
HISTORICAL PROCESSES AND GENETIC IMPLICATIONS OF LIMB REDUCTION AND 

LOSS IN AN ISLAND SKINK LINEAGE 

 

BY 

 

Cameron D. Siler 

 

Submitted to the graduate degree program in Ecology and Evolutionary Biology of the 

University of Kansas in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy. 

 

 

Chair: __________________________ 

Committee Members: __________________________ 

__________________________ 

__________________________ 

__________________________ 

Date defended: __________________________ 



 ii 

 

The dissertation committee for Cameron D. Siler certifies that this is the approved version of the 

following dissertation: 

 

HISTORICAL PROCESSES AND GENETIC IMPLICATIONS OF LIMB REDUCTION AND 

LOSS IN AN ISLAND SKINK LINEAGE 

 

Committee: 

Chair: __________________________ 

Committee Members: __________________________ 

__________________________ 

__________________________ 

__________________________ 

Date approved: __________________________ 



 iii 

 

ACKNOWLEDGMENTS 

This body of work resulted from collaborative assistance from numerous individuals and 

institutions in the Philippines and in the United States.  Without this assistance, the success of 

this avenue of research would not have been feasible.  I am grateful for the help and support that 

all colleagues and friends have provided.  The chapters making up this dissertation have been co-

authored by a varying group of colleagues, including Rafe Brown, Arvin Diesmos, Mae Diesmos, 

Angel Alcala, Allison Fuiten, and Robin Jones.  Numerous other researchers have provided 

assistance and feedback.  I am indebted to the U.S. Department of Education and the Philippines-

American Education Foundation (PAEF), who supported my research in the form of a Fulbright 

and Fulbright-Hayes Fellowship.  The incredible sampling achieved for this research was made 

possible by these two awards.  I would like to extend a special thank you to Charles Bankart, 

Esmeralda Cunanan, Yolly Casas, Marge Tolentino, G. Dizon, Con Valdecanas, and Hodgie 

Bricke. 

The University of Kansas turned out to be an absolutely perfect fit for graduate school, and I 

cannot express enough gratitude to all of the people who have supported me over the course of 

my graduate degree.  A special thank you to the ever-changing community of herpetologists at 

KU, including Bill Duellman and Linda Trueb who have always provided sound advice and 

encouragement.  I am not sure how the EEB department and the Biodiversity Institute put up 

with all of my requests, but I sincerely appreciate their support.  I would like to extend a special 

thank you to Jaime Keeler, Lori Schlenker, Leonard Krishtalka, Dorothy Johanning, and Chris 

Haufler.  Many individuals have made contributions to fieldwork, including Angel Alcala, Ely 

Alcala, Arthur Ong, Leonardo Averia, Philip Alviola, Nonito Antoque, Danilo Balete, Jerry 



 iv 

Cantil, Arvin Diesmos, Liza Duya, Mariano Duya, Jason “Tungao” Fernandez, Boying 

Fernandez, Vicente Yngente, Mark Yngente, Marvic Yngente, Mae Diesmos, Charles Linkem, 

Kyle Hesed, David McLeod, Luke Welton, Jessi Siler, Andrew Faso, Joey Brown, Carl Oliveros, 

Edmund Rico, Rob Moyle, Fred Sheldon, Maklarin Lakim, Lee Grismer, and Jake Esselstyn.  I 

extend a special thank you to my advisor and close friend and colleague, Rafe Brown, who is the 

reason I started working in the Philippines.  Rafe’s support over the last six years has been 

instrumental in the success of my developing research program.  I thank all members of my 

Ph.D. committee (Linda Trueb, Rob Moyle, Maria Orive, and David Frayer) for their continued 

support over the last six years.  I am grateful for all of my committee’s suggestions, forward-

thinking strategies for success, and willingness to attend early meetings on an annual basis (even 

if it was for the coffee and bagels). 

I thank the Protected Areas and Wildlife Bureau (PAWB) of the Philippine Department of 

Environment and Natural Resources (DENR) for facilitating collecting and export permits 

necessary for this and related studies; we are particularly grateful to M. Lim, C. Custodio, and A. 

Tagtag.  Financial support for fieldwork was provided by several Panorama Fund grants from 

The University of Kansas Biodiversity Institute, travel funds form The University of Kansas 

Department of Ecology and Evolutionary Biology, a Madison and Lila Self Graduate Fellowship 

from the University of Kansas, a Fulbright Fellowship, a Fulbright-Hayes Fellowship, NSF DEB 

0804115 to CDS, and DEB 0743491, and NSF EF-0334952 to Rafe Brown.  For the loans of 

specimens I sincerely appreciate the support of J. Vindum and A. Leviton (California Academy 

of Sciences), R. Sison, V. Palpal-latoc, and J. Barnes (Philippine National Museum), J. Ferner 

(Cincinnati Museum Center), A. Resetar (Field Museum of Natural History), R. Crombie and K. 

de Queiroz (United States Natural History Museum), T. LaDuc (Texas Memorial Natural History 



 v 

Museum), J. Rosado (MCZ), and M. Lakim (Sabah Parks).  I am grateful for all critical reviews 

of these chapters provided by Jens Vindum, Jake Esselstyn, David McLeod, Linda Trueb, David 

Blackburn, Allison Fuiten, Luke Welton, Rafe Brown, Arvin Diesmos, Ron Crombie, Matt 

Brandley, Lee Grismer, Jesse Grismer, Anthony Barley, Jeet Sukumaran, Jamie Oaks, Mark 

Holder, Charles Linkem, and many anonymous reviewers.  I am indebted to the CAS’s Stearns 

Fellowship and the MCZ’s Ernst Mayr Fellowship for funding multiple visits to examine 

comparative material.  During visits to CAS, I was always particularly appreciative of the 

support of Jens Vindum, who creatively applied new common, albeit snarky, names for my focal 

organisms. 

I would like to thank my both of my families, the Siler Clan, and the Faso-Kuehn Gruppo 

Familiare.  Whether I am in Colorado, Texas, or abroad, you provided a level of support above 

anything I could have asked for.  My parents, Cherie and Eric, and my Sister Tess, supported my 

strange pursuits since childhood, and I am grateful for their love and encouragement.  My Texas 

family was there for me through the dark years when I was addicted to queso, and I am forever 

grateful.   

Finally, and most importantly, I want to thank my wife Jessi for her endless support through 

many long years of fieldwork and research.  Your patience, support, encouragement, and love are 

what got me through many rough patches along the way.  Not to mention you are an expert 

Brachymeles catcher!  Now we have a lovely daughter, Stella Blue, to share our next series of 

adventures with. 



 vi 

ABSTRACT 

Evolutionary simplification, or loss of complex characters, is a major theme in studies of body 

form evolution.  The apparently infrequent evolutionary reacquisition of complex characters has 

led to the assertion (Dollo’s Law) that once lost, complex characters may be impossible to re-

evolve, at least via the exact same evolutionary process.  The spectacular, virtually endemic 

radiation of Philippine semi-fossorial skinks of the genus Brachymeles represent one of the few 

radiations of scincid lizards to possess both fully limbed and limbless species.  And yet, nothing 

is known of the phylogenetic relationships of this exceptional group.  Morphologically similar 

body plans have made it difficult to assess species-level diversity, and the genus has long been 

recognized as one of the more modest radiations of southeast Asian lizards.  However, 

taxonomic studies indicate that the diversity within the genus Brachymeles is grossly 

underestimated.  Here I provide one of the most comprehensive, fine-scale analyses of squamate 

body-form evolution to date, introducing a new model system of closely related, morphologically 

variable, lizards.  In this study I provide the first robust estimate of phylogenetic relationships 

within the genus Brachymeles using a multi-locus dataset and nearly complete taxonomic 

sampling.  Systematic revisions guided by robust estimates of phylogeny subsequently result in a 

125% increase in species diversity.  I provide statistical tests of monophyly for all polytypic 

species and two widespread limb-reduced species and our results indicate wholesale deviations 

from past summaries and taxonomic evaluations of the genus.  A Bayesian reconstruction of 

ancestral areas indicates strong statistical support for a minimum of five major dispersal events 

that have given rise to a major component of the observed species diversity across the 

archipelago.  Our phylogenetic results support independent instances of complete limb loss as 

well as multiple instances of digit and external ear opening loss and re-acquisition.  Even more 
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striking, I find strong statistical support for the re-acquisition of a pentadactyl body form from a 

digit-reduced ancestor.  Our findings have broad, general implications for body form evolution in 

burrowing vertebrates: whatever constraints have shaped trends in morphological evolution 

among other squamate groups (excluding Bipes) have been lost in this one exemplary clade.   
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INTRODUCTION 

Only four genera of scincid lizards are known to possess both fully limbed and limbless 

species (Brachymeles, Chalcides, Lerista, and Scelotes; Lande, 1978; Wiens and Slingluff, 2001; 

Brandley et al., 2008).  Of these four genera, the genus Brachymeles is the least well known, 

with recent studies indicating the recognized diversity of the group is vastly underestimated 

(Siler et al., 2009a, 2010a,b, 2011; in press a,b,c,d; Siler and Brown, 2010, 2011).  Within the 

genus, all but two of the 36 recognized species are endemic to the Philippines (Brown, 1956; 

Brown and Rabor, 1967; Brown and Alcala, 1980; Siler et al., 2009a, 2010a,b, 2011; in press 

a,b,c,d; Siler and Brown, 2010, 2011); the exceptions are B. apus from northern Borneo (Hikida, 

1982) and B. miriamae from Thailand (Siler et al., 2011).  Eighteen species are pentadactyl (B. 

anim, B. bicolor, B. boholensis, B. boulengeri, B. gracilis, B. kadwa, B. makusog, B. mindorensis, 

B. orientalis, B. pito, B. schadenbergi, B. sampu, B. syam, B. talinis, B. taylori, B. tungaoi, B. 

vindumi, and B. walo), thirteen are non-pentadactyl, with incompletely developed limbs and 

reduced numbers of digits (B. apat, B. bonitae, B. cebuensis, B. elerae, B. dalawa, B. isa, B. lima, 

B. muntingkamay, B. pathfinderi, B. samarensis, B. tatlo, B. tridactylus, and B. wrighti), and five 

are entirely limbless (B. apus, B. minimus, B.  miriamae, B. lukbani, and B. vermis).  Within the 

non-pentadactyl species, there exist a wide range of limb- and digit-reduced states.  Some species 

have minute limbs that lack full digits (B. apat, B. bonitae, B. cebuensis, B. dalawa, B. isa, B. 

lima, B. muntingkamay, B. samarensis, B. tatlo, B. tridactylus; Duméril and Bibron, 1839; 

Brown, 1956; Brown and Rabor, 1967; Siler et al., 2009a, 2010a,b, 2011; in press a,b,c,d; Siler 

and Brown, 2010, 2011).  Other non-pentadactyl species have moderately developed limbs with 

four digits on the hands and feet (B. elerae, B. wright; Siler et al., in press b), or four digits on 

the feet and five digits on the hands (B. pathfinderi: Taylor, 1917, 1925; Siler et al., in press a).  
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All species are semi-fossorial and typically found in dry, rotting material inside decaying logs or 

in loose soil, forest floor detritus, and leaf litter. 

The genus Brachymeles was first described by Duméril and Bibron (1839) for the small, 

limb-reduced species Brachymeles bonitae.  As species diversity accumulated, various authors 

have noted morphological variation among island populations of many of the polytypic and 

widespread species (Taylor, 1922; Brown, 1956; Brown and Rabor, 1967; Brown and Alcala, 

1980).  Historically, the shared body plans and similar external morphological features among 

populations of Brachymeles, and the absence of dense population sampling across the 

Philippines, proved problematic for diagnosing species (Brown, 1956; Brown and Rabor, 1967; 

Brown and Alcala, 1980).  Although long considered to be a small clade of Southeast Asian 

lizards (the last revision enumerated only 15 species; Brown and Alcala, 1980), recent studies 

have significantly increased the known species diversity and expanded the range of variation in 

body form (Siler et al., 2009a, 2010a,b, 2011; in press a,b,c,d; Siler and Brown, 2010, 2011).  

Additionally, several rare, mid-to-high elevation species long represented by only a few 

specimens, in some cases without knowledge of their exact type locality (e.g., Brachymeles 

bicolor, B. elerae, B. wrighti, B. pathfinderi), have recently been rediscovered (Siler, 2010; Siler 

et al., in press a,b).  These studies, coupled with increased sampling throughout the Philippines, 

have provided a comprehensive dataset with which to begin evaluating the taxonomic stability of 

polytypic and widespread species across the Philippines, and address questions concerning the 

evolution of limb reduction and loss.  The availability of tissue samples for all but two known 

species of Brachymeles now allows for robust estimates of phylogenetic relationships among 

recognized widespread and polytypic species, and evaluation of species boundaries.  
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In Chapter One (Siler et al., 2011) I investigate the biogeography of Brachymeles from a 

phylogenetic perspective, providing the first estimate of phylogenetic relationships for this 

unique radiation of Southeast Asian lizards.  I strove to estimate the phylogenetic position of 

Brachymeles among scincid lizards in order to provide insight into patterns of body form 

evolution and polarity of character change and provide the first statistical tests of several 

hypotheses.  I also employ a Bayesian ancestral area reconstruction to gain insight into the 

biogeographical history of the genus.  Finally, I test the following taxonomic hypotheses: (1) 

Brachymeles is monophyletic; (2) All recognized and formerly recognized polytypic species are 

monophyletic; and (3) All recognized widespread species are monophyletic.  My data reveal 

patterns inconsistent with all of the above predictions and at odds with currently recognized 

taxonomy; I conclude that species diversity within the genus is vastly underestimated and that 

cryptic patterns of lineage diversification prevail in this poorly known group of Southeast Asian 

lizards. 

In Chapter Two (Siler and Brown, 2011), I focus on testing hypotheses of body form 

evolution among squamate reptiles by investigating patterns of body form change in skinks of 

the genus Brachymeles using a phylogenetic comparative approach, derived from morphological 

data.  I explore the data for evidence of threshold values of morphological features after which 

changes in body form occur.  Additionally, I test for patterns of correlated evolution of 

morphological characters, and provide the first exploration of the impact of various 

methodological choices used in previous studies of body form evolution, including the impact of 

choice of morphometric variable as a measurement of body size for non-phylogenetic and 

phylogenetic size-correction as well as the overall method for multivariate principal component 

analyses.  Finally, using my robust estimate of phylogenetic relationships, I explore the 
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prevalence and directionality of evolutionary changes in limb, digit, and ear character states, and 

the impact of outgroup sampling and ancestral outgroup character states on ancestral state 

reconstructions.  

The goals of Chapters Three (Siler and Brown, 2010), Four (Siler et al., in press c), and Five 

(Siler et al., in press d) are to revise the taxonomy of the B. gracilis, B. orientalis, B. samarensis, 

B. schadenbergi, and B. talinis species complexes such that individual units (species) represent 

independently evolving, cohesive lineage segments (sensu Simpson, 1961; Wiley 1978; Frost 

and Hillis, 1990; de Queiroz, 1998, 1999).  Comprehensive examination of all recently collected 

specimens from throughout the known range of these species, and historically collected 

specimens available in museum collections, results in the complete reorganization of species 

diversity within the genus, increasing the recognized diversity by more than 125%.  I provide a 

phylogenetic analysis and the first illustrations of many of these taxa, fully describe each species, 

and clarify taxonomic boundaries.  I also provide information on each species’ natural history, 

ecology, and geographic distribution and comment on additional, presently unrecognized 

putative new species. 
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CHAPTER 1 

Phylogeny of Philippine slender skinks (Scincidae: Brachymeles) reveal underestimated 

species diversity, complex biogeographical relationships, and cryptic patterns of lineage 

diversification 

 

Only four genera of scincid lizards are known to possess both fully limbed and limbless species 

(Brachymeles, Chalcides, Lerista, and Scelotes; Lande, 1978; Wiens and Slingluff, 2001; 

Brandley et al., 2008).  Of these four genera, the genus Brachymeles is the least well known, 

with recent studies indicating the recognized diversity of the group is vastly underestimated 

(Siler, 2010; Siler and Brown, 2010; Siler et al., 2009a, 2010a,b; Siler et al., in press a,b,c,d).  

Within the genus, all but one of the 25 recognized species are endemic to the Philippines (Brown, 

1956; Brown and Rabor, 1967; Brown and Alcala, 1980; Siler et al., 2009a, 2010a,b; Siler and 

Brown, 2010); the exception is B. apus from northern Borneo (Hikida, 1982).  Thirteen species 

are pentadactyl (bicolor, boholensis, boulengeri, gracilis, sp. A [Masbate Island; Siler and 

Brown, 2010], makusog, mindorensis, orientalis, schadenbergi, talinis, taylori, sp. B [Luzon + 

Babuyan islands; Siler and Brown, 2010], and sp. C [Jolo Island; Siler and Brown, 2010]), eight 

are non-pentadactyl, with incompletely developed limbs and reduced numbers of digits (bonitae, 

cebuensis, elerae, muntingkamay, pathfinderi, samarensis, tridactylus, and wrighti), and four are 

entirely limbless (apus, minimus, lukbani, and vermis).  Within the non-pentadactyl species, 

there exist a wide range of limb- and digit-reduced states.  Some species have minute limbs that 

lack full digits (bonitae, cebuensis, muntingkamay, samarensis, tridactylus; Duméril and Bibron, 

1839; Brown, 1956; Brown and Rabor, 1967; Siler et al., 2009a).  Other non-pentadactyl species 

have moderately developed limbs with four digits on the hands and feet (elerae, wrighti), or four 
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digits on the feet and five digits on the hands (pathfinderi: Taylor, 1917, 1925).  All species are 

semi-fossorial and typically found in dry, rotting material inside decaying logs or in loose soil, 

forest floor detritus, and leaf litter. 

The genus Brachymeles was first described by Dumeril and Bibron (1839) for the small, 

limb-reduced species Brachymeles bonitae.  As species diversity accumulated, various authors 

have noted morphological variation among island populations of many of the polytypic and 

widespread species (Taylor, 1922; Brown, 1956; Brown and Rabor, 1967; Brown and Alcala, 

1980).  In Brachymeles, several species (B. Bonitae, B. samarensis, B. tridactylus) currently span 

recognized faunal regions within the Philippines, or Pleistocene Aggregate Island Complexes 

(PAICs; Brown and Guttman, 2002; Brown and Diesmos, 2002, 2009; Fig. 1.1, and defy 

biogeographic boundaries as traditionally conceived (Brown and Diesmos, 2009).  Among 

skinks and other Philippine land vertebrates, multiple lineages have similar widespread 

distributions, spanning multiple PAICs.  These widespread distributions have been the focus of 

many recent studies, which have revealed that few endemic Philippine reptiles actually possess 

broad distributions spanning regional faunistic boundaries (Brown et al., 2000, 2009; Brown and 

Diesmos, 2002, 2009; Siler et al., 2010a,b; Siler and Brown, 2010; Welton et al., 2009, 2010a,b).  

Although these recent efforts have shed light on cryptic diversity among Philippine vertebrates, 

the continued recognition of many widespread species may still compromise our understanding 

of patterns of regional diversity.  Presently, the incredible diversity of endemic vertebrate species 

in the Philippines is recognized to be distributed among: (1) Pleistocene Aggregate Island 

Complexes (PAICs; Inger, 1954; Heaney, 1985; Voris, 2000; Brown and Diesmos, 2002), (2) 

individual islands within PAICs, and (3) upland subcenters of diversity within individual 

landmasses (review: Brown and Diesmos, 2009). 
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Figure 1.1. Map of the Philippines showing the five recognized major Pleistocene Aggregate 

Island Complexes (PAICs) and additional deep-water islands.  Current islands in the Philippines 

are shown in medium grey; light gray areas enclosed in black 120 m bathymetric contours 

indicate the hypothesized maximum extent of land during the mid- to late Pleistocene. 
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Historically, the shared body plans and similar external morphological features among 

populations of Brachymeles, and the absence of dense population sampling across the 

Philippines, proved problematic for diagnosing species (Brown, 1956; Brown and Rabor, 1967; 

Brown and Alcala, 1980).  Although long considered to be a small clade of Southeast Asian 

lizards (the last revision enumerated only 15 species; Brown and Alcala, 1980), recent studies 

have significantly increased the known species diversity and expanded the range of variation in 

body form (Siler et al., 2009a, 2010a,b; Siler and Brown, 2010).  Additionally, several rare, 

mid-to-high elevation species long represented by only a few specimens, in some cases without 

knowledge of their exact type locality (e.g., Brachymeles bicolor, B. elerae, B. wrighti, B. 

pathfinderi), have recently been rediscovered (Siler, 2010; Siler et al., in press a,b; Siler and 

Brown, 2010).  These studies, coupled with increased sampling throughout the Philippines, have 

provided a comprehensive dataset with which to begin evaluating the taxonomic stability of 

polytypic and widespread species across the Philippines.  Additionally, the availability of tissue 

samples for all but two known species of Brachymeles now allows for robust estimates of 

phylogenetic relationships among recognized widespread and polytypic species, and evaluation 

of species boundaries.  For example, Siler and Brown (2010) recently revised two polytypic 

species (B. boulengeri and B. schadenbergi) and one widespread species (B. talinis); this work 

resulted in the recognition of ten genetically and morphologically distinct species.  Several other 

species including B. samarensis and B. bonitae (Brown, 1956; Brown and Rabor, 1967; Brown 

and Alcala, 1980) are still recognized as having widespread distributions that span multiple 

historically recognized biogeographic provinces in the Philippines (Dickerson et al., 1925; Kloss, 

1929; Inger, 1954; Brown and Diesmos, 2002).  
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In this study we investigate the biogeography of Brachymeles from a phylogenetic 

perspective, providing the first estimate of phylogenetic relationships for this unique radiation of 

Southeast Asian lizards.  We strove to estimate the phylogenetic position of Brachymeles among 

scincid lizards in order to provide insight into patterns of body form evolution and polarity of 

character change and provide the first statistical tests of several hypotheses.  We provide the first 

glimpse into the major body form transitions in Brachymeles, particularly with respect to 

miniaturization, limb reduction, and digit loss.  We also employ a Bayesian ancestral area 

reconstruction to gain insight into the biogeographical history of the genus.  Finally we test the 

following taxonomic hypotheses: (1) Brachymeles is monophyletic; (2) All recognized and 

formerly recognized polytypic species are monophyletic; and (3) All recognized widespread 

species are monophyletic.  Our data reveal patterns inconsistent with all of the above predictions 

and at odds with currently recognized taxonomy; we conclude that species diversity within the 

genus is vastly underestimated and that cryptic patterns of lineage diversification prevail in this 

poorly known group of Southeast Asian lizards. 

 

Methods 

Taxon sampling and data collection 

Ingroup sampling included 90 individuals collected from 43 localities, with 23 of the 25 

currently recognized species of Brachymeles represented (Fig. 1.2; Appendix I; Siler and Brown, 

2010).  The two missing species in our analyses are Brachymeles vermis and B. wrighti.  

Brachymeles wrighti is known from two damaged specimens from northern Luzon Island, and B. 

vermis occurs in the Sulu archipelago (where biologists are not permitted to work due to 

logistical and security obstacles).  No tissues have ever been collected for either of these species.   
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To assess the monophyly of the genus as well as investigate appropriate outgroup taxa, a 

broad sampling of scincid species from the subfamilies Lygosominae and Scincinae were 

included, as well as a single outgroup sample from the family Lacertidae (Appendix I).  For all 

108 samples, complete or partial sequences were collected for mitochondrial NADH 

Dehydrogenase Subunit 1 (ND1), NADH Dehydrogenase Subunit 2 (ND2), ATPase 8 (ATP8), 

and ATPase 6 (ATP6) genes (Table 1.1).  Additionally, three nuclear loci, Brain-derived 

Neurotrophic Factor (BDNF), R35, and PTGER4, were completely sequenced for nearly all 

ingroup samples and many of the outgroup samples (Table 1.1, Appendix I).  All sequences were 

deposited in GenBank (Appendix II). 

Genomic DNA was extracted from liver tissues stored in 95–100% ethanol following a 

guanidine thiocyanate protocol (Esselstyn et al., 2008).  We used a combination of published and 

newly developed primers, as well as a variety of thermal profiles (Table 1.1).  Amplified 

products were visualized on 1.5% agarose gels.  PCR products were purified with 1 µL of a 20% 

dilution of ExoSAP-IT (US78201, Amersham Biosciences, Piscataway, NJ) on the following 

thermal profile:  31 min at 37º, followed by 15 min at 80º.  Cycle sequencing reactions were run 

using ABI Prism BigDye Terminator chemistry (Ver. 3.1; Applied Biosystems, Foster City, CA), 

and purified with Sephadex (NC9406038, Amersham Biosciences, Piscataway, NJ) in Centri-Sep 

96 spin plates (CS-961, Princeton Separations, Princeton, NJ).  Purified products were analyzed 

with an ABI Prism 3130xl Genetic Analyzer (Applied Biosystems).  Continuous gene sequences 

were assembled and edited using Sequencher 4.8 (Gene Codes Corp., Ann Arbor, MI). 
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Figure 1.2. Distribution of pentadactyl and non-pentadactyl Brachymeles samples from the 

Philippines (see species keys within each map).  Current islands in the Philippines are shown in 

medium grey; light gray areas enclosed in black 120 m bathymetric contours indicate the 

hypothesized maximum extent of land during the mid- to late Pleistocene. 
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Table 1.1. Summary of primers and annealing temperatures employed in this study.  

 

Locus Primer Name Sequence Annealing 
Temperatures Primer Source 

NADH 1 16dr 5'–CTACGTGATCTGAGTTCAGACCGGAG–3' 52–53º Brandley et al., 2005 
 tMet 5'–TCGGGGTATGGGCCCRARAGCTT–3' 52–53º Brandley et al., 2005 
NADH 2 ND2.Brach.F1 5'–TTATCGCAACAAAACACCACCC–3' 52–53º This study 
 ND2.Brach.R1 5'–AGCYCAGAGGTGATTCACGC–3' 52–53º This study 
 ND2.Brach.R2 5'–CCGCTGGATTGGGTGTTTAGC–3' 52–53º This study 
ATP8,6 ATP.F 5'–CTCAGARATCTGCGGGYCAAATCACA–3' 58º M. Brandley, unpublished data 
 ATP.R 5'–GTGCYTTCTCGRRTAATRTCYCGTCAT–3' 58º M. Brandley, unpublished data 
BDNF BDNF.F 5'–CCCCAATGAAAGAAGTGASCCTC–3' 55º Crottini et al., 2009 
 BDNF.R 5'–TGGGTAGTTCGGCACTGAGAATTCC–3' 55º Crottini et al., 2009 
PTGER4 PTGER4.F1 5'–GACCATCCCGGCCGTMATGTTCATCTT–3' 55º Townsend et al., 2008 
 PTGER4.R5 5'–AGGAAGGARCTGAAGCCCGCATACA–3' 55º Townsend et al., 2008 
R35 R35.F 5'–GACTGTGGAYGAYCTGATCAGTGTGG–3' 55º Fry et al., 2006 
 R35.R 5'–GCCAAAATGAGSGAGAARCGCTTCTG–3' 55º Fry et al., 2006 
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Sequence alignment and phylogenetic analyses 

Initial alignments were produced in Muscle (Edgar, 2004), and manual adjustments made in 

MacClade 4.08 (Maddison and Maddison, 2005).  To assess phylogenetic congruence between 

the mitochondrial and nuclear data, we inferred the phylogeny for each gene independently using 

likelihood and Bayesian analyses, and performed pairwise partition homogeneity tests in PAUP 

4.0b 10 (Swofford, 2002) with 100 replicates for each pairwise comparison to assess set 

congruence.  Following the observation of no statistically significant incongruence between 

datasets, we felt justified in using the combined, concatenated, data for subsequent analyses.  

Exploratory analyses of the combined dataset of 108 individuals (including outgroup taxa with 

missing data for several genes) and a reduced dataset of individuals with no missing data 

exhibited identical relationships; we therefore chose to include all available data (108 

individuals) for subsequent analyses of the concatenated dataset.  Alignments and resulting 

topologies were deposited in TreeBase (SN11187). 

Parsimony analyses were conducted in PAUP* 4.0b 10 (Swofford, 2002), with gaps treated 

as missing data and all characters weighted equally.  Most parsimonious trees were estimated 

using heuristic searches with 1000 random addition-sequence replicates and tree bisection and 

reconnection (TBR) branch swapping.  To assess clade support, nonparametric bootstrapping 

was conducted using 1000 bootstrap replicates, each with 100 random addition-sequence 

replicates and TBR branch swapping. 

Partitioned Bayesian analyses were conducted in MrBayes v3.1.2 (Ronquist and 

Huelsenbeck, 2003).  The mitochondrial dataset was partitioned by codon position for the 

protein-coding region of ND1 and ND2 and by gene region for the short gene regions ATP8 and 

ATP6.  The Akaike Information Criterion (AIC), as implemented in jModeltest v0.1.1 (Guindon 
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and Gascuel, 2003; Posada, 2008), was used to select the best model of nucleotide substitution 

for each partition (Table 1.2).  The best-fit model for each data partition was implemented in 

subsequent Bayesian analyses.  A rate multiplier model was used to allow substitution rates to 

vary among subsets, and default priors were used for all model parameters.  We ran four 

independent Metropolis-coupled MCMC analyses, each with four chains and an incremental 

heating temperature of 0.05.  All analyses were run for 18 million generations, sampling every 

5000 generations.  To assess stationarity, all sampled parameter values and log-likelihood scores 

from the cold Markov chain were plotted against generation time and compared among 

independent runs using Tracer v1.4 (Rambaut and Drummond, 2007).  Finally, we plotted the 

cumulative and non-overlapping split frequencies of the 20 most variable nodes, and compared 

split frequencies among independent runs using Are We There Yet? [AWTY (Wilgenbusch et 

al., 2004)].  Although all samples showed patterns consistent with stationarity after 2.5 million 

generations (i.e., the first 12.5%), we conservatively discarded the first 20% of samples as burn-

in. 

In preliminary Bayesian analyses of the combined dataset, the independent runs failed to 

converge.  We tried (1) lowering the incremental heating temperature to 0.02, (2) using an 

unconstrained branch length prior with an exponential distribution of 25 (Siler et al. 2010c; 

Marshall 2006, 2010), and (3) removing outgroup taxa with large amounts of missing data.   

Although some of the trials of individual permutations of parameters resulted in a failure to 

converge, the incorporation of the above, plus an unconstrained branch length prior with an 

exponential distribution and a mean of 25 resulted in convergence.  Once complete convergence 

was achieved, we proceeded with final analyses, presented here. 
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Table 1.2. Models of evolution selected by AIC and applied for partitioned, phylogenetic 

analyses.  

Partition AIC Model Number of Characters 

NADH 1, 1st codon position GTR + Γ 322 

NADH 1, 2nd codon position GTR + Γ 322 

NADH 1, 3rd codon position GTR + Γ 322 

NADH 2, 1st codon position GTR + Γ 287 

NADH 2, 2nd codon position GTR + Γ 287 

NADH 2, 3rd codon position GTR + Γ 287 

ATP8 HKY + Γ 157 

ATP6 GTR + Γ 682 

BDNF GTR + Γ 715 

PTGER4 HKY + Γ 490 

R35 GTR + Γ 689 
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Partitioned maximum likelihood (ML) analyses were conducted in RAxMLHPC v7.0 

(Stamatakis, 2006) on the concatenated dataset the same partitioning strategy as for Bayesian 

analysis.  The more complex model (GTR + Γ) was used for all subsets (Table 1.2), and 100 

replicate ML inferences were performed for each analysis.  Each inference was initiated with a 

random starting tree, and employed the rapid hill-climbing algorithm (Stamatakis, 2007).  Clade 

confidence was assessed with 100 bootstrap pseudoreplicates employing the rapid hill climbing 

algorithm (Stamatakis et al., 2008).  

 

Topology tests 

We tested taxonomy- and phylogeography-based hypotheses to address questions concerning 

the patterns of Brachymeles diversification (Fig. 1.3):  (1) Is the genus Brachymeles 

monophyletic? (2) Are the currently and formerly recognized polytypic species (B. boulengeri, B. 

gracilis, B. schadenebergi) monophyletic? (3) Are the two “widespread” species (B. bonitae, B. 

samarensis) monophyletic? (4) Does the PAIC model of diversification explain the patterns of 

genetic diversity found in widespread species of Philippine Brachymeles? And, (5) Are the 

patterns of genetic diversity in widespread species of Philippine Brachymeles similar to those 

noted in other lineages (Siler et al., 2010c; Jones & Kennedy, 2008; McGuire & Kiew, 2001; 

Steppan et al., 2003; Alfaro et al., 2004)?  

We evaluated each question using Bayesian methods, and the approximately unbiased (AU) 

test (Shimodaira and Hasegawa, 2001; Shimodaira, 2002) as implemented in Siler et al. (2010c).  

The topological constraints for these questions are illustrated in Figure 1.3, with hypotheses 1–6 

derived from taxonomic questions, and hypotheses 7 and 8 derived from the PAIC predictions; 

the remaining hypotheses (9–11) have been observed in other taxa and are, in part, derived from  
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Figure 1.3. Six taxonomy-based hypotheses tested in the study.  Each hypothesis is illustrated by 

constraint trees used in AU and Bayesian tests.  The highest P-values recovered from each AU 

test (AU), and the posterior probabilities (PP) of the constraint topology, are shown. 
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expectations based on geological history and/or island proximity.  Using the full, combined 

dataset, and the same settings as the RAxML analyses described above, 100 ML searches were 

performed under each of the 13 constraints.  All 1,200 trees produced by RAxML (100 from the 

unconstrained analysis and 100 from each of the 11 constrained analyses), were filtered in PAUP 

to remove identical topologies.  A modified version of RAxML (provided by Alexandros 

Stamatakis) allowed the per-site likelihoods to be estimated for each of the 116 unique 

topologies under a partitioned model.  An AU test was then performed on the per-site likelihoods 

from all 116 using CONSEL v0.1i (Shimodaira and Hasegawa, 2001).  The p-value reported for 

a given hypothesis is the largest p-value of all the trees inferred under that constraint.  To 

automate various steps in the process, perl and python scripts were written by J. Oaks and CDS 

(available by request).  For the Bayesian approach, we took the percentage of 11520 post burn-in 

trees consistent with each hypothesis to represent the posterior probability that the hypothesis is 

true.  

 

Relative time analyses 

To test the combined dataset for deviations from a molecular clock, we optimized likelihood 

scores in PAUP* 4.0b10 with a molecular clock enforced and not enforced on the maximum-

likelihood topology.  A likelihood ratio test ([LRT] Arbogast et al., 2002; Felsenstein, 2004) 

significantly rejected a molecular clock (p ≤ 0.00), and subsequent analyses were conducted 

within a relaxed clock framework.  The chronogram used for ancestral state reconstructions in 

this study was inferred in a Bayesian framework using BEAST v1.5.3 (Drummond and Rambaut, 

2007).  A starting tree was designated for each run by manually adjusting the xml BEAUti v1.5.2 

(Drummond and Rambaut 2007) output file.  The consensus tree file from Bayesian analyses was 
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imported into R (R Development Team, 2008), and using the ape (Paradis et al., 2004), the 

phylogeny was paired down into individual lineages per species or morphologically distinct, 

non-monophyletic populations (B. bonitae and B. samarensis).  The 47-taxon phylogeny was 

then converted to a chronogram using the nonparametric rate smoothing method of Sanderson 

(1997) implemented in the ape (Paradis et al. 2004) package of R, and was exported in Newick 

format for use as the starting tree for BEAST analyses.  Four independent BEAST runs of 50 

million generations were completed under the same partitioning strategy as for Bayesian 

analyses, imposing an uncorrelated lognormal relaxed clock prior on substitution rate 

(Drummond et al., 2006) and Yule speciation prior.  Parameters were sampled every 5000 

generations and the initial 50% of each run was discarded as burn-in, leaving a combined 20,000 

trees in the posterior distribution. To evaluate convergence among MCMC analyses, trends and 

distributions of parameters, including the likelihood score, were examined in Tracer (Rambaut 

and Drummond 2007). 

 

Biogeographical reconstructions 

To explore whether there is statistical support for historical biogeographic patterns within 

Philippine species of the genus Brachymeles, we compared empirically observed (extant) species 

distributions to estimates of ancestral distributions using the program BayesTraits version 1.0 

(Pagel, 1994; Pagel and Lutzoni, 2002).  For all analyses we examined a model of character 

evolution that assumed equal rates of distributional transitions.  For all analyses we seeded the 

mean and variance of the gamma prior from uniform distributions on the interval 0 to 20 by 

enforcing the “Hyperpriorall” command of BayesTraits.  The LogCombiner v1.5.4 program of 

the BEAST v1.5.3 (Drummond and Rambaut 2007) package was used to combine trees from the 
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posterior distributions of the four independent Beast runs, producing a file with 2,000 trees from 

the posterior distribution.  All 2,000 chronograms were then used in analyses of distribution data 

in BayesTraits in an effort to account for phylogenetic uncertainty.  In the program BayesTraits, 

we ran MCMC chains for 25 million generations, sampling every 5000th generation, and 

discarded the first 50% of samples as burn-in.  The remaining 2,500 samples were used to 

summarize the posterior probabilities of ancestral character states for all nodes of the tree.  The 

“AddNode” command of BayesTraits was used to specify all nodes in the chronograms for 

visualization of the posterior probabilities of character states at each node.   

We ran a series of additional analyses on nodes with ambiguous estimated ancestral character 

states.  The “fossil” command of BayesTraits was used to sequentially enforce the character 

states making up 95% of the posterior probability at a single node, prioritizing character states 

with the highest posterior probability.  Bayes factors were again applied, and the state supported 

at each ambiguous node was summarized with the Bayes factors measure of support for that 

ancestral state (Kass and Raftery 1995; Nylander et al. 2004).  We enforced the ancestral states 

for all nodes sister to Philippine Brachymeles to be considered non-Philippine in distribution. 

 

Results 

Taxon sampling, data collection, and sequence alignment 

The complete, aligned matrix contains 82 samples of Brachymeles, representing 23 of the 25 

recognized taxa, for the mitochondrial genes and nuclear loci.   Seventeen additional samples are 

included as outgroups, consisting of representatives from the subfamilies Lygosominae and 

Scincinae within the family Scincidae as well as a single representative from the lizard family 

Lacertidae.  Following initial unrooted analyses, and the results of recent squamate evolution 
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studies (Whiting et al., 2003; Townsend et al., 2004; Wiens et al., 2006; Brandley et al., 2005; 

Brandley et al., 2008), we rooted the tree using samples of Takydromus sexilineatus from China.  

Within each gene, variable and parsimony-informative characters are observed as follows: 118 

and 107 out of 158 (ATP8); 357 and 339 out of 683 (ATP6); 504 and 464 out of 966 (ND1); 575 

and 531 out of 861 (ND2); 115 and 69 out of 715 (BDNF); 127 and 95 out of 490 (PTGER); 304 

and 220 out of 689 (R35). The number of most parsimonious trees and consistency indices 

resulting from MP analyses of the combined dataset is 78 trees/CI = 0.318. 

 

Phylogenetic analyses 

Analyses of the combined data (ND1, ND2, ATP8, ATP6, BDNF, PTGER4, R35) result in 

topologies with high Maximum Likelihood bootstrap support and posterior probabilities (Fig. 

1.4).  Topologies are congruent across these analyses (Fig. 1.4).  All analyses support three 

clades of outgroup scincid taxa (Fig. 1.4).  Outgroup samples from the subfamily Lygosominae 

are never recovered as part of a single clade (Fig. 1.4); however, given the possibility that the 

chosen root for analyses and the outgroup sampling strategy likely influence outgroup 

relationships, additional taxa should be obtained for a more exhaustive analysis of scincid 

relationships before definitive conclusions may be drawn. 

The genera Eumeces and Plestiodon are recovered as a single, strongly supported clade in all 

analyses (Fig. 1.4, Clade 1).  Although this clade is often supported as the closest group of 

outgroup species to Brachymeles + Davewakeum (ML; Fig. 1.4), support for its placement was 

always low, and in Bayesian analyses, the clade is regularly recovered as part of a three clade 

polytomy of outgroup samples (results not shown).  The species Davewakeum miriamae is 
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always recovered nested within Brachymeles samples, between the clade B. apus + B. cf. apus 

from Borneo and all Philippine Brachymeles (Fig. 1.4). 

Although the genus Brachymeles (as currently recognized) is never recovered as a 

monophyletic group, all analyses strongly support the monophyly of Brachymeles + 

Davewakeum (Fig. 1.4, Clade 2).  The two limbless species Brachymeles apus (Borneo) and 

Davewakeum miriamae (Thailand) are always recovered as the two lineages most closely related 

to all Philippine Brachymeles (Fig. 1.4).  Within the Philippines, all limbless species and the 

majority of limb-reduced species are recovered as part of two reciprocally monophyletic sub-

clades, and together are sister to all pentadactyl species and the remaining non-pentadactyl taxa 

(Fig. 1.4, Clade 3).  Sampled populations of the currently recognized widespread, limb-reduced 

species Brachymeles bonitae and B. samarensis are never recovered as monophyletic (Fig. 1.4, 

Clade 3).  Brachymeles cebuensis, one of only two species of Brachymeles with unequal 

numbers of fingers and toes (three fingers/two toes) is recovered as sister to B. samarensis from 

Leyte Island (Fig. 1.4, Clade 3).  Within Clade 1, all analyses recover a population of 

Brachymeles bonitae with one fore-limb digit and one hind limb digit as sister to the tridactyl 

species B. tridactylus, and the five other populations of B. bonitae (Fig. 1.4).  Additionally, a 

morphologically distinct population of B. cf. bonitae with limbs but no digits is supported to be 

the sister species to B. tridactylus (Fig. 1.4, Clade 3). 

All pentadactyl species and three non-pentadactyl species of Brachymeles are always 

recovered as part of a clade, sister to Clade 3 (Fig. 1.4, Clade 4).  Although the two species 

formerly part of the Brachymeles schadenbergi species complex (B. orientalis and B. 

schadenbergi) are always recovered as reciprocally monophyletic lineages (Fig. 1.4, Clade 8), 

the polytypic species B. gracilis, and the four species formerly part of the B. boulengeri species  
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Figure 1.4. Hypothesized relationships of Brachymeles, illustrated by ML estimates (-ln L 

54137.110363).  Nodes supported by ≥95% Bayesian PP and ML bootstrap support were 

considered significantly supported and are indicated by black circles.  Terminals are labeled with 

abbreviated taxonomic names, followed by general geographic distribution (Appendix I).  The 

placement of the genus Davewakeum is indicated by red braches.  Colored boxes highlight 

hypothesized monophyletic groups.  Colored clade bars highlight general body plans observed 

for species within designated clades.  Alpha and numerical labels correspond to clades referred 

to in the Results and Discussion.  For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article. 
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complex, are strongly supported to be paraphyletic (Fig. 1.4, Clades 5, 6, 8).  All analyses 

recover four well-supported clades within Clade 4 (Fig. 1.4).  Although Bayesian analyses 

provided high support for the relationships between these clades, likelihood analyses provide less 

support (Fig. 1.4, Clade 4). 

Three non-pentadactyl species are recovered as part of Clade 4 in all analyses (Fig. 1.4).  The 

tetradactyl species Brachymeles elerae and the tridactyl species B. muntingkamay are always 

recovered as sister taxa (Fig. 1.4, Clade 7); however, the relationship of Clade 7 to the other 

major clades in Clade 4 is less well supported.  Brachymeles pathfinderi, the only other species 

with unequal digit numbers (five fingers/four toes), is recovered with strong support to be nested 

within the polytypic species B. gracilis (Fig. 1.4, Clade 6). 

Brachymeles bicolor, the longest species, is recovered as sister to a subclade of three 

medium-sized species (B. boulengeri + B. mindorensis + B. taylori) and three large species (B. 

talinis + two undescribed species [Siler and Brown, 2010]).  Brachymeles boholensis, formerly 

recognized as a subspecies of the B. boulengeri species complex, is consistently supported as 

part of Clade 8, sister to B. orientalis, B. schadenbergi, and B. makusog (Fig. 1.4). 

 

Topology tests 

Results from the Bayesian methods and the approximately unbiased (AU) test were highly 

consistent.  Among the taxonomy-based hypotheses, both methods rejected hypotheses of 

monophyly for the genus Brachymeles, the widespread species B. bonitae, B. gracilis, and B. 

samarensis, and the former polytypic species B. boulengeri (Fig. 1.3).  Additionally, both 

methods failed to reject the monophyly of the former polytypic species B. schadenbergi, now 

recognized as two distinct sister species (Siler and Brown, 2010; Fig. 1.3).  All biogeography-
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based hypotheses were rejected by both methods (Fig. 1.3). 

 

Body form evolution 

Our simplified mapping of major body plan variation onto the preferred phylogenetic tree 

(Fig. 1.4) makes it clear that the evolutionary history of Brachymeles involves multiple instances 

of evolutionary shifts in body size, limb reduction, and digit loss.  Although a full understanding 

of these trends will require a comprehensive analysis of both external (body size, limb 

proportions, digital states) and internal (vertebral numbers and elongation) morphology, 

preliminary trends can be ascertained on the basis of results presented here.  If it is assumed, for 

example, that the ancestors of Brachymeles possessed similar body plans as the genus’ putative 

closest relatives (Eumeces, Plestiodon, Lygosoma, Emoia Dasia and Eutropis), then limb 

reduction and loss may have occurred along the lineages leading to B. apus and B. cf. apus, in 

the lineage leading to Davewakeium miriamae, in the lineage leading to the B. bonitae and B. 

samarensis complexes, and independently in the lineages leading to B. pathfinderi and B. 

muntingkamay + B. elerae.  It is interesting to note that the known diversity of pentadactyl 

species in the genus is endemic to the Philippine. 

 

Historical biogeography 

Although the placement of Brachymeles within the family Scincidae remains somewhat 

ambiguous, the impact of ancestral range for all Brachymeles does not appear to heavily impact 

ancestral reconstructions within the genus (not shown).  The results of analyses of ancestral areas 

are never significantly impacted by placing restrictions on the ancestral character states among 

outgroup taxa and the node giving rise to all Brachymeles (not shown).  Without a priori  
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Figure 1.5. Maximum clade credibility chronograms and estimated ancestral states of 

geographic range in Brachymeles skinks.  Ancestral area reconstructions are indicated at each 

node.  Triangles indicate unambiguous reconstructions of an ancestral area (posterior probability 

≥ 0.95), colored according to the hypothesized state.  Circles represent ambiguous character 

reconstructions, with colors representing the preferred area.  Colored blocks at each ambiguous 

node represent alternate states supported in analyses.  Bayes factors are provided as an indication 

of the strength of support for preferred states at ambiguous nodes receiving moderate to strong 

statistical.  For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article. 
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knowledge of the true patterns of diversification within the Philippines, we conservatively chose 

a model allowing for equal rates of transition among major faunal regions of the Philippines.  

Ancestral state reconstruction analyses resulted in many nodes where the reconstructed ancestral 

range is ambiguous (Fig. 1.5).  The Luzon PAIC is the preferred ancestral range in most cases 

with varying degrees of support (Fig. 1.5).  Importantly, all analyses resulted in unambiguous 

support for ancestral ranges at eleven nodes in the phylogeny, supporting the Luzon, Negros-

Panay, and Mindanao PAICs as the ancestral ranges for several clades of Philippine Brachymeles 

(Fig. 1.5A–C).  Given strong statistical support for ancestral areas at eleven nodes, we are 

confident in hypothesizing five dispersal events (Fig. 1.5), including clear dispersal from Luzon 

to Mindoro, Luzon to the central Visayan islands, dispersal from the Visayas to Mindoro and 

Luzon, and a clear instance of dispersal from the Mindanao island group to southern Luzon.  

Considering the moderate to strong statistical support for a specific reconstruction at seven 

ambiguous nodes (indicated by Bayes factors of 4.13–9.10; Kass and Raftery 1995; Nylander et 

al. 2004), we infer the possibility of five additional dispersal events (Fig. 1.5).   

 

Discussion 

Taxon sampling 

Our widespread sampling of individuals across the range of most Philippines Brachymeles 

species allows for fine-scale resolution of phylogenetic relationships and an unprecedented and 

comprehensive taxonomic review (Siler, 2010; Siler et al., 2009a, 2010a,b; Siler and Brown, 

2010; Siler et al., in press c,d).  The two species missing in our analyses are Brachymeles wrighti 

from northern Luzon Island and B. vermis from the Sulu Archipelago in the southern Philippines.  

Both species are represented by only a few museum specimens worldwide, and no genetic 
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samples have ever been collected.  Previous studies that have included samples of Brachymeles 

have not been able to confidently place the genus Brachymeles within the family Scincidae 

(Brandley et al., 2005, 2008).  Although our attempt to sample widely from outgroup taxa results 

in some well-supported relationships, the most closely related species to the genus Brachymeles 

remains unclear (see also Brandley et al., 2005).  We are unable to collect full sequence data for 

all included outgroup taxa (Appendix I), and missing data may have contributed to weaker 

support for outgroup relationships.  It is anticipated that additional outgroup and gene sampling 

will aid resolution of these relationships. 

 

Phylogeny and cryptic genetic diversity 

Cryptic diversity has been documented as a global phenomenon (Pfenninger and Schwenk, 

2007; Bickford et al., 2007), and we now suspect the phenomenon to also characterize Philippine 

slender skinks (Siler et al., 2009a, 2010a,b; Siler and Brown, 2010; Siler et al., in press c,d).  

Although we focus on diversity of skinks of the genus Brachymeles, our results support the 

taxonomic issues identified in numerous studies for the family Scincidae (e.g., the non-

monophyly of Lygosominae), and phylogenetic studies across the family are needed to provide 

sweeping taxonomic revisions.  Although we did not expect to find that Davewakeum miriamae 

is nested within the genus Brachymeles, this result, in retrospect, is not surprising when 

comparing morphology of this genus to species of Brachymeles.  Davewakeum shares several 

unique morphological features with B. apus, B. bonitae, and B. samarensis, including the fusion 

of the mental and first infralabial scales, the presence of a moderate-sized interparietal scale, 

nasal scales, two loreal scales, a frontal scale, frontoparietal scales, the presence of a single scale 
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row on the lower eyelid (Siler et al., 2010b; Siler, pers. obs.), and a general elongated, limb-

reduced body plan. 

With the results of this study, and the fact that the genus Brachymeles (Duméril and Bibron, 

1839) was described well before Davewakeum (Heyer, 1972), we consider Davewakeum to be a 

junior synonym of Brachymeles and, consequently, Brachymeles miriamae, new combination, to 

be the fifth limbless species of Brachymeles.  We note that at least one additional known 

limbless species (B. cf. apus, from Kalimantan, south Borneo) awaits description (Iskandar and 

Bickford, unpublished data). 

The conservative body plans within the genus Brachymeles have led to confusion over 

species boundaries, the long accepted recognition of polytypic species, and the recognition of 

“widespread” species with distributions across accepted faunal boundaries (Brown, 1956; Brown 

and Rabor, 1967; Brown and Alcala, 1980).  With the exception of Brachymeles schadenbergi, 

the results of this study do not support the monophyly of the currently and previously recognized 

polytypic species in the genus (Fig. 1.3, 1.4).  Furthermore, all currently recognized subspecies 

within the genus are both strongly supported divergent lineages in the phylogeny and represent 

unique morphologies, most likely worthy of specific rank (Fig. 1.4; Siler and Brown, 2010; Siler 

et al., in press d). 

The degree to which convergent morphology has led to the underestimation of diversity 

within the genus can further be exemplified by examining the “widespread” species densely 

sampled in this study.  Populations of the previously-recognized widespread pentadactyl species, 

B. talinis, have recently been revised to represent five unique pentadactyl species in the genus, 

each with non-overlapping geographic distributions (Fig. 1.4):  B. makusog (Siler et al., 2010a), 

B. talinis, B. sp. A (Siler and Brown, 2010), B. sp. B (Siler and Brown, 2010), and B. sp. C (Siler 



 35 

and Brown, 2010).  Additionally, populations of the two former polytypic species, B. boulengeri 

and B. schadenbergi, have recently been revised, with all subspecies being elevated to full, 

morphologically distinct species (Siler and Brown, 2010; Fig. 1.4, Clade 5, 8). 

Currently, Brachymeles bonitae and B. samarensis are recognized to have atypical 

distributions that span multiple PAICs (Fig. 1.4, Clade 3).  Brachymeles samarensis is known to 

occur on two islands in the Greater Luzon PAIC (Catanduanes, Luzon), as well as two islands 

and one small island group in the Mindanao PAIC (Leyte, Samar, Lapinig Island Group; Fig. 1.1, 

1.2).  In comparison, B. bonitae has the widest recognized distribution of any species in the 

genus.  Populations referable to this species occur in three distinct PAICs (Greater Luzon, 

Greater Mindoro, Greater Negros-Panay) and two small deep-water island groups (Babuyan, 

Romblon).   However, our results indicate that both B. bonitae and B. samarensis are complexes 

of numerous, morphologically similar species (Fig. 1.4, Clade 3).  Although populations within 

both species complexes share similar body plans, unique sets of characters do exist, including 

differences in the numbers of fore- and hind limb digits (Siler et al., in press c; Siler, unpublished 

data).  These inter-population differences have historically been recognized as morphological 

variation within widespread species (Brown, 1956; Brown and Rabor, 1967; Brown and Alcala, 

1980); however, upon our observation that character differences coincide with deep genetic 

divergences and biogeographic breaks in lineage distributions, we suspect that many inter-

populational variants in B. samarensis and B. bonitae will prove to be full species in accordance 

with any modern lineage-based species concept (see Siler et al., in press c), as they have in the B. 

boulengeri and B. shadenbergi complexes (Siler and Brown, 2010).   

Recent studies have revealed numerous other “widespread” Philippine endemic reptiles to 

actually represent complexes of cryptic diversity, with few species actually possessing 



 36 

distributions that span recognized faunistic boundaries (Brown et al., 2000; Brown and Diesmos, 

2002, 2009; Siler et al., 2010a,b; Siler and Brown, 2010; Welton et al., 2009, 2010a,b).  

Exceptions do exist (Brown and Alcala, 1970), but many of these have turned out to represent 

invasive species with suspected histories of human mediated introductions (Diesmos et al., 2006; 

Brown et al., 2010).  It is clear that the diversity of Brachymeles is vastly underestimated, and 

detailed morphological comparisons are needed to revise the taxonomy within the genus.   

Finally, the phylogeny supports dispersal events into the Southeast Asian mainland 

(Thailand) from Borneo and subsequent dispersal into the Philippines, some level of uncertainty 

remains in the species diversity of Brachymeles outside of the Philippines (Fig. 1.4).  The 

apparent disjunct distribution of Brachymeles in Southeast Asia may be an artifact of high levels 

of extinction outside of the Philippines or an absence of discovery.  The phylogeny suggests at 

least one genetically distinct, undescribed limbless species in the southern regions of Borneo 

(Kalimantan, Indonesia; Fig. 1.4), and it is highly probable that other undescribed species will 

eventually be discovered in other regions of Asia.  It is remarkable to note that the entire 

diversity of limbed, pentadactyl, reduced limbed, and limbless body forms are found in the 

Philippines (Fig. 1.4); we take this pattern as a testament to the richness of processes of 

diversification found within this small but remarkable island archipelago (Brown and Diesmos, 

2009). 

 

Diversification and body form evolution within a semi-fossorial genus 

Previous surveys of body plan diversity within Brachymeles have focused solely on 

morphological variation (Brown and Rabor, 1967; Brown and Alcala, 1980; Brown and Alcala, 

1995), mentioning the potential for undocumented cryptic diversity within the genus as an 
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ancillary possibility, not an expectation, much less a predominant phenomenon.  However, a 

number of studies have shown that the evolution of a burrowing lifestyle is correlated with 

decreasing dispersal abilities (Selander et al., 1974; Patton and Yang, 1977; Patton and Feder, 

1978) as well as changes in body form (see Crottini et al., 2009 for review).  Several lineages of 

Brachymeles have experienced a reduction in limb size and digit numbers (Fig. 1.4), which may 

further reduce their vagility (Daniels et al., 2005; Mulvaney et al., 2005).  Over time, reduced 

dispersal abilities may lead to an increasingly patchy distribution, reduction in gene flow among 

populations, and the accumulation of inter-population genetic differences (Nevo, 1979).  This 

process also could be amplified within an island archipelago or a geographically complex island 

such as Luzon or Mindanao. We expect that this process has contributed to cryptic lineage 

diversification in this unique southeast Asian radiation. 

The results of phylogenetic analyses provide evidence for three losses of external limb 

elements, and three distinct instances of changes in digit states.  Although five species of 

Brachymeles are externally limbless (B. apus, B. minimus, B. miriamae, B. lukbani, B. vermis), it 

is currently unknown whether internal girdle elements are present in any of the five species, an 

indication that the species have retained some vestigial limb elements.  Additionally, there is 

evidence for up to four independent losses of auricular openings, with the openings being 

completely covered by scales in B. apus, B. cf. apus, B. miriamae, all species of Brachymeles in 

Clade 3 of Figure 1.4, and B. muntingkamay.  It is also interesting to note that all species and 

populations with unequal digit numbers in the fore- and hind limbs have fewer toes than fingers 

in Brachymeles (B. bonitae, B. cebuensis, B. pathfinderi, B. samarensis), in contrast to many 

previous studies which have shown that reductions in digit number are more common in the fore-

limbs of scincid lizards (Brandley et al. 2008; Skinner and Lee, 2010). 
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Biogeographic patterns 

Although numerous previous studies have observed phylogenetic patterns consistent with 

PAIC-based models of diversification (e.g., Heaney et al., 1998; Kennedy et al., 2000; Brown & 

Diesmos, 2002; Brown & Guttman, 2002; Evans et al., 2003; Esselstyn et al., 2004), we rejected 

all topologies predicted from a PAIC-based model (Fig. 1.3).  Additionally, we rejected all 

hypotheses derived from patterns observed in other taxa (Alfaro et al., 2004; McGuire & Kiew, 

2001; Siler et al., 2010c).  

Phylogenetic analyses and ancestral state reconstructions provide support for multiple 

dispersal events in Brachymeles leading to complex and biogeographically convoluted 

distribution patterns observed today.  Ancestral range reconstructions unambiguously estimate 

the ancestral range for 11 nodes in the chronogram, supporting a minimum of five geographic 

range shifts between major faunal regions in the Philippines (Fig. 1.3).  Of these hypothesized 

inter-PAIC transitions, with the exception of a dispersal out of the Mindanao PAIC, all 

geographic transitions are hypothesized to have originated in the Luzon or central Visayan 

PAICs (Fig. 1.3A–C).  Additionally we note that although only five inter-PAIC dispersal events 

are unambiguously reconstructed (Fig. 1.5A–C), an additional 5 instances of between-PAIC 

dispersal can be inferred with strong statistical support (Bayes factors 6–10; Kass and Raftery 

1995; Nylander et al. 2004).  Given that the major PAIC platforms of the archipelago have never 

been connected by dry land (Kloss, 1929, Inger, 1985; Heaney, 1985, Voris, 2000, Yumul et al., 

2003, 2008), suggesting that faunal exchange among PAICs necessitates over-water dispersal 

(review: Brown and Diesmos, 2009), we find it reasonable to conclude that much of the 

historical dispersion of Brachymeles throughout the archipelago has been through the process of 
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waif dispersal over water. Clearly the evolutionary and biogeographic history of semi-fossorial 

slender lizards has been heavily impacted by over water faunal exchange throughout the 

archipelago.  This may appear at odds with the general assumption of low vagility assumed for 

reduced-limbed lizards with a burrowing lifestyle, but we find it conceivable, and even plausible, 

that dispersal between islands is mediated by frequent rafting of mats of vegetation, topsoil, and 

logs; these possible vectors have frequently observed washing out of the mouths of rivers 

following heavy storms (CDS and RMB, personal observations). 

 

Conclusion 

Our data represent a comprehensive, phylogenetic study for a closely related group of lizards.  

We have included samples from nearly all recognized species within the genus Brachymeles, and 

our intraspecific sampling has uncovered cryptic genetic diversity within many species (e.g., 

Brachymeles bonitae and B. samarensis).  This study provides the foundation for a robust model 

system with which to address patterns of body form evolution, processes of diversification, and 

species delineation.  With the exception of the recently published Lerista dataset (Skinner et al., 

2008; Skinner, 2010; Skinner and Lee, 2010), our estimates of phylogeny represent the most 

comprehensive dataset for fine-scale studies of limb-reduction and loss in squamate reptiles.  

It is clear that the current recognized diversity of Brachymeles skinks is vastly 

underestimated, and that numerous taxonomic revisions will be necessary to fully appreciate the 

processes of diversification within this nearly endemic Philippine radiation.  New species await 

description (e.g., the new limbless species in southern Borneo; Fig. 4), and likely await discovery, 

and future survey work should focus on regions outside of the Philippines (e.g., Borneo, Malay 

Peninsula, Indochina).  This study has revealed another case of extensive cryptic diversity in a 
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once recognized assemblage of “widespread” Philippine species (Fig. 1.4).  Together with 

numerous recent studies (Brown et al., 2009; Esselstyn et al., 2009; Esselstyn and Brown, 2009; 

Oliveros and Moyle, 2010; Siler et al., 2010c; Linkem et al., 2010) this effort has resulted in 

wholesale discovery of numerous new species and cryptic evolutionary lineages of endemic 

Philippine vertebrates.  Once considered a small radiation of Asian skinks, the recognized 

species diversity of the genus Brachymeles will likely increase by more than 300% over the next 

five years (Siler et al., unpublished data). 

We rejected all PAIC-based models of diversification (e.g., Heaney et al., 1998; Kennedy et 

al., 2000; Brown & Diesmos, 2002; Brown & Guttman, 2002; Evans et al., 2003; Esselstyn et al., 

2004), as well as all patterns observed in other studies (Alfaro et al., 2004; McGuire & Kiew, 

2001; Siler et al., 2010c; Fig. 1.3).  However, the results of this study provide evidence for five 

major dispersal events across faunal zone boundaries that have given rise to the major clades of 

Brachymeles species diversity in the Philippines (Fig. 1.5).  Surprisingly, all but one of these 

dispersal events are hypothesized to have originated in the Luzon or central Visayan PAICs (Fig. 

1.3A–C).  The results of this study, coupled with our knowledge of the geologic history of the 

region (Kloss, 1929, Inger, 1985; Heaney, 1985, Voris, 2000, Yumul et al., 2003, 2008), 

suggests that much of the historical faunal exchange of Brachymeles throughout the archipelago 

has been through the process of over-water (waif) dispersal.  Without time-calibrated 

phylogenies, and the absence of closely related fossil calibrations, it is difficult to say when the 

hypothesized dispersal events occurred, leading to the complex distribution patterns observed 

today. 

The transition from quadrapedal to limbless body plans has occurred repeatedly in 

independent lineages of squamate reptiles (i.e., snakes, lizards, amphisbaenians; Wiens and 
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Slingluff, 2001; Greer, 1991; Pough et al., 2004).  It is clear that these transitions also occur 

repeatedly within single radiations of closely related species (Fig. 1.4).  The results of this study 

provide the first evidence of repeated limb, digit, and auricular opening loss in the genus 

Brachymeles.  Given our results, and those of other studies that explicitly test morphological 

patterns of body form change within squamate reptiles (for review, see Wiens and Slingluff, 

2001; Brandley et al., 2008), we are left with many unanswered questions.  Given the apparent 

evidence for repeated body form change in Brachymeles, can we estimate the number of times 

characters have been lost (or potentially gained) in Brachymeles?  Do the patterns of 

morphological changes observed within this unique radiation of Southeast Asian lizards support 

previous hypotheses of correlated morphological evolution associated with limb-reduction and 

loss in squamate reptiles (for review, see Wiens and Slingluff, 2001; Brandley et al., 2008)?  Is 

there evidence for a gradual, evolutionary sequence involved in the process towards limb loss?  

What inferences can we make from statistical reconstructions (estimates) of ancestral 

morphology and character state change on the phylogeny?  These and other broad-scale 

evolutionary questions that address the processes of body form evolution must be assessed 

within a comparative framework, and require the addition of robust morphological datasets. 
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CHAPTER 2 

Evidence for repeated acquisition and loss of complex body form characters in an insular 

clade of Southeast Asian semi-fossorial skinks 

 

The unidirectional loss of complex characters has been a major theme in the development of 

theories of evolutionary change of morphology and body plan evolution (Dollo, 1893, 1922; 

Muller, 1939; Simpson, 1953; Gould, 1970).  Dollo’s law, or the irreversible loss of complex 

characters (Dollo, 1893, 1905, 1922; Simpson, 1953; Gould, 1970), has been the subject of many 

recent empirical studies (for review, see Galis et al., 2010).  Although re-acquisition of complex 

characters historically was believed to be improbable following significant genetic differentiation 

(Muller, 1939; Simpson, 1953; Marshall et al., 1994; Zufall and Rausher, 2004), Dollo’s Law has 

come into question recently with the advent of phylogenetic methods and new tools for ancestral 

character state reconstruction (for review, see: Kohlsdorf and Wagner, 2006; Collin and 

Miglietta, 2008; Goldberg and Igic, 2008; Lynch and Wagner, 2009; Wiens, 2011).  For example, 

in a recent reviews by Galis et al. (2010) and Wiens (2011), numerous examples of studies 

supporting the re-acquisition of complex traits were discussed, including the re-acquisition of 

teeth and nipples in mammals (Kurtén, 1964; Gilbert, 1986; Sherman et al., 1999; Lihoreau et al., 

2006), teeth in frogs (Wiens, 2011), wings in insects (Whiting et al., 2003), coiling in snails 

(Collin and Cipriano, 2003; Pagel, 2004), sexuality in orobatid mites (Domes et al., 2007), 

complex life cycles in marsupial frogs (Wiens et al., 2007), and phalanges and digits in squamate 

reptiles (Greer, 1992; Kohlsdorf and Wagner, 2006; Brandley et al., 2008).  Nevertheless, 

statistical phylogenetic tests of Dollo’s Law have led to questions concerning potential pitfalls 

and methodological weaknesses (Trueman et al., 2004; Urdy and Chirat, 2005; Goldberg and 
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Igic, 2008; Galis et al., 2010; but see Kohlsdorf et al., 2010).  Although these potential 

methodological limitations have been presented, studies continue to find evidence for the re-

acquisition of complex traits.  

In addition to the studies on the polarity of character change, evolutionary patterns of limb-

reduction and loss have provided biologists with a rich suite of hypotheses for tests in a 

phylogenetic framework (for review, see Brandley et al., 2008).  Recent advances in the field of 

phylogenetics and the availability of molecular data have resulted in a resurgence of interest in 

the patterns and processes of body form evolution among squamate reptiles (Wiens and Slingluff 

2001; Whiting et al. 2003; Kearney and Stuart 2004; Sanger and Brown 2004; Wiens 2004; 

Schmitz et al. 2005; Kohlsdorf and Wagner 2006; Wiens et al. 2006; Brandley et al. 2008; 

Skinner et al. 2008; Skinner and Lee 2009, 2010; Skinner 2010; Galis et al. 2010; Kohlsdorf et al. 

2010).   From studies of development (Shubin and Alberch 1986; Cohn and Tickle 1999; Shapiro 

2002) to studies of locomotion (for review, see Bergmann and Irschick 2010), researchers have 

attempted to address questions concerning the repeated transition from quadrupedal to limbless 

body plans in independent lineages of squamate reptiles (Greer 1991; Pough et al. 2004; Wiens 

et al. 2006).  Long believed to be an irreversible evolutionary process, recent studies have 

provided evidence for digit reacquisition (Kohlsdorf and Wagner 2006; Brandley et al. 2008; 

Kohlsdorf et al. 2010).  To date, fine-scale studies of squamate body form evolution have been 

limited by a paucity of model systems to test the irreversibility of character change (but see 

Kohlsdorf and Wagner 2006; Skinner et al. 2008; Skinner 2010). 

Previous studies of squamate body form evolution have focused most often on broad- scale 

patterns of limb reduction and loss, and a suite of morphological changes have been identified as 

associated with this evolutionary transition.  These include body elongation, reduction in limb 
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size, loss of digits, miniaturization, increase in the number of presacral vertebrae, loss of external 

ear openings, and loss of associated limb girdles (for review, see Brandley et al. 2008).  Changes 

in the number of digits have been shown to likely occur through an ordered evolutionary 

sequence (Alberch and Gale 1985; Shubin and Alberch 1986; Shapiro 2002).  Historically, these 

were assumed to occur through the irreversible loss of the limb and digit character (Brandley et 

al. 2008).  This assumption of irreversibility has had a marked influence on the interpretation of 

recent findings concerning the re-evolution of multiple digits and limbs from limb-reduced 

ancestors (Whiting et al. 2003: Kearney and Stuart 2004; Collin and Miglietti 2008). Recent 

studies focusing on ancestral state reconstructions have highlighted several potential 

methodological pitfalls by demonstrating well supported but misleading reconstructions of 

character change; this discussion has focused on extent of outgroup sampling and character states 

at the root of the phylogeny (Goldberg and Igic 2008; Galis et al. 2010).   Finally, the assumption 

of ordered sequential change has had a significant impact on studies of ancestral squamate digit 

states (Kohlsdorf and Wagner 2006; Brandley et al. 2008; Skinner et al. 2008; Skinner et al. 

2010; Skinner 2010).  However, recent findings indicate that an ordered model of digit evolution 

does not always provide the best-fit model of the evolution of digit change in scincid lizards 

(Skinner and Lee 2010; Skinner 2010).   

There are few genera of scincid lizards that possess both fully limbed and limbless species 

(Brachymeles, Chalcides, Lerista, and Scelotes; Lande 1978; Wiens and Slingluff 2001), 

providing rare model systems for fine-scale studies of body form evolution.  Most studies of 

these genera have included only morphological data (e.g., Lande 1978; Choquenot and Greer 

1987; Greer 1987, 1990, 1991; Caputo et al. 1995; Greer et al. 1998) or limited taxonomic 

sampling (Scelotes: Whiting et al. 2003; Chalcides: Brown and Pestano 1998; Pestano and 

Brown 1999).  However, recent studies of Lerista addressed patterns of body form evolution  
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Figure 2.1.  Hypothesized relationships of Brachymeles from Siler et al. (2011), illustrated by 

ML estimates (-ln L 60687.493127).  Nodes supported by ≥95% Bayesian PP and ML bootstrap 

support were considered significantly supported and are indicated by black circles.  Terminals 

are labeled with abbreviated taxonomic names, followed by general geographic distribution.  

Limb and digit states, numbers of presacral vertebrae, and proportionally-drawn body form 

cartoons are shown for reference.  Externally limbless, non-pentadactyl, and pentadactyl species 

are highlighted by red, blue and black braches, respectively.  Alpha and numerical labels 

correspond to clades referred to in the Results and Discussion. 
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using a molecular and morphological dataset and robust taxonomic sampling (Skinner et al. 

2008; Skinner and Lee, 2009, 2010; Skinner 2010).  Limb reduction and loss has been shown to 

occur frequently in Lerista, a genus of 94 species, with rates of change suggested to be much 

higher than previously estimated (Skinner et al. 2008; but see Wiens 2009).  In contrast to some 

recent evidence for digit, and possibly limb, re-evolution (Kohlsdorf and Wager 2006; Brandley 

et al. 2008; Kohlsdor et al. 2010), studies of Lerista support unidirectional loss of digits only 

(Skinner et al. 2008; Skinner and Lee 2009, 2010; Skinner 2010).  Of these four known squamate 

systems, the genus Brachymeles remains the least studied, and to date, patterns of body form 

evolution among species of this enigmatic lizard radiation have received little attention (but see 

Siler et al. 2011). 

Morphological diversity within the Southeast Asian lizard genus Brachymeles has only 

recently been brought to light by a series of systematic studies (Siler et al. 2009a, 2010a,b; Siler 

and Brown 2010; Siler et al. 2011, in press c,d). Within this genus, all but two of the 26 

recognized species are endemic to the Philippines (Brown and Alcala 1980; Siler et al. 2009a, 

2010a,b; Siler and Brown 2010; Siler et al. 2011, in press c,d); the exceptions are B. apus from 

northern Borneo (Hikida 1982) and B. miriamae (Heyer 1972) from Thailand (formerly 

Davewakeum miriamae; Siler et al. 2011).  Thirteen species are pentadactyl (bicolor, boholensis, 

boulengeri, gracilis, kadwa, makusog, mindorensis, orientalis, schadenbergi, talinis, taylori, 

tungaoi, and vindumi), and the remaining thirteen species exhibit limbless or intermediate states, 

including incompletely developed limbs and reduced numbers of digits (bonitae, cebuensis, 

elerae, muntingkamay, pathfinderi, samarensis, tridactylus, and wrighti).  Five of the non-

pentadactyl species are completely limbless (apus, minimus, miriamae, lukbani, and vermis).  

Within the non-pentadactyl species there exists a wide range of limb- and digit-reduced states, 
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from minute limbs that lack full digits (bonitae, cebuensis, muntingkamay, samarensis, 

tridactylus), to moderately developed limbs with four to five digits on the hands and feet (elerae, 

pathfinderi, wrighti).  Because of the body form variation in this clade, and the fact that its many 

closely related species differ by the presence or absence of digits and characters of the limbs, this 

group provides an ideal system for testing Dollo’s Law and the prediction of unidirectional limb 

reduction and loss. 

Siler et al. (2011) provided the first estimate of phylogenetic relationships among species in 

the genus Brachymeles.  The seven-gene dataset included representatives for all but two of the 

currently known species in the genus as well as broad outgroup sampling (Siler et al. 2011).  

Results of this study indicated that multiple instances of limb-reduction and loss have occurred in 

this radiation of burrowing skinks.  Additionally, several widespread limb-reduced species (e.g., 

B. bonitae, B. samarensis) were not found to be monophyletic, and were shown to be species 

complexes with unique digit numbers and morphologies (Siler et al. 2011).  However, no 

morphological data were presented, and the focus remained solely on the phylogenetic 

relationships, taxonomic stability, and biogeographic patterns.  Here we add additional molecular 

sequence data to the datasets of Siler et al. (2011), and a large, newly acquired, comprehensive 

morphological dataset, to assess patterns of body form evolution within this unique clade of 

species.  Our combined molecular and morphological datasets represent one the most fine-scaled 

systems for studying body form evolution in a group of closely related squamates to date. 

In order to test hypotheses of body form evolution among squamate reptiles, we investigate 

patterns of body form change in skinks of the genus Brachymeles using a phylogenetic 

comparative approach, derived from morphological data.  We explore the data for evidence of 

threshold values of morphological features after which changes in body form occur.  
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Additionally, we test for patterns of correlated evolution of morphological characters.  We 

provide the first exploration of the impact of various methodological choices used in previous 

studies of body form evolution, including the impact of choice of morphometric variable as a 

measurement of body size for non-phylogenetic and phylogenetic size-correction as well as the 

overall method for multivariate principal component analyses.  Finally, using our robust estimate 

of phylogenetic relationships, we explore the prevalence and directionality of evolutionary 

changes in limb, digit, and ear character states, and the impact of outgroup sampling and 

ancestral outgroup character states on ancestral state reconstructions.  Our results demonstrate 

one of the best-documented cases of limb reduction, loss, and evolutionary reacquisition of these 

complex characters in a closely related clade of lizards.  We identify the first known case of loss 

and reacquisition of external ear openings (another trait lost in association with burrowing 

lifestyles) and highlight the occurrence of taxa occupying two new classes of morphospace: 

species with minute limbs but with multiple digits and species lacking digits but with longer 

limbs than congeners with multiple digits.  Additionally, our comparative analyses incorporating 

an historical context via phylogeny revealed significant statistical support for otherwise 

undetectable patterns of character correlation.  Together, our findings provide yet another 

violation of Dollo’s Law in a new, rich model system for future studies of the historical 

framework for patterns and processes of body form evolution. 

 

Methods 

Taxon sampling and data collection 

Phylogenetic analyses for this study took advantage of the datasets of Siler et al. (2011); 

however, we collected 1,323 bp of additional molecular data.  Ingroup sampling included 90 
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individuals collected from 43 localities, with 24 of the 26 currently recognized species of 

Brachymeles represented (Fig. 2.1; Siler et al. 2011).  The study incorporated a broad sampling 

of outgroup scincid species from the subfamilies Lygosominae and “Scincinae”, as well as a 

single outgroup sample from the family Lacertidae (Fig. 2.1; Siler et al. 2011).  The phylogeny 

of Siler et al. (2011) was based on a sequence data for seven-genes: (mitochondrial) NADH 

Dehydrogenase Subunit 1 (ND1), NADH Dehydrogenase Subunit 2 (ND2), ATPase 8 (ATP8), 

ATPase 6 (ATP6); (nuclear) Brain-derived Neurotrophic Factor (BDNF), R35, Prostaglandin E 

receptor 4 (PTGER4).  For this study, additional complete or partial sequences were collected for 

the mitochondrial Cytochrome Oxidase Subunit II (COXII) and Cytochrome Oxidase subunit III 

(COXIII) genes, and components of seven flanking transfer RNA genes (tRNAlys, tRNAleu, 

tRNAlle, tRNAgln, tRNAtrp, tRNAala, tRNAasn) using the primers of Siler et al. (2011).  In addition, 

the two nuclear loci, Glyceraldehyde-3-phosphate Dehydrogenase (GapD) and α-enolase, were 

completely sequenced for nearly all ingroup samples and many of the outgroup samples using 

the primers and protocols of Friesen (1997).  All newly collected sequences were deposited in 

GenBank (accession #’s HQ906962–907136). 

 

Sequence alignment and phylogenetic analyses 

Initial alignments were produced in Muscle (Edgar, 2004), and manual adjustments made in 

MacClade 4.08 (Maddison and Maddison, 2005).  To assess phylogenetic congruence between 

the mitochondrial and nuclear data, we inferred the phylogeny for each gene independently using 

likelihood and Bayesian analyses, and performed pairwise partition homogeneity tests in PAUP 

4.0b 10 (Swofford, 2002) with 100 replicates for each pairwise comparison to assess set 

congruence.  Following the observation of no statistically significant incongruence between 

datasets, we felt justified in using the combined, concatenated, data for subsequent analyses.  
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Exploratory analyses of the combined dataset of 108 individuals (including outgroup taxa with 

missing data for several genes) and a reduced dataset of individuals with no missing data 

exhibited identical relationships; we therefore chose to include all available data (108 

individuals) for subsequent analyses of the concatenated dataset.  Alignments and resulting 

topologies were deposited in TreeBase (SN 11274). 

Partitioned Bayesian analyses were conducted in MrBayes v3.1.2 (Ronquist and 

Huelsenbeck, 2003).  The mitochondrial dataset was partitioned by codon position for the 

protein-coding region of ND1 and ND2 and by gene region for the short gene regions ATP8 and 

ATP6.  The Akaike Information Criterion (AIC), as implemented in jModeltest v0.1.1 (Guindon 

and Gascuel, 2003; Posada, 2008), was used to select the best model of nucleotide substitution 

for each partition (Table 1.2).  The best-fit model for each data partition was implemented in 

subsequent Bayesian analyses.  A rate multiplier model was used to allow substitution rates to 

vary among subsets, and default priors were used for all model parameters.  We ran four 

independent Metropolis-coupled MCMC analyses, each with four chains and an incremental 

heating temperature of 0.05.  All analyses were run for 18 million generations, sampling every 

5000 generations.  To assess stationarity, all sampled parameter values and log-likelihood scores 

from the cold Markov chain were plotted against generation time and compared among 

independent runs using Tracer v1.4 (Rambaut and Drummond, 2007).  Finally, we plotted the 

cumulative and non-overlapping split frequencies of the 20 most variable nodes, and compared 

split frequencies among independent runs using Are We There Yet? [AWTY (Wilgenbusch et 

al., 2004)].  Although all samples showed patterns consistent with stationarity after 2.5 million 

generations (i.e., the first 12.5%), we conservatively discarded the first 20% of samples as burn-

in. 
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Table 2.1. Summary of numbers of specimens examined per species, and adult specimens per 

species included in this study.  The number of x-rays examined per species are provided for 

reference. 

 

Species or Morphologically Unique Lineage Specimens 
Examined 

Adult Specimens 
Included in Analyses 

X-rays 
Examined 

Brachymeles apus 1 1 1 
Brachymeles bicolor 28 9 5 
Brachymeles boholensis 39 18 7 
Brachymeles bonitae (central Luzon Island) 11 11 11 
Brachymeles cf. bonitae (northern Luzon Island population) 2 1 2 
Brachymeles cf. bonitae (Masbate Island population) 10 6 2 
Brachymeles cf. bonitae (Mindoro Island population) 23 17 3 
Brachymeles cf. bonitae (Camiguin Norte Island population) 8 7 4 
Brachymeles cf. bonitae (Lubang Island population) 6 4 6 
Brachymeles boulengeri 26 13 6 
Brachymeles cebuensis 9 7 5 
Brachymeles elerae 4 3 2 
Brachymeles gracilis hilong 20 15 9 
Brachymeles gracilis gracilis 62 15 13 
Brachymeles lukbani 11 10 6 
Brachymeles makusog 14 9 8 
Brachymeles mindorensis 35 12 5 
Brachymeles minimus 6 4 6 
Brachymeles miriamae 2 2 2 
Brachymeles muntingkamay 12 10 10 
Brachymeles orientalis 53 20 6 
Brachymeles pathfinderi 39 29 6 
Brachymeles samarensis (Samar Island) 6 6 6 
Brachymeles cf. samarensis (Leyte Island population) 14 14 7 
Brachymeles cf. samarensis (Catanduanes Island population) 9 9 9 
Brachymeles schadenbergi 49 12 6 
Brachymeles talinis 31 14 6 
Brachymeles taylori 35 17 6 
Brachymeles tridactylus 22 14 10 
Brachymeles sp. A 12 5 2 
Brachymeles sp. B 33 17 9  
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In preliminary Bayesian analyses of the combined dataset, the independent runs failed to 

converge.  We tried (1) lowering the incremental heating temperature to 0.02, (2) using an 

unconstrained branch length prior with an exponential distribution of 25 (Siler et al. 2010c, 2011; 

Marshall 2006, 2010), and (3) removing outgroup taxa with large amounts of missing data.   

Although some of the trials of individual permutations of parameters resulted in a failure to 

converge, the incorporation of the above, plus an unconstrained branch length prior with an 

exponential distribution and a mean of 25 resulted in convergence.  Once complete convergence 

was achieved, we proceeded with final analyses, presented here. 

Partitioned maximum likelihood (ML) analyses were conducted in RAxMLHPC v7.0 

(Stamatakis, 2006) on the concatenated dataset the same partitioning strategy as for Bayesian 

analysis.  The more complex model (GTR + Γ) was used for all subsets, and 100 replicate ML 

inferences were performed for each analysis.  Each inference was initiated with a random 

starting tree, and employed the rapid hill-climbing algorithm (Stamatakis, 2007).  Clade 

confidence was assessed with 100 bootstrap pseudoreplicates employing the rapid hill climbing 

algorithm (Stamatakis et al., 2008). 

 

Relative time analyses 

To test the combined dataset for deviations from a molecular clock, we optimized likelihood 

scores in PAUP* 4.0b10 with a molecular clock enforced and not enforced on the maximum-

likelihood topology.  A likelihood ratio test ([LRT] Arbogast et al. 2002; Felsenstein 2004) 

significantly rejected a molecular clock (p = 0.00), and subsequent analyses were conducted 

within a relaxed clock framework.  The relative rate chronogram used for morphological 

analyses in this study was inferred in a Bayesian framework using BEAST v1.5.3 (Drummond 
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and Rambaut 2007).  The dataset was paired down into individual lineages per species or 

morphologically distinct, non-monophyletic populations (B. bonitae and B. samarensis; Siler et 

al. 2011).  Four independent BEAST runs of 50 million generations were completed under the 

same partitioning strategy as for Bayesian analyses, imposing an uncorrelated lognormal relaxed 

clock prior on substitution rate (Drummond et al. 2006) and Yule speciation prior.  Parameters 

were sampled every 5000 generations and the initial 50% of each run was discarded as burn-in, 

leaving a combined 20,000 trees in the posterior distribution. To evaluate convergence among 

MCMC analyses, trends and distributions of parameters, including the likelihood score, were 

examined in Tracer (Rambaut and Drummond 2007) and Are We There Yet? [AWTY 

(Wilgenbusch et al., 2004)].  

 

Testing morphological hypotheses 

We test morphology-based hypotheses to address questions concerning the patterns of 

Brachymeles diversity (Fig. 2.2):  1) Did limb reduction occur once? 2) Did the complete loss of 

external limb elements occur once? 3) Did ear loss occur once? 4) Is there support for a gradual 

transition from pentadactyl to limbless body forms? 

In an attempt to thoroughly evaluate each, we conducted analyses within Bayesian and 

maximum likelihood (ML) frameworks.  The topological constraints for these questions are 

outlined in Figure 2.2.  The ML approach consisted of conducting an approximately unbiased 

(AU) test (Shimodaira and Hasegawa 2001; Shimodaira 2002), as implemented in Siler et al. 

(2010c).  Using the full, combined dataset, partitioned maximum likelihood (ML) analyses were 

conducted in RAxMLHPC v7.0 (Stamatakis 2006), under the same partitioning strategy used for 

phylogenetic analyses.  A complex model (GTR + Γ) was used for all subsets, and 100 ML 
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searches were performed under each of the 4 constraints.  All 500 trees produced by RAxML 

(100 from the unconstrained analysis and 100 from each of the 4 constrained analyses), were 

filtered in PAUP to remove identical topologies.  A modified version of RAxML (provided by 

Alexandros Stamatakis) allowed the per-site likelihoods to be estimated for each of the 54 unique 

topologies under a partitioned model.  An AU test was then performed on the per-site likelihoods 

from all 54 using CONSEL v0.1i (Shimodaira and Hasegawa 2001).  The p-value reported for a 

given hypothesis is the largest p-value of all the trees inferred under that constraint.  To automate 

various steps in the process, Perl and Python scripts were written by J. Oaks and CDS (available 

by request).  For the Bayesian approach, we took the percentage of 11520 post-burnin trees 

consistent with each hypothesis to represent the posterior probability that the hypothesis is true. 

 

Testing hypotheses of correlated character evolution 

We tested the morphological data for phylogenetic signal of morphometric data using Pagel’s 

lambda (Freckelton et al. 2002) and Blomberg’s K (Blomberg et al. 2003).  Both raw and 

natural-log transformed morphometric variables were analyzed.  The topology and branch 

lengths from the chronogram estimated in BEAST analyses were imported into R (R 

Development Team 2008), and the geiger (Harmon et al. 2008) and Picante (Kembel et al. 2010) 

packages were used to conduct transformations to test for phylogenetic signal.  Following the 

observation of significant phylogenetic signal in all morphometric characters (Fig. 2.3), 

independent contrasts were used to explore the impact of phylogeny on subsequent analyses of 

morphology. 

Bivariate and multivariate analyses were performed on raw morphometric data as well as 

independent contrasts of the morphometric variables to explore both raw morphological patterns 
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observed in Brachymeles and those observed in a phylogenetic context.  Morphometric data were 

measured for ten characters for twenty-seven lineages of Brachymeles (including B. miriamae).  

These lineages corresponded to the species, subspecies, and morphologically unique populations 

(i.e., Brachymeles bonitae, B. samarensis) sampled in phylogenetic analyses (Fig. 2.1).  Meristic 

and mensural characters are based on Siler et al. (2009a, 2010a,b), and include: snout–vent 

length (SVL), head length (HL), tail length (TL), total length (TotL; SVL + TL), fore- and hind 

limb length (FLL and HLL), midbody width (MBW), and numbers of presacral vertebrae (PSV), 

fore-limb digits (Fldig), and hind limb digits (Hldig). 

Species, subspecies, or morphologically distinct populations of Brachymeles possess limbs 

with as few as one recognizable digit or up to as many as five recognizable digits.  Following the 

methods of Brandley et al. (2008), we coded limbless species as well as species or populations 

with limbs consisting of only a small stump and no recognizable digits as having zero digits.  We 

measured the ten morphological characters used in this study from 632 specimens of 

Brachymeles, with an average of 20 specimens per species, subspecies, or morphologically 

distinct population (Table 2.1).  Measurements of juvenile and sub-adult specimens were 

excluded from analyses (Table 2.1).  Additionally, we recorded presacral vertebrae numbers 

from x-rays for an average of 6 specimens per species, subspecies, or morphologically distinct 

population (Table 2.1).  Minor differences in body size characters between sexes and populations 

may exist in nature or simply as an artifact of sample size, and we attempted to account for this 

by combining data from broad geographic sampling for both sexes whenever possible. 

Following the methods of Wiens and Slingluff (2001) and Brandley et al. (2008), the value of 

1 was added to all variable measurements (some taxa have values of zero for digit numbers), and 

each measurement was natural log-transformed.  Independent contrasts (Felsenstein 1985) were 
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then calculated for each natural log-transformed variable using the Phylogenetic Diversity 

Analysis Programs (PDAP; Midford et al. 2005) module in Mesquite version 1.06 (Maddison 

and Maddison 2005).  The topology and branch lengths from the chronogram estimated in 

BEAST analyses were used to calculate contrasts.  To check that independent contrasts were 

adequately standardized, the slopes of the regression lines between the absolute values of the 

contrasts against the square root of the sum of the corrected branch lengths (or their standard 

deviations) were inspected (Garland et al. 1992).  No significant relationships were observed and 

the independent contrasts subsequently were considered to be appropriately standardized. 

Previous studies corrected for size in body and limb measurements by regressing independent 

contrasts for each measurement on the contrasts for head length (Wiens and Slingluff 2001; 

Brandley et al. 2008), based on the observation that relative limb and body lengths vary greatly 

in lizards compared to the conservative shape of the skull (Stokely 1947).  In Brachymeles, most 

species possess what appears to be a conservative body plan, with relatively small limbs even 

observed in pentadactyl species.  We explored whether head length is an appropriate measure 

with which to standardize morphometric variables, and in doing so account for body size 

allometry (methodology provided in Appendix III Materials & Methods). 

To test for a relationship between body and limb size, as well as body size and presacral 

vertebrae number, we regressed relative body size measurements against relative limb size and 

presacral vertebrae number for each of the three sets of size-corrected morphometric variables.  

Additionally, we regressed digit and presacral vertebrae number against the three sets of relative 

limb length measurements as well as the raw non-size-corrected limb lengths to test for 

relationships between limb size and digit number and number of presacral vertebrae.  All 

regressions were made through the origin (Garland et al. 1992). 
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We used principal components analysis (PCA) on a correlation matrix of raw size-corrected 

variables following the methods of Wiens and Slingluff (2001) to determine whether any body-

form groupings can be recovered without a priori designation of groups.  All analyses were 

performed using the seven morphometric variables only, the seven morphometric variables and 

digit numbers (for the hand and foot), and the seven morphometric variables, digit numbers, and 

number of presacral vertabrae.  

Methods for simultaneously correcting for body size allometry and conducting PCAs, while 

taking the phylogeny into account have recently been developed (Revell 2009).  To explore 

differences between methodologies, we repeated all bivariate analyses using phylogenetic size-

corrected (PSC) data calculated in R using the phyl_resid function provided in Revell (2009), as 

well as independent contrasts of the PSC data.  Additionally, PCAs of raw, size-corrected 

variables were compared to results of phylogenetic principal component analyses (Revell 2009).  

 

Exploring morphological thresholds 

Previous studies of squamate reptiles have reported thresholds of raw morphometric body 

proportions that appear to mark a demarcation between long, fully pentadactyl limbs and 

shortened limbs and reduced digit states (Lande 1978; Brandley et al. 2008).  To determine 

whether these hypothesized thresholds occur across the diversity of Brachymeles, we created 

bivariate and overlaid scatterplots of raw digit numbers and presacral vertebrae number against 

ratios of limb, snout–vent, and total lengths to head length as well as midbody width to head 

length following the methods of Lande (1978) and Brandley et al. (2008).  The plots were 

subsequently inspected for trends in body form change.  As in Brandley et al. (2008), raw data 

were used for more easily interpretable results and comparison with previous studies.  



 59 

 

Testing for evidence of character re-evolution 

To explore whether there is evidence of the re-evolution of limbs, digits, or ear openings in 

Brachymeles, we compared empirically observed (extant) character states to estimates of 

ancestral states using the program BayesTraits version 1.0 (Pagel 1994; Pagel and Lutzoni 2002).   

For analyses involving the estimation of ancestral external limb and ear states we examined 

two models of character evolution:  1) assuming equal rates of character acquisition and loss, 2) 

assuming independent rates of character acquisition and loss. Following the methods of Skinner 

and Lee (2010), we examined five disparate models of digit evolution to evaluate which models 

best fit the data (Table 2.5).  For all analyses we seeded the mean and variance of the gamma 

prior from uniform distributions on the interval 0 to 20 by enforcing the “Hyperpriorall” 

command of BayesTraits.  These analyses were then repeated and compared to runs with 

uniform priors with upper and lower bounds of 0 and 100 (Skinner and Lee 2010).  The 

LogCombiner v1.5.4 program of BayesTraits was used to combine trees from the posterior 

distributions of the four independent Beast runs.  Of the 20,000 trees in the posterior distribution, 

we discarded the first 97.5%, producing a file with 2,000 trees from the posterior distribution.  

All 2,000 chronograms were then used in analyses of morphological data in BayesTraits in an 

effort to account for phylogenetic uncertainty.  We ran MCMC chains for 25 million generations, 

sampling every 5000th generation, and discarded the first 50% of samples as burn-in.  The 

ratedev parameter was adjusted for each analysis to maintain acceptance rates of 20–40%.  The 

remaining 2,500 samples were used to summarize the posterior probabilities of ancestral 

character states for all nodes of the tree.  Bayes factors comparing the best fit model to all other 

models of character evolution were applied, accepting more parameterized models when the 



 60 

Bayes factor shows strong to very strong support (Kass and Raftery 1995; Nylander et al. 2004).  

The “AddNode” command of BayesTraits was used to specify all nodes in the chronograms for 

visualization of the posterior probabilities of character states at each node.   

We ran a series of additional analyses on nodes with ambiguous estimated ancestral character 

states.  The “fossil” command of BayesTraits was used to sequentially enforce the character 

states making up 95% of the posterior probability at a single node, prioritizing character states 

with the highest posterior probability.  Bayes factors were again applied, and the state supported 

at each ambiguous node was summarized with the Bayes factors measure of support for that 

ancestral state (Figs. 6, 7).  To explore the impact of the ancestral character states among 

outgroup taxa on reconstructions within Brachymeles (Goldberg and Igic 2008), additional 

analyses were conducted in which we assumed the ancestral states for all nodes sister to 

Brachymeles was a limbed, pentadactyl species with external ear openings. 

 

Results 

Phylogeny of Brachymeles 

Our complete, aligned matrix contain 82 samples of Brachymeles, representing 24 of the 26 

recognized taxa, and containing both mitochondrial genes and nuclear loci.   Seventeen 

additional outgroup samples included representatives from the subfamilies Lygosominae and 

“Scincinae” within the family Scincidae as well as a single representative from the lizard family 

Lacertidae.  Following the study of Siler et al. (2011), we rooted the tree using samples of 

Takydromus sexilineatus from China.   

All analyses strongly supported five distinct instances of limb reduction in the genus 

Brachymeles (including B. miriamae; Fig. 2.1).  Complete limb loss is strongly supported to have 
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occurred three separate times (Fig. 2.1).  Interestingly, the two non-Philippine species (B. apus 

[Borneo], B. miriamae [Thailand]) are always recovered as the two lineages sister to all 

Philippine Brachymeles (Fig. 2.1).  Within the Philippines, all limbless species and the majority 

of limb-reduced species are recovered as part of two reciprocally monophyletic groups, and 

together are sister to all pentadactyl species and the remaining non-pentadactyl taxa (Fig. 2.1).   

The widespread limb-reduced species, Brachymeles bonitae and B. samarensis, are not 

recovered as monophyletic groups (Fig. 2.1).  Furthermore, with strong statistical support, Siler 

et al. (2011) rejected the hypothesized monophyly of both of these species complexes.  Not only 

are all of the lineages within these complexes well supported and genetically distinct, but they 

differ morphologically as well (Fig. 2.1, 2.4).  Populations within both species complexes differ 

in body size, limb and digit characters, and scale counts (Brown and Alcala 1980; Siler et al. 

2011), and even the number of digits and presacral vertebrae. 

 

Morphological hypothesis tests 

Results from the Bayesian methods and the approximately unbiased (AU) test were highly 

consistent.  Both methods rejected all morphology-based hypotheses (Fig. 2.2).  Although we 

treat the former monotypic genus Davewakeum miriamae as the fifth limbless species of 

Brachymeles following Siler et al. (2011), each hypothesis was re-evaluated with both the 

Bayesian method and by conducting AU tests with B. miriamae samples incorporated into 

excluded from constraint trees.  No differences were observed in the resulting support for each of 

the four hypotheses.  Additionally, hypothesis #4 was tested using three topological constraints:  

1) A single transition across all Brachymeles (with and without B. miriamae), 2) Two transitions 

for Clades 1 and 2, respectively, and 3) A single transition for Clade 1.  All three versions of 
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hypothesis #4 were rejected by both analyses (Fig. 2.2).  

 

Analyses of Correlated Character Evolution 

Tests for the presence of phylogenetic signal resulted in λ values estimated at 1.0 and K values 

that were significantly different from 0 (SVL K = 0.8452; MBW K = 1.5540; TL K = 0.8877; HL 

K = 1.3734; HLL K = 2.4268; FLL K = 2.6651; TotL K = 0.7828; Fig. 2.3).  Regression analyses 

show highly consistent results regardless of the variable used for size-correction.  Additionally, 

analyses of size-corrected data based on either residuals from bivariate regressions of 

phylogenetically independent contrasts (RSC-IC; Lande 1978; Wiens and Slingluff 2001; 

Brandley et al. 2008), or phylogenetically independent contrasts of phylogenetically size-

corrected data (PSC-IC; Revell 2009), show largely similar results (Table 2.2).  Multivariate 

correlation analyses revealed head length to be most correlated to all other variables, an 

indication that it would be the most appropriate variable for use in size-correction.   

Although bivariate regression analyses of raw size-corrected data show highly significant 

relationships between relative SVL (rSVL), tail length (rTL), total length (rTotal), relative 

midbody width (rMBW), changes in relative fore- (rFLL) and hind limb (rHLL) lengths, several 

of these significant relationships disappear when phylogeny is taken into account (Table 2.2).  

However, the opposite is true of the relationship between several of these characters (rSVL, rTL, 

rTotal, and rMBW) and raw digit numbers and presacral vertebrae numbers, where regression 

analyses of all three methods of size-correction result in highly significant relationships only 

when phylogeny is taken into account (Table 2.2). Finally, regression analyses of raw, non-size-

corrected measurements of limb length, digit numbers, and presacral vertebrae numbers show 

highly significant relationships regardless of whether phylogeny is taken into account (Table 2.3).   
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Table 2.2. Bivariate regression analyses of meristic and mensural variables associated with the 

transition from pentadactyl to limbless body plans in squamates.  Each regression analysis was 

performed using relative size measurements (rSVL, rTL, rTotal, rMBW, rFLL, rHLL) calculated 

from raw data (Raw), raw data that has been phylogenetically size-corrected (Raw PSC), 

regression residual-based size-corrected independent contrasts (RSC-IC), and phylogenetic size-

corrected independent contrasts (PSC-IC).  All phylogenetic size-corrections were conducted in 

R following the methods of Revell (2009).  Significant P-values at α ≤ 0.05 are shown in bold, 

with P-values significant after a table-wide Benjamini and Hochberg (1995) correction marked 

with an asterisk. 
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Table 2.3. Bivariate regression analyses of non-size-corrected meristic and mensural variables 

associated with the transition from pentadactyl to limbless body plans in squamates for raw 

values and independent contrasts.  Significant P-values at α ≤ 0.05 are shown in bold, with P-

values significant after a table-wide Benjamini and Hochberg (1995) correction marked with an 

asterisk. 

  Raw Independent Contrasts 

  df = 31 df = 30 

Independent 

variable 

Dependent 

variable 

R2 P R2 P 

FLL Fingers 0.936 < 0.001* 0.346 < 0.001* 

HLL Toes 0.948 < 0.001* 0.461 < 0.001* 

Fingers Toes 0.978 < 0.001* 0.686 < 0.001* 

FLL PSV 0.673 < 0.001* 0.642 < 0.001* 

HLL PSV 0.697 < 0.001* 0.661 < 0.001* 
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Figure 2.2.  Four morphology-based hypotheses tested in the study, derived from hypothesized 

patterns of body form evolution in squamate reptiles.  Each hypothesis is illustrated by constraint 

trees used in AU and Bayesian tests.  The highest P-values recovered from each AU test (AU), 

and the posterior probabilities (PP) of the constraint topology, are shown.  aAnalyses conducted 

on constraint topologies with and without the inclusion of Brachymeles miriamae.  bAnalyses 

repeated for individual clades within Philippine Brachymeles as well as for the entire genus. 
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Correlation analyses of pairs of variables shown to have significant relationships in bivariate 

linear regressions revealed positive and negative correlations with changes in body and limb size 

and changes in limb lengths and numbers of digits and presacral vertebrae. 

Multivariate analyses (PCA) of all three sets of data gave highly consistent results, showing 

strong separation between qualitatively defined (above) body forms of Brachymeles (Fig. 2.4, 

Appendix III).  When all ten variables were included in a PCA, the first principal component 

explains 85.6% of the variation in the non-phylogenetic data. Size-corrected measures of body 

width and limb lengths, as well as digit numbers show positive loadings on the first principal 

component, with size-corrected measures of body length and presacral vertebrae numbers 

loading negatively (Fig. 2.4).  The second principal component explains significantly less 

variation in the data (8.7 %), and shows moderately strong positive loadings for size-corrected 

body and limb lengths and digit numbers, with size-corrected measures of body width loading 

negatively (Fig. 2.4).  Additional principal components were not retained because cumulative 

totals of the first two components reached nearly 95%, and subsequent components were 

associated with low eigenvalues (often well below 1.0), and low levels of explained variance (≤ 

2.5%).  All non-phylogenetic multivariate analyses support a relationship of body elongation and 

increased number of presacral vertebrae with decreased body width, limb lengths, and digit 

numbers (Appendix III).   When phylogeny is taken into account, the same general pattern is 

observed, with the exception of the placement of Brachymeles bicolor and B. pathfinderi in 

morphospace.  Both of these species are outliers in the observed patterns in Brachymeles (Fig. 

2.4).  
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Table 2.4. Correlation analyses of pairs of morphological variables showing significant 

relationships from bivariate regression analyses.  Relative measures of body size are based on 

regression residual, size-corrected independent contrasts.  Values represent the Pearson product-

moment correlation coefficients. 

Variable 1 Variable 2 PMCC 

rSVL PSV 0.6587 

rSVL rFLL -0.4770 

rSVL rHLL -0.5211 

rTotal PSV 0.4643 

rMBW PSV -0.4592 

rMBW rFLL 0.4459 

rMBW rHLL 0.4426 

rFLL Fingers 0.6346 

rHLL Toes 0.6354 

rFLL PSV -0.6684 

rHLL PSV -0.6559 

PC1 Toes -0.3290 

PC1 PSV 0.7520 

FLL Fingers 0.6076 

HLL Toes 0.6885 

Fingers Toes 0.8254 

FLL PSV -0.8153 

HLL PSV -0.8107 
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Morphological thresholds 

Threshold plots revealed a general trend of increased body length associated with decreased limb 

lengths and numbers of digits (Fig. 2.5); however, no obvious threshold values exist for which all 

digits are lost or all external fore- and hind limb elements are lost (Fig. 2.5).  There appears to be 

a general threshold of relative SVL and MBW after which relative limb lengths are greatly 

reduced and digits are lost.  With the exception of Brachymeles bicolor and B. pathfinderi, 

species with a SVL > ~ 12 times its head length, and a MBW ≤ ~ 1.3 times its head length, have 

considerably smaller, non-pentadactyl limbs (Fig. 2.5). 

Digit loss was also associated with changes in relative limb lengths as well as raw limb 

lengths, and general threshold values are observed (Fig. 2.5).  Again, with the exception of B. 

pathfinderi, loss of fore-limb digits appears to be initiated in species with fore-limb lengths ≈ 

head length, and raw fore-limb lengths < ~ 5.8 mm.  Loss of hind limb digits appears to be 

initiated with hind limb lengths ≤ ~ 1.75 times head length, and raw hind limb lengths < ~ 12.2 

mm.  Additionally, the increase in number of presacral vertebrae is associated with both a loss of 

digits as well as a decrease in relative limb lengths (Fig. 2.5).  No species with greater than 41 

presacral vertebrae possessed five fingers, and when we exclude the apparent outlier (B. bicolor), 

fore-limb digit loss appears to be initiated in species with greater than 34 presacral vertebrae.  

With the exception of B. pathfinderi, hind limb digit loss follows an identical pattern.  Relative 

fore-limb and hind limb lengths were observed to decrease by > ~ 40% and > ~ 47% respectively, 

in species with greater than 41 presacral vertebrae (Fig. 2.5). 

With few exceptions, threshold plots revealed numerous cases in which different areas of 

morphospace were occupied by either pentadactyl or non-pentadactyl species, with little to no 

overlap.   
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Figure 2.3.  Graphical representation of phylogenetic signal observed for morphometric 

variables measured for this study.  The mean species’ values for each measured variable, and 

body forms for each species of Brachymeles, are mapped onto the chronogram for reference. 
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Figure 2.4.  Multivariate plots of morphometric and meristic data showing variable loadings for 

the first and second components for a phylogenetic PCA.  Colored spheres indicate body form 

groups among Brachymeles, with shapes referring to labeled phylogenetic clades in Figure 2.1. 
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Figure 2.5. Bivariate scatter plots exploring hypothesized thresholds of relative body and limb 

lengths, relative body width, raw limb lengths, and numbers of presacral vertebrae at which 

changes in digit number and limb length occur (Brandley et al. 2008).  Body proportions are 

derived from previous studies and were obtained by dividing raw measures of snout–vent length 

(SVL), fore-limb length (FLL), hind limb length (HLL), and midbody width (MBW) by head 

length (HL).  Hypothesized morphological thresholds indicated by gray boxes, with proposed 

outliers labeled for reference. 
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Evidence of evolutionary re-acquisition of complex characters 

Although the placement of Brachymeles within the family Scincidae remains somewhat 

ambiguous (Brandley et al. 2005, 2008; Siler et al. 2011; Fig. 2.1), the impact of ancestral body 

form for all Brachymeles does not appear to heavily impact ancestral reconstructions within the 

genus (not shown).  The results of analyses of limb, digit, and ear opening states are never 

significantly impacted by placing restrictions on the ancestral character states among outgroup 

taxa and the node giving rise to all Brachymeles (not shown).  Exploration of the assumed 

ancestral character states among outgroup taxa always resulted in highly consistent 

reconstructions for ingroup nodes.  Additionally, our inclusion of a large, diverse group of 

outgroup taxa aided in avoiding some of the pitfalls of ancestral state reconstructions highlighted 

by other researchers (Goldberg and Igic 2008). 

Ancestral state reconstructions for limbs and ear openings resulted in support for models with 

equal rates of character gain and loss.  The likelihood scores were nearly identical between 

analyses of a two-rate model versus an equal rates model, with the Bayes factor (limbs, 0.562; 

ear openings, 0.706) providing non-significant support for the more parameterized models.  We 

therefore used equal rates models for all subsequent analyses.  Ancestral limb state 

reconstruction analyses resulted in four nodes where the reconstructed ancestral state is 

ambiguous, with the limbed state preferred in all cases with varying degrees of support (Fig. 2.6).  

These results weakly support the hypothesis of limbed ancestors in Brachymeles (Fig. 2.6).  The 

ancestral reconstructions of ear openings supported a minimum of three state changes to have 

occurred (Fig. 2.6).  Unlike the support observed for unidirectional limb loss within Brachymeles, 

we consistently observe strong support for the re-acquisition of ear openings within the 

Philippine clade, with one or two subsequent losses of the character (Fig. 2.6). 
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Exploratory analyses of digit evolution resulted in unequivocally strong support for the same 

two-rate unordered model of character evolution that best explained the data for the hand and 

foot (Table 2.5).  Not only were the resulting likelihood values significantly better than those 

from analyses of other models, but Bayes factors of pairwise comparisons to the preferred model, 

with the exception of the unordered model A for toe evolution (Bayes factors = 8.339), were all 

greater than 10 (Table 2.5).  Significantly, both unordered models (those allowing for different 

rates of character loss and acquisition) provide better fit to the data than ordered or unidirectional 

models (Table 2.5). 

Evidence of digit re-acquisition is observed for both the hand and foot, with strong support 

for the re-evolution of a pentadactyl hand from a digit-reduced ancestor (Fig. 2.7; Table 2.6).  

Within the Philippine species, there is moderate to strong evidence for six instances of digit re-

acquisition on the hand and five instances on the foot (Fig. 2.7; Table 2.6).  Although all 

analyses provide unequivocal support for several instances of digit re-acquisition, many 

additional nodes receive ambiguous ancestral state reconstructions, indicating that the potential 

number of times digits have re-evolved in Brachymeles may be higher or lower than the number 

we currently observe (Fig. 2.7; Table 2.6).  As noted in previous studies (Brandley et al. 2008), 

the results of ordered analyses (not shown) provide highly similar to identical ancestral 

reconstructions, but at times these reconstructions are more ambiguous.  Regardless of the model, 

all analyses result in strong support for the re-evolution of a fully pentadactyl body form from an 

ancestor with reduced numbers of digits, with ordered models providing even less support for a 

pentadactyl ancestor (Fig. 2.7).  Digit re-acquisition in Brachymeles appears to be equally 

common on the hand and foot, with evidence for the re- acquisition of 1–5 digits (Fig. 2.7; Table 

2.6). 
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Table 2.5.  BayesTraits models of digit evolution explored in ancestral state reconstructions, and 

subsequent results.  Transition descriptions and the number of parameters are shown for 

reference.  Table entries include the mean likelihood for each model followed by the standard 

deviation, the harmonic mean likelihood value, and the Bayes factors from bivariate comparisons 

with the model that best explains the data.  Preferred model in bold for emphasis. 
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Table 2.6.  Statistical support for re-acquisition of digits and ears in Brachymeles.  Data are only 

presented for species where moderate to high evidence exists for the re-acquisition of digits or 

external ear openings.  Ancestral character states making up ≥ 0.95 of the posterior probability 

are listed, with Bayes factors indicating the preferred state in cases of ambiguous state 

reconstruction.  The posterior probability of the preferred ancestral state is provided for reference, 

with probabilities above 0.95 bolded for emphasis.  Clade references refer to those labeled in 

Figure 2.7. 
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Discussion 

Patterns of limb reduction and loss 

Topology tests rejected single origins of digit reduction, limb loss, and ear loss, and rejected the 

hypothesis of a gradual transition from pentadactyl to limbless body plans within Brachymeles, 

regardless of the inclusion of B. miriamae (Fig. 2.2).  Phylogenetic analyses and ancestral state 

reconstructions provide support for multiple origins of body form changes within Brachymeles.  

We find evidence for three losses of external limb elements, and three distinct instances of 

changes in digit states.  Although five species of Brachymeles are externally limbless (B. apus, B. 

minimus, B. miriamae, B. lukbani, B. vermis), internal pectoral and pelvic girdle elements are 

visible in x-rays of all five species (CDS, pers. obs.), indicating that the species have retained 

some vestigial elements of limbs.  Previous studies have shown that reductions in digit number 

are more common in the fore-limbs of scincid lizards, with only four genera possessing species 

with the opposite pattern (Bipes [Bipedidae], Bachia [Gymnopthalmidae], Anomolopus 

[Scincidae], and Teius [Teiidae]; Brandley et al. 2008; Skinner and Lee 2010); however, in 

contrast all species and populations with unequal digit numbers in the fore- and hind limbs have 

fewer toes than fingers in Brachymeles (B. bonitae, B. cebuensis, B. pathfinderi, B. samarensis). 

The results of regression and correlation analyses are for the most part consistent with the 

results of previous studies (Tables 2.2–2.4), with many of the general patterns observed across 

squamates also observed for Brachymeles.  We find a strong relationship between limb reduction, 

body elongation, and digit loss (Tables 2.2–2.4).  Additionally, body width and vertebral changes 

are also strongly associated with body and limb length changes and digit loss (Tables 2.2–2.4).  

Relative measures of tail and total lengths either are not correlated with limb reduction, vertebral 

changes, and digit loss, or only are correlated with changes in the number of presacral vertebrae 
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(Table 2.2).  This result is consistent with our knowledge of the ecology of Brachymeles (Brown 

and Alcala 1980; Siler 2010; Siler et al. 2009a, 2010a,b; Siler and Brown 2010; Siler et al. 2011, 

in press a,b,c,d); in this genus, all species are fossorial or semi-fossorial and elongation of the 

body results predominately from increasing SVL, not TL (Tables 2.2, 2.4).  

Multivariate analyses further support the patterns of body form change highlighted in 

bivariate analyses (Tables 2.2, 2.4; Fig. 2.4, Appendix III).  Changes in body shape are 

moderately correlated with hind limb digit loss and strongly correlated with changes in presacral 

vertebrae number (Tables 2.2, 2.4).  In general, limb reduction and subsequent loss and digit loss 

are associated with longer, narrower bodies and increased numbers of presacral vertebrae (Fig. 

2.4, Appendix III). 

We explored patterns of morphological evolution from two points of view:  1) patterns that 

can be directly observed and empirically quantified, and 2) those that hold regardless of 

phylogenetic relationships.  It is commonly the case that significant relationships and 

correlations between characters become weaker or non-significant when a phylogenetic context 

is employed (Cronquist 1981; Kelly and Purvis 1993; Kelly 1995; Kelly and Beerling 1995; 

Ackerly and Reich 1999; Hutcheon et al. 2002)—a pattern observed in this study.  However, our 

analyses also revealed the opposite pattern to occur as well:  numerous significant relationships 

between morphological characters appeared only after taking phylogeny into account, suggesting 

that the use of an historical context for comparative analyses incorporated via phylogeny can 

reveal novel and significant statistical support for otherwise undetectable patterns of character 

correlation. 

Our exploration of morphological thresholds in Brachymeles reveals several interesting and 

unexpected patterns.  Brandley et al.’s (2008) study of squamate body form evolution revealed 
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two regions of morphospace to be unoccupied:  species with short limbs and multiple digits, and 

species with long limbs and no digits.  For example, no species with limb lengths less than half 

their HL have been shown to have multiple digits.  However, the results of this study provide 

evidence for both of these morphologies to be occupied by species of Brachymeles (Fig. 2.5).  

For example, with the exception of B. elerae, all species with 1–3 fingers have fore-limb lengths 

less than half their HL, and a population of B. bonitae with two toes has a HLL less than half its 

HL.   Additionally, the observed relationships between raw limb lengths and digit loss also do 

not directly follow previous studies (Brandley et al. 2008).  Seven species with fore-limb lengths 

less than 2 mm possess more than one finger, and six species with hind limb lengths less than 3.1 

mm possess more than one toe (Fig. 2.5).  Another previously undocumented extreme is also 

exhibited in Brachymeles.  To the best of our knowledge, this study is the first to provide 

evidence for species lacking digits to have longer limb lengths than species with multiple digits 

(Fig. 2.5).  This indicates that even within this relatively small radiation of skinks, there are 

exceptions to general, previously documented, and widely accepted (see Brandley et al. 2008, for 

review) patterns of body form change.  These findings have general implications, and potentially 

suggest that whatever functional, mechanical or developmental constraints have shaped 

morphological evolution among other lizards (except Bipes) may have been lost in Brachymeles.  

In all threshold plots, two outliers were consistently recovered (B. bicolor and B. pathfinderi; 

Fig. 2.5).  Both of these species represent unique morphologies within the genus, with B. bicolor 

representing by far the longest species of Brachymeles, and B. pathfinderi being the only digit 

reduced species to be nested within a clade of pentadactyl species (Fig. 2.1).  Despite these 

outlier species, we observe general patterns of body form change.  Loss of fingers appears to 

occur when relative and raw FLL ≤ 1.0 and 5.8 mm, respectively, and loss of toes occurs when 
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relative and raw HLL ≤ 1.75 times HL and 12.2 mm, respectively (Fig. 2.5).  Excluding B. 

bicolor and B. pathfinderi, body plan shifts towards limb reduction and digit loss are clearly 

visible along the spectrum of observed midbody widths and numbers of presacral vertebrae (Fig. 

2.5). 

We compared two common methods for size correction while exploring whether head length 

is an appropriate measure with which to correct for size.  The results of analyses using size-

corrected data from the phylogenetic size-correction method of Revell (2009), or the commonly 

used size-correction method based on residuals from linear regression analyses of independent 

contrasts (Garland 1992), were highly consistent (Table 2.2).  Although using alternative 

characters for size correction (SVL, MBW) in regression, correlation, and multivariate analyses 

showed highly consistent results (not shown), multivariate correlation analyses indicated that, for 

Brachymeles, head length is the most appropriate variable for size correction.  Comparisons of 

principal component analyses with raw, size-corrected data, and phylogenetic PCAs (Revell 

2009), showed highly consistent results in the values, loadings, and scores of the analyses, as 

well as in the partitioning of species in morphospace (Fig. 2.4, Appendix III).   

 
Complex character "re-evolution" and Dollo’s Law 

Most previous studies of squamate limb and digit evolution have worked within the 

framework of unidirectional character loss (see Brandley et al. 2008, for review).  Although 

several recent studies have provided numerous lines of evidence for the re-evolution of digits 

among squamate reptiles (Kohlsdorf and Wagner 2006; Brandley et al. 2008; Kohlsdorf et al. 

2010; but see Galis et al. 2010), the hypothesis of digit evolution occurring in an ordered 

sequence (e.g., Alberch and Gale 1985; Shubin and Alberch 1986; Shapiro 2002) has led to little 

exploration of disparate models of character evolution.  Recently, Skinner and Lee (2010) and 
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Skinner (2010) showed that unordered models of character evolution provided the best fit data on 

fore- and hind limb digits in Lerista (one of the four genera to possess species with fully limbed, 

intermediate, and limbless body forms).  However, Bayes factors we inferred in this study 

showed weak positive support for their best-fit model (Kass and Raftery 1995; Nylander et al. 

2004).  Surprisingly, the studies of Lerista did not find evidence for digit re-acquisition (Skinner 

et al. 2008; Skinner and Lee 2009, 2010; Skinner 2010) whereas in this study, we found one of 

the first documented cases of high statistical support for complex character re-acquisition in a 

clade of closely related species. 

We considered applying a model that takes into account state-specific rates of speciation and 

extinction (BiSSE, Maddison et al. 2007).  The assumptions of the BiSSE model’s original 

implementation included analyzing trait-dependent diversification for:  (1) binary characters only, 

(2) completely resolved, known phylogenies (= no missing taxa), and (3) large phylogenies.  

FitzJohn et al. (2009) relaxed one of these assumptions (complete taxon sampling); however, our 

dataset violates three (original), and both (current), assumptions of the model and preclude its 

implementation in this study.  Evaluations of this model’s limitations for smaller datasets are 

needed in which only a few changes in character states have taken place. 

Considering our robust datasets, phylogeny, and best-fit models of character evolution, the 

phylogenetic results of this study unambiguously support five instances of digit re-acquisition in 

the hand and four instances of digit re-acquisition in the foot (Fig. 2.7; Table 2.6).  Additionally, 

Bayes factors comparing preferred states for eleven ambiguously reconstructed nodes moderately 

to highly support an ancestral state with fewer digits than that observed in extant species (Fig. 

2.7; Table 2.6).  In contrast, the data also support independent instances of complete loss of 

external limb elements (Fig. 2.7).   
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Figure 2.6.  Maximum clade credibility chronograms and estimated ancestral states of limb and 

ear opening presence or absence in Brachymeles skinks.  Ancestral state reconstructions are 

indicated at each node.  Triangles indicate unambiguous reconstructions of a character state 

(posterior probability ≥ 0.95), colored according to the hypothesized state.  Circles represent 

ambiguous character reconstructions, with colors representing the preferred state and values 

showing the Bayes factor as an indication of the strength of support for that state.  Colored 

blocks at each ambiguous node represent alternate states supported in analyses. 
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Figure 2.7.  Maximum clade credibility chronograms and estimated ancestral states of limb and 

ear opening presence or absence in Brachymeles skinks.  Ancestral state reconstructions are 

indicated at each node.  Triangles indicate unambiguous reconstructions of a character state 

(posterior probability ≥ 0.95), colored according to the hypothesized state.  Circles represent 

ambiguous character reconstructions, with colors representing the preferred state and values 

showing the Bayes factor as an indication of the strength of support for that state.  Colored 

blocks at each ambiguous node represent alternate states supported in analyses. The posterior 

probabilities of a 5-digit fore- and hind limb ancestral state to all Brachymeles, B. miriamae + 

Philippine Brachymeles, and Philippine Brachymeles resulting from the ordered model of 

Brandley et al. (2008) and the best fit, unordered model shown for reference. 
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One of our most striking findings involve support for the re-evolution of a pentadactyl body 

form from a digitless or digit-reduced ancestor (Fig. 2.7; Table 2.6).  In exploring the impact of 

the model on this result, we repeated all ancestral state reconstructions with the suite of models 

compared in Skinner and Lee (2010).  Similar to the findings of Brandley et al. (2008), ancestral 

reconstructions with ordered models of evolution instead of the best-fit undordered models were 

more ambiguous.  However, regardless of the model of character evolution, all analyses 

preferred digitless or digit-reduced ancestral states for the nodes giving rise to all Philippines 

species of Brachymeles with ≥ 95% of the combined posterior probabilities of digitless and digit-

reduced states for each node (Fig. 2.7). 

The Philippine radiation of Brachymeles includes the known diversity of pentadactyl species 

in the genus, which are supported to have evolved from digitless or at least digit-reduced 

ancestors (Fig. 2.7; Table 2.6).  Although this finding stands in contrast to expectations derived 

from Dollo’s Law (Dollo 1893, 1905, 1922; Simpson 1953; Gould 1970), preliminary data on 

the phalangeal formula of species of Brachymeles supports the findings of previous studies 

concerning evidence for digit re-acquisition.  Kolsdorf and Wagner (2006) and Brandley et al. 

(2008) noted several species in which digit re-evolution was reconstructed unambiguously, and 

phalangeal formulas are uniform among digits when compared with the primitive phalangeal 

formula among squamates (fore-limb: 2-3-4-5-3; hind limb: 2-3-4-5-4).  Among these strongly 

supported instances of digit, and possibly limb, re-evolution, examples of phalangeal uniformity 

include Bachia (fore-limb, 0-2-2-2-2; hind limb, 2-2-2-2-0; Kolsdorf and Wagner 2006), Bipes 

(fore-limb, 3-3-3-3-3; Zangerl 1945), and Scelotes (fore-limb, 2-3-3-3-2; hind limb, 2-3-4-4-2; 

Brandley et al. 2008).  Surprisingly, the phalangeal formulas of all pentadactyl species of 

Brachymeles show striking similarities to those observed in Scelotes (fore-limb, 2-3-3-3-2; hind 
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limb, 2-3-4-4-3; C. D. Siler, pers. obs.).  Given that pentadactyl species have not lost all digit 

identity, it remains plausible that the observed phalangeal formulas among extant taxa is simply 

due to loss of phalangeal elements in the common ancestor.  However, the fact that this 

phalangeal formula has been maintained over significant evolutionary time suggests that there 

may be a developmental constraint on digit morphology.  Regardless of how the pentadactyl 

state has evolved in Brachymeles, this strange, shared phalangeal formula among all pentadactyl 

members of the genus may be evidence that digits have been re-acquired via a novel 

evolutionary pathway, unique among pentadactyl lizards. 

In addition to the possible re-acquisition of digits and limbs, the results of this study provide 

unambiguous phylogenetic support for two instances of external ear re-acquisition in 

Brachymeles (Fig. 2.6; Table 2.6).  Although the absence of ear openings is common among 

small, burrowing, or semi-fossorial skinks, external ear openings invariably have been 

hypothesized to be lost in a unidirectional manner (i.e., present-to-absent), without reversals or 

re-evolution of exposed tympannae (Greer 2002).  Not only do we demonstrate strong evidence 

for the re-acquisition of external ear openings in Brachymeles, but at least one subsequent, 

additional or secondary, loss of this character is strongly inferred to have taken place leading to 

the extant character state observed in B. muntingkamay (Fig. 2.6).  These findings are the first of 

their kind, and suggest that the previous assumption about the unidirectionality of changes in this 

character may be incorrect.  Presently, it is not clear whether the loss of external ear openings in 

Brachymeles involves a re-structuring of bone or simply a re-structuring of skin, the former 

process presumably being more complex of a morphological change.  If all species with external 

ear openings possess an atypical inner ear morphology, the finding would lend additional support 

to members of the genus having re-evolved complex characters via a novel evolutionary pathway.  
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Conclusions 

Our data represent one of the most comprehensive, fine-scaled, studies of body-form 

evolution to date for a closely related group of lizards.  Not only have we sampled nearly every 

recognized species within the genus Brachymeles, but also we have sufficient sampling to 

investigate intraspecific variation within many species (e.g., Brachymeles bonitae and B. 

samarensis).  Coupled with this nearly complete taxonomic sampling, our robust morphological 

and molecular dataset provide a rich system with which to address questions concerning body 

form evolution within one of the few genera to possess the full suite of body forms extremes, 

including representatives inhabiting previously undocumented portions of body form 

morphospace.  

Although within the genus, general external morphologies appear conservative, on the whole, 

Brachymeles appears to occupy previously undocumented regions of morphospace (Fig. 2.4, 2.5, 

Appendix III).  Examples of this include species with relatively tiny limbs and multiple digits 

and species with relatively longer limbs and no digits (Fig. 2.5).  Multivariate analyses of 

morphological data indicate species with similar body forms have evolved into similar regions of 

morphospace (Fig. 2.4, Appendix III). 

Ancestral character state reconstructions are limited in that they provide only a statistical 

framework with which to investigate data in the context of a reduced tree with branch lengths 

and a single character per terminus.  With that in mind, there are two perspectives to consider 

when interpreting the results of this study:  (1) what do our data, phylogeny, and best-fit models 

of character evolution tell us about the prevalence and directionality of body form evolution in 

Brachymeles? And (2) what are the limitations of our data and analyses for making these 
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inferences?  Although alternative explanations are possible, we believe that the strong statistical 

support uncovered here for the reversibility of complex characters in a closely related group of 

lizards is some of the most compelling recent examples of clear exceptions to Dollo’s Law.  

Regardless of the perspective, it is clear that multiple instances of digit and ear state changes 

have occurred during the evolutionary history of Brachymeles.  Considering the comprehensive 

and fine-scale approach to this study, the results of ancestral state reconstructions support the re-

acquisition of both digits and external ear openings.  Furthermore, all analyses support the re-

acquisition of a pentadactyl body form from a digitless or digit-reduced ancestor, regardless of 

the model enforced. 

Although these results are novel, it is important to consider the limitations of our data and 

methods of inference.  Due to disproportional diversification in the archipelago, undiscovered 

mainland diversity, and/or massive extinction outside the archipelago, nearly all of the known 

diversity within Brachymeles is endemic to the Philippines.  The only three non-Philippine 

species (Brachymeles apus, Brachymeles cf. apus, and B. miriamae) are all limbless and sister to 

the Philippine radiation (Fig. 2.1).  Even with a near complete range of body forms within the 

genus, the majority of the variation occurs within two major clades (Fig. 2.1, Clade 1, 2), with all 

pentadactyl species part in Clade 2.  With this in mind, it is conceivable that there have been 

multiple independent losses of limbs, digits, and external ear openings giving rise to the 

Philippine radiation.  If this were plausible, such a scenario would suggest that many of the 

pentadactyl species with external ear openings gave rise to the currently recognized diversity of 

Brachymeles and have either gone extinct or have yet to be discovered.  However, we consider 

the above scenario unlikely due to the fact that the mainland Southeast Asian herpetofauna has 

become very well known as a result of extremely active field work in the region (e.g., Van Dijk 
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et al. 1998; Chanard et al. 1999; Malkmus et al. 2002; Pauwels et al. 2003; Grismer et al. 

2006a,b; Das 2007, 2010; Manthey and Grossmann 1997; Sang et al. 2009), and no fossil 

evidence has come to light suggesting otherwise. 

With the comprehensive nature of this and previous studies, we are likely approaching a 

methodological limit to our ability to understand the processes behind body form change in 

Brachymeles.  The phylogenetic evidence at hand unambiguously supports the evolution of 

unique body morphologies and the re-acquisition of complex characters.  However, support for 

the directionality of character change will remain debatable until these patterns are investigated 

with new approaches, including developmental, ecological, and behavioral studies.  Regardless, 

our results provide new, detailed, insight into heretofore incompletely understood range of 

diversity in this widespread and conceptually intriguing process of body form evolution among 

squamate reptiles. 
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CHAPTER 3 

Phylogeny-based species delimitation in Philippine slender skinks (Reptilia: Squamata: 

Scincidae: Brachymeles): taxonomic revision of pentadactyl species groups and description of 

three new species 

 

There are only four genera of scincid lizards possessing both fully limbed and limbless 

species (Brachymeles, Chalcides, Lerista, and Scelotes; Lande, 1978; Wiens and Slingluff, 2001; 

Brandley et al., 2008).  Within the genus Brachymeles, all but one of the 18 recognized species 

are endemic to the Philippines.  The exception is B. apus from northern Borneo (Brown and 

Alcala, 1980; Hikida, 1982; Siler et al., 2009a, 2010a,b).  Six species are pentadactyl (B. bicolor, 

B. boulengeri, B. gracilis, B. makusog, B.  schadenbergi, and B. talinis), eight are non-

pentadactyl, with reduced limbs and numbers of digits (B. bonitae, B. cebuensis, B. elerae, B. 

muntingkamay, B. pathfinderi, B. samarensis, B. tridactylus, and B. wrighti), and four are 

entirely limbless (B. apus, B. minimus, B. lukbani, and B. vermis).  Within the non-pentadactyl 

species (Duméril and Bibron, 1839; Brown, 1956; Brown and Rabor, 1967; Taylor, 1917, 1925, 

1918) exist a wide range of limb- and digit-reduced states, from minute limbs that lack full digits 

(B. bonitae, B. cebuensis, B. muntingkamay, B. samarensis, B. tridactylus), to moderately 

developed limbs with four to five digits on the hands and feet (B. elerae, B. pathfinderi, B. 

wrighti: Brown and Alcala, 1980; Hikida, 1982; Siler et al., 2009a, 2010b).  All species are semi-

fossorial and typically found in dry, rotting material inside decaying logs or in loose soil and leaf 

litter. 

Shared body plans and similar external morphological features among populations of 

Brachymeles has proven problematic for diagnosing species (Brown and Alcala, 1980; Siler et al., 
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2009a, 2010a,b).  Additionally, several rare, mid-to-high elevation species have long been 

represented by only a few specimens, in some cases without knowledge of their exact type 

locality (e.g., Brachymeles bicolor, B. elerae, B. wrighti, B. pathfinderi).  Three species are 

polytypic:  B. boulengeri contains four subspecies and B. gracilis and B. schadenbergi each 

contain two (Brown, 1956; Brown and Rabor, 1967; Brown and Alcala, 1980).  Several other 

species are recognized as having widespread distributions that span historical faunal 

demarcations in the Philippines (Heaney, 1985, 1986; Brown and Guttman, 2002; Brown and 

Diesmos, 2002), including B. talinis, B. samarensis, and B. bonitae (Brown, 1956; Brown and 

Rabor, 1967; Brown and Alcala, 1980). 

Taxonomic History 

The genus Brachymeles was first described by Duméril and Bibron (1839) for the small, 

limb-reduced species Brachymeles bonitae.  Three additional species (Senira bicolor [Gray, 

1845], Eumeces (Riopa) gracilis [Fischer, 1885], E. (R.) schadenbergi [Fischer, 1885]) were 

transferred to the genus by Boettger (1886) and Boulenger (1887).  These four species 

represented the known diversity in the genus for thirty years, until Taylor published a series of 

herpetofaunal descriptions in the early 1900s.  In Taylor’s (1917) review of the genus, he revised 

B. gracilis to not only include populations in the Mindanao Faunal Region, but also populations 

on Negros and Mindoro islands (Fig. 3.1). A few years later, Taylor (1922c) described B. 

boulengeri, based on material from Polillo Island, and included populations from Luzon, 

Mindoro, and Negros islands as representatives of the species (Fig. 3.1).  Thirty years later, 

Brown (1956) described B. gracilis taylori, and included B. boulengeri as one of three 

subspecies of the polytypic species B. gracilis.  Brown and Rabor’s (1967) description of B. 

gracilis boholensis and B. g. mindorensis brought the number of subspecies within B. gracilis to 

five.  It was not 
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Figure 3.1. Map of the Philippine islands, with island labels provided for islands with 

representative samples used for this study.  The five recognized major Pleistocene Aggregate 

Island Complexes (PAICs), major island groups, and additional deep-water islands are labeled 

for reference.  Islands of the Romblon Island Group are designated by the first letter of the island 

name (T, Tablas Island; R, Romblon Island; S, Sibuyan Island).  Current islands in the 

Philippines are shown in medium grey; light gray areas enclosed in black 120 m bathymetric 

contours indicate the hypothesized maximum extent of land during the mid- to late Pleistocene. 
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until 1980 that Brown and Alcala (1980) resurrected the polytypic species B. boulengeri, and 

included four subspecies (B. b. boulengeri, B. b. boholensis, B. b. mindorensis, B. b. taylori), all 

believed to be distinct from B. gracilis.  This view characterized the taxonomy of B. boulengeri 

for the next 30 years.  Numerous authors have mentioned the morphological variation among 

island populations of B. boulengeri and other species (Taylor, 1922b; Brown, 1956; Brown and 

Rabor, 1967; Brown and Alcala, 1980), but all refrained from elevating these subspecies to full 

species.  Brachymeles boulengeri boulengeri and B. b. taylori have larger geographic 

distributions across multiple islands within a single faunal region (Taylor, 1922b; Brown and 

Rabor, 1967; Brown and Alcala, 1980), whereas B. b. boholensis and B. b. mindorensis are 

single island endemics (Brown, 1956; Brown and Rabor, 1967; Brown and Alcala, 1980). 

Although Brachymeles talinis was described originally as B. schadenbergi talinis (Brown, 

1956), and considered it part of the widespread B. schadenbergi complex from the Sulu Islands 

and the Mindanao, Visayan, and Luzon Pleistocene Aggregate Island Complexes (PAICs; Brown 

and Guttman, 2002; Brown and Diesmos, 2002), the subspecies was described on the basis of 

material from Negros Island (Brown, 1956).  Brown (1956) referred to series of specimens from 

Jolo and Luzon islands as likely exemplars of B. schadenbergi talinis, and hypothesized three 

explanations for the unusual distribution of B. schadenbergi in the Philippines:  (1) chance 

colonization across ocean barriers into distinct faunal regions by two subspecies; (2) 

morphological convergence within a polytypic species; and (3) prolonged maintenance of two 

morphologically similar, disjunct distributions of sibling species within the Philippines.  At the 

time, Brown (1956) supported the first hypothesis with reservations; however, in Brown and 

Rabor’s (1967) review of Brachymeles, newly available material supported the third hypothesis, 

and led to the recognition of B. talinis from Jolo, Negros, and Luzon islands as a distinct “sibling 
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species” of B. schadenbergi populations from Basilan, Mindanao, Bohol, and Leyte islands.  

When Brown and Alcala (1980) revised the genus, they restricted the geographic distribution of 

B. talinis to the central and northern Philippine islands, and postponed the assignment of the two 

specimens from Jolo until the morphological variability of that island population was better 

understood.  Although samples from throughout the central and northern range of B. talinis have 

been available, the recognition of this widespread species has continued for more than 40 years 

(Brown and Alcala, 1980; Siler et al., 2009a, 2010a,b). 

Following the separation of Brachymeles talinis from the B. schadenbergi complex, Brown 

and Rabor (1967) recognized two subspecies of B. schadenbergi, one from western and south-

central Mindanao Island and Basilan Island (B. s. schadenbergi), and the other from eastern 

Mindanao, Camiguin Sur, Bohol, and Leyte islands (B. s. orientalis).  Fischer (1885) had 

previously designated the type locality for B. schadenbergi as southern Mindanao Island, and 

specimens from south-central Mindanao Island have thus been identified as B. schadenbergi 

schadenbergi (Brown and Rabor, 1967; Brown and Alcala, 1980).  In addition to its already 

broad geographic distribution, Brown and Alcala (1980) predicted that B. s. orientalis would also 

be observed on Samar Island. 

Both Brachymeles boulengeri and B. talinis are distributed across several distinct PAICs, 

including the Luzon, Mindanao, Mindoro, and Visayan island complexes (Fig. 3.1).  Because 

many recent studies have revealed that few endemic Philippine reptiles actually possess broad 

distributions spanning these regional faunistic boundaries (Brown et al., 2000a; Brown and 

Diesmos, 2002, 2009; Siler et al., 2010a; Welton et al., 2009, 2010a,b), we have begun to 

reevaluate the known polytypic and widespread species in the genus Brachymeles.  Our goal is to 

revise the taxonomy such that individual units (species) represent independently evolving, 
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cohesive lineage segments (sensu Simpson, 1961; Wiley 1978; Frost and Hillis, 1990; de 

Queiroz, 1998, 1999).  Careful examination of numerous recently collected specimens from 

throughout the known ranges of B. boulengeri, B. schadenbergi, and B. talinis, as well as all 

relevant name-bearing type material, results in the reorganization of B. boulengeri, B. 

schadenbergi, and B. talinis into ten distinct species.  In this paper we provide a phylogenetic 

analysis of most of these taxa, fully describe each evolutionary lineage, clarify species 

boundaries, and provide the first illustrations of most these taxa.  We also provide information on 

each species’ natural history, ecology, and geographic distribution. 

 

Materials and Methods 

Field work, sample collection, and specimen preservation 

Fieldwork was conducted on Bohol, Calayan, Camiguin Norte, Camiguin Sur, Catanduanes, 

Dinagat, Leyte, Luzon, Masbate, Mindanao, Mindoro, Negros, Panay, Polillo, Romblon, Samar, 

Sibuyan, and Tablas islands, all in the Philippines (Fig. 3.1) between 1992 and 2009.  Specimens 

were collected between 900 and 1600 hr, euthanized with aqueous chloretone, dissected for 

genetic samples (liver preserved in 95% ethanol or flash frozen in liquid nitrogen), fixed in 10% 

buffered-formalin and eventually (< 2 mo) transferred to 70% ethanol.  Newly sequenced 

voucher specimens are deposited in U.S. and Philippine museum collections (Acknowledgments 

and Specimens Examined); if available, voucher information corresponding to data from 

GenBank sequences is included in Table 3.1. 

Taxon sampling and outgroup selection for phylogenetic analyses 

Because our primary goal was to estimate phylogenetic relationships among the subspecies 

and island populations of Brachymeles boulengeri, B. schadenbergi, and B. talinis, we sequenced 
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only 1–2 exemplars per species; however, in the case of a species occurring on multiple islands 

within a single PAIC, or across a large island such as Mindanao, we sampled multiple 

populations to provide greater geographic resolution.  We chose two scincid taxa (Plestiodon 

egregius and Lygosoma bowringii) based on relationships presented in a recent phylogenetic 

analysis of scincid lizards (Brandley et al., 2005) as outgroups.  A total of 39 ingroup samples 

were used to construct phylogenetic inferences.  There are no tissue samples of the population of 

B. talinis from Jolo Island, and this population is therefore not included in the phylogenetic 

analyses. 

DNA extraction, purification, and amplification 

We extracted total genomic DNA from tissues (Table 3.1) using the modified guanidine 

thiocyanate extraction method of Esselstyn et al. (2008).  The mitochondrial ATPase 8 (ATP8) 

and ATPase 6 (ATP6) protein coding genes were amplified using standard PCR methods with 

the primers ATPf (5'-CTCAGARATCTGCGGGYCAAATCACA-3') and ATPr (5'- 

GTGCYTTCTCGRRTAATRTCYCGTCAT-3'; M. Brandley, unpublished data).  PCR products 

were visualized on 1.0% agarose gels, then purified them with ExoSAP-IT (US78201, 

Amersham Biosciences, Piscataway, NJ).  Purified templates were sequenced with the same 

primers and the ABI Prism BigDye Terminator chemistry (Ver. 3.1; Applied Biosystems, Foster 

City, CA).  Cycle-sequencing products were purified with Sephadex Medium (NC9406038, 

Amersham Biosciences, Piscataway, NJ) in Centri-Sep 96 spin plates (CS-961, Princeton 

Separations, Princeton, NJ).  Sequencing products were run on an ABI Prism 3130xl Genetic 

Analyzer (Applied Biosystems).  Gene sequences were assembled with Sequencher 4.8 (Gene 

Codes Corp., Ann Arbor, MI). 
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Table 3.1. Summary of specimens corresponding to genetic samples included in the study, 

general locality, and GenBank accession number. PNM/CMNH = deposited in the Cincinnati 

Museum of Natural History; LSUHC = La Sierra University Herpetological Collections; * = 

currently uncataloged specimen, deposited in the National Museum of the Philippines. 
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Table 3.2. Models of evolution selected by AIC and applied for partitioned, Bayesian 

phylogenetic analyses1.  

Partition AIC Model Number of Characters 

ATP8, 1st codon position HKY + G 53 

ATP8, 2nd codon position HKY + I + G 53 

ATP8, 3rd codon position GTR + G 53 

ATP6, 1st codon position GTR + I 227 

ATP6, 2nd codon position GTR + I + G 227 

ATP6, 3rd codon position GTR + G 227 

1The model GTR + I + G was used for partitioned RAxMLHPC analyses. 
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Figure 3.2. Maximum clade credibility tree from a phylognetic analyis of mitochondrial data 

(ATP 6 and 8; -lnL 5249.903214).   Nodes shown with numerical values corresponding to 

MLBP, and Bayesian PP support values respectively.  Terminals are labeled with taxonomic 

names, and sampling localities. 
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Alignment and phylogenetic analysis 

An initial alignment was produced in Muscle v3.7 (Edgar, 2004), and visual inspections were 

made in MacClade 4.08 (Maddison and Maddison, 2005).  No instances of insertions or 

deletions, or ambiguously aligned regions, were observed in the data, and all data were used for 

analyses.  The final alignment consisted of 838 aligned nucleotides.  

Phylogenetic analyses were conducted using parsimony, likelihood, and Bayesian optimality 

criteria.  Parsimony (MP) analyses were conducted in PAUP* 4.0 (Swofford, 2002) with all 

characters weighted equally.  Most-parsimonious trees were estimated using heuristic searches 

with 1000 random addition-sequence replicates and tree bisection and reconnection (TBR) 

branch swapping.  To assess heuristic support, nonparametric bootstrapping was conducted using 

1000 replicates, each with 100 random addition-sequence replicates and TBR branch swapping. 

Partitioned maximum likelihood (ML) analyses were conducted in RAxMLHPC v7.04 

(Stamatakis, 2006).  The alignment was partitioned into six regions consisting of the codon 

positions of ATP8 and ATP6.  Analyses that partition protein-coding genes by codon position 

have been shown to improve resulting inferences (Brandley et al., 2005).  The partitions were run 

under the same model (GTR + I + Γ) with 100 replicate best-tree inferences.  Each inference was 

performed with a random starting tree, and relied on the rapid hill-climbing algorithm 

(Stamatakis 2006).  Clade support was assessed with 1000 bootstrap pseudoreplicates.  We 

considered branches receiving ≥70% bootstrap support to be well-supported (Hillis and Bull, 

1993; see also Wilcox et al., 2002).  The Akaike Information Criterion (AIC), as implemented in 

MrModelTest 2.2 (Nylander, 2004), was used to find appropriate models of sequence evolution.  

The best-fit model for each of the six partitions (Table 3.2) was used for Bayesian analyses 

performed in MrBayes 3.1 (Ronquist and Huelsenbeck, 2003).  The same partitioning strategy 
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used for maximum likelihood analyses was used for Bayesian inferences.  Searches over tree 

space were conducted with four runs, each with four chains, and were run for 2 × 107 generations.  

Trees were sampled every 1000 generations, with 4000 samples discarded as burn-in; this left 

16001 post-burn-in trees from each run included in the summary.  Visual inspection for chain 

stationarity and high ESS values was conducted within the program Tracer v1.4 (Rambaut and 

Drummond, 2007).  Additionally, correlations of split frequencies and cumulative split 

frequencies were examined using the program AWTY (Nylander et al., 2008). We considered 

topologies with posterior probabilities ≥0.95 to be well-supported (Wilcox et al., 2002). 

 

Morphological data 

We examined fluid-preserved specimens (Appendix IV) for variation in qualitative and 

mensural characters. Sex was determined by gonadal inspection, and measurements were taken 

to the nearest 0.1 mm with digital calipers by CDS.  Museum abbreviations for specimens 

examined follow Leviton et al. (1985). 

Meristic and mensural characters were chosen based on Siler et al. (2009a, 2010a,b): 

characters evaluated were snout–vent length (SVL), axilla–groin distance (AGD), total length 

(TotL), midbody width (MBW), midbody height (MBH), tail length (TL), tail width (TW), tail 

height (TH), head length (HL), head width (HW), head height (HH), snout–forearm length 

(SnFa), eye diameter (ED), eye–narial distance (END), snout length (SNL), internarial distance 

(IND), forelimb length (FLL), hind limb length (HLL), midbody scale-row count (MBSR), 

paravertebral scale-row count (PVSR), axilla–groin scale-row count (AGSR), Finger-III lamellae 

count (FinIIIlam), Toe-IV lamellae count (ToeIVlam), supralabial count (SL), infralabial count 
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(IFL), supraciliary count (SC), and supraocular count (SO).  In the description, ranges are 

followed by mean ± standard deviation in parentheses. 

 

Species concept 

We follow the General Lineage Concept of species (de Queiroz, 1998, 1999) as a logical 

extension of the Evolutionary Species Concept (Simpson, 1961; Wiley, 1978; Frost and Hillis, 

1990).  We consider as distinct lineages those populations that are morphologically, and 

genetically distinct.  Lineage-based species concepts have been successfully employed in the 

recognition of Philippine biodiversity (Brown et al., 2000b, 2002, 2008, 2009; Brown and 

Guttman, 2002; Gaulke et al., 2007; Welton et al., 2009, 2010) due to the highly partitioned 

nature of the archipelago (Brown and Diesmos, 2009), and because the geological history of the 

islands has been so well documented (Hall, 2002; Yumul, 2009).  In this study we use an 

estimate of phylogenetic relationships as a guide for delimiting species but restrict our diagnoses 

of new species to those populations diagnosed by non-overlapping morphological character 

states. 

 

Results 

Phylogeny 

Of 838 aligned mitochondrial nucleotide positions, 392 and 306 were variable and 

parsimony-informative, respectively.  Just considering the alignment for Brachymeles sequence 

data, 310 and 279 were variable and parsimony-informative, respectively.  The ML analysis 

resulted in a single optimal tree (–lnL = 5249.903).  The resulting topology from the Bayesian 
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analysis is very similar to the ML tree.  Trees estimated from ML, MP, and Bayesian analyses 

are consistent with respect to support for nine unique species of Brachymeles.   

No inferences support the monophyly of B. boulengeri.  All analyses recover B. b. boholensis 

as part of a clade with B. s. orientalis and B. s. schadenbergi with high support (Fig. 3.2).  The 

ML and Bayesian analyses support a close relationship among B. b. boulengeri, B. b. 

mindorensis, and B. b. taylori, but not their monophyly (Fig. 3.2).  Results of both analyses (ML 

and Bayesian) show a a polytomy with four lineages including B. b. mindorensis, B. b. taylori, B. 

b. boulengeri, and a clade consisting of the remaining species (Fig. 3.2).  All analyses support a 

clade of B. b. boholensis, B. s. schadenbergi, and B. s. orientalis as sister to a clade of three 

distinct lineages of B. talinis samples, while MP analyses consistently supported the clade of B. 

talinis as sister to a clade of B. b. mindorensis, B. b. taylori, and B. b. boulengeri.  With the 

inclusion of two short mitochondrial genes for only three of the 18 recognized species in the 

genus, it is likely that differences in topologies among ML and Bayesian analyses reflect limited 

taxon and character sampling.  Nevertheless, all analyses result in the strong support of nine 

genetically distinct lineages of Brachymeles (Fig. 3.2).  Additionally, samples of B. talinis cluster 

into three major clades, each of which is strongly supported in all analyses (Fig. 3.2).   

Uncorrected pairwise sequence divergences are low within named taxa and relatively high 

between these lineages (Table 3.3).  Levels of sequence divergence show that the nine mtDNA 

lineages discovered by our phylogenetic analyses (B. b. boholensis, B. b. boulengeri, B. sp. nov. 

(Masbate Island), B. sp. nov. (Calayan, Camiguin Norte, and Luzon islands), B. b. mindorensis, 

B. talinis, B. b. taylori, B. s. orientalis, B. s. schadenbergi) are distinguished from congeners by 

levels of genetic divergence equal to, or greater than, those between previously defined 

species—viz., B. boulengeri, B. talinis, B. schadenbergi (Table 3.3; Fig. 3.2).  The two most 
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genetically similar lineages (B. sp. nov. [Masbate Island] and B. sp. nov. [northern Philippines]) 

are separated by 3.8–5.2% sequence divergence, and sequence divergences among all subspecies 

of B. boulengeri, and among both subspecies of B. schadenbergi, are greater than 7.3% (Table 

3.3; Fig. 3.2).  The three lineages with the greatest range of sequence divergence across 

populations are the presently defined subspecific taxa that occur across multiple islands within a 

single PAIC (B. b. boulengeri, B. b. taylori, B. talinis; Table 3.3; Fig. 3.2, 3.3, 3.5).  Sequence 

divergence among populations in the lineage of northern populations of B. talinis, and among 

populations of B. schadenbergi orientalis, are much lower than those of other lineages known to 

be distributed across multiple islands (Table 3.3; Fig. 3.3, 3.4, 3.5). 

Morphology 

Variation in morphological characters (Tables 3.4–3.6) mirrors the results observed in 

phylogenetic analyses, and supports the recognition of nine Brachymeles lineages.  Additionally, 

comparison of meristic and mensural morphological characters identified a tenth unique lineage 

from Jolo Island, previously recognized as a population of B. talinis.  Characters differing among 

these ten lineages include: body size, degree of limb development, finger and toe lamellae 

counts, head and body scale counts and patterns, and pigmentation patterns (Tables 3.4–3.6; 

species accounts below). We observed no mensural or meristic differences between the sexes of 

any of the 10 species. 

Superficially, subspecies of both B. boulengeri and B. schadenbergi, and island populations 

of B. talinis, appear morphologically similar, especially in overall body size; however, numerous 

non-overlapping differences were detected in meristic, mensural, and color pattern characters for 

each complex member, readily defining ten distinct lineages between the three complexes 

(Tables 3.4–3.6).  
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Table 3.3. Uncorrected pairwise sequence divergence (%) for mitochondrial data for 

Brachymeles boholensis, B. boulengeri, B. mindorensis, B. taylori, B. talinis, B. kadwa, B. 

tungaoi, B. orientalis, and B. schadenbergi (Fig. 3.3).  Percentages on the diagonal represent 

intraspecific genetic diversity (bolded for emphasis). 
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Figure 3.3. Hypothesized distributions of Brachymeles boholensis, B. boulengeri, B. 

mindorensis, and B. taylori in the Philippines.  The sampling localities are indicated by black 

shapes, and the hypothesized geographic range of each species indicated by shaded islands, with 

shapes and shades of islands corresponding to the map’s key. 
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Figure 3.4. Hypothesized distributions of Brachymeles orientalis, B. schadenbergi, and B. 

vindumi in the Philippines.  The sampling localities are indicated by black shapes, and the 

hypothesized geographic range of each species indicated by shaded islands, with shapes and 

shades of islands corresponding to the map’s key.  Unknown Mindanao Island range boundaries 

indicated by dashed lines. 
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Figure 3.5. Hypothesized distributions of Brachymeles tungaoi, B. kadwa, and B. talinis in the 

Philippines.  The sampling localities are indicated by black shapes, and the hypothesized 

geographic range of each species indicated by shaded islands, with shapes and shades of islands 

corresponding to the map’s key.  Islands of the Romblon Island Group are designated by the first 

letter of the island name (T, Tablas Island; R, Romblon Island; S, Sibuyan Island). 
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In summary, each lineage possesses unique and non-overlapping suites of diagnostic 

character states of morphology, perfectly corresponding to nine of the clades defined in 

phylogenetic analyses of DNA sequence data (tissues unavailable for B. cf. talinis from Jolo 

Island).  Combined with biogeographic evidence, and clearly separate geographical ranges, our 

data suggest the presence of ten evolutionary lineages, worthy of taxonomic recognition.  

 

Taxonomic conclusions 

Our inferred phylogeny (Fig. 3.2), biogeographically separate ranges of island endemic 

species; diagnostic, non overlapping morphological character states; and genetic divergences 

between the taxa (Table 3.3) indicate the distinctiveness of a new species from Luzon, Calayan, 

and Camiguin Norte islands, a new species from Masbate Island, and a new species from Jolo 

Island.  Additionally, the molecular and morphological data strongly support the elevation of all 

subspecies of Brachymeles boulengeri and B. schadenbergi to full species (Table 3.3; Fig. 3.2).  

Each of the ten species is morphologically distinct from each other and all other known species 

in the genus, and each of the nine species included in phylogenetic analyses are also genetically 

distinct.  With the exception of B. talinis, each lineage is endemic to one of four isolated PAICs, 

thereby providing additional support for the distinctiveness of each lineage’s evolutionary 

history and integrity.  Accordingly, we recognize all four subspecies of the former polytypic 

species B. boulengeri, and both subspecies of the former polytypic species B. schadenbergi, as 

full species.   

 

TAXONOMIC ACCOUNTS 
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Brachymeles boulengeri Taylor 1922b: 246 

Figs. 3.3, 3.6, 3.11A 

Brachymeles boulengeri (part), Taylor, 1922b, Type locality: Polillo Island, Philippines 

(holotype presumed lost). 

Brachymeles gracilis Boulenger (part), Brown, 1956; Brown and Rabor, 1967. 

Brachymeles gracilis (part), Brown and Alcala, 1970. 

Brachymeles boulengeri boulengeri (part), Brown and Alcala, 1980. 

Designation of a neotype for Brachymeles boulengeri.—Taylor’s holotype for B. boulengeri 

(Philippine Bureau of Science Publication No. 17:246, collected 15 July 1920) was destroyed in 

the destruction of the Philippine Bureau of Science in WWII, with no mention of a repository for 

the holotype.  In the absence of an existing holotype and in accordance with article No. 75 of the 

International Code of Zoological Nomenclature (ICZN, 1979), we designate a neotype for this 

species.  Accordingly, we choose an adult male specimen from the type locality of Polillo Island.  

Preserved adult specimens from Taylor’s (1915) type locality (Polillo Island) have been 

examined in the collections at CAS; unfortunately these original specimens are either poorly 

preserved, incomplete or not sexually mature.  However, recent collections from Polillo Island 

(Fig. 3.1) have resulted in well preserved adult individuals that clearly exhibit the diagnostic 

characters for the species.  From these collections we have chosen a male neotype collected as 

part of a series that contains adults of both sexes and agrees with Taylor’s (1922a) holotype 

description. 

Neotype.—PNM 9720 (RMB Field No. 5647, formerly KU 307756), adult male, collected 

from a fallen, rotting log in secondary growth forest (10:00–12:30 hr) in Barangay Pinaglubayan, 
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Municipality of Polillo, Quezon Province, Polillo Island, Philippines (14°45'09" N, 121°58'06" 

E; WGS-84), by RMB, J. Fernandez, Y. Vicente, and M. Vicente. 

Diagnosis.—Brachymeles boulengeri can be distinguished from congeners by the following 

combination of characters:  (1) body size moderate (SVL 60.5–93.1 mm); (2) pentadactyl; (3) 

Finger-III lamellae five or six; (4) Toe-IV lamellae nine or ten; (5) moderate limb length; (6) 

supralabials six or seven; (7) infralabials seven; (8) pineal eye spot present; (9) supranasals not 

contacting on midline; (10) prefrontals not contacting on midline; (11) midline contact of first 

pair of chin shields; (12) enlarged chin shields in two pairs; (13) nuchal scales undifferentiated; 

(14) fourth and fifth supralabial below eye; (15) auricular opening present; (16) continuous, light 

dorsolateral stripes present; and (17) mid-dorsal stripes absent (Tables 3.4, 3.5). 

Comparisons.—Characters distinguishing Brachymeles boulengeri from all pentadactyl 

species of Brachymeles are summarized in Tables 3.4 and 3.5.  Brachymeles boulengeri most 

closely resembles B. boholensis, B. mindorensis, and B. taylori, but differs from these three taxa 

by having six or seven supralabials and five or six supraciliaries, and by the absence of 

continuous, dark mid-dorsal stripes (Tables 3.4, 3.5).  Brachymeles boulengeri further differs 

from B. boholensis by having a relatively longer tail, five or six Finger-III lamellae, the fourth 

and fifth supralabial below the eye, midline contact between the first pair of enlarged chin 

shields, and by lacking a third pair of enlarged chin shields (Tables 3.4, 3.5); from B. 

mindorensis it is differentiated by its smaller body size, shorter hind limbs, and possession of 

nine or 10 Toe-IV lamellae, seven infralabials, and by having the fourth and fifth supralabial 

below the eye (Tables 3.4, 3.5); and from B. taylori by the midline contact between the first pair 

of enlarged chin shields, and the presence of continuous, light dorsolateral stripes (Tables 3.4, 

3.5). 
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From all non-pentadactyl species of Brachymeles (B. apus, B. bonitae, B. cebuensis, B. 

elerae, B. lukbani, B. minimus, B. muntingkamay, B.  pathfinderi, B. samarensis, B. tridactylus, 

B. vermis, and B. wrighti), B. boulengeri differs by having a pentadactyl body form (vs. non-

pentadactyl), greater forelimb lengths (> 8.2 mm vs. < 6.9 mm), greater hind-limb lengths (> 

14.3 mm vs. < 12.9 mm), Toe-IV lamellae nine or 10 (vs. eight or fewer), a midbody scale row 

count of 26 or 27 (vs. < 24 in all non-pentadactyl species except for 28 in B. wrighti [Taylor, 

1925]), and by the presence of a postnasal scale (vs. absence).  With the exception of B. 

pathfinderi, B. boulengeri differs further from all non-pentadactyl species by the absence of a 

third pair of enlarged chin shields (vs. presence) and the presence of auricular openings (vs. 

absence).  From all non-pentadactyl species except for B. pathfinderi, B. boulengeri differs by 

having a paravertebral scale count of 63–66 (vs. > 84).  From B. apus, B. lukbani, B. minimus, 

and B. vermis, B. boulengeri is distinguished by the presence (vs. absence) of limbs. 

Description of neotype.—(Fig. 3.6) Adult male, hemipenes everted; SVL 93.1 mm; body 

moderate relative to other Brachymeles; head weakly differentiated from neck, nearly as wide as 

body, HW 10.3% SVL, 109.0% HL; HL 36.5% SnFa; SnFa 9.4% SVL; snout moderately long, 

rounded in dorsal and lateral profile, SNL 52.2% HL; auricular opening present, moderate; eyes 

moderate, ED 2.2% SVL, 23.5% HL, 72.0% END, pupil subcircular; body slightly depressed, 

MBW 141.8% MBH; body scales smooth, glossy, imbricate; longitudinal scale rows at midbody 

26; paravertebral scale rows 64; axilla–groin scale rows 43; limbs well developed, pentadactyl, 

digits small; FinIIIlam 5; ToeIVlam 9; FLL 19.2% AGD, 12.5% SVL; HLL 28.7% AGD, 18.7% 

SVL; order of digits from shortest to longest for hand:  V = I < IV = II < III, for foot:  

I < V < II < III < IV; tail original, not as wide as body, sharply tapered towards end, TW 70.1% 

MBW, TL 84.6% SVL. 
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Rostral projecting dorsoposteriorly to point in line with anterior edge of nasal scale, broader 

than high, forming a narrow suture with frontonasal; frontonasal wider than long; nostril ovoid, 

centered in a single rectangular nasal; nasals well separated; supranasals present, large, 

moderately separated by frontonasal; postnasals present; prefrontals narrowly separated by 

frontal; frontal suboctagonal, anterior margin in moderate contact with frontonasal and first two 

anterior supraoculars, 5× wider than anteriormost supraocular; supraoculars five; frontoparietals 

moderate, in broad medial contact, contact 2–4 supraoculars; interparietal diamond-shaped, 

slightly wider than long, nearly one half frontal length; parietal eyespot present in posterior one 

third of scale; parietals separated by interparietal; nuchals non-enlarged, undifferentiated from 

dorsal scales; loreals two, decreasing in size from anterior to posterior; anterior loreal 

approximately as long as and slightly higher than posterior loreal, in contact with prefrontal, 

postnasal, supranasal, second supralabial; posterior loreal and frontonasal; preocular single, 

nearly two-thirds height of posterior loreal; presubocular single; supraciliaries six, most anterior 

contacting prefrontal and separating posterior loreal from first supraocular, most posterior 

extending to midline of last supraocular; subocular row complete; lower eyelid with one row of 

scales, lacking an enlarged oval window, largely transparent; supralabials seven, fourth and fifth 

below the eye, infralabials seven. 

Mental wider than long, in contact with first infralabials; postmental single, wider than 

mental, followed by two pairs of enlarged chin shields; first pair in broad medial contact, second 

pair slightly wider than first, separated by a single medial scale. 

Scales on limbs smaller than body scales; scales on dorsal surfaces of digits large, wrapping 

around lateral edges of digits; lamellae undivided; palmar surfaces of hands and plantar surfaces 
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of feet covered by small, irregular scales, each with raised anterior edges; scales on dorsal 

surface of hands and feet smaller than limb scales, lacking raised edges. 

Coloration of neotype in preservative.—Ground color of body medium brown; lateral and 

ventral surfaces of body lacking dark pigment; dorsum, from posterior edge of supranasals to tail 

tip, uniformly dark brown, with color spanning six full and two half rows of scales at midbody 

and narrowing to cover four rows of scales posterior to parietals; darker pigmentation covers 

entire surface of dorsal scales, with exception of pigmentation on half rows of scales; head scales 

uniform brown; lateral half of supraoculars lacking dark pigmentation; rostral, nasal, postnasal, 

supranasal, and first supralabial dark gray with light brown blotches; pineal eyespot charcoal, 

surrounded by cream border.  Faint, indistinct light dorsolateral stripes, formed by the absence of 

dark pigmentation, extending from level of anterior edge of eye to base of tail, spanning one full 

and two half rows of scales; small blotch of dark brown pigment dorsal to auricular opening.  

Limbs mottled light and medium brown dorsally, yellowish brown ventrally; dorsal and ventral 

surface of digits dark brown.  

Coloration in life.—(Fig. 3.11A).  Dorsal ground color homogeneous medium-brown to 

yellowish-brown; gradual lateral dorsolateral demarcation between dorsal (dark) and ventral 

(light) coloration; lateral and ventral surfaces of body homogeneous medium-brown to 

yellowish-brown; dark-brown spots and longitudinal lines of spots absent from lateral surfaces. 

Measurements of neotype in mm.—SVL 93.1; AGD 60.7; TotL 171.9; MBW 14.7; MBH 

10.4; TL 78.8; TW 10.3; TH 8.3; HL 8.8; HW 9.6; HH 7.2; SnFa 24.0; ED 2.1; END 2.9; SNL 

4.6; IND 3.1; FLL 11.7; HLL 17.5; MBSR 26; PVSR 64; AGSR 43; FinIIIlam 5; ToeIVlam 9; 

SL 7; IFL 7; SC 6; SO 5. 
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Variation.—Variation in mensural characters is summarized in Table 3.6.  Among the 19 

specimens examined for the degree of contact between parietal scales, nine specimens possessed 

parietals separated by the interparietal (KU 307750, 307758, 320060, 322315–20) and 10 

possessed parietals in moderate to broad medial contact (KU 307438–9, 307751–4, 307757, 

320058–9, 322314) behind the interparietal. 

Scale counts were observed to vary among the measured series.  With the exception of a 

single specimen with five supraciliaries (KU 307752), all specimens examined had six 

supraciliaries.  The number of supralabials varied between six (CAS 61297, 62272–3, 62276–7, 

KU 307438–9, 307752–4, 307757–8) and seven (CAS 61096, KU 307751).  Specimens were 

observed to have midbody scale row counts of 26 (CAS 61096, 31297, 62273, 62276–7, KU 

307439, 307751–4, 307758) and 27 (CAS 62272, KU 307750, 307757); axilla–groin scale row 

counts of 42 (KU 307439, 307758), 43 (KU 307750–4, 307757), 44 (CAS 61096, 62272–3, 

62276–7), and 46 (CAS 61297); and paravertebral scale row counts of 63 (KU 307439, 307750, 

307752, 307754, 307757–8), 64 (CAS 61096, 62272–3, 62277, KU 307751, 307753), 65 (CAS 

62276), and 66 (CAS 61297). 

We also observed lamellae counts to vary among the measured series.  With the exception of 

a single specimen with six Finger-III lamellae (KU 307750), all specimens examined had five.  

Two specimens examined had ten Toe-IV lamellae (KU 307750, 307757), while the remaining 

specimens examined had nine. 

Distribution.—Brachymeles boulengeri occurs in central and southern Luzon, and on 

Marinduque and Polillo islands (Fig. 3.3).  The species has been collected in the Camarines 

Norte Province of the Bicol Peninsula, and may eventually be found to occur further south on the 

Bicol Peninsula and even on Catanduanes Island. 
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Ecology and natural history.—Brachymeles boulengeri occurs in disturbed and secondary-

growth forest.  Little or no original, low elevation forest remains throughout the range of B. 

boulengeri, but we assume the species once also occurred in first growth forest when this forest 

type extended into low elevation areas.  Individuals have been observed under piles of rotting 

coconut husks, in the humus material within rotting logs, and in loose soil and leaf litter 

surrounding the root networks of trees.  This species is quite common at the type locality, which 

has been virtually completely converted to coconut plantations.  When disturbed, individuals 

immediately move in a rapid serpentine manner, attempting to burrow into loose soil or humus.   

Sympatric lizard species observed on Luzon, Polillo, and Marinduque islands include: 

(Agamidae) Bronchocela cristatella, Draco spilopterus, Gonocephalus sophiae, Hydrosaurus 

pustulatus; (Gekkonidae) Cyrtodactylus philippinicus, Gehyra mutilata, Gekko gecko, Gekko 

mindorensis, Hemidactylus frenatus, H. garnoti, H. luzonensis, H. platyurus, Pseudogekko 

compressicorpus, P. smaragdina; (Scincidae) Brachymeles bonitae, B. bicolor, B. elerae, B. 

lukbani, B. makusog, B. muntingkamay, B. samarensis, B. kadwa, B. wrighti, Emoia atrocostata, 

Eutropis bontocensis, E. multicarinata, E. multifasciata, Lamprolepis smaragdina, Lipinia 

pulchella, Sphenomorphus cumingi, S. decipiens, S. jagori, S. leucospilos, S. luzonensis, S. 

steerei, S. stejnegeri, Tropidophorus grayi; (Varanidae) Varanus marmoratus, and Varanus 

olivaceus. 

  

Brachymeles boholensis Brown and Rabor 1967 

Figs. 3.3, 3.6, 3.11C 

Brachymeles gracilis boholensis, Brown and Rabor, 1967, Type locality: 6 km southeast of 

Sierra Bullones, Teacher’s Park, Bohol Island, Philippines, 400–433 m elevation, 
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9°47'32.53" N, 124°18'14.4" E (holotype: CAS-SU24528). 

Brachymeles gracilis (part), Brown and Alcala, 1970. 

Brachymeles boulengeri boholensis (part), Brown and Alcala, 1980. 

Diagnosis.—Brachymeles boholensis can be distinguished from congeners by the following 

combination of characters:  (1) body size moderate (SVL 83.8–93.6 mm); (2) limbs pentadactyl; 

(3) Finger-III lamellae six; (4) Toe-IV lamellae nine or ten; (5) limb length moderate; (6) 

supralabials seven; (7) infralabials seven; (8) pineal eye spot present; (9) supranasals not 

contacting on midline; (10) prefrontals not contacting on midline; (11) enlarged chin shields in 

three pairs; (12) nuchal scales undifferentiated; (13) fifth and sixth supralabial below eye; (14) 

auricular opening present; (15) continuous, light, dorsolateral stripes present; and (16) 

continuous, dark mid-dorsal stripes present (Tables 3.4, 3.5). 

Comparisons.—Characters distinguishing Brachymeles boholensis from all pentadactyl 

species of Brachymeles are summarized in Tables 3.4 and 3.5.  Brachymeles boholensis most 

closely resembles B. boulengeri, B. mindorensis, and B. taylori, but differs from them by having 

six lamellae on Finger-III and by the presence of three pairs of enlarged chin shields (Tables 3.4, 

3.5).  Brachymeles boholensis differs further from B. boulengeri by having seven supralabials, 

six supraciliaries, and the fifth and sixth supralabial below the eye, and by the presence of 

continuous, dark mid-dorsal stripes (Tables 3.4, 3.5); from B. mindorensis by having a smaller 

body size, shorter hind limbs, nine or 10 Toe-IV lamellae, seven infralabials, and by the absence 

of contact between supranasals, and the absence of contact between prefrontals (Tables 3.4, 3.5); 

and from B. taylori by having seven supralabials, the fifth and sixth supralabial below the eye, 

and the presence of continuous, light dorsolateral stripes (Tables 3.4, 3.5). 
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From all non-pentadactyl species of Brachymeles (B. apus, B. bonitae, B. cebuensis, B. 

elerae, B. lukbani, B. minimus, B. muntingkamay, B. pathfinderi, B. samarensis, B. tridactylus, B. 

vermis, and B. wrighti), B. boholensis differs by having pentadactyl (vs. non-pentadactyl) limbs, 

greater forelimb lengths (greater than 9.0 mm vs. less than 6.9 mm), greater hind limb lengths 

(greater than 15.4 mm vs. less than 12.9 mm), Toe-IV lamellae nine or 10  (vs. eight or fewer), 

fifth and sixth supralabial below the eye (vs. fourth and fifth), and by presence of a postnasal 

scale (vs. absence).  Additionally, Brachymeles boholensis differs from all non-pentadactyl 

species except B. wrighti by having 26–28  midbody scale rows (vs. fewer than 24); from all 

non-pentadactyl species except B. pathfinderi by having 63–66 paravertebrals (vs. greater than 

84) and by the presence of auricular openings (vs. absence); and from B. apus, B. lukbani, B. 

minimus, and B. vermis by the presence of limbs (vs. absence). 

Description (based on holotype and 38 referred specimens, including 12 paratypes at 

CAS).—Details of the head scalation of an adult female are shown in Figure 3.6.  Measurements 

of the holotype are provided below in brackets.  Body moderate relative to other Brachymeles; 

maximum SVL 93.6 mm for males, 94.0 mm for females [89.5, female] (Tables 3.4, 3.5); head 

weakly differentiated from neck, nearly as wide as body, HW 10.0–12.4% (11.3 ± 0.7) SVL 

[11.8], 104.2–131.9% (112.6 ± 6.7) HL [110.7]; HL 35.2–43.6% (38.9 ± 2.3) SnFa [39.3]; SnFa 

24.1–28.0% (26.0 ± 1.0) SVL [27.0]; snout moderately long, broadly rounded in dorsal profile, 

rounded in lateral profile, SNL 54.6–64.6% (59.3 ± 2.8) HL [57.4]; auricular opening present, 

moderate; eyes small, ED 1.8–2.2% (2.0 ± 0.1) SVL [2.1], 17.6–23.9% (20.3 ± 1.6) HL [19.5], 

45.1–61.8% (52.5 ± 3.7) END [52.9], pupil subcircular; body slightly depressed, MBW 98.1–

136.2% (113.0 ± 10.3) MBH [131.0]; scales smooth, glossy, imbricate; longitudinal scale rows at 

midbody 26–28 [28]; paravertebral scale rows 63–66 [64]; axilla–groin scale rows 42–46 [44]; 
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limbs well developed, pentadactyl, digits small; FinIIIlam 6 [6]; ToeIVlam 7–10 [7]; FLL 15.6–

20.5% (17.6 ± 1.4) AGD [20.5], 10.2–12.9% (11.4 ± 0.8) SVL [12.4]; HLL 27.6–34.6% (30.0 ± 

2.3) AGD [32.9], 17.8–21.5% (19.4 ± 1.2) SVL [20.0]; order of digits from shortest to longest 

for hand:  I = V < II = III = IV, for foot:  V < I < II < III = IV; tail not as wide as body, sharply 

tapered towards end, TW 61.6–78.4% (70.3 ± 5.0) MBW [63.5], TL 52.7–90.0% (75.7 ± 13.0) 

SVL [86.8]. 

Rostral projecting dorsoposteriorly to point in line with center of nasal;, broader than high, in 

contact with frontonasal; frontonasal wider than long; nostril ovoid, centered in a single 

rectangular nasal; nasals well separated; supranasals present, large, moderately separated by 

frontonasal; postnasals present; prefrontals broadly separated by frontal; frontal nearly diamond 

shaped, in moderate contact with frontonasal, first two anterior supraoculars, 4× wider than 

anterior supraocular; supraoculars five; frontoparietals moderate in size, in contact, each 

frontoparietal in contact with posterior three or four supraoculars; interparietal moderate in size, 

quadrilaterally shaped, longer than wide, its length slightly greater than midline length of 

frontoparietals; parietal eyespot present in posterior half of scale; parietals separated by 

interparietal; nuchals undifferentiated; loreals two, antreior loreal largest, in contact with 

prefrontal, postnasal, supranasal, second supralabial, posterior loreal and frontonasal; preocular 

single, nearly two thirds as high as posterior loreal; supraciliaries six, anterior supraciliary 

contacting prefrontal and separating posterior loreal from first supraocular; subocular row 

complete; lower eyelid with one row of scales, lacking an enlarged oval window, largely 

transparent; supralabials seven, fifth and sixth beneath center of eye; infralabials seven. 

Mental wider than long, in contact with first infralabials; postmental single, enlarged, slightly 

wider than mental, followed by three pairs of enlarged chin shields, first pair in broad medial 
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contact, second pair equal in width to first pair, broadly separated by single medial scale, third 

pair separated by three medial scales. 

Scales on limbs smaller than body scales; scales on dorsal surfaces of digits large, wrapping 

around lateral edges of digits; lamellae undivided; palmar surfaces of hands and plantar surfaces 

of feet covered by small, variably shaped scales, each bearing variably raised anterior edges; 

scales on dorsal surface of hands and feet smaller than limb scales, lacking raised edges. 

Coloration in preservative.—Ground color of body medium brown, lateral surface lacking 

dark pigment, dorsal surface bearing continuous, longitudinal rows of olive-green to brown 

pigment, spanning six full and two half rows of scales at midbody, narrowing to four full and 

two half rows of scales posterior to parietals, extending from posterior edge of parietals to tail 

tip; dark pigmentation covering one half to three fourths of dorsal scales; lateral surface of body 

with six continuous to discontinuous longitudinal rows of olive-green to brown stripes, extending 

from posterior edge of eye to base of tail; dorsolateral stripes present, lacking dark pigmentation, 

spanning two half rows of scales, extending from posterior edge of supraoculars to base of tail.  

Ventral scales with or without dark spots.  Head scales uniform medium brown, darker brown 

than ventral scales; rostral, nasal, postnasal, supranasal, first supralabial, mental, and first 

infralabial dark gray; pineal eyespot poorly defined, small, and light to dark brown.  Limbs 

mottled light and medium brown dorsally, yellowish brown ventrally; dorsal and ventral surfaces 

of digits dark brown. 

Coloration in life.—(Fig. 11C).  Ground color of body medium brown to tan; longitudinal 

rows of darker brown pigmentation; dorsolateral stripes light-brown to tan; limbs bearing dark-

brown mottling dorsally. 
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Variation.—Morphometric variation is summarized in Table 3.6. We observed variation 

among the 20 specimens examined for the degree of contact between head scales.  Six specimens 

were observed to have parietals separated by the interparietal (KU 323944, 323949, 323953, 

323962, 323975–6) and 14 specimens possessed parietals in moderate to broad medial contact 

(KU 323948, 323952, 323954–6, 323960, 323963, 323966, 323970, 323972, 323981, 323982, 

323990, 324001) behind the interparietal.  Additionally seven specimens do not have the first 

pair of enlarged chin shields in medial contact (KU 323954–5, 323970, 323975, 323981–2, 

324001) and 13 specimens with the first pair of enlarged chin shields in moderate to broad 

medial contact (KU 323944, 323948–9, 323952–3, 323956, 323960, 323962–3, 323966, 323972, 

323976, 323990). 

Scale counts were observed to vary among the measured series.  Specimens were observed to 

have midbody scale row counts of 26 (CAS-SU 18709, 18717, 24502, 24523–5, 24541, 24543, 

25443–4), 27 (CAS-SU 24503–4, 24522, 24867), and 28 (CAS-SU 24518, 24520–21, 24528, 

25447); axilla–groin scale row counts of 42 (CAS-SU 18717, 24502, 24520, 24524), 43 (CAS-

SU 24523, 24541, 24543), 44 (CAS-SU 24504, 24518, 24525, 24528, 24867, 25447), 45 (CAS-

SU 24503, 24521, 25443), and 46 (CAS-SU 18709, 24522, 25444); and paravertebral scale row 

counts of 63 (CAS-SU 18717, 24502, 24520, 24524, 24541, 24543), 64 (CAS-SU 24504, 24523, 

24525, 24528, 24867, 25447), 65 (CAS-SU 24518), and 66 (CAS-SU 18709, 24503, 24521–2, 

25443–4). 

We also observed Toe-IV lamellae counts to vary among the measured series.  With the 

exception of a single specimen with seven Two-IV lamellae (CAS-SU 24528, holotype), all 

specimens examined had either nine (CAS-SU 18709, 24504, 24523–4, 24867, 25444) or ten 

(CAS-SU 18717, 24502–3, 24518, 24520–2, 24525, 24541, 24543, 25443, 25447).  We observed 
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the holotype to have malformed digits, which we believe resulted in fewer Toe-IV lamellae than 

are observed for all other individuals of this species. 

Distribution.—Brachymeles boholensis is known only from Bohol Island (Fig. 3.3). 

Ecology and natural history.—Brachymeles boholensis occurs in agricultural habitats, as well 

as in disturbed and secondary-growth forests.  No original, low elevation forest remains on 

Bohol Island, but we assume the species once also occurred in primary forest at low elevations.  

Individuals have been observed under piles of rotting coconut husks, in the humus material 

within rotting logs, and in loose soil and leaf litter surrounding the root networks of trees.  

Interestingly, this species seems to be a ubiquitous habitat generalist on Bohol, whereas its 

congener, B. orientalis, seems to be restricted to fallen and rotting logs in secondary-growth 

forest on the same island (CDS personal observations).  As is typical for species in the genus, 

individuals immediately attempt to evade capture by moving to quickly burrow into loose soil or 

humus.   

Although only two species of Brachymeles have been confirmed to occur on Bohol Island (B. 

boholensis and B. orientalis), populations of B. samarensis are known to occur on Lapinig 

Grande and Lapinig Chico islands just off the northeast coast of Bohol Island (Brown and Alcala, 

1980).  No individuals of this species lacking fully formed digits occur on Bohol; however, given 

proximity of these small islands to mainland Bohol, it seems likely that this neighboring, limb-

reduced species of Brachymeles eventually may be discovered on Bohol. 

Sympatric lizard species observed on Bohol Island include: (Agamidae) Bronchocela 

cristatella, Draco bimaculatus, D. ornatus, D. reticulates, Gonocephalus semperi, Hydrosaurus 

pustulatus; (Gekkonidae) Cyrtodactylus annulatus, Gehyra mutilata, Gekko gecko, Hemidactylus 

frenatus, H. platyurus, Hemiphyllodactylus typus, Lepidodactylus aureolineatus, L. planicaudus, 
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Pseudogekko compressicorpus, P. brevipes; (Scincidae) Brachymeles schadenbergi orientalis, 

Emoia atrocostata, Eutropis multicarinata, E. multifasciata, Lamprolepis smaragdina, Lipinia 

pulchella, L. quadrivittata, Sphenomorphus acutus, S. cumingi, S. fasciatus, S. jagori, S. 

minanensis, S. steerei, S. variegatus; (Varanidae) Varanus cumingi.  Also, Brachymeles 

samarensis (Scincidae) is known to occur on Lipinig Grande and Lipinig Chico islands just off 

the northeast coast of Bohol Island (Brown and Alcala, 1980). 

 

Brachymeles mindorensis Brown and Rabor 1967 

Figs. 3.3, 3.7 

Brachymeles gracilis mindorensis, Brown and Rabor, 1967, Type locality: Bank of Tarogin 

River, 30 km southeast of Calapan, Mindoro Oriental Province, Mindoro Island, Philippines, 

0–33 m elevation, 13°11'25.44" N, 121°8'52.8" E (holotype: CAS-SU 24487). 

Brachymeles gracilis (part), Brown and Alcala, 1970. 

Brachymeles boulengeri mindorensis (part), Brown and Alcala, 1980. 

Diagnosis.—Brachymeles mindorensis can be distinguished from congeners by the following 

combination of characters:  (1) body size moderate (SVL 90.0–104.2 mm); (2) pentadactyl; (3) 

Finger-III lamellae five or six; (4) Toe-IV lamellae eight or nine; (5) moderate limb length; (6) 

supralabials seven; (7) infralabials six; (8) pineal eye spot present; (9) enlarged chin shields in 

two pairs; (10) nuchal scales undifferentiated; (11) fifth and sixth supralabial below eye; (12) 

auricular opening present; (13) continuous, light, dorsolateral stripes present; and (14) 

continuous, dark mid-dorsal stripes present (Tables 3.4, 3.5). 

Comparisons.—Characters distinguishing Brachymeles mindorensis from all pentadactyl 

species of Brachymeles are summarized in Tables 3.4 and 3.5.  Brachymeles mindorensis most 
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closely resembles B. boholensis, B. boulengeri, and B. taylori, but differs from these three taxa 

by having a larger body size, longer hind limbs, eight or nine Toe-IV lamellae, and six 

infralabials (Tables 3.4, 3.5).  Brachymeles mindorensis further differs from B. boholensis by 

having five or six Finger-III lamellae and by the absence of a third pair of enlarged chin shields 

(Tables 3.4, 3.5); from B. boulengeri by having seven supralabials, six supraciliaries, and the 

fifth and sixth supralabial below the eye, and by the presence of continuous, dark mid-dorsal 

stripes (Tables 3.4, 3.5); and from B. taylori by having seven supralabials and the fifth and sixth 

supralabial below the eye, and by the presence of continuous, light dorsolateral stripes (Tables 

3.4, 3.5). 

From all non-pentadactyl species of Brachymeles (B. apus, B. bonitae, B. cebuensis, B. 

elerae, B. lukbani, B. minimus, B. muntingkamay, B. pathfinderi, B. samarensis, B. tridactylus, B. 

vermis, and B. wrighti), B. mindorensis differs by having a pentadactyl body form (vs. non-

pentadactyl), longer forelimb lengths (greater than 10.0 mm vs. less than 6.9 mm), greater hind 

limb lengths (greater than 18.8 mm vs. less than 12.9 mm), and the fifth supralabial below the 

eye (vs. fourth), and by the presence of a postnasal scale (vs. absence).  Additionally, 

Brachymeles mindorensis differs from all non-pentadactyl species except B. wrighti by having a 

midbody scale row count 26–28 (vs. fewer than 24); from all non-pentadactyl species except B. 

pathfinderi by having a paravertebral count 63–65 (vs. greater than 84) and by the presence of 

auricular openings (vs. absence); and from B. apus, B. lukbani, B. minimus, and B. vermis by the 

presence of limbs (vs. absence). 

Description (based on holotype and 33 referred paratypes at CAS).—Details of the head 

scalation of an adult male are shown in Figure 3.7.  Measurements of the holotype are included 

below in brackets.  Body moderate relative to other Brachymeles, elongate with respect to other 
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lizards; maximum SVL 104.2 mm for males, 106.8 mm for females [106.8, female] (Tables 3.4, 

3.5); head weakly differentiated from neck, nearly as wide as body, HW 10.5–12.9% (11.4 ± 0.7) 

SVL [10.9], 104.2–130.1% (116.1 ± 6.0) HL [114.6]; HL 31.6–42.9% (37.3 ± 3.1) SnFa [39.2]; 

SnFa 24.1–29.9% (26.5 ± 1.3) SVL [24.1]; snout moderately long, rounded in dorsal and lateral 

profile, SNL 50.6–68.2% (57.3 ± 4.9) HL [52.2]; auricular opening present, small; eyes moderate, 

ED 2.0–2.6% (2.2 ± 0.2) SVL [2.0], 19.4–27.4% (22.7 ± 2.0) HL [21.1], 51.8–72.2% (60.7 ± 

5.1) END [58.5], pupil nearly round; body slightly depressed, MBW 105.4–156.0% (120.2 ± 

14.0) MBH [125.0]; scales smooth, glossy, imbricate; longitudinal scale rows at midbody 26–28 

[26]; paravertebral scale rows 63–65 [65]; axilla–groin scale rows 42–45 [45]; limbs well 

developed, pentadactyl, digits small; FinIIIlam 5–6 [5]; ToeIVlam 8–9 [9]; FLL 14.5–21.3% 

(17.8 ± 1.9) AGD [15.5], 10.1–13.1% (11.5 ± 0.9) SVL [10.9]; HLL 16.7–37.9% (31.5 ± 5.0) 

AGD [25.1], 10.5–24.0% (20.3 ± 2.9) SVL [17.6]; order of digits from shortest to longest for 

hand: I = V < II = IV < III, for foot:  I < V < II < III = IV; tail not as wide as body, sharply 

tapered towards end, TW 54.4–80.1% (69.1 ± 8.1) MBW [54.4], TL 60.4–99.3% (84.6 ± 11.5) 

SVL [93.5]. 

Rostral projecting dorsoposteriorly to point in line with anterior edge of nasal, broader than 

high, in narrow contact with frontonasal; frontonasal wider than long; nostril ovoid, centered in a 

single rectangular nasal; nasals well separated; supranasals present, large, narrowly separated by 

frontonasal; postnasals present; prefrontals narrowly separated by frontal; frontal octagonal, 

narrowly contacting frontonasal and first two supraoculars anteriorly, 4× wider than anteriormost 

supraocular; supraoculars five; frontoparietals moderate, in broad medial contact, each 

frontoparietal in contact with supraoculars 2–4; interparietal large, quadrilaterally shaped, 

slightly longer than wide, its length slightly greater than midline length of frontoparietal; parietal 
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eyespot present in posterior one half of scale; parietals moderately separated behind interparietal; 

nuchals undifferentiated from adjacent dorsal scales; loreals two, anterior loreal in contact with 

prefrontal, postnasal, supranasal, second supralabial, posterior loreal and frontonasal; preocular, 

single, nearly one third as high as posterior loreal; presubocular single; supraciliaries six, the 

anteriormost contacting prefrontal and separating posterior loreal from first supraocular; 

subocular row complete; lower eyelid with one row of scales, lacking an enlarged oval window, 

largely transparent; supralabials seven, fifth and sixth below eye; infralabials six. 

Mental wider than long, in contact with first infralabials; single enlarged postmental, equal in 

width to mental followed by two pairs of enlarged chin shields; first pair in moderate contact, 

second pair wider than first, moderately separated by single medial scale. 

Scales on limbs smaller than body scales; scales on dorsal surfaces of digits large, wrapping 

around lateral edges of digits; lamellae undivided; palmar surfaces of hands and plantar surfaces 

of feet covered by small, variably shaped scales, each with variably raised anterior edges; scales 

on dorsal surface of hands and feet smaller than limb scales, lacking raised edges. 

Coloration in preservative.—Ground color of body medium brown; dorsal surface of body 

with eight longitudinal rows of dark-brown stripes, six continuous medial rows, two 

discontinuous lateral rows, spanning eight full rows of scales at midbody, narrowing to six full 

rows of scales posterior to parietals, extending from posterior edge of parietals to tail tip; 

pigmentation covering middle one third of dorsal scales; dorsolateral stripes present, lacking 

dark pigmentation, spanning one whole and two half rows of scales, extending from posterior 

edge of supraoculars to base of tail.  Lateral surface of body light brown ground color with three 

or four rows of nearly continuous spots of dark-brown pigmentation, extending from auricular 

opening to tail tip.  Tail striped with longitudinal rows of dark pigmentation.  Ventral scales 
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lacking dark spots.  Head scales uniform medium brown, darker brown than ventral scales; 

posteriormost supraocular lacking pigmentation; dark pigmentation surrounding auricular 

opening, connected to dark pigmentation on head scales; rostral, nasal, postnasal, supranasal, and 

first supralabial dark gray; pineal eyespot poorly defined, small and light cream.  Limbs mottled 

dark brown dorsally, yellowish brown ventrally; dorsal and ventral surface of digits dark brown. 

Coloration in life.—Ground color of body dark- to medium-brown; continuous, dark mid-

dorsal stripes dark brown to black; dorsolateral stripes light-brown to tan, gradually become 

predominately tan on tail; limbs dark-brown dorsally. 

Variation.—Morphometric variation of the series is summarized in Table 3.6. We observed 

variation among the 16 specimens examined for the degree of contact between head scales.  Five 

specimens were have parietals separated by the interparietal (KU 304352, 304354, 304488, 

308447–8) and 11 specimens have parietals in moderate to broad medial contact (KU 304351, 

304353, 304355, 304412–3, 307739–42, 308404, 308534) behind the interparietal; four 

specimens have supranasals narrowly separated by the frontonasal (KU 307740–1, 308404, 

308448), six specimens have supranasals in medial point contact (KU 304351–4, 307742, 

308447), and six specimens have supranasals in moderate medial contact (KU 304355, 304412–3, 

304488, 307739, 308534); 13 specimens have prefrontals moderately separated by the frontal 

(KU 304351–4, 304412–3, 304488, 307739–41, 308447–8, 308534), one specimen has 

prefrontals narrowly separated by the frontal ( KU 308404), and two specimens have prefrontals 

in medial point contact (KU 304355, 307742). 

Scale counts were observed to vary among the measured series.  Specimens were observed to 

have midbody scale row counts of 26 (CAS-SU 24487, 24551, 24561, 24566, 24574, 24577, 

24579), 27 (CAS-SU 24549, 24573), and 28 (CAS-SU 24550, 24552–4, 24562, 24564, 24568, 
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24570, 24578); axilla–groin scale row counts of 42 (CAS-SU 24564), 43 (CAS-SU 24573), 44 

(CAS-SU 24553–4, 24561–2, 24568, 24570, 24578), and 45 (CAS-SU 24487, 24549–52, 24566, 

24574, 24577, 24579); and paravertebral scale row counts of 63 (CAS-SU 24564, 24573), 64 

(CAS-SU 24561–2, 24568), and 65 (CAS-SU 24487, 24549–54, 24566, 24570, 24574, 24577–9). 

We also observed lamellae counts to vary among the series.  With the exception of two 

specimens with six Finger-III lamellae (CAS-SU 24561, 24574), all specimens examined had 

five.  Specimens were observed to have Toe-IV lamellae counts of eight (CAS-SU 24549–54, 

24561–2, 24564, 24566, 24570, 24573, 24577–8) or nine (CAS-SU 24487, 24568, 24574, 

24579). 

Distribution.—Brachymeles mindorensis is known only from Mindoro Island (Fig. 3.3). 

Ecology and natural history.—Brachymeles mindorensis occurs in disturbed and secondary-

growth forest.  Individuals have been observed under piles of rotting coconut husks, in the 

humus material within rotting logs, and in loose soil and leaf litter surrounding the root networks 

of trees.  The species has been observed to be quite common in certain habitats on Mindoro 

Island (CDS, RMB personal observations). Brachymeles mindorensis occurs sympatrically with 

B. bonitae (Brown, 1956; Brown and Rabor, 1967; Brown and Alcala, 1980), and is the largest 

species of the B. boulengeri complex.  When individuals were disturbed, they attempted to 

quickly burrow back into loose soil or humus. 

Sympatric lizard species observed on Mindoro Island include:  (Agamidae) Bronchocela 

marmoratus, Draco quadrasi, Gonocephalus interruptus, Hydrosaurus pustulatus; (Gekkonidae) 

Cyrtodactylus philippinicus, Gehyra mutilata, Gekko gecko, G. mindorensis, Hemidactylus 

frenatus, H. garnoti, H. platyurus, Hemiphyllodactylus typus, Lepidodactylus naujanensis; 

(Scincidae) Brachymeles bonitae, Dasia olivaceum, Emoia atrocostata, Eutropis multicarinata, 
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E. multifasciata, Lamprolepis smaragdina, Lipinia auriculatum, Sphenomorphus cumingi, S. 

jagori, S. steerei; (Varanidae) Varanus marmoratus. 

 

Brachymeles taylori Brown 1956 

Figs. 3, 7, 11B 

Brachymeles gracilis taylori, Brown, 1956, Type-locality: Sitio Lunga, 13 km West Dumaguete, 

3 km West Valencia, on low ridge on the north side of the Maite River, Negros Oriental 

Province, Negros Island, Philippines, 600 m elevation, 9°17'32.96" N, 123°14'2.4" E 

(holotype: CAS-SU 24487). 

Brachymeles gracilis (part), Brown and Alcala, 1970. 

Brachymeles boulengeri taylori (part), Brown and Alcala, 1980. 

Diagnosis.—Brachymeles taylori can be distinguished from congeners by the following 

combination of characters:  (1) body size moderate (SVL 65.8–99.2 mm); (2) pentadactyl; (3) 

Finger-III lamellae five or six; (4) Toe-IV lamellae nine or ten; (5) moderate limb length; (6) 

supralabials six; (7) infralabials seven; (8) pineal eye spot present; (9) supranasals not contacting 

on midline; (10) prefrontals not contacting on midline; (11) enlarged chin shields in two pairs; 

(12) nuchal scales undifferentiated; (13) fourth and fifth supralabial below eye; (14) auricular 

opening present; (15) dorsolateral stripes absent; and (16) continuous, dark mid-dorsal stripes 

present (Tables 3.4, 3.5). 

Comparisons.—Characters distinguishing Brachymeles taylori from all pentadactyl species 

of Brachymeles are summarized in Tables 3.4 and 3.5.  Brachymeles taylori most closely 

resembles B. boholensis, B. boulengeri, and B. mindorensis, but differs from these three taxa by 

the absence of continuous, light dorsolateral stripes (Tables 3.4, 3.5).  Brachymeles taylori can 
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further be distinguished from B. boholensis by having five or six Finger-III lamellae, six 

supralabials, and the fourth and fifth supralabial below the eye, and by the absence of a third pair 

of enlarged chin shields (Tables 3.4, 3.5); from B. boulengeri by having six supralabials and six 

supraciliaries, and the presence of continuous, dark mid-dorsal stripes (Tables 3.4, 3.5); and from 

B. mindorensis by having a smaller body size, shorter hind limbs, nine or ten Toe-IV lamellae, 

six supralabials, seven infralabials, the fourth and fifth supralabial below the eye, and no contact 

between supranasals and prefrontals (Tables 3.4, 3.5). 

From all non-pentadactyl species of Brachymeles (B. apus, B. bonitae, B. cebuensis, B. 

elerae, B. lukbani, B. minimus, B. muntingkamay, B. pathfinderi, B. samarensis, B. tridactylus, B. 

vermis, and B. wrighti), B. taylori differs by having pentadactyl limbs (vs. non-pentadactyl), 

longer forelimbs (greater than 9.0 mm vs. less than 6.9 mm), longer hind limbs (greater than 15.6 

mm vs. less than 12.9 mm), and Toe-IV lamellae nine or ten (vs. eight or fewer), and by the 

presence of a postnasal scale (vs. absence).  Additionally, Brachymeles taylori differs from all 

non-pentadactyl species except B. wrighti by having a midbody scale row count 26–28 (vs. fewer 

than 24); from all non-pentadactyl species except B. pathfinderi by having a paravertebral count 

62–69 (vs. greater than 84) and by the presence of auricular openings (vs. absence); and from B. 

apus, B. lukbani, B. minimus, and B. vermis by the presence of limbs (vs. absence). 

Description (based on holotype and 33 referred specimens, including 5 paratypes at CAS).—

Details of the head scalation of an adult female are shown in Figure 3.7.  Measurements of the 

holotype are provided below in brackets.  Body moderate relative to other Brachymeles, elongate 

with respect to other lizards; maximum SVL 99.2 mm for males, 93.2 mm for females [65.8, 

female] (Tables 3.4, 3.5); head weakly differentiated from neck, nearly as wide as body, HW 

11.3–15.3% (12.3 ± 1.0) SVL [15.3], 104.4–139.5% (120.5 ± 10.2) HL [132.8]; HL 34.8–44.6% 
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(39.2 ± 2.5) SnFa [36.4]; SnFa 23.4–31.7% (26.2 ± 1.7) SVL [31.7]; snout moderately long, 

broadly rounded in dorsal profile, depressed in lateral profile, SNL 44.1–62.5% (52.2 ± 4.6) HL 

[62.5]; auricular opening present, moderate; eyes moderate, ED 1.6–2.8% (2.1 ± 0.2) SVL [2.8], 

15.9–24.4% (20.8 ± 2.4) HL [24.4], 48.8–69.5% (59.6 ± 6.1) END [62.7], pupil nearly round; 

body slightly depressed, MBW 89.1–148.4% (115.1 ± 14.7) MBH [112.9]; scales smooth, glossy, 

imbricate; longitudinal scale rows at midbody 26–28 [27]; paravertebral scale rows 62–69 [64]; 

axilla–groin scale rows 42–47 [43]; limbs well developed, pentadactyl, digits small; FinIIIlam 5–

6 [6]; ToeIVlam 8–10 [9]; FLL 15.7–20.4% (17.8 ± 1.2) AGD [19.9], 10.4–14.1% (11.5 ± 0.9) 

SVL [14.1]; HLL 26.7–36.8% (31.1 ± 2.5) AGD [35.6], 17.8–25.2% (20.1 ± 1.7) SVL [25.2]; 

order of digits from shortest to longest for hand:  I = V < IV < II = III, for foot:  

I < V < II < III = IV; tail not as wide as body, sharply tapered posteriorly, TW 54.0–80.3% (68.9 

± 6.7) MBW [75.0], TL 69.2–103.1% (83.3 ± 10.4) SVL [98.2]. 

Rostral projecting dorsoposteriorly to point in line with anterior edge of nasal, broader than 

high, in moderate contact with frontonasal; frontonasal wider than long; nostril ovoid, in center 

of single rectangular nasal; nasals well separated; supranasals present, large, narrowly separated 

by frontonasal; postnasals present; prefrontals moderately separated by frontal; frontal nearly 

octagonal, its anterior margin in moderate contact with frontonasal, in contact with first two 

anterior supraoculars, 4.5 × wider than anteriormost supraocular; supraoculars five; 

frontoparietals moderate, in broad medial contact, each frontoparietal in contact with 

supraoculars two–four; interparietal moderate, quadrilaterally shaped, longer than wide, its 

length nearly equal to midline length of frontoparietal; parietal eyespot present in posterior one 

half of scale; parietals in moderate contact behind interparietal or narrowly separated; nuchals 

undifferentiated; loreals two, decreasing in size from anterior to posterior, subequal, anterior 
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loreal in contact with prefrontal, postnasal, supranasal, second supralabial, posterior loreal and 

frontonasal; preocular single, nearly two thirds as high as posterior loreal; single presubocular; 

supraciliaries six, the anteriormost contacting prefrontal and separating posterior loreal from first 

supraocular; subocular row complete; lower eyelid with one row of scales, lacking an enlarged 

oval window, largely transparent; supralabials six, fourth and fifth below the eye; infralabials 

seven. 

Mental wider than long, in contact with first infralabial; postmental single, enlarged, slightly 

wider than mental, followed by two pairs of enlarged chin shields, scales of first pair separated or 

in moderate contact, second pair slightly wider than first, broadly separated by a single medial 

scale. 

Scales on limbs smaller than body scales; scales on dorsal surfaces of digits large, wrapping 

around lateral edges of digits; lamellae undivided; palmar surfaces of hands and plantar surfaces 

of feet covered by small, irregular scales, each with irregular raised anterior edges; scales on 

dorsal surface of hands and feet smaller than limb scales, lacking raised edges. 

Coloration in preservative.—Ground color of body medium olive-brown; dorsal 

pigmentation nearly all dark brown, gradually fading into olive-brown lateral surface and 

yellowish-brown ventral surface of body, ventral surface without dark pigmentation; dark dorsal 

pigmentation in nearly continuous block across dorsal surface or at times forming ten continuous 

longitudinal rows of dark-brown pigment, spanning six full rows of scales across dorsal surface, 

extending from posterior edge of parietals to tail tip, additional three to four scale rows on each 

lateral surface with dark coloration, covering one half to two thirds of dorsal and lateral scales; 

dorsolateral stripes absent.  Tail coloration matches body coloration.  Head scales uniform dark 

brown, darker brown than ventral scales; rostral, nasal, postnasal, supranasal, and first 
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supralabial dark gray; pineal eyespot poorly defined, small and light cream.  Limbs mottled 

medium brown dorsally, yellowish brown ventrally; dorsal and ventral surface of digits dark 

brown. 

Coloration in life.—(Fig. 3.11B).  Ground color of body light to medium-brown; medium to 

dark brown dorsal pigmentation gradually fading into medium brown lateral pigmentation; limbs 

mottled medium to dark brown dorsally. 

Variation.—Morphometric variation of the series is summarized in Table 3.6. We observed 

variation among the 14 specimens examined for the degree of contact between head scales.  Six 

specimens have parietals moderately separated by the interparietal (KU 324048, 324050, 

324052–5), one specimen has parietals narrowly separated by the interparietal (KU 324051), and 

seven specimens have parietals in moderate medial contact (KU 306651, 324044–7, 324049, 

324056) behind the interparietal; eight specimens do not have the first pair of enlarged chin 

shields in medial contact (KU 324045, 324048–50, 324053–6), one specimen has the first pair of 

enlarged chin shields in point medial contact (KU 324046), and five specimens have the first pair 

of enlarged chin shields in moderate medial contact (KU 306651, 324044, 324047, 324051–2). 

Scale counts were observed to vary among the measured series.  Specimens were observed to 

have midbody scale row counts of 26 (CAS-SU 18641, 18656–7, 18748, 21873, 21877, 21880, 

21884, 22355, CAS 154971, 154673, 154680–2, 154686), 27 (CAS-SU 18615, 22356, CAS 

154679), and 28 (CAS-SU 18649, 21883, CAS 154678); axilla–groin scale row counts of 42 

(CAS 154680, 154686), 43 (CAS-SU 18615, 18656, CAS 154682), 44 (CAS-SU 18641, 18748, 

21873, 21877, 21880, 22356, CAS 154678, 154679, 154681), 45 (CAS-SU 21884, 22355, CAS 

154671), 46 (CAS-SU 18649, 21883, CAS 154673) and 47 (CAS-SU 18657); and paravertebral 

scale row counts of 62 (CAS 154680, 154686), 64 (CAS-SU 18615, 18656, CAS 154682), 66 
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(CAS-SU 18641, 18748, 21873, 21877, 21880, 21884, 22356, CAS 154678–9, 154681), 67 

(CAS-SU 18649, CAS 154671, 154673), 68 (CAS-SU 21883, 22355), and 69 (CAS-SU 18657). 

We also observed lamellae counts to vary among the measured series.  Specimens were 

observed to have Finger-III lamellae counts of five (CAS-SU 18641, 18649, 18656, 18748, 

21883–4, 22356, CAS 154671, 154673, 154678–80) or six (CAS-SU 18615, 18657, 21873, 

21877, 21880, 22355, CAS 154681–2, 154686); Toe-IV lamellae counts of eight (CAS 154678), 

nine (CAS-SU 18615, 18649, 18656, 21880, 22356, CAS 154671, 154673, 154682, 154686), 

and ten (CAS-SU 18641, 18657, 18748, 21873, 21877, 21883–4, 22355, CAS 15479–81). 

There is some color variation in the examined series, with the degree and definition of 

continuous, dark mid-dorsal stripes.  All specimens have continuous, dark lines running down 

the mid-dorsal surface of the body; however, the continuous lines in some specimens are present 

without a dark, mid-dorsal background coloration (KU 324045–6, 324049–51, 324053–4).  The 

dark lines in other specimens overlay a dark, mid-dorsal region covered by a long streak of dark 

background pigmentation (KU 324044, 324047–8, 324052, 324055–6). 

Distribution.—Brachymeles taylori is known from Negros, Cebu, Inampulugan, Pan de 

Azucar, Danjugan, Ponson, and Poro Islands (Fig. 3.3). 

Ecology and natural history.—Brachymeles taylori occurs in agricultural areas as well as 

disturbed and secondary-growth forest.  Little or no original, low elevation forest remains in the 

Visayas, but we assume the species once also occurred in primary forest.  Individuals have been 

observed under piles of rotting coconut husks, in the humus material within rotting logs, and in 

loose soil and leaf litter surrounding the root networks of trees.  The species is quite common 

throughout its range (CDS personal observations), and occurs sympatrically with three other 

species of Brachymeles (B. cebuensis, B. talinis, and B. tridactylus [Brown, 1956; Brown and 
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Rabor, 1967; Brown and Alcala, 1980]).  Similar to B. boulengeri, B. taylori appears to have a 

wider geographic distribution that spans multiple Philippine islands.  This is in contrast to the 

island endemic species, B. boholensis and B. mindorensis, which are known from just Bohol and 

Mindoro Islands respectively.  As with all members of the genus, when disturbed, individuals 

move rapidly attempting to burrow into the loose soil or humus.   

Sympatric lizard species observed within the range of Brachymeles taylori include: 

(Agamidae) Bronchocela marmoratus, Draco spilopterus, Gonocephalus sophiae, Hydrosaurus 

pustulatus; (Dibamidae) Dibamus argenteus; (Gekkonidae) Cyrtodactylus philippinicus, Gehyra 

mutilata, Gekko gecko, G. mindorensis, G. enrstkelleri, Luperosaurus corfieldi, Pseudogekko 

brevipes, Hemidactylus frenatus, H. platyurus, Hemiphyllodactylus typus, Lepidodactylus 

christiani, L. herrei, L. lugubris; (Scincidae) Brachymeles cebuensis, B. talinis, B. cebuensis, 

Emoia atrocostata, Eutropis multicarinata, E.  multifasciata, Lamprolepis smaragdina, Lipinia 

auriculata, L. pulchella, L. quadrivittata, L. rabori, Sphenomorphus arborens, S. coxi, S. jagori, 

S. steerei, Tropidophorus grayi; (Varanidae) Varanus nuchalis. 

 

Brachymeles orientalis Brown and Rabor 1967 

Figs. 4, 8, 11F,G 

Brachymeles schadenbergi orientalis, Brown and Rabor, 1967, Type-locality: Bario Dusita, 11 

km southeast of Sierra Bullones, Bohol Province, Bohol Island, Philippines, 533 m elevation, 

9°46'57.5" N, 124°18'10.8" E (holotype: CAS-SU 24436). 

Brachymeles schadenbergi (part), Brown and Alcala, 1970. 

Brachymeles schadenbergi (part), Brown and Alcala, 1980. 
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Diagnosis.—Brachymeles orientalis can be distinguished from congeners by the following 

combination of characters:  (1) body large (SVL 97.6–112.3 mm); (2) pentadactyl; (3) Finger-III 

lamellae six or seven; (4) Toe-IV lamellae eight to ten; (5) limbs relatively long; (6) supralabials 

six or seven; (7) infralabials six or seven; (8) pineal eye spot present; (9) supranasal contact 

absent; (10) prefrontals not contacting on midline; (11) enlarged chin shields in two pairs; (12) 

nuchal scales undifferentiated; (13) fourth and fifth supralabial below eye; (14) auricular opening 

present; (15) dorsolateral stripes absent; and (16) mid-dorsal stripes absent (Tables 3.4, 3.5). 

Comparisons.—Characters distinguishing Brachymeles orientalis from all pentadactyl 

species of Brachymeles are summarized in Tables 3.4 and 3.5.  Brachymeles orientalis most 

closely resembles B. makusog and B. schadenbergi, but differs from both taxa by having six or 

seven Finger-III lamellae, eight to ten Toe-IV lamellae, and the fourth and fifth supralabial 

below the eye (Tables 3.4, 3.5), and by the presence (vs. absence) of reddish-orange to salmon-

colored scales on the lateral surfaces of the body.  Brachymeles orientalis can further be 

distinguished from B. makusog by having a greater maximum axilla–groin scale row count and a 

greater maximum paravertebral scale row count (Table 3.5), and from B. schadenbergi by having 

no contact between supranasals, and by the absence of continuous, dark mid-dorsal stripes and 

dark lateral stripes (Table 3.5). 

From all non-pentadactyl species of Brachymeles (B. apus, B. bonitae, B. cebuensis, B. 

elerae, B. lukbani, B. minimus, B. muntingkamay, B. pathfinderi, B. samarensis, B. tridactylus, B. 

vermis, and B. wrighti), B. orientalis differs by having pentadactyl limbs (vs. non-pentadactyl), 

longer forelimb lengths (greater than 10.4 mm vs. less than 6.9 mm), greater hind limb lengths 

(greater than 18.6 mm vs. less than 12.9 mm), and by the presence (vs. absence) of a postnasal 

scale.  Additionally, B. orientalis differs from all non-pentadactyl species except B. pathfinderi 
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by having Toe-IV lamellae eight to ten (vs. 4 or fewer), a paravertebral scale row count 69–72 

(vs. greater than 84), and by the presence (vs. absence) of auricular openings; from all non-

pentadactyl species except B. wrighti by having a midbody scale row count 26–28 (vs. fewer 

than 24); and from B. apus, B. lukbani, B. minimus, and B. vermis by the presence of limbs (vs. 

absence). 

Description (based on holotype and 52 referred specimens, including 13 paratypes from 

CAS).—Details of the head scalation of an adult male are shown in Figure 3.8.  Measurements of 

the holotype are provided below in brackets.  Body large relative to other Brachymeles, elongate 

with respect to other lizards; maximum SVL 112.3 mm for males, 115.2 mm for females [99.9, 

female] (Tables 3.4, 3.5); head weakly differentiated from neck, nearly as wide as body, HW 

10.2–12.7% (11.2 ± 0.7) SVL [11.9], 87.5–120.0% (108.4 ± 7.3) HL [120.0]; HL 33.7–45.0% 

(37.6 ± 2.6) SnFa [38.0]; SnFa 25.3–30.2% (27.6 ± 1.1) SVL [26.1]; snout long, rounded in 

dorsal and lateral profile, SNL 46.6–65.2% (57.5 ± 4.2) HL [62.5]; auricular opening present, 

moderate; eyes moderate, ED 1.5–2.3% (1.8 ± 0.2) SVL [1.8], 14.8–19.6% (17.3 ± 1.3) HL 

[18.2], 38.2–56.7% (44.8 ± 3.7) END [45.9], pupil subcircular; body slightly depressed, MBW 

93.1–138.2% (114.5 ± 11.4) MBH [124.9]; scales smooth, glossy, imbricate; longitudinal scale 

rows at midbody 26–30 [28]; paravertebral scale rows 69–73 [72]; axilla–groin scale rows 46–49 

[48]; limbs well developed, pentadactyl, digits small; FinIIIlam 6–7 [6]; ToeIVlam 8–10 [8]; 

FLL 17.0–24.8% (20.7 ± 2.0) AGD [18.8], 10.7–15.4% (13.1 ± 1.1) SVL [12.3]; HLL 27.6–

42.7% (34.2 ± 3.4) AGD [32.2], 18.4–24.2% (21.6 ± 1.7) SVL [21.2]; order of digits from 

shortest to longest for hand:  I < V < II = IV < III, for foot:  I < V < II < III = IV; tail nearly as 

wide as body, sharply tapered towards end, TW 55.6–86.9% (69.7 ± 6.4) MBW [70.9], TL 62.2–

106.0% (85.2 ± 11.6) SVL [106.0]. 
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Table 3.4. Summary of meristic and mensural characters in all known pentadactyl species of 

Brachymeles.  Sample size, body length and total length among males and females, and general 

geographical distribution (PAIC = Pleistocene Aggregate Island Complexes, sensu Brown and 

Diesmos, 2002) are included for reference (SVL, TotL, MBW, FLL, and HLL given as range 

over mean ± standard deviation; all body proportions given as percentage over mean ± standard 

deviation).  In cases of scale count variation within species, numbers of individuals showing 

specific counts are given in parentheses. 
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Table 3.5. Summary of qualitative diagnostic characters (present, absent) in all known 

pentadactyl species of Brachymeles.  The pairs of enlarged scales posterior to the postmental 

scale are abbreviated as chin shield pairs with reference to the 1st, 2nd, and 3rd pairs (when 

present). 
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Table 3.6. Summary of univariate morphological variation among mensural characters in series 

of Brachymeles boholensis, B. boulengeri, B. mindorensis, B. taylori, B. talinis, B. kadwa, B. 

tungaoi, B. orientalis, B. schadenbergi and B. vindumi. 
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 boholensis 

(5 m; 14 f) 

boulengeri 

(7 m; 8 f) 

mindorensis 

(6 m; 12 f) 

taylori 

(8 m; 13 f) 

talinis 

(11 m; 

10 f) 

SVL 

(m) 

84.1–93.6 

(89.1 ± 4.1) 

72.3–93.1 

(82.5 ± 6.7) 

93.9–104.2 

(100.2 ± 4.1) 

83.1–99.2 

(87.0 ± 5.2) 

103.1–

123.1 

(113.6 

± 7.1) 

SVL 

(f) 

83.8–94.0 

(88.4 ± 3.1) 

60.5–95.5 

(84.0 ± 11.2) 

90.0–106.8 

(98.8 ± 5.3) 

65.8–93.2 

(83.9 ± 7.4) 

103.8–

126.7 

(116.5 

± 6.8) 

AGD 

(m) 

54.7–61.9 

(58.1 ± 2.8) 

46.3–60.7 

(53.0 ± 5.0) 

59.5–67.6 

(63.3 ± 3.3) 

52.8–66.0 

(55.9 ± 4.2) 

64.2–

90.3 

(74.6 

± 7.5) 

AGD 

(f) 

53.0–61.2 

(57.0 ± 2.7) 

36.2–61.3 

(54.3 ± 8.3) 

56.3–74.9 

(64.8 ± 5.5) 

46.6–60.6 

(54.7 ± 4.6) 

66.5–

81.4 

(74.7 

± 4.9) 

TotL 

(m) 

154.5–166.2 

(160.7 ± 5.9) 

124.3–173.1 

(151.4 ± 19.4) 

165.3–197.0 

(184.9 ± 11.5) 

149.6–176.7 

(164.3 ± 11.3) 

191.7–

238.4 

(209.0 
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± 

12.4) 

TotL 

(f) 

129.6–174.8 

(154.1 ± 14.7) 

129.7–167.4 

(159.3 ± 13.1) 

162.5–206.7 

(180.2 ± 14.2) 

130.3–168.5 

(149.9 ± 13.0) 

187.5–

236.2 

(209.4 

± 

18.0) 

MBW 

(m) 

12.2–13.9 

(13.0 ± 0.7) 

10.1–14.7 

(12.1 ± 1.9) 

12.8–16.0 

(14.7 ± 1.1) 

11.6–16.8 

(13.3 ± 1.7) 

15.9–

20.1 

(17.7 

± 1.3) 

MBW 

(f) 

11.9–15.0 

(13.6 ± 1.1) 

9.9–14.6 

(12.7 ± 1.7) 

14.5–20.8 

(16.7 ± 1.8) 

11.0–16.6 

(14.0 ± 1.8) 

17.3–

20.9 

(19.3 

± 1.1) 

MBH 

(m) 

11.7–12.5 

(12.1 ± 0.4) 

7.9–10.4 

(9.0 ± 1.0) 

10.2–12.9 

(12.0 ± 1.0) 

9.4–14.6 

(11.8 ± 1.7) 

10.4–

15.9 

(13.5 

± 1.7) 

MBH 

(f) 

10.4–14.2 

(11.8 ± 1.0) 

6.2–10.2 

(8.9 ± 1.3) 

11.4–16.6 

(14.2 ± 1.8) 

10.4–15.2 

(12.2 ± 1.5) 

12.7–

18.6 

(16.2 

± 2.1) 
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TL 

(m) 

70.4–74.8 

(72.9 ± 2.3) 

52.0–88.6 

(69.2 ± 14.7) 

62.2–94.2 

(84.6 ± 12.0) 

63.0–85.7 

(76.4 ± 9.2) 

86.8–

115.3 

(96.1 

± 8.5) 

TL (f) 45.3–82.3 

(65.6 ± 13.0) 

69.0–86.3 

(76.0 ± 6.7) 

65.5–99.9 

(82.6 ± 11.6) 

55.4–76.1 

(67.0 ± 7.3) 

70.7–

115.2 

(94.2 

± 

17.6) 

TW 

(m) 

8.5–10.0 

(9.4 ± 0.5) 

7.2–10.3 

(8.7 ± 1.0) 

10.2–11.9 

(10.9 ± 0.6) 

7.4–12.2 

(9.5 ± 1.4) 

11.8–

15.9 

(13.5 

± 1.2) 

TW 

(f) 

8.4–10.4 

(9.4 ± 0.5) 

7.0–9.9 

(8.6 ± 1.2) 

10.0–12.5 

(11.0 ± 0.7) 

7.4–12.1 

(9.4 ± 1.3) 

12.9–

15.6 

(14.2 

± 0.9) 

TH 

(m) 

7.6–8.1 

(7.8 ± 0.2) 

5.4–8.3 

(6.8 ± 0.9) 

8.0–9.5 

(8.5 ± 0.6) 

6.3–10.0 

(8.0 ± 1.0) 

9.7–

11.4 

(10.7 

± 0.6) 

TH 

(f) 

6.9–8.5 

(7.6 ± 0.5) 

5.1–8.0 

(6.5 ± 0.9) 

7.3–10.0 

(8.5 ± 0.7) 

6.9–10.3 

(8.0 ± 1.0) 

10.6–

13.2 
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(11.7 

± 0.9) 

HL 

(m) 

8.3–9.0 

(8.7 ± 0.4) 

7.3–8.9 

(8.3 ± 0.7) 

8.6–10.5 

(9.6 ± 0.7) 

8.4–9.0 

(8.7 ± 0.2) 

9.2–

12.2 

(10.7 

± 0.9) 

HL 

(f) 

8.6–9.8 

(9.0 ± 0.4) 

7.9–9.2 

(8.3 ± 0.5) 

8.9–10.9 

(9.9 ± 0.7) 

7.6–9.9 

(8.7 ± 0.8) 

9.9–

12.6 

(11.3 

± 0.9) 

HW 

(m) 

9.3–10.9 

(10.2 ± 0.6) 

9.1–10.3 

(9.5 ± 0.5) 

10.3–12.1 

(11.2 ± 0.6) 

9.6–11.6 

(10.4 ± 0.8) 

11.9–

14.5 

(13.2 

± 0.8) 

HW 

(f) 

9.3–10.5 

(10.0 ± 0.4) 

7.5–9.9 

(9.1 ± 0.8) 

10.7–12.4 

(11.4 ± 0.5) 

9.3–12.0 

(10.5 ± 0.9) 

12.8–

15.8 

(14.0 

± 0.9) 

HH 

(m) 

7.2–7.9 

(7.7 ± 0.3) 

6.2–7.5 

(6.9 ± 0.4) 

8.2–10.1 

(9.0 ± 0.6) 

7.3–8.8 

(7.9 ± 0.5) 

8.8–

12.7 

(9.9 ± 

1.1) 

HH 7.2–8.0 5.7–7.2 8.1–9.9 7.3–9.7 9.3–
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(f) (7.5 ± 0.3) (6.6 ± 0.5) (8.9 ± 0.5) (8.1 ± 0.7) 12.5 

(10.7 

± 1.0) 

SnFa 

(m) 

22.9–25.1 

(23.7 ± 1.0) 

19.1–24.0 

(22.4 ± 1.7) 

25.9–28.1 

(27.0 ± 0.7) 

20.7–23.3 

(22.1 ± 1.0) 

26.2–

34.1 

(30.6 

± 2.3) 

SnFa 

(f) 

21.3–24.2 

(22.7 ± 0.8) 

17.9–24.4 

(22.7 ± 2.1) 

24.3–27.5 

(25.9 ± 1.0) 

20.8–25.1 

(22.2 ± 1.1) 

29.1–

34.7 

(31.4 

± 1.9) 

ED 

(m) 

1.7–2.1 

(1.8 ± 0.2) 

1.8–2.3 

(2.0 ± 0.2) 

2.0–2.5 

(2.2 ± 0.2) 

1.4–2.0 

(1.8 ± 0.2) 

2.0–

2.3 

(2.2 ± 

0.1) 

ED 

(f) 

1.6–2.0 

(1.8 ± 0.1) 

1.5–2.3 

(1.9 ± 0.3) 

2.0–2.6 

(2.2 ± 0.2) 

1.5–2.1 

(1.8 ± 0.2) 

2.0–

2.5 

(2.2 ± 

0.1) 

END 

(m) 

2.4–2.6 

(3.5 ± 0.1) 

2.7–3.0 

(2.8 ± 0.1) 

2.5–2.9 

(2.7 ± 0.2) 

2.8–3.4 

(3.1 ± 0.2) 

3.7–

5.1 

(4.3 ± 

0.4) 
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END 

(f) 

3.0–3.7 

(3.4 ± 0.2) 

2.1–3.0 

(2.8 ± 0.3) 

3.4–4.2 

(3.6 ± 0.2) 

2.7–3.5 

(3.0 ± 0.2) 

3.7–

5.3 

(4.5 ± 

0.4) 

SNL 

(m) 

5.0–5.3 

(5.2 ± 0.1) 

4.2–4.6 

(4.4 ± 0.1) 

5.4–6.0 

(5.7 ± 0.2) 

4.1–4.8 

(4.4 ± 0.3) 

5.7–

7.5 

(6.4 ± 

0.6) 

SNL 

(f) 

4.8–5.6 

(5.3 ± 0.2) 

3.4–4.8 

(4.2 ± 0.4) 

5.0–6.4 

(5.5 ± 0.4) 

4.1–5.0 

(4.6 ± 0.3) 

5.5–

7.5 

(6.6 ± 

0.5) 

IND 

(m) 

3.0–3.2 

(3.1 ± 0.1) 

2.8–3.1 

(2.9 ± 0.1) 

3.2–3.6 

(3.4 ± 0.1) 

2.7–3.2 

(2.9 ± 0.2) 

3.3–

4.3 

(3.9 ± 

0.3) 

IND 

(f) 

3.0–3.3 

(3.1 ± 0.1) 

2.3–3.2 

(2.8 ± 0.3) 

3.1–3.8 

(3.4 ± 0.2) 

2.7–3.2 

(2.9 ± 0.2) 

3.6–

4.4 

(3.9 ± 

0.2) 

FLL 

(m) 

9.6–11.1 

(10.5 ± 0.7) 

10.0–11.7 

(10.5 ± 0.6) 

10.7–12.8 

(11.4 ± 0.7) 

9.3–10.4 

(9.9 ± 0.4) 

11.3–

17.7 

(13.9 
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± 1.8) 

FLL 

(f) 

9.0–11.2 

(9.9 ± 0.7) 

8.2–11.3 

(10.4 ± 1.0) 

10.0–13.0 

(11.4 ± 0.9) 

9.0–10.3 

(9.7 ± 0.4) 

13.5–

18.9 

(14.6 

± 0.9) 

HLL 

(m) 

16.2–17.5 

(16.8 ± 0.5) 

16.6–18.5 

(17.4 ± 0.6) 

20.1–22.6 

(20.8 ± 0.9) 

16.1–17.9 

(16.9 ± 0.7) 

20.5–

27.9 

(23.0 

± 2.4) 

HLL 

(f) 

15.4–18.7 

(17.3–1.2) 

14.3–18.7 

(17.0 ± 1.4) 

18.8–23.1 

(20.6 ± 1.3) 

15.6–18.7 

(17.1 ± 1.1) 

20.5–

26.1 

(24.4 

± 1.7) 
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Rostral projecting dorsoposteriorly to point in line with anterior edge of nasal, broader than 

high, in narrow contact with frontonasal; frontonasal wider than long; nostril ovoid, centered in a 

single rectangular nasal; supranasals present, large, narrowly separated by frontonasal; postnasals 

present; prefrontals moderately separated by frontal; frontal nearly diamond shaped, its anterior 

margin in moderate contact with frontonasal, in contact with first two anterior supraoculars, 4× 

wider than anteriormost supraocular; supraoculars five; frontoparietals moderate, in broad medial 

contact, each frontoparietal in contact with supraoculars two–four; interparietal moderate, 

quadrilaterally shaped, longer than wide, its length slightly greater than midline length of 

frontoparietal; parietal eyespot present in posterior half of scale; parietals in narrow contact or 

separated behind interparietal; nuchals non-enlarged, undifferentiated; loreals two, decreasing in 

size from anterior to posterior, anterior loreal about as long as and 1.8× higher than posterior 

loreal, in contact with prefrontal, postnasal, supranasal, second supralabial, posterior loreal and 

frontonasal, and occasionally with first supralabial; preocular single, nearly two thirds as high as 

posterior loreal; presubocular single; supraciliaries six, the anteriormost contacting prefrontal 

and separating posterior loreal from first supraocular; subocular row complete; lower eyelid with 

one row of scales, lacking an enlarged oval window, largely transparent; supralabials six or 

seven [6], first 2× size of other supralabials, fourth and fifth below the eye; infralabials six or 

seven [7]. 

Mental wider than long, in contact with first infralabial; single enlarged postmental, wider 

than mental; followed by two pairs of enlarged chin shields, first pair narrowly separated by 

single row of undifferentiated scales or in moderate medial contact, scales of second pair 

narrower than first, broadly separated by three medial scales. 
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Scales on limbs smaller than body scales; scales on dorsal surfaces of digits large, wrapping 

around lateral edges of digits; lamellae undivided; palmar surfaces of hands and plantar surfaces 

of feet covered by small, irregular scales, each with irregular raised anterior edges; scales on 

dorsal surface of hands and feet smaller than limb scales, lacking raised edges. 

Coloration in preservative.—Ground color of body cream; lateral and ventral surfaces of 

body lacking dark pigment; dorsum of body, from posterior edge of supranasals to tail tip, 

uniformly dark brown with dark pigmentation spanning six and two half rows of scales at 

midbody and narrowing to cover four and two half rows of scales posterior to parietals; body 

dark brown dorsally abruptly changing to cream laterally and ventrally; head scales uniform dark 

brown; rostral, nasal, postnasal, supranasal, and first supralabial light gray; pineal eyespot 

charcoal; small dark brown blotch dorsal to auricular openings.  Limbs mottled light and medium 

brown dorsally, cream colored ventrally; dorsal and ventral surface of digits light brown. 

Coloration in life.—(Fig. 3.11F,G).  Dorsal ground color homogeneous medium-brown; 

sharp lateral demarcation between dorsal and lateral and ventral coloration; lateral and ventral 

surfaces of body bright burnt orange, orange-brown, or salmon colored; dark-brown spots and 

longitudinal lines of spots absent from lateral surfaces.  Limbs medium-brown dorsally, burnt 

orange to orange-brown ventrally.  Dorsal head scales uniform medium-brown. 

Variation.—Morphometric variation of the series is summarized in Table 3.6. We observed 

variation among the 19 specimens examined for the degree of contact between head scales.  

Twelve specimens were observed to have parietals moderately separated by the interparietal (KU 

305470, 310734–6, 310942, 310944, 310949, 310951, 311232–5), one specimen has parietals in 

point medial contact (KU 311231), and six specimens have parietals in moderate medial contact 

(KU 310739, 310943, 310945–6, 310955, 311241) behind the interparietal; nine specimens do 
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not have the first pair of enlarged chin shields in medial contact (KU 210736, 310942, 310945–6, 

310949, 310951, 311231, 311234–5) and ten specimens have the first pair of enlarged chin 

shields in moderate medial contact (KU 305470, 310734–5, 310739, 310943–4, 310955, 

311232–3, 311241). 

Scale counts were observed to vary among the measured series.  The number of supralabials 

varied between six (CAS-SU 18702, 24428, 24434, 24436–7, 24442, 24446–9, 24451, 24458, 

25452, 25460, 28332, CAS 102404, 110978–81, 133301, 133616, 133749, 133752, 133754, KU 

310734, 310736, 310942, 311231–2, 311234) and seven (CAS-SU 24450, 28320–1, 28338, 

28370, CAS 110976–7, 110982–3); infralabials varied between six (CAS-SU 24446, KU 310734, 

310736, 310942, 311231–2, 311234) and seven (CAS-SU 18702, 24428, 24434, 24436–7, 24442, 

24447–51, 24458, 25452, 25460, 28320–1, 28332, 28338, 28370, CAS 102404, 110976–83, 

133301, 133616, 133749, 133752, 133754).  Specimens were observed to have midbody scale 

row counts of 26 (CAS-SU 24428, 24446), 27 (CAS-SU 24458, 25460), 28 (CAS-SU 18702, 

24434, 24436–7, 24442, 24447–52, CAS 102404, 133301, 133752, 133754), 29 (CAS-SU 28320, 

28338, CAS 110976, 110981, 133616, 133749), and 30 (CAS-SU 28231–2, 28370, CAS 

110977–80, 110982–3); axilla–groin scale row counts of 46 (CAS-SU 25452, CAS 110983, 

133616), 47 (CAS-SU 24450, 24458, 25460, CAS 110979–81, 133301), 48 (CAS-SU 18702, 

24428, 24436, 24442, 24446, 24449, 28332, 28338, CAS 110976, 110978, 110982, 133749), and 

49 (CAS-SU 24434, 24437, 24447–8, 24451, 28320–1, 28370, CAS 102404, 110977, 133752, 

133754); and paravertebral scale row counts of 69 (CAS-SU 25452, CAS 133616), 70 (CAS-SU 

24450, 24458, 25460, CAS 133301), 71 (CAS-SU 18702, 24428, 24442, 24446, 24449, 28332, 

28338, CAS 110980, 110983, 133749), 72 (CAS-SU 24434, 24436–7, 24447–8, 24451, 28320–1, 

CAS 102404, 110976–9, 110981–2, 133752, 133754), and 73 (CAS-SU 28370). 
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We also observed lamellae counts to vary among the measured series.  Specimens were 

observed to have Finger-III lamellae counts of six (CAS-SU 18702, 24428, 24434, 24436–7, 

24442, 24446–7, 24449–51, 24458, 25460, 28320–1, 28332, 28338, 28370, CAS 102404, 

110976–83, 133301, 133616, 133749, 133754, KU 310734, 311231–2, 311234) or seven (CAS-

SU 24448, CAS 133752, KU 310736, 310942); Toe-IV lamellae counts of eight (CAS-SU 24436, 

25452, 28320, CAS 102404), nine (CAS-SU 18702, 24428, 24434, 24437, 24442, 24446–51, 

24458, 25460, 28321, 28332, 28370, CAS 110976–7, 110979, 110981–3, 133301, 133616, 

133754, KU 310734, 310942, 311232, 311234), or ten (CAS-SU 28338, CAS 110978, 110980, 

133749, 133752, KU 310736, 311231). 

Distribution.—Brachymeles orientalis is known from Bohol, Samar, Leyte, Dinagat, 

Camiguin Sur islands, and the eastern and central portions of Mindanao Island (Fig. 3.4).   

Ecology and natural history.—Brachymeles orientalis occurs in agricultural areas as well as 

disturbed and secondary growth forest.  On Samar, Leyte, Mindanao, and Camiguin Sur islands, 

we have collected this species in primary forest, and on Bohol Island it is present in mature 

secondary growth.  Individuals have been observed under piles of rotting coconut husks, in the 

humus material within rotting logs, and in loose soil and leaf litter surrounding the root networks 

of trees.  The species is quite common throughout its range with the exception of Bohol Island 

(CDS personal observation), and occurs sympatrically with four other species of Brachymeles in 

different parts of its range (Brown, 1956; Brown and Rabor, 1967; Brown and Alcala, 1980).  

Brachymeles orientalis occurs sympatrically with B. boholensis on Bohol Island, B. gracilis 

hilong and B. samarensis on Samar and Leyte islands, B. gracilis hilong on Mindanao Island, 

and B. cf. gracilis hilong on Camiguin Sur Island (CDS pers. observ.).  Similar to B. boulengeri, 

B. orientalis appears to have a wider geographic distribution that spans multiple Philippine 
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islands.  This is in contrast to the pentadactyl, island endemic species, B. boholensis, B. tungaoi, 

and B. mindorensis, which are known from just Bohol, Masbate, and Mindoro islands 

respectively.  As do all members of the genus, disturbed individuals move in a rapid serpentine 

manner and always attempt to burrow back into loose soil or humus.   

Sympatric lizard species observed within the range of Brachymeles orientalis include: 

(Agamidae) Bronchocela cristatella, Draco bimactulatus, D. cyanopterus, D. mindanensis, D. 

ornatus, Gonocephalus interruptus, G. semperi, Hydrosaurus pustulatus; (Gekkonidae) 

Cyrtodactylus agusanensis, C. annulatus, C. jambangan, Gehyra mutilata, Gekko gecko, Gekko 

mindorensis, Hemidactylus frenatus, H. platyurus, Pseudogekko compressicorpus; (Scincidae) 

Brachymeles gracilis hilong, Brachymeles cf. gracilis gracilis, Brachymeles samarensis, 

Eutropis indeprensa, E. multifasciata, Lamprolepis smaragdina, L. pulchella, L. quadrivittata, 

Sphenomorphus abdictus abdictus, S. acutus, S. cumingi, S. cf. mindanensis, S. coxi, S. fasciatus, 

S. jagori, S. llanosi, S. steerei, S. variegatus, Tropidophorus misaminus; and (Varanidae) 

Varanus cumingi. 

 

Brachymeles schadenbergi (Fischer 1885) 

Figs. 3.4, 3.8, 3.11E 

Senira bicolor (part), Gray, 1845. 

Eumeces (Riopa) schadenbergi, Fisher, 1885, Type-locality: “Southern Mindanao Island, 

Philippines” (Reported by Fischer [1885] as No. 845 housed in the Dresden Museum). 

Brachymeles schadenbergi (part), Boettger, 1886; Boulengeri, 1887; Boettger, 1893; Taylor, 

1917, 1922b,c; Brown and Alcala, 1970. 

Brachymeles schadenbergi schadenbergi (part), Brown, 1956; Brown and Rabor, 1967. 
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Diagnosis.—Brachymeles schadenbergi can be distinguished from congeners by the 

following combination of characters:  (1) body large (SVL 93.1–115.8 mm); (2) pentadactyl; (3) 

Finger-III lamellae five or six; (4) Toe-IV lamellae eight or nine; (5) limbs relatively long; (6) 

supralabials six or seven; (7) infralabials six or seven; (8) pineal eye spot present; (9) supranasals 

in contact; (10) prefrontals not contacting on midline; (11) enlarged chin shields in two pairs; 

(12) nuchal scales undifferentiated; (13) fifth and sixth supralabial below eye; (14) auricular 

opening present; and (15) continuous, light dorsolateral stripes absent (Tables 3.4, 3.5). 

Comparisons.—Characters distinguishing Brachymeles schadenbergi from all pentadactyl 

species of Brachymeles are summarized in Tables 3.4 and 3.5.  Brachymeles schadenbergi most 

closely resembles B. makusog and B. orientalis, but differs from both taxa by having eight or 

nine Toe-IV lamellae, and the fifth and sixth supralabial below the eye, and by contact between 

supranasals (Tables 3.4, 3.5).  Brachymeles schadenbergi can further be distinguished from B. 

makusog by having a greater maximum axilla–groin scale row count and a greater maximum 

paravertebral scale row count (Table 3.5), and from B. orientalis by the absence (vs. presence) of 

reddish-orange to salmon-colored scales on the lateral surfaces of the body. 

From all non-pentadactyl species of Brachymeles (B. apus, B. bonitae, B. cebuensis, B. 

elerae, B. lukbani, B. minimus, B. muntingkamay, B. pathfinderi, B. samarensis, B. tridactylus, B. 

vermis, and B. wrighti), B. schadenbergi differs by having a pentadactyl body form (vs. non-

pentadactyl), longer forelimb lengths (greater than 11.1 mm vs. less than 6.9 mm), greater hind 

limb lengths (greater than 18.5 mm vs. less than 12.9 mm), and by the presence of a postnasal 

scale (vs. absence).  Additionally, B. schadenbergi differs from all non-pentadactyl species 

except B. pathfinderi by having Toe-IV lamellae eight or nine (vs. 4 or fewer), 67–72 

paravertebrals (vs. greater than 84), and by the presence (vs. absence) of auricular openings; 
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from all non-pentadactyl species except B. wrighti by having a midbody scale row count 26–28 

(vs. fewer than 24); and from B. apus, B. lukbani, B. minimus, and B. vermis by the presence (vs. 

absence) of limbs. 

Description (based on holotype description and 34 referred specimens).—Details of the head 

scalation of an adult male are shown in Figure 3.8.  The holotype was not examined by authors; 

however, measurements of the holotype taken from the original description are provided below 

in brackets.  Body large relative to other Brachymeles, elongate with respect to other lizards; 

maximum SVL 115.8 mm for males, 113.5 mm for females [85] (Tables 3.4, 3.5); head weakly 

differentiated from neck, nearly as wide as body, HW 10.2–11.7% (11.2 ± 0.5) SVL, 102.0–

116.8% (108.7 ± 4.2) HL; HL 37.0–40.2% (38.4 ± 0.9) SnFa; SnFa 25.7–27.4% (26.8 ± 0.5) 

SVL; snout moderately long, rounded in dorsal and lateral profile, SNL 48.8–58.8% (54.3 ± 2.9) 

HL; auricular opening present, moderate; eyes moderate, ED 1.8–2.2% (2.1 ± 0.1) SVL, 18.4–

21.8% (20.0 ± 1.0) HL, 44.7–57.5% (52.3 ± 4.3) END, pupil nearly round; body slightly 

depressed, MBW 94.8–135.4% (115.8 ± 13.0) MBH; scales smooth, glossy, imbricate; 

longitudinal scale rows at midbody 26–28 [28 fide Fisher, 1885]; paravertebral scale rows 67–72; 

axilla–groin scale rows 45–50 [46 fide  Fisher, 1885]; limbs well developed, pentadactyl, digits 

small; FinIIIlam 5–6; ToeIVlam 8–9; FLL 12.5–21.6% (18.0 ± 2.4) AGD, 10.3–13.7% (12.0 ± 

0.9) SVL [12.9 fide Fisher, 1885]; HLL 20.1–24.4% (29.7 ± 3.9) AGD, 17.4–22.0% (19.8 ± 1.4) 

SVL [22.4 fide Fisher, 1885]; order of digits from shortest to longest for hand:  

V = I < II = IV < III, for foot:  I < V < II < III < IV; tail not as wide as body, gradually tapered 

towards end, TW 57.4–76.8% (68.5 ± 5.7) MBW, TL 64.6–102.6% (91.6 ± 10.8) SVL. 

Rostral projecting dorsoposteriorly to point in line with anterior edge of nasal, broader than 

high, separated from frontonasal; frontonasal wider than long; nostril ovoid, centered in a single 
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rectangular nasal; supranasals present, large, in broad medial contact; postnasals present; 

prefrontals moderately separated by frontal; frontal nearly diamond shaped, its anterior margin in 

moderate contact with frontonasal, in contact with first two anterior supraoculars, 5× wider than 

anteriormost supraocular; supraoculars five; frontoparietals moderate, broad contact medially, 

each frontoparietal in contact with supraoculars two–four; interparietal moderate, quadrilaterally 

shaped, longer than wide, its length greater than midline length of frontoparietal; parietal eyespot 

present in posterior half of scale; parietals in moderate to broad contact behind interparietal or 

moderately separated; nuchals undifferentiated; loreals two, decreasing in size from anterior to 

posterior, subequal, in contact with prefrontal, postnasal, supranasal, second supralabial, 

posterior loreal and frontonasal; preocular single, nearly two thirds as high as posterior loreal; 

presubocular single; supraciliaries six, the anteriormost contacting prefrontal and separating 

posterior loreal from first supraocular; subocular row complete; lower eyelid with one row of 

scales, lacking an enlarged oval window, largely transparent; supralabials six or seven, fifth and 

sixth beneath center of eye; infralabials six or seven. 

Mental wider than long, in contact with first infralabials; single enlarged postmental, wider 

than mental, followed by two pairs of enlarged chin shields; first pair in slight contact or 

narrowly separated by single undifferentiated scale, second pair narrower than first, broadly 

separated by undifferentiated scales. 

Scales on limbs smaller than body scales; scales on dorsal surfaces of digits large, wrapping 

around lateral edges of digits; lamellae undivided; palmar surfaces of hands and plantar surfaces 

of feet covered by small, irregular scales, each with irregular raised anterior edges; scales on 

dorsal surface of hands and feet smaller than limb scales, lacking raised edges. 
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Coloration in preservative.—Ground color of body medium-brown; dorsal surfaces nearly all 

dark brown, gradually fading into medium-brown lateral and ventral surfaces of body; dark 

dorsal pigmentation in nearly continuous block across dorsal surface, spanning six full and two 

half rows of scales at midbody and narrowing to cover four full and two half rows of scales 

posterior to parietals; lateral surfaces with 1–2 irregular dark-brown lines on posterior half of 

axilla–groin region; head scales uniform dark-brown; rostral, nasal, postnasal, supranasal, first 

supralabial, mental, and first infralabial dark-gray; pineal eyespot poorly defined, surrounded by 

light-cream border.  Tail coloration matches body coloration.  Limbs mottled dark-brown 

dorsally, medium-brown ventrally; dorsal and ventral surface of digits dark brown. 

Coloration in life.—(Fig. 3.11E).  Dorsal ground color homogeneous dark-brown; blotched, 

irregular, lateral demarcation between dorsal and lighter lateral and ventral coloration; lateral and 

ventral surfaces of body medium-brown; lateral surfaces with irregularly shaped rows of dark-

brown spots.  Limbs dark-brown dorsally, medium-brown ventrally.  Dorsal head scales blotched 

dark and medium-brown. 

Variation.—Morphometric variation of the series is summarized in Table 3.6. We observed 

variation among the 36 specimens examined for the degree of contact between head scales.  

Twenty-one specimens were observed to have parietals moderately separated by the interparietal 

(KU 314969, 314976, 314984–5, 314988–9, 314992, 314997; MCZ 26552–3, 26556–8, 26561, 

26563, 26566, 26568, 26571–2, 26574), one specimen has parietals narrowly separated by the 

interparietal (KU 314996), and 14 specimens have parietals in moderate medial contact (KU 

314967, 314970–5, 314977–8, 314980, 314990–1, 314994; MCZ 26555) behind the 

interparietal; seven specimens do not have the first pair of enlarged chin shields in medial 

contact (KU 314971, 314973, 314976, 314990, 314992, 314994; MCZ 26552, 26554, 26563), 
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one specimen has the first pair of enlarged chin shields in point medial contact (KU 314997), and 

26 specimens have the first pair of enlarged chin shields in moderate medial contact (KU 314967, 

314969, 314970, 314972, 314974–5, 314977–8, 314980, 314984–5, 314988–9, 314991, 314996; 

MCZ 26553, 26555–8, 26561, 26566, 26568, 26571–2, 26574). 

Scale counts were observed to vary among the measured series.  The number of supralabials 

varied between six (CAS 23495, KU 314991) and seven (CAS 23468–9, 23471, 23479–81, 

23484–5, 23494, 23496, 60493, KU 314967, 314969, 314974–5, 314977–8, 314980, 314984–5, 

314994, 314996); infralabials varied between six (KU 314967, 314969, 314974–5, 314977, 

314980, 314984–5, 314991, 314996) and seven (CAS 23468–9, 23471, 23479–81, 23484–5, 

23494–6, 60493).  Specimens were observed to have midbody scale row counts of 26 (CAS 

23468, 23479–81, 23494–6, 60493), 27 (CAS 23469, 23484), and 28 (CAS 23471, 23485); 

axilla–groin scale row counts of 45 (CAS 23495), 46 (CAS 23469, 23494, 23496), 47 (CAS 

23468, 23484), 48 (CAS 23485, 60493), 49 (CAS 23471, 23480), and 50 (CAS 23479, 23481); 

and paravertebral scale row counts of 67 (CAS 23495), 68 (CAS 23494, 23496), 70 (CAS 

23484), 71 (CAS 23468–9, 23471, 23480, 23485, 60493), and 72 (CAS 23479, 23481). 

We also observed lamellae counts to vary among the measured series.  Specimens were 

observed to have Finger-III lamellae counts of five (CAS 23469, 23495, 60493, KU 314967, 

314969, 314974, 314977–8, 314984–5, 314991, 314994, 314996) or six (CAS 23468, 23471, 

23479–81, 23484–5, 23494, 23496, KU 314975, 314980); Toe-IV lamellae counts of eight (CAS 

23468, 23494–5, 60493, KU 314967, 314969, 314974–5, 314977, 314984–5, 314991, 314994, 

314996), or nine (CAS 23469, 23471, 23479–81, 23484–5, 23496, KU 314978, 314980). 

There is a small degree of color variation in the examined series, with the degree and 

definition of continuous, dark mid-dorsal pigmentation.  Most of the examined specimens show 
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patterns consistent with a continuous, dark streak of pigmentation covering the mid-dorsal region 

of the body (KU 314969, 314974–5, 314977–8, 314980, 314984–5, 314991, 314994, 314996).  

In several specimens, continuous, dark mid-dorsal stripes are evident overlaying the dark ground 

coloration (KU 314967).  

Distribution.—Brachymeles schadenbergi is known from Basilan and western Mindanao 

islands (Fig. 3.4). 

Ecology and natural history.—Brachymeles schadenbergi occurs in a variety of habitats from 

disturbed and secondary growth to primary forest and intact climax forest.  Individuals have been 

observed in the humus material within rotting logs and in loose soil and leaf litter surrounding 

the root networks of trees.  Individuals are moderately common in populations sampled (CDS, 

RMB personal observation), and occur sympatrically with B. gracilis gracilis in western 

Mindanao Island (Brown, 1956; Brown and Rabor, 1967; Brown and Alcala, 1980). We 

collected numerous specimens in pitfall traps, indicating some level of surface activity.  

Although B. schadenbergi occurs on multiple islands in the southern Philippines, the species 

appears to have a more restricted geographic distribution when compared with more widespread 

pentadactyl species, such as B. boulengeri, B. talinis, B. orientalis, and B. kadwa.  As in other 

members of the genus, disturbed individuals move in a rapid serpentine manner and always 

attempt to burrow back into loose soil or humus.   

Sympatric lizard species observed within the range of Brachymeles schadenbergi include: 

(Agamidae) Bronchocela cristatella, Draco bimaculatus, D. cyanopterus, D. mindanensis, 

Gonocephalus interruptus, Hydrosaurus amboinensis; (Gekkonidae) Cyrtodactylus jambangan, 

Gehyra mutilata, Gekko gecko, Hemidactylus frenatus, H. platyurus, Hemiphyllodactylus typus, 

Lepidodactylus sp., L. quadrivittata, Luperosaurus joloensis, Pseudogekko compressicorpus; 



 178 

(Scincidae) Brachymeles gracilis gracilis, Eutropis indeprensa, E. multicarinata, E. 

multifasciata, E. englei, Lamprolepis smaragdina, Sphenomorphus atrigularis, S. fasciatus, S. 

jagori, S. steerei, S. variegatus, Tropidophorus misaminus, T. partelloi; and (Varanidae) Varanus 

cumingi. 

 

Brachymeles talinis Brown 1956 

Figs. 3.5, 3.9, 3.11H 

Brachymeles schadenbergi talinis, Brown, 1956, Type-locality: “On the low ridge north side of 

the Maite River, 5 to 6 km west of Valencia,” Negros Oriental Province, Negros Island, 

Philippines, 933 m elevation, 9°17'19.25" N, 123°11'56.4" E (holotype: CAS-SU 18358). 

Brachymeles talinis, Brown and Rabor, 1967. 

Brachymeles talinis, Brown and Alcala, 1980. 

Diagnosis.—Brachymeles talinis can be distinguished from congeners by the following 

combination of characters:  (1) body size large (SVL 103.8–123.1 mm); (2) pentadactyl; (3) 

Finger-III lamellae five or six; (4) Toe-IV lamellae eight to ten; (5) limbs relatively long; (6) 

paravertebral scale rows 67–72; (7) supralabials seven; (8) infralabials seven; (9) pineal eye spot 

present; (10) supranasals in contact; (11) prefrontals not contacting on midline; (12) enlarged 

chin shields in two pairs; (13) nuchal scales undifferentiated; (14) fifth and sixth supralabial 

below eye; (15) auricular opening present; (16) dark lateral stripes present; (17) venter devoid of 

dark pigmentation (Tables 3.4, 3.5). 

Comparisons.—Characters distinguishing Brachymeles talinis from all pentadactyl species of 

Brachymeles are summarized in Tables 3.4 and 3.5.  Brachymeles talinis most closely resembles 

B. kadwa, B. makusog, B. tungaoi, and B. vindumi, but differs from these four taxa by having the 
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range of paravertebral scale rows reaching greater than 70 but fewer than 74, and seven 

infralabials (Table 3.5).  Brachymeles talinis can further be distinguished from B. kadwa by 

having eight to ten Toe-IV lamellae, the first enlarged chin shield wider than the second, 

frontoparietals in contact, and by the absence of dark ventral pigmentation (Tables 3.4, 3.5); 

from B. makusog by having seven supralabials the fifth and sixth supralabial below the eye, 

supranasals in contact, and by the presence of dark lateral stripes (Tables 3.4, 3.5); from B. 

tungaoi by having a larger body size, shorter relative tail length, eight to ten Toe-IV lamellae, 

and the first enlarged chin shield wider than the second (Tables 3.4, 3.5); and from B. vindumi by 

having fewer axilla–groin scale rows, fewer paravertebral scale rows, and by the absence of dark 

ventral pigmentation (Table 3.5). 

From all non-pentadactyl species of Brachymeles (B. apus, B. bonitae, B. cebuensis, B. 

elerae, B. lukbani, B. minimus, B. muntingkamay, B. pathfinderi, B. samarensis, B. tridactylus, B. 

vermis, and B. wrighti), B. talinis differs by having a pentadactyl body form (vs. non-

pentadactyl), longer forelimb lengths (greater than 11.3 mm vs. less than 6.9 mm), and greater 

hind limb lengths (greater than 20.5 mm vs. less than 12.9 mm), and by the presence of a 

postnasal scale (vs. absence).  Additionally, B. talinis differs from all non-pentadactyl species 

except B. wrighti by having a midbody scale row count 26–30 (vs. fewer than 24); from all non-

pentadactyl species except B. pathfinderi by having a paravertebral scale row count 68–70 (vs. 

greater than 84), and by the presence of auricular openings (vs. absence); from all non-

pentadactyl species except B. apus and B. wrighti by having a larger body size (SVL greater than 

103.1 mm vs. less than 81.3 mm); and from B. apus, B. lukbani, B. minimus, and B. vermis by 

the presence (vs. absence) of limbs. 
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Description (based on holotype and 30 referred specimens, including 2 paratypes from 

CAS).—Details of the head scalation of an adult male are shown in Figure 3.9.  Measurements of 

the holotype are provided below in brackets.  Body large relative to other Brachymeles, elongate 

with respect to other lizards; maximum SVL 123.1 mm for males, 116.5 mm for females [118.7, 

male] (Tables 3.4, 3.5); head weakly differentiated from neck, nearly as wide as body, HW 10.6–

13.2% (11.8 ± 0.5) SVL [12.1], 111.7–136.2% (124.1 ± 6.8) HL [130.3]; HL 30.6–40.7% (35.4 ± 

2.7) SnFa [33.5]; SnFa 25.1–29.8% (27.0 ± 1.3) SVL [27.6]; snout moderately long, broadly 

rounded in dorsal and lateral profile, SNL 51.5–65.8% (58.9 ± 4.0) HL [65.8]; auricular opening 

present, moderate; eyes moderate, ED 1.7–2.2% (1.9 ± 0.1) SVL [1.7], 17.4–24.8% (20.0 ± 1.9) 

HL [18.2], 40.9–62.1% (50.3 ± 5.7) END [41.5], pupil nearly round; body slightly depressed, 

MBW 109.3–153.8% (126.7 ± 14.4) MBH [109.6]; scales smooth, glossy, imbricate; 

longitudinal scale rows at midbody 26–30 [29]; paravertebral scale rows 67–72 [72]; axilla–groin 

scale rows 43–48 [48]; limbs well developed, pentadactyl, digits moderate; FinIIIlam 5–6 [6]; 

ToeIVlam 8–10 [10]; FLL 15.1–23.9% (19.1 ± 1.8) AGD [19.6], 10.1–15.3% (12.4 ± 1.2) SVL 

[14.9]; HLL 26.8–38.9% (31.8 ± 3.0) AGD [30.9], 18.0–24.9% (20.6 ± 1.8) SVL [23.5]; order of 

digits from shortest to longest for hand: V < I < IV < II < III, for foot:  I = V < II < III = IV; tail 

nearly as wide as body at base, sharply tapered towards end, TW 63.4–94.0% (75.1 ± 6.2) MBW 

[94.0], TL 60.6–107.2% (83.9 ± 12.0) SVL [73.2]. 

Rostral projecting dorsoposteriorly to point in line with anterior edge of nasal, broader than 

high, completely separated from frontonasal by broad supranasal contact; frontonasal wider than 

long; nostril ovoid, in center of single trapezoidal nasal; supranasals present, large, in broad 

medial contact; postnasals present; prefrontals moderately separated by frontal; frontal nearly 

octagonal shaped, its anterior margin in moderate contact with frontonasal, in contact with first 
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two anterior supraoculars, 4× wider than anteriormost supraocular; supraoculars five; 

frontoparietals moderate, in moderate medial contact, each frontoparietal in contact with 

supraoculars two–four; interparietal moderate, quadrilaterally shaped, width nearly equal to 

length, its length nearly equal to midline length of frontoparietal; parietal eyespot present in 

posterior one third of scale; parietals in point to moderate contact behind interparietal or 

narrowly separated; nuchals undifferentiated; loreals two, decreasing in size from anterior to 

posterior, subequal, in contact with prefrontal, postnasal, supranasal, second supralabial, 

posterior loreal and frontonasal; preocular single, nearly three fourths as high as posterior loreal; 

single presubocular; supraciliaries six, the anteriormost contacting prefrontal and separating 

posterior loreal from first supraocular; subocular row complete; lower eyelid with one row of 

scales, lacking an enlarged oval window, largely transparent; supralabials seven, fifth and sixth 

below the eye; infralabials seven. 

Mental wider than long, in contact with first infralabials; single enlarged postmental, wider 

than mental; followed by two pairs of enlarged chin shields; first pair in moderate contact or 

moderately separated by a single medial scale, wider than second pair; second pair separated by 

three undifferentiated scales. 

Scales on limbs smaller than body scales; scales on dorsal surfaces of digits large, wrapping 

around lateral edges of digits; lamellae undivided; palmar surfaces of hands and plantar surfaces 

of feet covered by small, irregular scales, each with irregular raised anterior edges; scales on 

dorsal surface of hands and feet smaller than limb scales, lacking raised edges. 

Coloration in preservative.—Ground color of body medium brown; longitudinal stripes on 

dorsal surface of body present or absent; when present a total of eight longitudinal dark-brown 

spot rows, extending from posterior edge of parietals to base of tail: six continuous medial rows 



 182 

and two discontinuous posterolateral rows, together spanning eight full rows of scales at 

midbody, narrowing to six full rows of scales posterior to parietals; when dark spot rows are 

absent, pigmentation forms nearly continuous dark dorsal surface, covering one half to entire 

surface of dorsal scales; dorsolateral stripes present or absent, when present, well defined, 

continuous, lacking dark pigmentation, spanning two whole and two half row of scales from 

auricular opening to base of tail.  Lateral and ventral surface of body medium-brown.  Lateral 

surface with three to six discontinuous longitudinal rows of dark-brown spots, rows often 

extending to edge of ventral surface.  Ventral surface without dark pigmentation.  Tail coloration 

equal to body coloration, dorsal surface covered with dark brown blotches, ventral surface 

covered with scattered dark brown spots, fewer than dorsal surface.  Head scales homogeneous 

dark brown; rostral, nasal, postnasal, supranasal, first supralabial, mental and first infralabial 

dark gray; pigment surrounding pineal eyespot reduced to indistinct, small and medium brown.  

Limbs mottled medium brown dorsally, yellowish brown ventrally; dorsal and ventral surface of 

digits dark brown. 

Coloration in life.—(Fig. 3.11H).  Dorsal ground color medium-brown; when present, 

longitudinal rows of spots dark-brown to black; dorsolateral stripes light- to medium-brown, 

bordered mid-dorsally by rows of dark spots; lateral surface ground color light-brown to tan; 

ventral surfaces of body light-brown to tan.  Dorsal surfaces of limbs dark- to medium-brown, 

ventral surfaces light-brown.  Dorsal head scales blotched dark and medium-brown. 

Variation.—Morphometric variation of the series is summarized in Table 3.6. We observed 

variation among the 19 specimens examined for the degree of contact between head scales.  Four 

specimens were observed to have parietals moderately separated by the interparietal (KU 306757, 

306763, 306767, 306786), one specimen has parietals narrowly separated by the interparietal 
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(KU 306758), and 14 specimens have parietals in moderate medial contact (KU 306756, 

306759–60, 306762, 306764–6, 306769–71, 306773–6) behind the interparietal; 13 specimens 

do not have the first pair of enlarged chin shields in medial contact (KU 304756–7, 306759–60, 

306762, 306764–6, 306767, 306769–70, 306774–5) and six specimens have the first pair of 

enlarged chin shields in moderate medial contact (KU 306758, 306763, 306771, 306773, 306776, 

306786). 

Scale counts were observed to vary among the measured series.  Specimens were observed to 

have midbody scale row counts of 26 (KU 306766), 28 (CAS-SU 22311, 22317, 37996, KU 

306765), 29 (CAS-SU 12225, 18358, 22323, 27972, 89813, CAS 133871, KU 306758, 306774) 

and 30 (CAS-SU 22312, 27997, KU 306756, 306760, 306769, 306772–3, 306786); axilla–groin 

scale row counts of 43 (KU 306786), 44 (CAS-SU 12225, 22311, 27996–7), 45 (CAS-SU 22323, 

KU 306756, 306758, 306760, 306765–6, 306772), 46 (CAS-SU 22312, 22317, 27972, 89813, 

CAS 133871, KU 306773), 47 (KU 306774), and 48 (CAS-SU 18358, KU 306769); and 

paravertebral scale row counts of 67 (KU 306786), 68 (CAS-SU 12225, 22311, 27996–7, KU 

306756, 306758), 69 (CAS-SU 22312, 22323, KU 306760, 306765–6, 306772–3), 70 (CAS-SU 

22317, 37972, 89813, CAS 133871, KU 306769), 71 (KU 306774), and 72 (CAS-SU 18358). 

We also observed lamellae counts to vary among the measured series.  With the exception of 

two specimens observed to have six Finger-III lamellae (CAS-SU 18358, CAS 133871), all other 

examined specimens were observed to have five.  We also observed Toe-IV lamellae counts of 

eight (KU 306769, 306786), nine (CAS-SU 22311, 22317, 89813, KU 306756, 306758, 306760, 

306765–6, 306772–4), and ten (CAS-SU 12225, 18358, 22312, 22323, 27972, 27996–7, CAS 

133871). 



 184 

Color variation exists in the degree and definition of continuous, dark mid-dorsal stripes.  

Many specimens show patterns consistent with continuous, mid-dorsal dark lines (KU 306651, 

306756–7, 306759, 30676,2 306765–7, 306769–72, 306776, 306786, 306763).  The dark lines 

are obscured in some and irregular in others, where the mid-dorsal region is covered by a long 

streak of dark pigmentation, with little to moderate line definition (KU 306759–60, 306764, 

306774). 

Distribution.—Brachymeles talinis is known from Negros, Panay, Romblon, Sibuyan, and 

Tablas islands (Fig. 3.5).  It is also likely to occur on Guimaras Island. 

Ecology and natural history.—Brachymeles talinis occurs in a variety of habitats from 

agricultural areas, to disturbed and secondary growth forest.  Little or no original, lowland forest 

remains in the Visayas, but we assume the species originally occurred in primary forest.  

Individuals have been observed under piles of rotting coconut husks, in the humus material 

within rotting logs, and in loose soil and leaf litter surrounding the root networks of trees.  The 

species is moderately common throughout its range (CDS personal observation), and occurs 

sympatrically with three other species (B. bonitae, B. talinis, and B. tridactylus [Brown, 1956; 

Brown and Rabor, 1967; Brown and Alcala, 1980]).  Individuals were often encountered in 

pitfall traps, indicating some level of activity outside of fossorial microhabitats. Similar to B. 

boulengeri, B. talinis appears to have a wider geographic distribution that spans multiple 

Philippine islands.  This is in contrast to the island endemic species, B. boholensis, B. tungaoi, 

and B. mindorensis, which are known from just Bohol, Masbate, and Mindoro Islands 

respectively.  As do all members of the genus, when disturbed, individuals attempt to escape by 

moving in a rapid serpentine manner and attempting to burrow back into loose soil or humus.   
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Sympatric lizard species observed within the range of Brachymeles talinis include: 

(Agamidae) Bronchocela marmoratus, Draco spilopterus, Hydrosaurus pustulatus; (Dibamidae) 

Dibamus argenteus; (Gekkonidae) Cyrtodactylus philippinicus, Gehyra mutilata, Gekko gecko, 

Gekko mindorensis, Gonocephalus sophiae, Hemidactylus frenatus, H. platyurus, 

Hemiphyllodactylus typus, Lepidodactylus christiani, L. herrei, L. lugubris, Luperosaurus 

corfieldi, Pseudogekko brevipes; (Scincidae) Brachymeles tridactylus, B. taylori, Emoia 

atrocostata, Eutropis multicarinata, E. multifasciata, Lamprolepis smaragdina, Lipinia 

auriculata, L. pulchella, L. quadrivittata, L. rabori, Sphenomorphus arborens, S. coxi, S. jagori, 

S. steerei, Tropidophorus grayi; and (Varanidae) Varanus nuchalis. 

 

Brachymeles kadwa sp. nov. 

Figs. 5, 9, 11D 

Holotype.—PNM 9721 (RMB Field No. 12466, formerly KU 323091), adult male, collected 

under rotting logs in secondary-growth forest (10:00–12:30 hr) on 4 June 2009, on the campus of 

Aurora State College of Technology, Barangay Zabali, Municipality of Baler, Aurora Province, 

Luzon Island, Philippines (15°44'31" N, 121°34'34" E; WGS-84), by CDS, RMB, J. Fernandez, 

L. Welton, J. Brown, J. Siler, Y. Vicente, and M. Vicente. 

Paratopotypes.—Three adult males (KU 323092, 323095, 323096) and four adult females 

(KU 323106, 323094, 323104, 323100), collected between 4 and 7 June 2009. 

Paratypes.—Four adult males (KU 304875, 304900, 304915, 304941) and six adult females 

(KU 304897, 304902–3, 304905–6, 304929) collected between 15 and 22 March 2006 

(19°17'38" N, 121°24'32" E; WGS-84; 245 m above sea level) Barangay Magsidel, Municipality 

of Calayan, Cagayan Province, Calayan Island, Philippines, by RMB, C. Oliveros, and J. 
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Fernandez; four adult males (KU 304575, 307984, 307996, 307998) and five adult females (KU 

304559, 304593, 304708, 304754, 308011), four adult males and five adult females collected 

between 3 and 11 March 2006 from 300 m elevation (18°55'45" N, 121°53'56" E; WGS-84) 

Barangay Balatubat, Municipality of Calayan, Cagayan Province, Camiguin Norte Island, 

Philippines, by RMB, C. Oliveros, and J. Fernandez. 

Referred specimens.—CALAYAN ISLAND:  CAGAYAN PROVINCE:  Municipality of 

Calayan: Barangay Magsidel: KU 304908, , 304899, 304907, 304909, 304921, 304941; 

CAMIGUIN NORTE ISLAND:  CAGAYAN PROVINCE:  Municipality of Calayan: Barangay 

Balatubat: KU 304558, 304562–65, 304569, 304571–74, 304627–30, 304643, 304647, 304696–

99, 304704–07, 304709–12, 304714, 304753, 304755–59, 307965–66, 307985–86, 307997, 

307999–8003, 308006–10, 308012–15, 308017–18; LUZON ISLAND:  AURORA PROVINCE:  

Municipality of Baler:  Barangay Zabali, ASCOT: KU 323090–91, 323093, 323097–99, 

323101–03, 323105, 323107; Municipality of Casiguran, IDC property: KU 323108–48; 

Municipality of San Luis:  Barangay Real, Sitio Minoli: KU 322320. 

 Diagnosis.—Brachymeles kadwa can be distinguished from congeners by the following 

combination of characters:  (1) body size large (SVL 90.6–128.2 mm); (2) pentadactyl; (3) 

Finger-III lamellae five or six; (4) Toe-IV lamellae seven to ten; (5) limbs relatively long; (6) 

paravertebrals 68–70; (7) supralabials seven; (8) infralabials six; (9) pineal eye spot present, 

small; (10) supranasals in contact; (11) prefrontals not contacting on midline; (12) enlarged chin 

shields in two pairs; (13) nuchal scales undifferentiated; (14) fifth and sixth supralabial below 

eye; (15) auricular opening present; (16) continuous, light dorsolateral stripes present, indistinct; 

(17) continuous, dark mid-dorsal stripes present; (18) dark lateral stripes present; and (19) dark 

ventral pigmentation present (Tables 3.4, 3.5). 



 187 

Comparisons.—Characters distinguishing the new species from all pentadactyl species of 

Brachymeles are summarized in Tables 3.4 and 3.5.  Brachymeles kadwa most closely resembles 

B. makusog, B. tungaoi, B. talinis, and B. vindumi, but differs from these four taxa by having 

seven to ten Toe-IV lamellae and the second enlarged chin shield wider than the first (Tables 3.4, 

3.5).  Brachymeles kadwa can further be distinguished from B. makusog by having seven 

supralabials, the fifth and sixth supralabial below the eye, six infralabials, the presence of 

supranasal contact, the presence of continuous, light dorsolateral stripes, continuous, dark mid-

dorsal stripes, dark lateral stripes, and dark ventral pigmentation (Table 3.5); from B. tungaoi by 

having a greater midbody width, shorter relative tail length, paravertebrals 68–70, and the 

presence of dark ventral pigmentation (Tables 3.4, 3.5); from B. talinis by having 28 or fewer 

midbody scale rows, 70 or fewer paravertebrals, infralabials six, and by the presence dark ventral 

pigmentation (Table 3.5); and from B. vindumi by having five or six Finger-III lamellae, 26–28 

midbody scale rows, paravertebrals 68–70, and by the presence of continuous, dark mid-dorsal 

stripes (Tables 3.4, 3.5). 

From all non-pentadactyl species of Brachymeles (B. apus, B. bonitae, B. cebuensis, B. 

elerae, B. lukbani, B. minimus, B. muntingkamay, B. pathfinderi, B. samarensis, B. tridactylus, B. 

vermis, and B. wrighti), B. kadwa differs by having a pentadactyl body form (vs. non-

pentadactyl), longer forelimb lengths (greater than 10.7 mm vs. less than 6.9 mm), and greater 

hind limb lengths (greater than 17.9 mm vs. less than 12.9 mm), and by the presence of a 

postnasal scale (vs. absence).  Additionally, B. kadwa differs from all non-pentadactyl species 

except B. wrighti by having 26–28 midbody scales (vs. fewer than 24); from all non-pentadactyl 

species except B. pathfinderi by having 68–70 paravertebrals (vs. greater than 84), and by the 

presence of auricular openings (vs. absence); from all non-pentadactyl species except B. apus 
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and B. wrighti by having a larger body size (SVL greater than 90.6 mm vs. less than 81.3 mm); 

and from B. apus, B. lukbani, B. minimus, and B. vermis by the presence of limbs (vs. absence). 

Description of Holotype.—(Fig. 3.10) Mature male, hemipenes everted; SVL 106.2 mm; 

body moderately large relative to other Brachymeles, elongate with respect to other lizards; head 

weakly differentiated from neck, nearly as wide as body, HW 11.0% SVL, 111.1% HL; HL 

38.1% SnFa; SnFa 26.0% SVL; snout moderately long, rounded in dorsal and lateral profile, 

SNL 56.1% HL; auricular opening present, small; eyes moderate, ED 1.9% SVL, 19.6% HL, 

54.8% END, pupil nearly round; body slightly depressed, MBW 157.3% MBH; body scales 

smooth, glossy, imbricate; longitudinal scale rows at midbody 28; paravertebral scale rows 68; 

axilla–groin scale rows 47; limbs well developed, pentadactyl, digits moderate; FinIIIlam 5; 

ToeIVlam 10; FLL 20.3% AGD, 13.0% SVL; HLL 32.0% AGD, 20.6% SVL; order of digits 

from shortest to longest for hand:  I = V < II = IV < III, for foot:  V < I < II < III = IV; tail nearly 

as wide as body at base, gradually tapered towards end, TW 73.5% MBW, TL 101.6% SVL. 

Rostral projecting dorsoposteriorly to point in line with anterior edge of nostril, broader than 

high, separated from frontonasal by moderate contact of supranasals; frontonasal wider than 

long; nostril ovoid, centered in a single rectangular nasal; supranasals large, in moderate medial 

contact; postnasals present; prefrontals moderately separated by frontal; frontal nearly diamond 

shaped, its anterior margin in moderate contact with frontonasal, in contact with first two anterior 

supraoculars, 4× wider than anteriormost supraocular; supraoculars five; frontoparietals 

moderate, point contact medially or moderately separated, each frontoparietal in contact with 

supraoculars two–four; interparietal moderate, quadrilaterally shaped, its length slightly greater 

than midline length of frontoparietal; parietal eyespot present in posterior one third of scale, 

indistinct; parietals in moderate contact behind interparietal; nuchals undifferentiated; loreals two, 
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decreasing in size from anterior to posterior, subequal, in contact with prefrontal, postnasal, 

supranasal, second supralabial, posterior loreal and frontonasal; preocular single, nearly two 

thirds as high as posterior loreal; single presubocular; supraciliaries six, the anteriormost 

contacting prefrontal and separating posterior loreal from first supraocular, posteriormost 

extending to midline of last supraocular; subocular row complete; lower eyelid with one row of 

scales, lacking an enlarged oval window, largely transparent; supralabials seven, fifth and sixth 

below the eye; infralabials six. 

Mental wider than long, in contact with first infralabials; single enlarged postmental, slightly 

wider than mental; followed by two pairs of enlarged chin shields, first pair in moderate medial 

contact, second pair slightly wider than first, separated by a single undifferentiated scale. 

Scales on limbs smaller than body scales; scales on dorsal surfaces of digits large, wrapping 

around lateral edges of digits; lamellae undivided; palmar surfaces of hands and plantar surfaces 

of feet covered by small, irregular scales, each with raised anterior edges; scales on dorsal 

surface of hands and feet smaller than limb scales, lacking raised edges. 

Coloration in preservative.—Ground color of body dark brown; dorsal surface of body with 

eight longitudinal rows of dark-brown spots spanning eight full rows of scales at midbody and 

extending from posterior edge of parietals to base of tail: six rows in mid-dorsal region, flanked 

by discontinuous dorsolateral rows; spot rows narrowing to six full rows of scales posterior to 

parietals; dark coloration covering middle three fourths of dorsal scales; dorsolateral stripes 

somewhat indistinct, discontinuous, spanning two half rows of scales from auricular opening 

point just posterior to forelimb insertion; dark dorsal coloration blends gradually into medium 

brown lateral and ventral surface of body.  Lateral surface with six discontinuous, dark-brown 

spot rows, extending to edge of ventral surface.  Ventral surface with scattered dark brown spots.  
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Tail coloration similar to body coloration, dorsal surface covered with dark brown blotches, 

ventral surface covered with few dark brown spots.  Head scales homogeneous dark brown; 

rostral, nasal, postnasal, supranasal, first supralabial, mental, and first infralabial dark gray; 

pineal eyespot indistinct, small and light brown.  Limbs mottled dark brown dorsally, yellowish 

brown ventrally; dorsal and ventral surface of digits dark brown. 

Coloration in life.—(Fig. 3.11D).  Ground color of body light to medium-brown; dorsal 

surfaces of limbs medium-brown. 

Measurements of holotype in mm.—SVL 106.2; AGD 68.2; TotL 214.0; MBW 15.9; MBH 

10.1; TL 107.9; TW 11.7; TH 9.2; HL 10.5; HW 11.7; HH 8.6; SnFa 27.6; ED 2.1; END 3.8; 

SNL 5.9; IND 3.7; FLL 13.8; HLL 21.8; MBSR 28; PVSR 68; AGSR 47; FinIIIlam 5; 

ToeIVlam 10; SL 7; IFL 6; SC 6; SO 5. 

Variation.—Morphometric variation of the series is summarized in Table 3.6. We observed 

variation among the 25 specimens examined for the degree of contact between head scales.  

Fourteen specimens were observed to have parietals moderately separated by the interparietal 

(KU 304559, 304574–5, 304593, 304630, 304708, 304754–5, 304759, 304906, 307984–5, 

307996, 308007), one specimen has parietals in point medial contact (KU 308011), and 10 

specimens have parietals in moderate medial contact (KU 304875, 304897, 304900, 304902–3, 

304905, 304915, 304929, 304941, 307998) behind the interparietal; two specimens have 

frontoparietals moderately separated by the frontal (KU 304559, 307984), one specimen has 

frontoparietals narrowly separated by the frontal (KU 304574), and 22 specimens have 

frontoparietals in moderate medial contact (KU 304575, 304593, 304630, 304708, 304754–5, 

304759, 304875, 304897, 304900, 304902–3, 304905–6, 304915, 304929, 304941, 307985, 

307996, 307998, 308007, 308011).  We observed the first pair of enlarged chin shields narrowly 
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separated in a single specimen (KU 307996), and in moderate contact for all other examined 

specimens. 

Scale counts were observed to vary among the measured series.  Specimens were observed to 

have midbody scale row counts of 26 (KU 304559, 307996, 323104), 27 (KU 304593, 307984, 

307998), and 28 (KU 304575, 304708, 304754, 304875, 304897, 304900, 304902–3, 304905–6, 

304915, 304929, 304941, 308011, 323091, 323091–2, 323094–6, 323100, 323106); axilla–groin 

scale row counts of 47 (KU 304559, 304575, 304593, 304875, 304902, 304929, 307996, 307998, 

308011, 323091, 323096), 48 (KU 304708, 304754, 304897, 304900, 304915, 304941, 307984, 

323092, 323094–5, 323100, 323104, 323106), 49 (KU 304903, 304905–6); and paravertebral 

scale row counts of 68 (KU 304559, 304593, 304900, 307996, 323091, 323096), 69 (KU 304575, 

304708, 304754, 304875, 304929, 304941, 307984, 307998, 308011, 323092, 323094–5, 323100, 

323104, 323106), and 70 (KU 304897, 304902–3, 304905–6, 304915). 

We also observed lamellae counts to vary among the measured series.  With the exception of 

two specimens observed to have six Finger-III lamellae (KU 304903, 304906), all other 

examined specimens were observed to have five.  We also observed Toe-IV lamellae counts of 

seven (KU 304593), eight (KU 304559, 304575, 304708, 304754, 304875, 304897, 304900, 

304915, 304929, 304941, 307984, 307996, 307998, 308011), nine (KU 304902–3, 304905–6, 

323092, 323094–6, 323100, 323104, 323106), or ten (KU 323091). 

Distribution.—Brachymeles kadwa is known from numerous localities on Luzon Island as 

well as from Calayan and Camiguin Norte Islands of the Babuyan Island Group (Fig. 3.5). 

Ecology and natural history.—Brachymeles kadwa occurs in agricultural areas, disturbed 

secondary growth forest, and first growth forests of Luzon, Camiguin Norte, and Calayan.  

Individuals have been observed under piles of rotting coconut husks, in the humus material 
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within rotting logs, and in loose soil and leaf litter surrounding the root networks of trees.  This 

species is quite common in all sampling localities, and we have taken large series in pitfall traps, 

indicating some level of surface activity.  When disturbed, individuals immediately moved in a 

rapid serpentine manner and attempted to burrow back into loose soil or humus.   

Sympatric lizard species observed on Luzon, Camiguin Norte, and Calayan Islands include: 

(Agamidae) Bronchocela cristatella, Draco spilopterus, Gonocephalus sophiae, Hydrosaurus 

pustulatus; (Gekkonidae) Cyrtodactylus philippinicus, Gehyra mutilata, Gekko gecko, Gekko 

mindorensis, Hemidactylus frenatus, H. garnoti, H. luzonensis, H. platyurus, Luperosaurus cf. 

cumingi, L. kubli, Pseudogekko compressicorpus, P. smaragdina; (Scincidae) Brachymeles 

bonitae, B. bicolor, B. elerae, B. lukbani, B. makusog, B. muntingkamay, B. samarensis, B. cf. 

talinis, B. wrighti, Emoia atrocostata, Eutropis bontocensis, E. multicarinata, E. multifasciata, 

Lamprolepis smaragdina, Lipinia pulchella, Sphenomorphus cumingi, S. decipiens, S. jagori, S. 

leucospilos, S. luzonensis, S. steerei, S. stejnegeri, Tropidophorus grayi; and (Varanidae) 

Varanus marmoratus. 

Etymology.—CDS is pleased to name this new species for his loving wife Jessi M. Siler for 

her endless support that has made all of this research possible.  The name of the new species is 

derived from one of the local dialects spoken in the Philippines.  The word “kadwa” is the 

Ilonggo term for friend and companion.  Suggested common name:  Jessi’s Slender Skink.  

 

Brachymeles tungaoi sp. nov. 

Figs. 3.5, 3.10 

Holotype.—PNM 9722 (CDS Field No. 5125, formerly KU 323933), adult male, collected in 

rotting stump in disturbed, residential habitat (10:00–12:30 hr) 4 September, 2009, at 61 m 
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elevation in Municipality of Masbate City, Masbate Province, Masbate Island, Philippines 

(12°21'01" N, 123°37'42" E; WGS-84), by CDS and J. Fernandez. 

Paratopotypes.—KU 323934–36, three adult females, collected between 3 and 7 September, 

2009, from 61–99 m elevation by CDS and J. Fernandez. 

Paratypes.—One adult male (CAS 144313), three adult females (CAS 144229–30, 144341), 

and four juvenile specimens of unknown sex (CAS 144290, 144306–7, 144342), collected 2 June 

1976 “in humus under rotting log,” in Barangay Tugbo, Municipality of Mobo, Masbate 

Province, Masbate Island, Philippines (12°20'11.04" N, 123°37'58.8" E; WGS-84; 400 m 

elevation) by A. Alcala. 

 Diagnosis.—Brachymeles tungaoi can be distinguished from congeners by the following 

combination of characters:  (1) body size moderate (SVL 78.2–106.2 mm); (2) relative tail length 

long; (3) pentadactyl; (3) Finger-III lamellae five or six; (4) Toe-IV lamellae nine or ten; (5) limb 

length moderate; (6) paravertebral scale rows 66–68; (7) supralabials seven; (8) infralabials six; 

(9) pineal eye spot present, large; (10) supranasals in contact; (11) prefrontals not contacting on 

midline; (12) contact between first pair of chin shields; (13) enlarged chin shields in two pairs; 

(14) nuchal scales undifferentiated; (15) fifth and sixth supralabial below eye; (16) auricular 

opening present; (17) continuous, light dorsolateral stripes present, indistinct; (18) continuous, 

dark mid-dorsal stripes present; (19) dark lateral stripes present; and (20) dark ventral 

pigmentation absent (Tables 3.4, 3.5). 

Comparisons.—Characters distinguishing the new species from all pentadactyl species of 

Brachymeles are summarized in Tables 3.4 and 3.5.  Brachymeles tungaoi most closely 

resembles B. kadwa, B. makusog, B. talinis, and B. vindumi, but differs from these four taxa by 

having a smaller body size, smaller midbody width, greater relative tail length, the first and 
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second pairs of enlarged chin shields equal in width, and contact between the first pair of 

enlarged chin shields (Tables 3.4, 3.5).  Brachymeles tungaoi can be further distinguished from B. 

kadwa by having nine or ten Toe-IV lamellae, paravertebral scale rows 66–68, frontoparietal in 

contact, and by the absence of dark ventral pigmentation (Tables 3.4, 3.5); from B. makusog by 

having seven supralabials, six infralabials, the fifth and sixth supralabial below the eye, 

supranasals in moderate contact, the presence of continuous, light dorsolateral stripes, continuous, 

dark mid-dorsal stripes, and dark lateral stripes (Table 3.5); from B. talinis by having nine or ten 

Toe-IV lamellae, 66–68 paravertebrals, infralabials six (Tables 3.4, 3.5); and from B. vindumi by 

having five or six Finger-III lamellae, 26–28 midbody scale rows, and 66–68 paravertebrals 

(Tables 3.4, 3.5). 

From all non-pentadactyl species of Brachymeles (B. apus, B. bonitae, B. cebuensis, B. 

elerae, B. lukbani, B. minimus, B. muntingkamay, B. pathfinderi, B. samarensis, B. tridactylus, B. 

vermis, and B. wrighti), B. tungaoi differs by having a pentadactyl body form (vs. non-

pentadactyl), longer forelimb lengths (greater than 11.0 mm vs. less than 6.9 mm), and greater 

hind limb lengths (greater than 17.0 mm vs. less than 12.9 mm), and by the presence of a 

postnasal scale (vs. absence).  Additionally, Brachymeles tungaoi differs from all non-

pentadactyl species except B. wrighti by having a midbody scale row count 26–28 (vs. fewer 

than 24); from all non-pentadactyl species except B. pathfinderi by having a paravertebral scale 

row count 66 (vs. greater than 84), and by the presence of auricular openings (vs. absence); and 

from B. apus, B. lukbani, B. minimus, and B. vermis by the presence of limbs (vs. absence). 

Description of Holotype.—(Fig. 10) Mature male, hemipenes everted; SVL 89.2 mm; body 

moderate relative to other Brachymeles, elongate with respect to other lizards; head weakly 

differentiated from neck, nearly as wide as body, HW 11.3% SVL, 115.9% HL; HL 38.0% SnFa; 
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SnFa 25.6% SVL; snout moderately long, bluntly rounded in dorsal profile, sharply rounded in 

lateral profile, SNL 60.1% HL; auricular opening present, moderate; eyes small, ED 1.9% SVL, 

19.2% HL, 50.0% END, pupil nearly round; body slightly depressed, MBW 162.0% MBH; body 

scales smooth, glossy, imbricate; longitudinal scale rows at midbody 28; paravertebral scale rows 

66; axilla–groin scale rows 46; limbs well developed, pentadactyl, digits moderate; FinIIIlam 6; 

ToeIVlam 10; FLL 22.5% AGD, 14.4% SVL; HLL 35.4% AGD, 22.6% SVL; order of digits 

from shortest to longest for hand:  I = V < II = IV < III, for foot:  I < V < II < IV < III; tail not as 

wide as body, gradually tapered towards end, TW 63.7% MBW, TL 99.9% SVL. 

Rostral projecting dorsoposteriorly to point in line with anterior edge of nasal, broader than 

high, moderately separated from frontonasal; frontonasal wider than long; nostril ovoid, centered 

in a single rectangular nasal; supranasals present, large, in narrow medial contact; postnasals 

present; prefrontals broadly separated by frontal; frontal nearly octagonal, its anterior margin in 

broad contact with frontonasal, in contact with first two anterior supraoculars, 5× wider than 

anteriormost supraocular; supraoculars five; frontoparietals moderate, in broad contact medially, 

each frontoparietal in contact with supraoculars two–four; interparietal moderate, quadrilaterally 

shaped, its length nearly equal to midline length of frontoparietal; distinct parietal eyespot 

present, large, in posterior half of scale; parietals broadly separated by interparietal; nuchals 

undifferentiated; loreals two, decreasing in size from anterior to posterior, subequal, in contact 

with prefrontal, postnasal, supranasal, second supralabial, posterior loreal and frontonasal; 

preocular single, nearly one half as high as posterior loreal; single presubocular; supraciliaries 

six, the anteriormost contacting prefrontal and separating posterior loreal from first supraocular, 

posteriormost extending to midline of last supraocular; subocular row complete; lower eyelid 
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with one row of scales, lacking an enlarged oval window, largely transparent; supralabials seven, 

fifth and sixth below the eye; infralabials six. 

Mental wider than long, in contact with first infralabials; single enlarged postmental, wider 

than mental; followed by two pairs of enlarged chin shields; first pair in broad medial contact, 

second pair separated by single undifferentiated scale. 

Scales on limbs smaller than body scales; scales on dorsal surfaces of digits large, wrapping 

around lateral edges of digits; lamellae undivided; palmar surfaces of hands and plantar surfaces 

of feet covered by small, irregular scales, each with raised anterior edges; scales on dorsal 

surface of hands and feet smaller than limb scales, lacking raised edges. 

Coloration of holotype in preservative.—Ground color of body medium brown; dorsal 

surface of body with eight continuous, longitudinal rows of dark-brown spots, extending from 

posterior edge of parietals to base of tail; spot rows span six full and two half rows of scales at 

midbody, narrowing to four full and two half rows of scales posterior to parietals; pigmentation 

covering middle one third of dorsal scales; dorsolateral stripes indistinct, discontinuous, 

spanning one whole and two half row of scales from auricular opening to midbody.  Lateral and 

ventral surface of body light-brown.  Lateral surface with three discontinuous rows of dark-

brown spots, spanning posterior two thirds of axilla–groin distance.  Ventral surface without dark 

pigmentation.  Tail with dark dorsal blotches and spots; dark pigment reduced ventrally.  Head 

scales homogeneous dark brown; rostral, nasal, postnasal, supranasal, first supralabial, mental, 

and first infralabial light gray; pineal eyespot large distinct, light cream.  Limbs mottled medium 

to dark brown dorsally, yellowish brown ventrally; dorsal and ventral surface of digits dark 

brown. 
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Coloration of holotype in life.—Coloration in life is unrecorded; however, because 

Brachymeles specimens do not change significantly during preservation (CDS, RMB personal 

observation), we suspect that the preserved coloration and patterns are much like those in life. 

Measurements of holotype in mm.—SVL 89.2; AGD 56.8; TotL 178.3; MBW 13.9; MBH 

8.6; TL 89.1; TW 8.8; TH 8.0; HL 8.7; HW 10.1; HH 7.2; SnFa 22.8; ED 1.7; END 3.3; SNL 

5.2; IND 3.0; FLL 12.8; HLL 20.1; MBSR 28; PVSR 66; AGSR 46; FinIIIlam 6; ToeIVlam 10; 

SL 7; IFL 6; SC 6; SO 5. 

Variation.—Morphometric variation of the series is summarized in Table 3.6. Specimens 

were observed to have parietals moderately separated by the interparietal (CAS 144229–30, 

144341, KU 323933, 323935–6) or in point medial contact (CAS 144313, KU 323934). 

Scale counts were observed to vary among the measured series.  Specimens were observed to 

have midbody scale row counts of 26 (KU 323935), 27 (CAS 144313), and 28 (CAS 144229–30, 

144341, KU 323933–4, 323936); axilla–groin scale row counts of 46 (KU 323933, 323935–6), 

47 (CAS 144229–30, 144341, KU 323934), and 49 (CAS 144313); and paravertebral scale row 

counts of 66 (KU 323933–6), 67 (CAS 144229), and 68 (CAS 144230, 144313, 144341). 

We also observed lamellae counts to vary among the measured series.  Specimens were 

observed to have Finger-III lamellae counts of five (CAS 144229–30, 144341, KU 323934–5) or 

six (CAS 144313, KU 323933, 323936); Toe-IV lamellae counts of nine (CAS 144229, 144313, 

144341, KU 323935–6) or ten (CAS 144230, KU 323933–4). 

Distribution.—Brachymeles tungaoi is known only from Masbate Island (Fig. 3.5). 

Ecology and natural history.—Brachymeles tungaoi occurs in agricultural areas as well as 

disturbed and secondary growth forest habitat.  Little or no original, low elevation forest remains 

on Masbate Island, but we assume the species once also occurred in primary forest.  Individuals 
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were collected in the humus material within the rotting stumps of trees.  When disturbed, 

individuals immediately moved in a rapid serpentine manner and attempted to burrow back into 

loose soil or humus.   

Sympatric lizard species observed on Masbate Island include:  (Agamidae) Bronchocela 

cristatella, Draco spilopterus, Gonocephalus sophiae; (Gekkonidae) Cyrtodactylus philippinicus, 

Gehyra mutilata, Gekko gecko, Hemidactylus frenatus, H. platyurus; (Scincidae) Brachymeles 

bonitae, Emoia atrocostata, E. multicarinata, E. multifasciata, Lamprolepis smaragdina, Lipinia 

pulchella, Sphenomorphus decipiens, S. jagori; and (Varanidae) Varanus marmoratus. 

Etymology.—We take pleasure in naming the new species after our friend and dedicated field 

collaborator Jason B. “Tungao” Fernandez, with thanks for years of hard work towards the 

research of semi-fossorial lizards.  Suggested common name:  Tungao’s Slender Skink.  

 

Brachymeles vindumi sp. nov. 

Figs. 3.4, 3.10 

Holotype.—CAS 60724 (EHT Field No. 1718), adult male, collected between 25 October and 

17 November, 1920, in Sulu Province, Jolo Island, Philippines, by Edward H. Taylor. 

Paratypes.—One adult female (CAS 60725), one juvenile female (MCZ 26577), and one 

juvenile of unknown sex (CAS 60723), collected over the same dates and in the same locality as 

holotype. 

Diagnosis.—Brachymeles vindumi can be distinguished from congeners by the following 

combination of characters:  (1) body size moderate (SVL 104.9–113.6 mm); (2) pentadactyl; (3) 

Finger-III lamellae six; (4) Toe-IV lamellae nine or ten; (5) moderate limb length; (6) midbody 

scale rows 30 or 31; (7) axilla–groin scale rows 49; (8) paravertebral scale rows 74; (9) 
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supralabials seven; (10) infralabials six; (11) pineal eye spot present, indistinct; (12) supranasals 

in contact; (13) prefrontals separate; (14) parietal in contact; (15) enlarged chin shields in two 

pairs; (16) first pair of chin shields separated; (17) nuchals undifferentiated; (18) fifth and sixth 

supralabials below the eye; (19) auricular opening present; (20) continuous, light dorsolateral 

stripes present, distinct; (21) dark lateral stripes present; and (22) dark ventral pigmentation 

present (Tables 3.4, 3.5). 

Comparisons.—Characters distinguishing the new species from all pentadactyl species of 

Brachymeles are summarized in Tables 3.4 and 3.5.  Brachymeles vindumi most closely 

resembles B. kadwa, B. talinis, and B. tungaoi, but differs from these three taxa by having six 

Finger-III lamellae, six supralabials, midbody scale rows 30 or 31, axilla–groin scale rows 49, 

paravertebral scale rows 74, the first pair of enlarged chin shields separated, and the presence of 

continuous, light dorsolateral stripes (Tables 3.4, 3.5).  Brachymeles vindumi can further be 

distinguished from B. kadwa and B. talinis by having nine or ten Toe-IV lamellae (Tables 3.4, 

3.5); from B. talinis by having six infralabials (Table 3.5); from B. kadwa by contact between 

frontoparietals (Table 3.5); and from B. kadwa and B. tungaoi by contact between parietals 

(Table 3.5). 

From all non-pentadactyl species of Brachymeles (B. apus, B. bonitae, B. cebuensis, B. 

elerae, B. lukbani, B. minimus, B. muntingkamay, B. pathfinderi, B. samarensis, B. tridactylus, B. 

vermis, and B. wrighti), B. vindumi differs by having a pentadactyl body form (vs. non-

pentadactyl), longer forelimb lengths (greater than 13.2 mm vs. less than 6.9 mm), greater hind 

limb lengths (greater than 22.7 mm vs. less than 12.9 mm), and greater number of midbody scale 

rows (30 or 31 vs. less than 28), and by the presence of a postnasal scale (vs. absence).  

Additionally, B. vindumi differs from all non-pentadactyl species except B. pathfinderi by having 
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a paravertebral scale row count 74 (vs. greater than 84) and by the presence of auricular openings 

(vs. absence); and from B. apus, B. lukbani, B. minimus, and B. vermis by the presence of limbs 

(vs. absence). 

Description of Holotype.—(Fig. 3.9) Mature male, hemipenes not everted; SVL 113.6 mm; 

body moderate relative to other Brachymeles, elongate with respect to other lizards; head weakly 

differentiated from neck, nearly as wide as body, HW 9.5% SVL, 112.5% HL; HL 33.7% SnFa; 

SnFa 25.1% SVL; snout moderately long, rounded in dorsal and lateral profile, SNL 59.7% HL; 

auricular opening present, moderate; eyes small, ED 2.0% SVL, 23.5% HL, 58.0% END, pupil 

nearly round; body slightly depressed, MBW 122.9% MBH; body scales smooth, glossy, 

imbricate; longitudinal scale rows at midbody 31; paravertebral scale rows 74; axilla–groin scale 

rows 49; limbs well developed, pentadactyl, digits moderate; FinIIIlam 6; ToeIVlam 9; FLL 

18.1% AGD, 11.6% SVL; HLL 31.2% AGD, 20.0% SVL; order of digits from shortest to 

longest for hand:  I < V < II < IV < III, for foot:  I = V < II = III < IV; tail regenerated, not as 

wide as body, sharply tapered towards end, TW 83.1% MBW. 

Rostral projecting dorsoposteriorly to point in line with anterior edge of nasal, broader than 

high, moderately separated from frontonasal by supranasal contact; frontonasal wider than long; 

nostril ovoid, centered in a single rectangular nasal; supranasals present, large, in moderate 

medial contact; postnasals present; prefrontals narrowly separated by frontal; frontal nearly 

octagonal, its anterior margin in narrow contact with frontonasal, in contact with first two 

anterior supraoculars, 4× wider than anteriormost supraocular; supraoculars five; frontoparietals 

moderate, in broad medial contact, each frontoparietal in contact with supraoculars two–four; 

interparietal small, diamond shaped, its length equal in size to midline length of frontoparietal; 

parietal eyespot absent; parietals in broad contact behind interparietal; nuchals undifferentiated; 
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loreals two, decreasing in size from anterior to posterior, subequal, in contact with prefrontal, 

postnasal, supranasal, second supralabial, posterior loreal and frontonasal; preocular single, 

nearly two thirds as high as posterior loreal; single presubocular; supraciliaries six, the 

anteriormost contacting prefrontal and separating posterior loreal from first supraocular, 

posteriormost extending to midline of last supraocular; single subocular row complete; lower 

eyelid with one row of scales, lacking an enlarged oval window, largely transparent; supralabials 

seven, fifth and sixth below the eye; infralabials six. 

Mental wider than long, in contact with first infralabials; single enlarged postmental, slightly 

wider than mental; followed by two pairs of enlarged chin shields, scales of first pair separated 

by a single undifferentiated scale, second pair separated by three undifferentiated scales. 

Scales on limbs smaller than body scales; scales on dorsal surfaces of digits large, wrapping 

around lateral edges of digits; lamellae undivided; palmar surfaces of hands and plantar surfaces 

of feet covered by small, irregular scales, each with raised anterior edges; scales on dorsal 

surface of hands and feet smaller than limb scales, lacking raised edges. 

Coloration of holotype in preservative.—Ground color of body medium to dark brown; mid-

dorsal surface of body covered with dark pigmentation, extending from posterior edge of 

supranasals to base of tail, made of eight irregular, longitudinal mid-dorsal rows of dark-brown 

spots, spanning six full and two half rows of scales at midbody, narrowing to six full rows of 

scales posterior to parietals, pigmentation covering middle one third of dorsal scales; dorsolateral 

stripes present, clearly defined, continuous, lacking dark pigmentation, spanning one whole and 

one half row of scales from anterior-most supraocular to base of tail.  Lateral and ventral surface 

of body medium to dark brown.  Lateral surface with six to eight irregular dark spot rows, 

gradually becoming fainter on ventral surface.  Ventral surface with irregular dark spots and 
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blotches.  Tail with continuous dark blotches and spots dorsally, dark pigment reduced ventrally.  

Head scales homogeneous mottled medium and dark brown dorsally; rostral, nasal, postnasal, 

supranasal, first supralabial, mental, and first infralabial light brown to tan; pineal eyespot 

absent; dark brown blotch of pigmentation on lateral surfaces of head, spanning from posterior 

edge of eye to posterior edge of auricular openings.  Limbs mottled medium to dark brown; 

dorsal surface of digits dark brown, ventral surface of digits medium brown. 

Coloration of holotype in life.—Coloration in life is unrecorded; however, because 

Brachymeles specimens do not change significantly during preservation (CDS, RMB personal 

observation), we suspect that the preserved coloration and patterns are much like those in life. 

Measurements of holotype in mm.—SVL 113.6; AGD 72.7; TotL N/A; MBW 14.2; MBH 

11.6; TL N/A; TW 11.8; TH 8.4; HL 9.6; HW 10.8; HH 7.9; SnFa 28.5; ED 2.3; END 3.9; SNL 

5.7; IND 3.4; FLL 13.2; HLL 22.7; MBSR 31; PVSR 74; AGSR 49; FinIIIlam 6; ToeIVlam 9; 

SL 7; IFL 6; SC 6; SO 5. 

Variation.—Morphometric variation of the series is summarized in Table 3.6. Specimens 

were observed to have midbody scale row counts of 30 (CAS 60725) or 31 (CAS 60724), and 

Toe-IV lamellae counts of nine (CAS 60724) or ten (CAS 60725). 

Distribution.—Brachymeles vindumi is known only from Jolo Island (Fig. 3.4). 

Ecology and natural history.—Brachymeles vindumi presumably occurs in disturbed habitat 

as well as secondary growth forest on Jolo Island.  Due to security concerns, no recent surveys 

have been conducted on Jolo Island, and therefore, no information is available on the ecology of 

this species.  

Sympatric lizard species observed on Jolo Island include:  (Agamidae) Draco guentheri; 

(Gekkonidae) Cyrtodactylus annulatus, Gehyra mutilata, Gekko gecko, G. mindorensis, 
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Hemidactylus frenatus, H. platyurus, Luperosaurus joloensis; (Scincidae) Brachymeles vermis, 

Eutropis multifasciata, E. rudis, Lamprolepis smaragdina, Lipinia quadrivittata, Lygosoma 

bowringi, Sphenomorphus biparietalis, S. variegatus; (Varanidae) Varanus cumingi.  

Etymology.—We take pleasure in naming the new species for our close friend and colleague, 

Jens Vindum.  The specific epithet is a patronym in the genitive singular, chosen in thanks for 

the many years of support and assistance he as provided during our research on Philippine 

amphibians and reptiles.  Suggested common name:  Jens’ Slender Skink. 

 

DISCUSSION 

Phylogenetic analyses of the mitochondrial ATPase 8 (ATP8) and ATPase 6 (ATP6) genes 

resulted in strong support for nine lineages of Brachymeles (Fig. 3.2).  The phylogeny, combined 

with morphological data, supports the elevation of all subspecies of the polytypic species B. 

boulengeri and B. schadenbergi to full species.  However, the inferred relationships between 

several of the species sampled are weakly supported.  This may be indicative of rapid 

diversification of Brachymeles or simply indicate a lack of character support at some internal 

nodes.  Given the use of only mitochondrial data for our phylogenetic analyses, caution must be 

taken when interpreting inter-species relationships, as a single locus can be subject to random 

variation, deep coalescence, lineage sorting, and natural selection (Edwards and Beerli, 2002; 

Galtier et al., 2009; Brown et al., 2010).  Regardless of the potential weaknesses of our single-

locus approach, our results are strongly supported by an independent, comprehensive dataset of 

morphological characters. 

No analyses supported the monophyly of species formerly part of Brachymeles boulengeri 

(B. boholensis, B. boulengeri, B. mindorensis, B. taylori; Fig. 3.2).  Another clade including B. 
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talinis, B. kadwa, and B. tungaoi was estimated with strong support (Fig. 3.2).  As previously 

recognized B. talinis spanned two distinct, recognized faunal regions (Luzon and Visayas).  

Given this formerly wide geographical distribution, it is not surprising that the northern 

populations (Luzon and the Babuyan islands) constitute a genetically distinct lineage that we 

describe here as B. kadwa.  We were surprised, however, to discover an additional genetically 

distinct lineage on Masbate Island (Fig. 3.2).  The fauna of Masbate Island is recognized as part 

of the Visayan or central Philippine islands, and has been hypothesized to have shared land 

bridge connections with the central islands during periods of glacial maxima (Dickerson, 1928; 

Inger, 1954; Heaney, 1985; Voris, 2000).  Although we expected Masbate populations to be 

more closely related to Visayan (Negros + Panay) populations, all analyses strongly supported 

the sister relationship between B. tunagoi (Masbate) and B. kadwa (Luzon), providing additional 

biogeographic support for the distinctiveness of B. tungaoi.  We are unaware of phylogeographic 

or phylogenetic studies including other vertebrate taxa from Masbate.  Comparison of the 

systematic affinities of other Masbate species may provide interesting exceptions to the 

prevailing PAIC-oriented perspective of Masbate as a faunistic extension of the central Visayas 

(Heaney, 1985). 

The species recognized in this paper increase the total number of known species of 

Brachymeles to 25, all but one of which are endemic to the Philippines.  During the last two 

years, our knowledge of the species diversity in the genus has expanded rapidly as the result of 

large-scale sampling efforts across the Philippines and the detailed analyses of morphological 

variation among species and populations (Siler et al., 2009a, 2010a,b).  Prior to this effort, 

estimates of Brachymeles species diversity remained nearly constant for more than 30 years (but 

see Brown and Alcala, 1995), which is a testament to the extent of morphological similarity 
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among species within the genus and a lack of systematic studies of the group.  It comes as little 

surprise that allopatric populations of “B. boulengeri” from the Luzon, Mindanao, Mindoro, and 

Visayan Pleistocene Aggregate Island Complexes have proven to be morphologically 

diagnosable with increased sampling.  To date, few studies have provided evidence of truly 

“widespread” reptile species that have geographic distributions spanning recognized 

zoogeographic boundaries in the Philippines (but see Siler et al., 2010c), and as is quite often the 

case, these species frequently turn out to constitute multiple evolutionary lineages (McGuire and 

Alcala, 2000; Brown et al., 2002, 2009; Gaulke et al, 2007; Welton et al., 2009, 2010).   

All species of Brachymeles have a semi-fossorial life style, specializing in dry rotting 

material within rotten logs.  Many are habitat specialists found exclusively in rotting logs, loose 

soil, or leaf litter, whereas others are common beneath piles of rotting coconut husks in disturbed, 

agricultural habitat.  The species now found in residential and agricultural areas were once native 

to forested habitats.  Prior to recent, focused survey efforts, the relatively low numbers of 

specimens of Brachymeles in museum collections handicapped our efforts at delimiting species.  

The rarity of Brachymeles in collections was due to their secretive, semi-fossorial lifestyle.  

This is the first, species-level phylogenetic study of Brachymeles.  To date, taxonomic 

reviews of Brachymeles have focused solely on morphological variation (Brown, 1956; Brown 

and Rabor, 1967; Brown and Alcala, 1980; Brown and Alcala, 1995; Hikida, 1982).  It is 

apparent that species diversity in the genus has been considerably underestimated; accordingly, 

discovery of additional undocumented (possibly cryptic) diversity is anticipated in other species 

groups (e.g., Siler et al., 2009a, 2010a,b).  A number of studies have shown that the evolution of 

a burrowing lifestyle is correlated with decreasing dispersal abilities (Selander et al., 1974; 

Patton and Yang, 1977; Patton and Feder, 1978; Nevo, 1979; Wiens et al., 2006).  Many 
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Brachymeles lineages have experienced reduction or loss of limbs, which may further reduce 

vagility (Daniels et al., 2005; Mulvaney et al., 2005; Wiens et al., 2006).  Through time, reduced 

dispersal abilities may lead to increasingly patchy distributions, reduced gene flow between 

populations, and the accumulation of inter-population differences (Nevo, 1979).  However, the 

role that geological history and complex geography play on the dispersal abilities and 

diversification patterns of Brachymeles species remains unknown.  Regardless of what processes 

produce species diversity, we expect that additional species await discovery.  With several 

species represented by only a few vouchered specimens, and frequent morphological 

convergence, it is clear that a comprehensive phylogenetic analysis of the genus will be required 

to assess, with accuracy, the species diversity within Brachymeles. 

Following the recognition of Brachymeles boholensis, B. boulengeri, B. tungaoi, B. kadwa, B. 

mindorensis, B. orientalis, B. schadenbergi, B. taylori, and B. vindumi there are now 13 

pentadactyl species of Brachymeles.  Of these, eight are large-bodied (B. bicolor, B. tungaoi, B. 

kadwa, B. makusog, B. orientalis, B. schadenbergi, B. talinis, and B. vindumi) and five (B. 

boholensis, B. boulengeri, B. gracilis, B. mindorensis, and B. taylori) have moderately sized 

bodies.  The distribution of pentadactyl species in the Philippines is relatively even across the 

major recognized faunal regions, with four species known to occur in the Luzon Faunal Region, 

five in the Mindanao Faunal Region, three in the Visayan Faunal Region, one in the Mindoro 

Faunal Region, and one in the Sulu archipelago (Brown and Alcala, 1980, Brown and Alcala, 

1995; Brown and Diesmos, 2002; Siler et al., 2010a).  In contrast, the distribution of total species 

diversity in the genus is less uniform, with 11 species known from the Luzon Faunal Region 

versus six in the Mindanao Faunal Region, six in the Visayan Faunal Region, and only one and 

two in the Sulu archipelago and Mindoro Faunal Region respectively (Brown and Alcala, 1980; 
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Brown and Alcala, 1995; Brown and Diesmos, 2002; Siler et al., 2009a, 2010a,b).  New species 

discoveries on Luzon Island have occurred with consistency during the last two decades; given 

the island’s complex mountain ranges (Sierra Madres, Cordillera, Zambales, Bicol Peninsula 

volcanoes) and geographic complexity (Defant et al., 1989; Yumul et al., 2009), the increase in 

the region’s faunal diversity is likely to continue (Ross and Gonzales, 1992; Brown et. al. 

1995a,b, 1999, 2000a,b, 2007; Siler et al., 2009a, 2010a,b).  It is worth noting that efforts to 

survey Mindanao have been less extensive than efforts on Luzon; this may account for some of 

the differences in diversity between the regions—which may be artifacts of sampling biases. 

At present there remains one polytypic species (B. gracilis) and two “widespread” species (B. 

bonitae and B. samarensis), all with distributions spanning boundaries between recognized 

faunal regions (Brown and Alcala, 1980).  Closer investigation of island populations within each 

of these species may result in the discovery of new diversity in the genus.  As our understanding 

of the total diversity within Brachymeles increases, it is important that continued efforts be made 

to conduct surveys focused on rotting log and leaf litter microhabitats throughout the ranges of 

all species.  Accurate data on the distributions of these species will allow for a complete 

assessment of the geographic ranges of the species and appropriate decision of conservation 

status and actions can be made.  At present, all nine species are known or believed to be common 

throughout their ranges.  Although these species currently inhabit highly disturbed, agricultural 

and residential areas, no studies on the long-term effect of deforestation on populations of 

Brachymeles exist.  Therefore, according to the IUCN categories and classification structure, we 

consider the conservation status of these species as “Least Concern (LC),” pending the collection 

of additional information that might suggest otherwise. 
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Figure 3.6. Illustration of head of adult female Brachymeles boholensis (KU 323972) and adult 

male neotype of Brachymeles boulengeri (PNM 9720; formerly KU 307756) in dorsal, lateral, 

and ventral views.  Taxonomically diagnostic head scales are labeled as follows:  C, chin shield; 

F, frontal; FN, frontonasal; FP, frontoparietal; IL, infralabial; IP, interparietal; L, loreal; M, 

mental; N, nasal; P, parietal; PF, prefrontal; PM, postmental; PN, postnasal; PO, preocular; PSO, 

presubocular; R, rostral; SC, supraciliary; SL, supralabial; SN, supranasal; and SO, supraocular.  

Roman numerals indicate scales in the supraocular series, with Arabic numbers indicating scales 

in the supraciliary series.  Illustrations by CDS. 
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Figure 3.7. Illustration of head of adult male Brachymeles mindorensis (KU 304343) and adult 

female Brachymeles taylori (KU 324049) in dorsal, lateral, and ventral views.  Labels for 

taxonomically diagnostic head scales follow those shown in Figure 3.6.  Illustrations by CDS. 



 211 

 



 212 

 

 

 

 

 

 

 

 

Figure 3.8. Illustration of head of adult male Brachymeles orientalis (KU 311241) and adult 

male Brachymeles schadenbergi (KU 314992) in dorsal, lateral, and ventral views. Labels for 

taxonomically diagnostic head scales follow those shown in Figure 3.6.  Illustrations by CDS. 
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Figure 3.9. Illustration of head of adult male Brachymeles talinis (KU 306769) and adult male 

holotype of Brachymeles kadwa (PNM 9721; formerly KU 323091) in dorsal, lateral, and ventral 

views. Labels for taxonomically diagnostic head scales follow those shown in Figure 3.6.  

Illustrations by CDS. 
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Figure 3.10. Illustration of head of adult male holotype of Brachymeles tungaoi (PNM 9722; 

formerly KU 323933) and adult male holotype of Brachymeles vindumi (CAS 60724) in dorsal, 

lateral, and ventral views. Labels for taxonomically diagnostic head scales follow those shown in 

Figure 3.6.  Illustrations by CDS. 
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Figure 3.11. Photographs in life of (A) Brachymeles boulengeri (KU 307756), SVL = 98.0 mm, 

(B) Brachymeles taylori (RMB 3283, deposited at PNM), SVL = 81.0 mm, (C) Brachymeles 

boholensis (RMB 2877, deposited at PNM), female, SVL = 89.0 mm, (D) Brachymeles kadwa 

(KU 304593), SVL = 101.0 mm, (E) Brachymeles schadenbergi (KU 314973), female, SVL = 

107.0 mm, (F) Brachymeles orientalis (KU 311240), juvenile, SVL = 51.0 mm, (G) Brachymeles 

orientalis (KU 324029), female, SVL = 91.0 mm, and (H) Brachymeles talinis (RMB 3305; 

deposited at PNM), SVL = 139.0 mm.  Photographs by CDS and RMB. 
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CHAPTER 4 

Phylogeny-based species delimitation in Philippine slender skinks (Reptilia: Squamata: 

Scincidae: Brachymeles) II: taxonomic revision of Brachymeles samarensis and description of 

five new species 

 

Few genera of scincid lizards are known to possess species representing a full spectrum of 

body forms, from fully limbed, pentadactyl species to limbless species (see Siler and Brown, 

2010 for review).  Within the genus Brachymeles, all but two of the 26 recognized species are 

endemic to the Philippines, with the exceptions being a single species (B. apus) from northern 

Borneo and another (B. miriamae) from Thailand (Brown and Alcala, 1980; Hikida, 1982; Siler, 

2010; Siler and Brown, 2010, 2011; Siler et al., 2009a, 2010a,b, in press a,b,c,d).  Thirteen 

species are pentadactyl (bicolor, boholensis, boulengeri, gracilis, kadwa, makusog, mindorensis, 

orientalis, schadenbergi, talinis, taylori, tungaoi, and vindumi), eight are non-pentadactyl, with 

incompletely developed limbs and reduced numbers of digits (bonitae, cebuensis, elerae, 

muntingkamay, pathfinderi, samarensis, tridactylus, and wrighti), and five are entirely limbless 

(apus, minimus, miriamae, lukbani, and vermis).   

Within the non-pentadactyl species there has been documented a wide range of limb- and 

digit-reduced states, from minute limbs that lack full digits (bonitae, cebuensis, muntingkamay, 

samarensis, tridactylus), to moderately developed limbs with four to five digits on the hands and 

feet (elerae, pathfinderi, wrighti: Duméril and Bibron, 1839; Brown, 1956; Brown and Rabor, 

1967; Brown and Alcala, 1980; Taylor, 1917, 1918, 1925; Siler, 2010; Siler and Brown, 2010, 

2011; Siler et al., 2009a, 2010a,b, in press a,b,c,d).  All species are semi-fossorial and typically 

found in dry, rotting material inside or underneath decaying logs or in loose soil, forest floor 

detritus, and leaf litter. 
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Figure 4.1. Map of the Philippine islands, with island labels provided for islands with 

representative samples used for this study.  The five recognized major Pleistocene Aggregate 

Island Complexes (PAICs), major island groups, and additional deep-water islands are labeled 

for reference.  Islands of the Romblon Island Group are designated by the first letter of the island 

name (T, Tablas Island; R, Romblon Island; S, Sibuyan Island).  Current islands in the 

Philippines are shown in medium grey; light gray areas enclosed in black 120 m bathymetric 

contours indicate the hypothesized maximum extent of land during the mid- to late Pleistocene. 
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Although the genus was named well over 150 years ago (Duméril and Bibron, 1839), the rate 

of Brachymeles species descriptions reached an apparent asymptotic maximum in 1980 (Brown 

and Alcala, 1980).  The one exception is B. minimus, a legless species described in 1995 (Brown 

and Alcala, 1995).  For more than a century, limited numbers of specimens in museum 

collections, combined with the similar body plans and external morphological features among 

species of Brachymeles limited assessments of species-level diversity (Taylor, 1917; Brown, 

1956; Brown and Rabor, 1967; Brown and Alcala, 1980).  Recent studies have revealed the 

species-level diversity of Brachymeles skinks to be drastically underestimated, and have 

identified numerous non-monophyletic species complexes within the Philippines (Siler, 2010; 

Siler and Brown, 2010, 2011; Siler et al., 2009a, 2010a,b, in press a,b,c,d).  Additionally, several 

rare, mid-to-high elevation species long represented by only a few specimens (e.g., Brachymeles 

bicolor, B. elerae, B. wrighti, B. pathfinderi), have recently been rediscovered and redescribed as 

valid taxa (Siler, 2010; Siler et al., in press a,b).  Together, these studies, coupled with increased 

sampling throughout the Philippines, and a new, robust molecular dataset allow us to begin 

evalutating variation across the isolated populations of widespread species in the Philippines.  

In recent studies Siler and Brown (in press) revised two polytypic species (B. boulengeri and 

B. schadenbergi) and one widespread species (B. talinis), and inferred the presence of ten 

genetically and morphologically distinct allopatric evolutionary lineages (species).  Several other 

species are still recognized as having widespread distributions that span historical faunal 

demarcations in the Philippines (Heaney, 1985; Brown and Guttman, 2002; Brown and Diesmos, 

2002, 2009), including B. samarensis and B. bonitae (Brown, 1956; Brown and Rabor, 1967; 

Brown and Alcala, 1980).  One of these species (B. samarensis) is the focus of this study. 

TAXONOMIC HISTORY 
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The genus Brachymeles was first described by Dumeril and Bibron (1839) for the small, 

limb-reduced species Brachymeles bonitae.  Three additional species (Senira bicolor [Gray, 

1845], Eumeces (Riopa) gracilis [Fischer, 1885], E. (R.) schadenbergi [Fischer, 1885]) were 

transferred to the genus by Boettger (1886) and Boulenger (1887).  These four species 

represented the known diversity in the genus for thirty years, until Taylor published a series of 

herpetofaunal descriptions in the early 1900s.  It would be fifty years before Brown (1956) 

described Brachymeles samarensis from a single juvenile specimen (FMNH 44472) collected in 

Guiuan, Samar Island, Philippines in 1945.  At the time of description, Brown (1956) 

hypothesized the species was most closely related to B. elerae due to similarities in the number 

of paravertebral scale rows.  This single juvenile would remain the only vouchered, type 

specimen of this unique, bidactyl species for more than sixty years (Brown and Alcala, 1980).   

By the time Brown and Rabor (1967) revised the genus Brachymeles, samples of specimens 

morphologically similar to B. samarensis had been collected from the islands of Luzon and 

Leyte.  Additionally, Brown and Rabor (1967) reported on a second specimen from Samar 

Island; however, no information on where the specimen was deposited or its museum catalog 

number were provided.  Although Brown and Rabor (1967) treated B. samarensis as a single 

widespread species, they referred to the species as a “complex,” suggesting they suspected that it 

contained multiple species, and noted several distinct morphological differences island 

populations, including differences in fore- and hind limb digit number and head scale patterns. 

Additional island populations of B. samarensis were subsequently sampled by the time 

Brown and Alcala (1980) revised the genus, including the Lapinig Group islands off the 

northeast coast of Bohol Island (Fig. 4.3).  Ross and Gonzales (1992) would later report on 

observations of B. samarensis from Catanduanes Island off the northeast coast of the Bicol 
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Peninsula (Fig. 4.3), and in 2001, RMB recorded B. samarensis on the southern tip of the Bicol 

Peninsula in the foothills of Mt. Bulusan (unpublished data); these extralimital range extentions 

of B. samarensis beyond the confines of the Mindanao PAIC (Brown and Diesmos, 2002, 2009) 

have been interpreted as resulting from recent dispersal events. 

To date, Brachymeles samarensis remains a widespread species spanning islands of the 

Luzon and Mindanao Pleistocene Aggregate Island Complexes (PAICs; Brown and Guttman, 

2002; Brown and Diesmos, 2002; Fig. 4.1).  Widespread distributions such as this have been the 

focus of many recent studies (Brown et al., 2000a; Siler et al., 2010a,b, 2011; Siler and Brown, 

2010, 2011; Welton et al., 2009, 2010a,b), which have revealed that few endemic Philippine 

reptiles actually possess broad distributions spanning these regional faunistic boundaries (review: 

Brown and Diesmos, 2009).  

The goal of the present study is to revise the taxonomy of the B. samarensis complex such 

that individual units (species) represent independently evolving, cohesive lineage segments 

(sensu Simpson, 1961; Wiley 1978; Frost and Hillis, 1990; de Queiroz, 1998, 1999).  

Comprehensive examination of all recently collected specimens from throughout the known 

range of B. samarensis results in the reorganization of the species complex into six distinct 

evolutionary lineages (species).  In this paper we provide a phylogenetic analysis of all of these 

taxa, fully describe each species, clarify taxonomic boundaries, and provide the first illustrations 

of all included species.  We also provide information on each species’ natural history, ecology, 

and geographic distribution. 

 

Materials and Methods 

Field work, sample collection, and specimen preservation 
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Fieldwork was conducted on Catanduanes, Lapinig Grande, Leyte, Luzon, and Samar islands, 

all in the Philippines (Fig. 4.1) between 2001 and 2009.  Specimens were collected between 900 

and 1600 hr, euthenized in aqueous chloretone, dissected for genetic samples (liver preserved in 

95% ethanol or flash frozen in liquid nitrogen), fixed in 10% formalin and eventually (< 2 mo) 

transferred to 70% ethanol.  Newly sequenced specimens are deposited in U.S. and Philippine 

museum collections, the Univrsity of Kansas Natural History Museum (KU), and the Texas 

Natural History Collections (TNHC) of the Texas Memorial Museum of the University of Texas 

at Austin. (Acknowledgments and Specimens Examined); voucher information corresponding to 

data from GenBank sequences is included in Table 4.1. 

 
Taxon sampling and outgroup selection for phylogenetic analyses 

Because our primary goal was to estimate phylogenetic relationships among the various 

populations of Brachymeles samarensis we sequenced 2–4 exemplars per sampled population.  

We included samples of Lygosoma bowringi as an outgroup representative based on relationships 

presented in a recent phylogenetic analyses of the genus Brachymeles (Siler and Brown, 2011; 

Siler et al., 2011).  Additionally, we included samples of Brachymeles apus, B. bonitae, B. 

minimus, B. lukbani, and B. cebuensis to explore the sister group relationships within the B. 

samarensis complex.  A total of 28 ingroup samples were used in phylogenetic inferences.   

 
DNA extraction, purification, and amplification 

We extracted total genomic DNA from tissues (Table 4.1) using the modified guanidine 

thiocyanate extraction method of Esselstyn et al. (2008).  The mitochondrial NADH 

Dehydrogenase Subunit 1 (ND1), NADH Dehydrogenase Subunit 2 (ND2), and the nuclear loci, 

α-enolase and PTGER4, were completely sequenced for nearly all samples using the primers and 
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protocols provided in Siler et al. (2011).  We visualized amplified products on 1.0% agarose gels, 

then purified them with 1 µL of a 20% solution of ExoSAP-IT (US78201, Amersham 

Biosciences, Piscataway, NJ) on the following thermal cycler profile: 31 min at 37º, followed by 

15 min at 80˚.  Upon successful amplification of targeted fragments, cycle-sequencing reactions 

were completed with the same primers and ABI Prism BigDye Terminator chemistry (Ver. 3.1; 

Applied Biosystems, Foster City, CA).  Cycle-sequencing products were purified with Sephadex 

Medium (NC9406038, Amersham Biosciences, Piscataway, NJ) in Centri-Sep 96 spin plates 

(CS-961, Princeton Separations, Princeton, NJ).  We analyzed purified products using an ABI 

Prism 3130xl Genetic Analyzer (Applied Biosystems), and gene sequences were assembled with 

Sequencher 4.8 (Gene Codes Corp., Ann Arbor, MI). 

 
Alignment and phylogenetic analysis 

An initial alignment was produced in Muscle v3.7 (Edgar, 2004), and manual adjustments 

were made in MacClade 4.08 (Maddison and Maddison, 2005).  No instances of insertions or 

deletions, or ambiguously aligned regions, were observed in the data, and all data were used for 

analyses.  The final alignment thus consisted of 2,570 characters.  

Phylogenetic analyses were conducted using parsimony and likelihood optimality criteria, as 

well as Bayesian methods.  Parsimony (MP) analyses were conducted in PAUP* 4.0 (Swofford, 

2002) with all characters weighted equally.  Most-parsimonious trees were estimated using 

heuristic searches with 1000 random addition-sequence replicates and tree bisection and 

reconnection (TBR) branch swapping.  To assess heuristic support, nonparametric bootstrapping 

was conducted using 1000 replicates, each with 100 random addition-sequence replicates and 

TBR branch swapping. 
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Partitioned maximum likelihood (ML) analyses were conducted in RAxMLHPC v7.04 

(Stamatakis, 2006).  The alignment was partitioned into eight regions consisting of the codon 

positions of ND1 and ND2, and the two nuclear loci, α-enolase and PTGER4, following the 

methods of Siler et al. (in press a).  Analyses that partition protein-coding genes by codon 

position have been shown to improve resulting inferences (Brandley et al., 2005).  The partitions 

were run under the same model (GTR + I) with 100 replicate best-tree inferences.  Each 

inference was performed with a random starting tree, and relied on the rapid hill-climbing 

algorithm (Stamatakis 2006).  Clade support was assessed with 1000 bootstrap pseudoreplicates.  

We considered branches receiving ≥70% bootstrap support to be well-supported (Hillis and Bull, 

1993; see also Wilcox et al., 2002).   

The Akaike Information Criterion (AIC), as implemented in jModeltest v0.1.1 (Guindon and 

Gascuel, 2003; Posada, 2008), was used to select the best model of nucleotide substitution for 

each partition (Table 4.2).  The best-fit model for each of the eight partitions (Table 4.2) was 

used for Bayesian analyses performed in MrBayes 3.1 (Ronquist and Huelsenbeck, 2003).  The 

same partitioning strategy used for maximum likelihood analyses was used for Bayesian 

inferences.  Searches over tree space were conducted with four runs, each with four chains, and 

were run for 2 × 107 generations.  Trees were sampled every 1000 generations, with 4000 

samples discarded as burn-in; this left 16001 post-burn-in trees from each run included in the 

posterior distribution of topologies.  Visual inspection for chain stationarity and high ESS values 

was conducted within the program Tracer v1.4 (Rambaut and Drummond, 2007).  Additionally, 

correlations of split frequencies and cumulative split frequencies were examined using the 

program AWTY (Nylander et al., 2008).  We considered topologies with posterior probabilities 

≥0.95 to be well-supported (Wilcox et al., 2002; Leaché and Reeder, 2002). 



 229 

 
Morphological data 

We examined fluid-preserved specimens (Appendix V) for variation in qualitative and 

mensural characters. Sex was determined by gonadal inspection, and measurements were taken 

to the nearest 0.1 mm with digital calipers by CDS.  X-rays were taken with a company cabinet 

X-ray on Kodak paper exposed at 5 miliampheres and 30 volts for 1 minute 15 seconds.  

Museum abbreviations for specimens examined follow Leviton et al. (1985). 

Meristic and mensural characters were chosen based on Siler et al. (2009a, 2010a,b): snout–

vent length (SVL), axilla–groin distance (AGD), total length (TotL), midbody width (MBW), 

midbody height (MBH), tail length (TL), tail width (TW), tail height (TH), head length (HL), 

head width (HW), head height (HH), snout–forearm length (SnFa), eye diameter (ED), eye–

narial distance (END), snout length (SNL), internarial distance (IND), fore-limb length (FLL), 

hind limb length (HLL), midbody scale-row count (MBSR), paravertebral scale-row count 

(PVSR), axilla–groin scale-row count (AGSR), Finger-III lamellae count (FinIIIlam), Toe-IV 

lamellae count (ToeIVlam), supralabial count (SL), infralabial count (IFL), supraciliary count 

(SC), and supraocular count (SO).  Additionally, we counted the number of presacral vertebrae 

(PSV) from x-ray images of specimens.  In the description, ranges are followed by mean ± 

standard deviation in parentheses. 

 

Species concept 

We follow the General Lineage Concept of species (de Queiroz, 1998, 1999) as a logical 

extension of the Evolutionary Species Concept (Simpson, 1961; Wiley, 1978; Frost and Hillis, 

1990).  We consider as distinct lineages those populations that are morphologically, and 

genetically distinct, especially if allopatric.  Lineage-based species concepts have been 
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successfully employed in the recognition of Philippine biodiversity (Brown et al., 2000a, 2002, 

2008, 2009; Brown and Guttman, 2002; Gaulke et al., 2007; Welton et al., 2009, 2010a,b; Siler 

et al., 2011) due to the highly partitioned nature of the archipelago (Brown and Diesmos, 2009), 

and because the geological history of the islands has been so well documented (Voris, 2000; 

Hall, 2002; Yumul, 2009).  In this study we use an estimate of Phylogenetic relationships as a 

guide for delimiting species but restrict our diagnoses of new species to those populations 

diagnosed by differences in non-overlapping morphological character states. 

 

Results 

Phylogeny 

Of 2,570 mitochondrial characters, 848 were parsimony-informative.  The maximum 

parsimony analysis inferred ten most parsimonious trees (tree length = 2084) that are 

topologically identical (topology not shown; bootstrap support summarized in Fig. 4.2).  The 

resulting 100 inferences from the partitioned RAxML maximum likelihood analysis show an 

average likelihood score of –ln L 12011.371112, with a single inference having the highest 

likelihood score of –ln L 12011.367644.  Trees recovered from ML, MP, and Bayesian analyses 

are topologically identical.  No inferences support the monophyly of Brachymeles samarensis.  

All analyses recover two reciprocally monophyletic clades that include distinct lineages of the B. 

samarensis complex (Fig. 4.2).  The Leyte Island and Lapinig Group Islands populations were 

recovered as a clade, sister to B. cebuensis from Cebu Island (Fig. 4.2).  True B. samarensis from 

Samar Island was recovered as sister to a clade of two limbless species of Brachymeles (B. 

minimus and B. lukbani) and the Luzon and Catanduanes island populations of B. samarensis 
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(Fig. 4.2).  Two separate lineages are recovered from the Bicol Peninsula of Luzon Island, with 

no support for their monophyly (Fig. 4.2). 

All analyses of result in the strong support of six genetically distinct lineages within the 

Brachymeles samarensis species complex (Fig. 4.2).  Uncorrected pairwise sequence 

divergences are low within the lineages defined here as species and high between these lineages 

(Table 4.3).  Percent divergences for the combined mitochondrial and nuclear data, respectively, 

show that the monophyletic lineages defined by our phylogenetic analyses (B. samarensis, B. sp. 

nov. [Leyte Island], B. sp. nov. [Lapinig Group Islands], B. sp. nov. [Catanduanes Island], B. sp. 

nov. [Southern Bicol Peninsula, Luzon Island], B. sp. nov. (Central Bicol Peninsula, Luzon 

Island]) are distinguished from congeners by levels of genetic divergence equal to, or greater 

than, those between previously defined species—viz., B. bonitae, B. cebuensis, B. minimus, B. 

lukbani (Table 4.3; Fig. 4.2).  The three most closely related lineages (B. sp. nov. [Catanduanes 

Island], B. sp. nov. [Southern Bicol Peninsula, Luzon Island], B. sp. nov. (Central Bicol 

Peninsula, Luzon Island]) are separated by 4.1–9.6% mitochondrial sequence divergence.  

Sequence divergences among the other three lineages within the B. samarensis species complex 

(B. samarensis [Samar Island], B. sp. nov. [Lapinig Group islands], B. sp. nov. (Leyte Island]) 

are greater than 9.2% (Table 4.3; Fig. 4.2).  Intraspecific sequence divergences are low in 

comparison to divergences among monophyletic lineages.  Additionally, moderate levels of 

sequence divergence are observed even when analyses are restricted to only nuclear sequence 

data (Table 4.3). 
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Figure 4.2. Maximum likelihood estimate of combined mitochondrial and nuclear data for 

samples of Brachymeles used for this study (preferred ML tree, -ln L 12011.367644; ND1, ND2, 

α-enolase, PTGER4).   Nodes are shown with numerical values corresponding to MPBP, MLBP, 

and Bayesian PP support values respectively.  Terminals are labeled with taxonomic names, 

fore- and hind limb digit states, and number of presacral vertebrae. 
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Figure 4.3. (Left) Map of the Philippine islands showing previously recognized distribution of 

Brachymeles samarensis (indicated by black shaded islands), and recognized distributions of 

other members of the B. samarensis Complex (indicated by dark gray shapes).  (Right) 

Hypothesized distributions of B. lima, B. tatlo, B. apat, B. dalawa, B. isa, and B. samarensis in 

the eastern-central Philippines. The sampling localities are indicated by black or white shapes, 

and the hypothesized geographic range of each species indicated by shaded islands and dashed 

lines, with shapes and shades of islands corresponding to the map’s key.  
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Table 4.1. Summary of specimens corresponding to genetic samples included in the study, 

general locality, and GenBank accession number.  SP = Sabah Parks Reference Collection; KU = 

University of Kansas Natural History Museum; LSUHC = La Sierra University Herpetological 

Collections; TNHC = Texas Natural History Collections of the Texas Memorial Museum of the 

University of Texas at Austin. 
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Table 4.2. Models of evolution selected by AIC and applied for partitioned, Bayesian 

phylogenetic analyses1.  

Partition AIC Model Model Applied Number of Characters 

ND1, 1st codon position GTR + I + G GTR + G 322 

ND1, 2nd codon position GTR + I + G GTR + G 322 

ND1, 3rd codon position GTR + I + G GTR + G 322 

ND2, 1st codon position TVM + I + G GTR + G 287 

ND2, 2nd codon position GTR + I + G GTR + G 287 

ND2, 3rd codon position TVM + I + G GTR + G 287 

α-enolase TVMef + G GTR + G 261 

PTGER4 HKY + I + G HKY + G 490 

1The model GTR + G was used for partitioned RAxMLHPC analyses. 
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Table 4.3. Uncorrected pairwise sequence divergence (%) for mitochondrial data (below 

diagonal) and nuclear data (above diagonal), for Brachymeles samarensis, B. isa, B. dalawa, B. 

lima, B. apat, B. tatlo, B. bonitae, B. cebuensis, B. lukbani, and B. minimus (Fig. 4.2).  

Percentages on the diagonal represent intraspecific genetic diversity (bolded for emphasis). 
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Morphology 

Variation in morphological characters (Tables 4.4–4.6) mirrors the results observed in 

phylogenetic analyses, and supports the recognition of six Brachymeles samarensis group 

lineages.  Characters differing among these six lineages include: digit number, presacral 

vertebrae number, degree of digit development, head and body scale counts and patterns, and 

pigmentation patterns (Tables 4.4–4.6; species accounts below), all of which are typical 

morphological diagnostic characters employed historically by taxonomists working with this 

genus (review: Brown and Alcala, 1980).  We observed no intraspecific mensural or meristic 

differences between the sexes of any of the 6 species. 

Superficially, the six lineages within the B. samarensis complex appear morphologically 

similar, especially in overall body size; however, upon closer inspection, three distinct body 

forms are observed.  Among the six lineages, two are observed to be tridactyl (B. sp. nov. [Leyte 

Island] and B. sp. nov. [Lapinig Group Islands]), three are observed to be bidactyl (B. 

samarensis, B. sp. nov. [Catanduanes Island] and B. sp. nov. [Central Bicol Peninsula, Luzon 

Island]), and one is observed to be bidactyl, but with small, highly-reduced, and near 

imperceptable claws (B. sp. nov. [Southern Bicol Peninsula, Luzon Island]).  Additionally, 

numerous non-overlapping differences were detected in meristic, mensural, osteological, and 

color pattern characters for each complex member, readily defining six distinct lineages within 

the complex (Tables 4.4–4.6). 

In summary, each lineage (most of which are allopatric) possesses unique and non-

overlapping suites of diagnostic character states of morphology, perfectly corresponding to the 

six clades defined in phylogenetic analyses of DNA sequence data.  Combined with 
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biogeographic evidence, and clearly separate geographical ranges, our data suggest the presence 

of six evolutionary lineages, worthy of taxonomic recognition.  

 

Taxonomic conclusions 

Our estimate of phylogeny (Fig. 4.2), biogeographically separate ranges of island or region 

endemic species, diagnostic, non-overlapping morphological character states, and genetic 

distances between the taxa (Table 4.3) indicate the distinctiveness of a new species from 

Catanduanes Island, two new species from the Bicol Peninsula of Luzon Island, a new species 

from the Lapinig Group Islands, and a new species from Leyte Island (Table 4.3; Fig. 4.2).  Each 

of the six species of the B. samarensis complex is morphologically distinct from each other and 

all other known species in the genus, and each of the eleven species of Brachymeles included in 

phylogenetic analyses also are genetically distinct.  Each monophyletic lineage, with the 

exception of the two occurring on the Bicol Peninsula of Luzon Island, is endemic to single 

islands within two isolated PAICs, thereby providing additional support for the distinctiveness of 

each clade’s evolutionary history and lineage integrity.  Accordingly, we recognize Brachymeles 

samarensis as a species that occurs only on Samar Island in the eastern Visayan (central) 

Philippine islands (e.g., Mindanao PAIC; Fig. 4.3), and hereby recognize the five additional 

lineages within the B. samarensis species complex each as new species. 

 

TAXONOMIC ACCOUNTS 

Brachymeles samarensis Brown 1956: 6 

Figs. 4.3, 4. 4 

Brachymeles samarensis, Brown, 1956, Type locality: Guinuan, Samar Island, Philippines 
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(FMNH 44472); Brown and Rabor, 1967; Brown and Alcala, 1970; Brown and Alcala, 1980. 

Diagnosis.—Brachymeles samarensis can be distinguished from congeners by the following 

combination of characters:  (1) body size small (SVL 57.9–66.1 mm); (2) limbs bidactyl; (3) 

limb length small; (4) supralabials six; (5) infralabials six; (6) suparciliaries six; (7) supraoculars 

five; (8) midbody scale rows 19–22; (9) axilla–groin scale rows 66–69; (10) paravertebral scale 

rows 86–88; (11) pineal eye spot present; (12) prefrontals not contacting on midline; (13) 

frontoparietals contact; (14) mental/1st infralabial fusion absent; (15) postnasals absent; (16) 

enlarged chin shields in three pairs; (17) nuchal scales differentiated; (18) fourth and fifth 

supralabial below eye; (19) auricular opening absent; (20) presacral vertebrae 45; and (21) 

uniform body color (Tables 4.4, 4.5). 

Comparisons.—Characters distinguishing Brachymeles samarensis from all non-pentadactyl, 

limbed species of Brachymeles are summarized in Tables 4.4 and 4.5.  Brachymeles samarensis 

most closely resembles B. lima, B. apat, B. tatlo, and populations of B. bonitae, the only other 

bidactyl species.  However, B. samarensis differs from these four taxa by having midbody scale 

rows as few as 19 and axilla–groin scale rows as few as 66 (Table 4.5).  Brachymeles samarensis 

further differs from B. lima by having fewer presacral vertebrae, six infralabials, the presence of 

contact between frontoparietals, and non-fusion of mental and first infralabials (Tables 4.4, 4.5); 

from B. apat by having a smaller maximum relative tail length (Table 4.4); from B. tatlo by 

having greater snout–vent lengths among males and females, fewer presacral vertebrae, and 

fewer paravertebral scale rows (Tables 4.4, 4.5); and from B. bonitae by having only bidactyl 

body forms, longer relative hind limb lengths, fewer presacral vertebrae, fewer paravertebral 

scale rows, six supralabials, six infralabials, six supraciliaries, five supraoculars, the presence of 

contact between frontoparietals, and non-fusion of mental and first infralabials (Tables 4.4, 4.5). 
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Brachymeles samarensis can be distinguished from all limbless species of Brachymeles (B. 

apus, B. lukbani, B. minimus, B. miriamae, B. vermis) by having limbs; and from all pentadactyl 

species of Brachymeles (B. boholensis, B. boulengeri, B. bicolor, B. gracilis, B. kadwa, B. 

makusog, B. mindorensis, B. orientalis, B. schadenbergi, B. talinis, B. taylori, B. tungaoi, B. 

vindumi) by having non-pentadactyl (vs. pentadactyl) limbs, shorter fore-limb lengths (less than 

2.6 mm vs. greater than 5.9 mm), shorter hind limb lengths (less than 3.1 mm vs. greater than 

10.3 mm), a narrower body (less than 6.4 mm vs. greater than 7.9 mm), and by the absence of a 

postnasal scale and auricular opening (vs. presence). 

Description (based on holotype description and six referred specimens).—Details of the head 

scalation of an adult female are shown in Figure 4.5.  Measurements of the holotype are provided 

below in brackets.  Body small, slender; maximum SVL 57.9 mm for males, 66.1 mm for 

females, [43.5, juvenile] (Tables 4.4, 4.5); head weakly differentiated from neck, nearly as wide 

as body, HW 7.3–9.2% (8.3 ± 0.7) SVL, 91.4–117.8% (102.7 ± 10.8) HL; HL 36.6–42.5% (38.8 

± 2.1) SnFa; SnFa 18.8–23.5% (20.9 ± 1.6) SVL; snout short, bluntly rounded in dorsal and 

lateral profile, SNL 50.9–55.3% (53.3 ± 1.8) HL; ear completely hidden by scales; eyes small, 

ED 1.3–1.6% (1.4 ± 0.1) SVL, 17.0–18.7% (17.6 ± 0.6) HL, 42.6–48.0% (45.8 ± 2.1) END, 

pupil subcircular; body slightly depressed, nearly uniform in thickness, MBW 109.1–150.6% 

(130.4 ± 14.9) MBH; scales smooth, glossy, imbricate; longitudinal scale rows at midbody 19–

22 [22]; paravertebral scale rows 86–88 [86]; axilla–groin scale rows 66–69; limbs short, poorly 

developed, with digits reduced to two claws on both fore-limbs and hind limbs, finger and toe 

lamellae absent; FLL 2.4–5.7% (3.9 ± 1.3) AGD, 1.8–3.9% (2.9 ± 0.9) SVL; HLL 5.3–7.2% (6.2 

± 0.7) AGD, 4.0–5.0% (4.6 ± 0.4) SVL [6.9]; tail not as wide as body, gradually tapered towards 

end, TW 70.2–82.6% (76.7 ± 5.0) MBW, TL 56.5–80.6% (68.4 ± 11.6) SVL. 
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Rostral projecting onto dorsal snout to point in line with middle of nasal, broader than high, 

in contact with frontonasal; frontonasal wider than long; nostril ovoid, in center of single 

trapezoidal nasal, longer axis directed anteroventrally and posterodorsally; supranasals present, 

large, broadly separated; postnasals absent; prefrontals moderately separated; frontal octagonal-

shaped, its anterior margin in moderate contact with frontonasal, in contact with first two anterior 

supraoculars, 3× wider than anterior supraocular; supraoculars five; frontoparietals moderate, in 

broad medial contact, each frontoparietal in contact with interior three supraoculars; interparietal 

moderate, its length roughly equal to midline length of frontoparietal, longer than wide, 

diamond-shaped, wider anteriorly; parietals broader than frontoparietals, in broad contact behind 

interparietal; nuchals enlarged; two loreals, decreasing in size from anterior to posterior, anterior 

loreal about as long as and slightly higher than posterior loreal; one preocular; one presubocular; 

supraciliaries six, the anteriormost contacting prefrontal and separating posterior loreal from first 

supraocular, posteriomost extending to posterior edge of fifth supraocular; single subocular scale 

row complete, in contact with supralabials; lower eyelid with one row of scales; supralabials six, 

first 2× size of other supralabials, fourth and fifth below eye; infralabials six (Fig. 4.4). 

Mental wider than long, in contact with first infralabials; postmental single, enlarged, its 

width equal to width of mental; followed by three pairs of enlarged chin shields, first pair in 

broad medial contact, second pair wider than first, broadly separated by single medial scale, third 

pair separated by three medial scales (Fig. 4.4). 

Scales on limbs smaller than body scales; scales on dorsal surfaces of digits wrapping around 

lateral edges of digits; lamellae absent; palmar surfaces of hands and plantar surfaces of feet with 

several small, irregular scales, each with irregular raised anterior edges; fore-limb digits equal in 
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size; hind limb digits unequal in size, middle digit greatest in length, first and third digits equal 

in length. 

Coloration in preservative.—The ground color of the body is medium brown, with each 

dorsal scale having a dark, auburn streak on the anterior two thirds to one half of the scale with 

light brown posterior. Streaks on each individual scale consist of four to seven longitudinal thin 

lines of auburn pigment with smudges of auburn between streaks. Posterior edge of all body 

scales transparent. The streaks are present around the entire body and more distinct on the 

ventrum. Ventral scales have auburn streak at the anterior end with cream color posterior. 

Caudals and subcaudals coloration matches ventral body coloration. Forelimb and hind limb 

scales are same color as their surrounding body scales.  Precloacal scale coloration matches 

surrounding ventral scale coloration. Head scales have mottled light and dark brown coloration 

that match dorsal background coloration.  Supraocular scales, rostral, nasal, supranasal, and 

supralabials are gray-cream color. The mental, infralabial, postmental, and chin shield scales are 

cream with slight brown mottling with lighter appearance compared to bordering ventral scales. 

Coloration in life.—Coloration in life closely matches the coloration in preservative with 

minor differences, including a dark brown body color and dark brown to black streaks of 

pigmentation. 

Variation.—Morphometric variation of the series is summarized in Table 4.6.  We observed 

a single instance of digit variation, where one specimen (KU 310849) has no fore-limb digits and 

two hind limb digits.  All examined specimens have two loreals with the exception of a single 

specimen (KU 310852), which has a single loreal on the right side of the body resulting from the 

fusion of the first and second loreals.  Additionally, the first and second pairs of enlarged chin 

shields are equal in width among all examined specimens with the exception of a single 
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specimen (KU 310850), in which the width of the second pair of enlarged chin shield is greater 

than the width of the first pair. 

Distribution.—Brachymeles samarensis is known only from Samar Island (Fig. 4.3). 

Ecology and natural history.—Brachymeles samarensis occurs in primary- and secondary-

growth forest habitats.  In contrast to the other members of the B. samarensis complex, this 

species appears to be a forest obligate, and was only observed within rotting logs in secondary-

growth forest.  Three species of Brachymeles have been confirmed to occur on Samar Island (B. 

gracilis hilong, B. orientalis, and B. samarensis (Brown and Alcala, 1980; Siler and Brown, 

2010; Siler et al., 2011, in press c,d).  

Other sympatric lizard species observed on Samar Island include: (Agamidae) Bronchocela 

cristatella, Draco bimaculatus, D. ornatus, D. reticulates, Gonocephalus semperi, Hydrosaurus 

pustulatus; (Gekkonidae) Cyrtodactylus annulatus, C. sumoroi, Gehyra mutilata, Gekko gecko, 

G. mindorensis, Hemidactylus frenatus, H. platyurus, Hemiphyllodactylus typus, Lepidodactylus 

aureolineatus, L. planicaudus, Pseudogekko compressicorpus; (Scincidae), Emoia atrocostata, 

Eutropis multicarinata, E. multifasciata, Lamprolepis smaragdina, Lipinia pulchella, L. 

quadrivittata, Sphenomorphus acutus, S. cumingi, S. fasciatus, S. jagori, S. cf. mindanensis, S. 

steerei, S. variagatus, Tropidophorus misaminus; (Varanidae) Varanus cumingi samarensis.  

 

Brachymeles isa sp. nov. 

Figs. 4.3, 4.6, 4.7 

Holotype.—PNM 9746 (CDS Field No. 3418, formerly KU 311228), adult female, collected 

under rotting logs in secondary-growth forest (10:00–12:30 hr) on 8 November 2007, in the Sitio 
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San Vicente Tree Nursery, Barangay Pilim, Baybay City, Leyte Province, Leyte Island, 

Philippines (10°43'35" N, 124°49'05" E; WGS-84), by CDS and J. Fernandez. 

Paratopotypes.—One adult male (KU 311225), one adult female (KU 311229), and three 

juveniles (KU 311224, PNM 9747–48) collected between 29 October and 8 November 2007. 

Paratypes.—One adult male (CAS-SU 26120), four adult females (CAS-SU 26110, 26112, 

26121–22), and two juveniles (CAS-SU 26115, 26123) collected between 1 May and 4 June 

1964, in Barrio Tambis, Municipality of Burauen, Leyte Province, Leyte Island, Philippines 

(11°00'37" N, 124°52'19" E; WGS-84), by D. S. Rabor; one adult male (CAS-SU 26771), two 

adult females (CAS-SU 26770, 26772), and one juvenile (CAS-SU 26773), collected between 10 

June and 17 July 1964, in the Municipality of Mahaplag, Leyte Province, Leyte Island, 

Philippines (10°35'42" N, 124°59'13" E; WGS-84), by D. S. Rabor. 

Diagnosis.—Brachymeles isa can be distinguished from congeners by the following 

combination of characters:  (1) body size small (SVL 47.2–66.1 mm); (2) limbs tridactyl; (3) 

limb length small; (4) supralabials six; (5) infralabials five or six; (6) suparciliaries six; (7) 

supraoculars five; (8) midbody scale rows 21–22; (9) axilla–groin scale rows 71–74; (10) 

paravertebral scale rows 93–96; (11) pineal eye spot present; (12) prefrontals not contacting on 

midline; (13) frontoparietals contact; (14) enlarged chin shields in three pairs; (15) nuchals 

enlarged; (16) fourth and fifth supralabial below eye; (17) auricular opening absent; (18) 

presacral vertebrae 47; and (19) uniform body color (Tables 4.4, 4.5). 

Comparisons.—Characters distinguishing Brachymeles isa from all non-pentadactyl, limbed 

species of Brachymeles are summarized in Tables 4.4 and 4.5.  Brachymeles isa most closely 

resembles B. dalawa, B. muntingkamay, and B. tridactylus, the only other tridactyl species, but 

differs from these three taxa by having five or six infralabials (Table 4.5).  Brachymeles isa 
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further differs from B. dalawa by having longer body sizes among males, longer relative fore-

limb lengths, a greater number of paravertebral scale rows, a uniform body color, and by the 

absence of contact between prefrontals (Tables 4.4, 4.5); from B. muntingkamay by having a 

shorter maximum body length, shorter fore-limb lengths, shorter hind limb lengths, a greater 

number of axilla–groin scale rows, a greater number of paravertebral scale rows, six 

supraciliaries, five supraoculars, the presence of a pineal eyespot, the absence of contact between 

prefrontals, the presence of contact between frontoparietals, the presence of differentiated 

nuchals, the presence of a continuous subocular scale row, and the absence of longitudinal rows 

of spots around the body (Tables 4.4, 4.5); and from B. tridactylus by having a shorter maximum 

body length, shorter relative tail length, shorter fore-limb length, a greater number of presacral 

vertebrae, six supralabials, six supraciliaries, five supraoculars, the presence of contact between 

frontoparietals, the presence of a continuous subocular scale row, and the absence of longitudinal 

rows of spots around the body (Tables 4.4, 4.5). 

Brachymeles isa can be distinguished from all limbless species of Brachymeles (B. apus, B. 

lukbani, B. minimus, B. miriamae, B. vermis) by having limbs; and from all pentadactyl species 

of Brachymeles (B. boholensis, B. boulengeri, B. bicolor, B. gracilis, B. kadwa, B. makusog, B. 

mindorensis, B. orientalis, B. schadenbergi, B. talinis, B. taylori, B. tungaoi, B. vindumi) by 

having non-pentadactyl (vs. pentadactyl) limbs, shorter fore-limb lengths (less than 1.7 mm vs. 

greater than 5.9 mm), shorter hind limb lengths (less than 3.0 mm vs. greater than 10.3 mm), a 

narrower body (less than 5.3 mm vs. greater than 7.9 mm), and by the absence of a postnasal 

scale and auricular opening (vs. presence).  

Description of holotype.—Details of the head scalation are shown in Figure 4.7.  Adult 

female, body small, slender, SVL 59.1 mm; head weakly differentiated from neck, nearly as 
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wide as body, HW 6.5% SVL, 105.5% HL; HL 31.5% SnFa; SnFa 19.5% SVL; snout short, 

bluntly rounded in dorsal and lateral profile, SNL 71.2% HL; ear completely hidden by scales; 

eyes small, ED 1.7% SVL, 27.5% HL, 56.2% END, pupil subcircular; body slightly depressed, 

nearly uniform in thickness, MBW 126.7% MBH; scales smooth, glossy, imbricate; longitudinal 

scale rows at midbody 22; paravertebral scale rows 93; axilla–groin scale rows 71; limbs short, 

poorly developed, with digits reduced to three claws on both fore-limbs and hind limbs, finger 

and toe lamellae absent; FLL 2.7% AGD, 2.1% SVL; HLL 5.2% AGD, 4.1% SVL; tail not as 

wide as body, gradually tapered towards end, TW 73.7% MBW, TL 69.4% SVL. 

Rostral projecting onto dorsal snout to point in line with posterior edge of nasal, broader than 

high, in contact with frontonasal; frontonasal wider than long; nostril ovoid, in center of single 

trapezoidal nasal, longer axis directed anteroventrally and posterodorsally; supranasals present, 

large, broadly separated; postnasals absent; prefrontals broadly separated; frontal nearly 

diamond-shaped, its anterior margin in moderate contact with frontonasal, in contact with first 

two anterior supraoculars, 4× wider than anterior supraocular; supraoculars five; frontoparietals 

moderate, in narrow medial contact, each frontoparietal in contact with interior three 

supraoculars; interparietal moderate, its length roughly equal to midline length of frontoparietal, 

longer than wide, diamond-shaped, wider anteriorly; parietals as broad as frontoparietals, in 

broad contact behind interparietal; enlarged nuchals present; loreals two, decreasing in size from 

anterior to posterior, anterior loreal about as long as and slightly higher than posterior loreal; one 

preocular; one presubocular; supraciliaries six, the anteriormost contacting prefrontal and 

separating posterior loreal from first supraocular, posteriomost extending to middle of fifth 

supraocular; single subocular scale row complete, in contact with supralabials; lower eyelid with 
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one row of scales; supralabials six, first 2× size of other supralabials, third, fourth, and fifth 

below eye; infralabials six (Fig. 4.6). 

Mental wider than long, in contact with first infralabials; postmental single, enlarged, its 

width greater than width of mental; followed by three pairs of enlarged chin shields, first pair in 

broad medial contact, equal in width to third pair, second pair wider than first and third, broadly 

separated by single medial scale, third pair separated by three medial scales (Fig. 4.6). 

Scales on limbs smaller than body scales; scales on dorsal surfaces of digits wrapping around 

lateral edges of digits; lamellae absent; palmar surfaces of hands and plantar surfaces of feet with 

several small, irregular scales, each with irregular raised anterior edges; fore-limb digits equal in 

size; hind limb digits unequal in size, middle digit greatest in length, first and third digits equal 

in length. 

Coloration in preservative.—The ground color of the body is medium brown, with each 

dorsal scale having a dark, auburn streak on the anterior two thirds to one half of the scale with 

light brown posterior. Posterior edge of all body scales transparent. The streaks are present 

around the entire body.  Ventral scales have smaller streaks restricted to the anterior one third to 

two-thirds of each scale with cream color posterior. Ventral caudal and subcaudal scales have 

less cream pigmentation, giving it a darker appearance. Streaks on each individual scale consist 

of four to six longitudinal thin stripes  of auburn piugment with smudges of auburn between 

them. Forelimb and hind limb scales are darker shade of brown. Forelimb scales have weakly 

defined scale boundaries.  Precloacal scales have slightly lighter coloration than surrounding 

ventral scales. Head scales have mottled light and dark brown coloration that match dorsal body 

scales. The rostral, nasal, supranasal, and first supralabial scales have cream coloration slightly 

lighter than supraocular scales.  Supraocular scales and other supralabial scales possses a ligher 
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gray-umber coloration. Supralabial, infralabial, postmental, chin shields are beige with slight 

light brown mottling. 

Coloration in life.—(Fig. 4.7).  Coloration in life closely matches the coloration in 

preservative with minor differences, including a dark brown body color and dark brown to black 

streaks of pigmentation. 

Variation.—Morphometric variation of the series is summarized in Table 4.6.  We observed 

a single instance of digit variation, where one specimen (KU 311225) has two hind limb digits.  

The pineal eyespot was observed to be absent in a single specimen (CAS 26120), and present in 

all other examined specimens.  The number of infralabials was observed to vary among 

examined specimens:  more than half of the specimens possess six infralabials six (CAS-SU 

26110, 26112, 26123, 26772, 26120, 26771, KU 311224–8), and five specimens possess five 

infralabials (CAS-SU 26121–2, 26770, 26773, KU 311229).  Five specimens were observed with 

enlarged mental scales resulting from fusion with the 1st infralabial (CAS-SU 26121–2, 26770, 

26773, KU 311229).  Additionally, all specimens have two loreals with the exception of four 

specimens, which have single, enlarged loreals on both sides of the head (KU 311227) or on only 

the left side of the head (KU 311224–5, 311229). 

Distribution.—Brachymeles isa is known only from Leyte Island (Fig. 4.3). 

Ecology and natural history.—Brachymeles isa occurs in agricultural habitats, as well as in 

disturbed and secondary-growth forest.  Little original, forest remains on Leyte Island, but we 

assume the species once also occurred in first growth forest at low elevations.  Individuals have 

been observed in the rotting material within fallen logs, and leaf litter surrounding the root 

networks of trees.  Similar to B. samarensis, this species is found in sympatry with B. orientalis 

and B. gracilis hilong.  
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Other lizard species observed in sympatry on Leyte Island include: (Agamidae) Bronchocela 

cristatella, Draco bimaculatus, D. ornatus, D. reticulates, Gonocephalus semperi, Hydrosaurus 

pustulatus; (Gekkonidae) Cyrtodactylus annulatus, C. gubaot, Gehyra mutilata, Gekko gecko, G. 

mindorensis, Hemidactylus frenatus, H. platyurus, Hemiphyllodactylus typus, Lepidodactylus 

aureolineatus, L. planicaudus, Pseudogekko compressicorpus; (Scincidae), Emoia atrocostata, 

Eutropis multicarinata, E. multifasciata, Lamprolepis smaragdina, Lipinia pulchella, L. 

quadrivittata, Sphenomorphus acutus, S. cumingi, S. fasciatus, S. jagori, S. cf. mindanensis, S. 

steerei, S. variagatus, Tropidophorus misaminus; (Varanidae) Varanus cumingi samarensis. 

Etymology.—CDS is pleased to name this new species in honor of the Philippine-American 

Education Foundation (PAEF), in honor of their continued support and contributions to this 

research.  As the Fulbright Commission in the Philippines, PAEF is responsible for leading the 

advancement of international exchange programs between the United States and the Philippines, 

with the mission of promoting mutual understanding between citizens of both countries.  

Suggested common name:  The PAEF Slender Skink.  

 

Brachymeles dalawa sp. nov. 

Figs. 4.3, 4.6, 4.8 

Holotype.—PNM 9749 (CDS Field No. 3700, formerly KU 320466), adult male, collected 

under rotting coconut husks in secondary-growth forest (10:00–12:30 hr) on 21 March 2009, in 

Barangay Villa Milagrosa, Municipality of President Carlos P. Garcia, Bohol Province, Bohol 

Island, Philippines (10°07'16" N, 124°34'30" E; WGS-84), by CDS and J. Fernandez. 

Paratopotypes.—Nine adult males (KU 320435, 320444–6, 320451, 320462, 320466, PNM 

9754–55), 21 adult females (KU 320428–30, 320438–40, 320442, 320447, 320449–50, 320452–
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5, 320457–61, 320463, 320467), and 10 juveniles (KU 320436–7, 320441, 320443, 320448, 

320456, PNM 9750–53) collected between 19 and 21 March 2009. 

Paratypes.—One adult male (CAS-SU 28453) collected on 11 April 1967, under rotting 

coconut tree, 0.5 km SW of Barrio Pitogo, in the Municipality of Ubay, Bohol Province, Lapinig 

Grande Island, Philippines (10°07'05" N, 124°33'04" E; WGS-84), by A. C. Alcala; one adult 

female (CAS-SU 27554) collected on 15 April 1967, under rotting log in secondary-growth 

forest, in the Municipality of Ubay, Bohol Province, Polong Dako Island, Philippines (10°04'11" 

N, 124°30'14" E; WGS-84), by A. C. Alcala; three adult females (CAS-SU 27556, 28454–5) 

collected on 20 April 1967, under rotting logs and leaves in a patch of secondary-growth trees, in 

the Municipality of Ubay, Bohol Province, Lapinig Chico Island, Philippines (10°05'22" N, 

124°30'32" E; WGS-84), by A. C. Alcala. 

Diagnosis.—Brachymeles dalawa can be distinguished from congeners by the following 

combination of characters:  (1) body size small (SVL 52.7–66.1 mm); (2) limbs tridactyl; (3) 

limb length small; (4) supralabials six; (5) infralabials five; (6) suparciliaries six; (7) 

supraoculars five; (8) midbody scale rows 22–23; (9) axilla–groin scale rows 72–75; (10) 

paravertebral scale rows 90–92; (11) pineal eye spot present; (12) frontoparietals contact; (13) 

enlarged chin shields in three pairs; (14) nuchal scales differentiated; (15) fourth and fifth 

supralabial below eye; (16) auricular opening covered with scales; (17) presacral vertebrae 47; 

(18) fusion of mental and first infralabials; and (19) non-uniform body color (Tables 4.4, 4.5). 

Comparisons.—Characters distinguishing Brachymeles dalawa from all non-pentadactyl, 

limbed species of Brachymeles are summarized in Tables 4.4 and 4.5.  Brachymeles dalawa most 

closely resembles B. isa, B. muntingkamay, and B. tridactylus, the only other tridactyl species, 

but differs from these three taxa by having five infralabials, and fusion of the mental and first 
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infralabials (Table 4.5).  Brachymeles dalawa further differs from B. isa by having shorter body 

sizes among males, shorter relative fore-limb lengths, fewer paravertebral scale rows, and a non-

uniform body color (Tables 4.4, 4.5); from B. muntingkamay by having a shorter maximum body 

length, shorter fore-limb lengths, shorter hind limb lengths, a greater number of axilla–groin 

scale rows, six supraciliaries, five supraoculars, the presence of a pineal eyespot, the presence of 

contact between frontoparietals, the presence of differentiated nuchals, the presence of a 

continuous subocular scale row, and the absence of longitudinal rows of spots around the body 

(Tables 4.4, 4.5); and from B. tridactylus by having a shorter maximum body length, shorter 

relative tail length, shorter fore-limb length, shorter hind limb lenths, a greater number of 

presacral vertebrae, six supralabials, five infralabials, six supraciliaries, five supraoculars, the 

presence of contact between frontoparietals, the presence of a continuous subocular scale row, 

and the absence of longitudinal rows of spots around the body (Tables 4.4, 4.5). 

Brachymeles dalawa can be distinguished from all limbless species of Brachymeles (B. apus, 

B. lukbani, B. minimus, B. miriamae, B. vermis) by having limbs; and from all pentadactyl 

species of Brachymeles (B. boholensis, B. boulengeri, B. bicolor, B. gracilis, B. kadwa, B. 

makusog, B. mindorensis, B. orientalis, B. schadenbergi, B. talinis, B. taylori, B. tungaoi, B. 

vindumi) by having non-pentadactyl (vs. pentadactyl) limbs, shorter fore-limb lengths (less than 

1.8 mm vs. greater than 5.9 mm), shorter hind limb lengths (less than 2.7 mm vs. greater than 

10.3 mm), a narrower body (less than 5.9 mm vs. greater than 7.9 mm), and by the absence of a 

postnasal scale and auricular opening (vs. presence).  

Description of holotype.—Details of the head scalation are shown in Figure 4.7.  Adult male, 

hemipenes everted; body small, slender, SVL 56.3 mm; head weakly differentiated from neck, 

nearly as wide as body, HW 6.5% SVL, 112.7% HL; HL 31.5% SnFa; SnFa 20.9% SVL; snout 
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short, bluntly rounded in dorsal and lateral profile, SNL 65.0% HL; ear completely hidden by 

scales; eyes small, ED 1.8% SVL, 28.0% HL, 60.8% END, pupil subcircular; body slightly 

depressed, nearly uniform in thickness, MBW 120.3% MBH; scales smooth, glossy, imbricate; 

longitudinal scale rows at midbody 22; paravertebral scale rows 90; axilla–groin scale rows 73; 

limbs short, poorly developed, with digits reduced to three claws on both fore-limbs and hind 

limbs, finger and toe lamellae absent; FLL 3.3% AGD, 2.5% SVL; HLL 5.3% AGD, 3.9% SVL; 

tail not as wide as body, gradually tapered towards end, TW 81.5% MBW, TL 83.6% SVL. 

Rostral projecting onto dorsal snout to point in line with posterior edge of nasal, broader than 

high, in contact with frontonasal; frontonasal wider than long; nostril ovoid, in center of single 

trapezoidal nasal, longer axis directed anteroventrally and posterodorsally; supranasals present, 

large, broadly separated; postnasals absent; prefrontals moderately separated; frontal nearly 

diamond-shaped, its anterior margin in moderate contact with frontonasal, in contact with first 

two anterior supraoculars, 4× wider than anterior supraocular; supraoculars five; frontoparietals 

moderate, in moderate medial contact, each frontoparietal in contact with interior two 

supraoculars; interparietal moderate, its length roughly equal to midline length of frontoparietal, 

longer than wide, kite-shaped, wider anteriorly; parietals as broad as frontoparietals, in moderate 

contact behind interparietal; enlarged nuchals present; two loreals, decreasing in size from 

anterior to posterior, anterior loreal about as long as and slightly higher than posterior loreal; one 

preocular; one presubocular; supraciliaries six, the anteriormost contacting prefrontal and 

separating posterior loreal from first supraocular, posteriomost extending to middle of fifth 

supraocular; single subocular scale row complete, in contact with supralabials; lower eyelid with 

one row of scales; supralabials six, first 2× size of other supralabials, third, fourth, and fifth 

below eye; infralabials five (Fig. 4.6). 
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Mental wider than long, fused with first infralabials on both sides; postmental single, 

enlarged, its width greater than width of mental; followed by three pairs of enlarged chin shields, 

first pair in broad medial contact, equal in width to third pair, second pair wider than first and 

third, separated by single medial scale, third pair separated by three medial scales (Fig. 4.6). 

Scales on limbs smaller than body scales; scales on dorsal surfaces of digits wrapping around 

lateral edges of digits; lamellae absent; palmar surfaces of hands and plantar surfaces of feet with 

several small, irregular scales, each with irregular raised anterior edges; fore-limb digits equal in 

size; hind limb digits unequal in size, middle digit greatest in length, first and third digits equal 

in length. 

Coloration in preservative.—The ground color of the body is dark brown, with each dorsal 

scale having a dark, chocolate-brown streak on the anterior one third to one half of the scale with 

cream posterior. Posterior edge of all body scales transparent.  The streaks are present around the 

entire body. Beige coloration on scales more dominant on ventral scales. Caudals and subcaudals 

have less beige coloration on scales, giving appearance of a darker tail color. Streaks on each 

individual scale consist of four to seven longitudinal thin stripes of chocolate-brown pigment, 

with smudges of brown between each. Forelimb scales are the same color as surrounding body 

scales. Hind limb scales are dark brown and slightly darker than surrounding body scales. 

Precloacal scales match surrounding ventral scales. Head scales have mottled light and dark 

brown coloration and match the body color. The rostral, nasal, supranasal and first supralabial 

scales have a light gray coloration. Supraocular scales and other supralabial scales possess the 

darkest brown coloration of all head scales with umber brown color. The mental scale is cream. 

The chin shields and postmental scale match the bordering ventral scales. 
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Coloration in life.—(Fig. 4.8). Coloration in life closely matches the coloration in 

preservative with minor differences.  Head scales are mottled medium brown to dark brown or 

black.  The ground color of the body is medium to dark brown.  The streaks of pigmentation on 

each scale are dark brown to black. 

Variation.—Morphometric variation of the series is summarized in Table 4.6.  We observed 

variation in the degree of head scale contact:  (1) prefrontals were observed in point contact 

medially in seven specimens (KU 320444, 320449, 320458–60, 320462, 320465), and separated 

for the remaining examined specimens (CAS-SU 27554, 27556, 28453–5, KU 320428–43, 

320445–8, 320450–57, 320461, 320463–4, 320466–7); (2) frontoparietals were observed in point 

contact for a single specimen (KU 320467), and separated for the remaining examined specimens 

(CAS-SU 27554, 27556, 28453–5, KU 320428–66); (3) first pair of enlarged chin shiels were 

observed separated in a single specimen (KU 320451), and in contact medially for the remaining 

examined specimens (CAS-SU 27554, 27556, 28453–5, KU 320428–50, 320452–67).   

Additionally, the degree of fusion between loreals was observed to vary among the type 

series.  The majority of specimens examined have two loreals and no fused scales (CAS-SU 

27554, 27556, 28453–55, KU 320431–7, 320439–42, 320445–46, 320448, 320450–51, 320455, 

320457–60, 320462, 320464, 320466), five specimens have single, enlarged loreals on both sides 

of the head (KU 320444, 320449, 320452, 320456, 320467), five specimens have single, 

enlarged loreals on the left side of the head (KU 320430, 320453–54, 320463, 320465), and six 

specimens have single, enlarged loreals on the right side of the head (KU 320428–29, 320438, 

320443, 320447, 320461). 

Distribution.—Brachymeles dalawa is known from Lapinig Chico, Lapinig Grande, Tilmubo, 

and Tintiman islands off the northeast coast of Bohol Island (Fig. 4.3). 
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Ecology and natural history.—Brachymeles dalawa occurs in agricultural habitats, and 

disturbed forest habitat.  No original forest remains on any of the Lapinig Group Islands, and 

common habitat consists of grassland, rice fields, agricultural habitats, and human habitations.  

Surprisingly, B. dalawa on Lapinig Grande Island was observed to be the more common than 

any other known species of Brachymeles.  Individuals were regularly observed under piles of 

rotting cocounuts, in loose soil around trees and root systems, and in loose leaf litter.  

Interestingly, this species seems to be a ubiquitous habitat generalist on the Lapinig Group 

Islands, but has not been recorded from the nearby island of Bohol, whereas its congeners, B. 

orientalis and B. boholensis, are known.  It remains possible that populations of this species will 

eventually be discovered on the northeast coast of Bohol Island. 

Sympatric lizard species observed in the Lapinig Group islands include: (Gekkonidae) 

Hemidactylus frenatus and H. platyurus. 

Etymology.—We are pleased to name this new species in honor of Carlos Polestico Garcia.  

Born on Bohol Island, Carlos P. Garcia later became the 8th President of the Philippines.  He was 

the first Philippine president to be laid to rest in the Libingan ng mga Bayani, or Cemetary of the 

Heroes, located within Fort Bonifacio in Manila, Philippines.  The municipality of Carlos P. 

Garcia, and type locality for Brachymeles dalawa, was named after this Philippine hero.  The 

word “dalawa” is derived from the phrase Libingan ng mga Bayani.  Suggested common name:  

Lapinig Islands’ Slender Skink.  
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Table 4.4. Summary of meristic and mensural characters in all known limbed, non-pentadactyl 

species of Brachymeles.  Sample size, body length and total length among males and females, 

and general geographical distribution (PAIC = Pleistocene Aggregate Island Complexes, sensu 

Brown and Diesmos, 2002) are included for reference (SVL, TotL, MBW, FLL, and HLL given 

as range over mean ± standard deviation; all body proportions given as percentage over mean ± 

standard deviation).  In cases of scale count variation within species, numbers of individuals 

showing specific counts are given in parentheses. 
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Table 4.5. Summary of qualitative diagnostic characters (present, absent) in all known limbed, 

non-pentadactyl species of Brachymeles.  The pairs of enlarged scales posterior to the postmental 

scale are abbreviated as chin shield pairs with reference to the 1st, 2nd, and 3rd pairs (when 

present). 
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Table 4.6. Summary of univariate morphological variation among mensural characters in series 

of Brachymeles samarensis, B. isa, B. dalawa, B. lima, B. apat, and B. tatlo. 

 samarensis 

(1 m; 5 f) 

isa 

(3 m; 9 f) 

dalawa 

(10 m; 25 

f) 

lima 

(6 m; 10 f) 

apat 

(9 f) 

tatlo 

(1 m; 2 f) 

SVL (m) 57.9 59.7–64.1 

(61.8 ± 2.2) 

52.7–57.4 

(56.0 ± 

1.6) 

56.4–66.1 

(61.7 ± 

3.5) 

— 56.8 

SVL (f) 62.4–66.1 

(63.4 ± 1.5) 

47.2–61.4 

(56.5 ± 4.2) 

52.8–66.1 

(58.6 ± 

3.3) 

46.4–67.4 

(59.0 ± 

6.7) 

54.0–64.4 

(58.7 ± 

3.5) 

54.0, 60.0 

AGD 

(m) 

40.3 44.1–48.2 

(46.0 ± 2.1) 

39.5–43.6 

(42.1 ± 

1.2) 

42.9–52.0 

(47.4 ± 

3.4) 

— 43.8 

AGD (f) 45.3–50.3 

(47.6 ± 1.8) 

35.6–46.5 

(43.2 ± 3.1) 

39.4–50.6 

(44.7 ± 

2.8) 

32.9–52.3 

(44.8 ± 

5.8) 

41.0–49.1 

(44.6 ± 

2.3) 

45.5, 45.8 

TotL (m) 93.0 106.7–

114.6 

(110.6 ± 

5.6) 

92.1–

103.4 

(99.4 ± 

4.5) 

99.6–

107.9 

(104.1 ± 

4.2) 

— 102.0 

TotL (f) 97.7–112.9 

(107.3 ± 

99.5–108.5 

(102.7 ± 

91.4–

111.2 

94.1–

112.7 

102.2–

109.4 

92.3, 95.2 
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8.3) 5.1) (102.2 ± 

6.4) 

(102.1 ± 

8.8) 

(106.2 ± 

2.7) 

MBW 

(m) 

5.7 

 

5.0–5.3 

(5.1 ± 0.2) 

4.0–4.7 

(4.4 ± 0.3) 

4.2–5.1 

(4.5 ± 0.3) 

— 4.0 

MBW 

(f) 

5.2–6.4 

(5.7 ± 0.5) 

3.7–5.0 

(4.2 ± 0.4) 

3.4–5.9 

(4.5 ± 0.6) 

3.8–4.8 

(4.4 ± 0.3) 

4.2–5.4 

(4.8 ± 0.4) 

3.2, 4.8 

MBH 

(m) 

4.0 2.9–4.5 

(3.8 ± 0.8) 

3.2–4.7 

(3.6 ± 0.5) 

3.0–5.1 

(3.6 ± 0.8) 

— 3.2 

MBH (f) 4.3–4.8 

(4.5 ± 0.2) 

3.0–4.7 

(3.9 ± 0.5) 

2.9–5.3 

(3.7 ± 0.8) 

2.9–5.0 

(3.7 ± 0.8) 

3.4–4.4 

(3.8 ± 0.4) 

2.5, 4.3 

TL (m) 35.1 45.0–50.5 

(47.8 ± 3.9) 

39.3–47.1 

(43.6 ± 

3.4) 

38.7–51.5 

(43.2 ± 

7.2) 

— 45.2 

TL (f) 35.3–50.4 

(44.5 ± 8.1) 

41.0–47.1 

(43.9 ± 3.1) 

38.3–50.1 

(44.2 ± 

4.1) 

32.3–52.1 

(42.5 ± 

7.4) 

45.6–53.5 

(49.5 ± 

3.1) 

38.3, 35.2 

TW (m) 4.1 3.8–4.1 

(4.0 ± 0.2) 

3.1–3.9 

(3.4 ± 0.2) 

3.4–4.3 

(3.7 ± 0.3) 

— 3.7 

TW (f) 4.1–4.6 

(4.4 ± 0.2) 

3.3–3.8 

(3.4 ± 0.2) 

2.8–4.6 

(3.5 ± 0.5) 

2.8–4.2 

(3.5 ± 0.4) 

3.6–4.5 

(4.0 ± 0.3) 

2.4, 3.6 

TH (m) 3.5 3.2–3.4 

(3.3 ± 0.1) 

2.8–3.5 

(3.1 ± 0.2) 

2.6–3.6 

(3.0 ± 0.4) 

— 2.6 

TH (f) 3.5–3.9 2.9–3.4 2.5–4.5 2.3–3.4 2.7–3.9 2.3, 3.2 
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(3.8 ± 0.2) (3.1 ± 0.2) (3.1 ± 0.5) (2.8 ± 0.4) (3.1 ± 0.4) 

HL (m) 5.3 4.5–4.8 

(4.6 ± 0.2) 

3.7–4.7 

(4.1 ± 0.4) 

3.6–4.2 

(3.8 ± 0.2) 

— 3.9 

HL (f) 4.8–5.2 

(5.0 ± 0.2) 

3.5–4.4 

(4.1 ± 0.3) 

3.5–4.5 

(4.0 ± 0.3) 

3.5–5.3 

(4.1 ± 0.6) 

3.8–5.5 

(4.3 ± 0.6) 

3.1, 4.2 

HW (m) 5.1 4.6–4.7 

(4.6 ± 0.1) 

3.9–4.6 

(4.2 ± 0.2) 

3.9–4.9 

(4.2 ± 0.4) 

— 4.0 

HW (f) 4.6–5.8 

(5.2 ± 0.5) 

3.8–4.6 

(4.1 ± 0.2) 

3.6–5.2 

(4.2 ± 0.4) 

3.7–5.4 

(4.2 ± 0.5) 

4.0–5.3 

(4.4 ± 0.4) 

3.5, 4.2 

HH (m) 3.5 3.0–3.8 

(3.4 ± 0.4) 

2.7–3.1 

(2.9 ± 0.2) 

2.8–3.6 

(3.0 ± 0.3) 

— 2.9 

HH (f) 3.4–4.2 

(3.9 ± 0.3) 

2.9–3.4 

(3.1 ± 0.2) 

2.5–3.9 

(3.0 ± 0.4) 

2.5–3.9 

(3.0 ± 0.5) 

2.9–3.9 

(3.3 ± 0.3) 

2.5, 3.1 

SnFa 

(m) 

13.6 11.6–12.8 

(12.0 ± 0.6) 

10.9–12.2 

(11.6 ± 

0.4) 

11.3–12.3 

(11.8 ± 

0.3) 

— 11.9 

SnFa (f) 11.7–14.1 

(12.9 ± 0.9) 

10.1–11.9 

(11.2 ± 0.6) 

10.9–12.5 

(11.6 ± 

0.5) 

10.6–13.0 

(11.7 ± 

0.8) 

11.3–13.2 

(11.8 ± 

0.6) 

11.5, 12.1 

ED (m) 0.9 1.0–1.1 

(1.0 ± 0.1) 

1.0–1.1 

(1.0 ± 0.0) 

0.8–0.9 

(0.9 ± 0.0) 

— 0.9 

ED (f) 0.8–1.0 

(0.9 ± 0.1) 

0.8–1.1 

(1.0 ± 0.1) 

0.9–1.1 

(1.0 ± 0.1) 

0.8–0.9 

(0.9 ± 0.1) 

0.9–1.1 

(1.0 ± 0.1) 

1.0, 1.0 
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END 

(m) 

1.9 1.1–1.7 

(1.5 ± 0.3) 

1.5–1.9 

(1.7 ± 0.1) 

1.6–1.9 

(1.7 ± 0.1) 

— 1.6 

END (f) 1.8–2.2 

(1.9 ± 0.1) 

1.6–1.8 

(1.7 ± 0.1) 

1.5–1.9 

(1.7 ± 0.1) 

1.4–1.9 

(1.7 ± 0.2) 

1.6–1.9 

(1.8 ± 0.1) 

1.7, 1.9 

SNL (m) 2.7 1.8–2.5 

(2.2 ± 0.4) 

2.1–2.5 

(2.4 ± 0.1) 

2.2–2.5 

(2.4 ± 0.1) 

— 2.3 

SNL (f) 2.6–2.9 

(2.7 ± 0.1) 

2.2–2.6 

(2.3 ± 0.1) 

2.2–2.6 

(2.4 ± 0.1) 

2.1–2.7 

(2.4 ± 0.2) 

2.3–2.6 

(2.4 ± 0.1) 

2.4, 2.6 

IND (m) 1.4 1.2–1.4 

(1.3 ± 0.1) 

1.2–1.4 

(1.3 ± 0.1) 

1.1–1.5 

(1.3 ± 0.1) 

— 1.1 

IND (f) 1.1–1.4 

(1.3 ± 0.1) 

1.2–1.4 

(1.3 ± 0.1) 

1.1–1.5 

(1.3 ± 0.1) 

1.0–1.4 

(1.3 ± 0.1) 

1.1–1.5 

(1.3 ± 0.1) 

1.1, 1.3 

FLL (m) 2.3 1.4–1.7 

(1.6 ± 0.1) 

1.1–1.5 

(1.3 ± 0.1) 

1.1–1.6 

(1.3 ± 0.2) 

— 1.4 

FLL (f) 1.1–2.6 

(1.7 ± 0.5) 

1.2–1.7 

(1.4 ± 0.1) 

1.1–1.8 

(1.3 ± 0.2) 

1.1–1.9 

(1.5 ± 0.3) 

1.4–2.1 

(1.7 ± 0.2) 

1.1, 1.5 

HLL (m) 2.9 2.3–3.0 

(2.6 ± 0.4) 

2.1–2.4 

(2.3 ± 0.1) 

2.4–2.8 

(2.6 ± 0.2) 

— 2.6 

HLL (f) 2.5–3.1 

(2.8 ± 0.2) 

2.3–2.9 

(2.6 ± 0.2) 

2.0–2.7 

(2.4 ± 0.2) 

1.9–3.1 

(2.7 ± 0.4) 

2.5–3.6 

(3.0 ± 0.3) 

2.1, 2.7 
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Brachymeles lima sp. nov. 

Figs. 4.3, 4.5 

Holotype.—PNM 9756 (CDS Field No. 4050, formerly KU 324003), adult male, collected 

under rotting coconut husks in secondary-growth forest (10:00–12:30 hr) on 1 June 2009, in 

Barangay Common, Municipality of Tabaco City, Albay Province, Luzon Island, Philippines 

(13°14' N, 123°38' E; WGS-84), by J. Fernandez. 

Paratopotypes.—Four adult males (KU 324015–6, PNM 9759–60), six adult females (KU 

323087, 324005–7, 324009–10), and four juveniles (KU 324008, 324011, PNM 9757–58), 

collected between 1 and 23 June 2009. 

Paratypes.—One adult male (CAS 152025) and two adult females (CAS 140065, 152026) 

collected on 16 December 1991, in an Abaca plantation, Barangay Labnig, Municipality of 

Malinao, Albay Province, Luzon Island, Philippines (13°22'38" N, 123°40'59" E; WGS-84), by 

C. A. Ross; two adult females (CAS-SU 24173, 24413) collected between 26 March and 22 

April 1961, on Mt. Isarog, Bario Curry, Municipality of Pili, Camarines Sur Province, Luzon 

Island, Philippines (13°38'35" N, 123°21'4" E; WGS-84), by D. S. Rabor. 

Diagnosis.—Brachymeles lima can be distinguished from congeners by the following 

combination of characters:  (1) body size small (SVL 46.4–66.1 mm); (2) limbs bidactyl; (3) 

limb length small; (4) supralabials six; (5) infralabials five or six; (6) suparciliaries six; (7) 

supraoculars five; (8) midbody scale rows 20–22; (9) axilla–groin scale rows 68–73; (10) 

paravertebral scale rows 85–90; (11) pineal eye spot present; (12) prefrontals not contacting on 

midline; (13) postnasals absent; (14) enlarged chin shields in three pairs; (15) nuchals enlarged; 

(16) fourth and fifth supralabial below eye; (17) mental and first infralabials fused or separated; 



 271 

(18) auricular opening absent; (19) presacral vertebrae 46–49; and (20) uniform body color 

(Tables 4.4, 4.5). 

Comparisons.—Characters distinguishing Brachymeles lima from all non-pentadactyl, 

limbed species of Brachymeles are summarized in Tables 4.4 and 4.5.  Brachymeles lima most 

closely resembles B. samarensis, B. apat, B. tatlo, and populations of B. bonitae, the only other 

species to be bidactyl or have bidactyl populations.  However, B. lima differs from these four 

taxa by having five or six infralabials (Table 4.5).  Brachymeles lima further differs from B. 

samarensis, B. apat, B. tatlo by the presence or absence of mental and first infralabial fusion 

(Table 4.5); from B. samarensis by having a greater number of presacral vertebrae, and a 

tendancy towards a greater number of midbody, axilla–groin, and paravertebral scale rows 

(Table 4.5); from B. apat by having a smaller relative fore-limb length and a greater number of 

presacral vertebrae (Tables 4.4, 4.5); from B. tatlo by having a smaller relative fore-limb length, 

and a tendancy towards having fewer axilla–groin and paravertebral scale rows (Tables 4.4, 4.5); 

and from B. bonitae by having only bidactyl body forms, longer relative fore- and hind limb 

lengths, six supralabials, five or six infralabials, six supraciliaries, five supraoculars, and a 

tendancey towards fewer presacral vertebrae, axilla–groin, and paravertebral scale rows (Tables 

4.4, 4.5). 

Brachymeles lima can be distinguished from all limbless species of Brachymeles (B. apus, B. 

lukbani, B. minimus, B. miriamae, B. vermis) by having limbs; and from all pentadactyl species 

of Brachymeles (B. boholensis, B. boulengeri, B. bicolor, B. gracilis, B. kadwa, B. makusog, B. 

mindorensis, B. orientalis, B. schadenbergi, B. talinis, B. taylori, B. tungaoi, B. vindumi) by 

having non-pentadactyl (vs. pentadactyl) limbs, shorter fore-limb lengths (less than 1.9 mm vs. 

greater than 5.9 mm), shorter hind limb lengths (less than 3.1 mm vs. greater than 10.3 mm), a 
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narrower body (less than 5.1 mm vs. greater than 7.9 mm), and by the absence of a postnasal 

scale and auricular opening (vs. presence). 

Description of holotype.—Details of the head scalation are shown in Figure 4.6.  Adult male, 

body small, slender, SVL 60.2 mm; head weakly differentiated from neck, nearly as wide as 

body, HW 6.7% SVL, 104.9% HL; HL 33.1% SnFa; SnFa 19.3% SVL; snout short, bluntly 

rounded in dorsal and lateral profile, SNL 58.2% HL; ear completely hidden by scales; eyes 

small, ED 1.4% SVL, 22.6% HL, 55.4% END, pupil subcircular; body slightly depressed, nearly 

uniform in thickness, MBW 124.0% MBH; scales smooth, glossy, imbricate; longitudinal scale 

rows at midbody 22; paravertebral scale rows 85; axilla–groin scale rows 68; limbs short, poorly 

developed, with digits reduced to two claws on both fore-limbs and hind limbs, finger and toe 

lamellae absent; FLL 2.7% AGD, 2.1% SVL; HLL 6.1% AGD, 4.7% SVL [6.9]; tail nearly as 

wide as body, gradually tapered at end, TW 88.9% MBW, TL 65.6% SVL. 

Rostral projecting onto dorsal snout to point just past poasterior edge of nasal, broader than 

high, in broad contact with frontonasal; frontonasal wider than long; nostril ovoid, in center of 

single trapezoidal nasal, longer axis directed anteroventrally and posterodorsally; supranasals 

present, large, broadly separated; postnasals absent; prefrontals moderately separated; frontal 

octagonal, its anterior margin in moderate contact with frontonasal, in contact with first two 

anterior supraoculars, 5× wider than anterior supraocular; supraoculars five; frontoparietals 

moderate, just barely separated by anterior point of interparietal in contact with frontal, each 

frontoparietal in contact with interior three supraoculars; interparietal large, its length roughly 

1.5× midline length of frontoparietal, longer than wide, diamond-shaped, wider anteriorly; 

parietals as broad as frontoparietals, in broad contact behind interparietal; enlarged nuchals 

present; anterior and posterior loreals fused into single, enlarged loreal (Fig. 4.5), or distinct; one 
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preocular; one presubocular; supraciliaries six, the anteriormost contacting prefrontal and 

separating posterior loreal from first supraocular, posteriomost extending to middle of fifth 

supraocular; single subocular scale row complete, in contact with supralabials; lower eyelid with 

one row of scales; supralabials six, first 1.5× size of other supralabials, third, fourth, and fifth 

below eye; infralabials five (Fig. 4.5). 

Mental wider than long, fused with first infralabials; postmental single, enlarged, its width 

less than width of mental; followed by three pairs of enlarged chin shields, first pair in broad 

medial contact, greater in width than third pair, narrower than second pair, second pair broadly 

separated by single medial scale, third pair separated by three medial scales (Fig. 4.5). 

Scales on limbs smaller than body scales; scales on dorsal surfaces of digits wrapping around 

lateral edges of digits; lamellae absent; palmar surfaces of hands and plantar surfaces of feet with 

several small, irregular scales, each with irregular raised anterior edges; fore-limb digits equal in 

size; hind limb digits unequal in size, second digit greatest in length. 

Coloration in preservative.—The ground color of the body is medium brown, with each 

dorsal scale having a dark, auburn streak on the anterior two thirds to one half of the scale with 

light brown posterior.  Posterior edge of all body scales transparent.  The streaks are present 

around the entire body.  Ventral scales have more distinct, smaller streaks restricted to the 

anterior one-third to one half of scale.  Ventral scales have sandy brown posterior coloration.  

Posterior portion of ventral caudal and subcaudal scales have lighter shade of sandy brown.  

Streaks on each individual scale consist of four to five longitudinal thin stripes of auburn 

pigment.  Forelimb and hind limb scales are dark shade of brown with weakly defined scale 

boundaries.  Auburn streaks are more dominant on precloacal scales, giving them a slightly 

darker appearance.  Head scales have mottled light and dark brown coloration, matching dorsal 
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body scales.  Supraocular scales possess the darkest brown coloration of all head scales with 

brown umber color.  The rostral, nasal, supranasal, and first supralabial scales have a cream 

coloration, lacking any brown color.  The mental, infralabial, postmental, and chin shield scales 

are cream with light brown mottling. 

Coloration in life.—Coloration in life is unrecorded; however, because Brachymeles 

specimens do not change significantly during preservation (CDS, RMB personal observation), 

we suspect that the preserved coloration and patterns are much like those in life. 

Variation.—Morphometric variation of the series is summarized in Table 4.6.  A single 

instance of digit variation was observed, where one specimen (KU 324006) has three fore-limb 

claws and two hind limb claws.  We observed variation in the degree of head scale contact and 

the number of infralabials:  (1) frontoparietals were observed in point contact medially for a 

single specimen (KU 324003), in moderate to broad contact medially for eleven specimens 

(CAS-SU 24173, 24413, CAS 140065, KU 323087, 324006–8, 324011–3, 324018), and 

separated for eight specimens (CAS 152025–6, KU 324005, 324014–6, 324009–10); (2) parietals 

were observed in point contact medially for a single specimen (CAS-SU 24413), in moderate to 

broad contact medially for seventeen specimens (CAS-SU 24173, CAS 140065, CAS 152025–6, 

KU 323087, 324003, 324005–9, 324011, 324013–6, 234018), and separated for two specimens 

(KU 324010, 324012); (3) first pair of enlarged chin shiels were observed in point contact 

medially for a single specimen (CAS 152025), in moderate to broad contact medially for 

seventeen specimens (CAS-SU 24173, 24413, CAS 140065, 152026, KU 324003, 324005–13, 

324016, 324018), and separated in three specimens (KU 324014–5, 323087); (4) the number of 

infralabials varied among the type series, with eight specimens observed to have six infralabials 
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(CAS-SU 24413, KU 324009–14, 324018), and twelve observed to have five infralabials (CAS-

SU 24173, CAS 140065, 152025–6, KU 323087, 324003, 324005–8, 324015–6). 

Additionally, the degree of fusion between loreals, and between the mental and 1st 

infralabials, was observed to vary in the type series.  All specimens examined have two loreals 

with the exception of a single specimen (KU 324003) with single, enlarged loreals on both sides 

of the head.  Eleven specimens were observed with enlarged mental scales resulting from fusion 

with the 1st infralabial on both sides of the head (CAS-SU 24173, CAS 152025–6, KU 323087, 

324003, 324005–8, 324015–6), a single specimen was observed with fused scales only on the 

right side of the head (CAS 140065), and eight specimens were observed to have distinct mentals 

and infralabials, with no scale fusion (CAS-SU 24413, KU 324009–14, 324018). 

Distribution.—Brachymeles lima is known only from the central Bicol Peninsula of Luzon 

Island (Fig. 4.3). 

Ecology and natural history.—Brachymeles lima occurs in agricultural habitats, as well as in 

disturbed and secondary-growth forest, and is found in sympatry with B. boulengeri and B. 

makusog.  Three additional species of Brachymeles have also been recorded from the Bicol 

Peninsula of Luzon Island:  B. kadwa, B. lukbani, and B. tatlo. 

Sympatric lizard species occurring in the Bicol Peninsula include: (Agamidae) Bronchocela 

cristatella, Draco spilopterus, Gonocephalus sophiae, Hydrosaurus pustulatus; (Gekkonidae) 

Cyrtodactylus philippinicus, Hemidactylus frenatus, H. platyurus, Gehyra mutilata, Gekko 

gecko, G. mindorensis, Luperosaurus cumingii, Pseudogekko smaragdina, P. compressicorpus; 

(Scincidae) Emoia atrocostata, Eutropis multicarinata borealis, E. multifasciata, Lamprolepis 

smaragdina, Lipinia pulchella pulchella, Sphenomorphus abdictus abdictus, S. decipiens, S. 

cumingi, Sphenomorphus jagori, S. laterimaculatus, S. leucospilos, S. steerei, Tropidophorus 
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grayi; (Varanidae) Varanus marmoratus, V. olivaceus. 

Etymology.—The specific epithet is chosen in reference to the biogeographically and 

culturally distinct Bicol Region of southern Luzon Island (Albay, Camarines Norte, Camarines 

Sur, Catanduanes and Sorsogon Provinces).  Inhabited by peaceful and particularly hospitable 

Bicolanos, the unique peninsula is home to many dozens of endemic vertebrates, delicious local 

cuisine, unique linguistic stock, and rich cultural traditions. Suggested common name:  Bicol 

Slender Skink. 

 

Brachymeles apat sp. nov. 

Figs. 4.3, 4.5 

Holotype.—PNM 9761 (CDS Field No. 5255, formerly KU 324023), adult female, collected 

under rotting coconut husks in secondary-growth forest (10:00–12:30 hr) on 8 October 2009, in 

Barangay Palta Small, Municipality of Virac, Catanduanes Province, Catanduanes Island, 

Philippines (13°34'44" N, 124°13'52" E; WGS-84), by J. Fernandez. 

Paratopotypes.—Eight adult females (KU 306311, 308077, 324019–20, 324025–26, PNM 

9562–63) and one juvenile (KU 324021) collected between 4 and 7 June 2009 by CDS and J. 

Fernandez. 

Diagnosis.—Brachymeles apat can be distinguished from congeners by the following 

combination of characters:  (1) body size small (SVL 54.0–64.4 mm); (2) limbs bidactyl; (3) 

limb length small; (4) supralabials six; (5) infralabials six; (6) suparciliaries six; (7) supraoculars 

five; (8) midbody scale rows 21–22; (9) axilla–groin scale rows 68–72; (10) paravertebral scale 

rows 85–89; (11) pineal eye spot present; (12) prefrontals not contacting on midline; (13) 

frontoparietals contact; (14) postnasals absent; (15) enlarged chin shields in three pairs; (16) 
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nuchals enlarged; (17) fourth and fifth supralabial below eye; (18) auricular opening absent; (19) 

presacral vertebrae 45; (20) non-fusion of mental and first infralabials; (21) non-fusion of 

loreals; and (22) uniform body color (Tables 4.4, 4.5). 

Comparisons.—Characters distinguishing Brachymeles apat from all non-pentadactyl, 

limbed species of Brachymeles are summarized in Tables 4.4 and 4.5.  Brachymeles apat most 

closely resembles B. samarensis, B. lima, B. tatlo, and populations of B. bonitae, the only other 

species to be bidactyl or have bidactyl populations.  However, B. apat can be distinguished from 

B. samarensis by having non-fusion of the loreals and a tendancy towards a greater number of 

axilla–groin scale rows (Table 4.5); from B. lima by having a greater relative fore-limb length, 

fewer presacral vertebrae, six infralabials, the presence of contact between frontoparietals, the 

presence of contact between the first pair of enlarged chin shields, non-fusion of the loreals, and 

non-fusion of the mental and first infralabials (Tables 4.4, 4.5); from B. tatlo by having fewer 

presacral vertebrae, a greater number of midbody scale rows, fewer axilla–groin and 

paravertebral scale rows, and the presence of contact between the first pair of enlarged chin 

shields (Table 4.5); and from B. bonitae by having only bidactyl body forms, longer relative 

fore- and hind limb lengths, fewer presacral vertebrae, fewer axilla–groin and paravertebral scale 

rows, six supralabials, six infralabials, six supraciliaries, five supraoculars, the presence of 

contact between frontoparietals, the presence of contact between the first pair of enlarged chin 

shields, and non-fusion of the mental and first infralabials (Tables 4.4, 4.5). 

Brachymeles apat can be distinguished from all limbless species of Brachymeles (B. apus, B. 

lukbani, B. minimus, B. miriamae, B. vermis) by having limbs; and from all pentadactyl species 

of Brachymeles (B. boholensis, B. boulengeri, B. bicolor, B. gracilis, B. kadwa, B. makusog, B. 

mindorensis, B. orientalis, B. schadenbergi, B. talinis, B. taylori, B. tungaoi, B. vindumi) by 
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having non-pentadactyl (vs. pentadactyl) limbs, shorter fore-limb lengths (less than 2.1 mm vs. 

greater than 5.9 mm), shorter hind limb lengths (less than 3.6 mm vs. greater than 10.3 mm), a 

narrower body (less than 5.4 mm vs. greater than 7.9 mm), and by the absence of a postnasal 

scale and auricular opening (vs. presence). 

Description of holotype.—Details of the head scalation are shown in Figure 4.6.  Adult 

female, body small, slender, SVL 60.2 mm; head weakly differentiated from neck, nearly as 

wide as body, HW 7.0% SVL, 107.1% HL; HL 33.8% SnFa; SnFa 19.2% SVL; snout short, 

bluntly rounded in dorsal and lateral profile, SNL 63.0% HL; ear completely hidden by scales; 

eyes small, ED 1.7% SVL, 26.5% HL, 62.7% END, pupil subcircular; body slightly depressed, 

nearly uniform in thickness, MBW 120.4% MBH; scales smooth, glossy, imbricate; longitudinal 

scale rows at midbody 22; paravertebral scale rows 85; axilla–groin scale rows 68; limbs short, 

poorly developed, with digits reduced to two claws on both fore-limbs and hind limbs, finger and 

toe lamellae absent; FLL 3.4% AGD, 2.6% SVL; HLL 6.2% AGD, 4.7% SVL; tail as wide as 

body, tail tip regenerated, sharply tapered at end, TW 87.6% MBW, TL 75.6% SVL. 

Rostral projecting onto dorsal snout to point in line with middle of nasal, broader than high, 

in contact with frontonasal; frontonasal wider than long; nostril ovoid, in center of single 

trapezoidal nasal, longer axis directed anteroventrally and posterodorsally; supranasals present, 

large, broadly separated; postnasals absent; prefrontals moderately separated; frontal octagonal-

shaped, its anterior margin in moderate contact with frontonasal, in contact with first two anterior 

supraoculars, 4× wider than anterior supraocular; supraoculars five; frontoparietals large, in 

broad medial contact, each frontoparietal in contact with interior three supraoculars; interparietal 

moderate, its length equal to midline length of frontoparietal, longer than wide, diamond-shaped, 

wider anteriorly; parietals narrower than frontoparietals, in broad contact behind interparietal; 



 279 

nuchals enlarged; two loreals, decreasing in size from anterior to posterior, anterior loreal about 

as long as and slightly higher than posterior loreal; one preocular; one presubocular; 

supraciliaries six, the anteriormost contacting prefrontal and separating posterior loreal from first 

supraocular, posteriomost extending nearly to middle of fifth supraocular; single subocular scale 

row complete, in contact with supralabials; lower eyelid with one row of scales; supralabials six, 

first 2× size of other supralabials, third, fourth, and fifth below eye; infralabials six (Fig. 4.5). 

Mental wider than long, fused with first infralabials; postmental single, enlarged, its width 

greater than width of mental; followed by three pairs of enlarged chin shields, first pair in broad 

medial contact, its width greater than width of third pair, narrower than second pair, second pair 

broadly separated by single medial scale, third pair separated by three medial scales (Fig. 4.5). 

Scales on limbs smaller than body scales; scales on dorsal surfaces of digits wrapping around 

lateral edges of digits; lamellae absent; palmar surfaces of hands and plantar surfaces of feet with 

several small, irregular scales, each with irregular raised anterior edges; fore-limb digits equal in 

size; hind limb digits unequal in size on right foot, second digit greatest in length, digits absent 

on left foot. 

Coloration in preservative.—The ground color of the body is medium brown, with each 

dorsal scale having a dark, auburn streak on the anterior two thirds to one half of the scale with 

light brown posterior. Posterior edge of all body scales transparent. The streaks are present 

around the entire body.  Ventral scales have lighter color, with auburn streaks in anterior and 

light cream in posterior. Caudals and subcaudals match the bordering body scales. Streaks on 

each individual scale consist of four to seven longitudinal thin streaks of auburn with smudges of 

auburn between streaks. Forelimb and hind limb scales are brown and have darker coloration 

than their surrounding body scales. Forelimb and hind limb scales have weakly defined scale 
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boundaries.  Precloacal scale coloration matches surrounding ventral scale coloration. Head 

scales have mottled light and dark brown coloration that match dorsal body scales.  Supraocular 

scales possess the darkest brown coloration of all head scales with brown umber color. The 

rostral, nasal, supranasal, and first supralabial scales possess a cream color. The other 

supralabials have a slightly darker, gray cream coloration. The mental, postmental, and chin 

shield scales are mottled brown on a light cream background that match bordering body scales. 

Coloration in life.—Ground color of body medium to dark brown; streaks of darker 

pigmentation on body dark-brown. 

Variation.—Morphometric variation of the series is summarized in Table 4.6.  We observed 

no variation among the type series in digit number, head scale counts, or in the degree of head 

scale contact. 

Distribution.—Brachymeles apat is known only from Catanduanes Island (Fig. 4.3). 

Ecology and natural history.—Brachymeles apat occurs in residential and agricultural 

habitats, as well as in disturbed and secondary-growth forest.  No original, low elevation forest 

remains on Catanduanes Island, but we assume the species once also occurred in first growth 

forest at low elevations.  Individuals have been observed under piles of rotting coconut husks, in 

the rotting material within fallen logs, and in loose soil and leaf litter surrounding the root 

networks of trees.  This species occurs sympatrically with the pentadactyl species, B. makusog, 

and the limbless species, B. minimus.  On Catanduanes Island, both B. makusog and B. minimus 

have only been observed in disturbed, secondary-growth forest, whereas B. apat appears to be a 

habitat generalist.  

Sympatric lizard species occurring on Catanduanes Island include: (Agamidae) Bronchocela 

cristatella, Draco spilopterus, Gonocephalus sophiae, Hydrosaurus pustulatus; (Gekkonidae) 
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Cyrtodactylus philippinicus, Hemidactylus frenatus, H. platyurus, Gehyra mutilata, Gekko gecko, 

G. mindorensis, Luperosaurus cumingii, Pseudogekko smaragdina, P. compressicorpus; 

(Scincidae) Dasia atrocostata, Eutropis multicarinata borealis, E. indepresa, E. multifasciata, 

Lamprolepis smaragdina, Lipinia pulchella pulchella, Sphenomorphus abdictus, S.decipiens, 

S.cumingi, S.jagori, S. laterimaculatus, S. lawtoni, S. leucospilos, S.steerei, Tropidophorus grayi; 

(Varanidae) Varanus marmoratus, V. olivaceus. 

Etymology.—The specific epithet is chosen in recognition of the Catanduanes indigenous 

people’s group for which the first adopted name for the island, “Isla de Apat,” was coined.  The 

name was adopted by the Spanish conquistadores who encountered the original Catanduanes 

tribes living in thatched huts called “apat.”  Suggested common name:  Catanduanes Slender 

Skink.  

 

Brachymeles tatlo sp. nov. 

Figs. 4.3, 4.4 

Holotype.—PNM 9764 (CDS Field No. 4099, formerly KU 324017), adult male, collected 

under pile of rotting coconut husks in secondary-growth forest (10:00–12:30 hr) on 18 June 2009, 

in the Municipality of Irosin, Sorsogon Province, Luzon Island, Philippines (15°50' N, 123°55' 

E; WGS-84), by J. Fernandez. 

Paratypes.—Adult female (TNHC 62469) collected in a rotting log on ridge above lake 

Bulusan on 24 November 2001, 500–700 m elevation, Mt. Balusan National Park, Barangay San 

Roque, Municipality of Irosin, Sorsogon Province, Luzon Island, Philippines, by RMB and B. 

Fernandez; adult female (PNM 4856) collected 1 July 1995, in Barangay Salvacion, Municipality 

of Santa Magdalena, Sorsogon Province, Luzon Island, Philippines, by R. V. Sison. 
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Diagnosis.—Brachymeles tatlo can be distinguished from congeners by the following 

combination of characters:  (1) body size small (SVL 54.0–60.0 mm); (2) limbs bidactyl; (3) 

limb length small; (4) supralabials six; (5) infralabials six; (6) suparciliaries six; (7) supraoculars 

five; (8) midbody scale rows 20; (9) axilla–groin scale rows 73–77; (10) paravertebral scale rows 

90–94; (11) pineal eye spot present; (12) prefrontals not contacting on midline; (13) 

frontoparietals contact; (14) postnasals absent; (15) enlarged chin shields in three pairs; (16) 

nuchals elnlarged; (17) fourth and fifth supralabial below eye; (18) auricular opening absent; 

(19) presacral vertebrae 47–48; (20) non-fusion of mental and first infralabials; (21) non-fusion 

of loreals; and (22) uniform body color (Tables 4.4, 4.5). 

Comparisons.—Characters distinguishing Brachymeles tatlo from all non-pentadactyl, 

limbed species of Brachymeles are summarized in Tables 4.4 and 4.5.  Brachymeles tatlo most 

closely resembles B. samarensis, B. lima, B. apat, and populations of B. bonitae, the only other 

species to be bidactyl or have bidactyl populations.  However, B. tatlo can be distinguished from 

B. samarensis by having a greater number of presacral vertebrae, a greater number of axilla–

groin and paravertebral scale rows, and non-fusion of the mental and the first infralabials (Table 

4.5); from B. lima by having a greater relative fore-limb length, six infralabials, non-fusion of the 

mental and the first infralabials, non-fusion of the loreals, a tendancy towards a greater number 

of axilla–groin and paravertebral scale rows, and by the presence of contact between 

frontoparietals (Tables 4.4, 4.5); from B. apat by having a greater number of presacral vertebrae, 

fewer midbody scale rows, and a greater number of axilla–groin and paravertebral scale rows 

(Table 4.5); and from B. bonitae by having only bidactyl body forms, longer relative fore- and 

hind limb lengths, fewer midbody scale rows, six supralabials, six infralabials, six supraciliaries, 
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five supraoculars, the presence of contact between frontoparietals, anda tendancy towards fewer 

presacral vertebrae, axilla–groin, and paravertebral scale rows (Tables 4.4, 4.5). 

Brachymeles tatlo can be distinguished from all limbless species of Brachymeles (B. apus, B. 

lukbani, B. minimus, B. miriamae, B. vermis) by having limbs; and from all pentadactyl species 

of Brachymeles (B. boholensis, B. boulengeri, B. bicolor, B. gracilis, B. kadwa, B. makusog, B. 

mindorensis, B. orientalis, B. schadenbergi, B. talinis, B. taylori, B. tungaoi, B. vindumi) by 

having non-pentadactyl (vs. pentadactyl) limbs, shorter fore-limb lengths (less than 2.1 mm vs. 

greater than 5.9 mm), shorter hind limb lengths (less than 3.6 mm vs. greater than 10.3 mm), a 

narrower body (less than 5.4 mm vs. greater than 7.9 mm), and by the absence of a postnasal 

scale and auricular opening (vs. presence). 

Description of holotype.—Details of the head scalation are shown in Figure 4.5.  Adult male, 

body small, slender, SVL 56.8 mm; head weakly differentiated from neck, nearly as wide as 

body, HW 7.0% SVL, 103.6% HL; HL 32.4% SnFa; SnFa 20.9% SVL; snout short, bluntly 

rounded in dorsal and lateral profile, SNL 59.2% HL; ear completely hidden by scales; eyes 

small, ED 1.6% SVL, 24.2% HL, 59.6% END, pupil subcircular; body slightly depressed, nearly 

uniform in thickness, MBW 125.2% MBH; scales smooth, glossy, imbricate; longitudinal scale 

rows at midbody 20; paravertebral scale rows 90; axilla–groin scale rows 73; limbs short, poorly 

developed, with digits highly reduced to two small claws on both fore-limbs and hind limbs, 

finger and toe lamellae absent; FLL 3.3% AGD, 2.5% SVL; HLL 5.9% AGD, 4.5% SVL; tail 

nearly as wide as body, gradually tapered at end, TW 91.5% MBW, TL 79.5% SVL. 

Rostral projecting onto dorsal snout to point just past posterior edge of nasal, broader than 

high, in broad contact with frontonasal; frontonasal wider than long; nostril ovoid, in center of 

single trapezoidal nasal, longer axis directed anterodorsally and posteroventrally; supranasals 
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present, large, broadly separated; postnasals absent; prefrontals broadly separated; frontal 

octagonal-shaped, its anterior margin in broad contact with frontonasal, in contact with first two 

anterior supraoculars, 5× wider than anterior supraocular; supraoculars five; frontoparietals large, 

in moderate medial contact, each frontoparietal in contact with interior three supraoculars; 

interparietal large, its length greater than midline length of frontoparietal, longer than wide, 

diamond-shaped, wider anteriorly; parietals as broad as frontoparietals, in broad contact behind 

interparietal; nuchals enlarged; two loreals, decreasing in size from anterior to posterior, anterior 

loreal about as long as and slightly higher than posterior loreal; one preocular; one presubocular; 

supraciliaries six, the anteriormost contacting prefrontal and separating posterior loreal from first 

supraocular, posteriomost extending to middle of fifth supraocular; single subocular scale row 

complete, in contact with supralabials; lower eyelid with one row of scales; supralabials six, first 

2× size of other supralabials, third, fourth, and fifth below eye; infralabials six (Fig. 4.4). 

Mental wider than long, fused with first infralabials; postmental single, enlarged, its width 

narrower than width of mental; followed by three pairs of enlarged chin shields, first pair in 

broad medial contact, its width greater than width of third pair, narrower than second pair, 

second pair broadly separated by single medial scale, third pair separated by three medial scales 

(Fig. 4.4). 

Scales on limbs smaller than body scales; scales on dorsal surfaces of digits wrapping around 

lateral edges of digits; lamellae absent; palmar surfaces of hands and plantar surfaces of feet with 

several small, irregular scales, each with irregular raised anterior edges; fore-limb digits absent 

on left hand, highly reduced to two small claw tips on right hand; hind limb digits unequal in size, 

first digit highly reduced to small claw tip, second digit greatest in length. 
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Coloration in preservative.—The ground color of the body is medium brown, with each 

dorsal scale having a dark, auburn streak on the anterior one third to one half of the scale with 

light brown posterior. Streaks on each individual scale consist of four to six longitudinal thin 

streaks of auburn with smudges of auburn between streaks. The streaks are present around the 

entire body. Posterior edge of all body scales transparent. Ventral scales have more distinct 

streaks, with sandy brown color posterior. Forelimb and hind limb scales are same shade of color 

as caudal scales. Scales are light sandy brown with brown mottling. Scale boundaries more 

clearly seen on hind limbs than on forelimbs.  Precloacal scales match surrounding ventral scales. 

Head scales have mottled light and dark brown coloration and slightly lighter appearance 

compared with bordering dorsal body scales. Supraocular scales possess the darkest brown 

coloration of all head scales with umber brown color. The rostral, nasal, supranasal and 

supralabial scales have the lightest coloration of beige-umber. The mental and infralabial scales 

are cream. The chin shields and postmental scale are cream with slight brown mottling. 

Coloration in life.—Coloration in life is unrecorded; however, because Brachymeles 

specimens do not change significantly during preservation (CDS, RMB personal observation), 

we suspect that the preserved coloration and patterns are much like those in life. 

Variation.—Morphometric variation of the series is summarized in Table 4.6.  We observed 

no variation among the type series in digit number, head scale counts, or in the degree of head 

scale contact. 

Distribution.—Brachymeles tatlo is known only from the southern Bicol Peninsula (Fig. 4.3). 

Ecology and natural history.—Brachymeles tatlo occurs in disturbed and secondary-growth 

forest, and is found in sympatry with B. boulengeri; however, B. tatlo, B. kadwa, B. lukbani, and 

B. makusog are also recognized to occur on the Bicol Peninsula of Luzon Island. 
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Sympatric lizard species occurring in the Bicol Peninsula include: (Agamidae) Bronchocela 

cristatella, Draco spilopterus, Gonocephalus sophiae, Hydrosaurus pustulatus; (Gekkonidae) 

Cyrtodactylus philippinicus, Hemidactylus frenatus, H. platyurus, Gehyra mutilata, Gekko gecko, 

G. mindorensis, Luperosaurus cumingii, Pseudogekko smaragdina, P. compressicorpus; 

(Scincidae) Dasia atrocostata, Eutropis multicarinata borealis, E. multifasciata, Lamprolepis 

smaragdina, Lipinia pulchella pulchella, Sphenomorphus abdictus abdictus, S. decipiens, S. 

cumingi, S. jagori, S. laterimaculatus, S. leucospilos, S. steerei, Tropidophorus grayi; 

(Varanidae) Varanus marmoratus, V. olivaceus. 

Etymology.—The name of the new species is derived from the Latin root word “brevis”, 

meaning short, and “dactylus,” meaning digit, to represent the species’ small, highly reduced 

digits.  Suggested common name:  Southern Bicol Slender Skink. 

 

DISCUSSION 

Analyses of the two mitochondrial genes (ND1, ND2) and two nuclear loci (α-enolase, 

PTGER4) resulted in topologies with high ML bootstrap support and posterior probabilities for 

six lineages formerly part of the Brachymeles samarensis species complex (Fig. 4.2).  No 

analyses supported the monophyly of species formerly part of Brachymeles samarensis (B. isa, 

B. dalawa, B. lima, B. apat, B. tatlo, and B. samarensis).  However, all analyses show strong 

support for the sister relationship between B. isa and B. dalawa, as well as for the clade including 

the Greater Luzon PAIC species (B. lima, B. apat, B. tatlo; Fig. 4.2).  All nodes received high 

support and all analyses resulted in identical topologies.   

In addition to the supported paraphyly of species formerly part of Brachymeles samarensis, 

several other recognized species were recovered as part of the B. samarensis Complex.  
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Brachymeles cebuensis, one of only two recognized species to have unequal numbers of fore- 

and hind limb digits, was supported to be part of a clade of species (B. cebuensis + B. isa + B. 

dalawa) with three fingers and two or three toes (Fig. 4.2). Sister to this three-finger clade, all 

analyses recovered B. minimus and B. lukbani, both limbless species, nested within a didactyl 

clade of species formerly part of B. samarensis (true B. samarensis, B. lima, B. apat, B. tatlo; 

Fig. 4.2).  All three previously recognized species (B. cebuensis, B. lukbani, B. minimus) have 

geographical distributions that overlap, or are in close proximity to, the known ranges of other 

species in the B. samarensis Complex (Fig. 4.3).   

The six species recognized in this paper are supported to be part of two clades with different 

body plans (Fig. 4.2).  One of these clades, made up of B. cebuensis, B. isa, and B. dalawa, 

consists of species with three digits on their fore-limbs and two to three digits on their hind limbs 

(Fig. 4.2).  In contrast, the remaining species (B. samarensis, B. tatlo, B. apat, B. lima) are part 

of a second clade consisting of limbless and bidactyl body forms (Fig. 4.2).  Two of the five 

recognized species of limbless Brachymeles (B. minimus and B. lukbani) are sister to clade of 

bidactyl species from the Bicol Peninsula of Luzon Island and Catanduanes Island.  As 

previously recognized, Brachymeles samarensis spanned two distinct, recognized faunal regions:  

Greater Luzon PAIC and Greater Mindanao PAIC.  Given this formerly wide geographical 

distribution, it is not surprising that populations between the two PAICs are distinct; however, 

we were surprised to discover high levels of intra-PAIC species diversity (Fig. 4.2). 

The species recognized in this paper increase the total number of known species of 

Brachymeles to 30, and all but two of these are endemic to the Philippines.  The species-level 

diversity within the genus has doubled in the last two years as the result of large-scale sampling 

efforts across the Philippines and the detailed analyses of morphological variation among species 
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and populations (Siler, 2010; Siler et al., 2009a, 2010a,b; Siler and Brown, 2010, 2011; Siler et 

al., 2011, in press a,b,c,d).  Brachymeles has long been considered a small clade of SE Asian 

lizards, and estimates of species diversity have remained nearly constant for more than 30 years 

(but see Brown and Alcala, 1995).  This vast underestimation of true diversity within the genus is 

a testament to the extent of morphological similarity among species and a lack of systematic 

studies of the group.   

Despite the past taxonomic assessments (review: Brown and Alcala, 1980), it comes as little 

surprise that allopatric populations of “B. samarensis” from the Luzon and Mindanao Pleistocene 

Aggregate Island Complexes have proven with improved sampling to be morphologically 

diagnosable independent lineages.  This study adds to a growing line of evidence suggesting a 

need for reevaluation of amphibian and reptile species boundaries within the Philippines.   Few 

examples exist of truly “widespread” reptile species that have geographic distributions spanning 

recognized zoogeographic boundaries, and as is often the case, these species frequently turn out 

to constitute multiple evolutionary lineages (McGuire and Alcala, 2000; Brown et al., 2009; 

Gaulke et al, 2007; Welton et al., 2009, 2010a,b; Siler et al., 2010c, 2011).  The exceptions, in 

contrast, appear to be invasive species and human-mediated range expansions (Diesmos et al., 

2006; Brown et al., 2010). 

All species of Brachymeles live a semi-fossorial existence, specializing in dry rotting 

material inside and underneath fallen decomposing logs, leaf litter, and other forest floor detritus.  

Many are habitat specialists found exclusively in rotting logs, loose soil, or leaf litter, whereas 

others are common beneath piles of rotting coconut husks in disturbed, agricultural habitat.  We 

assume that the species now found in residential and agricultural areas were once native to 

forested habitats and were possibly forest edge specialists.   
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Prior to recent, focused survey efforts, the modest sample sizes of specimens of Brachymeles 

available in museum collections limited appropriate, lineage-based species delimitations.  

Although the rarity of Brachymeles in collections may be due to their secretive, semi-fossorial 

lifestyle, focused survey efforts that target the appropriate microhabitat have proven effective in 

sampling Brachymeles in their native environments (CDS pers. observ.; Siler and Brown, 2010; 

Siler et al., in press a,b,c,d). 

Recent fine- and broad-scale phylogenetic analyses of species of the genus Brachymeles have 

made it apparent that species diversity in the clade has been considerably underestimated; 

accordingly, discovery of additional undocumented (possibly cryptic) diversity is anticipated in 

other species groups (e.g., Siler et al., 2009a, 2010a,b, in press a,b,c,d; Siler and Brown, 2010, 

2011).  A number of studies have shown that the evolution of a burrowing lifestyle is correlated 

with decreasing dispersal abilities (Selander et al., 1974; Patton and Yang, 1977; Patton and 

Feder, 1978; Nevo, 1979; Siler et al., 2011).  Many Brachymeles lineages have experienced 

reduction or loss of limbs, which may further reduce vagility (Siler and Brown, 2010, 2011; Siler 

et al., 2011).  Through time, reduced dispersal abilities and semi-fossorial lifestyles may lead to 

an increasingly patchy distributions, reduced gene flow among populations, and the 

accumulation of inter-population differences (Nevo, 1979).  Still, the role that reduced dispersal 

abilities associated with fossoriality play on the dispersal abilities and diversification patterns of 

Brachymeles species remains unknown.  Regardless of which processes produce species 

diversity, we suspect that additional species await discovery.   

Following the recognition of Brachymeles samarensis, B. lima, B. tatlo, B. apat, B. isa, and B. 

dalawa there are now 13 non-pentadactyl, limbed species of Brachymeles.  Of these, four species 

are bidactyl (B. samarensis, B. tatlo, B. lima, B. apat), four are tridactyl (B. muntingkamay, B. 
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tridactylus, B. isa, B. dalawa), and two are tetradactyl (B. elerae, B. wrighti).  Additionally, two 

species have unequal fore- and hind limb digit numbers (B. cebuensis, 3/2; B. pathfinderi, 5/4), 

and populations of B. bonitae have been observed to have 0–2 fore- and hind limb digits.  All 

non-pentadactyl species have smaller body sizes with the exception of B. wrighti (Taylor, 1925; 

Siler et al., in press b).  Interestingly, the distribution of limbed, non-pentadactyl species in the 

Philippines is relatively uneven across the major biogeographic regions of the Philippines, with 

seven species known to occur in the Luzon Faunal Region, four in the Mindanao Faunal Region, 

two in the Visayan Faunal Region, and one in the Mindoro Faunal Region (Brown and Alcala, 

1980, Brown and Alcala, 1995; Brown and Diesmos, 2002; Siler et al., 2010a). 

Additionally, the distribution of total species diversity in the genus is also uneven, with 13 

species known from the Luzon Faunal Region versus eight in the Mindanao Faunal Region, six 

in the Visayan Faunal Region, and only two and two in the Sulu archipelago and Mindoro Faunal 

Region respectively (Brown and Alcala, 1980; Brown and Alcala, 1995; Brown and Diesmos, 

2002; Siler et al., 2009a, 2010a,b; Siler and Brown, 2010).  New species discoveries on Luzon 

Island have occurred with consistency during the last two decades; given the island’s complex 

mountain ranges (Sierra Madres, Cordillera, Zambales, Bicol Peninsula volcanoes) and 

geographic complexity (Defant et al., 1989; Yumul et al., 2009), the increase in the faunal 

region’s diversity is likely to continue (Ross and Gonzales, 1992; Brown et. al. 1995a,b, 1999, 

2000a; Linkem et al., 2010; Siler et al., 2009a, 2010a,b,c, in press c,d; Welton et al., 2010a,b).  It 

is worth noting that efforts to survey Mindanao have been less extensive than efforts on Luzon; 

this may account for some of the differences in diversity between the regons—which may be 

artifacts of sampling biases. 
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At present there remains one polytypic species (B. gracilis) and one “widespread” species (B. 

bonitae) in the genus, both with distributions spanning boundaries between recognized faunal 

regions (Brown and Alcala, 1980; Siler and Brown, 2010; Siler et al., in press d).  Closer 

investigation of island populations within each of these species may result in the discovery of 

new species diversity.  Furthermore, recent phylogenetic studies of the genus Brachymeles have 

not supported the monophyly of either of these widespread species, an indication that taxonomic 

revisions are needed (Siler and Brown, 2011; Siler et al., 2011).  As our understanding of the 

total diversity within Brachymeles increases, it is important that continued efforts be made to 

conduct surveys focused on rotting log and leaf litter microhabitats throughout the ranges of all 

species.  Accurate data on the distributions of these species will allow for a complete assessment 

of the geographic ranges of the species and appropriate assessment of conservation status can be 

made.  At present, all nine species of the B. samarensis Complex are known or believed to be 

common throughout their ranges.  Although these species currently inhabit highly disturbed, 

agricultural and residential areas, no studies on the long-term effect of deforestation on 

populations of Brachymeles exist.  Therefore, according to the IUCN categories and 

classification structure, we consider the conservation status of these species as “Least Concern 

(LC),” pending the collection of additional information that might suggest otherwise. 
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Figure 4.4. Illustration of head of adult female Brachymeles samarensis (KU 310849) and adult 

female Brachymeles tatlo (PNM 4856; formerly KU 324004) in dorsal, lateral, and ventral views.  

Taxonomically diagnostic head scales are labeled as follows:  C, chin shield; F, frontal; FN, 

frontonasal; FP, frontoparietal; IL, infralabial; IP, interparietal; L, loreal; M, mental; N, nasal; 

Nu, nuchal; P, parietal; PF, prefrontal; PM, postmental; PN, postnasal; PO, preocular; PSO, 

presubocular; R, rostral; SC, supraciliary; SL, supralabial; SN, supranasal; and SO, supraocular.  

Roman numerals indicate scales in the supraocular series, with Arabic numbers indicating scales 

in the supraciliary series.  Illustrations by CDS, AMF, and RMJ. 
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Figure 4.5. Illustration of head of adult male holotype Brachymeles lima (PNM 9756; formerly 

KU 324003) and adult female holotype Brachymeles apat (PNM 9761; formerly KU 324023) in 

dorsal, lateral, and ventral views.  Labels for taxonomically diagnostic head scales follow those 

shown in Figure 4.4.  Illustrations by CDS, AMF, and RMJ. 
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Figure 4.6. Illustration of head of adult female holotype Brachymeles isa (PNM 9746; formerly 

KU 311228) and adult male holotype Brachymeles dalawa (PNM 9749; formerly KU 320466) in 

dorsal, lateral, and ventral views.  Labels for taxonomically diagnostic head scales follow those 

shown in Figure 4.4.  Illustrations by CDS, AMF, and RMJ. 
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Figure 4.7. Photograph in life of Brachymeles isa (PNM 9746; formerly KU 311228), SVL = 

59.1 mm.  Photograph by CDS. 



 299 

 



 300 

 

 

 

 

 

 

 

 

 

Figure 4.8. Photographs in life of Brachymeles dalawa (PNM 9749; formerly KU 320466), SVL 

= 56.3 mm.  Photographs by CDS. 
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CHAPTER 5 

Phylogeny-based species delimitation in Philippine slender skinks (Reptilia: Squamata: 

Scincidae: Brachymeles) III: taxonomic revision of the Brachymeles gracilis Complex, with 

description of three new species 

 

Few genera of scincid lizards are known to possess species representing a full spectrum of body 

forms, from fully limbed, pentadactyl species to limbless species (see Siler and Brown, 2010, 

2011; Siler et al., 2011).  Within one of them, the genus Brachymeles Duméril and Bibron, 1839, 

all but two of the 30 recognized species are endemic to the Philippines, the exceptions being a 

single species (B. apus) from northern Borneo and another (B. miriamae) from Thailand (Brown 

and Alcala, 1980; Hikida, 1982; Siler et al., 2009a, 2010a,b, 2011, in press a,b,c; Siler, 2010; 

Siler and Brown, 2010, 2011).  Thirteen species of Brachymeles are pentadactyl (bicolor, 

boholensis, boulengeri, gracilis, kadwa, makusog, mindorensis, orientalis, schadenbergi, talinis, 

taylori, tungaoi, and vindumi), thirteen are non-pentadactyl, with incompletely developed limbs 

and a reduced numbers of digits (bonitae, cebuensis, elerae, muntingkamay, pathfinderi, 

samarensis, tridactylus, wright, sp. nov. [Leyte Island; Siler et al., in press c], sp. nov. [Lapinig 

Group Islands; Siler et al., in press c], sp. nov. [Catanduanes Island; Siler et al., in press c], sp. 

nov. [Central Bicol Peninsula, Luzon Island; Siler et al., in press c], and sp. nov. [Southern Bicol 

Peninsula, Luzon Island; Siler et al., in press c]), and five are entirely limbless (apus, minimus, 

miriamae, lukbani, and vermis).   

The non-pentadactyl species have been the subject of recent studies which have documented 

a wide range of limb- and digit-reduced states, from minute limbs that lack full digits (bonitae, 

cebuensis, muntingkamay, samarensis, tridactylus, sp. nov. [Leyte Island; Siler et al., in press c], 
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sp. nov. [Lapinig Group Islands; Siler et al., in press c], sp. nov. [Catanduanes Island; Siler et al., 

in press c], sp. nov. [Central Bicol Peninsula, Luzon Island; Siler et al., in press c], and sp. nov. 

[Southern Bicol Peninsula, Luzon Island; Siler et al., in press c]), to moderately developed limbs 

with four to five digits on the hands and feet (elerae, pathfinderi, wrighti: Duméril and Bibron, 

1839; Brown, 1956; Brown and Rabor, 1967; Brown and Alcala, 1980; Taylor, 1917, 1918, 

1925; Siler et al., 2009a, 2010b, 2011, in press a,b,c; Siler, 2010; Siler and Brown, 2010, 2011).  

All species are semi-fossorial and typically found in dry, rotting material inside or underneath 

decaying logs or in loose soil, forest floor detritus, and leaf litter.  Most species in the genus are 

recognized from hot, lowland forests; however, several species do occur in cooler high elevation 

forests (e.g., B. apus, B. elerae, B. wrighti). 

Named over 150 years ago (Duméril and Bibron, 1839), the genus reached 15 species by 

1980 (Brown and Alcala, 1980) and only one additional species, B. minimus, a legless species, 

was described in invervening years (Brown and Alcala, 1995).  We assume that until recent work, 

guided by extensive field based survey work combined with molecular phylogenetic studies, 

conservative body plans and external morphological features among species of Brachymeles led 

earlier reseachers to conclude that the genus was relatively species-poor (Taylor, 1917; Brown, 

1956; Brown and Rabor, 1967; Brown and Alcala, 1980).   

Recent studies have revealed that this assessment of limited spercies diversity is cleally an 

underestimate.  Phylogeny-based exercises in species delimitation have identified and revised 

numerous non-monophyletic species complexes within the Philippines (Siler et al., 2009a, 

2010a,b, 2011, in press a,b,c; Siler, 2010; Siler and Brown, 2010, 2011).  Additionally, several 

rare, mid-to-high elevation species long represented by only a few specimens (e.g., Brachymeles 

bicolor, B. elerae, B. wrighti, B. pathfinderi), have recently been rediscovered and redescribed as 
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valid taxa (Siler, 2010; Siler et al., in press a,b).  Together, these studies, coupled with increased 

sampling throughout the Philippines, and a new, robust molecular dataset now allows us to begin 

evalutating variation across the isolated populations of widespread species. 

Recently, Siler and Brown (2010) revised two polytypic species (B. boulengeri and B. 

schadenbergi) and one widespread species (B. talinis), and inferred the presence of ten 

genetically and morphologically distinct allopatric evolutionary lineages (species).  Following 

this study, Siler et al. (in press c) revised the B. samarensis Complex, restricting the range of B. 

samarensis to Samar Island only, and describing five new, non-pentadactyl species. Another 

another species, B. bonitae, is still recognized as having a widespread distribution (Brown, 1956; 

Brown and Rabor, 1967; Brown and Alcala, 1980) that spans historical faunal demarcations in 

the Philippines (Heaney, 1985; Brown and Guttman, 2002; Brown and Diesmos, 2002, 2009).  

Only a single polytypic species still is recognized (B. gracilis; Brown, 1956; Brown and Rabor, 

1967; Brown and Alcala, 1980); this lineage is the focus of the present study. 

 

Taxonomic History 

The genus Brachymeles was first described by Duméril and Bibron (1839) for the small, 

limb-reduced species Brachymeles bonitae.  Three additional species (Senira bicolor [Gray, 

1845], Eumeces (Riopa) gracilis [Fischer, 1885], E. (R.) schadenbergi [Fischer, 1885]) were 

transferred to the genus by Boettger (1886) and Boulenger (1887).  Fischer’s (1885) description 

of E. gracilis was based on single specimen with the collection No. 846 (reported to be deposited 

in the Dresden Museum), and only a single line drawing of the dorsal view of the head was 

provided (Fischer, 1885: plate III, Fig. 5.1).  Three decades later, in Taylor’s (1917) review of 

the genus, he incorrectly revised B. gracilis to include not only populations in the Mindanao 
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Faunal Region, but also populations on Negros and Mindoro islands (Fig. 5.1).  At the time, 

Taylor did not have access to Fischer’s (1885) original description, and based his evaluation on a 

series of 27 specimens from Negros and Mindoro, inferring that the specimen reported by 

Fischer (1885) from Mindanao was actually B. schadenbergi (sensu Siler and Bown, 2010).  

Taylor (1917) provided an illustration of the ventral view of head likely based on a specimen of 

B. taylori or B. mindorensis. 

One year later, Taylor (1918) described B. sampu based on a single specimen from Bubuan 

Island of the Tapiantana Island Group off southern the coast of Basilan.  He provided line 

drawings of the dorsal, lateral, and ventral profiles of the head of the type specimen.  With what 

was known of the species diversity in the genus at the time, Taylor (1918) described B. sampu as 

“…another link in the chain of retrogression in the genus Brachymeles…between Brachymeles 

schadenbergii and B. bicolor.”  Taylor (1918) described the type specimen (Philippine Bureau of 

Science collection No. 1989:254) of B. sampu; this specimen was lost in the World War II 

firebombing of Manila (Brown and Alcala, 1978), as were 32 other type specimens of Philippine 

amphibians and reptiles (Welton et al., 2009).  In a subsequent revision Taylor (1922a) placed B. 

sampu in the synonymy of B. gracilis.  In this revision, Taylor used the original head profile line 

drawings of B. sampu to illustrate head scale patterns for B. gracilis (Taylor, 1922a:248), 

suggesting that he clearly considered B. sampu to be a junior synonym of B. gracilis.  

Thirty years later, Brown (1956) described B. gracilis taylori, and included B. boulengeri as 

one of three subspecies of the polytypic species B. gracilis.  Brown and Rabor’s (1967) 

description of B. gracilis boholensis and B. g. mindorensis brought the number of subspecies 

within B. gracilis to five.  It was not until 1980 that Brown and Alcala (1980) resurrected the 

polytypic species B. boulengeri, and included four subspecies (B. b. boulengeri, B. b. boholensis, 
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B. b. mindorensis, B. b. taylori), all believed to be distinct from B. gracilis.  Their restriction of B. 

gracilis to the southern and southeastern islands of the Philippines resulted in the recognition of 

only two subspecies, B. gracilis gracilis and B. gracilis hilong (Brown and Alcala, 1980). 

This view has characterized the taxonomy of B. gracilis for the past 30 years.  To date, 

Brachymeles gracilis remains a widespread species spanning most major islands of the 

Mindanao Pleistocene Aggregate Island Complex (PAICs; Brown and Guttman, 2002; Brown 

and Diesmos, 2002; Fig. 5.1).  Widespread distributions such as this have been the focus of many 

recent studies (Brown et al., 2000a; Siler et al., 2010a,b, in press c; Siler and Brown, 2010; 

Welton et al., 2009, 2010a,b), which have revealed that few endemic Philippine reptiles actually 

possess broad distributions spanning these regional faunistic boundaries (review: Brown and 

Diesmos, 2009).  

The goal of the present study is to revise the taxonomy of the B. gracilis complex such that 

individual units (species) represent independently evolving, cohesive lineage segments (sensu 

Simpson, 1961; Wiley 1978; Frost and Hillis, 1990; de Queiroz, 1998, 1999).  Comprehensive 

examination of all recently collected specimens from throughout the known range of B. gracilis, 

and historically collected specimens available in museum collections, results in the 

reorganization of the species complex into six distinct evolutionary lineages (species).  In this 

paper we provide a phylogenetic analysis and the first illustrations of five of these taxa, fully 

describe each species, and clarify taxonomic boundaries.  We also provide information on each 

species’ natural history, ecology, and geographic distribution and comment on additional, 

presently unrecognized putative new species. 
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Figure 5.1. Map of the Philippine islands, with island labels provided for islands with 

representative samples used for this study.  The five recognized major Pleistocene Aggregate 

Island Complexes (PAICs), major island groups, and additional deep-water islands are labeled 

for reference.  Current islands in the Philippines are shown in medium grey; light gray areas 

enclosed in black 120 m bathymetric contours indicate the hypothesized maximum extent of land 

during the mid- to late Pleistocene. 
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Materials and Methods 

Field work, sample collection, and specimen preservation 

Fieldwork was conducted on Camiguin Sur, Leyte, Mindanao, and Samar islands, all in the 

Philippines (Fig. 5.1) between 1991 and 2010.  Specimens were collected between 900 and 1600 

hr, euthenized in aqueous chloretone, dissected for genetic samples (liver preserved in 95% 

ethanol or flash frozen in liquid nitrogen), fixed in 10% formalin and eventually (< 2 mo) 

transferred to 70% ethanol.  Specimens measured or sequenced in this study are deposited in the 

University of Kansas Natural History Museum (KU), the Texas Natural History Collections 

(TNHC) of the Texas Memorial Museum of the University of Texas at Austin, the Philippine 

National Museum (PNM), the Cincinnati Museum Center (CMC), the California Academy of 

Sciences (CAS), and the Museum of Comparative Zoology (MCZ) (Acknowledgments and 

Specimens Examined); voucher information corresponding to data from GenBank sequences is 

included in Table 5.1.  

 

Taxon sampling and outgroup selection for phylogenetic analyses 

Because our primary goal was to estimate phylogenetic relationships among the various 

populations of Brachymeles gracilis we sequenced 2–4 exemplars per sampled population.  We 

included samples of Plestiodon and Lygosoma, as well as samples of Brachymeles apus, B. 

bonitae, and B. miriamae, as outgroup representatives based on relationships presented in a 

recent phylogenetic analyses of the genus Brachymeles (Siler et al., 2011).  The results of Siler et 

al. (2011) revealed the Brachymeles gracilis species complex to be non-monophyletic, and we 

therefore included samples of Brachymeles pathfinderi to explore the sister group relationships 
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within the B. gracilis complex.  A total of 21 ingroup samples were used in phylogenetic 

inferences.  Genetic samples of B. sampu were not available for inclusion. 

 

DNA extraction, purification, and amplification 

We extracted total genomic DNA from tissues (Table 5.1) using the modified guanidine 

thiocyanate extraction method of Esselstyn et al. (2008).  The mitochondrial NADH 

Dehydrogenase Subunit 1 (ND1), NADH Dehydrogenase Subunit 2 (ND2), and the nuclear loci, 

Brain-derived Neurotrophic Factor (BDNF) and PTGER4, were completely sequenced for nearly 

all samples using the primers and protocols provided in Siler et al. (2011).  We visualized 

amplified products on 1.0% agarose gels, then purified them with 1 µL of a 20% solution of 

ExoSAP-IT (US78201, Amersham Biosciences, Piscataway, NJ) on the following thermal cycler 

profile: 31 min at 37º, followed by 15 min at 80˚.  Upon successful amplification of targeted 

fragments, cycle-sequencing reactions were completed with the same primers and ABI Prism 

BigDye Terminator chemistry (Ver. 3.1; Applied Biosystems, Foster City, CA).  Cycle-

sequencing products were purified with Sephadex Medium (NC9406038, Amersham Biosciences, 

Piscataway, NJ) in Centri-Sep 96 spin plates (CS-961, Princeton Separations, Princeton, NJ).  

We analyzed purified products using an ABI Prism 3130xl Genetic Analyzer (Applied 

Biosystems), and gene sequences were assembled with Sequencher 4.8 (Gene Codes Corp., Ann 

Arbor, MI). 

 

Alignment and phylogenetic analysis 

An initial alignment was produced in Muscle v3.7 (Edgar, 2004), and manual adjustments 

were made in MacClade 4.08 (Maddison and Maddison, 2005).  No instances of insertions or 
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deletions, or ambiguously aligned regions, were observed in the data, and all data were used for 

analyses.  The final alignment thus consisted of 3,032 characters.  

Phylogenetic analyses were conducted using likelihood optimality criteria and Bayesian 

methods.  Partitioned maximum likelihood (ML) analyses were conducted in RAxMLHPC v7.04 

(Stamatakis, 2006).  The alignment was partitioned into eight regions consisting of the codon 

positions of ND1 and ND2, and the two nuclear loci, BDNF and PTGER4, following the 

methods of Siler et al. (2011).  Analyses that partition protein-coding genes by codon position 

have been shown to improve resulting inferences (Brandley et al., 2005).  The partitions were run 

under the same model (GTR + G) with 100 replicate best-tree inferences.  Each inference was 

performed with a random starting tree, and relied on the rapid hill-climbing algorithm 

(Stamatakis 2006).  Clade support was assessed with 1000 bootstrap pseudoreplicates.  We 

considered branches receiving ≥70% bootstrap support to be well-supported (Hillis and Bull, 

1993; see also Wilcox et al., 2002).   

The Akaike Information Criterion (AIC), as implemented in jModeltest v0.1.1 (Guindon and 

Gascuel, 2003; Posada, 2008), was used to select the best model of nucleotide substitution for 

each partition (Table 5.2).  The best-fit model for each of the eight partitions (Table 5.2) was 

used for Bayesian analyses performed in MrBayes 3.1 (Ronquist and Huelsenbeck, 2003).  The 

same partitioning strategy used for maximum likelihood analyses was used for Bayesian 

inferences.  Searches over tree space were conducted with four runs, each with four chains, and 

were run for 2 × 107 generations.  Trees were sampled every 1000 generations, with 4000 

samples discarded as burn-in; this left 16001 post-burn-in trees from each run included in the 

posterior distribution of topologies.  Visual inspection for chain stationarity and high ESS values 

was conducted within the program Tracer v1.4 (Rambaut and Drummond, 2007).  Additionally, 
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correlations of split frequencies and cumulative split frequencies were examined using the 

program AWTY (Nylander et al., 2008).  We considered topologies with posterior probabilities 

≥0.95 to be well supported (Wilcox et al., 2002; Leaché and Reeder, 2002). 

 

Morphological data 

We examined fluid-preserved specimens (Appendix VI) for variation in qualitative and 

mensural characters. Sex was determined by gonadal inspection, and measurements were taken 

to the nearest 0.1 mm with digital calipers by CDS.  X-rays were taken with a company cabinet 

X-ray on Kodak paper exposed at 5 miliampheres and 30 volts for 1 minute 15 seconds.  

Museum abbreviations for specimens examined follow Leviton et al. (1985). 

Meristic and mensural characters were chosen based on Siler et al. (2010a): snout–vent 

length (SVL), axilla–groin distance (AGD), total length (TotL), midbody width (MBW), 

midbody height (MBH), tail length (TL), tail width (TW), tail height (TH), head length (HL), 

head width (HW), head height (HH), snout–forearm length (SnFa), eye diameter (ED), eye–

narial distance (END), snout length (SNL), internarial distance (IND), fore-limb length (FLL), 

hind limb length (HLL), midbody scale-row count (MBSR), paravertebral scale-row count 

(PVSR), axilla–groin scale-row count (AGSR), Finger-III lamellae count (FinIIIlam), Toe-IV 

lamellae count (ToeIVlam), supralabial count (SL), infralabial count (IFL), supraciliary count 

(SC), and supraocular count (SO).  Additionally, we counted the number of presacral vertebrae 

(PSV) from x-ray images of specimens.  In the description, ranges are followed by mean ± 

standard deviation in parentheses. 
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Table 5.1. Summary of specimens corresponding to genetic samples included in the study. 

PNM/CMNH = deposited in the Cincinnati Museum of Natural History; SP = Sabah Parks 

Reference Collection; KU = University of Kansas Natural History Museum; LSUHC = La Sierra 

University Herpetological Collections; * = Holotypes of new species described in this paper. 
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Table 5.2. Models of evolution selected by AIC and applied for partitioned, Bayesian 

phylogenetic analyses1.  

Partition AIC Model Number of Characters 

ND1, 1st codon position GTR + Γ 322 

ND1, 2nd codon position GTR + Γ 322 

ND1, 3rd codon position GTR + Γ 322 

ND2, 1st codon position GTR + Γ 287 

ND2, 2nd codon position GTR + Γ 287 

ND2, 3rd codon position GTR + Γ 287 

BDNF GTR + Γ 715 

PTGER4 HKY + Γ 490 

1The model GTR + I + G was used for partitioned RAxMLHPC analyses. 
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Table 5.3. Uncorrected pairwise sequence divergence (%) for mitochondrial data (below 

diagonal) and nuclear data (above diagonal), for Brachymeles gracilis, B. pito, B. anim, B. syam, 

B. walo, and B. pathfinderi (Fig. 5.2).  Percentages on the diagonal represent intraspecific genetic 

diversity for mitochondrial data (bolded for emphasis). 
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Species concept 

We follow the General Lineage Concept of species (de Queiroz, 1998, 1999) as a logical 

extension of the Evolutionary Species Concept (Simpson, 1961; Wiley, 1978; Frost and Hillis, 

1990).  We consider as distinct lineages those populations that are morphologically, and 

genetically distinct, especially if allopatric.  Lineage-based species concepts have been 

successfully employed in the recognition of Philippine biodiversity (Brown et al., 2000, 2002, 

2008, 2009; Brown and Guttman, 2002; Gaulke et al., 2007; Welton et al., 2009, 2010 a,b; Siler 

and Brown, 2010; Siler et al., 2011) due to the highly partitioned nature of the archipelago 

(Brown and Diesmos, 2009), and because the geological history of the islands has been so well 

documented (Voris, 2000; Hall, 2002; Yumul, 2009).  In this study we use an estimate of 

Phylogenetic relationships as a guide for delimiting species but restrict our diagnoses of new 

species to those populations unambiguously diagnosed by differences in non-overlapping 

morphological character states. 

 

Results 

Phylogeny 

Trees recovered from ML and Bayesian analyses are identical in their support for five 

evolutionary lineages within the Brachymeles gracilis Complex (Fig. 5.2).  The resulting 100 

inferences from the partitioned RAxML maximum likelihood analysis show an average 

likelihood score of –ln L 12804.013201, with a single inference having the highest likelihood 

score of –ln L 12803.989734.  No inferences support the monophyly of Brachymeles gracilis 

(Fig. 5.2).  All analyses recover four major clades (Fig. 5.2, Clades A–C, F) within the B. 

gracilis Complex; however, we recover only weak support for interclade relationships in most 
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instances.  The Camiguin Island population and B. gracilis hilong were recovered as a strongly 

supported clade in all analyses (Fig. 5.2, Clade A), as were populations of B. gracilis gracilis and 

B. pathfinderi (Fig. 5.2, Clade E).  Populations from northwestern and southwestern Mindanao 

Island were always recovered as a monophyletic group (Fig. 5.2, Clade B), as were populations 

from the islands of Samar and Leyte (Fig. 5.2, Clade C).  True B. gracilis hilong was never 

recovered as part of a monophyletic group with true B. gracilis gracilis. 

Uncorrected pairwise sequence divergences are generally low within the lineages defined 

here as species and high between these lineages (Table 5.3).  Percent divergences for the 

mitochondrial and nuclear data, respectively, show that the monophyletic lineages defined by our 

phylogenetic analyses (B. gracilis gracilis, B. gracilis hilong, B. sp. nov. [Samar and Leyte 

islands], B. sp. nov. [Camiguin Sur Island], and B. sp. nov. [western Mindanao Island]) are 

distinguished from congeners by levels of genetic divergence nearly equal to, or greater than, 

those between previously defined species—viz., B. pathfinderi (Table 5.3; Fig. 5.2).  The two 

most closely related lineages (B. sp. nov. [Camiguin Sur Island] and B. gracilis hilong) are 

separated by 4.2% mitochondrial sequence divergence.  Sequence divergences among the other 

lineages within the B. gracilis Complex are greater than 8.1% (Table 5.3; Fig. 5.2).  Intraspecific 

sequence divergences are low in comparison to divergences among monophyletic lineages with 

one exception being B. sp. nov. (western Mindanao Island; Table 5.3; Fig. 5.2).  Although 

samples from the southwestern Mindanao populations are genetically similar to each other (Fig. 

5.2, Populations 2, 3) and form a monophyletic group, there is a 5.9% sequence divergence 

between these populations and the northwestern (Fig. 5.2, Population 1) Mindanao population 

(Table 5.3; Fig. 5.2).  We suspect that this highly supported clade (Fig. 5.2, Clade B) actually 

represents a complex of morphologically similar species; however, only a single juvenile from 
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the northwestern Mindanao population has ever been collected.  Therefore, we conservatively 

consider all western Mindanao popluations (Fig. 5.2, Clade B, Populations 1–3) as members of a 

single, unique evolutionary lineage, pending the collection of additional samples from 

throughout western Mindanao Island.  Unfortunately, no tissues of B. sampu have ever been 

collected, but we suspect, on the basis of overwhelming morphological similarity, that this 

species would be recovered within the B. gracilis Complex (Fig. 5.2). 

 

Morphology 

Superficially, the six lineages within the B. gracilis complex appear morphologically similar, 

especially in overall body size; however, upon closer inspection, numerous non-overlapping 

differences were detected in meristic, mensural, osteological, and color pattern characters for 

each complex member, readily defining six distinct lineages within the complex (Tables 5.4–

5.6).  Variation in morphological characters (Tables 5.4–5.6) mirrors the results observed in 

phylogenetic analyses, and supports the recognition of six Brachymeles gracilis group lineages.  

Characters differing among these six lineages include: relative tail length, presacral vertebrae 

number, head and body scale counts and patterns, and pigmentation patterns (Tables 5.4–5.6; 

species accounts below), all of which are typical morphological diagnostic characters employed 

historically by taxonomists working with this genus (review: Siler and Brown, 2010; Siler et al., 

in press c).  We observed no intraspecific mensural or meristic differences between the sexes of 

any of the six species. 

In summary, each lineage (all but two of which are allopatric) possesses unique and non-

overlapping suites of diagnostic character states of morphology, perfectly corresponding to the 

six clades defined in phylogenetic analyses of DNA sequence data.  Combined with  
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Figure 5.2. Maximum clade credibility topology of Brachymeles inferred in this study resulting 

from Bayesian analyses of the combined mitochondrial + nuclear dataset (preferred ML tree, -ln 

L 12803.989734; ND1, ND2, BDNF, PTGER4).  Terminals are labeled with taxonomic names, 

fore- and hind limb digit states, number of presacral vertebrae, and geographic distributions. 
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Figure 5.3. (Left) Map of the Philippine islands showing previously recognized distribution of 

Brachymeles gracilis (indicated by black shaded islands), and recognized distribution of B. 

pathfinderi (indicated by a star).  (Right) Hypothesized distributions of B. gracilis, B. pito, B. 

anim, B. syam, B. walo, and B. sampu in the southern and southeastern Philippines.  Sampling 

localities are indicated by shapes: black shapes represent sites where both specimens and tissues 

have been sampled, white shapes represent sites where only specimens have been sampled.  

Numbered sites correspond to population labels shown in Figure 5.2.  The hypothesized 

geographic range of each species is indicated by shaded polygons.  Shapes and color shades 

correspond to the map’s key 
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Table 5.4. Summary of meristic and mensural characters in all known medium-sized, 

pentadactyl species of Brachymeles.  Sample size, body length and total length among males and 

females, and general geographical distribution (PAIC = Pleistocene Aggregate Island Complexes, 

sensu Brown and Diesmos, 2002) are included for reference (SVL, TotL, MBW, FLL, and HLL 

given as range over mean ± standard deviation; all body proportions given as percentage over 

mean ± standard deviation).  In cases of scale count variation within species, numbers of 

individuals showing specific counts are given in parentheses. 



 326 

 
gr

ac
ili

s 
(1

3 
m

, 2
4 

f)
 

pi
to

 
 (1

1 
m

, 1
4 

f)
 

an
im

 
(1

 m
, 1

0 
f)

 
sy

am
 

 (9
 m

, 1
8 

f)
 

w
al

o 
(1

 m
, 1

 f)
 

sa
m

pu
 

 (1
 f)

 

R
an

ge
 

So
ut

he
rn

 
M

in
da

na
o 

Is
la

nd
 

Ea
st

er
n 

M
in

da
na

o 
Is

la
nd

 
C

am
ig

ui
n 

Su
r 

Is
la

nd
 

Sa
m

ar
 &

 L
ey

te
 

is
la

nd
s 

W
es

te
rn

 M
in

da
na

o 
Is

la
nd

 
B

as
ila

n 
Is

la
nd

 
G

ro
up

 
SV

L 
(f

) 
 SV

L 
(m

) 

58
.6

–8
3.

4 
(6

9.
9 

± 
6.

1)
 

60
.1

–8
2.

3 
(6

9.
6 

± 
7.

9)
 

59
.9

–8
1.

5 
(7

1.
7 

± 
6.

5)
 

61
.5

–7
8.

5 
(6

9.
8 

± 
4.

5)
 

53
.6

–8
0.

1 
(7

5.
4 

± 
5.

1)
 

75
.8

 

64
.2

–7
6.

9 
(7

1.
5 

± 
3.

7)
 

65
.0

–7
4.

6 
(7

0.
2 

± 
3.

2)
 

75
.5

 
 

61
.6

 

71
.9

 
 —
 

To
tL

 (f
) 

 To
tL

 (m
) 

11
6.

4–
14

6.
0 

(1
27

.7
 ±

 8
.0

) 
12

4.
4–

16
1.

3 
(1

37
.8

 ±
 1

4.
8 

11
7.

8–
15

9.
2 

(1
32

.0
 ±

 1
2.

0)
 

11
6.

7–
13

9.
4 

(1
28

.0
 ±

 7
.5

) 

11
7.

6–
14

1.
4 

(1
28

.3
 ±

 8
.7

) 
—

 

13
5.

8–
15

9.
7 

(1
47

.7
 ±

 7
.9

) 
13

2.
4–

14
6.

9 
(1

40
.6

 ±
 7

.4
) 

14
2.

6  
11

7.
3 

—
  —
 

M
B

W
 

8.
0–

12
.0

 
(9

.4
 ±

 1
.0

) 
7.

9–
12

.1
 

(9
.9

 ±
 1

.1
)  

8.
9–

12
.3

 
(1

0.
7 

± 
1.

1)
 

7.
7–

11
.2

 
(9

.5
 ±

 0
.8

)  
8.

5,
 8

.0
 

8.
2 

 

TL
/S

V
L 

79
–1

02
 

(9
3 

± 
6)

 
57

–9
8 

(7
9 

± 
14

) 
54

–8
4 

(7
2 

± 
12

) 
92

–1
26

 
(1

08
 ±

 9
) 

90
, 8

9 
—

 

TW
/M

B
W

 
57

–7
9 

(7
0 

± 
5)

 
57

–8
1 

(7
0 

± 
7)

 
61

–8
2 

(7
0 

± 
8)

 
59

–8
7 

(7
4 

± 
6)

 
87

, 8
6 

71
 

FL
L 

5.
9–

8.
6 

(7
.2

 ±
 0

.8
) 

7.
1–

9.
3 

(8
.3

 ±
 0

.6
) 

7.
9–

9.
1 

(8
.3

 ±
 0

.4
) 

8.
2–

9.
9 

(9
.1

 ±
 0

.5
) 

7.
5,

 7
.1

 
7.

2 

FL
L/

SV
L 

9–
12

 
(1

0 
± 

1)
 

10
–1

4 
(1

2 
± 

1)
 

10
–1

2 
(1

1 
± 

1)
 

11
–1

5 
(1

3 
± 

1)
 

12
, 9

 
10

 

H
LL

 
10

.3
–1

4.
8 

(1
2.

4 
± 

1.
0)

 
12

.2
–1

6.
0 

(1
4.

0 
± 

1.
1)

 
13

.6
–1

5.
6 

(1
4.

2 
± 

0.
6)

 
12

.3
–1

6.
7 

(1
4.

3 
± 

1.
0)

 
12

.1
, 1

0.
3 

13
.1

 

H
LL

/S
V

L 
14

–2
3 

(1
8 

± 
2)

 
17

–2
3 

(2
0 

± 
1)

 
17

–2
1 

(1
9 

± 
1)

 
17

–2
3 

(2
0 

± 
2)

 
20

, 1
4 

18
 

Fi
nI

II
la

m
 

4 
(1

1)
 

5 
(2

6)
 

5 
(2

5)
 

5 
(1

1)
 

5 
(2

7)
 

4 
(1

) 
5 

(1
) 

5 
(1

) 

To
eI

V
la

m
 

7 
(2

0)
 

8 
(1

7)
 

8 
(1

8)
 

9 
(7

) 
8 

(1
0)

 
9 

(1
) 

8 
(4

) 
9 

(2
3)

 
6 

(2
) 

8 
(1

) 

 

 



 327 

T
A

B
L

E
 5

.4
.—

C
on

tin
ue

d.
 

 
 

 
bo

ho
le

ns
is

 
(5

 m
, 1

4 
f)

 
bo

ul
en

ge
ri

 
(7

 m
, 8

 f)
 

m
in

do
re

ns
is

 
(6

 m
, 1

2 
f)

 
ta

yl
or

i 
(8

 m
, 1

3 
f)

 

R
an

ge
 

B
oh

ol
 Is

la
nd

 
Lu

zo
n 

PA
IC

 
M

in
do

ro
 Is

la
nd

 
N

eg
ro

s &
 

C
eb

u 
Is

la
nd

 

SV
L 

(f
) 

 SV
L 

(m
) 

83
.8

–9
4.

0 
(8

8.
4 

± 
3.

1)
  

84
.1

–9
3.

6 
(8

9.
1 

± 
4.

1)
 

60
.5

–9
5.

5 
(8

4.
0 

± 
11

.2
) 

72
.3

–9
3.

1 
(8

2.
5 

± 
6.

7)
 

90
.0

–1
06

.8
 

(9
8.

8 
± 

5.
3)

 
93

.9
–1

04
.2

 
(1

00
.2

 ±
 4

.1
) 

65
.8

–9
3.

2 
(8

3.
9 

± 
7.

4)
 

83
.1

–9
9.

2 
(8

7.
0 

± 
5.

2)
 

To
tL

 (f
) 

 To
tL

 (m
) 

12
9.

6–
17

4.
8 

(1
54

.1
 ±

 1
4.

7)
 

15
4.

5–
16

6.
2 

(1
60

.7
 ±

 5
.9

) 

12
9.

7–
16

7.
4 

(1
59

.3
 ±

 1
3.

1)
 

12
4.

3–
17

3.
1 

(1
51

.4
 ±

 1
9.

4)
 

16
2.

5–
20

6.
7 

(1
80

.2
 ±

 1
4.

2)
 

16
5.

3–
19

7.
0 

(1
84

.9
 ±

 1
1.

5)
 

13
0.

3–
16

8.
5 

(1
49

.9
 ±

 1
3.

0)
 

14
9.

6–
17

6.
7 

(1
64

.3
 ±

 1
1.

3)
 

M
B

W
 

11
.9

–1
5.

0 
(1

3.
4 

± 
1.

0)
 

9.
9–

14
.7

 
(1

2.
4 

± 
1.

7)
 

12
.8

–2
0.

8 
(1

6.
0 

± 
1.

8)
 

11
.0

–1
6.

8 
(1

3.
8 

± 
1.

7)
 

TL
/S

V
L 

53
–9

0 
(7

6 
± 

13
) 

67
–1

14
 

(8
9 

± 
16

) 
60

–9
9 

(8
5 

± 
11

) 
69

–1
03

 
(8

3 
± 

10
) 

TW
/M

B
W

 
62

–7
8 

(7
0 

± 
5)

 
60

–8
1 

(7
0 

± 
6)

 
54

–8
0 

(6
9 

± 
8)

 
54

–8
0 

(6
9 

± 
7)

 

FL
L 

9.
0–

11
.2

 
(1

0.
1 

± 
0.

7)
 

8.
2–

11
.7

 
(1

0.
5 

± 
0.

8)
 

10
.0

–1
3.

0 
(1

1.
4 

± 
0.

8)
 

9.
0–

10
.4

 
(9

.8
 ±

 0
.4

) 

FL
L/

SV
L 

10
–1

3 
(1

1 
± 

1)
 

12
–1

4 
(1

3 
± 

1)
 

10
–1

3 
(1

1 
± 

1)
 

10
–1

4 
(1

2 
± 

1)
 

H
LL

 
15

.4
–1

8.
7 

(1
7.

2 
± 

1.
0)

 
14

.3
–1

8.
7 

(1
7.

2 
± 

1.
1)

 
18

.8
–2

3.
1 

(2
0.

6 
± 

1.
2)

 
15

.6
–1

8.
7 

(1
7.

0 
± 

1.
0)

 

H
LL

/S
V

L 
18

–2
2 

(1
9 

± 
1)

 
18

–2
4 

(2
1 

± 
2)

 
18

–2
4 

(2
1 

± 
2)

 
18

–2
5 

(2
0 

± 
2)

 

Fi
nI

II
la

m
 

6 
(1

9)
 

5 
(1

4)
 

6 
(1

) 
5 

(1
6)

 
6 

(2
) 

5 
(1

2)
 

6 
(9

) 

To
eI

V
la

m
 

9 
(7

) 
10

 (1
2)

 
9 

(1
3)

 
10

 (2
) 

8 
(1

4)
 

9 
(4

) 
9 

(1
0)

 
10

 (1
1)

 

 

 



 328 

 

 

 

 

 

 

 

Table 5.5. Summary of qualitative diagnostic characters (present, absent) in all known medium-

sized, pentadactyl species of Brachymeles.  The pairs of enlarged scales posterior to the 

postmental scale are abbreviated as chin shield pairs with reference to the 1st, 2nd, and 3rd pairs 

(when present). 
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Table 5.6. Summary of univariate morphological variation among mensural characters in series 

of Brachymeles gracilis, B. pito, B. anim, B. syam, B. walo and B. sampu. 

 gracilis 

(13 m; 24 

f) 

pito 

(11 m; 14 

f) 

anim 

(1 m; 10 f) 

syam 

(9 m; 18 f) 

walo 

(1 m; 1 f) 

sampu 

(1 f) 

SVL (m) 60.1–82.3 

(69.4 ± 7.9) 

61.5–71.5 

(69.8 ± 4.5) 

75.8 65.0–74.6 

(70.1 ± 3.2) 

61.6 — 

SVL (f) 58.6–83.4 

(69.9 ± 3.1) 

59.9–81.5 

(71.7 ± 6.5) 

63.6–80.1 

(75.4 ± 5.1) 

64.2–76.9 

(71.5 ± 3.7) 

75.5 71.9 

AGD 

(m) 

39.5–58.1 

(46.3 ± 6.1) 

38.8–54.1 

(45.6 ± 3.8) 

49.3 41.5–48.7 

(44.7 ± 2.4) 

38.9 — 

AGD (f) 39.6–56.6 

(47.5 ± 4.4) 

37.9–53.4 

(46.0 ± 4.6) 

39.8–54.2 

(49.7 ± 4.3) 

40.4–52.9 

(46.6 ± 3.1) 

49.3 49.7 

TotL (m) 124.4–

161.3 

(137.8 ± 

14.8) 

116.7–

139.4 

(128.0 ± 

7.5) 

134.2 132.4–

146.9 

(140.6 ± 

7.4) 

117.3 — 

TotL (f) 116.4–

146.0 

(127.7 ± 

8.0) 

117.8–

159.2 

(132.0 ± 

12.0) 

117.6–

141.4 

(128.3 ± 

8.7) 

135.8–

159.7 

(147.7 ± 

7.9) 

142.6 110.1 

MBW 

(m) 

8.3–12.0 

(9.6 ± 1.2) 

8.6–11.6 

(9.6 ± 0.9) 

9.9 8.8–11.0 

(9.4 ± 0.6) 

8.5 — 
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(7.3 ± 1.2) 
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(63.5 ± 8.6) 
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(5.8 ± 0.5) 

5.1 — 

TH (f) 4.4–6.1 

(5.3 ± 0.4) 

4.6–6.7 

(5.6 ± 0.7) 

5.5–6.9 

(6.1 ± 0.5) 

4.7–6.8 

(5.6 ± 0.6) 

5.6 4.6 

HL (m) 5.1–7.7 

(6.6 ± 0.7) 

6.3–7.5 

(7.0 ± 0.4) 

7.1 6.0–7.6 

(6.7 ± 0.4) 

4.8 — 

HL (f) 5.1–7.6 

(6.5 ± 0.6) 

6.4–8.3 

(7.2 ± 0.4) 

5.9–8.2 

(7.3 ± 0.7) 

6.3–7.8 

(6.8 ± 0.4) 

6.1 6.8 
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HW (m) 6.6–8.4 

(7.4 ± 0.5) 

6.7–8.0 

(7.4 ± 0.4) 

7.8 6.5–7.7 

(7.1 ± 0.3) 

6.4 — 

HW (f) 6.2–8.2 

(7.0 ± 0.4) 

6.4–9.1 

(7.7 ± 0.7) 

6.7–8.2 

(7.6 ± 0.5) 

6.5–8.4 

(7.1 ± 0.5) 

6.3 6.7 

HH (m) 4.1–6.1 

(5.1 ± 0.6) 

4.6–6.4 

(5.5 ± 0.5) 

5.1 4.0–55.5 

(5.1 ± 0.5) 

4.0 — 

HH (f) 3.9–5.6 

(4.9 ± 0.5) 

4.5–6.5 

(5.5 ± 0.6) 

4.7–6.0 

(5.5 ± 0.4) 

3.9–5.3 

(4.6 ± 0.5) 

4.2 4.6 

SnFa 

(m) 

15.6–22.0 

(18.3 ± 2.0) 

16.2–19.6 

(18.7 ± 1.0) 

20.8 18.5–20.8 

(19.6 ± 0.8) 

16.4 — 

SnFa (f) 16.0–20.7 

(17.7 ± 1.2) 

17.2–20.8 

(19.5 ± 1.0) 

18.4–20.6 

(19.5 ± 0.6) 

183–21.0 

(19.6 ± 0.8) 

19.7 17.5 

ED (m) 1.0–1.5 

(1.3 ± 0.1) 

1.2–1.5 

(1.4 ± 0.1) 

1.4 1.2–1.7 

(1.4 ± 0.1) 

1.3 — 

ED (f) 1.0–1.5 

(1.3 ± 0.1) 

1.3–1.8 

(1.4 ± 0.2) 

1.1–1.6 

(1.4 ± 0.2) 

1.2–1.4 

(1.3 ± 0.1) 

1.4 1.8 

END 

(m) 

2.2–3.5 

(2.8 ± 0.3) 

2.8–3.1 

(2.9 ± 0.1) 

3.1 2.7–3.5 

(3.1 ± 0.2) 

2.8 — 

END (f) 2.3–3.1 

(2.6 ± 0.2) 

2.4–3.1 

(2.8 ± 0.2) 

3.0–3.3 

(3.1 ± 0.1) 

2.9–3.4 

(3.1 ± 0.1) 

3.0 2.6 

SNL (m) 3.5–4.7 

(4.0 ± 0.4) 

3.8–4.5 

(4.1 ± 0.2) 

4.4 3.8–4.4 

(4.2 ± 0.2) 

3.9 — 

SNL (f) 3.3–4.2 3.5–4.2 4.1–4.5 3.8–4.4 3.7 3.8 
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(3.8 ± 0.3) (3.9 ± 0.2) (4.4 ± 0.1) (4.1 ± 0.1) 

IND (m) 1.9–2.8 

(2.3 ± 0.3) 

2.1–2.4 

(2.2 ± 0.1) 

2.5 2.1–2.3 

(2.2 ± 0.1) 

2.1 — 

IND (f) 1.9–2.6 

(2.2 ± 0.2) 

2.1–2.5 

(2.3 ± 0.1) 

2.0–2.5 

(2.4 ± 0.2) 

1.9–2.4 

(2.1 ± 0.1) 

2.6 2.3 

FLL (m) 5.9–8.6 

(7.3 ± 0.9) 

7.1–8.8 

(8.1 ± 0.6) 

8.7 8.8–9.8 

(9.3 ± 0.3) 

7.5 — 

FLL (f) 6.2–8.6 

(7.1 ± 0.7) 

7.5–9.3 

(8.4 ± 0.5) 

7.9–9.1 

(8.3 ± 0.4) 

8.2–9.9 

(9.0 ± 0.5) 

7.1 7.2 

HLL (m) 11.3–14.8 

(12.4 ± 1.0) 

12.2–15.7 

(13.6 ± 1.1) 

13.6 12.5–15.7 

(14.5 ± 1.0) 

12.1 — 

HLL (f) 10.3–14.7 

(12.4 ± 1.0) 

13.1–16.0 

(14.3 ± 1.0) 

13.8–15.6 

(14.3 ± 0.6) 

12.3–16.7 

(14.2 ± 1.1) 

10.3 13.1 
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biogeographic evidence, and clearly separate geographical ranges (with one exception), our data 

suggest the presence of six evolutionary lineages, worthy of taxonomic recognition. 

 

Taxonomic conclusions 

Our estimate of phylogeny (Fig. 5.2), biogeographically separate ranges on islands or distinct 

geologic components of islands, diagnostic, non-overlapping morphological character states, and 

genetic distances between the taxa (Table 5.3) indicate the presence of a new species from Samar 

and Leyte islands, a new species from Camiguin Sur Island, and a new species from western 

Mindanao Island (Table 5.3; Fig. 5.2) and the distinctiveness of B. sampu from Basilan and 

Bubuan islands.  Each of the six species of the B. gracilis complex is morphologically distinct 

from all others and each of the six species of the B. gracilis Complex included in phylogenetic 

analyses are genetically distinct.  Each monophyletic lineage, with the exception of the one 

occurring on Samar and Leyte islands and the one occurring on Basilan and Bubuan islands, is 

endemic to single islands within the Mindanao PAIC, thereby providing additional support for 

the distinctiveness of each clade’s evolutionary history and lineage integrity.   

Previous descriptions of members of the B. gracilis Complex have applied the name B. 

gracilis to southern Mindanao populations (Taylor, 1922a; Brown, 1956; Brown and Rabor, 

1967; Brown and Alcala, 1980; Siler et al., 2010a; Siler and Brown, 2010).  One of the unique 

diagnostic characters consistently reported for Brachymeles gracilis has been the absence of 

postnasals resulting from the fusion of the postnasal with the supranasal scale (Brown and Rabor, 

1967; Brown and Alcala, 1980).  Brown and Rabor (1967) and Brown and Alcala (1980) report 

this fused scale to be present in more than 60% and 50%, respectively, of the B. gracilis 

individuals examined.  This unique character (fused postnasal/supranasal) has never been 
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recorded for any other member of the B. gracilis Complex.  Accordingly, we recognize 

Brachymeles gracilis as a species that occurs only in central and southcentral Mindanao Island, 

based on a suite of morphological characters that closely allies it with all previously published 

accounts (Taylor, 1922a; Brown, 1956; Brown and Rabor, 1967; Brown and Alcala, 1980; Siler 

et al., 2010a; Siler and Brown, 2010):  (1) supralabials six; (2) infralabials six or seven; (3) 

midbody scale rows 24–27; (4) axilla–groin scale rows 46–49; and (5) postnasal/supranasal 

fusion present in more than 50% of population. 

The two examined specimens of B. cf. gracilis from Basilan Island housed at the California 

Academy of Sciences closely match Taylor’s (1918) description of B. sampu based on the 

following suite of morphological characters:  (1) supralabials six; (2) infralabials six; (3) 

midbody scale rows 24; and (4) supranasals separated; (5) frontoparietals separated; (6) parietals 

separated or in point contact; (7) first pair of enlarged chin shields moderately to broadly 

contacting on midline; and (8) enlarged chin shields in three pairs.  We therefore recognize B. 

sampu as a species that occurs on Basilan and its surrounding islets (including Buban Island; Fig. 

5.2).  Finally, we recognize B. pito as a species that occurs only in northeast Mindanao Island, 

and hereby recognize the three additional lineages within the B. gracilis species complex each as 

new species. 

 

TAXONOMIC ACCOUNTS 

Brachymeles gracilis (Fischer 1885) 

Fig. 5.4 

Senira bicolor (part), Gray, 1845:98. 

Eumeces (Riopa) gracilis, Fischer, 1885:85, Type locality: “Mindanao Island,” Philippines (No. 
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846 reported to be deposited in the Dresden Museum). 

Brachymeles gracilis, Boettger, 1886:103; Boulenger, 1887:378; Boettger, 1893:112; Taylor, 

1917:270; 1918:257; 1922 a:247; 1922 b:287; (part) Brown and Alcala, 1970:112. 

Brachymeles gracilis gracilis, Brown, 1956:10; Brown and Rabor, 1967:537; Brown and Alcala, 

1980:37. 

Brachymeles sampu, Taylor, 1918:254. 

Diagnosis.—Brachymeles gracilis can be distinguished from congeners by the following 

combination of characters:  (1) body size medium (SVL 58.6–83.4 mm); (2) limbs pentadactyl; 

(3) limb length moderate; (4) relative tail length long; (5) Finger-III lamellae four or five; (6) 

Toe-IV lamellae seven or eight; (7) supralabials six; (8) infralabials six or seven; (9) 

suparciliaries six; (10) supraoculars five; (11) midbody scale rows 24–27; (12) axilla–groin scale 

rows 46–49; (13) paravertebral scale rows 67–70; (14) supranasals separate; (15) parietals in 

contact; (16) postnasal/supranasal fusion present or absent; (17) enlarged chin shields in two 

pairs; (18) nuchal scales undifferentiated; (19) fourth and fifth supralabial below eye; (20) 

auricular opening present; and (21) presacral vertebrae 34 (Tables 5.4, 5.5). 

Comparisons.—Characters distinguishing Brachymeles gracilis from all medium-sized, 

pentadactyl species of Brachymeles are summarized in Tables 5.4 and 5.5.  Brachymeles gracilis 

most closely resembles B. anim, B. walo, and B. sampu.  However, B. gracilis differs from these 

three taxa by having seven or eight Toe-IV lamellae (vs. eight or nine [B. anim], six [B. tiboli], 

eight [B. sampu]), a greater number of presacral vertebrae (34 vs. 31 [B. sampu], 32 [B. anim], 

33 [B. tiboli]), six or seven infralabials (vs. six), and the presence or absence of a fused 

postnasal/supranasal scale (vs. absence; Fig. 5.4).  Brachymeles gracilis further differs from B. 

anim and B. sampu by having four or five Finger-III lamellae (vs. five); from B. anim and B. 
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walo by having a tendancy towards a longer relative tail length (TL/SVL up to 102% vs. less 

than 90%); from B. walo and B. sampu by having enlarged chind shields in two pairs (vs. 3); and 

from B. sampu by the presence of contact between parietal scales (vs. presence or absence). 

Brachymeles gracilis can be distinguished from all limbless species of Brachymeles (B. apus, 

B. lukbani, B. minimus, B. miriamae, B. vermis) by having limbs; and from all non-pentadactyl 

species of Brachymeles (B. bonitae, B. cebuensis, B. elerae, B. muntingkamay, B. pathfinderi, B. 

samarensis, B. tridactylus, B. wright, sp. nov. [Leyte Island; Siler et al., in press c], sp. nov. 

[Lapinig Group Islands; Siler et al., in press c], sp. nov. [Catanduanes Island; Siler et al., in press 

c], sp. nov. [Central Bicol Peninsula, Luzon Island; Siler et al., in press c], and sp. nov. [Southern 

Bicol Peninsula, Luzon Island; Siler et al., in press c]) by having pentadactyl (vs. non-

pentadactyl) limbs. 

Description (based on holotype description [Fischer, 1885] and 37 referred specimens).—

Details of the head scalation of an adult male (KU 326097) are shown in Figure 5.4.  

Measurements of the holotype are provided below in brackets.  Body medium-sized, moderately 

slender; maximum SVL 82.3 mm for males, 83.4 mm for females, [67.0, subadult] (Tables 5.4, 

5.5); head weakly differentiated from neck, nearly as wide as body, HW 8.7–12.3% (10.2 ± 0.8) 

SVL, 93.0–130.9% (109.8 ± 9.4) HL; HL 28.9–44.4% (36.8 ± 4.7) SnFa; SnFa 22.5–29.8% (25.6 

± 1.5) SVL; snout short, rounded in dorsal and lateral profile, SNL 47.1–71.4% (59.5 ± 7.2) HL; 

ear opening visible, small; eyes small, ED 1.3–2.4% (1.8 ± 0.3) SVL, 15.3–25.7% (19.7 ± 2.6) 

HL, 34.7–58.4% (48.0 ± 6.2) END, pupil subcircular; body slightly depressed, nearly uniform in 

thickness, MBW 94.2–190.8% (130.4 ± 20.5) MBH; scales smooth, glossy, imbricate; 

longitudinal scale rows at midbody 24 (CAS 124804, 124808, 124811, 139293, 139300, 139309, 

CAS-SU 24165, KU 326101, 326103, 326106, MCZ 26539, 26549), 25 (CAS 139295, 139307, 
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MCZ 26550), 26 (CAS 124803, 124806–07, 139294, 139303–05, 139308, CAS-SU 24163, 

CMC 12170, 12171, KU 326096, 326099, 326104, 326107, 326299, MCZ 26541, 26543, 26548, 

TNHC 59948, 60016), or 27 (MCZ 26546) [24]; paravertebral scale rows 67 (CAS 124804, 

124806, 139293, 139300, 139304, 139309, CAS-SU 24165, MCZ 26549, TNHC 59948), 68 

(CAS 124808, 124811, 139295, 139303, CAS-SU 24163, CMC 12171, KU 326101, 326106, 

MCZ 26543, 26550, TNHC 60016), 69 (CAS 124803, 124807, 139294, 139305, CMC 12170, 

KU 326096, MCZ 26548), or 70 (CAS 139307–08, KU 326099, 326103–04, 326107, 236299, 

MCZ 26539, 26541, 26546); axilla–groin scale rows 46 (CAS 124804, 124806, 139293, 139300, 

139304, CAS-SU 24165, MCZ 26549), 47 (CAS 124808, 124811, 139295, 139309, CAS-SU 

24163, CMC 12171, KU 326101, 326106, MCZ 26543, 26550), 48 (CAS 124803, 124807, 

139294, 139303, 139305, CMC 12170, KU 326096, MCZ 26548, TNHC 59948), or 49 (CAS 

139307–08, KU 326099, 326103–04, 326107, 326299, MCZ 26539, 26541, 26546, TNHC 

60016) [49]; limbs short, well developed, pentadactyl, digits small; FinIIIlam four (CAS 124808, 

124811, 139295, 139300, 139304–05, 139307–08, CMC 12171, TNHC 59948, 60016) or five 

(CAS 124803–04, 124806–07, 139293–94, 139303, 139309, CAS-SU 24163, 24165, CMC 

12170, KU 326096, 326099, 326101, 326103–04, 326106–07, 326299, MCZ 26539, 26541, 

26543, 26546, 26548–50); ToeIVlam seven (CAS 124808, 124811, 139295, 139305, CMC 

12171, KU 326096, 326099, 326101, 326103–04, 326106–07, MCZ 26539, 26541, 26543, 

26546, 26548–50, TNHC 59948) or eight (CAS 124803–04, 124806–07, 139293–94, 139300, 

139303–04, 139307–09, CAS-SU 24163, 24165, CMC 12170, KU 326299, TNHC 60016); FLL 

12.4–19.4% (15.4 ± 1.7) AGD [13.3], 8.6–12.4% (10.3 ± 1.0) SVL [9.0]; HLL 20.6–35.1% (26.5 

± 2.7) AGD [26.7], 14.0–22.6% (17.8 ± 1.6) SVL [17.9]; order of digits from shortest to longest 
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for hand:  V = I < IV = II < III, for foot:  V = I < II < III < IV; tail not as wide as body, gradually 

tapered towards end, TW 56.8–78.9% (70.3 ± 5.5) MBW, TL 79.5–102.1% (92.5 ± 5.8) SVL. 

Rostral projecting onto dorsal snout to point in line with middle of nasal, broader than high, 

in contact with frontonasal; frontonasal wider than long; nostril ovoid, in center of single 

pentagonal nasal, longer axis directed anterodorsally and posteroventrally; supranasals present, 

large, broadly separated; postnasals present and small (CAS 124807, 124812, 139307–08, 

139310, CAS-SU 24160, KU 326096, 326100, MCZ 26539, 26541, 26543–44, 26546, 26548–

50), present and highly reduced (CAS 124808, 139294, 139301–02), fused to supranasal on one 

side of the head (CAS 139303, 139306, CAS-SU 24158, 24162, KU 326106), or fused to 

supranasals on both sides of the head (CAS 124806, 124809–11, 139296–300, 139309, 139311, 

CAS-SU 24159, 24161, 24163–65, 24171, KU 326089, 326099, 326101–05, 326107–08); 

prefrontals separated (CAS 124806, 124808, 139293–96, 139299, 139301–05, CMC 12170–71, 

KU 326089, 326096, 326099, 326100–05, 326107–08, 326299, MCZ 26539, 26541, 26543), in 

point medial contact (FMNH 52642, KU 326106, MCZ 26544), or in moderate medial contact 

(FMNH 52647, MCZ 26546, 26548–50); frontal diamond-shaped, its anterior margin in narrow 

to broad contact with frontonasal, narrowly separated from frontonasal, or in moderate medial 

contact with frontonasal, in contact with first two anterior supraoculars, 4× wider than anterior 

supraocular; supraoculars five; frontoparietals large, each in contact with supraoculars II–IV, 

frontoparietals separated (CAS 124806, 124808, 139295, 139301, 139303–05, KU 326299), in 

point medial contact (KU 326101), or in moderate medial contact (CAS 139293–94, 139296, 

139299, 139302, CMC 12170–71, FMNH 52642, 52647, KU 326089, 326096, 326099–100, 

326102–08, MCZ 26539, 26543–44, 26546, 26548–50); interparietal large, its length roughly 

equal to midline length of frontoparietal, longer than wide, subdiamond-shaped, wider anteriorly, 
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with pineal eyespots present and distinct (CAS 139296, CMC 12170–71, FMNH 52642, KU 

326089, 326096, 326099, 326100–08, 326299, MCZ 26539, 26541, 26543–44, 26546, 26549–

50), present and indistinct (CAS 124806, 124808, 139294–95, 139299, 139302, 139304–05), or 

absent (FMNH 52647, CAS 139293, 139301, 139303, MCZ 26548); parietals broader than 

frontoparietals, in broad contact behind interparietal; nuchals undifferentiated; two loreals, 

decreasing in height from anterior to posterior, anterior loreal slightly narrow than and higher 

than posterior loreal; preocular single; supraciliaries six, the anteriormost contacting prefrontal 

and separating posterior loreal from first supraocular, posteriomost extending to posterior edge 

of fifth supraocular; single subocular scale row complete, in contact with supralabials; lower 

eyelid with one row of scales on dorsal margin; supralabials six, first 1.5× size of others, fourth 

and fifth below eye; infralabials six (CMC 12170–71, KU 326096, 326099, 326101, 326103–04, 

326106–07, 326299, MCZ 26539, 26541, 26543, 26546, 26548–50, TNHC 59948, 60016) or 

seven (CAS 124803–04, 124806–08, 124811, 139293–95, 139300, 139303–05, 139307–09, 

CAS-SU 24163, 24165) (Fig. 5.4). 

Mental wider than long, in contact with first infralabials; postmental single, enlarged, its 

width greater than width of mental; followed by two pairs of enlarged chin shields, first pair of 

enlarged chin shields separated (CAS 139294, CMC 12170–71, KU 326099, 326299, MCZ 

26550), in point medial contact (CAS 124808, 139293, MCZ 26541), or in moderate to broad 

medial contact (CAS 124806, 139295–96, 139299, 139301–05, FMNH 52642, 52647, KU 

326089, 326096, 326100–08, MCZ 26539, 26543–44, 26546, 26548–49); second pair wider than, 

or narrower than, first, broadly separated by one, two, or three medial scales (Fig. 5.4). 

Scales on limbs smaller than body scales; scales on dorsal surfaces of digits large, wrapping 

around lateral edges of digits; lamellae undivided; palmar surfaces of hands and plantar surfaces 
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of feet covered by small, irregular scales, each with raised anterior edges; scales on dorsal 

surface of hands and feet smaller than limb scales, lacking raised edges. 

Coloration in preservative (based on holotype description and 37 referred specimens).—

Ground color of body is medium brown throughout or with distinctly darker middorsal region 

(KU 319934–35, 319938–39, 326097, 326105–06, 326108).  Light dorsolateral stripes are 

present in some specimens (KU 326096–98, 326100–04, 326107), absent in remainder.  Dorsal 

surfaces of head, and snout are uniformly medium brown (majority of specimens) or with darker 

marbling (e.g., KU 319936, 319938, 326100–03).  Lateral surfaces of the head are nearly 

uniformly dark brown; supraocculars are slightly darker than surrounding scales. Postocculr and 

tympanic regions are distinctly darker than remaining portions of the head and neck in some 

specimens (KU 326100, 326105–06, 326108). The rostral, supranasals, postnasals, first 

suprlabials and infralabials and mental scales are all medium gray. Suprlabials are dark brown 

and infralabials, mental, and chin shields are a lighter shade of orange-brown.  

Trunk coloration is variable, with dorsal surfaces dark to medium brown with a series of faint 

longitudinal streaks, each composed of a series of distinct dark spots either confined to the distal 

edge of each scale or traversing the whole scale. Lateral surfaces, lack longitudinal streaks and 

are either homogeneous dark brown or possess equally spaced spots of dark pigment, with each 

spot on distal tip of each scale. 

Ventral surfaces exhibit a wide range of variation with homogeneous dark brown in some 

specimens (KU 319937–38, 326103, 326106, 326108) to very light orange-brown withalmost no 

dark pigment in others (KU 319939–40, 326096, 326099, 326104, 326299). In specimens of 

intermediate hues of pigmentation (KU 319935–36 and remainder of series), ventral surfaces are 

marked by evenly spaced dark brown spots (corresponding to the distal edge of each scale) on a 
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light ornge-brown background. Ventral surfaces of the head and neck devoid of any dark 

pigmentation (KU 326096–97, 326099, 326103) or with a light ornge-brown ground coloration 

with dark streaks composed of dark brown spots on each scale. The posterior portion of trunk 

with dark brown spots or clusters of striations at the distal edge of each scale, becoming more 

pronounced posteriorly; subcaudal regions nearly solid dark brown (e.g., KU 326106, 326108), 

with dark brown spots on the distal edge of each scale (e.g., KU 326100, 326104), or with 

clusters of faint, dark, striations on the distal edges of scales (remainder).  Tail coloration 

becomes more distinct distally, with contrasting darker shades of brown and lighter ground 

colration at the tail’s tip, which is nearly black in many specimens.  Ventral surfaces of hands 

and feet are light gray to cream, with slightly darker fingers and toes. The precloacals region is 

slightly lighter than the surrounding ventrals and subcaudals. 

Coloration in life.—Coloration in life is unrecorded; however, because Brachymeles 

specimens do not change significantly during preservation (CDS, RMB personal observation), 

we suspect that the preserved coloration and patterns are much like those in life. 

Distribution.—Brachymeles gracilis is known only from central, southern, and southeastern 

Mindanao Island (Fig. 5.3).  No mention of the specific locality, or province, on Mindanao Island 

was ever given for the holotype (Fischer, 1885).  Although we are certain of our identification of 

B. gracilis, that specimens referred here to this species match the type description, and that no 

other species can possibly be confused with B. gracilis, we are unable to pinpoint the type 

locality on the basis of available specimens. 

Ecology and natural history.—Brachymeles gracilis occurs in primary- and secondary-

growth forest habitats.  In South Cotabato Province, Mindanao Island (Fig. 5.2), B. gracilis has 

been documented to occur in sympatry with B. schadenbergi (Siler and Brown, 2010) and B. 
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tiboli.  Interestingly, this is the first documented case of two species of Brachymeles in the same 

body form and body size class (B. gracilis and B. tiboli) occuring in sympatry.  All other 

sympatric communities of Brachymeles are made up of distinctly different body forms (e.g., 

large pentadactyl, medium pentadactyl, non-pentadactyl, limbless).  The eastern populations of B. 

gracilis (e.g., Davao Province populations) are documented to occur in sympatry with B. 

orientalis (a large-bodied form; Siler and Brown, 2010).  In addition to B. gracilis, B. tiboli, B. 

orientalis, and B. schadenbergi, two other species of Brachymeles have been confirmed to occur 

on Mindanao Island (B. pito and B. pathfinderi; Siler and Brown, 2010; Siler et al., in press a). 

We have evaluated this species against the IUCN criteria for classification, and find that it 

does not qualify for Critically Endangered, Endangered, Vulnerable, or Near Threatened status.  

Brachymeles gracilis has been documented to have a broad geographic distribution and is quite 

abundant at all sampled localities.  We therefore classify this species as Least Concern, LC 

(IUCN, 2010).  

Other sympatric scincid species observed on Mindanao Island include: Eutropis indeprensa, 

E. multicarinata, E. multifasciata, E. englei, Lamprolepis smaragdina, L. pulchella, L. 

quadrivittata, Sphenomorphus abdictus abdictus, S. acutus, S. atrigularis, S. cumingi, S. cf. 

mindanensis, S. coxi, S. fasciatus, S. jagori, S. llanosi, S. steerei, S. variegatus, Tropidophorus 

misaminus, T. partelloi. 

 

Brachymeles pito Brown and Rabor 1967 

Fig. 5.4 

Brachymeles pito, Brown and Rabor, 1967:543 (type locality:  Barrio Balang-balang, Mt. 

Hilong-hilong, Diuata Mountains, Agusan Province, Mindanao Island, Philippines, 9° 03' 
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20.77" N, 125° 37' 40.8" E [holotype: CAS-SU 24407]). 

Brachymeles gracilis hilong, Brown and Alcala, 1970:113; Brown and Alcala, 1980:39. 

Diagnosis.—Brachymeles pito can be distinguished from congeners by the following 

combination of characters:  (1) body size medium (SVL 59.9–81.5 mm); (2) limbs pentadactyl; 

(3) limb length moderate; (4) relative tail length moderate; (5) Finger-III lamellae five; (6) Toe-

IV lamellae eight or nine; (7) supralabials six; (8) infralabials six; (9) suparciliaries six; (10) 

supraoculars five; (11) midbody scale rows 27–30; (12) axilla–groin scale rows 44–50; (13) 

paravertebral scale rows 66–73; (14) pineal eyespot present; (15) supranasals separate; (16) 

prefrontals separate; (17) postnasal/supranasal fusion absent; (18) enlarged chin shields in two or 

three pairs; (19) nuchal scales undifferentiated; (20) fourth and fifth supralabial below eye; (21) 

auricular opening present; and (22) presacral vertebrae 32 (Tables 5.4, 5.5). 

Comparisons.—Characters distinguishing Brachymeles pito from all medium-sized, 

pentadactyl species of Brachymeles are summarized in Tables 5.4 and 5.5.  Brachymeles pito 

most closely resembles B. syam; however, B. pito differs from this taxon by having a shorter 

relative tail length (TL/SVL up to 126% vs. less than 98%), a greater number of presacral 

vertebrae (32 vs. 31), a greater number of midbody scale rows (27–30 vs. 25–26), a tendency 

towards a greater number of axilla–groin scale rows (up to 50 vs. less than or equal to 45), a 

tendency towards a greater number of paravertebral scale rows (up to 73 vs. less than or equal to 

67), enlarged chind shields in two or three pairs (vs. three), and the absence of contact between 

prefrontal scales (vs. presence or absence).   

Brachymeles pito can be distinguished from all limbless species of Brachymeles (B. apus, B. 

lukbani, B. minimus, B. miriamae, B. vermis) by having limbs; and from all non-pentadactyl 

species of Brachymeles (B. bonitae, B. cebuensis, B. elerae, B. muntingkamay, B. pathfinderi, B. 
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samarensis, B. tridactylus, B. wright, sp. nov. [Leyte Island; Siler et al., in press c], sp. nov. 

[Lapinig Group Islands; Siler et al., in press c], sp. nov. [Catanduanes Island; Siler et al., in press 

c], sp. nov. [Central Bicol Peninsula, Luzon Island; Siler et al., in press c], and sp. nov. [Southern 

Bicol Peninsula, Luzon Island; Siler et al., in press c]) by having pentadactyl (vs. non-

pentadactyl) limbs. 

Description (based on holotype and 25 referred specimens).—Details of the head scalation of 

an adult female are shown in Figure 5.4.  Measurements of the holotype (CAS-SU 22407) are 

provided below in brackets.  Body medium-sized, moderately slender; maximum SVL 78.5 mm 

for males, 81.5 mm for females, [61.5, subadult] (Tables 5.4, 5.5); head weakly differentiated 

from neck, nearly as wide as body, HW 9.6–12.9% (10.7 ± 0.8) SVL, 98.9–122.7% (106.3 ± 5.0) 

HL; HL 32.5–43.5% (37.2 ± 2.2) SnFa; SnFa 23.3–30.1% (27.1 ± 1.5) SVL; snout short, 

rounded in dorsal and lateral profile, SNL 47.2–71.9% (56.4 ± 5.1) HL; ear opening visible, 

small; eyes small, ED 1.7–3.0% (2.0 ± 0.3) SVL, 16.9–27.9% (20.0 ± 2.2) HL, 40.4–74.8% (50.0 

± 6.7) END, pupil subcircular; body slightly depressed, nearly uniform in thickness, MBW 

102.4–154.7% (128.9 ± 14.9) MBH; scales smooth, glossy, imbricate; longitudinal scale rows at 

midbody 27 (CAS 102406, 133577–78, 133581, 133692, 133704, KU 319937–38, 319940), 28 

(CAS 133582, 133609, 133612, 133693, 133703, 133705–06, 133743, 133745–46, 133747, 

CAS-SU 24315, 24411, KU 319935–36), or 30 (CAS-SU 24407) [30]; paravertebral scale rows 

66 (CAS 102406), 67 (CAS 133704, CAS-SU 24315), 68 (CAS 133578, 133581–82, 133609, 

133703, 133745–47, CAS-SU 24411, KU 319936–38, 319940), 69 (CAS 133612, 133692–93, 

KU 319935), 70 (CAS 133577, 133706, 133743, CAS-SU 24407), or 73 (CAS 133705) [70]; 

axilla–groin scale rows 44 (CAS 102406), 45 (CAS 133747, CAS-SU 24315), 46 (CAS 133582, 

133609, 133612, 133692, 133703, CAS-SU 24411, KU 319936–38, 319940), 47 (CAS 133578, 
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133581, 133693, 133704, 133743, 133746, CAS-SU 24407, KU 319935), 48 (CAS 133577, 

133706, 133745), or 50 (CAS 133705) [47]; limbs short, well developed, pentadactyl, digits 

short; FinIIIlam 5 [5]; ToeIVlam eight (CAS 102406, 133581, 133609, 133693, 133703–04, 

133706, 133743, 133745–47, CAS-SU 24315, 24411, KU 319935–38, 319940) or nine (CAS 

133577–78, 133582, 133612, 133692, 133705, CAS-SU 24407) [9]; FLL 15.3–22.0% (18.2 ± 

1.7) AGD, 10.3–14.0% (11.8 ± 0.9) SVL; HLL 27.0–37.2% (30.8 ± 2.8) AGD, 17.5–23.4% 

(19.8 ± 1.5) SVL; order of digits from shortest to longest for hand:  I = V < IV = II < III, for foot:  

V < I < II < IV = III; tail not as wide as body, gradually tapered towards end, TW 56.9–81.4% 

(70.5 ± 6.6) MBW, TL 57.5–97.9% (78.8 ± 13.8) SVL [89.7]. 

Rostral projecting onto dorsal snout to point in line with middle of nasal, broader than high, 

in broad contact with frontonasal; frontonasal wider than long; nostril ovoid, in center of single 

trapezoidal nasal, longer axis directed anterodorsally and posteroventrally; supranasals present, 

large, broadly separated; postnasals present, small to moderate; prefrontals moderately separated; 

frontal nearly diamond-shaped, its anterior margin in moderate contact with frontonasal, in 

contact with first two anterior supraoculars, 3.5× wider than anterior supraocular; supraoculars 

five; frontoparietals moderate, each in contact with supraoculars II–IV, frontoparietals separated 

(CAS 133578, 133704, 133743, KU 319940), in point medial contact (CAS 133579, KU 

319937), or in moderate medial contact (CAS 133581, 133705, KU 319934–36, 319938–39); 

interparietal large, its length roughly 2× length of frontoparietal, longer than wide, subdiamond-

shaped, wider anteriorly; parietals roughly as broad as frontoparietals, separated (KU 319935, 

319940), in point medial contact (KU 319934–38), or in moderate medial contact (CAS 133578–

79, 133581, 133704–05, 133743, KU 319934, 319936, 319939); nuchals undifferentiated; two 

loreals, decreasing in size from anterior to posterior, anterior loreal about as long and slightly 
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higher than posterior loreal; preocular single; supraciliaries six, the anteriormost contacting 

prefrontal and separating posterior loreal from first supraocular, posteriomost extending to 

midline of fifth supraocular; single subocular scale row complete, in contact with supralabials; 

lower eyelid with one row of scales on dorsal margin; supralabials six, first 1.5× size of others, 

fourth and fifth below eye; infralabials six (Fig. 5.4). 

Mental wider than long, in contact with first infralabials; postmental single, enlarged, its 

width greater than width of mental; followed by two or three pairs of enlarged chin shields, first 

pair of enlarged chin shields separated (CAS 133578–79, 133743, KU 319934–40), in point 

medial contact (CAS 133704), or in moderate medial contact (CAS 133581, 133705), second 

pair wider than first, broadly separated by single medial scale, third pair absent (CAS 133578, 

133581, 133704–05, 133743), or present (CAS 133579, KU 319934–40) and separated by three 

to five medial scales (Fig. 5.4). 

Scales on limbs smaller than body scales; scales on dorsal surfaces of digits large, wrapping 

around lateral edges of digits; lamellae undivided; palmar surfaces of hands and plantar surfaces 

of feet covered by small, irregular scales, each with raised anterior edges; scales on dorsal 

surface of hands and feet smaller than limb scales, lacking raised edges. 

Coloration in preservative (based on holotype description and 25 referred specimens).—The 

ground color of the body of B. pito is medium brown with dark brown longitudinal streaks, with 

dark streaks traversing each scale. The species lacks any sign of color pattern differentiation 

between dorsal and lateral surfaces except for a tendency towards more darkly pigmented streaks 

in middoorsal region and a progressively lighter pattern on ventral surfaces.  Light dorsolateral 

stripes are completely absent.  Dorsal surfaces of head, and snout are uniformly light brown 

(CAS 133704), light brown with darker marbling (CAS 133581, 133704), or are uniformly dark 
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brown (CAS 133579, 133743).  Lateral surfaces of the head are uniformly dark brown with light 

scale sutures; supraocculars are slightly darker than surrounding scales. The rostral, supranasals, 

postnasals, first suprlabials and infralabials and mental scales are all medium gray. Suprlabials 

are dark brown and infralabials, mental, and chin shields are a slightly lighter shade of orange-

brown.  

Trunk coloration is relatively invariant. Lateral surfaces, lack possess longitudinal streaks 

similar to those of dorsum and become increasingly lighter ventrally. 

Ventral surfaces distinctly lighter than lateral and dorsal coloration, either nearly devoid of 

dark pigment (CAS 133581) or with very faint streaks of diffuse darker brown spots (on per 

scale). Ventral surfaces of the head and neck devoid of any dark pigmentation (CAS133581, 

133704–05) darker brown ground color with light scale margins (CAS133579, 133743). Ventral 

tail is not distinctly different from ventral trunk coloration, but some specimens exhibit slightly 

darker tail tips (CAS 133581, 133743).  Ventral surfaces of hands and feet are medium gray, 

with slightly darker fingers and toes. The precloacals region is not noticeably different form the 

surrounding ventrals and subcaudals. 

Coloration in life.—Coloration in life is unrecorded; however, because Brachymeles 

specimens do not change significantly during preservation (CDS, RMB personal observation), 

we suspect that the preserved coloration and patterns are much like those in life. 

Distribution.—Brachymeles pito is known only from northwestern Mindanao Island (Fig. 

5.3). 

Ecology and natural history.—Brachymeles pito occurs in primary- and secondary-growth 

forest habitats.  In contrast to B. gracilis and B. tiboli, B. pito does not occur in sympatry with 

any other medium-sized, pentadactyl species of Brachymeles.  However, B. orientalis also occurs 
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throughout the recognized range of B. pito.  In addition to B. pito and B. orientalis, four other 

species of Brachymeles have been confirmed to occur on Mindanao Island (B. gracilis, B. tiboli, 

B. pathfinderi, and B. schadenbergi; Siler and Brown, 2010; Siler et al., in press a).  Based on 

our expectation that this species will likely qualify for a threatened category in the near future, 

we would recommend classification of B. pito as Near Threatened, NT, based on the following 

criteria: VU B1ab(iii); D2 (IUCN, 2010). 

Other sympatric scincid species observed on Mindanao Island include: Eutropis indeprensa, 

E. multicarinata, E. multifasciata, E. englei, Lamprolepis smaragdina, L. pulchella, L. 

quadrivittata, Sphenomorphus abdictus abdictus, S. acutus, S. atrigularis, S. cumingi, S. cf. 

mindanensis, S. coxi, S. fasciatus, S. jagori, S. llanosi, S. steerei, S. variegatus, Tropidophorus 

misaminus, T. partelloi. 

 

Brachymeles sampu Taylor 1918: 254 

Fig. 5.5 

Brachymeles sampu, Taylor, 1918:254, Type locality: Bubuan Island, Tapiantana Group, Sulu 

Province, Philippines. 

Brachymeles gracilis, Taylor, 1922 a:247; 1922 b:287; (part) Brown and Alcala, 1970:112. 

Brachymeles gracilis gracilis, Brown, 1956:10; Brown and Rabor, 1967:537; Brown and Alcala, 

1980:37. 

Designation of a neotype for Brachymeles sampu.—Taylor (1918) clearly declared a type 

specimen, deposited at the Philippine Bureau of Science under collection No. 1989, for B. 

sampu.  In a subsequent revision he (Taylor 1922a), synonymized B. sampu with B. gracilis, 

basing the revised description of B. gracilis on the type specimen of B. sampu which he then 



 351 

(incorrectly) reported to be Philippine Bureau of Science collection No. 1666.  We assume that 

Taylor’s (1922a) reference to specimen No. 1666 as the type specimen of B. sampu was in error, 

that Philippine Bureau of Science No. 1989 was the valid holotype for B. sampu, and that 

Philippine Bureau of Science No. 1666 was a non-type specimen of B. gracilis.  Unfortunately 

the Philippine Bureau of Science was destroyed and all specimens destroyed during the 

firebombing of Manila in World War II (see Brown and Alcala, 1978).  In the absence of an 

existing holotype and in accordance with article No. 75 of the International Code of Zoological 

Nomenclature (ICZN, 1979), we designate a neotype for this species.  Accordingly, we choose 

an adult female specimen from the geographically proximate island of Basilan (Fig. 5.3).  Two 

specimens from Taylor’s collections on Basilan Island have been examined in the collections at 

CAS.  Both specimens agree with Taylor’s (1918) holotype description; from these collections 

we have chosen a female neotype. 

Neotype.—CAS 60366 (E. H. Taylor Field No. 1173), adult female, collected in Isabela City, 

Basilan Province, Basilan Island, Philippines, by E. H. Taylor. 

Diagnosis.—Brachymeles sampu can be distinguished from congeners by the following 

combination of characters:  (1) body size medium (SVL 71.9 mm); (2) limbs pentadactyl; (3) 

limb length moderate; (4) Finger-III lamellae five; (5) Toe-IV lamellae eight; (6) supralabials 

six; (7) infralabials six; (8) suparciliaries six; (9) supraoculars five; (10) midbody scale rows 24; 

(11) axilla–groin scale rows 48; (12) paravertebral scale rows 69; (13) pineal eyespot present; 

(14) supranasals separate; (15) prefrontals separate; (16) frontoparietals separate; (17) first pair 

of enlarged chin shields in contact; (18) postnasal/supranasal fusion absent; (19) enlarged chin 

shields in three pairs; (20) nuchal scales undifferentiated; (21) fourth and fifth supralabial below 

eye; (22) auricular opening present; and (23) presacral vertebrae 31 (Tables 5.4, 5.5). 
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Comparisons.—Characters distinguishing Brachymeles sampu from all medium-sized, 

pentadactyl species of Brachymeles are summarized in Tables 5.4 and 5.5.  Brachymeles sampu 

most closely resembles B. gracilis, B. anim, and B. tiboli.  However, B. sampu differs from these 

three taxa by having eight Toe-IV lamellae (vs. six [B. tiboli], seven or eight [B. gracilis], eight 

or nine [B. anim]), fewer presacral vertebrae (31 vs. 32 [B. anim], 33 [B. tiboli], 34 [B. gracilis]), 

the presence of a pineal eyespot (vs. presence or absence), the absence of contact between 

prefrontal scales (vs. presence or absence), the absence of contact between frontoparietal scales 

(vs. presence or absence [B. gracilis], presence [B. anim, B. tiboli]), and the presence of contact 

between the first pair of enlarged chin shields (vs. presence or absence [B. gracilis, B. tiboli], 

absence [B. anim]).  Brachymeles sampu further differs from B. gracilis and B. walo by having 

five Finger-III lamellae (vs. four or five); from B. gracilis and B. anim by having enlarged chin 

shields in three pairs (vs. two); and from B. gracilis by having six infralabials (vs. six or seven) 

and by the absence of a fused postnasal/supranasal scale (vs. presence or absence). 

Brachymeles sampu can be distinguished from all limbless species of Brachymeles (B. apus, 

B. lukbani, B. minimus, B. miriamae, B. vermis) by having limbs; and from all non-pentadactyl 

species of Brachymeles (B. bonitae, B. cebuensis, B. elerae, B. muntingkamay, B. pathfinderi, B. 

samarensis, B. tridactylus, B. wright, sp. nov. [Leyte Island; Siler et al., in press c], sp. nov. 

[Lapinig Group Islands; Siler et al., in press c], sp. nov. [Catanduanes Island; Siler et al., in press 

c], sp. nov. [Central Bicol Peninsula, Luzon Island; Siler et al., in press c], and sp. nov. [Southern 

Bicol Peninsula, Luzon Island; Siler et al., in press c]) by having pentadactyl (vs. non-

pentadactyl) limbs. 

Description of neotype.—Details of head scalation in CAS 60366 are shown in Figure 5.5.  

Adult female, body medium in size, moderately slender, SVL 71.9 mm; head weakly 
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differentiated from neck, nearly as wide as body, HW 9.3% SVL, 97.8% HL; HL 38.9% SnFa; 

SnFa 24.3% SVL; snout short, broadly rounded in dorsal profile, bluntly rounded in lateral 

profile, SNL 55.2% HL; ear opening visible, small; eyes small, ED 2.4% SVL, 25.8% HL, 

69.0% END, pupil subcircular; body slightly depressed, nearly uniform in thickness, MBW 

158.1% MBH; scales smooth, glossy, imbricate; longitudinal scale rows at midbody 24; 

paravertebral scale rows 69; axilla–groin scale rows 48; limbs short, well developed, pentadactyl, 

digits small; FinIIIlam 5; ToeIVlam 8; FLL 14.4% AGD, 10.0% SVL; HLL 26.2% AGD, 18.1% 

SVL; order of digits from shortest to longest for hand:  I = V < IV = II < III, for foot:  

V = I < II < IV = III; tail regenerated, not as wide as body, gradually tapered towards end, TW 

70.8% MBW. 

Rostral projecting onto dorsal snout to point in line with anterior edge of nasal, broader than 

high, in broad contact with frontonasal; frontonasal wider than long; nostril ovoid, in center of 

single trapezoidal nasal, longer axis directed anterodorsally and posteroventrally; supranasals 

present, large, broadly separated; postnasals present, small; prefrontals moderately separated; 

frontal suboctagonal-shaped, fragmented posteriorly (Fig. 5), its anterior margin in moderate 

contact with frontonasal, in contact with first two anterior supraoculars, 4× wider than anterior 

supraocular; supraoculars five; frontoparietals moderate, broadly separated, each frontoparietal 

in contact with supraoculars II–IV; interparietal large, its length roughly 2× length of 

frontoparietal, longer than wide, diamond-shaped; parietals roughly as broad as frontoparietals, 

moderately separated behind interparietal; nuchals undifferentiated; two loreals, decreasing in 

size from anterior to posterior, anterior loreal about as long as and moderately higher than 

posterior loreal; preocular single; supraciliaries six, the anteriormost contacting prefrontal and 

separating posterior loreal from first supraocular, posteriomost extending to midline of fifth 
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supraocular; single subocular scale row complete, in contact with supralabials; lower eyelid with 

one row of scales on dorsal margin; supralabials six, first 1.5× size of other supralabials, fourth 

and fifth below eye; infralabials six (Fig. 5.5). 

Mental wider than long, in contact with first infralabials; postmental single, enlarged, its 

width greater than width of mental; followed by three pairs of enlarged chin shields, first pair in 

moderate medial contact, second pair wider than first, moderately separated by single medial 

scale, third pair narrower than first and second pairs, separated by three medial scales (Fig. 5.5). 

Scales on limbs smaller than body scales; scales on dorsal surfaces of digits large, wrapping 

around lateral edges of digits; lamellae undivided; palmar surfaces of hands and plantar surfaces 

of feet covered by small, irregular scales, each with raised anterior edges; scales on dorsal 

surface of hands and feet smaller than limb scales, lacking raised edges. 

Coloration of neotype in preservative.— Ground color of body dark gray-brown, with few 

color features and no apparent differences between dorsal, lateral and ventral surfaces of trunk 

and tail.  Dorsal surfaces of head, and limbs, colored like trunk, with few lighter brown blotches 

on head scales; snout slightly darker than remainder of head. Suprlabials slightly darker brown 

than infralabials, mental, and chin shields. Regenerated portion of tail (distal one third) slightly 

lighter than remainder. 

Trunk coloration invariant; all surfaces medium brown with a series of very faintly indistinct 

longitudinal streaks, each composed of a series slightly darker spots on the distal edge of each 

scale.  

Ventral body surfaces dark homogeneous gray-brown; subcaudal region similar with slightly 

lighter regenerated portion towards tail tip.  Ventral surfaces of hands and feet light gray; fingers 
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and toes light gray. Precloacals slightly not noticeably lighter than surrounding ventrals.  We 

assume that coloration has considerably faded in the 95 years since the neotype was preserved.   

Coloration in life.—“Above and below light brown, each scale with a large slightly darker 

spot; a lighter stripe from behind eye to hind leg” (Taylor, 1918). 

Measurements and scale counts of neotype in mm.—SVL 71.9; AGD 49.7; TotL 110.1; 

MBW 8.2; MBH 5.2; TL 38.2; TW 5.8; TH 4.6; HL 6.8; HW 6.7; HH 4.6; SnFa 17.5; ED 1.8; 

END 2.6; SNL 3.8; IND 2.3; FLL 7.2; HLL 13.1; MBSR 24; PVSR 69; AGSR 48; FinIIIlam 5; 

ToeIVlam 8; SL 6; IFL 6; SC 6; SO 5. 

Variation.—Morphometric variation of the series is summarized in Table 5.6.  We are aware 

of only one adult and one subadult specimen of B. sampu in museum collections (CAS 60365–

66).  We observed the following minor variation in scale contact and scale row counts between 

the neotype and the subadult specimen: axilla–groin scale row counts of 47 (CAS 60365; 

subadult) or 48 (CAS 60366; neotype); parietals separated (CAS 60366; neotype) or in point 

medial contact (CAS 60365; subadult); frontal fragmented posteriorly (CAS 60366; neotype) or 

unbroken (CAS 60365; subadult).  The subadult has noticeably more distinct longitudinal streaks 

on the dorsal survaces of the body (each stream composed of spots, confinded to distal edges of 

dorsal scales), distint light dorsolateral stripes, a darker tail tip, uniformly brown head scales, and 

a light brown ventral surfaces of the hed and neck. 

Distribution.—Brachymeles sampu is known only from Basilan and Bubuan islands (Fig. 

5.3). 

Ecology and natural history.—Taylor (1918) did not provide any information regarding the 

microhabitat preferences of Brachymeles sampu; however, we assume that the species occurs in 

disturbed and secondary-growth forest on the islands of Basilan and Bubuan.  On Basilan Island, 
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B. sampu is found in sympatry with B. schadenbergi.  We have evaluated this species against the 

IUCN criteria for classification, and find that it qualifies for the status of Vulnerable, VU, based 

on the following criteria: VU B2ab(iii); D2 (IUCN, 2010). 

Other sympatric scincid species observed on Basilan Island include: Emoia atrocostata, 

Eutropis multicarinata, E. rudis, E. multifasciata, Lamprolepis smaragdina, Lipinia 

quadrivittata, Sphenomorphus atrigularis, S. fasciatus, S. jagori, S. variagatus, Tropidophorus 

misaminus.  

 

Brachymeles anim sp. nov. 

Figs. 5.3, 5.5 

Holotype.—PNM 9766 (RMB Field No. 8223, formerly KU 310359), adult male, collected 

under rotting logs in secondary-growth forest (10:00–12:30 hr) on 19 June 2007, in Sitio 

Pamahawan, Barangay Pandan, Municipality of Mambajao, Camiguin Sur Province, Camiguin 

Sur Island, Philippines (09°15'00" N, 124°42'57.6" E; WGS-84), by J. Fernandez. 

Paratypes.—Four adult females (CAS-SU 26142, 26144, 26231, 26236) and two juveniles of 

undetermined sex (CAS-SU 26145–46), collected on 30 June 1966, in Dago-okan, 2 km south of 

Catibawasan Falls, Municipality of Mambajao, Camiguin Sur Province, Camiguin Sur Island, 

Philippines (09°11'24.9" N, 124°43'36.01" E; WGS-84), by L. C. Alcala; one juvenile of 

undetermined sex (CAS-SU 26294) collected on 3 July 1966, in Sitio Basiao, Barrio Naasag, 

Municipality of Mambajao, Camiguin Sur Province, Camiguin Sur Island, Philippines 

(09°13'9.95" N, 124°39'18" E; WGS-84), by L. C. Alcala; one juvenile of undetermined sex 

(CAS-SU 26295) collected on 3 July 1966, on the northwest side of Nasawa crater, Municipality 

of Mambajao, Camiguin Sur Province, Camiguin Sur Island, Philippines (09°11'14.17" N, 
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124°41'45.6" E; WGS-84), by L. C. Alcala; two adult females (CAS-SU 26166, 26185), one 

juvenile female (CAS-SU 26165), one juvenile male (CAS-SU 16184), collected on 4 July 1966, 

in Barrio Naasag, Municipality of Mambajao, Camiguin Sur Province, Camiguin Sur Island, 

Philippines (09°13'9.95" N, 124°39'18" E; WGS-84), by L. C. Alcala; three adult females (CAS-

SU 28199, 28331, 28358), one juvenile female (CAS-SU 28359), and two juveniles of 

undetermined sex (CAS-SU 28314, 28329) collected between 15 and 27 May 1967, 4.5–8.0 km 

NE of Catarman Town, Municipality of Catarman, Camiguin Sur Province, Camiguin Sur Island, 

Philippines (09°07'32.02" N, 124°40'32.02" E; WGS-84), by L. C. Alcala; one adult female 

(CAS 139031) collected on 1 March 1973, in Kantinbay, Municipality of Mambajao, Camiguin 

Sur Province, Camiguin Sur Island, Philippines (09°11'50.1" N, 124°43'12" E; WGS-84), by L. 

C. Alcala. 

Diagnosis.—Brachymeles anim can be distinguished from congeners by the following 

combination of characters:  (1) body size medium (SVL 53.6–80.1 mm); (2) limbs pentadactyl; 

(3) limb length moderate; (4) relative tail length short; (5) Finger-III lamellae five; (6) Toe-IV 

lamellae eight or nine; (7) supralabials six; (8) infralabials six; (9) suparciliaries six; (10) 

supraoculars five; (11) midbody scale rows 26–28; (12) axilla–groin scale rows 44–49; (13) 

paravertebral scale rows 65–70; (14) supranasals separate; (15) frontoparietals in contact; (16) 

parietals in contact; (17) first pair of enlarged chin shields separate; (18) postnasal/supranasal 

fusion absent; (19) enlarged chin shields in two pairs; (20) nuchal scales undifferentiated; (21) 

fourth and fifth supralabial below eye; (22) auricular opening present; and (23) presacral 

vertebrae 32 (Tables 5.4, 5.5). 

Comparisons.—Characters distinguishing Brachymeles anim from all medium-sized, 

pentadactyl species of Brachymeles are summarized in Tables 5.4 and 5.5.  Brachymeles anim 
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most closely resembles B. gracilis, B. tiboli, and B. sampu.  However, B. anim differs from these 

three taxa by having eight or nine Toe-IV lamellae [vs. six [B. tiboli], seven or eight [B. gracilis], 

eight [B. sampu], 32 presacral vertebrae (vs. 31 [B. sampu], 33 [B. tiboli], 34 [B. gracilis]), and 

by the absence of contact between the first pair of enlarged chin shields (vs. presence or absence 

[B. gracilis, B. tiboli], presence [B. sampu]).  Brachymeles anim further differs from B. gracilis 

and B. walo by having a shorter relative tail length (TL/SVL less than 84% vs. up to 102% [B. 

gracilis] and 90% [B. tiboli]) and five Finger-III lamellae (vs. four or five); from B. walo and B. 

sampu by having enlarged chin shields in two pairs (vs. three); from B. gracilis and B. sampu by 

the presence of contact between frontoparietal scales (vs. presence or absence [B. gracilis], 

absence [B. sampu]); from B. gracilis by having six infralabials (vs. six or seven) and by the 

absence of a fused postnasal/supranasal scale (vs. presence or absence); and from B. sampu by 

having a greater number of midbody scale rows (26–28 vs. 24). 

Brachymeles anim can be distinguished from all limbless species of Brachymeles (B. apus, B. 

lukbani, B. minimus, B. miriamae, B. vermis) by having limbs; and from all non-pentadactyl 

species of Brachymeles (B. bonitae, B. cebuensis, B. elerae, B. muntingkamay, B. pathfinderi, B. 

samarensis, B. tridactylus, B. wright, sp. nov. [Leyte Island; Siler et al., in press c], sp. nov. 

[Lapinig Group Islands; Siler et al., in press c], sp. nov. [Catanduanes Island; Siler et al., in press 

c], sp. nov. [Central Bicol Peninsula, Luzon Island; Siler et al., in press c], and sp. nov. [Southern 

Bicol Peninsula, Luzon Island; Siler et al., in press c]) by having pentadactyl (vs. non-

pentadactyl) limbs. 

Description of holotype.—Details of the head scalation are shown in Figure 5.5.  Adult male, 

body medium in size, moderately slender, SVL 75.8 mm; head weakly differentiated from neck, 

nearly as wide as body, HW 10.2% SVL, 109.6% HL; HL 34.1% SnFa; SnFa 27.4% SVL; snout 



 359 

short, broadly rounded in dorsal and lateral profile, SNL 61.9% HL; ear opening visible, small; 

eyes small, ED 1.8% SVL, 19.5% HL, 45.1% END, pupil subcircular; body slightly depressed, 

nearly uniform in thickness, MBW 127.0% MBH; scales smooth, glossy, imbricate; longitudinal 

scale rows at midbody 26; paravertebral scale rows 68; axilla–groin scale rows 49; limbs short, 

well developed, pentadactyl, digits small; FinIIIlam 5; ToeIVlam 8; FLL 17.6% AGD, 11.5% 

SVL; HLL 27.6% AGD, 18.0% SVL; order of digits from shortest to longest for hand:  

V < I < IV = II < III, for foot:  I < V < II < IV = III; tail regenerated, not as wide as body, 

gradually tapered towards end, TW 81.6% MBW. 

Rostral projecting onto dorsal snout to point in line with anterior one third of nasal, broader 

than high, in broad contact with frontonasal; frontonasal wider than long; nostril ovoid, in center 

of single trapezoidal nasal, longer axis directed anteroventrally and posterodorsally; supranasals 

present, large, broadly separated; postnasals present, moderate; prefrontals moderately separated; 

frontal subdiamond-shaped, its anterior margin in moderate contact with frontonasal, in contact 

with first two anterior supraoculars, 2.5× wider than anterior supraocular; supraoculars five; 

frontoparietals moderate, in moderate medial contact, each frontoparietal in contact with interior 

three supraoculars; interparietal moderate, its length roughly 1.5× length of frontoparietal, 

slightly longer than wide, subdiamond-shaped, wider anteriorly; parietals roughly as broad as 

frontoparietals, in broad medial contact behind interparietal; nuchals undifferentiated; two loreals, 

decreasing in size from anterior to posterior, anterior loreal slightly longer than and about as high 

as posterior loreal; preocular single; presubocular single; supraciliaries six, the anteriormost 

contacting prefrontal and separating posterior loreal from first supraocular, posteriomost 

extending to posterior edge of fifth supraocular; single subocular scale row complete, in contact 
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with supralabials; lower eyelid with one row of scales on dorsal margin; supralabials six, first 

nearly 2× size of other supralabials, fourth and fifth below eye; infralabials six (Fig. 5.5). 

Mental wider than long, in contact with first infralabials; postmental single, enlarged, its 

width greater than width of mental; followed by two pairs of enlarged chin shields, first pair 

moderately separated by singl medial scale, second pair wider than first, moderately separated by 

one, two, or three medial scales (Fig. 5.5). 

Scales on limbs smaller than body scales; scales on dorsal surfaces of digits large, wrapping 

around lateral edges of digits; lamellae undivided; palmar surfaces of hands and plantar surfaces 

of feet covered by small, irregular scales, each with raised anterior edges; scales on dorsal 

surface of hands and feet smaller than limb scales, lacking raised edges. 

Coloration of holotype in preservative.—The ground color of the body is light (lateral 

surfaces) to medium (middorsal surface) brown,with very two faintly lighter dorsolateral stripes 

enclosing a distinctly darker middorsal region.  Dorsal surfaces of the head, forelimbs, hind 

limbs, and basal tail region darker brown. Head scales mottled light and dark brown, similar to 

dorsal body scales but slightly darker. Temporal region distinctly darker than remaining portions 

of the head and neck.  Supraocular scales and other supralabial scales ligher gray-umber. Rostral, 

supranasals, postnasals, first suprlabials and infralabials and mental scale medium gray.   

Trunk coloration variable; each dorsal scale with dark brown blotch on the anterior and 

posterior one fourth to one third of the scale.  The resulting color pattern. a field of uniformly 

distributed dark brown spots not corresponding to underlying scales.  Each spot consequently lies 

at the distal margin of each scale and bleeds over on to the basal edge of the next posteriorly 

adjacent scale. On lateral surfaces, each spot more or less confined to distal tip of each scale; on 

the ventrum, distal edge of each scale marked with fine array of three to four radiating lines, 
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together giving the appearance of dark smudge pigmentation at the distal edge of each scale.  

Ventral body surfaces rich orange-brown; ventral surfaces of head, neck and subcaudal 

coloration similar to remaining ventrum. Ventral surfaces of hands and feet dark gray; fingers 

and toes nearly black. Precloacals slightly lighter than surrounding ventrals.  

Coloration of holotype in life.—Coloration in life is unrecorded; however, because 

Brachymeles specimens do not change significantly during preservation (CDS, RMB personal 

observation), we suspect that the preserved coloration and patterns are much like those in life. 

Measurements and scale counts of holotype in mm.—SVL 75.8; AGD 49.3; TotL 134.2; 

MBW 9.9; MBH 7.8; TL 58.4; TW 8.1; TH 6.9; HL 7.1; HW 7.8; HH 5.1; SnFa 20.8; ED 1.4; 

END 3.1; SNL 4.4; IND 2.5; FLL 8.7; HLL 13.6; MBSR 26; PVSR 68; AGSR 49; FinIIIlam 5; 

ToeIVlam 8; SL 6; IFL 6; SC 6; SO 5. 

Variation.—Morphometric variation of the series is summarized in Table 5.6.  Among the 20 

specimens examined for the degree of contact between head scales, we observed the following 

variation: prefrontals in point medial contact (CAS 139031, CAS-SU 26142, 26231, 26236, 

28331, 28359, KU 310359) or separated (CAS-SU 16184, 26144–46, 26165–66, 26185, 26294–

95, 28199, 28314, 29329, 28358); frontoparietals in moderate to broad medial contact (CAS 

139031, CAS-SU 16184, 26142, 26144–46, 26166, 26185, 26231, 26294–95, 28199, 28314, 

28329, 28331, 28358, 28359, KU 310359) or in point medial contact (CAS-SU 26165, 26236).  

A single individual (CAS-SU 26142) was observed to possess a single, large frontoparietal scale, 

resulting from the fusion of the frontoparietals. 

Scale counts were observed to vary among the measured series.  Specimens were observed to 

have midbody scale row counts of 26 (CAS-SU 26166, 28199, 28358, KU 310359) and 28 (CAS 

139031, CAS-SU 16184, 26142, 26144, 26165, 26185, 26231, 26236, 26295, 28331); axilla–
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groin scale row counts of 44 (CAS-SU 26166), 45 (CAS-SU 28199, 28358), 47 (CAS-SU 26142, 

26144, 26231, 26236, 28331), 49 (CAS 139031, CAS-SU 26165, 26185, KU 310359), and 50 

(CAS-SU 16184, 26295); and paravertebral scale row counts of 65 (CAS-SU 26166), 66 (CAS-

SU 28199, 28358), 68 (CAS-SU 26142, 26144, 26231, 26236, 28331, KU 310359), 69 (CAS 

139031, CAS-SU 26165), and 70 (CAS-SU 16184, 26185, 26295). 

We also observed lamellae counts and the presence of a pineal eyespot to vary among the 

specimens examined.  The number of Toe-IV lamellae varied between eight (CAS-SU 26142, 

26144, 26146, 26166, 26185, 26231, 26236, 26294, 28199, 28314, 28331, 28358, 28359, KU 

310359) and nine (CAS 139031, CAS-SU 16184, 26145, 26165, 26295, 28329).  Pineal eyespots 

were observed to be present (CAS 139031, CAS-SU 16184, 26145–46, 26165, 26185, 26231, 

26236, 26294–95, 28199, 28329, 28331, 28358–59) or absent (CAS-SU 26142, 26144, 26166, 

28314, KU 310359). 

Coloration of the type series is generally very consistent.  Some specimens (holotype, CAS-

SU 26144, 26231) have a distinctly darker temporal and tympanic region; others have well 

developed dorsolater lines (CAS-SU 26144, 28358).  Most specimens possess ventral coloration 

matching the holotype; four have nearly immaculate cream ventral surfaces (CAS-SU 26166, 

28199, 28314, 28359). 

Distribution.—Brachymeles anim is known only from Camiguin Sur Island (Fig. 5.3). 

Ecology and natural history.—Brachymeles anim occurs in agricultural habitats, as well as in 

disturbed and secondary-growth forest.  Little original, forest remains on Camiguin Sur Island, 

but we assume the species once also occurred in first-growth forest at low elevations.  

Individuals have been observed in the rotting material within fallen logs.  Over the last several 

years, multiple herpetological expeditions to Camiguin Sur Island have resulted in the 
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observation of only a single specimen of this island endemic species.  However, not enough data 

is available to determine if this is an indication of a declining population on the island.  This 

species is found in sympatry with B. orientalis (Siler and Brown, 2010).  We have evaluated this 

species against the IUCN criteria for classification, and find that it qualifies for the status of 

Vulnerable, VU, based on the following criteria: VU B2ab(iii); D2 (IUCN, 2010). 

Other sympatric scincid species observed on Camiguin Sur Island include: Eutropis 

multifasciata, Lamprolepis smaragdina, Sphenomorphus abdictus abdictus, S. coxi, S. fasciatus, 

S. variegatus, Tropidophorus misaminus. 

Etymology.—The island of Camiguin Sur is volcanic in origin, with five major volcanic 

structures:  Mt. Hibok-Hibok, Mt. Vulcan, Mt. Mambajao, M. Guinsiliban, and Mt. Uhay.  Since 

its formation, the island has experienced regular volcanic activity, with several major eruptions 

resulting in the death of thousands of the island’s inhabitants and the complete destruction of 

several coastal towns.  The specific epithet is chosen in recognition of the island’s volatile 

geologic history, and is derived from the latin word “Vulcan,” the ancient Roman god of fire.  

Suggested common name:  Camiguin Sur Slender Skink. 

 

Brachymeles syam sp. nov. 

Figs. 5.3, 5.6, 5.7 

Holotype.—PNM 9767 (CDS Field No. 2772, formerly KU 310828), adult male, collected 

under rotting coconut husks in secondary-growth forest (10:00–12:30 hr) on 18 October 2007, in 

Taft Forest, Barangay San Rafael, Municipality of Taft, Eastern Samar Province, Samar Island, 

Philippines (11°48'9.18" N, 125°17'33.936" E; WGS-84), by CDS and J. Fernandez. 
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Paratopotypes.—Five adult males (KU 310826, 310830–31, 310834, 310941), 14 adult 

females (KU 310731, 310820–21, 310827, 310829, 310835, 310928–31, 310933–34, 310937, 

310939), one juvenile male (KU 310838) and 11 juveniles of undetermined sex (KU 310730, 

310822–25, 310832–33, 310836–37, 310932, 310935) collected between 11 and 26 October 

2007.  

Paratypes.—Three adult males (KU 311216, 311218, PNM 9768), four adult females (KU 

311223, PNM 9769, 9773–74), and six juveniles of undetermined sex (KU 311220–21, PNM 

9770–72, 9775, ) collected under rotting logs in secondary-growth forest (10:00–12:30 hr) 

between 29 October and 7 November 2007, in the Sitio San Vicente Tree Nursery, Barangay 

Pilim, Baybay City, Leyte Province, Leyte Island, Philippines (10°43'35" N, 124°49'05" E; 

WGS-84), by CDS and J. Fernandez. 

Diagnosis.—Brachymeles syam can be distinguished from congeners by the following 

combination of characters:  (1) body size medium (SVL 64.2–76.9 mm); (2) limbs pentadactyl; 

(3) limb length moderate; (4) relative tail length long; (5) Finger-III lamellae five; (6) Toe-IV 

lamellae eight or nine; (7) supralabials six; (8) infralabials six; (9) suparciliaries six; (10) 

supraoculars five; (11) midbody scale rows 25–26; (12) axilla–groin scale rows 42–45; (13) 

paravertebral scale rows 64–67; (14) pineal eyespot present; (15) supranasals separate; (16) 

frontoparietals in contact; (17) parietals in contact; (18) first pair of enlarged chin shields 

separate; (19) postnasal/supranasal fusion absent; (20) enlarged chin shields in three pairs; (21) 

nuchal scales undifferentiated; (22) fourth and fifth supralabial below eye; (23) auricular opening 

present; and (24) presacral vertebrae 31 (Tables 5.4, 5.5). 

Comparisons.—Characters distinguishing Brachymeles syam from all medium-sized, 

pentadactyl species of Brachymeles are summarized in Tables 5.4 and 5.5.  Brachymeles syam 
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most closely resembles B. pito; however, B. syam differs from this taxa by having a longer 

relative tail length (TL/SVL up to 126% vs. less than 98%), fewer presacral vertebrae (31 vs. 32), 

fewer midbody scale rows (25–26 vs. 27–30), a tendency towards fewer axilla–groin scale rows 

(less than 45 vs. up to 50), a tendency towards fewer paravertebral scale rows (less than 67 vs. up 

to 70), enlarged chind shields in three pairs (vs. two or three), the presence of contact between 

frontoparietal scales (vs. presence or absence), the presence of contact between paretal scales (vs. 

presence or absence), and the absence of contact between the first pair of enlarged chin shields 

(vs. presence or absence).   

Brachymeles syam can be distinguished from all limbless species of Brachymeles (B. apus, B. 

lukbani, B. minimus, B. miriamae, B. vermis) by having limbs; and from all non-pentadactyl 

species of Brachymeles (B. bonitae, B. cebuensis, B. elerae, B. muntingkamay, B. pathfinderi, B. 

samarensis, B. tridactylus, B. wright, sp. nov. [Leyte Island; Siler et al., in press c], sp. nov. 

[Lapinig Group Islands; Siler et al., in press c], sp. nov. [Catanduanes Island; Siler et al., in press 

c], sp. nov. [Central Bicol Peninsula, Luzon Island; Siler et al., in press c], and sp. nov. [Southern 

Bicol Peninsula, Luzon Island; Siler et al., in press c]) by having pentadactyl (vs. non-

pentadactyl) limbs. 

Description of holotype.—Details of the head scalation are shown in Figure 5.6.  Adult male, 

body medium in size, moderately slender, SVL 68.6 mm; head weakly differentiated from neck, 

nearly as wide as body, HW 10.4% SVL, 113.5% HL; HL 31.6% SnFa; SnFa 29.0% SVL; snout 

short, broadly rounded in dorsal and lateral profile, SNL 69.8% HL; ear opening visible, small; 

eyes small, ED 1.9% SVL, 20.3% HL, 37.1% END, pupil subcircular; body slightly depressed, 

nearly uniform in thickness, MBW 140.3% MBH; scales smooth, glossy, imbricate; longitudinal 

scale rows at midbody 26; paravertebral scale rows 65; axilla–groin scale rows 43; limbs short, 
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well developed, pentadactyl, digits small; FinIIIlam 5; ToeIVlam 9; FLL 19.9% AGD, 12.9% 

SVL; HLL 31.2% AGD, 20.3% SVL; order of digits from shortest to longest for hand:  

I = V < II < IV = III, for foot:  I < V < II < III < IV; tail long, not as wide as body, gradually 

tapered towards end, TW 77.6% MBW; TL 114.1% SVL. 

Rostral projecting onto dorsal snout to point in line with midline of nasal, broader than high, 

in broad contact with frontonasal; frontonasal wider than long; nostril ovoid, in center of single 

trapezoidal nasal, longer axis directed anteroventrally and posterodorsally; supranasals present, 

large, moderately separated; postnasals present, moderate; prefrontals in point medial contact; 

frontal suboctagonal-shaped, its anterior margin narrowly separated from frontonasal, in contact 

with first two anterior supraoculars, 3× wider than anterior supraocular; supraoculars five; 

frontoparietals moderate, in moderate medial contact, each in contact with supraoculars II–IV; 

interparietal moderate, its length roughly equal to length of frontoparietal, slightly longer than 

wide, subdiamond-shaped, wider anteriorly; parietals roughly as broad as frontoparietals, in 

broad contact behind interparietal; nuchals undifferentiated; two loreals, increasing in size from 

anterior to posterior, anterior loreal narrower than and slightly higher than posterior loreal; 

preocular single; presubocular single; supraciliaries six, the anteriormost contacting prefrontal 

and separating posterior loreal from first supraocular, posteriomost extending to posterior edge 

of fifth supraocular; single subocular scale row complete, in contact with supralabials; lower 

eyelid with one row of scales on dorsal margin; supralabials six, first 1.2× size of other 

supralabials, fourth and fifth below eye; infralabials six (Fig. 5.6). 

Mental wider than long, in contact with first infralabials; postmental single, enlarged, its 

width greater than width of mental; followed by three pairs of enlarged chin shields, first pair 
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moderately separated, second pair wider than first, moderately separated by single medial scale, 

third pair narrower than first and second pairs, separated by three medial scales (Fig. 5.6). 

Scales on limbs smaller than body scales; scales on dorsal surfaces of digits large, wrapping 

around lateral edges of digits; lamellae undivided; palmar surfaces of hands and plantar surfaces 

of feet covered by small, irregular scales, each with raised anterior edges; scales on dorsal 

surface of hands and feet smaller than limb scales, lacking raised edges. 

Coloration of holotype in preservative.—Ground color of body light (lateral surfaces) to dark 

(middorsal surface) brown, with distinctly darker middorsal region; light dorsolateral stripes 

absent.  Dorsal surfaces of head, and snout darker brown but dorsal surfaces of limbs match that 

of trunk. Scales of dorsal and lateral surfaces of head nearly uniformly dark brown; 

supraocculars nearly black. Nuchal and supratympanic regions distinctly darker than remaining 

portions of the head and neck. Rostral, supranasals, postnasals, first suprlabials and infralabials 

and mental scale medium gray. Suprlabials dark brown but infralabials, mental, and chin shields 

light orange-brown.  

Trunk coloration variable; dorsal surfaces medium brown with a series of indistinct 

longitudinal streaks, each composed of a series of indstinct dark spots either confined to the 

distal edge of each scale or traversing the whole scale. Lateral surfaces, lack the appearance of 

longitudinal streaks but instead possess equally spaced spots of dark pigment, with each spot on 

distal tip of each scale. 

Ventral body surfaces rich orange-brown; ventral surfaces of head and neck devoid of any 

dark pigmentation; posterior portion of trunk with faint brown striations at the distal edge of each 

scale, becoming more pronounced posteriorly; subcaudal regions with dark brown spots or 

clusters of striations on distal edge of each scale, becoming more contrasting distally with darker 
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shades of brown and lighter ground colration at the tail’s tip.  Ventral surfaces of hands and feet 

light gray; fingers and toes dark gray. Precloacals slightly lighter than surrounding ventrals. 

Coloration of holotype in life.—(Differences from preserved specimens; Fig. 5.7).  Light, 

dorsolateral stripes absent to nearly indistinct.  Trunk coloration medium to dark brown; dorsal 

surfaces dark brown with a series of distinct to indistinct longitudinal streaks, each composed of 

a series of dark brown to black spots confined to the distal edge of each scale or traversing the 

whole scale.  Lateral surfaces possess longitudinal rows of dark spots of pigment, indistinct 

anteriorly, distinct posteriorly, with each spot on distal tip of each scale.  Ventral body surfaces 

rich orange-brown or medium brown.  Ventral surfaces of hands and feet light gray to tan; 

fingers and toes dark gray.  

Measurements and scale counts of holotype in mm.—SVL 68.6; AGD 44.6; TotL 146.9; 

MBW 9.4; MBH 6.7; TL 78.3; TW 7.3; TH 5.3; HL 6.3; HW 7.2; HH 4.8; SnFa 19.9; ED 1.3; 

END 3.5; SNL 4.4; IND 2.1; FLL 8.9; HLL 13.9; MBSR 26; PVSR 65; AGSR 43; FinIIIlam 5; 

ToeIVlam 9; SL 6; IFL 6; SC 6; SO 5. 

Variation.—Morphometric variation of the series is summarized in Table 5.6.  Among the 45 

specimens examined for the degree of contact between head scales, we observed the following 

variation: prefrontals in point medial contact (KU 310827–29, 310931, 311218) or separated 

(KU 310730–31, 310820–26, 310830–38, 310929–30, 310932–41, 311214–17, 311219–23).  A 

single individual (KU 310830) was observed to possess a single, large parietal scale, resulting 

from the fusion of the parietals. 

Scale counts were observed to vary among the measured series.  Specimens were observed to 

have midbody scale row counts of 25 (KU 310929, 310936) and 26 (KU 310731, 310820–21, 

310826–31, 310834–35, 310928, 310930–31, 310933–34, 310937–39, 310941, 311214–16, 
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311218, 311223); axilla–groin scale row counts of 42 (KU 310829–30, 310929, 310933, 310938, 

311215), 43 (KU 310826, 310828, 310831, 310835, 310931, 310934, 310936–37, 310941, 

311214), 44 (KU 310731, 310820–21, 310834, 310928, 310930, 310939, 311223), and 45 (KU 

310827, 311216, 311218); and paravertebral scale row counts of 64 (KU 310829–30, 310929, 

310933, 310938, 311215), 65 (KU 310826, 310828, 310831, 310835, 310931, 310934, 310936–

37, 310941, 311214), 66 (KU 310731, 310820–21, 310834, 310928, 310930, 310939, 311223), 

and 67 (KU 310827, 311216, 311218). 

We also observed lamellae counts to vary among the specimens examined, with the number 

of Toe-IV lamellae observed to vary between eight (KU 310930, 310937, 311216, 311218) and 

nine (KU 310820–21, 310826–31, 310834–35, 310928–29, 310931, 310933–34, 310936, 

310938–39, 310941, 311214–15, 311223).   

Color in the type series is remarkably invariant.  Several specimens possess slightly lighter 

dorsolateral reions, suggesting the presence of dorsolateral “stripes” (KU 310831, 310937, 

310928, 310939, 311214); in one small juvenile, this color feature is particularly evident (KU 

311211) but in others (KU 310822, 311220, 311222) it is absent. In some specimens, overall 

pigmentation is markedly darker on both dorsal and ventral surfaces (KU 310820, 310821, 

3190931, 310933, 310934, 310936) and in some specimens dorsal coloration is slightly lighter 

and ventral ground color nerly immaculate orange-brown (KU 310731, 311218).  In two 

specimens ventral surfaces are marked by indistinct midventral streaks of dark minute flecks and 

spots. 

Distribution.—Brachymeles syam is known only from Samar and Leyte islands (Fig. 5.3). 

Ecology and natural history.—Brachymeles syam occurs in primary- and secondary-growth 

forest, as well as disturbed and agricultural habitats.  In contrast to the other members of the B. 
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gracilis complex, this species appears to be quite common throughout its range (CDS pers. 

observ.).  Three species of Brachymeles have been confirmed to occur on Samar Island (B. 

orientalis, B. syam, and B. samarensis; Siler and Brown, 2010; Siler et al., in press c).  

We have evaluated this species against the IUCN criteria for classification, and find that it 

does not qualify for Critically Endangered, Endangered, Vulnerable, or Near Threatened status.  

Brachymeles syam has been documented to have a broad geographic distribution and is quite 

abundant at all sampled localities.  We therefore classify this species as Least Concern, LC 

(IUCN, 2010).  

Other sympatric sincid species observed on Samar and Leyte islands include: Emoia 

atrocostata, Eutropis multicarinata, E. multifasciata, Lamprolepis smaragdina, Lipinia pulchella, 

L. quadrivittata, Sphenomorphus acutus, S. cumingi, S. fasciatus, S. jagori, S. cf. mindanensis, S. 

steerei, S. variegatus, Tropidophorus misaminus. 

Etymology.—Prior to the Spanish colonization of the Philippines, numerous names (Samal, 

Ibabao, Tandaya) had been colloquially given to Samar Island.  The name Samar was originally 

derived from the local dialect “syam”, meaning wound or cut, which described the 

geographically complex features of the island, and the rough terrain dissected by streams.  

Suggested common name:  Eastern Visayas Slender Skink. 

 

Brachymeles walo sp. nov. 

Figs. 5.3, 5.6 

Holotype.—PNM 9777 (ACD Field No. 5747), adult female, collected under a rotting log in 

secondary-growth forest (10:00–12:30 hr) on 23 October 2009, in Barangay Tablu, Municipality 

of Tampakan, South Cotabato Province, Mindanao Island, Philippines, by ACD and J. Fernandez. 
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Paratopotype.—One subadult male (PNM 9776) collected on 21 October 2009 by ACD and 

J. Fernandez. 

Paratype.—One juvenile of undetermined sex (KU 326109) collected on 24 May 2001, in 

Initao National Park, Barangay Initao, Municipality of Tubigan, Misamis Oriental Province, 

Mindanao Island, Philippines (08°50'2.4" N, 123°52'30" E; WGS-84), by ACD. 

Diagnosis.—Brachymeles walo can be distinguished from congeners by the following 

combination of characters:  (1) body size medium (SVL 61.6, 75.5 mm); (2) limbs pentadactyl; 

(3) limb length moderate; (4) relative tail length moderate; (5) Finger-III lamellae four or five; 

(6) Toe-IV lamellae six; (7) supralabials six; (8) infralabials six; (9) suparciliaries six; (10) 

supraoculars five; (11) midbody scale rows 26; (12) axilla–groin scale rows 46–47; (13) 

paravertebral scale rows 68–70; (14) supranasals separate; (15) frontoparietals in contact; (16) 

parietals in contact; (17) postnasal/supranasal fusion absent; (18) enlarged chin shields in three 

pairs; (19) nuchal scales undifferentiated; (20) fourth and fifth supralabial below eye; (21) 

auricular opening present; and (22) presacral vertebrae 33 (Tables 5.4, 5.5). 

Comparisons.—Characters distinguishing Brachymeles walo from all medium-sized, 

pentadactyl species of Brachymeles are summarized in Tables 5.4 and 5.5.  Brachymeles walo 

most closely resembles B. gracilis, B. anim, and B. sampu.  However, B. walo differs from these 

three taxa by having six Toe-IV lamellae (vs. seven or eight [B. gracilis], eight [B. sampu], eight 

or nine [B. anim]), a tendency towards a greater number of paravertebral scale rows (up to 72 vs. 

less than or equal to 70), and 33 presacral vertebrae (vs. 31 [B. sampu], 32 [B. anim], 34 [B. 

gracilis]).  Brachymeles walo further differs from B. anim and B. sampu by having four or five 

Finger-III lamellae (vs. five); from B. gracilis and B. anim by having enlarged chin shields in 

three pairs (vs. two); from B. gracilis and B. sampu by the presence of contact between 
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frontoparietal scales (vs. presence or absence [B. gracilis], absence [B. sampu]); from B. gracilis 

by having six infralabials (vs. six or seven) and the absence of a fused postnasal/supranasal scale 

(vs. presence or absence); and from B. sampu by having a greater number of midbody scale rows 

(26 vs. 24) and by the presence of contact between parietals scales (vs. presence or absence). 

Brachymeles walo can be distinguished from all limbless species of Brachymeles (B. apus, B. 

lukbani, B. minimus, B. miriamae, B. vermis) by having limbs; and from all non-pentadactyl 

species of Brachymeles (B. bonitae, B. cebuensis, B. elerae, B. muntingkamay, B. pathfinderi, B. 

samarensis, B. tridactylus, B. wright, sp. nov. [Leyte Island; Siler et al., in press c], sp. nov. 

[Lapinig Group Islands; Siler et al., in press c], sp. nov. [Catanduanes Island; Siler et al., in press 

c], sp. nov. [Central Bicol Peninsula, Luzon Island; Siler et al., in press c], and sp. nov. [Southern 

Bicol Peninsula, Luzon Island; Siler et al., in press c]) by having pentadactyl (vs. non-

pentadactyl) limbs. 

Description of holotype.—Details of the head scalation are shown in Figure 5.6.  Adult 

female, body medium in size, moderately slender, SVL 75.5 mm; head weakly differentiated 

from neck, nearly as wide as body, HW 8.3% SVL, 103.3% HL; HL 31.0% SnFa; SnFa 26.1% 

SVL; snout short, rounded in dorsal profile, bluntly rounded in lateral profile, SNL 60.7% HL; 

ear opening visible, small; eyes small, ED 1.9% SVL, 23.0% HL, 46.7% END, pupil subcircular; 

body slightly depressed, nearly uniform in thickness, MBW 117.6% MBH; scales smooth, glossy, 

imbricate; longitudinal scale rows at midbody 26; paravertebral scale rows 72; axilla–groin scale 

rows 50; limbs short, well developed, pentadactyl, digits small; FinIIIlam 4; ToeIVlam 6; FLL 

14.4% AGD, 9.4% SVL; HLL 20.9% AGD, 13.6% SVL; order of digits from shortest to longest 

for hand:  I = V < IV = II < III, for foot:  V = I < II < IV = III; tail moderate in length, not as 

wide as body, gradually tapered towards end, TW 86.3% MBW; TL 88.9% SVL. 
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Rostral projecting onto dorsal snout to point in line with anterior edge of nasal, broader than 

high, in broad contact with frontonasal; frontonasal wider than long; nostril ovoid, in center of 

single trapezoidal nasal, longer axis directed anteroventrally and posterodorsally; supranasals 

present, large, broadly separated; postnasals present, moderate; prefrontals broadly separated; 

frontal suboctagonal-shaped, its anterior margin in broad contact with, or narrowly separated 

from, frontonasal, in contact with first two anterior supraoculars, 4.5× wider than anterior 

supraocular; supraoculars five; frontoparietals moderate, in moderate medial contact, each in 

contact with supraoculars II–IV; interparietal large, its length roughly equal to length of 

frontoparietal, slightly longer than wide, subdiamond-shaped, wider anteriorly; parietals 

narrower than frontoparietals, in broad contact behind interparietal; nuchals undifferentiated; two 

loreals, decreasing in size from anterior to posterior, anterior loreal about as long as and 

moderately higher than posterior loreal; preocular single; supraciliaries six, the anteriormost 

contacting prefrontal and separating posterior loreal from first supraocular, posteriomost 

extending to posterior edge of fifth supraocular; single subocular scale row complete, in contact 

with supralabials; lower eyelid with one row of scales on dorsal margin; supralabials six, first 2× 

size of other supralabials, fourth and fifth below eye; infralabials six (Fig. 5.6). 

Mental wider than long, in contact with first infralabials; postmental single, enlarged, its 

width greater than width of mental; followed by three pairs of enlarged chin shields, first pair 

narrowly separated, second pair wider than first, moderately separated by single medial scale, 

third pair narrower than first and second pairs, separated by three medial scales (Fig. 5.6). 

Scales on limbs smaller than body scales; scales on dorsal surfaces of digits large, wrapping 

around lateral edges of digits; lamellae undivided; palmar surfaces of hands and plantar surfaces 
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of feet covered by small, irregular scales, each with raised anterior edges; scales on dorsal 

surface of hands and feet smaller than limb scales, lacking raised edges. 

Coloration of holotype in preservative.—Ground color of body dark (lateral surfaces) to 

miedium (middorsal surface) brown, with distinctly lighter tan dorsolateral stripes, continuing 

from postorbital region to base of  tail.  Dorsal surfaces of head, and snout marbled light and 

dark brown, with distinct tan spots on prefrontals and first supralabials and dark gray to black 

supraoccular coloration posteriorly. Scales of dorsal and lateral surfaces of snout and lateral 

surfaces of head homogenous dark brown. Rostral, supranasals, postnasals, first suprlabials and 

infralabials and mental scale medium gray. Suprlabials medium brown; infralabials orange-

brown; mental, and chin shields light immaculate creram.  

Trunk coloration variable; middorsal reguion between light tan dorsolateral stripes medium 

brown with a series of six faint longitudinal dark brown streaks, each composed of a indistinct 

dark blotches either on the distal edge of each scale and traversing the whole scale in posterior 

portions of trunk. Lateral surfaces nearly uniformly dark brown, with lighter margins of each 

scale. Dorsal surfaces of limbs similar to lateral body coloration. 

Ventral surfaces of head, neck and body light brown, with light yellowish cream margins to 

each scale. Subcaudal regions uniform dark brown with slighter scale margins becoming more 

evident distally.  Ventral surfaces of hands and feet dark gray; fingers and toes slightly darker. 

Precloacals colored as surrounding ventrals. 

Coloration of holotype in life.—Coloration in life is unrecorded; however, because 

Brachymeles specimens do not change significantly during preservation (CDS, RMB personal 

observation), we suspect that the preserved coloration and patterns are much like those in life. 
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Measurements and scale counts of holotype in mm.—SVL 75.5; AGD 49.3; TotL 142.6; 

MBW 8.0; MBH 6.8; TL 67.1; TW 6.9; TH 5.6; HL 6.1; HW 6.3; HH 4.2; SnFa 19.7; ED 1.4; 

END 3.0; SNL 3.7; IND 2.6; FLL 7.1; HLL 10.3; MBSR 26; PVSR 72; AGSR 50; FinIIIlam 4; 

ToeIVlam 6; SL 6; IFL 6; SC 6; SO 5. 

Variation.—Morphometric variation of the series is summarized in Table 5.6.  We observed 

the following variation in the degree of contact between head scales: prefrontals in moderate 

medial contact (ACD 5727) or separated (KU 326109, ACD 5747); first pair of enlarged chin 

shields in moderate medial contact (KU 326109, ACD 5727) or separated (ACD 5747). 

Scale and lamellae counts were observed to vary among the measured series.  Specimens 

were observed to have axilla–groin scale row counts of 47 (ACD 5727) and 50 (ACD 5747); and 

paravertebral scale row counts of 70 (ACD 5727) and 72 (ACD 5747).  The number of Finger-III 

lamellae varied between four (ACD 5747) and five (ACD 5727).   

Distribution.—Brachymeles walo is known only from western Mindanao Island (Fig. 5.3). 

Ecology and natural history.—Brachymeles walo occurs in primary- and secondary-growth 

forest habitats, and occurs in sympatry throughout its currently recognized range with B. 

schadenbergi (Siler and Brown, 2010).  The population found in South Cotabato Province, 

Mindanao Island (Fig. 2) also has been documented to occur in sympatry with B. gracilis.  As 

previously mentioned, this is the first documented case of two species of Brachymeles in the 

same body form and body size class occuring in sympatry.  In addition to B. gracilis and B. 

schadenbergi, four other species of Brachymeles have been confirmed to occur on Mindanao 

Island (B. pito, B. orientalis, and B. pathfinderi; Siler and Brown, 2010; Siler et al., in press a).   

Due to the observation of a high degree of sequence divergence (up to 5.9%; Table 5.3) 

between the northern and southern populations sampled for this species, we suspect that B. walo 
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may actually represent a complex of morphologically similar species.  However, due to the 

absence of additional, adult samples for both populations, currently we cannot evaluate this 

hypothesis.  Given what little we know about this unique species (or species complex), B. walo 

cannot be directly, or indirectly, assessed for risk of extinction based on the IUCN criteria.  

Therefore, we classify this species as Data Deficient, DD, pending the collection of additional 

information (IUCN, 2010). 

Other sympatric sincid species observed on Mindanao Island include: Eutropis indeprensa, E. 

multicarinata, E. multifasciata, E. englei, Lamprolepis smaragdina, L. pulchella, L. quadrivittata, 

Sphenomorphus abdictus abdictus, S. acutus, S. atrigularis, S. cumingi, S. cf. mindanensis, S. 

coxi, S. fasciatus, S. jagori, S. llanosi, S. steerei, S. variegatus, Tropidophorus misaminus, T. 

partelloi. 

Etymology.—The specific epithet is chosen to recognize the T’boli indigenous peoples from 

South Mindanao Island. The T’boli possess ancestral tribal domains from Buluan Lake in the 

Cotabato Basin to Agusan del Norte Province in northeastern Mindanao Island, encompassing 

much of the known distribution of this new species.  Suggested common name:  Western 

Mindanao Slender Skink. 

 

DISCUSSION 

Analyses of the two mitochondrial gene fragments (ND1, ND2) and two unlinked nuclear 

loci (BDNF, PTGER4) resulted in topologies with high ML bootstrap support and posterior 

probabilities for five lineages formerly part of the Brachymeles gracilis Complex (Fig. 5.2).  No 

analyses supported the monophyly of species formerly part of Brachymeles gracilis (B. gracilis, 
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B. pito, B. anim, B. syam, and B. tiboli).  However, all analyses show strong support for the sister 

relationship between B. anim and B. pito (Fig. 5.2).  

In addition to the apparent paraphyly of species formerly part of Brachymeles gracilis, B. 

pathfinderi was recovered as part of the B. gracilis Complex.  Brachymeles pathfinderi, one of 

only two recognized species to have unequal numbers of fore- and hind limb digits, was placed 

by our analyses sister to B. gracilis (Fig. 5.2, Clade E). 

Although each of the five genetically sampled species formerly part of the B. gracilis 

Complex were recovered in all analyses with strong support, the interspecific relationships 

remain incompletely resolved, and the diversity of species within the complex is recovered as a 

polytomy of four, well supported clades (Fig. 5.2, Clades A–C, E).  The previously recognized 

species B. pathfinderi has an abutting distribution with true B. gracilis in southcentral Mindanao 

Island (Fig. 5.3). 

The species recognized in this paper increase the total number of known species of 

Brachymeles to 34, and all but two of these are endemic to the Philippines. Having nearly 

doubled the known number of species of Brachymeles in the last several years (Siler, 2010; Siler 

et al., 2009a, 2010a,b, 2011, in press a,b,c; Siler and Brown, 2010), we are left with two general 

questions: do many more species in this clade await discovery? And will the results of our 

studies involving this group extrapolate to generalizations regarding underestimation of 

Philippine biodiversity? 

First, our comprehensive fossorial lizard field studies throughout the archipelago have 

targeted the major biogeographic components of the Philippines (Brown and Diesmos, 2009) and 

allowed for a clade-by-clade revisionary approach of the genus Brachymeles (Siler and Brown, 

2010; Siler et al. in press c).  Consequently, we do not expect wholesale discovery of many 



 378 

additional clades of species and we suspect that we will soon (following the revision of the B. 

bonitae Complex) arrive at a reasonably accurate accounting of species diversity.  Nevertheless 

we anticipate that additional species of Brachymeles will be discovered with continued fieldwork 

in isolated regions of the archipelago.  To date, despite our efforts and those of our colleagues, 

the major montane components of Luzon and Mindanao remain poorly sampled for biodiversity 

due to logistical obstacles to field research.  Overcoming many of these bureaucratic hurdles will 

undoubtedly result in the discovery of additional species of Brachymeles.  Finally, many small 

islands (now known to harbor distinct species of Brachymeles) have not been adequately 

surveyed for fossorial lizard species diversity by biologists targeting this distinct microhabitat.  

As a result, we expect that many areas considered reasonably well known by terrestrial 

biodiversitry specialists may indeed possess additional undescribed of Brachymeles. 

This study adds to a growing body of literature suggesting that a reevaluation of amphibian 

and reptile species boundaries within the Philippines will result in a wholesale reappraisal of 

archipelago-wide biodiversity (review: Brown et al., 2002; Brown and Diesmos, 2009).   In the 

context of this body of work, few examples of truly widespread reptile species are now known to 

exist, and most previous examples have turned out to constitute multiple evolutionary lineages 

(McGuire and Alcala, 2000; Brown et al., 2009, in press; Gaulke et al, 2007; Welton et al., 2009, 

2010a,b; Siler and Brown, 2010; Siler et al., in press c) with limited geographical distributions.  

The exceptions to this generalization appear to be invasive species and human-mediated range 

expansions (Diesmos et al., 2006; Brown et al., 2010). 

Following the recognition of B. gracilis, B. pito, B. anim, B. syam, B. tiboli, and B. sampu 

there are now 18 pentadactyl species of Brachymeles.  The diversity of pentadactyl species can 

be broken into three major body size categories.  Half of the diversity of pentadactyl taxa 



 379 

consists of medium-sized species (B. boholensis, B. boulengeri, B. mindorensis, B. taylori, B. 

gracilis, B. pito, B. anim, B. syam, B. tiboli, and B. sampu; Siler and Brown, 2010), and the other 

half consists of larger, more robust species (B. talinis, B. kadwa, B. tungaoi, B. makusog, B. 

orientalis, B. schadenbergi, B. vindumi; Siler and Brown, 2010).  Finally, B. bicolor represents a 

unique species in having a large, long body; significantly longer than all other pentadactyl 

species (Siler et al., in press a).  Interestingly, the distribution of pentadactyl species in the 

Philippines is markedly uneven across the major biogeographic regions of the Philippines, with 

four species known to occur in the Luzon Faunal Region, nine in the Mindanao Faunal Region, 

three in the Visayan Faunal Region, one in the Sulu Archipelago, and one in the Mindoro Faunal 

Region (Siler and Brown, 2010).  This observation of the greatest pentadactyl species diversity 

being distributed across the Mindanao PAIC stands in stark contrast to the patterns observed for 

the diversity of limbed, non-pentadactyl species, where 13 species are known from the Luzon 

PAIC versus eight in the Mindanao PAIC (Siler et al., in press c). 

A resurgence of species discoveries on Mindanao Island have occurred during the last decade, 

largely due to increased sociopolitical stability in the southern Philippines resulting in renewed 

survey efforts.  Given the island’s complex geography (Defant et al., 1989; Yumul et al., 2009), 

the increase in the faunal region’s diversity is likely to continue (Siler et al., 2009b, in press c; 

Siler and Brown, 2010; Sanguila et al., in press; Welton et al., 2009, 2010a,b) 

Although B. syam, B. anim, B. pito, and B. gracilis currently can be found in a variety of 

habitat types, from secondary-growth forest to highly disturbed, agricultural and residential areas, 

no studies are available on the long-term effect of deforestation on Brachymeles populations. In 

contrast, less is known about the natural history, abundance, and effective range of B. walo and B. 

sampu, and both species remain known from three and two vouchered specimens, respectively.  
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Presently, one “widespread” species complex (B. bonitae) remains in the genus, with a 

distribution spanning boundaries between recognized faunal regions (Brown and Alcala, 1980; 

Siler and Brown, 2010; Siler et al., 2011, in press c).  Recent phylogenetic studies of the genus 

have statistically rejected the monophyly of the B. bonitae species complex (Siler et al., 2011).  

Closer investigations of island populations of B. bonitae will likely result in the discovery of new 

species diversity, and needed taxonomic revisions for this group of morphologically similar, non-

pentadatyl species.   
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Figure 5.4. Illustration of head of adult male Brachymeles gracilis (KU 326079) and adult 

female Brachymeles pito (CAS 133705) in dorsal, lateral, and ventral views.  Taxonomically 

diagnostic head scales are labeled as follows:  C, chin shield; F, frontal; FN, frontonasal; FP, 

frontoparietal; IL, infralabial; IP, interparietal; L, loreal; M, mental; N, nasal; Nu, nuchal; P, 

parietal; PF, prefrontal; PM, postmental; PN, postnasal; PO, preocular; PSO, presubocular; R, 

rostral; SC, supraciliary; SL, supralabial; SN, supranasal; and SO, supraocular.  Roman numerals 

indicate scales in the supraocular series, with Arabic numbers indicating scales in the 

supraciliary series.  The partial lateral view for B. gracilis highlights (in gray) the absence of a 

postnasal scale resulting from the fusion of the supranasal and postnasal.  Illustrations by RMJ 

and CDS. 
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Figure 5.5. Illustration of head of adult female neotype Brachymeles sampu (CAS 60366) and 

adult male holotype Brachymeles anim (PNM 9766; formerly KU 310359) in dorsal, lateral, and 

ventral views.  Labels for taxonomically diagnostic head scales follow those shown in Figure 5.4.  

Illustrations by RMJ and CDS. 
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Figure 5.6. Illustration of head of adult male holotype Brachymeles syam (PNM 9767; formerly 

KU 310828) and adult female holotype Brachymeles walo (PNM 9777) in dorsal, lateral, and 

ventral views.  Labels for taxonomically diagnostic head scales follow those shown in Figure 5.4.  

Illustrations by RMJ and CDS. 
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Figure 5.7. Photograph in life of Brachymeles syam (KU 311223), SVL = 76.9 mm, from Leyte 

Island, Philippines.  Photograph by CDS.  
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Appendix I 

Summary of specimens corresponding to genetic samples included in the study. PNM/CMNH 

= deposited in the Cincinnati Museum of Natural History; RMBR = David Bickford/Djoko 

Iskandar field number, deposited at the Raffles Museum of Biology; CUMZR = Chulalongkorn 

Museum of Zoology Reptile collection; SP = Sabah Parks Reference Collection; KU = 

University of Kansas Natural History Museum; LSUHC = La Sierra University Herpetological 

Collections; FMNH = Field Museum of Natural History Herpetological Collections; * = 

currently uncataloged specimen, deposited in the National Museum of the Philippines. 

Species Voucher Locality 

Dasia grisea KU 305573 Philippines, Luzon Island, Municipality of 

Tobaco 

Davewakeum miriamae KU 327693 Thailand 

Davewakeum miriamae KU 327692 Thailand 

Emoia atrocostata KU 04896 Philippines, Calayan Island, Municipality of 

Calayan 

Eumeces quadrilineatus KU 311490 China, Guangxi State, 

Shiwan Dashang Nature Reserve 

Eutropis multifasciata KU 302904 Philippines, Tablas Island, Municipality of 

San Agustin 

Lamprolepis smaragdina KU 326565 Philippines, Palawan Island, Municipality of 

Narra 

Larutia seribuatensis LSUHC 5168 West Malaysia 

Lipinia pulchella pulchella RMB 1079* Philippines, Bohol Island, Municipality of 
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Carmen 

Lygosoma bowringii LSUHC 6998 West Malaysia 

Lygosoma sp. LSUHC 6931 West Malaysia 

Lygosoma quadrupes LSUHC 8403 West Malaysia 

Plestiodon fasciatus KU 289462 United States, Texas, Smith County 

Plestiodon anthracinus KU 290718 United States, Kansas, Johnson County 

Scincella lateralis KU 289461 United States, Texas, Smith County 

Scincella reevesii FMNH 255540 Lao PDR, Khammouan Prov, Thakhek 

District 

Sphenomorphus abdictus 

abdictus 

KU 306538 Philippines, Dinagat Island, Municipality of 

Loreto 

Tachydromus sexilineatus KU 311512 China, Guangxi State, 

Shiwan Dashang Nature Reserve 

Brachymeles apus SP 06915 Malaysia, Borneo, Sabah, Mt. Kinabalu 

Brachymeles cf. apus RMBR 2040 Malaysia, Borneo, Kalimantan 

Brachymeles bicolor KU 323149 Philippines, Luzon Island, Municipality of 

Maria Aurora 

Brachymeles bicolor KU 323150 Philippines, Luzon Island, Municipality of 

Maria Aurora 

Brachymeles bicolor KU 323151 Philippines, Luzon Island, Municipality of 

Maria Aurora 

Brachymeles boholensis KU 323992 Philippines, Bohol Island, Municipality of 
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Sierra Bullones 

Brachymeles boholensis KU 323939 Philippines, Bohol Island, Municipality of 

Bilar 

Brachymeles boholensis KU 323958 Philippines, Bohol Island, Municipality of 

Sierra Bullones 

Brachymeles bonitae KU 323086 Philippines, Luzon Island, Municipality of 

Baler 

Brachymeles bonitae KU 323085 Philippines, Luzon Island, Municipality of 

Baler 

Brachymeles bonitae KU 307748 Philippines, Mindoro Island, Municipality of 

Magsaysay 

Brachymeles bonitae KU 307749 Philippines, Mindoro Island, Municipality of 

Gloria 

Brachymeles bonitae KU 326089 Philippines, Luzon Island, Municipality of 

Tayabas, Mt. Banahao 

Brachymeles bonitae RMB 3681* Philippines, Luzon Island, Municipality of 

Tayabas, Mt. Banahao 

Brachymeles bonitae KU 320471 Philippines, Lubang Island, Municipality of 

Lubang 

Brachymeles bonitae KU 320473 Philippines, Lubang Island, Municipality of 

Lubang 

Brachymeles bonitae KU 308004 Philippines, Calayan Island, Municipality of 

Calayan 
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Brachymeles bonitae KU 307967 Philippines, Calayan Island, Municipality of 

Calayan 

Brachymeles bonitae KU 323937 Philippines, Masbate Island, Municipality of 

Masbate City 

Brachymeles bonitae KU 323938 Philippines, Masbate Island, Municipality of 

Masbate City 

Brachymeles boulengeri KU 323409 Philippines, Luzon Island, Municipality of 

Baler 

Brachymeles boulengeri KU 307752 Philippines, Polillo Island, Municipality of 

Polillo 

Brachymeles boulengeri KU 307753 Philippines, Polillo Island, Municipality of 

Polillo 

Brachymeles cebuensis KU 320419 Philippines, Cebu Island, Municipality of 

Carcar 

Brachymeles cebuensis KU 320421 Philippines, Cebu Island, Municipality of 

Carcar 

Brachymeles cebuensis KU 320420 Philippines, Cebu Island, Municipality of 

Carcar 

Brachymeles gracilis hilong KU 311216 Philippines, Leyte Island, Municipality of 

Baybay 

Brachymeles gracilis hilong KU 311220 Philippines, Leyte Island, Municipality of 

Baybay 

Brachymeles gracilis hilong KU 310825 Philippines, Samar Island, Municipality of 
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Taft 

Brachymeles gracilis hilong KU 310731 Philippines, Samar Island, Municipality of 

Taft 

Brachymeles elerae KU 326566 Philippines, Luzon Island, Municipality of 

Balbalan 

Brachymeles elerae KU 326567 Philippines, Luzon Island, Municipality of 

Balbalan 

Brachymeles gracilis gracilis PNM/CMNH 

1175 

Philippines, Mindanao Island, Municipality of 

Toril, Mt. Apo 

Brachymeles gracilis gracilis PNM/CMNH 

1176 

Philippines, Mindanao Island, Municipality of 

Toril, Mt. Apo 

Brachymeles gracilis gracilis ACD 2695* Philippines, Mindanao Island, Municipality of 

San Isidro, Mt. Hamiguitan 

Brachymeles gracilis gracilis KU 326099 Philippines, Mindanao Island, Municipality of 

Kiblawan 

Brachymeles lukbani KU 313602 Philippines, Luzon Island, Municipality of 

Labo 

Brachymeles lukbani KU 313596 Philippines, Luzon Island, Municipality of 

Labo 

Brachymeles lukbani KU 313597 Philippines, Luzon Island, Municipality of 

Labo 

Brachymeles makusog KU 313610 Philippines, Luzon Island, Municipality of 

Labo 
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Brachymeles makusog KU 313611 Philippines, Luzon Island, Municipality of 

Labo 

Brachymeles makusog KU 308127 Philiippines, Catanduanes Island, 

Municipality of Gigmoto  

Brachymeles makusog KU 308128 Philiippines, Catanduanes Island, 

Municipality of Gigmoto  

Brachymeles mindorensis KU 304351 Philippines, Mindoro Island, Municipality of 

Calayan 

Brachymeles mindorensis KU 307740 Philippines, Mindoro Island, Municipality of 

Bongabong 

Brachymeles mindorensis KU 308447 Philippines, Mindoro Island, Municipality of 

Paluan 

Brachymeles minimus KU 308131 Philiippines, Catanduanes Island, 

Municipality of Gigmoto  

Brachymeles minimus KU 308129 Philiippines, Catanduanes Island, 

Municipality of Gigmoto  

Brachymeles minimus KU 308130 Philiippines, Catanduanes Island, 

Municipality of Gigmoto  

Brachymeles muntingkamay KU 308866 Philippines, Luzon Island, Municipality of 

Quezon, Mt. Palali 

Brachymeles muntingkamay KU 308923 Philippines, Luzon Island, Municipality of 

Quezon, Mt. Palali 

Brachymeles muntingkamay KU 308813 Philippines, Luzon Island, Municipality of 
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Quezon, Mt. Palali 

Brachymeles pathfinderi KU 324057 Philippines, Mindanao Island, Municipality of 

Glan 

Brachymeles pathfinderi KU 324058 Philippines, Mindanao Island, Municipality of 

Glan 

Brachymeles pathfinderi KU 324096 Philippines, Mindanao Island, Municipality of 

Glan 

Brachymeles samarensis KU 324020 Philippines, Catanduanes Island, Municipality 

of Virac 

Brachymeles samarensis KU 324022 Philippines, Catanduanes Island, Municipality 

of Virac 

Brachymeles samarensis KU 310849 Philippines, Samar Island, Municipality of 

Taft 

Brachymeles samarensis KU 311225 Philippines, Leyte Island, Municipality of 

Baybay 

Brachymeles samarensis KU 310850 Philippines, Samar Island, Municipality of 

Taft 

Brachymeles samarensis KU 310851 Philippines, Samar Island, Municipality of 

Taft 

Brachymeles samarensis KU 311226 Philippines, Leyte Island, Municipality of 

Baybay 

Brachymeles samarensis KU 311227 Philippines, Leyte Island, Municipality of 

Baybay 
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Brachymeles orientalis KU 314092 Philippines, Mindanao Island, Municipality of 

San Francisco 

Brachymeles orientalis KU 310942 Philippines, Samar Island, Municipality of 

San Jose de Buan 

Brachymeles orientalis KU 311232 Philippines, Leyte Island, Municipality of 

Baybay 

Brachymeles orientalis KU 324029 Philippines, Bohol Island, Municipality of 

Bilar 

Brachymeles orientalis KU 324027 Philippines, Bohol Island, Municipality of 

Bilar 

Brachymeles schadenbergi PNM/CMNH 

1457 

Philippines, Mindanao Island, Municipality of 

Kiamba, Mt. Busa 

Brachymeles schadenbergi KU 314973 Philippines, Mindanao Island, Municipality of 

Zamboanga City 

Brachymeles schadenbergi KU 314998 Philippines, Mindanao Island, Municipality of 

Zamboanga City 

Brachymeles talinis RMB 3283* Philippines, Negros Island, Municipality of 

Valencia, Mt. Talinis 

Brachymeles talinis RMB 3305* Philippines, Negros Island, Municipality of 

Valencia, Mt. Talinis 

Brachymeles talinis KU 303990 Philippines, Sibuyan Island, Mt. Guiting-

Guiting Natural Park 

Brachymeles talinis KU 306756 Philippines, Panay Island, Municipality of 
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San Remigio 

Brachymeles talinis KU 315355 Philippines, Tablas Island, Municipality of 

Calatrava 

Brachymeles taylori KU 320476 Philippines, Cebu Island, Municipality of 

Carcar 

Brachymeles taylori KU 320478 Philippines, Cebu Island, Municipality of 

Carcar 

Brachymeles taylori KU 307737 Philippines, Negros Island, Municipality of 

Valencia, Mt. Talinis 

Brachymeles taylori KU 320841 Philippines, Negros Island, Municipality of 

Valencia, Mt. Talinis 

Brachymeles tridactylus KU 320423 Philippines, Negros Island, Municipality of 

Hinoba-an 

Brachymeles tridactylus KU 324025 Philippines, Negros Island, Municipality of 

Hinoba-an 

Brachymeles tridactylus KU 320424 Philippines, Negros Island, Municipality of 

Hinoba-an 

Brachymeles sp. A KU 323936 Philippines, Masbate Island, Municipality of 

Mobo 

Brachymeles sp. A KU 323933 Philippines, Masbate Island, Municipality of 

Mobo 

Brachymeles sp. A KU 323934 Philippines, Masbate Island, Municipality of 

Mobo 
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Brachymeles sp. B KU 324041 Philippines, Luzon Island, Municipality of 

Tobaco 

Brachymeles sp. B KU 324031 Philippines, Luzon Island, Municipality of 

Tobaco 

Brachymeles sp. B KU 304897 Philippines, Calayan Island, Municipality of 

Calayan 

Brachymeles sp. B KU 304558 Philippines, Camiguin Norte Island, 

Municipality of Tobaco 
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Appendix II 

Summary of Genbank voucher numbers corresponding to genetic samples included in the study. 

Species Gene Genbank Voucher Number 

Brachymeles.apus.RMBR2040 ATP 8,6 HQ907142 

 BDNF HQ907234 

 NADH 1 HQ907332 

 NADH 2 HQ907434 

 PTGER HQ907534 

 R35 HQ907641 

Brachymeles.apus.SP06915 ATP 8,6 HQ907141 

 BDNF HQ907233 

 NADH 1 HQ907331 

 NADH 2 HQ907433 

 PTGER HQ907533 

 R35 HQ907640 

Brachymeles.bicolor.KU323149 ATP 8,6 HQ907181 

 BDNF HQ907279 

 NADH 1 HQ907377 

 NADH 2 HQ907479 

 PTGER HQ907579 

 R35 HQ907687 

Brachymeles.bicolor.KU323150 ATP 8,6 HQ907182 

 BDNF HQ907280 
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 NADH 1 HQ907378 

 NADH 2 HQ907480 

 PTGER HQ907580 

 R35 HQ907688 

Brachymeles.bicolor.KU323151 ATP 8,6 HQ907183 

 BDNF HQ907281 

 NADH 1 HQ907379 

 NADH 2 HQ907481 

 PTGER HQ907581 

 R35 HQ907689 

Brachymeles.bonitae.KU307748 ATP 8,6 HQ907149 

 BDNF HQ907241 

 NADH 1 HQ907339 

 NADH 2 HQ907441 

 PTGER HQ907541 

 R35 HQ907648 

Brachymeles.bonitae.KU307749 ATP 8,6 HQ907150 

 BDNF HQ907242 

 NADH 1 HQ907340 

 NADH 2 HQ907442 

 PTGER HQ907542 

 R35 HQ907649 

Brachymeles.bonitae.KU307967 ATP 8,6 HQ907156 
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 BDNF HQ907248 

 NADH 1 HQ907346 

 R35 HQ907655 

Brachymeles.bonitae.KU308004 ATP 8,6 HQ907155 

 BDNF HQ907247 

 NADH 1 HQ907345 

 NADH 2 HQ907447 

 PTGER HQ907547 

 R35 HQ907654 

Brachymeles.bonitae.KU320471 ATP 8,6 HQ907153 

 BDNF HQ907245 

 NADH 1 HQ907343 

 NADH 2 HQ907445 

 PTGER HQ907545 

 R35 HQ907652 

Brachymeles.bonitae.KU320473 ATP 8,6 HQ907154 

 BDNF HQ907246 

 NADH 1 HQ907344 

 NADH 2 HQ907446 

 PTGER HQ907546 

 R35 HQ907653 

Brachymeles.bonitae.KU323085 BDNF HQ907319 

 NADH 1 HQ907415 
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 NADH 2 HQ907519 

 PTGER HQ907619 

 R35 HQ907727 

Brachymeles.bonitae.KU323086 ATP 8,6 HQ907148 

 BDNF HQ907240 

 NADH 1 HQ907338 

 NADH 2 HQ907440 

 PTGER HQ907540 

 R35 HQ907647 

Brachymeles.bonitae.KU323937 ATP 8,6 HQ907157 

 BDNF HQ907249 

 NADH 1 HQ907347 

 NADH 2 HQ907448 

 PTGER HQ907548 

 R35 HQ907656 

Brachymeles.bonitae.KU323938 ATP 8,6 HQ907158 

 BDNF HQ907250 

 NADH 1 HQ907348 

 NADH 2 HQ907449 

 PTGER HQ907549 

 R35 HQ907657 

Brachymeles.bonitae.KU326089 ATP 8,6 HQ907151 

 BDNF HQ907243 
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 NADH 1 HQ907341 

 NADH 2 HQ907443 

 PTGER HQ907543 

 R35 HQ907650 

Brachymeles.bonitae.RMB3681 ATP 8,6 HQ907152 

 BDNF HQ907244 

 NADH 1 HQ907342 

 NADH 2 HQ907444 

 PTGER HQ907544 

 R35 HQ907651 

Brachymeles.boulengeri.boholensis.KU323939 ATP 8,6 HQ907185 

 BDNF HQ907283 

 NADH 1 HQ907381 

 NADH 2 HQ907483 

 PTGER HQ907583 

 R35 HQ907691 

Brachymeles.boulengeri.boholensis.KU323958 ATP 8,6 HQ907186 

 BDNF HQ907284 

 NADH 1 HQ907382 

 NADH 2 HQ907484 

 PTGER HQ907584 

 R35 HQ907692 

Brachymeles.boulengeri.boholensis.KU323995 ATP 8,6 HQ907184 
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 BDNF HQ907282 

 NADH 1 HQ907380 

 NADH 2 HQ907482 

 PTGER HQ907582 

 R35 HQ907690 

Brachymeles.boulengeri.boulengeri.KU307752 ATP 8,6 HQ907164 

 BDNF HQ907256 

 NADH 1 HQ907354 

 NADH 2 HQ907456 

 PTGER HQ907556 

 R35 HQ907664 

Brachymeles.boulengeri.boulengeri.KU307753 ATP 8,6 HQ239375 

 BDNF HQ907257 

 NADH 1 HQ907355 

 NADH 2 HQ907457 

 PTGER HQ907557 

 R35 HQ907665 

Brachymeles.boulengeri.boulengeri.KU323409 ATP 8,6 HQ907163 

 NADH 1 HQ907353 

 NADH 2 HQ907455 

 PTGER HQ907555 

 R35 HQ907663 

Brachymeles.boulengeri.mindorensis.KU304351 ATP 8,6 HQ907161 
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 BDNF HQ907253 

 NADH 1 HQ907351 

 NADH 2 HQ907452 

 PTGER HQ907552 

 R35 HQ907660 

Brachymeles.boulengeri.mindorensis.KU307740 ATP 8,6 HQ239372 

 BDNF HQ907254 

 NADH 1 HQ907352 

 NADH 2 HQ907453 

 PTGER HQ907553 

 R35 HQ907661 

Brachymeles.boulengeri.mindorensis.KU308447 ATP 8,6 HQ907162 

 BDNF HQ907255 

 NADH 2 HQ907454 

 PTGER HQ907554 

 R35 HQ907662 

Brachymeles.boulengeri.taylori.KU307737 ATP 8,6 HQ907167 

 BDNF HQ907260 

 NADH 1 HQ907358 

 NADH 2 HQ907460 

 PTGER HQ907560 

 R35 HQ907668 

Brachymeles.boulengeri.taylori.KU320476 ATP 8,6 HQ907165 
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 BDNF HQ907258 

 NADH 1 HQ907356 

 NADH 2 HQ907458 

 PTGER HQ907558 

 R35 HQ907666 

Brachymeles.boulengeri.taylori.KU320478 ATP 8,6 HQ907166 

 BDNF HQ907259 

 NADH 1 HQ907357 

 NADH 2 HQ907459 

 PTGER HQ907559 

 R35 HQ907667 

Brachymeles.boulengeri.taylori.KU320481 ATP 8,6 HQ907168 

 BDNF HQ907261 

 NADH 1 HQ907359 

 NADH 2 HQ907461 

 PTGER HQ907561 

 R35 HQ907669 

Brachymeles.cebuensis.KU320419 ATP 8,6 HQ907214 

 BDNF HQ907314 

 NADH 1 HQ907410 

 NADH 2 HQ907514 

 PTGER HQ907614 

 R35 HQ907722 
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Brachymeles.cebuensis.KU320420 ATP 8,6 HQ907216 

 BDNF HQ907316 

 NADH 1 HQ907412 

 NADH 2 HQ907516 

 PTGER HQ907616 

 R35 HQ907724 

Brachymeles.cebuensis.KU320421 ATP 8,6 HQ907215 

 BDNF HQ907315 

 NADH 1 HQ907411 

 NADH 2 HQ907515 

 PTGER HQ907615 

 R35 HQ907723 

Brachymeles.elerae.KU326566 ATP 8,6 HQ907176 

 BDNF HQ907274 

 NADH 1 HQ907372 

 NADH 2 HQ907474 

 PTGER HQ907574 

 R35 HQ907682 

Brachymeles.elerae.KU326567 ATP 8,6 HQ907177 

 BDNF HQ907275 

 NADH 1 HQ907373 

 NADH 2 HQ907475 

 PTGER HQ907575 
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 R35 HQ907683 

Brachymeles.gracilis.gracilis.KU326098 ATP 8,6 HQ907196 

 BDNF HQ907294 

 NADH 1 HQ907391 

 NADH 2 HQ907494 

 PTGER HQ907594 

 R35 HQ907702 

Brachymeles.gracilis.gracilis.KU326099 ATP 8,6 HQ907197 

 BDNF HQ907295 

 NADH 1 HQ907392 

 NADH 2 HQ907495 

 PTGER HQ907595 

 R35 HQ907703 

Brachymeles.gracilis.gracilis.PNMCMNHH1175 ATP 8,6 HQ907194 

 BDNF HQ907292 

 NADH 2 HQ907492 

 PTGER HQ907592 

 R35 HQ907700 

Brachymeles.gracilis.gracilis.PNMCMNHH1176 ATP 8,6 HQ907195 

 BDNF HQ907293 

 NADH 1 HQ907390 

 NADH 2 HQ907493 

 PTGER HQ907593 
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 R35 HQ907701 

Brachymeles.gracilis.hilong.KU310731 ATP 8,6 HQ907190 

 BDNF HQ907288 

 NADH 1 HQ907386 

 NADH 2 HQ907488 

 PTGER HQ907588 

 R35 HQ907696 

Brachymeles.gracilis.hilong.KU310825 ATP 8,6 HQ907189 

 BDNF HQ907287 

 NADH 1 HQ907385 

 NADH 2 HQ907487 

 PTGER HQ907587 

 R35 HQ907695 

Brachymeles.gracilis.hilong.KU311216 ATP 8,6 HQ907187 

 BDNF HQ907285 

 NADH 1 HQ907383 

 NADH 2 HQ907485 

 PTGER HQ907585 

 R35 HQ907693 

Brachymeles.gracilis.hilong.KU311220 ATP 8,6 HQ907188 

 BDNF HQ907286 

 NADH 1 HQ907384 

 NADH 2 HQ907486 
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 PTGER HQ907586 

 R35 HQ907694 

Brachymeles.lukbani.KU313596 ATP 8,6 HQ907212 

 BDNF HQ907312 

 NADH 1 HQ907408 

 NADH 2 HQ907512 

 PTGER HQ907612 

 R35 HQ907720 

Brachymeles.lukbani.KU313597 ATP 8,6 HQ907213 

 BDNF HQ907313 

 NADH 1 HQ907409 

 NADH 2 HQ907513 

 PTGER HQ907613 

 R35 HQ907721 

Brachymeles.lukbani.KU313602 ATP 8,6 HQ907211 

 BDNF HQ907311 

 NADH 1 HQ907407 

 NADH 2 HQ907511 

 PTGER HQ907611 

 R35 HQ907719 

Brachymeles.makusog.KU308127 ATP 8,6 HQ907200 

 BDNF HQ907298 

 NADH 1 HQ907394 
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 NADH 2 HQ907498 

 PTGER HQ907598 

 R35 HQ907706 

Brachymeles.makusog.KU308128 ATP 8,6 HQ907201 

 BDNF HQ907299 

 NADH 1 HQ907395 

 NADH 2 HQ907499 

 PTGER HQ907599 

 R35 HQ907707 

Brachymeles.makusog.KU313610 ATP 8,6 HQ907198 

 BDNF HQ907296 

 NADH 2 HQ907496 

 PTGER HQ907596 

 R35 HQ907704 

Brachymeles.makusog.KU313611 ATP 8,6 HQ907199 

 BDNF HQ907297 

 NADH 1 HQ907393 

 NADH 2 HQ907497 

 PTGER HQ907597 

 R35 HQ907705 

Brachymeles.minimus.KU308129 ATP 8,6 HQ907209 

 BDNF HQ907309 

 NADH 1 HQ907405 
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 NADH 2 HQ907509 

 PTGER HQ907609 

 R35 HQ907717 

Brachymeles.minimus.KU308130 ATP 8,6 HQ907210 

 BDNF HQ907310 

 NADH 1 HQ907406 

 NADH 2 HQ907510 

 PTGER HQ907610 

 R35 HQ907718 

Brachymeles.minimus.KU308131 ATP 8,6 HQ907208 

 BDNF HQ907308 

 NADH 1 HQ907404 

 NADH 2 HQ907508 

 PTGER HQ907608 

 R35 HQ907716 

Brachymeles.muntingkamay.KU308813 ATP 8,6 HQ907180 

 BDNF HQ907278 

 NADH 1 HQ907376 

 NADH 2 HQ907478 

 PTGER HQ907578 

 R35 HQ907686 

Brachymeles.muntingkamay.KU308866 ATP 8,6 HQ907178 

 BDNF HQ907276 
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 NADH 1 HQ907374 

 NADH 2 HQ907476 

 PTGER HQ907576 

 R35 HQ907684 

Brachymeles.muntingkamay.KU308923 ATP 8,6 HQ907179 

 BDNF HQ907277 

 NADH 1 HQ907375 

 NADH 2 HQ907477 

 PTGER HQ907577 

 R35 HQ907685 

Brachymeles.pathfinderi.KU324057 ATP 8,6 HQ907191 

 BDNF HQ907289 

 NADH 1 HQ907387 

 NADH 2 HQ907489 

 PTGER HQ907589 

 R35 HQ907697 

Brachymeles.pathfinderi.KU324058 ATP 8,6 HQ907192 

 BDNF HQ907290 

 NADH 1 HQ907388 

 NADH 2 HQ907490 

 PTGER HQ907590 

 R35 HQ907698 

Brachymeles.pathfinderi.KU324096 ATP 8,6 HQ907193 
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 BDNF HQ907291 

 NADH 1 HQ907389 

 NADH 2 HQ907491 

 PTGER HQ907591 

 R35 HQ907699 

Brachymeles.samarensis.KU310849 ATP 8,6 HQ907217 

 BDNF HQ907317 

 NADH 1 HQ907413 

 NADH 2 HQ907517 

 PTGER HQ907617 

 R35 HQ907725 

Brachymeles.samarensis.KU310850 BDNF HQ907320 

 NADH 1 HQ907416 

 NADH 2 HQ907520 

 PTGER HQ907620 

 R35 HQ907728 

Brachymeles.samarensis.KU310851 BDNF HQ907321 

 NADH 1 HQ907417 

 NADH 2 HQ907521 

 PTGER HQ907621 

 R35 HQ907729 

Brachymeles.samarensis.KU311225 ATP 8,6 HQ907218 

 BDNF HQ907318 
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 NADH 1 HQ907414 

 NADH 2 HQ907518 

 PTGER HQ907618 

 R35 HQ907726 

Brachymeles.samarensis.KU311226 BDNF HQ907322 

 NADH 1 HQ907418 

 NADH 2 HQ907522 

 PTGER HQ907622 

 R35 HQ907730 

Brachymeles.samarensis.KU311227 BDNF HQ907323 

 NADH 1 HQ907419 

 NADH 2 HQ907523 

 PTGER HQ907623 

 R35 HQ907731 

Brachymeles.samarensis.KU324020 ATP 8,6 HQ907159 

 BDNF HQ907251 

 NADH 1 HQ907349 

 NADH 2 HQ907450 

 PTGER HQ907550 

 R35 HQ907658 

Brachymeles.samarensis.KU324022 ATP 8,6 HQ907160 

 BDNF HQ907252 

 NADH 1 HQ907350 
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 NADH 2 HQ907451 

 PTGER HQ907551 

 R35 HQ907659 

Brachymeles.schadenbergi.orientalis.KU310942 ATP 8,6 HQ907202 

 BDNF HQ907301 

 NADH 1 HQ907397 

 NADH 2 HQ907501 

 PTGER HQ907601 

 R35 HQ907709 

Brachymeles.schadenbergi.orientalis.KU311232 ATP 8,6 HQ907203 

 BDNF HQ907302 

 NADH 1 HQ907398 

 NADH 2 HQ907502 

 PTGER HQ907602 

 R35 HQ907710 

Brachymeles.schadenbergi.orientalis.KU314092 BDNF HQ907300 

 ATP 8,6 HQ239400 

 NADH 1 HQ907396 

 NADH 2 HQ907500 

 PTGER HQ907600 

 R35 HQ907708 

Brachymeles.schadenbergi.orientalis.KU324027 ATP 8,6 HQ907205 

 BDNF HQ907304 
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 NADH 1 HQ907400 

 NADH 2 HQ907504 

 PTGER HQ907604 

 R35 HQ907712 

Brachymeles.schadenbergi.orientalis.KU324029 ATP 8,6 HQ907204 

 BDNF HQ907303 

 NADH 1 HQ907399 

 NADH 2 HQ907503 

 PTGER HQ907603 

 R35 HQ907711 

Brachymeles.schadenbergi.schadenbergi.KU314973 ATP 8,6 HQ907206 

 BDNF HQ907306 

 NADH 1 HQ907402 

 NADH 2 HQ907506 

 PTGER HQ907606 

 R35 HQ907714 

Brachymeles.schadenbergi.schadenbergi.KU314998 ATP 8,6 HQ907207 

 BDNF HQ907307 

 NADH 1 HQ907403 

 NADH 2 HQ907507 

 PTGER HQ907607 

 R35 HQ907715 

Brachymeles.schadenbergi.schadenbergi.PNMCMN ATP 8,6 HQ239397 
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HH1457 

 BDNF HQ907305 

 NADH 1 HQ907401 

 NADH 2 HQ907505 

 PTGER HQ907605 

 R35 HQ907713 

Brachymeles.speciesA.KU323933 ATP 8,6 HQ239395 

 BDNF HQ907268 

 NADH 1 HQ907366 

 NADH 2 HQ907468 

 PTGER HQ907568 

 R35 HQ907676 

Brachymeles.speciesA.KU323934 BDNF HQ907267 

 ATP 8,6 HQ239396 

 NADH 1 HQ907365 

 NADH 2 HQ907467 

 PTGER HQ907567 

 R35 HQ907675 

Brachymeles.speciesA.KU323936 ATP 8,6 HQ239394 

 BDNF HQ907269 

 NADH 1 HQ907367 

 NADH 2 HQ907469 

 PTGER HQ907569 
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 R35 HQ907677 

Brachymeles.speciesB.KU304558 ATP 8,6 HQ907175 

 BDNF HQ907273 

 NADH 1 HQ907371 

 NADH 2 HQ907473 

 PTGER HQ907573 

 R35 HQ907681 

Brachymeles.speciesB.KU304897 ATP 8,6 HQ907174 

 BDNF HQ907272 

 NADH 1 HQ907370 

 NADH 2 HQ907472 

 PTGER HQ907572 

 R35 HQ907680 

Brachymeles.speciesB.KU324031 ATP 8,6 HQ907173 

 BDNF HQ907271 

 NADH 1 HQ907369 

 NADH 2 HQ907471 

 PTGER HQ907571 

 R35 HQ907679 

Brachymeles.speciesB.KU324041 ATP 8,6 HQ907172 

 BDNF HQ907270 

 NADH 1 HQ907368 

 NADH 2 HQ907470 
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 PTGER HQ907570 

 R35 HQ907678 

Brachymeles.talinis.KU303990 ATP 8,6 HQ239388 

 BDNF HQ907264 

 NADH 1 HQ907362 

 NADH 2 HQ907464 

 PTGER HQ907564 

 R35 HQ907672 

Brachymeles.talinis.KU306756 ATP 8,6 HQ907170 

 BDNF HQ907265 

 NADH 1 HQ907363 

 NADH 2 HQ907465 

 PTGER HQ907565 

 R35 HQ907673 

Brachymeles.talinis.KU315355 ATP 8,6 HQ907171 

 BDNF HQ907266 

 NADH 1 HQ907364 

 NADH 2 HQ907466 

 PTGER HQ907566 

 R35 HQ907674 

Brachymeles.talinis.RMB3283 ATP 8,6 HQ907169 

 BDNF HQ907262 

 NADH 1 HQ907360 
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 NADH 2 HQ907462 

 PTGER HQ907562 

 R35 HQ907670 

Brachymeles.talinis.RMB3305 ATP 8,6 HQ239387 

 BDNF HQ907263 

 NADH 1 HQ907361 

 NADH 2 HQ907463 

 PTGER HQ907563 

 R35 HQ907671 

Brachymeles.tridactylus.KU320423 ATP 8,6 HQ907145 

 BDNF HQ907237 

 NADH 1 HQ907335 

 NADH 2 HQ907437 

 PTGER HQ907537 

 R35 HQ907644 

Brachymeles.tridactylus.KU320424 ATP 8,6 HQ907146 

 BDNF HQ907238 

 NADH 1 HQ907336 

 NADH 2 HQ907438 

 PTGER HQ907538 

 R35 HQ907645 

Brachymeles.tridactylus.KU320425 ATP 8,6 HQ907147 

 BDNF HQ907239 
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 NADH 1 HQ907337 

 NADH 2 HQ907439 

 PTGER HQ907539 

 R35 HQ907646 

Dasia.grisea.KU305573 BDNF HQ907226 

 NADH 2 HQ907425 

 PTGER HQ907528 

 R35 HQ907631 

Davewakium.miriamae.KU327692 ATP 8,6 HQ907143 

 BDNF HQ907235 

 NADH 1 HQ907333 

 NADH 2 HQ907435 

 PTGER HQ907535 

 R35 HQ907642 

Davewakium.miriamae.KU327693 ATP 8,6 HQ907144 

 BDNF HQ907236 

 NADH 1 HQ907334 

 NADH 2 HQ907436 

 PTGER HQ907536 

 R35 HQ907643 

Emoia.atrocostata.KU304896 BDNF HQ907222 

 NADH 1 HQ907326 

 NADH 2 HQ907421 



 448 

 R35 HQ907627 

Eumeces.quadrilineaturs.KU311490 BDNF HQ907223 

 NADH 2 HQ907422 

 PTGER HQ907525 

 R35 HQ907628 

Eutropis.multifasciata.KU302904 NADH 2 HQ907427 

 R35 HQ907633 

Lamprolepis.smaragdina.KU326565 BDNF HQ907221 

 NADH 1 HQ907325 

 R35 HQ907626 

Larutia.seribuatensis.LSUHC5168 ATP 8,6 HQ907137 

 BDNF HQ907229 

 NADH 1 HQ907327 

 NADH 2 HQ907429 

 PTGER HQ907530 

 R35 HQ907636 

Lipinia.pulchella.pulchella.RMB1079 BDNF HQ907220 

 NADH 1 HQ907324 

 R35 HQ907625 

Lygosoma.bowringii.LSUHC6998 ATP 8,6 HQ907138 

 BDNF HQ907230 

 NADH 1 HQ907328 

 NADH 2 HQ907430 
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 R35 HQ907637 

Lygosoma.LSUHC9321 ATP 8,6 HQ907139 

 BDNF HQ907231 

 NADH 1 HQ907329 

 NADH 2 HQ907431 

 PTGER HQ907531 

 R35 HQ907638 

Lygosoma.quadrupes.LSUHC8403 ATP 8,6 HQ907140 

 BDNF HQ907232 

 NADH 1 HQ907330 

 NADH 2 HQ907432 

 PTGER HQ907532 

 R35 HQ907639 

Plestiodon.anthracinus.CAS325 BDNF HQ907225 

 NADH 2 HQ907424 

 PTGER HQ907527 

 R35 HQ907630 

Plestiodon.fasciatus.KU289462 BDNF HQ907224 

 NADH 2 HQ907423 

 PTGER HQ907526 

 R35 HQ907629 

Scincella.lateralis.KU289461 BDNF HQ907228 

 R35 HQ907635 
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Scincella.reevesii.FMNH255540 BDNF HQ907227 

 NADH 2 HQ907428 

 PTGER HQ907529 

 R35 HQ907634 

Sphenomorphus.abdictus.abdictus.KU306539 NADH 2 HQ907426 

 R35 HQ907632 

Tachydromus.sexilineatus.KU311512 BDNF HQ907219 

 NADH 2 HQ907420 

 PTGER HQ907524 

 R35 HQ907624 
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Appendix III 

Supporting Information—Materials and Methods 

VARIABLE CHOICE FOR MORPHOMETRIC SIZE CORRECTION 

In order to explore whether head length is an appropriate measure with which to standardize 

morphometric variables, and in doing so account for body size allometry, we first conducted a 

multivariate correlation analysis of all variables to determine which morphometric variable was 

most highly correlated with all measures of body size.  We then conducted three sets of analyses 

using three different variables to correct for size.  Following the methods of Lande (1978), 

Wiens and Slingluff (2001), and Brandley et al. (2008), we calculated measurements of relative 

limb and body sizes by regressing independent contrasts of limb and body-length measurements 

against contrasts in head length, snout–vent length, and midbody width.  Each regression line 

was forced through the origin following Felsenstein (1985) and the standardized residuals were 

saved as variables.  Relative measurements in each of the three sets of size-corrected 

morphometric variables (head-length-corrected, snout–vent-length-corrected, midbody-width-

corrected) were subsequently used in bivariate and multivariate analyses.  For all sets of analyses, 

the Benjamini and Hochberg (1995) method for controlling the false discovery rate (FDR) was 

applied to determine significant P-values (Verhoeven et al. 2005).  SPSS 18.0 was used for all 

statistical analyses and JMP 8 was used for graphical output.  
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Supplementary Figure 1.  Multivariate plot of morphometric and meristic data showing 

variable loadings for the first and second components for a non-phylogenetic PCA.  Colored 

spheres indicate body form groups among Brachymeles, with shapes referring to labeled 

phylogenetic clades in Figure 2.1. 
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Appendix IV 

Additional Specimens Examined 

Numbers in parentheses indicate the number of specimens examined.  With the exception of 

Brachymeles apus, all specimens examined are from the Philippines. Numbers in parentheses 

indicate the number of specimens examined for each species.  Several sample sizes are greater 

than those observed in the description due to the examination of sub-adult specimens which were 

excluded from morphometric analyses. 

 

Brachymeles apus (1) 

BORNEO: MALAYSIA: Sabah: Mt. Kinabalu National Park, Sayap Sub-Station:  SP 06915. 

 

Brachymeles bicolor (24) 

LUZON ISLAND: Aurora Province: Municipality of Maria Aurora: Barangay Villa Aurora, 

Sitio Dimani, Aurora Memorial National Park: KU 323149–52; CAGAYAN PROVINCE: 

Municipality of Baggao: Sitio Hot Springs:  CAS 186111, USNM 140847, 498829–30, 498833; 

Isabela Province, Sierra Madres Mountain Range: KU 324097–99, PNM 5785, 9568–77; 

KALINGA PROVINCE: Balbalasang-Balbalan National Park:  FMNH 259438. 

 

Brachymeles boholensis (19) 

BOHOL ISLAND: BOHOL PROVINCE: Municipality of Sierra Bullones, Barangay Danicop: KU 

323944, 323948–9, 323952–6, 323960, 323962–3, 323966, 323970, 323972, 323975–6, 323981–

2, 323990, 324001; BOHOL ISLAND: BOHOL PROVINCE: 6 km S of Municipality of Sierra 

Bullones: Teachers Park:  CAS-SU (Holotype) 24528; 13 km SE Municipality of Sierra Bullones: 
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Dusita Barrio:  CAS-SU (Paratypes) 24502–04, 24518, 24520–25, 24541, 24543, CAS-SU 

25443–44, 25447; 1 km E Dusita Barrio: Abacjanan:  CAS-SU 24867; Municipality of Sierra 

Bullones: Sandayong:  CAS-SU 18709, 18717. 

 

Brachymeles bonitae (13) 

MASBATE ISLAND: MASBATE PROVINCE: Municipality of Mobo: Tugbo Barrio:  CAS 144223; 

Mapuyo Barrio: Palangkahoy:  CAS 144270; MINDORO ISLAND: MINDORO ORIENTAL 

PROVINCE: Mt Halcon: SE slope Barawanan Peak:  CAS-SU 25713, 25793, 25886–88, 25904; 

Sumagui:  CAS 62064 (Paratype); POLILLO ISLAND: QUEZON PROVINCE: Municipality of 

Polillo: Barangay Pinaglubayan:  KU 307747–49, 307755. 

 

Brachymeles boulengeri (26) 

LUZON ISLAND: AURORA PROVINCE: Municipality of BAler:  KU 322314–20; LUZON 

ISLAND: LAGUNA PROVINCE: Municipality of Los Banos, Barangay Batong Malake:  KU 

32058–60; Municipality of Los Banos:  CAS 61096; Mt. Maquiling:  CAS 61297; POLILLO 

ISLAND: QUEZON PROVINCE: Municipality of Polillo:  CAS (Paratypes) 62272–73, 62276–77; 

Barangay Pinaglubayan:  KU 307438–9, 307750–54, 307756 (Neotype), 307757–58. 

 

Brachymeles cebuensis (8) 

CEBU ISLAND: 40 km SW of Cebu City: Tapal Barrio, Sitio Mantalungon:  CAS-SU (Holotype) 

24400, (Paratypes) 24396–97, 24399, 24401, 24403; Municipality of Carcar: Tapal Barrio:  CAS 

102405 (Paratype); 3 km NW Cebu City, Buhisan Barrio, Buhisan Reforestation Project:  CAS-

SU 27537. 
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Brachymeles elerae (4) 

LUZON ISLAND: KALINGA PROVINCE: Municipality of Balbalan:  CAS 61499–500, PNM 

9563–4.   

 

Brachymeles gracilis gracilis (18) 

MINDANAO ISLAND:  DAVAO DEL SUR PROVINCE:  Municipality of Malalag: Sitio Kibawalan:  

CAS-SU 24163, 24165, CAS 124811, 139307–09; Davao City: Buhangin, Kabanti-an:  CAS 

124803–04, 139293–95, 139303–05; Digos City: Tres de Mayo Barrio:  CAS 124806–08, 139300.   

 

Brachymeles gracilis hilong (20) 

MINDANAO ISLAND: AGUSAN DEL NORTE PROVINCE: Municipality of Cabadbaran: Diuata 

Mountain Range: Mt. Hilonghilong: Balangbalang :  CAS-SU (Holotype) 24407, (Paratype) 

102406, 133578, CAS-SU 24411, 133577, 133581–82, 133609, 133612, 133692–93, 133703–06, 

133743, 133745–47; SURIGAO DEL SUR PROVINCE: Municipality of Lanuza: Diuata Mountain 

Range: Sibuhay Barrio:  CAS-SU (Paratype) 24315.   

 

Brachymeles lukbani (14) 

LUZON ISLAND:  CAMARINES NORTE PROVINCE: Municipality of Labo: Barangay Tulay Na 

Lupa, Mt. Labo:  PNM (Holotype) 9567, (Paratopotypes) 9589–92, KU (Paratopotypes) 313597–

99, 313601, 313603–04, 313606, 313608, FMNH (Paratopotype) 270191. 

 

Brachymeles makusog (17) 
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CATANDUANES ISLAND:  CATANDUANES PROVINCE: Municipality of Gigmoto: Barangay San 

Pedro, Sitio Tungaw:  PNM (Holotype) 9565, (Paratopotypes) 9583–9584, KU (Paratopotypes) 

308126, 308128, 308136, 308208; LUZON ISLAND: CAMARINES NORTE PROVINCE: 

Municipality of Labo, Barangay Tulay Na Lupa, Mt. Labo: KU (Paratypes) 313612–313614, 

313616, 313617, PNM (Paratypes) 9585–9588, FMNH (Paratype) 270200. 

 

Brachymeles mindorensis (34) 

MINDORO ISLAND: MINDORO OCCIDENTAL PROVINCE:  KU 304351–5, 304412–3, 304488, 

307739–42, 308404, 308447–8, 308534; MINDORO ISLAND: MINDORO ORIENTAL PROVINCE: 

30 km SE Municipality of Calapan: Bank of Tarogin River:  CAS-SU (Holotype) 24487; SE 

slope Mt Halcon, Tarogin Barrio:  CAS-SU (Paratypes) 24549–54, 24561–62, 24564; 24566, 

24568, 24573–74, 24577–79; Mt Halcon, SE slope Barawanan Peak:  CAS-SU (Paratype) 24570. 

 

Brachymeles minimus (6) 

CATANDUANES ISLAND: CATANDUANES PROVINCE:  Municipality of Gigmoto: Barangay San 

Pedro:  KU 308129–31, 308210–12. 

 

Brachymeles muntingkamay (17) 

LUZON ISLAND: NUEVA VIZCAYA PROVINCE:  Municipality of Quezon: Barangay Maddiangat, 

Mt. Palali: PNM (Holotype) 9566, (Paratopotypes) 9578–82, KU (Paratopotypes) 308865–66, 

308900–06, 308908, 308953. 

 

Brachymeles pathfinderi (40) 
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MINDANAO ISLAND: SARANGANI PROVINCE:  Municipality of Glan: Barangay Taluya: CDS 

5235–42; Barangay Tanibulad, Sitio Padido: CDS 5192–5206, 5210–20, 5222–27. 

 

Brachymeles samarensis (7) 

SAMAR ISLAND: EASTERN SAMAR PROVINCE: Municipality of Taft: Barangay San Rafael:  KU 

310849–50, 310852, 311294–6; LEYTE ISLAND: LEYTE PROVINCE: Municipality of Baybay: 

Barangay Pilim: Sitio San Vicente:  KU 311225.   

 

Brachymeles orientalis (53) 

BOHOL ISLAND: BOHOL PROVINCE: Municipality of Sierra Bullones: Dusita Barrio:  CAS-SU 

(Holotype) 24436, CAS-SU (Paratypes) 24428, 24434, 24437, CAS (Paratype) 102404, CAS-SU 

25452; Dusita Barrio: Abacjanan:  CAS-SU (Paratypes) 24446–51, CAS-SU 25460; Cantaub 

Barrio:  CAS-SU (Paratypes) 18702, 24442, 24458; CAMIGUIN SUR ISLAND: CAMIGUIN 

PROVINCE: Municipality of Catarman: Mt. Mambajao: Sitio Sangsangan:  CAS 110976–83; 

LEYTE ISLAND:  Leyte PROVINCE: Municipality of Baybay:  KU 311231–5, 311241; 

MINDANAO ISLAND: AGUSAN DEL NORTE PROVINCE: Municipality of Cabadbaran: Diuata 

Mountain Range: Mt. Hilonghilong: Kasinganan:  CAS-SU 133301, 133616, 133749, 133752, 

133754; SAMAR ISLAND:  Eastern Samar PROVINCE: Municipality of Taft:  KU 305470, 

310734–6, 310739, 310942–6, 310949, 310951, 310955. 

 

Brachymeles schadenbergi (45) 

BASILAN ISLAND: BASILAN PROVINCE: Port Holland: Sawmill:  CAS 60493; MINDANAO 

ISLAND: MISAMIS OCCIDENTAL PROVINCE: 2 km NW of Masawan:  CAS 23468–69; 4 km NW 
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of Masawan:  CAS 23471; 3 km NW Masawan: south bank of Dapitan River:  CAS 23479–81, 

23484–85; COTABATO PROVINCE: Municipality of Tatayan: MCZ 26553, 26555–8, 26561, 26566, 

26568, 26571–2, 26574; ZAMBOANGA DEL NORTE PROVINCE: Dapitan River:  CAS-SU 23494–

96; ZAMBOANGA CITY PROVINCE: Municipality of Pasonanca: Barangay Baluno: Pasonanca 

Natural Park:  KU 314967, 314969, 314970–8, 314980, 314984–85, 314988–92, 314994, 

314996–7. 

 

Brachymeles talinis (31) 

NEGROS ISLAND:  NEGROS ORIENTAL PROVINCE: 6 km W Municipality of Valencia: Cuernos 

de Negros Mountain Range: ridge on north side of Maite River:  CAS-SU (Holotype) 18358, 

(Paratype) 89813; Cuernos de Negros Mountain Range: Dayungan Ridge:  CAS 133871; 

Dumaguete City:  CAS-SU (Paratype) 12225; Municipality of Siaton: 20 km N Bondo Barrio:  

CAS-SU 22311–12; 22317, 22323; INAMPULAGAN ISLAND: GUIMARAS PROVINCE: 

Municipality of Sibunag: 8 km W Pulupandan Town:  CAS-SU 27972, 27996–97; PANAY 

ISLAND: ANTIQUE PROVINCE: Municipality of San Remigio: KU 306756–60, 306762–7, 306769, 

306770–6, 306786. 

 

Brachymeles taylori (34) 

NEGROS ISLAND: NEGROS OCCIDENTAL PROVINCE: Municipality of Silay City, Barangay 

Patag: KU 324044–56; NEGROS ISLAND: NEGROS ORIENTAL PROVINCE: 3 km W Municipality 

of Valencia: Cuernos de Negros Mountain Range: Sitio Lunga: ridge on north side of Maiti 

River:  CAS-SU (Holotype) 18615, CAS-SU 21873; ridge on south side of Maiti River:  CAS-

SU (Paratype) 18641, 18656–57, 18748; Cuernos de Negros Mountain Range:  CAS-SU 
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(Paratype) 18649; top of Dayungan Ridge:  CAS-SU 21877, 21880, 21883–84; 24 km NW 

Bondo Barrio: Bantolinao:  CAS-SU 22355–56; CEBU ISLAND: CEBU PROVINCE: Municipality 

of Carcar: Tapal Barrio: Sitio Mantalongon:  CAS 154671, 154673, 154678–82, 154686. 

 

Brachymeles tridactylus (20) 

NEGROS ISLAND: NEGROS OCCIDENTAL PROVINCE: 16 km E Municipality of La Castellana: 

Barrio Cabagna-an: Southern Slope of Mt. Canlaon:  CAS-SU 19424, 19426–27, 19429, 19452, 

19458; 20 km E Municipality of La Castellana: Sitio Kalapnagan:  CAS-SU 27082–83; NEGROS 

ORIENTAL PROVINCE: Hills North and Northwest of Mayaposi:  CAS-SU (Holotype) 18354; 

PANAY ISLAND: ANTIQUE PROVINCE: Municipality of Culasi: Barangay Alojipan:  KU 

307726–36. 

 

Brachymeles vermis (5) 

JOLO ISLAND: SULU PROVINCE:  CAS-SU (Paratype) 62489, CAS-SU 60720–22, 60857. 
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Appendix V 

Additional Specimens Examined 

Numbers in parentheses indicate the number of specimens examined.  With the exception of 

Brachymeles apus and B. miriamae, all specimens examined are from the Philippines. Numbers 

in parentheses indicate the number of specimens examined for each species.  Several sample 

sizes are greater than those observed in the description due to the examination of sub-adult 

specimens which were excluded from morphometric analyses. 

 

Brachymeles apus (1) 

BORNEO: MALAYSIA: Sabah: Mt. Kinabalu National Park, Sayap Sub-Station:  SP 06915. 

 

Brachymeles lima (20) 

See type description. 

 

Brachymeles bicolor (24) 

LUZON ISLAND: Aurora Province: Municipality of Maria Aurora: Barangay Villa Aurora, 

Sitio Dimani, Aurora Memorial National Park: KU 323149–52; CAGAYAN PROVINCE: 

Municipality of Baggao: Sitio Hot Springs:  CAS 186111, USNM 140847, 498829–30, 498833; 

Isabela Province, Sierra Madres Mountain Range: KU 324097–99, PNM 5785, 9568–77; 

KALINGA PROVINCE: Balbalasang-Balbalan National Park:  FMNH 259438. 

 

Brachymeles boholensis (19) 
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BOHOL ISLAND: BOHOL PROVINCE: Municipality of Sierra Bullones, Barangay Danicop: KU 

323944, 323948–9, 323952–6, 323960, 323962–3, 323966, 323970, 323972, 323975–6, 323981–

2, 323990, 324001; BOHOL ISLAND: BOHOL PROVINCE: 6 km S of Municipality of Sierra 

Bullones: Teachers Park:  CAS-SU (Holotype) 24528; 13 km SE Municipality of Sierra Bullones: 

Dusita Barrio:  CAS-SU (Paratypes) 24502–04, 24518, 24520–25, 24541, 24543, CAS-SU 

25443–44, 25447; 1 km E Dusita Barrio: Abacjanan:  CAS-SU 24867; Municipality of Sierra 

Bullones: Sandayong:  CAS-SU 18709, 18717. 

 

Brachymeles bonitae (13) 

MASBATE ISLAND: MASBATE PROVINCE: Municipality of Mobo: Tugbo Barrio:  CAS 144223; 

Mapuyo Barrio: Palangkahoy:  CAS 144270; MINDORO ISLAND: MINDORO ORIENTAL 

PROVINCE: Mt Halcon: SE slope Barawanan Peak:  CAS-SU 25713, 25793, 25886–88, 25904; 

Sumagui:  CAS 62064 (Paratype); POLILLO ISLAND: QUEZON PROVINCE: Municipality of 

Polillo: Barangay Pinaglubayan:  KU 307747–49, 307755. 

 

Brachymeles boulengeri (26) 

LUZON ISLAND: AURORA PROVINCE: Municipality of BAler:  KU 322314–20; LUZON 

ISLAND: LAGUNA PROVINCE: Municipality of Los Banos, Barangay Batong Malake:  KU 

32058–60; Municipality of Los Banos:  CAS 61096; Mt. Maquiling:  CAS 61297; POLILLO 

ISLAND: QUEZON PROVINCE: Municipality of Polillo:  CAS (Paratypes) 62272–73, 62276–77; 

Barangay Pinaglubayan:  KU 307438–9, 307750–54, 307756 (Neotype), 307757–58. 

 

Brachymeles tatlo (3) 
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See type description. 

 

Brachymeles cebuensis (8) 

CEBU ISLAND: 40 km SW of Cebu City: Tapal Barrio, Sitio Mantalungon:  CAS-SU (Holotype) 

24400, (Paratypes) 24396–97, 24399, 24401, 24403; Municipality of Carcar: Tapal Barrio:  CAS 

102405 (Paratype); 3 km NW Cebu City, Buhisan Barrio, Buhisan Reforestation Project:  CAS-

SU 27537. 

 

Brachymeles apat (10) 

See type description. 

 

Brachymeles elerae (5) 

LUZON ISLAND: KALINGA PROVINCE: Municipality of Balbalan:  CAS 61499–500, CM 

(Paratype) 1717, PNM 9563–4.   

 

Brachymeles gracilis gracilis (18) 

MINDANAO ISLAND:  DAVAO DEL SUR PROVINCE:  Municipality of Malalag: Sitio Kibawalan:  

CAS-SU 24163, 24165, CAS 124811, 139307–09; Davao City: Buhangin, Kabanti-an:  CAS 

124803–04, 139293–95, 139303–05; Digos City: Tres de Mayo Barrio:  CAS 124806–08, 139300.   

 

Brachymeles gracilis hilong (20) 

MINDANAO ISLAND: AGUSAN DEL NORTE PROVINCE: Municipality of Cabadbaran: Diuata 

Mountain Range: Mt. Hilonghilong: Balangbalang :  CAS-SU (Holotype) 24407, (Paratype) 
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102406, 133578, CAS-SU 24411, 133577, 133581–82, 133609, 133612, 133692–93, 133703–06, 

133743, 133745–47; SURIGAO DEL SUR PROVINCE: Municipality of Lanuza: Diuata Mountain 

Range: Sibuhay Barrio:  CAS-SU (Paratype) 24315.   

 

Brachymeles kadwa (101) 

LUZON ISLAND:  AURORA PROVINCE: Municipality of Baler: Barangay Zabali, Aurora State 

College of Technology campus:  PNM (Holotype) 9721, KU (Paratopotypes) 232092, 323094–

96, 323100, 323104, 323106, KU 323090–91, 323093, 323097–99, 323101–03, 323105, 323107; 

Municipality of Casiguran, IDC property:  KU 323108–48; Municipality of San Luis, Barangay 

Real, Sitio Minoli:  KU 322320; CALAYAN ISLAND:  CAGAYAN PROVINCE: Municipality of 

Calayan: Barangay Magsidel:  KU (Paratypes) 304875, 304897, 304900, 304902–3, 304905–6, 

304915, 304929, 304941, KU 304908, , 304899, 304907, 304909, 304921, 304941; CAMIGUIN 

NORTE ISLAND:  CAGAYAN PROVINCE: Municipality of Calayan: Barangay Balatubat:  KU 

(Paratypes) 304559, 304575, 304593, 304708, 304754, 307984, 307996, 307998, 308011, KU 

304558, 304562–65, 304569, 304571–74, 304627–30, 304643, 304647, 304696–99, 304704–07, 

304709–12, 304714, 304753, 304755–59, 307965–66, 307985–86, 307997, 307999–8003, 

308006–10, 308012–15, 308017–18. 

 

Brachymeles dalawa (46) 

See type description. 

 

Brachymeles lukbani (14) 
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LUZON ISLAND:  CAMARINES NORTE PROVINCE: Municipality of Labo: Barangay Tulay Na 

Lupa, Mt. Labo:  PNM (Holotype) 9567, (Paratopotypes) 9589–92, KU (Paratopotypes) 313597–

99, 313601, 313603–04, 313606, 313608, FMNH (Paratopotype) 270191. 

 

Brachymeles makusog (17) 

CATANDUANES ISLAND:  CATANDUANES PROVINCE: Municipality of Gigmoto: Barangay San 

Pedro, Sitio Tungaw:  PNM (Holotype) 9565, (Paratopotypes) 9583–9584, KU (Paratopotypes) 

308126, 308128, 308136, 308208; LUZON ISLAND: CAMARINES NORTE PROVINCE: 

Municipality of Labo, Barangay Tulay Na Lupa, Mt. Labo: KU (Paratypes) 313612–313614, 

313616, 313617, PNM (Paratypes) 9585–9588, FMNH (Paratype) 270200. 

 

Brachymeles mindorensis (34) 

MINDORO ISLAND: MINDORO OCCIDENTAL PROVINCE:  KU 304351–5, 304412–3, 304488, 

307739–42, 308404, 308447–8, 308534; MINDORO ISLAND: MINDORO ORIENTAL PROVINCE: 

30 km SE Municipality of Calapan: Bank of Tarogin River:  CAS-SU (Holotype) 24487; SE 

slope Mt Halcon, Tarogin Barrio:  CAS-SU (Paratypes) 24549–54, 24561–62, 24564; 24566, 

24568, 24573–74, 24577–79; Mt Halcon, SE slope Barawanan Peak:  CAS-SU (Paratype) 24570. 

 

Brachymeles minimus (6) 

CATANDUANES ISLAND: CATANDUANES PROVINCE:  Municipality of Gigmoto: Barangay San 

Pedro:  KU 308129–31, 308210–12. 

 

Brachymeles miriamae (2) 
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THAILAND: NAKHON RATCHASIMA PROVINCE: Wang Nam Khieo District: Sakaerat 

Environmental Research Station: DSM 1293, 1363 (Currently uncataloged specimens housed at 

KU). 

 

Brachymeles muntingkamay (17) 

LUZON ISLAND: NUEVA VIZCAYA PROVINCE:  Municipality of Quezon: Barangay Maddiangat, 

Mt. Palali: PNM (Holotype) 9566, (Paratopotypes) 9578–82, KU (Paratopotypes) 308865–66, 

308900–06, 308908, 308953. 

 

Brachymeles orientalis (53) 

BOHOL ISLAND: BOHOL PROVINCE: Municipality of Sierra Bullones: Dusita Barrio:  CAS-SU 

(Holotype) 24436, CAS-SU (Paratypes) 24428, 24434, 24437, CAS (Paratype) 102404, CAS-SU 

25452; Dusita Barrio: Abacjanan:  CAS-SU (Paratypes) 24446–51, CAS-SU 25460; Cantaub 

Barrio:  CAS-SU (Paratypes) 18702, 24442, 24458; CAMIGUIN SUR ISLAND: CAMIGUIN 

PROVINCE: Municipality of Catarman: Mt. Mambajao: Sitio Sangsangan:  CAS 110976–83; 

LEYTE ISLAND:  Leyte PROVINCE: Municipality of Baybay:  KU 311231–5, 311241; 

MINDANAO ISLAND: AGUSAN DEL NORTE PROVINCE: Municipality of Cabadbaran: Diuata 

Mountain Range: Mt. Hilonghilong: Kasinganan:  CAS-SU 133301, 133616, 133749, 133752, 

133754; SAMAR ISLAND:  Eastern Samar PROVINCE: Municipality of Taft:  KU 305470, 

310734–6, 310739, 310942–6, 310949, 310951, 310955. 

 

Brachymeles isa (17) 

See type description. 
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Brachymeles pathfinderi (40) 

MINDANAO ISLAND: SARANGANI PROVINCE:  Municipality of Glan: Barangay Taluya: KU 

324089–96; Barangay Tanibulad, Sitio Padido: KU 324057–88. 

 

Brachymeles samarensis (7) 

SAMAR ISLAND: EASTERN SAMAR PROVINCE: Municipality of Taft: Barangay San Rafael:  KU 

310849–52, 311294–6. 

 

Brachymeles schadenbergi (34) 

BASILAN ISLAND: BASILAN PROVINCE: Port Holland: Sawmill:  CAS 60493; MINDANAO 

ISLAND: MISAMIS OCCIDENTAL PROVINCE: 2 km NW of Masawan:  CAS 23468–69; 4 km NW 

of Masawan:  CAS 23471; 3 km NW Masawan: south bank of Dapitan River:  CAS 23479–81, 

23484–85; ZAMBOANGA DEL NORTE PROVINCE: Dapitan River:  CAS-SU 23494–96; 

ZAMBOANGA CITY PROVINCE: Municipality of Pasonanca: Barangay Baluno: Pasonanca Natural 

Park:  KU 314967, 314969, 314970–8, 314980, 314984–85, 314988–92, 314994, 314996–7. 

 

Brachymeles talinis (31) 

NEGROS ISLAND:  NEGROS ORIENTAL PROVINCE: 6 km W Municipality of Valencia: Cuernos 

de Negros Mountain Range: ridge on north side of Maite River:  CAS-SU (Holotype) 18358, 

(Paratype) 89813; Cuernos de Negros Mountain Range: Dayungan Ridge:  CAS 133871; 

Dumaguete City:  CAS-SU (Paratype) 12225; Municipality of Siaton: 20 km N Bondo Barrio:  

CAS-SU 22311–12; 22317, 22323; INAMPULAGAN ISLAND: GUIMARAS PROVINCE: 
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Municipality of Sibunag: 8 km W Pulupandan Town:  CAS-SU 27972, 27996–97; PANAY 

ISLAND: ANTIQUE PROVINCE: Municipality of San Remigio: KU 306756–60, 306762–7, 306769, 

306770–6, 306786. 

 

Brachymeles taylori (34) 

NEGROS ISLAND: NEGROS OCCIDENTAL PROVINCE: Municipality of Silay City, Barangay 

Patag: KU 324044–56; NEGROS ISLAND: NEGROS ORIENTAL PROVINCE: 3 km W Municipality 

of Valencia: Cuernos de Negros Mountain Range: Sitio Lunga: ridge on north side of Maiti 

River:  CAS-SU (Holotype) 18615, CAS-SU 21873; ridge on south side of Maiti River:  CAS-

SU (Paratype) 18641, 18656–57, 18748; Cuernos de Negros Mountain Range:  CAS-SU 

(Paratype) 18649; top of Dayungan Ridge:  CAS-SU 21877, 21880, 21883–84; 24 km NW 

Bondo Barrio: Bantolinao:  CAS-SU 22355–56; CEBU ISLAND: CEBU PROVINCE: Municipality 

of Carcar: Tapal Barrio: Sitio Mantalongon:  CAS 154671, 154673, 154678–82, 154686. 

 

Brachymeles tridactylus (20) 

NEGROS ISLAND: NEGROS OCCIDENTAL PROVINCE: 16 km E Municipality of La Castellana: 

Barrio Cabagna-an: Southern Slope of Mt. Canlaon:  CAS-SU 19424, 19426–27, 19429, 19452, 

19458; 20 km E Municipality of La Castellana: Sitio Kalapnagan:  CAS-SU 27082–83; NEGROS 

ORIENTAL PROVINCE: Hills North and Northwest of Mayaposi:  CAS-SU (Holotype) 18354; 

PANAY ISLAND: ANTIQUE PROVINCE: Municipality of Culasi: Barangay Alojipan:  KU 

307726–36. 

 

Brachymeles tungaoi (12) 
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MASBATE ISLAND: MASBATE PROVINCE: Municipality of Masbate City:  PNM (Holotype) 

9722, KU (Paratopotypes) 323934–36; Municipality of Mobo, Barangay Tugbo:  CAS 

(Paratypes) 144229–30, 144290, 144306–7, 144313, 144341–2. 

 

Brachymeles vermis (5) 

JOLO ISLAND: SULU PROVINCE:  CAS-SU (Paratype) 62489, CAS-SU 60720–22, 60857. 

 

Brachymeles vindumi (4) 

JOLO ISLAND: SULU PROVINCE:  CAS (Holotype) 60724, CAS (Paratypes) 60723, 60725, 

MCZ (Paratype) 26577). 

 

Brachymeles wrighti (2) 

LUZON ISLAND: BENGUET PROVINCE: Municipality of La Trinidad:  MCZ (Holotype) 26589, 

USNM 140756. 
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Appendix VI 

Additional Specimens Examined 

Numbers in parentheses indicate the number of specimens examined.  With the exception of 

Brachymeles apus and B. miriamae, all specimens examined are from the Philippines. Numbers 

in parentheses indicate the number of specimens examined for each species.  Several sample 

sizes are greater than those observed in the description due to the examination of sub-adult 

specimens which were excluded from morphometric analyses. 

 

Brachymeles apus (1) 

BORNEO: MALAYSIA: Sabah: Mt. Kinabalu National Park, Sayap Sub-Station:  SP 06915. 

 

Brachymeles bicolor (24) 

LUZON ISLAND: Aurora Province: Municipality of Maria Aurora: Barangay Villa Aurora, 

Sitio Dimani, Aurora Memorial National Park: KU 323149–52; CAGAYAN PROVINCE: 

Municipality of Baggao: Sitio Hot Springs:  CAS 186111, USNM 140847, 498829–30, 498833; 

Isabela Province, Sierra Madres Mountain Range: KU 324097–99, PNM 5785, 9568–77; 

KALINGA PROVINCE: Balbalasang-Balbalan National Park:  FMNH 259438. 

 

Brachymeles boholensis (19) 

BOHOL ISLAND: BOHOL PROVINCE: Municipality of Sierra Bullones, Barangay Danicop: KU 

323944, 323948–9, 323952–6, 323960, 323962–3, 323966, 323970, 323972, 323975–6, 323981–

2, 323990, 324001; BOHOL ISLAND: BOHOL PROVINCE: 6 km S of Municipality of Sierra 

Bullones: Teachers Park:  CAS-SU (Holotype) 24528; 13 km SE Municipality of Sierra Bullones: 
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Dusita Barrio:  CAS-SU (Paratypes) 24502–04, 24518, 24520–25, 24541, 24543, CAS-SU 

25443–44, 25447; 1 km E Dusita Barrio: Abacjanan:  CAS-SU 24867; Municipality of Sierra 

Bullones: Sandayong:  CAS-SU 18709, 18717. 

 

Brachymeles bonitae (13) 

MASBATE ISLAND: MASBATE PROVINCE: Municipality of Mobo: Tugbo Barrio:  CAS 144223; 

Mapuyo Barrio: Palangkahoy:  CAS 144270; MINDORO ISLAND: MINDORO ORIENTAL 

PROVINCE: Mt Halcon: SE slope Barawanan Peak:  CAS-SU 25713, 25793, 25886–88, 25904; 

Sumagui:  CAS 62064 (Paratype); POLILLO ISLAND: QUEZON PROVINCE: Municipality of 

Polillo: Barangay Pinaglubayan:  KU 307747–49, 307755. 

 

Brachymeles boulengeri (26) 

LUZON ISLAND: AURORA PROVINCE: Municipality of BAler:  KU 322314–20; LUZON 

ISLAND: LAGUNA PROVINCE: Municipality of Los Banos, Barangay Batong Malake:  KU 

32058–60; Municipality of Los Banos:  CAS 61096; Mt. Maquiling:  CAS 61297; POLILLO 

ISLAND: QUEZON PROVINCE: Municipality of Polillo:  CAS (Paratypes) 62272–73, 62276–77; 

Barangay Pinaglubayan:  KU 307438–9, 307750–54, 307756 (Neotype), 307757–58. 

 

Brachymeles cebuensis (8) 

CEBU ISLAND: 40 km SW of Cebu City: Tapal Barrio, Sitio Mantalungon:  CAS-SU (Holotype) 

24400, (Paratypes) 24396–97, 24399, 24401, 24403; Municipality of Carcar: Tapal Barrio:  CAS 

102405 (Paratype); 3 km NW Cebu City, Buhisan Barrio, Buhisan Reforestation Project:  CAS-

SU 27537. 
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Brachymeles elerae (5) 

LUZON ISLAND: KALINGA PROVINCE: Municipality of Balbalan:  CAS 61499–500, CM 

(Paratype) 1717, PNM 9563–4.   

 

Brachymeles gracilis (69) 

MINDANAO ISLAND:  DAVAO DEL SUR PROVINCE:  FMNH 52642–44, 52646–47, 52662, 

52669–70; Davao City: Buhangin, Kabanti-an:  CAS 124803–04, 139293–95, 139301–05; Digos 

City: Tres de Mayo Barrio:  CAS 124806–08, 139296–300; Municipality of Kiblawan: Barangay 

Kimlawis: KU 326096, 326098–108, 326298–99; Municipality of Malalag: Sitio Kibawalan:  

CAS-SU 24158–65, 24171, CAS 124809–12, 139306–11; Municipality of Toril: Barangay 

Baracatan, Mt. Apo, Old Eagle Station: CMC 12170–71; SOUTH COTABATO PROVINCE: MCZ 

26539, 26541, 26543–44, 26546, 26548–50. 

 

Brachymeles pito (28) 

MINDANAO ISLAND: AGUSAN DEL NORTE PROVINCE: Municipality of Cabadbaran: Diuata 

Mountain Range: Mt. Hilonghilong: Balangbalang:  CAS-SU (Holotype) 24407, (Paratypes) 

102406, 133578, CAS-SU 24411, 133577, 133579, 133581–82, 133609, 133612, 133692–93, 

133703–06, 133743, 133745–47; AGUSAN DEL SUR PROVINCE: Municipality of San Francisco: 

Barangay Bagusan II: Mt. Magdiwata: KU 319934–40; SURIGAO DEL SUR PROVINCE: 

Municipality of Lanuza: Diuata Mountain Range: Sibuhay Barrio:  CAS-SU (Paratype) 24315. 

 

Brachymeles kadwa (101) 
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LUZON ISLAND:  AURORA PROVINCE: Municipality of Baler: Barangay Zabali, Aurora State 

College of Technology campus:  PNM (Holotype) 9721, KU (Paratopotypes) 232092, 323094–

96, 323100, 323104, 323106, KU 323090–91, 323093, 323097–99, 323101–03, 323105, 323107; 

Municipality of Casiguran, IDC property:  KU 323108–48; Municipality of San Luis, Barangay 

Real, Sitio Minoli:  KU 322320; CALAYAN ISLAND:  CAGAYAN PROVINCE: Municipality of 

Calayan: Barangay Magsidel:  KU (Paratypes) 304875, 304897, 304900, 304902–3, 304905–6, 

304915, 304929, 304941, KU 304908, , 304899, 304907, 304909, 304921, 304941; CAMIGUIN 

NORTE ISLAND:  CAGAYAN PROVINCE: Municipality of Calayan: Barangay Balatubat:  KU 

(Paratypes) 304559, 304575, 304593, 304708, 304754, 307984, 307996, 307998, 308011, KU 

304558, 304562–65, 304569, 304571–74, 304627–30, 304643, 304647, 304696–99, 304704–07, 

304709–12, 304714, 304753, 304755–59, 307965–66, 307985–86, 307997, 307999–8003, 

308006–10, 308012–15, 308017–18. 

 

Brachymeles lukbani (14) 

LUZON ISLAND:  CAMARINES NORTE PROVINCE: Municipality of Labo: Barangay Tulay Na 

Lupa, Mt. Labo:  PNM (Holotype) 9567, (Paratopotypes) 9589–92, KU (Paratopotypes) 313597–

99, 313601, 313603–04, 313606, 313608, FMNH (Paratopotype) 270191. 

 

Brachymeles makusog (17) 

CATANDUANES ISLAND:  CATANDUANES PROVINCE: Municipality of Gigmoto: Barangay San 

Pedro, Sitio Tungaw:  PNM (Holotype) 9565, (Paratopotypes) 9583–9584, KU (Paratopotypes) 

308126, 308128, 308136, 308208; LUZON ISLAND: CAMARINES NORTE PROVINCE: 
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Municipality of Labo, Barangay Tulay Na Lupa, Mt. Labo: KU (Paratypes) 313612–313614, 

313616, 313617, PNM (Paratypes) 9585–9588, FMNH (Paratype) 270200. 

 

Brachymeles mindorensis (34) 

MINDORO ISLAND: MINDORO OCCIDENTAL PROVINCE:  KU 304351–5, 304412–3, 304488, 

307739–42, 308404, 308447–8, 308534; MINDORO ISLAND: MINDORO ORIENTAL PROVINCE: 

30 km SE Municipality of Calapan: Bank of Tarogin River:  CAS-SU (Holotype) 24487; SE 

slope Mt Halcon, Tarogin Barrio:  CAS-SU (Paratypes) 24549–54, 24561–62, 24564; 24566, 

24568, 24573–74, 24577–79; Mt Halcon, SE slope Barawanan Peak:  CAS-SU (Paratype) 24570. 

 

Brachymeles minimus (6) 

CATANDUANES ISLAND: CATANDUANES PROVINCE:  Municipality of Gigmoto: Barangay San 

Pedro:  KU 308129–31, 308210–12. 

 

Brachymeles miriamae (2) 

THAILAND: NAKHON RATCHASIMA PROVINCE: Wang Nam Khieo District: Sakaerat 

Environmental Research Station: DSM 1293, 1363 (Currently uncataloged specimens housed at 

KU). 

 

Brachymeles muntingkamay (17) 

LUZON ISLAND: NUEVA VIZCAYA PROVINCE:  Municipality of Quezon: Barangay Maddiangat, 

Mt. Palali: PNM (Holotype) 9566, (Paratopotypes) 9578–82, KU (Paratopotypes) 308865–66, 

308900–06, 308908, 308953. 
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Brachymeles orientalis (53) 

BOHOL ISLAND: BOHOL PROVINCE: Municipality of Sierra Bullones: Dusita Barrio:  CAS-SU 

(Holotype) 24436, CAS-SU (Paratypes) 24428, 24434, 24437, CAS (Paratype) 102404, CAS-SU 

25452; Dusita Barrio: Abacjanan:  CAS-SU (Paratypes) 24446–51, CAS-SU 25460; Cantaub 

Barrio:  CAS-SU (Paratypes) 18702, 24442, 24458; CAMIGUIN SUR ISLAND: CAMIGUIN 

PROVINCE: Municipality of Catarman: Mt. Mambajao: Sitio Sangsangan:  CAS 110976–83; 

LEYTE ISLAND:  Leyte PROVINCE: Municipality of Baybay:  KU 311231–5, 311241; 

MINDANAO ISLAND: AGUSAN DEL NORTE PROVINCE: Municipality of Cabadbaran: Diuata 

Mountain Range: Mt. Hilonghilong: Kasinganan:  CAS-SU 133301, 133616, 133749, 133752, 

133754; SAMAR ISLAND:  Eastern Samar PROVINCE: Municipality of Taft:  KU 305470, 

310734–6, 310739, 310942–6, 310949, 310951, 310955. 

 

Brachymeles pathfinderi (40) 

MINDANAO ISLAND: SARANGANI PROVINCE:  Municipality of Glan: Barangay Taluya: KU 

324089–96; Barangay Tanibulad, Sitio Padido: KU 324057–88. 

 

Brachymeles syam (45) 

See type description. 

 

Brachymeles samarensis (7) 

SAMAR ISLAND: EASTERN SAMAR PROVINCE: Municipality of Taft: Barangay San Rafael:  KU 

310849–52, 311294–6. 
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Brachymeles schadenbergi (34) 

BASILAN ISLAND: BASILAN PROVINCE: Port Holland: Sawmill:  CAS 60493; MINDANAO 

ISLAND: MISAMIS OCCIDENTAL PROVINCE: 2 km NW of Masawan:  CAS 23468–69; 4 km NW 

of Masawan:  CAS 23471; 3 km NW Masawan: south bank of Dapitan River:  CAS 23479–81, 

23484–85; ZAMBOANGA DEL NORTE PROVINCE: Dapitan River:  CAS-SU 23494–96; 

ZAMBOANGA CITY PROVINCE: Municipality of Pasonanca: Barangay Baluno: Pasonanca Natural 

Park:  KU 314967, 314969, 314970–8, 314980, 314984–85, 314988–92, 314994, 314996–7. 

 

Brachymeles sampu (2) 

See neotype description. 

 

Brachymeles talinis (31) 

NEGROS ISLAND:  NEGROS ORIENTAL PROVINCE: 6 km W Municipality of Valencia: Cuernos 

de Negros Mountain Range: ridge on north side of Maite River:  CAS-SU (Holotype) 18358, 

(Paratype) 89813; Cuernos de Negros Mountain Range: Dayungan Ridge:  CAS 133871; 

Dumaguete City:  CAS-SU (Paratype) 12225; Municipality of Siaton: 20 km N Bondo Barrio:  

CAS-SU 22311–12; 22317, 22323; INAMPULAGAN ISLAND: GUIMARAS PROVINCE: 

Municipality of Sibunag: 8 km W Pulupandan Town:  CAS-SU 27972, 27996–97; PANAY 

ISLAND: ANTIQUE PROVINCE: Municipality of San Remigio: KU 306756–60, 306762–7, 306769, 

306770–6, 306786. 

 

Brachymeles taylori (34) 
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NEGROS ISLAND: NEGROS OCCIDENTAL PROVINCE: Municipality of Silay City, Barangay 

Patag: KU 324044–56; NEGROS ISLAND: NEGROS ORIENTAL PROVINCE: 3 km W Municipality 

of Valencia: Cuernos de Negros Mountain Range: Sitio Lunga: ridge on north side of Maiti 

River:  CAS-SU (Holotype) 18615, CAS-SU 21873; ridge on south side of Maiti River:  CAS-

SU (Paratype) 18641, 18656–57, 18748; Cuernos de Negros Mountain Range:  CAS-SU 

(Paratype) 18649; top of Dayungan Ridge:  CAS-SU 21877, 21880, 21883–84; 24 km NW 

Bondo Barrio: Bantolinao:  CAS-SU 22355–56; CEBU ISLAND: CEBU PROVINCE: Municipality 

of Carcar: Tapal Barrio: Sitio Mantalongon:  CAS 154671, 154673, 154678–82, 154686. 

 

Brachymeles walo (3) 

See type description. 

 

Brachymeles tridactylus (20) 

NEGROS ISLAND: NEGROS OCCIDENTAL PROVINCE: 16 km E Municipality of La Castellana: 

Barrio Cabagna-an: Southern Slope of Mt. Canlaon:  CAS-SU 19424, 19426–27, 19429, 19452, 

19458; 20 km E Municipality of La Castellana: Sitio Kalapnagan:  CAS-SU 27082–83; NEGROS 

ORIENTAL PROVINCE: Hills North and Northwest of Mayaposi:  CAS-SU (Holotype) 18354; 

PANAY ISLAND: ANTIQUE PROVINCE: Municipality of Culasi: Barangay Alojipan:  KU 

307726–36. 

 

Brachymeles tungaoi (12) 
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MASBATE ISLAND: MASBATE PROVINCE: Municipality of Masbate City:  PNM (Holotype) 

9722, KU (Paratopotypes) 323934–36; Municipality of Mobo, Barangay Tugbo:  CAS 

(Paratypes) 144229–30, 144290, 144306–7, 144313, 144341–2. 

 

Brachymeles vermis (5) 

JOLO ISLAND: SULU PROVINCE:  CAS-SU (Paratype) 62489, CAS-SU 60720–22, 60857. 

 

Brachymeles vindumi (4) 

JOLO ISLAND: SULU PROVINCE:  CAS (Holotype) 60724, CAS (Paratypes) 60723, 60725, 

MCZ (Paratype) 26577). 

 

Brachymeles anim (20) 

See type description. 

 

Brachymeles wrighti (2) 

LUZON ISLAND: BENGUET PROVINCE: Municipality of La Trinidad:  MCZ (Holotype) 26589, 

USNM 140756. 

 

Brachymeles apat [Catanduanes Island; Siler et al., in press c] (10) 

CATANDUANES ISLAND: CATANDUANES PROVINCE: Municipality of Virac: Barangay Palta 

Small: KU (Paratopotypes) 306311, 308077, 324019–21, 324025–26, PNM (Holotype) 9761, 

(Paratopotypes) 9562–63. 
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Brachymeles lima [Central Bicol Peninsula, Luzon Island; Siler et al., in press c] (20) 

LUZON ISLAND: ALBAY PROVINCE: Municipality of Malinao: Barangay Labnig: CAS 

(Paratypes) 140065, 152025–26; Municipality of Tabaco City: Barangay Common: KU 

(Paratopotypes) 324005–11, 324015–16, 323087, PNM (Holotype) 9756, (Paratopotypes) 9757–

60; CAMARINES SUR PROVINCE: Municipality of Pili: Barrio Curry, Mt. Isarog: CAS-SU 

(Paratypes) 24173, 24413. 

 

Brachymeles dalawa [Lapinig Group islands; Siler et al., in press c] (46) 

LAPINIG CHICO ISLAND: BOHOL PROVINCE: Municipality of President Carlos P. Garcia: 

CAS-SU (Paratypes) 27556, 28454–55; LAPINIG GRANDE ISLAND: BOHOL PROVINCE: 

Municipality of President Carlos P. Garcia: Barangay Villa Milagrosa: KU (Paratopotypes) 

320428–30, 320435–63, 320466–67, PNM (Holotype) 9749 (Paratopotypes) 9750–55; 0.5 km 

SW of Barrio Pitogo:  CAS-SU (Paratype) 28453; POLONG DAKO ISLAND: BOHOL 

PROVINCE: Municipality of President Carlos P. Garcia: CAS-SU (Paratype) 27554. 

 

Brachymeles isa [Leyte Island; Siler et al., in press c] (13) 

LEYTE ISLAND: LEYTE PROVINCE: Municipality of Burauen: Barrio Tambis: CAS-SU 

(Paratypes) 26110, 26112, 26115, 26120–23; Baybay City: Barangay Pilim, Siotio San Vicente 

Tree Nursery: KU (Paratopotypes) 311224–25, 311224, PNM (Holotype) 9746, (Paratopotypes) 

9747–48. 

 

Brachymeles tatlo [Southern Bicol Peninsula, Luzon Island; Siler et al., in press c] (3) 
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LUZON ISLAND: SORSOGON PROVINCE: Municipality of Irosin: PNM (Holotype) 9764; 

Barangay San Roque, Mt. Bulusan National Park: TNHC (Paratype) 62469, PNM (Paratype) 

4856. 


