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Development of peptides to target antigen presenting cells for controlling the immune 

response in experimental autoimmune encephalomyelitis  

 

Ahmed Hassan Badawi 

The University of Kansas, 2011 

  

Experimental autoimmune encephalomyelitis (EAE) is an animal model for the human 

disease multiple sclerosis (MS).  In EAE and MS, the immune system recognizes proteins of the 

myelin sheath as antigenic, and an inflammatory reaction is initiated within the central nervous 

system (CNS), leading to demyelination of the axons.  Current therapies for the treatment of MS 

are generally non-specific and weaken the global immune system, thus making the individual 

susceptible to opportunistic infections.  The objective of this project is to develop peptides that 

target myelin-specific antigen presenting cells (APC) in order to modulate the immune response 

towards the myelin sheath.  Bifunctional peptide inhibitors (BPI) are molecules composed of an 

antigenic peptide and an adhesion peptide that are designed to target the major histocompatibility 

class-II molecule and adhesion receptors, respectively, on the surface of APC.  The simultaneous 

binding to both receptors on the APC is proposed to hinder the delivery of activation signals to T 

cells and, therefore, attenuate the inflammatory T cell response.  In this study, PLP-BPI, a well-

studied BPI molecule, was tested as a peptide vaccine in preventing the onset of EAE as well as 

for its role in providing protection against blood-brain barrier breakdown during disease.  Next, a 

novel BPI molecule known as PLP-B7AP, which targets costimulatory molecules, was 

developed and tested for the first time in suppressing EAE.  Finally, to provide protection against 

the diverse pool of antigenic proteins of the myelin sheath, BPI molecules targeting other myelin 
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antigens as well as a multivalent BPI molecule were developed.  These novel peptides have 

consistently demonstrated a shift towards an immuno-tolerant state accompanied by significant 

suppression of EAE. 
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1.1 MULTPLE SCLEROSIS 

1.1.1 Disease Introduction  

Multiple sclerosis (MS) is the most common immune-mediated disease of the central 

nervous system.  It is characterized by severe demyelination, axonal injury, lesion formation in 

the brain and spinal cord, blood-brain barrier (BBB) opening, and inflammatory immune cell 

infiltration.
1
  MS is a very heterogeneous disease with very diverse pathological and clinical 

manifestations.  Some of the clinical symptoms include loss of balance and coordination, visual 

and sensory impairment, fatigue, and cognitive difficulties.
2
 The pathogenesis of the disease is 

not well understood, and there are a multitude of factors that may cause the onset of this disease.  

Genetic factors may play a major role, and it has been shown that a particular class-II allele of 

the major histocompatibility complex (MHC) may increase the risk for developing MS.
3,4

 Other 

studies have indicated a correlation between pathogenic infections and the development of the 

disease.  This is believed to be caused by a phenomenon known as molecular mimicry or 

bystander activation.
5
 Some links have been made between various different viruses to MS, such 

as the Epstein-Barr virus
6,7

 and varicella zoster virus,
8
 as well as bacterial pathogens such as 

chlamydia pneumoniae.
9-11

 However, there is no direct evidence of the link between pathogenic 

infections and MS.  Currently, the most widely accepted hypothesis is that MS is an autoimmune 

disease that affects genetically pre-disposed individuals afflicted with an environmental 

pathogen.
12

 

Diagnosis of MS is complicated and unfortunately the majority of the current treatments 

are non-specific. The most common diagnostic tool for MS is magnetic resonance imaging 

(MRI).  MRI has become a very important tool in diagnosis and monitoring of disease 

progression and is crucial for devising proper treatment plans.  It is used to look for white matter 
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lesion formation, particularly in the pons and the cerebellum,
13

 and the development of ―black 

holes‖ that are a hallmark of severe demyelination and axonal damage.
14

 There are currently 

eight FDA-approved therapies for the treatment of MS.  Four forms of IFN-β therapies are being 

used for treatment, but their mechanism of action remains unknown.
15

  It is believed that they 

work primarily by inducing an anti-inflammatory response.
16

 Another commonly used 

therapeutic agent is glatiramer acetate (Copaxone), which is a polymer made up of a random 

mixture of four amino acids (alanine, glutamic acid, lysine, and tyrosine).
17

 The proposed 

mechanism of action of Copaxone is the diversion of the T cell response from type-1 (TH1) to 

type-2 helper (TH2) T cells.  Mitoxantrone is an alternative drug that works primarily by 

inhibiting the proliferation of immune cells.
16

 A monoclonal antibody (mAb) called natalizumab 

(Tysabri) is also being used to treat MS; it binds the α4β1 integrin
18

 to inhibit the migration of 

lymphocytes into the BBB, thus preventing the infiltration of immune cells into the central 

nervous systems (CNS). Fingolimod (Gilenya), which prevents lymphocytes from exiting the 

lymph nodes and keeping them at the periphery so they cannot reach the CNS, is the latest FDA-

approved drug.
19

  

 

1.1.2. Cellular Mechanisms and Role of Cytokines 

The body has protective mechanisms in the thymus to prevent and eliminate any 

autoreactive T cells by a process known as central tolerance.
20

 If autoreactive T cells fail to 

become tolerant by resident antigen presenting cells (APC) in the thymus, they can escape to the 

periphery, thus making the individual susceptible for the development of an autoimmune disease. 

However, the body has back-up protective peripheral-tolerance mechanisms to prevent these 

autoreactive T cells from proliferating and attacking self-components.
21

 In the case of MS, it is 
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proposed that both the central and peripheral tolerance mechanisms fail to induce tolerance or 

anergy to myelin-specific T cells.  Furthermore, under yet unknown conditions, these myelin-

reactive T cells can cross the BBB to enter the CNS via adhesion molecule interactions.
22,23

 Once 

in the CNS, these T cells become re-activated by resident APC such as microglia, macrophages, 

and dendritic cells (DC) and induce an inflammatory response in the CNS.
20,24

 DC play a crucial 

but contradictory role in the body; they are important both for maintaining peripheral tolerance 

and inducing an immunogenic response.  It has been reported that DC can pick up myelin 

proteins and present them to T cells in the periphery.
25-27

  DC have a strong presence in the 

inflammatory lesions of MS patients
28

 and thus are key players in the reactivation of autoreactive 

T cells in the CNS.
29

 In addition, DC have been implicated in epitope spreading.
30

  The 

contribution of B cells to the development and progress of MS is not very clear.  However, 

studies from phase II clinical trials in MS patients indicate that B cells have a role in the 

pathogenesis of disease,
31

 and myelin-specific antibodies have been found in the cerebrospinal 

fluid (CSF) of MS patients.
32

   

In the past, MS was believed to be solely a CD4
+
 TH1 disease; recently, evidence has 

strongly suggested that CD4
+
 type-17 T cells (TH17) have a key role in its pathogenesis.

33
 The 

contribution of TH17 and/or TH1 cells to the disease has not been fully elucidated, but the balance 

between these two T cell subsets has an important role in determining the location of the lesions 

within the brain.
24

  MS is traditionally thought to be purely a CD4
+
-mediated disease with little 

appreciation of  the contribution of CD8
+
 T cells.  Myelin-specific CD8

+
 T cells have been found 

in greater amounts in the lesions of MS patients but not healthy individuals;
34-36

 this is unlike 

myelin-specific CD4
+
 T cells, which are found in both MS and healthy individuals.

37
 In addition, 

the depletion of CD4
+
 cells has no affect on disease progression, but depletion of both CD4

+
 and 
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CD8
+
 T cells has beneficial effects.

38
  Like CD4

+
, CD8

+
 T cells are activated in the periphery and 

can cross the BBB under inflammatory conditions.  Activation of CD8
+
 in the periphery is 

accomplished through cross-presentation, which means APC that do not synthesize myelin 

proteins can present antigens to CD8
+
 T cells in the context of the MHC-I molecule.

39
 Activation 

in the CNS occurs via resident APC, and it still remains unclear which types of APC are 

involved.
24

 CD8
+
 T cells exert their effector function in the CNS through the production of 

soluble inflammatory mediators as well as direct cell lysis.
24,34,35

 Therefore, contributions from 

both CD4
+
 and CD8

+
 are probably important in the development and pathogenesis of disease, 

and the different involvement of both T cells is proposed to be the reason behind the broad 

heterogeneity of the disease.
24

  Autoreactive T cells can recognize several proteins of the myelin 

sheath as antigenic.  The most common antigenic proteins in MS patients are myelin basic 

protein (MBP); myelin proteolipid protein (PLP), which makes up 50% of total myelin protein; 

and myelin oligodendrocyte glycoprotein (MOG), which is found on the outside of myelin 

sheath.
5
  Identifying these autoantigens has become important for developing antigen-specific 

therapies as well as for induction of the disease in animal models for studying MS. 

Currently, the widely accepted model for T-cell activation and induction of an 

inflammatory response is the ―two-signal‖ model.
40,41

  The model proposes that two signals, an 

antigen-specific and a ―danger‖ signal, must be delivered to T cells by APC such as an activated 

or mature DC (mDC).  The maturation of an immature DC (iDC) is triggered by the 

phagocytosis of an insoluble antigen.
42,43

  Next, the antigen is broken down into small peptides, 

processed, and presented by the APC to a T cell via the MHC-II molecule; this is known as 

Signal 1.  During the maturation process, the phenotype of DC changes and expresses 

costimulatory molecules and adhesion molecules on its surface (Fig. 1.1).  The presence of the 
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Figure 1.1 Activation of a T cell inflammatory response. 1) A steady-state APC such as an iDC 

internalizes an insoluble antigen. 2) The antigen is then processed and broken down into 

immuno-dominant epitopes that can be presented by the MHC-II molecule. 3) Internalization and 

processing of the antigen triggers the activation of the DC, thus forming a mDC. 4) Presentation 

of the antigen in the context of the MHC-II molecule is known as Signal 1. 5) mDC expresses 

costimulatory molecules (e.g. B7/CD28) which deliver Signal 2. 6) The presentation of an 

antigen in presence of costimulatory signals activates an inflammatory response towards that 

antigen. 
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costimulatory molecules, also known as Signal 2, informs the T cell of ―danger‖ and, thus, the T 

cell differentiates into a pro-inflammatory phenotype to initiate an inflammatory response.  One 

of the most important costimulatory signals is delivered via the B7/CD28 protein interaction and 

is a positive or activation signal.
44,45

  This interaction is vital for the activation of T cells in MS 

and its animal model, experimental autoimmune encephalomyelitis (EAE).  Another 

costimulatory signal is sent via the B7/CTLA-4 interaction, which is known as an inhibitory 

(negative) signal to suppress T cell activation.
46

 Other well-studied costimulatory molecules for 

T-cell activation include CD40/CD40L
47

 and cell adhesion molecules such as intercellular 

adhesion molecule-1 (ICAM-1) and leukocyte function-associated antigen-1 (LFA-1).
48

  

Following the delivery of Signal 1 and 2, a phenomenon known as the immunological synapse  

(IS) must take place to complete the activation of T cells.
49,50

 The formation of the IS involves 

the translocation between Signal 1 molecules (TCR/MHC-II-Ag complex) and the adhesion 

molecules (ICAM-1/LFA-1 complex).  Because it is believed that the formation of IS is vital for 

the activation of T cells, IS could be an important target for developing therapeutics aimed at 

suppressing the immune response. 

All the immune responses involved in the pathogenesis and treatment of MS are mediated 

via a complex network of cytokines.  During steady-state conditions (i.e., homeostasis), there is a 

balance between pro- and anti-inflammatory cytokines.  In MS, inflammatory cytokines are 

responsible for the pathogenesis of the disease in the periphery as well as within the CNS.  The 

function of each cytokine has not been fully elucidated due to the dynamic network and complex 

nature of the cytokine milieu. For the development and progression of disease, the pro-

inflammatory cytokines are key players.  There are several cytokines involved in the 

inflammatory response, particularly TH1 cytokines such as IL-12, IFN-γ, and TNF-α as well as 
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TH17 cytokines such as IL-23 and IL-17.
24

 The exact contribution of each of these cytokines 

remains unclear and difficult to sort out.  The involvement of IL-12 and IFN-γ was established 

by their heightened expression in the CNS and CSF of MS patients with increased clinical 

activity.
51

 In addition, the roles of TNF-α and IFN-γ were determined when peripheral blood 

mononuclear cells (PBMC) isolated from MS patients secreted significant amounts of them.
52-57

 

IL-17 transcripts were found in CNS lesions of MS patients, thus indicating a major role of IL-17 

in disease pathogenesis.
33

 Immunotolerance is believed to be maintained by a group of 

suppressor (TH2) and regulatory T cells (Treg) that produce anti-inflammatory cytokines such as 

IL-2, IL-4, and IL-10.
58

 During the disease state, it has been reported that PBMC isolated from 

MS patients secrete no or low amounts of the anti-inflammatory cytokines.
58

 Moreover, during 

ongoing disease there is a shift towards the production of pro-inflammatory cytokines.  Therefore, 

a major strategy for treating an inflammatory disease like MS is shifting the balance towards the 

production of anti-inflammatory cytokines such as the ones secreted by Treg and TH2 cells (Fig. 

1.2).  

   

1.1.3 Experimental Autoimmune Encephalomyelitis 

 The EAE animal model is used to study the underlying disease pathogenesis of MS and 

develop new therapies.  EAE can be induced either by adoptive transfer of myelin-specific T 

cells or by the administration of a CNS homogenate or specific myelin proteins/peptides in the 

presence of an adjuvant such as complete Freund’s adjuvant (CFA).
59

 More recently, 

spontaneous models of EAE have also been developed.
60

 The EAE model mimics MS in several 

ways such as the development of multiple CNS lesions, destruction of the myelin sheath, and the 

breakdown of the BBB.  Similarly to MS, various immune cells are involved in the disease  
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Figure 1.2 During MS and EAE, the inflammatory immune response overcomes regulatory 

functions.  Immune modulating treatments should restore tolerance by promoting a shift in the 

balance towards regulatory and suppressor immune responses. 
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pathogenesis. Macrophages, microglia cells, DC, B-cell antibodies, and both CD4
+
 and CD8

+
 

have vital roles in the development of the inflammatory response and tissue destruction.
61

 The 

model has been very useful in studying the mode of action of four therapies currently on the 

market for the treatment of MS such as glatiramer acetate (Copaxone),
62

 mitoxantrone,
63

 

natalizumab (Tysabri),
64

 and, most recently, fingolimod (Gilenya).
65-69

 It is important to 

recognize the limitations of the animal model as most successes in that model did not translate to 

humans.
70

 In addition, many of the adverse side effects observed in clinical trials, from therapies 

initially tested in EAE, could not have been predicted from the animal model.
71

 No one model of 

EAE mimics the heterogeneous pathology of MS and, therefore, more work must be done in 

order to more closely mimic the human disease.  Nevertheless, EAE played a key role in 

understanding many pathogenic aspects of the disease and led to the development of four 

important MS therapeutics; thus its contribution in the past must not be undermined.  For these 

reasons, the EAE animal model is continuously being used to test and develop new therapies for 

MS. 

 

1.2 PEPTIDE TREATMENTS FOR MS 

Most of the current therapies for MS do not regulate specific immune cells and they 

normally suppress the general immune response, which leads to many adverse side effects from 

opportunistic infections. Thus, there is a need to develop therapeutic agents that specifically 

control the myelin-reactive immune response for maintaining host capability to protect against 

foreign pathogens provided by the general immune response.  Peptides are excellent specific 

inhibitors of protein-protein interactions and, therefore, are valuable specific modulators of 

protein-mediated signaling of the immune system.  In this section, many of the current myelin-
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specific peptides being tested for the treatment of MS will be discussed.  In addition, important 

advances in the development of non-specific peptides that have efficacy in the EAE animal 

model will be discussed. 

  

1.2.1. Antigenic Peptides 

Specific immunotherapy (SIT) has been used for about a century to induce tolerance for 

the treatment of allergies such as hay fever
72

 and, more recently, seasonal allergic rhinitis,
73

 

asthma,
74

 bee venom,
75

 peanut,
76

 cow milk,
77

 and birch pollen.
78

  The strategy behind allergen- 

or antigen-SIT is to administer the antigenic protein/peptide in a proper dose to modulate the 

immune response and reduce the immunogenicity towards a particular allergen/antigen.
79

  The 

goal of SIT is to induce T cell anergy, activate Treg, or promote a shift from a TH1 phenotype to 

TH2 phenotype.
80

 Translating this strategy for inducing tolerance to treat autoimmune diseases 

has been the focus of many research groups.  In this section, the successes of antigenic-SIT in the 

MS animal model and difficulties in applying the technology to humans will be discussed.  In 

addition, some of the mechanistic aspects of this therapy will be discussed.  

Tolerance induction via the mucosal route has been studied extensively in the EAE model.   

There are numerous studies showing that oral administration of myelin proteins or peptides is an 

effective way for inducing tolerance, by causing either T cell clonal anergy or induction of the 

regulatory immune response.  It is reported that this depends on the dose of the administered 

antigen.
81-83

  The attractive aspect of the oral route is that it mimics naturally induced tolerance 

to ingested antigens (with the exception of food allergies), in addition to its ease of 

administration.  Studies reporting suppression of disease with whole proteins has been 

reported
84,85

 and, more importantly, there are numerous studies showing that induction of 
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tolerance to suppress EAE can be achieved using small protein fragments and peptides.  In one 

study, MBP fragments (1-37, 44-89, and 90-170) suppressed the disease significantly.
86

  The oral 

administration of guinea pig-MBP68-88 suppressed rat-MBP68-88-induced EAE in Lewis rats.
87

 

Other reports showed that MBP and MBP peptide suppressed PLP-induced EAE, suggesting that 

bystander suppression is possible via the oral route.
88

 Lastly, another study showed that feeding 

animals with PLP139-151 peptide induced T-cell clonal anergy and prevented the onset of EAE.
89

 

Unfortunately, the success in the EAE animal model could not be translated to MS patients.  One 

phase-III clinical trial conducted to test the efficacy of orally administered bovine-myelin 

containing MBP and PLP showed no significant difference between the treatment and placebo 

groups [reviewed in ref. 90].  Thus, even though studies conducted in humans have proven that 

administration of antigen via the oral route is a safe method, no studies have reported any 

significant benefit so far.  The other mucosal route used to deliver antigens is nasal 

administration.  Studies using MBP whole protein,
91,92

 MBP peptides,
93

 and a mixture of myelin 

peptides (PLP139-151, MBP1-11, MBP89-101)
94

 have induced peripheral tolerance and prevented the 

onset of EAE but, similar to the oral route, no significant benefit in humans has been reported.  

Other routes that have been more successful in attenuating MS and EAE were 

intravenous (i.v.) and transdermal administration.  There have been several reports indicating the 

successful suppression of EAE after i.v. administration of MOG (41-60) and MBP peptides
95

 and 

whole MBP.
96,97

  When the MBP82-98 peptide fragment was tested in MS patients, it generally 

reduced anti-MBP antibodies and significantly delayed the progression of disease in a particular 

sub-group of MS patients with the HLA haplotype DR2/DR4.
98

  Another study indicated that i.v. 

administration of MBP85-96, but not intrathecal or subcutaneous administration, led to 

undetectable amounts of MBP autoantibodies in the CSF for several months post-treatment.
99
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More recently, transdermal delivery of myelin antigens has shown some clinical benefit 

following the success observed in EAE.  MBPAc1-11
100

 and whole MBP
101

 delivered 

transdermally protected mice from developing EAE. A small study conducted in patients 

diagnosed with relapsing-remitting MS was performed to test the immunological modulation 

caused by a mixture of three peptides (MBP85-99, MOG35-55, and PLP139-151) via an adhesive skin 

patch.  Myelin-specific T cell responses were completely eliminated after only four months of 

treatment.
102

  In addition, there was an up-regulation in the production of IL-10 and a down-

regulation of TGF-β and IFN-γ in the MS patients, indicating a shift towards an immunotolerant 

state.  These results are promising and may show clinical efficacy if tested on a larger scale.  So 

far, translating efficacy from the EAE animal model to MS treatment has proven to be a difficult 

task.  This is probably due to the complexity and heterogeneity of human autoimmune diseases.  

Many factors must be considered when trying to apply antigenic-SIT for the treatment of human 

autoimmune disease such as dosing amount and frequency, route of administration, and 

specificity of antigens administered.  

As described previously, the inflammatory response is initiated by a mDC due to 

exposure to an insoluble antigen.  The uptake and processing of an insoluble antigen leads to the 

activation of a DC and the presentation of the antigen in presence of costimulatory molecules, 

thus inducing an inflammatory response.  The immunological basis for antigenic-peptide therapy 

is that when the peptide is given in a soluble state, it binds directly to empty MHC-II molecules 

on the surface of iDC.
103

  Because iDC do not have surface costimulatory molecules, the 

presentation of antigen by MHC-II on iDC in the absence of costimulatory signal(s) causes the 

naïve T cells to differentiate to regulatory T cells after their interactions with antigen-presenting 

iDC.
43

  Activation and proliferation of Treg cells influences the balance of the immune response 
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to restore tolerance by shifting from an effector T cell response (TH1) to an immune-suppressor 

(TH2) or an immune-regulatory response (Fig. 1.3). 

 

1.2.2 Altered Peptide Ligands 

Altered peptide ligands (APL) are another group of peptides that are proposed to cause 

antigen-specific immunosuppression.  These are molecules that are similar in sequence to native 

peptides with one or more amino acid modification(s) and can bind to MHC-II molecules and 

engage with the TCR to alter or inhibit the delivery of signal to the T cell.  Thus, these molecules 

act as antagonists to produce T cell anergy or as partial agonists to produce incomplete activation 

of T cells.  Incomplete activation of T cells will cause a shift from a pro-inflammatory T cell 

response (TH1 and TH17) to a regulatory/suppressor T cell response (TH2 and TH3).
104

 APL with 

sequence modifications in MBP1-9,
105

 MBP87-99,
106,107

 and PLP139-151
108-112

 have been shown to 

attenuate disease in the EAE model.   In phase I clinical trial, an APL from MBP83-99 showed a 

TH2 bias and produced anti-inflammatory cytokines; the peptide was well-tolerated by the 

patients in this trial.
113

  However, when this APL was tested in two separate phase II clinical 

trials, there was no significant clinical benefit seen in treated patients.
114,115

  In one of the clinical 

trials, there was no difference observed in the small group of treated patients and the study was 

terminated due to adverse side effects from the treatment; in addition 3 of 8 patients experienced 

exacerbations of disease.
114

 In the other clinical trial, hypersensitivity reactions were also present 

and no clinical differences between the APL-treated and the placebo groups were observed, 

albeit there was a reduction in the number and volume of gadolinium-enhanced CNS lesions.
115

   

 

 



 15 

 

Figure 1.3 Administration of soluble peptide antigens induces a T cell regulatory immune 

response.  Soluble peptides can bind directly to empty MHC-II molecules on the surface of iDC 

avoiding internalization and processing of the antigen.  Presentation of the antigen in absence of 

Signal 2 by an iDC leads to an antigen-specific regulatory response.  
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 Glatiramer acetate (Copaxone) is a random polymer of four amino acids (poly(YEAK)n) 

that has been shown to modulate the immune response by competing with MBP epitopes for 

MHC binding as well as causing TCR antagonism.
116

  Therefore, it is the only APL on the 

market for the treatment of MS.  Following the success of Copaxone, similar molecules have 

been developed and tested in the EAE model.  A poly(EYYK)4 peptide that was developed to 

bind to the MHC-II binding pocket was shown to inhibit EAE in Lewis rats.
117

  Other molecules 

such as poly(FYAK)n and poly(VWAK)n also ameliorated both MBP85-99- and PLP139-152-induced 

EAE in mice.
118,119

  However, one study indicated that Copaxone has no beneficial effects on 

disease progression and the risk of developing relapses; and therefore, its clinical use may be 

questionable.
120

  It should also be noted that the efficacy observed from these short amino acid 

polymers in the animal model may not be translatable to humans. 

 

1.2.3 Bifunctional Peptide Inhibitors 

Our group has developed a novel group of bifunctional peptide inhibitors (BPI), which 

target APC and are proposed to selectively inhibit an immunogenic response towards a specific 

antigen. BPI molecules are composed of an antigenic peptide covalently linked to an adhesion 

peptide.
121

  It is proposed that the antigenic peptide fragment of the BPI molecule binds to MHC-

II molecules and the adhesion peptide binds simultaneously to an adhesion protein on the surface 

of the APC.  The linker is made up of either aminocaproic acid or polyethelene glycol (PEG) to 

ensure simultaneous binding of the antigenic peptide portion as well as the adhesion peptide 

(LABL) to their respective receptors on the surface of the APC.  The original length of the linker 

was estimated upon docking of the antigenic peptide and LABL peptide to X-ray structures of 

MHC-II
122

 and ICAM-1, respectively.
123-125

  As mentioned earlier, a step necessary for the 
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activation of a pro-inflammatory T cell response is the formation of the immunological synapse, 

which occurs at the interface of APC and T cells and is the translocation of Signal 1 and 

adhesion proteins.
40,41,49,50

  The hypothesis is that BPI molecules bind to both MHC-II (Signal 1) 

and ICAM-1 (adhesion protein) on the surface of APC to tether both molecules and prevent the 

formation of the immunological synapse, thus altering the differentiation and proliferation of T 

cells from an inflammatory to a regulatory phenotype.     

Several BPI molecules consisting of various antigens and adhesion peptides have been 

developed for the suppression of autoimmune diseases in animal models. A GAD-BPI molecule 

composed of GAD208-217 and LABL peptides suppressed Type-1 diabetes in the non-obese 

diabetes mouse model.
126

 GAD-BPI significantly suppressed insulitis and lowered blood glucose 

levels compared to control.  Currently, CII-BPI composed of a collagen-II antigenic peptide 

(CII256-270, CII707-721, or CII1237-1249) conjugated to LABL peptide attenuated clinical signs of 

rheumatoid arthritis in the collagen-II-induced model (unpublished data).  More importantly, 

PLP-BPI, composed of PLP139-151 conjugated to LABL, was the first BPI molecule to suppress 

EAE and modulate the immune response by increasing the proliferation of TGF-β-, IL-4-, and 

IL-10-producing CD4
+
CD25

+
 T cells, indicating a shift towards a suppressor and regulatory 

immune response.
127-129

  Other studies with PLP-BPI showed that it can also suppress disease 

when injected three times (s.c.), or when dosed in a controlled release fashion.
130

  Current studies 

prove that PLP-BPI is effective when administered prior to induction of disease, or even after the 

appearance of clinical signs.  Recently, PLP-cIBR, which contains cIBR7 peptide from the D1 

domain of ICAM-1, was shown to be more potent than the parent PLP-BPI.  A new MOG-BPI 

molecule composed of MOG38-50 can suppress MOG-induced EAE in the mouse model. Finally, 

a multivalent BPI molecule composed of both MOG38-50 and PLP139-151 has been shown to 
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suppress disease significantly in both MOG38-50- and PLP139-151-induced EAE.  The value of the 

multivalent BPI molecule is that it can suppress disease regardless of the inciting antigen as well 

as attenuate new antigenic responses created by epitope spreading.  

In summary, BPI molecules have excellent efficacy in suppressing EAE and other 

autoimmune diseases in animal models.  Current studies indicate that BPI molecules down-

regulate the production of pro-inflammatory cytokines and increase the production of regulatory 

cytokines.  These results suggest that BPI molecules promote a shift towards a regulatory and 

suppressor immune response.  However, more studies need to be done to elucidate the 

mechanisms of action of BPI molecules.  

 

1.2.4 Other Peptides 

 A novel group of non-antigen-specific peptide inhibitors which bind to B7 on the surface 

of T cells and prevent the delivery of the costimulatory signal are derived from the sequence of 

the CD28 costimulatory protein on the surface of APC.
44,45

 The presentation of an antigen in the 

absence of a costimulatory signal will lead to T cell anergy, therefore inhibiting the 

inflammatory response (Fig. 1.4).  Peptides derived from the conserved region of CD28 

containing the motif MYPPPY bind to B7 and have suppressed EAE in B10.PL mice.
131

  A 

similar but shorter peptide that showed efficacy in prolonging cardiac allograft rejection
132

 was 

tested in our lab, and results indicated significant suppression of PLP139-151-induced EAE in 

SJL/J mice (unpublished data). 

Another approach to suppressing the immune response is targeting the CD4 molecule on 

the surface of CD4
+
 T cells.  CD4

+
 T cells are known to have a key role in the pathogenesis of 

disease and, therefore, preventing their activation would be a valuable target for attenuating any 
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Figure 1.4 Presentation of antigen with Signal 2 blockade causes improper activation of T cells 

thus leading to T cell anergy. 
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CD4
+
-mediated immune response such as in MS.  A cyclic peptide complementary to the CDR3-

like region of CD4
133

 and another peptide designed based on the D1-CC' loop region
134

 were 

developed and found to suppress EAE effectively. Another immunomodulatory peptide known 

as RDP58 inhibits TH1 cytokines
135

 as well as upregulates heme-oxygenase-1.
136,137

 It has been 

shown that heme-oxyhenase-1 has a protective role in EAE;
138,139

 therefore, when combined with 

the inhibition of TH1 cytokines, RDP58 significantly lowered the incidence of EAE in Lewis 

rats.
140

 

Recently, new peptides have been developed for the treatment of MS by evaluating them 

in EAE animal models. First, IIIM1 is a 9-amino acid peptide derived from histone H2A36-44 that 

possesses anti-inflammatory activity and suppressed MOG- and PLP-induced EAE.
141,142

 When 

administered orally, this peptide reduced the production of pro-inflammatory cytokines such as 

IL-17, IFN-γ, IL12, and IL-23 and promoted Treg cell proliferation accompanied by an increase 

in TGF-β and IL-10 production. Secondly, four peptides that bind to the first two extracellular 

loops (ECL1 and ECL2) of the CC chemokine receptor 5 (CCR5) have been shown to 

significantly reduce the infiltration of monocytes and lymphocytes into the spinal cord and 

attenuated EAE in mice.
143

  CCR5 has been shown to contribute significantly to the pathogenesis 

of disease by its role in the activation and migration of leukocytes.
144

 Peptides targeting CCR5 

have a mechanism of action similar to that of Tysabri, a monoclonal antibody used for the 

treatment of MS.
145

 Thirdly, glucocorticoid-induced leucine zipper- (GILZ) peptides that bind to 

nuclear factor-kappa B (NF-κB) can modulate T-cell activation and induce an anti-inflammatory 

immune response to suppress the progression of EAE in mice.
146

  GILZ peptides were derived 

from the binding sequence of GILZ to the p65 subunit of NF-κB.
146

  GILZ-peptides inhibit the 

function of NF-κB and suppress the activation of inflammatory cytokines.
147

 Finally, it has 
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recently been proposed that treatment of MS can be achieved by modulating toll-like receptors 

(TLR) because TLR play an integral part in the development of MS and EAE.
148-151

  Gambuzza 

et al. described different types of TLR that are involved in progression of MS and EAE and 

illustrated several peptides that modulate TLR and can potentially suppress disease.
151

 

  

1.3 SAFETY CONCERNS  

A major safety concern involving antigen or antigen-derived therapies is the risk of 

developing anaphylaxis, which is a severe hypersensitivity reaction.  Two clinical trials with an 

APL were terminated due to hypersensitivity reactions that developed in the patients.
114,115

 An 

anaphylactic reaction can occur from the initial burst of immune cell activation and proliferation 

accompanied by a storm of cytokine release.  The generally accepted mechanism for induction of 

anaphylaxis is due to the release of inflammatory mediators that are triggered by cross-linking of 

IgE molecules bound to FcεRI on mast cells.  This can lead to life-threatening symptoms such as 

tissue edema, leukocyte recruitment, excessive mucous production, and 

bronchoconstriction.
152,153

 Anaphylaxis has been observed in numerous EAE models after 

treatment with myelin peptides,
154,155

 but when the peptides were administered in combination 

with an anti-IgE antibody, onset of anaphylaxis was inhibited.  The route of administering the 

peptides plays a major role in mitigating the risk of developing hypersensitivity reactions.  It is 

thought that i.v. injections have the greatest risk for developing anaphylaxis since the antigen 

becomes accessible to the systemic circulation immediately.  S.c. and intradermal injections are 

believed to have a lower incidence of anaphylaxis, and mucosal administration is the safest.
104

 It 

should be noted, however that induction of EAE by priming with myelin peptide in the presence 

of CFA leads to the production of IgE molecules,
156

 thus fostering a hypersensitivity response. 
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This is in contrast to what occurs in MS patients, in which there is production of IgG 

antibodies.
99

 To prevent side effects, Wraith et al. suggested that antigenic peptides could be 

delivered in a fashion similar to the way that allergens are delivered for the treatment of 

allergies.
79

 In this case, the antigenic peptide should be administered by gradually increasing the 

dose to avoid rapid induction of anergy or activation of Treg that leads to side effects.  

 

1.4 CONCLUSION 

 MS pathogenesis is very complex, involving many different branches of the immune 

system, and still remains to be fully elucidated.  Current treatments for MS are generally non-

specific, leading to suppression of the general immune response to fight pathogenic infections. 

Therefore, there is a need to develop more antigen-specific treatments that avoid this general 

suppression. Recently, antigen-specific treatments such as antigenic peptides, APL, and 

bifunctional peptide inhibitors have been very successful in suppressing EAE in animal models. 

Unfortunately, many of these successes in animal models have not been yet translated to humans 

in treating MS; this is partly due to the generation of hypersensitivity reactions upon treatment 

with the antigenic peptides. In addition, the mechanisms of action of antigenic peptides and their 

derivatives in suppressing autoimmune diseases such as EAE and MS are not yet fully 

understood. Thus, more research needs to be done to elucidate their mechanisms of action and 

delineate why these antigenic peptides and their derivatives induce side effects such as 

hypersensitivity reactions. It has been shown that the method of delivery and dosing schedule 

could reduce side effects.  In the future, studies performed to develop novel delivery methods 

and dosing schedules of antigenic peptide therapies will be carried out to improve the efficacy 

and safety profiles of peptide therapies for MS.  
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Suppression of EAE and prevention of blood-brain barrier breakdown after vaccination 

with novel bifunctional peptide inhibitor 
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2.1 INTRODUCTION 

Multiple sclerosis (MS) is a neurological disease in which the body’s immune system 

recognizes protein fragments of the myelin sheath as antigenic and initiates an inflammatory 

response in the central nervous system (CNS). This immune response leads to breakdown in the 

BBB integrity and demyelination of neurons.
1
  Major proteins that make up the myelin sheath are 

myelin basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG) and proteolipid 

protein (PLP), which can be recognized as antigens by CD4
+
 T cells, and most likely promote 

neurodegenerative diseases such as MS.  Activation of T cells takes place after the delivery of 

two signals by antigen-presenting cells (APC).
2,3

  The first signal (Signal 1) is the interaction 

between the T-cell receptor (TCR) and the antigen-loaded major histocompatibility complex 

class-II (MHC-II).  The second signal (Signal 2) is provided by costimulatory molecules 

(CD28/B-7),
4,5

 and is strengthened by the interaction between adhesion molecules such as 

intercellular adhesion molecule-1 (ICAM-1) and leukocyte function-associated antigen-1 (LFA-

1).
6
  Novel bifunctional peptide inhibitor (BPI) molecules are composed of an antigenic peptide 

fragment covalently conjugated to an adhesion molecule fragment.
7
 BPI molecules were 

designed based on a proposed mechanism that they can bind simultaneously to the MHC-II and 

adhesion molecules on the surface of APC such as dendritic cells (DC). This simultaneous 

binding is proposed to prevent proper delivery of signals through the immunological synapse and, 

therefore, hinder the induction of a specific immune response.  Consequently, only a 

subpopulation of T cells that recognize the antigenic peptide fragment in the BPI would be 

affected and, thus, tolerance toward that particular antigen would be restored. 

In order to study the etiology of MS as well as to develop new therapies for the disease, 

the EAE animal model can be used.  EAE animals undergo a pathogenesis very similar to MS, 
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including inflammation of the CNS and breakdown of the BBB.  EAE is an inflammatory disease 

characterized by the differentiation and proliferation of type-17 helper T cells (TH17)
8
 and type-1 

helper T cells (TH1).
9
  To suppress or prevent disease, several therapies have been designed to 

down-regulate these pro-inflammatory T cells and promote the activation of the regulatory and 

suppressor immune response by promoting the differentiation and proliferation of regulatory T 

cells (Treg)
10

 and type-2 helper T cells (TH2).
11

  Many potential therapies for MS (i.e., peptides 

and small molecules) are being evaluated in EAE animal models after induction of disease with 

antigen(s). Previous studies have shown that BPI molecules suppressed EAE in mice upon BPI 

treatment during disease induction or after the initial progress of the disease.
7,12

  In the current 

study, the in vivo efficacy after vaccination of the mice with peptides, i.e., before induction of 

disease, was evaluated. We hypothesized that the vaccination with Ac-PLP-BPI-NH2 (PLP-BPI) 

would stimulate a regulatory or tolerogenic response in mice; therefore, when EAE was induced 

with antigen in the presence of adjuvant, the disease would not develop due to priming of the 

regulatory response of the immune system by PLP-BPI. 

The severe CNS inflammation in MS and EAE leads to BBB breakdown and CNS 

lymphocyte infiltration.
13

 It is not yet clear whether the breakdown of the BBB is a secondary 

effect of the disease or an initiator of the disease. A therapy such as Tysabri has been shown to 

prevent lymphocyte infiltration into the brain.
14

 Studies suggest a link between the initiation of 

inflammation and activation of leukocytes leading to the breakdown of the BBB.
15,16

 Therefore, 

we propose that blocking the induction of the pro-inflammatory T cells can prevent the 

disruption of the BBB after induction of EAE. 

PLP-BPI is a well-characterized BPI molecule capable of suppressing EAE in mice when 

administered after disease stimulation.  PLP-BPI is composed of the antigenic peptide PLP139-151 
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(PLP)
17

 covalently conjugated to the ICAM-1 ligand, LABL peptide (derived from LFA-1)
18-21

 

via a stable linker composed of glycine and aminocaproic acid (Fig. 2.1).  In this study, we tested 

the novel use of PLP-BPI as a peptide vaccine. The in vivo efficacy of PLP-BPI was evaluated 

and the effect of PLP-BPI treatment on preventing breakdown of the BBB was determined.  BBB 

permeation of Gd-DTPA was quantified using MRI in normal mice (no EAE), phosphate-

buffered saline (PBS)-treated EAE mice and PLP-BPI-treated mice. The brain deposition of Gd-

DTPA was determined using contrast enhanced T1-weighted MRI.  Scans were performed on 

various brain regions and enhancement of signal before and after Gd-DTPA injection was 

imaged and quantified. Finally, the immune-modulation mechanisms were elucidated by 

determining the cytokine production of splenocytes that were isolated from PBS- and PLP-BPI-

treated mice. 

 

2.2 MATERIALS AND METHODS 

2.2.1 Mice 

All protocols for experiments involving SJL/J (H-2
s
) (Charles River, Wilmington, MA) 

were approved by the University's Institutional Animal Care and Use Committee. The mice were 

housed under specific pathogen-free conditions at a facility at the University of Kansas, which is 

approved by the Association for Assessment and Accreditation of Laboratory Animal Care. 

 

2.2.2 Peptide Synthesis 

PLP139-151 (HSLGKWLGHPDKF) and PLP-BPI (Ac-HSLGKWLGHPDKF-

(AcpGAcpGAcp)2-ITDGEATDSG-NH2,   Ac being an acetyl group and Acp being  ε- 
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Figure 2.1 Sequence and target receptors of PLP-BPI.  PLP-BPI is a linear 33-amino acid 

peptide, which is composed of the antigenic peptide, PLP139-151 and the ICAM-1 binding peptide, 

LABL, which is derived from the α-subunit of LFA-1 (CD11a237-246). Both peptides are 

covalently conjugated to each other via a linker composed of ε-aminocaproic acid and glycine.  

The N- and C- termini of the peptide are capped by acetylation and amidation, respectively.  The 

hypothesis is that the PLP139-151 portion will bind to MHC-II (I-A
s
) and LABL will 

simultaneously bind to ICAM-1 on the surface of the APC. 
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aminocaproic acid) were synthesized with 9-fluorenylmethyloxy-carbonyl-protected amino acid 

chemistry on an appropriate PEG-PS™ resin (Applied Biosystems, Foster City, CA) using an 

automated peptide synthesis system (Pioneer™:PerSeptive Biosystems, Framingham, MA). 

Cleavage of the peptides from the resin and removal of the protecting groups from the side-chain 

were carried out using 90% TFA with 10% scavenger reagents (1,2-ethane dithiol (3%), anisole 

(2%), and thioanisole (5%)). The crude peptides were purified by reversed-phase HPLC using a 

semi-preparative C18 column with a gradient of solvent A (95%/5% = H2O (0.1% 

TFA)/acetonitrile) and solvent B (100% acetonitrile). The purity of the peptides was analyzed by 

HPLC using an analytical C18 column. The identity of the synthesized peptide was confirmed by 

electrospray ionization mass spectrometry. 

 

2.2.3 Induction and Treatment of EAE 

SJL/J female mice (5–7 weeks old) were immunized subcutaneously (s.c.) with 200 μg 

PLP in a 0.2 ml emulsion comprised of equal volumes of PBS and complete Freund's adjuvant 

(CFA) containing killed mycobacterium tuberculosis strain H37RA at a final concentration of 4 

mg/ml (Difco, Detroit, MI). The PLP/CFA emulsion was administered to regions above the 

shoulder and the flanks (total of 4 sites; 50 μl at each injection site). In addition, 200 ng of 

pertussis toxin (List Biological Laboratories, Campbell, CA) was injected intraperitoneally (i.p.) 

on the day of immunization (day 0) and 48 h post-immunization. The clinical scores that reflect 

the disease progression were determined by the same observer in a blinded fashion using a scale 

ranging from 0 to 5 as follows: 0 - no clinical symptoms, 1 - limp tail or waddling gait with tail 

tonicity; 2 - waddling gait with limp tail (ataxia); 2.5 - ataxia with partial paralysis of one limb; 3 

- full paralysis of one limb; 3.5 - full paralysis of one limb with partial paralysis of the second 
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limb; 4 - full paralysis of two limbs; 4.5 - full paralysis of two limbs with partial paralysis of 

forelimbs; 5 - moribund or dead. Body weight was also measured daily. 

For the vaccination study, the mice received three s.c. injections of either 100 μl vehicle 

(PBS) or 100 μl of treatment peptides (100 nmol/injection/day) 11, 8, and 5 days prior to 

induction of disease on day 0.  PLP-BPI’s potency was compared to a negative control (PBS) 

and a positive control (PLP). 

 

2.2.4 In Vitro Cytokine Production Assay 

In vitro cytokine assays were performed following a protocol similar to that reported 

previously.
22

 SJL/J mice were treated with PBS (100 μl) and PLP-BPI (100 nmol/100 

μl/injection) on days –11, –8, and –5 followed by injection of PLP/CFA and pertussis toxin as 

described in section 2.2.3 to induce EAE.  Spleens were isolated from three PLP-BPI- and PBS-

treated mice on the day of maximum disease (i.e., day 15).  Single cell suspensions of 

splenocytes were harvested by gently mashing the spleen through a cell strainer using the rubber 

end of a 1-ml syringe in a petri dish containing serum-free RPMI-1640 supplemented with 10% 

fetal bovine serum, 100 U penicillin/100 µg streptomycin, 2 mM L-glutamine and 50 µM 2-

mercaptoethanol.  Red blood cells were lysed using ACK lysis buffer (Invitrogen).  The 

remaining splenocytes were then washed three times with serum-free RPMI-160 medium 

(Cellgro).  The cells were then primed with PLP (20 μM) in a 24-well plate (5 × 10
6
 cells/well). 

Supernatants of cell cultures were collected for cytokine detection 72 hours later and stored in a 

–80°C freezer until analysis. Secreted IL-2, IL-4, IL-5, IL-6, IL-17, and IFN-γ were measured by 

quantitative ELISA-based Q-Plex
TM

 assay (Quansys Biosciences, Logan, UT). 
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2.2.5 MRI Scans 

To evaluate the effect of PLP-BPI treatment on the breakdown of the BBB, three 

different groups of animals were used. The first group consisted of five normal SJL/J mice with 

no EAE induction. The second and third groups of mice were treated with PBS and PLP-BPI, 

respectively, on days –11, –8, and –5, followed by induction of EAE with PLP/CFA on day 0 as 

described in section 2.2.3. 

In vivo MRI scans were performed using contrast enhanced T1-weighted imaging to 

determine the extent of BBB breakdown at the highest peak of the disease at 15 days after 

induction of EAE. The contrast agent, Gd-DTPA (Magnevist, Bayer HealthCare, Leverkusen, 

Germany), was delivered via an i.p. catheter, which enabled us to acquire images before and 

after Gd-DTPA infusion under an identical experimental setup. For MRI experiments, the 

animals were anesthetized using 3 % isoflurane initially followed by 1-2 % isoflurane in a gas 

mixture of air and oxygen (ratio = 1:1). Before MRI scans were performed, an i.p. catheter 

(Insyte Autogard, 22 GA, 0.9 × 25 mm, Becton Dickinson, Sparks, MD) was inserted in to the 

animal’s peritoneal cavity and secured with tapes. 

All MR imaging was performed with a 9.4 T horizontal bore spectrometer equipped with 

a Varian INOVA console (Varian Inc., Palo Alto, CA) and gradient coils (40 G/cm, 250 µs) of 

12 cm in diameter (Magnex Scientific, Abingdon, UK). The animal was positioned supine in an 

acrylic sled with its head held steady by using a nose cone for anesthesia delivery. The animal’s 

body temperature was monitored by a rectal temperature sensor (Cole-Palmer, Vernon Hills, IL) 

and maintained at 37 ± 0.5°C using a blanket with warm water circulation. The animal’s 

respiratory rate was monitored using a respiration pillow (SA instruments, Stony Brook, NY). A 

quadrature RF surface coil was placed on top of the animal’s head to acquire T1-weighted spin-
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echo MR images before and after a bolus infusion of Gd-DTPA (0.6 mmol/kg body weight). The 

imaging parameters were TE/TR = 12.5/600 ms, matrix size = 256 × 256, field of view = 20 × 20 

mm, slice thickness = 0.5 mm, and number of averages = 2. The corresponding nominal image 

resolution was 78 × 78 × 500 µm
3
. The timing of the post-contrast administration MRI scan was 

set to 20 min to allow uptake of Gd-DTPA into the blood from the i.p. injection and deposition in 

the brain. 

MR data analysis was performed by calculating the percent signal enhancement due to 

Gd-DTPA deposition in the brain using the following equation: ([v1-v0]/v0), where v1 is the MR 

signal after Gd-DTPA injection, and v0 is the MR signal before Gd-DTPA injection.  The percent 

signal enhancement was measured in six regions of interest (ROI) of the brain, including spinal 

cord, brain stem, cerebellum, hippocampus, cortex, and striatum. 

 

2.2.6 Statistical Analysis 

Statistical analysis was done using one-way analysis of variance followed by Fisher’s 

least significance difference to compare the different parameters, including EAE clinical scores, 

change in body weights, in vitro cytokine production, and percent MR signal enhancement.  All 

statistical analyses were performed using StatView software (SAS Institute, Inc., Cary, NC).  A 

p-value of less than 0.05 was used as the criterion for statistical significance. 

 

2.3 RESULTS 

2.3.1 Suppression of EAE by PLP-BPI 

It has been shown previously that PLP-BPI molecules have better efficacy in suppressing 

EAE than PLP peptide when injected intravenously (i.v.)
12,23

 on days 4, 7, 10, and 14 or injected 
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s.c.
24

 on days 4, 7, and 10 after disease stimulation using a PLP/CFA emulsion on day 0.  Here, 

the efficacy of PLP-BPI as a peptide vaccine was evaluated following s.c. injections of PLP-BPI 

on days –11, –8, and –5 prior to stimulation on day 0 with PLP/CFA emulsion. 

Disease severity was measured using a standard disease scoring protocol (Fig. 2.2A), 

which ranges from 0 to 5. The first sign of EAE was evident in the PBS- and PLP-treated mice 

on days 11–12. The peak of the disease was between days 14 and 17 with a maximum average 

disease score of 2.30 ± 0.43 for PBS-treated and 1.50 ± 0.31 for PLP-treated mice (n = 12). After 

the peak of the disease, the mice slowly went into remission.  Most of the PLP-BPI-treated mice 

were disease-free with only one mouse having slight weakness in its tail, this resulted in a 

maximum average disease score of 0.08 ± 0.08 (n = 12).  Therefore, PLP-BPI was able to 

significantly suppress EAE compared to PBS (p < 0.0001) and PLP (p < 0.0001).  The efficacy 

of PLP-BPI was also evaluated using percent change in body weight of the mice.  The PBS-

treated mice showed a significant loss of body weight (approximately 15%) when compared to 

the PLP-BPI-treated mice (p < 0.0001). The PLP-treated group showed about 10% loss of body 

weight which was also significantly lower than the PLP-BPI-treated mice (p < 0.001).  The PLP-

BPI-treated group showed no loss in body weight (Fig. 2.2B).  A summary of the results is 

shown in Table 2.1. 

 

2.3.2 In Vitro Cytokine Production 

To examine the cytokines induced by PLP-BPI and better understand the immune 

response, splenocytes from PLP-BPI-treated and PBS-treated mice were isolated on day 15.  The 

type of immune cell differentiation  upon  treatment can be determined by evaluating the 
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Figure 2.2A In vivo efficacies of PLP-BPI and PLP in suppressing EAE in the mouse model 

upon vaccination with peptides and immunization with PLP/CFA on day 0.  PBS-treated mice 

received subcutaneous injections of 100 μl PBS on days –11, –8, and –5.  PLP-BPI- and PLP-

treated mice received 100 nmol/100 μl PBS on days –11, –8, and –5.  Results are expressed as 

the mean clinical score ± SEM (n = 12).  EAE scores from all PLP-BPI treated mice were 

significantly lower than those of PBS- and PLP-treated mice (p < 0.0001).  For statistical 

analysis, data points from days 10 to 25 were used. 
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Figure 2.2B In vivo efficacies of PLP-BPI and PLP in suppressing EAE in the mouse model 

upon vaccination with peptides and immunization with PLP/CFA on day 0.  PBS-treated mice 

received subcutaneous injections of 100 μl PBS on days –11, –8, and –5.  PLP-BPI- and PLP-

treated mice received 100 nmol/100 μl PBS on days –11, –8, and –5.  Results are expressed as 

the mean % change in body weight ± SEM (n = 12).  Loss of body weight was also significantly 

lower in PLP-BPI-treated mice compared to those treated with PBS (p < 0.0001) and PLP (p < 

0.001).  For statistical analysis, data points from days 10 to 25 were used. 
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Group Dose
a
 Incidence of disease

b
 

Mean maximal score 

± SEM
c
 

PBS 
100 μl/mouse on days 

–11, –8, and –5 
12/12 2.30 ± 0.43 

PLP 
100 nmol/mouse on 

days –11, –8, and –5 
12/12 1.50 ± 0.31 

PLP-BPI 
100 nmol/mouse on 

days –11, –8, and –5 
1/12 0.08 ± 0.08 

Table 2.1 Summary of in vivo results.   

a
All injections were administered subcateneously.   

b
Incidence of disease was defined as a disease score of 1 or higher.   

c
Mean maximal disease scores were expressed as mean ± SEM (n = 12). 
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cytokines secreted from the splenocyte culture. Although this method will not provide an exact 

concentration of cytokines in systemic circulation, it will provide relative levels of cytokines 

produced by cells in the mice following different treatments. If there is a general inflammatory 

response, one would expect to see a greater production of pro-inflammatory cytokines (IL-6, IL-

17 and IFN-γ).  If there were an activation of the regulatory and suppressor immune response, 

there would be a greater concentration of regulatory (IL-2)
25

 and suppressor cytokines (IL-4 and 

IL-5). 

EAE is believed to be predominantly a TH17- and TH1-mediated disease; therefore, the in 

vitro production of cytokine markers for both types of inflammatory T cells was evaluated.  In 

these studies, resident APC served to activate the T cells that had been isolated from mice at the 

height of the disease in a recall assay, using PLP as the target antigen.  Following a 72-hour 

incubation with PLP, splenocytes isolated from PBS-treated mice produced approximately three 

times higher IL-17 than PLP-BPI-treated mice, indicating a greater presence of TH17 cells in 

PBS-treated than in PLP-BPI-treated mice (Fig. 2.3A, p < 0.0001). There was a significant 

increase in the production of IFN-γ as well (Fig. 2.3B, p < 0.05), but only a slight increase in the 

production of IL-6 that was not significantly different (Fig. 2.3C, p > 0.05) in the culture 

supernatants isolated from the PBS-treated mice than that of PLP-BPI-treated mice. From these 

results, we concluded that PLP-BPI down-regulated the TH1 phenotype. 

The next step was to evaluate the role of PLP-BPI in skewing the response toward 

regulatory (Treg) and suppressor (TH2) T cell phenotypes. In the recall assay, splenocytes from 

PLP-BPI-treated mice produced significantly higher IL-2 (Fig. 2.4A, p < 0.0001) than those 

from PBS treated mice, indicating that PLP-BPI may promote Treg differentiation.
26,27

 More  
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Figure 2.3A  Concentrations of the pro-inflammatory cytokine, IL-17, from the cell culture 

supernatant. Splenocytes were isolated from the spleens of EAE-induced mice that were treated 

with either PBS or PLP-BPI on days –11, –8, and –5.  The pooled splenocytes (n = 3 mice) were 

stimulated in vitro with PLP139-151 and supernatant was isolated 72 hours later for cytokine 

detection (*p < 0.0001).   

* 
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Figure 2.3B  Concentrations of the pro-inflammatory cytokine, IFN-γ, from the cell culture 

supernatant. Splenocytes were isolated from the spleens of EAE-induced mice that were treated 

with either PBS or PLP-BPI on days –11, –8, and –5.  The pooled splenocytes (n = 3 mice) were 

stimulated in vitro with PLP139-151 and supernatant was isolated 72 hours later for cytokine 

detection (*p < 0.05). 

 

* 
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Figure 2.3C  Concentrations of the pro-inflammatory cytokine, IL-6, from the cell culture 

supernatant (p > 0.05). Splenocytes were isolated from the spleens of EAE-induced mice that 

were treated with either PBS or PLP-BPI on days –11, –8, and –5.  The pooled splenocytes (n = 

3 mice) were stimulated in vitro with PLP139-151 and supernatant was isolated 72 hours later for 

cytokine detection.   
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Figure 2.4A  Concentrations of the regulatory cytokine, IL-2, from the cell culture supernatant.  

Splenocytes were isolated from the spleens of EAE- induced mice that were treated with either 

PBS or PLP-BPI on days –11, –8, and –5.  The pooled splenocytes (n = 3 mice) were stimulated 

in vitro with PLP139-151 and supernatant was isolated 72 hours later for cytokine detection (*p < 

0.0001).  

 

 

 

 

* 
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remarkably, splenocytes from PLP-BPI-treated mice produced significantly higher levels of IL-4 

(Fig. 2.4B, p < 0.0001) and IL-5 (Fig. 2.4C, p < 0.001) when compared to PBS-treated mice. 

Our observation suggests that PLP-BPI promoted TH2 differentiation and proliferation. 

 

2.3.3 MRI Data 

Cytokine data demonstrated that injection of PLP-BPI subcutaneously on days 11, 8, and 

5 prior to induction of disease promoted the regulatory response and lowered the inflammatory 

response.  It is believed that CNS inflammation leads to breakdown of the BBB. We proposed 

that PLP-BPI increased the regulatory immune response and suppressed the activation of 

inflammatory immune response, which would prevent the breakdown of the BBB. We used MRI 

following injection of Gd-DTPA to monitor the breakdown of the BBB. The PBS-treated mice 

developed EAE and showed high enhancement of Gd-DTPA signal in most brain regions 

compared to normal mice (negative control); this result indicated that the BBB of PBS-treated 

mice was compromised. In contrast, there was no obvious enhancement in Gd-DTPA signal in 

the brain of PLP-BPI-treated mice compared to normal mice without disease induction (Fig. 2.5). 

These result indicated that there was no BBB breakdown in PLP-BPI-treated mice. The 

quantitative enhancement of Gd-DTPA signals in different regions of the brain from all three 

groups of mice is shown in Fig. 2.6. There was a consistent trend of signal enhancement in all 

regions of the brains of PBS-treated mice. However, different regions of the brain of PLP-BPI-

treated mice had signals similar to those of normal mice. Taken together, from these results we 

concluded that PLP-BPI can prevent the breakdown of the BBB by suppressing the inflammatory 

immune response, which is likely due to the generation of regulatory and suppressor cells 

following vaccination. 
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Figure 2.4B  Concentrations of the suppressor cytokine, IL-4, from the cell culture supernatant.  

Splenocytes were isolated from the spleens of EAE- induced mice that were treated with either 

PBS or PLP-BPI on days –11, –8, and –5.  The pooled splenocytes (n = 3 mice) were stimulated 

in vitro with PLP139-151 and supernatant was isolated 72 hours later for cytokine detection (*p < 

0.0001).  
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Figure 2.4C  Concentrations of the suppressor cytokine, IL-5, from the cell culture supernatant.  

Splenocytes were isolated from the spleens of EAE- induced mice that were treated with either 

PBS or PLP-BPI on days –11, –8, and –5.  The pooled splenocytes (n = 3 mice) were stimulated 

in vitro with PLP139-151 and supernatant was isolated 72 hours later for cytokine detection (*p < 

0.001).  

 

 

 

* 
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Figure 2.5 Representative scans of the cerebellum (highlighted with box) and brainstem of three 

different groups of mice (n = 5/group).  The first group consisted of normal SJL mice with no 

EAE induced.  The second and third groups were mice treated with either PBS or PLP-BPI on 

days –11, –8, and –5 and immunized to develop EAE on day 0.  Each mouse was scanned before 

(v0) and after (v1) an i.p. bolus injection of Gd-DTPA contrast agent.  There is obvious 

enhancement in signal within the cerebellum (ROI) of mice treated with PBS, but no obvious 

enhancement in signal in normal mice and PLP-BPI-treated mice. 
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Figure 2.6  Quantitative signal enhancement using Gd-DTPA.  Each mouse (n = 5 per group) 

was scanned before (v0) and after (v1) an i.p. bolus injection of the Gd-DTPA contrast agent.  

The percentage was calculated from the ratio of signal enhancement using the equation [v1-v0]/v0.  

The signal enhancement within the ROI can be correlated to the breakdown of the BBB.  All the 

regions of the brain had greater enhancement of the signal within the ROI in the PBS-treated 

mice than in the normal mice (no EAE induced) and PLP-BPI treated mice.  The cerebellum was 

the only region in which there was a statistically significant difference between groups.  Normal 

control and PLP-BPI-treated mice had a significantly lower signal enhancement within the ROI 

of the cerebellum (*p < 0.05). 
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2.4 DISCUSSION 

Antigenic peptides have recently found an application for the treatment of allergic and 

autoimmune diseases in a procedure known as soluble antigen-specific immunotherapy (SIT).  

Wraith and colleagues proposed a potential mechanism of action for the way that soluble 

antigenic peptides modulate the immune response.
28

  Empty MHC-II molecules on the surface of 

APC such as DC are capable of being loaded by exogenous peptides.
29

  Therefore, it is proposed 

by Wraith and colleagues that soluble antigenic peptides can bind directly to the empty MHC-II 

molecules on the surface of immature DC (iDC) without being internalized and processed, thus 

leading to the induction of a regulatory response by promoting a Treg phenotype. In this case, the 

induction of the regulatory T cell response leads to restored tolerance for specific antigens in the 

treatment of autoimmune diseases such as MS,
30,31

 rheumatoid arthritis (RA),
32

 and type-1 

diabetes (T1D).
33

 

Bifunctional peptide inhibitors (BPI) have been shown to suppress EAE,
7
 T1D,

33
 and RA 

(unpublished data) and are consistently more efficient at suppressing disease than the 

corresponding parent antigenic peptides. We hypothesize that the antigenic peptide and the 

adhesion peptide of the BPI molecule bind to MHC-II and ICAM-1 molecules, respectively, on 

the surface of APC.  This simultaneous binding will interfere with the maintenance of the 

functional immunological synapse at the APC-T cell interface, a step necessary for full activation 

of an immunogenic response.
34,35

  Alternatively, the two molecules on the surface of the APC are 

clustered and internalized.  Without the appropriate delivery of signals, the cells fail to induce an 

inflammatory response and instead promote the differentiation of naïve T cells toward regulatory 

and/or suppressor T-cell phenotypes. A third possible mechanism is that the antigenic peptide 

fragment of the BPI molecule could bind directly to the empty MHC-II molecules on the surface 
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of iDC and act similarly to the antigenic peptide on its own.  If this is the case, binding of a naïve 

T cell to an APC would induce the differentiation to regulatory T cells as with the administration 

of soluble antigenic peptide alone.  However, the mechanism of action of BPI molecules remains 

to be fully elucidated. 

Previously, PLP-BPI has been administered in solution i.v.
12

 and s.c. as well as in a 

controlled-release fashion using nanoparticles.
24

  It was shown that s.c. administration was more 

effective than i.v. administration of PLP-BPI. In addition, increasing the length of the linker as 

well as capping the N- and C- termini proved to enhance the in vivo efficacy of the peptide.
23

  In 

these studies, PLP-BPI prevented the onset of disease significantly when the peptide was 

administered after the induction of disease.  In addition, mice treated with PLP-BPI after the 

onset of disease went into remission faster than those treated with PBS. 

In our proposed mechanism of action of PLP-BPI, in which the peptide induces the 

regulatory response, injection of PLP-BPI prior to induction of disease should protect the mouse 

from developing severe EAE.  Therefore, our study was designed to investigate the effects of 

PLP-BPI and PLP on the disease progression when these peptides were administered prior to 

disease induction. It is interesting that three subcutaneous injections of PLP-BPI at 11, 8, and 5 

days prior to induction of disease effectively suppressed the development of EAE compared to 

PLP peptide and PBS. The superior efficacy of PLP-BPI relative to PLP is consistent with what 

we found previously when injecting the peptides after induction of disease.
12,23,24

  Unlike in 

previous studies
23

 in which 43.8 - 45.5% of the mice developed anaphylaxis, only 8.33% (1 out 

of 12) developed anaphylaxis when PLP-BPI is injected as a peptide vaccine, thus adding 

another advantage to vaccination.   Administration of PLP-BPI several days prior to induction of 

disease proves to us that mechanistically it works by modulating the immune system and not 
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simply acting as a protein/peptide blocker since we know that in vivo half-life of PLP-BPI is 

approximately 2 hours.
36

  Although five days elapsed between the last injection of peptide and 

disease induction, the effect of PLP-BPI persists after the peptide is eliminated from the systemic 

circulation.  It is still not completely clear why PLP-BPI has better efficacy than PLP, but it is 

possibly due to the presence of LABL peptide on PLP-BPI, which could improve peptide 

binding to DC in addition to hindering the development of the immunological synapse. Further 

investigations need to be carried out for elucidating the difference in the mechanisms of action 

between PLP-BPI and PLP. 

EAE is a demyelinating disease that mimics the inflammatory disease MS, which is 

driven by the induction of pro-inflammatory T cells such as TH17 and TH1. Restoring tolerance 

to specific myelin sheath antigens has become the most important strategy for the treatment of 

EAE and MS.  Establishing the immuno-tolerant state has become possible due to the production 

of cytokines that probably promote the development of regulatory (Treg) and suppressor T cells 

(TH2) cells.  Our cytokine studies indicated that splenocytes from PLP-BPI-treated mice 

produced a lower level of IL-17, which would lead to a decreased population of TH17 cells when 

compared to PBS-treated mice.  There is some controversy on the importance of IL-17 in the 

pathogenesis of EAE
37

 since it’s been reported that the absence of IL-17 has not affected the 

progression of the disease.
38

  However, TH17 cells have been shown to have a vital role in the 

development of EAE
8,39

 and the IL-17 role is not yet completely clear as a key marker for TH17 

cells.  In the current study, we also reported that PLP-BPI-treated mice had reduced levels of the 

TH1 cytokines as well, as indicated by the decrease in secretion of IL-6 and IFN-γ. The next step 

was to evaluate whether PLP-BPI induced expression of cytokines that promote Treg and TH2 

cells, both of which have been associated with the amelioration of EAE. IL-2 levels were 
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significantly greater in PLP-BPI-treated mice than in PBS-treated mice; this strongly suggests 

that there was skewing of the immune response toward the production of Treg cells. In addition, 

PLP-BPI led to a prominent shift toward a TH2 profile as reflected by the increased production of 

IL-4 and IL-5. 

Inflammation and leukocyte recruitment to the CNS during MS and EAE are known to 

cause BBB breakdown.
40,41

  The cellular infiltration is initiated by the interaction of LFA-1 on 

leukocytes and ICAM-1 on the surface of vascular endothelial cells of the brain (i.e., BBB).
42

  It 

has been shown that TH1
43

 and TH17
44

 cells may enter the CNS during EAE.  The production of 

inflammatory cytokines is believed to lead to BBB impairment.
40

  Administration of PLP-BPI 

led to a reduction in the levels of inflammatory cytokines and, therefore, it is proposed that 

administration of PLP-BPI prevents the destruction of the BBB in EAE-induced mice due to its 

ability to modulate the immune response.  This idea is supported by our observations from the 

MRI studies in determining the extent of the breakdown of the BBB of PLP-BPI- and PBS-

treated mice compared to normal mice.  The breakdown of the BBB can be assessed by 

determining the amount of Gd-DTPA that was deposited in the brain upon its permeation 

through the BBB. This is very important because the breakdown of the BBB is believed to 

precede cellular infiltration, which leads to destruction of the myelin sheath. It is remarkable that 

PLP-BPI-treated mice had similar amounts of Gd-DTPA brain distributed to all brain regions 

compared to normal healthy mice. In contrast, there was greater Gd-DTPA deposition in 

different brain regions of PBS-treated mice compared to PLP-BPI-treated and healthy mice. We 

observed a significant enhancement of signal in the cerebellum of EAE mice treated with PBS 

compared to that in PLP-BPI-treated mice (p < 0.05). We also observed a difference (p = 0.06) in 

the enhancement of signal in the spinal cord between diseased mice and PLP-BPI-treated mice.  
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The great protection from BBB breakdown in these two regions is particularly important; it has 

been demonstrated that the cerebellum and the spinal cord are equally the most susceptible 

regions for breakdown in this EAE model.
45

  It is evident that the integrity of the BBB of PLP-

BPI-mice is maintained to the same degree as in healthy mice, and PBS-treated mice have a 

breach of the BBB. Thus, PLP-BPI functions prior to the breakdown of the BBB, possibly by 

suppressing the activation of immune cells prior to their infiltration into the brain. Additionally, 

PLP-BPI could prevent the infiltration of immune cells by blocking ICAM-1/LFA-1-mediated 

immune cell adhesion to the vascular endothelial cells of the BBB. 

In conclusion, PLP-BPI, when administered as a peptide vaccine, suppresses EAE. 

Administration of PLP-BPI prior to induction of disease led to expression of regulatory and 

suppressor immune cytokines that mediate suppression of the inflammatory immune responses 

as shown by the in vitro cytokine production study. The inhibition of the inflammatory response 

by PLP-BPI prevented the breakdown of the BBB in EAE-induced mice. Further studies are 

necessary to elucidate the mechanisms of action of PLP-BPI in comparison to those of PLP 

peptide alone. In the future, we plan to study the effect of a long-term effect of PLP-BPI as a 

vaccine. 
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CHAPTER 3 

 

Development of bifunctional peptide inhibitors to target the costimulatory molecules 

B7/CD28 for the treatment of experimental autoimmune encephalomyelitis 
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3.1 INTRODUCTION 

Multiple sclerosis (MS) is a neurodegenerative disease caused by the onset of an 

inflammatory response in the central nervous system (CNS).  Experimental autoimmune 

encephalomyelitis (EAE) is an animal model that mimics some disease characteristics of MS, 

including CNS inflammation, lesion formation, blood-brain barrier breakdown and 

demyelination.
1
  Therefore, EAE is a widely used model to study novel therapies for MS.  For 

both MS and EAE, it is believed that the inflammatory response is primarily due to the activation 

of CD4
+
 T cells.  For the induction of a CD4

+
 T cell inflammatory response, two signals must be 

delivered to the T cell via an antigen-presenting cells (APC)—an antigen-specific signal and a 

costimulatory signal.
2,3

   

The antigen-specific signal, known as Signal 1, is delivered via the interaction of the T 

cell receptor (TCR) on the surface of a T cell and an antigen-loaded major histocompatibility 

complex class-II (MHC-II) molecule on the surface of an APC.  The costimulatory signal, also 

known as Signal 2, is produced by interaction of various molecules on the surface of T cells and 

APC. The most important costimulatory signal is generated by the interaction between CD28 on 

CD4
+
 T cells and its coreceptor B7 on the surface of APC.

4,5
  It has been shown that the 

B7/CD28 interaction is crucial for the progression of MS and EAE.  CD28 binds to B7 via a 

conserved extracellular region characterized by the residues MYPPPY.
6-8

  This region has 

become very important for the design of therapies that target the B7/CD28 interaction.  Another 

molecule that interacts with B7 is CTLA-4, but, unlike CD28, CTLA-4 is important for 

inhibiting the stimulation of T cells.
9
  This interaction has also become important for designing 

therapies that can imitate the inhibitory signal for the suppression of inflammatory responses.  

Other well-studied costimulatory signals include the CD40/CD40L interaction
10

 as well as a set 
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of adhesion molecules interactions between the T cells and APC.  Adhesion molecules are 

believed to strengthen the connection between both cells and, therefore, enhance the delivery of 

signals from the APC to the T cells.  The most important pair of adhesion molecules is the 

intercellular adhesion molecule-1 (ICAM-1) on the APC and leukocyte function-associated 

antigen-1 (LFA-1) on the T cell.
11

   

 Several therapies have been developed in an attempt to allow delivery of only an antigen-

specific signal (Signal 1) in the absence of costimulatory signals (Signal 2).  This has been 

achieved either by blocking Signal 2
12,13

 or using fixed APC primed with antigen.
14,15

  Blocking 

Signal 2 or the absence of Signal 2 can induce anergy in T cells and lead to long-term tolerance 

towards a specific antigen.
16,17

 Using antisense technology, a peptide known as B7AP was 

derived from the sequence of the CD28 protein, which contains the conserved region, 

MYPPPY.
18

 B7AP was designed by Xiong and colleagues, and it has been reported that the 

peptide binds to B7 and specifically blocks the B7-CD28 interactions without affecting B7-

CTLA-4 interactions. This peptide was used in prolonging allograft rejection in mice.  A peptide 

similar to B7AP but longer was also developed to target B7 and was tested in reducing the 

severity of EAE.
19

 Unfortunately, solely blocking B7-CD28 interactions may cause general 

immunosuppression because there is no antigenic selectivity of the peptide. Therefore, there is a 

need to alter the differentiation and proliferation of immune cells in an antigenic-specific manner 

for controlling immune response in autoimmune diseases. 

 In this study, B7AP was conjugated with an antigenic peptide (PLP139-151) from 

proteolipid protein (PLP) to form a novel bifunctional peptide inhibitor
20

 (BPI) called PLP-B7AP 

(Fig. 3.1). The hypothesis is that the PLP peptide portion of PLP-B7AP binds to empty MHC-II 

molecules on the surface of APC and the B7AP portion binds to B7, also on the surface of APC.   
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Figure 3.1 Sequence and target receptors of PLP-B7AP.  PLP-B7AP is a linear 33-amino acid 

peptide, which is composed of the antigenic peptide, PLP139-151, and the B7 binding peptide, 

B7AP, which is derived from the conserved region of the CD28 molecule. Both peptides are 

covalently conjugated to each other via a linker composed of ε-aminocaproic acid and glycine.  

The N- and C- termini of the peptide are capped by acetylation and amidation, respectively.  The 

hypothesis is that the PLP139-151 portion will bind to MHC-II (I-A
s
) and B7AP will 

simultaneously bind to B7 on the surface of the APC. 
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This binding process prevents the formation of complete Signal 1 and Signal 2 and alters the 

commitment of T cells from inflammatory to regulatory cells, suppressing the progression of 

autoimmune diseases. PLP-B7AP is proposed to generate long-term tolerance towards a specific 

antigen without suppressing the general immune response. To test this proposed hypothesis, 

PLP-B7AP’s efficacy was determined and compared to several control peptides in suppressing 

EAE in the mouse model. The effect of PLP-B7AP peptide on cytokine production was 

evaluated to understand the potential mechanism of action of PLP-B7AP in suppressing EAE.  

  

3.2 MATERIALS AND METHODS 

3.2.1 Mice 

All protocols for experiments involving SJL/J (H-2
s
) (Charles River, Wilmington, MA) 

were approved by the University's Institutional Animal Care and Use Committee. The mice were 

housed under specific pathogen-free conditions at a facility at the University of Kansas, which is 

approved by the Association for Assessment and Accreditation of Laboratory Animal Care.   

 

3.2.2 Peptide Synthesis 

Peptides used in the present study are listed in Table 3.1.  The peptides were synthesized 

with 9-fluorenylmethyloxy-carbonyl-protected amino acid chemistry on an appropriate PEG-

PS™ resin (Applied Biosystems, Foster City, CA) using an automated peptide synthesis system 

(Pioneer™:PerSeptive Biosystems, Framingham, MA). Cleavage of the peptides from the resin 

and removal of the protecting groups from the side-chain were carried out using 90% TFA with 

10% scavenger reagents (1,2-ethane dithiol (3%), anisole (2%), and thioanisole (5%)). The crude 

peptides were purified by reversed-phase HPLC using a semi-preparative C18 column with a 
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Peptide Sequence 

PLP139-151 HSLGKWLGHPDKF 

B7AP Ac-EFMYPPPYLD-NH2 

PLP-B7AP Ac-HSLGKWLGHPDKF-(AcpGAcpGAcp)2-EFMYPPPYLD-NH2 

PLP-BPI Ac-HSLGKWLGHPDKF-(AcpGAcpGAcp)2-ITDGEATDSG -NH2 

Table 3.1: List of peptides used in the present study 

Acp in the linker represents ε-aminocaproic acid.  Ac- represents the acetyl-capped N-terminus 

of the peptide. -NH2 represents the amide-capped C-terminus of the peptide. 
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gradient of solvent A (95%/5% = H2O (0.1% TFA)/acetonitrile) and solvent B (100% 

acetonitrile). The purity of the peptides was analyzed by HPLC using an analytical C18 column. 

The identity of the synthesized peptide was confirmed by electrospray ionization mass 

spectrometry. 

 

3.2.3 Induction of EAE and Clinical Evaluation 

SJL/J female mice (5–7 weeks old) were immunized subcutaneously (s.c.) with 200 μg 

PLP in a 0.2 ml emulsion comprised of equal volumes of phosphate-buffered saline (PBS) 

solution and complete Freund's adjuvant (CFA) containing killed mycobacterium tuberculosis 

strain H37RA at a final concentration of 4 mg/ml (Difco, Detroit, MI). The PLP/CFA emulsion 

was administered to regions above the shoulder and the flanks (total of 4 sites; 50 μl at each 

injection site). In addition, 200 ng of pertussis toxin (List Biological Laboratories, Campbell, CA) 

was injected intraperitoneally (i.p.) on the day of immunization (day 0) and 48 h post-

immunization. The clinical scores that reflect the disease progression were determined by the 

same observer in a blinded fashion using a scale ranging from 0 to 5 as follows: 0 - no clinical 

symptoms, 1 - limp tail or waddling gait with tail tonicity; 2 - waddling gait with limp tail 

(ataxia); 2.5 - ataxia with partial paralysis of one limb; 3 - full paralysis of one limb; 3.5 - full 

paralysis of one limb with partial paralysis of the second limb; 4 - full paralysis of two limbs; 4.5 

- full paralysis of two limbs with partial paralysis of forelimbs; 5 - moribund or dead. Body 

weight was also measured daily. 

 

3.2.4 In Vivo Peptide Treatments 
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Study I:  This study was performed to test the in vivo efficacy of PLP-B7AP in 

suppressing EAE.  Mice were immunized on day 0 in order to develop EAE as described in 

section 3.2.3.  Each mouse received s.c. injections of PLP-B7AP at a concentration of 100 

nmol/100 µl/injection (in PBS) on days 4, 7, and 10.  The efficacy of PLP-B7AP was compared 

to that of the vehicle (PBS), 100 nmol/100 µl of PLP, 100 nmol/100 µl of B7AP, and a equal 

mixture of PLP and B7AP (100 nmol each diluted in 100 µl PBS). The efficacy of each peptide 

was evaluated by monitoring the clinical score and the change in body weight over a period of 25 

days. 

Study II:  The purpose of this study was to evaluate the potency of PLP-B7AP at a lower 

dose and lower frequency of injections.  EAE was induced on day 0.  The first group of mice 

received s.c. injections of PLP-B7AP at a concentration of 50 nmol/100 µl (in PBS) on days 4, 7 

and 10, and its efficacy was compared to that of the negative control (100 µl PBS) and positive 

control (50 nmol/100 µl of PLP-BPI). In addition another group of mice was treated with only 

one s.c. injection (100 nmol/100 µl) of PLP-B7AP on day 4.  The potency of each treatment was 

evaluated using the clinical score and the change in body weight over a period of 25 days. 

Study III: The efficacy of PLP-B7AP in a vaccine-like treatment was also evaluated, i.e. 

administration of peptide prior to induction of disease.  In this study, the mice received three s.c. 

injections of PLP-B7AP (100 nmol/100 µl) on days –11, –8 and –5, and EAE was induced on 

day 0.  The efficacy of PLP-B7AP after administration prior to EAE induction was compared to 

that of the negative control (100 µl PBS).  The efficacy of the peptide as a vaccine was evaluated 

by monitoring the clinical score and change in body weight over a period of 25 days. 

 

3.2.5 In Vitro Cytokine Production Assay 
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In vitro cytokine assays were performed following a protocol similar to that reported 

previously.
21

 EAE was induced in SJL/J mice by injection of PLP/CFA and pertussis toxin as 

described in section 3.2.3, and mice were treated with either PBS (100 μl) or PLP-B7AP (100 

nmol/100 μl/injection) on days 4, 7, and 10.  Spleens were isolated from three PLP-B7AP- and 

PBS-treated mice on the day of maximum disease (i.e., day 15) and day of remission (day 30).  

Single cell suspensions of splenocytes were harvested by gently mashing the spleen through a 

cell strainer using the rubber end of a 1-ml syringe in a petri dish containing serum-free RPMI-

1640 supplemented with 10% fetal bovine serum, 100 U penicillin/100 µg streptomycin, 2 mM 

L-glutamine and 50 µM 2-mercaptoethanol.  Red blood cells were lysed using ACK lysis buffer 

(Invitrogen).  The remaining splenocytes were then washed three times with serum-free RPMI-

160 medium (Cellgro).  The cells were then primed with PLP (20 μM) in a 24-well plate (5 × 10
6
 

cells/well). Supernatants of cell cultures were collected for cytokine detection 72 hours later and 

stored in a –80°C freezer until analysis. Secreted IL-2, IL-4, IL-5, IL-6, and IL-17 were 

measured by quantitative ELISA-based Q-Plex
TM

 assay (Quansys Biosciences, Logan, UT). 

 

3.2.6 Statistical Analysis 

Statistical analysis was done using one-way analysis of variance followed by Fisher’s 

least significance difference to compare the different parameters, including EAE clinical scores, 

change in body weights, and in vitro cytokine production.  All statistical analyses were 

performed using StatView software (SAS Institute, Inc., Cary, NC).  A p-value of less than 0.05 

was used as the criterion for statistical significance.  

 

3.3 RESULTS 



 84 

3.3.1 Study I: Suppression of EAE by PLP-B7AP 

For in vivo study I, PLP-B7AP’s efficacy in suppressing EAE was evaluated for the first 

time.  Three injections were administered s.c. on days 4, 7, and 10.  Its efficacy was compared to 

that of the vehicle (PBS) negative control as well as PLP, B7AP and an unconjugated mixture of 

PLP and B7AP. Each peptide was administered at a concentration of 100 nmol/100 µl in PBS 

solution. The clinical score results (Fig. 3.2A) indicated that PLP-B7AP suppressed the disease 

completely with 100% of the mice disease-free (p < 0.0001 when compared to PBS). All the 

PBS-treated mice exhibited severe signs of EAE, which peaked at day 13 with a maximal disease 

score of 3.5.  The PLP-treated mice also exhibited severe signs of EAE but it was still 

significantly less than the PBS-treated group (p < 0.05) with a maximal disease score of 2.6.  In 

addition, the B7AP peptide suppressed disease significantly when compared to PBS (p < 0.0001) 

with a maximal score of 1.5, but it was still not as effective as PLP-B7AP (p < 0.0001).  Finally, 

to test the importance of the covalent linker connecting PLP to B7AP, the unconjugated mixture 

was also tested.  It was found that it suppressed the disease slightly better than B7AP, but it was 

not significantly different (p > 0.05) and was less effective than PLP-B7AP (p < 0.0001). The 

loss in body weight correlated well with what was reported from the clinical scores (Fig. 3.2B) 

except that the group treated with the PLP and B7AP mixture had significantly lower loss in 

body weight compared to the B7AP-treated mice (p < 0.001).  The PBS-treated mice lost 

approximately 27.04% of their body weight during the peak of the disease, while the PLP- and 

B7AP-treated mice lost 19.05% and 13.95% of their body weight, respectively.  The mice treated 

with the unconjugated mixture of PLP and B7AP had a very small loss in body weight with a 

maximum of 4.91%, while the PLP-B7AP-treated mice mostly exhibited a gain in body weight 

with a maximal loss of 1.6%.  
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Figure 3.2A In vivo efficacies of PLP-B7AP and all the controls in suppressing EAE in the 

mouse model upon treatment with peptides and immunization with PLP/CFA on day 0.  PBS-

treated mice received s.c. injections of 100 μl PBS on days 4, 7, and 10.  PLP-, B7AP-, PLP + 

B7AP mixture- and PLP-B7AP-treated mice received 100 nmol/100 μl PBS on days 4, 7, and 10 

(s.c.).  The efficacy of each peptide was determined by clinical disease score of EAE.  Results 

are expressed as the mean clinical score ± SEM (n = 6 for all and n = 8 for PLP-B7AP).  
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Figure 3.2B In vivo efficacies of PLP-B7AP and all the controls in suppressing EAE in the 

mouse model upon treatment with peptides and immunization with PLP/CFA on day 0.  PBS-

treated mice received s.c. injections of 100 μl PBS on days 4, 7, and 10.  PLP-, B7AP-, PLP + 

B7AP mixture- and PLP-B7AP-treated mice received 100 nmol/100 μl PBS on days 4, 7, and 10 

(s.c.).  The efficacy of each peptide was determined by percent change in body weight, relative to 

day 8 (day of disease onset).  Results are expressed as the mean % change in body weight ± SEM 

(n = 6 for all and n = 8 for PLP-B7AP).  
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3.3.2 Study II: Potency and Dose Dependency of PLP-B7AP 

In the second in vivo study, the potency of PLP-B7AP was evaluated by administering 

only one injection of PLP-B7AP; in addition, its dose dependency was evaluated and compared 

to that of a previously well-studied BPI molecule, PLP-BPI.
22-24

  The dose-dependency study 

was achieved by administering half the dose (i.e., 50 nmol/100 µl in PBS).  After one s.c. 

injection, PLP-B7AP delayed the onset of disease, and more, importantly suppressed disease 

significantly when compared to the PBS-treated mice (p < 0.0001).  The PLP-B7AP-treated mice 

eventually reached a maximum clinical score of 1.2 (Fig. 3.3A) with a maximum loss of body 

weight of 12.22% (Fig. 3.3B).  To test dose-dependency, the efficacy of one injection (50 

nmol/100 µl) of PLP-B7AP was compared to that of one injection of PLP-BPI (50 nmol/100 µl).  

The clinical score (Fig. 3.3A) results indicated that there was no significant difference between 

the PLP-B7AP- and the PLP-BPI-treated mice (p > 0.05). The average maximum clinical score 

reached for the PLP-B7AP- and the PLP-BPI-treated mice were 0.33 and 0.3, respectively.  Both 

treatments suppressed disease significantly when compared to the PBS-treated mice (p < 0.0001).  

However, there was a significant difference in the loss of body weight (Fig. 3.3B) between the 

PLP-B7AP- and PLP-BPI-treated mice (p < 0.05).  PLP-BPI treated mice lost a small amount of 

body weight, reaching a maximum of 4.36%, while the PLP-B7AP had a significantly healthier 

gain in body weight when compared to the PLP-BPI-treated mice. 

 

3.3.3 Study III: Vaccination with PLP-B7AP 

 For the final in vivo study, the hypothesis is that BPI molecules act by promoting the 

regulatory immune response towards the specific antigen in the BPI molecules.  Therefore, 100 

nmol/injection of PLP-B7AP was injected on days –11, –8, and –5 prior to induction of disease. 



 88 

 

Figure 3.3A In vivo evaluation of PLP-B7AP’s potency in suppressing EAE in the mouse model 

upon treatment with peptide and immunization with PLP/CFA on day 0.  PBS-treated mice 

received s.c. injections of 100 μl PBS on days 4, 7, and 10.  One group received one s.c. dose of 

100 nmol/100 μl PBS on days 4 of PLP-B7AP. The remaining groups received three s.c. 

injections of PLP-B7AP and the positive control, PLP-BPI, at a dose of 50 nmol/100 μl PBS on 

days 4, 7, and 10.  The efficacy and potency of the peptide were determined by clinical disease 

score of EAE.  Results are expressed as the mean clinical score ± SEM (n = 6). 
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Figure 3.3B In vivo evaluation of PLP-B7AP’s potency in suppressing EAE in the mouse model 

upon treatment with peptide and immunization with PLP/CFA on day 0.  PBS-treated mice 

received s.c. injections of 100 μl PBS on days 4, 7, and 10.  One group received one s.c. dose of 

100 nmol/100 μl PBS on days 4 of PLP-B7AP. The remaining groups received three s.c. 

injections of PLP-B7AP and the positive control, PLP-BPI, at a dose of 50 nmol/100 μl PBS on 

days 4, 7, and 10.  The efficacy and potency of the peptide were determined by percent change in 

body weight, relative to day 8 (day of disease onset).  Results are expressed as the mean % 

change in body weight ± SEM (n = 6). 
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According to the clinical score, PLP-B7AP suppressed EAE completely in a fashion similar to 

when it was injected after induction of disease, while the PBS-treated mice reached a maximum 

clinical score of 2.56 (Fig. 3.4A). The change in body weight of the mice confirmed the results 

observed by the clinical score, since only a gain in body weight in the PLP-B7AP-treated mice 

was observed and the PBS-treated mice lost a maximum of 19.37% (Fig. 3.4B).   

 

3.3.4 In Vitro Cytokine Production 

To better understand the mechanism of action of PLP-B7AP, splenocytes were isolated 

and their cytokine production determined using quantitative ELISA-based Q-Plex
TM

 assay.  This 

method unfortunately does not determine exact concentrations of circulating cytokines, but will 

provide information regarding the general immune response in the body.  If there is a general 

inflammatory response, it would be expected to see more of a TH17 and TH1 phenotype, both 

being crucial players in the progression of EAE.  To treat EAE, therapies need to promote the 

regulatory and suppressor T cell phenotypes (i.e., more production of Treg and TH2).  The 

prevalent phenotype of T cells can be determined by the cytokines produced by the splenocytes.  

If there is a higher population of TH1 and TH17 cells, there will be a greater production of their 

respective cytokines, IL-6 and IL-17.  If Treg (IL-2) and TH2 (IL-4 and IL-5) cells are more 

prevalent, then there will be a greater production of cytokine markers. 

Splenocytes were isolated on days 15 and 30, which correspond to the day of most severe 

disease and the day when EAE is in remission, respectively, and their cytokine production was 

measured to determine the T cell phenotype present. At the day of maximum disease score (day 

15), there was a significant drop in the production of IL-17 in the PLP-B7AP-treated mice 

compared to the PBS-treated mice (p < 0. 0001).  At day 30, PLP-B7AP-treated mice produced a  
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Figure 3.4A Evaluation of PLP-B7AP’s in vivo efficacy as a vaccine in suppressing EAE. PBS-

treated mice received s.c. injections of 100 μl PBS on days –11, –8, and –5.  The PLP-B7AP 

group was vaccinated on days –11, –8, and –5.  Each mouse received a s.c. injection of 100 

nmol/100 μl PBS.  The efficacy of the peptide was determined by clinical disease score of EAE.  

Results are expressed as the mean clinical score ± SEM (n = 6). 
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Figure 3.4B Evaluation of PLP-B7AP’s in vivo efficacy as a vaccine in suppressing EAE. PBS-

treated mice received s.c. injections of 100 μl PBS on days –11, –8, and –5.  The PLP-B7AP 

group was vaccinated on days –11, –8, and –5.  Each mouse received a s.c. injection of 100 

nmol/100 μl PBS.  The efficacy of the peptide was determined by percent change in body weight, 

relative to day 8 (day of disease onset).  Results are expressed as the mean % change in body 

weight ± SEM (n = 6). 
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much lower amount of IL-17 compared to the PBS-treated mice, but not to the extent of day 15 

(p < 0.0001).  This is probably due to the fact that, at this stage, the disease is much weaker.  

Another pro-inflammatory cytokine tested was IL-6, which is a TH1 marker.  On day 15, the 

production of IL-6 in the PLP-B7AP-treated mice was lower compared to that of PBS-treated 

mice (p = 0.058).  At day 30, there was no difference in the production of IL-6 for the PBS- and 

PLP-B7AP-treated mice.  Therefore, the results indicated that there was a significant shift away 

from the TH17 phenotype for both days (Fig. 3.5A).  However, there was only a significant shift 

away from TH1 phenotype only during the day of maximum disease but not after disease 

remission (Fig. 3.5B), suggesting that the shift in TH1 balance is most needed during the 

development of the disease. 

 To monitor whether PLP-B7AP influences the regulatory/suppressor immune response, 

production of anti-inflammatory cytokines was measured.  It has been reported that IL-2 has a 

main role in the development of Treg; therefore, IL-2 production was monitored upon treatment 

of mice with PLP-B7AP. On both days 15 and 30, there was an increase in the production of IL-

2 by the splenocytes from PLP-B7AP-treated mice when compared to that of PBS-treated mice 

(Fig. 3.6A, p < 0.0001 for day 15 and p = 0.06 for day 30).  For the key TH2 cytokine markers 

(i.e., IL-4 and IL-5), PLP-B7AP-treated mice produced a significantly greater amount of IL-4 on 

both days 15 and 30 (Fig. 3.6B, p < 0.0001) compared to PBS-treated mice. However, the 

production of IL-5 was only significantly higher on day 30 for PLP-B7AP-treated mice 

compared to PBS-treated mice (p < 0.001); there was no observable difference in IL-5 

production on day 15 for either PLP-B7AP- or PBS-treated mice (Fig. 3.6C). These results 

indicated that there was a shift towards the Treg and TH2 phenotype when the mice were treated 

with PLP-B7AP.     
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Figure 3.5A Concentrations of the pro-inflammatory cytokine, IL-17, from the cell culture 

supernatant. Splenocytes were isolated from the spleens of EAE-induced mice on either day 15 

or 30.  Each mouse was treated with either PBS or PLP-B7AP on days 4, 7, and 10. The pooled 

splenocytes (n = 3 mice) were stimulated in vitro with PLP139-151 and supernatant was isolated 72 

hours later for cytokine detection (*p < 0.0001). 
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Figure 3.5B Concentrations of the pro-inflammatory cytokine, IL-6, from the cell culture 

supernatant. Splenocytes were isolated from the spleens of EAE-induced mice on either day 15 

or 30.  Each mouse was treated with either PBS or PLP-B7AP on days 4, 7, and 10. The pooled 

splenocytes (n = 3 mice) were stimulated in vitro with PLP139-151 and supernatant was isolated 72 

hours later for cytokine detection (*p < 0.05). 
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Figure 3.6A Concentrations of the regulatory cytokine, IL-2, from the cell culture supernatant. 

Splenocytes were isolated from the spleens of EAE-induced mice on either day 15 or 30.  Each 

mouse was treated with either PBS or PLP-B7AP on days 4, 7, and 10. The pooled splenocytes 

(n = 3 mice) were stimulated in vitro with PLP139-151 and supernatant was isolated 72 hours later 

for cytokine detection (*p < 0.0001). 
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Figure 3.6B Concentrations of the suppressor cytokine, IL-4, from the cell culture supernatant. 

Splenocytes were isolated from the spleens of EAE-induced mice on either day 15 or 30.  Each 

mouse was treated with either PBS or PLP-B7AP on days 4, 7, and 10. The pooled splenocytes 

(n = 3 mice) were stimulated in vitro with PLP139-151 and supernatant was isolated 72 hours later 

for cytokine detection (*p < 0.0001). 
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Figure 3.6C Concentrations of the suppressor cytokine, IL-5, from the cell culture supernatant. 

Splenocytes were isolated from the spleens of EAE-induced mice on either day 15 or 30.  Each 

mouse was treated with either PBS or PLP-B7AP on days 4, 7, and 10. The pooled splenocytes 

(n = 3 mice) were stimulated in vitro with PLP139-151 and supernatant was isolated 72 hours later 

for cytokine detection (*p < 0.001).. 
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3.4 DISCUSSION 

PLP-B7AP is a novel compound, which statistically has similar efficacy to that of the 

previously known as PLP-BPI;
22-24

 all the in vivo results from the present study are summarized 

in Table 3.2.  PLP-B7AP was significantly better compared to PLP and B7AP in delaying the 

onset and suppressing EAE.  More importantly, PLP-B7AP treatment was more effective than 

that of a mixture of unconjugated PLP and B7AP, indicating that the conjugation has an 

important role in efficacy.  In addition, lower dose administrations of PLP-B7AP could provide 

information on the lowest limit efficacy dose in the therapeutic index of PLP-B7AP. It was 

interesting to find that, when PLP-B7AP was injected prior to induction of disease (vaccine 

treatment), EAE was suppressed completely as seen by the clinical score and normal increase in 

body weight. It is well known that peptides usually have a short half-life and short residence time 

in the systemic circulation; however, PLP-B7AP was still effective when delivered in a vaccine 

dose schedule where the last injection was 5 days before disease stimulation (day 0). This result 

suggests that PLP-B7AP could stimulate the regulatory immune response (i.e., an increased 

production of Treg) prior to disease stimulation. Thus, when EAE was induced, Treg responded by 

downregulating any TH1- and TH17-mediated inflammatory response towards the antigen and, 

therefore, prevented the onset of the disease. 

Here, the efficacy of a novel PLP-B7AP molecule is reported for the first time.  The 

B7AP portion of the peptide was derived from CD28,
18

 which was proposed to bind B7 and 

block the activation of B7/CD28 costimulatory signal.
4,5

  Another important molecule called 

CTLA-4 also binds to B7, and the signal generated by CTAL-4/B7 inhibits T-cell activation or 

negative signal,
9
 therefore, this signal is important for downregulating an unwanted 

inflammatory response in MS or EAE.  However, due to the relatively fast binding kinetics of B7  
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Group Dose
a
 Incidence of disease

b
 

Mean maximal score 

± SEM 

In vivo Study I    

PBS 
100 μl/mouse on 

days 4, 7, and 10 
6/6 3.50 ± 0.43 

PLP 
100 nmol/mouse on 

days 4, 7, and 10 
6/6 2.60 ± 0.44 

B7AP 
100 nmol/mouse on 

days 4, 7, and 10 
5/6 1.50 ± 0.55 

PLP + B7AP 
100 nmol/mouse on 

days 4, 7, and 10 
6/6 1.08 ± 0.33 

PLP-B7AP 
100 nmol/mouse on 

days 4, 7, and 10 
0/8 0.00 ± 0.00 

In vivo Study II    

PBS 
100 μl/mouse on 

days 4, 7, and 10 
6/6 2.92 ± 0.55 

PLP-B7AP 
100 nmol/mouse on 

day 4 
6/6 1.20 ± 0.20 

PLP-B7AP 
50 nmol/mouse on 

days 4, 7, and 10 
1/6 0.33 ± 0.33 

PLP-BPI 
50 nmol/mouse on 

days 4, 7, and 10 
1/6 0.30 ± 0.20 

In vivo Study III    

PBS 
100 μl/mouse on 

days –11, –8, and –5 
6/6 2.56 ± 0.88 

PLP-B7AP 
100 nmol/mouse on 

days –11, –8, and –5 
0/6 0.00 ± 0.00 

Table 3.2: Summary of in vivo studies 

a
All injections were administered subcutaneously.  

b
Incidence of disease was defined as a disease score of 1 or higher. 
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and CTLA-4
25

 and the high avidity of this interaction,
26,27

 it was proposed that B7AP will not 

affect this interaction.
18

  Therefore, B7AP selectively inhibits the CD28/B7 signal while not 

affecting the CTLA-4/B7 signal.  The other major portion of the peptide is PLP, which binds to 

the MHC-II molecule on the surface of APC.  Finally, the third portion of the peptide is the 

covalent linker, connecting PLP and B7AP.  The linker is a vital part of the peptide and may 

provide two advantages.  The first advantage of linking the two peptides is that it allows the 

blockade of Signal 2 only in T cells that recognize the PLP portion of the peptide as antigenic, 

leading to specific immunomodulation.  It has been known that specificity is a major problem in 

most therapies aimed at attenuating the immune response. Lack of specific immunosuppression, 

the individual can become susceptible to opportunistic infections due to suppression of the 

general immune response, which is the case with most current therapeutic agents.  The second 

proposed advantage is that the two peptide fragments can bind to their respective receptors on 

the surface of the APC, thus tethering them together and preventing the formation of the 

immunological synapse.  This may alter the differentiation of T cells from inflammatory to 

regulatory cells. 

Previously, several BPI molecules have been developed to target other receptors on the 

surface of APC such as the adhesion molecules ICAM-1 and LFA-1.
20,22-24

  Both of these 

adhesion molecules have crucial roles for the activation of T cells, especially after formation of 

the immunological synapse.
3,28,29

  The mechanism of action of these peptides is not yet well 

understood, but it is hypothesized that they act by hindering the formation of the immunological 

synapse.  In the present study, there is no difference (p > 0.05) in efficacy between PLP-B7AP 

and PLP-BPI, which target B7 and ICAM-1, respectively. This could be due to the fact that both 

molecules are expressed on the surface of APC and are upregulated when the APC are activated.  
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Another important mechanism, which may explain the similar efficacies, could be solely due to 

the antigenic peptide portion, with the adhesion peptide and B7-peptide acting as targeting 

molecules. Antigenic peptides have become very useful for the treatment of autoimmune and 

allergic diseases.  The proposed mechanism of action for soluble antigenic peptides is that they 

bind directly to empty MHC-II molecules on the surface of naive APC such as immature 

dendritic cells
30

 (iDC).  The presentation of an antigen by an iDC without any antigen processing 

and in the absence of a co-stimulatory signal is believed to lead to differentiation of naïve T cells 

to regulatory T cells.   Therefore, another proposed mechanism of action is that BPI molecules 

can bind to iDC resulting in activation of the regulatory immune response and inducing antigen-

specific tolerance. 

Although the mechanism of action of BPI molecules has not been fully understood, the 

results of the cytokine profiles from the current study and other studies provide clues on how 

these peptides modulate the immune response.  In the current study, the results indicate strongly 

that treatment with PLP-B7AP lowers the production of IL-17 on days 15 and 30.  This most 

likely indicates a down-regulation of TH17 cells, a crucial player in the pathogenesis of EAE.
31,32

  

These results correlate with previous studies using other BPI molecules
33

.  In addition, treatment 

with PLP-B7AP lowered the production of a pro-inflammatory cytokine IL-6 on day 15.  There 

was also a significant increase in the production of IL-2 and IL-4 on days 15 and 30 and IL-5 on 

day 30 only, indicating a shift away from the inflammatory TH1 phenotype to an 

immunosuppressor/regulator TH2/Treg phenotype.  Although the mechanism of PLP-B7AP is still 

not well elucidated, it is clear that it can modulate the immune response by shifting the balance 

away from the inflammatory state to an immunotolerant state. 
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While there is still some skepticism concerning the use of animal models to test therapies 

for MS,
34

 several of the current drug candidates in clinical trials were initially investigated using 

animal models. It is true that the disease pathogenesis of EAE and MS are different, but the 

underlying mechanisms and resulting symptoms are similar.  Both diseases exhibit an 

inflammatory response initiated by CD4
+
 T cells.  Once the knowledge of how to modulate the 

immune response to specific proteins in animal models has been developed, it may become 

possible to translate this to humans.  The potential application for this specific 

immunomodulation is enormous.  Clinical trials are already underway to try to block Signal 2 

molecules for the treatment of autoimmune disease
35,36

 and allograft rejection.
37,38

  Unfortunately, 

solely blocking Signal 2 has proven to be dangerous, and many therapies have failed due to the 

onset of severe side effects from general immunosuppression.  In the present study, a novel 

peptide which specifically targets T cells that recognize PLP as antigenic while simultaneously 

blocking the delivery of Signal 2, has been developed and may be used one day for antigen 

specific immunosuppression.  This form of treatment has been very successful in the mouse 

model of EAE and can potentially be a safe way for the attenuation of the immunogenic response 

in MS without suppressing the general immune response.  Moreover, other antigens can be 

conjugated to these Signal 2 blockers in order to treat epitope spreading problems seen in MS.  

More importantly, this technology can potentially be translated for the treatment of any other 

form of autoimmune or allergic disease in which the antigens are known.  Our lab has developed 

other BPI molecules, which are composed of other antigenic peptides and were used for the 

treatment of other autoimmune disease models such as the non-obese diabetes model for type-I 

diabetes
39

 and the collagen-induced arthritis model for rheumatoid arthritis (unpublished data), as 

well as using other myelin sheath antigens to treat EAE induced by other epitopes.  Once there is 
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a better understanding of the mechanism of action of these peptides, the same strategies may be 

employed for the treatment of human immune diseases.   

In conclusion, PLP-B7AP, when administered after or before induction of the disease, 

has been shown to be effective in suppressing EAE. Even though the study of PLP-B7AP in the 

EAE animal model may not translate directly into humans, this study could improve our 

understanding of how to effectively modulate the immune response in an antigenic-specific 

manner.  The hope is that BPI molecules such as PLP-B7AP could be use in treating 

autoimmune diseases without suppressing the general immune response.   
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CHAPTER 4 

 

Suppression of MOG- and PLP-induced experimental autoimmune encephalomyelitis 
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4.1 INTRODUCTION 

 Multiple sclerosis (MS) is an immune mediated neurodegenerative disease of the central 

nervous system (CNS).  The pathogenesis of MS has not yet been fully elucidated; however, it is 

categorized as a CD4
+
 T-cell-mediated autoimmune disease.

1,2
  It is thought that there is a 

breakdown in the recognition of self versus non-self, and that the immune system starts 

recognizing protein components of the myelin sheath as antigens. Major immunodominant 

proteins of the myelin sheath are myelin proteolipid protein (PLP), myelin oligodendrocyte 

glycoprotein (MOG), and myelin basic protein (MBP).  During disease, T cells can recognize 

epitopes of these proteins and initiate an inflammatory immune response towards them, leading 

to tissue damage.  The debris from the broken down tissue leads to epitope spreading and thus, 

resulting in new tissue components becoming antigenic.
3
  

 An animal model known as experimental autoimmune encephalomyelitis (EAE) is often 

used to study MS.  This model mimics some of the pathological features of MS such as CNS 

inflammation, lesion formation, blood-brain barrier (BBB) breakdown and the presence of 

myelin-specific CD4
+
 T cells.

4,5
  In addition, the animal model can be used to study the epitope 

spreading process.
6
  Unlike MS, however, EAE has an initiating antigen that can be controlled by 

the injection of the encephalotogenic peptide in the presence of complete Freund’s adjuvant 

(CFA).  This is a powerful tool because therapies can be developed to specifically suppress the 

immune response to these antigens.  Antigen-specific immunotherapy has become widely 

investigated recently with the aim of inducing tolerance to specific antigens; therefore, it 

attenuates the inflammatory response.  Previously in our lab, bifunctional peptide inhibitors (BPI) 

composed of antigenic peptides conjugated to adhesion peptides have been developed and have 

successfully suppressed EAE.
7-11

 BPI molecules contain a specific antigen (i.e., PLP) and have 
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been predicted to suppress EAE induced by a specific antigen (i.e., PLP).  Therefore, they will 

not be useful for suppressing EAE generated by a different antigen (i.e., MOG or MBP).  In 

addition, specific antigenic-peptide modulation may not solve the problem of epitope spreading 

when the disease is in the late stage.  Therefore, a new kind of BPI molecule known as 

multivalent BPI (MVB) has been designed with more than one antigen.  The goal is that the 

MVB molecule will modulate the immune response to suppress the disease regardless of the 

inciting antigen, thus solving the problem of epitope spreading and making this strategy more 

applicable for translation into a MS therapy.  

 In EAE and MS, the activation of inflammatory CD4
+
 T cells is mediated by two signals 

that are delivered from antigen-presenting cells (APC) to T cells.
12,13

 The first signal (Signal 1) is 

the antigen presentation by the major histocompatibility complex class-II (MHC-II) molecule, 

which is recognized by the T-cell receptor (TCR). The second signal (Signal 2) is made up of 

costimulatory and adhesion molecules on both APC and T cells.  After interactions of molecular 

pairs form both signals, a process known as signal translocation occurs to form the 

immunological synapse that leads to activation of a sub-population of antigenic-specific T 

cells.
14,15

 The hypothesis is that BPI molecules are designed to simultaneously target Signal 1 

and adhesion molecules on the surface of APC to hinder the formation of the immunological 

synapse, which will prevent the activation of the inflammatory T cells that specifically recognize 

the antigenic portion of the BPI molecule.  MVB molecules are composed of more than one 

antigenic peptide, and can therefore bind to different MHC-II molecules on the same or different 

APC.  Thus, the inflammatory response towards more than one antigen is prevented. 

 In this study, an MVB comprised of MOG38-50 and PLP139-151 (MVBMOG/PLP) was 

developed and evaluated for suppressing both forms of EAE. As controls, MOG-BPI and PLP-
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BPI were evaluated for cross-reactivity in MOG-induced and PLP-induced EAE. In this case, the 

efficacy of MOG-BPI was evaluated in PLP-induced EAE, and the efficacy of PLP-BPI was 

evaluated in MOG-induced EAE. Finally, some mechanistic aspects of MVB were elucidated by 

determining the cytokines produced by splenocytes of the EAE animals upon treatment.  

 

4.2 MATERIALS AND METHODS 

4.2.1 Mice 

All protocols for experiments involving SJL/J (H-2
s
) (Charles River, Wilmington, MA) 

and C57BL/6 (Jackson Laboratory, Bar Harbor, ME) were approved by the University's 

Institutional Animal Care and Use Committee. The mice were housed under specific pathogen-

free conditions at a facility at the University of Kansas, which is approved by the Association for 

Assessment and Accreditation of Laboratory Animal Care.   

 

4.2.2 Peptide Synthesis 

Peptides used in this study are listed in Table 4.1. 9-Fluorenylmethyloxy-carbonyl-

protected amino acid chemistry was used to synthesize all peptides, utilizing an appropriate 

PEG-PS™ resin (Applied Biosystems, Foster City, CA) in an automated peptide synthesis 

system (Pioneer™:PerSeptive Biosystems, Framingham, MA). The peptides were cleaved from 

the resin, and removal of the protecting groups from the side-chain was accomplished with 90% 

TFA with 10% scavenger reagents (1,2-ethane dithiol (3%), anisole (2%), and thioanisole (5%)). 

The crude products were purified by reversed-phase HPLC using a semi-preparative C18 column 

with a gradient of solvent A (95%/5% = H2O (0.1% TFA)/acetonitrile) and solvent B (100% 

acetonitrile). Analytical HPLC with a C18 column was used to determine the purity of each  
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Peptide Sequence 

PLP139-151 (PLP) HSLGKWLGHPDKF 

MOG38-50 (MOG) GWYRSPFSRVVHL 

PLP-BPI Ac-HSLGKWLGHPDKF-(AcpGAcpGAcp)2-ITDGEATDSG-NH2 

MOG-BPI Ac-GWYRSPFSRVVHL-XGX-ITDGEATDSG-NH2 

MVBMOG/PLP Ac-GWYRSPFSRVVHL-XGX-ITDGEATDSG-XGX-HSLGKWLGHPDKF-NH2 

Table 4.1: List of peptides used in the present study 

Acp in the linker represents ε-aminocaproic acid.  Ac- represents the acetyl-capped N-terminus 

of the peptide. -NH2 represents the amide-capped C-terminus of the peptide. X represents 

polyethyleneglycol-3. 

 

 

 

 

 

 

 

 

 

 

 

 



 115 

peptide. The identity of each synthesized peptide was confirmed by electrospray ionization mass 

spectrometry. 

 

4.2.3 Induction of EAE and Clinical Evaluation 

For the PLP-induced EAE, SJL/J female mice (5–7 weeks old) were immunized 

subcutaneously (s.c.) with 200 μg of PLP139-151 peptide in a 0.2 ml emulsion comprised of equal 

volumes of phosphate-buffered saline (PBS) solution and CFA containing killed mycobacterium 

tuberculosis strain H37RA at a final concentration of 4 mg/ml (Difco, Detroit, MI). The 

PLP/CFA emulsion was administered to regions above the shoulder and the flanks (total of 4 

sites; 50 μl at each injection site). In addition, 200 ng of pertussis toxin (List Biological 

Laboratories, Campbell, CA) was injected intraperitoneally (i.p.) on the day of immunization 

(day 0) and 48 h post-immunization. 

For the MOG-induced EAE, C57BL/6 mice (4–6 weeks old) were immunized in a 

fashion similar to that mentioned above, except that 200 μg of MOG38-50 peptide was used and 

400 ng/mouse/injection of pertussis toxin was administered on days 0 and 2.  The clinical scores 

that reflect the disease progression were determined by the same observer in a blinded fashion 

using a scale ranging from 0 to 5 as follows: 0 - no clinical symptoms, 1 - limp tail or waddling 

gait with tail tonicity; 2 - waddling gait with limp tail (ataxia); 2.5 - ataxia with partial paralysis 

of one limb; 3 - full paralysis of one limb; 3.5 - full paralysis of one limb with partial paralysis of 

the second limb; 4 - full paralysis of two limbs; 4.5 - full paralysis of two limbs with partial 

paralysis of forelimbs; 5 - moribund or dead. Body weight was also measured daily. 

 

4.2.4 In vivo Peptide Treatments 
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Study I - Cross reactivity of MOG-BPI and PLP-BPI:  This study was performed to 

study the in vivo cross-reactivity of MOG-BPI and PLP-BPI in suppressing EAE.  This was 

achieved upon induction of the disease with one antigen followed by treating the animals with a 

BPI molecule containing another antigen. As positive controls, the in vivo efficacies of MOG-

BPI and PLP-BPI were evaluated to suppress MOG- and PLP-induced EAE, respectively. 

Induction of the disease was performed on day 0 as described in section 4.2.3.  In the MOG-

induced EAE, each mouse received s.c. injections of PLP-BPI and MOG-BPI at a concentration 

of 100 nmol/100 µl/injection (in PBS) on days 4, 7, and 10.  The efficacies of both PLP-BPI and 

MOG-BPI were compared to that of the vehicle (PBS). In the PLP-induced EAE, MOG-BPI was 

administered s.c. at a concentration of 100 nmol/100 µl/injection (in PBS) on days 4, 7, and 10.  

The efficacy of each peptide was evaluated by monitoring the clinical score and the change in 

body weight over a period of 25 days. 

Study II - In vivo efficacy of novel MVBMOG/PLP in MOG-induced EAE:  The purpose 

of this study was to evaluate the in vivo efficacy of the novel MVBMOG/PLP in suppressing MOG-

induced EAE. Mice were immunized with MOG/CFA on day 0 as described in section 4.2.3.  

The first group of mice received three s.c. injections of MVBMOG/PLP at a concentration of 100 

nmol/100 µl (in PBS) on days 4, 7, and 10, and its efficacy was compared to those of the vehicle 

(100 µl PBS) and positive controls, MOG (100 nmol/100 µl) and MOG-BPI (100 nmol/100 µl).  

The negative (PBS) control and the positive control were each injected three times on days 4, 7, 

and 10. The efficacy of each treatment was evaluated using the clinical score and the change in 

body weight over a period of 25 days. 

Study III - In vivo efficacy of novel MVBMOG/PLP in PLP-induced EAE: The efficacy 

of MVBMOG/PLP was also evaluated in PLP-induced EAE.  All mice were immunized with 
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PLP/CFA on day 0 as described in section 4.2.3.  One group of mice received three s.c. 

injections of MVBMOG/PLP at a concentration of 100 nmol/100 µl on days 4, 7, and 10; another 

group received 100 µl of vehicle (PBS) s.c. on the same days.  The efficacy of the peptide was 

evaluated by monitoring the clinical score and change in body weight over a period of 25 days. 

 

4.2.5 In vitro Inflammatory Cytokine Production Assay 

In vitro cytokine assays were performed following a protocol similar to that reported 

previously.
16

 Cytokines produced from MOG-induced C57BL/6 mice treated with MOG-BPI 

and MVBMOG/PLP were measured and compared to that from PBS-treated mice.  EAE was 

induced by injection of MOG/CFA and pertussis toxin as described in section 4.2.3 and mice 

were treated with PBS (100 μl), MOG-BPI (100 nmol/100 μl/injection) or MVBMOG/PLP (100 

nmol/100 μl/injection) on days 4, 7, and 10.  Spleens were isolated from three mice from each 

group on day 30.  Single cell suspensions of splenocytes were harvested by gently mashing the 

spleen through a cell strainer using the rubber end of a 1-ml syringe in a petri dish containing 

serum-free RPMI-1640 supplemented with 10% fetal bovine serum, 100 U penicillin/100 µg 

streptomycin, 2 mM L-glutamine and 50
 
µM 2-mercaptoethanol.  Red blood cells were lysed 

using ACK lysis buffer (Invitrogen).  The remaining splenocytes were then washed three times 

with serum-free RPMI-160 medium (Cellgro).  The cells were then primed with PLP (20 μM) in 

a 24-well plate (5 × 10
6
 cells/well). Supernatants of cell cultures were collected for cytokine 

detection 72 hours later and stored in a –80°C freezer until analysis. Secreted IL-6 and IFN-γ 

were measured by quantitative ELISA-based Q-Plex
TM

 assay (Quansys Biosciences, Logan, UT). 

 

4.2.6 Splenocyte Proliferation Assay 



 118 

A proliferation assay was conducted in SJL/J mice in order to evaluate the cross-

reactivity between MOG and PLP.  This was accomplished by isolating splenocytes from three 

PLP-induced EAE mice per group on day 30 as described in section 4.2.5.  Splenocytes were 

isolated from four different groups. One group was from mice that had no EAE induced. The 

next three groups were splenocytes harvested from mice treated with PBS (100 μl), PLP-BPI 

(100 nmol/100 μl/injection) or MVBMOG/PLP (100 nmol/100 μl/injection) on days 4, 7, and 10. 

The cells were cultured and stimulated with PLP (2 μM), MOG (2 μM) or concanavalin A 

(positive control).  Cells were cultured in a 96-well plate (2 × 10
5
 cells/100 µl/well) for 72 hours. 

Cultures were then pulsed overnight with 1 µCi of [
3
H] thymidine per well.  Cells were harvested 

onto glass fiber filters using the FilterMate Harvester (PerkinElmer), and the unincorporated [
3
H] 

thymidine was removed by multiple washes according to the procedure recommended by the 

manufacturers. The incorporated radioactivity was then counted using a β-scintillation counter 

(Microbeta Trilux, PerkinElmer). 

 

4.2.7 Statistical Analysis 

Statistical analysis was done using one-way analysis of variance followed by Fisher’s 

least significance difference to compare the different parameters, including in vitro cytokine 

production, splenocyte proliferation, and values from days 10 – 25 (unless otherwise stated) for 

EAE clinical scores and change in body weights,.  All statistical analyses were performed using 

StatView software (SAS Institute, Inc., Cary, NC).  A p-value of less than 0.05 was used as the 

criterion for statistical significance.  

 

4.3 RESULTS 
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4.3.1 Study I - Cross Reactivity of MOG-BPI and PLP-BPI 

MOG-BPI’s efficacy in suppressing MOG-induced EAE was evaluated for the first time.  

To test whether there is cross-reactivity between the different antigens, PLP-BPI was tested for 

suppressing MOG-induced EAE.  The PBS-treated mice developed very severe EAE with a high 

average clinical score of 4.0 and 22.15% loss in body weight compared to the day of onset of 

disease.  The best suppression was observed in the MOG-BPI-treated mice, with a significant 

difference in clinical scores and change in body weights on days 15–25 compared to that of the 

PLP-BPI-treated group (p < 0.01 for clinical score and p < 0.0001 for change in body weight) 

and the PBS-treated group (p < 0.0001 for clinical score and change in body weight). PLP-BPI 

significantly suppressed MOG-induced EAE on days 15–25 compared to PBS as indicated by 

clinical score (p < 0.01) and change in body weight (p < 0.001) (Fig. 4.1A and Fig 4.1B). 

For the second part of this study, the efficacy of MOG-BPI was evaluated in suppressing 

PLP-induced EAE.  The PBS-treated mice exhibited signs of EAE with a maximal clinical score 

of 1.67 and a maximal loss in body weight of 13.2%.  The MOG-BPI-treated mice showed 

similar signs of EAE with a maximal clinical score of 1.5 and a maximal loss in body weight of 

11.69%.  There were no significant differences in clinical score (p > 0.05) between the PBS-

treated mice and the MOG-BPI treated mice (Fig. 4.1C and Fig. 4.1D).   

 

4.3.2 Study II - In vivo Efficacy of Novel MVBMOG/PLP in MOG-Induced EAE 

For this study, the efficacy of the novel MVBMOG/PLP peptide was tested in suppressing 

MOG-induced EAE and was compared to that in PBS-, MOG-, and MOG-BPI-treated mice.  As 

expected, PBS-treated mice developed severe EAE with a maximal clinical score of 3.58 and a 

24.14% loss in the body weight.   The greatest suppression of disease was observed in mice 
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Figure 4.1A  In vivo cross-reactivity of MOG-BPI and PLP-BPI. PBS (100 μl) and peptides (100 

nmol/100 μl) were administered s.c. on days 4, 7, and 10.  MOG-BPI- and PLP-BPI-treated mice 

were compared to PBS-treated mice in the MOG-induced EAE model and efficacy was 

determined by clinical disease score of EAE. Results are expressed as the mean clinical score ± 

SEM (n = 6). 
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Figure 4.1B  In vivo cross-reactivity of MOG-BPI and PLP-BPI. PBS (100 μl) and peptides (100 

nmol/100 μl) were administered s.c. on days 4, 7, and 10.  MOG-BPI- and PLP-BPI-treated mice 

were compared to PBS-treated mice in the MOG-induced EAE model and efficacy was 

determined by percent change in body weight. Results are expressed as the mean % change in 

body weight ± SEM (n = 6). 
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Figure 4.1C  In vivo cross-reactivity of MOG-BPI and PLP-BPI. PBS (100 μl) and peptides (100 

nmol/100 μl) were administered s.c. on days 4, 7, and 10.  The efficacy of MOG-BPI in 

suppressing disease in PLP-induced EAE mice was determined using the clinical disease score of 

EAE.  Results are expressed as the mean clinical score ± SEM (n = 6). 
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Figure 4.1D  In vivo cross-reactivity of MOG-BPI and PLP-BPI. PBS (100 μl) and peptides (100 

nmol/100 μl) were administered s.c. on days 4, 7, and 10.  The efficacy of MOG-BPI in 

suppressing disease in PLP-induced EAE mice was determined using the percent change in body 

weight.  Results are expressed as the mean % change in body weight ± SEM (n = 6). 
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treated with the novel MVBMOG/PLP. Clinical scores from days 15–25 showed significant 

suppression in the MVBMOG/PLP-treated mice compared to PBS-, MOG-, and MOG-BPI-treated 

mice (Fig. 4.2A, p < 0.0001).  The MVBMOG/PLP-treated group reached only a maximal disease 

score of 0.88 and 5.15% loss in body weight. Similarly, the change in body weight of 

MVBMOG/PLP-treated mice on days 15–25 showed significant differences compared to those of 

PBS-, MOG-, and MOG-BPI- treated mice (Fig. 4.2B, p < 0.0001). Treatment with MOG-BPI 

delayed onset of disease by four days. The clinical scores and loss in body weight indicated that 

it suppressed disease significantly compared to the PBS group (p < 0.0001).  Clinical scores 

indicated that MOG-BPI was significantly more efficacious than MOG peptide (p < 0.05, days 

15–25); however, there was no significant difference in the change of body weight between 

MOG-BPI- and MOG-treated mice.  Compared to PBS-treated mice, the MOG-treated mice 

showed significant suppression of disease (p < 0.0001) with only 10.88% loss in body and a 

maximum average clinical score of 2.42.  

 

4.3.3 Study III - In vivo Efficacy of Novel MVBMOG/PLP in PLP-Induced EAE 

The purpose of this study was to evaluate whether our novel peptide’s efficacy in MOG-

induced EAE can be translated to PLP-induced EAE.  Therefore, mice were given three s.c. 

injections of MVBMOG/PLP, and its efficacy was compared to that of PBS. According to clinical 

score data, MVBMOG/PLP suppressed disease significantly (p < 0.0001) while the PBS-treated 

mice reached a maximal score of 1.67 and MVBMOG/PLP–treated mice reached a maximum of 

0.58 (Fig. 4.3A).  The changes in body weight correlates exactly with the observed differences in 

the clinical scores (p < 0.001), with PBS-treated mice losing 13.20% of their body weight and 

MVBMOG/PLP–treated mice losing only a maximum of 4.66% (Fig. 4.3B). 
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Figure 4.2A In vivo efficacies of MVBMOG/PLP and all the controls in suppressing MOG-induced 

EAE.  PBS-treated mice (n = 12) received s.c. injections of 100 μl PBS on days 4, 7, and 10.  

MOG- (n = 6), MOG-BPI- (n = 5), and MVBMOG/PLP- (n = 12) treated mice received 100 

nmol/100 μl PBS on days 4, 7, and 10 (s.c.).  The efficacy of each peptide was determined by 

clinical disease score of EAE.  Results are expressed as the mean clinical score ± SEM.  
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Figure 4.2B In vivo efficacies of MVBMOG/PLP and all the controls in suppressing MOG-induced 

EAE.  PBS-treated mice (n = 12) received s.c. injections of 100 μl PBS on days 4, 7, and 10.  

MOG- (n = 6), MOG-BPI- (n = 5), and MVBMOG/PLP- (n = 12) treated mice received 100 

nmol/100 μl PBS on days 4, 7, and 10 (s.c.).  The efficacy of each peptide was determined by 

percent change in body weight.  Results are expressed as the mean % change in body weight ± 

SEM.  
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Figure 4.3A In vivo efficacy of MVBMOG/PLP in suppressing PLP-induced EAE.  MVBMOG/PLP-

treated mice (n = 6) received three s.c. injections at a concentration of 100 nmol/100 μl on days 4, 

7, and 10 and its efficacy was compared to PBS-treated mice (n = 6) treated in a similar fashion.  

Progress of the disease was monitored following clinical disease score of.  Results are expressed 

as the mean clinical score ± SEM.  
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Figure 4.3B In vivo efficacy of MVBMOG/PLP in suppressing PLP-induced EAE.  MVBMOG/PLP-

treated mice (n = 6) received three s.c. injections at a concentration of 100 nmol/100 μl on days 4, 

7, and 10 and its efficacy was compared to PBS-treated mice (n = 6) treated in a similar fashion.  

Progress of the disease was monitored following percent change in body weight.  Results are 

expressed as the mean % change in body weight ± SEM.  
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4.3.4 In vitro Inflammatory Cytokine Production  

Splenocytes from treated mice were isolated on day 30 and their cytokine production was 

measured.  EAE is an inflammatory disease characterized by high proliferation of inflammatory 

TH1 cells.  In vitro cytokine studies can be used to indirectly measure how strong the 

inflammatory response is in the mouse.  The two key cytokine markers for TH1 cells are IL-6 

(Fig. 4.4A) and IFN-γ (Fig. 4.4B).  The production of these pro-inflammatory cytokines was 

lowest in the MVBMOG/PLP-treated mice and was significantly different compared to those treated 

with PBS (p < 0.01).  MOG-BPI reduced IL-6 production and significantly suppressed IFN-γ (p 

< 0.01). MVBMOG/PLP-treated mice had significantly suppressed production of IL-6 compared to 

MOG-BPI-treated mice (p < 0.05) but only a small difference in IFN-γ. 

 

4.3.5 Splenocyte Proliferation 

A proliferation assay was performed to evaluate the extent of responsiveness of 

splenocytes from the different treatment groups to in vitro antigen stimulation.  In addition, the 

cross-reactivity of the antigens was studied.  Splenocytes were isolated from PLP-immunized 

SJL/J mice, and their proliferation was measured in non-immunized mice (no EAE) and 

immunized mice treated with PBS, PLP-BPI, and MVBMOG/PLP. It was observed that the 

responsiveness of PLP-BPI-treated mice was lower than in the PBS group when the splenocytes 

were stimulated with PLP (p < 0.05).  However, MVBMOG/PLP had the least responsiveness when 

exposed to PLP.  Finally, when the splenocytes were stimulated with MOG, there was no 

difference in proliferation compared to the splenocytes stimulated with medium.  Therefore, the 

results indicated no cross-reactivity between PLP and MOG in PLP-induced EAE (Fig. 4.5).   
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Figure 4.4A Concentrations of the pro-inflammatory cytokine, IL-6, from the cell culture 

supernatant. Splenocytes were isolated from the spleens of MOG-induced EAE mice on day 30.  

The three different groups consisted of PBS-, MOG-BPI-, or MVBMOG/PLP- treated mice on days 

4, 7, and 10. The pooled splenocytes (n = 3 mice) were stimulated in vitro with PLP139-151, and 

supernatant was isolated 72 hours later for cytokine detection (*p < 0.01). 
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Figure 4.4B Concentrations of the pro-inflammatory cytokine, IFN-γ, from the cell culture 

supernatant. Splenocytes were isolated from the spleens of MOG-induced EAE mice on day 30.  

The three different groups consisted of PBS-, MOG-BPI-, or MVBMOG/PLP- treated mice on days 

4, 7, and 10. The pooled splenocytes (n = 3 mice) were stimulated in vitro with PLP139-151, and 

supernatant was isolated 72 hours later for cytokine detection (*p < 0.01). 
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Figure 4.5  Incorporation of [
3
H] thymidine in splenocytes isolated from PLP-induced EAE mice 

on day 30.  EAE-free mice were stimulated with ConA, medium, PLP (2µM), or MOG (2µM) 

and the remaining treated groups were stimulated with only medium, PLP (2 µM), and MOG 

(2µM). The three treatment groups consisted of PBS-, PLP-BPI-, or MVBMOG/PLP- treated mice 

on days 4, 7, and 10. Each group (n = 3) was pulsed with [
3
H] thymidine 72 hours after 

stimulation and incorporated radioactivity was measured the following day.   
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4.4 DISCUSSION  

BPI molecules have been developed to target many different antigens responsible for the 

pathogenesis of autoimmune diseases. PLP-containing BPI molecules have been studied 

extensively for the suppression of PLP-induced EAE.
8-11

 GAD-BPI was developed and was 

successful in suppressing disease in the non-obese diabetic mouse model.
17

  CII-BPI molecules 

composed of collagen-II antigenic peptides have been shown to suppress collagen-II-induced 

rheumatoid arthritis animal model (unpublished data).  Our first goal for this study was to 

investigate whether BPI molecules composed of other myelin sheath epitopes involved in EAE 

and MS can be developed to suppress disease.  Previously, only PLP-containing BPI molecules 

were tested.  In this study, a novel BPI molecule composed of the MOG antigen (MOG-BPI) was 

developed and tested in suppressing EAE. While BPI molecules have demonstrated superior 

efficacy thus far, there is a major limitation to their application.  BPI molecules are antigen 

specific and, therefore, will suppress only the immune response towards other antigens involved 

in the progression of disease. In reality, MS patients have been shown to respond to many 

different epitopes,
18-22

 and single antigen-specific immunosuppression could have a disadvantage.  

Thus, there is a need to expand this technology to target multiple antigens.  For the first time, a 

multivalent BPI molecule has been developed and its efficacy has been tested in two separate 

EAE models.  

In vivo data from the PLP-induced model showed that there was no cross-reactivity 

between MOG-BPI and PLP-BPI, and this was well correlated with the proliferation assay data 

showing that there was no response in splenocytes stimulated with MOG (Table 4.2).  However, 

in the MOG-induced model, significant suppression of disease was observed with PLP-BPI, thus 

suggesting some cross-reactivity in this model.  We propose that the cross-reactivity in the  
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 Group
a
 Induction antigen Incidence of disease

b
 

Mean maximal score 

± SEM 

In vivo Study I    

PBS MOG 6/6 4.00 ± 0.18 

PLP-BPI MOG 6/6 3.00 ± 0.47 

MOG-BPI MOG 6/6 2.25 ± 0.46 

PBS PLP 6/6 1.67 ± 0.59 

MOG-BPI PLP 6/6 1.50 ± 0.53 

In vivo Study II    

PBS MOG 12/12 3.58 ± 0.24 

MOG MOG 5/6 2.42 ± 0.52 

MOG-BPI MOG 5/5 2.20 ± 0.31 

MVBMOG/PLP MOG 4/12 0.88 ± 0.49 

In vivo Study III    

PBS PLP 6/6 1.67 ± 0.59 

MVBMOG/PLP PLP 3/6 0.58 ± 0.27 

Table 4.2: Summary of in vivo studies 

a
All injections were administered s.c. at 100 nmol (100 µl PBS) on days 4, 7, and 10.  

b
Incidence of disease was defined as a disease score of 1 or higher. 
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MOG-induced EAE is caused by epitope spreading due to the severity of this chronic model.  

Epitope spreading is believed to occur when there is major tissue damage, and debris from the 

destroyed tissue is taken up, processed, and presented by immune cells, leading to inflammatory 

response towards new epitopes.
23

  In the next step, a novel multi-antigenic peptide, MVBMOG/PLP, 

was tested in both PLP- and MOG-induced EAE.  MVBMOG/PLP suppressed the disease in both 

models.  Interestingly, MVB suppressed disease better than MOG-BPI and PLP-BPI in MOG-

induced EAE, suggesting that there is an additive effect of potency when both antigenic peptides 

are conjugated in one molecule (i.e., MVB).  This further enhances the proposal that there is 

some cross-reactivity due to epitope spreading in the MOG model. 

A key factor in the progression of MS and EAE is a phenomenon known as epitope 

spreading.
6
   During the course of the disease, T cells develop immunogenicity to new myelin 

proteins.  This causes further destruction that leads to chronic tissue damage of the myelin sheath 

but, more importantly, it creates more difficulties in developing antigen-specific therapies.  

Epitope spreading can occur intramolecularly in which some mice develop autoreactivity 

towards MBP35-47, MBP81-100, and MBP121-140 over time when MBP1-11 is the initiating antigen.
24

  

In addition, there is evidence of intermolecular epitope spreading where during the course of the 

disease, proliferative responses towards PLP were present in MBP-induced mice.
25

  There are no 

reports in the literature of epitope spreading between MOG38-50 and PLP139-151, but we believe 

that the efficacy of PLP-BPI in the MOG-induced model and the additive efficacy of 

MVBMOG/PLP are possibly due to epitope spreading.  We propose that MVBMOG/PLP suppressed 

the T cell response towards MOG as well as PLP.  This strategy of multi-antigenic 

immunosuppression has been employed previously. Multi-antigenic peptide therapies made of up 

four different antigens (PLP139-151, PLP178-191, MBP84-104, and MOG92-106) fixed to splenic APC 
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have been developed and have shown efficacy in suppressing EAE induced by all four 

antigens.
26

  

BPI molecules are made up of two main components covalently linked to each other.
7
  

The first component is the antigenic peptide and the second is the adhesion peptide.  It is 

proposed that the antigenic peptide portion binds to the MHC-II molecule on the surface of APC, 

and the adhesion peptide, which is derived from the LFA-1 protein, binds to ICAM-1, also on the 

surface of APC.  Traditionally, we used a linker composed of aminocaproic acid and glycine to 

link both peptide components in BPI molecules.  For the synthesis of MOG-BPI and 

MVBMOG/PLP, a polyethylene glycol-3 (PEG3) linker was used to improve solubility.  Previously, 

we saw no significant difference in the use of PEG3 or aminocaproic acid as a linker.  We 

propose that, due to the presence of the covalent linker, the BPI molecule tethers the loaded 

MHC-II molecule and ICAM-1, thus hindering the formation of the immunological synapse. 

This prevents the initiation of an inflammatory response to the specific antigen recognized by the 

MHC-II molecule.  With the MVB, the idea has been expanded to incorporate more than one 

antigenic peptide.  It is proposed that each antigenic peptide will be recognized by its respective 

MHC-II molecule and will suppress the inflammatory response to that antigen.   

MS and EAE are characterized by severe inflammation with high levels of IL-6
27

 and 

IFN-γ
28

 found in the CNS. Moreover, their role in the pathogenesis of disease is significant.  In 

addition to recruitment of other inflammatory immune cells, IL-6 is a mediator in increasing the 

permeability of the BBB
29,30

 and IFN-γ has been reported to prevent remyelination of the CNS.
31

 

Therefore, in order to treat or suppress the disease, therapies aimed at reducing the inflammatory 

response are vital.  Currently in the market, glatiramer acetate, a drug used for the treatment of 

MS, works by diverting the immune response away from the TH1 phenotype.
32,33

   The cytokine 
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data from the present study demonstrated that when MOG-BPI and MVBMOG/PLP were 

administered to mice with MOG-induced EAE, the inflammatory cytokines IL-6 and IFN-γ, both 

TH1 markers, were suppressed significantly by both peptides.  This suggests a down-regulation 

of the TH1, thus shifting the balance away from the inflammatory response.  In addition, the 

proliferation assay from PLP-induced mice showed that PLP-BPI and MVBMOG/PLP significantly 

lowered the PLP-responsive population of splenocytes.  

In conclusion, developing molecules that can target more than one epitope is critical for 

making BPI technology more applicable for MS.  In human disease, the identity of the inciting 

antigen is not usually known.  In addition, since disease is not diagnosed early, other antigens of 

the myelin sheath become targeted by immune cells due to epitope spreading.  Therefore, 

molecules that can target many antigens are critically important for the treatment of MS or EAE 

irrespective of the inciting antigens or antigenic spread.  Thus far, we have developed a peptide 

that is composed of two antigenic peptides.  For future studies, we would like to expand this 

peptide to incorporate other immunodominant antigens to suppress disease initiated by other 

antigens as well as to avoid the problem of intra- and inter-molecular epitope spreading.   
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5.1 SUMMARY AND CONCLUSIONS 

 The objective of this project was to develop antigen-specific peptides for the treatment of 

experimental autoimmune encephalomyelitis (EAE), an animal model of the human disease 

multiple sclerosis (MS).  The disease is thought to be established when myelin-reactive T cells 

that have escaped both central and peripheral tolerance mechanisms cross the blood-brain barrier 

(BBB) and elicit an inflammatory response with in the central nervous system (CNS).
1
 The 

majority of the current therapies do not specifically target myelin-reactive T cells but target the 

general immune system, thus weakening the global defense mechanisms and generating adverse 

side effects primarily due to opportunistic infections.  There is, therefore, a need to develop 

therapies that target only the myelin-specific immune cells involved in the CNS inflammatory 

response.   

Peptides are potentially valuable therapeutics for MS due to their ability to specifically 

modulate protein-protein interactions, their ease of preparation, and their relatively high safety 

index.  Much research has been conducted to develop peptides as specific and non-specific 

immune-modulators.  Antigenic-specific immunotherapy (antigenic-SIT) has emerged as a 

promising way to specifically modulate the immune response.
2
  The success of antigenic-SIT in 

EAE and the hope for its success in MS is rooted in the advancements in allergen-SIT, which has 

been used for many years to treat allergic diseases.
2
 Both forms of SIT exert their efficacy by 

restoring tolerance to a specific antigen/allergen.  The induction of an inflammatory response is 

achieved via the activation of antigen-presenting cells (APC), which occurs when the APC take 

up an insoluble antigen, break it down, and process it.
3,4

  This leads to the presentation of the 

antigen on the surface of the APC in the context of the major histocompatibilty complex class-II 

(MHC-II) molecule, as well as increased expression of costimulatory (B7/CD28) and adhesion 
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molecules (intercellular adhesion molecule-1 (ICAM-1)/leukocyte function-associated antigen-1 

(LFA-1))  on its surface. Administration of soluble antigens is believed to work by bypassing the 

activation of APC and directly binding to the surface of unactivated APC (e.g., immature DC).
3,5

  

In our laboratory, we developed novel bifunctional peptide inhibitors (BPI) that are composed of 

an antigenic peptide covalently linked to an adhesion peptide.
6-8

 We propose that the BPI 

molecules simultaneously target MHC-II and adhesion molecules on the surface of APC.  Thus, 

BPI molecules can specifically modulate the activation of T cells that recognize the antigenic 

peptide portion.  

 During MS and EAE, T cells can breach the BBB to attack the myelin sheath of the 

CNS.
9
 This breach is believed to occur due to the breakdown of the BBB during the disease state, 

which is proposed to be due to the activation of a CNS-specific inflammatory response.
10,11

 In 

the past, it has been shown that BPI molecules can induce a proliferation of regulatory cells and 

inhibit an inflammatory immune response in EAE mice. In this project, the in vivo efficacy of 

PLP-BPI (acetylated-PLP139-151 conjugated to amidated-LABL (CD11a237-246)) as a peptide 

vaccine was evaluated, as well its ability to prevent BBB breakdown.  Administration of PLP-

BPI at 5, 8, and 11 days prior to induction of disease suppressed EAE significantly.  In addition, 

in vitro cytokine studies showed that PLP-BPI treatment promoted a shift towards regulatory and 

suppressor phenotypes. This is indicated by decreased production of pro-inflammatory cytokines 

(IL-6, IL-17, IFN-γ) and increased production of anti-inflammatory cytokines (IL-2, IL-4, and 

IL-5).  More importantly, using gadolinium- (Gd) enhanced magnetic resonance imaging (MRI), 

it was possible to evaluate whether PLP-BPI provided any protection from the breakdown of the 

BBB.  Signal enhancement in specific regions of the brain and spinal cord signifies deposition of 

Gd within the brain and thus a leaky BBB.  The data from the MRI study indicated that PLP-BPI 
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treated mice had the least signal enhancement within the regions of the brain when compared to 

sick mice treated with PBS.  This result indicated that PLP-BPI-treated mice had an intact BBB.   

 Traditionally, BPI molecules have all been designed to incorporate an antigenic peptide 

conjugated to an adhesion peptide, thus targeting MHC-II and adhesion molecules on the surface 

of APC.  However, it is known that the costimulatory interaction of B7/CD28 plays a very 

important role in the activation of T cells.
12,13

 Therefore, PLP-B7AP was developed and 

evaluated for suppressing EAE; PLP-B7AP is composed of PLP139-151 and a CD28-derived 

peptide (B7AP).
14

  PLP peptide, B7AP, and an unconjugated mixture of both peptides showed 

significant suppression of EAE when administered three times subcutaneously (s.c.) after 

induction of disease; however, PLP-B7AP (100 nmol) had the greatest suppression, with 100% 

of the mice being disease-free.  In another in vivo study, PLP-B7AP showed remarkable efficacy 

with significant attenuation of the disease when it was administered either once (100 nmol) or 

three times at half the dose (50 nmol).  The final in vivo study indicated that PLP-B7AP was very 

effective when administered prior to induction of disease (i.e., a vaccine treatment).  Secreted 

cytokines were measured from splenocytes isolated from the day of maximum disease and a day 

during remission.  Similar to previous studies conducted with PLP-BPI, the results showed that 

PLP-B7AP treatment induced an increased production of anti-inflammatory cytokines and a 

lowered production of pro-inflammatory cytokines.     

 During the pathogenesis of MS and EAE, the T cells elicit an inflammatory response 

towards the protein of the myelin sheath.  Two of the major immunodominant proteins of the 

myelin sheath include myelin oligodendrocyte glycoprotein (MOG) and myelin proteolipid 

protein (PLP).
15

  A process known as epitope spreading will trigger T cells to become responsive 

to other antigens within the same protein (intramolecular) or to other proteins of the myelin 
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sheath (intermolecular), thus causing further destruction of the target organ.
16

 In addition, during 

the onset of MS, the inciting antigen is not known.  Therefore, peptides composed of multiple 

antigens were developed to overcome these two problems.  For the first time, a multivalent BPI 

(MVB) molecule composed of MOG38-50 and PLP139-151 was synthesized and tested in EAE.  It 

was reported that MVBMOG/PLP was able to significantly suppress MOG38-50- and PLP139-151-

induced EAE; this was accompanied by decreased production of pro-inflammatory cytokines 

(IL-6 and IFN-γ).  In addition, in vivo studies reported that PLP-BPI is effective in suppressing 

MOG38-50-induced EAE, indicating that some cross-reactivity is present in this model, which 

could be due to epitope spreading in the MOG model.  The cross-reactivity was confirmed when 

MVBMOG/PLP was more effective than either PLP-BPI or MOG-BPI (MOG38-50 conjugated to 

LABL) in suppressing MOG38-50-induced EAE.   

 In conclusion, BPI molecules have consistently proven to be effective immuno-

modulators in all the different models they have been tested in.  Proliferation assays from current 

and previous studies indicated that BPI molecules target cells specific for myelin antigens.  In the 

next section, future studies will be discussed that are designed to elucidate the mechanism of 

action of BPI molecules as well as improve their molecular composition to broaden the antigenic 

targets.  This will hopefully make BPI molecules a promising candidate to be tested for the 

treatment of MS. 

 

5.2 FUTURE DIRECTIONS 

5.2.1 Studying CNS Cellular Infiltration and Histopathology 

 The breakdown that occurs in the BBB during disease is believed to be due inflammatory 

mediators as well as leukocyte recruitment to the CNS.
17,18

 Our studies have already shown that 
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PLP-BPI can suppress the induction of the inflammatory response as well as maintain the 

integrity of the BBB.  The next step is to evaluate whether PLP-BPI prevents the infiltration of 

immune cells across the BBB.  Leukocyte recruitment to the CNS is initiated due to the 

inflammatory response;
9
 therefore, suppression of this response using PLP-BPI may inhibit 

leukocyte recruitment to the brain and spinal cord.  Cellular infiltration can be monitored in 

numerous ways.  In the past, ultra-small particles of iron oxide (USPIO) were utilized to detect 

the presence of monocytes in the brain using MRI.
9
 Another method to detect cellular infiltration 

in the brain would be to isolate brains of mice during different stages of disease, obtain slices of 

the brain and spinal cord, and then stain them it for different types of leukocytes.  In addition, 

histopathology studies can be conducted on brain and spinal cord slices to detect lesions as well 

as areas of demyelination within the CNS.  In the future, BPI molecules can be tested to see if 

treatment can reduce the amount and volume of lesions during disease. 

  

5.2.2 Exploring Mechanistic Aspects of BPI Molecules 

 Currently, the major proposed mechanism of action for BPI molecules is simultaneous 

binding to the MHC-II and adhesion molecules on the surface of APC, thus blocking their 

translocation to form the immunological synapse.  Preventing the immunological synapse leads 

to partial activation of T cells, therefore causing the naïve T cell to differentiate into a 

regulatory/suppressor phenotype.  The only clue thus far that this occurs is from a previous 

experiment conducted with GAD-BPI which showed that, in the presence of the peptide, there 

was co-localization of both the MHC-II and ICAM-1.
19

 Obviously, more elaborate molecular and 

cellular studies must be performed to further elucidate the mechanism.  The formation of the 

immunological synapse has been viewed using fluorescence microscopy by labeling the T cell 
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receptor and LFA-1.
20

 Therefore, microscopy studies should be conducted in the presence and 

absence of BPI molecules to visualize and quantify whether these peptides hinder the formation 

of the immunological synapse.   

 In the present experiments, in vitro cytokine detection was performed on either the day of 

maximum disease (day 15 post induction) or the day of remission (day 30).  To better understand 

how the BPI molecules modulate the immune response, cytokine detection needs to be 

performed on more days.  Other important days for detecting cytokines would be immediately 

after induction of disease, after peptide administration, and when the disease is approaching 

remission.  In addition, since in vitro cytokine studies determine only the amount of cytokines 

relative to each other and not exact concentrations, other more sensitive techniques may be used 

in the future to detect cytokines.  This can be achieved by isolating the blood of mice and using 

enzyme-linked immunosorbent spot (ELISPOT) assays to determine the concentration of 

cytokines.  Lastly, since EAE and MS are diseases of the CNS, determining the cytokine 

concentrations in the brain and spinal cord would be optimal.  This can be accomplished by 

isolating the brain and spinal cord of the mice and extracting the RNA.  Quantitative polymerase 

chain reactions can be performed to determine the types of cytokines by identifying the RNA 

transcripts present. 

 

5.2.3 Expanding Antigenic Diversity of Multivalent BPI Molecules 

 In the present study, a MVB that is composed of two antigens (MOG38-50 and PLP139-151) 

has already been developed and was successful at suppressing both MOG38-50- and PLP139-151-

induced EAE.  Other immunodominant epitopes must be identified and incorporated in the 

development of bigger MVB in order to expand the antigenic targets of the peptide.  This may 
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lead to eradicating problems due to the inability of identifying the inciting antigen in MS as well 

as the problem created by epitope spreading.  MVB molecules can be developed to contain 

multiple epitopes and can be tested in suppressing disease induced by either a mixture of 

antigens or by each individual antigen.  There are numerous antigenic peptides already identified 

that can be incorporated into the MVB molecule.  Some of the antigenic peptides that have 

already shown efficacy in suppressing EAE include MBP (1-11, and 85-99), MOG (35-55, and 

92-106), and PLP (139-151, and 178-191).
21-23

 Novel conjugation chemistry must be developed 

to be able to conjugate multiple antigens to adhesion peptides such as LABL.  Another approach 

would be to use the parent protein of LABL, the I-domain.  I-domain antigenic conjugates 

(IDAC) have already been developed in our lab and can conjugate up to five antigens.  Therefore, 

using this technology, an IDAC molecule containing up to five different antigens can be used for 

broader suppression of disease.   

 

 

 

 

 

 

 

 

 

 

 



 150 

5.3 REFERENCES 

1 McFarland, H. F. & Martin, R. Multiple sclerosis: a complicated picture of autoimmunity. 

Nat Immunol 8, 913-919 (2007). 

2 Sabatos-Peyton, C. A., Verhagen, J. & Wraith, D. C. Antigen-specific immunotherapy of 

autoimmune and allergic diseases. Curr Opin Immunol 22, 609-615 (2010). 

3 Larche, M. & Wraith, D. C. Peptide-based therapeutic vaccines for allergic and 

autoimmune diseases. Nat Med 11, S69-76 (2005). 

4 Jonuleit, H., Schmitt, E., Schuler, G., Knop, J. & Enk, A. H. Induction of interleukin 10-

producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive 

stimulation with allogeneic immature human dendritic cells. J Exp Med 192, 1213-1222 

(2000). 

5 Santambrogio, L., Sato, A. K., Fischer, F. R., Dorf, M. E. & Stern, L. J. Abundant empty 

class II MHC molecules on the surface of immature dendritic cells. Proc Natl Acad Sci U 

S A 96, 15050-15055 (1999). 

6 Manikwar, P., Kiptoo, P., Badawi, A. H., Buyuktimkin, B. & Siahaan, T. J. Antigen-

specific blocking of CD4-specific immunological synapse formation using BPI and 

current therapies for autoimmune diseases. Med Res Rev (2011). 

7 Kobayashi, N., Kobayashi, H., Gu, L., Malefyt, T. & Siahaan, T. J. Antigen-specific 

suppression of experimental autoimmune encephalomyelitis by a novel bifunctional 

peptide inhibitor. J Pharmacol Exp Ther 322, 879-886 (2007). 

8 Kobayashi, N. et al. Prophylactic and therapeutic suppression of experimental 

autoimmune encephalomyelitis by a novel bifunctional peptide inhibitor. Clin Immunol 

129, 69-79 (2008). 



 151 

9 Floris, S. et al. Blood-brain barrier permeability and monocyte infiltration in 

experimental allergic encephalomyelitis: a quantitative MRI study. Brain 127, 616-627 

(2004). 

10 Minagar, A. & Alexander, J. S. Blood-brain barrier disruption in multiple sclerosis. Mult 

Scler 9, 540-549 (2003). 

11 Sun, D. et al. Role of chemokines, neuronal projections, and the blood-brain barrier in the 

enhancement of cerebral EAE following focal brain damage. J Neuropathol Exp Neurol 

59, 1031-1043 (2000). 

12 June, C. H., Bluestone, J. A., Nadler, L. M. & Thompson, C. B. The B7 and CD28 

receptor families. Immunol Today 15, 321-331 (1994). 

13 Jenkins, M. K. & Johnson, J. G. Molecules involved in T-cell costimulation. Curr Opin 

Immunol 5, 361-367 (1993). 

14 Chen, J. et al. Allogenic donor splenocytes pretreated with antisense peptide against B7 

prolong cardiac allograft survival. Clin Exp Immunol 138, 245-250 (2004). 

15 Sospedra, M. & Martin, R. Immunology of multiple sclerosis. Annu Rev Immunol 23, 

683-747 (2005). 

16 Tuohy, V. K. & Kinkel, R. P. Epitope spreading: a mechanism for progression of 

autoimmune disease. Arch Immunol Ther Exp (Warsz) 48, 347-351 (2000). 

17 Abbott, N. J., Ronnback, L. & Hansson, E. Astrocyte-endothelial interactions at the 

blood-brain barrier. Nat Rev Neurosci 7, 41-53 (2006). 

18 Huber, J. D. et al. Inflammatory pain alters blood-brain barrier permeability and tight 

junctional protein expression. Am J Physiol Heart Circ Physiol 280, H1241-1248 (2001). 



 152 

19 Murray, J. S. et al. Suppression of type 1 diabetes in NOD mice by bifunctional peptide 

inhibitor: modulation of the immunological synapse formation. Chem Biol Drug Des 70, 

227-236 (2007). 

20 Lee, K. H. et al. T cell receptor signaling precedes immunological synapse formation. 

Science 295, 1539-1542 (2002). 

21 Anderton, S. M. & Wraith, D. C. Hierarchy in the ability of T cell epitopes to induce 

peripheral tolerance to antigens from myelin. Eur J Immunol 28, 1251-1261 (1998). 

22 Smith, C. E. & Miller, S. D. Multi-peptide coupled-cell tolerance ameliorates ongoing 

relapsing EAE associated with multiple pathogenic autoreactivities. J Autoimmun 27, 

218-231 (2006). 

23 Jurynczyk, M. et al. Immune regulation of multiple sclerosis by transdermally applied 

myelin peptides. Ann Neurol 68, 593-601 (2010). 

 

 

 


