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Abstract

Java is a managed programming language, and Java programs are executed

in a virtual machine (VM) environment. Java VMs not only execute the primary

application program, but also perform several other auxiliary tasks at runtime.

Some of these auxiliary tasks, including the program profiling and security checks,

are typically performed inline with the program execution, stalling the applica-

tion progress and slowing program execution. We hypothesize that the execution

of individual inline auxiliary tasks do not need knowledge of the entire previ-

ous program state. In such cases, it might be possible to abstract individual or

sets of auxiliary tasks, along with the code statements that compute the required

program state, and execute them in a separate thread. The results of such ab-

stracted auxiliary tasks can then be made available to the main program before

they are needed, eliminating the execution time stall and improving runtime pro-

gram efficiency. However, to test this hypothesis we need access to robust tools

to determine and generate the program slice required for each auxiliary task.

The goal of this thesis is to study existing Java slicers, test their ability to

generate correct executable slices, and evaluate their suitablity for this project.

Additionally, we also aim to compare the size of the static slice with the minimal

dynamic program slice for each task. This comparison will allow us to determine

the quality of the static slicing algorithm for Java programs, and provide us with

knowledge to enhance the slicing algorithm, is possible. To our knowledge, one of

the most robust static Java slicer implementation available publicly is the Indus

Java Analysis Framework developed at Kansas State University. We also found

the latest dynamic java slicer, which was developed at Saarland University. For

this thesis we study these two state-of-the-art Java slicers and evaluate their suit-

ability for our parallelization project. We found that although the Indus slicer

is a very efficient and robust tool for the tasks it was originally intended to per-
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form (debugging), the slicer routinely fails to produce correct executable slices.

Moreover, the code base has several dependences with older (and now defunct)

libraries and also needs all source code to be compiled with obsolete JDK com-

pilers. After a detailed study of the Indus static slicer we conclude that massive

changes to the Indus code-base may be necessary to bring it up-to-date and make

it suitable for our project. We also found that the Saarland dynamic Java slicer

is able to correctly produce dynamic program slices and has few dependences on

other tools. Unfortunately, this slicer frequently runs out of memory for longer

(standard benchmark-grade) programs, and will also need to be updated for our

tasks.
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Chapter 1

Introduction and Motivation

Future computing environments will more urgently demand high-level pro-

gramming languages, portable binary distribution formats, and safe and secure

runtime systems, in addition to high execution performance. High-level managed

languages, such as Java and C#, along with their associated virtual machines

(VM) have been designed to provide the features demanded by future software

systems. VMs provide their features and attempt to improve execution efficiency

by performing a number of auxiliary tasks at runtime. Some of these tasks, like

dynamic compilation and garbage collection, are necessary to ease coding, pro-

vide safety, and ensure good performance for the managed environment. Other

auxiliary tasks, such as bytecode verification and security management, ensure

security of the host platform as the runtime executes untrusted Internet-based

applications. Auxiliary tasks that collect profiling information are essential to en-

sure high program performance while supporting portable execution in a virtual

machine. As future systems demand even greater security and performance, it will

become necessary for VMs to support increasingly more auxiliary tasks at runtime.

However, such auxiliary tasks, performed during execution, have the potential of
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seriously affecting the final program performance. Moreover, future applications

and user requirements are only expected to further increase the number of even

more expensive auxiliary tasks to be performed at runtime [5, 7, 15, 24]. Current

VM technology is ill-equipped to handle this scenario since it is forced to perform

several of these auxiliary tasks inline with, and by stalling, normal program execu-

tion, thus substantially degrading program performance. Consequently, a critical

goal of current VM researchers is to develop techniques to reduce the performance

impact of performing expensive auxiliary tasks at runtime [4, 14,16,17].

At the same time, the computing community is recently adapting to a major

shift in hardware processor design. Instead of scaling uniprocessor clock frequen-

cies, future processors are expected to improve program performance by integrat-

ing increasingly more processing cores on a single chip each year [1]. Thus, future

program performance is most likely to come from parallelizing and distributing

the program workload over multiple cores. This research project attempts to

exploit the abundant computing resources on multicore and many-core proces-

sors to reduce the overhead of inline auxiliary tasks and improve overall program

performance.

1.1 Project Hypothesis

We hypothesize that most auxiliary tasks don’t need precise knowledge of the

entire program state to do their work, but only the partial state that is relevant

to the task in question. Then, we can employ the technique of program slicing

to statically derive a new program thread (for each auxiliary task or set of tasks)

that only calculates the program state necessary for the successful completion of

that task. In other works, program slices specialized and optimized for a par-
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ticular task have been found to be significantly shorter than the main program

thread [3, 28]. This characteristic can allow each specialized program slice to run

concurrently with the main program thread, and calculate and (if needed) convey

the results of its specialized task to the main thread at appropriate points during

program execution. Thus, the main program avoids spending time in tasks that

are not directly related to the actual execution, allowing unhindered and acceler-

ated program execution. Additionally, since each program slice will itself calculate

the required program state, and the main program needs little information from

typical profiling or security-related inline auxiliary tasks, communication and syn-

chronization between the main thread and other auxiliary threads are kept to a

minimum.

Thus, validation of this hypothesis can allow us to employ a new VM execution

model as illustrated in Figure 4.6. At the top of the figure is presented the flow

of the program as it exists in current virtual machines, with multiple security and

profiling tasks interspersed with normal program execution. The new framework

will statically create a separate thread that executes in its own processing core for

each such task. The figure illustrates that the specialized slices in each thread are

expected to be smaller than the corresponding calculation of the entire program

state in the main thread, allowing the auxiliary threads to run ahead and calculate

their information before it is needed by the main thread. The main program thread

is now free to run without undue suspensions slowing it down. The dotted arrows

from Security thread-1 and Security thread-2 in figure 4.6 indicate points where

information regarding the status of each check may be communicated to the main

thread.
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Figure 1.1. Expected Parallelized VM Execution Model

1.2 Goal of this Thesis

The goal of this thesis is to determine the suitability of existing open-source

software tools to produce the executable program slices required for this research.

We are interested in calculating backward slices of a given program. The backward

dynamic slice for any given program task consists of the minimum necessary set

of program statements for accurate completion of that task. At present, very

little tool support exists for slicing programs written in modern object-oriented

languages such as Java, and C#. To obtain backward slices for our research we use

the state of the art Indus Java Analysis framework [20], developed at Kansas State

University. The effectiveness of the static slicing algorithm at producing minimal

slices can be quantified by comparing the number of instructions executed by

the static slice program with the dynamic slice of the same program for the same

criteria. We employ the Dynamic Java Slicer [8] developed at Saarland University,
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Germany to perform this comparison.

Over the last few decades a considerable amount of work has been done in the

field of program slicing specific to Java. Unfortunately, there are not many pub-

licly available static slicer implementations which are efficient and robust. The

static Java slicer that comes as part of Indus Analysis framework is an open-source

and efficient slicer for Java programs. The Indus Java Slicer has the ability to

produce forward and backward slices on a given Java program, for the specified

criteria. The slice is calculated based on information provided by dependence

analyses and also the call-graph provided by Object Flow Analysis. It is claimed

that Indus also has the functionality to produce executable slices as class files.

This is done by a process called residualization. Indus also includes Kaveri [11],

a feature rich Eclipse based GUI for slicing. In Indus, Java programs are rep-

resented in Jimple via SOOT [23] library. The static slice obtained from Indus

can be be further examined by looking at pre and post residualized Jimple files.

Theoretically, Indus provides very good functionality for our research.

There has been a lot of work done on dynamic slicing, and such slicers are

commonly available for languages like C/C++. Unfortunately, there are very few

open-source dynamic slicers for Java programs. Saarland Java Slicer can be used

to produce traces of Java program executions, and then offline computing dynamic

backward slices on them. This is the only efficient dynamic Java Slicer available

for free. Unlike Indus it does not have a GUI interface but is yet quite easy to use.

Criteria specification is quite straightforward. The result of slicing gives a count

of the number of instructions in the slice along with the bytecode instructions

that make up the dynamic slice. Saarland Java Slicer is robust and modern. Its

functionality makes it the best possible candidate for our research work.
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1.3 Outline

The remainder of this thesis is organized as follows. We start by describing

some of the related work in our research area. Chapter 3 talks about the some

background concepts and program slicing basics. Chapter 4 gives a detailed ex-

planation of static slicing. We describe our work, observations and results with

the Indus static slicer in Chapter 5. We describe the details of dynamic slicing and

our research with the Saarland dynamic slicer in Chapters 6 and 7 respectively.

Finally, we present the conclusions of this thesis along with the expected future

work we plan to conduct in Chapter 8.
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Chapter 2

Related Work

Static program slicing, which is a compile-time version of the analysis, was

first introduced 1982, whereas run-time based dynamic slicing systems appeared

around 1988. Mark Weiser for the first time gave a formal definition of slices and

their abstract properties, a practical algorithm for slicing and some experience

slicing real programs [26]. Since then a great deal of research has been conducted

on static slicing and an excellent survey of many of the proposed techniques and

tools can be found in [22] and [10]. [10]presented an evaluation and comparison

of implementations of program slicing. His report also discussed how to compare

slicing tools for different application areas and formulated a method for doing so.

Recognizing the need for accurate slicing, Korel and Laski proposed the idea of

dynamic slicing [12]. The data dependences that are exercised during a program

execution are captured precisely and saved. Dynamic slices are constructed upon

users requests by traversing the captured dynamic dependence information. An

exception to this approach is various works on forward computation of dynamic

slices [13,29] which precompute all dynamic slices prior to users requests. [9] pro-

posed an improved slicing algorithm for Java. They presented a new, safe criterion
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for termination of unfolding nested parameter objects. They also provided mea-

surements for JavaCard benchmark programs. But their work is not finished yet

and the slicer would eventually be integrated into the VALSOFT project.

There have been a large number of publications along with a small number of

implementations for languages such as FORTRAN, ANSI C, and Oberon. Over

the last few decades a considerable amount of work has been done in the field

of program slicing specific to Java. Unfortunately, there are not many publicly

available static slicer implementations which are efficient and robust. Also most

of the research work has been targeted towards particular applications of program

slicing such as program comprehension, testing, program verification, etc. There

was some considerable static program slicing work(Java program Analyzing Tool

- JATO) done at Georgia Institute of Technology in the 90s. But it is mostly

irrelevant today. A research group at University of Wisconsin started a Program

Slicing project but did not end up with any implementation or experimental work.

Many papers claim results form static and dynamic slicing tools but as of January

2011 the only publicly available, reasonably efficient and “working” static slicer

for Java is Indus, developed at the Kansas State University [21].

Like static slicing there has been a lot of theoretical work regarding dynamic

slicing of object-oriented programs specifically, and ways to store the execution

trace in an efficient way. The work by [25] found a great way of storing the ex-

ecution trace, which is based on Java byte-code. They achieved a much better

compression than if they would just write out the sequence of byte-code instruc-

tions as they are executed, and compress this single sequence. Their focus was

mainly on an efficient representation of the execution trace, rather than an efficient

slicing algorithm based on the recorded trace.
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Other people that considered dynamic slicing especially on object-oriented

programs: [27] addressed the problems that arise from advanced features like in-

heritance, polymorphism or dynamic binding. They extended the concepts of the

dynamic dependence graph and control dependencies to attain a precise dynamic

slice.

Concerning practical implementations of all this theoretical work, it looks very

sparsely. To our knowledge, there exists a dynamic slicer for Java, called JSlice.

It has been developed by Wang and Roychoudhury, and its first version is rather

old. Since the mostly used Java VM by Sun was not published under an open-

source license at that time, they decided to modify the Kaffe VM. Kaffe is written

completely in C, so they changed the source code to write out all information

needed to reconstruct a trace of the program run. The version they used for their

modifications is 1.0b3, which is mostly compatible with Sun-JDK 1.4. This old

Java version is only rarely used today, but since the changes are very deep inside

the system, it is hard to carry it over to a newer Kaffe version or even to another

VM implementation.

The main disadvantage for users is that it is difficult to set up the Kaffe VM

and JSlice for most systems [8]. One has to compile it for every platform, and

install it in parallel to the existing Java VM. The source code they provide does

only compile with the antiquated GCC version 2.95, and the binaries only run on

some specific Linux distributions. Its incompatibility with current Java versions

makes it unusable for debugging newly developed software. Apart from JSlice, the

only other dynamic java slicer is the dynamic Java-Slicer developed at Saarland

University [8].
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Chapter 3

Background Concepts

Since its invention by Weiser [26] in the early 1980s, various researchers have

explored techniques, variations, and applications of program slicing for over two

decades in sequential contexts. Over this period, the primary applications of pro-

gram slicing were in maintenance, debugging, and testing of programs. Although

the application domain of program slicing has been expanded to include program

verification and program security, program slicing as a technique is not yet widely

used. This is mainly due to the lack of an accessible implementation to experiment

with program slicing. There are only a few full-featured robust implementations of

program slicing that are available for industrial applications or academic research.

Also, in particular, very little tool support exists for slicing programs written in

modern object-oriented languages such as Java or C#.

In computer programming, program slicing is the computation of a set of

statements from the program that affect the values at some point of interest. The

statements that are points of interest are known as the slicing criteria and all

statements affecting or affected by the slicing criteria form the program slice.

Calculating static and dynamic slicing involves extensive data dependence
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analysis and control dependence analysis. Slicing can be performed statically

on the source code of the program, but because of special opportunities of object-

oriented languages like dynamic binding, inheritance or polymorphism, the depen-

dencies have to be resolved very conservatively in order to fetch all possibilities.

Because of these constraints, the static slice is usually relatively big, and not too

helpful. Much more precise is the dynamic slice, which is a subset of the static

slice and is smaller.

There can be different slices for the same program for different sets of criteria.

There is always atleast one slice for any given criteria, which is the program itself.

The interesting slices are the ones which, compared to the original program, are

significantly smaller and simpler yet, behave like the original program. For our

research we are interested in slices that are executable so that we can analyze

the performance benefits of running independent program tasks in parallel. We

are interested in calculating backward slices of a given program. The backward

dynamic slice for any given program task consists of the minimum necessary set

of program statements for accurate completion of that task. For example, the

dynamic backward slice for a task that prints out a program variable would consist

of the program statements which compute the value of that variable upto the point

of execution of the printing task.

3.1 Basics

Formally, program slicing is an analysis that accepts a program P along with a

collection of program points C and provides a collection of program points S such

that either S influences the behavior of P at C or C influences the behavior of P

at S [26]. The collection of input program points C are referred to as slice criteria
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while the collection of output program points S are referred to as a program slice of

P . In many literature, the criteria is also accompanied by a collection of variables

that determine the subset of the behavior, i.e. the values of the variables, that

should be preserved at the criteria in the slice. Below is an example of slicing on

a small program [26].

int i;

int sum = 0;

int product = 1;

for(i = 0; i < N; ++i) {

sum = sum + i;

product = product *i;

}

write(sum);

write(product);

This portion of code below is a valid backward slicing of the above program

with respect to the criterion (write(sum),sum):

int i;

int sum = 0;

for(i = 0; i < N; ++i) {

sum = sum + i;

}

write(sum);

In fact, most static slicing techniques, including Weiser’s own technique, will also

remove the write(sum) statement. Indeed, at the statement write(sum), the value
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of sum is not dependent on the statement itself.

Program slices in which the slice influences the criteria is referred to as back-

ward slices whereas the slices in which the criteria influences the slice is referred

to as forward slices . This aspect of the slice is referred as the direction of the

slice [2]. Independent of the direction, various analysis explore the relations be-

tween the criteria and other programs points to determine which portions of the

program to include in the slice. As the definition of a variable influences the

use of a variable, data dependence relation needs to be considered during slicing.

Similarly, as the execution of (control flow to) a program point can be decided

by a decision made at another program point, control dependence relation is also

considered during slicing. Further, as the influence may be indirect (e.g. program

point e1 may influence the control flow to program point e2 which in turn may

influence the data accessed at other program points), the analysis will also need

to consider the relation between the slice and several other points in the program.

Hence, the slice is expanded till a fixed point is reached.

In [21] the authors describe that mathematically program slicing can be per-

ceived as the transitive closure of the union of a collection of dependence relations

. Given this perception, if the dependence relations are represented in a directed

graph (i.e. program points as nodes and dependence relations as edges), then the

algorithm to calculate a program slice is merely a graph search algorithm for a

non-existent node starting from the criteria nodes in the appropriate direction (for

forward/backward slices). Such graphs that represent the dependence relations

of a program are referred to as program dependence graph (PDG) . Figure 3.1

from [21] represents the PDG for the following code.

13



1 public class Example1{

2 void tempConv(int c) {

3 float f = c * 9 / 5 + 32;

4 if ( f < 100 ) {

5 System.out.println("Good Weather " + f);

6 } else {

7 System.out.println("Hot weather " + c);

8 }

9 }

10 }

Figure 3.1. (a) : Program Dependence Graph(PDG) for the above
example program. Solid lines represent identifier based data depen-
dences while dashed lines represent control dependences.(b) : Forward
slice based on criteria line 3.(c) : Backward slice based on criteria line
7.

The basic idea of program slicing is to start with a subset of a program’s

behavior and reduce it to a minimal form that still produces that behavior. The

reduced program is called the slice.
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3.2 Java Bytecode

One of the main advantages of Java over other programming languages is its

platform independence [8]. It is achieved by not compiling the source code into

machine code, that would only be executable only on specific systems. Instead,

Java uses an intermediate form called bytecode. On the target platform, this

bytecode is loaded by the Java Virtual Machine, and eventually translated into

machine code that is directly executed on the machine.

The bytecode consists of more than one hundred different bytecode instruc-

tions. Bytecode instructions are a level higher than assembly instructions, and

almost all of them are translated into several machine code instructions. The

Java Virtual machine is stack based and devoid of registers. It contains an inter-

nal operand stack, which the bytecode instructions use to load their operands from

and to store results. It is also used to pass parameters to called functions: The

parameters are just pushed onto the stack, then the method invocation instruction

is executed.

When compiled, a .class-file is generated for each single Java class. This class

file can be run on any machine that has a Java VM.

3.3 Desirable Slice Characteristics

The properties required of a slice vary from application to application. For

example, the program slice required in model checking based program verification

applications needs to be executable. On the other hand, executability is not

required in applications such as program comprehension via visualization.

There can be different slices, for a given program, for different slicing criteria.
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There is always atleast one slice for any given criteria which is the program itself.

The interesting slices are the ones which, compared to the original program, are

significantly smaller and simpler yet, behave like the original program. The smaller

the slice the better but the following argument shows that finding minimal slices

is equivalent to solving the halting problem, it is impossible [26].

Definition : Let C be a slicing criterion on a program P. A slice S of P on

C is statement-minimal if no other slice of P on C has fewer statements than S.

Theorem : There does not exist an algorithm to find statement-minimal slices of

arbitrary programs [26]. Informal Proof: Consider the following program frag-

ment.

1 read (X)

2 if (X)

then

. . .

perform any function not involving X here

. . .

3 X := 1

4 else X := 2 endif

5 write (X)

Imagine slicing on the value of x at line 5. An algorithm to find statement-minimal

slice would include line 3 if and only if the function before line 3 did halt. Thus

such an algorithm could determine if an arbitrary program could halt, which is

impossible.

There are two informal properties intuitively desirable in a a slice [26]. First,

the slice must have been obtained from the original program after removing the
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some statements. Second, the behavior of the slice must correspond to the behav-

ior of the original program. A problem with obtaining a slice by removing some

statements is that the source code of a program may become ungrammatical. For

instance, removing THEN clause from an IF-THEN-ELSE statement leaves an

ungrammatical fragment if null statement is not permitted between THEN and

ELSE.

1 BEGIN

2 READ(X)

3 IF X = 0

4 THEN BEGIN

-

perform infinite loop

without changing X.

-

5 X := 1

6 END

7 ELSE X := 2

8 END

Unfortunately the second desirable property is also too strong to be true. In

the above example let the slicing criterion be the value of X at line 8. A slicing

algorithm based on equivalent behavior for all inputs would necessarily include

line 5 unless there were some assurance that for all input, line 5 was never reached.

Such a slicing algorithm could be used to determine the termination of an arbitrary

procedure by suitably inserting that procedure between lines 4 and 5, and then

noticing whether or not line 5 appeared in the slice. But there can be no algorithm

to determine if an arbitrary procedure must terminate, and hence no such slicer
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exists. This is similar to the halting problem discussed previously. The desirability

of equivalent projected behaviors of the slice and program can be weakened to be :

projected behaviors must be equivalent whenever the original program terminates.

So, there is no need to determine arbitrary procedure terminations in the program.

3.3.1 Applications of Program Slicing

Program slicing is most often used to do one of the following:

3.3.1.1 Debugging

When debugging software, it is often the case that a bug is detected at a state

associated with single program point Pb. If the software is large and complex,

then it is likely that the software fault occurs at a program point Pf that is

statically distant from the program point Pb. In such cases, the developer will

need to methodically sift through the source code to identify the faulting program

point Pf . To expedite this process, the developer will try to limit the search to

those parts of the software that directly or indirectly affect the behavior (state)

of the program at the program point Pb. This process can be automated using

backwards program slicing starting with Pb as the slicing criteria.

3.3.1.2 Program comprehension

Software developers are frequently assigned to debug, further develop, or re-

verse engineer code that they did not author. In such cases, it is often difficult

for the developer to grasp the basic architecture and relationships between code

units, and this is made more difficult by the fact that the code may be poorly

documented. Both backward and forward slicing can be applied to browse the
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code, looking for dependences between code units, flows of data between program

statements, etc.

3.3.1.3 Testing

There are a number of applications of slicing in the context of testing. One

particular example is impact analysis, which aims to determine the set of program

statements or test cases that are impacted by a change in the program, require-

ments, or tests. For example, in verification and validation efforts on large code

bases with huge test suites, it is often very expensive to run all the tests associated

with the program. If a program statement Pb is modified (e.g., due to a bug fix),

rather than re-running all tests, backwards slicing using Pb as the criteria can be

used to determine the subset of the tests that actually influence the behavior of

the program at the point of the bug fix, and only those relevant tests need to be

re-run. In addition, a developer may want to understand the potential impact

that the change at Pb can have on other statements of the program. Forward

slicing with Pb as the criteria can be used to locate other statements within the

program that will be impacted by the change at Pb.

3.4 Dependence Relations

3.4.1 Graphs

In connection with program slicing two kinds of graph are used: flow graphs

and dependence graphs.
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3.4.1.1 Flow Graph

A flow graph is a directed graph where the vertices represent program state-

ments. They can be used to represent the control and/or data flow of a program.

Control-flow graphs (CFGs) are of particular interest in program slicing [11]. A

CFG is a flow graph with one unique entry vertex and one unique exit vertex. It

models the flow of control in a program so that each path from the entry vertex

to the exit vertex represents a possible run of the program.

3.4.1.2 Dependence Graph

We have previously mentioned that the graphs that represent the dependence

relations of a program are referred to as program dependence graph (PDG) and

how a PDG can be used while slicing.In a PDG the statements and control pred-

icates in a program are represented by vertices and the data and control depen-

dences are represented by edges.

A data dependence exists between two statements whenever a variable ap-

pearing in one statement may have an incorrect value if the order of the two

statements is changed. A control dependence exists between a statement and a

control predicate if the value of the predicate controls the execution of the state-

ment. The edges from a predicateare labelled with the conditions for which there

is a dependence.

A dynamic dependence graph is a dependence graph where every executed

statement occurs once for every time it is executed. The parts of a program that

are not executed are therefore not in the graph [19]. Statements that are executed

many times are on the other hand represented by many vertices. The PDG can

be augmented with other kinds of edges to represent other dependences. For
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example, to represent a program with procedures we need special kinds of edges

to represent the inter-procedural dependences. A system dependence graph (SDG)

is an extension of a PDG that have special edges to represent these dependences.

3.4.2 Dependences

Dependence can be thought of as a relation between two program points x

and y that indicates if x depends on y or vice versa. In a dependence relation

between x and y where x depends on y, we refer to x as the dependent and y as

the dependee.

Data dependence can indicate if the variable being read at a program point is

influenced by another program point at which the same variable is being written.

Similarly, control dependence indicates if the flow of control to a program point is

dependent on another program point. To relate a CFG with the program that it

represents, there should be a function to map a CFG node n to the code for the

program statement that corresponds to that node. Node n is control-dependent

on m in program p if there exists a path from m to n in p’s CFG [19].

Data dependence [19] is a notion that relates program points based on the data

defined and used at those points.

1 public class Example1{

2 void tempConv(int c){

3 float f = c*9/5+32;

4 if ( f < 100)

5 System.out.println(‘‘Good Weather’’ + f);

6 }else {

7 System.out.println(‘‘Hot Weather’’+ c);

8 }
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9 c = 20;

10 }

11 }

Trivial example to illustrate dependences~\cite{Ranganath_anoverview}.

The variable c is defined upon entering the procedure tempConv(int). The defini-

tion of c at procedure entry will be used in the definition of f at line 3. In other

words, the use of c at line 3 is dependent on the definition of c at procedure entry.

Similarly, the use of f at line 3, 4, and 5 is dependent on the definition of c at

line 2. However, none of the uses of the variable f depends on the definition of c

at line 7 due to the lack of a control flow path.
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Chapter 4

Static Slicing and Indus

The notion of slicing where the algorithm starts at the criterion nodes and

looks backward through the program’s control- flow graph to find other program

statements that influence the execution at the criterion nodes is know as backward

static slicing [18].

4.1 Indus Java Program Slicer

As mentioned previously, a lot of good background research has gone into

the development of the Indus framework. The framework comes with a Static

Analyses tool which can be used separately from the slicer. The slicer is built

on top this analyses tool. Using the Indus slicer, one can slice object oriented

Java applications very easily. Indus also comes with its own Eclipse plugin called

Kaveri. Kaveri can be used to slice a Java application and the resulting slice

is viewed as highlight annotations on the source code. Adding a statement as

criteria is very straightforward as shown in 4.1.

Kaveri displays the jimple code corresponding to each Java statement in the
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Figure 4.1. Criteria statement in Kaveri [11]

program. As the translation between Java and Jimple is not one – one, the

user is allowed to pick the Jimple statements that are closest to the program

point of interest. The user can also choose if the effect of executing the criterion

be preserved in the slice. When running the slice, the configuration and the

criteria can be chosen. Kaveri can also be used to explore a chain of dependencies

Figure 4.2. Dependence History view [11]

using the Dependence History view as as shown in Figure 4.2. The aim being
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to get a better understanding of the program through dependence tracking. The

dependence history view shows the chain of dependences in the form of a stack.

The user can backtrack to an earlier point in the dependence chain and follow

other dependences. The view indicates the statements that were selected and the

dependence that was followed to reach that statement.

Figure 4.3. Slicing result seen as highlighted statements [11]

Figure 4.3 shows the slice as highlight annotations on the source text. The

green highlight indicates that the statement is completely present in the slice (all

the Jimple statements mapped to the corresponding Java statement are included

in the slice) while the yellow highlight indicates only a subset of the Jimple state-

ments mapped to the corresponding Java statement are included in the slice.

4.2 Soot and Jimple

Soot [23] is a Java optimization framework. It provides four intermediate rep-

resentations for analyzing and transforming Java bytecode: 1. Baf: a streamlined
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representation of bytecode which is simple to manipulate. 2. Jimple: a typed

3-address intermediate representation suitable for optimization. 3. Shimple: an

SSA variation of Jimple. 4. Grimp: an aggregated version of Jimple suitable for

decompilation and code inspection. Soot can be used as a stand alone tool to

optimize or inspect class files, as well as a framework to develop optimizations or

transformations on Java bytecode.

Figure 4.4. Indus’s internal transformations [6]

As shown in Figure 4.4 Indus uses Soot to convert Java source code into an

internal representation called Jimple. Jimple is the principal representation in

Soot. The Jimple representation is a typed, 3-address, statement based interme-

diate representation. Jimple representations can be created directly in Soot based

on Java source code(up to and including Java 1.4) and Java bytecode/Java class

files(up to and including Java 5).

The Jimple code is cleaned for redundant code like unused variables or assign-

ments. An important step in the transformation to Jimple is the linearization

(and naming) of expressions so statements only reference at most 3 local vari-

ables or constants. In Jimple an analysis only has to handle the 15 statements in

the Jimple representation compared to the more than 200 possible instructions in

Java bytecode [23]. Below is an example from [23] to demonstrate java to jimple
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translation.

public class Foo {

public static void main(String[] args) {

Foo f = new Foo();

int a = 7;

int b = 14;

int x = (f.bar(21) + a) * b;

}

public int bar(int n) { return n + 42; }

}

Running Soot using the command java Soot.main -f J Foo yields the file Foo.jimple

in the storage directory of soot.

public static void main(java.lang.String[]) {

java.lang.String[] r0;

Foo $r1, r2;

int i0, i1, i2, $i3, $i4;

r0 := @parameter0: java.lang.String[];

$r1 = new Foo;

specialinvoke $r1.<Foo: void <init>()>();

r2 = $r1;

i0 = 7;

i1 = 14;

// InvokeStmt

$i3 = virtualinvoke r2.<Foo: int bar()>(21);

$i4 = $i3 + i0;

i2 = $i4 * i1;
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return;

}

public int bar() {

Foo r0;

int i0, $i1;

r0 := @this: Foo; // IdentityStmt

i0 := @parameter0: int; // IdentityStmt

$i1 = i0 + 21; // AssignStmt

return \$i1; // ReturnStmt

}

In the code fragment above we see the Jimple code generated for the main and bar

methods. Jimple is a hybrid between Java source code and Java byte code. The

local variables in Jimple which start with a $ sign represent stack positions and

not local variables in the original program whereas those without $ represent real

local variables e.g. i0 in the main method corresponds to a in the Java source.

Jimple is not Java source, especially the introduction of new unique variables

can result in great difference between result and expectations when you compare

the Java source code to the produced Jimple code.

4.3 Backward Slicing Algorithm

4.3.1 Program Points

Program points represent expressions [21]. Specifically, the dependee program

points correspond to defining assignment expression/statement and the dependent

(use) program points correspond to the atomic expression that contains the use

variable or procedure invocation expressions.
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The same representation suffices for control dependences (CD) as well except

for the special handling of two corner cases: 1) the program point of an if statement

is the program point of the controlling expression, and 2) the program point

of a synchronized statement is the program point of the lock expression of the

statement.

4.3.2 Parametric Slicing Algorithm (PSA)

The algorithm [21] accepts a program along with the slice criteria and the set

of dependence relations to be consider during the slice construction. This initial

set of slice criteria is referred to as seed slice criteria. In other words, the algorithm

calculates the slice at the fixed point of the function involving the slice criteria,

starting from the seed slice criteria and an empty slice. The slice generated by

the algorithm is controlled by four parameters:

seedCritGenerator accepts a slice criteria and returns a slice criteria. It func-

tions as a transformer that can add, delete, and/or modify the input slice criteria.

DepHandler processes the given criterion against the given set of dependence

relations and provides a new slice criteria to consider. The algorithm includes the

program points in the returned criteria into the slice, if they previously did not

occur in the slice.

ProcAscHandler provides the program points in the caller (calling) procedure

that should be processed to capture the influence/dependence on the given pro-

gram point.
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4.3.3 Backward Slicing Algorithm (BSA)

The parametric slicing algorithm is customized to generate backward slice

in Indus [21] by providing appropriate parameter functions. The functions are

explained below.

Backward-SeedCritGenerator Returns the seed slice criteria without any mod-

ification.

Backward-DepHandler Identifies the dependee program points that influence

the criteria program points according to the given dependence relation and returns

the dependee program points as new slice criteria.

Backward-procAscHandler Identifies the caller side program points that trans-

fer the control to and influence the data at the program points in the given criteria

and returns these caller side program points as new criteria to be processed. Given

a program point in a procedure, the execution of the program point depends on

the invocation of the procedure.

Backward-procDscHandler Identifies the callee side program points that trans-

fer the control out of the callee procedures. Given an invocation program point,

the completion of execution of this program point depends on the completion of

the exit program points in the called procedure.

The accuracy of the backward slice depends on the accuracy of the call graph

information and the dependence relations used by the algorithm.

4.4 Design Rationale

As shown in Figure 4.5 In Indus dependence information and program slicing is

not be tightly coupled as the latter depends on the former while the former does

not depend on the latter [11]. Hence, the slicer is separated from dependence
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analyses. The slicer module depends on a dependence module to provide the

information it requires via a well defined interface. The generation of slice and

ensuring any property, such as executability, required of the slice, are part of a

post processing phase and are kept disjoint from the slicing engine.

Most literature on slicing do not make the distinction between the identifica-

tion of the slice and the representation of the slice as they do not consider the end

application. The reason being that, by definition a program slice is the just some

parts of the program picked based on some algorithm by tracking dependences

and this process only concerns the identification of these parts and nothing more.

The application that uses the slice decides on the representation of the slice. For

example, if the application is a visual program understanding tool, it may re-

quire the slice to be represented as tagged AST nodes. This indicates that the

process of identification of the slice and the representation of the slice are two

different activities and the design is further modularized by breaking down the

post processing into slice post processing phase and residualization phase.

4.5 Indus Architecture

As described in [11] the slicer is available as a single unit with many modules.

Each module is assigned a particular functionality. Each module also provides a

well defined interface if to enable for extension by the user. Based on this design

principle, the following modules exist in the slicer:

slicer This module is responsible for the identification of the slice, hence, it

contains classes required to generate slice criteria, classes that contain the algo-

rithm to identify the slice, and classes to collect the slice. The slice is identified

by annotating the AST nodes that are part of the slice.
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slicer.processing This module contains various forms of post processing that

can be performed on the identified slice in the slice post processing phase. For

example, the functionality of making a sliced executable is realized as a class with

a well-defined interface.

slicer.transformations This module contains classes that transform the

program based on the identified slice.

tools.slicer This module contains classes that package all the relevant parts

required for slicing as a ”slicer” tool that can be readily used by the end applica-

tion.

toolkits This module contains adapter classes that adapt classes available in

tools.slicer module to be amenable to a tool kit via preferably a tool API.

Figure 4.5. Indus Design [11]
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Figure 4.6. UML-style dependence/relationship between various
modules in the slicer [11]

4.5.1 Slicer Implementation Details

tools.slicer.SliceXMLizerCLI is a class that uses the tools.slicer.SlicerTool to

generate the slice and it residualizes the slice as an XML document and each class

in the slice as a Jimple file and a class file. Following is a snippet of the main

code in this class [11].

public static void main(final String[] args)

{

final SliceXMLizer _driver = .....

_driver.initialize(); (1)

_driver.execute(); (2)
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_driver.writeXML(); (3)

_driver.residualize();

}

protected final void execute()

{

slicer.setTagName(nameOfSliceTag); (4)

slicer.setSystem(scene); (5)

slicer.setRootMethods(rootMethods); (6)

slicer.setCriteria(Collections.LIST); (7)

slicer.run(Phase.STARTING_PHASE, true); (8)

}

(1) The XMLizer is created and initialized in the first 2 lines of main. This is

followed by the execution of the slicer which (2) is followed by the writing of the

slice and the substrate program as XML, writeXML() and the residualization of

the slice (3) as Jimple files and class files at residualize().

(4) An annotation-based approach is used to identify the slice. The inherent

support in Soot to tag AST nodes is used to identify the slice, hence, in this step

we provide the name of the tag that should be used to annotate AST nodes of the

program to identify them as belonging to the slice.

(5) Soot uses a “Scene” as an abstraction of the system that is being operated

on. All the classes and it’s components can be accessed from the Scene via well

defined interfaces. To use the slicer the user loads up the classes that form the

system into a Scene and provides it to the slice in this step.

(6) Given just the criteria, the slicer can include parts of the system that may

not be relevant in a particular run. Although this information is useful in impact

analysis, it is overly imprecise in most cases. Hence, the user could identify the set
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of methods in the system that should be considered as entry point while generating

the slice. The identified entry point methods or root methods can be provided to

the slicer in this step.

(7) The slice criteria is set in this step. As the slicer was designed and im-

plemented as part of a larger model checking project, the SlicerTool has the logic

that can be switched on to auto generate criteria which are crucial to detect dead-

locks in the system. These criteria would correspond exactly to enter monitor and

exit monitor statements.

The tools.slicer package comes with a default configuration that is used if none

are specified and it controls the toggling of various configuration switches. This

default configuration uses all possible dependences in their most precise mode to

calculate an executable backward slice that preserves the deadlocking property of

the system.

(8) The slicer tool executes in 3 stages: starting/initial, dependence calcula-

tion, and slicing. A user just wanting to customize the residualization process can

extend SlicerTool to alter the post processing phase suitably and use the extended

version. The classes from tools.slicer.processing and transformations.slicer will be

used in the post processing phase.

The program slicing library, directly or indirectly, requires various high level

analyses such as escape analysis, monitor analysis, safelock analysis, and analy-

ses to calculate and prune various dependences – method-local data dependence,

inter-procedural data dependence, control dependence, data interference depen-

dence, ready dependence and synchronization dependence. These high level anal-

yses require low-level analyses and information such as object-flow information,

call graph, and thread graph. The implementation of all of these analyses and a
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few more are available in Indus.

Most of the above mentioned analyses are available as independent modules.

Hence, a user can use an analyses independent of other analyses in Indus. More-

over, each implementation is separated from it’s interface. This enables the user

to experiment with various implementations that provide the same interface. In

fact, this feature is used in the slicer to vary the level of precision. This theme

applies to other analyses available in Indus [21].
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Chapter 5

Using Indus to obtain backward

executable slices

As good as the Indus slicer is, it still did not provide us with all the function-

ality that we needed for our research. It is difficult to express the specific criteria

intelligently and accurately. And we also need some debugging information to

validate the static backward slices.

5.1 Writing Criteria

Indus is a state of the art static Java slicer. Being the only available static

Java slicer it is also quite robust and efficient. The analysis tool within Indus is

quite efficient and provides accurate information. The first step when slicing a

Java program is choosing appropriate criteria. The desirable characteristics of a

slice have already been discussed previously in this thesis. In order to get usable

slices we should select correct program tasks as our criteria points. The criteria to

Indus slicer can be provided as a simple text file with the class file and line number
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information. A more precise method of specifying the slice criteria, is by means of

an xml file. For a simple Java program, specifying a task to print a variable’s value

as criteria as a line based criteria would be very straightforward. We just need to

write <ClassName>:<LineNumber> pairs in the txt file. We can specify several

lines in a program as the criteria in similar Class Name, Line Number pair format.

But this provides insufficient information to slicer and results in inaccurate slicing

results. Specifying just a print statement for a variable as the criteria, does not

indicate to the slicer if we are interested in how the value of the variable was

calculated. To achieve this we need to write a more complex xml based criteria

file which provided the slicer all the additional information it needs. Writing an

xml based criteria is not easy and involves a deep understanding of how the slice

would work. The format for specifying the xml criteria looks as shown below:

<slicer:criterion slicer:considerExecution="">

<slicer:className>Compress</slicer:className>

<slicer:method>

<slicer:methodName></slicer:methodName>

<slicer:returnTypeName></slicer:returnTypeName>

<slicer:parameters>

<slicer:parameterTypeName></slicer:parameterTypeName>

</slicer:parameters>

</slicer:method>

<slicer:stmt slicer:index="" slicer:considerEntireStmt=""/>

<slicer:expr/>

</slicer:criterion>

Criteria specification xsd
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As seen above the xml criteria consists of several fields and parameters. The

considerExecution attribute tells the slicer to consider the execution of the criteria

statement before calculating the slice. The considerEntireStmt tells the slicer to

consider the entire chosen criteria for slicing. This attribute comes in handy when

we are interested in multiple parameters involved in a programming task. Since

for this thesis we are interested in executable slices we modified the slicer to set

the considerExecution attribute to true by default.

The stmt index in the above xml criteria is not the Java source line number,

but the intermediate Jimple statement index. Jimple files are difficult to read

and understand. As mentioned in previous sections, each Java statement would

map to two or more corresponding Jimple statements. In order to specify the

Jimple statement index we need to know the indices of all the Jimple statements

that correspond to the task we are interested in slicing. This means an extra step

before doing the actual slicing. The user would need to use Soot to create a Jimple

file for the Java program, preserving line number information. This generated

Jimple file will then be used to see the Java to Jimple mapping and then specify

correct indices in the xml criteria. This entire step is very cumbersome and time

consuming. So unless, there is a specific need to not include the entire statement

in the criteria, we can just set this attribute to be always true. The user can still

use the xml based criteria to override these attributes if need be. This makes

the process of criteria selection easier and relatively less prone to error. Also, the

user need not know the Slicer implementation details or Java to Jimple mapping

information in order to choose appropriate criteria.

In our study of Indus, with line number based criteria generation, Indus/Kaveri

does the best effort - consider every Jimple (bytecodes) statement that maps to a
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given line number as a slicing criterion. But, in the absence of such mapping in-

formation, the line based criteria generation will be inaccurate. In such situations,

it is better to resort to xml based criteria specification.

5.2 Executable slices

For our research we were interested not only in correct slices but also their

executability. Executable slices are created in Indus by the process of “residual-

ization”. Residualization produces an executable sliced class file for the original

program based on the criteria we specify. Indus/Kaveri is correct in producing

these executable slices but we also need to verify if the slice is indeed correct and

contains all the necessary information. The only way to do is run the slice and

observe if it behaves in the same way as the original program. In order to do this

we decided to debug the slice in Eclipse IDE and observe if the program flow for

the criteria remains the same as the original run.

In order to successfully debug any Java program, along with the source code

information, we also need the line number information to step through the pro-

gram. Unfortunately, the Java-Jimple-Java translations within Indus are lossy

and the resultant slice no longer contains essential class file information. Since

this information is very crucial to our research, we incorporate an additional step

of adding line numbers to the class file.

The first and obvious approach was to try to modify the slicer such that no

important information is lost during Indus’s translations. We do this as a two step

process. The first step is to ensure that the Java-Jimple translation does not lose

any information. Indus uses Soot to read in class files and create intermediate

representations. We tweaked the slicer to use Soot in a way such that all line
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number information is preserved during Java to Jimple translation. In the second

step we use the line number information attached to the jimple representation, and

add it as Line Number Tags to the resultant slice. For each method in every class

of the resultant slice, we iterate through the Jimple and line number information

and attach the same to the corresponding class file mapping. This again involves

a call to Soot since we perform an internal transformation on the sliced class file.

This step of adding important class file information is an optional step in the

slicer and unless specified, the slicer would continue to produce slices devoid of

line number information.

Once we have the above information we try to debug the slices in Eclipse IDE.

We step through the sliced program and observe if it behaves like the original ap-

plication. For jvm98 benchmark suite’s compress program the slice demonstrated

similar behavior as the original program and was also smaller in size. But slicing

other benchmark programs for different criteria did not produce desirable results.

In order to explore this problem, it was essential to understand if the dependence

analysis in the slicer was indeed correct. We used the Kaveri plugin for Eclipse to

do this. We used the dependence tracking view of Kaveri to see the dependence

analysis results. Using the dependence analysis view it is easy to see if the slicer

would produce a correct backward slice. On examining the analysis being done

by Indus, we discovered that the inaccuracy in slicing is due the inaccuracy in

resolving dependences due to StringBuffer class of Java. Some inaccuracies also

creep in when the application is intensive on Swing/AWT classes. Unfortunately,

no simple solution is available for this problem. Trying to change the Dependence

Analysis is out of scope for this thesis. It would involve changing quite a bit slicer

code which is built on legacy Java and Soot framework.
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5.3 Results and Observations

The static slicer used for our experiments is part of the Java Analysis Frame-

work called Indus and is available for free download at http://indus.projects.cis.ksu.edu/.

To run the slicer we use JDK 6 along with its JRE. The input to the static slicer

is Java class file which has been compiled using JDK4. This a very strict re-

quirement and the slicer would not work for programs that are compiled using

any JDK later than JDK4. Indus uses Soot for all its internal translations and

transformations. Although Soot is available free to download from its project

website, a slightly modified version of Soot-2.1.0 should be downloaded from the

Kansas State University’s Indus project website. This setup should suffice to run

the static slicer.

In order to build our own slicer, some very specific packages including but

not limited to groovyMonkey, jibx, slf4j, commonsLogging, etc. are needed. The

complete list of packages is available on the Indus web page. The Indus plug-in

for Eclipse is part of the Indus build and can be used in Eclipse after installing the

Groovy Monkey plug-in. Kaveri plug-in works only on Eclipse 3.1 or earlier. We

need ant installed on the computing machine in order to build the Indus project.

Any version of ant can be used. Indus slicer is not memory intensive and any

amount of memory greater than 512MB should be enough to run standard Java

Programs.

We use different flags in the Indus static slicer command line tool to obtain

pre and post residualized jimple files and the sliced class files. The slicer supports

Linux operating systems. We used Fedora 10 during our research. We use the

standard benchmarks from the jvm98 suite to conduct our experiments with Indus.
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5.3.1 Results and observations

As mentioned and described in previous sections, Indus’s static slicer is the

only static slicing tool available. Using Indus for our research means relying on

a lot of dependencies, the worst being the requirement that all class files passed

as argument should have been compiled with JDK 4. Indus only takes class files

as arguments and we cannot give it the Java source file as the input to read.

This poses a twofold problem. Firstly, this makes it absolutely necessary to have

the source code of the program readily available so that it can be compiled with

JDK4. Secondly, compiling newer programs can give rise to compilation problems

such as Class or method “not found” or “not defined”. This also means using

old and deprecated Java APIs. Also, the version of Soot used for the internal

transformations is quite old and results in lossy translations sometimes. Indus

depends on a version of Soot that can only handle Java 1.4. While there are

versions of Soot that can handle Java 1.4+, these versions break the dependences

required by Indus, e.g. IIRC, MethodRefs are used instead of SootMethod in

InvokeExpr in Soot 2.2 and Indus requires SootMethod in InvokeExpr.

Inspite of the above mentioned problems, we tried to slice the benchmarks in

the jvm98 suite through Indus. Since the source code of the benchmark suite is

available we compiled the benchmarks using JDK4. And then sliced the bench-

marks by using all the program print statements as the criteria. In case of jvm98

benchmarks the print statements display the final value of the variables used at

various points in the program and also print out benchmark run information. For

example, for compress benchmark the print statements display the size of an in-

put file before and after compression. So when we select these print statements

as the criteria, the expected backward slice would contain all the program tasks
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that contributed to the calculation of the variable values upto the chosen print

statements. The only way to verify our theory is to run the sliced(residualized)

class see if it behaves similar to the original program run. In other words the slice

should also print out the variable values that depict an input file size before and

after compression. Unfortunately, the execution behavior of the slice doesn’t turn

out to be the same as the original program run. Another alternative to verify

the slice correctness is to read the post residualized jimple file and verify that it

contains all the necessary information. For a large application program it is im-

possible to read the jimple files manually and this approach is also prone to error.

So we opened the slice in Eclipse debugger and step through the slice execution

to observe if it follows the same execution pattern as the original program. Here

we found out that the slice execution is alright upto a certain point after which

it demonstrates buggy behavior. We did the same for other benchmarks in the

jvm98 suite and discovered that the slice dependences are not resolved correctly

when the source code uses certain StringBuffer Java classes. These inaccuracies

in the slice creep in due to inaccurate dependence analysis. Solving this behavior

is outside the scope of this thesis.

The goal of the project includes successful generation of static slices which can

be run on the available resources. Indus slices the application programs success-

fully and residualization process generates executable slices. Although these slices

are runnable they do not depict correct behaviors and more often than not run

into NullPoniterExceptions when executed. This is again because of the missing

information and in StringBuffer classes. Since we were not able to get any ac-

curate executable slices, we do not have precise numbers to validate our project

premise. Comparing the pre and post residualized jimple files, as well as the
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original program’s and slice’s class file information, clearly shows that the slice is

definitely smaller than the original program and therefore our hypothesis stands

true. But actual performance benefits of slicing can be measured only when we

have a slice that is accurate as well as executable.
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Chapter 6

Dynamic slicing and Java slicer

Dynamic slicing algorithms can greatly reduce the debugging effort by focusing

the attention of the user on a relevant subset of program statements. Recognizing

the need for accurate slicing, [12] proposed the idea of dynamic slicing . The

data dependences that are exercised during a program execution are captured

precisely and saved as traces. Dynamic slices are constructed upon users requests

by traversing the captured dynamic dependence information. Precise dynamic

slices can be considerably smaller than static slices. While precise dynamic slices

can be very useful, it is also very expensive to compute dynamic slices.

For object-oriented programs, static slicing is quite complicated, since you

have to deal with extended concepts like inheritance, polymorphism and dynamic

binding. To capture all dependencies in the program, you have to be very con-

servative when analyzing method calls for instance. This fact often leads to very

large static slices [8], that are not very useful in practice and can hardly be used

in automated debugging to isolate possible error sources.

Once a program is executed and its execution trace collected, precise dynamic

slicing typically involves two tasks: preprocessing which builds a dependence graph
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by recovering dynamic dependences from the program’s execution trace; and slic-

ing which computes slices for given slicing requests by traversing the dynamic

dependence graph.

The basic approach to dynamic slicing is to execute the program once and

produce an execution trace which is processed to construct dynamic data depen-

dence graph that in turn is traversed to compute dynamic slices. The execution

trace captures the complete runtime information of the program’s execution that

can be used by a dynamic slicing algorithm – in other words, there is sufficient

information in the trace to compute precise dynamic slices. The information that

the trace holds is the full control flow trace and memory reference trace. There-

fore the complete path followed during execution and each point where data is

referenced is known. For a dynamic slice to be computed, dynamic dependences

that are exercised during the program execution must be identified by processing

the trace.

The computation of this trace is the most critical part in dynamic slicing. The

resulting dynamic slice is usually dramatically smaller than the static slice, and is

always a subset of it. This is obvious since the static slice contains all statements

that may have influenced the suspected variables, whereas the dynamic slice only

contains those statements that actually did influence them in this specific program

run. The slicing criterion, that is the only input of the slicing algorithm besides

the program itself, consists of a location in the source code, as well as a set of

variables referenced at this source code location.
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6.1 Saarland Dynamic Java Slicer

6.1.0.1 Design

Saarland Dynamic JavaSlicer can be used to produce traces of Java program

executions, and then offline computing dynamic backward slices on them. It is

organized in several modules [8] :

Tracer : This is the java agent which produces a trace file of a java program ex-

ecution. The trace file contains the bytecode representations of all loaded classes,

as well as all information to reconstruct the execution trace for each thread.

TraceReader : Contains all classes needed to open and process a trace file. It

provides forward and backward iterators over the execution trace.

Core : This is the core of the slicing component. It uses the TraceReader

component to process a trace file and computes all dynamic dependences inside

this run. The slicer itself is built on top of that. It accumulates the dynamic

dependences to compute the dynamic backward slice.

6.1.0.2 Tracer

Tracing the execution of the program is the most complicated and most time

consuming part of dynamic slicing. So for designing the tracer, a major challenge

is efficiency in runtime, memory and disk space used to collect and store the trace.

A Java agent is used to instrument the bytecode of all classes that are currently

loaded into the VM, and the new classes as they are loaded. A naive instrumen-

tation of a small Java program increase the method to hundreds of instructions.

This includes classes contained in the JRE, since it is not sufficient to just in-

strument user classes. If a user program uses a Vector for example, we have to

know which instruction wrote which element in the vector in order to be able to

48



compute a precise slice. The instrumentation of these standard library classes also

introduces some problems.

For tracing the control flow of the execution, all possibilities for jumps in the

control flow are considered. These also include exceptions. Also method invocation

sites are considered.

Trace File

All information fetched by the tracer and during the run of the program is

written into one file. This information contains a representation of all classes,

including their bytecode instructions, as well as all traced information.

6.1.0.3 Slicer

For dynamic slicing basically the Saarland slicer uses the algorithm presented

in [25]. Additionally Saarland slicer extends the definition of a variable. In pure

imperative programming languages there are two kinds of variables: Global vari-

ables can be accessed from within any method and by any thread (they are shared

between all threads). In contrast, local variables can only be accessed from within

the method they are declared in. Both memory locations can hold array types:

data structures, in which several elements are grouped together. In object-oriented

languages like Java, there is one more location where elements can be stored: in

the fields of an object, which is stored on the heap. Besides, global variables are

encapsulated in classes, and are called static fields. So in object-oriented lan-

guages, a variable as for slicing is either a local variable, a static field, a field of

an object, or an element of an array.

The dynamic slicing algorithm essentially proceeds by traversal. The crucial

operation in constructing slices is to detect the control/data dependences between
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bytecodes. The data dependence analysis is complicated by Java’s stack based

architecture as explained in the following.

Saarland Dynamic Java slicer, like Indus static slicer, exploits stacks to ex-

plore data dependence between program variables during execution. The main

challenge that remains with the above algorithm was the computation of control

dependencies. Since the dynamic intra-procedural control dependencies do relate

to the static control dependencies mapped to the dynamic instances of the instruc-

tions, it is useful to precompute the static intra-procedural control dependencies.

For this computation, the complete control flow graphs for each method are built

in [8], and a mapping that assigns each instruction the set of all instructions de-

pending on this one is stored. This computation takes some time, but since it

is only done once per method, this has no negative consequences for the overall

efficiency.
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Chapter 7

Saarland Dynamic Java Slicer

and our reserach

For our research we are interested in the number of instructions in the trace

file(both application and library) as well as the application instructions in the

trace file. The trace Reader does provide the total number of instructions in the

trace file. But this count contains application, library as well as some additional

instructions which are introduced in the trace file due to various instrumentations.

We extended the trace reader such that it would count only the application in-

structions in the execution trace. The original functionality of counting all the

instructions also remains intact.

Since the trace file is huge, it was impossible to read the trace file of a standard

Java program without having to print all the library instructions as well. We

added the functionality in the trace reader such that, a user can view only the

application instructions and skip printing of the library instructions.

The result of the dynamic slicing gives a count of the number of instructions in

the slice along with the bytecode instructions that make up the dynamic slice. We
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also need to know the total number of instructions in the slice for fair comparisons

in this thesis. To achieve this we modify the Slice Instructions Collector in the

dynamic slicer to use a map instead of a set and associate a counter with each

instruction. Each time an instruction is visited to be put in the slice this counter

is updated. At the end of the instruction collection we get the total number of

instructions in the slice. Again, the original functionality of the slicer to show the

distinct instructions count remains intact.

7.1 Experimental Setup

The requirements to run the dynamic slicer are quite straightforward. The only

project requirements are a working JDK on the computing machine. Dynamic

Java Slicer works well with the latest JREs and we use JDK6 for our research.

The dynamic Java Slicer is also free to download from the project website of

Saarland University at http://www.st.cs.uni-saarland.de/javaslicer/.

The Dynamic Java Slicer is built as a maven project with different modules. In

order to download and customize the Slicer maven should be installed and running

on the system. The dynamic slicer is memory intensive and a large Java program

can take upto several hours to finish slicing on a machine with insufficient memory.

For the slicer to run smoothly and in a timely manner we provide it upto 4Gb of

memory. To test our experiments with the Dynamic slicer we use the standard

jvm98 benchmark suite and benchmarks from Dacapo2006 suite.

For our research we used the computing facilities at Information Technol-

ogy and Telecommunications Center(ITTC), University of Kansas. The bench-

marks for dynamic slicing were run on the ITTC clusters with 4 nodes. Com-

plete information about ITTC computing facilities and clusters can be seen at
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http://bioinfo.ittc.ku.edu/. The dynamic slicer was given 4GB memory to run

the jvm98 and Dacapo benchmarks.

7.2 Results and Observations

For running our experiments on the dynamic java slicer we use benchmarks

both from jvm98 benchmark suite as well as Dcapao 2006 benchmark suite.

The trace file sizes for the various programs from the above mentioned standard

Java benchmark suites is shown in the tables 7.1 and 7.2.

In Table 7.1 we show results of trace files for five jvm98 benchmarks. For the

remaining jvm98 benchmarks (mtrt, mpegaudio, jack, raytrace) the tracer ran

into errors to the effect of code being compiled incorrectly and byte-code having

unsupported form. This behavior doesn’t seem too wrong since the Saarland Dy-

namic slicer is quite modern and the jvm98 benchmark suite might have some

outdated Java APIs. We deliberately chose the jvm98 benchmark suite because

we wanted to run the slicer for smaller programs before moving on to the com-

paratively larger and longer ones. We can see that even for very small programs

like jess, check and checkit the trace file is several mega bytes in size. Even for

compress the trace file size is quite big. For a longer running and large program

like db the trace file is several Giga Bytes in size. The third column in Table 7.1

gives the total number of instructions in the dynamic slice - application as well

as library. The fourth column gives a count of the total number of application

instructions in the slice. Since this calculation reads data from the trace file, it is

necessary to keep the trace file in memory till the number of application instruc-

tions is calculated. Because the trace file itself is so huge this process runs out of

memory before the number of application instructions can be calculated for db.
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The time to compute the trace file itself is quite reasonable though.

Benchmark Size Total Number of
instructions

Number of
application
instructions

Time to com-
pute trace file

compress 152M 77,139,392 72,344,018 1.06s
jess 23M 8,945,996 4,920,181 0.23s
check 3.3M 524,464 257,546 0.18s
checkit 79M 41,674,309 517,801 0.24s
db 5.6G 2,518,028,036 GC overhead 8.50s

Table 7.1. Trace results for jvm98 benchmark suite

Table 7.2 shows the trace results for eight standard programs from dacapo2006

benchmark suite. The traces for the remaining dacapo2006 benchmarks(jython,

eclipse, chart) could not be created because of the huge size of the benchmarks

and the tracer ran out of memory. In this case also the time to compute trace

itself is not too high. Since the dacapo2006 benchmarks are bigger than jvm98

benchmarks the trace files are several Mega Bytes in size. Even for the smallest

program in dacapo2006, pmd, the trace file size is very big. The third and fourth

columns show the total number of instructions and the number of applications

in the trace file respectively. In this case, only a small fraction of instructions in

the trace file are application instructions. The majority of instructions are Java

library instructions.

Table 7.3 show the dynamic slicing results for various benchmarks. The criteria

for slicing are those program statements which invoke the Java Security Manager

for permissions during execution. We can see from the results that the time to

compute the slice is not insignificant even when significant resources are given to

the dynamic slicer. But the time to compute can be used to gauge the performance

benefits since the computation time largely depends on the chosen criteria. Also
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Benchmark Size Total Number of
Instructions

Number of
Application
Instructions

Time to com-
pute trace file

pmd 165M 27,536,927 762,589 0.27s
fop 183M 113,512,343 254,626 0.50s
antlr 437M 171,019,220 1,922,515 0.44s
hsqldb 411M 272,541,002 13,734,412 0.48s
bloat 618M 358,406,825 105,516,203 0.56s
lusearch 3.0G 192,205,885 15,033,226 2.47s
xalan 2.6G 21,287,268 214,875 2.09s
luindex 912M 383,602,261 5,634,911 1.10s

Table 7.2. Trace results for dacapo2006 benchmark suite

Benchmark Time to com-
pute slice

Number
of Distinct
Instructions

Total Number of
Instructions

Slice to Pro-
gram Ratio

compress 26763.56s 1557 25,370,062 0.331
jess 394.76s 2009 1,838,955 0.214
checkit 1005.03s 542 4,636,090 0.106
pmd 557.45s 4429 1,286,513 0.047
fop 498.22s 3466 440,984 0.006
hsqldb 2175.10s 4580 848,805 0.003
antlr 2684.04s 4127 640,167 0.004
bloat 3789.94 3294 841,337 0.002

Table 7.3. Dynamic slicing results for security check instructions as
criteria

the slice computation time will depend on how many objects a program allocates

during its run and heap space utilization. The count of distinct instructions is

obviously quite low. Each instruction is executed several times during the run of

the program and this constitutes the slice. The fourth column gives the size of the

resulting slice in terms of the number of instructions in it. Although this number

is quite high, it is very low compared to the size of the original program. The

fifth column gives the ratio of the original program size to the size of the slice. A
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ratio of less than 1 simply means that the slice is smaller than the program. Not

surprisingly, the ratios are very small. Infact, the ratio is smaller for the bigger

programs. This clearly validates our thesis goal - verify that the dynamic slice is

smaller than the original program.
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Chapter 8

Conclusion and Future Work

Indus static slicer[1], though quite robust and efficient, doesn’t quite suffice

to get all the necessary results needed for validation of our project premise. We

modified the static slicer to be able to use simple line based criteria to produce

accurate results. Indus’s residualized executable slices are devoid of important

line number information, essential for debugging the resulting slice. So we also

incorporated additional functionality in the slicer to generate “residualized” class

files with line number information. Unfortunately, the residualized slices, although

smaller than the original program, do not produce similar output. To explore this

problem, we extensively examined the dependence analysis results of Indus using

Kaveri’s dependence tracking view. Inspite of the analysis being quite correct, we

discovered inaccuracy in slicing due to inaccuracy in dependences involving String-

Buffer classes. Rectifying these dependence inaccuracies is outside the scope of

this thesis, and could break several project dependencies. It would also involve

considerable changes to the slicer which is built on outdated Java and Soot frame-

work.

The underlying analysis framework within Indus is in reasonably good condi-
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tion. In the future, a new static slicer could be built on top of the existing analysis

framework. Indus could be made to use a modern version of Soot for its internal

translations. This would probably also get rid of discrepancies due to incorrect

analysis of StringBuffer classes and would also allow modern Java programs to

be statically sliced successfully. Another essential goal should be to reduce the

strict dependence on outdated jar files and classes. The only other alternative to

improving Indus would be to build a static slicer from scratch.

Dynamic Java Slicer [8] involves creation of a trace file for the run of the original

program and then running the slicer on this trace file for a set of criteria. The

dynamic slicer produces results that validate our project premise. The dynamic

slicer’s result only depicted the number of distinct application instructions in the

slice. We modified the slicer to also depict the count of total number of instructions

in the slice. We also modified the trace reader to get the count of total application

instructions in the original run of the program, so that we could compare the

slicing results against the number of instructions in the original program.

Although the dynamic slicing results are promising, the slicer runs out of

memory for larger Java programs. This is a significant drawback and needs to be

rectified. A possible solution could be break the trace file into blocks and only

that block is kept in memory which is relevant to the current calculation of the

slice.
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