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Abstract.— Bayesian phylo^enetic methods reiiuire Ihe selection of prior probability distribulions for all parameters of the
model of evolution. These distribulii>ns allow one to incorporate prior information into a liayesian analysis, but even in the
absence of meaningful prior information, a prior distribution must be chosen. In sucli situation.s, researchers typically seek
to choose a prior that will have little effect on the posterior estimates produced by an analysis, allowing the data to dominate.
Sometimes a prior that is uniform (assigningequal prior probability densiti,'to all points wilhin some range) is chosen lor this
purpose. In reality, the appropriate prior depends on the parameterization chosen for the model of evolution, a choice that
is largely arbitrary. There is an extensive Bayesian literature on appropriate prior choice, and it has long been appritiated
that there are parameterizations for which uniform priors can have a strong influence on posterior estimates. We here
discuss the relationship between model parameterization and prior specification, using the general time-reversible model of
nucieotide evolution as an example. We present Bayesian analyses of II) simulated data sets obtained using a variety of prior
distributions and para meteriza tions of tJie general time-reversible model. Uniform priors can produce biased parameter
estimates under realistic conditions, and a variety of alternative priors avoid this bias. [Bayesian phylogenetics; general
time-reversible model; model parameterization; prior distributions.)

Bayesian methods promise to revolutionize systemat-
ics by making the use of complex models feasible and
by providing easily interpreted measures of uncertainty.
The Bayesian approach relies on the same models of evo-
lution used in maximum likelihood (ML) analyses, but
requires that prior distributions be chosen for e\ ery pa-
rameter of the model. Priors convey information that the
researcher has about a parameter before the data are an-
alyzed. In the absence of information about the expected
value of a parameter, many researchers would like to
choose a prior that has the smallest effect on the results
of the analysis. Such priors are often called "noninfor-
mative."

Herein we will use the term noninformative to refer
to a prior distribution that is chosen with the intention
of allowing the data (via the likelihood) to dominate the
results of an analysis. In a general review of methods for
developing noninformative priors, Kass and Wasserman
(1996) recognize two general ways to justify their use:
as formal statements of ignorance about an aspect of a
model, or as convenient standards of reference that re-
duce the subjectivity of prior specification. Although this
subjectivity is not a cause of concern for most Bayesian
statisticians, the casual user of Bayesian methods may
appreciate the opportunity to perform a standardized
analysis. Unfortunately, choosing a noninformative prior
can be more difficult than it first appears, and depends on
the details of the parameterization of the model. Statis-
ticians have appreciated this fact for many years, and
it has motivated much research into the development of
noninformative priors (see Box and Tiao, 1973:25-60 and
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Kass and Wasserman, 1996, for a more thorough review
of this topic).

When placed on continuously distributed parameters,
the class of uniform (or "flat") priors assigns equal prob-
ability density to all parameter values within some inter-
val. Because they do not "prefer" any particular \alues,
uniform priors may appear to be noninformative. Un-
fortunately, this intuition can be incorrect. As we will
see, equating the term "uniform" with "noninforma-
tive" ignores the arbitrary choices in\'oKed in describ-
ing a model of evolution. The parameters of any model
can be represented in many ways, and uniform priors
on all such para meteriza tions cannot be equivalent. In
the field of phylogenetics, Felsenstein (2004, pp 3(11-304)
used the example of branch-length parameters in phylo-
genetic trees to make this point and to demonstrate that
uniform priors cannot be adopted automatically; he did
not attempt to make recomtnendations about what prior
distributions should be used in Bayesian phylogenetic
analyses.

The posterior distribution estimated in Bayesian phy-
logenetic analyses is a joint distribution across trees and
model parameters. Many systematists are interested pri-
marily in tree topology estimates rather than the model
of character e\'olution, but this does not imply that is-
sues relating to prior specification for model parame-
ters can be ignored. Alternate prior distributions may
be viewed as different systems of weighting regions of
parameter space, and because the posterior probability
of a tree is not independent of the posterior distribution
across model parameters, changing the prior distribution
assigned to model parameters can alter the posterior as-
signed to trees and bipartitions.

We will discuss the relationship between model pa-
rameterization and prior specification using the general
time-reversible model of nucleotide substitution (GTR
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hereafter; Lanave et al., 1984; Tavare, 1986) as an exam-
ple. A uniform prior on the five free rates of substitution
in the GTR mode! was the default prior in MrBayes
(Huelsenbeck and Ronquist, 2001) before version 3.0b4.
Under some conditions, this prior leads to biased param-
eter estimates. We will present simulations demonstrat-
ing that ML analyses or Bayesian methods using several
combinations of parameterizations and corresponding
approximately noninformative priors do not appear to
suffer from this bias.

MODFI- PAKAML~T[-.R1ZATION

One may view the models of DNA evolution used in
Bayesian and ML analyses as descriptions of the pro-
cess of nucleotide substitution. Model families differ in
which aspects of the substitution process they allow to
vary (e.g., equilibrium base frequencies, the relative rate
of transitions, etc.)- The parameters of a model are the
variables that determine the relative proportions of the
various substitutions that the model expects or "pre-
dicts." We will use the term "model" to denote a fully
specified set of parameter values (which makes specific
predictions), and "model family" to denote the entire
range of potential model predictions that can be attained
under all possible combinations of parameters values
(for example, the model families described by Kimura
(1980), Hasegawa et al. (1985), etc). Model parameter-
izations can be thought of simply as different systems
for mapping a set of parameter values onto the range
of possible predictions of a model family. Many poten-
tial parameterizations could be used for any model fam-
ily, and (in most contexts) the choice among them is
arbitrary.

Consider an example of alternative model parameter-
izations of the Kimura (1980) model family. This model
family assumes that all four nucleotides will be equally
common, that the eight types of transversions will oc-
cur nt one rate, and that the four types of transitions
will occur at a second rate. Within these constraints
the Kimura model family can accommodate predictions
ranging from all substitutions being transversions to all
being transitions. In PAML (Yang, 1997), the transition-
transversion rate ratio, A , is used to describe this range of
possibilities. TTie two ends of the spectrum of predicted
substitution patterns are specified by a K value of 0 (all
transversions) and a K value of infinity (all transitions).
An alternative formulation of the Kimura model family
uses a parameter, which we will refer to as tp, to repre-
sent the proportion of substitutions that are transitions.
I he parameters K and tp are related to each other by the
formula

model. The more closely the predictions of the model
match the patterns of substitution observed in a data
set, the higher the likelihood will be. The set of param-
eter values that maximizes the likelihood function (the
point at which the model predictions most closely match
the data) is termed the maximum likelihood estimate,
or MLE. Because the likelihood of a model is a function
of the predictions that it represents, it is independent of
the details of any particular parameterization. Thus, for
any value of K there exists a unique value of 0 (given by
Equation 1) that makes identical predictions and results
in the same likelihood.

Although the K and 0 parameterizations assign pa-
rameter values to the same range of predictions, there
is not a simple linear relationship between them. The
model space may be "stretched" quite differently by dif-
ferent parameterizations. Consider Figure 1, which dis-
plays log-likelihood curves over the parameter space
of the K and 0 parameterizations of the Kimura model
family for a single simulated data set of 23 taxa
and 1000 sites (see Appendix 1 for simulation con-
ditions). The correspondence between two arbitrary
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The entire range of predictions of the Kimura model fam-
ily is encompassed as 0 varies from 0 to 1.

The likelihood of a model (given a tree) is simply
the probability of observing a particular data set given
the process of nucleotide substitution described by that

-15500

FiCLRE 1. The log-likelihood surface over reginivs of Uic p<irameter
space of the Kiniuro modt-l l<imily under tht? k and 0paninu*terizat!ons
(see text)- Tlie sh;ided areas A and B denote cquiviilt'iit regions of the
parameter space. Note that because the value of *,• can range up to
iniinity, the largest values on the x-axes are not equivalent.
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regions of predictions is displayed in the central portion
of the figure. Some regions (e.g., the region labeled A,
representing approximately 33.3"'i. to 83.3"'" transitions)
are relatively expanded under the 0 parameterization,
whereas others (e.g., the region labeled B, represent-
ing approximately 93.8% to 95.2"'o transitions) are con-
tracted. Note that the height of the log-likelihood peak
(the maximized likelihood) is the same regardless of how
the parameter axes have been scaled. Because ML makes
inferences based on the height of the peak of the likeli-
hood surface, ML analyses are not sensitive to the choice
of model parameterization. This property is termed scale
invariance, Phylogenetic inference using ML under the K
and 0 parameterizations would give the same ML scores
for all trees, and would result in the same tree being
preferred.

PARAMETERIZATION AND BAYESIAN INFERENCE

Whereas ML inference is based on the likelihood at a
single point in parameter space, Bayesian inference is
concerned with the posterior probability lying within
regions of that space. These regions correspond to hy-
potheses. For example, the hypothesis that transitions
occur at a higher rate than transversions corresponds to
the region of parameter space in which K is greater than
1. Tlie posterior probability of a hypothesis, HI, depends
on both the likelihood and the prior distribution:

Pr(Hi I D) = Pr{9 e Hi | D) =
Pr(D)

(2)

where 9 is the set of parameters, Pr(rt) is the joint prior
distribution, Pr(D | fi) is the likelihood, and Pr(D) is the
probability of the data. In words, the posterior proba-
bility of a hypothesis is the integral of the prior density
times the likelihood over all combinations of parameter
values that are consistent with that hypothesis, divided
by the integral of the prior density times the likelihood
overall possible parameter values.

When uniform priors are used, the posterior probabil-
ity of a hypothesis is the proportion of the total volume
under the likelihood surface that is contained within the
region of parameter values consistent with the hypoth-
esis. Changing parameterizations may alter the relative
size of this region (as in regions A or B in Fig. 1). Thus,
Bayosian analyses using uniform priors on different pa-
rameterizations may give different posterior probabili-
ties for the same hypothesis. This lack of scale invariance
has long been recognized as an obstacle to the automatic
use of uniform priors and has motivated a great deal
of research on noninformative priors in the Bayesinn
statistics literature (Jeffreys, 1946; review by Kass and
Wasserman, 1996).

Consider the implications of placing a uniform prior
on each of the two parameterizations of the Kimura
model family mentioned above. Typically, uniform pri-

ors placed on a variable with an infinite range (such as
K) are cropped at some value to ensure that the prior is
proper, meaning that it integrates to one. If 5\) were cho-
sen as the maximum allowed value of K, then a uniform
prior, denoted U(0, 50), implies that a priori there is a
98% chance that transitions occur at a higher rate than
transversions (i.e., that/t > 1.0), Undera 0(0,1) prior on
the 1̂  parameterization, the probability that the transition
rate is higher than the transversion rate is two-thirds (be-
cause a 0 value of one-third corresponds to a *• value of
1.0). Clearly these uniform priors on the two parameteri-
zations convey substantially different inform.Uion about
the relative rate of transitions to transversions, Although
Bayesian inference can be performed using either param-
eterization, to give equivalent posterior distributions, the
prior distributions must be altered when the parameter-
ization changes. It is not sufficient to simply use uniform
priors regardless of the parameterization.

The way in which the parameter space of a model fam-
ily is rescaled when transforming from one parameter-
ization to ancither is described by tho jacobian of the
transformation. Tho Jacobian is n matrix of the partial
derivatives of the set of equations which transforms one
parameterization into another. Roughly speaking, the
determinant of the Jacobian measures how much dif-
ferent regions of parameter space are contracted or ex-
panded by the reparameterization. Gi\en a particular
parameterization and prior, the absolute value of the de-
terminant of the Jacobian can be used to calculate the
prior distribution that is equivalent under any alternate
parameterization (i.e., the prior distribution that would
result in identical inference under the two paranietoriza-
tions). Figure 2a depicts the prior distribution on (p that
is equivalent to a U(0, 50) on K, whereas Figure 2b de-
picts the prior distribution on K that is equivalent to a
U(0,1) prior on ^. Clearly a prior that is uniform on one
parameterization is far from imiform on the other.

The General Tinie-Reversihlc Model

The GTR model family (Lanave et al., 1984; Tavar^,
1986) allows variable instantaneous rates of substitution
between each of the six nucleotide pairs, with the for-
ward and reverse rates for a given pair constrained to be
equal to one another. The six rate parameters are typi-
cally represented by the letters (7 through / , with // = A
*-*C,h = A •*-*• G, f = A «-*• T, rf = C -^ G, (' = C <-»• T, and
/ = G *-* T. Along with the equilibrium base frequency
parameters, TT, the rates specify the instantaneous rate of
substitution matrix Q:

Q=C
G
T

A C T

(3)

in which the element Q,, represents the instantaneous
rate of change from base / to base /, and the diagonal
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(a)

(b)

Fu.URH 2, Equivalenl priors undtT the h and 0 parameteriziitions
of thf Kimurn model family {see text), (a) The prior distribution on
tf> eiiuivalent U) a U(0, 50) prior on K. (b) The prior distribution on K

i k l to a LI(O, 1) prior on <(>•

elements are the negative sum of the elements in each
row (omitted for clarity). Note that in the following dis-
cussion the effects of unequal base frequencies will be
ignored (technically the model being discussed is the
symmetric model of Zharkikh (1994), but the conclusions
also hold for GTR). Because it is nt)t possible to separate
the amoLint of time that a branch represents from the rate
of molecular e\'olution, it is conventional to express ML
branch lengths as the expected number of substitutions
per site. For this interpretation of branch lengths to hold,
the Q-matrix specified by a model must be scaled so that
the mean rate of change is 1. The scaling of the instanta-
neous rates of GTR makes only the relative values of the
six substitution rates important. Parameterizing the GTR
model family such that all six rates may vary and rescal-
ing the matrix results in a problem known as nonJden-
tifiability. The data cannot discriminate between some
combinations of parameter values because they predict
exactly the same proportions of the substitution types
(e.g., after scaling the rates, a model in which all six sub-
stitution rates are set to 2.0 would be identical to one
in which all six rates are set to l.U). One common solu-

tion to this nonidentifiability problem is to set one of the
rates, usually the GT substitution rate, to LO. The other
five rates are then measured relative to this rate (this pa-
rameterization will be referred to as 5RR, for fi\ e relative
rates). Under 5RR, a CT parameter value of 10.0 means
that GT substi tu tions occur 10 times more frequently than
GT substitutions.

The 5RR parameterization appeals to many systema-
tists because it has been used in familiar software such
as PAUP' (Swofford, 2000). Unfortunately, this form of
GTR singles out the GT mutation rate as different from
the other five, and the choice of GT as the "reference rate"
is arbitrary. As noted abo\'e, the details ot the parame-
terization are inconsequential for ML analyses such as
those implemented in PAUP', but can have serious con-
sequences for a Bayesian analysis if priors are not chosen
carefully. Assuming a uniform prior for the five relative
rates has implications similar to placing a uniform prior
on K in the Kimura model family. A 0(0, 100) prior on
the five free rates is equivalent to asserting that there is
a 99"'., chance that each of the non-GT rates arc greater
than the GT rate. Obviously this prior is far from un-
informative about the processes of molecular evolution.
This prior seems particularly odd for sequences that are
expected to evolve neutrally, because changes between
G and T on one strand of the DNA molecule correspond
to changes between C ajid A on the other, implying that
the GT rate should not have a lower expectation than the
AC rate.

The indiscriminate use of uniform priors can have ob-
servable effects on the analyses of real data sets. For ex-
ample, Wilcox et al. (2002) presented Bayesian analyses
of over 1500 base pairs of sequence data for 23 taxa un-
der the GTR model with gamma-distributed rate het-
erogeneity and invariant sites using MrBayes \ersion 2
(Huelsenbeck and Ronquist, 2001). In these analyses,
posterior estimates of the GTR relative substitution rates
were observed to be sensitive to the maximum value al-
lowed by their uniform priors (U(0, 100), U(0,150), and
U(0, 200) were examined; data not shown). Larger maxi-
mum values caused the posterior estimates to be pulled
toward larger and larger rates, despite the fact that the
ML estimates of these parameters were well below 100
(the lowest cutoff used).

NONINFORMATIVE PRIORS

There is an extensive Bayesian literature on criteria for
choosing the appropriate prior for any desired param-
eterization, and many concepts of what should consti-
tute a noninformative prior have been proposed. Many
of these are analytical approaches and are not tractable
for a problem as complex as phylogenetic inference. We
will not go into these in detail here (see re\ iew by Kass
and Wasserman, 1996), but will attempt to convey some
of the logic behind one of the better-known concepts
of noninformative priors, the jeffreys's Prior (Jeffreys,
1946),

At the heart of joffreys's methodology is the idea
that prior probability should be assigned in a way that
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is independent of any particular model parameteriza-
tion. Specifically, Jeffreys's approach assigns prior den-
sity based on the expectation of the Fisher Information at
each point in parameter space. Fisher Information mea-
sures the curvature of the log-likelihood surface, and in
this context can be thought of as a measure of the sensi-
tivity of the likelihood function to changes in parameter
values. Points in parameter space at which small changes
in parameter values have dramatic effects on model pre-
dictions will have high expected curvature and will be
assigned high prior density. In regions where changes in
the parameter values do not dramatically alter the model
predictions, the likelihood surface will be flat, and points
in such regions will be assigned low prior density if a Jef-
freys's prior is used.

By connecting the distribution of prior density to
the model predictions, which are independent of any
particular parameterization, the use of Jeffreys's priors
can make Bayesian analysis insensitive to the choice of
parameterization. If a parameterization is chosen that
"stretches out" a region of parameter space, then the like-
lihood surface will become flatter and parameter values
in that region will be assigned lower prior density. Tying
the prior to the expected curvature of the likelihood func-
tion in this way assures that the data can overwhelm the
prior regardless of the true parameter value, because the
prior will only exhibit a strong preference for particular
parameter values in regions where the data will strongly
determine the outcome (regions of high expected curva-
ture of the likelihood). Thus, the Jeffreys's prior satisfies
our definition of a noninformative prior: one chosen to
allow the data to dominate the results of the analysis. The
logic of the Jeffreys's prior suggests that uniform priors
should not be considered noninformative when placed
on parameterizations that vary dramatically in their sen-
sitivity to changes in parameter values, as is the case with
the 5RR parameterization of GTR.

Although Jeffreys argued for his methodology on the
basis of scale invariance, a number of arguments have
been used to derive analytically identical priors. Box
and Tiao (1973) emphasize that a noninformative prior
should be approximately uniform in the regions of pa-
rameter space where the likelihood is appreciable: "we
seek to represent not total ignorance but an amount of
prior information which is small relative to what the
particular projected experiment can be expected to pro-
vide." They justify Jeffreys's priors by arguing that the
prior should result in inference that is equally responsive
to the data over the entire possible range of parameter
values. Bernardo (1979) and Berger and Bernardo (1992)
derived sophisticated methods for choosing what they
term "reference priors" for problems with multiple pa-
rameters. They view the difference between the posterior
and prior distributions as an assessment of the amoimt
of learning that has resulted from an analysis. Reference
priors are the prior distributions that maximize the ex-
pected amount of learning, ln statistical problems that
are described by a single, continuous parameter, the ref-
erence prior approach agrees with Jeffreys's methodol-
ogy (Bernardo, 1997). Akaike (1978) characterized the

performance of inferential methods in terms of their abil-
ity to predict future observations. He showed that it is
not always possible to select a prior that is expected to
display equally good performance over the entire range
of parameter values, and derived a locally impartial prior
that is identical to a Jeffreys's prior.

For phylogenetic analysis, an analytical calculation of a
truly noninformative prior is not practical. However, our
inability to rigorously develop a noninformative prior
for the parameters in phylogenetic models is not a cause
for serious concern. Even if the researcher would like the
results of an analysis to be dominated by the likelihood,
there will generally be a large class of vague priors that
result in very similar posterior distributions. Notwith-
standing the fact that one will frequently have consid-
erable leeway in specifying reasonable priors, there are
model parameterizations for which a uniform prior can
be extremely informative. In such cases, the logic behind
Jeffreys's prior and other reference priors can help us dis-
criminate between alternative combinations of parame-
terizations and priors, even if we cannot calculate them
analytically.

ALTERNATIVES TO UNIFORM PRIORS ON 5RR

There are two primary problems with using uniform
priors on the 5RR parameterization. First, the GT ref-
erence rate is treated as if it were different from the
other substitution rates. Second, the likelihood surface
becomes flat in regions where the values of any of the five
free parameters are large. This results in a large amount
of prior probability being assigned to regions of param-
eter space in which GT mutations are very rare. Thus, a
U(0,100) prior on the five free rate parameters can lead
to a relative underestimate of the GT rate (and a rela-
tive overestimate of the other five rates). We now intro-
duce alternative combinations of GTR parameterizations
and corresponding priors which should allow the data to
dominate, and examine their performance on simulated
data.

Exponential Priors oti 5RR

Because the likelihood surface flattens as parameter
values increase, a minimally informative prior on the
5RR parameterization should reduce the prior density as
parameter values grow larger. This can be accomplished
by placing an exponential prior on each of tlie five free
relative rates. Unlike uniform priors, exponential priors
are not truncated and all parameter values are assigned
some non-zero prior density. An exponential prior with
scaling parameter k, which we will denote Exp(A.), as-
signs prior density according to the formula

P(A-) = ke (4)

Exponential distributions place the highest prior density
at a parameter value of zero, with the density decreas-
ing at a rate determined by the scaling parameter, k may
be any positive number, and different values result in
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quite different prior distributions. It is not obvious what
value of the scaling parameter should be considered the
most appropriate. Trying multiple priors and choosing
one that gives reasonable results is not valid because the
prior should be specified before observing the data. Al-
ternatively, instead of specifying a particular value for X,
one can place a prior distribution on it and allow it to
be estimated from the data. This is termed a hierarchical
Bayesian model (i.e., using a "hyper-prior"), and allows
the exponential prior on the rates to change during the
MCMC run. We have investigated the performance of
a hierarchical approach in which the five relative rates
are assigned an Exp{X) prior, and k itself is assigned an
Exp(l.O) prior.

An Altematwe GTR Pammeierizatiott: STl

Another potential solution to problems with the 5RR
parameterization is to allow all six of the substitution
rates to vary. As noted previously, allowing all six GTR
rates to vary without constraint results in nonidentifiabil-
ity of parameters. Although it is not always problematic
in Bayesian analyses (see Rannala, 2002), nonidenfiabil-
ity can be easily avoided by forcing the six rates to sum
to 1. This parameterization has been used previously to
describe the GTR relative rates by Siichard et al. (2003),
and we will refer to it as STl. Ln this parameterization,
as in 5RR, there are five free parameters (if five rates are
known, the other can be obtained by subtraction). The
rates are easily interpretable and none is treated differ-
ently. If the AC rate parameter is 0.1,10% of all substitu-
tions are expected to be betw^een A and C, regardless of
the values for the other five parameters (assuming that
all bases are equally frequent). Most importantly, unlike
the 5RR parameterization, the STl form of GTR has no
regions of parameter space for which large changes in pa-
rameter values have little effect on the predictions that
the model makes. It is simple to convert parameter val-
ues from 5RR to STl by dividing each relative rate by the
sum of the six rates.

Tlie family of Dirichlet distributions is the obvious
choice for specifying priors on the STl parameterization.
Dirichlet priors assign densities to groups of parame-
ters that measure proportions (i.e., parameters that must
sum to 1). When used with the STl parameterization,
the Dirichlet prior would be described by six parame-
ters, and we will denote it Dir(A, B, C, D, E, F). Each of
the parameters A through F corresponds to one of the
relative rates ci through / of the STl parameterization.
Although the rates under the STl parameterization must
sum to 1, the parameters of the Dirichlet prior can be any
positive number. The mean of the prior distribution for
each rate of the GTR model family is simply the value
of the corresponding Dirichlet parameter divided by the
sum of all six Dirichlet parameters. The variance of each
GTR rate around this mean is inversely related to the sum
of the Dirichlet parameters. Thus, a GTR model with a
Dir(l, 1, 1, 1, 1, 1) prior and a model with a Dir(1000,
1000, 1000,1000,1000, 1000) prior both have an expecta-
tion of equal rates for all substitution types, but the latter

prior heavily penalizes models of evolution in which the
rates are not nearly equal. The expectation for the STl pa-
rameters when the prior is a Dir(l, 3,1,1, 3,1) would be
a = c = d = f = 0.1 and b =:^ e = 0.3. A Dir(l, 1,1,1,1,1)
distribution represents a uniform prior on STl, meaning
thatevery combination of the STl parameters is assigned
the same prior density. The choice of a Dirichlet distribu-
tion as the prior for the STl parameterization also seems
appropriate because it focuses attention on the fact that
the prior on the GTR substitution rates is a joint prior
for all of the rates. It should be noted that using a uni-
form Dirichlet prior on the STl parameterization results
in a prior distribu tion that is equivalent to allowing all six
rates to vary from zero to infinity and placmgan Exp(l.O)
prior on each.

Although a uniform Dirichlet prior is not equivalent
to what one would calculate analytically as the Jeffreys's
prior for the STl parameterization, the logic behind the
Jeffreys's prior suggests that use of this parameterization
and prior will have much less influence on rate estimates
than will the use of a uniform prior on the 5RR parame-
terization. We have investigated the performance of the
STl parameterization on our simulated data in conjunc-
tion with a Dir{l, 1, 1, 1, 1, 1) prior on the relative rates,
as well as a Dir(0.5. 0.5,0.5,0.5. 0.5,0.5) prior (suggested
by a reviewer because it is the Jeffreys's prior for situa-
tions in which the model's likeliliood is calculated from
a multinomial distribution with six categories; the likeli-
hood for a pair of sequences under the symmetric model
is an example of such a model).

Informative Priors

One of the advantages of the use of Bayesian method-
ology is the ability to incorporate one's previous knowl-
edge into an analysis. Although our primary aim is to
bring attention to the relationship between prior and
parameterization in the specification of approximately
noninformative priors, we will also present results ob-
tained under informative priors. We will not examine
informative priors in detail, but contrasting analyses un-
der these priors with those under noninformative priors
should help reveal how prior iriformation can alter the
results of an analysis.

The first informative prior examined reflects the nearly
imiversal truth that transitions occur at a higher rate than
transversions. We have specified this using a Dir(4, 8, 4,
4,8,4) prior, whose prior mean lies at the point where the
rate of each transition is twice that of each traiisversion.

The second informative prior that we examined cen-
ters the prior probability tightly on the true (simulation)
values. Although deriving a prior in this way is artificial
because these values can never be known in the analy-
sis of real data, this prior is intended to reveal how very
detailed prior information might affect an analysis. This
prior was developed by multiplying the simulation val-
ues of the GTR rates (transformed to the STl parameteri-
zation) by 100, and is Dir(16.99,20.96,11.16,0.924,48.59,
1.38).
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CONTRASTTNG UNTFORM PRIORS
ON5RR AND STl

As we saw with the Kimura model family, expressing
a prior placed on one parameterization of a model in
terms of an alternate parameterization can help highlight
differencesbetweenthem.The uniform Dirichlet prior on
the STl parameterization is equivalent to using the 5RR
parameterization with the following prior (see Appendix
2 for derivation, available at the Society of Systematic
Biologists website, http://systematicbioiogy.org):

P(a,b,c,d,e) =
+a

(5)

Using this formula, a prior equivalent to a uniform
Dirichlet on the STl parameterization can easily be in-
corporated into software that implements the 5RR pa-
rameterization. Comparing the uniform priors under the
5RR and STl parameterizations again underscores the
fact that a uniform prior caiinot be justified as nonin-
formative without considering the details of the model
parameterization.

Gonsider the region of the 5RR parameter space

0 < a, b, c, rf, £' < 2

This region contains a huge range of evolutionary pre-
dictions. Each of the substitution types besides GT could
account for none of the substitutions or up to two-thirds
of them,

ln contrast, consider the region in which

98 < a,b,c,d,e < 100

All GTR models with parameters in this region are very
similar, with each of the non-GT mutational types ac-
counting for betv\'een 19.6'/» and 20.3'Mi of all substitu-
tions. Under a U(0, 100) prior in the 5RR parameteriza-
tion, both of these regions have a prior probability of 0.02.
Under a uniform Dirichlet prior in the STl parameteriza-
tion the first region has prior probability of 0.37, whereas
the second has a prior probability of 2.6 x 10" ̂ .̂

SIMULATION RESULTS

Ten data sets of 1000 bases each were simulated un-
der the GTR model on the 23 taxon tree of Wilcox et al.
(2002; see Appendix 1 for simulation details). After sim-
ulation, the data sets were ordered from the lowest to
highest MLE of the GT relative rate (estimated in PAUP*).
Bayesian MCMC analyses were performed on each data
set under six parameterization-prior combinations us-
ing software written by one of the authors (DJZ; see Ap-
pendix 1 fordetails). To allow presentation of comparable
posterior summaries under the more familiar 5RR pa-
rameterization, the MCMC samples generated by analy-
ses performed using the STl parameterization were con-
verted to the 5RR parameterization by dividing each rate
by the GT rate.
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FIGURE 3. Estimatt̂ d marginal posterior means and 95% intervals
of thoCT relative rate under tlie 5RR parameterization on 10 lOOO-base
simulated data sets. The dashed line represents the true simulation
\'alue of the CT rate. Analyses using the uniform Dirichlel prior on
the STl piirameterization were performed under that paramelerlziition
and then the MCMC samples were converted to the 5RR parameteri-
zation. Tiie data seta are ordered left to right from the lowest to highest
MLE of the CT relative rate.

Figure 3 presents the marginal posterior means and
9570 intervals for the CT relative rate (chosen because it
is the largest and most variable rate) obtained using a
U(0,100) prior on the5RR parameterization and a Dir(l,
1,1,1,1,1) prior on the STl parameterization. Meansand
intervals obtained mider ML usijig nonparametric boot-
strapping are also displayed for comparison to a non-
Bayesian measure of support (see Appendix 1 for de-
tails). The ML bootstrap and uniform Dirichlet analyses
result in similar means, with somewhat larger 95'%i inter-
vals in the ML bootstrap analyses. Use of the U(0, 100)
prior on the 5R1̂  parameterization consistently results in
upwardly biased means and confidence intervals.

Marginal posterior summaries for alt five free GTR
rates obtained under the U(0, 100), Dir(l, 1, 1, 1, 1, 1),
and Dir(0.5,0.5,0.5,0.5,0.5,0.5) priors appear in Table 1.
Results obtained under the two Dirichlet priors are quite
similar, and in all cases the simulation values are in-
cluded in the credible interval. The U(0, 100) prior clearly
results in upwardly biased estimates of all of the free
rates, and for a number of rates the simulation values
are not included in the credible interval (shown in bold
in the table). Analyses usijig the uniform Dirichlet prior
and the hierarchical exponential prior on the 5RR param-
eterization result in posterior distributions that are iden-
tical within MCMC estimation error (data not shown).
In fact, the marginal prior distribution under this hi-
erarchical model is analytically equivalent to that un-
der the uniform Dirichiet (see Appendix 3 for detail,
available at the Society of Systematic Biologists website,
http://systematicbiology.org).

Marginal posterior summaries obtained using two
informative Dirichlet priors on STl are presented in
Table 2. Comparison of the results obtained under these
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r^ I (^ I f N f ^ r J r ^ n

Q.

aoxaooKfNMrOfn

..Q ^

~ in

iri „-

- i n - lri
" d

..iri"
^-O-^-.i

884



•S 3 C a.

- a! »- C 5.

u

V

CO ^ OC 30

t^l>-inrtocrt-*r-.-tcc-!i|rtifip'-rJpinrt —

irtf-^-Cxx — O'^^--C'—-*rJinrnr-^-»'ooX't
i-i — r"T— -—rjnrjrinncNr-ifNrJtNnr-irjrt

— — — — d c d c i d d — —

Q a i t o r
r-, t > - ; f ; ^ p — O^ino". o t i r , rt—•^;
iri ^ uS •«>• in lri lri lri •.£ -1" lri lri sd lri

in ̂  rl in rt ir. m IX •* r̂ i vo — o c; rj •£ -r X o ^
oo£C3^'^in-i;n; — t^r^j^Kcc>OTtrtrt--''S
^K^>'3^x'^-i — [>;d-^-iHdfri3^x-*vdrri-fav
^ „ „ _ ^ r-j f.̂  rN r-i n ri rt (N n rj rt n rt rt -t

^ T S * ^ c m c t ^ C T ^ \ D x n x a t ^J - t - + p : J : a-, - t r ^ !?;.-;%£; in o-, x r - . x - r x i *
,* — ̂  rri — rri rn .0 r~i iri u") X -1- t--i £ T Ĉ 3-' O" in
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informative priors with those obtained under the other
Dirichlet priors is complex, but it is clear that they are
all much more similar to each other than any is to the
results obtained under the U{0, 100) prior on 5RR. In
general, the Dir(4, 8, 4, 4, 8, 4) informative prior results
in posterior means and credible intervals that are shifted
toward somewhat smaller values than those obtained
under the uniform Dirichlet prior, especially for those
data sets with larger MLEs. For the data set with tlie
smallest rate MLEs (data set 1), the simulation values are
not include in the credible inter\'ai for four of the five free
rates. The informative prior centered on the true simula-
tion values results in means and intervals that are gen-
erally sliifted toward slightly larger values than those
obtained under the Liniform Dirichlet prior. The simula-
tion values are included in the credible intervals for all
datasets and rates under tliis prior.

CONCLUSIONS

Our simulation demonstrates that even innocuous-
looking uniform priors can have a significant effect on
Bayesian parameter estimates. Tlie data contain enough
information for the MLEs of the GTR parameters to be
fairly near the simulation values. However, under a uni-
form prior on the free rates of the commonly employed
5RR parameterization of GTR the marginal posterior es-
timates are consistently biased toward larger values, and
for some rates on several of our simulated datasets do not
overlap with the trLie value.

Fortunately, easily implemented alternative combina-
tions of parameterizations and priors are available. Plac-
ing a i.miform Dirichlet prior on STl, a hierarchical Exp(l)
prior on 5RR, or an Exp(l) prior on a GTR parameteri-
zation with six variable rates all result in analytically
equivalent distributions of prior probability and appear
to perform well. Versions 2 and 3B of MrBayes used a
uniform prior on the 5RR parameterization as the de-
fault GTR prior. Note that a programming error in Mr-
Bayes version 3.0b4 causes the default uniform Dirichlet
prior placed on the GTR rates to be equivalent to the Lmi-
form priors used in previous versions (Fredrik Ronquist,
personal communication). This will be fixed in MrBayes
version 3.0b5.

Under our simulations conditions, the use of informa-
tive priors did not appear to appreciably improve the
posterior estimates of the GTR relative rates. Informa-
tive priors may prove to provide more of a benefit when
used on data sets in which the GTR rates are more nearly
equal, or when the data are less informative. Even the in-
formative Dirichlet prior developed by multiplying the
simulation values under the STl parameterization by
100, which places most of its prior probability in a very
narrow region of the overall parameter space relative
to the uniform Dirichlet prior, had relatively little effect
on the posterior distributions. This can be explained by
the considerable amount of information contained in the
likelihood. Although the prior probability distributed by
thisprior is very highly concentrated, it is overshadowed

by the extremely precise information contributed by the
likelihood surface.

In our simul.Ttions, topology estimates were not al-
tered by the use of different priors on the rate matrix.
Bipartition posteriors were quite high in all cases, and
the credible set of trees generally contained less than 20
topologies (data not shown). This is not surprising, as
our small simulation tree and simple substitution model
resulted in a rather easy phylogenetic problem. In anal-
yses containing many poorly supported bipartitions or
in which bipartition posteriors are strongly dependent
on the estimated model, we expect that different model
priors can be shown to affect topology estimates.

The degree to which an analysis is susceptible to the
parameter estimation problems reported here will de-
pend on a number of factors. The posterior distribution
is influenced by both the likelihood and prior distribu-
tions, but the contribution of the likelihood will become
greater as the amount of data increases. This fact is some-
times used to argue that if there are enough data, any
reasonable prior distribution will give good results. In
actuality, the amount of data required depends on the de-
tails of the parameterization. It should also be noted that
a particular parameterization/prior combination might
give quite reasonable results for some data sets but not
for others, depending on where in parameter space the
likelihood peak lies. If the likelihood peak for a param-
eter lies in a region in which a change in the parameter
value makes relatively little difference in the predictions
of the model (e.g., large GTR rates under 5RR), analy-
sis using that parameterization and a uniform prior will
result in poor posterior estimates. On the other hand, a
data set whose likelihood peak lies in a region in which
the model is relatively sensitive to changes in parame-
ter values might give reasonable results under the same
parameterization and prior. Because we cannot know in
advance in which region of parameter space a model
lies, it is important that parameterizations and priors
provide reasonable estimates over all parameter values.
Although a uniform prior over the STl parameterization
might be considered a reasonable attempt at specifying
a noninformative prior, uniform priors on 5RR should
not.

In model-based phylogenetics, many parameters (e.g.,
the K parameter of the Kimura model, the five relative
rates of the 5RR parameterization of GTR, branch-length
parameters, the shape parameter of gamma-distributed
rate heterogeneity [Yang, 1993], etc.) have the property
that the likelihood becomes increasingly insensitive to
changes in parameter values as they get larger, suggest-
ing that the use of uniform priors on these parameters
may lead to parameter overestimation. Using a prior de-
creasing in probability density as parameter values be-
come larger can counter this effect, but the appropriate
rate of decrease is not obvious and may vary from pa-
rameter to parameter. Hierarchical Bayesian approaches
and the development of alternative model parameteriza-
tions can make it easier to specify nearly noninformative
prior distributions. Because it is simple to convert pa-
rameter estimates between parameterizations, choosing
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one parameterization based on ease of prior specification
for analysis, and another based on ease of interpretation
for the presentation of results, is a viable option.

There are an infinite number of ways to parameter-
ize any model. As Bayesian phylogenetic methods be-
come more popular, systematists will be forced to choose
which parameterization of a model they wish to employ.
On one level the choice of parameterization is arbitrary,
as any parameterization can yield valid results. On the
practical level, however, the ease of use and interpretabil-
ity of both assumptions and results can vary dramatically
depending on these choices. Given the uncertainty about
which parameterization will eventually dominate, pa-
pers reporting Bayesian results should indicate both the
priors and the parameterization. Without careful con-
sideration of the parameterization of the model of se-
quence evolution, uniform priors on parameters cannot
be treated as if they were uninformative about the pro-
cess of evolution.
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APPENDIX 1

SIMULATION DETAILS

Gamma-distributed rate heterogeneity and invariant sites were not
modeled to a\'oid complicating this simple example. Other simula-
tions (not shown), including these parameters, show similar behav-
ior. Ten data sets of 1000 nucleotides sites each were simulated using
Seq-Gen version 1,2.5 (Ranibaut and Grassty, 1997), Although this se-
quence length appears relatively short, because rate heterogeneity was
not modeled in the simulation, almost no sites are invariant and all con-
tribute significant signal. Data were simulated on the ML tree presented
in Wilcox et al. (2002) using the following parameter MLEs estimated
under the GTR model on that tree using the Wilcox ft al, data: base fre-
quencies (A: 0.335806, C: 0.232864, G: 0.209483, T: 0.221846), rate matrix
(A-C: 12.3227, A-G: 15.2002, A-T: 8.0886, C-G: 0.6745, C-T: 35.2309, G-T:
1.0000).

NONPARAMETRIC BOOTSTRAP ANALYSIS

Confidence intervals under ML were generated for each of the sim-
ulated data sets using nonparametric bootstrapping in PAUP' version
4.0bl0 (Swofford, 2000). Trees were first obtained for each data set by
performing a likelihood heuristic search with TBR branch-swapping
from a stepwise-addltion starting tree, after fixing parameter values
at their MLEs estimated on a parsimony tree. Searches were a'peated
with the newest parameter estimates until the ti-ee returned by the ML
search did not change. A research version of PAUP' (version 4,0d81)
was used to output the ciiaracter weights generated by bootstrapping
columns of the data matrix with replacement. Parameter MLEs were
obtained for each of these pseudoreplicates on the estimated tree. The
95'''.. interval w,ss then estimated as the 2.5% and 97.5% quantile of the
1000 MLE values.

BAYESIAN MCMC DETAILS
Bayesian phylogenetic analyses using MCMC (Li ft al., 1996; Larget

and Simon, 1999) were conducted using research software written by
one of the authors (DJZ). Markov chains were run for five million gener-
ations, sampling every 50 gent-rations for a total of 10'̂  samples. Runs
were performed with one "cold" and three incrementally "heated"
chains to aid in mixing, with swapping between two randomly selected
chains attempted every generation (Geyer, 1991). The incremental
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heating parameter was 0.1, defined as in MrBayes (Huelsenbeck and
Ronquist, 2001). Starting values for branch-lengths and evolutionary
parameters were drawn randomly from their prior distributions. Start-
ing trees were randomly generated. Two runs from different starting
points were performed for each prior/parameterization on each data
set. The sample likelihoods in all runs stabilized after approximately
100,000 generations, suggesting that the chain had reached stationar-
ity, A conservative bum-in period of 5000 samples (250,000 genera-
tions) was chosen, and those samples discarded. Convergence of the
twii independent samples to the posterior distribution was verified by
comparing bipartition posteriors, parameter posterior means, and pa-
rameter 95"ii inter\'als. Posterior means and inter\ als for all parameters
generally varied by well less than 1''̂ ., and in all cases the variation was
less than 4'''i>. Posterior statistics presented for each data set and GTR
prior were obtained by pooling the post-bum in samples from the two
independent runs.

The various prior distributions placed on the GTR rate matrix are
noted in the text. Prior distributions on base frequencies were Dirich-
let(I, 1, 1, 1). Branch-lengths were assigned a hierarchical prior of
Exp(/.), with X assigned a prior of Exp(12.0). All tree topologies were
assigned equal prior probability.

For each generation, a single component of the state of the Markov
chain was randomly chosen to be changed via a proposal mecha-
nism, with the new state either accepted or rejected according to the
Metropolis-Hastings ratio. Proposals were made in the following rela-
tive ratios: topology: 70, rate matrix: 20, equilibrium base frequencies:
5, branch length hyper-prior: 5, rate matrix hyper-prior: 5 (if included).
Because the aim of those analy.ses was to obtain accurate estimates of
the posterior distribution of the GTR rate matrix porometers under a
variety of parameterizations and priors, a greater than typical propor-
tion of proposals were to the GTR rate parameters. For runs in which
the relative rate parameters were assigned uniform or exponential pri-
ors, proposals were made to a single rate at a time, and wero uniform
within a constant inter\'ai centered on the current value. Tiie width
of this interval was .idjusted to allow appropriate proposal acceptance
(between 20"/i. and 50"̂ ) after a short trial run. For parameters assigned a
Dirichlft prior (base frequencies in all runs and relative rates under the
STl paramt'terization), the Dirichlet parameter used to specify the .size
of proposals was similarly adjusted. Proposals in these cases included
simultaneous changes to all base frequencies or relative rates. Topol-
ogy moves were the "LOCAL" (non-clock) move of Larget and Simon
(1999),




