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Abstract 

Since its birth, the study of protein structures has made progress with leaps and bounds. 

However, owing to the expenses and difficulties involved, the number of known protein 

structures has not been able to catch up with the number of protein sequences and in fact has 

steadily lost ground. This necessitated the development of high-throughput, but accurate, 

computational algorithms capable of predicting the three dimensional structure of proteins from 

its amino acid sequence. While progress has been made in the realm of protein tertiary structure 

prediction, the advancement in protein quaternary structure prediction has been limited by the 

fact that the degree of freedom for protein complexes is even larger and fewer number of protein 

complex structures are present in the PDB library. In fact, protein complex structure prediction 

has largely remained a docking problem where automated algorithms aim to predict the complex 

structures starting from the unbound crystal structure of its component subunits and has 

remained largely limited in scope. Secondly, since docking essentially treats the unbound 

subunits as “rigid-bodies” it has limited accuracy when conformational change accompanies 

protein-protein interaction.  

In one of the first of its kind effort, this study aims for the development of protein complex 

structure prediction algorithms which require only the amino acid sequence of the interacting 

subunits as input. The study aimed to adapt the best features of protein tertiary structure 

prediction including template detection and ab initio loop modeling and extend it for protein-

protein complexes. The algorithm thus performs simultaneous modeling of the three dimensional 

structure of the component subunits while attempting to ensure the correct orientation of the 

chains at the protein-protein interface. Essentially, the algorithms are dependent on knowledge-

based statistical potentials for both fold recognition and structure modeling. 
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First, as a way to compare known structure of protein-protein complexes, a complex structure 

alignment program MM-align was developed. MM-align joins the chains of the complex 

structures to be aligned to form artificial monomers in every possible order. It then aligns them 

using a heuristic dynamic programming based approach using TM-score as the objective 

function. However, the traditional NW dynamic programming was redesigned to prevent the 

cross alignment of chains during the structure alignment process.   

Driven by the knowledge obtained from MM-align that protein complex structures share 

evolutionary relationships and the current protein complex structure library already contains 

homologous/structurally analogous protein quaternary structure families, a dimeric threading 

approach, COTH was designed. The new threading-recombination approach boosts the protein 

complex structure library by combining tertiary structure templates with complex alignments. 

The query sequences are first aligned to complex templates using the modified dynamic 

programming algorithm, guided by a number of predicted structural features including ab initio 

binding-site predictions. Finally, a template-based complex structure prediction approach, 

TACOS, was designed to build full-length protein complex structures starting from the initial 

templates identified by COTH. TACOS, fragments the template-aligned regions of the templates 

and reassembles them while building the structure of the threading unaligned regions ab inito 

using a replica-exchange monte-carlo simulation procedure. Simultaneously, TACOS also 

searches for the best orientation match of the component structures driven by a number of 

knowledge-based potential terms. Overall, TACOS presents one of the first approaches capable 

of predicting full length protein complex structures from sequence alone and introduces a new 

paradigm in the field of protein complex structure modeling. 
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CHAPTER 1. Introduction

Protein structure is commonly divided into four levels; i) primary structure or amino acid 

sequence where each amino acid is linked together by covalent peptide b

structure or the local conformations (helices and beta strands) held together by main chain 

hydrogen bonding iii) tertiary structure or the global monomeric fold primarily driven by the 

need for a hydrophobic core and hydrophilic surface

oligomeric state, the driving forces of which can vary depending on the nature of the complex. 

The rise of X-ray crystallography in the late 1950’s and protein nuclear magnetic resonanc

(NMR) in the 1980’s made the stu

presented detailing some key contributions down the years which made study of protein 

structures a reality. 
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Figure 1.1. A timeline showing key events which helped shape modern protein structural biology 

 
The field has now broken new grounds with the rise of computational algorithms capable of 

predicting, from primary amino acid sequence alone, the three dimensional structure of proteins 

with increasingly high accuracy. However, among the four levels of protein structure, least 

amount of information is available regarding the last level or quaternary structure. This fact is a 

by-product of a combination of factors including complexities involved, expenditure incurred for 

a thorough investigation and other factors. Even computationally, handling protein complexes 

are tougher due to their size as well as due to an added parameter, the orientation of the 

individual chains with respect to each other. This investigation therefore makes an attempt to try 

and bridge the gap using a theoretical approach via computational modeling of protein dimers. In 

what follows, groundwork is first laid to aid in the comprehension of later chapters. First, a 

review of protein structural biology from a historical perspective is presented followed by tracing 

the rise of bioinformatics and protein structure and protein complex structure prediction while 

reviewing basic concepts. Selected state of the art methodologies in protein structure and 

complex prediction are also reviewed. 

1.1 PROTEIN STRUCTURE: A JOURNEY THROUGH THE YEARS 

1.1.1 Early breakthroughs 

After the discovery of an electromagnetic radiation with a wavelength range now called X-

rays by William Rontgen in 1895, Max Von Laue demonstrated the phenomenon of diffraction 

of X-ray by crystals in 1912. William Braggs was the first to report the structure of a crystal, that 

of NaCl, in 1913 using X-ray diffraction patterns and when James Sumner, in 1926, 

demonstrated that enzymes can be isolated and crystallized, the field of protein X-ray 

crystallography was born. One of the earliest significant contributions to the field was made by 
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William Astbury who not only obtained some of the best X-ray photographs of protein crystals 

in the early 1930s but also proposed that mainchain-mainchain hydrogen bonding was a 

significant contributor towards the stabilization of protein structures in 1931. This culminated in 

Linus Pauling building upon Astbury’s findings to correctly propose, in 1951, that the primary 

structural motifs in protein structures were alpha helices and beta sheets [1] held together by 

hydrogen bonding. In 1953 and 1962, two significant breakthroughs were made to solve the 

phasing problem of X-ray diffraction. The first event, in 1953, was the demonstration by Max 

Perutz that the phase problem of protein crystals could be solved by multiple isomorphous 

replacement [2] i.e. by comparing the diffraction patterns of the native protein itself and that of 

the protein after it had been soaked in a solution containing heavy metal ions under different 

conditions. In 1962, a second approach to solving the phase problem was formalized by Michael 

Rossmann and colleagues using a technique known as “molecular replacement”. 

1.1.2 The first structures 

The first structure to be solved was that of the sperm whale myoglobin in 1958 by John 

Kendrew [3] followed soon after by the first complex structure, that of human hemoglobin in 

1963 by Max Perutz [4-5]. The lysozyme structure [6] and the structure of a lysozyme-inhibitor 

complex [7] (the first structure of an enzyme-inhibitor complex) followed in 1965.  More 

structures followed including ribonuclease in 1967 [8-9], papain in 1968 [10] and a small but 

complicated molecule, insulin, by Dorothy Hodgkins and co-workers in 1971 [11-12]. 

Interestingly, Tom Blundell who worked on the structure of insulin would also go on to do 

pioneering work much later in the field of computational protein structure biology. In the early 

1980’s, an alternative to X-ray crystallography emerged, led by the pioneering work of Kurt 

Wuthric and Richard Ernst [13] on Nuclear magnetic resonance (NMR) and the two dimensional 
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nuclear overhauser effect (2D NOE). This culminated with the first solution NMR structure, that 

of proteinase inhibitor IIA in 1985.   

1.1.3 The birth of the PDB and exponential growth 

In between, in 1971, a collaborative effort between the Brookhaven National Laboratory and 

Cambridge Crystallographic Data Center resulted in the birth of a computerized central 

repository for storing the atomic co-ordinates of solved structures in a common universal format, 

called the Protein Data Bank (PDB) under the direction of Walter Hamilton [14]. The PDB 

began with two structures, myoglobin (1MBN) and hemoglobin (1DHB, superseded by 2DHB) 

and within 5 years grew to 23 structures [15].  Since then, the PDB has seen exponential growth 

and currently contains, close to 77000 structures. In 2010 alone, 7929 structures were deposited 

or at an average rate of 22 structures per day. However, despite this mind-boggling rate the 

number of sequences in sequence databases far exceeds the number of structures, more than 200 

times as of 2011. Due to the costs, complexity and time required to solve protein structures it is 

clear that it is impossible for structures to keep pace with sequences. Additionally, many proteins 

are not amenable to crystallization or NMR based studies. These factors, coupled with rapid rise 

of computational power and availability, led to the development of computational algorithms to 

predict theoretically, the structure of proteins from their amino acid sequence alone. 

Simultaneously, attempts were also made to develop algorithms capable of predicting the 

association of two different protein molecules and to predict the structure of the protein complex 

when the structures of the individual subunits are known. The concept of profile-profile 

alignment for fold-recognition by David Eisenberg and colleagues in 1991 [16] had profound 

effects on revolutionizing the field of protein structure prediction. Similarly the use of a grid 

based Fast Fourier Transform correlation search technique by Katchalski-Katzir, Ilya Vakser and 
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colleagues in 1992 [17] had profound impacts on protein complex structure prediction by 

docking. 

1.2 COMPARING SEQUENCE, STRUCTURE AND PROFILES OF PROTEINS.  

1.2.1 Substitution matrices  

 An amino acid substitution matrix is a 20×20 matrix (representing the 20 amino acid types) 

which computes the rate at which a particular amino acid mutates to the other 19 amino acids 

and is accepted by the evolutionary natural selection process. It can therefore be interpreted as a 

mathematical formulation which quantifies the intuitive hypothesis that a random mutation of an 

amino acid is more likely to be accepted by nature if it mutates to an amino acid with similar 

physiochemical properties. The first such mutation matrix, the Point Accepted Mutation (PAM) 

matrix, was derived by Margaret Dayhoff in 1978 [18]. The PAM was computed by aligning the 

sequence of 71 closely related families and each cell of the matrix represents the probability of 

each particular mutation being observed in nature. 

The BLOSUM [19] or Block Substitution Matrix, on the other hand, was constructed using 

gapless local alignment of conserved zones or “blocks” of distantly related protein families. The 

frequency of each possible mutation was calculated and normalized to compute the mutational 

probability. The log-odds of each value were thereby calculated to generate the final 20×20 

matrix. The numerical suffix of the BLOSUM matrices, for example BLOSUM62, BLOSUM90, 

represents the sequence identity cutoff for the sequences used to compute the matrix. In this 

study, the BLOSUM62 has been used throughout. 

1.2.2 Sequence alignments 

Sequence alignment is defined as the method used to measure the similarity or dissimilarity 

of two sequences. The Needleman-Wunsch (NW) dynamic programming method [20] developed 
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in 1970 and its variations [21-22] have, for long, remained the method of choice for performing 

pairwise alignment of two sequences. In this study, the NW algorithm and a variation of it 

(discussed in Chapter 2) have been used multiple times and hence merit a thorough discussion. 

The most widely used implementation of the NW algorithm is described in the following. It 

has two distinct steps; 1) matrix filling and 2) path traceback. A step-by-step procedure to 

implement the NW dynamic programming is as follows: 

1. During the first step, a N1×N2 matrix is first created where N1 and N2 are the length of 

two sequences being compared.  

2. The value of each cell of the matrix is denoted as Mi,j where i and j are the positions on 

sequence 1 and sequence 2 respectively.  

3. The values of the Mi,j are then progressively calculated in a top-down fashion, beginning 

at the first position of both sequence 1 and sequence 2, and are given by the equation: 

         [ ]GPMGPMBASMM jijijijiji +++= −−−− ,11,1,1, ,),,(max                       (1) 

where S(Ai, Bj) is the score (generally obtained from a substitution matrix like 

BLOSUM62) of aligning amino acid type A with amino acid type B which are present at 

the ith and  jth position of sequence 1 and 2 respectively.  

4. The gap penalty, GP is given by the equation kvuGP +=  where u is the gap-opening 

penalty, v is the gap extension penalty and k is the length of the gap. It is imperative to 

represent the gap penalty in this way because it allows (by recursively calculating the 

total gap penalty for any previous path already traversed) the algorithm to be completed 

in N1×N2 steps.  

5. Importantly, the NW algorithm not only computes the values of each cell but also stores 

the direction, diagonal, horizontal or vertical, from which the value was generated. For 
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example if Mi-1,j-1 + S(Ai, Bj)  > Mi,j-1 + GP  and Mi-1,j-1 + S(Ai, Bj)  > Mi-1,j + GP then the 

direction from which the values of Mi,j is derived is recorded to be from the diagonal cell.  

6. The algorithm then proceeds to fill up the rest of the matrix till all cells have been filled 

up. 

7. In the second step, path traceback, the algorithm proceeds in the opposite direction that is 

from the cell Mi,j where i=N1 and j=N2.  

8. At each step, it looks for the parent cell or the direction from which the value of Mi,j was 

derived.  

9. If the value of a particular cell was derived from the diagonal direction, then the two 

amino acids in sequence 1 and sequence 2 are aligned with each other. If the value of Mi,j 

was derived from the horizontal or vertical direction then a gap is introduced in the 

alignment.  

10. The algorithm then moves to the parent cell of Mi,j and continues to traceback the optimal 

path till it reaches the cell where i=1 and j=1.  

The NW algorithm is based on the principle of divide and conquer where the best globally 

optimal solution is obtained by breaking the problem into overlapping sub-problems and finding 

the best locally optimal solution for each sub-problem. However, the algorithm is 

computationally expensive and cannot realistically be used to perform a very large number of 

sequences, like comparing two genomes. This necessitated the birth of many orders faster, albeit 

sub-optimal, heuristic alignment procedures like FASTA [23] and BLAST [24].  

1.2.4. Sequence profiles, PSI-BLAST and profile-profile alignment 

When multiple sequences need to aligned, repeated pairwise alignments can be used to 

generate a multiple sequence alignment. Extending further, for any given query sequence a 



22 
 

multiple sequence alignment can be generated against entire sequence databases. The 

homologous sequences identified by the multiple sequence alignment can then be used to 

generate a “sequence profile” or a position specific score matrix (PSSM). The sequence profile, 

introduced by David Eisenberg and co-workers [25], is the log-odds frequency of each of the 20 

amino acids at any given position of the multiple sequence alignment and is represented by a 

20×N matrix where N is the length of the query sequence. This profile matrix can then be used in 

place of substitution matrix as the scoring function when aligning the query sequence to other 

proteins or protein profiles to detect evolutionary similarity. When aligning two profiles i.e. 

performing profile-profile alignment, the score function is the product of the frequency matrix of 

the query sequence and the log-odds profile of the template sequence.   

PSI-BLAST [26] uses iterative sequence-profile alignments to detect homologous sequence 

through sequence databases. In the first step, the query sequence is aligned to the sequences in 

the databases to create a multiple sequence alignment. The homologues identifyied in the first 

round of search are then used to create a PSSM for the query sequence and this PSSM is re-

aligned to the database sequences to identify a new set of homologues. The new homologue set 

is used to recalculate the sequence profile and the search step is repeated. The entire process is 

then repeated till the search converges and no new homologues are identified. PSI-BLAST is an 

extremely fast yet a powerful tool for detection of homologues. It is capable of searching through 

large databases containing millions of sequences and has established itself as the tool of choice 

across the community. It has also been instrumental in establishing sequence profiles as one of 

the most powerful properties to establish evolutionary relatedness. 
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1.2.2 Comparing protein structures 

Like protein sequences, protein structures can also be compared for similarity/dissimilarity 

and in fact may be more meaningful since protein structures are generally more conserved in 

nature than sequence [27]. Hence, two proteins which have similar structures often share similar 

functions. It is also important, when comparing two objects, to represent the similarity in the 

form of a quantifiable scoring function. A number of such scoring functions exist which include 

RMSD [28], GDT-TS score [29], MaxSub [30] score and TM-score [31] among others. These 

scoring functions can be used to not only compare the structures of two different proteins but can 

also be used to assess the quality of models and templates predicted by structure prediction and 

docking algorithms. In this investigation, RMSD and TM-score have been used as the scoring 

functions of choice (some other specific ones have been used and are described in more detail in 

the later chapters) both for comparison of different proteins as well as for model assessment and 

hence merits more detailed discussion. 

Root mean square deviation (RMSD) is a widely used scoring function where the two 

structures are first superposed onto each other by rotating and translating one structure onto the 

other to minimize the average distance between the atoms of the two structures. After 

superposition the RMSD between the two structures is calculated using the equation 
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where n is the total number of atoms and x1, y1 ,z1 and x2, y2, z2 are the x, y, and z coordinates of 

structure 1 and structure 2 respectively. For proteins, the unit of RMSD is generally angstroms 

(Å), and lower the RMSD more similar the two structures are. One disadvantage of the RMSD is 

that it does not provide the complete information about the similarity of the two structures. For 

example, it is not necessary or obvious that two structures with a RMSD of 1.0 Å but with only 
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30% of the residues aligned is more similar than a different pair of structures with an RMSD of 

3.0 Å but with 70% of the residues aligned. 

The TM-score was defined as a measure to assess the structural similarity of protein 

monomer chains and is given by the equation 
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where L is the total length of all chains in the target structure and Lali is the number of the aligned 

residue pairs in the two structures. dij is the distance between the Cα atoms of the aligned 

residues i and j after superposition of the structures, and d0 is given by 8.11524.1 3
0 −−= Ld . 

To calculate the TM-score, the aligned residues are broken into fragments of equal length for 

both structures. Then, beginning from the N-terminal of both structures, the first fragment of one 

structure is superposed onto the first fragment of the second structure according to the RMSD 

rotation matrix. The rotation matrix returning the optimal superposition for the fragment pair is 

then used to rotate and translate the rest of the atoms of the first structure. The TM-score, 

according to Eq (3), is then calculated for the full length of the two structures where two residues 

are considered aligned if the distance dij between the two atoms is less than the cutoff do. The 

first fragment of the first structure is then superposed on to the second fragment of the second 

structure and once again the TM-score is calculated. This procedure is repeated till all possible 

fragment pairs, scanning from the N- to the C-terminal end, has been superposed. In the next 

round, the length of the fragment is increased and the whole procedure is repeated till all possible 

superpositions with increasing fragment lengths are completed. Finally, the superposition which 

yields the highest TM-score is returned as the optimal superposition and the TM-score for that is 

returned as the final TM-score between the two structures.  
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One major advantage of TM-score over the often-used RMSD in assessing structural 

alignments is that TM-score accounts for both the similarity of the aligned regions and the 

alignment coverage in a single parameter. Second, even when alignments with the same 

coverage are evaluated, TM-score is more sensitive to the global topology of the structures 

because it down-weights the larger distances between aligned Cα pairs compared to the smaller 

ones. In RMSD all distances are taken into account with equal weights, and therefore a local 

error (e.g. a mis-oriented tail) will result in a big RMSD value even though the global topology 

of the two structures may be similar. As reported by Xu and Zhang [32], a TM-score of 1 means 

that the two structures are identical, a TM-score>0.5 indicates that two structures have a similar 

topology and share similar folds, and a TM-score<0.17 indicates that the structural similarity is 

close to random. 

1.3 PROTEIN STRUCTURE PREDICTION 

Rapid strides have been taken in the field of protein structure prediction from amino acid 

sequence using computational methods [33]. The obvious advantage of computational methods is 

their speed and low cost, making genome-scale structure prediction and functional annotations a 

reality. Protein structure prediction methods can be divided into three main categories based on 

the approach that is adopted [33]: 1) comparative or homology modeling[34-36] 2) threading or 

fold recognition [16, 37-40] and 3) ab initio or de novo methods [41-49]. 

In comparative modeling (CM), the protein structure is constructed by matching the sequence 

of the protein of interest (query protein) to an evolutionarily related protein with a known 

structure (template protein) in the PDB. Thus, a prerequisite for comparative modeling technique 

is the presence of a homologous protein in the PDB [50] library. For proteins with >50% 

sequence identity to their templates, models built by CM techniques can have up to a 1.0 Å 
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RMSD from the native structure for the backbone atoms. For proteins which have a 30 to 50% 

sequence identity with their template, the models often have ~85% of their core regions within 

an RMSD of 3.5 Å from the native structure, with errors mainly in loop regions. When the 

sequence identity drops below 30% (in the twilight zone [51]), modeling accuracy sharply 

decreases because of substantial alignment errors and lack of significant template hits. Also, by 

definition, models built by CM usually have a strong bias towards the template structure rather 

than being closer to the native structure of the target protein [52-53]. 

Threading or fold recognition is similar to CM modeling in the sense that it also searches a 

structure library to identify a known structure which would “best fit” a given query sequence. 

However, an evolutionary relationship (homology) between the query and the template is not a 

prerequisite in this case. These “sequence to structure” alignment approaches usually employ a 

wide range of scoring functions to find the best alignment, and may rely on profile-profile 

alignment [16], distance dependent potentials [54], predicted secondary structure [55], solvent 

accessibility  [56-57], and other predicted structural features. Most of the successful threading 

approaches use scores combining sequence features and predicted structural information [39, 58-

59], with a search engine of either NW dynamic programming [20, 22] or Hidden Markov model 

(HMM) [60-61] for remote homology detection and fold recognition. 

Ab initio or de novo methods originally referred to approaches purely based on 

physicochemical properties; however, some of the contemporary algorithms in this category do 

use evolutionary and knowledge-based information to collect spatial restraints or to detect 

structural fragments to assist structure assembly. Still, by definition, ab initio methods are not 

dependent on the presence of known structures which are sequentially or structurally similar to a 

given query sequence. The guiding principle of this approach is the Anfinsen hypothesis [62], 
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which states that the native structure of the protein lies at the global energy minimum of the 

conformational energy landscape. Therefore, ab initio approaches try to fold a given protein 

based on various force fields via conformational search. Though some notable developments 

have been made in this field [41-49], predicting the three-dimensional structure of proteins 

longer than 150 amino acids is still an unsolved problem due to the inaccuracy of the available 

force fields and the bottlenecks arising out of insufficient conformational search. 

Significant progress has been achieved in developing composite structure predictions which 

combine various approaches of comparative modeling, threading and ab initio folding. The 

Threading ASSEmbly Refinment (TASSER) [31] and Iterative Threading ASSEmbly 

Refinement (I-TASSER) [42, 63-64] methods are notable examples in this category.  

1.3.1 I-TASSER Methods 

I-TASSER is a composite structure prediction method and is an extension of TASSER 

(developed in the Skolnick lab) [31, 65] involving a hierarchical combination of template search 

by threading, followed by assembly and rearrangement of continuous fragments excised from the 

templates. The protein conformation is specified by an on-and-off-lattice system with an energy 

function integrating a number of structural restraints which are predicted from the threading 

templates. The on-and-off-lattice-based conformational search is used to generate thousands of 

conformations or “decoys” which are then subjected to iterative structural clustering for the 

selection of the final models [66].  

The I-TASSER predictions begin by taking the amino acid sequence as input, which is then 

subjected to “sequence-structure alignment” or threading by LOMETS [40] against a 

comprehensive threading library. The threading process utilizes close and distant sequence 

profiles and predicted secondary structure information from PSIPRED [67] and other predicted 
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structural features to find the best match. The alignment is performed using the NW dynamic 

programming algorithm [20] or HMM based alignments, and the raw alignment score and the 

alignment length are used to obtain the statistical significance (Z-score) of the alignment. The 

alignments on different templates are ranked by the Z-score, which is also used to classify the 

query protein into an “easy”, a “medium” or a “hard” target. The “hard” category basically 

means that no good threading template is detectable in the library, and the structure will have to 

be largely predicted by an “ab initio” method. I-TASSER also includes (a) sequence-based 

contact predictions from SVMSEQ to guide the ab initio simulations [68-69]; (b) REMO, to 

refine the hydrogen-bonding network of reduced models [70]; (c) iterative TASSER reassembly 

[42]; (d) integration of structure-based functional annotations. 

The templates found by the threading process are divided into continuously aligned (>5 

residues) and gapped regions, and placed onto the CAS (C-Alpha and Side-chain center of mass) 

on-and-off-lattice model. The local structure of the aligned regions remains unchanged during 

the simulation; their Cα atoms are excised from the template and placed off-lattice in order to 

keep the fidelity of the structures. In the gapped or ab initio regions, Cα atoms are placed on the 

lattice points with a grid spacing of 0.87 Å. The side-chain centers of mass are off-lattice for all 

regions. The gapped regions are first filled up using a random walk of Cα-Cα bond vectors to 

generate a full-length model which is subsequently subjected to parallel hyperbolic Monte Carlo 

sampling [71]. Once again the CAS model differentiates between the on- and off-lattice atoms 

with regard to the movements they are subjected to. The off-lattice atoms are subjected to rigid-

body translation and rotation. Care is taken to ensure that the acceptance probability of a 

movement is approximately the same for different fragment lengths, implemented by 
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normalizing the amplitude of movement by the length of the fragment. On the other hand, on-

lattice atoms are subjected to two- to six-bond movements and sequence shifts of multiple bonds.  

The I-TASSER energy function integrates three different classes of energy terms. The first 

term consists of a number of knowledge-based statistical potentials derived from the PDB [50], 

including long-range side-chain pair interactions, hydrogen-bond potential terms, hydrophobic 

interaction and local Cα correlations. The second class includes the propensity of an amino acid 

to assume a particular secondary structure as predicted by PSIPRED[67] in order to impose a 

general “protein-like bias” to the decoys generated, while the third class includes protein specific 

tertiary structure contact restraints and a distance map calculated by LOMETS from the 

generated threading templates. New potential terms that have been incorporated in I-TASSER 

include the predicted accessible surface area (ASA) [42, 57] and sequence-based contact 

predictions [68]. Both energy terms have been derived and optimized using machine learning 

methods. The overall correlation between the actual exposed area as calculated by STRIDE [72] 

and that predicted by a neural network is 0.71, based on a test on 2,234 non-homologous 

proteins. In the latest version of I-TASSER [73], the sequence-based pairwise residue contact 

information from SVMSEQ [68], SVMCON [74] and BETACON [75] are used to constrain the 

simulation search and improve the funnel around the global minimum of the energy landscape.  

The trajectories of the low-temperature replicas from the first-round of I-TASSER 

simulations are clustered by SPICKER [66]. The cluster centroids are obtained by averaging all 

the clustered structures after superposition and are ranked based on the structure density of the 

cluster. Cluster centroids generally have a number of non-physical steric clashes between Cα 

atoms and can be over-compressed. Starting from the selected SPICKER cluster centroids, the I-

TASSER Monte Carlo simulation is performed again (see Figure 1.2). While the inherent I-
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TASSER potential remains unchanged in the second run, external constraints are added. These 

are derived by pooling the initial high-confidence restraints from threading alignments, the 

distance and contact restraints from the combination of the centroid structures, and the PDB 

structures identified by the structure alignment program TM-align [76] using the cluster 

centroids as query structures. The conformation with the lowest energy in the second round is 

selected as the final model. The main purpose of this iterative strategy is to remove the steric 

clashes of the cluster centroids. To increase the biological usefulness of protein models, all-atom 

models are generated by REMO [70] simulations, which include three general steps: (1) removal 

of steric clashes by moving each of the Cα atoms that clash with other residues; (2) backbone 

reconstruction by scanning a backbone isomer library collected from the solved high-resolution 

structures in the PDB library; (3) hydrogen bonding network optimization based on predicted 

secondary structure from PSIPRED. Finally, Scwrl3.0 [77] is used to add the side-chain 

rotamers.  

Recently, I-TASSER was extended by an additional component to predict the biological 

function of the query proteins. The procedure involves matching the I-TASSER-generated 

structural models against representative libraries of proteins with known function using both 

global and local structure alignment based methods in order to find the best functional homologs 

in the PDB library. Based on a large-scale benchmark test set of more than 300 non-homologous 

proteins, it was found that even when the structures are predicted after removing all the 

homologous templates from the template library, the correct function (EC number and GO terms) 

and binding site could be identified with high confidence in more than 80% of the cases. 



Figure 1.2. A schematic diagram of the I
protocol. Templates for the query protein are identified by LOMETS
fragments and spatial restraints. The template fragments are then assembled by 
Carlo simulations[71]. The conformations generated during the simulation are clustered using 
SPICKER[66], in order to find the structure with the lowest free energy. As an iterative strategy, the 
cluster centroids are then subjected to second round o
structure and removing clashes. The final 
optimization of hydrogen-bonding networks
associated EC number/GO term/known binding site) of 
structural search[76] and local structure alignment programs which aim at finding matches between 
binding/active sites of the predicted structure and templates with known function.
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[90-91]. Due to the myriad of important roles that protein-protein interactions play in the cellular 

machinery they are attractive targets for novel drug design [92-96].  

A prerequisite (in most cases) to obtaining a substantiative understanding of the mechanism 

of protein-protein interactions, is to have knowledge of the 3D structure of the complex [97]. 

Information about the orientation of atoms in three dimensional coordinate space not only 

provides more detailed information about the possible biochemical and biophysical parameters 

involved in the process but can also prove invaluable in rational structure-based drug design. 

While it can be argued that explicit knowledge of structure is not a pre-requisite for a successful 

case study of a pair of interacting proteins, it can be very difficult or nearly impossible to explain 

the observed phenomenon without knowledge of the atomistic details. Structure largely dictates 

function and therefore to obtain a complete mechanistic understanding of function, knowledge of 

structural details is an indispensable asset.    

While it was earlier believed that protein-protein interfaces are not attractive candidates for 

development of small molecule inhibitors [27] primarily due to the large surface area involved 

and the relatively flat interfaces, a paradigm shift was brought about by the identification of “hot 

spot” residues at protein interfaces by Wells and co-workers [98]. Since then a number of 

success stories exist in the field of novel drug design targeted towards inhibition of protein-

protein interactions [99-101].   

Unfortunately, complex structures are more difficult to solve experimentally due to problems 

associated with co-crystallization and the cumbersome process of solving complex structures by 

NMR. While 102,308 pairwise complexes are present in the PDB as of September, 2011, a large 

number of them are crystallization artifacts and/or redundant. If the PDB, is screened to 

eliminate complexes with buried surface area less than 250Å2, at least 30 interface residues and a 
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sequence identity cutoff of 70%, only 7701 structures remain according to the protein complex 

structure database, DOCKGROUND [102-103].   

 

Figure 1.3: Mapping of the number of complex structures per year. A plot showing the number of new 
quaternary families and number of new quaternary folds that were deposited in the PDB for the last 20 
years till April, 2011.  

  
In Figure 1.3, a mapping of the number of complex structures, the number of new quaternary 

families and number of new quaternary folds that were deposited in the PDB for the last 20 years 

till April, 2011 is shown. After showing a trend of steady increase of all three categories, a jump 

was observed in the year 2000 in the actual number of structures deposited though that did not 

correspond to a simultaneous jump in the number of new families and folds that were deposited. 

One of the reasons for that is in the year 2000 a number of Antibody-Antigen complexes were 

deposited which did not necessarily differ in the quaternary family or fold. Another sharp rise in 

the actual number of structures deposited was observed in 2003 which also resulted in an 
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increase in the corresponding number of new families and folds. This also corresponds to the 

Phase I cycle of the Protein Structure Initiative (PSI) as well as the SPINE2 and 3D Reperotire 

projects. A final jump in the number of structures was observed in 2009, though the number of 

families and folds decreased from 2009 to 2010. This can either be attributed to the completion 

of the 3D repertoire and the Phase II cycle of PSI or may be an indication of a slow down due to 

higher completeness of the library. If we were to assume that in the following years the growth 

curve would be a mirror image of the curve in the last 20 years (with technological 

advancements being offset by more of the fold space being covered up) then it will take roughly 

25 years from now to reach approximately 4000 unique quaternary folds or a complete set of 

possible quaternary folds in nature. This necessitates the need for developing efficient 

computational algorithms for predicting the structure of protein complexes. 

1.5 PREDICTION OF PROTEIN COMPLEX STRUCTURES 

Some of the earliest efforts which defined the field of protein docking were made in the late 

1970’s and early 1980’s [104-107] and established the role of shape complementarity as a central 

paradigm on which many advancements have been made over the years. Thus, when the atomic 

resolution structures of two proteins are available and the two proteins are known to interact, 

docking methods aim to predict the structure of the complex mainly by trying to maximize the 

shape and physiochemical complementarity between the two structures. The docking process 

involves two distinct stages i) global search for generation of decoys ii) scoring or ranking to 

identify near-native decoys. For the first “search” stage, emphasis is placed on geometric shape 

complementarity and is generally done on lower-resolution “smoothened” structures. There are 

two schools of thought for the implementation of the search stage; one which involves a more 

exhaustive search using grid based Fast-Fourier Transforms (FFT) to maximize surface 
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correlation and the second which uses Monte-carlo methods to sample the rugged energy 

landscape. Methods like GRAMM-X [108] and ZDOCK [109] among others use FFT-based 

correlation techniques for sampling while methods like ICM-DISCO [110] and ROSETTA [111] 

use monte-carlo methods for decoy generation. Increasingly, docking methods are also shifting 

to a two-stage search process, an initial low resolution search followed by high resolution 

refinement [112-114], to account for side-chain flexibility and conformational change during the 

protein complex formation process. Moreover, the initial search stage docking decoys are 

generally always subjected to a re-ranking procedure which includes higher resolution physics 

based potentials like electrostatics, hydrogen bonding, desolvation and hydrophobicity [115-

116].   

One disadvantage of current docking methods is that it essentially treats the two 2 unbound 

subunits of the complex as a “rigid-body”. Therefore, while current methods are quite successful 

when the RMSD between the bound and unbound forms of the subunits are low (typically < 

1.0Å) [112-114], accounting for large conformational changes poses a significant challenge. To 

counter this problem, some strategies have evolved over the years which can treat the problem 

implicitly by using “soft-docking” and “ensemble-docking” or explicitly by implementing a two-

stage search step to allow for side-chain and some backbone flexibility in the second-stage high 

resolution refinement procedure. Below, we present a more detailed discussion of two 

representative examples of both approaches, ZDOCK for FFT based docking and RosettaDock 

as a model of monte-carlo based docking methods. 

A third approach which has recently emerged and is in nascent stages of development is 

homology modeling of complex structures [117-119]. These approaches are built on the premise 

that if the individual subunits of the query complex are homologous to the individual subunits of 
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a complex of known structure then the query complex is expected to share the same orientation 

as the template complex. Four significant efforts have been made in this direction in recent years 

which includes the development of MULTIPROSPECTOR [118] by Skolnick’s group, 

HOMBACOP by Kundrotas et. al [119], the strategy used by Aloy et. al. [117] and the work by 

Sinha et al [120]. 

1.5.1 FFT-based docking by ZDOCK and RDOCK refinement 

ZDOCK [109] is a grid based initial stage docking algorithm where the receptor and ligand 

structures are treated as “rigid bodies” and are subjected to 6 rotational and translation degree of 

freedom. ZDOCK uses the FFT based search technique pioneered by Katchalski-Katzir et. al 

[17]. The novelty of the approach was the use of three distinct scoring functions to represent the 

protein on the grid; protein shape complementarity, desolvation [121] and electrostatics. The 

proteins, receptor and ligand, are placed in a cubic grid lattice and discrete functions are used to 

represent the three different scoring functions for the receptor and the ligand separately. The 

final energy is a correlation of the discrete functions used.  

The initial stage generation of decoys is performed on a “smoothened” grid to allow for some 

conformational flexibility. Thereafter, the decoys generated by ZDOCK are subjected to a high 

resolution, three step refinement process. The three step minimization includes a) removal of 

clashes b) optimization of the summation of van der waals energy and coulombic interactions c) 

optimization of “charge-charge” ionic interactions. The molecular mechanics package 

CHARMM [122] is used to implement the refinement procedure. Finally, the refined decoys are 

re-ranked by re-evaluation of the desolvation potential and electrostatic energy component of the 

CHARMM force-field. 
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1.5.2 Monte-carlo based docking by Rosetta 

Rosetta also employs a two stage (low and high) docking procedure where a monte-carlo 

sampling technique is used as the search engine. In the initial low resolution stage, the structures 

are represented by the backbone atoms and side chain centroids only and a “glancing” contact is 

enforced by rigid body rotation and translation moves of one protein along the surface of the 

other (sliding). The force field includes a) residue-residue interaction b) residue environment 

potential c) rewarding of inter-chain contacts and d) penalty for clash. After multiple low 

resolution search steps, the lowest ranking decoys (according to energy) is subjected to a high 

resolution refinement procedure. 

During the refinement procedure the side chains atoms are represented explicitly and is 

introduced using a backbone-based rotamer packing algorithm [123]. The decoys are then 

extensively minimized to search for the local minima. The full atomic force-field used in this 

step includes full-atomic Van der Waal’s interactions, a Gaussian solvation potential, hydrogen 

bonding, rotamer probability, knowledge-based pairwise interaction of residues, electrostatic 

potential and surface area of solvation. The search procedure (low resolution search followed by 

high resolution refinement) is repeated through many cycles and finally the 200 lowest energy 

decoys are retained. These decoys are then clustered and the members of the top cluster, where 

the clusters are ranked according to cluster density, are used as the final predictions [124].  

1.6 OVERVIEW OF RESEARCH 

The basic premise of this study is that similar to protein tertiary structure, protein quaternary 

structure is also evolutionarily conserved. Hence, utilizing the knowledge available from already 

existing protein complex structures in the PDB, it is possible to identify structure templates and 

use them to predict the structure of a given query complex sequence. First, a structural alignment 
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tool which could be used to compare two protein complex structures was designed by extending 

the protein structure alignment method TM-align. The method used a modified NW dynamic 

programming protocol to align multiple chains simultaneously while preventing cross-alignment 

of chains.  

The number of protein-protein complex structures is nearly 6-times smaller than that of 

tertiary structures in PDB which limits the power of homology-based approaches to complex 

structure modeling. Therefore, a new threading-recombination approach, COTH, was developed 

to boost the protein complex structure library by combining tertiary structure templates with 

complex alignments. The query sequences are first aligned to complex templates using a 

modified dynamic programming algorithm, guided by ab initio binding-site predictions. The 

monomer alignments are then shifted to the multimeric template framework by structural 

alignments.  

Finally, the threading templates identified by COTH were subjected to a rigorous reassembly 

and refinement process to generate full-length structures. Replica-exchange monte-carlo 

simulation was implemented as the sampling technique of choice guided by a knowledge-based 

energy function. The TACOS force-field is composed of general statistically derived potential 

terms as well as inter-chain and intra-chain distance and contact restraints. The decoys generated 

were clustered and cluster centroid was refined using fragment-guided molecular dynamics (FG-

MD) [125] to produce full-atomic models of protein complex structures. 
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CHAPTER 2. MM-Align: A Quick Algorithm for Aligning 

Multiple-Chain Protein Complex Structures Using Iterative 

Dynamic Programming 

Protein-protein complex structures have rapidly accumulated in various protein quaternary 

structure libraries [1-3]. As a consequence, large-scale automated structure comparisons of 

multiple-chain protein complexes have become routine in most contemporary structure biology 

studies, ranging from structure-based functional annotation [4-6] to protein quaternary 

structure modeling [7-8]. While extensive efforts have been focused on the development of 

protein tertiary structure comparisons [9-11], there is no efficient structure alignment 

algorithm for comparing protein quaternary structures. 

Tertiary structure alignment algorithms, which were developed for structurally aligning two 

monomer structures, cannot be directly exploited for multimeric proteins. A simple treatment 

might be to join the multiple chains into an artificial monomer and then align the two 

“monomers” using existing programs such as Dali [9], CE [10], or TM-align [11]. However, 

non-physical cross-chain alignments, i.e. the alignment of one chain in the first complex to 

several chains in the second complex, will arise because the programs do not differentiate 

residues of different chains. Also, if the two protein complexes include more than two chains 

then a combinatorial problem arises which the available methods are not designed to handle. 

An alternative approach is to align the monomer chains of the two complexes separately. 

However, this alignment cannot account for the differences in chain orientations within the 

complexes. Moreover, the structure of interface regions is usually of special importance in both 

biological function annotation and structural modeling. Neither one of these approaches take 
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the special characteristics of the interface structure into account. Alternatively, some sequence 

independent approaches like Galinter [12], I2I SiteEngine [13], MAPPIS [14] can compare 

protein-protein interfaces but does not help in analyzing the global structural similarity of 

complexes. 

This chapter describes the development of a new algorithm, MultiMer-align (or MM-align), 

dedicated to multimeric protein structure alignment, as an extension of the monomeric 

alignment program TM-align [11]. TM-align, developed by Zhang and Skolnick, uses a 

heuristic dynamic programming alignment procedure. Because the objective function and the 

rotation matrix in TM-align are consistent with each other, and are both based on TM-score 

[15], the dynamic programming iteration converges faster than that in many other heuristic 

algorithms. On average, TM-align is about 20 times faster than Dali and 4 times faster than 

CE; and yet the alignments of monomer structures have higher TM-scores on average. 

Nevertheless, for monomer alignments, there are still some cases where TM-align does not 

identify the best alignment because of the limited number of initial alignments. The purpose of 

this work was, first to improve the efficiency of TM-align by exploring more extensive search 

and then to extend the algorithm to deal with the problem of unphysical cross-chain alignments 

and the variance of chain orientations in protein complex structures. The alignment of interface 

residues is also reinforced in MM-align. 

2.1. RESULTS 

2.1.1 Benchmark Sets 

Dimers constitute by far the largest subgroup of multimeric protein complexes and 

therefore it is on dimers that MM-align was mostly tested. However, MM-align also has the 

capability of accurately aligning larger multimers and is tested on a number of higher-order 



multimeric cases. For testing MM

structures were constructed. The first set consists of 205 non

sizes and a pair-wise sequence identity of <

collected from Dockground [2],

sequence identity between the first and the second complex sets 

the two benchmark sets is available at 

align/benchmark. 

2.1.2 Prevention of Cross-chain Alignment

At first, the ability of MM

tested. Using MM-align, all dimer structures in the first benchmark set

dimers in the second set. For each of the 205 complexes in the first set, the complex from the 

3,897 complexes in the second set that has the best match based on TM

summary of the results on the 205 pairs is presented in Table

set, MM-align identified similar dimer structures in the 

83% of protein complex pairs have a TM

complexes [15].  

Figure 2.1. TM-score histogram of 205 protein complexes and their best
by MM-align in a non-redundant set of 3,897 protein complexes

53 
 

s. For testing MM-align on dimeric complexes, two sets of protein complex 

. The first set consists of 205 non-redundant dimers with various 

wise sequence identity of < 30%. The second set consists of 3,897 d

[2], with a pair-wise sequence identity < 70%. 

sequence identity between the first and the second complex sets are < 98%. A complete list of 

the two benchmark sets is available at http://zhanglab.ccmb.med.umich.edu/MM

chain Alignment 

the ability of MM-align to exclude the unphysical cross-chain alignments

all dimer structures in the first benchmark set were aligned

cond set. For each of the 205 complexes in the first set, the complex from the 

3,897 complexes in the second set that has the best match based on TM-score

summary of the results on the 205 pairs is presented in Table 2.1. For most dimers in

align identified similar dimer structures in the second set. As shown in Figure 2.1

83% of protein complex pairs have a TM-score > 0.5, indicating similar topology of the two 

 

score histogram of 205 protein complexes and their best-matching structures identified 
redundant set of 3,897 protein complexes.  

, two sets of protein complex 

redundant dimers with various 

30%. The second set consists of 3,897 dimers 

70%. The pair-wise 

98%. A complete list of 

http://zhanglab.ccmb.med.umich.edu/MM-

chain alignments was 

were aligned against all 

cond set. For each of the 205 complexes in the first set, the complex from the 

score was selected. A 

. For most dimers in the first 

second set. As shown in Figure 2.1, 

0.5, indicating similar topology of the two 

matching structures identified 
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The average sequence identity between these best complex pairs is 44%. For the protein pairs 

having a sequence identity < 30%, the average TM-score is 0.59, indicating that MM-align can 

identify structures with similar topology even when the sequence identity is very low. A 

complete list of the alignments for the 205 best complex pairs is available in Appendix I. 

As a comparison, TM-align was run on the complexes, directly aligning them with chains 

joined and treating them as “artificial monomers” (the results are shown as TM-align-I in Table 

2.1). As expected, because TM-align does not distinguish between the different chains, a 

substantial portion of residue pairs gets non-physically aligned across chains. In the MM-align 

alignment, however, due to the exclusion of the cross-chain alignment paths in the DP matrix, 

there is no cross-chain alignment in any of the 205×3,897 alignments.  

Method <TM-score> <RMSD> <Covc> <Ncross
d> 

MM-align 0.759 2.65 Å  60.4% 0 

TM-align-Ia 0.750 2.70 Å  60.2% 12.6 

TM-align-IIb  0.710 3.00 Å  58.5% 0 
aUsing TM-align to align joined-chain complex structures. 
bSame as TM-align-I but after removing the cross-chain aligned residues. 
cAverage fraction of the aligned residue pairs divided by the length of the target complex. 
dAverage number of the non-physical cross-chain alignments. 
 

Table 2.1. Summary of results from TM-align and MM-align on complex structure alignments. 

One example is presented in Figure 2.2, where both chains of the C. AhdI protein complex 

(PDB ID: 1y7y) are aligned by TM-align on the A chain of the Xenopus laevis nudix hydrolase 

nuclear SnoRNA decapping protein (PDB ID: 1u20). But when MM-align is used on the same 

structure pair, there is no cross-chain alignment and the interfaces of the two complexes are 

correctly aligned. Remarkably, despite the fact that MM-align searches far fewer possible 

alignment paths than TM-align (i.e. neglecting all the paths of cross alignments, see Figure 

2.7), the average TM-score and RMSD of the best alignments by MM-align are better than 



those produced by TM-align-

initial alignments in MM-align

On the other hand, the fact that much fewer paths 

similar or even better TM-scores reflects that the protein quaternary structures have inherent 

structural similarities of separate domain/chains. 

alignment from TM-align (shown as “TM

coverage are much lower than that of MM

II are 0.71/3.0Å/58.5% versus 0.759/2.65Å/60.4% for MM

Figure 2.2.Example of cross-aligned chains by TM
align, containing cross-chain alignments (left panel)
chain alignment by MM-align (right panel). The two complexes are from PDB files 1u20 (thick trace) 
and 1y7y (thin trace), with the two chains represen
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-I. This improvement is mainly attributed to the newly added 

align and the improved DP search in the existing paths of TM

On the other hand, the fact that much fewer paths find equivalent structure matches with

scores reflects that the protein quaternary structures have inherent 

structural similarities of separate domain/chains. If we remove the cross-chain parts of the 

align (shown as “TM-align-II” in Table 2.1), the alignment score and 

than that of MM-align, i.e. TM-score/RMSD/coverage by TM

II are 0.71/3.0Å/58.5% versus 0.759/2.65Å/60.4% for MM-align (Table 2.1). 

aligned chains by TM-align. A typical example structures aligned b
chain alignments (left panel), and the same structures aligned without cross

align (right panel). The two complexes are from PDB files 1u20 (thick trace) 
and 1y7y (thin trace), with the two chains represented in blue and red, respectively. 

crossing rule is requested in most multimeric complex structure 

comparisons, there are also occasions where it may not be the case, e.g. aligning protein 

complexes which involve domain swapping [16]. For dealing with this issue, MM

special option which allows cross-chain alignment between chains when users suspect

domain swapping may be involved (or for any other reason where cross-

. There are also cases where no one-to-one correspondence is 

specified between subunits (e.g. gene-fusions [17] or aligning proteolytically cleaved chains to 

herefore, another special option of MM-align is setup 

attributed to the newly added 

and the improved DP search in the existing paths of TM-align. 

find equivalent structure matches with 

scores reflects that the protein quaternary structures have inherent 

chain parts of the 

), the alignment score and 
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ric complex structure 

comparisons, there are also occasions where it may not be the case, e.g. aligning protein 

. For dealing with this issue, MM-align has a 

tween chains when users suspect that 

-chain alignment 

one correspondence is 

or aligning proteolytically cleaved chains to 

 for aligning one 



56 
 

chain to multiple chains. Similarly, the no-chain-crossing rule is taken off by using the normal 

DP for alignment instead of the modified DP illustrated in Figure 2.2. 

2.1.3 Option for Interface Enhanced Alignments 

Interface residues are usually related to biological activity, and evolutionarily more 

conserved than other regions of the protein [18-21]. Matching subunit interfaces is of special 

importance when complex structures are compared. For protein complexes with obvious 

structural similarity and consistent interfaces, the normal version of MM-align can align both 

global structures and interfaces correctly. But when structural similarity is weak, the procedure 

may place the interfaces arbitrarily along the alignment path. For users interested only in 

aligning the interfaces of such complexes, MM-align provides an option to optimize the 

interface match in addition to optimizing the TM-score.  

To reinforce the alignment of the interfaces, MM-align assigns a higher weight to the 

alignment scores and a higher gap penalty if the alignment involves the interface residues as 

described in Equation 3 and Figure 2.8. For testing this option, we randomly selected 2,000 

complex pairs from the 205×3,897 pairs which have a TM-score < 0.4 and an interface 

coverage < 10% by the normal MM-align alignment. This set of protein complexes is different 

from the training protein pairs used to train the parameters as described in Methods. The 

average fraction of aligned interface residues versus all interface residues is 3.3% in the normal 

MM-align alignments. After applying the interface-enhancement option, the average fraction 

of aligned interface residues increases to 14.3%, but the overall TM-score is similar to that 

without using the interface option (though the global structural match in this TM-score range is 

not very meaningful). 
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2.1.4 Functional Relevance of Structure Alignments 

The biological function of protein complexes depends on their 3D structures [6, 22]. An 

important goal of protein structural alignment algorithms is to assist in identifying function-

related structural similarities between complexes.  

Out of the 205 non-redundant protein complex pairs identified by MM-align, 153 (75%) 

pairs have related functions as judged by the annotations in the original PDB files and Gene 

Ontology (GO) [23] annotations. The function of the complexes has been manually assessed by 

the following procedure: If the “molecular function” GO term of the query and template 

complexes were the same, they were considered to have the same function. In a few cases, no 

"molecular function" was associated with a complex; we then looked at the “biological 

process” GO term. If the “biological process” term was also missing, which occurs quite rarely, 

we further referred to the “Classification” record in the PDB file. The function of all the 205 

complexes could be obtained by this procedure.  

Among the 135 protein complex pairs having a TM-score > 0.7, 133 (98.5%) have the 

same function. 21% of these protein pairs have a sequence identity below 30%. Out of the two 

complex pairs with different functions, one has a TM-score of 0.959 because both complexes 

are coiled-coils with very little deviation in structure. The sequence identity of this pair is very 

low (10%). In the other case, the TM-score is 0.709, but the compared structures are only 

fragments of their respective proteins rather than the complete complex structures. A complete 

list of TM-scores, RMSDs, and functional assignments of all 205 complex pairs is presented in 

Appendix I. These data demonstrate the ability of MM-align to identify structural similarities 

related to biological function.  
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In Figure 2.3, three illustrative examples of protein pairs from different protein classes 

(alpha-, beta- and alpha/beta-proteins); each having a high structural similarity but low 

sequence identity are presented. The first target complex is from the protein allophycocyanin 

(PDB ID: 1all), a light harvesting protein [24] found in the cyanobacterium Spirulina platensis. 

Both its chains belong to the “mainly alpha” class in CATH [25], and have an orthogonal 

bundle architecture and a globin-like topology. The complex selected by MM-align based on 

TM-score is alpha-phycoerythrocyanin (PDB ID: 2j96), which is also involved in 

photosynthesis [26] in the thermophilic alga Mastigocladus laminosus. According to CATH 

and SCOP, its both chains have the same architecture and topology as allophycocyanin [27]. 

The sequence identity of the complex pair is 27% and the TM-score from MM-align is 0.895 

(Figure 2.3a). 

In the second example, the protein alcohol dehydrogenase from Drosophila lebanonensis 

(PDB ID: 1a4u) has an oxidoreductase activity [28] and its both chains are classified by CATH 

as alpha-beta proteins having a Rossman fold. The structurally closest complex chosen by 

MM-align is sorbitol dehydrogenase (PDB ID: 1k2w) from the bacterium Rhodobacter 

sphaeroides, which has the same activity [29] and belongs to the same class and fold according 

to CATH. The sequence identity of the complex pair is 24% and the TM-score from MM-align 

is 0.818 (Figure 2.3b). 
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Figure 2.3. Three examples of protein dimeric complex alignments identified by MM
, alpha/beta-, and beta-proteins). Thick and thin lines represent the Cα 

traces of different complexes, and red and green indicate different chains. The grey regions are those 
in the superposition.  

The complexes in the third example are two “mainly beta” proteins as classified by SCOP 

and CATH. The query protein is human copper superoxide dismutase (PDB ID: 1do5), and the 

align is copper-zinc superoxide dismutase from 

(PDB ID: 1xso). The two proteins share a low sequence identity around 50% but have 

extremely similar structures with a TM-score of 0.953 (Figure 2.3c). Both have a similar 

topology and architecture of an immunoglobin-like sandwich according to CATH.

When the structural similarity is very high, functionally related protein pairs may also be 

identified by the naïve application of TM-align. However, cross-chain alignments may occur, 

and may lead to incorrect assignment of the protein family. One such example is casein kinase 

(PDB ID: 1cki). The closest complex identified by TM

00P (PDB ID: 1j55) (see Figure 2.4). When we search Set 2 by 

align, the closest protein complex found is a tyrosine kinase from human (PDB ID: 1fgk). 

In this example, the aligned complex structures derived from the naïve version of TM

score (0.409) than that from MM-align (0.396), but with 26 residue pairs 
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aligned to the wrong chain, which results in an incorrect function assignment. By preventing 

the cross-chain alignment, MM-align aligns the complex structure correctly and assigns a 

similar function to it by the structure comparison. Only one chain is aligned by MM-align 

because of the different chain orientations. 

 

Figure 2.4. The structural alignment of casein kinase (1cki) with its best-matching structures in a non-
redundant protein complex library. TM-align picks up human S100P (1j55) with 26 residues aligned 
across chains (left panel); MM-align picks up the tyrosine kinase domain of fibroblast growth factor 
(1fgk), without cross-aligned residues. 
 
2.1.5 Alignment of Large Oligomers  

One of the important purposes of MM-align is to align large oligomeric proteins. Because 

the number of solved higher-order complexes in the PDB is much smaller than that of dimers, 

in Figure 2.5 four examples are shown of MM-align alignments with structures randomly 

selected from four families of big complexes. These include two with unequal number of 

chains and two with equal number of chains. The size of the complexes varies from 3 to 20 

chains. 

Figure 2.5a is an alignment of the photosynthetic reaction center of Rhodobacter 

sphaeroides (PDB ID: 2jiy) with that of Rhodopseudomonas viridis (PDB ID: 1dxr), which are 

randomly selected from the same family of bacteria. 2jiy has three subunits while 1dxr has four 

(the cytochrome C subunit is extra). Their alignment by MM-align yields a TM-score of 0.669 
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with the three chains of 2jiy being aligned to the second, third and fourth subunit of 1dxr, 

respectively. The first chain of 1dxr, which is cytochrome C, remains unaligned. 

Figure 2.5b is another example of big complexes with unequal number of chains. The 

Cytochrome bc1 complex from chicken (PDB id: 1bcc) has 10 chains while the bovine 

mitochondrial cytochrome bc1 complex (PDB id: 1qcr) has 11 chains. The automated MM-

align procedure identified the correct chain combination and generated a structural match of 

TM-score=0.907 and RMSD=2.7 Å. 

Figure 2.5c is an example of complexes with equal chain numbers, which come from 

phycocyanins in the Gleobacter violaceus (PDB id: 2vml) and the red algae Gracilaria 

chilensis (PDB id: 2bv8). Both complexes include 12 protein chains. MM-align correctly 

selects the chain combination and generates an alignment of TM-score=0.657 and RMSD=2.13 

Å. 

Figure 2.5d is an alignment of complexes of maximum size by MM-align. The structures 

come from the bacterial ribosome in E.coli (PDB id: 2qbd) and the ribosome of the bacterial 

species Thermus thermophilus (PDB id: 1fjg); both have 20 protein chains. MM-align generate 

a structure match of TM-score=0.517 and RMSD=4.16 Å. Owing to the large number of 

possible chain combinations, it takes MM-align nearly 1 hour at a 2.6 GHz AMD processor to 

generate the best alignment in this example. 
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Figure 2.5. Examples of MM-align on big oligomers. (a) Alignment of the photosynthetic reaction 
center from Rhodobacter sphaeroides (PDB id: 2jiy, 3 chains, thick backbone) with that from 
Rhodopseudomonas viridis (PDB id: 1dxr, 4 chains, thin backbone). Yellow, cyan and yellow are for 
the first, second, and third chains of 2jiy; dark green, magenta, dark green and magents are for the first, 
second, third  and fourth chains of 1dxr. (b) Alignment of Cytochrome bc1 complex from chicken (PDB 
id: 1bcc, 10 chains, thick backbone) with bovine mitochondrial cytochrome bc1 complex (PDB id: 
1qcr, 11 chains, thin backbone). The chains are colored red and cyan alternatively for 1bcc and green 
and magenta for 1qcr. (c) Alignment of phycocyanin from the Gleobacter violaceus (PDB id: 2vml, 12 
chains, thick backbone) with phycocyanin from the red algae Gracilaria chilensis (PDB id: 2bv8, 12 
chains, thin backbone). The chains are colored in red and cyan alternatively for 2vml and green and 
magenta for 2bv8. (d) Alignment of bacterial ribosome from E.coli (PDB id: 2qbd, 20 chains, thick 
backbone) with ribosome of the bacterial species Thermus thermophilus (PDB id: 1fjg, 20 chains, thin 
backbone). The chains are colored red and yellow alternatively for 2qbd and green and magenta for 
1fjg. The grey strands in background are RNA from 2qbd superimposed onto the aligned complexes. 
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2.2 MATERIALS AND METHODS 

For two given protein complex structures containing n and m chains (n ≥ m), respectively, 

MM-align starts by generating all possible P(n,m)=n!/(n−m)! permutations for selecting m 

chains in the first complex. MM-align then proceeds to join the C-terminus of one protein 

chain with the N-terminus of another chain, in the order generated by the permutation step, and 

treats the combined artificial chains as rigid-body alignment units (An example of dimeric 

complexes shown in Figure 2.6).  

 

Figure 2.6. An illustration of the chain-joining procedure in MM-align. Both chains of the compared 
dimers are merged into single artificial chains and then aligned with cross-alignments forbidden. The 
chains corresponding to each other are presented by the same type of lines (thick and thin). Complex 1 
is in red and Complex 2 is blue. 

 
The structural alignment procedure is subdivided into three phases: (1) Selection of chains 

and chain order for chain-joining; (2) constructing initial alignments; (3) performing the 

heuristic iteration of the superposition to optimize the TM-score. In general, several alignments 

are initially constructed, and the inter-complex distance matrix between the superimposed 

structures is used to guide a heuristic iteration to refine the alignment. The chains are joined in 

every possible order and the alignment obtained from the order with the highest TM-score is 
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finally returned. For the purpose of saving time in comparing big complexes of more than 3 

chains, MM-align first sum the TM-scores obtained from a quick alignment of individual chain 

pairs and then proceeds with those combinations which have a sum of individual TM-score 

higher than 90% of the maximum sum of the individual TM-scores.  

2.2.1 TM-score for complexes 

The TM-score, as mentioned in Chapter 1, was originally defined as a measure to assess the 

structural similarity of protein monomer chains [15]. Here, the definition was extended to 

multiple-chain protein complexes, i.e.  
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where L is the total length of all chains in the target complex and Lali is the number of the 

aligned residue pairs in the complexes. dij is the distance between the C atoms of the aligned 

residues i and j after superposition of the complexes, and d0(L) is given by 

8.11524.1 3
0 −−= Ld . 

2.2.2 Chain Selection and Order of Chain Joining 

For a pair of protein complexes with multiple chains, a combinatorial problem arises if the 

two proteins need to be aligned without cross-chain alignments. For example, consider two 

proteins containing n and m chains (m<n). Then m chains need to be selected from the n chains 

of the larger complex, which can be done in C(n,m) = n!/(m!(n ─m)!) ways. These m chains 

can be joined in m! ways, giving rise to a total of P(n,m) = n!/(n─m)! ways of comparison. If 

the numbers of chains in both proteins are equal, the number of comparisons will become n!. 

When the number of chains is large the number of possible chain orders becomes prohibitably 

large due to both memory and time constraints (e.g. 10 chains mean more than 3 million 
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possible chain joining). Therefore to limit the number of total comparisons to a treatable range 

but without missing the meaningful matches, MM-align quickly calculates the monomer TM-

score for each chain in the first complex to match with the chains of the second complex based 

on a modified version of the TM-align program which exploits only the initial alignment from 

gapless threading. For each chain order, MM-align sums the TM-scores of the monomer chains 

which have been prescribed to be aligned. If the sum of the TM-scores of the monomer chains 

is > 90% of the maximum sum of the monomer TM-scores obtained so far from previous steps, 

it then proceeds further to align the complex as a whole. Otherwise, MM-align discards the 

particular chain order and moves on to the next order of chain joining. We find that the 

omission of these low-TM-score joining does not decrease the average performance of MM-

align in our testing results.  

2.2.3 Initial Alignments 

MM-align uses five quickly constructed initial alignments, which are detailed below. (1) 

An alignment of secondary structure (SS) elements using Needleman-Wunsch (NW) dynamic 

programming [30], using a score of 1 (0) for matching (non-matching) SS types (helix, strand, 

or coil) of two aligned residues, and a gap penalty of -1. (2) Gapless alignment of the two 

structures (i.e. generating all possible gapless alignments by sliding one sequence along the 

other one with each step jumping 5 residues; the best alignment is selected on the basis of TM-

score). Moreover, if the TM-score of any of the gapless alignments is greater than a cutoff (i.e. 

> 95% of the maximum TM-score obtained so far), the alignment is further optimized by 

dynamic programming, and the alignment with the highest TM-score is selected. It is observed 

that the implementation of DP helps in generating much better starting alignments. But since 

only high-scoring gapless alignments are selected to do DP, this procedure does not increase 
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the overall CPU time of the MM-align algorithm. (3) An alignment from dynamic 

programming where the score matrix is a half/half combination of the SS score matrix and the 

distance score matrix extracted from the second initial alignment. The gap-opening penalty is 

set to -1. (4) The fourth initial alignment is also gapless threading but the superposition of the 

structures is restricted to the longest continuous segments in each complex. This initial 

alignment is added because the second initial alignment could miss the best superposition when 

the joined chains have gaps (chain breaks) in the structure. This is especially the case when the 

algorithm is used to align interface structures that consist of chain fragments. (5) A fragment of 

5 continuous residues starting from the N-terminus of one protein is superimposed onto a 

similar fragment of 5 residues starting from the N-terminus of the second protein. The global 

TM-score is quickly calculated based on the rotation matrix of the 5-residue fragments. If the 

TM-score is higher than 12% of the best TM-score obtained from the previous 

superimpositions, a DP alignment is performed to refine the initial alignment using the inter-

residue distances from the initial superposition. The procedure is repeated for all 5-residue 

fragments of either protein and the best alignment based on TM-score is finally selected. For 

saving CPU time, however, we skip those 5-residue fragment pairs which do not have similar 

secondary structure content.  

Compared with TM-align, the last two initial alignments are new and the initial alignment 

(2) is improved by the additional DP iteration. These changes result in considerable 

improvement of the search engine of TM-align. In a benchmark test of aligning 4000 monomer 

pairs, TM-score increased in 1337 cases, while the total CPU cost is kept essentially 

unchanged. 
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To prevent cross-chain alignment in the initial alignments, the conventional NW algorithm 

[30] was altered so that regions in the DP matrix corresponding to cross-chain alignment are 

ignored as shown in Figure 2.7. For example, if chains 1 and 2 of Complex 1 are to be aligned 

to chains 1 and 2 of Complex 2 respectively, the DP matrix regions corresponding to aligning 

chain 2 of Complex 1 with chain 1 of Complex 2 are omitted when filling up the alignment 

paths during DP (an example of aligning a three-chain complex pair shown in Figure 2.7). The 

filling up of the DP matrix can be considered as a three-step process: 1) The region 

corresponding to the first chain (by the order prescribed by the chain joining step) of both 

complexes is filled up. 2) A pseudo-layer uniformly assumes the value of the last cell of the 

preceding block; by doing this the gap extension penalty will be ignored at the respective first 

residues of the second chains. 3) The region corresponding to the second chains (as per the 

order of chain joining) of both complexes is now filled up starting from the pseudo-layer 

values (instead of 0 which is used as the initial value for the first block). The process is 

repeated when aligning complexes with more than two chains.  

While tracing back the pathway, the reverse order is followed and the traceback is started 

in the region corresponding to the last chain of both complexes, crossing the junction of the 

diagonal blocks, and then continuing the traceback in the area corresponding to the “next to 

last” chains of both complexes. Traceback continues until the first residue of the first chain of 

both complexes is reached. MM-align thus avoids the cross-alignment zones completely, and 

forces the alignment to traverse a path which does not lead to alignment of any residue of 

chains not prescribed to be aligned for that particular iteration. An illustration of the modified 

DP for a trimer is presented in Figure 2.7. An alternative treatment would be to employ a large 
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penalty for cross-aligned regions, which is, however, more CPU-expensive because of the 

filling and backtracing procedures in the forbidden areas.  

 

Figure 2.7. An illustration of the modified dynamic programming algorithm with cross-chain alignment 
prevented. The picture on the left panel illustrates the process of filling up the grid, with the cross-
alignment zones (empty grids) ignored. The dashed lines represent a pseudo-layer which assumes the 
value in the last cell of the preceding block. The values of the pseudo-layer (5 and 11 in this example) 
are used as starting score of the next block corresponding to the next chain of both complexes. The 
picture on the right panel shows the traceback path (indicated by red arrows).  

 
The five initial alignments thus derived are passed on to the heuristic iteration phase for 

further refinement.  

2.2.4 Heuristic Iterations 

Once an alignment is obtained, the structures of the two complexes can be spatially 

superimposed by the TM-score rotation matrix [15]. Based on the superimposed structures, a 

similarity scoring matrix is defined as 
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where dij is the same as that defined in Eq. (1). 8.11524.1 3
min0 −−= Ld , and Lmin is the total 

length of the smaller complex. The purpose of using Lmin instead of the target length (L) here is 

to avoid the asymmetry resulting when aligning Complex 1 to Complex 2 versus Complex 2 to 

Complex 1. Like in Figure 2.7, we omit the residue pair when i and j are from cross-aligned 

chains. 

A new alignment can be generated based on the score matrix of Eq. (2) by the modified 

NW dynamic programming as explained in Figure 2.7, with an optimal gap-opening penalty of   

-0.6. Based on the new alignment, MM-align superimposes the complex structures by the TM-

score rotation matrix again, which gives rise to a new similarity scoring matrix and can again 

be used for the modified NW dynamic programming. The procedure is repeated a number of 

times until the alignment between two protein complexes becomes stable. The alignment with 

the maximum TM-score encountered during the iterations starting from the five initial 

alignments is returned as the final alignment.  

Because the score matrix of Eq. (2) is consistent with the target function of TM-score of 

Eq. (1), the iteration converges very fast, and usually 2-3 iterations are enough to find the best 

alignment. As we are mainly interested in the topological match between the compared 

complexes, no gap extension penalty is applied. 

2.2.5 Preferential Alignment on Interfaces 

The structures of protein-protein interfaces are usually more conserved than other regions, 

and generally have special importance in the inference of biological function [18]. The MM-

align program has a special option for preferentially aligning the interface residues of dimers, 

which constitutes the largest subgroup of multimeric protein complexes.  



For the given dimer structures, the interface residues are defined using a default C

distance cutoff of 8 Å (a different value can optionally be specified by the user), i.e. any 

residue whose Cα atom is at a distance <8 Å from any C

complex is considered to be an interface residue. The alignment of the interface residues can be 

enhanced by a modified dynamic programming scheme where the alignment path is defined by
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normal gap penalty. Because we have no gap extension penalty, 

on k. For non-interface residue pairs, 

encourage the alignment of the interfaces and 

Figure 2.8). The gap penalty is always neglected at the boundary of two chains. 

Figure 2.8. A modified dynamic programming scheme with the alignment of interface residue pairs 
reinforced. The interface areas are highlighted in color. If the residue pairs are both from an interface
(the area in green), the score is increased by a factor 
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n dimer structures, the interface residues are defined using a default C

distance cutoff of 8 Å (a different value can optionally be specified by the user), i.e. any 

atom is at a distance <8 Å from any Cα atom in the other chain of the 

mplex is considered to be an interface residue. The alignment of the interface residues can be 

enhanced by a modified dynamic programming scheme where the alignment path is defined by
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interface residue pairs, w=x=1. If both i and j are from interfaces, 

nt of the interfaces and x>1 to discourage gaps at the interfaces (see 

). The gap penalty is always neglected at the boundary of two chains. 

Figure 2.8. A modified dynamic programming scheme with the alignment of interface residue pairs 
. The interface areas are highlighted in color. If the residue pairs are both from an interface

the score is increased by a factor w and the gap penalty is increased by a factor 
 

n dimer structures, the interface residues are defined using a default Cα 

distance cutoff of 8 Å (a different value can optionally be specified by the user), i.e. any 

atom in the other chain of the 

mplex is considered to be an interface residue. The alignment of the interface residues can be 

enhanced by a modified dynamic programming scheme where the alignment path is defined by 
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) and GPk<0 is the 

actually does not depend 

are from interfaces, w>1 is used to 

>1 to discourage gaps at the interfaces (see 

). The gap penalty is always neglected at the boundary of two chains.  

 

Figure 2.8. A modified dynamic programming scheme with the alignment of interface residue pairs 
. The interface areas are highlighted in color. If the residue pairs are both from an interface 

and the gap penalty is increased by a factor x.  
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Since interface alignment is most important for complex pairs with weak structural 

similarity (see above), we optimized the parameters of w and x based on 2,000 complex pairs 

with TM-scores <0.3 and interface alignment coverage below 10%. In general, higher values of 

w and x will increase the number of aligned interface residues but too large values will reduce 

the TM-score of the overall alignment. After a comprehensive grid search of the parameter 

space, we found that w=100 and x=5 work the best for generating the highest number of 

aligned interface residue pairs while still maintaining a reasonable TM-score of global 

alignments. 

2.3 DISCUSSION 

A new algorithm, MM-align, was developed for quickly aligning and comparing the 

structures of multiple-chain protein complexes. Bearing in mind the importance of protein-

protein interactions in structural biology studies, and the lack of computer algorithms dedicated 

to multimeric structure alignments, the MM-align method is expected to be of immense use 

across many aspects of the field. The algorithm performs simultaneous alignment of all chains 

of protein complexes with both the monomer similarity and the relative chain-orientations 

accounted for by a single TM-score. The biologically irrelevant cross-chain alignments are 

efficiently prevented by the implementation of a modified dynamic programming algorithm 

which ignores the cross-alignment blocks of the DP matrix while filling up the cells and tracing 

back the pathway. This results in halving the necessary CPU time. Because of the consistency 

of the rotation matrix and the objective function, the convergence of the heuristic iteration 

stage is fast. For aligning a pair of protein dimers of 400 residues each, the average CPU cost is 

0.35s on a 2.6 GHz AMD processor.  
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The algorithm also includes a user-specified option to reinforce the structural alignment in 

the interface regions. The default weight for aligned interface residues has been carefully 

optimized using a benchmark set, balancing the overall topology match and the accuracy of 

interface alignment. Higher weights would result in aligning a higher number of interface 

residues but would, on average, deteriorate the overall structure match. This option is 

especially useful when the global structural match is inconsistent with the interface similarities 

but the user is interested in the interface match. In cases where there is reason to believe that 

prevention of cross-chain alignment is not desirable (e.g. complexes involving domain 

swapping or gene fusion), MM-align has a special option to utilize normal DP which does not 

prevent cross-chain alignment. It also allows alignment between one chain with multiple 

chains. 

Noting the fact that proteins often function as complexes, a functional annotation study 

based on the conserved complex structures is relevant. In a test on 205 non-homologous 

proteins, MM-align was able to detect functionally similar proteins within a non-complete 

benchmark dataset of 3,897 complexes. It often prevents false positives that may arise when 

dimer structures are aligned with tools dedicated to single-chain alignments only, like TM-

align. MM-align also has the capability of aligning large multimeric complexes up to 20 chains 

and correctly identifying the corresponding subunits and the structure match. These data show 

that MM-align may serve as an effective function annotation tool if used for querying a 

complete library such as all complexes in the PDB. Because MM-align provides a single TM-

score describing the global similarity of the complexes, it can also be conveniently used for 

automated and quantitative classification of protein complex structures which forms the focus 



73 
 

of Chapter 3. An online MM-align server and the source code of the program are freely 

available at: http://zhang.bioinformatics.ku.edu/MM-align. 
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CHAPTER 3. Protein-protein complex structure predictions by 

multimeric threading and template recombination 

While rapid progress has been made in protein tertiary structure prediction [1-3], the 

challenges in generating atomic level protein quaternary structures from amino acid sequence 

has remained relatively unexplored [4-7]. The effort in complex structure modeling has been 

mainly focused on rigid-body docking of monomer structures [8-12], with success often 

depending on size and shape complementarity of the interface area, and the hydrophobicity of 

interface residues [4]. One of the major challenges in protein-protein docking is the modeling 

of binding-induced conformational changes [7, 13-14] in which some progress has recently 

been made with the development of new docking methods, e.g. SnugDock [15], MdockPP 

[16], ATTRACT [17] and others. Progress in this area was also observed in the recent 

community-wide docking experiments, CAPRI [7, 18-20]. However, as an inherent limit, 

protein-protein docking can be performed only when the structures of the component 

monomers are known. The second way of constructing protein-protein complex structures is 

through homology modeling which has attracted considerable attention in recent years [21-23] 

as reviewed in Chapter 1.  

Here, a new method, COTH, is presented for protein-protein complex structure prediction, 

based on co-threading the sequences of both chains simultaneously through the protein 

quaternary structure library. To boost the capacity of the protein complex library, a monomer-

based threading was performed in parallel through the tertiary structure library with the 

resultant alignments shifted to the complex framework by structure alignments. A new ab 

initio interface predictor, BSpred, was developed to adjust the complex alignment. The 

algorithm has been tested on two large-scale bound and unbound benchmarks to examine the 
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strength and weakness in comparison with the conventional rigid-body docking and homology 

modeling methods, which demonstrated promising new avenues for protein complex structural 

predictions. 

3.1 RESULTS 

3.1.1 Overall results of COTH on testing proteins 

The COTH protocol consists of three consecutive steps: 1) Dimeric threading through a 

multiple-chain complex structure library for chain orientation prediction (called “COTH 

threading” throughout the article); 2) single-chain threading through tertiary structure library; 

3) recombination of tertiary templates and model selection of complex structures (Figure 3.1).  
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Figure 3.1: Flowchart of the COTH algorithm for protein complex template identification. The 
sequences are first joined in both permutation and threaded against a complex structure library to 
identify complex templates. Both monomer chains are individually threaded by MUSTER against the 
tertiary structure library to obtain tertiary structures. The monomer templates are then structurally 
superposed to the dimer template to generate the final template models. To avoid confusion, a list of 
the programs described in this article is presented in Table 3.1. 

 
Name Description 

C-PPA A multiple-chain threading algorithm with scoring function including 

profile-profile and secondary structure matches. It is an extension of the 

PPA algorithm for monomer threading [24]. 

C-MUSTER A multiple-chain threading algorithms with scoring function including 

similar terms to C-PPA, plus multiple structure-based terms derived for 

torsion-angle and structural profile matches. It is an extension of the 

MUSTER algorithm for monomer threading [25]. 

COTH threading A multiple-chain threading algorithm with scoring function including 

similar terms to C-MUSTER, plus the binding site match. The binding 

sites for targets are predicted by BSpred.  

COTH Models are generated by combining the tertiary templates from 

MUSTER with the quaternary templates from COTH-threading through 

structure superposition.  

COTH-exp Models are generated by superimposing the experimental unbound 

monomer structures onto the templates from COTH-threading. 

COTH-model Models are generated by superimposing the full-length monomer 

models onto the templates from COTH-threading. The monomer models 

were predicted by MUSTER with loops filled by MODELLER. 

ZDOCK-exp Models are generated by ZDOCK which docks the experimental 

unbound monomer structures followed by RDOCK refinement. 

ZDOCK-model Models are generated by ZDOCK which docks the full-length monomer 

models predicted by MUSTER and MODELLER, followed by RDOCK 

refinement. 

 
Table 3.1. Naming conventions of methods described. 
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To test COTH, a non-redundant set of 500 dimeric proteins from the PDB was constructed, 

which is also non-redundant to (below 30% in sequence identity with) the 180 training proteins 

used in algorithm optimization (Materials and Methods). A list of the testing and training 

proteins is shown at http://zhanglab.ccmb.med.umich.edu/COTH/proteinlist.html. When 

COTH is executed, all homologous templates, which have a sequence identity > 30% or are 

detectable by PSI-BLAST with an E-value < 0.5 to the query, are excluded from both dimer 

and monomer template libraries. These criterions are widely used in protein structure 

predictions for excluding homologous templates [26-27]. 

Evaluation of the global template quality is mainly carried out by TM-score [28], complex 

RMSD, and the alignment coverage. TM-score has been extensively used for quality 

assessment of protein structure predictions because of its ability in combining alignment 

accuracy and coverage. TM-score was originally developed for comparing monomers. To 

calculate the TM-score of dimer models, we first convert the dimer structure into an artificial 

monomer by connecting the C-terminal of the 1st chain and the N-terminal of the 2nd chain, and 

then run the TM-score program with the length of the query complex sequence as the 

normalization scale (as described in Chapter 2). This definition of complex TM-score has the 

value beween [0, 1] and is sensitive to both the topology of individual chain structures and the 

relative orientation of two components. In general, either the incorrect component structure or 

the wrong orientation of the components will result in low TM-score. In other words, a high 

complex TM-score means the correct modeling of both individual chain structures and the 

relative orientation [29]. 

In Figure 3.2a, RMSD versus alignment coverage of the first COTH models is shown. 

Here, RMSD means the root-mean-squared-deviation of the threading model and the native 
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structure in the threading aligned region (unless specified, RMSD indicates the global complex 

RMSD throughout the Chapter). Even though all homologous templates are excluded, COTH 

identified notable templates from non-homologous proteins. For example, there are 269 cases 

(or 293 in the top 10 models) which have the first template with a TM-score > 0.4. The average 

sequence identity between template and query is only 21.2% for the 269 proteins. Despite the 

low sequence identity, the average alignment coverage is 85.1% and the average RMSD to the 

native is 5.9 Å in the aligned regions. This demonstrates the ability of COTH to identify non-

homologous templates. Alternatively, if templates with an RMSD < 6.5Å and alignment 

coverage > 70%  are considered to be reliable, 272 out of 500 targets have reliable templates in 

the best in top 10 predictions. In Figure 3.2b the distribution of TM-score of the first templates 

is shown. The majority of targets have templates with a TM-score >0.3, which is significantly 

higher than the random template selection (TM-score <0.17) [28]. In cases where TM-score is 

in the 0.3-0.4 range, targets often have only the chain orientation correctly predicted but with 

substantial regions of monomer structures missing or wrongly aligned. This provides 

opportunities for improvement by further structure refinement based on monomer structure 

recombination as explored in Chapter 4. 

 

Figure 3.2: Complex threading results by COTH on 500 non-redundant test proteins. a) RMSD versus 
alignment coverage for the best in Top 10 models. b) Histogram of TM-score for the first model. 
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There are 39 cases, however, which are all hard cases (i.e. with a significance score of 

alignments relative to the random, Z-score < 2.5) (see Figure 3.7), where the TM-score of 

individual ligand and receptor templates are > 0.5 but the complex TM-score is < 0.4. In these 

cases, though the quality of the individual chains is good, their predicted orientation is 

incorrect. The average accuracy for the interface prediction by BSpred is, as expected, poor at 

only 42.3% with coverage of 14.9%. It should be noted that among the 39 targets, 21 cases do 

have templates of correct orientations with a TM-score > 0.4 as identified from the complex 

library by our complex structural alignment algorithm MM-align [30] when using the native 

structure as the probe. Thus, improvement of the accuracy of BSpred in binding-site 

predictions is essential to recognizing the correct chain orientations for these cases.  

Other than the TM-score of the global complex structure, an assessment is made about the 

modeling quality of protein-protein interface structures, the quality of which is of key 

importance for the functional annotation of protein complexes. Here, a residue is defined to be 

at the interface if the distance of the Cα atom to any Cα atoms in the opposite chain is below 

10 Å. The interface RMSD, I-RMSD, is the root-mean-squared-deviation of the model and the 

native structure in the aligned region of the interfaces. The interface coverage, I-cov, is the 

ratio of the threading aligned interface residues divided by the total number of interface 

residues in the target. For the 500 targets, the average I-RMSD and I-cov is 12.9 Å and 61.1%, 

respectively, for the best in the top-5 models (Table 3.2). This high I-RMSD value is partly due 

to a few hard cases, which have a very high I-RMSD (> 25 Å) because of completely wrong 

alignments. If a successful threading “hit” is defined as the model which has an I-RMSD ≤ 5.0 

Å with at least 50% of the interface residues aligned, there are 186 cases in which COTH 
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generates at least one hit in the top-5 models, despite the exclusion of homologous templates, 

which represents 37% of the overall sample. 

Enzyme-ligand and antigen-antibody are two major complex classes found predominantly 

in nature. In the testing set there are 236 enzyme-ligand complexes and 169 antigen-antibody 

complexes. The first COTH templates for enzyme-ligand have an average TM-score of 0.441, 

and an average RMSD 4.1 Å with alignment coverage 86.2%. For the antigen-antibody 

complexes, the COTH models have an average TM-score of 0.410, and an average RMSD of 

4.6 Å across 86.3% residues. There is a tendency that COTH performs better on enzyme-ligand 

complexes than antigen-antibody complexes, which somewhat surprisingly coincides with that 

of rigid-body docking methods which also performs better on average at docking the enzyme-

ligand structures because of the inherent shape complementarity in the complex structures 

while antigen-antibody interactions have usually larger backbone and side-chain variations at 

the interfaces [4, 9, 11, 13-14, 31-33]. For COTH however, the higher TM-score is mainly due 

to higher conservation of the enzyme-ligand sequences while antigen-antibody complexes can 

vary greatly in the sequence space. In the test set proteins for example, the average number of 

sequence homologies as identified by PSI-BLAST from non-redundant sequence databases is 

3.12 for enzyme-ligand complexes, which is about two-fold higher than that of antibody-

antigen (1.67). This therefore allows on average a better construction of sequence profiles for 

COTH. It should be noted however, that for both our test set proteins and the proteins in the 

template library, the complexes are represented as dimers although more often than not the 

antigen-antibody complexes are trimers (the heavy chain and light chain of the antibody and 

the antigen chain). So, by antigen-antibody complexes here only one chain of the antibody (the 
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light chain or the heavy chain) and the antigen chain is modeled each time, and the result 

shown is the average of all antibody chains with the antigen. 

3.1.2 Comparison of different alignment algorithms 

To have an objective control of the COTH performance, it is compared with other template 

alignment algorithms which are implemented on the same template library and with the same 

sequence identity cutoffs. Despite a number of published template detection algorithms, due to 

the lack of publicly available web-servers or downloadable programs which are capable of 

predicting protein complex structures based on homology modeling, here we focus our 

comparison mainly on PSI-BLAST and several in-house developed programs.  

First, PSI-BLAST, a widely-used tool to identify evolutionarily related proteins through 

iterative sequence-profile alignments [34] was used as control. PSI-BLAST was run on our 

complex structure library after joining the two chains together using the BLASTPGP program. 

The templates were ranked according to the PSI-BLAST E-value. Figure 3.3A shows a 

comparison of the templates detected by PSI-BLAST and C-PPA, where the latter is a profile-

profile alignment method assisted by secondary structure predictions from PSI-PRED [35]. In 

71% of cases, the C-PPA templates have a higher TM-score than that by PSI-BLAST. The 

major difference between these two methods is that PSI-BLAST only uses the template 

sequence while C-PPA uses sequence profile from multiple sequence alignments to represent 

the templates in the profile-profile alignments, which often contain additional motif 

conversation signals that aids in the detection of weak evolutionary relationships. Another 

reason is that C-PPA uses predicted secondary structures (with an accuracy >80%) to assist in 

adjusting local secondary structure alignments.  



85 
 

To test the usefulness of additional structure information in complex template 

identification, C-MUSTER which is a dimeric threading algorithm extended from the 

monomer threading MUSTER program [25] was developed and tested. In addition to the 

profile-profile and secondary structure matches as implemented in C-PPA, C-MUSTER 

contains multiple structural features predicted from sequences. Figure 3.3B shows a head-to-

head comparison of C-MUSTER and C-PPA. There are obviously more cases (389 versus 92) 

which are above the diagonal line. The reason for the improvement is that even though 

sometimes no obvious sequence similarity exists between two proteins, they may share a 

similar structural framework. Thus, the use of solvent accessibility, torsion angles, structural 

profile, and hydrophobicity predictions provides insight into the structure of two proteins. 

The major difference between C-MUSTER and COTH threading is that COTH threading 

contains binding site matches from a neural network based prediction algorithm, BSpred. For 

the 500 testing proteins, the average accuracy of the binding site prediction is 66.8% with 

coverage of 14.2%. This accuracy is significantly higher than that of random predictions 

(34.2%) with a p-value <10-5. Figure 3.3C shows the comparison of C-MUSTER versus COTH 

threading. Overall there are 311 cases which have a higher TM-score in the COTH threading 

alignment than that in C-MUSTER, demonstrating the usefulness of adding the binding-site 

predictions.  
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Figure 3.3: Comparison of TM-score of the complex templates as identified by different threading 
methods. a) C-PPA versus PSI-BLAST; b) C-MUSTER versus C-PPA; c) C-MUSTER versus COTH 
threading; d) COTH threading versus COTH. 

 
Table 3.2 summarizes the average TM-score, RMSD, alignment coverage, I-RMSD, I-cov 

and the number of hits of the template models identified by different methods (PSI-BLAST, C-

PPA, C-MUSTER, COTH threading). Compared with PSI-BLAST, C-PPA identifies templates 

of higher coverage (64.8% versus 63.3%) but with significantly lower RMSD (5.43 Å versus 

8.19 Å) which results in a 20% increase in TM-score for the first model. Correspondingly, 

COTH threading identifies better templates than C-MUSTER and C-PPA in both accuracy and 

coverage. Overall, the TM-score of COTH threading (0.394) is 46% higher than that by PSI-

BLAST (0.269) and there are dominantly more cases with higher TM-score in COTH (427) 

than in PSI-BLAST. The interface accuracy of the COTH threading is also much higher than 

PSI-BLAST as indicated by the I-RMSD and I-cov (12.6 Å/55.8% vs. 13.7 Å/42.9%). Again, if 
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a hit is defined as a model with I-RMSD < 5 Å with I-cov > 50%, the number of hits in the 

COTH threading models is 168 which is 35% higher than that by PSI-BLAST (124). 

Methods 
TM-score 

(first/best in top 5) 
RMSD (coverage)1 NHit

1 I-RMSD/I-cov1 

PSI-BLAST 0.269/0.293 8.19 Å (63.3%) 124 13.7 Å (42.9%) 

C-PPA 0.321/0.334 5.43 Å (64.8%) 145 13.1 Å (49.3%) 

C-MUSTER 0.381/0.412 4.51 Å (69.8%) 161 12.8 Å (54.6%) 

COTH threading 0.394/0.421 4.45 Å (71.0%) 168 12.6 Å (55.8%) 

COTH 0.438/0.477 4.30 Å (77.6 %) 186 12.9 Å (61.1%) 
1Data are shown as the best in top 5 models. 

Table 3.2. Template identification by different methods on 500 testing proteins. 

Figure 3.4 is a typical example of a dimer structure (PDB ID: 16gsA0-16gsB0), which 

reflects the difference of alignments identified by the different methods. First, both PSI-

BLAST and C-PPA identify 2c8uA0-2c8uB0 as the best template but C-PPA produces a more 

accurate alignment and an increased coverage (57.2% for PSI-BLAST and 65.4% for C-PPA) 

which accounts for the rise in TM-score from 0.523 to 0.602. C-MUSTER identifies 1k3oA0-

1k3oB0 as the top template with a sequence identity 25% to the query sequence 16gsA0-

16gsB0, which leads to an overall higher coverage 89.9% and a much improved TM-score 

0.786. COTH threading, on the other hand, chooses a different protein 1gtaA1-1gtaA2 as the 

highest scoring template with alignment coverage of 94%; the resulting template has a 

maximum TM-score of 0.818. This better template selection is mainly due to the BSpred 

binding-site prediction which has an accuracy of 79.4%. The orientation of 1gtaA1-gtaA2 is 

more similar to the query protein than 1k3oA0-1k3oB0 as identified by the BSpred prediction, 

which predicts 31 interface residues of the query 16gsA0-16gsB0 and leads to a better 

alignment reflecting the orientation of the chains correctly.  
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mprovement of COTH over controls. Template structures produced
human pi class glutathione transferase by four different threading methods from (a) PSI

MUSTER (d) COTH-threading, which have been superimposed onto the 
structure of the query protein. The experimental structure of 16gsA0-16gsB0 is shown 

yan for chain 2 while the models from the threading algorithms are represented in

Structure combination of threading templates 
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protein structure prediction problem for single-domain proteins. This means that for any single-

domain protein there is at least one protein in the PDB which is close enough to the target 

protein such that a full-length model of correct topology can be constructed by template-based 

modeling methods. Thus, it was hypothesized that the tertiary structure of the component 

chains may be predicted with a better quality by monomeric threading through a tertiary 

structure library and the quaternary structure prediction should benefit if tertiary templates are 

combined with the COTH threading frames. 

In Figure 3.3D, we present a head-to-head comparison of the templates by COTH threading 

versus that by COTH threading followed by monomer structure recombination (called “COTH” 

instead of “COTH threading” throughout, see naming convention in Table 3.1). In the latter 

case, COTH first identifies monomeric templates by MUSTER [25] using monomer sequence 

as the query, and identify dimer templates by COTH threading using dimer sequences as the 

query. In the second step, the monomer templates are superposed on the COTH threading 

templates by the TM-score program [28] to obtain the final complex models by combining the 

monomer and dimer alignments. All structures in the chain with longer alignment which has a 

steric clash with another chain during structure combination are excluded. For the 1,000 

(500×2) test set monomers, the MUSTER templates have a higher TM-score than that from the 

COTH threading in 893 cases. When combining the MUSTER templates with the COTH 

threading, in almost all the cases, this structure recombination results in an increase in 

alignment coverage, while in 399 out of 500 cases, the global RMSD of the complexes 

decreases despite the increase in alignment coverage. Overall, the TM-score of the final COTH 

model is higher than the original COTH threading template in 443 cases. The average TM-
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score of the first COTH model is 0.438, 11% higher than that of the COTH threading templates 

(Table 3.2). 

In Figure 3.5, two typical examples are cited to illustrate the improvement of structure 

recombination, one is a heterodimer and another is a homodimer. Figure 3.5A is an example of 

a near-native heterodimeric structure identified by threading for 1z0kA-1z0kB. The figure on 

the left shows the first template identified by COTH threading superimposed on the native 

structure which has a TM-score 0.786 and a RMSD/coverage of 2.16Å/86.9%. Despite the 

correct chain orientation of the template, the alignments of some loops in Chain A and 

considerable portion of Chain B are missed. The figure on the right is the final template model 

predicted by COTH. The majority of missed regions in original COTH threading alignment are 

recuperated through MUSTER alignments with the coverage increased from 86.9% to 94.7%; 

the alignment accuracy is also slightly improved and the RMSD decreased from 2.16 Å to 2.01 

Å. This results in an overall TM-score increase from 0.786 to 0.906. 

The second example is from the homodimer 1f2dA0-1f2dB0 shown in Figure 3.5B. The 

dimeric template identified by the COTH threading is extracted from the homodimer 1wdwB0-

1wdwD0 which shares a sequence identity of 14.5%. The TM-score of this template to native 

is 0.696 and the RMSD/coverage is 4.02Å/90.7%. MUSTER, on the other hand, identifies 

1j0aA from the tertiary structure library as template for both component chains. After the 

superposition and combination of the MUSTER templates, the TM-score of the complex model 

increases to 0.884. Again, the MUSTER templates improve both the alignment coverage and 

the alignment accuracy of COTH, with RMSD/coverage changed to 2.42Å/93.5%.  
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Figure 3.5: Structure superposition improves template quality. Superposition of the native structure 
(darker shade) with the template structures generated by COTH threading (lighter shade, left) and 
COTH threading plus recombination (lighter shade, right). a) GTP-Bound Rab4Q67L GTPase (PDB 
ID: 1z0kA0-1z0kB0). b) 1-aminocyclopropane-1-carboxylate deaminase (PDB ID: 1f2dA0-1f2dB0).  

 
Here, although COTH uses monomer threading from MUSTER, it is essentially different 

from the separate monomer-based alignments in many of the former methods [21-23]. In these 

former methods, the single-chain threading is on the monomers extracted from the complex 

structure library and both monomer and dimer structures are dictated by the dimer structure 

library. But in COTH, the single-chain threading of MUSTER is through the independent 

tertiary structure library, which are then recombined with the dimer alignments. Overall, the 
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chain orientation is eventually decided by the dimer threading while the MUSTER single-chain 

threading serves to improve the quality of monomers and the alignment coverage of the 

complexes by the use of a nearly 6-fold more complete tertiary structure library. 

3.1.4 Comparison of COTH with docking algorithms 

Docking and threading-recombination are different approaches towards modeling of 

protein-protein complex structures. While the goal of the docking algorithms is to find the 

correct orientation and binding sites of the components given the bound/unbound monomer 

structures, COTH is designed to generate complex structures from sequences with the aid of 

template identification. Nevertheless, it is of interest to examine the overall modeling results of 

COTH and the well-established rigid-body docking algorithms with the purpose for 

understanding where the two methods stand in a head to head comparison. 

For this study, ZDOCK [31, 37-38] was selected as a representative example of the rigid-

body docking algorithms partly due to its consistently good performance in the CAPRI 

experiments. The ZDOCK package is also publically downloadable at http://zdock.bu.edu. 

Because the threading-based methods have only part of the chain with the structure predicted 

while docking is usually performed on full-length structures, to have fair comparisons, 4 

additional controls were designed which are all on full-length structures. First, ZDOCK was 

run on the unbound experimental structures, i.e. running the first step rigid body docking using 

ZDOCK followed by refinement with RDOCK, which is called “ZDOCK-exp” in Tables 3.1 

and 3.3. In the second method, full-length models were constructed for each individual chain 

by MUSTER [25] and MODELLER [39] and then ZDOCK was used to dock the full-length 

models (called “ZDOCK-model” in Table 3.1 and 3.3). In the third method, full-length 

complex structures were generated by superposing the unbound experimental structures of 
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individual chains to the template frame from COTH-threading, called “COTH-exp”. In the 

fourth control, the full-length models of the individual chains modeled by MUSTER and 

MODELLER were superposed onto the COTH-threading template frame, called “COTH-

model” in Tables 3.1 and 3.3. There were no further refinements conducted in the latter two 

COTH-based modeling.  

It should be mentioned that the models generated by COTH (and all other threading 

methods) are Cα only which were copied from the template proteins. But for COTH-exp and 

COTH-model, since the monomer structures are full-atomic, the final combined models are 

full-atomic as well (similar to the ZDOCK models). 

Table 3.3 summarizes the results (the best in top ten models) of the five methods on 77 

dimeric complexes in the ZDOCK Benchmark Set 3.0 [40] (the rest of complexes are higher 

order oligomers and were thus omitted from this study). Since the unbound monomer 

structures in docking studies are usually similar to the native, instead of examining TM-score 

and RMSD of the global structure, here we assess the model quality mainly by the interface 

structure predictions, in a similar way as the CAPRI experiments [7, 13-14]. 

Interface residue prediction. For the assessment of the interface residue predictions, we 

define the Accuracy and Coverage of interface residues as 

residues interface be  topredicted residues of No.

residues interface be  topredictedcorrectly  residues of No.
=Accuracy    (1) 

complex native in residues interface actual of No.

residues interface be  topredictedcorrectly  residues of No.
=Coverage    (2) 

where an “interface residue” is defined as the residue whose Cα atom lies within 10Å of any 

Cα atoms of any residues in the opposite chain. Since models constructed from threading are 

Cα only, we do not use the full-atom definition of interface residue as used in CAPRI [41]. 
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However, since our definition is consistent for all the methods compared here, it should allow 

for an objective assessment of our method. It is found that COTH-based approaches generally 

have higher binding-site prediction accuracy, but with lower coverage, than the models by 

ZDOCK irrespective of whether the experimental unbound structures (70.2% vs. 67.7% 

accuracy and 39.8% and 64.5% coverage) are used or the MODELLER models (63.3% vs. 

56.4% accuracy and 38.7% and 49.7% coverage) for docking. For the 12 “hard” targets as 

classified in the ZDOCK benchmark dataset (most are antigen-antibody complexes), for 

example, the average accuracy of the predicted interface residues is 44.8% with coverage of 

42.6% in the ZDOCK models, while the models constructed by superposition of unbound 

structures to the COTH templates have an average interface accuracy of 60.3% with coverage 

of 30.3%. Of the 12 cases, the ZDOCK models have an accuracy higher than 50% in 4 cases 

while 7 of the COTH models have the accuracy over 50%.  

Interface contact prediction. Since the binding-site prediction accuracy only counts for the 

total number of the correctly predicted residues in the interface area which nevertheless may 

interact with incorrect residues of the opposite chain in the model, in Column 3 of Table 3.3 we 

list the accuracy of the interface contacts predicted for the best in the top 10 models. Similarly, 

the accuracy of interface contact predictions is defined as the number of correctly predicted 

contacts across two chains divided by the total number of cross-chain contacts in the model; 

the coverage is the number of correctly predicted interface contacts divided by the observed 

inter-chain contacts in the native structure.  

Since threading alignments provide only Cα traces, we defined the inter-chain residue 

contacts based on amino acid specific 20×20 Cα distance and standard deviation matrices, 

which were calculated from 6,118 non-redundant dimer structures in our library (Appendix II). 
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In the calculations, since the experimental complex structures are full-atomic, we defined the 

inter-chain residue pairs as contact if the distance of any heavy atoms is below 5 Å. 

Interestingly, the mean distance of Cα atoms is generally smaller between the same amino acids 

than that between different amino acid types (Appendix II), which indicates that the similar 

amino acids tend to be packed tighter than different amino acid pairs. Two residues are 

predicted to be in contact if the distance between their C-alpha atoms is ≤ )( ,, jiji sdd +  where 

di,j is the mean C-alpha distance between residue i and residues j and sdi,j is the standard 

deviation. 

In general ZDOCK, generates models of comparable contact accuracy and coverage as 

COTH when experimental unbound structures are used for docking and for structure 

superposition, i.e. 0.466 vs 0.474 for accuracy and 48.8% vs 42.3% for coverage, by ZDOCK 

and COTH respectively. When the predicted full-length models (by MUSTER + MODELLER) 

are used, the contact accuracy by COTH-model (0.405) is higher by 35% than ZDOCK-model 

(0.301), whereas the coverage of the contact predictions by the two methods is similar (40.3% 

vs. 40.4%). Interestingly, the accuracy of COTH-model, which combines full-length models to 

the COTH templates, is also better than COTH itself that combines MUSTER threading 

templates (34.2%). This is mainly due to around 1/3 test cases where the MUSTER threading 

has substantial gaps in the interface area which reduce the accuracy and coverage of the contact 

predictions. When the full-length models are constructed, the gapped regions were filled and 

the overall accuracy and coverage of contacts are increased. 

Even using the experimental unbound structures, COTH slightly outperforms ZDOCK in 

the hard cases when conformational changes are involved in protein-ligand binding [40]. In the 

12 hard cases, for example, the ZDOCK models have a contact accuracy >50% in 4 cases 
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(2nz8A:B, 2ot3A:B, 1r8sA:E, 2c0lA:B) while the COTH models have an accuracy higher than 

50% in 5 cases (1iraY:X, 2ot3A:B, 2c0lA:B, 1ibrA:B, 1pxvA:C). Of the 5 COTH “winning” 

cases, only two (2ot3A:B and 2c0lA:B) has ZDOCK models with a contact accuracy >50%; for 

the other 2 cases where ZDOCK has an accuracy >50% both the COTH models have a contact 

accuracy below 50%, which demonstrates that the two methods are essentially complementary 

to each other in terms of predicting the structure of protein complexes. Again, in all the contact 

predictions, ZDOCK generally has higher coverage than COTH. 

In Figure 3.6, we show one example of the hard targets from the Ran-Importin beta 

complex (PDB ID 1ibrA:B). ZDOCK (the best in top 10 models, ranked 5 in this case) puts the 

Ran chain on the convex site of the crescent structure of the Importin beta chain but in the 

native structure Ran actually binds on the concave site, which resulted in a high I-RMSD (9 Å) 

with the interface contact accuracy and coverage being 0% (Figure 3.6A). On the other hand, 

COTH-threading (the best in top 10 models, ranked 2 in this case) detected the template of 

mDIA1-RhoC complex (PDB ID: 1z2c) with a sequence identity of 12.4% to the target which 

has 79.4% of residues aligned. Despite the wrong topology of the C-terminal of the template on 

the Importin beta chain, the Ran chain was aligned at an approximately correct location at the 

concave site, which has an I-RMSD=4.7 Å with an interface contact accuracy of 68.6% and 

coverage of 57.5% (Figure 3.6B). When we superposed the experimental unbound structures to 

the template, we got a complex model with an I-RMSD=4.8 Å, with an interface contact 

accuracy of 70.1% and coverage of 74.2%. Because the unbound experimental structures have 

a closer topology to the target than the COTH-threading template, after the COTH 

superposition, the global topology of the complex structure is also markedly improved with the 
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overall TM-score increasing from 0.435 to 0.692 and the RMSD decreasing from 5.4 Å to 3.85 

Å (Figure 3.6C). 

 

Figure 3.6: Modeling result of ZDOCK and COTH on the Ran-Importin beta complex. The native 
complex is represented in Cyan (larger chain) and Blue (smaller chain) while the predicted models 
represented as Red (larger chain) and Green (smaller chain) respectively. (A) ZDOCK-exp; (B) COTH-
threading; (C) COTH-exp with unbound experimental structures superimposed on the COTH-threading 
template. 
 

In general, the ZDOCK model has a higher coverage in the interface and contact 

predictions. One reason for the difference is that ZDOCK tries to geometrically match the 

ligand and receptor structures and the contact area of two chains in ZDOCK is usually 

maximized. In COTH on the other hand, the threading alignment is designed to identify the 

best global structure and chain-orientation match. When the unbound experimental structures 

or predicted single-chain models are combined with the threading templates, they were simply 

shifted through superposition to the complex frame without any attempt to maximize the 

geometric contact area of the interface. Therefore, even though the orientation of the monomer 

chains is correctly modeled in COTH, the coverage of interface contact predictions is usually 

lower. Further docking refinement simulations, e.g. by backbone displacement and side-chain 
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optimization as done in ROTAFIT [42], may be used to fine-tune the complex structure and 

improve the interface coverage and contact accuracy. Another factor for the reduction in 

coverage is the alignment gaps in COTH threading which may appear in the interface regions 

and reduce the residue coverage. This has been partly amended in COTH-exp and COTH-

model when full-length structures were used. 

Accuracy of interface structure. The accuracy of the interface structure is assessed by the 

interface RMSD, I-RMSD. A full list of the I-RMSD values by the five methods, COTH, 

COTH-exp, COTH-model, ZDOCK-exp, ZDOCK-model, is given in Appendix III. For all 

such analysis reported here, the best in top 10 (according to rank) models for each method has 

been used. The average I-RMSD by different methods is almost randomly distributed due to 

the large fluctuations of a few high I-RMSD targets. In Column 4 of Table 3.3, the number of 

hits in the 77 targets was counted. For COTH, since gaps may be present in the interface area, 

it is requested that a hit should have at least 50% of the interface residues aligned. Overall, the 

number of hits by the four methods with full-length models is similar, ranging from 20 to 26, 

where ZDOCK is slightly better on experimental unbound structures and COTH has only one 

more hit on predicted models. The COTH models have the highest number of hits (28) which is 

partly due to the lower alignment coverage.  

Methods 
Interface-Accuracy 

(Coverage)1  
Contacts-Accuracy 

(Coverage)2  
NHit

3 Median I-
RMSD 

COTH 59.8% (31.7%) 34.2% (33.4%) 28 6.37 Å 

COTH-exp 70.2% (39.8%) 47.4% (42.3%) 23 7.76 Å 

COTH-model 63.6% (38.7%) 40.5% (40.3%) 21 7.92 Å 

ZDOCK-exp 67.7% (64.5%) 46.6% (48.8%) 26 8.29 Å 

ZDOCK-model 56.4% (49.7%) 30.1% (40.4%) 20 9.78 Å 
1Accuracy (coverage) of the predicted interface residues. 
2Accuracy (coverage) of the predicted inter-chain contacts.  
3Number of hits which have an I-RMSD ≤ 5Å to the native.  
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Table 3.3. Summary of the best in top 10 models on 77 ZDOCK benchmark proteins. 

Again, the COTH-based methods are highly complementary to the docking-based 

methods. For example, there are only 12 targets commonly hit by both COTH-exp and 

ZDOCK-exp methods. If we take the top 5 models (according to rank) from each of the 

methods, the number of hits in the top 10 models will increase from 26 to 33. Meanwhile, there 

are only 9 targets commonly hit by both COTH-model and ZDOCK-model methods. If we take 

the top 5 models from each of these two methods, the number of hits in the top 10 models will 

increases from 21 to 28. In Column 5 of Table 3.3, the median I-RMSD of the models by 

different methods are reported, where the COTH based models have generally a lower median 

I-RMSD than the ZDOCK models.  

3.2 MATERIALS AND METHODS 

COTH is a hierarchical threading approach to fold-recognition and structural 

recombination of protein-protein complexes. For a given complex protein, COTH takes only 

the amino acid sequences of both chains (i.e. Chain A and B) as the input. It proceeds by 

joining the chains in both order, i.e. ChainA-ChainB and ChainB-ChainA, to represent the 

dimer sequence for template identification. The joined dimeric sequences are then threaded 

through a representative complex library of the PDB by a process called “COTH threading”, to 

identify complex templates of similar quaternary structure to the target. Meanwhile, the 

individual chains of the complex are threaded separately through a representative tertiary 

structure library by the monomer threading algorithm MUSTER, to identify the monomer 

templates of similar tertiary structure to the individual target chains. Finally, the top monomer 

template structures from MUSTER are superimposed onto the top complex templates from 
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COTH-threading, to generate complex structure models which are the output of the COTH 

pipeline (Figure 3.1).  

3.2.1 Template libraries 

 Two libraries were created for COTH. The first is a representative monomer structure 

library collected from the PDB at a pair-wise sequence identity <70%. Obsolete structures and 

theoretical models are removed. For multiple domain proteins, both individual domains and the 

whole proteins are used as the template entries. The second is a non-redundant dimeric 

structure library screened from DOCKGROUND [44] with the pair-wise sequence identity 

cutoff at 70% after an initial filtering to remove irregular structures, transmembrane complexes 

and the complexes with alternate binding modes. Complexes with less than 30 interface 

residues or with a buried surface area ≤250 Å2 are ignored to rule out possible crystallization 

artifacts. However, if a new structure has an overall sequence identity >70% to an old structure 

existing in the library but has one chain sharing less than 70% sequence identity to the 

corresponding chain of the old structure, the new structure is also included in the library. This 

helps account for the targets which have big common receptor structures but with different 

small ligand proteins (often with different orientation). Higher-order complexes are split into 

dimers by taking all possible dimeric combinations. As of February, 2010, the libraries consist 

of 38,884 monomer and 6,118 dimer structures. 

3.2.2 Single-chain monomeric threading 

The single-chain threading is carried out by an execution of the MUSTER algorithm [25] 

through the tertiary structure library. The scoring function of MUSTER is based on the close 

and remote sequence profile-profile alignments, assisted by the secondary structure 
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predictions, structural profiles accounting for residue depth in the structure, solvent 

accessibility, torsion angle prediction, and hydrophobic scale. 

3.2.3 Protein-Protein Interface Prediction by BSpred  

To better identify the orientation of one protein chain relative to another in protein-protein 

complexes, prior knowledge about the interface residues of both chains is helpful. Accordingly, 

a new machine-learning method called BSpred is developed, which is capable of predicting the 

binding status of each residue from the amino acid sequence alone.  

The input features of BSpred are the following 1) The Position Specific Scoring Matrix 

(PSSM) generated by PSI-BLAST search using an E-value cutoff =0.001. 2) The secondary 

structure (SS) of the query sequence, predicted by PSI-PRED, which is to detect the SS 

preference at the interface residues. The SS is represented by a 3-element vector ([0 0 1] for 

random coil, [0 1 0] for alpha helix, [1 0 0] for beta strands). 3) The solvent accessibility (SA) 

predicted from an independent neural network predictor[45]. The predicted solvent 

accessibility (whether buried or exposed) is a 2-element vector ([0 1] for buried, [1 0] for 

exposed). 4) The distinctive hydrophobicity of amino acids in protein-protein interfaces. Each 

amino acid is assigned by a hydrophobicity score, taken from the Eisenberg hydrophobicity 

scale [46] which lies between 0 and 1 for all the amino acids. The NN software used in BSpred 

is from Fast Neural Network (FNN) [47]. By trial and error, 3 layers with 50 hidden neurons 

for NN are chosen which gives the best performance on training data. The training algorithm of 

NN is the standard Back-Propagation (BP) algorithm.  

For prediction of interface residues, the neighboring residues around a central residue also 

contribute to the formation of the interface [48]. A window size of 21 is used to specify the ith 

residue, which includes residue indices from i-10 to i+10. Since there are 26 (=20+3+2+1) 
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feature values for a residue, the number of features for a window around the trained residue is 

546 (=21× 26). At the N and C terminals, the input values for the neighboring residues which 

are not present are represented by 0. The NN output value is between -1 and 1 for each residue 

where larger values indicate higher confidence for that particular residue to be at the interface. 

Accordingly, a carefully optimized cutoff value (to obtain a balance between accuracy and 

coverage of prediction) is selected based on the performance on a set of training proteins which 

is non-redundant to the testing proteins of this work. Any residue with an output value higher 

than the cutoff is considered as an interface residue. It is found that the NN output cutoff =-0.1 

have the best balance of accuracy and coverage. 

Based on the observation that interface residues are often sequentially clustered together, 

we introduce a second-step post-processing for smooth filtering of raw neural network 

predictions, i.e. a residue with NN output score >-0.1 is finally considered as an interface 

residue only if at least 6 other residues in its direct sequence neighborhood (from i-3 to i+3) are 

also predicted to be interface residues (NN output score>-0.1). For the N-terminal and C-

terminal residues, at least 3 neighboring residues should be at the interface. Also, since an 

interface residue must be solvent exposed at the monomer structure, any predicted interface 

residues which were not predicted to be solvent exposed are eliminated from our final interface 

predictions. 

The method has been tested on a set of 150 single-chain proteins which are non-redundant 

to the training proteins and are known to participate in dimer formation. For assessment of the 

interface and chain orientation predictions, the Accuracy and Coverage of interface residues is 

defined as in Eq (1) and Eq (2). 
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The final accuracy of the interface prediction by BSpred is 65.6% with coverage of 13.7%. 

The BSpred program and the on-line server are freely available at 

http://zhanglab.ccmb.med.umich.edu/BSpred. 

3.2.4 COTH threading 

The alignment of the query and template complexes is generated by a modified dynamic 

programming algorithm that is designed to avoid unphysical cross alignments and was also 

implemented in MM-align (Chapter 2). The scoring function for aligning the ith residue of the 

query and the jth residue of the template is given by 
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where ‘q’ stands for the query and ‘t’ for the template. The first term in Eq. 3 represents the 

sequence-derived profiles where Pcq(i, k) is the frequency of the kth amino acid at the ith 

position of the multiple sequence alignment by PSI-BLAST at an E-value cutoff of 0.001; 

Pdq(i, k) is the “remote homology” frequency matrix by PSI-BLAST with E-value<1.0; Lt(j, k) 

is the PSSM log-odds profile of the template. The second term denotes the secondary structure 

match and δ(sq(i), st(j)) equals 1 when the secondary structures of i and j are the same and -1 

when the secondary structures are different. The third term counts the depth of the aligned 

residues where Pst(j, k) is the depth dependent structure profile and Lq(i, k) is the PSSM profile 

of the query. The fourth, fifth and sixth terms compute the match between the solvent 

accessibility, phi angle and psi angle of the query and the template, respectively. The seventh 

term counts the hydrophobicity match of the residues based on the hydrophobicity scoring 

matrix. The eighth term computes the match between the predicted interface residues of the 

query by BSpred and the interface residues of the template, where Iq(i) is the interface index of 
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ith query residue (0 or 1) and It(j) is that for jth residue on the template. The last parameter of 

c8 is introduced to avoid the alignment of unrelated residues in the local regions. 

Thus, COTH threading has 10 free parameters (8 weights in Eq. 1, a gap opening (Go) and 

a gap extension penalty (Ge)). To determine the parameters, we constructed a 10-dimensional 

parameter space and ran COTH on 180 randomly selected non-homologous proteins from 

DOCKGROUND that are also non-homologous to the test proteins, with parameters taken 

from each of the grid lattice in the 10-dimension system. The optimal parameters are selected 

when the highest average TM-score for the 180 training proteins is achieved. As a result, the 

optimized parameters are: c1=0.80, c2=0.34, c3=1.7, c4=0.29, c5=0.29, c6=0.37, c7=0.20, c8=-

4.90, Go=10.11, Ge=0.95. 

3.2.5 Template Selection and Target Classification 

The significance of a threading alignment in COTH is assessed by Z-score: 

                  
2

score
2
score

scorescorescoreZ
RR

RR

−

−
=−                                      (4) 

where Rscore is the raw alignment score R’score from the dynamic programming normalized by 

the length of the query dimer sequence (Lquery) i.e. Rscore=R’score/Lquery. Because the dynamic 

programming of COTH uses an unique path for both chains, the overall raw alignment score 

and the Z-score has a bias towards the larger of the two chains, especially when the receptor is 

significantly larger than the ligand; this may lead to artificially high Z-scores even though the 

ligand is poorly aligned. To balance this bias, we rank the COTH models based on the mean Z-

score of the ligand, the receptor and the complex:  

3/)score-Zscore-Zscore-(Z score-Z  Mean ligandreceptorcomplex ++=               (5) 



105 
 

In Figure 3.7, we show the mean Z-score versus the TM-score of the first COTH models of 

the 180 training proteins. There is a positive correlation between Z-score and TM-score with 

correlation coefficient=0.77. Accordingly, the query proteins are categorized into “easy” or 

“hard” targets based on the Z-score, i.e. when a query has at least one template alignment with 

an average Z-score >2.5 it is defined as an “easy” target; otherwise it is labeled as a “hard” 

target. If templates with TM-score above 0.4 are considered to be reliable, the false positive 

and false negative rates of Z-score=2.5 are 8.2% and 5.1%, respectively, for the training 

proteins. When applying this definition of Z-score to the 500 test proteins, 296 cases are 

considered as “easy” targets and 204 that are “hard” targets. The average TM-score for “easy” 

and “hard” proteins are 0.478 and 0.245, respectively. These data demonstrate that the Z-score 

can be used as a reliable indicator of the template quality. 

 

Figure 3.7:  TM-score versus Z-score of the first COTH templates for 180 training proteins.  
 
3.2.6 Structural superposition and combination of monomer templates 

Most proteins in the PDB library have been solved in monomer form [49]. As a result, the 

number of available structures in monomer structure library (38,884) is much higher than that 
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in dimer structure library (6,118). The structure space is far more complete in the tertiary 

structure library than in the complex structure library. It is therefore expected that by 

combining both the tertiary and quaternary structure libraries the COTH threading alignments 

can be further improved. To achieve this, first the normal COTH threading procedure as 

described above is used to identify the template frames of complex structures. Meanwhile, 

COTH threads the monomer sequence (the individual chains of the dimer) to the tertiary 

structure library by the MUSTER algorithm. Finally, the MUSTER monomer templates, which 

usually have a better tertiary structure quality than that of the COTH-threading templates, are 

superimposed by the TM-score rotation matrix on the COTH complex templates, based on the 

commonly aligned residues. It should be noted here that only the aligned regions in the 

MUSTER and COTH threading alignments was used for superposition (but not the original 

PDB structures of the templates structurally aligned together). If no commonly aligned residues 

are present between the MUSTER and COTH threading template (which actually never 

happened in any of our training or testing proteins), the program simply discards the 

superposition step and retains the original COTH threading template alignments. 

The final complex model consists of the re-oriented structures of the MUSTER templates. 

If there are regions which are aligned by COTH threading but not aligned by MUSTER, the 

structural coordinates are not copied to the final models because these regions may have steric 

clashes with the MUSTER templates though it increases the coverage. The advantage of the 

superimposition step is that the resultant template retains the information regarding the relative 

orientation of the chains extracted by the COTH threading alignment while the tertiary 

structure qualities of the individual chains are significantly improved since the MUSTER 

templates have been generated from a much larger structure library. However, it is possible 
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that in some rare cases, the combination step may result in unphysical inter-chain clashes (the 

inter-chain Cα-Cα distance <3.8Å). To rule out the clashes, the COTH program automatically 

discards the residues from the chain of higher alignment coverage which has a distance <3.8 Å 

to any residues in another chain. 

When superimposing and combining monomer and dimer templates, COTH  takes the top-

five templates from MUSTER for each chain; each of the monomer templates is then 

superimposed on the top-ten dimer templates from COTH, which results in 250 dimeric 

structures (=5×5×10). To rank the 250 structures, we structurally aligned each of the structure 

to the other 249 structures by the multimeric structure alignment program MM-align and 

calculate the average TM-score of the structure compared with others. The structure of the 

highest TM-score to other template, which means a consensus, is selected as the final COTH 

model. 

3.3 DISCUSSIONS 

A new algorithm for protein complex structure modeling by threading-based template 

identification and the monomer-dimer alignment combination, COTH, was developed. The 

algorithm takes the advantage of the well-established threading alignment methods in protein 

structure prediction and the complement of tertiary and quaternary structure libraries. The ab 

initio binding site prediction is further exploited to assist the chain orientation selections. 

The COTH method has been tested on two independent sets of protein-protein complexes. 

In the first test on 500 non-homologous complexes, COTH produces predictions with a TM-

score >0.4 (or RMSD<6.5 Å with alignment coverage >70%) for nearly half of the cases when 

all homologous templates with a sequence identity >30% or detectable by PSI-BLAST with E-

value <0.5 are excluded. Detailed comparisons of four different alignment methods show 
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COTH threading with ab initio binding site predictions outperforms C-MUSTER, a direct 

extension of the tertiary threading algorithm combining multiple structural information; C-

MUSTER in turn performs better than the profile-profile based alignments methods, which 

outperforms the sequence-profile alignment by PSI-BLAST. Overall, COTH threading 

(combining the advantages of the profile-profile alignment and multiple-resource structure 

information) outperforms PSI-BLAST by 46% in TM-score. When combining the tertiary 

threading alignments, the improvement over PSI-BLAST increase to 63%. Another observed 

trend in COTH is that the threading-based methods tend to be more reliable for enzyme-ligand 

complexes as compared to antibody-antigen complexes due to the conservation in sequence 

profiles in the former.  

In the second test of 77 protein complexes from ZDOCK benchmark 3.0, COTH was compared 

with ZDOCK, which constructs complex structures by docking unbound experimental 

structures (or predicted full-length monomer models). It is found that COTH performs 

favorably with a higher accuracy than ZDOCK in predicting the binding-site interface residues; 

however, the number of interface residues in the COTH prediction is lower. For the interface 

contact prediction and the accuracy of interface structure represented by interface RMSD, 

COTH shows complementarity in performance with respect to ZDOCK, especially for the hard 

cases when binding-induced conformational changes are involved.  

Since COTH has benefited from recombination of monomer threading templates from 

MUSTER, the algorithm can be further improved by exploiting the meta-server threading 

approaches. A recent experiment showed that combining templates from multiple threading 

programs results in at least 7% TM-score increase compared to the best single threading 

methods [43]. The COTH method currently takes, on average, 30 minutes for a medium sized 
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dimer protein of about 400 amino acids on 2.6GHz AMD processors. This efficiency in CPU 

cost ensures the feasibility of accommodating increasingly larger structure libraries as well as 

including more single-chain based meta-server threading approaches. It also represents a 

favorable performance in terms of speed of calculation as compared to the docking methods 

which usually costs several hours for docking one pair structures. Thus, COTH represents one 

of the first, fast and reliable methods for predicting template structures of protein complexes 

from the sequence information. The COTH on-line server is publicly accessible at 

http://zhanglab.ccmb.med.umich.edu/COTH. 
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CHAPTER 4. Reassembly and Refinement of Multimeric 

Templates Using Replica-Exchange Monte-Carlo Simulations 

Subsequent to the steady success observed in the field of automated structure prediction of 

monomeric proteins[1-4], the time is ripe for investment of the considerable knowledge 

gathered from the experience, to attempt the prediction of protein-protein complex structures 

from the primary amino acid sequence alone. Admittedly, the three major existing problems in 

protein structure prediction; 1) detection of remote homologs/structural analogs for use as 

templates 2) efficient search of the conformational phase space and 3) design of accurate 

funnel-shaped force fields[2, 5] is multiplied when trying to predict not one but two protein 

chains in association with each other. However, carefully adopting the strengths of existing 

algorithms designed for accurate structure prediction of monomers in conjunction with newly 

designed force fields and conformational search techniques to reflect the conformational space 

of interacting protein partners can lead to low to medium resolutions models in a number of 

cases[5].  

A major bottleneck in the prediction of protein quaternary structures is the high degree of 

incompleteness of the protein quaternary structure library. Without the availability of reliable 

templates, a large number of query sequences become “free modeling” or “ab initio” targets for 

which success is very limited. Though in a stage of relative infancy[6-9], a number of 

significant efforts have been made in recent years to try and circumvent this problem[5, 10-12] 

as discussed in Chapter 3. M-TASSER[5] went one step further, used the templates identified 

by MULTIPROSPECTOR and subjected it to multiple reassembly and refinement steps to 

generate full length complex structures. 
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One drawback of the above monomer based threading algorithms is that the cooperativity 

of multiple-chain alignments, for example, binding specificity and burial interactions, cannot 

be correctly accounted for during the course of threading alignments because the alignment 

result of one chain is independent from that of another chain. Similarly, though ambitious in 

scope M-TASSER falls short because it essentially treats the problem as one of simultaneously 

modeling two protein chains without searching the orientational space between the two 

subunits of the complex.     

COTH, the multimeric threading algorithm discussed in Chapter 3, aligns both chains of a 

given target complex simultaneously to both chains of putative templates present in a protein 

complex library. COTH was shown to outperform traditional multimeric threading algorithms 

based on PSI-BLAST and was also shown to perform comparably with rigid body docking 

algorithm ZDOCK[13-14] in terms of I-RMSD (Interface-RMSD), accuracy and coverage of 

predicted interface residues. This was possible even after removing all homologous templates 

(sequence identity > 30%) while performing threading. However, one major problem observed 

was the gaps in the alignment which meant that the predicted structures were not full length 

complexes. Secondly, in approximately 50% of the cases, COTH was unable to find remote 

homologs/structural analogs which led to prediction of non-native folds. The deficiencies of 

COTH necessitated the development of the next logical step; to generate full length complexes 

by modeling ab initio the alignments gaps and reassembling of the aligned template fragments. 

It was also important to refine the orientation between the two chains of a dimer by 

conformational search.  

Here, we describe a new algorithm, TACOS, a hybrid approach geared towards generating 

full length protein dimer structures from sequences. It starts from identified templates from 
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COTH multimeric threading. From there, it fragments them and subsequently reassembles and 

refines the templates (Figure 4.1) using a course-grained schematic similar to the successful 

monomer structure prediction algorithm I-TASSER[15-16]. Notably, I-TASSER, which was 

ranked as the top automated structure prediction methodology in the recently concluded 

CASP7[4], CASP8[4] and CASP9[17] experiments, also uses a similar lattice based strategy to 

predict protein monomer structures from sequence. Importantly, in addition to TACOS 

retaining the distinct flavor of the salient features of the I-TASSER methodology, it introduces 

a number of novel strategies and knowledge-based potentials to capture the unique 

idiosyncrasies of protein-protein interactions. 

 

Figure 4.1: Flowchart of the TACOS, template-based assembly of complex structures, protocol. 
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4.1 RESULTS 

4.1.1 Benchmark Sets 

500 non-redundant small to medium length proteins were selected from the protein 

complex structure library at a sequence identity cutoff of 30%. The 500 proteins were divided 

into two sets; 1) Training set: 150 complexes consisting of 92 homodimers and 58 

heterodimers. The heterodimers in the training set also contained a mixture of different 

biological classes of complexes, 33 enzyme-inhibitor complexes, 19 antigen-antibody 

complexes and 16 other complexes. 2) Testing set: 350 complexes made up of 213 

homodimers and 137 heterodimers. The training set was exclusively used for optimization of 

the TACOS simulation scheme and the TACOS energy function. The method was then 

extensively tested on the remaining test set complexes. During training and testing, all 

templates with a sequence identity ≥ 30% to the target protein complex were removed. 

The complexes in the training and testing set can be classified into “easy”, “medium” or 

“hard” modeling targets. A target complex is classified as an “easy” target if multiple templates 

are identified by COTH with a Z-score ≥ 2.5, as a “medium” target if atleast 1 template with a 

Z-score ≥ 2.5 is detected and as “hard” if no good templates exist. The training set consisted of 

70 easy, 23 medium and 57 hard targets while the testing set consists of 181 easy, 69 medium 

and 110 hard targets. The average number of decoys generated for the 350 test set proteins is 

8313 with more decoys being generated for smaller proteins in general. Better overall result 

was also obtained when homodimers and heterodimers were trained separately as opposed to 

when the two types of complexes were trained together. 
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Figure 4.2: Correlation of TACOS energy with TM-score. Three representative examples, one each for 
easy (left), medium (middle) and hard (right) modeling targets, showing the correlation between energy 
and TM-score. 

 
Overall, the correlation between energy of the final decoys generated and TM-score of the 

decoys to native was quite high for the test set proteins. The mean Pearson’s correlation 

coefficient for the 350 test case proteins is 0.768. In Figure 4.2, we show 3 representative 

examples of each modeling category (easy, medium and hard) showing the correlation of TM-

score and energy. The general trend observed was that the decoys for easy cases spanned a 

larger TM-score range and the sampling was also better in the higher TM-score ranges which 

can be attributed to multiple reliable templates. However, even though the medium and hard 

case proteins have less number of decoys in the higher TM-score bins, the correlation between 

the energy and the TM-score was still very high with the mean correlation for the medium 

cases only being 0.771 while that for the hard cases only was 0.756. 

4.1.2 Improvement over initial templates 

Overall improvement: One of the primary goals of TACOS was to try and draw the initial 

templates closer to the native structure. Hence, it is imperative to check whether that was 

indeed the case by comparing the initial templates from COTH threading with the final models 

generated by TACOS. In Figure 4.3A, the TM-score of the initial top 1 COTH threading 

templates is plotted against the top 1 cluster centroid generated after the clustering of decoys. 

Figure 4.3B shows the rTM-score of the best in top 10 templates plotted against the best in top 
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Figure 4.3: Plot showing benchmark results of TACOS on 350 test set proteins. A) Figure showing 
comparison of TM-score of top 1 COTH threading template versus top 1 model generated by TACOS. 
The points above the diagonal line indicate targets showing improvement in TM-score for the model 
generated by TACOS. B) The same plot shown for rTM-score the best in top 10 COTH threading 
template against the best in top 5 TACOS model. C) The same comparison for Top 1 template and top 1 
model but in the threading aligned region only. In this case, the length of the template alignment was 
used for normalization during the calculation of the TM-score. D) Histogram showing the distribution 
of TM-score of top 1 model for all 350 targets. 

 

Improvement in template aligned regions: Since, when calculating TM-score/rTM-score 

normalization is done by the length of the native structures and the COTH threading templates 

contain gaps in the unaligned regions, it is possible that the TM-score/rTM-score improvement 

observed overall is simply because of the increased coverage in the final models. To verify 

whether that was indeed the case or whether the TACOS simulation was successful in refining 

the template aligned regions as well, we compared the TM-score to native in the template 

aligned regions only for the Top 1 COTH threading template and the top 1 cluster centroid of 

TACOS. In this case the TM-score was normalized by the length of the threading aligned 

regions. As shown in Figure 4.3C, TACOS successfully refines the templates in the aligned 

regions with an increased TM-score being observed for 244 cases (70%).  

Performance for easy, medium and hard targets: To examine further the effect of the 

quality of the initial COTH templates on the final models generated by TACOS, we analyzed 

the performance of TACOS for the easy, medium and hard category targets separately. In all 

three categories, as shown in Figure 4.4, the average TM-score/rTM-score of the final TACOS 

models is significantly higher than the initial COTH threading templates. Among the 181 easy 

cases, a TM-score/rTM-score increase (for the top 1 model against top 1 template) was noted 

in 150/141 cases. For the 69 medium targets TACOS showed an improvement in 56/52 targets 

and for the hard targets, 79/70 targets showed an overall increase in TM-score/rTM-score.  
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Figure 4.4. Comparison of TACOS with control methods. Plot showing comparison of the best in top 5 
models of TACOS as compared to ITASSER-ZDOCK, MODELLER-ZDOCK and COTH threading in 
terms of TM-score. While TACOS is observed to be the best performing method overall and for easy 
and medium cases, ITASSER-ZDOCK has a slightly higher average TM-score for the 110 hard targets 
as compared to TACOS. 

 

What went right: Out of the 324 cases where the final model showed an improvement over 

the template, 136 had an improvement in TM-score of atleast 20%. The reason for the 

improvement can be attributed to an increase in coverage as well as refinement of the template 

aligned regions. Importantly for 39 of these 136 cases, a increase of > 20% was observed in 

terms of inter-chain contact prediction accuracy and coverage which basically implies that the 

orientation of the chains with respect to each other were significantly refined. Again, in terms 

of high-accuracy predictions, there are 36 cases with a TM-score and rTM-score ≥ 0.7 and a 

global RMSD ≤ 5.0 Å.  

In Figure 4.5, we show four examples of successful near-native models built by TACOS, 

two from homodimers and two from heterodimers. Figure 4.5A presents an example of an all-
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alpha homodimeric complex from B. subtilis which is a putative HTH-type transcriptional 

regulator (PDBID: 1sgmA0-1sgmB0). The best initial template identified by COTH is from the 

putative tetR-type transcriptional regulator form S. coelicolor (2hyjA1-2hyjA2) which has a 

sequence identity of 17.1% to the target. The RMSD of the template to native is 3.21 Å in the 

aligned region. TACOS refined the backbone fragments and the top-ranked model has a 

RMSD of 2.06 Å to the native. In the same threading aligned region, RMSDali is reduced from 

3.21 to 2.02 Å. Accordingly, the TM-score of template is increased from 0.763 to 0.891. Figure 

4.5B is another homodimeric example but with an all-beta topology. The TM-score/RMSD of 

the best template was improved by TACOS from 0.654/4.10 Å to 0.833/3.14 Å. 

Figure 4.5C is an example of alpha-beta type of heterodimeric complex between Ulp1 

protease and ubiquitin like protein SMT3 (PDB ID: 1euvA0-1euvB0). The best COTH 

template, the sentrin-specific protease 8 and Neddylin (2brkA0-2brkB0) which has a sequence 

identity of 21.5% to the target, had an RMSD/TM-score 0.726/4.33Å to the native. It was 

refined by TACOS with the final model having a TM-score/RMSD of 0.884/2.76 Å. Similarly, 

the template of the heterodimer 1d9kA0-1d9kB0 in Figure 4.5D was refined from 0.754/3.18 Å 

to 0.934/1.78 Å in terms of TM-score/RMSD. 

 

Figure 4.5. Near-native models built by TACOS. Plot showing examples of TACOS modeling for 
both homo and heterowhere a glycine linker was used to connect both chains into an artificial 
chain. The first predicted models, shown in red and slate cartoon, are superimposed on the native 
structure, shown in green and yellow transparent cartoon for chain A and B, respectively. 
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In all the four cases, both the interface region and the global topology have been improved 

compared to the threading templates. For 1sgm/1e7n/1euv/1d9k, the interface RMSD of the 

COTH templates were 2.8/4.6/3.2/2.1 Å while that of the final models were 2.6/3.6/2.9/1.8 Å. 

In all the cases, the interface backbone atoms were modified by 2.8-4.2 Å by TACOS 

modeling, where the interface residue packing was driven in a correct direction as 

demonstrated by reduction of I-RMSD. 

What went wrong: 110 of the 350 targets are identified as “hard” targets by COTH which 

indicates that no reliable templates exist for these cases and are essentially treated as to be built 

ab intio. While TACOS does manage to improve the TM-score in a large majority of these 

hard targets three notable examples stand out (1ym3A1-1ym3A2, 1q06A-1q06B, 1lq9A-

1lq9B) where there is a large regression in TM-score in the final TACOS model as compared 

to the template. All these three cases (seen quite clearly placed well below the diagonal line in 

Figure 4.3A, B and C) were classified as “hard” targets by COTH because the alignment 

coverage for COTH threading was very low but the orientation of the template was in fact 

correct. Unfortunately, TACOS (because of the low coverage which lead to a low Z-score for 

the templates) recognized it as a hard target and altered the orientation of the chains since the 

weight of the template-based restraints are kept low for hard cases. This resulted in the models 

being driven away from the native orientation leading to low TM-scores. However, the silver 

lining is that the numbers of such cases are very few. Using a combination of ab initio interface 

prediction methods like BSpred when seen to share a consensus with template-based interface 

predictions may offer a solution to modeling such targets.   
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4.1.3 Comparisons with docking 

Performance of model-model docking: The current alternative to modeling the dimer as a 

whole when the structures of the component subunits are unknown is to model the dimers 

separately and then dock them together using rigid-body docking algorithms[13, 18-23]. 

Although, docking of protein models has been attempted before[24-25], a systematic study 

with advanced modeling methods like I-TASSER has not been attempted. Accordingly, we 

first evaluated the feasibility of performing docking experiments with protein models instead 

of unbound experimental structures. To perform this study, 77 dimeric proteins of the ZDOCK 

Benchmark 3.0[26] was selected and the unbound sequences of all the subunits were modeled 

using I-TASSER (154 total chains). The models were then docked together using ZDOCK 

(RDOCK refinement was not performed in this case). Simultaneously, we also ran ZDOCK 

with experimental unbound structures and the results were compared in terms of number of 

“hits” in the decoy pool where a hit is defined as a target with atleast one model among the top 

N decoys with Interface-RMSD (I-RMSD) less than a cutoff (5.0 Å and 2.5 Å cutoffs were 

used for this study). Overall the performance of ZDOCK when using modeled protein 

structures were found to be comparable to docking starting from the unbound experimental 

structures when using the cutoff of 5.0 Å to define a hit. Figure 4.6 shows the comparison of 

model-model and unbound native-unbound native docking when the top 1000 decoys are 

considered. Interestingly, the quality of the decoy pool remains very similar and the 

performance of ZDOCK when using I-TASSER modeled structures or experimental unbound 

structure proceeds neck-and-neck till the top 1000 decoys. 
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Figure 4.6: Success rate of ZDOCK on I-TASSER models versus that on the unbound x-ray structures. 

Playing devil’s advocate, it can be argued that the performance of ZDOCK when using 

experimental unbound structures was significantly better when a cutoff of 2.5 Å is used to 

define a hit. However, this is very much expected since, no matter how accurate current state-

of-the-art structure prediction is, it will contain small local errors and since model-model 

docking involves two models per case (meaning double the error) a 5.0 Å cutoff is still 

reasonable. Further, even though the criterion for a hit is slightly lenient, as is the case when 

using a 5.0 Å cutoff, the fact that both methods were compared using the same criteria ensures 

that the analysis does not lose out on objectivity. Hence, it can be stated that model-model 

docking can be considered a viable alternative to experimental unbound structure docking and 

therefore can be reliably used when the unbound experimental structures of the subunits of a 

complex are not known.  

Comparison of TACOS performance against model-model docking: To obtain an objective 

analysis of the performance of TACOS as compared to rigid-body docking algorithms, both 

chains of the 350 complex test set were modeled using I-TASSER. Since I-TASSER is an in-

house algorithm, we also modeled the constituent chains of the dimers using MODELLER[27] 
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with MUSTER templates and alignments being provided as input. The models of the individual 

models were subsequently docked using ZDOCK followed by refinement using RDOCK[14]  

(the methods are referred to as ITASSER-ZDOCK and MODELLER-ZDOCK). The final 

models (best in Top 5 models) were evaluated according to the following criterion i) TM-score 

ii) rTM-score iii) Median I-RMSD iv) Number of hits v) Inter-chain contact accuracy and 

coverage. Modeling by both I-TASSER and MODELLER was carried out using the 

“benchmark” setting i.e. all templates with sequence identity ≥ 30% to the target sequence 

were excluded. 

Out of the 700 individual chains (350×2) 521 were classified as “easy” targets, 123 were 

classified as “medium” targets and 106 were classified as “hard” targets by LOMETS. The 

average TM-score of the 700 models generated by I-TASSER was 0.663 while that by 

MODELLER was 0.612. Overall, among the 350 dimers of the test set, 223 cases had both 

chains modeled by I-TASSER with a TM-score ≥ 0.5 which according to Xu and Zhang[28]  

indicates the model share the same basic topology as the target. 

Method rTM-score TM-score Median I-RMSDa CAcc/CCov
b Hitsc 

TACOS 0.377 0.475 8.34 Å 46.8%/45.3% 107 

ITASSER-ZDOCK 0.354 0.443 8.97 Å 45.6%/44.3% 102 

MODELLER-ZDOCK 0.326 0.411 9.83 Å 32.4%/41.4% 88 

COTH threading 0.313 0.384 6.66 Å 33.9%/34.8% - 
a I-RMSD stands for Interface Root Mean Square deviation. Since the range of I-RMSD can vary greatly when the 
orientations of the chains are wrong we calculate the median value instead of the mean. 
b CAcc/CCov stands for the average accuracy/coverage of prediction of native inter-chain contacts in the best in top 
5 models (according to TM-score) as compared to native (SI 4). 
c “Hits” is defined as the number of cases in the 350 complex test set which has atleast model in top 5 predictions 
with an I-RMSD ≤ 5.0 Å to native. 
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Table 4.1. Comparison of performance of TACOS with respect to controls. 

As shown in Table 4.1, TACOS outperforms both ITASSER-ZDOCK and MODELLER-

ZDOCK in terms of all four evaluation criteria. Interestingly, even COTH threading alone is 

comparable to MODELLER-ZDOCK in-term of average TM-score and rTM-score but as 

reportedly previously, COTH threading acts in complementarity with rigid-body docking. 

Overall, TACOS outperforms ITASSER-ZDOCK 0.377/0.475 to 0.354/0.443 in terms of mean 

TM-score/rTM-score of the best in top 5 models, an improvement of 6.5%/7.2%. When 

compared to MODELLER-ZDOCK the scores are 0.326/0.411 for TACOS and MODELLER-

ZDOCK respectively or an improvement of 15.6%/15.5%. Importantly, TACOS beats 

ITASSER-ZDOCK in 226 out of 350 cases while it beats MODELLER-ZDOCK in 259 out of 

350 cases. In terms of median I-RMSD as well, TACOS shows an improvement of 

6.9%/15.2% over ITASSER-ZDOCK/MODELLER-ZDOCK. If the number of hits are 

considered, TACOS generates atleast 1 hit among the top 5 models in 107 out of 350 cases 

while ITASSER-ZDOCK and MODELLER-ZDOCK produces a hit in 102 and 88 cases 

respectively.  

Among the 110 targets which are classified as TACOS “hard”, the average TM-score/rTM-

score of ITASSER-ZDOCK is slightly higher than that of TACOS while that of MODELLER-

ZDOCK is comparable. However, among the 110 hard targets, 69 have atleast 1 chain which 

are hard targets for I-TASSER as well (as classified by LOMETS in this case). If only these 69 

targets are considered, then the average TM-score/rTM-score of TACOS is higher than that of 

ITASSER-ZDOCK and MODELLER-ZDOCK. Therefore, according to our evaluation, 

TACOS is a more robust and versatile option to model-model docking, in order predict protein-

protein complex structures when the experimentally determined constituents of the dimer are 

not known. 
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Predicting native contacts: One of the most important objectives of complex structure 

modeling is to predict the native inter-chain contacts correctly. Therefore, we found it 

imperative to assess the predicted complex structures based on accuracy and coverage of native 

contact prediction. As a control, we also assessed the performance of ITASSER-ZDOCK in 

correctly predicting contacts at the interface. Even though TACOS lays more emphasis on 

predicting the complex as a whole, it still predicts the native contacts with higher reliability 

than ITASSER-ZDOCK. Overall the prediction accuracy of inter-chain contacts by TACOS is 

46.8% with coverage of 45.3% while that for I-TASSER-ZDOCK is 45.6% with coverage of 

44.3%. Moreover, TACOS has 43 targets with both CAcc and CCov above 75% while ITASSER-

ZDOCK has 37 cases in the corresponding category. Based on performance therefore, it can be 

concluded that TACOS is successful not only in predicting the overall structure of complexes 

but also successful in recuperating reliably, the native inter-chain contacts starting from 

sequence alone. 

4.1.4 Performance of TACOS across different protein complex classes 

Protein complexes can be categorized into various classes based on different criteria like 

sequence identity of constituent chains to each other (homo and heterodimers), lifetime of 

association (permanent and transient) and biological process involved (enzyme-inhibitor, 

antigen-antibody and others) to name a few. The different complex classes can have few 

idiosyncratic characteristics which makes them unique. We therefore considered it prudent to 

analyze the performance of COTH across different categorizes of complexes in order to check 

its consistency. However, we restricted our analysis to homo- and heterodimers and according 

to the biological process involved. Unfortunately, though a very important categorization, it is 

often not possible to automatically judge (based just on its structure or sequence) the lifetime 
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of a protein complex. Hence, it was not possible to judge the performance of TACOS on 

permanent and transient complexes. 

Overall, if the performance of TACOS for homodimers is better than that for heterodimers. 

For the 213 homodimers in the test dataset, the average TM-score/rTM-score for the best in top 

10 templates is 0.513/0.402 while that for the heterodimers the mean scores are 0.415/0.338. 

First, the number of heterodimers in our library is lesser and in general heterodimers have more 

sequence diversity which is why COTH threading finds it more difficult to identify good 

templates from which full length structures can be modeled. Secondly, unlike homodimers, 

many types of heterodimeric interactions are side chain dependent (especially antigen-antibody 

interaction) which our course-grained approach is less successful in reproducing. However, in 

some case TACOS is still able to predict near-native models of heterodimeric complexes. In 

Figure 4.5 we show examples of near-native structure (one homodimers, one heterodimer) 

predicted by TACOS. Among the 137 heterodimers, there are 76 enzyme-inhibitor complexes, 

39 antigen-antibody complexes and 22 other complexes. The performance of TACOS for 

enzyme-inhibitor complexes was significantly better as compared to antigen-antibody complex 

in terms of rTM-score, a trend similar to that of COTH threading. The reason for this can be 

attributed to the fact that even though TACOS predicted the antibody chain with high TM-

score in most cases, the orientation of the antigen chain was often incorrect leading to low 

rTM-scores. 

4.2 MATERIALS AND METHODS 

The TACOS methodology has four distinct steps; 1) template selection 2) mapping of 

dimer onto an artificial monomer placed on lattice 3) structure assembly and 4) model selection 

and refinement. Each of the steps is described in detail in the following. 
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4.2.1 Template selection 

In the first step, TACOS attempts to identify homologs/structural analogs of the given 

complex query sequence by threading it across representative monomer and complex structure 

libraries screened at 70% sequence identity by using the COTH complex threading algorithm 

[29]. The search for templates by COTH requires two distinct steps. First, the complete dimeric 

sequence is threaded across a complex structure library by “COTH threading”. The scoring 

function of COTH threading includes multiple sources of predicted structure information like 

secondary structure, solvent accessibility, torsion angles, hydrophobicity as well as putative 

interface residues predicted using a ab initio neural network based approach. COTH threading 

also implements a novel modification of the Needleman-Wunsch dynamic programming where 

the alignment of chains between the query and the template are forbidden.  

In the second step, the individual chains of the query complex are threaded across the six 

times larger monomer structure library by LOMETS. The individual chain templates thus 

identified by LOMETS are thereby superimposed on the dimer template framework identified 

by COTH threading. The use of LOMETS to identify templates for the individual chains of the 

complex seeks to circumvent the problem of the incompleteness of the complex structure 

library. The use of the much larger monomer library ensures more accurate templates for the 

individual chains while superposing them on the COTH threading framework ensures the 

orientation information indentified by dimeric threading is retained.  

Based on the hypothesis that the COTH threading templates and the LOMETS templates 

provides valuable information regarding the structure of the complex, restraints are added to 

the TACOS simulation which ensures that the decoys retain the information of the templates 

and are not completely driven away from it. Thus, intra-chain distance and contact restrains are 
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generated from the LOMETS templates while inter-chain restraints containing orientation 

information of 2 chains are collected from the COTH threading templates and used as energy 

terms to drive the TACOS simulation. 

4.2.2 Mapping of dimer onto an artificial monomer on CAS lattice  

The entire complex structure is course-grained and represented only by the Cα atom and 

the side chain center of mass (SG). First, the template unaligned or gapped regions are built 

using a Cα random walk to connect the continuous template aligned fragments and build an 

initial full length structure. If any of the unaligned regions between two aligned fragments 

cannot be connected completely by 3.8Å Cα-Cα bonds then a large bond remains and an 

external spring like force is applied until a reasonable bond length is achieved. The complex 

structure is then segregated into “template-aligned” and “template-unaligned” regions and 

placed on the CAS on and off lattice model also used by I-TASSER. Here, the Cα atoms of the 

template un-aligned (gapped) regions are placed on-lattice and are treated as “to be built de 

novo” while the template aligned fragments are placed off-lattice and subjected only to rigid 

body adjustments. The SG atoms are always placed off-lattice. Finally, the dimer is represented 

on lattice as an artificial monomer with a long “psuedobond” connecting the C-terminal of the 

first chain with the N-terminal of the second chain. The pseudobond is kept completely flexible 

during the assembly and refinement simulations and can have any length. This convenient trick 

allows the well established simulation protocol to treat the complex as essentially a monomer 

prediction problem and ensures the direct adoption of the many I-TASSER energy potentials 

and movement schemes to TACOS. The representation of the complex structure on the CAS 

lattice joined by the pseudobond has been shown in Figure 4.7. 



Figure 4.7: Plot showing CAS lattice based representation of dimer structure
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Figure 4.7: Plot showing CAS lattice based representation of dimer structure. A completely flexible 

bond is used to connect the C-terminal of the first chain with the N-terminal of the second 

. The dimer is represented in an on- and off- lattice system as shown in the blowout (top

with the template aligned Cα residues being placed off-lattice (green spheres) and the unaligned Cα 

(blue spheres) are placed on-lattice. 
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replacement of 4-,5- or 6- continuous bonds in the present decoy by a combination of the 2- 

and 3-bond moves. iii) Terminal random walk: here the entire region between any random 

point m to the N- or C-terminal is rebuilt using a Cα random walk.  For the off-lattice moves, a 

continuous template aligned fragments is subjected to a rigid body translation, rotation and 

deformation (2- or 3- bond movement within the fragment).    

 Inter-chain movement: This movement was built on the premise that initial orientation of 

the two chains may be incorrect or require readjustments. Accordingly, a new inter-chain 

movement was designed to explore the orientational search space. Here, one of the chains of 

the dimer (smaller one for heterodimers and either one for homodimers) is first randomly 

moved to any new position. Following this, the vector between the center of the mass (COM) 

of both chains is defined and the chain is subjected to randomly selected small rigid body 

rotation and translation motions (while keeping the center of mass fixed along the COM 

vector) with each move being selected or rejected based on the standard Metropolis monte-

carlo criteria. Newly defined inter-chain specific potential terms were defined to guide the 

movement. It should be noted here that the large inter-chain move disrupts the lattice 

representation of the mobile chain and hence the CAS lattice is redefined after every inter-

chain move. At the end of one cycle of the inter-chain move, the final energy (inter-chain 

energy plus local conformational energy) is calculated and the new position is rejected or 

accepted once again based on the standard Metropolis criteria. The overall simulation schema, 

balancing large inter-chain moves with local refinements is shown in Figure 4.8. 
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Figure 4.8. Flowchart showing the replica-exchange monte-carlo movement schematic of the TACOS 
simulation.  
 
4.2.4 Structure Assembly: Inter-chain energy terms 

A statistical, knowledge based energy function was designed and optimized to drive the 

TACOS simulation. Since TACOS seeks to simultaneously build both the individual chains of 

the dimer as well as modeling their orientation and interface match, the potential terms belong 

to two distinct classes: 1) local terms aimed at mimicking the monomeric conformational 

energy landscape and 2) inter-chain terms to maximize the complementarity of the dimer 

interface required to stabilize the interaction. Due to the use of the pseudobond, the simulation 

protocol can essentially treat the problem as a monomer prediction problem thus allowing all 

the inherent I-TASSER potential terms[15, 30] to be directly carried over and are used to guide 

the local conformation search.  
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The new inter-chain energy terms contain a mixture of template based restraints and 

knowledge-based potentials derived from the complex structure library. The new energy terms 

are discussed in more detail in the following. The w indicates the weight of the energy term (all 

terms are combined linearly) which was carefully optimized by large-scale benchmarking on 

the training set proteins. 

i) ECOM: Computes the distance between the Center of Mass (COM) of the two dimer chains 

and is required to prevent the two chains from drifting too far away during the simulation 

procedure where the equation is given by 

                                   2
COMCOM dwE ×=                           (1) 

where dCOM is the distance between the two center of masses. On the other hand, this potential 

can dictate one chain into collapsing onto the other and hence needs to be balanced with a large 

clash penalty to ensure a roughly accurate placement of the chains with respect to each other.  

ii) Eclash: A large clash penalty is assessed if any atom (Cα or SG) of one chain has a distance < 

3.8 Å on any atom in the opposite chain. 

iii) ENcontact: To be stable, a number of inter-chain contacts are required to stabilize the dimer 

interface. Accordingly, based on the hypothesis that atleast 30 inter-chain contacts are required 

for a stable complex formation, a large penalty was assessed for decoys with no inter-chain 

contacts and then gradually decreased as more inter-chain contacts were formed eventually 

becoming a constant for more than 30 inter-chain contacts. The equation for this energy term is 

given by  
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 where N is the number of inter-chain contacts. The energy is kept constant after 30 inter-chain 

contacts are formed to prevent the structures being compressed into being flat sheets where all 

residues are forming contacts. 

iv) Eoricontact: For any residue i and j in opposite chains which are in contact, the orientation of 

the unit bisector vectors of i and j can be in three different orientations as defined by their dot 

product; parallel, anti-parallel or perpendicular. This energy term is described in the form of a 

general exclusion volume potential for the SG atoms and is given by  
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Here, Lch1 and Lch2 are the lengths of chain 1 and 2 respectively, ci,j (si,j) is the distance 

between the Cα (SG) atoms of residue i and j, Ai (Aj) is the amino acid type for residues i (j), γi,j 

is the orientation of the bisector vectors of i and j. Rmin(Ai,Aj,γi,j) (Rmax(Ai,Aj,γi,j)) is the 

minimum (maximum) distance observed between amino acids Ai and Aj for either of the three 

γi,j types in the complex structure library and e(Ai, Aj, γi,j) is the probability of a amino acid pair 

to be in orientation γi,j (total number of times any particular amino acid pair is observed in 

orientation γ divided by the total number of times the that particular amino acid pairing is 

observed). 

v) Erespref : This is defined as the preference of the Cα atom of an amino acid Ai  to be present in 

one chain when the Cα of another amino acid Aj is present at a distance less the 6.0 Å on the 

opposite chain and is given by the equation: 
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Here, f(Ai,Aj) is the total number of times the pairing of amino acids Ai and Aj is observed at a 

Cα distance less than 6.0 Å among the complex structures in the library while t(Ai) is the total 

number of times the amino acid Ai is observed among the structures in the library. 

vi) Eresdistpref : This potential terms seeks to account for the preferred distance between the Cα 

atoms of any two pair of amino acids Ai and Aj. Since we are only interested in the interface 

residues in this case the range of distance considered is from 4.0 Å to 12.0 Å which was 

divided into 8 distance bins λi,j of 1.0 Å each. Thus the final potential is given by the equation 
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Here, q(Ai,Aj,λi,j) is derived from the complex structure library and is given by the total number 

of times the Cα atoms of the amino acids Ai and Aj belonging to different chains of a complex 

are present in the distance bin λi,j divided by the total number of time the Cα atoms of Ai and Aj 

are present within 4.0 Å to 12.0 Å of each other. 
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vii) Edistmap : This energy function is a template-based restraint which penalizes the deviation 

observed between the distance of residue i in chain 1 and residue j in chain 2 in the generated 

decoys with respect to the template and is given by the equation 
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where rij is the distance between the residue i and j in the decoy, dij is the average distance 

between residue i and j in the top templates while δij is the standard deviation. 

viii) Etcontact : A penalty of 1 is assessed when residue i and j belonging to opposite chains of 

the complex are found to be in contact (dij ≤ 4.5 Å) in multiple templates but are not in contact 

in a given decoy. 

4.2.5 Evaluation 

The similarity of protein tertiary structures is often evaluated by TM-score[31], which can 

be simply extended to the comparison of complex structures: 
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where Lc is the total length of all chains in the target complex and Lali is the number of the 

aligned residue pairs in the two complexes. di is the distance of ith pair of Cα atoms after the 

superposition of the complex structures. 8.115)( 3
cc0 −−= LLd  is a length-dependent scale to 

normalize the distance so that the overall TM-score of random complex structures is 

independent of the protein size. max[…] indicates the optimal superposition to maximize the 

overall TM-score value.  

For complexes, TM-score in Eq. 3 can be factorized as two additive parts from two chains:  
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where Lr and Ll are lengths of the receptor and ligand, respectively; TM-scorer and TM-scorel 

are their TM-scores calculated based on the same rotation matrix of the complex superposition. 

Therefore, one disadvantage of TM-score, when used to compare complex structures, is that it 

becomes more sensitive to the tertiary structure of the monomers, due to the linear dependence 

of the monomer TM-scores. For example, for a pair of homodimers, if the structure of one 

chain is identical, the TM-score is at least 0.5 even if the orientation of the other chain is 

completely different. For heterodimeric complexes, if one chain is much bigger than the other, 

the TM-score can be dominated by the structural similarity of the bigger chain regardless of the 

structure and orientation of the smaller chain because the weighting factor for the small chain 

(
c

l

L
L ) is too small in Eq. 12. To overcome this drawback, we define a new score called 

reciprocal TM-score, or rTM-score, given by 

lr score-TM

1

score-TM

1
2

score-rTM
+

= .              (13) 

Here, the factor 2 in the numerator is used to normalize the range of rTM-score within [0, 1]. 

The definition of rTM-score in Eq. 13 makes the score more sensitive to the overall 

structure similarity of the complex, i.e. the relative orientation of the component chains, rather 

than the individual monomer structures. For instance, if the structure or orientation of one 

chain is very different (i.e. TM-scorel~0), the rTM-score of the complex structure will be close 

to 0 even if the structure of another chain is identical (TM-scorer~1). In other words, two 

complexes have a high rTM-score only when both the monomer tertiary structure and the 

relative orientation are similar. 
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Quantitatively, for tertiary protein structures, it has been shown[28] that the posterior 

probability of TM-score of random protein structure pairs has a rapid phase transition at TM-

score=0.5 and the structures of TM-score >0.5 approximately corresponds to the same protein 

folds as defined by the SCOP[32] and CATH[33] databases. Similarly, we define rTM-score 

>0.5 as the complexes of the same interactions. Mathematically, this corresponds to two 

protein complexes which have two chains with the similar relative orientation and the similar 

folds (i.e. TM-scorer,l > 0.5) according to Eq. 13.  

Additional to rTM-score/TM-score of the global complex structure, we also assess the 

modeling quality of protein-protein interface structures, the quality of which is of key 

importance for the functional annotation of protein complexes. Here, a residue is defined to be 

at the interface if the distance of the Cα atom to any Cα atoms in the counterpart chain is below 

10 Å. The interface RMSD, I-RMSD, is the root-mean-squared-deviation of the model and the 

native structure in the aligned region of the interfaces. Accordingly a “hit” is defined as a target 

where at least one of the top 5 five models has an I-RMSD ≤ 5Å. For the 350 targets of the test 

set, since the I-RMSD values can be very large if the orientation of the chains is incorrect, the 

average I-RMSD can be skewed due to these extremely high values. Hence, we use median I-

RMSD instead as an additional measure of the performance of the TACOS method compared 

to control methods. 

Finally, it is of great importance in complex structural biology to correctly identify inter-

chain residue-residue contacts at the protein-protein interface. Therefore we define two 

additional score accuracy and coverage (CAcc and Ccov) to assess the performance of the various 

methods in correctly predicting these all important inter-chain contacts. The accuracy of 

interface contact predictions is defined as the number of the correctly predicted contacts across 
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two chains divided by the total number of cross-chain contacts in the model; the coverage is 

the number of correctly predicted interface contacts divided by the observed cross-chain 

contacts in the native structure. They are given by the equations 

                           
contacts predicted of No.

contacts predictedcorrectly  of No.
=AccC

                             (14)
 

                  
complex nativein  contactschain -inter actual of No.

contacts predictedcorrectly  of No.
=CovC

          (15)
 

4.3 DISCUSSION 

Learning from the experiences gathered in the field of protein structure prediction we 

developed a new algorithm, TACOS, to predict the structure of protein-protein complex 

structures from sequence alone. TACOS, uses a hybrid comparative modeling-ab initio 

approach and therefore first identifies putative templates from a non-redundant protein 

complex structure library by COTH threading. Simultaneously, TACOS uses LOMETS singe 

chain threading to generate intra-chain restraints for the individual subunits of the protein 

complex. In the second step, TACOS uses a lattice-based replica exchange monte-carlo 

simulation to build ab initio the template un-aligned regions and further refines the template 

aligned regions through rigid body moves. TACOS, also seeks to search the ideal orientation 

for the component chains of the complex with respect to each other by using a newly designed 

inter-chain movement which implements a random move of one chain followed by a short 

independent metropolis monte-carlo simulation to produce the best fit at the interface. The 

TACOS simulation is driven by an energy function composed of intra-chain template based 

restraints from LOMETS, inter-chain distance and contact restraints from templates identified 

by COTH threading and knowledge based terms. While some of the knowledge based potential 

terms were adapted from the well known monomeric structure prediction algorithm I-
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TASSER, other newly derived inter-chain potential terms were added to recreate the 

uniqueness of the protein-protein interface in a course-grained fashion. 

The TACOS simulation parameters were trained on a non-redundant set of 150 dimeric 

protein structures and tested on an independent 350 protein dataset. No homologous templates 

with ≥ 30% sequence identity to the query were used for either training or testing. Despite this, 

TACOS performs admirably and can predict full length structures with the same basic fold in 

~60% cases. Importantly, the TACOS simulation is highly successful in refining the initial 

threading templates with an increase in TM-score noted for > 80% cases. It was also noted that 

the increase in TM-score was not simply a product of increased coverage as TACOS is also 

successful in refining the templates aligned regions in 70% cases. However there are a few 

cases which show an overall regression of the model as compared to the initial top template 

which provides direction for attempting further improvements. 

Modeling of the 2 subunits of a dimer separately followed by docking them together using 

rigid-body protein docking algorithms can serve as alternative to TACOS when prediction of 

the complex structure starting from sequence alone is desired. Hence, we compared the 

performance of TACOS to ITASSER-ZDOCK and MODELLER-ZDOCK which model the 

component chains separately using I-TASSER and MODELLER respectively and then dock 

the modeled structures together using ZDOCK. Overall, TACOS is found to perform better 

than either approach in terms of a number of different evaluation criteria. There exist some 

cases which are hard modeling targets for TACOS due to the lack of reliable dimeric templates 

but the component chains are easy modeling targets individually. These cases can be modeled 

better overall with ITASSER-ZDOCK than is possible using TACOS. Another important 

observation that was noted was that TACOS performed better overall for homodimers than for 
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heterodimers and among the heterodimers, enzyme-inhibitor complexes are comparatively 

easier for TACOS than antigen-antibody complexes. 

TACOS thus represents one of the first algorithms designed to predict the structure of 

dimeric protein complexes given the sequence alone. Importantly, the high incompleteness of 

the protein complex structure library implies that the performance of TACOS will improve in 

the years to come as more and more complex structures are available in the PDB. Also, since 

TACOS models both chains simultaneously while taking into account their relative orientation 

it can potentially model the conformational changes brought about by complex formation. A 

version of TACOS which can refine rigid-body docking decoys to model interaction induced 

backbone conformational changes is currently under preparation. The TACOS algorithms can 

be used freely by the academic community through the web-server made available at 

http://zhanglab.ccmb.med.umich.edu/TACOS/. 
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CHAPTER 5. Conclusions  

Even though comparative modeling of protein tertiary structures have made rapid progress 

in the last two decades[1-3], homology-based modeling approaches for protein-protein 

complex structures have remained few and far between[4-9]. The problem of predicting the 

structure of a protein complex has thus largely been restricted to a “docking” problem where 

the unbound subunits of the complex are fitted or docked together if the native structures of the 

unbound subunits are known [10-14]. This work therefore presents one of the first 

comprehensive efforts to utilize the vast information that can be obtained from evolutionary 

relationships towards the development of methods capable of predicting the structure of a 

protein-protein complex from its primary amino acid sequence alone. As more and more 

protein complex structures are experimentally solved and the protein complex structure library 

nears completeness, the efficiency and accuracy of homology assisted methods like COTH and 

TACOS are expected to increase manifolds. Traditionally ab initio methods like docking have 

both limited accuracy and scope. It is therefore hoped that the development of methods 

discussed here and new ones developed in the future will help bring about a paradigm shift in 

the way the scientific community approaches the problem of predicting protein complex 

structures computationally.  

Initially, it was imperative to have a tool which could be used to compare the “similarity” 

of two protein complex structures in a quantitative fashion. To this end, MM-align was 

developed to structurally align 2 complex structures and return a RMSD and a TM-score of the 

complexes as a whole. These scores can be used to quantitatively assess structural 

homology/analogy of two structures. In a related work, MM-align was used to structurally 

align all known non-redundant protein complex structure families (defined according to Pfam 
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classification of two chains). Clustering of related structures thereby revealed that 62% of the 

known structures are “orphans” i.e. no other complex structures exists in the current protein 

complex structure library shares the same quaternary fold as these structures (shown in Figure 

6.1). Importantly, a strict logarithmic dependence was observed between the number of current 

known quaternary structure families and the number of quaternary structure folds currently 

known which could be then used to estimate that approximately 4000 unique quaternary folds 

are expected to exist in nature.  
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Figure 5.1 Graphical network representation of the similarity of protein-protein complex structures by 
Cytoscape. Each node represents a known complex structure and two nodes are connected by an edge if 
the rTM-score between the two structures is >0.5. The orphan nodes are shown in black while nodes 
which are connected by at least one edge are shown in yellow. Representative examples from the eight 
largest clusters are listed together with the protein name. 

Also, the fact that functionally homologous protein complexes could be identified from the 

library of protein complex structures (Appendix I) lent credence to the possibility of using 

threading based methods to predict the structure of protein-protein complexes given the 

primary amino acid sequence as input. 

Buoyed by the information gathered from MM-align that protein complex structures are 

evolutionarily conserved, COTH was developed to recognize the possible fold adopted by a 

query dimer sequence based on sequence-structure alignment. COTH (which was tested on 500 

non-redundant protein complex structures) was able to correctly predict a structure sharing the 

same global fold for > 50% cases. This highlighted the fact that prediction of protein complex 

structures from sequence is indeed a realistic possibility even though the protein complex 

structure library is largely incomplete. Furthermore, COTH was found to be complementary to 

ab initio methods like rigid body docking. It can therefore be argued that until more unique 

folds are deposited in the PDB, a combination of COTH like threading based methods and 

rigid body docking methods maximizes the possibility of generation of acceptable quality 

models. 

Finally, a template fragment based reassembly and refinement protocol, TACOS, was 

developed to build upon the initial templates detected by COTH to generate full-length protein 

complex structures. TACOS was designed to perform as a hybrid methodology which 

incorporated features of homology modeling (rigid-body motion of template aligned 

fragments), ab initio structure prediction (de novo generation of template unaligned regions) 

and protein-protein docking (inter-chain rigid body movement). A new knowledge-based 
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energy function was developed to drive the replica-exchange monte-carlo sampling scheme 

which contained intra-chain and inter-chain restraints coupled with statistically derived 

potential terms both at the tertiary structure level as well as at the protein-protein interface 

level. TACOS was extensively optimized and a large-scale benchmarking proved that on 

average TACOS was able to outperform the more traditional approach of modeling the 

subunits of a complex separately and then docking them together.  

Since TACOS attempts to tackle the problem of protein structure prediction and protein-

protein interaction simultaneously, it is computationally expensive. Secondly, when the 

structures of unbound subunits of a complex are known, it is not desirable to predict the 

individual chains from the sequence. On the other hand, if the unbound subunit structures are 

known, rigid-body docking fails to account for backbone conformational changes, especially at 

the interface. TACOS treats the backbone as flexible and can hence be realistically used to 

refine initial complex structures generated by rigid body docking. The use of TACOS to model 

the binding induced conformational change starting from initial docked models would thus 

present a more direct approach as compared to the protocols currently adopted [15-16].   

Conveniently, TACOS does not depend on the presence of known structures of the 

unbound subunits of protein complex and hence it can be used to conduct modeling 

experiments of protein complexes on a genomic scale. High-throughput experimental methods 

have made available the protein interaction networks of a number of genomes [17-23] along 

with their sequences. Databases like Database of Interacting Proteins (DIP) [24], MIPS [25] 

among others store genomic scale protein interaction data in a user-friendly, easily 

downloadable fashion. Therefore, the possibility of modeling all protein complexes in a 

genome no longer remains a far-fetched pipe dream. 
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Finally, even though TACOS currently is concentrated on modeling protein dimers only, it 

can technically be extended to model higher order oligomers. Admittedly, predicting the 

structure of higher order multimers is a very challenging problem since the degrees of freedom 

involved is prohibitably large. The major reason why TACOS currently does not attempt to 

model larger oligomers is the lack of sufficient number of templates in the PDB library. 

However, when more number of larger oligomers are deposited in the PDB or given some 

experimental restraints to guide the simulation process, modeling these larger macromolecular 

structures will be a distinct possibility.   
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Appendix I 
 

Query PDB IDa 
(Chain1,Chain2) 

PDB Classb: 
GO termc 

Temp PDB IDd 
(Chain1,Chain2) 

PDB Classb: 
GO termc 

TM-scoree R(Å)f 

1djt (A,B) 

Toxin: Ion 

channel inhibitor 

activity 

1aap (A,B) 

Protease/Inhibitor 

complex: serine 

type 

endopeptidase 

activity and 

inhibitor 

0.379 4.7 

1dkf (A,B) 

Hormone/Growth 

Factor Receptor: 

DNA binding and 

transciption 

factor activity 

1xb7 (A1,A2) 

DNA binding and 

Transcription 

factor activity 
0.849 3.1 

1dl5 (A,B) 

Transferase: 

Methyltransferas

e activity 

1utx (A,B) 

DNA binding 

protein: Sequence 

specific DNA 

binding 

0.442 3.9 

1dlf (L,H) 
Immunoglobin: 

Antibody 
1j05 (L,H) 

Immunoglobin: 

Antigen binding 
0.935 1.5 

1do5 (A,B) 

Chaperone: 

Copper ion 

binding activity 

1xso (A,B) 

Superoxide 

Acceptor: Copper 

ion binding 

0.960 1.0 

1dos (A,B) 

lyase: fructose-

biphosphate 

aldolase 

1rvg (A,B) 

lyase: fructose-

biphosphate 

aldolase 

0.766 3.8 

1dp4 (A,C) 

Hormone/Growth 

Factor Receptor: 

protein kinase 

activity 

1dz3 (A1,A2) 

Response 

Regulator: DNA 

binding and 

transcription 

factor activity 

0.462 3.3 

1dqp (A,B) 

Transferase: 

transferring 

glycosyl groups 

1grv (A,B) 

Transferase: 

transferring 

glycosyl groups 

0.857 3.0 

1dqw (A,B) 

Lyase: orotidin-

5-phosphate 

decarboxylase 

2jgy (A,B) 

Transferase: 

orotidin-5-

phosphate 

decarboxylase 

0.952 1.8 

1ds6 (A,B) Signalling 1cc0 (A,E) Signalling 0.899 2.2 
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Protein: GTPase 

activity 

Protein: GTPase 

activity 

1dx5 (M,I) 
Trypsin like 

Serine Protease 
1h9h (E,I) 

Trypsin like 

Serine Protease 
0.842 1.6 

1dz3 (A1,A2) 

Response 

Regulator: 2-

component 

response 

regulator activity 

1srr (A1,A2) 

Response 

Regulator: 2-

component 

response 

regulator activity 

0.586 4.3 

1ega (A,B) 
Hydrolase: GTP 

binding 
1j2j (A,B) 

Transport 

protein: GTP 

binding 

0.565 3.4 

1e05 (L,I) 

Serpin: 

Endopeptidase 

inhibitor activity 

involved in blood 

coagulation 

1oc0 (A,B) 

Serine Protease 

inhibitor: 

Endopeptidase 

inhibitor activity 

involved in blood 

coagulation 

0.835 2.1 

1e0b (A,B) 

Chromatin 

binding: 

Transcription 

regulator 

1igq (A,C) 

DNA binding: 

Transcription 

regulator 

0.458 3.8 

1e0o (C,D) 

Growth factor: 

Heparin binding 

protein with 

kinase activity 

1ev2 (A,E) 

Growth factor: 

Heparin binding 

protein with 

kinase activity 

0.724 2.0 

1e19 (A,B) 

Transferase: 

Carbamate kinase 

activity 

1b7b (A,C) 

Transferase: 

Carbamate kinase 

activity 
0.911 2.6 

1e2k (A,B) 

Transferase: 

Thymidine 

Kinase activity 

1p6x (A,B) 

Transferase: 

Thymidine 

Kinase activity 
0.886 2.4 

1e6u (A1,A2) 

Epimerase: GDP-

L-fucose 

synthase activity 

1udb (A1,A2) 

Isomerase: UDP-

glucose-4 

epimerase 

activity 

0.784 3.6 

1e7w (A,B) 

Dihydrofolase 

Reductase: 

oxidoreductase 

activity (pteridin) 

1vl8 (A,B) 

Dihydrofolase 

Reductase: 

oxidoreductase 

activity (torpin) 

0.893 2.4 

1e8i (A,B) 

Hematopoeitic 

Cell Receptor: 

Receptor activity 

1yxk (A,B) 

Lipid Binding 

protein: Receptor 

activity 
0.727 2.8 

1e9g (A,B) Hydrolase: 1ygz (A,B) Hydrolase: 0.640 4.9 
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Inorganic 

phosphatase 

activity 

Inorganic 

phosphatase 

activity 

1edz (A1,A2) 

Oxidoreductase:  

methylenetetrahy

drofolate 

reductase activity 

2be9 (A2,B2) 

Transferase: 

Aspartate 

carbamoyltransfe

rase activity 

0.557 4.9 

1eeq (A,B) 

Immunoglobin: 

Antigen binding 

activity 

1bww (A,B) 

Immunoglobin: 

Antigen binding 

activity 
0.932 1.4 

1ehi (A,B) 

Ligase:D-alanine 

D-alanine ligase 

activity 

2fb9 (A1,A2) 

Ligase:D-alanine 

D-alanine ligase 

activity 
0.909 2.3 

1c3i (A,B) 

Hydrolase: 

Metaloendopepti

dase activity 

2j0t (A,D) 

Hydrolase: 

collagenease and 

metalloprotease 

inhibitor activity 

0.556 0.9 

1c40 (A,B) 
Hemoglobin: 

Oxygen transport 
1ird (A,B) 

Hemoglobin: 

Oxygen transport 
0.978 1.0 

1c47 (A,B) 

Transferase: 

Metal ion binding 

with transferase 

activity 

1srr (A1,A2) 

Regulatory 

protein: Metal 

ion binding with 

tranferase activity 

0.469 1.5 

1c4z (A,D) 
Ligase: ubiquitin 

ligase activity 
2c2v (B,S) 

Heat shock 

protein complex 
0.582 1.5 

1c6v (A,X) 

DNA binding 

protein: RNA 

dependent DNA 

replication 

1exq (A,B) 

DNA binding 

protein: RNA 

dependent DNA 

replication 

0.472 1.9 

1c8k (A1,A2) 
Transferase:Tran

sferase activity 
1et1 (A,B) 

Hormone : 

parathyroid 

hormone receptor 

binding activity 

0.434 8.3 

1cc0 (A,E) 

Signalling 

Protein: GTPase 

activity 

1ds6 (A,B) 

Signalling 

Protein: GTPase 

activity 

0.916 2.2 

1cgi (E,I) 

Serine Protease 

inhibitor: 

Endopeptidase 

inhibitor activity 

2f3c (E,I) 

Serine Protease 

inhibitor: 

Endopeptidase 

inhibitor activity 

0.940 1.5 

1ci6 (A,B) 

Transcription 

factor: 

Transcription 

activator activity 

1zik (A,B) 

Leucine Zipper: 

Transcription 

activator activity 

0.950 0.6 
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1cjb (C,D) 

Transferase: 

Metal ion binding 

with transferase 

activity 

1izl (E,F) 

Photosynthesis: 

Metal ion binding 

electron carrier 

activity 

0.483 5.0 

1cje (A,B) 

Electron 

Transport: Metal 

ion binding 

electron carrier 

activity 

1aar (A,B) 

Ubiquitin: 

transcription 

regulator activity 

0.482 5.0 

1cki (A,B) 

Phosphotransfera

se: Casein kinase 

activity 

1fgk (A,B) 

Phosphotransfera

se: Threonine 

kinase kinase 

activity 

0.396 3.6 

1clv (A,I) 

Hydrolase: 

Alpha-amylase 

activity 

1bvn (P,T) 

Hydrolase: 

Alpha-amylase 

activity 

0.846 2.3 

1clx (A,B) 

Xylanase: endo-

1,4-xylanase 

activity 

1ta3 (A,B) 

Xylanase/Xylana

se inhibitor: 

endo-1,4-

xylanase activity 

0.638 5.3 

1cm5 (A,B) 

Transferase:acyl 

transferase 

activity 

1et1 (A,B) 

Hormone : 

parathyroid 

hormone receptor 

binding activity 

0.515 2.7 

1d2g (A,B) 

Transferase:meth

yl transferase 

activity 

2ov2 (A,I) 

Transferase: 

Toxin and serine 

threonine kinase 

0.450 4.9 

1d3y (A,B) 

Isomerase: DNA 

topoisomerase 

activity 

1l0l (A,K) 

Oxidoreductase: 

Metal ion binding 

involved in 

transport 

0.470 4.6 

1d4x (A,G) 

Contractile 

Protein: Actin 

bound to actin 

binding protein 

2btf (A,P) 

Contractile 

Protein: Actin 

bound to actin 

binding protein 

0.723 2.5 

1d5z (A,C) 

Immunoglobulin: 

MHC class II 

receptor activity 

1klu (A,D) 

Immunoglobulin: 

MHC class II 

receptor activity 

0.966 0.9 

1d6f (A1,A2) 

Transferase: 

Naringenin-

chalcone 

synthase activity 

1u0u (A,B) 

Transferase: 

Dihydropinosylvi

n synthase 

activity 

0.989 0.8 

1d7f (A,B) 
Transferase: 

Calcium Ion 
1clv (A,I) 

Hydrolase: 

Alpha-amylase 
0.715 3.5 
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binding activity with 

calcium binding 

1d7m (A,B) 

Contractile 

Protein: Actin 

filament binding 

coiled coil 

1t6f (A,B) 

Cell cyle protein: 

Protein binding 

coiled coil 

0.959 0.7 

1d9k (A,B) 
Immunoglobulin: 

T-cell receptor 
1ac6 (A,B) 

Immunoglobulin: 

T-cell receptor 
0.875 2.0 

1db2 (A,B) 

Hydrolase 

inhibitor: 

Endopeptidase 

inhibitor activity 

involved in blood 

coagulation 

1oc0 (A,B) 

Serine Protease 

inhibitor: 

Endopeptidase 

inhibitor activity 

involved in blood 

coagulation 

0.888 1.2 

1dba (L,H) 

Immunoglobulin 

: Fab Light and 

Heavy chains 

1d5i (L,H) 

Immunoglobulin 

: Fab Light and 

Heavy chains 
0.965 1.6 

1dbq (A,B) 

DNA binding 

protein: 

transcription 

repressor activity 

2fep (A1,A2) 

DNA binding 

protein: 

Transcription 

regulator activity 

0.831 3.3 

1dc6 (A,B) 

Oxidoreductase: 

Glyceraldehyde-

3-phosphate 

dehydrogenase 

1b7g (O,Q) 

Oxidoreductase: 

Glyceraldehyde-

3-phosphate 

dehydrogenase 

0.748 3.7 

1dcf (A1,A2) 

Response 

Regulator: 2-

component 

response 

regulator activity 

1eay (A,C) 

Response 

Regulator: 2-

component 

response 

regulator activity 

0.543 3.4 

1ddz (A,B) 

Lyase: Carbonic 

dehydratase 

activity 

1ym3 (A1,A2) 

Lyase: Carbonic 

dehydratase 

activity 

0.496 5.6 

1dfj (E,I) 

Complex of 

ribonuclease with 

ribonuclease 

inhibitor 

1z7x (Z,Y) 

Complex of 

ribonuclease with 

ribonuclease 

inhibitor 

0.953 1.7 

1dfk (A,Z) 

Contractile 

Protein: Myosin 

head with motor 

activity 

1w7j (A1,B1) 

Contractile 

Protein: Myosin 

head with motor 

activity 

0.840 3.2 

1dhf (A,B) 

Oxidoreductase: 

Dehydrofolate 

reductase activity 

2pln (A1,A2) 

Signalling 

protein: Two 

component 
0.470 4.5 
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(human) regulator activity 

1dk4 (A,B) 

Hydrolase: 

inositol 

phosphatase 

activity 

1vdw (A,B) 

Hydrolase: 

inositol 

phosphatase 

activity 

0.916 2.3 

1dle (A,B) 

Hydrolase: Serine 

type 

endopeptidase 

activity 

1h9h (E,I) 

Hydrolase/Hydro

lase inhibitor : 

Trypsin like 

serine protease 

activity 

0.757 3.1 

1dml (A,B) 

DNA binding 

protein: DNA 

dependent DNA 

polymerase 

activity 

1t6l (A1,A2) 

DNA binding 

protein: DNA 

dependent DNA 

polymerase 

processivity 

factor activity 

0.421 3.2 

1dok (A,B) 

Chemokine: 

Signal transducer 

activity 

1eqt (A,B) 

Chemokine: 

Signal transducer 

activity 

0.811 2.3 

1dov (A1,A2) 
Cell Adhesion: 

Cadherin binding 
2bf9 (A1,A2) 

Pancreatic 

hormone 
0.742 2.2 

1dpg (A,B) 

Oxidoreductase: 

Glucose-6-

phosphate 

dehydrogenase 

1dz3 (A1,A2) 

Response 

Regulator: 2-

component 

response 

regulator activity 

0.459 4.9 

1dqz (A,B) 

Immunoprotein: 

Acyltransferase 

activity 

2fe1 (A1,A2) 

Hypothetical 

protein from 

Pyrobaculum 

aerophilum 

0.494 5.3 

1dsu (A,B) 

Serine Protease: 

Serine-type 

endopeptidase 

activity 

1h9h (E,I) 
Trypsin like 

Serine Protease 
0.826 1.5 

1dxg (A,B) 

Non heme iron 

protein: Iron ion 

binding activity 

1dfn (A,B) 

Defensin: 

Defense response 

to bacteria 

0.312 4.3 

1e50 (C,D) 

Transcription 

factor: 

Transcription 

activator activity 

1h9d (A,B) 

Transcription 

factor: 

Transcription 

activator activity 

0.999 0.2 

1e51 (A0,B0) 

Dehydratase:Porp

hyrin 

biosynthetic 

2dqw (A,B) 

Transferase: 

Folic acid and 

derivative 
0.579 4.7 
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process biosynthetic 

process 

1e8u (A,B) 

Sialidase: Host 

cell surface 

receptor binding 

1ofz (A,B) 
Lectin: Sugar 

Binding 
0.613 6.4 

1ecj (A,B) 

Transferase: 

amidophosphorib

osyl transferase 

activity 

2dy0 (A,B) 

Transferase: 

phosphoribosyl 

transferase 

activity 

0.620 4.8 

1edh (A,B) 

Cell Adhesioin: 

Calcium ion 

binding 

1ncg (A1,A2) 

Cadherin: 

Calcium ion 

binding 

0.601 3.9 

1epa (A,B) 

Retinoic acid 

binding protein: 

Transporter 

activity 

2akq (A,B) 

Transport 

protein: Retinol 

binding 

0.671 4.5 

1eqw (A,C) 

Oxidoreductase: 

Superoxide 

dismutase 

activity 

2aqp (A,B) 

Oxidoreductase: 

Superoxide 

dismutase 

activity 

0.866 1.5 

1es0 (A,B) 

Immunpprotein: 

MHC class II 

antigen 

processing 

activity 

1jl4 (A,B) 

Immunpprotein: 

MHC class II 

antigen 

processing 

activity 

0.955 1.0 

1ete (A,B) 

Cytokine: 

Positive 

regulation of cell 

proliferation 

2o27 (A,B) 

Cytokine: Stem 

cell factor 

receptor binding 

0.712 3.6 

1eui (A,C) 

Hydrolase/Hydro

lase inhibitor: 

Uracil DNA-N 

glycosylase 

activity 

1uug (A,B) 

Hydrolase/Hydro

lase inhibitor: 

Uracil DNA-N 

glycosylase 

activity 

0.942 0.8 

1euv (A,B) 

Hydrolase: 

SUMO specific 

peptidase activity 

2ckh (A,B) 

Hydrolase: 

SUMO specific 

peptidase activity 

0.902 1.7 

1a22 (A,B) 

Hormone/Hormo

ne Receptor: 

Growth hormone 

bound to growth 

hormone receptor 

1bp3 (A,B) 

Hormone/Hormo

ne Receptor: 

Growth hormone 

bound to growth 

hormone receptor 

0.862 2.5 

1a2d (A,B) 
Fatty Acid 

Binding Protein: 
1ftp (A,B) 

Fatty Acid 

Binding Protein: 
0.462 2.1 
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Transporter 

activity 

Transporter 

activity 

1a4y (A,B) 

Inhibitor/Nucleas

e: Ribonuclease 

activity protein 

bound to 

inhibotor 

2bex (A,C) 

Inhibitor/Nucleas

e: Ribonuclease 

activity protein 

bound to 

inhibotor 

0.913 2.5 

1a50 (A2,B2) 

Lyase: 

tryptophan 

synthase activity 

1k8y (A1,B1) 

Lyase: 

tryptophan 

synthase activity 
0.994 0.7 

1a6d (A1,A5) 

Chaperonin: 

Unfolded protein 

binding 

1we3 (G,U) 

Chaperone: 

Unfolded protein 

binding 
0.627 3.7 

1aih (A,B) 

DNA integration: 

DNA 

recombination 

integrationa and 

transposition 

1utx (A,B) 

DNA binding 

protein: Sequence 

specific DNA 

binding 

0.435 5.2 

1aor (A,B) 

Oxidoreductase: 

aldehyde-

ferrodoxin 

reductase activity 

and electron 

carrier activity 

1sph (A,B) 

Phosphotransfera

se: Kinase 

activity 
0.443 5.0 

1aoz (A,B) 

Oxidoreductase: 

L-ascorbate 

oxidase activity 

1a25 (A,B) 

Calcium Binding 

Protein: Protein 

kinase C activity 

0.451 5.3 

1az3 (A,B) 

Endonuclease: 

Magnesium ion 

binding with 

endonuclease 

activity 

1k0z (A,B) 

Hydrolase: 

Magnesium ion 

binding with 

endonuclease 

activity 

0.468 5.8 

1b0n (A,B) 

DNA binding 

protein: Sequence 

specific DNA 

binding with 

DNA sporulation 

activity 

1y7y (A,B) 

DNA binding 

protein: Sequence 

specific DNA 

binding 

0.425 1.8 

1b34 (A,B) 

RNA binding 

protein:splicesom

al snRNP 

biogenesis and 

assembly 

1igq (A,C) 

Transcription 

factor: 

Transcription 

activator activity 

0.428 3.8 

1b4f (G2,H2) Signal protein: 1b4f (A1,B1) Signal protein: 0.972 0.4 
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Transmenbrane 

ephrin receptor 

with protein 

tyrosine kinase 

activity 

Transmenbrane 

ephrin receptor 

with protein 

tyrosine kinase 

activity 

1b73 (A1,A2) 

Isomerase: 

Glutamate 

racemase activity 

1r4a (B,F) 

Transport 

protein: GTP 

binding involved 

in vescicle 

mediated 

transport 

0.436 5.9 

1b98 (A,M) 

Hormone/Growth 

factor: growth 

factor involved in 

regulation of 

synaptic plasticiy 

1bnd (A2,B2) 

Hormone/Growth 

factor: growth 

factor involved in 

positive 

regulation of glial 

cell 

differentiation 

0.877 1.8 

1b9x (A,B) 

Signalling 

protein: signal 

transducer 

activity 

1tbg (B,F) 

Signalling 

protein: signal 

transducer 

activity 

0.973 1.3 

1bd2 (A,B) 

MHC Class I 

protein Complex: 

Antigen 

processing 

1qvo (A1,B1) 

MHC Class I 

protein Complex: 

Antigen 

processing 

0.986 0.8 

1bi7 (A1,A2) 

Kinase: Cyclin 

dependent protein 

kinase activity 

2a1a (A1,B1) 

Translation 

initiation factor 

bound to protein 

serine/threonine 

kinase 

0.689 1.6 

1bi8 (C,D) 

Kinase: Cyclin 

dependent protein 

kinase bound to 

kinase inhibitor 

1bi7 (A1,B1) 

Kinase: Cyclin 

dependent protein 

kinase bound to 

multiple tumor 

supressor 

0.957 1.3 

1bjf (A,B) 

Calcium Binding 

Protein: Clathrin, 

tubulin and actin 

binding 

2bn1 (B1,B2) 

Radiation 

Damage protein: 

Insulin receptor 

binding 

0.442 5.0 

1bml (A,C) 

Blood Clotting: 

peptidase activity 

in blood 

coagulatio 

1gl1 (C,K) 

Peptidase/Inhibit

or complex: 

Peptidase activity 

in digestion and 

0.842 2.3 
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proteolysis 

1bog (A1,B1) 

Antibody-peptide 

complex: Antigen 

binding 

1ggb (L,H) 

Immunogloulin: 

Light and Heavy 

chains 

0.962 1.4 

1bp6 (A1,A2) 

Transferase: 

thymidilate 

synthase activity 

1sqv (A2,K2) 

Oxidoreductase: 

Metalloendopepti

dase activity 

0.491 1.2 

1bqu (A,B) 

Signalling 

protein: 

Interleukin-6 

receptor activity 

1pvh (A,B) 

Signalling 

protein/cytokine 

complex: 

Interleukin-6 

receptor activity 

0.621 3.8 

1btg (B,C) 

Growth factor: 

Growth factor 

activity 

1bnd (A2,B2) 

Hormone/Growth 

factor: growth 

factor involved in 

positive 

regulation of glial 

cell 

differentiation 

0.937 1.4 

1bth (H,P) 

Serine 

Protease/inhibitor

: Endopeptidase 

activity involved 

in blood 

coagulation with 

inhibitor 

1eaw (C,D) 

Serine 

Protease/inhibitor

: Endopeptidase 

activity involved 

in blood 

coagulation with 

inhibitor 

0.957 1.3 

1buo (A1,A2) 

Gene Regulation: 

transcription 

repressor activity 

involved in 

myeloid cell 

regulation 

2if5 (A1,A2) 

Gene Regulation: 

transcription 

repressor activity 

involved in 

myeloid cell 

regulation 

0.957 1.4 

1bww (A,B) 
Immunoglobulin: 

Antigen binding 
1eeq (A,B) 

Immunoglobulin: 

Antigen binding 
0.949 1.4 

1byl (A1,A2) 

Antibiotic 

resistant protein: 

drug binding 

1qto (A1,A2) 

Antibiotic 

resistant protein: 

drug binding 
0.960 1.1 

1byr (A1,A2) 

Endonuclease: 

endonuclease 

activity 

2ppx (A2,A4) 

Strutural Protein: 

Sequence specific 

DNA binding 
0.489 3.4 

1u0s (Y,A) 

Response 

Regulator: 2-

component 

response 

1eay (A,C) 

Response 

Regulator: 2-

component 

response 

0.598 3.6 
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regulator activity regulator activity 

1u3h (C,D) 

Immunoprotein : 

MHC class I 

protein binding 

1jl4 (A,B) 

Immunoprotein : 

MHC class I 

protein binding 

0.993 0.6 

1u5t (A,B) 

Transport 

Protein: G-

protein signalling 

regulator and 

telomere 

maintainenance 

1u5t (A,C) 

Transport 

Protein:  telomere 

maintainenance 

0.548 1.1 

1u7u (A1,A2) 

Ligase:phosphop

antothenate--

cysteine ligase 

activity 

3rap (R,S) 

Signalling 

Protein: GTP 

binding 

0.573 5.1 

1uad (A,C) 

Endocytosis/exoc

ytosis: Ras 

protein signal 

transduction and 

in exocytosis 

1k8r (A,B) 

Transport 

Protein: Ras 

related protein 

involved in signal 

tranduction and 

tranport 

0.780 3.4 

1ub9 (A1,A2) 

Transcription 

factor: 

Transcription 

activator activity 

2bf9 (A1,A2) 

DNA binding 

Protein: 

Termination of 

DNA replication 

0.545 3.0 

1uc4 (A,G) 

Lyase: 

Propanediol 

dehydratase 

activity 

1tyg (C2,G2) 

Biosynthetic 

Protein: Thymine 

biosynthesis 

activity 

0.515 4.7 

1ugh (E,I) 

Glycosylase: 

uracil DNA-N 

glycosulase 

activity involved 

in bsae excision 

repair 

1uug (A,B) 

Glycosylase: 

uracil DNA-N 

glycosulase 

activity involved 

in bsae excision 

repair 

0.971 1.0 

1ul1 (X,A) 

Hydrolase/DNA 

binding protein: 

DNA repair and 

DNA polymerase 

processivity 

factor activity 

1ul1 (Z,C) 

Hydrolase/DNA 

binding protein: 

DNA repair and 

DNA polymerase 

processivity 

factor activity 

0.598 4.9 

1ulz (A1,A2) 

Ligase: Biotin 

binding with 

carbamoyl 

synthase activity 

1dv1 (A,B) 

Ligase: Biotin 

binding with 

carbamoyl 

synthase activity 

0.964 1.9 
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1uuf (A1,A2) 

Oxidoreductase: 

Metal ion binding 

oxidoreductase 

activity 

1q1n (A1,A2) 

Oxidoreductase: 

Metal ion binding 

oxidoreductase 

activity 

0.838 3.3 

1uw4 (A,B) 

RNA binding 

protein: nonsense 

mediated decay 

1a7g (E1,E2) 

Transcription 

factor: 

Transcription 

activator activity 

0.507 4.5 

1uyt (A1,A2) 

Transeferase: 

biotin 

carboxylase 

activity 

1zm7 (A,B) 

Transcription 

factor: 

phosphotransfera

se activity 

0.477 5.5 

1a3a (A,C) 

Phosphotransfera

se: Sugar-

hydrogen 

symporter 

activity 

1aar (A,B) 

Ubiquitin: 

transcription 

regulator activity 

0.491 4.1 

1a4r (A,B) 

Hydrolase: 

Establishment 

and maintainence 

of cell polarity 

via GTP 

dependent protein 

binding 

2ov2 (A,I) 

Transferase: GTP 

binding with 

involvement in 

actin 

cytoskeleton 

assembly 

0.816 1.4 

1a4u (A,B) 

Oxidoreductase: 

Alcohol 

dehydrogenase 

activity 

1k2w (A,B) 

Oxidoreductase: 

L-iditol 2 

dehydrogenase 

activity 

0.820 3.2 

1a6z (A,B) 

MHC Class I 

protein Complex: 

Antigen 

processing 

1qo3 (A,B) 

MHC Class I 

protein Complex: 

Antigen 

processing 

0.920 1.9 

1ac6 (A,B) 
Receptor: T-cell 

receptor 
1d9k (A,B) 

Receptor: T-cell 

receptor 
0.879 2.0 

1acb (E,I) 

Hydrolase: Serine 

type 

endopeptidase 

activity 

1gl1 (C,K) 

Hydrolase: Serine 

type 

endopeptidase 

activity 

0.932 1.6 

1ad1 (A,B) 

Transferase: 

Dihydopteorate 

synthase activity 

2dqw (A,B) 

Transferase: 

Dihydopteorate 

synthase activity 
0.864 2.3 

1ad3 (A,B) 

Oxidoreductase: 

aldehyde 

dehydrogenase 

1ez0 (A,D) 

Oxidoreductase: 

aldehyde 

dehydrogenase 
0.751 4.0 
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activity activity 

1ade (A,B) 

Ligase: 

Adenylosuccinate 

synthase activity 

1loo (A1,A2) 

Ligase: 

Adenylosuccinate 

synthase activity 

0.944 2.0 

1adj (A,B) 

Histidyl tRNA 

synthase:aminoac

yl tRNA synthase 

activity 

1htt (A,B) 

Histidyl tRNA 

synthase:aminoac

yl tRNA synthase 

activity 

0.933 2.4 

1ae1 (A,B) 

Oxidoreductase: 

tropine 

dehydrogenase 

activity 

2ae2 (A,B) 

Oxidoreductase: 

tropine 

dehydrogenase 

activity 

0.960 0.8 

1afs (A,B) 

Oxidoreducatse: 

3-alpha-

hydroxysteroid 

dehydrogenase 

activity 

1exb (A1,E1) 

Oxidoreducatse: 

3-alpha-

hydroxysteroid 

dehydrogenase 

activity 

0.611 2.8 

1agr (A,E) 

Signal 

Transduction : 

GTP bound 

signal 

transduction 

activity 

2ihb (A,B) 

Signal 

Transduction : 

GTP bound 

signal 

transduction 

activity 

0.991 0.8 

1aiz (A,B) 

Electron 

transport: 

Cadmium 

binding protein 

1nwp (A,B) 

Electron 

transport: 

Cadmium 

binding protein 

0.704 4.1 

1all (A,B) 

Light harvesting 

protein: Protein 

chromophore 

linkage 

2j96 (A,B) 

Light harvesting 

protein: Protein 

chromophore 

linkage 

0.901 2.0 

1aoh (A,B) 

Cellulosome 

subunit: 

Hydrolyzing O-

glycosyl 

compounds 

1ohz (A1,B1) 

Cellulosome 

Scaffolding 

proteinwith 

dockerin complex 

having O-

glycosyl 

hydrolyzing 

activity 

0.776 2.6 

1ap2 (A,B) 

Immunoglobulin: 

Antibody 

variable domain 

like 

1j05 (L,H) 

Immunoglobulin: 

Antibody 

variable domain 

like 

0.964 1.1 

1aqu (A,B) Transferase: 2f1r (A,B) Biosynthetic 0.492 5.1 
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estrone 

sulfotransferase 

activity 

Protein: Mo-

Molybdopterine 

biosynthesis 

activity 

1ati (A,B) 

Protein 

biosynthesis: 

glycine tRNA 

ligase activity 

2g4c (A,C) 

Transferase: 

glycine tRNA 

ligase activity 
0.855 3.1 

1aui (A,B) 

Hydrolase: 

serine/threonine 

phpsphatase 

activity 

2o8g (A,I) 

Hydrolase: 

serine/threonine 

phpsphatase 

activity 

0.783 1.8 

1avg (H,I) 

Blood Clotting: 

peptidase activity 

in blood 

coagulation 

1h9h (E,I) 

Hydrolase/Hydro

lase inhibitor : 

Trypsin like 

serine protease 

activity 

0.841 1.5 

1aw2 (A,B) 

Isomerase: triose 

phosphate 

isomerase 

activity 

1tre (A,B) 

Isomerase: triose 

phosphate 

isomerase 

activity 

0.972 1.2 

1ay1 (L,H) 

Immunoglobulin: 

Antibody 

variable domain 

like 

1mf2 (M,N) 

Immunoglobulin: 

Antibody 

variable domain 

like 

0.943 1.9 

1ay7 (A,B) 

Enzyme/Inhibitor 

complex: 

Endoribonuclease 

activity with 

Barstar 

1b2s (A,D) 

Enzyme/Inhibitor 

complex: 

Endoribonuclease 

activity with 

Barstar 

0.765 2.0 

1azt (A,B) 

Hydrolase: GTP 

binding with 

signal transducer 

activity 

1fqj (A,C) 

Hydrolase: GTP 

binding with 

signal transducer 

activity 

0.843 1.7 

1azy (A,B) 

Glycosyltransfera

se: thymidine 

phosphorylase 

activity 

2dsj (A,B) 

Glycosyltransfera

se: thymidine 

phosphorylase 

activity 

0.943 2.6 

1b43 (A,B) 

Transferase: 

magnesium 

binding protein 

involved in DNA 

repair 

2izo (A,C) 

Hydrolase: 

magnesium 

binding protein 

involved in DNA 

repair 

0.496 1.7 

1b49 (A,C) Methyltransferas 2ftn (A1,A2) Methyltransferas 0.746 3.0 
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e: Thymidylate 

synthase activity 

e: Thymidylate 

synthase activity 

1b5q (A,B) 

Oxidoreductase: 

Polyamine 

oxidase activity 

2v1d (A,B) 

Oxidoreductase: 

Electron carrier 

activity 
0.519 3.8 

1b67 (A,B) 

DNA binding 

protein: Sequence 

specific DNA 

binding 

1ku5 (A,B) 

DNA binding 

protein: Sequence 

specific DNA 

binding 

0.945 1.0 

1b6d (A,B) 

Immunoglobulin: 

Antibody 

variable domain 

like 

1bww (A,B) 

Immunoglobulin: 

Antibody 

variable domain 

like 

0.966 0.7 

1b6s (A,B) 

Lyase: 

phosphoribosyla

minoimidazole 

carboxylase 

activity 

2dwc (A,B) 

Lyase: 

phosphoribosylgl

ycinamide 

formyltransferase 

2 activity 

0.760 3.0 

1b78 (A,B) 

Nucleoside 

triphosphatase 

activity 

2car (A,B) 

Nucleoside 

triphosphatase 

activity 
0.820 3.0 

1b7b (A,C) 

Transferase: 

Carbamate kinase 

activity 

1e19 (A,B) 

Transferase: 

Carbamate kinase 

activity 
0.895 2.6 

1b8a (A,B) 

Liagase: 

Carbamate kinase 

activity 

1wyd (A,B) 

Liagase: 

Carbamate kinase 

activity 

0.966 1.9 

1b8m (A,B) 

Growth 

factor/neurotroph

in: cytokine 

activity 

1bnd (A2,B2) 

Growth 

factor/neurotroph

in: cytokine 

activity 

0.934 1.5 

1b8z (A,B) 

DNA binding 

protein: Mitotic 

chromosome 

condensation 

2o97 (A1,B1) 

DNA binding 

protein: Mitotic 

chromosome 

condensation 

0.913 0.9 

1bc2 (A,B) 
Hydrolase: beta 

lactamase activity 
1vgn (A,B) 

Hydrolase: beta 

lactamase activity 
0.513 4.1 

1bcc (A,B) 

Oxidoreductase: 

Metalloendopepti

dase activity 

1ezv (A1,B1) 

Oxidoreductase: 

Metalloendopepti

dase activity 

0.929 2.5 

1bdm (A,B) 

Oxidoreductase: 

Malate 

dehydrogenase 

activity 

1b8p (A1,A2) 

Oxidoreductase: 

Malate 

dehydrogenase 

activity 

0.966 0.9 
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1bdy (A,B) 

Calcium Binding 

Protein: Protein 

kinase C activity 

1edm (B,C) 

Coagulation 

factor: Calcium 

binding activity 

0.458 4.1 

1bfo (A,B) 

Antibody: 

Constant domain 

like 

1dvf (A,B) 

Antibody: 

Constant domain 

like 
0.960 1.2 

1bh5 (A,B) 

Lyase: 

Lactoglutathione 

lyase activity 

1f9z (A,B) 

Lyase: 

Lactoglutathione 

lyase activity 
0.866 2.6 

1bht (A,B) 

Heparin binding 

protein: serine 

type 

endopeptidase 

activity involved 

in epithelial to 

mesonchymal 

activity 

1gmo (G,H) 

Heparin binding 

protein: serine 

type 

endopeptidase 

activity involved 

in epithelial to 

mesonchymal 

activity 

0.995 0.5 

1bk5 (A,B) 

Transpor protein: 

protein import 

into nucleus 

2c1t (A,C) 

Transpor protein: 

protein import 

into nucleus 

0.924 1.6 

1bkn (A,B) 

DNA repair: 

Mismatched 

DNA binding 

1hss (A,B) 

Cereal Inhibitor: 

Serine type 

endopeptidase 

inhibitor 

0.453 4.9 

1blx (A,B) 

Kinase: Cyclin 

dependent protein 

kinase bound to 

kinase inhibitor 

1bi8 (A,B) 

Kinase: Cyclin 

dependent protein 

kinase bound to 

kinase inhibitor 

0.946 1.3 

1bo1 (A,B) 

Transferase:phos

phatidylinositol 

phosphate kinase 

activity 

2gk9 (A,D) 

Transferase:phos

phatidylinositol 

phosphate kinase 

activity 

0.959 1.7 

1bp3 (A,B) 

Hormone/growth 

factor: involved 

in 

ematopoietin/inte

rferon-class 

(D200-domain) 

cytokine receptor 

activity 

1a22 (A,B) 

Hormone/growth 

factor:  involved 

in 

ematopoietin/inte

rferon-class 

(D200-domain) 

cytokine receptor 

activity 

0.885 2.5 

1bqq (M,T) 

Hydrolase/Inhibit

or: 

Metalloendopepti

dase activity 

2e2d (A,C) 

Hydrolase/Inhibit

or: 

Metalloendopepti

dase activity 

0.904 2.2 
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1br1 (A,B) 
Muscle protein: 

Motor activity 
1w7j (A1,B1) 

Muscle protein: 

Motor activity 
0.688 3.2 

1brc (E,I) 

Protease/Inhibitor 

complex: serine 

type 

endopeptidase 

activity and 

inhibitor 

1taw (A1,B1) 

Protease/Inhibitor 

complex: serine 

type 

endopeptidase 

activity and 

inhibitor 

0.981 0.9 

1bsl (A,B) 

Flavoprotein: 

monooxygenase 

activity in 

biolumination 

1luc (A,B) 

Flavoprotein: 

monooxygenase 

activity in 

biolumination 

0.956 1.8 

1bt6 (A,B) 

Ligand 

(S100)/annexin 

complex:  

Calcium ion 

binding protein 

involved signal 

tranduction 

1k96 (A1,A2) 

S100 protein:  

Calcium ion 

binding protein 

involved 

xenobiotic 

metabolic process 

0.891 1.6 

1btk (A,B) 

Transferase: 

protein tyrosine 

kinase activity 

1r4a (B,F) 

Transport 

Protein: GTP 

binding 
0.513 3.5 

1bvn (P,T) 

Hydrolase/inhibit

or: alpha amylase 

activity and its 

inhibitor 

1clv (A,I) 

Hydrolase/inhibit

or: alpha amylase 

activity and its 

inhibitor 

0.953 2.3 

1bvr (A,B) 

Oxidoreductase: 

enoyl reductase 

activity 

1eny (A1,A2) 

Oxidoreductase: 

enoyl reductase 

activity 
0.992 0.8 

1u0u (A,B) 

Transferase: Acyl 

transferase 

activity 

1d6f (A1,A2) 

Transferase: Acyl 

transferase 

activity 

0.989 0.8 

1u20 (A,B) 
Hydrolase:snoRN

A binding protein 
2bn1 (B1,B2) 

Hydrolase:hydrol

oase activity 
0.522 3.4 

1u2w (A,B) 

DNA binding 

protein: DNA 

dependent 

regulation of 

transcription 

1r1u (A,B) 

DNA binding 

protein: DNA 

dependent 

regulation of 

transcription 

0.871 2.0 

1u41 (A,B) 

DNA binding 

protein (NF 

kappa B mutant): 

DNA dependent 

regulation of 

1my7 (A,B) 

DNA binding 

protein (NF 

kappa B mutant): 

DNA dependent 

regulation of 

0.928 0.7 
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transcription transcription 

1u5k (A,B) 

Response to 

DNA damage 

stimulus 

2v1c (A1,C1) 

Response to 

DNA damage 

stimulus 

0.597 3.3 

1u5w (A,B) 
Hypthetical 

protein 
1msc (A1,A2) 

Virial protein: 

RNA binding 
0.470 5.8 

1u60 (A,B) 

Hydrolase: 

glutaminase 

activity 

1hss (A,B) 

Cereal Inhibitor: 

Serine type 

endopeptidase 

inhibitor 

0.486 5.5 

1u6e (A,B) 

Transferase: Acyl 

transferase 

activity 

1hnj (A1,A2) 

Transferase: Acyl 

transferase 

activity 
0.968 1.8 

1u73 (A,B) 

Hydrolase: 

Phospholipase 

A2 activity 

2bf9 (A1,A2) 
Pancreatic 

hormone 
0.484 3.9 

1u75 (A,C) 

Oxidoreductase: 

Cytochrome C -

peroxidase 

activity 

2vnz (X1,X2) 

Oxidoreductase: 

L-ascorbate 

peroxidase 

activity 

0.488 2.7 

1u8s (A,B) 

Transcription 

factor: glycine 

cleavage system 

transcriptional 

repressor 

1usm (A1,A2) 

Transcriptional 

stimulator: lyase 

activity 
0.576 3.4 

1uc8 (A,B) 

Biosynthetic 

protein: lysine 

biosynthesis 

1i7n (A,B) 

Neuropeptide:Ne

urotranmitter 

secretion 
0.681 3.4 

1udi (E,I) 

Hydrolase/inhibit

or: uracil DNA-N 

gycosylase 

activity 

1ugh (E,I) 

Hydrolase/inhibit

or: uracil DNA-N 

gycosylase 

activity 

0.967 1.0 

1udv (A,B) 

DNA binding 

protein: Double 

stranded DNA 

binding 

1h0x (A,B) 

DNA binding 

protein: Double 

stranded DNA 

binding 

0.873 1.4 

1ueh (A,B) 

Transferase: di-

trans,poly-cis-

decaprenylcistran

sferase activity 

involved in 

peptidoglycaan 

biosynthesis 

process 

1f75 (A,B) 

Transferase: di-

trans,poly-cis-

decaprenylcistran

sferase activity 

involved in 

peptidoglycaan 

biosynthesis 

process 

0.930 2.1 
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1un8 (A,B) 

Kinase: 

Glycerone kinase 

activity 

1oi2 (A,B) 

Kinase: 

Glycerone kinase 

activity 

0.839 2.8 

1unk (A,C) 
Immunoprotein: 

Toxin binding 
2guz (A,B) 

Protein 

Transport: 

protein 

transporter 

activity 

0.473 4.1 

1unl (A,D) 

Cyclin 

Dependent 

Kinase 5:protein 

serine/threonine 

kinase activator 

activity 

1unh (B,E) 

Cyclin 

Dependent 

Kinase 5:protein 

serine/threonine 

kinase activator 

activity 

0.986 0.9 

1usl (A,B) 

Isomerase: 

ribose-5-

phosphate 

isomerase 

activity 

1nn4 (A,D) 

Isomerase: 

ribose-5-

phosphate 

isomerase 

activity 

0.883 1.5 

1uth (A,B) 

Transcription 

regulator: DNA 

dependent 

regulation of 

trnascription 

2fyi (A,B) 

Transcription 

regulator: DNA 

dependent 

regulation of 

trnascription 

0.769 3.9 

1utx (A,B) 

DNA binding 

protein: Sequence 

specific DNA 

binding 

1y7y (A,B) 

DNA binding 

protein: Sequence 

specific DNA 

binding 

0.705 2.1 

1uty (A,B) 
Viral Protein: 

RNA binding 
1moy (A1,A3) 

Biotin binding 

protein 
0.393 4.9 

1uu0 (A,B) 

Transferase:histid

inol-phosphate 

transaminase 

activity 

1lc5 (A1,A2) 

Transferase: N-

succinyldiaminop

imelate 

aminotransferase 

activity 

0.805 3.0 

1uuz (A,D) 
Lyozyme/Inhibit

or complex 
1gpq (B,C) 

Lyozyme/Inhibit

or complex 
0.876 2.1 

1uz6 (E,F) 

Antigen-

Antibody: 

Antbody variable 

domain like 

1rvf (B,C) 

Antigen-

Antibody: 

Antbody variable 

domain like 

0.914 2.1 

1amh (A,B) 

Hydrolase: 

serine-type 

endopeptidase 

1h9h (E,I) 

Hydrolase: 

serine-type 

endopeptidase 
0.919 2.2 
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activity activity 

1avw (A,B) 
Trypsin/Trypsin 

inhibitor 
1h9h (E,I) 

Trypsin/Trypsin 

inhibitor 
0.933 1.8 

1uer (A,B) 

Oxidoreductase: 

Superoxide 

dismutase 

activity 

2nyb (A,B) 

Oxidoreductase: 

Superoxide 

dismutase 

activity 

0.967 1.1 

1ugs (A,B) 
Lyase:nitrile 

hydratase activity 
1ahj (A,B) 

Lyase:nitrile 

hydratase activity 
0.900 2.2 

 
aPDB and Chain ID of the proteins in Benchmark 1. 
bClassfication of the complexes as annotated in the PDB library (1). 
cGene Ontology terms (2). 
dPDB and Chain ID of the proteins in Benchmark 2 which is the best match to the complexes 
in the first column as identified by DM-align. 
eTM-score of the complex structures in Column 1 and Column 3. 
fRMSD of complex structures in the aligned region. 
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Appendix II 
 

Table 1. Mean distance (Å) between Cα atoms of amino acids that are in inter-chain contact. 
 
 G A V L I S T C M P D N E Q K R H F Y W 
G 3.3 5.5 5.6 6.1 6.0 5.6 5.6 5.3 5.7 5.6 5.8 5.6 5.6 5.9 6.5 6.5 5.8 6.2 6.4 7.0 
A 5.5 3.8 6.1 6.5 6.6 5.3 5.7 5.4 5.9 6.1 5.8 6.1 6.5 5.7 6.3 6.8 5.8 6.6 6.3 6.8 
V 5.5 5.4 4.1 7.0 6.3 5.9 6.0 5.5 6.3 5.8 5.9 6.2 6.3 6.0 6.5 6.5 5.9 7.1 6.7 7.1 
L 5.6 5.9 6.8 4.3 6.9 5.5 6.3 5.8 6.9 6.5 5.9 6.6 6.1 6.2 6.5 7.3 6.1 7.4 7.1 7.7 
I 5.5 5.9 6.4 6.9 4.3 5.6 6.0 5.9 6.6 6.1 5.7 6.0 6.2 6.0 6.2 7.0 6.4 7.9 7.0 7.3 
S 5.3 5.5 6.3 5.8 6.0 4.4 7.3 5.5 6.6 6.5 6.0 7.2 6.0 6.0 6.5 7.5 6.0 6.6 6.8 6.7 
T 5.5 5.5 5.7 6.5 5.9 6.8 4.4 5.4 6.1 6.0 5.6 7.7 5.8 6.6 6.5 7.6 6.5 6.5 6.9 7.2 
C 5.4 5.7 6.3 6.7 6.1 5.4 5.8 4.6 6.2 5.8 5.3 5.7 5.7 5.8 5.8 6.4 5.8 6.8 7.1 6.7 
M 6.3 6.3 6.7 7.5 7.0 7.1 6.7 6.4 4.5 6.4 6.5 6.9 7.2 7.3 8.8 7.9 6.7 7.5 7.2 9.0 
P 5.2 5.4 5.9 6.7 5.9 6.3 5.9 5.4 6.2 4.9 5.5 6.1 6.0 6.2 6.1 8.1 5.9 6.3 7.2 7.1 
D 5.6 5.9 6.5 6.5 6.8 6.0 6.3 5.5 7.1 5.8 4.9 6.9 7.1 6.6 7.7 8.0 6.7 6.4 7.5 7.1 
N 5.5 5.8 6.3 7.1 6.1 6.8 7.8 5.5 6.2 5.9 6.3 4.3 6.5 6.4 7.6 8.3 6.4 6.6 7.3 6.7 
E 6.1 6.0 6.6 6.7 6.9 6.6 6.2 5.1 6.5 6.2 6.6 6.7 4.5 6.5 7.7 8.0 6.9 7.1 7.4 8.6 
Q 6.3 5.9 6.8 7.4 6.8 6.5 6.6 6.2 7.2 6.6 6.9 6.8 6.9 4.6 6.9 7.5 7.2 7.4 8.0 7.5 
K 5.8 6.0 6.1 6.6 6.4 6.0 6.2 5.4 7.1 6.0 7.1 6.4 6.8 6.4 4.2 7.2 6.9 7.0 7.2 6.9 
R 6.5 6.8 7.2 7.1 7.2 7.5 7.7 6.0 7.9 7.6 7.8 7.8 8.0 7.2 7.3 4.8 7.3 7.9 8.0 8.5 
H 5.9 6.3 6.3 7.1 7.0 6.2 6.9 6.5 6.8 6.5 7.4 6.7 7.3 7.0 8.3 8.2 4.1 7.1 7.6 7.6 
F 6.0 6.2 7.6 7.6 7.5 6.3 7.2 6.4 7.3 6.3 6.3 6.8 6.7 6.9 7.9 7.9 7.0 5.8 7.6 8.8 
Y 6.3 6.7 7.0 7.2 7.4 6.8 7.0 6.3 7.4 7.1 7.2 7.2 7.7 7.3 7.6 7.8 7.3 7.7 5.0 8.3 
W 7.1 7.9 8.6 9.0 7.9 7.8 9.2 6.4 8.5 7.5 8.6 7.6 8.7 6.8 9.4 9.7 7.9 8.9 7.9 5.8 

 
Table 2. Standard deviation (Å) of Cα distance for amino acids that are in inter-chain contact. 
 
 G A V L I S T C M P D N E Q K R H F Y W 
G 0.8 2.1 2.3 2.6 2.5 2.0 2.1 1.1 1.2 2.3 2.5 1.5 1.7 2.1 2.7 2.0 1.6 2.4 2.1 2.4 
A 2.3 1.3 2.9 2.8 2.8 1.7 1.9 1.1 1.7 2.5 2.4 2.2 3.2 2.0 3.2 3.2 1.8 2.8 2.0 2.4 
V 2.3 2.0 1.3 2.9 2.3 2.4 2.7 1.2 1.7 2.1 2.5 2.6 2.9 2.2 2.9 2.5 1.7 2.8 2.5 2.1 
L 2.2 2.3 2.8 1.5 2.3 1.8 2.7 1.3 2.3 2.8 2.4 2.7 2.4 2.3 3.2 3.1 1.8 2.6 2.2 2.3 
I 2.5 2.6 2.7 2.6 1.4 2.1 2.2 2.1 1.9 2.6 2.5 2.5 3.0 2.1 2.8 3.0 2.3 3.2 2.6 2.2 
S 2.1 2.3 2.9 1.9 0.6 1.4 3.5 1.2 3.0 2.9 3.0 3.3 2.4 1.8 3.1 3.1 1.8 2.7 2.2 2.2 
T 2.3 2.2 2.2 2.7 1.8 3.3 1.5 1.2 1.8 2.7 1.6 3.5 1.6 2.7 2.9 2.9 2.3 2.0 2.4 2.7 
C 2.2 2.5 2.8 2.8 2.3 1.7 2.5 1.8 1.3 2.4 1.9 1.9 2.1 1.7 2.0 2.5 1.3 2.6 2.7 2.4 
M 2.5 2.6 2.6 2.8 2.8 2.7 2.7 2.2 1.6 2.5 2.5 2.8 3.3 3.2 3.4 3.3 2.3 2.4 2.0 2.9 
P 1.8 2.1 2.2 2.9 2.1 2.7 2.3 1.3 2.0 1.9 1.6 2.4 2.7 1.6 2.6 3.6 1.4 2.2 2.2 2.4 
D 2.6 2.9 3.2 2.9 3.5 2.6 2.9 2.1 3.7 2.3 1.3 3.1 3.6 2.8 3.4 2.8 1.9 2.9 2.7 2.7 
N 2.1 2.3 2.8 3.2 2.5 3.1 3.6 1.3 2.1 2.0 2.8 1.9 3.0 2.2 4.2 3.2 2.1 2.6 2.7 1.5 
E 2.6 2.6 3.1 2.9 3.1 2.7 2.4 1.6 2.5 2.4 2.7 2.6 1.4 2.4 2.8 2.9 2.0 3.1 2.3 3.1 
Q 2.9 2.6 3.1 3.2 2.9 2.7 2.8 2.3 3.1 2.9 3.0 2.7 3.1 1.2 3.1 2.5 2.7 2.9 2.9 2.9 
K 2.2 2.7 2.7 2.8 3.0 2.1 2.3 1.4 3.3 2.4 3.1 2.5 2.6 2.0 1.6 3.1 2.8 3.0 2.5 2.1 
R 2.4 2.9 3.1 2.7 2.8 2.8 3.1 1.7 3.4 2.9 2.9 2.9 2.9 2.6 3.2 1.9 2.6 3.2 2.4 3.0 
H 2.3 2.7 2.1 2.8 2.6 2.3 2.8 2.2 2.3 2.6 2.9 2.4 2.6 2.7 4.1 3.1 1.1 2.5 2.2 1.8 
F 2.1 2.2 3.1 2.6 2.6 2.1 3.0 1.4 2.0 2.0 2.4 2.3 2.7 2.1 3.7 3.0 2.2 1.6 2.3 2.4 
Y 2.0 2.7 2.7 2.0 2.6 2.2 2.6 1.8 2.2 2.3 2.0 2.5 2.9 2.2 2.9 3.1 2.3 2.6 1.3 2.7 
W 3.1 3.3 3.6 3.4 2.7 3.0 3.7 2.2 3.1 2.9 3.6 3.0 3.8 2.4 4.1 4.1 2.9 3.2 2.7 1.9 
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Appendix III 
 

Comparison of I-RMSD (Å) of predicted models* 
 

Name ZDOCK-exp ZDOCK-model COTH COTH-exp COTH-model 

1avxA-1avxB 2.16 (5) 4.43 (2) 4.44 (1) 5.00 4.81 
1ay7A-1ay7B 11.77 (6) 13.87 (4) 8.96 (3) 11.64 12.53 
1bvnP-1bvnT 1.97 (10) 3.64 (7) 4.53 (1) 6.11 6.64 
1cgiE-1cgiI 9.63 (1) 12.57 (2) 3.86 (8) 4.30 4.78 
1d6rA-1d6rI 8.04 (4) 11.09 (1) 13.54 (10) 14.86 15.30 
1dfjE-1dfjI 2.09 (10) 2.22 (1) 7.48 (1) 7.87 7.74 

1e6eA-1e6eB 2.33 (5) 3.83 (5) 1.52 (3) 2.42 3.14 
1eawA-1eawB 3.21 (1) 3.87 (4) 7.86 (6) 8.89 7.18 
1ewyA-1ewyC 2.26 (7) 4.51 (8) 6.37 (4) 8.72 9.50 
1f34A-1f34B 13.62 (10) 16.74 (10) 11.25 (1) 13.75 14.58 

1mahA-1mahF 1.35 (8) 2.34 (1) 2.43 (2) 3.55 3.54 
1ophA-1ophB 6.20 (2) 6.62 (3) 7.57 (9) 9.40 10.01 
1ppeE-1ppeI 1.29 (1) 3.40 (4) 5.08 (1) 6.66 6.85 

1tmqA-1tmqB 12.33 (7) 13.67 (7) 14.29 (1) 14.13 14.18 
1udiE-1udiI 3.86 (2) 7.86 (6) 2.36 (3) 3.68 3.92 

2b42B-2b42A 1.85 (1) 4.60 (5) 1.04 (4) 3.07 3.68 
2o8vA-2o8vB 11.05 (8) 14.89 (5) 4.09 (5) 4.74 4.86 
2pccA-2pccB 9.44 (3) 12.85 (2) 7.31 (5) 8.89 9.42 

2sicE-2sicI 1.69 (4) 2.94 (1) 3.42 (6) 2.48 3.50 
2sniE-2sniI 6.42 (8) 7.08 (1) 3.08 (4) 4.35 4.91 

2uuyA-2uuyB 2.49 (4) 4.19 (9) 3.48 (1) 3.40 3.70 
7ceiA-7ceiB 2.22 (6) 5.74 (10) 5.93 (1) 7.76 8.38 

1ak4A-1ak4D 6.77 (9) 9.52 (2) 10.60 (7) 11.55 9.97 
1b6cA-1b6cB 2.77 (1) 4.35 (3) 2.72 (10) 3.79 4.15 
1buhA-1buhB 13.97 (5) 14.44 (1) 7.06 (8) 8.30 8.72 
1e96A-1e96B 2.72 (7) 5.71 (8) 9.45 (9) 11.90 12.72 
1efnB-1efnA 8.29 (8) 9.61 (7) 2.17 (1) 1.94 2.32 
1fc2C-1fc2D 5.36 (7) 8.94 (3) 3.50 (7) 5.87 6.67 
1fqjA-1fqjB 14.71 (3) 17.26 (2) 19.40 (4) 18.52 18.82 

1gcqB-1gcqC 9.68 (9) 12.44 (5) 5.02 (5) 6.10 6.31 
1ghqA-1ghqB 11.5 (7) 13.25 (4) 6.90 (6) 6.35 6.53 
1glaG-1glaF 2.50 (1) 6.38 (2) 8.68 (2) 8.64 8.65 

1gpwA-1gpwB 2.03 (8) 2.56 (3) 4.46 (9) 6.42 7.08 
1he1C-1he1A 8.03 (8) 10.89 (1) 4.35 (2) 7.21 8.17 
1j2jA-1j2jB 3.93 (3) 5.41 (8) 8.83 (10) 11.40 12.26 

1kacA-1kacB 2.18 (10) 2.51 (10) 3.43 (1) 4.00 4.81 
1ktzA-1ktzB 9.46 (1) 13.19 (6) 6.58 (3) 8.92 9.69 

1kxpA-1kxpD 3.27 (1) 4.69 (2) 3.08 (4) 4.98 5.29 
1qa9A-1qa9B 12.65 (2) 14.72 (10) 8.18 (6) 10.72 11.57 
1s1qA-1s1qB 13.32 (1) 16.62 (1) 19.03 (5) 20.58 21.09 
1sbbA-1sbbB 9.73 (4) 9.78 (5) 3.53 (4) 2.70 2.98 
1t6bX-1t6bY 6.48 (6) 8.84 (6) 4.68 (1) 5.86 6.89 
1xd3A-1xd3B 4.06 (6) 4.78 (8) 4.81 (8) 6.38 6.90 
1z0kA-1z0kB 2.06 (3) 2.37 (8) 8.39 (3) 9.13 9.38 
1z5yD-1z5yE 8.31 (1) 10.98 (7) 1.36 (3) 2.41 3.67 
1zhiA-1zhiB 9.56 (9) 12.31 (1) 13.22 (2) 15.75 16.59 
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2ajfA-2ajfE 11.59 (10) 12.36 (9) 14.89 (5) 17.82 18.79 
2btfA-2btfP 13.03 (8) 13.65 (7) 5.76 (7) 7.92 8.65 
2hleA-2hleB 2.34 (1) 3.25 (4) 4.91 (1) 6.99 7.35 
2hqsA-2hqsH 12.22 (10) 13.65 (8) 3.93 (4) 4.65 4.92 
2oobA-2oobB 5.25 (5) 5.35 (1) 7.94 (7) 10.19 10.95 
2i25N-2i25L 8.57 (5) 11.62 (5) 3.94 (1) 5.44 5.95 

1kxqH-1kxqA 2.02 (1) 4.96 (6) 2.97 (6) 2.60 3.20 
1acbE-1acbI 4.65 (3) 4.85 (10) 4.26 (2) 5.00 5.75 

1m10A-1m10B 17.47 (4) 18.09 (3) 10.47 (1) 12.07 12.61 
1nw9B-1nw9A 8.43 (6) 9.53 (1) 3.82 (1) 3.56 4.47 
1grnA-1grnB 16.78 (9) 17.05 (8) 17.59 (7) 18.95 19.41 
1he8B-1he8A 32.26 (6) 35.75 (7) 26.22 (4) 27.65 28.12 
1i2mA-1i2mB 13.50 (2) 15.32 (2) 9.75 (7) 11.99 12.74 
1wq1R-1wq1G 8.12 (9) 10.55 (3) 13.32 (1) 15.04 15.61 
1xqsA-1xqsC 9.16 (5) 9.42 (3) 11.27 (6) 12.47 10.47 
2cfhA-2cfhC 8.79 (1) 12.08 (7) 2.22 (1) 1.56 2.78 
2h7vA-2h7vC 12.04 (1) 14.83 (1) 5.18 (6) 6.66 7.16 
2hrkA-2hrkB 10.27 (5) 12.46 (10) 13.86 (8) 16.38 17.21 
2nz8A-2nz8B 5.57 (6) 7.03 (7) 14.57 (6) 15.04 16.16 
1fq1A-1fq1B 13.56 (8)  13.89 (5) 14.22 (3) 15.75 16.26 
1pxvA-1pxvC 13.87 (3) 17.42 (6) 5.59 (5) 5.75 6.81 
1atnA-1atnD 17.54 (9) 17.60 (1) 17.81 (1) 20.51 21.40 
1bkdR-1bkdS 15.58 (2) 16.06 (3) 10.73 (4) 13.00 13.75 
1h1vA-1h1vG 19.06 (7) 20.12 (10) 23.10 (10) 23.08 23.08 
1ibrA-1ibrB 9.00 (5) 9.29 (5) 4.72 (2) 4.81 5.00 
1iraY-1iraX 21.93 (1) 25.07 (2) 17.91 (6) 17.60 17.70 
1r8sA-1r8sE 7.57 (7) 10.99 (10) 14.43 (7) 15.95 16.11 

1y64A-1y64B 19.62 (4) 21.33 (1) 14.09 (5) 16.84 17.76 
2c0lA-2c0lB 9.81 (3) 9.83 (2) 5.70 (3) 7.37 7.92 
2ot3B-2ot3A 4.67 (7) 5.55 (8) 4.03 (9) 4.50 4.97 
1r0rE-1r0rI 7.68 (7) 9.59 (1) 12.63 (4) 13.83 14.23 

Average 8.47 10.30  8.07 9.31 9.78 

 
* The table shows a comparison of the DOCKING methods (ZDOCK-exp and ZDOCK-

model) and COTH based methods (COTH, COTH-exp and COTH-model) in terms of I-

RMSD. The values in the table indicate the I-RMSD of the best in top 10 (as ranked by the 

independent programs) models while the values in parentheses indicate the rank of the models. 

The ranks for COTH-exp and COTH-model are not indicated since they are the same as that 

for COTH. 
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structure prediction. Multiscale approaches to protein modeling: structure prediction, 
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Andrzej Kolinski, (Springer-London, 2010), P. 255-280. 

� Srayanta Mukherjee, Yang Zhang. Protein-protein complex structure prediction by 
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Mandel-Gutfreund. Predicting nucleic acid binding interfaces from structural models of 
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interactions exist in nature? Submitted (2011). (Co-first author) 

� Srayanta Mukherjee and Yang Zhang. TACOS: Automated structure prediction of protein-
protein complex structures. Manuscript under preparation (2011). 

� Srayanta Mukherjee and Yang Zhang. Refinement of protein complex structures predicted 
using docking by re-optimization of backbone structure using TACOS. Manuscript under 
preparation (2011). 

� Ambrish Roy, Srayanta Mukherjee, P.S. Hefty and Yang Zhang. Remote homolog detection 
and function prediction using global and local structure similarity approach. Manuscript 
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