaining due to the error of
the incorrect acceptance probability is quite small. In
both cases, the differences in calculated posterior proba-
bilities for the three topologies between the two samples

is much smaller than one percent and can be explained
by Monte Carlo error.

Figure 3 plots the clade posterior probability estimates
from two MCMC analyses: one using the correct accep-
tance ratio, and the other using r2. The data set for this
example is the collection of cytochrome b sequences (1140
nucleotides) for 31 whales and artiodactyls. This data
set is distributed with the BAMBE (Simon and Larget,
2001) and was used as an example in the original de-
scription of the LOCAL algorithm (Larget and Simon,
1999). Clearly the clade posteriors are highly correlated,

FIGURE 3. Clade posterior correlation plot (Huelsenbeck et al.,
2001) for an MCMC analysis with the posterior probability estimated
from an incorrect analysis (using incorrect Hastings ratio r 2) plot-
ted against the posterior probability for the same clade based on
an analysis using the correct Hastings ratio. The data were 31 cy-
tochrome b sequences (1140 nucleotides) for whales and artiodactyls
(the “whales.dna” file distributed with the BAMBE (Simon and Larget,
2001)). Chains were run from 50 million cycles (starting from the same
tree and random number seed). The HKY85 (Hasegawa et al., 1985)
model with empirical base frequencies was used. The plot was pro-
duced using AWTY (Wilgenbusch et al., 2004).
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and use of the incorrect Hastings ratio has a negligible ef-
fect on the clade posteriors derived these data; the largest
difference in clade posterior probability between the two
runs was only 0.016.
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Characters are the fundamental units used to formalize
hypotheses of homology for all phylogenetic analyses,
meaning that the decision about how observations are
translated into characters is of paramount importance in
systematics. Clearly, the importance of characters also ex-
tends beyond systematics, being central in evolutionary
process studies (cf. Gould and Lewontin, 1979), physi-
ology, and any branch of biology that is concerned with
the attributes of organisms. Therefore, it is important that
an internally consistent, nonarbitrary, yet flexible way of
viewing characters be available that can accommodate
any type of organismal aspect. It is beyond the scope of
this contribution to attempt to solve all problems with
character delimitation and coding, but one important
issue involving the distinction between characters and
states remains problematic that might be clarified via re-
view and consideration in the light of current thinking
in systematics.
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Although the idea of homologous structures among
taxa has a long history (cf. Panchen, 1994), the distinc-
tion between the terms character and character state was
not introduced until the middle of the 20th century. Mayr
(1942), for example, used the term character to denote
the particular attribute of an organism (e.g., red flow-
ers, backbone, or five petals), not distinguishing between
character and state. It was with the rise of numerical ap-
proaches to taxonomy that the character/state distinction
became common. Maslin (1952) described a “chrono-
cline” that relates a series of characters through time and
is equivalent to the current concept of transformation se-
ries. Michener and Sokal (1957) distinguished between
the character/state usage (which they employed) and the
practice of calling all attributes simply characters, but as-
cribed no conceptual implications to the difference. Cain
and Harrison (1958) did not use the term state, but did
assign different numerical values to characters. Sneath




