
Software for supporting large scale data processing for High 

Throughput Screening 

By 

Copyright 2011 

David Tai 

 

Submitted to the graduate degree program in Department of Electrical Engineering and 

Computer Science and the Graduate Faculty of the University of Kansas in partial fulfillment of 

the requirements for the degree of Master of Science. 

 

 

________________________________        

    Chairperson Jianwen Fang 

             

________________________________        

Jun Huan 

 

________________________________        

Brian Potetz 

Date Defended: 6
th

 December 2011 



ii 
 

The Thesis Committee for David Tai 

certifies that this is the approved version of the following thesis: 

 

 

 

Software for supporting large scale data processing for High 

Throughput Screening 

 

 

 

 

      ________________________________ 

 Chairperson Jianwen Fang 

 

 

       

Date approved: 6
th

 December 2011 



iii 
 

Abstract 

High Throughput Screening for is a valuable data generation technique for data driven 

knowledge discovery.  Because the rate of data generation is so great, it is a challenge to cope 

with the demands of post experiment data analysis.  This thesis presents three software 

solutions that I implemented in an attempt to alleviate this problem.  The first is K-Screen, a 

Laboratory Information Management System designed to handle and visualize large High 

Throughput Screening datasets.  K-Screen is being successfully used by the University of Kansas 

High Throughput Screening Laboratory to better organize and visualize their data. 

The next two algorithms are designed to accelerate the search times for chemical similarity 

searches using 1-dimensional fingerprints.  The first algorithm balances information content in 

bit strings to attempt to find more optimal ordering and segmentation patterns for chemical 

fingerprints.  The second algorithm eliminates redundant pruning calculations for large batch 

chemical similarity searches and shows a 250% improvement for the fastest current fingerprint 

search algorithm for large batch queries.  



iv 
 

Acknowledgements 

First and foremost, I would like to thank my advisor Dr. Jianwen Fang.  He has without a doubt 

provided me with the help, guidance, support, and encouragement without which I would not 

have been able to complete this degree program.  I would also like to thank Dr. Luke Huan and 

Dr. Brian Potetz for teaching courses valuable to my research and knowledge in addition to 

serving on my thesis committee.  Lastly, I am grateful for the support and encouragement of my 

friends and family who have assisted and put up with me through the various challenges I had 

have to overcome during the last two years.  



v 
 

Contents 
Abstract ................................................................................................................................................. iii 

Acknowledgements ............................................................................................................................... iv 

Contents ................................................................................................................................................. v 

Chapter 1:  Introduction ......................................................................................................................... 1 

Chapter 2:  K-Screen ............................................................................................................................... 2 

2.1 Overview ....................................................................................................................................... 2 

2.2 Background ................................................................................................................................... 3 

2.3 Implementation ............................................................................................................................ 5 

2.3.1 Application Architecture........................................................................................................ 5 

2.3.2 Data Flow. .............................................................................................................................. 7 

2.3.3 Deployment. .......................................................................................................................... 8 

2.4 Results .......................................................................................................................................... 9 

2.5 Discussion ................................................................................................................................... 10 

2.5.1 Database Model. ................................................................................................................. 10 

2.5.2 Security Model..................................................................................................................... 11 

2.5.3 Data Access and Sharing. ..................................................................................................... 12 

2.5.4 Work-flow Model. ............................................................................................................... 13 

2.5.5 Data Analysis Tools. ............................................................................................................. 14 

2.5.6 Searching. ............................................................................................................................ 17 

2.6 Future Plan ................................................................................................................................. 20 

Chapter 3:  Algorithms for Chemical Fingerprint Searches Using Bit-Strings ....................................... 21 

3.1 Overview ..................................................................................................................................... 21 

3.2 Chemical Similarity Search Background ..................................................................................... 22 

3.2.1 Tanimoto Similarity Metric. ................................................................................................. 23 

3.2.2 Existing Algorithms. ............................................................................................................. 25 

3.3 Efficient Representations for Chemical Fingerprints in Java ...................................................... 32 

3.4 Information Content-Based Bit String Segmentation Algorithm ............................................... 37 

3.4.1 Overview. ............................................................................................................................. 37 

3.4.2 Similar Approaches. ............................................................................................................. 39 

3.4.3 Algorithm Description. ........................................................................................................ 40 

3.4.4 Methods. ............................................................................................................................. 42 

3.4.5 Results and Discussion. ........................................................................................................ 43 

3.4.5 Conclusion. .......................................................................................................................... 49 

3.5 SimDex: Query Set Indexing for Batch Queries .......................................................................... 49 



vi 
 

3.5.1 Overview. ............................................................................................................................. 49 

3.5.2 Algorithm Description. ........................................................................................................ 51 

3.5.3 Performance. ....................................................................................................................... 53 

3.5.4 Beneficial Cases. .................................................................................................................. 55 

3.5.5 Implementation. .................................................................................................................. 56 

3.5.6. Methods. ............................................................................................................................ 57 

3.5.7 Results and Discussion ......................................................................................................... 60 

3.5.8 Conclusion. .......................................................................................................................... 62 

Chapter 4: Conclusion and Future Work .............................................................................................. 63 

4. References ........................................................................................................................................ 66 

  



1 
 

Chapter 1:  Introduction 

High throughput screening (HTS) has emerged as an important technique for allowing 

researchers to rapidly profile very large numbers of chemicals against drug targets.  However, 

while development and investment of resources into HTS technologies has resulted in great 

advances to speed and accuracy, tools supporting HTS technologies are still trying to keep up 

with the increasing demands for efficient HTS data analysis.  The purpose of this thesis is to 

describe the tools and novels algorithms I have created as part of my graduate work for better 

supporting HTS operations.  

Chapter 2 consists of the description of K-Screen, a Laboratory Information Management 

System for High Throughput Screening designed primarily to efficiently and coherently present 

data to clients.  It also includes a detailed discussion of the design and features present in both 

the backend server technology and the front-end user interface. 

Chapter 3 discusses two novel algorithms for 1-dimensional chemical fingerprint searches.   This 

chapter consists of a literature review of existing chemical fingerprint search algorithms, a 

discussion and analysis of fingerprint representation in Java, a discussion and analysis of a novel 

information content-based bit reordering and bit string segmentation algorithm, and a 

discussion of the a novel search method for chemical fingerprint searching using indexed query 

sets. 

  



2 
 

Chapter 2:  K-Screen 

2.1 Overview 

As recent and future advances make HTS cheaper to perform on even larger scales, the amount 

of data that has to be processed, analyzed, and searched will only grow larger in size and harder 

for researchers to manually sift through.  It is therefore an eventuality that institutions utilizing 

HTS technology and techniques will need to begin looking for effective solutions in the maturing 

area of laboratory information management systems like many other types of labs have already 

done. 

K-Screen is one such solution.  Our initial goal with K-Screen was to have an integrated 

application environment that supported data analysis, management, and presentation so we 

could efficiently perform client requested screens and searches as well as generate detailed 

reports on the results of those.  Previously, we had attempted but failed to locate an existing 

software suite that sufficiently addressed all our requirements. 

K-Screen is a web accessible application that offers the ability to host a large chemical structure 

library, process and store single-dose (primary) and dose response (secondary) screening data, 

perform searches based on screening results, plate coordinates, and structure, substructure and 

structure similarity.  It uses heat maps and histograms to visualize screen or plate level statistics.  

Interfaces to external searches against PubChem and ZINC databases are also provided.  We feel 

that these features make K-Screen a practical and effective alternative to other commercial or 

academic HTS LIMS systems.   

 



3 
 

2.2 Background 

High throughput screening techniques utilize advanced robotics and computer automation 

technology to perform experiments designed to determine the interaction between a target 

such as a protein against a large collection of compounds (31).  This is often used for finding 

candidate compounds for drug discovery research.  Compounds are placed in plates usually 

containing 96, 384, or an even larger number of wells depending on the machine specifications.  

The target is then added to each well and sensitive instrumentation is then used to quantify the 

resulting reactions.  For a given experiment, there could be tens or hundreds of thousands of 

compounds involved each associated with one or more interactions.  The significant amount of 

data generated then needs to be analyzed, quality of data needs to be verified, high-level 

statistics need to be calculated, and all this data needs to be presented to the client in ideally 

the most logical and coherent fashion possible. 

These types of challenges already encountered in other fields such as mass spectrometry (23), 

high throughput genomic sequencing (22), and crystallography (34) are widely addressed by 

Laboratory Information Management Systems (LIMS).  LIMS are database driven software 

packages designed to organize and simplify a laboratory's data harvesting operations.  LIMS 

software provides benefits such as a the ability to track a job's location in the laboratory work-

flow, perform automated data analysis, reconfigure the way experimental result data are 

presented, and accurately log laboratory activity for the purposes of determining responsibility 

as well as billing.  Because LIMS are designed on abstractions of specific laboratory work-flow 

processes, LIMS are often highly customized products either constructed as in-house solutions 

or contracted out to commercial consulting companies that specialize in the field.  In-house 



4 
 

solutions are often time consuming to specify and develop while seeking a contract with a 

commercial vendor is often a significant monetary investment for smaller facilities. 

In recent years several attempts have been made to create an open-source LIMS system for 

various types of laboratories.  These are often in-house solution published for public use.  

However, because the requirements placed upon each LIMS vary from laboratory to laboratory, 

there is no one size fits all solution that exists at present.  An effective open-source solution 

must therefore be built upon a flexible architecture that allows for easy modification to fit the 

needs of a prospective organization.  It is only very recently that significant effort has been put 

into engineering a HTS LIMS software suite that meets these requirements.  K-Screen is one 

such solution.  Compared to similar software suites such as Harvard Screensaver (41), which 

was published near the end of the current development cycle for K-Screen, K-Screen is lighter-

weighted and more feature rich in the realm of data analysis.  It provides features such as 

structural similarity searches, interfaces to both PubChem (43) structure and ZINC (28) vendor 

compound databases, a stronger suite of cross-screen hit comparison analysis tools, and 

screen-centric data browsing. 

When the University of Kansas High Throughput Screening Laboratory investigated the existing 

HTS LIMS options to support its growing information management needs in 2009, it found no 

solutions that fully matched its needs.  Existing open-source solutions including M-Screen 

developed at the University of Michigan (7) were considered but not adopted due to the 

complex nature of the code base and some missing critical features.  Ultimately the 

development of K-Screen was started to address both KU-HTS’s needs and to fulfill the need for 

an adaptable free and open-source LIMS focused on data analysis. 



5 
 

 

2.3 Implementation 

K-Screen is a web accessible LIMS application built with low cost, simplicity of deployment, and 

ease of use in mind.  To accomplish these goals, K-Screen leverages numerous free and open-

source tools that have proven effective and reliable.  These include the popular web-

development triad of Apache HTTP Server (5), MySQL (9), and PHP (10); PHP based tools such 

as the Yii Framework (12) and JpGraph graphing library (2); R (11) and the prada (6) and drc (1) 

R libraries and modified library management and search algorithms from MolDB (3) which 

include the use of the JME Java Applet (8) and Ghostscript (4). 

 

2.3.1 Application Architecture. The core of K-Screen presentation layer is written in PHP 

using the Yii Framework.  The choice to use PHP for the front end was made to simplify the 

setup and maintenance requirements of K-Screen.  Yii Framework was similarly chosen based 

on the need for a simple and minimalistic structure to implement K-Screen.  Yii's modern 

Model-View-Controller (MVC) architecture allows for the relatively quick and easy 

implementation of new functionality or extension of existing functionality.  Like most MVC 

frameworks database tables have corresponding classes that automatically validate and sanitize 

field data.  This approach largely removes the need to directly create SQL queries and error 

checking functions making it relatively simple to create applications that generate custom 

query data or tools to interface with the K-Screen's database.  Conversely, this interface 



6 
 

between application and database also simplifies altering K-Screen’s database to add additional 

fields. 

K-Screen’s web-viewable pages are constructed using Yii’s modular view system that allows for 

numerous different pages to share and reuse common elements such as forms, menus, and 

figures.  K-Screen also takes advantage of the user interface (UI) widgets provided by Yii that 

encapsulate html search forms, tables, and lists so that these types of objects can be created 

quickly and elegantly.  K-Screen’s structure thereby maximizes consistency and ease of 

modification while minimizing redundancy and potential errors introduced during 

development. 

While Yii handles these basic UI and presentation tasks, K-Screen's uses the JpGraph library to 

handle the complex visualization tasks such as the dynamic creation of graphs, histograms, 

dose-response-curves, and image maps.  These elements are then seamlessly integrated with 

control schemes embedded into each page through AJAX requests.  These modern web design 

techniques take advantage of K-Screen’s modular page layout to reduce the amount of time per 

http request by only loading the requisite parts of each page and give a better overall 

experience for staff and clients alike. 

The back-end data processing for K-Screen is handled using R scripts.  K-Screen launches these 

custom R scripts as background batch processes to offload burden from the web-server and 

allow the time consuming data-processing and batch jobs to be executed in parallel.  This 

scheme also separates statistical analysis functions from the PHP presentation layer allowing 

for the ability to heavily modify the back end without changing the rest of the application. 



7 
 

 

2.3.2 Data Flow. The starting point with any K-Screen job is the creation of input files for the 

various jobs that K-Screen does.  K-Screen is designed to process simple human readable and 

writable structure-data files (SDFs) for compound library elements and comma separated files 

(CSVs) to populate screening data.  In the case of the library file, K-Screen uses MolDB 

algorithms to generate bitmaps of structure from a SDF file and statistics to be imported into 

the K-Screen database.  These then can be immediately accessed for screening and searching.   

With primary (single-dose) screens, a laboratory staff member is required to create and upload 

three separate files.  First, the data file contains a reformatted table of screening activities with 

well location data.  Data files can be made either from raw results or after some degree of pre-

processing by the user.  Since many machines generate a separate file per plate, it is of course 

encouraged that the most tedious part of this process, merging the files, be done automatically 

with the R-script provided with K-Screen or with other tools such as a Perl script.  The data file 

is in the form of [plate number][row letter][activity for column 1] [activity for column 2]…  

Second, the plate configuration file lists the locations of empty wells or wells designated as 

positive or negative controls.   Third, the plate permissions file allows laboratory staff to use a 

simple domain specific language to designate who is able to access what plates of the particular 

screen.  These files are uploaded to a secure work area on the K-Screen server so the server is 

able to run R-scripts that generate the statistical information for each screen and plate.  This 

data is then uploaded automatically to the database once it has been reviewed by a staff 

member. 



8 
 

In many cases a client may request some secondary (dose-response) screens to be run on 

compounds to verify the data collected from the primary screen.  The procedure for importing 

secondary screens into K-Screen is to create a data file similar to the one created for the 

primary screen.  The plate configuration file however requires additional information about 

concentration to be added along with data regarding the location of compounds on each plate. 

After a laboratory staff member imports the screen level data, he or she is able to configure 

how the data will be presented to the client.  With the primary screens, this involves reviewing 

the results and rejecting bad data and potentially running a new screen.  With secondary 

screens, this additionally involves validating the quality of, manually refitting, or rejecting the 

best-fit dose-response-curves.  When the staff member completes this step, the data is 

available for viewing by the client.  The client can then use K-Screen to run various cross-screen 

searches to locate other potential candidate compounds to run screens against.  

 

2.3.3 Deployment. K-Screen was designed and tested on Apache httpd servers paired with a 

MySQL server on both Windows XP and various flavors of Linux such as Redhat and CentOS.  

While a similar setup is recommended, it may not be available or it may simply be easier to use 

an existing configuration.  To this end, K-Screen is flexible and can be configured to be used on 

any PHP capable web server such as Windows Server and any database supported by PHP’s 

PDO whether remote or local.  A list of PDO supported databases management systems is 

located at http://www.php.net/manual/en/pdo.drivers.php. Since K-Screen is built on Yii’s 

database interface, database configuration is done through Yii.  

http://www.google.com/url?q=http%3A%2F%2Fwww.php.net%2Fmanual%2Fen%2Fpdo.drivers.php&sa=D&sntz=1&usg=AFQjCNHpW3igYFBkcppQIXB4vO5DrruGAw
http://www.google.com/url?q=http%3A%2F%2Fwww.php.net%2Fmanual%2Fen%2Fpdo.drivers.php&sa=D&sntz=1&usg=AFQjCNHpW3igYFBkcppQIXB4vO5DrruGAw
http://www.google.com/url?q=http%3A%2F%2Fwww.php.net%2Fmanual%2Fen%2Fpdo.drivers.php&sa=D&sntz=1&usg=AFQjCNHpW3igYFBkcppQIXB4vO5DrruGAw
http://www.google.com/url?q=http%3A%2F%2Fwww.php.net%2Fmanual%2Fen%2Fpdo.drivers.php&sa=D&sntz=1&usg=AFQjCNHpW3igYFBkcppQIXB4vO5DrruGAw
http://www.google.com/url?q=http%3A%2F%2Fwww.php.net%2Fmanual%2Fen%2Fpdo.drivers.php&sa=D&sntz=1&usg=AFQjCNHpW3igYFBkcppQIXB4vO5DrruGAw
http://www.google.com/url?q=http%3A%2F%2Fwww.php.net%2Fmanual%2Fen%2Fpdo.drivers.php&sa=D&sntz=1&usg=AFQjCNHpW3igYFBkcppQIXB4vO5DrruGAw
http://www.google.com/url?q=http%3A%2F%2Fwww.php.net%2Fmanual%2Fen%2Fpdo.drivers.php&sa=D&sntz=1&usg=AFQjCNHpW3igYFBkcppQIXB4vO5DrruGAw
http://www.google.com/url?q=http%3A%2F%2Fwww.php.net%2Fmanual%2Fen%2Fpdo.drivers.php&sa=D&sntz=1&usg=AFQjCNHpW3igYFBkcppQIXB4vO5DrruGAw
http://www.google.com/url?q=http%3A%2F%2Fwww.php.net%2Fmanual%2Fen%2Fpdo.drivers.php&sa=D&sntz=1&usg=AFQjCNHpW3igYFBkcppQIXB4vO5DrruGAw
http://www.google.com/url?q=http%3A%2F%2Fwww.php.net%2Fmanual%2Fen%2Fpdo.drivers.php&sa=D&sntz=1&usg=AFQjCNHpW3igYFBkcppQIXB4vO5DrruGAw
http://www.google.com/url?q=http%3A%2F%2Fwww.php.net%2Fmanual%2Fen%2Fpdo.drivers.php&sa=D&sntz=1&usg=AFQjCNHpW3igYFBkcppQIXB4vO5DrruGAw
http://www.google.com/url?q=http%3A%2F%2Fwww.php.net%2Fmanual%2Fen%2Fpdo.drivers.php&sa=D&sntz=1&usg=AFQjCNHpW3igYFBkcppQIXB4vO5DrruGAw
http://www.google.com/url?q=http%3A%2F%2Fwww.php.net%2Fmanual%2Fen%2Fpdo.drivers.php&sa=D&sntz=1&usg=AFQjCNHpW3igYFBkcppQIXB4vO5DrruGAw
http://www.google.com/url?q=http%3A%2F%2Fwww.php.net%2Fmanual%2Fen%2Fpdo.drivers.php&sa=D&sntz=1&usg=AFQjCNHpW3igYFBkcppQIXB4vO5DrruGAw
http://www.google.com/url?q=http%3A%2F%2Fwww.php.net%2Fmanual%2Fen%2Fpdo.drivers.php&sa=D&sntz=1&usg=AFQjCNHpW3igYFBkcppQIXB4vO5DrruGAw
http://www.google.com/url?q=http%3A%2F%2Fwww.php.net%2Fmanual%2Fen%2Fpdo.drivers.php&sa=D&sntz=1&usg=AFQjCNHpW3igYFBkcppQIXB4vO5DrruGAw
http://www.google.com/url?q=http%3A%2F%2Fwww.php.net%2Fmanual%2Fen%2Fpdo.drivers.php&sa=D&sntz=1&usg=AFQjCNHpW3igYFBkcppQIXB4vO5DrruGAw


9 
 

 

2.4 Results  

Unlike many other LIMS applications targeted at HTS laboratories, K-Screen has been designed 

from the beginning to fulfill a need for a web accessible data visualization, manipulation, and 

analysis tool.  Its role is to help automate and simplify the process of analyzing results and 

delivering those results to clients.  It is targeted specifically for academic and industrial HTS 

facilities seeking to better augment existing work processes through the use of web accessible 

tools. 

K-Screen has a wide range of capabilities.  At this time, K-Screen has been demonstrated to 

automatically generate screen and plate level statistical calculations when processing large 

primary screens of at least 100,000 across three hundred 384 well plates.  It can automatically 

normalize plates using several different algorithms in addition to a raw setting that allows 

laboratory staff to normalize data in any way they choose.  K-Screen supports searching using 

plate coordinates, compound names, and structure while allowing users to set search 

constraints based on compound activities across multiple screens.  Search results can also be 

conveniently downloaded in both CSV and SDF formats for use in both excel and structure 

viewers.  K-Screen allows laboratory staff to manipulate dose-response-curves from secondary 

screens using an intuitive web based GUI.  Currently K-Screen only supports log-logistic (both 

four- and three-parameter) and Brain Cousen models but it can be easily expanded into any of 

the curves supported by the drc R library.  K-Screen supports several different types of 



10 
 

visualization tools and browsers previews of which can be seen in Figures 2-5 under the ‘Data 

Analysis Tools’ subsection of the ‘Discussion’ section. 

 

2.5 Discussion 

K-Screen implements several important types of functionality.  Each of the following 

subsections will go into detail on one of these aspects. 

 

2.5.1 Database Model. K-Screen’s database model follows standard relational database 

normalization conventions to provide both efficient insertions of new records and minimize the 

effects of scaling on querying.  It is designed to reflect common high throughput screening 

methodologies.  As such, the database model can be roughly divided into three parts excluding 

user data (addressed in detail in the next section) corresponding with compound library or 

inventory information, primary screen, and secondary screen data. 

The first collection contains data for the molecular compound database.  The primary table 

stores data of each molecular compound in the library such as identifiers, supplier information, 

and locations of each compound stock on the parent (or mother) plate.  Each record is then 

associated via foreign key to its corresponding image link url, fingerprinting data, and structural 

data. 

The second collection contains data for the primary screens.  There are two main tables in this 

collection.  The first table stores screen-level information such as the name, upload date, PI id, 

and client id.  The second table associates each screen with plate and well level data.  For each 



11 
 

well, this table contains references by a foreign key linking the compound and the well, 

columns storing the coordinate of the well in the set of child (or daughter) plates created from 

stock compounds from the set of parent plates, and additional columns filled with the raw 

activities values of the compound and the values under the various normalizations supported 

by K-Screen.  Additionally, both these tables are linked to user visibility permissions to support 

K-Screen’s security model. 

The third collection contains data for the secondary screens.  There are three main tables in this 

collection.  The first table stores screen-level information similar to the primary screen table.  

The second table contains multiple concentration and activity level pairs associated by foreign 

key to secondary screen and compound tables.  The third table contains curve information for 

each compound in the secondary screen run including curve formula and fitted constants.  

Again similar to the primary screen tables, these tables are linked to user visibility permissions 

to support K-Screen’s security model. 

 

2.5.2 Security Model. K-Screen’s security model is based on the role based access control 

model (RBAC) where each user is assigned a single role associated with a set of privileges.  This 

standard model can be easily abstracted to most organizations and adapted easily when 

needed.  In addition to a privilege, important contact information such as telephone and 

location of the user’s parent institution is also stored.  K-Screen users are identified using a 

unique email which users use to login to the system.  Passwords in K-Screen are stored as 

hashed values with an added SALT value to prevent malicious access even in event of access to 

the user table.   



12 
 

Currently K-Screen has two roles that a user can be assigned to.  Users can either be clients or 

administrators.  Clients represent the people who submit screen requests and are allowed to 

view processed screen data.  This set of people is also allowed to search the chemical library as 

well use the other data analysis tools.  Administrators represent the laboratory staff who 

perform the screens and do the data analysis work.  Administrators can create, modify, or 

delete compounds, users, and screens from the K-Screen system.   

Currently, there are two ways to add users to K-Screen.  Users may either register on the main 

page of K-Screen or wait to be approved by an administrator or an administrator may add a 

user manually.  The registration feature may be turned off in the settings. 

 

2.5.3 Data Access and Sharing. K-Screen stores relation data for primary screen and plate 

level permissions that are set by an administrator.  Clients can request the results of their 

primary screens to be fully visible or with only certain plates visible to other clients.  While we 

encourage our clients to share data and K-Screen has the capacity for data sharing, it is up to 

the screen owners whether and with whom they want to share all or part of their data.    

Secondary screenings are associated with primary screen plate wells via identical compounds 

which allow K-Screen to automatically hide results for users who are not allowed to see the 

results of the well from the associated primary screen. 



13 
 

 

2.5.4 Work-flow Model. In K-Screen, laboratory staff uploads data using K-Screen's web 

interface (Fig 1-2).  This data is quickly preprocessed by K-Screen and written to a file directory 

in the server.  R-Scripts are then executed as background processes on the directory to 

generate processed data files along with screen level statistics.  These screen level statistics and 

processed data is used by laboratory staff to assure quality and whether any plates need to be 

rerun.  Staff then publishes the results.  This sends a command to K-Screen to read data from 

the directory and write them into the database.  Appropriate clients now have access to the 

finalized data.  Clients then are able to run custom searches through K-Screen's web interface 

with text-based, file-based, structure-based, and functional group-based constraints.  These 

searches are able to generate cross-screen data and results are available to be downloaded in 

CSV or SDF format. 

 

Figure 1. Work-flow for K-Screen 

 



14 
 

 

 

2.5.5 Data Analysis Tools. One of K-Screen's primary functions is to support advanced data 

analysis and data mining.  K-Screen currently supports several tools to do this.  All of these tools 

are web accessible and designed to be interactive, intuitive, user-friendly, and efficiently in 

communicating data to lab staff and clients.  To better achieve these goals, K-Screen is designed 

to make use of image-based rather than traditional table and list-based data presentation.  This 

offers more flexibility when presenting data and allows logical relationships to be used to 

access data.  Text-based data can also be downloaded for each primary and secondary screen.  

These tools were originally written in PHP and have since been modified to use AJAX requests 

built using Yii's native support for the JQuery JavaScript library to allow for more responsive 

 

Figure 2. Division of labor for K-Screen based on the work-flow abstraction from Figure 1. 

 



15 
 

interactions.  A description of basic function and use are associated with Fig. 3 and 4.  In 

addition, advanced data analysis and mining can be done in R platform because an R session 

with all data is saved for each screen.   



16 
 

  

 

Figure 3. K-Screen's primary screen browser is a user-friendly tool used to data-mine outliers and 

other data points of interest.  Users in addition to being able browse primary screens are able to 

access screen specific data including target data, measurement method data, and any attached files.  

Users specify a primary screen (A) and select a subset of the total plates (B) to view before 

executing the search (C).  This dynamically generates a histogram of the selected plates (D) as well 

as creates a series of box-plots (E) using the distribution of data points from each plate.  The box-

plot gives a quick summary of how the results of each plate are distributed.  Clicking on a box-plot 

generates an interactive heat-map representing the plate associated with the box-plot (F) as well as a 

plate level scatter-plot of activities (G).  The wells on the heat-map and points on the scatter-plot 

can be clicked to display the data for the associated compound (H) including structure, if-one exists.  

This panel also displays values for the same compound across other accessible screens.  The 

structure can be directly used for searching the local library, PubChem, and ZINC. 

 



17 
 

 

2.5.6 Searching. K-Screen supports numerous searching features (Fig 5-7).  Library search 

features utilize heavily modified versions of algorithms from MolDB.  Each search supports the 

setting of screen-based activity constraints using screen and well data associated with each 

 

Figure 4. K-Screen's dose-response-curve editor is an easy to use tool for adjusting dose response curves.  When 

an administrator prepares the processed secondary screen dose-response curves to be published, he or she will first 

select a compound (A).  This will generate the best-fit curve (B) as well as the statistics associated with the curve 

(C) as well as the curve classification (D) according to Inglese et al(27). On the right panel, administrators can 

modify which function and function parameters (E) that each dose-response-curve uses.  This section also is useful 

for reporting function parameters including half maximal inhibitory concentration (IC50).  If a manual refit is not 

necessary then the administrator may elect to disable certain points considered to be outliers or explicitly specify 

the top and bottom of the curve (F) and have K-Screen refit the curve (G).  Changes can be quickly saved on a 

curve by curve basis.  A stripped down version without the ability to adjust values is available for clients. 

 



18 
 

compound. Text searches support searching by compound identifiers, mother plate coordinates 

and daughter plate coordinates.  

 Batch text searches allow users to upload files listing compound identifiers, mother plate 

coordinates, and daughter plate coordinates to be searched.  Functional group searches allow 

searches to be done over multiple families of compounds.  

 

Figure 5. K-Screen's Text Search.  (A) Users specify what Primary Screen they want to see and from what 

range.  Users can then specify the chemical name (B) which searches against, Library ID, Chemical Name, and 

Supplier Tag.  Users alternatively may want to search for specific (C) mother plate coordinates or specific 

daughter plate coordinates (D).   



19 
 

 

 

Structural searches allow users to draw or input a structure into the JME java applet to be 

searched by minimal Tanimoto similarity score, exact structure, or substructure.  Searches lead 

to a common result page that allow results to sorted by various fields including coordinates and 

activity, paged through, and downloaded as CSV or SDF files.  K-Screen also includes a set of 

simple but powerful browsers-based on the Yii GridView object which allow the large lists of 

library compounds, primary screens, and secondary screens to be sorted, searched, and filtered 

based on almost any visible field in the database.  These include table specific fields such as 

identifiers, plate coordinates, last modified date, screen targets, screen methods, and other 

fields. 

 

Figure 6. K-Screen's Functional Group Search based on the original implementation from MolDB.  (A) Users 

specify what Primary Screen they want to see and from what range.  Users then specify up to 5 Functional 

Groups to search (B). 

 



20 
 

 

2.6 Future Plan 

K-Screen is an extensible open-source software suite for a HTS LIMS.  K-Screen is being actively 

used by KU-HTS and its clients.  Development of the K-Screen HTS LIMS system will continue to 

support KU-HTS operations as well as those who adopt it.  Future developments include 

integration of more data analysis tools, better integration with PubChem, support for searching 

ChemSpider, integration of R-Serve to better manage background R processes, the creation of a 

 

Figure 7. K-Screen's Structure and Substructure Search based on the original implementation from MolDB.  Users 

specify what Primary Screen they want to see and from what range.  Users then draw the structure in the JME 

applet (A).  Users next select which type of search they desire to perform (B) with which options enabled (C). 

 



21 
 

single library to encapsulate all K-Screen R features, automated outlier removal from dose 

response curves, and plate-based quality control reporting.  The software will be released to 

public at http://kscreen.org as open source software and we invite other people join us to make 

the software better and more comprehensive.     

Chapter 3:  Algorithms for Chemical Fingerprint Searches Using 

Bit-Strings 

3.1 Overview 

This section discusses research into the development of efficient algorithms for chemical 

fingerprint searches, specifically similarity searches over 1-dimensional bit string fingerprints.  

Sections 3.1 to 3.3 contain supporting information for these projects. Section 3.4 describes and 

analyzes the development and implementation of a Shannon Entropy-based heuristic for better 

fingerprint segmentation, a novel algorithm for improving the speed and accuracy of chemical 

fingerprint searches by balancing information when segmenting strings.  Section 3.5 describes 

and analyzes the development and implementation of a search algorithm specifically designed 

to support the execution of faster batch querying for existing pruning indexes. 

Each algorithm tested is implemented in Java using a similar object oriented structure. This 

allows for a fair comparison between each algorithm tested. 

In summary, Chapter 3 will:  

 Give a brief description of the importance of chemical fingerprint searches for 

High Throughput Screening. 

http://kscreen.org/


22 
 

 Provide an overview of existing algorithms for chemical fingerprint searches in 

literature. 

 Describe each of the novel algorithms proposed in this section and 

experimentally analyze how each compares to existing algorithms. 

3.2 Chemical Similarity Search Background 

The sizes of chemical databases are becoming increasingly large as new chemicals are 

catalogued and new data is generated.  The popular database PubChem in 2011 at this paper’s 

time of writing contains 53 million chemical IDs, which represents nearly a 300% growth since 

2007 with growth expected to continue steadily (19).  PubChem only represents one of several 

online chemical databases and the countless chemical databases maintained by public and 

private institutions.  Searching these databases has major applications in many fields but 

especially in the field of drug discovery where High Throughput Screening (HTS) is used to 

discover candidate drugs using large chemical libraries (31).  Similarity searches are used to 

create custom libraries, eliminate redundant chemicals, and to find chemicals similar to 

promising drug candidates. 

Chemical fingerprints are often used to conduct these types of searches efficiently.  There are 

many methods of chemical fingerprint searches each with particular strengths and weaknesses 

(35).  Most of these methods rely on generating fingerprints by performing a transformation to 

reduce the dimensionality or amount of information stored for a chemical to a more 

manageable size by discarding less useful information.  There are many types of fingerprints 

and popular representations which include graphical (37, 42) and string representations (25). 

 



23 
 

For this thesis, the popular 1-dimensional fingerprinting method is used.  This simple method 

converts chemical representations to a one dimensional feature string by describing only the 

presence of absence interesting properties of a chemical.  These are often represented as fixed 

length bit strings where each bit is set either on or off, refer to as 1 and 0 respectively, based on 

whether or not a feature is present.  These generated chemical fingerprints can then be 

compared against each other in relatively fast searches.   

 

3.2.1 Tanimoto Similarity Metric. Chemical fingerprints are compared using various 

similarity metrics which usually employ bit-wise ‘and’ and ‘or’ operations (also referred to as 

intersection and union).  There are a large variety (29) of similarity measures that exist for 

various purposes.  Holliday et al. (26) investigates 22 such indices and the uses of each. 

For the similarity metric used in this thesis, the Tanimoto similarity metric which depending on 

application may also be called the Jaccard Index was chosen.  Not only is this one of the most 

popular metrics, it seems to have become by convention the de-facto standard for 

benchmarking chemical similarity search indices (14-16, 30, 32, 36, 39).  A great deal of 

research has been devoted to figuring out new methods of exploiting this metric (15, 18) and 

thus we feel no desire to break with tradition.  The Tanimoto similarity St is expressed as the 

similarity of chemical fingerprints A and B: 

   
     

     
 

     

             
 

Where |x| represents cardinality (number of 1’s bits) and   and   represent intersection and 

union respectively.  For similarity searches, the objective is to only find pairs of chemical 

fingerprints with similarity above some threshold   for some query fingerprint similarity   and 



24 
 

all members    of database  .  To achieve this, the database must be pruned or have all    

removed from the results for which the following is false: 

  
      

      
 

      

               
 

However, calculating the pair-wise similarity of   and ever    in a brute force fashion is 

inefficient.  Thus, a simple upper bounding trick discovered by Baldi et al. (39) and used 

extensively in their work (15, 16, 18, 32, 39) can be used.  For any two given bit strings, an 

upper bound can be calculated assuming that the shorter bit string is a subset of the longer one 

- that is the maximum intersection of bits is the same as the shorter bit string and the minimum 

union is the same as the longer bit string: 

   (        )         

   (        )         

From this, it follows that: 

  
   (        )

   (        )
 

This upper bound check is the basis for nearly all search indexes for faster similarity searches 

between chemical fingerprints.  The upper bound is used as a first pass to prune all    which 

cannot have a similarity above   to reduce the total number of expensive similarity 

calculations.  Another useful property of this upper bound is that given   ,      can be 

constrained by breaking down the upper bound into two cases. 

Case 1:          

  
   

    
 



25 
 

     
   

 
 

Case 2:          

  
    

   
 

           

A data structure or index can be built using the cardinality of a fingerprint as a hash-key to 

access all fingerprints with that particular statistic.  In this case, an array implementation is 

simplest and fastest (O(n) = 1 for access times).   

 

3.2.2 Existing Algorithms. There are several state of the art algorithms for chemical 

fingerprint similarity searches using bit strings.  This section will serve as an introduction and 

literature review of existing algorithms 

 

3.2.2.1 UCI Algorithms.  The team associated with Pierre Baldi based at University of 

California Irvine(UCI) has published much research related to bit string similarity searches.  They 

have published a lineage of state of the art algorithms since 2007 each improving upon the 

previous along with a great deal of research on chemical fingerprints (16, 17, 20, 38).  The first 

algorithm published was the bit bound algorithm based on the fingerprint cardinality bounding 

described in section 3.2.1 (39) which yields a 1200% speed up compared to brute force for a 

Tanimoto similarity value of .9 for their database.  



26 
 

 In 2008, this group published an algorithm which will be referred to XOR based upon the XOR 

(denoted by  ) formulation of intersection and union for statistically tighter pruning over 

compressed XOR-Modulus (or XOR-folded) fingerprints than simple bit bound (16).  XOR-

Folding is defined as calculating XOR of all bits with the same modulus congruency or all bits 

modulus a value sharing the same remainder.  The UCI paper gives the example:   

“…the folding process with a binary vector of length N = 16 (1 1 0 0 1 0 0 1 0 1 0 0 

1 0 0 0) [is] folded into a binary vector of length n = 4 (1 0 0 1), modulo 4 using 

the XOR operator.” 

The union and intersection identities of the fingerprints A and B are:  

      
 

 
 (             ) 

      
 

 
 (             ) 

The useful result of both the XOR folding and the new union and intersection identities taken 

together is that the XOR folded fingerprints      and      when XOR together are bounded by: 

                     (             ) 

Where abs is the absolute value function.  Thus a new bound is generated when this is 

substituted back into the union and intersection identities and further back into the Tanimoto 

similarity. 

   



27 
 

      
 

 
 (             )   

 

 
 (                   )

 
 

 
 (           (             )) 

 

      
 

 
 (             )   

 

 
 (                   )

 
 

 
 (           (             )) 

 

   
     

     
   (   )  

                   

                   
 
           (             )

           (             )
 

Thus   (   ) serves as an upper bound.  If   (   )      then B is not above the similarity 

threshold to A.       is stored with the corresponding fingerprint and used to short circuit or 

cancel the similarity calculation.  This method using a bit bound pruning index followed by 

modulus compression value of 128 results in a 250% speed up compared to bit bound alone.  

Most recently in 2010, Baldi’s group published a third algorithm which will be referred to as 

modulus based on dividing a bit string into discrete segments (segmentation) and storing the 

cardinality of each segment to help prune fingerprints.  The published method uses a modulus 

m operation to divide a bit string into m segments based on the same modulus congruency as 

with the XOR folding trick.  The cardinality of each segment is taken and used as an index hash-

key.  For example: 



28 
 

Let   = 0011001010101001 divided by modulus 2 congruency creates 2 

segments which when summed result in 2.  In this case segments    = 01011110 

and    = 01000001 and   can be described by the ordered pair (5, 2) much like 

the how an XOR fold is used to describe the fingerprint in the previous algorithm.   

Essentially this algorithm uses dimensionality reduction from the number of bits to chosen 

value of m much like how bit bound reduces dimensionality to 1.  This key can then be used to 

create a bound tighter than the bit bounding algorithm for the special case of modulus 2.  For 

this algorithm, union and intersection are again defined as: 

         (         )      (         )     (       ) 

         (         )      (         )     (       ) 

This gives a new Tanimoto similarity formulation of: 

  
     

     
 
   (         )      (         )

   (         )     (         )
 
   (       )

   (       )
 

This formulation can equivalently be stated as: 

  
     

             
 
   (         )     (         )

   (         )     (         )
 

 
   (         )     (         )

           (         )     (         )
 

The two min’s can then be isolated to one side: 

   (         )     (         )   
 

   
(       ) 

This gives 4 cases: 



29 
 

            
 

   
(       ), which is equivalent to bit bound; 

            
 

   
(       ), which is equivalent to bit bound; 

            
 

   
(       ), which yields        

 

   
(       )       

            
 

   
(       ), which yields        

 

   
(       )       

For the general modulus m > 2, an intersection inequality check must be used since there are 

many unknowns: 

  
     

     
 
∑    (         )
 
   

∑    (         )
 
   

 

The authors reported that this indexing scheme is 300% faster than the bit bound and XOR 

combination previously developed and about 500% faster than bit bound alone. 

 

3.2.2.1 Other Algorithms.  Five other algorithms have been published on this subject.  First, in 

2009 Smellie (36) proposed a binary tree which will be referred to as bit tree to store binary 

strings as paths and a path-based pruning algorithm for comparisons.  Each node of the tree 

root represents a bit position.  Inserting a bit string is a recursive function.  The string is inserted 

at the root.  At each node, if the bit at the corresponding position is 0, then make the recursive 

call on the left child, if the corresponding position is 1, then make the recursive call on the right 

child.  When all bits in the bit string are exhausted, then a reference to the bit string is stored in 

a leaf node.  To execute similarity searches in this tree for the i-th node with length N: 



30 
 

  
     

     
 
∑        
 
    ∑     

 
     

∑        
 
    ∑     

 
     

 

Since searching the bit strings start with the first bit, the summations are accumulated as the 

tree is traversed.  If this upper bound falls below the threshold, the algorithm backtracks and all 

strings along the path are pruned.  Smellie also developed a version that removed runs of 0 bits.  

The bit tree’s algorithm’s was only 400-500% faster than exhaustive search and the compressed 

version 250% faster than the uncompressed version.  Thus Smellie’s bit tree is comparable to 

bit bound alone and worse than bit bound + XOR or modulus. 

Second, in 2010 Aung and Ng (14) proposed a bit string segmentation algorithm called 

ChemDex very similar to the UCI modulus algorithm.  The ChemDex algorithm divides a bit 

string into equally sized segments after reordering the bits so bits more likely to be 1 are at the 

start of the bit string.  Compared to the modulus algorithm, ChemDex algorithm contains two 

major differences when calculating similarity.  First, ChemDex exclusively uses the intersection 

threshold rather than the more efficient bound used by the modulus algorithm for m = 2.  This 

method is used for the general case of m > 2.  Second, ChemDex contains an additional pruning 

function for segments during the similarity calculation.  For all bit strings A and B with S 

segments, sum all segments 1 … s … S and then iteratively replace s by the actual intersection 

and union for that segment and do a threshold check: 

  
     

     
 
∑        
 
    ∑    (         )

 
     

∑        
 
    ∑    (         )

 
     

 



31 
 

The bit reordering mentioned above serves a greedy algorithm that attempts to minimize the 

number of checks.  This algorithm was benchmarked to be about 200% faster than bit bound 

alone. 

The last three algorithms were published in Kristensen et al. (30) in 2010.  The first of these 

algorithms is kD-grid, another string segmentation algorithm where k denotes the number of 

segments the bit string is broken into.  KD-grid can simply be thought of as the bound used by 

Smellie’s bit tree applied to segmented bit strings: 

  
     

     
 
∑    (         )     (         )
   
    ∑     

 
     

∑    (         )
   
       (         )  ∑     

 
     

 

This strategy is very similar to the bit tree.  The bit string is segmented and the number of bits 

in each segment is added up.  An n-ary tree is used to index the bit strings, where n is the 

number of bits in each segment where the level (number of nodes between a node and root + 1 

) of the node in the tree  corresponds with the segment number.  This algorithm performs 

somewhat faster than bit bound and XOR. 

The last two algorithms published by Kristensen et al. are the related single and multi-bit trees 

which will be referred to as split-bit tree and match-bits tree to avoid confusion with Smellie’s 

work.  Both of these algorithms prune based on the same bit-wise and threshold developed and 

proved in their paper.  The split-bit tree is a binary tree where each node represents a split-bit 

which is used to divide the library of strings into two groups.  This algorithm however was not 

very successful even when used with kD-grid.  Unlike either of Smellie’s bit trees, not enough of 

the tree is stored to effectively prune long bit strings.  The match-bits tree was created to 



32 
 

address the short comings of the single bit tree.  It saves all bits which are identical at each 

node before splitting the library at the node.  If no bits are shared between all the fingerprints, 

then a leaf node is generated to store that portion of the bit string library.  Thus, instead of only 

being able to prune based on depth number of bits, the match-bit tree can store data on a 

potentially large portion of a bit string.  When used along with bit bound pruning, this algorithm 

performs very quick searches faster than most other algorithms though no concrete number is 

provided by Kristensen et al.  

 

3.3 Efficient Representations for Chemical Fingerprints in Java 

The first steps for developing more efficient algorithms for chemical fingerprint similarity 

searches is obtaining chemical data, generating fingerprints, and picking an efficient 

representation for the chemical fingerprints.  For the chemicals, a database containing the first 

1.5 million PubChem chemical ID’s that had been used to generate a demo database for K-

Screen was used.  Because not all PubChem ID’s are used in the PubChem database, the actual 

number of chemicals present was actually 1,307,109.  Since PubChem automatically generates 

a 881 bit fingerprint whose specification can be found on the website, (13) this fingerprint was 

used as the primary fingerprints in the experiments.  In addition the first 100,000 166 bit MACC 

were fingerprinted using Molecular Operation Environment (MOE, version 2009.10, Chemical 

Computing Group, Inc. Montreal, Canada) to have a second set of very different fingerprints to 

use for testing 



33 
 

The issue of a picking the best fingerprint representation for Java was more difficult.  There are 

many considerations.  The main consideration is the architecture of the machine the tests will 

be run on.  The test will be done on a Windows 7 machine with an i5-2500K 64bit processor and 

8gb of memory.  The standard representation for a bit string on a 64 bit machine is an array of 

64 bit integers to exploit the ability to perform what essentially amounts to a bit-wise operation 

over 64 bits per instruction. However Java provides for a several ways of representing this: 

1. Java array of objects 

2. 2D Java style array of arrays  

3. 1D C++ style array accessed as a 2D array 

 

The implementation of 2 and 3 are straight-forward arrays.  For 1, there were two choices.  Java 

contains a dynamically resizable BitSet object.  However, this black boxed implementation 

 

 

Figure 8. The number of 1 bits in each fingerprint for both fingerprint databases used for the experiments. 

 

0

5000

10000

15000

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4

1
5

5

1
6

6

1
7

7

1
8

8

1
9

9

2
1

0

2
2

1

2
3

2

2
4

3

2
5

4

2
6

5

2
7

6

2
8

7

2
9

8

3
0

9

3
2

0

3
3

1

3
4

2

3
5

3

3
6

4

3
7

5

3
8

6

3
9

7

N
u

m
b

e
r 

o
f 

B
it

St
ri

n
gs

 

Distribution of Bitstrings Having a Given Number of 1's Bits out of 881 bits for 
Pubchem 1.3 Million Database 

0

1000

2000

3000

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

1
3

1

1
3

6

1
4

1

1
4

6

1
5

1

1
5

6

1
6

1

1
6

6

N
u

m
b

e
r 

o
f 

B
it

st
ri

n
gs

 

Number of 1 bits 

Distribution of Bitstrings Having a Given Number of 1's Bits out of 166 bits for 
MACC 100,000 Database 



34 
 

potentially contains unwanted bounds checking and checking for dynamic resize.  Thus, it was 

decided to implement a BitString object based on a fixed array of longs implementing all 

operations needed to calculate Tanimoto similarity including bit-wise and, or, xor, and 

popcount. 

In addition, after calculating the statistics of the bit strings which can be seen in Figure 8, both 

sets of fingerprints were found to be mostly sparse.  The average number of 1 bits in the 

PubChem fingerprints is 139 or 15.7% of the total length and the average number of 1 bits in 

the MACC fingerprints is 34 or 20.4% of the total length.  Thus a representation that can exploit 

this amount of sparseness could potentially be more efficient than the intuitive array 

representations.  To test this theory, a sparse matrix representation using compressed row 

format (CSR) (33)  was also tested.  An example of this format can be seen in Figure 9. 

Since 64 bit instructions operate over 64 contiguous bits, matrix sparseness is only useful when 

there is a run 64 0’s (64 0’s in row).  In an attempt to maximize the amount of sparseness useful 

        [

     
      
     
      

] 

Values = [10, 11, 12, 13, 14, 15] 

Columns = [0, 1, 2, 1, 0, 3] 

Rows = [0, 1, 3, 4] 

Figure 9. An example of compressed row format.  Compressed row format stores a matrix as three arrays.  The value 

array stores the values of the matrix, the column array stores the column index of each value, and the row array stores 

the index of the first value from the value matrix for each row. 



35 
 

for 64 bit calculations when using compressed row format, a preprocessing method is used.  

This method referred to as rotate attempts to align the longest run of 0’s to the beginning of a 

64 bit integer to maximize run length.  This implementation also required rotated copies of 

query fingerprints which are pre-calculated for efficient lookup. 

To find the fastest fingerprint database representation, the 881 bit PubChem fingerprints since 

each of those fingerprints is encoded using fourteen 64 bit integers and would provide a more 

accurate representation of typical fingerprints which are often longer compared to testing 

shorter fingerprints.  Each MACC fingerprint by comparison only uses three 64 bit integers to 

encode 166 bits and thus would give high variance results depending on the sample of 

fingerprints used since eliminating the calculation of even a single integer would have a 

disproportionately large overall impact.  Before running the test, the average number of 64 bit 

operations saved for both the standard CSR and CSR rotation representations was done.  It was 

found that the average number of integers used was 11.83 and 11.80 respectively which 

represent a 15.5% and 15.7% reduction in number of calculations for Tanimoto similarity 

calculation. 

In addition, the simple bit bound pruning algorithm for this test as opposed to a brute force 

pair-wise comparison of all fingerprints of a query array and all elements of a single large 

database fingerprint array.  This is because bit bound breaks the database into many smaller 

databases which is a much better approximation for other pruning algorithms which also break 

the database into many small arrays as opposed to maintaining the database as a single large 



36 
 

array.  In addition the number of queries is varied in testing as efficiency for large query sets is 

also of importance to the SimDex algorithm described later. 

In my testing summarized in Figure 10, the 2D Java array of arrays was found to perform the 

best.  The BitString object performed the worst.  CSR Rotate performed somewhat better than 

standard CSR but both performed worse than the 1D C++ array.  This is likely due to the 

combination of the number of memory accesses that the CSR implementation requires for a 

single operation over a single integer and an insufficient sparseness to offset the overhead of 

memory access.  Thus while CSR may potentially be a more efficient for fingerprints with longer 

0 run lengths (24), it is not efficient for this particular set of fingerprints.  The 1D C++ array 

performed slightly worse than the 2D Java array of arrays.  In separate testing not included in 

this paper, 1D C++ array outperformed the 2D Java array of arrays in brute force pair-wise 

comparison which confirms the results of Gundersen and Seihaug’s research into Java matrix 

representations (24).  The only explanation as all other things are equal is that there are hidden 

overhead associated with manipulating few large continuous blocks of memory on the Java 

Heap as opposed to many very small blocks of memory.  Thus 2D Java array of arrays  is used as 

the representation for the rest of my experiments. 



37 
 

 

3.4 Information Content-Based Bit String Segmentation Algorithm 

3.4.1 Overview. As can be seen from literature review in section 3.2.2, all pruning algorithms 

rely on some flavor of dimensionality reduction though such as bit string segmentation in the 

case of Aung and Ng (14), the UCI Algorithm (16, 33, 38), and kD-grid (15) or bit matching as in 

the case of the three bit tree algorithms previously mentioned (13, 18)  to reduce high 

dimension bit strings into low dimension representations.  This allows for large groups of similar 

bit strings to be pruned using a single operation.  Ideally the sizes of these groups should be 

maximized (or equivalently, number of bins minimized) to reduce the overhead of pruning but 

also be minimized (or equivalently, the number of bins maximized) to increase the accuracy of 

the operation.   

Thus creating or at least configuring similarity searching algorithms requires finding a balance 

between too little granularity and too much pruning overhead.  Consider a chemical fingerprint 

Figure 10. Results of the querying a bit bound pruning index when various fingerprint representations are used.  The 

line representing the BitString Object is truncated due to rapid increase in time taken. 

0

1E+09

2E+09

3E+09

4E+09

5E+09

6E+09

7E+09

8E+09

9E+09

1E+10

0 2000 4000 6000 8000 10000 12000

Ti
m

e
 T

ak
e

n
 

Number of Queries 

Comparison of Time Taken for Various Fingerprint Representations 

1D C++ Array

CSR

CSR Rotate

2D Java Array of Arrays

BitString Object



38 
 

as existing in a length of string dimension space.  One method is to modify algorithms to break 

this space down by dividing the space further such as increasing the k in kD-grid.  Another 

method is to use a heuristic, an algorithm designed to increase the efficiency of other 

algorithms, to reorganize the divisions in this space to be more efficient.  An example of this 

would be the split bit tree which intelligently selects bits in order of ability to divide the 

fingerprint space unlike Smellie’s bit tree which simple divides the space without considering 

how well each bit divides the fingerprint space.  Bit reordering and segmentation algorithms 

can be considered to be in this second class of heuristic algorithms as they try to maximize the 

pruning for a given dimensionality reduction. 

This section defines such a heuristic algorithm for segmenting chemical fingerprints based on 

Shannon Entropy.  Shannon Entropy is defined as  ( )  ∑   (  )      (
 

 (  )
) 

    where 

     is an occurrence from the set of possible n occurrences (in this case 0 and 1 for a binary 

string) and  (  ) is the probability of occurrence   .  Shannon Entropy is commonly used in 

compression or encoding as it gives the fewest possible bits an alphabet X can be encoded on 

based on probability of occurrence for each element.  Benz et al. (20)  has applied this recently 

to compressing chemical fingerprints.  However, it can also be used as the measure of 

information as it is defined also as the expected value of information content.  I use this 

interpretation of Shannon Entropy to segment bit strings to have bins containing the same 

amount of information content.  This in turn will reduce the number of poor prunes. 



39 
 

3.4.2 Similar Approaches. There are few explicitly published reordering and segmentation 

heuristics for chemical similarity searches.  However, there are implicit mentioned in the 

descriptions of several algorithms. 

1. The first and most intuitive method is simply splitting a bit string into equal parts 

without any reordering by either selecting a sequential block of bits.  This is used in kD-

grid. 

 

2. Similar to the first, the second method uses the modulus to segment a bit string 

by choosing bits a set distance apart from each other.  This algorithm is based upon 

what Nasr et al. refers to as the ‘exchangeability assumption’ which is defined in 

“Hashing Algorithms and Data Structures for Rapid Searches of Fingerprint Vectors” (32) 

as:  

“it basically means that the validity of any formula should remain 

unchanged under any permutation of the fingerprint components. It is 

clear that in most cases real fingerprint components are not 

exchangeable. In fact the different components do not even have similar 

distributions—some features may be very common, others very rare. 

However, in spite of the deviations from exchangeability, previous work 

has shown that the exchangeability assumption leads to good global 

estimates of bulk properties, such as the distribution of the number B of 

1-bits across all the molecules in a large database.” 



40 
 

However as noted above, this assumption does not accurately reflect real world 

fingerprints as exchanging any two features may or may not change the result of an 

equation but as this paper illustrates can change the efficiency at which the final results 

of the equation is reached. 

3. The third method is another intuitive method which is used by Aung and Ng (29) 

in his algorithm, read the database and reorder the bits according to which bit has the 

most 1’s across all fingerprints.  This is intuitive since both the union and intersection 

are affected primarily by combination of 1’s and 1’s and 0’s and 1’s but not 0’s and 0’s.   

4. The last method is the also similar to this method and proposed by Kristensen et 

al. when describing the split bit tree (18).  When choosing the bit to split, the split bit 

selection criteria chooses the bit that best splits the list of fingerprints at a node into 

equal halves.  This is equivalent to saying, at each node select the bit with the highest 

Shannon Entropy since high Shannon Entropy implies a more uniform random 

distribution which in this case would be 50/50. 

3.4.3 Algorithm Description. The aim of this heuristic algorithm is to define segments such 

that the information content in each segment as near as possible identical.  Instead of making 

the assumption that all bits in a chemical fingerprint provide equal amounts of data as in the 

first intuitive method mentioned above, I test the assumption that all bits provide different 

amounts of information and equalizing this information content rather than the bits in each 

segment will generate the most efficient bins and hence reduce the overhead of pruning.  The 

algorithm for Shannon Entropy-Based Bit String Segmentation is actually quite simple.  It 

consists of four steps: 



41 
 

1. Calculate the binary entropy for  (    )    ( )      (
 

 ( )
)   ( )  

    (
 

 ( )
) and set all undefined H(X) to 0 since either P(0) or P(1) may equal 0. 

2. Sort all bits of the bit string by increasing Shannon Entropy. 

3. For a bit string of length n, Find the bit i which best divides the string such 

that |∑  (    )
     
    ∑  (    )

   
   | is minimized.  In other words divide the bit string 

into two continuous segments where both sections has as near as possible the same 

sum of entropies.   

4. Optionally repeat Step 3 for each segment or some segments depending on 

pruning and memory considerations. 

While only some sorted ordering or binning is required for Step 2, the choice of increasing 

entropy is made to address the observation that the number of 1’s present at a given bit index 

across all fingerprints in a database tends to obey a power law as discovered by Benz et al. (21)  

In other words, most bits in a given fingerprint are set to 0 and therefore have low entropy and 

information content.  Thus, the typical result of dividing a bit string into two segments is a 

segment with a very large amount of low entropy bits and a segment with a very small amount 

of high entropy bits. 

For a given fingerprint database, there is a probability density function for each bit.  While bits 

may not be independent as the features each represents may not be statistically independent 

from at least some of the other bits, there is still an underlying probability density function for 

each bit.  Thus for a random fingerprint sampled from a database, the low entropy bits have a 

high probability of being set 1 or 0.  It follow that for any two random fingerprints A and B 



42 
 

sampled from this database, there is a high probability that a given low entropy bit i will have 

either a high  (         ) or  (         ).  This implies that a segment s created 

from only low entropy bits will more likely result in both: 

   (         )        

   (         )        

Because  (         ) or  (         ) coincides with     or     which is the 

case that maximizes    (         ) and minimizes    (         ).  Thus it can be said that a 

segment created from only low entropy bits will generate a tighter bound than a segment 

created from a random collection of high and low entropy bits.  Conversely, a segment created 

from only high entropy bits will more likely generate a looser bound than a segment created 

from a random collection of high and low entropy bits.  Thus, by sorting the bit string according 

to entropy, the tighter pruning step can be done first which reduces the number of 

subsequently looser pruning steps.  This is somewhat related to the match bit tree since it 

keeps track of all bits whose entropy value is 0 at each node. 

However, it should be noted that a fingerprint database may or may not be representative of all 

possible fingerprints and thus each bit’s probability density function is at best only an 

approximation of the probability of that bit for all fingerprints. 

3.4.4 Methods.  The full MACC and PubChem fingerprint databases are used in the following 

tests.  Testing is conducted on a Windows 7 machine with an i5-2500K processor and 8gb of 

memory.  The Shannon Entropy algorithm generated segmentation pattern will be tested by 



43 
 

implementing it as a preprocessing step for the kD-grid algorithm. KD-grid is the algorithm that 

from testing is the best algorithm for segmentation-based pruning with total number of 

segments k > 2 while the UCI modulus algorithm is best for k = 2.  The Shannon Entropy 

algorithm will be tested against the approach of increasing the value of k with k bins of equal 

size.  It will also be tested against the  ( ) algorithm used by Aung and Ng (29) and the 

modulus segmentation algorithm.  These algorithms will be implemented using equal sized 

segments like standard kD-grid.  The importance of ordering will also be tested by reversing the 

sort order so that Shannon Entropy is decreasing.  In addition, the performance of the entropy 

segmented kD-grid algorithm will be measured against the very fast match-bit tree algorithm.  

3.4.5 Results and Discussion.   Figure 11 shows the average query time for standard kD-

grid and kD-grid with preprocessing for various values of k.  Segmentation based on information 

content balancing with increasing entropy performs the best in these tests for both databases. 

The algorithm performs better than the best search time of standard kD-grid and shows 

proportionally larger increases in performance for smaller values of k.  When the entropy 

ordering is reversed, the algorithm only seems to perform well for k equals power of 2.  After 

the initial segmentation into two segments, splitting only one of the two segments resulted in 

an average similarity search time worse than the initial segmentation into two segments.  

However, segmentation into 4 rather than 3 segments showed a performance boost similar to 

or better than increasing entropy ordering.   



44 
 

 The P(1) decreasing ordering performed worse than the entropy orderings.  It performed 

better than standard kD-grid for the MACC database but worse for the PubChem database.  

This discrepancy may be accounted for by the different percentage of 1 bits in each algorithm: 

20.4% for MACC and 15.7% for PubChem.  Modulus performed the worst out of the non-

standard kD-grid algorithms.  The reason for this poor behavior is likely the fact that 

fingerprints tend to cluster similar or related data near each other (13) for simpler human 

 

Figure 11. The average amount of time taken to run a single query from each fingerprint database is shown here.  

The experiment was performed 10,000 times with a 0.9 similarity threshold using a random non-repeated 

fingerprint for each value of k and then averaged.  For values of k not powers of two, the segmentation patterns 

resulting in the best pruning were selected. 

0

50000

100000

150000

200000

250000

300000

350000

400000

2 2.5 3 3.5 4 4.5 5 5.5 6

Ti
m

e
 T

ak
e

n
 in

 N
an

o
se

co
n

d
s 

Value of k 

Average Time Comparison of kD-Grid Variants for Single Queries using MACC 

Entropy Increasing

Entropy Decreasing

kD-Grid

P(1) Ordering

Modulus kD-Grid

0

5000000

10000000

15000000

20000000

2 3 4 5

Ti
m

e
 T

ak
e

n
 in

 N
an

o
se

co
n

d
s 

Value of k 

Average Time Comparison of kD-Grid Variants for Single Queries using PubChem 

Entropy Increasing

Entropy Decreasing

kD-Grid

P(1) Ordering

Modulus kD-Grid



45 
 

comprehension.  Thus selecting unlikely to be related spatially separated bits seems to be the 

least desirable method. 

 Figure 12 shows memory usage for the selected fastest times across all algorithms tested.  

Memory usage directly corresponds to the number of bins generated by each indexing 

algorithm and the granularity of pruning.  It is evident that higher memory usage and larger 

number of bins tend to produce better pruning and faster results until a point is reached when 

Average MACC Time and Memory Usage 

Algorithm Time Taken(ns) 
for Single Query 

Memory (mb) for 
Full Database Index 

Percent Unpruned 

Entropy Increasing, k = 4 82600 54 1.5% 

Entropy Decreasing, k = 4 82224 51 1.5% 

kD-grid, k = 4 106432 32 2.5% 

kD-grid, k = 5 102326 38 1.4% 

Match-Bit Tree, depth = 8 123157 43 0.33% 

P(1) Ordering, k = 4 97485 56 2.1% 

Modulus kD-Grid, k = 4 109745 50 2.3% 

Average PubChem Time and Memory Usage 

Algorithm Time Taken(ns) 
for Single Query 

Memory (mb) for 
Full Database Index 

Percent Unpruned 

Entropy Increasing, k = 3 4978497 918 6.4% 

Entropy Decreasing, k = 3 12811339 848 19% 

Entropy Decreasing, k = 4 5511096 1588 3.9% 

kD-grid, k = 3 5073624 933 6.2% 

Match-Bit Tree, depth = 7 4311615 694 8.2% 

Match-Bit Tree, depth = 9 3557940 905 2.1% 

P(1) Ordering, k = 3 6963861 908 13% 

Modulus kD-Grid, k = 5 18575392 2308 10.3% 

Figure 12. These tables show the average amount of time taken to run a single query averaged from running 

10,000 queries, the amount of memory needed store the each algorithm’s index of the whole database, and the 

average percent of the database left unpruned.  For kD-grid algorithms, the k with the best results is shown along 

with selected other k values that are helpful for comparison.  For match-bit tree, both the first depth value with 

results better than  the best kD-grid and the best depth value are shown for the PubChem database. 



46 
 

the pruning cost exceeds the amount of time saved from performing unneeded similarity 

calculations.  Also, evident from Figure 12 is the efficiency of the match-bit tree pruning 

algorithm which is able to prune more strings for a lower memory cost and have a cheap 

enough pruning function to benefit from higher pruning percentages. 

Additionally, observe that performance and memory usage and pruning is highly dependent on 

the characteristics of fingerprints used.  The default ordering of fingerprint bits in the MACC 

database for example seems rather poor and the default kD-grid algorithm generates very poor 

segmentation choices.  This in turn leads to inefficient pruning steps and poor performance 

compared to the entropy-based segmentation approaches.  The case of the PubChem 

fingerprints is different, kD-grid shows nearly identical performance to entropy segmentation 

for the best value of k though the entropy segmentation is able to outperform it for other 

values of k from Figure 12.  This is likely the result of the existing arrangement of the bits being 

good for continuous block segmentation.  The evidence points to the default ordering of the 

bits being good for this type of block segmentation because the modulus algorithm performed 

relatively poor. 



47 
 

 

Another interesting statistic is ability to choose a good splitting point for string segmentation.  

Figure 13 and 14 show the ability of entropy based information content balancing to choose the 

MACC Search Times (ns) for 100 Queries 

Entropy of 
Split Point 

Entropy Increasing Entropy Decreasing 

k=2 k=3 k=5 k=2 k=3 k=5 

0 162002357 37751639 8544167 64063370 36145313 18927913 

0.05 118174976 15937625 10897833 1.23E+08 33726647 19516640 

0.1 102151514 15462414 10290757 1.07E+08 31804965 18076077 

0.15 100994897 14243906 11174003 99859738 31219036 17667732 

0.2 98674508 13199250 11860696 1.07E+08 31522885 17832252 

0.25 36877102 12722484 12135622 38268837 32937324 17803950 

0.3 34166093 12314448 12101411 33926933 32961582 23564646 

0.35 30137680 12157081 13778337 29868975 33444257 18772412 

0.4 27324042 12380070 13534821 29684551 33787915 18228158 

0.45 26134458 18196435 12641934 26675292 32959716 17951676 

0.5 25370015 11398858 12299831 27841239 33311770 17679860 

0.55 25197720 14221514 13188365 25008630 33471626 22880752 

0.6 20572182 10833144 
 

20895314 33878105 
 0.65 19584439 10361975 11091587 19690491 34125974 17622947 

0.7 17766630 11036228 13337645 17395915 33806264 17976556 

0.75 17509121 12458132 13846757 17357973 33705188 17939547 

0.8 15607030   15334281   

0.85 15892841 11878734 12475858 15636887 36029309 18577413 

0.9 20034459 10799867 11497134 21040241 41274052 20797037 

0.95 35825914 12179163 12071244 35387711 45443349 32329315 
Figure 13.  Since it is infeasible to test every possible split value, entropy values were tested starting 

with 0.025 at 0.05 intervals to create bins of size 0.  Values differ The bin with the predicted split 

value and the best empirical values are marked.  Red values mark predicted split value for entropy.  

Yellow highlighted values mark empirically determined best split for a segment.  Empirical testing 

was done using 100 queries different from that of the first experiment.  Values were summed and not 

averaged to make timing differences more apparent.  Since the algorithm is iterative, gray highlighted 

bins contain selected split values for previous values of k. 

Predicted Values: 0.8382, 0.64, 0.953, 0.39, 0.79, 0.9, 0.9725 

 



48 
 

best possible segmentation pattern.  Each table shows the entropy value which best divides the 

string into two segments with the same amount of information content and show the 

difference between predicted and empirically tested best splitting choices.  Observe that there 

is a tendency for this heuristic to predict better for increasing entropy than decreasing entropy 

bit orderings.  

 

Figure 13 shows that for MACC fingerprints there are 5 selected empirically tested bins which 

are either the same or adjacent to selected predicted bins for increasing entropy as opposed to 

PubChem Search Times (ns) for 100 Queries 

Entropy of 
Split Point 

Entropy Increasing Entropy Decreasing 

k=2 k=3 k=5 k=2 k=3 k=5 

0 2239669902 1.46E+09 1.76E+09 2.23E+09 1.49E+09 1.54E+09 

0.05 2090859641 8.46E+08 2.39E+09 2.07E+09 2.08E+09 1.49E+09 

0.1 2000643775 1.42E+09 2.15E+09 2E+09 2.08E+09 1.51E+09 

0.15 1943373318 1.4E+09 2.31E+09 1.94E+09 1.47E+09 1.47E+09 

0.2 1888768773 1.35E+09 2.4E+09 1.88E+09 2.08E+09 1.37E+09 

0.25 1245136390 1.36E+09 2.49E+09 1.82E+09 2.01E+09 1.37E+09 

0.3 1174100348 1.35E+09 2.87E+09 1.75E+09 2.09E+09 1.36E+09 

0.35 1071800797 1.27E+09 2.86E+09 1.07E+09 1.96E+09 1.35E+09 

0.4 998916468 1.26E+09 2.69E+09 1E+09 1.99E+09 7.59E+08 

0.45 1566628206 1.30E+09  1.59E+09 1.98E+09 
 0.5 973879225 7.33E+08 2.19E+09 9.74E+08 1.37E+09 7.53E+08 

0.55 953671849 1.32E+09 2.77E+09 9.56E+08 1.95E+09 1.37E+09 

0.6 942186533 1.37E+09 2.8E+09 1.51E+09 1.96E+09 1.41E+09 

0.65 874491900 8.17E+08 2.38E+09 8.86E+08 1.33E+09 1.35E+09 

0.7 868394388   8.67E+08   

0.75 1409106771 1.33E+09 2.49E+09 1.41E+09 1.34E+09 1.37E+09 

0.8 871372546 4.92E+08 2.55E+09 1.41E+09 1.1E+09 1.39E+09 

0.85 800612364 4.07E+08 2.91E+09 7.99E+08 1.14E+09 1.38E+09 

0.9 753919407 4.65E+08 
 

7.67E+08 1.19E+09 
 0.95 1557967724 4.83E+08 3.02E+09 1E+09 1.19E+09 9.6E+08 

Figure 14.  Same experiment as Figure 13 for PubChem fingerpint database. 

Predicted Values: 0.7, 0.485, 0.9265, 0.32, 0.613, 0.824, 0.989 

 

 



49 
 

only 2 for the case of decreasing entropy.  Figure 14 shows a less pronounced affinity with 

increasing entropy with 4 adjacent or same bins as opposed to 3. 

3.4.5 Conclusion. The development of intelligent heuristic algorithms is one method of 

increasing the efficiency of existing chemical fingerprint search algorithms.  This paper has 

shown that this novel bit string segmentation based on information content balancing is one 

such algorithm.  It has shown that it has the ability to perform superior bit string segmentation 

than simply dividing the bit string to have equal sized segments, reordering the bits in a string 

by P(1), or using modulus to select spatially distant bits.  It has shown a 24% speed up for the 

166 bit MACC fingerprint with a database of 100,000 chemicals, and an average speed up 

compared to standard kD-Grid for 881 bit PubChem fingerprint database of 1.3 million or about 

15%.  The success of this algorithm shows that the development of better heuristics based on 

bit reordering and segmentation is a feasible way of making more efficient fingerprint similarity 

search algorithms. 

3.5 SimDex: Query Set Indexing for Batch Queries 

3.5.1 Overview. To perform similarity searches, a query fingerprint must first be hashed or 

have statistics used for pruning the search index calculated for it.  Depending on how the 

search index prunes, one or more hashes are generated for each query fingerprint and stored 

as a fingerprint object’s member variable or associated some other way with it (see Figure 15 

for a simple example).  Hashes can also be calculated on the fly as a search is executed but this 

incurs penalties for recalculating or checking for recalculation of a fingerprint’s hashes when 



50 
 

using multi-tiered (an index of indices) indexing such as match-bit tree which uses bit bound to 

first bin fingerprints by popcount or the number of 1’s in the bit string (14, 16, 30, 32). 

 

Performing searches over the example bit bound followed by modulus 2 search index from 

Figure 16 using standard search algorithm is simple and straight forward: 

 Submit FP1 for the search. 

o Prune level 1 index for hash 100. 

 Prune level 2 index for hash (50, 50). 

 Perform similarity calculations and thresholding for 

unpruned database. 

 Submit FP2 for the search. 

o Prune level 1 index for hash 100. 

 Prune level 2 index for hash (50,50) 

 Perform similarity calculations and thresholding for 

unpruned database. 

 Submit FP3 for the search.  

o Prune level 1 index for hash 100. 

 Prune level 2 index for hash (30, 70). 

 

Figure 15. An example query set with associated hashes for the Nasr(32) indexing scheme 

which uses the Swamidass bounding index(39) to index modulus 2 indices. 

 



51 
 

 Perform similarity calculations and thresholding for 

unpruned database. 

 Submit FP4 for the search. 

o Prune level 1 index for hash 200. 

 Prune level 2 index for hash (100,100) 

 Perform similarity calculations and thresholding for 

unpruned database. 

 

3.5.2 Algorithm Description.  

 

The standard methodology is adequate for searching single queries at a time but this method is 

inefficient for executing batch searches.  We proposed a novel search algorithm to address 

many of these inefficiencies called SimDex.  For SimDex, instead of simply associating hash keys 

 

Figure 16. This shows an example search index being pruned for an exact search using the query set 

presented in Figure 15.  Grayed out sections are pruned while white sections are unpruned.  A search using 

single queries would take a maximum of query set size (4) multiplied by number of hashes each (2) or 4*2 = 

8 pruning steps.  A search using the SimDex batch query set index would only take total number of distinct 

hashes or 5 pruning steps. 

 



52 
 

by fingerprint, fingerprints are binned by hash keys as demonstrated in Figure 3.  By using a 

structure-based on hashes instead of based on fingerprints, allows redundant pruning steps to 

be eliminated.  Performing searches over Figure 17 is done by traversing the tree structure in a 

depth first fashion. 

 

An example search would occur like so: 

 Prune for level 1 hash 100. 

o Prune for level 2 hash (50,50) 

 Perform similarity calculations and thresholding using FP1 for 

unpruned database. 

 Perform similarity calculations and thresholding using FP2 for 

unpruned database. 

o Prune for level 2 hash (30,70) 

 Perform similarity calculations and thresholding using FP3 for 

unpruned database. 

 Prune for level 1 hash 200 

o Prune for level 2 hash (100,100) 

 

Figure 17. This shows the example query set from Figure 15 arranged in a tree structure used for the database 

search index instead of simply by member variable or some other type of association. 

 



53 
 

 Perform similarity calculations and thresholding using FP4 for 

unpruned database. 

 

3.5.3 Performance. The total amount of time used by a search can be approximated by: 

                            

where       is the total time and      ,       , and        represent the time taken for the 

three major parts of the search algorithms: hashing, pruning, and comparison calculation.  For 

typical single query searches: 

              ∑  ( )

     

   

 

              ∑  ( )

     

   

 

                       ∏          ( )

     

   

 

where  

        is the size of the query set 

       is the number of index levels for the search index 

  ( ) is the hash time for a particular level of index 

  ( ) is the prune time for a particular level of index 

     is the size of the database 

    is the compare and threshold time  

          ( ) is the percent pruned for each level 



54 
 

The batch search algorithm we propose instead provides an upper bound for pruning time 

which as a side effect slightly increases the hash time to account for structuring the query set.  

The batch query searching used in SimDex as seen above only prunes per used hash instead of 

per query fingerprint hash.  As the number of all possible hashes generated by current pruning 

methods is finite and relatively small, this drastically reduces the number of instances that the 

pruning routine is executed by limiting it to the number of used hashes.  Thus two variables are 

changed in the time equation and        remains the same: 

 ̅             [        ∑  ( )

     

   

] 

 ̅      ∑      ( )  (         ( )   ( ))

     

   

 

where         is the time it takes to insert an entry into the query index,      ( ) is the number 

of used hashes on a level of index, and          ( ) is the cost of retrieving all hashes out of a 

structure at a level of index.  Plainly then  ̅     gives an upper bound for pruning time based on 

the number of possible unique hashes per level     ( ): 

 ̅     ∑     ( )  (         ( )   ( ))

     

   

 

Thus, for sufficiently large query sets, prune time becomes constant and therefore very small 

compared to the overall time costs for sufficiently large searches.  The trade off, as mentioned 

before, is that        is introduced as an additional parameter in  ̅    .  However, because 

there are many highly efficient data structures but few low cost pruning functions,         

generally is much less than ∑  ( )     
    which gives an overall speed up for search times.   



55 
 

 

 

There is one drawback of this method that must be mentioned.   At the point       decreases 

to a constant, the speed up compared to non-query indexed searches will begin to decrease.  

This is due to the fact that the search algorithms are still O(n).  The SimDex algorithm reduces 

the leading coefficient for a larger constant.  Therefore at very large query sets, the upper 

bound of       will be so small compared to       and       as to not have a meaningful 

contribution.  However, query sizes are generally small enough to not encounter this 

phenomenon.  This problem however can be addressed more concretely.  Algorithms can be 

modified to prune better or novel algorithms with better pruning can be developed to 

potentially reduce       by reducing ∏          ( )
     
   .  As long as the upper bound of       

for those algorithms is not extraordinarily larger than current algorithms, SimDex will be able to 

produce good results. 

3.5.4 Beneficial Cases. This naturally leads to the question of what conditions maximize the 

advantages of this execution structure.  Intuitively this strategy shows benefits under two 

distinct conditions:  First, this strategy would highly favor query sets consisting of a tightly 

grouped set of fingerprints which share identical or a very low number of hashes.  We call this 

the dense case.  The dense case minimizes the number of used hashes and may arise in 

instances where a user desires to search by a related group of chemicals.  Thus this case is only 

conditionally useful as it largely must be encountered by design unlike the more general second 

case. 



56 
 

Second, this strategy produces benefits for query sets that contain very large number of 

fingerprints such that most or all hashes refer to multiple fingerprints.  We call this the full case.  

The full case occurs when a query set becomes very large such that it begins to exhaust the 

number of possible hashes.  In this case, as mentioned above, the pruning cost cannot grow any 

larger and becomes a constant.  However, filling most hashes is unlikely to occur unless using 

the simplest of pruning algorithms with small hash spaces such as bit bound (39).  More 

realistically, the full case will occur when all likely hashes are exhausted.  This is due to the 

distribution of fingerprint features being non-uniform as can be seen in section 3.3. Thus, the 

derivative of the time taken to execute a search with indexed query set will monotonically 

decrease until reaching a constant as query set size increases.  It is this case that will be the 

focus of the following experiments. 

3.5.5 Implementation. The data structure used for the query index may vary in complexity.  

A query index can be intuitively and generically abstracted and implemented as a hash table of 

lists of fingerprints or a hash table of hash tables in the case of multi-tiered indices.  A query set 

may also be indexed as if it were a database.  For implementations used for testing in this 

paper, the latter option was chosen as it appears more time efficient (though perhaps less 

space efficient depending on implementation) as most of the published indexing schemes use a 

simple variations of n-ary trees (14, 16, 30, 32, 36) or arrays in the case of bit bound (39). 

In addition, SimDex also has an advantage in that it allows for the comparison of extremely 

large databases that have pre-existing indices.  Large databases must be indexed regardless to 

query out of them efficiently so this scheme can avoid the need to rebuild the query set index.  

While out of memory search implementations may be required to handle such a large 



57 
 

operation, it is worth considering as even a small reduction such as 10% for a search time over 

two large databases taking a long period of time such as two weeks is a substantial reduction in 

time. 

3.5.6. Methods.  

Again, the full MACC and PubChem fingerprint databases are used in the following tests.  

Testing are conducted on the same Windows 7 machine with an i5-2500K processor and 8gb of 

memory.  The kD-grid algorithm, entropy segmentation kD-grid algorithm, match-bit tree, and 

bit bound were selected in addition to the naïve brute force pair-wise comparison algorithm for 

the experiments.  Algorithms selected were based on speed and interesting properties.  Since 

 

 

Figure 18. The average time taken for a single query for each similarity search algorithm for query set sizes of 

10,000.  Data series starting with ‘i’ denote query set indexing enabled in SimDex. 

0

100000

200000

300000

400000

2 3 4 5 6 7 8 9 10

Ti
m

e
 T

ak
e

n
(n

s)
 

Variable Value 

(A) k and depth Variable Values for MACC 

Entropy Increasing

kD-Grid

Match-Bit Tree

iEntropy Increasing

ikD-Grid

iMatch-Bit Tree

0

2000000

4000000

6000000

8000000

10000000

2 3 4 5 6 7 8 9 10 11 12

Ti
m

e
 T

ak
e

n
(n

s)
 

Variable Value 

(B) k and depth Variable Values for PubChem 

Entropy Increasing

kD-Grid

Match-Bit Tree

iEntropy Increasing

ikD-Grid

iMatch-Bit Tree



58 
 

all algorithms which required additional variable input for either segmentation or depth, 10,000 

fingerprints were tested against each database which is shown in Figure 18.  Since query set 

indexing upper bounds the pruning cost, this changes the prune cost to similarity calculation 

cost ratio.  Thus Figure 18 also shows the variable input for query set index algorithms though 

there are no differences for the two databases tested. 

 

 

Figure 19. (A) Time taken for searches using query sets sizes 100 to 1,000 incrementing by 100, 2,000 to 10,000 

incrementing by 1,000, and 20,000 to 100,000 incrementing by 10,000 for 881-bit PubChem Fingerprint. (B) 

Experiment was repeated for 166-bit.  Time measured was the amount of time spent hashing or indexing the query 

set and executing the search.  Brute force and bit bound are truncated to save space. 

 

0

2E+11

4E+11

6E+11

8E+11

1E+12

1.2E+12

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Ti
m

e
 T

ak
e

n
(n

s)
 

Query Set Size 

(A) Time Taken For Queries into PubChem 1.3 Million Database 

BitBound

Brute Force

Entropy 3D-Grid

3D-Grid

Match-Bit Tree 9

iBitBound

iEntropy 3D-Grid

i3D-Grid

iMatch-Bit Tree 9

0

2E+09

4E+09

6E+09

8E+09

1E+10

1.2E+10

1.4E+10

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Ti
m

e
 T

ak
e

n
(n

s)
 

Query Set Size 

(B) Time Taken For Queries into MACC 100k Database 

Bit Bound

Brute Force

Entropy 4D-Grid

5D-Grid

Match-Bit Tree 8

iBit Bound

iEntropy 4D-Grid

i5D-Grid

iMatch-Bit Tree 8



59 
 

3.5.7. Results and Discussion.  

Figure 19 shows how well the SimDex query set indexing approach scales with query size.  As 

expected, searches with indexed query sets run in less time when compared with each 

algorithm’s sequential querying counterparts due to the upper bound on pruning.  The trend 

lines are not smooth due to the differences between each query set used because each query 

set is a new random sample unrelated to previous query sets.  This is especially true for bit 

bound which has the fewest bins (the same as the number of bits in a fingerprint) so small 

variations in query set composition can result in large changes.  All algorithms experience a 

significant speed up.  The match-bit tree algorithm achieves a much larger amount of speed up 

with SimDex query set indexing compared to both the kD-Grid and entropy algorithms.  This is 

especially evident for the PubChem fingerprints. 

Figure 20 more clearly shows the speed up as fraction of time taken.  The behavior is as 

predicted in section 3.5.3 as each algorithm converges towards a near constant speed up.  Both 

the kD-Grid algorithms fail to reach this point, but both the match-bit tree and the bit bound 

algorithms do.  Also observe that the match-bit tree algorithm fraction of time taken increases 

after reaching a minimum which is a symptom of reaching not only the full case but the full 

upper bound of       for the MACC experiment.  Bit-bound also reaches this point as match-bit 

tree uses bit-bound as the first level of pruning but it is harder to observe using these graphs 

compared to match-bit tree.  This is actually somewhat of a surprising result as match-bit tree 

did not have an index for the 2nd tree tier since that tier requires a full fingerprint instead of 

some hash, only the 1st tier bit bound. This evidence instead points to bit bound and the loop 



60 
 

overhead to retrieve the second tier of indexes as being a significant cost in this java 

implementation. 

 

 

Additionally, Figure 20 shows that nearly any sized batch query larger than 100 query 

fingerprints receives some sort of improvement.  In the case of bit bound, its ability to prune 

well for very small sizes is evident as kD-grid descends from 1 while bit-bound and match-bit 

tree ascend to a maximum before descending again. 

 

Figure 20. Speed up as fraction of time. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Fr
ac

ti
o

n
 o

f 
Ti

m
e

 T
ak

e
n

 

Query Set Size 

(A) Speed up as Fraction of Time Taken for PubChem database 

Bit Bound

Entropy 3D-Grid

3D-Grid

Match-Bit Tree 9

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Fr
ac

ti
o

n
 o

f 
Ti

m
e

 T
ak

e
n

 

Query Set Size 

(B) Speed up as Fraction of Time Taken for MACC database 

Bit Bound

Entropy 4D-Grid

5D-Grid

Match-Bit Tree 8



61 
 

Figure 21 shows the pruning costs as it varies by query size.  kD-grid shows a curve as it has a 

negative derivative because it has not reached a constant speed up while match-bit tree and bit 

bound reach a constant quickly.  The amount of it takes for an algorithm to converge is 

proportional to the number of hashes filled.  Bit-bound fills quickly as there are only as many 

hashes as there are bits in a fingerprint.  KD-grid at least for the standard case uses 

(
                

 
)
 

 hashes and therefore requires large query sets before reaching any form of 

the full case.  For the MACC fingerprint bit bound and the 5D-Grid have a total of 166 and 

4,0335,776 hashes respectively.  For PubChem bit bound and 3D-Grid have a total of 881 and 

25,325,845 hashes respectively.  For this reason, kD-grid shows limited increases in speed for 



62 
 

PubChem.

 

 

3.5.8 Conclusion. The SimDex query set indexing algorithm shows good potential for 

accelerating batch searches.  SimDex experimentally demonstrates performance increases 

typically between 111% and 250% range for the selected algorithms.  The experiments also 

show that SimDex achieves a higher speed up after when the full case is reached but that 

performance increases are also present for nearly all sizes over 100 batch queries sets of at 

 

Figure 21.  Pruning time only.  Bit bound is extremely fast to prune and tiny compared to other algorithms. 

 

0

5E+09

1E+10

1.5E+10

2E+10

2.5E+10

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

A
xi

s 
Ti

tl
e

 

Axis Title 

(A) Prune Time Only for PubChem Database 

Bit Bound

Entropy 3D-Grid

3D-Grid

Match-Bit Tree 9

iBit Bound

iEntropy 3D-Grid

i3D-Grid

iMatch-Bit Tree 9

0

500000000

1E+09

1.5E+09

2E+09

2.5E+09

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

P
ru

n
e

 T
im

e
(n

s)
 

Query Set Size 

(B) Prune Time Only for MACC Database 

Bit Bound

Brute Force

Entropy 4D-Grid

5D-Grid

Match-Bit Tree 8

iBit Bound

iEntropy 4D-Grid

i5D-Grid

iMatch-Bit Tree 8



63 
 

least 100. They also support the theory that convergence occurs more quickly for smaller query 

sizes when the pruning index has a low number of hashes. 

There are many further applications for the algorithm not explored in this paper.  Extending 

query set indexing to other types of fingerprinting is one major application, specifically those 

relying on fixed length binary or multi-valued strings which can be thought of as an extension of 

binary string is one particularly interesting application.  Additionally, since the query set 

indexing algorithm implemented in SimDex is independent of database indexing algorithms, it 

may be implemented for new indexing algorithms or indexing algorithms not addressed in this 

paper. 

Chapter 4: Conclusion and Future Work 

This thesis presents software tools and algorithms developed to better support HTS operations 

efficiently.  K-Screen assists HTS laboratories in storing, managing, and presenting data to 

clients in a simple and coherent way.  It is currently being used by the KU HTS laboratory and 

interest has been shown in potentially using it provide information management support by 

other laboratories.  It is one of a few published (40) open-source HTS LIMS software and the 

only one which primarily focuses on presentation for the end-client. It can hopefully be further 

developed and adapted to the changing HTS environment or at least used as a basis for more 

advanced HTS LIMS software. 

Next, the information content balancing algorithm is one of the first studies conducted on bit 

ordering and segmentation in chemical fingerprints. This algorithm shows improved 



64 
 

performance for finding more efficient segmentations of chemical fingerprint bit strings.  This is 

a useful contribution because no algorithms for intelligent heuristic functions for bit string 

segmentation have been explicitly mentioned or experimentally tested in previous publications.  

Further development of heuristics based on reordering and segmentation of bit strings may 

result in better similarity search algorithms for both single dimensional bit strings and other 

feature based chemical representations.  It could be argued that the match-bit tree shows 

much better potential than improved kD-Grid but this heuristic should be valid for any 

segmentation algorithm like kD-Grid.  Thus the success of these heuristics is independent of the 

success of a single segmentation algorithm.  Future developments in segmentation algorithms 

may show that segmentation algorithms can be superior to match-bit tree just like how match-

bit tree showed that it was possible for bit matching algorithms can be superior to 

segmentation algorithms. 

Lastly, the SimDex algorithm for batch query searches shows good performance for large 

databases and speeds up the current fastest state of the art algorithm by 2.5 times.  The value 

of such a batch search algorithm will only increase as search requirements for HTS increase.  As 

the datasets that are generated by the HTS process grow larger, the performance of search 

algorithms will need to increase to match this trend. It is also independent of search algorithm 

and may be adapted to indexing algorithms for other types of fingerprints such as graphical or 

string based ones.  In addition, I have also developed a simple breakdown and estimation of 

similarity search times that can potentially be useful in finding bottle necks in algorithms.  A 

paper detailing this algorithm is currently under consideration to be published by the ACS 



65 
 

Journal of Chemical Modeling and Information.  Finally, I intend to publish the source code for 

SimDex to assist others in further benchmarking, developing, or creating new algorithms.   

  



66 
 

4. References 

1. http://cran.r-project.org/web/packages/drc/index.html. 
2. http://jpgraph.net/. 
3. http://merian.pch.univie.ac.at/~nhaider/cheminf/moldb5doc.html. 
4. http://pages.cs.wisc.edu/~ghost/. 
5. http://www.apache.org/. 
6. http://www.bioconductor.org/help/bioc-views/2.8/bioc/html/prada.html. 
7. http://www.lsi.umich.edu/facultyresearch/centers/chemicalgenomics/chemoinformatics. 
8. http://www.molinspiration.com/jme/. 
9. http://www.mysql.com/. 
10. http://www.php.net/. 
11. http://www.r-project.org/. 
12. http://www.yiiframework.com/. 
13. PubChem Substructure Fingerprint V1.3   Available from: 

ftp://ftp.ncbi.nih.gov/pubchem/data_spec/pubchem_fingerprints.txt. 
14. Aung, Z. and S.-K. Ng, An indexing scheme for fast and accurate chemical fingerprint database 

searching, in Proceedings of the 22nd international conference on Scientific and statistical 
database management2010, Springer-Verlag: Heidelberg, Germany. p. 288-305. 

15. Baldi, P. and D.S. Hirschberg, An Intersection Inequality Sharper than the Tanimoto Triangle 
Inequality for Efficiently Searching Large Databases. Journal of Chemical Information and 
Modeling, 2009. 49(8): p. 1866-1870. 

16. Baldi, P., D.S. Hirschberg, and R.J. Nasr, Speeding Up Chemical Database Searches Using a 
Proximity Filter Based on the Logical Exclusive OR. Journal of Chemical Information and 
Modeling, 2008. 48(7): p. 1367-1378. 

17. Baldi, P. and R. Nasr, J. Chem. Inf. Model., 2010: p. 1205. 
18. Baldi, P. and R. Nasr, When is Chemical Similarity Significant? The Statistical Distribution of 

Chemical Similarity Scores and Its Extreme Values. Journal of Chemical Information and 
Modeling, 2010. 50(7): p. 1205-1222. 

19. Baykoucheva, S., A New Era in Chemical Information: PubChem, DiscoveryGate, and Chemistry 
Central. Online, 2007. 31(5): p. 5p. 

20. Benz, R.W., S.J. Swamidass, and P. Baldi, J. Chem. Inf. Model., 2008. 48: p. 1138. 
21. Benz, R.W., S.J. Swamidass, and P. Baldi, Discovery of Power-Laws in Chemical Space. Journal of 

Chemical Information and Modeling, 2008. 48(6): p. 1138-1151. 
22. Donofrio, N., et al., 'PACLIMS': A component LIM system for high-throughput functional genomic 

analysis. Bmc Bioinformatics, 2005. 6: p. -. 
23. Droit, A., et al., PARPs database: A LIMS systems for protein-protein interaction data mining or 

laboratory information management system. Bmc Bioinformatics, 2007. 8: p. -. 
24. Gundersen, G. and T. Steihaug, Data structures in Java for matrix computations. Concurrency 

and Computation: Practice and Experience, 2004. 16(8): p. 799-815. 
25. Hettne, K.M., et al., A dictionary to identify small molecules and drugs in free text. 

Bioinformatics, 2009. 25(22): p. 2983-2991. 
26. Holliday, J.D., C.Y. Hu, and P. Willett, Grouping of coefficients for the calculation of inter-

molecular similarity and dissimilarity using 2D fragment bit-strings. Comb Chem High 
Throughput Screen, 2002. 5(2): p. 155-66. 

27. Inglese, J., et al., Quantitative high-throughput screening: a titration-based approach that 
efficiently identifies biological activities in large chemical libraries. Proc Natl Acad Sci U S A, 
2006. 103(31): p. 11473-8. 

http://cran.r-project.org/web/packages/drc/index.html
http://jpgraph.net/
http://merian.pch.univie.ac.at/~nhaider/cheminf/moldb5doc.html
http://pages.cs.wisc.edu/~ghost/
http://www.apache.org/
http://www.bioconductor.org/help/bioc-views/2.8/bioc/html/prada.html
http://www.lsi.umich.edu/facultyresearch/centers/chemicalgenomics/chemoinformatics
http://www.molinspiration.com/jme/
http://www.mysql.com/
http://www.php.net/
http://www.r-project.org/
http://www.yiiframework.com/
ftp://ftp.ncbi.nih.gov/pubchem/data_spec/pubchem_fingerprints.txt


67 
 

28. Irwin, J.J. and B.K. Shoichet, ZINC - A free database of commercially available compounds for 
virtual screening. Journal of Chemical Information and Modeling, 2005. 45(1): p. 177-182. 

29. James, C.A., D. Weininger, and J. Delany, Daylight Theory Manual2004. 
30. Kristensen, T.G., J. Nielsen, and C.N. Pedersen, A tree-based method for the rapid screening of 

chemical fingerprints. Algorithms Mol Biol, 2010. 5: p. 9. 
31. Mayr, L.M. and P. Fuerst, The future of high-throughput screening. J Biomol Screen, 2008. 13(6): 

p. 443-8. 
32. Nasr, R., D.S. Hirschberg, and P. Baldi, Hashing Algorithms and Data Structures for Rapid 

Searches of Fingerprint Vectors. Journal of Chemical Information and Modeling, 2010. 50(8): p. 
1358-1368. 

33. Pissanetzky, S., Sparse matrix technology1984, London ; Orlando: Academic Press. xiii, 321 p. 
34. Prilusky, J., et al., HalX: an open-source LIMS (Laboratory Information Management System) for 

small- to large-scale laboratories. Acta Crystallographica Section D-Biological Crystallography, 
2005. 61: p. 671-678. 

35. Sheridan, R.P. and S.K. Kearsley, Why do we need so many chemical similarity search methods? 
Drug Discovery Today, 2002. 7(17): p. 903-911. 

36. Smellie, A., Compressed binary bit trees: a new data structure for accelerating database 
searching. J Chem Inf Model, 2009. 49(2): p. 257-62. 

37. Sun, B., P. Mitra, and C.L. Giles, Independent informative subgraph mining for graph information 
retrieval, in Proceeding of the 18th ACM conference on Information and knowledge 
management2009, ACM: Hong Kong, China. p. 563-572. 

38. Swamidass, S. and P. Baldi, J. Chem. Inf. Model., 2007. 47: p. 952. 
39. Swamidass, S.J. and P. Baldi, Bounds and Algorithms for Fast Exact Searches of Chemical 

Fingerprints in Linear and Sublinear Time. Journal of Chemical Information and Modeling, 2007. 
47(2): p. 302-317. 

40. Tai, D., R. Chaguturu, and J. Fang, K-Screen: A Free Application for High Throughput Screening 
Data Analysis, Visualization, and Laboratory Information Management. Combinatorial Chemistry 
&#38; High Throughput Screening, 2011. 14(9): p. 757-765. 

41. Tolopko, A.N., et al., Screensaver: an open source lab information management system (LIMS) 
for high throughput screening facilities. Bmc Bioinformatics, 2010. 11: p. -. 

42. Wang, X., et al., G-hash: towards fast kernel-based similarity search in large graph databases, in 
Proceedings of the 12th International Conference on Extending Database Technology: Advances 
in Database Technology2009, ACM: Saint Petersburg, Russia. p. 472-480. 

43. Wang, Y.L., et al., PubChem: a public information system for analyzing bioactivities of small 
molecules. Nucleic Acids Res, 2009. 37: p. W623-W633. 

 

 

 


