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ABSTRACT

Timing of exhumation of the eastern Central Alps from zircon and apatite (U-Th)/He
thermochronology (Graubiinden, Switzerland)

By
Sarah Lynn Evans
Department of Geology
University of Kansas

The structurally complex eastern Central Alps, located in eastern Switzerland and
adjacent areas, have helped constrain the timing and kinematics of deformation during the Alpine
orogeny. Several regional and orogenic scale studies have established a well-defined structural
evolution of the eastern Central Alps; however, the low-temperature cooling history of the region
remains relatively unconstrained. An understanding of this cooling history may elucidate
mechanisms for exhumation of the region and evaluate orogenic scale models for the timing and
nature of exhumation within the mountain belt. This study presents new low-temperature zircon
and apatite (U-Th)/He age data from the Austroalpine and Penninic nappes of the eastern Central
Alps that reveals a three stage cooling history for the region. These data, combined with inverse
time-temperature modeling, provide cooling rates for the three phase history. Slow cooling at
rates of ~1-10 °C/m.y. through the zircon HePRZ (~200-140 °C) are recorded in the
Austroalpine Silvretta, Campo-Grosina, and Err nappes during the Eocene from ~52 to 36 Ma.
This period of cooling is related to exhumation resulting from north directed thrusting associated
with continental collision. A second stage of rapid cooling at rates of 10-50 °C/m.y. from ~36 to
21 Ma, are recorded by zircon and apatite (U-Th)/He age data from the Bernina and Corvatsch
Austroalpine nappes, and zircon (U-Th)/He age data from Penninic units exposed in the
Engadine Window. This period of relatively rapid cooling and exhumation is likely a response to

a combination of backthrusting along the Insubric Line and crustal duplexing at depth. A final
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period of cooling and exhumation is recorded only in the Silvretta Austroalpine nappe and
Penninic units exposed in the Engadine Window at ~16 Ma. This period of cooling and
exhumation is likely a result of uplift along the oblique left-lateral Engadine Line. The overall
cooling history of the eastern Central Alps shows that the western exposure of the orogenic lid
behaved as a rigid to semi-rigid block during continental collision and continued convergence
until the Engadine Line affected the region in the Miocene. The three phase cooling history
constrained by this low-temperature thermochronometric data contributes to the growing body of

evidence for episodic cooling and apparent exhumation of the Alpine orogen.
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1. Introduction

Recent work in the Alps has focused on understanding the tectonic, metamorphic, and
thermal evolution of the Alpine orogeny using geophysical, geochronologic, and
thermochronologic techniques, as well as palinspastic reconstructions (e.g., Hurford et al., 1989;
Froitzheim et al., 1996; Schmid et al., 1996; Frisch et al., 2000; Handy and Oberhénsli, 2004;
Schmid et al., 2004; Bousquet et al., 2008; Stampfli and Hochard, 2009; Handy et al., 2010;
Berger et al., 2011). The structurally complex eastern Central Alps have been well-studied using
these techniques, with a particular focus placed on the boundary between the Austroalpine and
Penninic nappes and the surrounding region. Studies in this region have contributed to the
knowledge of the timing and kinematics of deformation in the Alpine orogen (e.g., Froitzheim et
al., 1994 and references therein), and the area has become a terrestrial analogue for the magma-
poor rift margin model (e.g., Manatschal et al., 2007; Manatschal and Miintener, 2009 and
references therein). The combined findings of these recent studies have established a well-
defined structural evolution of the eastern Central Alps; however, very few studies have focused
on the low-temperature thermal evolution of the Austroalpine and Penninic nappes exposed in
the region.

Low-temperature thermochronometric techniques (i.e., zircon and apatite fission track,
and zircon and apatite (U-Th)/He) are particularly useful tools for the study of orogenic settings
and are used to quantify a variety of processes related to orogenesis (e.g., Reiners and Brandon,
2006 and references therein). These low-temperature thermochronometric methods have been
used in the Alpine orogen to quantify erosion rates, and the timing and rates of exhumation of
upper to mid-crustal rocks (e.g. Hurford et al., 1989 and references therein; Bernet et al., 2001;

Kuhlemann et al., 2006; Carrapa, 2009, etc.). However, there is a current lack of low-
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temperature thermochronologic data for portions of the Alpine orogen. Eastern Switzerland and
the adjacent areas are particularly lacking in low-temperature thermochronometric data. To
address the deficiency, this study integrates apatite and zircon (U-Th)/He thermochronometry to
investigate the thermal evolution of the western-most exposures of the Austroalpine units and
Penninic units exposed in the Engadine Window (Figure 1).

The zircon and apatite (U-Th)/He age data from this study are interpreted through inverse
modeling of time-temperature histories to provide constraints on the timing, rates of cooling and
apparent exhumation, as well as determine possible mechanisms of exhumation during the
Tertiary Alpine orogeny. Further, the cooling and apparent exhumation rates determined from
inverse modeling of the zircon and apatite (U-Th)/He data are used to elucidate the thermal
structure of the region from the Eocene to Miocene during the Alpine orogeny, and to comment
on the amount of eroded sediment deposited in the foreland basins during the Oligocene. The
timing, degree and nature of exhumation of this region during the Alpine orogeny constrained by
low-temperature thermochronology may indicate episodic exhumation of this region of the
orogen during the Neogene.

2. Geologic Setting
2.1 General Alpine Terminology

The present day Alps are a doubly-vergent orogen that formed during the Late
Cretaceous to Miocene as a result of the closure of multiple ocean basins and the continental
collision between Europe and Adria, a promontory of the African plate (for a review see
Triimpy, 1980; Schmid et al., 1996, 2004; Handy et al., 2010; Figure 2). The north- and west-
vergent Alps are separated from the south-vergent Southern Alps along the Periadriatic Fault

Zone (PAFZ; Schmid et al., 1989). The Alpine chain north of the PAFZ has a complex
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tectonometamorphic evolution and is divided into several sub-sections that roughly correlate to
their paleogeographic positions prior to the Alpine orogeny: (1) Austroalpine units derived from
the Adriatic microcontinent composed of poly-metamorphosed crystalline basement and
detached to semi-detached sedimentary (Paleozoic to Cenozoic) cover, (2) Penninic units,
consisting of the distal portions of the Adriatic and European margins and the intervening units
derived from the Alpine Tethys including ophiolitic sequences, Mesozoic to Cenozoic sediments,
and continental basement units of the Brianconnais, (3) Helvetic and Ultrahelvetic units, derived
from the proximal European margin, broadly consisting of platform carbonate sequences and
flysch deposits, and finally (4) Northern Alpine Foreland Basin (NAFB) units, comprised of
flysch and molasse sequences (Triimpy, 1980; Schmid et al., 1996; 2004).
2.2 Regional Geologic Setting

The study area is located just east of the present-day boundary between the Penninic and
Austroalpine nappes in eastern Switzerland and this study focuses on the thermal evolution of
several Austroalpine and Penninic nappes (Figure 1; see section 4.3.1-4.3.7 for more detailed
sample location descriptions). To better understand the context of the thermal evolution of the
region, a well characterized tectonometamorphic history of the area must be examined. For a
general review of the geologic history of the greater Alpine orogen the reader is referred to
review papers of Triimpy (1980), Schmid et al. (1996; 2004), and Handy et al. (2010).
2.2.1 Passive Margin Development

The geologic history of this region is quite complex, and has metamorphism and
deformation associated with both orogenic and extensional events in the Paleozoic (Triimpy,
1980; von Quadt et al., 1994; Neubauer and Handler, 2000 and references therein). Following

Paleozoic deformation, this area was the site of magma-poor continental rifting during the
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Jurassic and evolved into a hyper-extended rift margin located on the northwest edge of Adria,
facing the developing N-Alpine Tethys (Froitzheim and Manatschal, 1996; Manatschal and
Miintener, 2009; Mohn et al., 2010; Figure 2a, 2b). This episode of rifting significantly thinned
portions of the future Austroalpine nappes. As a result, they have been divided into three
categories based on their positions within the Jurassic rift margin: (1) Upper Austroalpine units
(i.e., Silvretta, Ortler, Ela) which represent the proximal portion of the passive Adriatic margin,
(2) Middle Austroalpine units (i.e., Campo-Grosina) which constitute the severely extended
middle crustal rocks exposed in the “necking zone”, or zone of strain localization, within the
passive margin, and (3) Lower Austroalpine units (i.e., Bernina-Julier, Err-Corvatsch) exposed in
the distal passive margin, which have experienced extreme thinning from low-angle normal
faulting (Mohn et al., 2010; Figure 3). The Penninic Tasna nappe exposed in the Engadine
Window (Figure 1) also represents a fossil ocean-continent transition (OCT) (Florineth and
Froitzheim, 1994; Manatschal et al., 2006). However, the exact paleogeographic location of this
OCT is still a matter of debate (Florineth and Froitzheim, 1994; Manatschal et al., 2006;
Manatschal and Miintener, 2009). Currently, the preferred position of the Tasna nappe is located
within the Briangonnais as a conjugate margin to the Adriatic margin described above
(Manatschal and Miintener, 2009). The other Penninic units sampled in this study, the Ramosch
zone and Biindnerschiefer within the Engadine Window, are also derived from the N-Alpine
Tethys (Florineth and Froitzheim, 1994).
2.2.2 Cretaceous Alpine Orogeny

Subsequent to the development of the passive margins in the region, the area was
deformed during the Cretaceous to Miocene Alpine orogeny (Figure 2b-e). The timing and

kinematics of the Alpine orogeny have been well documented (Schmid and Froitzheim, 1993;
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Froitzheim et al., 1994; Handy et al., 1996), and the general deformational phases described by
Froitzheim et al. (1994) will be employed in this paper to discuss the evolution of the study area.

The first episode of deformation associated with the Alpine orogeny within the study area
is characterized by top-to-the-west thrusts (D1: Trupchun phase of Froitzheim et al., 1994;
Figure 2c) that imbricate the former northwestern passive margin of Adria (i.e., Austroalpine
units) from about 90 to 80 Ma (Froitzheim et al., 1994 and references therein; Handy et al.,
1996). The timing of this deformational phase is based on the youngest sediments deposited in
the Ortler nappe that are cut by D1 thrust faults (Froitzheim et al., 1994). The age of this period
of deformation is also constrained by the formation ages of white mica in the Err nappe
associated with DI microstructures (Handy et al., 1996). The metamorphic conditions of the
Austroalpine nappes in the area vary during this time period, but are generally between
greenschist and anchizonal conditions (Handy et al., 1996 and references therein; Mohn et al.,
2010).

The D1 period of west directed thrusting is followed by a period of deformation defined
by top-to-the-east normal faults (D2: Ducan-Ela phase of Froitzheim et al., 1994) from about 79
to 67 Ma (Figure 2d; Handy et al., 1996 and references therein). The kinematics of these east
directed normal faults (i.e., Ducan, Corvatsch, Fuorcla-Surlej, etc.) have been attributed to
orogenic collapse (e.g., Platt, 1986; Schmid et al., 1996) or possibly to extension in the hanging
wall of active southward subduction of the N-Alpine Tethys below Adria (e.g., Handy et al.,
1996). The metamorphic conditions during the D2 period of extensional exhumation have a
temperature range of 250-450 °C, similar to the greenschist and anchizonal conditions of D1
deformation (Handy et al., 1996). There is however a decrease in pressure from the peak

estimates of 800-900 MPa during D1 to 400-500 MPa for portions of the Austroalpine units (the
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Err nappe) during D2, as expected for a period of extensional exhumation (Handy et al., 1996).
2.2.3 Tertiary Alpine Orogeny

The D2 period of extension marks the end of Cretaceous Alpine orogenic (Eoalpine)
deformation within the study area (Froitzheim et al., 1994). Following the Cretaceous, the
assembled Austroalpine nappe stack or “orogenic lid” acts as a rigid to semi-rigid block with
little internal deformation during subsequent tectonic events (e.g., Laubscher, 1983). The
deformation associated with the Tertiary Alpine orogeny commenced in the Paleocene with
continued subduction of the Alpine Tethys below Adria, and is followed by continental collision
between Europe and Adria from the Eocene to Miocene (Froitzheim et al., 1994; Schmid et al.,
1996, 2004; Handy et al., 2010).

Following the Cretaceous Eoalpine episode, deformation within the study area is
characterized by north directed thrusting and E to SE-striking folding of the previously
assembled Austroalpine nappe stack (D3: Blaisun phase of Froitzheim et al., 1994; Schmid et al.,
1996; Figure 2e). The timing of north directed thrusting during the Eocene is constrained by
biostratigraphic dating of the youngest sediments in the greater North Penninic Flysch deposited
in the N-Alpine Tethys (Ziegler, 1956 in Froitzheim et al., 1994). Following the deposition of
these sediments, north directed thrusting carries the orogenic lid, composed of the rigid to semi-
rigid Austroalpine nappe stack and the Penninic Platta and Malenco-Forno units accreted during
the Cretaceous, as a coherent block an estimated 75 km to the north (Laubscher, 1983;
Froitzheim et al., 1994; Schmid et al., 1996). Internal deformation of the orogenic lid during D3
deformation is not pervasive in the study region, and is characterized by only minor thrust faults
(Handy et al., 1996) and meter to kilometer scale upright folding (Froitzheim et al., 1994).

Temperature conditions during D3 deformation within the Lower Austroalpine Err nappe are
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estimated to be 150-250°C based on dynamic calcite recrystallization (Handy et al., 1996).

At a larger scale during the D3 period of deformation, the Penninic units of the Alpine
Tethys and distal European margin were either completely subducted or accreted to Adria. The
high-pressure metamorphism of Penninic and distal European units results from subduction of
crustal material below Adria, and the timing of metamorphism ranges from 46-35 Ma (e.g.,
Gebauer, 1996; Challandes et al., 2003; Wiederkehr et al., 2009, etc.). Within the
Biindnerschiefer of the study area, a Penninic unit exposed in the Engadine Window, the timing
of high pressure greenschist facies metamorphism associated with subduction has been dated by
in situ **Ar/*° Ar of white micas to 41.23+1.22 Ma (Wiederkehr et al., 2009).

As the Penninic units and distal portions of Europe were accreted or subducted below
Adria the subduction zone became increasingly congested with down-going material, and as a
result of contrasting buoyancy forces and changes in the convergence direction of Europe and
Adria, the subducting slab foundered below the Central and Eastern Alps (von Blanckenburg and
Davies, 1995; Handy et al., 2010). Exact timing of slab break-off is controversial, and estimates
range from 45-40 Ma (von Blanckenburg and Davies, 1995; Schmid et al., 1996) to 32-30 Ma
(Sinclair, 1997). Slab break-off and subsequent mantle upwelling may have resulted in both the
uplift of the overlying crust as well as magmatism (i.e., Periadriatic intrusions; von
Blanckenburg and Davies, 1995; Schmid et al., 1996). Further, slab break-off may be the cause
for the switch from an underfilled to overfilled Northern Alpine Foreland basin (Sinclair, 1997).
Currently there is no conclusive evidence to support a particular model for the timing of slab
break-off (Handy et al., 2010).

Following the D3 period of north directed thrusting that culminated in the closure of the

N-Alpine Tethys, the study area underwent a short period of syn-collisional E-W extension (D4:
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Turba phase of Froitzheim et al., 1994). The D4 period of top-to-the-east extension did not
penetratively deform the rigid to semi-rigid orogenic lid. Instead, the majority of deformation
was localized along the Turba mylonite, a structure with top-to-the-east sense of shear, located
immediately to the west of the study area along the Austroalpine-Penninic tectonic boundary
(Froitzheim et al., 1994; Nievergelt et al., 1996). Motion along the Turba mylonite occurred
between 45 to 30 Ma, based on formation ages of foliation within the footwall of the fault and
truncation of the structure by the 30.13+0.17 Ma Bergell granodiorite (Nievergelt et al., 1996;
von Blanckenburg, 1992). However, based on the timing of previous periods of deformation (i.e.,
D3), Nievergelt et al. (1996) suggested movement along the Turba mylonite probably occurred
in the early Oligocene.

After the D4 period of extension, the study area underwent N-S shortening from
continued convergence of Adria and Europe during the Oligocene (D5: Domleschg phase of
Froitzheim et al., 1994). Within the study area, this period of deformation (D5) is characterized
by NE striking folds (Froitzheim et al., 1994; Handy et al., 1996). Handy et al. (1996) postulate
subanchizonal metamorphic conditions for the Err nappe during D5 folding. The intrusion of the
Bergell tonalite at 31.88+0.09 Ma and granodiorite at 30.13+0.17 Ma, presently exposed in the
SE portion of the study area, is concurrent with D5 deformation within the study region (von
Blanckenburg, 1992). Backthrusting of the Central Alps over the Southern Alps along the
Insubric Line also occurs during the D5 period of deformation. The timing of backthrusting is
supported by the synmagmatic deformation of the Bergell pluton associated with movement
along the Insubric Line (e.g., Schmid et al., 1996). Backthrusting along the Insubric Line likely
commenced prior to the intrusion of the Bergell pluton and D5 deformation (Schmid et al.,

1996). The exact timing of the movement prior to the Bergell intrusion is poorly constrained
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(e.g., Schmid et al., 1996), but may be as early as 34 Ma and continue as late as 20 Ma (see
Figure 2 from Berger et al., 2011).

The final period of deformation (D6) within the study area is characterized by brittle
movement along the Engadine Line, aoccurring roughly from the late Oligocene to the middle
Miocene (Engadine Line phase of Schmid et al., 1996). The Engadine Line is an oblique sinistral
strike-slip fault that strikes NE and cross-cuts the Austroalpine nappes of the study area (Schmid
and Froitzheim, 1993). The structure causes relative uplift of NW block near the Engadine
Window, purely left lateral strike-slip motion near Samedan, Switzerland, and relative uplift of
the SE block near the Bergell intrusion (Schmid and Froitzheim, 1993). The amount of vertical
displacement along the Engadine Line near the Engadine Window is estimated at a minimum of
3 km and a maximum of 6 km (Schmid and Froitzheim, 1993). This uplift is thought to be
responsible for the formation of the Engadine Window through updoming and unroofing of
overlying Austroalpine units (Schmid and Haas, 1989; Schmid and Froitzheim, 1993). The
timing of movement along the Engadine Line is poorly constrained, but it must postdate the
intrusion of the Bergell grandodiorite at 30.13+0.17 Ma, since the structure cross-cuts the contact
aureole of the intrusion (Schmid and Froitzheim, 1993).

3. Sampling Strategy and Previous Work
3.1 Sampling Strategy

To determine the low-temperature thermal history of the region, 66 samples from vertical
transects and individual sites were collected throughout the study area. Surface samples were
collected and analyzed from an assortment of variably deformed orthogneisses, paragneisses,
metamorphosed intrusives and metasediments of the Austroalpine and Penninic units exposed in

the region. Sample locations were selected for greatest possible vertical relief and tectonic
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position within the Alpine nappe stack. Single surface samples were collected away from main
vertical transects where it was necessary to increase the vertical spread in elevation of samples
within a tectonic unit. The sampling targets for this study include the Upper Austroalpine
(Silvretta), the Middle Austroalpine (Campo-Grosina), the Lower Austroalpine (Bernina-Julier,
Err-Corvatsch) and the Penninic units (Tasna, Ramosch zone, Biindnerschiefer).

3.2 Previous Low-Temperature Thermochronologic Studies

The majority of previous thermochronologic studies of the region have focused on the
high temperature evolution of the region due to metamorphism related to Paleozoic events (i.e.,
Variscan orogeny) and the lower temperature (greenschist facies) metamorphism during the
Cretaceous (Eoalpine) and Tertiary Alpine orogeny (e.g., Spillman and Biichi, 1993; Handy et
al., 1996; Bousquet et al., 2008; Wiederkehr et al., 2009). To our knowledge, lower temperature
(i.e., <300 °C) studies of the Alpine orogeny in this region have been restricted to zircon and
apatite fission track studies of the Silvretta nappe (Flisch, 1986; Hurford et al., 1989).

The low-temperature fission track study of the Silvretta nappe by Flisch (1986) and later
summarized and interpreted by Hurford et al. (1989) indicates a three stage exhumation history
of the nappe during the Alpine orogeny. Zircon fission track (ZFT) ages were interpreted to
reflect two populations, a set of mixed ages and a set of fully reset ages ranging from ~110-61
Ma (Hurford et al., 1989). Apatite fission track ages (AFT) from the nappe range from ~26 to 12
Ma (Flisch, 1986 in Hurford et al., 1989). Based on these analyses, the Silvretta nappe
underwent three phases of cooling following maximum Alpine metamorphic temperatures during
the Cretaceous: (1) a general updoming of the nappe between 110-35 Ma, resulting in cooling
below 225425 °C before 60 Ma, (2) homogeneous uplift of the nappe from 35 Ma to 2 Ma, with

a ~0.1 mm/year exhumation rate in the Oligocene and (3) an eastward tilting of the nappe
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sometime after 2 Ma (Hurford et al., 1989). Based on the ZFT and AFT data, as well as modern
day measurements, Hurford et al. (1989) postulate a 30 °C/km geothermal gradient for the
Silvretta nappe during the Alpine orogen. This low-temperature study provides a basis of
comparison for new zircon and apatite (U-Th)/He ages from this study for the Silvretta nappe.

4. (U-Th)/He Analyses

Zircon and, when possible, apatite (U-Th) /He analyses were completed for each sample
collected. The (U-Th)/He thermochronometric technique is based on the retention of alpha
particles (He nuclei), as a function of temperature, within a mineral grain during the radioactive
decay of 238U, 235U, 22Th and 'Sm (e.g., Zeitler et al., 1987; Wolf et al., 1996; Reiners, 2005).
Possible ejection of high energy alpha particles from the outer ~20 um of mineral grains occurs
and is corrected for through a statistical approach based on mineralogical characteristics (i.e., Fr
correction; Farley et al., 1996; Farley, 2002). For a more specific discussion of the zircon and
apatite (U-Th)/He techniques please see below (section 4.1 and 4.2).

All samples collected underwent standard mineral separation techniques and were
analyzed at the Isotope Geochronology Laboratory of the University of Kansas following
procedures for apatite described by Stockli et al. (2000) and House et al. (2000), and zircon
procedures described by Wolfe and Stockli (2010).

4.1 Zircon (U-Th)/He Methodology

The zircon (U-Th)/He low-temperature thermochronometer offers a robust and routinely
used technique for understanding the thermal history of a variety of rock types (e.g. Farley, 2002;
Reiners et al., 2002; Tagami et al., 2003; Reiners et al., 2004; Reiners, 2005; Stockli, 2005;
Blondes et al., 2007; Lee et al., 2011). Closure temperatures ranging from ~175-193 °C are

estimated for the zircon (U-Th)/He system, based on 10 °C/m.y. cooling rate and ~40-100 pm
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zircon half width (Reiners, 2005; Wolfe and Stockli, 2010). Although the closure temperature
represents the temperature below which the majority of helium is fully retained within the
crystal, helium is partially retained within the zircon between 140 and 200°C (zircon HePRZ)
based on empirical studies from exhumed fault blocks (Reiners et al., 2002; Tagami et al., 2003;
Stockli, 2005) and an in situ borehole study (Wolfe and Stockli, 2010). Assuming a geothermal
gradient of 30 °C/km, the zircon HePRZ corresponds to depths between 4.6 and 6.6 km in the
crust.

Helium retentivity within zircons has been recognized to decrease as a function of several
factors other than temperature and these include radiation damage and grain size (e.g. Reiners,
2005). To date, radiation damage has been shown to only affect helium diffusivity characteristics
within zircons with alpha dosages, a proxy for radiation damage, of >2-4 x 10'® o/g (Nasdala et
al., 2004; Reiners, 2005). This study will build on this established relationship between radiation
damage and a decrease in helium retentivity, but instead use effective uranium concentration
([U]e =[U]+[Th]0.235+[Sm]0.005) as a proxy for radiation damage (e.g., Shuster et al., 2006).
Zircon grain helium retention, and therefore closure temperature, has also been recognized as
grain size dependent. Grains with a smaller equivalent spherical radius (ESR), a proxy for grain
size, are less retentive and grains with larger ESR are more retentive (Reiners, 2005). The effect
of grain size on helium retention is readily observed in samples that have slowly cooled through
a zircon HePRZ. A positive correlation between ESR and zircon helium age, and a negative
correlation between [U]. and zircon helium age are useful for documenting slow cooling and
residence of zircon grains within the HePRZ (Stockli et al., 2010).

The standard alpha-ejection (Fr) correction assumes a homogenous parent isotope

distribution when accounting for the amount of *He daughter product lost due to alpha-ejection
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(e.g., Farley et al., 1996). The alpha stopping distance within zircon is ~20 um, and as a result
the alpha-ejection correction accounts for the daughter product lost in the outer 20 um of the
mineral grain (Farley et al., 1996; Hourigan et al., 2005). However, zonation of parent isotopes
within zircon crystals is a common feature, and in some cases the outer 20 um may have higher
or lower parent isotope concentrations in comparison to the rest of grain (Hourigan et al., 2005).
In the case of high parent isotope concentrations in the outer 20 um of the mineral grain, the
standard alpha-ejection correction will underestimate the amount of *He daughter product lost
due to alpha-ejection (Reiners et al., 2004; Hourigan et al., 2005). This under correction and the
relative contrast between rim and core concentrations, will cause He ages calculated using the
standard Fr correction to be too young (Reiners et al., 2004; Hourigan et al., 2005). Even rim
thicknesses of only one or two microns with high parent isotope concentrations may produce
inaccurate ages (Reiners et al., 2004; Hourigan et al., 2005). The opposite scenario is true for
mineral grains with low parent isotope concentrations within the outer 20 pm of the mineral
grains (Reiners et al., 2004; Hourigan et al., 2005). The standard Fr correction will overestimate
the amount of *He daughter product lost due to alpha-ejection, which will result in the
calculation of erroneously old ages (Reiners et al., 2004; Hourigan et al., 2005). The most
erroneous age calculations occur when the thickness of the low parent isotope rim is
approximately that of the alpha stopping distance (Reiners, 2005). Inaccurate ages due to
zonation may be detected through the over-dispersion of helium ages from multiple single grain
analyses for a single sample analyzed (Reiners, 2005). Although, this technique does not
preclude a single systematic zonation within a sample, if multiple single grain helium ages are in
good agreement zonation is probably not affecting the helium ages (Reiners, 2005). Hourigan et

al. (2005) has shown that the determination of U and Th concentrations within a grain prior to
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helium age analysis through laser ablation-inductively coupled mass spectrometry (LA-ICPMS)
depth-profiling allows the calculation of individualized Fr corrections to determine accurate
helium ages within zoned zircons. For zircon samples within this study that exhibit parent
isotope zonation, LA-ICP-MS depth-profiling was completed to determine populations of 1D
(one-dimensional) U and Th zonation patterns. The observed populations have been used to
semi-quantitatively determine accurate zircon helium ages and are discussed below (section 5).
All zircon (U-Th)/He analyses were performed on mineral separates hand-picked for their
euhedral morphology, size (>60 pm) and absence of numerous inclusions. Selected zircon single
grain aliquots were imaged and measured to complete the Fr correction (e.g., Farley et al., 1996;
Farley 2002). These imaged grains were then placed within Pt foil. The Pt wrapped grains were
analyzed for *He within a high-vacuum noble gas extraction line and heated using either a
Nd:YAG or diode laser, at temperatures of ~1290 °C for ten minutes. All aliquots were
subsequently reheated until 99% of He had been extracted. All released gas was spiked with *He
and analyzed using a quadropole mass spectrometer to determine *He concentrations. Following
gas extraction, aliquots were removed from Pt foil and spiked using an enriched *°U, ***Th,
#%Th and '*’Sm tracer calibrated against a gravimetric standard solution of 1 ppb U, Th and Sm.
Aliquots were then dissolved using standard zircon pressure vessel dissolution techniques first in
an HF-HNOs; solution and subsequently in HCI. Following final dissolution in HCI, aliquots
were dried, reconstituted in HNO3, and diluted to a 5% HNO; concentration for analysis of U,
Th, and Sm isotopes using either a VG PQII or Thermo Element2 inductively coupled mass
spectrometer (ICP-MS). All aliquots have been corrected for alpha-ejection using techniques
described by Farley (2002) and Farley et al. (1996). Analytical uncertainties quoted are 8% (20)

from the reproducibility of internal lab standards. Where the standard deviation of replicate
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analyses is greater than the standard error, the larger standard deviation (1o) is quoted as error
(see Appendix A, Table A for comparison of error). Mean ages of multiple samples are quoted
with the standard deviation of all replicate analyses of the averaged samples.

4.2 Apatite (U-Th)/He Methodology

Apatite (U-Th)/He thermochronometry is perhaps the most widely used of the multiple
(U-Th)/He thermochronometers and has been applied to a variety of geologic settings (e.g.
House et al., 1997; 2000; Stockli et al., 2000; Farley and Stockli, 2002; Ehlers and Farley, 2003;
Stockli, 2005; Biswas et al., 2007, etc.) The apatite (U-Th)/He thermochronometer has a nominal
closure temperature of ~70 °C (based on 10 °C/m.y. cooling rates) and a HePRZ between ~40-
80°C (Wolf et al., 1996; 1998; House et al., 1999; Stockli et al., 2000). As a result, the apatite
(U-Th)/He technique is an effective method for study of the upper crust, and the apatite HePRZ
corresponds to depths of 1.3 to 2.7 km, assuming a 30 °C/km geothermal gradient.

Work by Shuster et al. (2006), and later Flowers et al. (2009), illustrates the link between
increased helium retentivity within apatites with increased radiation damage accumulation.
Flowers et al. (2009) developed the Radiation Damage Accumulation and Annealing Model
(RDAAM), and used this to quantitatively assess the increase in helium retentivity within apatite.
The RDAAM is used in this study when modeling apatite helium ages for more accurate inverse
models. Grain size may also affect the retention of helium within apatite crystals, similar to
effects described above for zircons. However, no correlation between apatite age and grain size
is observed within our data set. Zonation of parent isotopes is possible within apatite crystals
(e.g., Boyce and Hodges, 2005), and therefore may also affect apatite helium ages. Apatite (U-
Th)/He ages of this study have relatively reproducible ages of replicate analyses, suggesting the

samples are not strongly enough zoned with respect to U, Th, or Sm to produce significant

28



effects.

The selection of apatite (U-Th)/He aliquots for analysis was based on the euhedral
morphology, size (>60 um), and total absence of inclusions or cracks. Apatite aliquots were
imaged, measured to calculate the Fr correction (Farley et al., 1996) and placed within Pt foil.
Helium was extracted using a similar process described for zircon, by a diode laser at a
temperature of ~990 °C for five minutes. Following analysis of *He, aliquots were dissolved in
an HNOjs-based enriched °U, ***Th, #°Th and '*’Sm tracer calibrated against a gravimetric
standard solution of 1 ppb U, Th and Sm. All aliquots were diluted to 5% HNO3 concentration
and parent isotopes were analyzed using a Thermo Element2 ICP-MS. Apatite ages were
corrected for alpha-ejection (Farley et al., 1996) and quote an uncertainty of 6% (2c) based on
reproducibility of internal lab standards. If the standard deviation of replicate analyses is greater
than the standard error, the larger standard deviation (1o) is quoted as error (for comparison of
error see Appendix A, Table B). In cases of mean ages of multiple samples, the error quoted is
the standard deviation of the aliquot ages used to calculate the mean age.

4.3 (U-Th)/He Results

Sixty-six samples from the study area were analyzed using the zircon (U-Th)/He
technique and 34 of these were analyzed using the apatite (U-Th)/He technique. All ages
reported are averages of replicate analyses unless otherwise noted (Table 1 and 2). The
discrepancy in the total number of zircon and apatite ages is due to the lack of suitable apatite
grains from samples based on selection criteria described above. The results are presented
roughly in order from highest to lowest tectonic units sampled within the region.

4.3.1 Silvretta (U-Th)/He Analyses

Samples collected within the basement rocks of the Silvretta nappe are from a nearly
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vertical transect with ~1200 m spread in elevation located near the Swiss-Austrian border, and a
single sample was collected from the Silvretta basement rocks exposed near the bottom of the
Engadine valley near Zernez, Switzerland (Figure 1; Table 1 and 2).

The vertical transect records some of the oldest zircon (U-Th)/He ages in the study area;
however, these ages are over dispersed, most likely due to inhomogeneous distribution of parent
isotopes. The over-dispersion was semi-quantitatively corrected for through zircon helium dating
of depth-profiled grains from three samples (10SL03, 05 and 09) spaced evenly throughout the
transect. Laser-ablation depth-profiling allowed for the 1D quantification of parent distribution
within the outer 18 pm of the zircon grains. The 1D zonation patterns were used to identify
problematic zircon helium age populations and to determine the “true” helium age of the
Silvretta vertical transect (see section 5). Within the vertical transect, zircon helium ages range
from 31-86 Ma, with individual samples exhibiting large standard deviations of replicate
analyses (Figure 4a; Table 1 and 4).

Apatite analyses of nine samples (10SL01-09) from the vertical transect yielded
reproducible apatite helium ages that range between 19.4+1.2 to 13.1+3.4 Ma (Figure 4a; Table
2). These ages are elevation invariant, with an arithmetic mean age for all replicate analyses of
15.842.9 Ma. Several samples are slightly unreproducible (larger standard deviations than
standard error) and this may be related to unrecognized inclusions, cracks or irregular
morphologies of the analyzed grains.

A single sample (09ENO1) within the Silvretta nappe collected near Zernez, Switzerland
yielded a reproducible zircon helium age of 31.8+1.9 Ma (Figure 4a; Table 1). Due to the lack
of suitable apatite grains, no apatite helium age analyses were conducted on this sample.

4.3.2 Campo-Grosina (U-Th)/He Analyses
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A seven sample transect with an elevation spread of ~1100 m was collected in the Eita
Valley, Italy across the Grosina and Campo tectonic contact (Figure 1). Samples were collected
in each unit from a variety of rock types (paragneisses, orthogneisses or pegamatites). Only
zircon (U-Th)/He analyses were completed for these samples due to lack of inclusion-free apatite
grains. Most of the zircon helium ages are elevation invariant, ranging from 30.4£1.8 to
37.8+£8.9 Ma with a mean of 35.6+5.9 Ma (Figure 4b; Table 1). There is poor zircon helium age
reproducibility in several samples, illustrated by large standard deviations of replicate analyses.
Possible causes of over-dispersion include inhomogeneous parent isotope distribution, cracks,
numerous inclusion and irregular grain morphologies. Reproducible older ages of 52.24+4.2 Ma
and 46.6+5.3 Ma are recorded by two samples taken from the Grosina nappe at the highest
elevations within the transect (Figure 4b; Table 1), and these ages were excluded from
calculation of the mean age. A possible explanation for these reproducibly older ages is
residence within a zircon HePRZ (see section 6.3).

4.3.3 Bernina (U-Th)/He Analyses

The Bernina nappe was sampled through a six sample vertical transect in Val da Fain
(08BP04, 05, 09, 10, 11, 12) and three individual samples (08BPO1, 03, 06) collected along the
road from Pontresina to Poschiavo, Switzerland (Figure 1). All nine samples yielded zircon
helium ages, and five of these also yielded apatite helium ages. Zircon helium ages are elevation
invariant with some minor scatter, with a mean age of all replicate analyses of 35.6+£3.8 Ma
(Table 1; Figure 4c). The apatite ages range from 26.8+4.1 to 16.9+1.9 Ma and generally young
with decrease in elevation (Table 2; Figure 4c). Due to over-dispersion of these apatite helium
ages and the resulting large standard deviations of sample ages, this observation must be treated

with caution. The most likely explanations for the non-reproducibility of apatite helium ages of
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several samples, especially 08BP01, 08BP03, and 08BP11, are unrecognized U- or Th-rich
inclusions, irregular grain morphologies, or fast He diffusion pathways (i.e., cracks).
4.3.4 Julier (U-Th)/He Analyses

A single sample of the Julier granite of the Julier nappe was collected at the summit of
Julier Pass, Switzerland (Figure 1). This Julier granite sample yielded a reproducible zircon
helium age of 37.843.0 Ma and is identical to the Bernina zircon helium ages within error
(Figure 4c; Table 1). It was not possible to date this sample using apatite given the absence of
inclusion-free grains.

4.3.5 Err (U-Th)/He Analyses

The Err nappe was sampled through two vertical transects (08ED, 10ED and 08PN
samples) and three individual samples (O8FA samples). One vertical transect is located within
the Albula granite and stretches from directly below the Jurassic-aged Err detachment to Val
Bever, a total elevation range of ~550 m. The other vertical transect was collected in both
Saluver metasediments and the Albula granite near Piz Nair and encompasses an elevation range
of ~500 m. The other three samples were collected from a preserved portion of the Err nappe
overlying the Platta nappe in Val d’Err (Figure 1).

The zircon helium ages are unreproducible within both vertical transects and a single
sample from Val d’Err (08FA05). The overall zircon helium ages range from ~119 to ~24 Ma
(Table 3; Figure 5a). Replicate analyses for each sample show a positive correlation between
zircon helium age and ESR (Figure 5b). The replicate analyses also show a negative correlation
between zircon helium age and effective uranium concentration (Figure 5c¢). Based on these
correlations, aliquot ages within single samples may be best explained by residence within a

paleo-zircon HePRZ (e.g., Farley et al., 1996; Shuster et al., 2006; Stockli et al., 2010).
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Seven apatite helium ages within the Err detachment vertical transect were completed and
these data are relatively elevation invariant, with a single highly reproducible younger sample
(10EDO1; Table 2; Figure 4d). This highly reproducible younger sample was excluded from the
calculation of the mean age of the transect. The mean age of the samples that agree within error
from the transect is 23.8+3.3 Ma. Only three samples from the vertical transect located near Piz
Nair (08PNO3, 04, 05) yielded apatite helium ages, and these ages are also elevation invariant
with a mean age of 24.8+4.7 Ma (Table 2; Figure 4d). The mean ages of both transects agree
within error.

The other two individual samples from Val d’Err have a small elevation spread of ~30 m.
Zircon helium ages of these samples are internally reproducible and yield ages of 37.9+6.5 and
44.9+8.0 Ma. Apatite helium analyses were not performed due to a lack of inclusion-free grains.
4.3.6 Corvatsch (U-Th)/He Analyses

A vertical transect of eight samples spanning ~600 m was collected from the
metamorphosed felsic instrusive body and slivers of metasediments exposed within the
Corvatsch nappe (Figure 1). All eight samples were analyzed for zircon helium ages and five for
apatite helium ages. The zircon helium ages of the Corvatsch nappe are elevation invariant with a
mean age of 31.1+4.1 Ma (Table 1; Figure 4e). The apatite helium ages range from 23.542.5 to
19.0+£2.3 Ma. All of the apatite helium ages agree within error and give a mean age of 23.0+6.6
Ma (Table 2; Figure 4e).

4.3.7 Engadine Window (U-Th)/He Analyses

Nine samples were collected from the Engadine Window from three units: (1) the Tasna

nappe, a unit of lightly metamorphosed continental basement and metasediments, (2) the

Ramosch zone, an ophiolite sequence composed of serpentinite, metabasalts, metagabbros,
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metasediments and slices of continental basement, and (3) the Biindnerschiefer, a unit of both
metasediments and metabasalts (Florineth and Froitzheim, 1994; Figure 1).

Nine of the samples yielded relatively elevation invariant zircon helium ages with a mean
of 29.6+5.6 Ma (Table 1; Figure 4f). Apatite ages from five samples (08TS04, 05, 08, 09, 11)
show a decrease in age with elevation and the ages range from 15.848.4 to 7.1+2.1 Ma (Table 2;
Figure 4f). However, it is important to note these apatite helium ages were slightly
unreproducible, so any observed age-elevation trends must be treated with caution. The over-
dispersion of the apatite helium ages is likely due to unrecognized radioactive inclusions, cracks
or irregular grain morphologies.
5. Parent Isotope Zonation in Zircon Grains from the Silvretta Nappe

Laser ablation depth-profiling in conjunction with CL imaging was completed to
determine the degree and nature of zoning of parent isotopes (U and Th) in zircon grains of the
Silvretta vertical transect. Approximately 25 grains, from three samples (10SL03, 05, 09) spaced
evenly through the vertical transect, were selected based on the criteria described above for
helium dating for analysis using laser ablation depth-profiling. Unknown zircon grains and an
unzoned internal standard (GJ1; Jackson et al., 2004) were ablated using a 193 nm Photon
Machines Excimer Laser. Intensity (counts per second; CPS) of U and Th of the ablated material
was measured with a Thermo Element2 ICP-MS. Nine to ten grains per sample were
subsequently dated using the (U-Th)/He technique to semi-quantitatively determine the effect of
parent isotope zonation on helium age. All analyses were conducted at the Isotope Geochemistry
Laboratory of the University of Kansas. Cathodoluminescence (CL) imaging was completed on

the remaining laser-ablated grains at the Microscopy Analytical Imaging Laboratory at the

34



University of Kansas on a LEO 1550 Field Emission Scanning Electron Microscope, to
qualitatively determine the 2D parent isotope zoning patterns.
5.1 Depth-profiling Methodology

Unknown Silvretta zircon grains were placed onto double-sided tape on a 2.54 cm
diameter epoxy plug and loaded into the sample cell of the Photon Machines Excimer laser for
depth-profiling. Each unknown was ablated for 30 seconds, at an ablation rate of ~0.6 pm/sec, a
fluency of 3.02 J/em?®, and a laser repetition rate of 10 Hz. The depth of each laser ablation
profile was ~18 pm, and was previously determined from calibration on GJ1 zircon standards at
3.02 J/em® fluency. Concentrations of U and Th were determined from the measured CPS for
281 and *Th. The calculation of concentrations from the raw intensity data (CPS) was based on
three assumptions: (1) the down-hole intensity decrease from the increasing matrix-effects
during ablation is linear, (2) the average down-hole intensity loss correction factor calculated for
the standard GJ1 analyses is applicable to unknowns, and (3) the average concentration of U and
Th in GJ1 is 230 and 15 ppm, respectively (Jackson et al., 2004). Based on these assumptions,
the average concentration of the standard was used to determine the intensity of raw signal for
one ppm of U and Th. This calculated value was then used to determine the concentrations of U
and Th in the unknowns using their down-hole fractionation corrected intensities. The
concentration profiles were plotted against depth, calculated using the known ablation rate, to
determine the 1D pattern of U and Th zonation within each grain.
5.2 Comparison of Depth-profiling and Zircon (U-Th)/He Age Results

The 1D parent isotope zonation patterns determined from LA-ICP-MS depth-profiling
were separated into five categories (Figure 6) and these categories are used to semi-

quantitatively assess the effects of zonation on the accuracy of the zircon helium ages. For
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simplification the pattern of U concentrations in the laser ablation depth-profiles were used to
define each category. Since U and Th often behave similarly within the grains, this simplification
is justifiable although there are some exceptions (i.e., Figure 6a and 6¢). Despite the uncoupled
behavior of U and Th, the categories are still reasonable as U contributes the majority of the
daughter product to the system (e.g., Shuster et al., 2006). Therefore, zonation of this radioactive
parent has the greatest effect on the zircon helium ages.

The five categories of parent zonation patterns and representative depth-profiles are
presented in Figure 6. The five categories are defined as: (1) nearly homogeneous uranium
distribution (Figure 6a), (2) relatively high U concentration within a rim and core zone (Figure
6b), (3) a U rim concentration at least five times greater than the U concentration of the rest of
the depth profile (Figure 6¢), (4) a U rim concentration less than five times greater than the rest
of the depth profile (Figure 6d), and (5) a single relatively high U concentration zone within the
interior of the grain (Figure 6e). The defined zonation categories were then used to filter the
measured zircon helium ages from nine to ten depth-profiled grains from each sample (Figure 7).
It is important to note that there appears to be no correlation between a particular sample and its
recorded zircon helium ages, even when filtered by zonation characteristics (Figure 7). The lack
of correlation suggests elevation within the transect has no control on helium age (i.e., elevation
invariant ages), and the over-dispersion of ages is completely controlled by the degree and nature
of parent isotope zonation within individual zircon grains.

The first category of nearly homogenous parent isotope distribution likely records the
true zircon helium age for the transect, as the standard alpha-ejection correction applied to this
category does not erroneously estimate the bulk retentivity of the zircon grains (Hourigan et al.,

2005). The two zircon helium ages defined as type 1 are in excellent agreement, supporting the
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claim that this is the “correct” zircon helium age of the transect. The second category of
relatively high rim and core parent isotope concentrations shows a scatter of zircon helium ages
that range from ~58 to 32 Ma. Three out of six grains within this category fall within the semi-
quantitatively defined zircon helium age based on category 1. This agreement may be a result of
some counterbalance between the influence of the rim and core concentrations on the calculated
Fr correction. The third category consists of five zircon helium ages that range from ~44 to 33
Ma and four out of five grains in the category record systematically too young ages. These
erroneously young helium ages are expected for zircon grains with rims of U concentrations that
are a factor of five or greater than the rest of the depth profile (Hourigan et al., 2005). The fourth
category is also defined by relatively high U concentration rims, however these depth-profiles
show less than a factor of five concentration increase compared to the rest of the profile. Nine
zircon helium ages fall into this category and range from ~48-32 Ma. As expected for a high
parent concentration overgrowth most of the helium ages within this category are too young
when compared to category 1 (e.g., Hourigan et al., 2005), although three ages have similar ages
to category 1. The depth-profiles of the grains that are in agreement with category 1 show no
discernable difference when compared to the others of category 4. It is possible these “correct”
helium ages result from a low parent isotope concentration core not captured by the shallow
depth-profiles that counterbalances the high concentration of the rims. The fifth category
consists of six zircon helium ages that range from ~53-36 Ma. Several of the grains within this
category are in agreement with the zircon helium age of category 1 despite relatively high U
concentration zones within the outer 20 um of the grain. The agreement of many of the zircon

helium ages in this category with the defined zircon helium age is likely due to the diminishing
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influence of high concentration zones on the overall bulk retentivity when located further within
the zircon grains (Hourigan et al., 2005).

The semi-quantitatively defined zircon helium age determined from the depth-profiled
grains is now used as the zircon (U-Th)/He age of the Silvretta vertical transect, since age
dispersion within the transect can be solely attributed to parent isotope zonation (Figure 8). This
corrected zircon helium age of ~47 Ma for the Silvretta transect agrees with the known cooling
history of the Silvretta nappe interpreted from fission track data (Figure 8; Hurford et al., 1989).
5.3 CL Imaging and Parent Isotope Zonation Patterns

To better understand the qualitative 2D parent isotope zonation patterns within the depth-
profiled grains and to confirm the relevance of the defined zonation categories, grey-scale CL
imaging was completed on 15 to 16 grains from each sample. The CL images qualitatively
display the U and Th concentrations through the intensity of brightness of the grey-scale image.
Within the CL images there is an inverse relationship between brightness intensity and U and Th
concentration (i.e., dark regions represent higher U and Th concentrations). Nasdala et al. (2003)
attributes this correlation to increased radiation damage resulting in decreased crystallinity and
hence decreased luminescence in zones with high U and Th concentrations.

Representative CL images for the grains imaged are compiled in Figure 9. These images
illustrate the lack of a single systematic zonation pattern within the zircon grains. However, the
imagery does show several recurring characteristics of the zonation patterns. Many zircon grains
appear to have inherited cores, which vary from irregular to subhedral morphologies and have
either high or low U and Th concentrations (i.e., Figure 9a, 9f, 9j). Some zircon grains display
relatively concentric zoning (i.e., Figure 9b, 9d, 91), whereas others have no concentric zoning

(i.e., Figure 9g, 91, 9k). Several grains also exhibit high U and Th overgrowths within 20 um of
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the grain boundary and relatively high U and Th zones within the tips of the grains (i.e., 9g, 9h).
The majority of the grains have a thin low U and Th overgrowth zone (i.e., 9¢c, 9¢, Sh).
Nonconcentric zoning and relatively high U and Th tips typically produce the most erroneous
and systematically young (U-Th)/He ages (Hourigan et al., 2005). The zonation characteristics
of the zircon grains based on the CL imagery are well represented in the categories used to
qualitatively assess the Silvretta zircon (U-Th)/He ages. Notably, the low U and Th cores of the
CL imagery are not seen in the defined categories, and this is the result of the relatively shallow
(~18 pm) laser-ablation pit depths used in this study. The low U and Th cores of grains may also
explain the too old zircon helium ages from Silvretta not accounted for in the depth-profiled
grains (e.g., Hourigan et al., 2005; Figure 8).
6. (U-Th)/He Inverse Thermal Modeling
6.1 Modeling Methodology

Inverse modeling of the presented zircon and apatite (U-Th)/He analyses was completed
using the numerical modeling software, Helium Modeling Package (HeMP; Hager and Stockli,
2009), to quantify the cooling history of the study region during the Alpine orogeny. The HeMP
software package allows for the modeling of 1D vertical transects of multiple (U-Th)/He
thermochronometers through the generation of random thermal histories within pre-defined time-
temperature constraints and a selected range of geothermal gradients (Hager and Stockli, 2009;
Lee et al., 2011). These generated thermal histories are simulated for each sample in a vertical
transect based on input sample spacing and user-defined range of geothermal gradients. These
simulated ages are then compared with measured helium ages using the goodness of fit algorithm
described by Ketcham et al. (2000) and Ketcham (2005) to determine “acceptable” and “good”

fits. Helium diffusion parameters used to calculate ages are described by Reiners (2005) for
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zircon, and the RDAAM model and diffusion kinetics described by Flowers et al. (2009) for
apatite (Lee et al., 2011). Standard alpha-ejection corrections were applied to all (U-Th)/He ages
used for the modeling. All randomly generated thermal paths were allowed five nodes between
defined time-temperature constraints to allow for sufficient complexity in the thermal histories
generated.

Vertical transects from Campo-Grosina, Bernina, Corvatsch and the Engadine Window
were modeled using apatite and zircon (U-Th)/He ages and errors presented in Figure 4. Zircon
(U-Th)/He ages of the Err detachment vertical transect are over-dispersed due to residence in a
zircon HePRZ. In order to model this transect, the average zircon helium age of replicate
analyses with standard error (8%) were used in conjunction with the apatite helium ages. The
Silvretta and Piz Nair vertical transects were excluded from modeling based on very uncertain
zircon helium average ages that would produce unreliable modeling results. Fortunately, the
time-temperature history for the Piz Nair vertical transect is likely similar to the Err detachment
transect because of their proximity within the same nappe. The time-temperature history of the
Silvretta vertical transect may be estimated based on several thermochronometers (see section
6.2).

In some cases, apatite data was absent for a given sample. In order to utilize the zircon
data of the sample in the modeling software, a placeholder apatite age was created. These place
holder samples were created by averaging the replicate apatite ages of the next higher and next
lower elevation. The standard deviation of these averaged ages was used as the error for the
created apatite age. If the placeholder sample was the highest or lowest sample within a vertical
transect, the closest apatite data was used to create the placeholder, and the age error used was

the standard deviation of the original apatite age. Where the standard deviations of placeholders
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were less than 2.5, two standard deviations were employed for modeling the vertical transects.
This error increase was implemented to prevent results of the models from being controlled by
the created placeholder ages. These placeholder ages did not affect the modeled results and
instead simply allowed for modeling of the vertical transects.

6.2 Modeling Constraints

The inverse models of time-temperature histories for the zircon and apatite (U-Th)/He
vertical transects were completed using independently known time-temperature constraints and a
reasonable geothermal gradient range. Two time-temperature constraints were imposed on all of
the inverse modeling of the vertical transects.

Austroalpine units exposed in the study region are known to have reached peak Alpine
metamorphic conditions of anchizonal to greenschist facies during the Cretaceous (e.g.,
Froitzheim et al., 1994 and references therein; Handy et al., 1996; Handy and Oberhinsli, 2004).
As a result, the temperature constraints used for the Austroalpine units is a maximum of 350 °C
and minimum of 250 °C. The initial time constraints used for the Austroalpine units is based on
the end of Eoalpine deformation in the Cretaceous in the region around 65 Ma (e.g., Froitzheim
et al., 1994; Handy et al., 1996). The boundaries of this initial time-temperature constraint agree
with the known thermal history of the Silvretta nappe based on zircon fission track data (i.e.,
cooling below 225425 °C; Hurford et al., 1989). The final time-constraint used is the mean
annual surface temperature at the time of collection (~10 °C).

Penninic units of the study region underwent well documented high-pressure/low-
temperature metamorphism in the Eocene (e.g., Bousquet et al., 2008; Wiederkehr et al., 2009).
As a result, the initial time-temperature constraint for the samples modeled in the Engadine

Window is 40 Ma, based on the youngest ages of high-pressure metamorphism in the
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Biindnerschiefer (Wiederkehr et al., 2009). The initial temperature constraints used were based
on the Bousquet et al. (2008) estimations of peak metamorphic conditions at ~350°C for the
Engadine Window, and for the program inputs this is a range from 400-300°C. This broad time-
temperature constraint allows for all geologically plausible initial conditions for the Penninic
units modeled. The mean annual surface temperature (~10 °C) at time of collection was used for
the final time-temperature constraint.

The selected geothermal gradients range from 15 °C/km to 50 °C/km and encompass
reasonable geothermal gradients for an active orogen. The geothermal gradient estimated from
previous ZFT and AFT work in the Silvretta nappe is 30 °C/km (Hurford et al., 1989).

6.3 (U-Th)/He Inverse Modeling Results

Numerical modeling using the HeMP software was completed to quantify cooling
histories, cooling rates, and apparent exhumation rates during the Tertiary Alpine orogeny. The
modeled vertical transect results and interpretations are presented in descending order through
the Tertiary Alpine nappe stack. Modeling results are presented assuming a geothermal gradient
of 30 °C/km based on the conclusions from previous ZFT and AFT interpretations, and the
modern day geothermal gradient of the area (Hurford et al., 1989). The inverse modeling results
for acceptable and when possible good fit time-temperature histories for each transect are
presented in figures 10 through 14. For each model a preferred time-temperature history was
chosen based on a visual inspection of the distribution of either good or acceptable fits. All
models yielded either good or acceptable fits. The Campo-Grosina, Bernina, and Corvatsch
models all required a single outlier data pair to obtain model fits. The Engadine Window

required no outlier data pairs and the Err transect required two outlier data pairs.
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The Campo-Grosina time-temperature model is only based on zircon (U-Th)/He ages and
as a result the modeled time-temperature histories are relatively unconstrained above 200 °C and
below 140 °C (Figure 10). Based on the zircon (U-Th)/He ages, the modeled time-temperature
histories exhibit a protracted cooling history through the zircon PRZ from about 51 Ma to 40 Ma.
The cooling rate at this time is between 5 to 10 °C/m.y., and assuming a 30 °C/km geothermal
gradient the cooling rate translates to an apparent exhumation rate of 0.2-0.3 mm/yr. The good
fit time-temperature histories of this model support the interpretation previously proposed that
the upper portion of the transect records slow cooling through the zircon HePRZ (see section
4.3.2).

Modeled time-temperature histories for samples from the Bernina nappe are based on
zircon and apatite (U-Th)/He data (Figure 11). The initial portion of the modeled time-
temperature histories are relatively unconstrained, as the oldest zircon (U-Th)/He data point used
for modeling is ~39 Ma. The model is well constrained based on the zircon and apatite age data
from ~39 until ~17 Ma, the age of the youngest apatite data. During this time period the
preferred time-temperature history has a cooling rate of >10 and <20 °C/m.y. This range of
cooling rates translates to an apparent exhumation of rate range of 0.3 to 0.7 mm/yr between ~39
to 17 Ma. After ~17 Ma the model is no longer constrained by input data.

The Err detachment vertical transect was modeled based on zircon and apatite (U-Th)/He
data (Figure 12). The modeled time-temperature histories are relatively well constrained from
~49-38 Ma (zircon (U-Th)/He data) and from ~26-16 Ma (apatite (U-Th)/He data). Based on the
preferred time-temperature history of the modeling results, this vertical transect cooled slowly
through the zircon HePRZ ~49 to ~37 Ma at a rate of 1 to 5 °C/m.y. The range of cooling rates

converts to apparent exhumation rates of 0.03 to 0.2 mm/yr. Following this period of protracted
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cooling through the zircon HePRZ, the cooling rate of the Err vertical transect is relatively
unconstrained until ~26-21 Ma. From ~26-21 Ma the cooling rate increases to ~10-20 °C/m.y.
This range of cooling rates translates to apparent exhumation rates of ~0.3-0.7 mm/yr. The onset
of this increase in cooling rate may be somewhat obscured by the lack of data between earlier
zircon (U-Th)/He data and the younger apatite (U-Th)/He ages. The preferred modeled time-
temperature history substantiates the earlier interpretation of residence within the zircon HePRZ
based on zircon (U-Th)/He age-ESR and [U]. plots (Figure 5b, and c) of samples from the Err
nappe (see section 4.3.5).

Time-temperature histories modeled for the Corvatsch vertical transect were based on
both zircon and apatite (U-Th)/He age data and this model is well constrained from ~36 to 19 Ma
(Figure 13). Prior to the oldest and after the youngest (U-Th)/He input ages the modeled time-
temperature history is relatively unconstrained. The preferred modeled time-temperature history
shows a cooling rate of ~20 °C/m.y. from ~31 to 24 Ma. The apparent exhumation rate based on
the cooling rate is ~0.7 mm/yr. This modeled time-temperature history is similar to the Bernina
vertical transect, however the rates of cooling and apparent exhumation of the Corvatsch vertical
transect are higher.

The Penninic nappes of the Engadine Window are modeled based on zircon and apatite
(U-Th)/He age data. The modeled time-temperature histories are well constrained from ~35 to 7
Ma based on input (U-Th)/He age data. The preferred modeled time-temperature history shows
an increased period of cooling from ~29 to 21 Ma, with a cooling rate of ~50 °C/m.y. This
cooling rate translates to an apparent exhumation rate of ~1.7 mm/yr for the 8 Ma timespan.

Following this period of rapid cooling, the time-temperature history indicates a decrease in
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cooling rate to between 1 and 5 °C/m.y. beginning at 21 Ma until present. This cooling rate is
equivalent to an apparent exhumation rate of 0.03-0.2 mm/yr.

7. Interpretation of (U-Th)/He Analyses and Thermal Modeling

7.1 Timing of Cooling and Exhumation of the Austroalpine nappes

The timing of cooling and exhumation of the Austroalpine nappes during the Alpine
orogeny is recorded by the zircon and apatite (U-Th)/He thermochronometers. The oldest
cooling ages recorded are zircon (U-Th)/He ages of the Silvretta, Campo-Grosina and Err
nappes. Based on zircon (U-Th)/He age-elevation plot of the Campo-Grosina (Figure 4b), and
zircon (U-Th)/He age-ESR and zircon (U-Th)/He age-[U]. plots of the Err nappe (Figure 5b and
c), these vertical transects slowly cooled through the zircon HePRZ. This interpretation is
supported by the inverse time-temperature modeling of these data sets (section 6.3). Based on
modeled time-temperature histories the Campo-Grosina and Err nappes, protracted cooling
through the zircon HePRZ ocurred from ~51 to 37 Ma (Figure 15). The oldest fully reset zircon
(U-Th)/He ages of the Err nappe are located in Val d’Err, at ~45 and ~37 Ma (Table 1). These
fully reset ages are slightly over-dispersed but agree within uncertainty with the modeled end of
slow cooling of the Err nappe.

The Silvretta vertical transect, located within the northern portion of the study area,
records a depth-profiled corrected zircon (U-Th)/He age of ~47 Ma. Based on the current data it
is impossible to determine if this age is fully or partially reset. The semi-quantitatively corrected
zircon helium age combined with ZFT and AFT data of Hurford et al. (1989) and the apatite (U-
Th)/He data from this study allows for the development of a tentative cooling history of the
Silvretta vertical transect (Figure 15). Based on this time-temperature history, the vertical

transect has undergone slow cooling through the zircon HePRZ from ~52 to 36 Ma, similar to
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the time-temperature histories of the Campo-Grosina and Err transects. Although this time-
temperature history may not be valid for the entire nappe since a sample from the Silvretta nappe
within the Engadine valley records a fully reset zircon (U-Th)/He age of ~32 Ma. However, this
tentative cooling history does agree with the previously published cooling history of the nappe
by Hurford et al. (1989).

Cooling below the 140 °C isotherm recorded in the Bernina-Julier and Corvatsch nappes
postdates the protracted cooling through the zircon HePRZ by the Campo-Grosina, Err, and
possibly Silvretta nappes. The Bernina-Julier and Corvatsch transects all cooled relatively
quickly through the zircon HePRZ as shown by their elevation invariant zircon (U-Th)/He age-
elevation plots. The Bernina samples and the sample from the Julier slice, record slightly older
ages of cooling than the Corvatsch vertical transect. The Bernina vertical transect and associated
samples record cooling through the zircon thermal sensitivity window at ~36 Ma, and the Julier
sample at approximately the same time, ~38 Ma. The Corvatsch vertical transect records cooling
of zircon at ~31 Ma. This distribution of ages suggests either differential cooling of the nappe
stack, or a deeper paleo-depth of the Corvatsch vertical transect.

The apatite (U-Th)/He system records similar timing of cooling through the apatite
thermal sensitivity window (~80-40 °C) in all the sampled Austroalpine nappes of the southern
portion of the study area. The mean apatite (U-Th)/He ages from the Bernina, Err/Piz Nair and
Corvatsch sample sites all agree within uncertainty at ~23 Ma. The Silvretta nappe of the
northern portion of the study area records a younger apatite (U-Th)/He mean age at ~16 Ma
(Figure 15). The older ages in the south and younger age in the north suggest a different
mechanism for cooling through the apatite (U-Th)/He thermal sensitivity window at each of the

localities.
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The constraints on the temporal and spatial distribution of cooling histories allow the
thermal structure of the Austroalpine nappe stack of the study area to be determined for the
Eocene through the early Miocene. The location and timing of cooling through the zircon
HePRZ for Err and Campo-Grosina allow for a 1D determination of the paleo 140 °C and 200 °C
isotherms during the Eocene (Figure 16). The timing of cooling through the zircon HePRZ
recorded by the Bernina, Julier, Val d’Err and Corvatsch samples all substantiate the location of
these paleo-isotherms and attest to the longevity of this thermal regime, at least 20 m.y. These
paleo-isotherms cross-cut the older D1 and D2 structures of the cross section, indicating thermal
equilibration of the nappe stack following Eoalpine deformation. The cooling history of the
Silvretta nappe suggests a similar thermal regime was present in the northern portion of the study
area for at least the Eocene and possibly into the Oligocene.

The apatite (U-Th)/He data show the Austroalpine nappes of the southern and northern
portions of the study area experienced different onests of cooling through the apatite thermal
sensitivity window. The diachronous nature of cooling suggests either different thermal regimes
or different mechanisms were driving cooling in the north and south during the late Oligocene
and early Miocene.

7.2 Timing of Cooling and Exhumation of the Penninic nappes

The timing of cooling and exhumation of the Penninic nappes exposed in the Engadine
Window is recorded by the zircon and apatite (U-Th)/He thermochronometers. The three
Penninic units sampled in the Engadine Window record similar zircon (U-Th)/He cooling ages at
~30 Ma. This age is similar to the timing of cooling of the Corvatsch vertical transect of the
southern portion of the study area. The apatite (U-Th)/He cooling ages show a trend of younger

ages with lower elevations and these range from ~16 to 7 Ma. The oldest apatite (U-Th)/He age
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of the transect is similar to the age recorded in the Silvretta, suggesting a similar thermal regime
between the Austroalpine nappe and the Penninic units exposed within the window.
7.3 Cooling and Apparent Exhumation Rates of the Austroalpine nappes

The preferred time-temperature histories based on inverse modeling of zircon and apatite
(U-Th)/He ages for the Austroalpine nappes show a three stage cooling history (Figure 15). The
rate of cooling and apparent exhumation for these stages can be determined from the preferred
model time-temperature histories. The first stage from ~51 to 36 Ma, recorded by zircon (U-
Th)/He data of the Silvretta, Campo-Grosina and Err nappes, is characterized by slow cooling.
The cooling rates of this phase are greater than 1 but less than 10 °C/m.y. and have
corresponding apparent exhumation rates of greater than 0.03 and less than 0.3 mm/yr. The
second stage begins at ~36 Ma and extends at the latest to ~21 Ma. This phase is recorded by the
zircon and apatite (U-Th)/He age data of Bernina and Corvatsch, and the apatite (U-Th)/He age
data of Err/Piz Nair. Cooling rates between 10-20 °C/m.y. and apparent exhumation rates of 0.3-
0.7 mm/yr are recorded in this second phase of cooling. The range of cooling rates from the
time-temperature histories may indicate a general increase in cooling rates from the late Eocene
through the early Oligocene. Following this period of increased cooling and exhumation rates,
the Bernina, Err and Corvatsch time-temperature histories indicate a decrease in cooling rate to
greater than 1 but less than 10 °C/m.y. These cooling rates correspond to apparent exhumation
rates of greater than 0.03 and less than 0.3 mm/yr, and these rates extend until present. It should
be noted the data do not constrain the cooling and apparent exhumation rates well during the
third stage. However, the modeled apparent exhumation rate agrees with present-day erosion

estimates (Hergarten et al., 2010).
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The Silvretta nappe only shows a similar cooling history to the Austroalpine nappes of
the southern portion of the field area from ~52 to ~36 Ma. Following this time period the cooling
rate determined through the tentative time-temperature reconstruction is steady at ~1-5°C/m.y.,
with a corresponding apparent exhumation rate of ~0.2-0.03 mm/yr. Based on the tentative
cooling history, the cooling rate determined for the Silvretta nappe at ~16 Ma is ~10°C/m.y.,
with an apparent exhumation rate of ~0.3 mm/yr. This period of rapid cooling is reflected in the
elevation invariant apatite (U-Th)/He ages of the ~1200 m vertical transect. After ~16 Ma, the
cooling rate of the Silvretta nappe is slower, at ~1-5°C/m.y., with a corresponding apparent
exhumation rate of ~0.2-0.03 mm/yr. This rate of apparent exhumation is in good agreement
with the Oligocene to Quaternary uplift rates determined from the AFT study (Hurford et al.,
1989).

7.4 Cooling and Apparent Exhumation Rates of the Penninic nappes

The preferred time-temperature history based on inverse modeling of the Penninic nappes
exposed in the Engadine Window shows a relatively well constrained two-stage cooling history
beginning at ~29 Ma (Figure 15). The first stage of cooling from ~29 to 26 Ma is rapid, with a
cooling rate of ~50 °C/m.y. and apparent exhumation rate of ~1.7 mm/yr. This cooling rate and
apparent exhumation rate is the highest for any samples recorded in this study. This increased
cooling rate may indicate a continued increase in cooling rates from the late Eocene into the
Oligocene for the study area (section 7.3). Following the period of rapid cooling, cooling rates
decrease to ~1-5 °C/m.y., translating to apparent exhumation rates of ~0.03-0.2 mm/yr. This
second period has comparable rates of cooling to the overlying Silvretta nappe, suggesting a

single mechanism for the cooling of both units. The apparent rate of exhumation is in agreement
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with present-day erosion rate estimates (Hergarten et al., 2010), as well as uplift rates determined
from AFT in the Silvretta nappe (Hurford et al., 1989).
7.5 Estimation of Magnitude of Exhumation

Based on the location of the paleo 200 °C isotherm (section 7.1; Figure 16), and its
current exposure at the surface, it is possible to place a minimum estimate on the total magnitude
of exhumation of the Austroalpine nappes since the Eocene. Assuming a geothermal gradient of
30 °C/km, the paleo 200 °C isotherm corresponds to a paleodepth, and minimum amount of
exhumation, of 6.6 km since the Eocene. It is also clear that the some samples of Silvretta
(Engadine valley sample), Bernina-Julier, Val d’Err and Corvatsch resided at some depth below
the 200 °C isotherm. As a result, 6.6 km likely underestimates the total magnitude of exhumation
of the Austroalpine nappes for the Eocene to present. A minimum estimate of 6.6 km for total
exhumation also applies to the Penninic nappes exposed in the Engadine Window. However, this
estimate is only valid for exhumation since the late Eocene to early Oligocene based on the
timing of cooling through the paleo 200 °C isotherm recorded by the zircon (U-Th)/He ages.
8. Discussion
8.1 Mechanisms for Cooling and Exhumation

The zircon and apatite (U-Th)/He thermochronometers record cooling of the study area
from the Eocene to late Miocene. The cooling history of the Austroalpine nappes is better
constrained in the southern portion of the study area, whereas the cooling of the Silvretta nappe
in the northern portion of the study area is more tentative. The Penninic nappes of the southern
portion of the Engadine Window have a well constrained cooling history based on the zircon and

apatite thermochronometers, and inverse time-temperature modeling.
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The (U-Th)/He data of the Austroalpine nappes in the southern part of the study area
record slow cooling through the zircon HePRZ during the Eocene, more rapid cooling in the late
Eocene to the Miocene, and a final period of slow cooling until the present. The cooling history
recorded in the northern portion of the study area (Silvretta nappe and Engadine Window) is
somewhat similar, with slow cooling in the Eocene, rapid cooling in the early Oligocene, and is
dissimilar based on later cooling through the apatite thermal sensitivity window in the Miocene.
The timing of cooling recorded by these thermochronometers can be related to the general
deformation periods defined for the study region, and possible kinematic mechanisms may be
inferred for the minimum 6.6 km of exhumation of the crust (see section 7.5).

8.1.1 North Directed Thrusting

The slow cooling of Campo-Grosina, Silvretta and Err nappes in the Eocene occurs
during the D3 period of deformation (Figure 15; Figure 17). This period of deformation is
associated with continental collision between Europe and Adria, and is defined by north directed
thrusting of the orogenic lid as a coherent block approximately 75 km to the north (Figure 18;
Laubscher, 1983; Froitzheim et al., 1994; Schmid et al., 1996). The protracted cooling through
the zircon HePRZ may result from slow, but progressive exhumation of the orogenic lid as it is
thrust to the north. However, it is not possible to rule out that the slow cooling through the zircon
HePRZ is a result of relaxation of isotherms following continental collision during the Eocene.
8.1.2 Slab break-off, Backthrusting and Crustal Duplexing

Following the first phase of slow cooling, a period of increased cooling rates occurs from
~36 Ma until ~21 Ma. This period of increased cooling rates occurs during the end of D3
deformation, through D4 and into the D6 deformational phase of the study area (Froitzheim et

al., 1994). The period from ~36-21 Ma is recorded in the zircon and apatite helium ages of the
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Bernina and Corvatsch transects, the apatite helium ages of the Err nappe, and the zircon helium
ages of the Penninic nappes exposed in the Engadine Window (Figure 15; Figure 17).
Interestingly, with the exception of the Turba mylonite, located further to the west, there are no
large structures that cross-cut the nappe stack during this period of rapid cooling (Froitzheim et
al., 1994). Further, the only penetrative deformation seen in the nappe stack during this period is
meter to kilometer scale upright folding and minor thrust faults (Froitzheim et al., 1994; Handy
et al., 1996). Therefore, the increased cooling and apparent exhumation rates recorded in the
Bernina-Julier, Err-Corvatsch, and Penninic nappes must result from exhumation due to either
deeper or more regional scale structures. Throughout this period several possible indirect
mechanisms for cooling and exhumation of the sampled areas occurred including: (1) break-off
of the subducting slab below Adria, resulting in uplift of the overlying crust due to mantle
upwelling (von Blanckenburg and Davies, 1995; Sinclair, 1997), (2) backthrusting of the
orogenic lid along the Insubric Line (e.g., Schmid et al., 1996), and (3) crustal duplexing of
Penninic nappes, European upper crust, and Helvetic nappes beneath the Austroalpine and
Penninic units of the study area (e.g., Schmid et al., 1996; Hitz, 1996; Berger et al. 2011). The
timing of these three mechanisms compared to the cooling history of the study area is
summarized in Figure 17. Based on the correlation of timing between increased cooling rates
(~36-21 Ma) and each tectonic mechanism, it is somewhat difficult to determine the cause of
crustal exhumation in the study area. However, the proposed timings of slab break-off at either
45-40 Ma (von Blanckenburg and Davies, 1995), or 32-30 Ma (Sinclair, 1997), appears to be
either too early (45-40 Ma) or too late (32-30 Ma) to cause the observed increase in cooling rates
due to asthenospheric upwelling (Figure 17). The other two tectonic mechanisms, subjacent

crustal duplexing and backthrusting along the Insubric Line, are in better agreement with the
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time span of increased cooling and apparent exhumation rates. Although, the timing of crustal
duplexing of the underlying Penninic units and European margin from ~45-31 Ma (Zapport and
Ferrara phase reviewed in Berger et al., 2011) may not be of sufficient duration (Figure 17).
However, crustal duplexing of the more inboard Helvetic nappes underlying the study area (e.g.,
Hitz, 1996) may continue later into the Oligocene (e.g., Berger et al., 2011) and could explain the
sustained cooling rates until ~21 Ma. The timing of backthrusting along the Insubric Line has no
well-defined upper age constraint (see section 2.2.3). Backthrusting of the orogenic lid may
begin as early as 34 Ma, and displacement along the structure may continue as late as 20 Ma (see
Figure 2 of Berger et al., 2011). This time span for movement along the Insubric Line is in
agreement with the period of increased cooling rates (Figure 17). Based solely on the duration of
each tectonic mechanism, the most likely cause of exhumation of the study area from ~36-21 Ma
is backthrusting along the Insubric Line.

The spatial distribution and the onset of higher cooling rates of the individual vertical
transects may provide further evidence for a specific tectonic mechanism. The period of
increased cooling rates is first recorded in the Austroalpine Bernina and Corvatsch vertical
transects located in the southern part of the study area. The highest rates of cooling and apparent
exhumation are recorded in the structurally deepest Penninic samples located in the northern
portion of the study area. These observations may suggest subjacent duplexing as a likely
mechanism, since crustal duplexing at depth generally progressed from the south to the north
(e.g., Schmid et al., 1996; Berger et al., 2011; Figure 18). However, crustal duplexing alone
would also suggest the majority of exhumation would be confined to the northern portion of the
study area (Figure 19). In contrast, if backthrusting along the Insubric Line is solely responsible

for the increase in cooling and apparent exhumation rates from ~36-21 Ma, the greatest
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exhumation should be observed closest to the structure in southern part of the study area (Figure
19). Instead a similar amount of exhumation is observed in the Penninic samples in the north.
Therefore, neither backthrusting nor crustal duplexing alone are likely to produce the spatial
distribution of cooling rates and exhumation amounts observed. A combination of crustal
duplexing below the Austroalpine and Penninic units and backthrusting along the Insubric Line
is more likely to create the relatively uniform exhumation of the region from ~36-21 Ma (Figure
19).

Based on the timing of the three tectonic mechanisms it seems most likely that
backthrusting along the Insubric Line caused the observed period of increased cooling and
apparent exhumation rates from ~36-21 Ma. Alternatively, based on the spatial distribution and
magnitude of exhumation from individual transects it seems more plausible that crustal
duplexing at depth and backthrusting are responsible for this period of cooling and exhumation
(Figure 19). The relatively uniform nature of the exhumation, flat lying isotherms (see section
7.5), and synchronous timing, suggests a combination of the two tectonic mechanisms resulted in
the increased cooling rates from the late Eocene to the Miocene.

8.1.3 Engadine Line

The localized younger period of cooling from ~16-7 Ma, recorded by apatite (U-Th)/He
data of the Silvretta and Engadine Window suggests another, more localized mechanism for this
period of cooling and exhumation. The rate of cooling at ~16 Ma, recorded by the Silvretta
vertical transect, must have been relatively rapid since the apatite (U-Th)/He age-elevation plots
for the ~1200 m transect are elevation invariant. The underlying Penninic nappes of the

Engadine Window, spanning ~1100 m, record a similar onset at ~16 Ma, but continue to cool
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until ~7 Ma, recorded in the lowest elevation sample. This suggests a decrease in cooling rates
through time as the structurally lower Penninic nappes were exhumed.

The Engadine Line, an oblique left-lateral strike-slip fault, is responsible for the
formation of the Engadine Window through updoming and unroofing of the overlying
Austroalpine nappes (i.e., Silvretta; Schmid and Froitzheim, 1993). Uplift (northwest side up)
along the structure near the SW terminus of the window is estimated between 3 and 6 km
(Schmid and Froitzheim, 1993). However, the timing of movement along the Engadine Line is
only constrained by a cross-cutting relationship with the contact aureole of the Bergell intrusion,
and therefore must post-date the intrusion of the Bergell granodiorite at 30.13+0.17 Ma (von
Blanckenburg, 1992; Schmid and Froitzheim, 1993). It is possible that the relatively rapid
cooling recorded at ~16 Ma in the Silvretta vertical transect and upper elevations of the Engadine
Window samples is a response to exhumation along the Engadine Line. The more protracted
cooling from ~16-7 Ma recorded by the Engadine Window samples may result from slower
cooling caused by erosional unroofing of the window following movement along the structure.
The Engadine Line is a regional structure that would seemingly affect the exhumation of the
Austroalpine nappes of the southern portion of the study area. However, the structure had purely
left-lateral strike-slip motion in the vicinity of these samples during the Miocene and would
cause little to no cooling of the stack due to slip along the fault (Schmid and Froitzheim, 1993).
8.2 Rigidity of Orogenic Lid

The Austroalpine nappes of this study are the western exposure of the orogenic lid (e.g.,
Laubscher, 1983). The preferred cooling histories of the Austroalpine nappes show that the
orogenic lid experienced a similar cooling history throughout the study area from the Eocene to

Oligocene. Only the Silvretta nappe records a younger cooling history in the Miocene related to

55



brittle movement along the Engadine Line. This suggests the orogenic lid largely behaved as a
rigid to semi-rigid block during deformation and exhumation associated with N-S convergence
of Adria and Europe. The relatively flat lying isotherms (Figure 16) inferred, based on the
distribution of zircon (U-Th)/He ages of the region, suggests that large scale backfolding of the
study area did not occur. Instead, the study area was exhumed as a coherent mass until the
movement along the Engadine Line in the Miocene. This inference from the cooling histories of
the study area is in good agreement with the lack of structural evidence for penetrative
deformation during this time period (e.g., Froitzheim et al., 1994; Handy et al., 1996).

8.3 Hinterland Exhumation and Foreland Basin Interaction

The zircon and apatite (U-Th)/He age data from our study area, located within the
hinterland of the Alpine orogen, show a period of increased cooling rates and apparent
exhumation rates from ~36 to ~21 Ma. The exhumation of this volumetrically significant portion
of the orogen must have had some effect on the amount of sediment deposited within the
associated foreland basins.

During the period of increased cooling rates observed in the study area, the Northern
Alpine Foreland Basin (pro-foreland) shifted from an underfilled to an overfilled basin, at
approximately 33-30 Ma (Sinclair, 1997). The coincidence between the observed increase in
cooling rates in our study area, and the increase of basin fill (e.g., Sinclair, 1997) suggests that
this phenomenon is not confined to the eastern Central Alps. Further, evidence from a detrital
thermochronologic study of the pro-foreland of the Western Alps suggests the hinterland was
undergoing a period of increased exhumation between 38 and 36 Ma (Carrapa, 2009). The
detrital study (Carrapa, 2009) and basin fill study (Sinclair, 1997) suggests that our observed

increase in cooling rates and exhumation may represent a regional scale increase. Depending on
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paleo-erosion rates, a regional scale increase in cooling and exhumation indicates that the Alpine
orogen may have experienced episodic exhumation (e.g., Kuhlemann et al., 2006; Carrapa, 2009)
instead of steady-state exhumation as proposed by Bernet et al. (2001; 2009).

The sediment yield curve (Figure 20), originally developed by Kuhlemann et al. (2001),
associated with our study region suggests a period of rapid exhumation from 30-28 Ma.
Kuhlemann et al. (2001) attribute this increase in sediment yield to exhumation associated with
continental collision and slab break-off (e.g., Schmid et al., 1996; Sinclair, 1997). However, the
data from this study show that at least a portion of the Alpine orogen was undergoing
exhumation prior to 30 Ma. The record of this exhumation is not reflected in the sediment yield
curve. An estimated 18,000 km® of sediment from our study area was delivered to the foreland
basins from the study area before ~26 Ma. This estimate is based on ~4500 km? spatial extent of
samples (Figure 1), and ~4 km exhumation of the samples before ~25 Ma. The ~4 km of
exhumation is based on the cooling of the Bernina, Corvatsch, and Engadine Window samples
from below 200 °C beginning at ~36 Ma to ~80 °C by ~26 Ma (Figure 15), assuming a 30 °C/km
geothermal gradient. This amount of exhumation, or removal of overburden, corresponds to a
minimum sediment flux of ~1,800 km*/m.y from ~36-26 Ma. However, if the 4 km of
exhumation occurred over only 5 m.y., then a maximum sediment flux of ~3,600 km3/m.y. from
~36-31 Ma would be recorded (Figure 20).

Based on the data of this study alone, the sediment yield curve (Figure 20) for the late
Eocene to early Oligocene is incorrect. Kuhlemann et al. (2001) acknowledges the Oligocene
sediment budget may be inaccurate due to sediment recycling from thrust dissection and
cannibalism of the foreland basin deposits during continental collision. Cooling ages similar to

this period of rapid cooling are the dominant detrital zircon (U-Th)/He ages of the Northern
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Alpine Foreland Basin (NAFB) deposits (Miller et al., 2011). This dominant cooling age signal
suggests that recycling of older basin deposits occurred into younger NAFB deposits. Further,
there is evidence from other studies (e.g., Sinclair, 1997; Carrapa, 2009) suggesting this period
of exhumation is not confined to the eastern Central Alps. This further suggests that the early
Oligocene portion of the sediment budget is severely underestimated not only for the Eastern
Alps sediment curve, but possibly the Western and Central Alps as well.

9. Conclusions

Zircon and apatite (U-Th)/He thermochronology of the Austroalpine and Penninic units
of Eastern Switzerland and adjacent areas were used to determine the cooling history of the
region. The overall cooling history of the study area shows the region behaved as a rigid to semi-
rigid block during continental collision and continued convergence until the Engadine Line
affected the nappe stack in the Miocene. The cooling history of this specific region has broader
implications for the current model of steady state exhumation and the sediment budget developed
for the Alpine orogen.

Slow cooling through the zircon HePRZ is recorded throughout the Austroalpine nappes
of the study area during the Eocene from ~52 to 36 Ma. This first period of cooling is a result of
exhumation of the study area by north directed thrusting associated with the onset of continental
collision between Adria and Europe. Previously the timing of continental collision within this
area was constrained by the age of the youngest sediments deposited within the N-Alpine Tethys
(e.g., Froitzheim et al., 1994). These new data offer further evidence for the proposed timing of
continental collision. Further, the relatively uniform cooling of the Austroalpine units of the

study area is further evidence for the coherent nature of north directed thrusting (e.g., Laubscher,

1983).
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A second period of rapid cooling is recorded in both Austroalpine and Penninic units of
the study area from ~36 to 21 Ma. This period of rapid cooling and exhumation may be a result
of backthrusting along the Insubric Line, crustal duplexing at depth, or some interplay between
these mechanisms. The timing of backthrusting and crustal duplexing at depth is consistent with
exhumation due to either mechanism for the second period of cooling. However, we propose that
a combination of these mechanisms is necessary to produce the observed vertical exhumation of
the study area as a coherent mass. Further, the relatively uniform nature of exhumation in the
study area suggests that exhumation caused by south-vergent backfolding is not a dominant
mechanism for exhumation, as observed in other regions of the Alpine orogen (e.g., Southern
Steep Belt).

The estimated sediment flux during this second cooling period, ~1800-3600 km®/m.y.,
indicates the late Eocene to early Oligocene sediment budget for the eastern Alps underestimates
true sediment yield by ~800 km’/m.y. Further, detrital studies from the pro-foreland documents a
similarly timed increase in the exhumation rates as this study (Carrapa, 2009; Miller et al., 2011).
These studies suggest the hinterland exhumation is more aerially extensive, and that recycling of
older deposits into younger deposits has occurred (Carrapa, 2009; Miller et al., 2011).
Therefore, the sediment yield curve may underestimate the late Eocene to early Oligocene
sediment budget for the entire Alpine orogen by much more than ~800 km®/m.y.

A third and final period of cooling and exhumation, beginning at ~16 Ma is recorded only
locally within in the northern portion of the study area. This period of cooling is a result of
vertical exhumation along the oblique left-lateral Engadine Line. Previously, the timing of
movement of the Engadine Line was only loosely constrained based on a cross-cutting

relationship with the Bergell granodiorite’s contact aureole (e.g., Schmid and Froitzheim, 1993).
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The period of cooling recorded in the apatite (U-Th)/He ages of the Silvretta and Engadine
Window samples better constrains movement along the structure, and indicates activity at ~16
Ma. Continued cooling was recorded within the Engadine Window until ~7 Ma, and is likely a
result of erosional exhumation of the updomed window.

Finally, the timing and degree of exhumation of the eastern Central Alps presented in this
study contributes to the growing body of evidence for temporally episodic exhumation of the
Alpine orogen. The three stage cooling history of this study indicates apparent exhumation rates
fluctuated during the Tertiary Alpine orogen, which is in direct contrast to the steady-state
exhumation hypothesis. The data of this study, in conjunction with evidence from the Carrapa
(2009) study, clearly indicates the temporally episodic nature of exhumation was aerially
extensive. Ultimately, the data from this study area helps to challenge the steady-state
exhumation hypothesis, and indicates episodic exhumation of a portion of the Alpine orogen

occurred in the Tertiary.
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Figure 1. Tectonic map of the study region based on maps of Mohn et al. (2010), Tectonic Map
of Switzerland (2005), Peters (2005) and Froitzheim et al. (1994). Tectonic units are displayed
over a hillshade produced from 90 m SRTM data (Shuttle Radar Topography Mission;
processing completed by Jarvis et al., 2008). Small inset map indicates location of study area in
Switzerland. Locations and sample names of (U-Th)/He analyses are indicated by black circles
and white labels. For the geographic coordinates of sample locations see Table 1, 2 and 3. The A

-A’ indicates the location of Figure 15 cross section.
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Figure 2. Plate reconstructions of the greater Alpine realm, modified from Handy et al. (2010),
for (a) the Jurassic, (b) the Aptian, (¢) the Cenomanian, (d) the Maastrichtian, and (e) the
Oligocene. Abbreviations used in the figure are: AA-Austroalpine, B-Briangonnais, PAFZ-

Periadriatic Fault Zone.
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Figure 3. Schematic cross section through the northwestern passive margin of Adria during the
Jurassic prior to the Alpine orogeny, modified from Mohn et al. (2010). Note degree of thinning

increases from Upper Austroalpine to Lower Austroalpine units.
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Figure 4. Age-elevation plots of averaged zircon and apatite (U-Th)/He analyses. All errors
shown are the greater of either standard error (apatite: 6%, zircon: 8%, 20) or standard deviation
of replicate analyses (10). For complete information of the data plotted and number of replicate

analyses used to calculate sample ages see Table 1 and 2. For all replicate analyses performed

see Tables A and B in Appendix A.
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Figure 5. Plots of individual zircon (U-Th)/He analyses from the Err nappe. All data plotted is
reported in Table 3. Errors quoted are standard error (8%; 20). (a) Age-elevation plot illustrates
the total spread of zircon helium ages recorded by each sample. (b) Age-ESR (equivalent
spherical radius, a proxy for grain size) plot exhibits the positive correlation within individual
samples between size and grain age. (c) Age-effective uranium concentration plot showing a
negative correlation within individual samples between effective uranium concentration, a proxy
for radiation damage (e.g., Shuster et al., 2006; [U]. =[U]+[Th]0.235+[Sm]0.005), and helium
age. This correlation is suggestive of a link between increased radiation damage and decreased
helium retentivity within zircon grains (Nasdala et al., 2004; Reiners, 2005; Stockli et al., 2010).
Note samples with a small spread in effective uranium concentration do not show this trend.
These correlations between age-ESR and age-[U]. suggest protracted cooling through the zircon

PRZ for the Err nappe.
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Figure 6. Representative laser ablation depth-profiles of U and Th concentration for defined
categories. Categories are defined based on the U concentration pattern. (a) Category 1 is
defined as nearly homogeneous U concentration distribution. Note decoupled behavior of Th and
U in this profile. This category also contains another depth-profile with coupled behavior of Th
and U (see Appendix B). (b) Category 2 comprises depth-profiles that exhibit both a relatively
high U concentration overgrowth, as well as a high U concentration zone within the interior of
the grain. (c) Category 3 encompasses depth-profiles with a single high U concentration
overgrowth with a relative concentration five times the remainder of the depth-profile. (d)
Category 4 is defined by a high U concentration overgrowth less than five times greater than the
rest of the depth-profile. (e) Category 5 includes depth profiles that have a single zone of high U

concentration within the interior of the grain.
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Figure 7. Plot of zircon (U-Th)/He ages when filtered using zonation categories of Figure 6.
The correct zircon (U-Th)/He age bar is based on the zircon helium ages of grains within the first
category of nearly homogeneous U distribution. Erroneously young ages are recorded by zircon
grains sorted into categories 2-5, and these young zircon helium ages are a result of an
underestimate of daughter loss by the standard alpha-ejection correction (Hourigan et al., 2005).
Only one aliquot records an erroneously old zircon (U-Th)/He age, which may be explained
through unaccounted for loss of parent during analysis (i.e., physically lost portion of grain) or
an unseen high U or Th core (Hourigan et al., 2005). Note there is no correlation between
individual samples and categorized zircon (U-Th)/He age, which suggests that the age is not

elevation dependent.
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Figure 8. Age-elevation plot of all aliquot zircon (U-Th)/He ages analyzed for the Silvretta
nappe vertical transect. Diamonds indicate grains depth-profiled before zircon (U-Th)/He
analysis. Circles indicate aliquots that were analyzed only using standard zircon (U-Th)/He
techniques from the three samples chosen for laser-ablation depth profiling. Squares indicate all
other zircon (U-Th)/He aliquot analyses. All error bars shown are 8% (20). Apatite fission track
(AFT) and zircon fission track (ZFT) age ranges are those reported by Hurford et al. (1989) for
the northeastern portion of the Silvretta nappe. Replicate zircon (U-Th)/He ages that fall within
the ZFT age range are clearly too old based on the higher thermally sensitivity of the ZFT
thermochronometer (total annealing of fission tracks at temperatures >310 °C; Tagami and
Dumitru, 1996). The average apatite (U-Th)/He age from this study (see figure 4a), and AFT
ages (total annealing of fission tracks at temperatures >110-125 °C; Dumitru, 2000) are younger
than the zircon replicate ages as expected. The correct zircon (U-Th)/He age bar was determined
through the semi-quantitative analysis of parent isotope zonation and recorded zircon helium age

(see text for discussion).
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Figure 9. Compilation of CL images from the three samples chosen from the Silvretta vertical
transect for laser ablation depth-profiling. Note grains are complexly zoned and several show
zones of high U and Th concentrations within the outer 20 pm of the grain. This type of zoning is

known to cause erroneously young (U-Th)/He ages (Hourgian et al., 2005).
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Figure 10. HeMP inverse model time-temperature history paths generated for the Campo-
Grosina vertical transect using a 30 °C/km geothermal gradient and allowing for a single outlier
data pair. This geothermal gradient was chosen based on work by Hurford et al. (1989). Cooling
rate and exhumation rate curves are based on the assumed geothermal gradient. Ninety-two
good fit time-temperature curves were found by this model and are depicted in grey. Dashed
grey lines indicate range of 100,000 random time-temperature curves tested by the model. The
black boxes indicate modeling constraints based on temperature estimates by Handy et al. (1996)
for the ending of the D2 period of deformation and mean annual surface temperature. The black
dashed line indicates preferred cooling history. Note only zircon (U-Th)/He ages were used for
modeling. As a result, the cooling history below 140° C is unconstrained and may not be

representative of the true cooling history of the Campo and Grosina nappes.
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Figure 11. HeMP inverse model time-temperature history paths generated for the Bernina
vertical transect using a 30 °C/km geothermal gradient and allowing for a single outlier data pair.
This geothermal gradient was chosen based on work by Hurford et al. (1989). Cooling rate and
exhumation rate curves are based on the assumed geothermal gradient. The inverse model
found 1715 acceptable fits and these curves are depicted in grey. Dashed grey lines indicate
range of 100,000 random time-temperature curves tested by the model. The black dashed line
indicates preferred cooling history. The black boxes indicate modeling constraints based on
temperature estimates by Handy et al. (1996) for the ending of the D2 period of deformation and

mean annual surface temperature.
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Figure 12. HeMP inverse model time-temperature history paths generated for the Err
detachment vertical transect using a 30 °C/km geothermal gradient and allowing for a two outlier
data pairs. This geothermal gradient was chosen based on work by Hurford et al. (1989).
Cooling rate and exhumation rate curves are based on the assumed geothermal gradient. The
inverse model found 81 acceptable fits and these curves are depicted in grey. Dashed grey lines
indicate range of 100,000 random time-temperature curves tested by the model. The black
dashed line indicates preferred cooling history. The black boxes indicate modeling constraints
based on temperature estimates by Handy et al. (1996) for the ending of the D2 period of
deformation and mean annual surface temperature. Note zircon (U-Th)/He ages used to model
this transect are average ages of replicate analyses of the Err detachment transect; replicate

analyses are depicted in figure Sa.
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Figure 13. HeMP inverse model time-temperature history paths generated for the Corvatsch
vertical transect using a 30 °C/km geothermal gradient and allowing for a single outlier data pair.
This geothermal gradient was chosen based on work by Hurford et al. (1989). Cooling rate and
exhumation rate curves are based on the assumed geothermal gradient. The inverse model
found 1705 acceptable fits and these curves are depicted in grey. Dashed grey lines indicate
range of 100,000 random time-temperature curves tested by the model. The black dashed line
indicates preferred cooling history. The black boxes indicate modeling constraints based on
temperature estimates by Handy et al. (1996) for the ending of the D2 period of deformation and

mean annual surface temperature.
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Figure 14. HeMP inverse model time-temperature history paths generated for the Engadine
window samples using a 30 °C/km geothermal gradient and allowing no outlier data pair. This
geothermal gradient was chosen based on work by Hurford et al. (1989). Cooling rate and
exhumation rate curves are based on the assumed geothermal gradient. The inverse model
found 399 acceptable fits and these curves are depicted in grey. Dashed grey lines indicate range
of 100,000 random time-temperature curves tested by the model. The black dashed line indicates
preferred cooling history. The black box indicates modeling constraints based on temperature
estimates by Bousquet et al. (2008) for high-pressure greenschist metamorphism within the
Biindnerscheifer, and timing constraints from in situ *°Ar/*’Ar dating of white mica associated
with the high-pressure greenschist metamorphism of the Biindnerscheifer (Wiederkehr et al.,

2009).
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Figure 15. A compilation of the preferred cooling histories based on the inverse modeling of the
Austroalpine and Penninic (Engadine Window, solid line) (U-Th)/He data. The transparent
portions of the cooling histories are considered relatively unconstrained by the data. The Silvretta
cooling history curve was determined based on ZFT ages, corrected zircon (U-Th)/He age, AFT
ages, and the apatite (U-Th)/He ages of the Silvretta nappe (i.e., the Silvretta time-temperature
history is not derived from inverse modeling). Cooling rate and exhumation rate curves are
based on a 30 °C/km geothermal gradient. Three general stages of cooling can be determined for
the Austroalpine and Penninc nappe stack based on this graphical summary: (1) relatively slow
cooling rates from ~52 Ma to ~36 Ma, (2) a period of increased cooling rates from ~36 Ma to
~21 Ma, and (3) decreased, and the slowest cooling rates of the nappe stack from ~21 Ma to
present. Note, for the Silvretta nappe a period of rapid cooling is documented based on the
apatite (U-Th)/He ages at ~16 Ma. Darker grey bars along the bottom of the graph indicate the
defined deformational periods of the study region from Schmid and Froitzheim (1993),

Froitzheim et al. (1994) and Schmid et al. (1996).
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Figure 16. A simplified cross section of the Austroalpine nappe stack for the southern portion of
the study area modified from Mohn et al. (2010). The cross section depicts the interpreted
location of the post-D2 zircon (U-Th)/He HePRZ and paleo-surface. The interpretation assumes
a geothermal gradient of 30 °C/km, which corresponds to a 2 km thick zircon HePRZ ranging
from depths of 4.6 to 6.6 km. The location of the cross section line is shown in Figure 1 as A-
A’. Note the Julier nappe slice projects into the paleo HePRZ, however the zircon (U-Th)/He age
shows no evidence of prolonged residence within the zircon HePRZ. This discrepancy may be
explained through a slight southward plunge of the nappes south of the cross section line. A

slight southward plunge has been described in cross sections of the Err nappe by Handy et al.

(1996).
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Figure 17. Summary of apatite and zircon (U-Th)/He ages from the study area, cooling periods
of the study area, deformation periods and the timing of possible tectonic mechanisms for
exhumation of the region. Dark grey bars represent zircon (U-Th)/He ages. For the Silvretta
nappe the age range shown is the semi-quantitatively corrected zircon (U-Th)/He age with
standard error (8%). The Bernina, Corvatsch and Engadine Window dark grey bars show the
mean zircon (U-Th)/He ages of the nappes with the standard deviation of the averaged ages. For
the Campo-Grosina and Err nappes the grey bar depicts the timing of cooling through the zircon
PRZ constrained by modeled time-temperature histories (Figure 10 and 12). For Campo-Grosina
the mean age of fully reset zircon (U-Th)/He analyses is also indicated by the grey bar.
Lavender bars indicate the apatite (U-Th)/He age ranges. The Silvretta, Bernina, Err, Corvatsch
and Engadine Window apatite ages are the mean and standard deviation of replicate analyses.
The Err mean age for apatite was calculated based on the average of all replicate analyses from
both the Piz Nair and Err detachment vertical transects (excluding sample 10EDO1). Light blue
bars illustrate the three stage cooling history for the region. Light grey bars indicate the span of
deformation periods in the study region from Schmid and Froitzheim (1993), Froitzheim et al.
(1994) and Schmid et al. (1996). Green bars show the timing of the tectonic mechanisms
discussed in section 8.1.2 and 8.1.3 that may be responsible for exhumation of the study region
(von Blanckenburg and Davies, 1995; Schmid and Froitzheim, 1993; Schmid et al., 1996;

Sinclair, 1997; Berger et al., 2011).
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Figure 18. Cross sections of the Central Alps from the Eocene to the Miocene (see inset for
location; all cross sections are modified from Schmid et al., 1996). Abbreviations used to label
units include: AA-Austroalpine units, Br-Briangonnais, PM-Penninic metasediments (including
Biindnerschiefer and Valais sediments), NAT-North Alpine Tethys crust, NTO-North Alpine
Tethys ophiolite, Ber-Bergell intrusion, EC-European crust and AC-Adriatic crust. a) This cross
section depicts the north directed thrusting of the Austroalpine units in the Eocene and
subduction of the N-Alpine Tethys below the Adriatic plate. b) In the late Eocene movement
along the Insubric line may have begun to backthrust Austroalpine units to the south, and crustal
duplexing below the Austroalpine units has initiated. ¢) The intrusion of the Bergell tonalite and
granodiorite occurs in the early Oligocene. Backthrusting along the Insubric line and crustal
duplexing at depth continues into the Oligocene. d) In the early Miocene the oblique left-lateral
Engadine line deforms the units of the orogenic lid, and causes relative uplift of the SE block
near the Bergell. In the northern portion of the study area the NW block (relative to the
Engadine line) is also uplifted and forms the Engadine window (not shown in the cross section

line).
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A. Combined Backthrusting and Crustal Duplexing
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Figure 19. Schematic block diagrams illustrating the spatial distribution of exhumation of units
along a north-south cross section through the study area from ~36-21 Ma. Solid arrows indicate
the general direction of exhumation due to crustal duplexing and backthrusting along the
Insubric Line. Dashed arrows indicate the resulting relative magnitudes of exhumation of the
Austroalpine and Penninic units of the study area. (A) The resulting magnitude of exhumation
from the combination of the tectonic mechanisms. The combination of these mechanisms results
in relatively uniform exhumation of the region. This model is most similar to the observed
cooling and exhumation history of the study area from ~36-21 Ma (see text for discussion). (B)
A conceptual model of exhumation of the orogenic lid by crustal duplexing. Note the greater
amount of exhumation is predicted for the northern portion of the study area. (C) The resulting
exhumation of the cross section from only backthrusting along the Insubric Line. In this scenario

the largest amount of exhumation in the study area would be located closest to the Insubric Line.
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Figure 20. The light gray region indicates the sediment yield curve for the Eastern, eastern
Central, and eastern Southern Alps modified from Willet (2010). Note the timing of cooling and
increased exhumation of the study area coincides with an increase in sediment yield in the
basins. However, the major pulse in sediment deposition is younger than the onset of exhumation
within the study area. The region of diagonal hatches indicates the maximum amount of
sediment yield for the study area, based on the minimum amount of time for exhumation of the
units of this study to ~80 °C. The cross hatched region indicates the minimum amount of
sediment yield from the study area, based on the maximum amount of time for exhumation of the
units of this study to ~80 °C. The discrepancy between the sediment yield of this study and the
current yield curve prior to ~ 31 Ma may result from unrecognized sediment recycling into

younger basin deposits (see text for discussion).
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1. Table of Average Zircon (U-Th)/He Analyses
Sample Latitude (N) Longitude (E) Elevation Age Std. Error Std. Dev. U Th Sm [U]. TwU" He Mass Ft° ESR Replicate

(degrees)” (degrees)” (meters) (Ma)" (26, Ma)° (zlo, Ma)" (ppm)h (ppm)" (ppm)h (ppm)° (nmol/g)" (ug)h (um)" Analysesf
Silvretta nappe
10SL01 46.9428 10.0608 1607 53.5 43 11.0 288.7 45.7 13 299.2 0.2 64.6 6.3 0.8 496 5
10SL02 46.9350 10.0595 1763 438 35 14.0 1989  40.7 0.8 208.3 0.2 394 6.0 08 464 5
10SL03 46.9457 10.0626 1526 46.1 3.7 8.6 3133 725 0.9 330.0 0.2 63.8 76 08 507 15
10SL04 46.9214 10.0442 2034 47.6 3.8 9.3 238.0 355 0.7 246.2 0.2 51.6 9.2 0.8 541 5
10SLO5 46.9109 10.0401 2152 43.9 35 6.4 363.8 523 0.7 375.9 0.2 68.0 95 0.8 545 14
10SL06 46.9042 10.0399 2270 52.1 4.2 4.5 2925 456 0.9 303.0 0.2 65.2 59 0.8 471 3
10SL07 46.9002 10.0414 2345 59.4 4.7 16.8 1720 925 0.6 193.3 0.6 46.7 86 0.8 545 5
10SL08 46.8944 10.0321 2640 60.8 4.9 14.3 316.6 87.1 1.1 336.7 0.3 85.5 63 08 475 5
10SL09 46.8935 10.0308 2715 47.9 3.8 10.4 2742 56.0 1.0 287.1 0.2 57.0 76 08 507 15
10SL11 46.9220 10.0578 1890 449 3.6 11.9 3084 545 0.9 321.0 0.2 63.5 7.7 0.8 514 4
09ENO1 46.6773 10.0726 1559 318 19 15 1999 57.1 0.5 213.0 0.3 26.3 3.8 0.7 409 3
Grosina nappe
08IGT01 46.4082 10.2633 2617 52.2 4.2 2.6 478.0 102.3 1.2 501.6 0.2 108.4 64 0.8 4838 3
081GT02 46.3869 10.2534 1878 46.6 3.7 53 389.5 50.8 1.1 401.2 0.2 74.0 6.6 08 485 5
10IGTO1 46.3877 10.2497 2098 335 2.0 5.5 1410.8 126.3 9.4 14399 0.1 187.5 31 0.7 363 2
101GT02 46.3877 10.2539 1983 37.8 23 8.9 156.5 63.2 0.7 171.0 0.4 26.6 40 0.7 410 3
Campo nappe
08IGT03 46.3858 10.2527 1853 30.7 2.5 3.0 299.9 462 21 310.5 0.2 31.2 14 06 292 3
08IGT04 46.3628 10.2494 1524 35.6 29 4.8 2117 412 0.8 221.2 0.2 325 45 0.7 414 5
101GT03 46.3733 10.2471 1689 37.8 26 6.4 196.2  57.8 1.8 209.5 0.4 329 42 0.7 441 5
101GT04 46.3555 10.2516 1451 333 2.7 6.0 188.8 737 0.7 205.7 0.4 28.0 6.8 0.8 487 3
Bernina nappe
08BP0O1 46.4108 10.0277 2331 325 2.6 2.7 265.7 487 0.5 276.9 0.2 38.1 6.6 0.8 518 3
08BP03 46.4436 9.9776 2062 34.8 2.8 7.5 249.7 457 0.7 260.2 0.2 35.2 5.7 0.8 477 4
08BP04 46.4553 9.9897 2176 334 2.7 29 137.4 355 0.7 145.6 0.2 222 254 09 826 48
08BP05 46.4577 9.9884 2218 36.3 29 1.2 170.5 416 0.7 180.0 0.2 27.3 74 0.8 501 3
08BP06 46.4750 9.9238 1860 39.7 3.2 2.8 450.2 156.8 1.0 486.3 0.3 81.0 9.5 0.8 537 6
08BP09 46.4648 9.9774 2739 35.0 2.8 0.3 2103 426 0.6 220.1 0.2 30.7 53 0.7 434 3
08BP10 46.4632 9.9779 2701 339 2.7 0.9 1240 336 0.2 131.7 0.3 19.0 82 0.8 56.2 3
08BP11 46.4621 9.9796 2565 36.0 29 3.9 260.0 53.7 0.8 2723 0.2 39.5 6.0 08 475 4
08BP12 46.4610 9.9858 2352 349 2.8 0.7 2651 55.1 0.6 277.8 0.2 41.1 86 0.8 56.1 3
Julier nappe
08FA17 46.4727 9.7290 2304 37.8 3.0 2.8 3352 1203 0.9 362.9 0.4 56.1 6.2 0.8 485 5
Err nappe
08FA06 46.5635 9.6820 2496 379 3.0 6.5 4480 704 0.5 464.2 0.2 69.6 73 08 511 5
08FAQ7 46.5660 9.6816 2527 449 36 8.0 316.3  48.1 0.5 3274 0.2 62.9 106 0.8 56.1 4
Corvatsch nappe
10ENO1 46.4320 9.8246 2703 30.1 24 2.6 470.0 148.1 1.1 504.1 0.3 66.3 156 0.8 65.5 3
10EN02 46.4361 9.8280 2596 311 25 16 376.8 1189 2.6 404.1 0.3 52.4 59 0.8 505 3
10ENO3 46.4408 9.8303 2497 295 24 0.4 363.1 120.7 0.9 390.9 0.3 47.0 45 0.8 469 3
10EN0O4 46.4570 9.8273 2407 29.9 2.4 2.8 4013 2040 11 448.2 0.5 53.7 35 0.7 439 3
10ENO5 46.4594 9.8260 2290 339 2.7 3.2 369.9 133.1 11 400.6 0.4 54.7 59 0.8 483 ¢
10ENO6 46.4658 9.8287 2206 36.5 29 4.5 3355 136.0 1.2 366.8 0.4 529 59 0.8 494 4
10ENO7 46.4640 9.8249 2097 30.4 2.4 0.4 3885 125.1 0.7 417.3 0.3 51.2 41 0.7 46.0 3
10ENO8 46.4626 9.8202 2000 27.2 19 5.0 496.3 3104 0.9 567.7 0.7 62.2 6.8 0.8 50.2 5
Engadine Window (Penninic nappes)
08TS04 46.8227 10.2465 2654 28.0 22 5.0 182.8 287 0.2 189.4 0.2 22,6 6.1 0.8 495 4
08TS05 46.8230 10.2492 2573 318 25 7.2 2235 277 0.2 229.9 0.1 30.4 5.0 0.8 4638 5
08TS07 46.7783 10.2144 1525 331 2.6 35 2318 775 0.3 249.6 0.4 32.7 46 0.7 450 4
08TS08 46.7723 10.2132 1384 35.4 2.8 5.9 239.7 8438 0.4 259.2 0.4 38.4 59 08 487 5
08TS09 46.7861 10.2243 1616 26.0 2.1 5.7 477.2  279.9 1.8 541.7 0.6 533 59 0.8 497 6
08TS11 46.7885 10.2398 1657 28.8 23 4.6 179.6 33.0 0.1 187.2 0.2 20.7 27 07 391 3
08TS13 46.8326 10.2469 2700 29.1 23 23 386.5 69.2 0.0 402.5 0.3 48.6 39 0.7 438 3
08TS14 46.8321 10.2476 2685 24.4 2.0 0.9 177.7 66.3 0.0 192.9 0.5 18.2 3.8 0.7 4338 3
09ENO4 46.7886 10.2776 1210 28.1 2.2 1.2 350.9 50.5 1.0 362.6 0.1 40.5 46 0.7 445 3

*WGS datum 1984

Mean value of included replicate analyses; see Auxiliary Material A for all replicate analyses

“Standard error of 8% (20) based on reproducibility of internal lab standards

9Standard deviation (10) of included replicate analyses

°[U]. =[U]+[Th]0.235+[Sm]0.005 (e.g., Shuster et al., 2006)

Total number of replicate analyses preformed

EAn outlier replicate analysis was excluded from mean value calculations; see Auxiliary Material A for all replicate analyses
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3. Table of Individual Zircon (U-Th)/He Analyses for the Err Nappe

Th/U"

Sample* Age Std. Error U Th Sm U], He Mass Ft ESR
(Ma)’  (320,Ma)’ (ppm)"  (ppm)"  (ppm)’  (ppm)° (nmol/g)’  (ng)” (pm)”

Err Detachment Transect
08ED01: 46.5459°N, 9.7257 °E; 2979 m
08EDO1-1 24.4 2.0 7425 212.7 23 791.4 0.3 75.9 3.0 0.7 41.9
08ED01-2 34.1 2.7 547.4 119.0 31 574.8 0.2 78.8 3.9 0.7 44.8
08EDO1-3 35.9 2.9 458.3 111.9 11 484.0 0.2 71.4 4.8 0.8 48.2
08ED01-4 333 2.7 1074.4 266.6 2.0 1135.8 0.2 147.3 3.2 0.7 40.6
08EDO1-5 119.4 9.6 2394 39.3 0.0 248.4 0.2 116.0 3.7 0.7 40.3
08ED02: 46.5455 °N, 9.7222 °E; 2981 m
08ED02-1 52.5 4.2 279.3 59.4 35 293.0 0.2 65.0 6.6 0.8 53.0
08ED02-2 40.0 3.2 431.6 105.2 2.1 455.8 0.2 77.3 7.2 0.8 53.7
08ED02-3 47.4 3.8 607.9 138.0 2.6 639.7 0.2 122.6 4.1 0.7 45.4
08ED02-4 28.0 2.2 475.6 118.6 2.3 503.0 0.2 58.3 5.2 0.8 49.7
08ED02-5 55.2 4.4 613.7 131.3 0.6 643.9 0.2 148.7 6.1 0.8 50.7
08ED02-6 74.6 6.0 546.2 134.9 1.8 577.2 0.2 191.1 11.7 0.8 65.0
08ED04: 46.5454 °N, 9.7252 °E; 2876 m
08ED04-1 56.3 4.5 613.1 158.0 11 649.5 0.3 155.5 8.7 0.8 54.1
08ED04-2 63.9 5.1 3749 89.1 0.6 395.5 0.2 103.2 5.7 0.8 46.9
08ED04-3 59.9 4.8 3785 79.5 0.9 396.8 0.2 98.8 6.7 0.8 49.7
08ED04-4 56.4 4.5 559.9 128.8 1.0 589.5 0.2 146.7 14.0 0.8 63.4
08ED04-5 41.7 33 435.8 122.4 0.9 464.0 0.3 75.9 4.0 0.7 41.6
08ED04-6 51.6 4.1 434.2 112.3 0.9 460.1 0.3 97.8 6.1 0.8 48.5
08ED06: 46.5454 °N, 9.7252 °E; 2935 m
08ED06-1 48.1 3.8 577.8 112.3 2.6 603.6 0.2 121.9 6.2 0.8 51.5
08ED06-2 59.3 4.7 527.8 115.1 2.5 554.3 0.2 146.0 12.8 0.8 65.6
08EDO06-3 32.7 2.6 423.6 147.5 1.8 457.5 0.3 61.6 53 0.8 48.6
08ED06-4 62.6 5.0 505.1 92.8 0.9 526.5 0.2 149.5 16.0 0.8 723
08ED06-5 64.6 5.2 395.7 89.1 0.7 416.2 0.2 121.5 16.7 0.8 711
08ED06-6 57.2 4.6 467.1 89.0 0.4 487.6 0.2 123.1 11.6 0.8 63.6
10EDO1: 46.5397 °N, 9.7453 °E; 2425 m
10EDO1-1 47.1 2.8 686.0 136.6 0.7 717.4 0.2 137.5 5.0 0.8 46.3
10EDO1-2 35.0 2.1 608.2 105.9 0.7 632.6 0.2 98.4 14.7 0.8 65.7
10EDO1-3 36.0 2.2 572.8 107.8 11 597.6 0.2 86.9 53 0.7 45.2
10EDO1-4 41.5 33 391.6 74.9 0.5 408.8 0.2 66.4 3.9 0.7 41.1
10EDO1-5 47.0 3.8 444.8 47.8 0.4 455.8 0.1 83.8 3.9 0.7 40.8
10EDO1-6 40.5 3.2 440.6 85.5 0.7 460.3 0.2 78.5 8.0 0.8 52.3
10EDO2: 46.5434 °N, 9.7380 °E; 2760 m
10ED02-1 51.6 3.1 713.9 125.7 1.1 742.8 0.2 172.7 15.7 0.8 70.2
10ED02-2 44.1 2.6 469.0 103.6 0.9 492.9 0.2 91.0 6.5 0.8 51.4
10ED02-3 375 2.3 340.6 61.4 0.7 354.8 0.2 53.2 3.9 0.7 43.7
10ED02-4 41.3 33 570.3 53.7 0.3 582.6 0.1 101.3 9.4 0.8 52.0
10ED02-5 32.6 2.6 762.9 63.6 0.8 777.5 0.1 105.2 6.5 0.8 49.4
10ED02-6 42.2 3.4 885.6 86.9 1.3 905.6 0.1 149.1 3.6 0.7 40.4
10ED03: 46.5241°N, 9.7414 °E; 2689 m
10EDO3-1 43.7 2.6 790.5 151.8 1.0 825.4 0.2 145.0 4.7 0.7 44.6
10EDO03-2 34.5 2.1 951.2 139.1 13 983.2 0.1 141.8 7.0 0.8 50.7
10EDO3-3 55.7 33 541.9 101.5 1.0 565.3 0.2 126.3 4.7 0.7 44.1
10EDO3-4 52.1 4.2 891.9 157.5 11 928.1 0.2 216.8 17.8 0.8 68.8
10EDO3-5 40.2 3.2 380.1 39.7 0.5 389.3 0.1 70.2 18.7 0.8 68.8
10EDO3-6 42,5 3.4 819.8 131.6 15 850.1 0.2 159.9 14.5 0.8 64.2
10EDO4: 46.5414 °N, 9.7426 °E; 2626 m
10ED04-1 50.8 4.1 663.6 169.3 1.1 702.6 0.3 147.2 6.4 0.8 48.5
10ED04-2 67.5 5.4 271.2 60.8 0.7 285.2 0.2 82.5 9.6 0.8 55.8
10ED04-3 77.6 6.2 491.0 118.8 1.2 518.3 0.2 182.9 24.0 0.8 73.4
10ED04-4 38.1 3.0 748.5 172.4 1.0 788.2 0.2 126.5 8.2 0.8 52.6
10ED04-5 53.3 4.3 506.6 112.4 0.8 532.5 0.2 126.0 16.1 0.8 65.4
10ED04-6 57.8 4.6 604.4 141.9 0.9 637.0 0.2 159.3 10.9 0.8 58.3
10EDO5: 46.5395 °N, 9.7437 °E; 2502 m
10EDO5-1 38.7 3.1 299.3 36.7 0.5 307.7 0.1 56.2 43.3 0.9 92.8
10EDO5-2 49.1 3.9 511.1 79.7 0.5 529.5 0.2 113.4 11.5 0.8 59.9
10EDO5-3 35.4 2.8 2823 46.4 0.6 293.0 0.2 43.2 7.1 0.8 50.0
10EDO5-4 48.0 3.8 450.0 82.9 0.5 469.1 0.2 100.8 17.4 0.8 67.8
10EDO5-5 329 2.6 290.7 65.7 0.7 305.8 0.2 43.1 10.5 0.8 55.9
10EDO5-6 33.2 2.7 404.4 74.1 0.7 421.5 0.2 60.0 9.6 0.8 56.4
Piz Nair Transect
08PNO02: 46.5059 °N, 9.7871 °E; 3025 m
08PN02-1 46.7 3.7 254.5 25.4 0.5 260.3 0.1 50.0 6.4 0.8 47.6
08PN02-2 94.7 7.6 205.5 60.3 0.7 219.4 0.3 94.2 213 0.8 72.2
08PNO02-3 78.3 6.3 283.7 80.3 0.5 302.2 0.3 94.9 4.7 0.7 44.2
08PN02-4 90.9 7.3 345.8 38.7 0.7 354.7 0.1 139.8 104 0.8 57.6
08PNO03: 46.5053 °N, 9.7914 °E; 2850 m
08PNO03-1 48.2 3.9 409.0 101.4 0.8 432.4 0.2 85.6 5.8 0.8 47.9
08PNO03-2 54.5 4.4 445.0 97.8 0.9 467.5 0.2 102.6 5.2 0.7 44.6
08PNO03-3 65.5 5.2 443.8 77.8 0.2 461.7 0.2 1225 5.2 0.7 45.4
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3. Table of Individual Zircon (U-Th)/He Analyses for the Err Nappe, cont.

Sample"  Age  Std. Error U Th Sm [U]. Th/U" He Mass Ft ESR
(Ma)®  (#20,Ma)’  (ppm)°  (ppm)°  (ppm)°  (ppm)° (nmol/g)®  (ng)” (wm)”

08PNO3 cont.
08PNO3-4  67.5 5.4 295.4 57.4 1.7 308.6 0.2 93.3 16.4 0.8 67.9
08PNO3-5  43.9 35 937.8 184.8 1.5 980.3 0.2 166.2 3.6 0.7 39.6
08PN03-6  55.3 4.4 422.6 126.1 2.4 451.6 03 100.5 4.9 0.7 44.8
08PNO4: 46.5047 °N, 9.7975 °E; 2697 m
08PNO4-1  66.4 4.0 459.3 173.7 1.1 499.3 0.4 131.2 4.4 0.7 426
08PNO04-2  53.0 3.2 325.2 87.6 1.1 3453 0.3 722 4.0 0.7 422
08PNO04-3  94.9 5.7 329.5 82.3 0.4 348.5 0.2 129.0 3.6 0.7 40.4
08PNO04-4  39.3 3.1 481.2 125.9 1.3 510.2 0.3 79.6 42 0.7 43.0
08PNO04-5  75.7 6.1 2123 41.4 0.5 221.8 0.2 73.9 13.7 0.8 62.5
08PNO04-6 1118 8.9 2783 58.2 0.4 291.7 0.2 144.8 14.6 0.8 63.9
08PNOS5: 46.5023 °N, 9.8044 °E; 2620 m
08PNO5-1  105.9 8.5 246.7 48.9 0.5 257.9 0.2 119.3 9.8 0.8 59.5
08PNO5-2  64.5 5.2 537.3 114.8 0.8 563.7 0.2 155.9 7.9 0.8 56.0
08PNO5-3  51.2 4.1 645.1 136.5 0.6 676.5 0.2 147.9 7.4 0.8 55.2
08PNO5-4  97.2 7.8 467.0 105.2 0.9 4913 0.2 2113 13.6 0.8 63.5
08PNO5-5  66.6 5.3 451.0 115.5 1.1 477.6 03 137.2 10.9 0.8 57.3
08PNO5-6  63.3 5.1 693.5 125.6 1.6 722.4 0.2 195.9 9.6 0.8 55.4
08PNO6: 46.5026 °N, 9.8114 °E; 2523 m
08PNO6-1  57.8 46 144.4 110.8 1.8 169.9 0.8 41.1 6.7 0.8 51.9
08PN06-2  39.4 3.2 280.4 65.8 0.5 295.6 0.2 49.7 7.0 0.8 54.9
08PN06-3  51.3 4.1 185.2 33.2 0.4 192.8 0.2 42,9 8.9 0.8 58.8
08PN06-4  49.4 4.0 276.5 63.3 0.8 291.1 0.2 55.9 4.2 0.7 40.2
08PN06-5  70.2 5.6 264.2 96.4 0.9 286.4 0.4 79.7 4.7 0.7 428
Val d'Err Sample
08FAOS5: 46.5629 °N, 9.6821 °E; 2583 m
08FA05-1  49.8 4.0 453.0 108.9 0.8 478.1 0.2 102.0 8.0 0.8 56.1
08FA05-2  65.7 5.3 488.1 130.5 0.8 518.1 03 138.4 4.4 0.8 46.2
08FA05-3 913 7.3 536.4 158.3 1.2 572.9 03 2285 10.8 0.8 60.1
08FA05-4 485 3.9 300.1 63.3 0.9 314.7 0.2 61.0 3.9 0.7 43.7
08FA05-5  46.6 3.7 561.5 153.0 1.3 596.7 03 118.4 7.4 0.8 54.8
08FA05-6  65.0 5.2 367.2 125.6 0.6 396.1 03 110.7 8.2 0.8 56.9

?Location and elevation listed in table; WGS datum 1984

®Individual results for aliquot analysis

“Standard error of 8% (20) based on reproducibility of internal lab standards
d[U]E =[U]+[Th]0.235+[Sm]0.005 (e.g., Shuster et al., 2006)
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4. Table of Replicate Silvretta Zircon (U-Th)/He Analyses

Sample® Age Std. Error U Th Sm U], Th/U He Mass Ft ESR Std. Dev.
Ma) _ @20,Ma)”  @pm)  (ppm) _ (ppm) __ (ppm)’ (mollg) __ (ng) (um) (1o, Ma)®

Silvretta nappe

z10SL01-1 43.9 3.5 385.4 37.8 0.9 394.1 0.1 73.7 7.8 0.8 54.3

z10SL01-2 58.5 4.7 217.0 53.0 3.7 229.3 0.2 53.6 3.8 0.7 43.7

z10SL01-3 42.8 3.4 243.6 34.3 0.5 2515 0.1 45.7 7.1 0.8 53.9

z10SL01-4 69.3 5.5 217.8 41.2 0.6 227.3 0.2 65.8 7.2 0.8 50.6

z10SL01-5 52.8 4.2 379.5 62.4 1.0 3939 0.2 84.3 5.5 0.7 45.5

10sL01 53.5 4.3 288.7 45.7 1.3 299.2 0.2 64.6 6.3 0.8 49.6 11.0
z10SL02-1 66.4 53 255.4 37.9 0.8 264.1 0.1 72.4 6.4 0.8 48.0

z10SL02-2 34.2 2.7 111.8 35.2 0.9 119.9 0.3 16.2 4.8 0.7 42.9

z10SL02-3 46.9 3.8 216.4 35.1 0.7 224.5 0.2 44.0 7.1 0.8 50.9

z10SL02-4 31.0 2.5 142.3 51.0 0.9 154.1 0.4 19.5 6.5 0.8 47.1

z10SL02-5 40.4 3.2 268.7 44.1 0.9 278.8 0.2 44.9 4.9 0.7 43.2

10sLo02 43.8 3.5 198.9 40.7 0.8 208.3 0.2 39.4 6.0 0.8 46.4 14.1
z10SL03-1 63.5 5.1 216.6 44.6 0.6 226.8 0.2 63.5 13.1 0.8 62.7

z10SL03-2 52.1 4.2 290.3 60.0 1.1 304.1 0.2 69.9 14.1 0.8 63.4

z10SL03-3 43.9 3.5 378.7 40.6 0.5 388.0 0.1 71.9 7.8 0.8 52.6

z10SL03-4 55.5 4.4 296.9 53.1 2.0 309.2 0.2 733 9.3 0.8 55.0

z10SL03-5 54.5 4.4 320.8 88.8 0.9 341.2 0.3 77.1 6.7 0.8 49.5

2105L03-6° 46.8 37 722.4 218.4 05 772.7 03 151.1 7.4 058 51.0

210SL03-7° 32.0 2.6 250.9 41.5 1.0 260.5 0.2 35.1 83 0.8 52.3
2105L03-11° 31.7 2.5 190.1 26.8 0.5 196.3 0.1 25.6 5.7 0.8 47.6
2105L03-12° 38.3 3.1 166.8 43.5 0.8 176.9 0.3 28.8 9.2 0.8 54.5
2105L03-16° 42.3 3.4 267.6 81.6 0.8 286.4 0.3 50.2 7.4 0.8 49.7
2105L03-19° 46.2 3.7 272.8 84.3 0.8 292.2 0.3 55.7 6.8 0.8 48.7
2105L03-21° 47.8 3.8 260.6 51.7 1.3 2725 0.2 51.7 4.2 0.7 42.7
2105L03-23° 42.2 3.4 2629 68.5 1.1 278.7 0.3 46.1 4.1 0.7 41.5
2105L03-24° 51.1 4.1 3299 57.0 0.9 343.0 0.2 69.0 4.1 0.7 41.6
2105103-28°  43.2 35 472.7 1275 058 502.0 03 88.6 5.7 058 47.2

10sL03 46.1 3.7 313.3 72.5 0.9 330.0 0.2 63.8 7.6 0.8 50.7 8.6
z10SL04-1 39.4 3.1 155.4 31.7 1.0 162.7 0.2 27.1 8.5 0.8 53.6

z10SL04-2 57.3 4.6 225.1 30.3 0.6 2321 0.1 57.9 11.2 0.8 59.1

z10SL04-3 42.3 3.4 179.7 32.8 0.8 187.3 0.2 34.9 14.6 0.8 63.7

z10SL04-4 58.1 4.6 403.5 48.1 0.5 414.6 0.1 98.8 6.1 0.8 47.2

z10SL04-5 40.9 3.3 226.5 34.6 0.8 234.4 0.2 39.2 5.5 0.8 47.0

10SL04 47.6 3.8 238.0 35.5 0.7 246.2 0.2 51.6 9.2 0.8 54.1 9.3
z10SL05-1 49.8 4.0 472.7 37.1 0.9 481.2 0.1 102.2 9.2 0.8 54.5

z10SL05-2 40.3 3.2 374.7 51.6 1.1 386.6 0.1 67.1 10.1 0.8 57.0

z10SL05-3 55.2 4.4 159.5 35.1 0.3 167.6 0.2 40.8 14.0 0.8 63.0

z10SL05-4 48.9 3.9 156.7 47.3 0.4 167.6 0.3 34.4 7.6 0.8 52.3

z10SL05-5 45.2 3.6 297.7 47.1 0.5 308.5 0.2 60.5 12.7 0.8 58.8

210SL05-7° 40.3 3.2 420.9 77.3 0.6 438.7 0.2 70.8 5.1 0.7 44.0
2105SL05-10° 49.5 4.0 344.4 80.8 0.7 363.0 0.2 78.2 11.9 0.8 59.5
2105L05-11° 48.4 3.9 444.3 87.0 0.9 464.3 0.2 98.6 13.0 0.8 62.3
2105SL05-14° 39.9 3.2 357.3 49.2 1.0 368.6 0.1 64.1 12.1 0.8 60.1
2105SL05-15° 37.7 3.0 533.7 56.4 0.6 546.7 0.1 87.3 8.6 0.8 53.1
2105SL05-18° 32.9 2.6 684.7 38.6 0.8 693.6 0.1 93.5 5.9 0.8 46.9
2105SL05-19° 48.4 3.9 318.6 44.7 0.6 3289 0.1 68.6 10.5 0.8 57.1
210SL05-25° 35.8 2.9 325.1 311 0.3 3323 0.1 48.8 6.2 0.8 47.2
2105SL05-26° 42.2 3.4 203.3 48.4 0.9 2145 0.2 36.9 53 0.8 46.7

10SL05 43.9 3.5 363.8 52.3 0.7 375.9 0.2 68.0 9.5 0.8 54.5 6.4
z10SL06-1 47.1 3.8 246.7 39.2 1.0 255.8 0.2 48.6 5.2 0.7 44.9

210SL06-2 55.8 4.5 291.5 49.7 0.9 303.0 0.2 67.8 4.7 0.7 44.0

210SL06-3 53.4 4.3 339.2 48.0 0.6 350.2 0.1 79.0 7.7 0.8 52.5

10SL06 52.1 4.2 292.5 45.6 0.9 303.0 0.2 65.2 5.9 0.8 47.1 4.5
210SL07-1 48.0 3.8 268.8 96.5 0.6 291.0 0.4 60.7 9.8 0.8 59.4

z10SL07-2 49.6 4.0 194.2 117.4 0.6 221.3 0.6 47.8 11.1 0.8 60.9

z10SL07-3 64.8 5.2 259.9 1721 0.8 299.5 0.7 82.8 9.0 0.8 55.6

z10SL07-4 86.6 6.9 66.1 45.7 0.4 76.6 0.7 26.8 5.5 0.7 45.9

z10SL07-5 47.8 3.8 71.0 30.9 0.4 78.1 0.4 15.6 7.7 0.8 50.8

10sL07 59.4 4.7 172.0 92.5 0.6 193.3 0.6 46.7 8.6 0.8 54.5 16.8
z10SL08-1 78.5 6.3 507.7 135.5 1.2 538.9 0.3 172.4 6.2 0.8 46.3

z10SL08-2 41.9 3.4 436.0 57.3 1.6 449.2 0.1 75.4 4.8 0.7 43.8
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4. Table of Replicate Silvretta Zircon (U-Th)/He Analyses

Sample® Age Std. Error U Th Sm U], Th/U He Mass Ft ESR Std. Dev.
Ma) _ @20,Ma)”  @pm)  (ppm) _ (ppm) __ (ppm)’ (mollg) __ (ng) (um) (1o, Ma)®

Silvretta nappe, cont.

z10SL08-3 54.8 4.4 119.2 38.0 1.0 128.0 0.3 28.2 5.1 0.7 44.8

z10SL08-4 57.8 4.6 264.8 149.3 0.4 299.1 0.6 74.1 9.5 0.8 56.5

z10SL08-5 70.8 5.7 255.5 55.3 1.3 268.2 0.2 77.4 5.9 0.8 46.2

10sL08 60.8 4.9 316.6 87.1 1.1 336.7 0.3 85.5 6.3 0.8 47.5 14.3
z10SL09-1 39.7 3.2 149.7 65.3 1.5 164.8 0.4 26.8 6.2 0.8 47.5

z10SL09-2 45.5 3.6 178.2 60.0 1.1 192.0 0.3 35.8 5.8 0.8 47.8

z10SL09-3 67.3 5.4 195.0 334 0.6 202.7 0.2 58.1 8.5 0.8 54.3

z10SL09-4 62.4 5.0 217.4 63.4 1.0 232.0 0.3 61.5 8.4 0.8 54.0

z10SL09-5 60.2 4.8 269.0 32.2 0.9 276.4 0.1 69.6 7.3 0.8 50.6

210SL09-8° 41.2 3.3 3919 43.5 1.4 401.9 0.1 67.2 5.4 0.8 45.6

210SL09-9° 34.8 2.8 181.3 31.8 0.8 188.6 0.2 26.8 6.0 0.8 46.7
210SL09-10° 46.1 3.7 240.5 39.7 1.1 249.6 0.2 48.4 8.1 0.8 52.0
210SL09-11° 52.6 4.2 570.9 79.4 0.9 589.2 0.1 128.3 6.7 0.8 48.8
210SL09-15° 57.8 4.6 183.0 125.7 0.8 2119 0.7 53.6 13.4 0.8 61.9
210SL09-18° 37.2 3.0 263.4 47.8 0.7 274.4 0.2 40.9 4.7 0.7 44.0
2105L09-20° 44.2 3.5 537.3 36.6 0.5 545.7 0.1 95.1 4.3 0.7 41.4
2105L09-23° 45.7 3.66 112.4 22.7 0.7 117.6 0.20 22.7 8.62 0.78 52.95
2105L09-29° 33.2 2.7 304.9 63.3 0.5 319.5 0.2 45.5 9.6 0.8 56.5
2105L09-30° 51.1 4.1 318.4 95.0 2.0 340.3 0.3 74.8 11.6 0.8 56.9

10SL09 47.9 3.8 274.2 56.0 1.0 287.1 0.2 57.0 7.6 0.8 50.7 10.4
2105L11-1 36.4 2.9 170.0 243 05 175.6 0.1 27.2 9.1 058 54.4

z10SL11-2 60.6 4.8 334.2 80.1 1.7 352.6 0.2 89.1 7.0 0.8 50.4

z10SL11-3 34.8 2.8 161.4 34.7 0.6 169.4 0.2 25.4 10.8 0.8 56.9

z10SL11-5 47.8 3.8 568.1 79.0 0.9 586.3 0.1 112.4 4.1 0.7 43.9

10SL11 44.9 3.6 308.4 54.5 0.9 321.0 0.2 63.5 7.7 0.8 51.4 12.0

“For location and elevation data see Table 1

®Standard error of 8% (20) based on reproducibility of internal lab standards
“[U]e =[U]+[Th]0.235+[Sm]0.005 (e.g., Shuster et al., 2006)
9Standard deviation (10) of replicate analyses

¢ LA-ICP-MS depth profiling also completed on zircon aliquot; see Appendix C for laser ablation depth profiles
Italics indicate mean values of replicate analyses
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Appendix A: Replicate Zircon and Apatite (U-Th)/He Analyses

Replicate analyses of zircon and apatite (U-Th)/He aliquots are presented in the following
tables. These tables are separated into zircon and apatite analyses, Table A and B respectively.
Locations for samples reported in the tables may be found in Tables 1 and 2 of the main body of

the thesis.
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A. Table of Replicate Zircon (U-Th)/He Analyses

Sample® Age Std. Error U Th Sm U], Th/U He Mass Ft ESR Std. Dev.
(Ma)  (:26,Ma)"  (ppm)  (ppm)  (ppm) _ (pPm)’ (nmol/g) __ (ug) (um) (1o, Ma)’

Silvretta nappe

210SL01-1 43.9 35 385.4 37.8 0.9 394.1 0.1 73.7 7.8 0.8 54.3

210SL01-2 58.5 4.7 217.0 53.0 3.7 229.3 0.2 53.6 3.8 0.7 43.7

210SL01-3 428 3.4 243.6 343 0.5 251.5 0.1 45.7 71 0.8 53.9

210SL01-4 69.3 55 217.8 41.2 0.6 227.3 0.2 65.8 7.2 0.8 50.6

210SL01-5 52.8 42 379.5 62.4 1.0 393.9 0.2 84.3 55 0.7 455

10SL01 53.5 4.3 288.7 45.7 1.3 299.2 0.2 64.6 6.3 0.8 49.6 11.0
210SL02-1 66.4 5.3 255.4 37.9 0.8 264.1 0.1 72.4 6.4 0.8 48.0

210SL02-2 34.2 2.7 111.8 35.2 0.9 119.9 03 16.2 4.8 0.7 429

210SL02-3 46.9 3.8 216.4 35.1 0.7 224.5 0.2 44.0 7.1 0.8 50.9

210SL02-4 31.0 2.5 142.3 51.0 0.9 154.1 0.4 19.5 6.5 0.8 471

210SL02-5 40.4 3.2 268.7 44.1 0.9 278.8 0.2 44.9 4.9 0.7 43.2

105L02 43.8 3.5 198.9 40.7 0.8 208.3 0.2 39.4 6.0 0.8 46.4 14.1
210SL03-1 63.5 5.1 216.6 44.6 0.6 226.8 0.2 63.5 13.1 0.8 62.7

210SL03-2 52.1 4.2 290.3 60.0 1.1 304.1 0.2 69.9 14.1 0.8 63.4

2105L03-3 43.9 35 378.7 40.6 0.5 388.0 0.1 71.9 7.8 0.8 52.6

210SL03-4 55.5 4.4 296.9 53.1 2.0 309.2 0.2 733 9.3 0.8 55.0

210SL03-5 54.5 4.4 320.8 88.8 0.9 341.2 0.3 77.1 6.7 0.8 495

2105L03-6° 46.8 3.7 7224 218.4 0.5 772.7 03 151.1 7.4 0.8 51.0

2105L03-7° 32.0 26 250.9 415 1.0 260.5 0.2 35.1 8.3 0.8 52.3
z10SL03-11° 317 2.5 190.1 26.8 0.5 196.3 0.1 25.6 5.7 0.8 476
z10SL03-12° 383 3.1 166.8 435 0.8 176.9 0.3 28.8 9.2 0.8 54.5
z10SL03-16° 423 3.4 267.6 81.6 0.8 286.4 0.3 50.2 7.4 0.8 49.7
z10SL03-19°  46.2 3.7 272.8 84.3 0.8 292.2 0.3 55.7 6.8 0.8 48.7
z10SL03-21°  47.8 3.8 260.6 51.7 1.3 272.5 0.2 51.7 42 0.7 42.7
z10SL03-23° 422 3.4 262.9 68.5 1.1 278.7 03 46.1 4.1 0.7 415
z10SL03-24°  51.1 4.1 329.9 57.0 0.9 343.0 0.2 69.0 4.1 0.7 416
z10SL03-28° 432 35 4727 127.5 0.8 502.0 0.3 88.6 5.7 0.8 47.2

105L03 46.1 3.7 313.3 72.5 0.9 330.0 0.2 63.8 7.6 0.8 50.7 8.6
210SL04-1 39.4 3.1 155.4 31.7 1.0 162.7 0.2 27.1 8.5 0.8 53.6

2105L04-2 57.3 4.6 225.1 30.3 0.6 232.1 0.1 57.9 11.2 0.8 59.1

210SL04-3 42.3 3.4 179.7 32.8 0.8 187.3 0.2 34.9 14.6 0.8 63.7

2105L04-4 58.1 4.6 403.5 48.1 0.5 414.6 0.1 98.8 6.1 0.8 47.2

210SL04-5 40.9 33 226.5 34.6 0.8 234.4 0.2 39.2 55 0.8 47.0

10SL04 47.6 3.8 238.0 35.5 0.7 246.2 0.2 51.6 9.2 0.8 54.1 9.3
210SL05-1 49.8 4.0 472.7 37.1 0.9 481.2 0.1 102.2 9.2 0.8 54.5

210SL05-2 40.3 3.2 374.7 51.6 1.1 386.6 0.1 67.1 10.1 0.8 57.0

z10SL05-3 55.2 4.4 159.5 35.1 0.3 167.6 0.2 40.8 14.0 0.8 63.0

210SL05-4 48.9 3.9 156.7 47.3 0.4 167.6 0.3 34.4 7.6 0.8 52.3

2105L05-5 45.2 3.6 297.7 471 0.5 308.5 0.2 60.5 12.7 0.8 58.8

210SL05-7° 40.3 3.2 420.9 77.3 0.6 438.7 0.2 70.8 5.1 0.7 44.0
z10SL05-10°  49.5 4.0 344.4 80.8 0.7 363.0 0.2 78.2 11.9 0.8 59.5
210SL05-11° 484 3.9 4443 87.0 0.9 464.3 0.2 98.6 13.0 0.8 62.3
z10SL05-14°  39.9 3.2 357.3 49.2 1.0 368.6 0.1 64.1 12.1 0.8 60.1
210SL05-15°  37.7 3.0 533.7 56.4 0.6 546.7 0.1 87.3 8.6 0.8 53.1
210SL05-18°  32.9 2.6 684.7 38.6 0.8 693.6 0.1 93.5 5.9 0.8 46.9
210SL05-19° 484 3.9 318.6 44.7 0.6 328.9 0.1 68.6 10.5 0.8 57.1
z10SL05-25°  35.8 2.9 325.1 31.1 0.3 3323 0.1 48.8 6.2 0.8 47.2
210SL05-26°  42.2 3.4 203.3 48.4 0.9 214.5 0.2 36.9 5.3 0.8 46.7

10SL05 43.9 3.5 363.8 52.3 0.7 375.9 0.2 68.0 9.5 0.8 54.5 6.4
210SL06-1 47.1 3.8 246.7 39.2 1.0 255.8 0.2 48.6 5.2 0.7 44.9

210SL06-2 55.8 45 291.5 49.7 0.9 303.0 0.2 67.8 4.7 0.7 44.0

210SL06-3 53.4 43 339.2 48.0 0.6 350.2 0.1 79.0 7.7 0.8 52.5

105L06 52.1 4.2 292.5 45.6 0.9 303.0 0.2 65.2 5.9 0.8 47.1 4.5
z10SL07-1 48.0 3.8 268.8 96.5 0.6 291.0 0.4 60.7 9.8 0.8 59.4

210SL07-2 49.6 4.0 194.2 117.4 0.6 221.3 0.6 47.8 11.1 0.8 60.9

z10SL07-3 64.8 5.2 259.9 172.1 0.8 299.5 0.7 82.8 9.0 0.8 55.6

210SL07-4 86.6 6.9 66.1 45.7 0.4 76.6 0.7 26.8 5.5 0.7 45.9

210SL07-5 47.8 3.8 71.0 30.9 0.4 78.1 0.4 15.6 7.7 0.8 50.8

10SL07 59.4 4.7 172.0 92.5 0.6 193.3 0.6 46.7 8.6 0.8 54.5 16.8
210SL08-1 78.5 6.3 507.7 135.5 1.2 538.9 0.3 172.4 6.2 0.8 46.3

210SL08-2 41.9 3.4 436.0 57.3 1.6 449.2 0.1 75.4 4.8 0.7 43.8
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A. Table of Replicate Zircon (U-Th)/He Analyses, cont.

Sample® Age Std. Error U Th Sm U], Th/U He Mass Ft ESR Std. Dev.
(Ma)  (:26,Ma)"  (ppm)  (ppm)  (ppm) _ (pPm)’ (nmol/g) __ (ug) (um) (1o, Ma)’

Silvretta nappe, cont.
2105L08-3 54.8 44 119.2 38.0 1.0 128.0 0.3 28.2 5.1 0.7 44.8
2105SL08-4 57.8 4.6 264.8 149.3 0.4 299.1 0.6 74.1 9.5 0.8 56.5
2105L08-5 70.8 5.7 255.5 55.3 1.3 268.2 0.2 77.4 5.9 0.8 46.2
10SL08 60.8 4.9 316.6 87.1 1.1 336.7 0.3 85.5 6.3 0.8 47.5 14.3
210SL09-1 39.7 3.2 149.7 65.3 1.5 164.8 0.4 26.8 6.2 0.8 47.5
2105L09-2 455 3.6 178.2 60.0 1.1 192.0 0.3 35.8 5.8 0.8 47.8
2105L09-3 67.3 5.4 195.0 33.4 0.6 202.7 0.2 58.1 8.5 0.8 54.3
2105L09-4 62.4 5.0 217.4 63.4 1.0 232.0 0.3 61.5 8.4 0.8 54.0
210SL09-5 60.2 4.8 269.0 32.2 0.9 276.4 0.1 69.6 7.3 0.8 50.6
2105SL09-8° 41.2 3.3 391.9 435 1.4 401.9 0.1 67.2 5.4 0.8 45.6
2105L09-9° 34.8 2.8 181.3 31.8 0.8 188.6 0.2 26.8 6.0 0.8 46.7
z10SL09-10°  46.1 3.7 240.5 39.7 1.1 249.6 0.2 48.4 8.1 0.8 52.0
z10SL09-11° 52,6 4.2 570.9 79.4 0.9 589.2 0.1 128.3 6.7 0.8 48.8
z10SL09-15°  57.8 4.6 183.0 125.7 0.8 211.9 0.7 53.6 13.4 0.8 61.9
z10SL09-18°  37.2 3.0 263.4 47.8 0.7 274.4 0.2 40.9 4.7 0.7 44.0
z10SL09-20°  44.2 3.5 537.3 36.6 0.5 545.7 0.1 95.1 4.3 0.7 41.4
z105L09-23°  45.7 3.66 112.4 22.7 0.7 117.6 0.20 22.7 8.62 0.78 52.95
z10SL09-29°  33.2 2.7 304.9 63.3 0.5 319.5 0.2 455 9.6 0.8 56.5
z10SL09-30°  51.1 4.1 318.4 95.0 2.0 340.3 0.3 74.8 11.6 0.8 56.9
105L09 47.9 3.8 274.2 56.0 1.0 287.1 0.2 57.0 7.6 0.8 50.7 10.4
z10SL11-1 36.4 2.9 170.0 24.3 0.5 175.6 0.1 27.2 9.1 0.8 54.4
210SL11-2 60.6 4.8 334.2 80.1 1.7 352.6 0.2 89.1 7.0 0.8 50.4
210SL11-3 34.8 2.8 161.4 34.7 0.6 169.4 0.2 25.4 10.8 0.8 56.9
z10SL11-5 47.8 3.8 568.1 79.0 0.9 586.3 0.1 112.4 4.1 0.7 43.9
10SL11 44.9 3.6 308.4 54.5 0.9 321.0 0.2 63.5 7.7 0.8 51.4 12.0
Z09ENO1-1 31.7 1.9 122.7 32.4 0.5 130.1 0.3 15.7 2.9 0.7 38.4
Z09ENO1-2 33.4 2.0 156.4 73.9 0.5 173.4 0.5 21.0 2.8 0.7 34.3
Z09ENO1-3 30.3 1.8 320.6 65.0 0.6 3355 0.2 42.2 5.8 0.8 49.9
09ENO1 31.8 1.9 199.9 57.1 0.5 213.0 0.3 26.3 3.8 0.7 40.9 1.5
Grosina nappe
208IGT01-1 49.4 3.9 583.3 124.8 1.0 612.0 0.2 126.4 6.8 0.8 51.0
208IGT01-2 52.7 4.2 289.4 71.9 0.7 306.0 0.2 63.6 4.3 0.7 42.0
2081GT01-3 54.4 44 561.3 110.3 2.0 586.7 0.2 135.1 8.1 0.8 53.2
08IGTO01 52.2 4.2 478.0 102.3 1.2 501.6 0.2 108.4 6.4 0.8 48.8 2.6
2081GT02-1 41.0 3.3 464.3 120.9 1.5 492.1 0.3 76.9 2.4 0.7 38.3
z081GT02-2 48.1 3.8 311.7 40.2 1.0 321.0 0.1 61.3 3.8 0.7 42,6
2081GT02-3 54.5 4.4 142.9 28.5 1.4 149.4 0.2 32.2 3.2 0.7 421
z081GT02-4 42.5 3.4 158.0 27.4 0.5 164.3 0.2 31.7 18.2 0.8 73.2
2081GT02-5 46.8 3.7 870.6 37.2 0.9 879.1 0.0 168.0 5.3 0.8 46.1
08IGT02 46.6 3.7 389.5 50.8 1.1 401.2 0.2 74.0 6.6 0.8 48.5 5.3
2101GT01-1 31.2 1.9 1337.2 124.5 1.4 1365.8 0.1 169.5 4.8 0.7 43.0
2101GT01-2 29.6 1.8 1187.8 89.3 25.2 1208.4 0.1 135.3 2.4 0.7 37.2
10IGT01 30.4 1.8 1262.5 106.9 13.3 1287.1 0.1 152.4 3.6 0.7 40.1 1.1
z101GT02-1 30.3 1.8 126.2 60.8 1.3 140.2 0.5 16.5 4.0 0.7 40.8
2101GT02-2 47.6 2.9 237.6 96.4 0.5 259.8 0.4 47.3 3.4 0.7 38.8
z101GT02-3 35.6 21 105.6 32.5 0.3 113.1 0.3 16.0 4.6 0.7 433
10IGT02 37.8 2.3 156.5 63.2 0.7 171.0 0.4 26.6 4.0 0.7 41.0 8.9
Campo nappe
208IGT04-1 36.3 2.9 118.1 57.0 1.2 131.2 0.5 19.0 5.6 0.7 44.4
2081GT04-2 32,6 2.6 165.9 10.2 0.7 168.2 0.1 21.3 4.2 0.7 40.0
2081GT04-3 43.7 3.5 389.2 56.3 0.9 402.2 0.1 72.6 6.4 0.8 48.7
208IGT04-4 31.7 2.5 130.0 35.2 1.0 138.1 0.3 17.0 3.6 0.7 40.3
208IGT04-5 33.9 2.7 255.4 47.6 0.5 266.3 0.2 32.8 2.4 0.7 33.8
08IGT04 35.6 2.9 211.7 41.2 0.8 221.2 0.2 325 4.5 0.7 41.4 4.8
z101GT03-1 34.6 2.1 162.2 93.6 1.6 183.8 0.6 25.4 3.7 0.7 44.1
2101GT03-2 36.1 2.2 103.2 55.1 3.0 115.9 0.5 17.0 4.5 0.8 47.2
z101GT03-3 29.7 1.8 141.1 51.5 0.7 152.9 0.4 18.5 4.4 0.8 46.5
z101GT03-4 445 3.6 306.3 40.6 2.9 315.6 0.1 55.4 43 0.7 41.8
z101GT03-5 44.1 3.5 268.2 48.2 1.0 279.3 0.2 48.2 4.1 0.7 41.0
10IGT03 37.8 2.6 196.2 57.8 1.8 209.5 0.4 32.9 4.2 0.7 44.1 6.4
2101GT04-1 34.8 2.8 166.7 46.7 0.9 177.5 0.3 26.5 10.3 0.8 56.8
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A. Table of Replicate Zircon (U-Th)/He Analyses, cont.

Sample® Age Std. Error U Th Sm U], Th/U He Mass Ft ESR Std. Dev.
(Ma)  (:26,Ma)"  (ppm)  (ppm)  (ppm) _ (pPm)’ (nmol/g) __ (ug) (um) (1o, Ma)’
Campo nappe, cont.
z101GT04-2 26.7 2.1 197.6 25.6 0.4 203.5 0.1 223 5.7 0.8 47.7
2101GT04-3 383 31 202.0 148.7 0.8 236.2 0.7 353 43 0.7 41.5
10I1GT04 33.3 2.7 188.8 73.7 0.7 205.7 0.4 28.0 6.8 0.8 48.7 6.0
Bernina nappe
208BP01-1 30.4 2.4 260.2 36.5 0.2 268.6 0.1 34.8 7.6 0.8 54.6
z08BP01-2 355 2.8 342.6 75.0 1.0 359.8 0.2 52.8 5.8 0.8 48.9
208BP01-3 31.6 2.5 194.2 34.7 0.4 202.2 0.2 26.9 6.2 0.8 52.1
08BP0O1 32.5 2.6 265.7 48.7 0.5 276.9 0.2 38.1 6.6 0.8 51.8 2.7
z08BP03-1 334 2.7 165.8 34.8 0.5 173.8 0.2 253 10.1 0.8 60.6
208BP03-2 30.0 2.4 280.0 27.4 0.6 286.3 0.1 34.9 5.1 0.8 46.3
z08BP03-3 45.7 3.7 181.1 67.3 0.7 196.5 0.4 36.2 4.1 0.7 45.3
208BP03-4 30.0 2.4 371.9 53.5 0.9 384.2 0.1 441 33 0.7 385
08BP03 34.8 2.8 249.7 45.7 0.7 260.2 0.2 35.2 57 0.8 47.7 7.5
2088P04-1° 88.6 7.1 71.3 26.5 13 77.4 0.4 29.7 9.0 0.8 58.6
z08BP04-2 30.1 2.4 165.3 65.9 0.3 180.5 0.4 244 16.2 0.8 70.4
208BP04-3 34.8 2.8 82.4 15.8 1.0 86.0 0.2 13.9 255 0.9 84.2
z08BP04-4 35.4 2.8 164.6 24.6 0.7 170.2 0.1 28.4 34.7 0.9 93.1
08BP04 334 2.7 137.4 35.5 0.7 145.6 0.2 22.2 25.4 0.9 82.6 2.9
208BP05-1 36.2 2.9 141.2 32.2 0.6 148.6 0.2 22.0 6.1 0.8 47.4
z08BP05-2 35.2 2.8 164.9 335 0.5 172.6 0.2 25.7 9.1 0.8 53.2
208BP05-3 37.6 3.0 205.3 59.1 1.1 218.9 0.3 34.1 6.9 0.8 49.6
08BP0O5 36.3 2.9 170.5 41.6 0.7 180.0 0.2 27.3 7.4 0.8 50.1 1.2
z08BP06-1 343 2.7 517.5 156.7 0.7 553.6 0.3 77.4 6.3 0.8 46.8
208BP06-2 40.8 33 520.0 179.3 1.9 561.3 0.3 92.5 53 0.7 45.7
z08BP06-3 39.3 3.1 407.5 144.0 1.1 440.6 0.4 69.6 5.3 0.7 447
z08BP06-4 41.4 33 514.0 241.9 1.2 569.7 0.5 104.1 14.4 0.8 64.5
z08BP06-5 42.1 34 408.8 107.0 0.4 433.4 0.3 79.3 13.6 0.8 59.4
208BP06-6 40.3 3.2 3334 111.8 0.6 359.1 0.3 63.1 11.7 0.8 60.7
08BP0O6 39.7 3.2 450.2 156.8 1.0 486.3 0.3 81.0 9.5 0.8 53.7 2.8
z08BP09-1 35.2 2.8 264.1 28.1 0.3 270.5 0.1 37.8 5.3 0.7 42.6
208BP09-2 35.2 2.8 186.6 48.7 0.9 197.8 0.3 28.2 6.3 0.8 46.0
z08BP09-3 34.7 2.8 180.3 50.9 0.4 192.1 0.3 26.1 4.4 0.7 41.5
08BP09 35.0 2.8 210.3 42.6 0.6 220.1 0.2 30.7 5.3 0.7 43.4 0.3
z08BP10-1 344 2.8 118.4 28.2 0.2 124.9 0.2 19.1 12.6 0.8 65.9
z08BP10-2 344 2.7 124.2 321 0.3 131.6 0.3 19.0 6.0 0.8 52.2
z08BP10-3 329 2.6 129.5 40.6 0.2 138.8 0.3 19.0 5.9 0.8 50.4
08BP10 33.9 2.7 124.0 33.6 0.2 131.7 0.3 19.0 8.2 0.8 56.2 0.9
208BP11-1 34.0 2.7 276.6 70.5 1.0 292.9 0.3 41.0 6.3 0.8 48.4
z08BP11-2 32.0 2.6 285.7 54.1 11 298.2 0.2 36.6 3.4 0.7 38.9
208BP11-3 41.1 33 220.8 39.8 0.6 230.0 0.2 40.8 10.2 0.8 57.6
z08BP11-4 36.7 29 256.7 50.4 0.5 268.3 0.2 39.7 4.1 0.7 44.9
08BP11 36.0 2.9 260.0 53.7 0.8 272.3 0.2 39.5 6.0 0.8 47.5 3.9
208BP12-1 35.7 2.9 224.0 73.5 0.6 241.0 0.3 38.5 13.9 0.8 68.6
208BP12-2 344 2.8 277.7 49.6 0.7 289.1 0.2 40.9 5.4 0.8 48.0
208BP12-3 345 2.8 293.6 42.2 0.6 303.3 0.1 44.0 6.5 0.8 51.6
08BP12 34.9 2.8 265.1 55.1 0.6 277.8 0.2 41.1 8.6 0.8 56.1 0.7
Julier nappe
208FA17-1 333 2.7 390.4 132.5 0.9 420.9 0.3 60.7 11.2 0.8 59.4
z08FA17-2 384 3.1 372.2 161.0 0.9 409.3 0.4 65.5 5.9 0.8 50.8
208FA17-3 38.2 31 297.3 101.0 13 320.6 0.3 50.4 5.0 0.8 48.2
z08FA17-4 38.0 3.0 191.3 66.2 0.6 206.6 0.3 315 5.1 0.7 44.5
208FA17-5 41.1 33 424.6 141.0 0.8 457.0 0.3 72.5 3.8 0.7 39.8
08FA17 37.8 3.0 335.2 120.3 0.9 362.9 0.4 56.1 6.2 0.8 48.5 2.8
Err nappe
208FA06-2 389 31 321.2 48.1 0.5 3323 0.1 55.2 9.1 0.8 55.1
z08FA06-3 56.6 4.5 308.3 42.5 0.5 318.0 0.1 81.0 18.6 0.8 69.3
208FA06-4 43.5 35 310.5 53.1 0.5 322.7 0.2 59.1 8.6 0.8 52.4
z08FA06-5 40.8 3.3 3254 48.6 0.5 336.6 0.1 56.5 6.0 0.8 47.7
08FA06 37.9 3.0 448.0 70.4 0.5 464.2 0.2 69.6 7.3 0.8 51.1 6.5
208FA07-1 336 2.7 732.0 113.0 0.4 758.0 0.2 105.4 6.8 0.8 48.9
z08FA07-2 39.0 3.1 462.0 72.9 0.3 478.8 0.2 77.2 5.5 0.8 49.0
208FA07-3 37.1 3.0 251.2 41.7 0.2 260.8 0.2 43.4 15.2 0.8 69.6
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A. Table of Replicate Zircon (U-Th)/He Analyses, cont.

Sample® Age Std. Error U Th Sm U], Th/U He Mass Ft ESR Std. Dev.
(Ma)  (:26,Ma)"  (ppm)  (ppm)  (ppm) _ (pPm)’ (nmol/g) __ (ug) (um) (1o, Ma)’
Err nappe, cont.
z08FA07-4 31.6 2.5 539.6 72.0 1.0 556.1 0.1 70.0 5.0 0.7 43.0
208FA07-5 48.4 3.9 255.4 52.7 0.6 267.5 0.2 52.2 4.1 0.7 44.9
08FA07 44.9 3.6 316.3 48.1 0.5 327.4 0.2 62.9 10.6 0.8 56.1 8.0
Corvatsch nappe
z10ENO1-1 27.1 2.2 589.5 174.6 13 629.7 0.3 76.0 17.0 0.8 67.2
z10EN01-2 31.4 2.5 454.0 147.4 1.0 488.0 0.3 67.7 14.2 0.8 64.9
z10ENO1-3 31.8 2.5 366.6 1223 1.0 394.7 0.3 55.3 15.6 0.8 64.3
10ENO1 30.1 24 470.0 148.1 1.1 504.1 0.3 66.3 15.6 0.8 65.5 2.6
z10EN02-1 329 2.6 405.9 131.9 0.7 436.3 0.3 58.9 5.2 0.8 48.2
z10ENO02-2 29.8 2.4 386.7 106.4 0.9 411.2 0.3 51.2 6.5 0.8 51.3
z10EN02-3 30.7 2.5 337.7 118.3 6.2 365.0 0.4 47.0 5.9 0.8 52.0
10ENO2 31.1 2.5 376.8 118.9 2.6 404.1 0.3 52.4 59 0.8 50.5 1.6
z10ENO3-1 294 2.3 251.1 82.4 11 270.1 0.3 325 4.6 0.8 48.0
z10EN03-2 30.0 2.4 445.8 143.3 0.6 478.8 0.3 58.6 4.5 0.8 473
z10ENO3-3 29.2 2.3 392.3 136.3 0.9 423.7 0.3 49.9 4.3 0.7 45.4
10ENO3 29.5 24 363.1 120.7 0.9 390.9 0.3 47.0 4.5 0.8 46.9 0.4
z10ENO04-1 27.3 22 381.2 307.1 0.8 451.9 0.8 49.3 3.7 0.7 449
210EN04-2 32.8 2.6 480.6 164.2 1.4 518.4 0.3 68.0 3.6 0.7 442
z10ENO04-3 29.7 24 342.0 140.7 1.1 374.4 0.4 439 32 0.7 42.6
10ENO4 29.9 2.4 401.3 204.0 1.1 448.2 0.5 53.7 3.5 0.7 43.9 2.8
z10EN05-1' 60.3 4.8 311.7 146.8 1.0 345.5 0.5 81.6 35 0.7 41.5
z10ENO5-2 29.8 24 464.6 144.2 1.2 497.8 0.3 59.3 3.9 0.7 44.0
z10ENO5-3 36.0 2.9 256.6 111.6 1.5 282.3 0.4 43.2 7.2 0.8 55.2
z10ENO5-4 36.9 3.0 3338 151.2 1.0 368.6 0.5 55.5 6.4 0.8 473
z10ENO5-5 329 2.6 424.7 125.6 0.8 453.6 0.3 60.8 6.2 0.8 46.7
10ENO5 33.9 2.7 369.9 133.1 1.1 400.6 0.4 54.7 59 0.8 48.3 3.2
z10EN06-1 38.3 3.1 284.1 124.7 0.7 312.8 0.4 48.3 4.1 0.7 45.5
210EN06-2 31.4 2.5 527.3 190.7 1.0 571.2 0.4 68.2 2.3 0.7 38.5
z10EN06-3 34.5 2.8 266.7 128.7 2.0 296.3 0.5 41.9 4.5 0.8 48.0
z10EN06-4 41.7 33 264.0 99.8 0.9 287.0 0.4 53.0 12.6 0.8 65.4
10ENO6 36.5 2.9 335.5 136.0 1.2 366.8 0.4 52.9 5.9 0.8 49.4 4.5
z10ENO7-1 30.1 24 388.8 121.5 0.5 416.8 0.3 52.6 5.4 0.8 51.8
z10ENO7-2 30.3 2.4 511.0 158.4 0.7 547.4 0.3 65.8 3.6 0.7 431
z10ENO7-3 30.9 2.5 265.7 95.4 0.9 287.7 0.4 35.2 34 0.7 43.0
10ENO7 30.4 24 388.5 125.1 0.7 417.3 0.3 51.2 4.1 0.7 46.0 0.4
z10EN08-1 21.2 13 3433 352.3 0.7 424.4 1.0 39.2 10.0 0.8 61.4
z10EN08-2 336 2.0 268.0 325.8 0.9 343.0 1.2 47.5 5.6 0.8 49.6
z10ENO8-3 27.1 1.6 631.3 132.3 0.4 661.7 0.2 68.4 3.4 0.7 385
z10EN08-4 30.7 2.5 564.4 227.1 0.9 616.6 0.4 75.0 43 0.7 433
z10ENO8-5 23.7 1.9 674.5 514.6 1.7 793.0 0.8 80.7 10.8 0.8 58.2
10ENO8 27.2 1.9 496.3 3104 0.9 567.7 0.7 62.2 6.8 0.8 50.2 5.0
Engadine Window (Penninic nappes)
z208TS04-1 21.0 1.7 120.2 59.4 0.0 133.9 0.5 11.4 4.5 0.7 46.6
208TS04-2 27.9 2.2 174.1 10.0 0.0 176.4 0.1 21.2 8.7 0.8 57.2
208TS04-4 30.8 2.5 220.4 26.2 0.3 226.4 0.1 28.7 5.8 0.8 48.1
208TS04-5 32.2 2.6 216.6 19.1 0.3 221.0 0.1 29.0 5.4 0.8 46.3
08TS04 28.0 22 182.8 28.7 0.2 189.4 0.2 22.6 6.1 0.8 49.5 5.0
208TS05-1 242 1.9 317.3 24.1 0.0 3229 0.1 31.0 3.0 0.7 425
208TS05-2 28.2 23 166.9 29.4 0.0 173.7 0.2 20.8 6.5 0.8 54.6
208TS05-3 434 35 332.5 439 0.0 342.6 0.1 60.5 4.6 0.8 46.3
208TS05-4 31.7 2.5 139.3 22.8 0.4 144.6 0.2 17.9 4.0 0.7 40.6
208TS05-5 31.5 2.5 161.4 18.2 0.4 165.5 0.1 21.7 7.0 0.8 49.9
087505 31.8 2.5 223.5 27.7 0.2 229.9 0.1 30.4 5.0 0.8 46.8 7.2
208TS07-1 36.4 2.9 179.4 92.7 0.0 200.8 0.5 31.0 7.2 0.8 54.7
z08TS07-2 30.5 2.4 217.1 64.4 0.0 232.0 0.3 294 5.8 0.8 50.0
208TS07-3 29.6 2.4 233.5 100.1 0.0 256.5 0.4 28.9 2.5 0.7 38.5
z08TS07-4 35.8 29 297.2 52.6 1.0 309.3 0.2 41.6 3.0 0.7 36.8
087507 33.1 2.6 231.8 77.5 0.3 249.6 0.4 32.7 4.6 0.7 45.0 3.5
208TS08-1 323 2.6 204.2 66.3 0.0 219.4 0.3 30.1 8.0 0.8 54.9
z08TS08-2 295 2.4 191.4 79.3 0.0 209.7 0.4 26.0 6.4 0.8 52.6
208TS08-3 45.1 3.6 295.6 101.3 0.0 319.0 0.3 59.7 5.8 0.8 49.9
z08TS08-4 34.8 2.8 211.1 76.8 1.0 228.8 0.4 31.2 4.3 0.7 41.9
208TS08-5 35.3 2.8 296.2 100.2 0.8 319.3 0.3 45.1 5.2 0.7 443
08TS08 35.4 2.8 239.7 84.8 0.4 259.2 0.4 38.4 5.9 0.8 48.7 5.9
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A. Table of Replicate Zircon (U-Th)/He Analyses, cont.

Sample® Age Std. Error U Th Sm U], Th/U He Mass Ft ESR Std. Dev.
(Ma)  (:26,Ma)"  (ppm)  (ppm)  (ppm) _ (pPm)’ (nmol/g) __ (ug) (um) (1o, Ma)’

Engadine window, cont.

208TS09-1 25.6 2.0 272.3 150.6 0.0 307.0 0.6 30.7 36 0.7 420

208T509-2 36.0 2.9 204.8 95.3 0.0 226.7 0.5 34.4 6.1 0.8 53.3

208T509-3 20.4 1.6 747.8 502.8 0.0 863.6 0.7 70.2 35 0.7 446

208T509-4 23.9 1.9 286.6 245.8 2.0 343.2 0.9 35.9 115 0.8 63.2

208TS09-5 21.4 1.7 840.4 394.5 6.7 931.2 0.5 84.1 7.4 0.8 53.8

208T509-6 28.6 2.3 511.4 290.1 2.2 578.2 0.6 64.5 3.6 0.7 41.3

08TS09 26.0 2.1 477.2 279.9 1.8 541.7 0.6 53.3 5.9 0.8 49.7 57
208TS11-2 25.3 2.0 145.7 227 0.0 150.9 0.2 14.9 3.1 0.7 41.0

z08T511-3 27.1 2.2 219.9 45.3 0.0 230.4 0.2 23.8 2.3 0.7 38.1

208T511-4 34.0 2.7 173.2 31.0 0.4 180.3 0.2 23.4 26 0.7 38.2

087511 28.8 2.3 179.6 33.0 0.1 187.2 0.2 20.7 2.7 0.7 39.1 4.6
208T513-1 27.5 2.2 100.7 37.2 0.0 109.2 0.4 11.9 3.9 0.7 43.3

208T513-2 28.0 2.2 351.1 129.9 0.0 381.0 0.4 42.7 4.2 0.7 445

208T513-3 31.8 2.5 707.9 40.5 0.0 717.2 0.1 91.3 35 0.7 43.7

087513 29.1 2.3 386.5 69.2 0.0 402.5 0.3 48.6 3.9 0.7 43.8 2.3
208TS14-1 23.9 1.9 77.5 54.6 0.0 90.1 0.7 9.1 6.7 0.8 54.4

208T514-2 25.5 2.0 191.8 69.9 0.0 207.9 0.4 20.8 3.0 0.7 41.7

208TS14-3 24.0 1.9 263.8 74.3 0.0 280.9 0.3 24.9 1.7 0.7 35.3

087514 24.4 2.0 177.7 66.3 0.0 192.9 0.5 18.2 3.8 0.7 43.8 0.9
Z09EN04-1 29.5 24 272.6 26.0 0.2 278.6 0.1 34.6 6.3 0.8 52.0

Z09EN04-2 27.4 2.2 575.4 87.0 1.6 595.4 0.2 64.4 4.0 0.7 41.9

Z09EN04-3 27.4 2.2 204.7 38.4 1.0 213.6 0.2 22.6 35 0.7 39.5

09EN04 28.1 2.2 350.9 50.5 1.0 362.6 0.1 40.5 4.6 0.7 44.5 1.2

“For location and elevation data see Table 1

®Standard error of 8% (20) based on reproducibility of internal lab standards
“[U]e =[U]+[Th]0.235+[Sm]0.005 (e.g., Shuster et al., 2006)
9Standard deviation (10) of included replicate analyses

€ LA-ICP-MS depth profiling also completed on zircon aliquot; see Appendix C for laser ablation depth profiles
"An outlier replicate analysis was excluded from mean value calculation and standard deviation
Italics indicate mean values of replicate analyses
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B. Table of Replicate Apatite (U-Th)/He Analyses

Sample’  Age  Std. Error U Th Sm [Ule Th/U He Mass Ft ESR  Std. Dev.
(Ma) (#26,Ma2)’ (ppm) (ppm) (ppm) (ppm)° (nmolg)  (ng) (um) 1o, Ma)’
Silvretta nappe
10SLO1-1 15.2 0.9 19.8 4.8 33.4 21.0 0.2 1.0 0.9 0.6 33.8
10SL01-2 18.8 1.1 14.1 9.9 35.5 16.6 0.7 1.0 1.2 0.6 38.2
10SLO01-3 12.9 0.8 21.7 5.4 34.3 23.1 0.2 1.0 1.3 0.6 38.3
10SL01 15.6 0.9 18.5 6.7 34.4 20.2 0.4 1.0 1.1 0.6 36.8 3.0
10SL02-1 129 0.8 16.3 4.6 22.5 17.4 0.3 0.8 1.4 0.6 40.2
10SL02-2 12.5 0.8 111 1.6 20.6 115 0.1 0.5 0.8 0.6 33.3
10SL02-3 17.3 1.0 36.0 15.4 35.7 39.7 0.4 2.7 3.0 0.7 51.8
10SL02 14.2 0.9 21.1 7.2 26.3 22.9 0.3 1.3 1.8 0.6 41.8 2.7
10SL03-1 15.0 0.9 40.3 8.5 31.8 42.4 0.2 2.3 1.5 0.7 41.4
10SL03-2 18.0 1.1 47.1 10.9 34.6 49.7 0.2 3.3 2.1 0.7 45.4
10SL03-3 17.0 1.0 29.7 4.4 28.1 30.9 0.1 2.0 2.5 0.7 47.4
10SL03 16.7 1.0 39.0 7.9 31.5 41.0 0.2 2.5 2.1 0.7 44.7 1.5
10SL04-1 194 1.2 27.0 8.9 42.4 29.3 0.3 1.7 0.7 0.6 32.0
105L04-2° 91.5 5.5 16.6 3.2 52.3 17.6 0.2 5.2 0.9 0.6 34.1
10SL04-3° 3633 21.8 127 74 434 146 06 17.5 1.0 06 353
10SL04-4 19.8 1.2 54.4 5.1 34.7 55.7 0.1 3.8 1.4 0.6 39.3
10SL04-5 15.6 0.9 26.7 3.8 26.3 27.7 0.1 1.5 1.4 0.6 39.6
10SL04 18.2 1.1 36.0 6.0 34.5 37.6 0.2 2.4 1.2 0.6 37.0 2.3
10SLO05-1 15.3 0.9 18.2 2.3 36.6 18.9 0.1 1.1 2.1 0.7 45.7
10SL05-2° 235.7 14.1 36.7 4.0 35.8 37.8 0.1 334 2.2 0.7 44.6
10SL05-3 14.3 0.9 17.0 11.9 29.1 19.9 0.7 1.0 2.2 0.7 45.6
10SL05 14.8 0.9 17.6 7.1 32.9 19.4 0.4 1.1 2.1 0.7 45.6 0.7
10SLO6-1 17.2 1.0 14.3 1.6 32.0 14.8 0.1 0.9 1.8 0.7 43.6
10SL06-2 14.2 0.9 13.7 2.1 38.6 14.4 0.2 0.7 1.3 0.6 38.4
10SL06-3 18.2 1.1 21.6 2.9 46.7 22.5 0.1 1.5 1.6 0.7 41.9
10SL06 16.5 1.0 16.5 2.2 39.1 17.2 0.1 1.0 1.6 0.7 41.3 2.1
10SL07-1 12.0 0.7 8.3 11.9 25.1 11.2 1.4 0.5 2.4 0.7 47.8
10SL07-2 11.3 0.7 8.4 9.4 24.7 10.7 1.1 0.5 3.7 0.7 55.2
10SL07-3 18.0 1.1 10.3 2.2 25.2 10.9 0.2 0.8 3.1 0.7 50.9
10SL07-4 8.2 0.5 8.6 17.3 19.0 12.6 2.0 0.4 1.7 0.6 41.0
10SL07-5 149 0.9 8.4 1.3 28.4 8.9 0.2 0.5 1.7 0.7 42.7
10SL07-6 14.2 0.8 10.8 2.7 26.0 11.5 0.2 0.5 0.9 0.6 34.0
10sL07 13.1 0.8 9.1 7.4 24.7 11.0 0.9 0.5 2.2 0.7 45.3 3.4
10SL08-1  19.7 12 116 26 268 123 02 1.0 33 0.7 534
10SL08-2  17.0 1.0 278 27 369 286 0.1 16 12 06 370
105L08-3  15.6 0.9 249 14 199 253 0.1 14 17 07 424
10SL08 17.4 1.0 21.4 2.2 27.9 22.1 0.1 1.3 2.1 0.7 44.3 2.1
10SL09-1 19.0 1.1 16.4 1.6 28.9 16.9 0.1 1.2 1.7 0.7 42.1
10SL09-2 19.8 1.2 10.8 1.3 40.8 11.3 0.1 0.8 1.5 0.7 40.9
10SL09-3° 46.0 2.8 36.7 10.8 40.9 39.4 0.3 6.3 1.3 0.6 39.3
10SL09 19.4 1.2 13.6 1.5 34.8 14.1 0.1 1.0 1.6 0.7 41.5 0.6
Bernina nappe
08BP0O1-1 28.7 1.7 28.8 6.3 48.0 30.5 0.2 3.4 3.1 0.7 52.4
08BP01-2 29.6 1.8 20.8 7.5 60.8 229 0.4 2.6 2.7 0.7 49.5
08BP0O1-3 22.0 1.3 26.5 5.9 49.4 28.1 0.2 2.4 2.9 0.7 50.8
08BP0O1 26.8 1.6 25.4 6.5 52.7 27.2 0.3 2.8 2.9 0.7 50.9 4.1
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B. Table of Replicate Apatite (U-Th)/He Analyses, cont.

Sample’  Age  Std. Error U Th Sm [Ule Th/U He Mass Ft ESR  Std. Dev.
(Ma) (20, Ma)" (ppm) (ppm) _(ppm) (ppm)° (mmol/g) _(ng) (um) _@ls, Ma)*
Bernina nappe cont.
08BP03-1 30.6 1.8 9.8 6.2 25.9 11.3 0.6 1.3 2.2 0.7 46.1
08BP03-2 16.8 1.0 6.4 1.9 11.8 6.9 0.3 0.4 0.8 0.6 32.8
08BP03-3 20.2 1.2 4.5 1.9 15.5 5.0 0.4 0.3 1.0 0.6 35.3
08BP0O3 22.5 1.4 6.9 3.3 17.7 7.7 0.4 0.7 1.3 0.6 38.1 7.2
08BP06-1 19.0 1.1 36.1 42.2 52.9 46.0 1.2 2.8 1.0 0.6 35.3
08BP06-2 16.5 1.0 86.2 60.5 51.7 100.4 0.7 5.4 1.3 0.6 36.1
08BP06-3 15.2 0.9 80.9 48.1 37.7 92.1 0.6 4.6 1.1 0.6 36.2
08BP06 16.9 1.0 67.7 50.3 47.4 79.5 0.8 4.3 1.1 0.6 35.9 1.9
08BP10-1° 55.6 3.3 16.8 4.8 23.2 18.0 0.3 3.5 1.4 0.6 39.8
08BP10-2 26.2 1.6 15.3 2.4 18.8 16.0 0.2 1.3 0.9 0.6 334
08BP10-3 26.0 1.6 39.5 13.7 34.5 42.8 0.3 3.5 0.9 0.6 33.0
08BP10 26.1 1.6 27.4 8.1 26.6 29.4 0.3 2.4 0.9 0.6 33.2 0.1
08BP11-1 21.2 1.3 6.6 5.4 16.1 7.9 0.8 0.5 1.1 0.6 36.5
08BP11-2 324 1.9 4.3 5.3 13.6 5.6 1.2 0.6 1.1 0.6 36.0
08BP11-3 25.8 1.5 4.8 13.1 17.2 7.9 2.7 0.7 1.3 0.6 38.1
08BP11 26.5 1.6 5.2 7.9 15.7 7.1 1.6 0.6 1.1 0.6 36.9 5.6
Err nappe
08EDO1-1 30.4 1.8 12.3 23.8 82.4 18.2 1.9 1.7 0.9 0.6 34.0
08EDO01-2 20.6 1.2 41.5 24.7 85.9 47.6 0.6 2.8 0.6 0.5 30.0
08EDO1-3 20.3 1.2 103.6 159 88.2 107.7 0.2 7.9 1.7 0.7 42.5
08EDO1 23.8 1.4 52.5 21.4 85.5 57.8 0.9 4.1 1.1 0.6 35.5 5.8
08ED04-1 27.2 1.6 41.1 3.0 52.7 42.1 0.1 4.4 2.4 0.7 48.1
08EDO04-2 23.7 1.4 48.7 7.3 96.1 50.9 0.1 4.5 2.2 0.7 46.3
08ED04-3 22.2 1.3 22.7 1.8 58.6 23.4 0.1 1.9 1.7 0.7 41.8
08EDO4 24.4 1.5 37.5 4.0 69.2 38.8 0.1 3.6 2.1 0.7 45.4 2.5
08EDO6-1  20.3 12 263 24 506 271 0.1 1.9 13 0.6 392
08ED06-2 22.6 1.4 71.6 11.0 80.3 74.5 0.2 6.1 1.9 0.7 42.3
08EDO06-3 21.1 1.3 171.2 33.1 114.2 179.3 0.2 12.7 1.2 0.6 36.9
08EDO6 21.3 1.3 89.7 15.5 81.7 93.7 0.1 6.9 1.5 0.6 39.5 1.2
10EDO1-1 16.1 1.0 43.7 6.2 31.7 45.3 0.1 2.1 0.5 0.5 28.8
10EDO1-2 17.0 1.0 35.1 4.6 23.5 36.3 0.1 2.1 1.1 0.6 36.3
10EDO1-3 15.2 0.9 43.5 6.3 27.7 45.1 0.1 2.1 0.7 0.6 31.2
10EDO1 16.1 1.0 40.8 5.7 27.7 42.2 0.1 2.1 0.8 0.6 32.1 0.9
10ED03-1  26.0 16 504 422 1070 606 08 59 24 07 473
10EDO03-2 19.4 1.2 33.9 2.7 93.8 35.0 0.1 2.4 1.5 0.7 40.1
10EDO03-3 22.7 1.4 82.2 48.8 115.5 94.0 0.6 7.4 1.5 0.6 40.3
10EDO3 22.7 1.4 55.5 31.2 105.4 63.2 0.5 5.2 1.8 0.7 42.6 3.3
10ED04-1 31.0 1.9 239 1.8 51.3 24.6 0.1 3.2 6.6 0.8 64.2
10ED04-2 24.9 1.5 123.7 27.9 119.2 130.7 0.2 11.0 1.3 0.6 37.2
10ED04-3 229 1.4 104.3 19.5 88.2 109.2 0.2 8.5 1.2 0.6 37.5
10EDO4 26.2 1.6 84.0 16.4 86.2 88.2 0.2 7.5 3.0 0.7 46.3 4.2
10EDO5-1 25.2 1.5 75.2 1.7 52.5 75.9 0.0 6.7 1.4 0.6 39.3
10EDO5-2 25.7 1.5 120.0 2.2 66.7 120.8 0.0 12.1 3.0 0.7 51.2
10EDO5-3 22.9 1.4 79.0 2.1 62.9 79.8 0.0 6.5 1.6 0.7 41.3
10EDO5 24.6 1.5 91.4 2.0 60.7 92.2 0.0 8.5 2.0 0.7 44.0 1.5
08PNO03-1 22.5 1.4 16.6 20.0 53.2 21.5 1.2 1.6 1.1 0.6 35.7
08PNO03-2 29.2 1.7 17.9 20.0 82.2 229 1.1 2.5 2.6 0.7 47.5
08PNO3-3 21.9 1.3 20.2 20.6 67.5 25.2 1.0 1.8 1.2 0.6 36.0
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B. Table of Replicate Apatite (U-Th)/He Analyses, cont.

Sample’  Age  Std. Error U Th Sm [Ule Th/U He Mass Ft ESR  Std. Dev.
(Ma) (#26,Ma2)’ (ppm) (ppm) (ppm) (ppm)° (nmolg)  (ng) (um) 1o, Ma)’
Err nappe cont.
08PN0O3 24.5 1.5 18.2 20.2 67.6 23.2 1.1 2.0 1.6 0.6 39.7 4.0
08PN04-1 35.2 2.1 20.4 21.2 73.8 25.7 1.0 3.2 1.9 0.6 41.3
08PNO04-2 23.9 1.4 8.0 8.6 72.3 10.3 1.1 0.9 1.8 0.7 43.5
08PN04-3 24.8 1.5 13.4 14.8 44.9 17.0 1.1 1.5 2.0 0.7 45.0
08PNO4 28.0 1.7 13.9 14.9 63.7 17.7 1.1 1.9 1.9 0.7 43.3 6.3
08PNO5-1 22.0 1.3 19.2 18.9 72.9 23.9 1.0 1.8 13 0.6 38.0
08PNO05-2 23.2 1.4 20.6 19.5 65.3 25.4 0.9 1.9 1.3 0.6 36.9
08PNO05-3 20.2 1.2 19.6 19.1 62.0 24.3 1.0 1.6 1.0 0.6 35.9
08PNO5 21.8 1.3 19.8 19.2 66.7 24.5 1.0 1.8 1.2 0.6 36.9 1.5
Corvatsch nappe
10ENO1-1 25.6 1.5 27.5 13.7 43.4 30.9 0.5 2.7 1.8 0.6 39.6
10ENO1-2 17.1 1.0 26.3 19.1 42.4 30.9 0.7 2.0 2.9 0.7 48.8
10ENO1-3 18.8 1.1 11.3 5.0 45.2 12.7 0.4 0.9 1.8 0.7 41.5
10ENO1 20.5 1.2 21.7 12.6 43.7 24.8 0.6 1.9 2.2 0.7 43.3 4.5
10ENO3-1 24.6 1.5 20.2 40.1 101.8 30.0 2.0 23 1.1 0.6 34.7
10ENO3-2 21.7 1.3 17.5 29.9 113.6 24.9 1.7 1.6 0.8 0.5 31.8
10EN03-3° 401.2 24.1 13.2 33.7 71.1 21.3 2.6 25.0 0.7 0.5 30.6
10ENO3 23.2 1.4 18.9 35.0 107.7 27.5 1.8 2.0 1.0 0.6 33.3 2.1
10ENO4-1 253 1.5 253 38.4 102.9 34.6 15 2.8 1.0 0.6 34.9
10ENO4-2 21.8 1.3 10.8 16.9 62.5 15.0 1.6 1.1 1.3 0.6 39.0
10ENO4-3 40.6 2.4 7.9 13.7 64.4 114 1.7 1.7 1.9 0.6 43.0
10ENO4 23.5 1.4 18.1 27.6 82.7 24.8 1.5 1.9 1.1 0.6 37.0 2.5
10ENO8-1 16.7 1.0 25.3 12.8 35.4 28.4 0.5 1.5 1.0 0.6 35.4
10ENO08-2 21.3 13 39.7 23.9 42.6 45.4 0.6 3.5 1.8 0.7 43.0
10ENO8-3 19.0 1.1 47.4 44.8 74.0 58.1 0.9 3.4 0.8 0.6 33.2
10ENO8 19.0 1.1 37.5 27.1 50.7 44.0 0.7 2.8 1.2 0.6 37.2 2.3
Engadine window (Penninic nappes)
08TS04-1 11.3 0.7 8.0 1.0 21.2 8.4 0.1 0.4 2.6 0.7 49.1
08TS04-2 255 1.5 8.7 1.1 43.4 9.2 0.1 0.9 2.5 0.7 47.7
08TS04-3 10.6 0.6 6.8 0.5 21.5 7.0 0.1 0.3 2.4 0.7 45.5
08TS04 15.8 0.9 7.9 0.9 28.7 8.2 0.1 0.5 2.5 0.7 47.4 8.4
08TS05-1 9.9 0.6 134 2.1 20.6 14.0 0.2 0.5 1.5 0.7 40.5
08TS05-2 14.5 0.9 9.0 2.2 14.5 9.5 0.2 0.5 1.6 0.6 40.6
08TS05-3 5.7 0.3 11.2 1.2 9.4 11.5 0.1 0.3 31 0.7 52.0
08TS05 10.0 0.6 11.2 1.8 14.8 11.7 0.2 0.4 2.1 0.7 44.4 4.4
08TS08-1 5.5 0.3 22.6 27.2 99.0 29.4 1.2 0.5 0.9 0.6 33.7
08TS08-2 9.5 0.6 20.4 37.2 119.5 29.5 1.8 0.9 1.0 0.6 34.8
08TS08-3 6.4 0.4 16.6 28.0 93.4 235 1.7 0.5 1.2 0.6 36.1
08TS08 7.1 0.4 19.9 30.8 104.0 275 1.6 0.6 1.0 0.6 34.9 2.1
08TS09-1 10.6 0.6 19.0 77.8 1315 375 4.1 1.2 0.9 0.5 32.9
08TS09-2 11.9 0.7 36.1 71.5 166.9 53.4 2.0 1.8 0.6 0.5 304
08TS09-3 22.8 1.4 11.6 21.9 58.7 17.0 1.9 1.3 1.2 0.6 37.6
08TS09 15.1 0.9 22.2 57.1 119.0 36.0 2.7 1.4 0.9 0.6 33.6 6.7
08TS11-1 6.4 0.4 4.7 0.2 4.4 4.7 0.0 0.1 29 0.7 49.6
08TS11-2 7.8 0.5 16.6 2.1 7.6 17.1 0.1 0.5 1.5 0.6 39.8
08TS11-3 10.2 0.6 28.8 3.5 8.8 29.7 0.1 1.0 1.0 0.6 35.4
087511 8.1 0.5 16.7 1.9 6.9 17.2 0.1 0.5 1.8 0.7 41.6 1.9

®For location and elevation data see Table 2

®Standard error of 8% (20) based on reproducibility of internal lab standards
‘[U]e =[U]+[Th]0.235+[Sm]0.005 (e.g., Shuster et al., 2006)
dStandard deviation (10) of included replicate analyses

°An outlier replicate analysis was excluded from mean value calculation and standard deviation in Table 2
Italics indicate mean values of replicate analyses
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Appendix B: Laser ablation depth-profiling

Laser ablation depth-profiling of 76 zircon grains from three samples from the Silvretta
nappe (10SL03, 05, 09) was completed to determine parent isotope concentration (U and Th).
All LA-ICP-MS depth profiling was completed at the University of Kansas in the Isotope
Geochemistry Laboratory using a Photon Machines 193 nm Excimer Laser for sample ablation
and a Thermo Element 2 ICP-MS for isotope measurements. All LA-ICP-MS depth profiles
completed, except those displayed within Figure 9, are included within this appendix. See text

for discussion of concentration calculations, and down-hole intensity decrease corrections.
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Appendix C: Cathodoluminescence Images of Laser Ablated Zircon Grains

Zircon grains from three samples (10SL03, 05, 09) of the vertical transect through the
Silvretta nappe were chosen for laser ablation-inductively coupled-mass spectrometry (LA-ICP-
MS) depth-profiling to determine parent isotope concentrations (U and Th). Grey-scale
cathodoluminescence (CL) imaging was also completed on about half of the laser ablated zircon
grains, while the other half were dated using the (U-Th)/He method. The CL imaging was used
to determine qualitatively the 2D pattern of parent isotope zonation within the laser ablated
zircon grains. All CL imaging was performed at the Microscopy and Analytical Imaging
Laboratory of the University of Kansas on the LEO 1550 Field Emission Scanning Electron
Microscope. The following images were not published in the main body of text and are instead
presented below; all grains are labeled by sample name in white. Corresponding U and Th

concentration profiles are presented in Appendix B.
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Appendix D: U-Pb Age Data of Silvretta nappe

Laser ablation depth-profiling was completed for three samples from the Silvretta nappe
(10SL03, 05, 09). Depth-profiling provided a semi-quantitative method to establish parent
isotope (U and Th) zonation within selected zircon grains, and also provided U-Pb ages for
ablated unknown grains. The U-Pb ages are reported in this appendix in Table C; all ages were
reduced using PepiAge v.1 (Dunkl et al., 2009). Drift corrections were performed using the
internal standard GJ1 (e.g., Jackson et al., 2004), however the ages are not corrected for common
Pb or Hg. Some ages were too discordant to produce ages and these have been indicated in
Table C. A total of 73 U-Pb ages are reported for the Silvretta nappe and all are Paleozoic or

older in age.
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C. Table of U-Pb Ages of the Silvretta Nappe

Sample  *°Pb/*U Age Error 27pp /35y Age Error 207pp /2%pp Age Error % U-Pb 26ppy 238y 07pp A5y 207ppy /2%py
(Ma)? (+26, Ma)® (Ma)® (+20, Ma)® (Ma)? (+26, Ma)® Discordance® ratio® ratio® ratio®
10SL03; 46.9457°N, 10.0626°E; 1526 m
10SL03-6 610.8 21.0 614.6 19.6 628.9 45.9 29 0.09684 0.81062 0.06071
10SL03-7 467.8 18.5 472.6 18.7 496 60.6 5.7 0.07225 0.56892 0.05711
10SL03-8 437.1 21.2 463.4 20.7 595.6 50.6 26.6 0.06998 0.57681 0.05978
10SL03-9 292.3 284 341.5 30.9 691.5 74.2 57.7 0.0476 0.41026 0.06251
10SL03-10 - - - - - - - 0.02318 1208623 378160
10SL03-11 41.9 24.7 89.4 52.2 1669.5 133.3 97.5 0.01772 0.25038 0.10248
10SL03-12 502.7 17.9 497.2 18.2 472.1 63.2 -6.5 0.07987 0.6222 0.0565
10SL03-13 134.4 331 228.2 535 1355 1224 90.1 0.02612 0.31242 0.08675
10SL03-14 457.3 18.6 461.8 18 484.5 51.6 5.6 0.073 0.57191 0.05682
10SL03-15 197.1 50.1 299.1 70.5 1197.6 118.8 835 0.03131 0.34545 0.08002
10SL03-16 422.2 18.0 434.1 17.5 497.6 46.9 15.2 0.06912 0.54475 0.05716
10SL03-17 443 18.4 456.3 17.4 523.9 42.2 15.4 0.07019 0.55976 0.05784
10SL03-18 404 18.4 426.3 19 548.5 60.1 26.3 0.06562 0.52929 0.0585
10SL03-19 470.1 15.0 469.8 14.8 468.1 47.2 -04 0.07649 0.59482 0.0564
10SL03-20 345.1 24.6 393.4 26.1 688.5 63.1 49.9 0.05606 0.48248 0.06242
10SL03-21 485.2 15.4 498.5 15.1 559.8 39.7 13.3 0.07765 0.62954 0.0588
10SL03-22 169.8 100.8 336.3 188.2 1744.1 106.3 90.3 0.01831 0.2694 0.10671
10SL03-23 482.3 16.8 482.1 17.4 480.8 60.8 -0.3 0.07825 0.61196 0.05672
10SL03-24 439.3 14.9 448.6 14.6 496.8 44.7 11.6 0.07482 0.58947 0.05714
10SL03-25 378.1 283 415.1 283 626.6 63.8 39.7 0.0611 0.51086 0.06064
10SL03-26 437.9 15.3 449.3 14.6 507.9 37.8 13.8 0.06919 0.54778 0.05742
10SL03-27 2223 55.7 487.5 110.3 2062.5 173.9 89.2 0.03972 0.69772 0.1274
10SL03-28 765.9 47.1 828.5 393 1000.3 41.2 234 0.12731 1.2728 0.07251
10SL03-29 435.1 17.3 450.2 16.1 527.8 37.7 17.6 0.07084 0.56602 0.05795
10SL03-30 471.8 20.0 488.5 18 568 30.8 16.9 0.0758 0.61684 0.05902
10SLO5; 46.9109°N, 10.0401°E; 2152 m
10SL05-6 483.6 17.7 487.6 18.4 506.7 60.5 4.6 0.07977 0.63121 0.05739
10SL05-7 553.1 239 563 223 603.3 55.1 83 0.08674 0.71746 0.05999
10SL05-8 4725 17.3 469.9 171 457.1 54.1 -34 0.07626 0.59009 0.05612
10SL05-9 428.1 220 451.5 21.7 572.9 553 253 0.07065 0.57629 0.05916
10SL05-10 458.1 19.9 461.2 19.1 476.7 51.7 3.9 0.07028 0.54866 0.05662
10SL05-11 492.2 17.6 481.1 16.2 428.7 42.9 -14.8 0.07996 0.61089 0.05541
10SL05-12 - - - - 2096 151.6 - 0.00067 0.012 0.12985
10SL05-13 470.7 19.1 466.9 18.1 448.3 543 -5.0 0.07674 0.59147 0.0559
10SL05-14 522 221 5233 20.2 529.2 46.7 1.4 0.08154 0.65185 0.05798
10SL05-15 - - - - 1528.1 177.7 - -0.02248 -0.29446 0.095
10SL05-16 356.8 26.4 436.9 30.6 884.7 80.6 59.7 0.05856 0.55333 0.06853
10SL05-17 311.4 13.7 334.8 13.8 501.3 37.9 37.9 0.07224 0.57024 0.05725
10SL05-18 479.7 15.3 478 15.8 470 54 -2.1 0.07461 0.58071 0.05645
10SL05-19 482.4 15.8 485.8 15.6 501.7 46.9 3.8 0.07577 0.5982 0.05726
10SL05-20 120.7 44.0 296 100.9 2096.6 130.3 94.2 0.02557 0.45797 0.1299
10SL05-21 348.3 23.8 378.1 23.6 565 50.9 38.4 0.0595 0.48354 0.05894
10SL05-22 503 17.0 510.3 15.4 542.9 332 7.3 0.08107 0.65223 0.05835
10SL05-23 479.2 17.1 475.5 15.7 457.9 40.5 -4.7 0.07571 0.58604 0.05614
10SL05-24 512.6 14.3 505 13.6 470.7 38.1 -8.9 0.08309 0.64683 0.05646
10SL05-25 616.2 21.2 623.7 18.8 651.2 39.1 5.4 0.1021 0.86352 0.06134
10SL05-26 471.6 15.0 473.4 14.5 481.9 40.3 2.1 0.07602 0.59483 0.05675
10SL05-27 379.3 251 416 25.2 625 57.1 393 0.05957 0.49774 0.0606
10SL05-28 479.5 19.0 483.3 17.5 501.3 42.4 4.3 0.07618 0.60134 0.05725
10SL05-29 512.8 15.3 505.2 15.2 470.7 49.4 -8.9 0.08166 0.6357 0.05646
10SL05-30 537.9 18.6 526.9 17.4 479.5 49.3 -12.2 0.08477 0.6626 0.05669
10SL05-31 442 231 459.3 21.7 546.5 443 19.1 0.0689 0.55518 0.05844
10SL05-32 473.7 229 490.3 21.6 568.6 50.8 16.7 0.0766 0.62356 0.05904
10SL05-33 446.1 20.3 490.1 23.2 701.3 76.3 36.4 0.07258 0.62836 0.06279
10SL09; 46.8935°N, 10.0308°E; 2715 m
10SL09-6 442.3 18.8 457.9 18.6 537.1 53.4 17.7 0.0722 0.57928 0.05819
10SL09-7 483.2 18.2 482.1 18.6 476.6 63.1 -1.4 0.07688 0.60008 0.05661
10SL09-8 484.8 18.2 489.5 18.4 511.6 60.5 5.2 0.07264 0.5761 0.05752
10SL09-9 487.1 16.9 493.8 17 525.5 53.5 7.3 0.07714 0.61562 0.05788
10SL09-10 469.3 16.8 474 16.8 497.3 53.8 5.6 0.07507 0.59154 0.05715
10SL09-11 491 23.2 511.4 223 603.6 52.8 18.7 0.07452 0.61649 0.06
10SL09-12 430.3 19.2 456.3 19.7 589.7 57.4 27.0 0.07173 0.58965 0.05962
10SL09-13 466.7 18.5 464 18 450.5 56.5 -3.6 0.07504 0.57889 0.05595
10SL09-14 342.5 25.7 3739 26 573.5 64.3 40.3 0.05535 0.45157 0.05917
10SL09-15 552.4 233 563.2 223 607.1 55 9.0 0.08921 0.73925 0.0601
10SL09-16 462.7 21.0 469.2 20.1 501 56.1 7.6 0.07019 0.55396 0.05724
10SL09-17 446.7 22.5 473.2 21.4 603.8 48.4 26.0 0.07134 0.59018 0.06
10SL09-18 489.7 17.9 489.9 16.9 491 44.7 0.3 0.07643 0.60046 0.05698
10SL09-19 489.2 16.0 481.1 15.4 442.4 47.4 -10.6 0.07999 0.61487 0.05575
10SL09-20 212.2 75.6 490.5 154.3 2159.2 137.1 90.2 0.03314 0.61512 0.13462
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C. Table of U-Pb Ages of the Silvretta Nappe, cont.

Sample  *°Pb/*U Age Error 27pp /35y Age Error 207pp /2%pp Age Error % U-Pb 26ppy 238y 07pp A5y 207ppy /2%py
(Ma)? (+26, Ma)® (Ma)® (+20, Ma)® (Ma)? (+26, Ma)® Discordance® ratio® ratio® ratio®

10SL09 cont.

10SL09-21 396.9 18.9 412.6 185 501.1 51.4 20.8 0.06525 0.51506 0.05725
10SL09-22 491.6 18.5 484.8 17.9 452.9 56.5 -8.5 0.07637 0.58978 0.05601
10SL09-23 633.1 30.2 656.6 27.4 738.3 56 14.2 0.10201 0.89876 0.0639
10SL09-24 478.1 22.6 483.8 214 511.2 58.2 6.5 0.07603 0.60288 0.05751
10SL09-25 476.4 17.9 482.6 17.4 512.4 51.4 7.0 0.07712 0.61184 0.05754
10SL09-26 483.6 18.7 483.7 18.2 484.2 56.2 0.1 0.07567 0.59272 0.05681
10SL09-27 476.8 17.5 477.7 16.1 481.7 42.6 1.0 0.0774 0.60552 0.05674
10SL09-28 474.4 16.9 500.6 19.1 622.1 66 23.7 0.0766 0.63919 0.06052
10SL09-29 287.1 33.2 337.1 35.9 698.3 76.4 58.9 0.0452 0.39076 0.0627
10SL09-30 589.4 294 614.7 26.2 708.9 47.5 16.9 0.093 0.8081 0.06302
10SL09-31 495.4 16.7 495.4 16.2 495.5 46.9 0.0 0.0785 0.61803 0.0571

? Calculated age using PepiAge v. 1 (Dunkl et al., 2009) without Hg or common Pb correction, and Steiger and Jager (1977) decay constant

b Propogated analytical error
¢ Discordance calculated as (1-(
d Isotope ratios corrected for mass drift and background based on the zircon standard GJ1

206 238

206,

Pb/“*°U age/~ 'Pb/""Pb age))*100

No age calculated for samples indicated by (-) as a result of extreme discordance
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