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ABSTRACT

Sequence-stratigraphic study of the Cozzette and the Rollins Sandstone members,
of the Mt. Garfield Formation of the Mesaverde Group, in the southern part of the
Piceance basin (western Colorado), utilizes mainly well-log data along with limited
outcrop data. Outcrop description of the Rollins Sandstone Member indicates a
depositional succession that changes from complex marginal marine deposits at the base
to marine wave-dominated shoreface successions at the top. The lower marginal-marine
deposits are interpreted to occur within multiple incised-valley fills that nest and form a
main stratigraphic element landward, particularly within the uppermost part of the
Cozzette Sandstone Member. Incised-valley fills thin basinward. Sequence-stratigraphic
interpretation of the subsurface data provides a stratigraphic history similar to that
interpreted from the outcrop exposures across a regional realm. The subsurface analysis
of the study interval distinguishes 5 depositional sequences that change in thickness
throughout the study area and are listed as follows: CZ;, CZ, CZ3, R; and R,. The
depositional sequence R; is the youngest incomplete sequence within the study interval.
Each depositional sequence is composed of incised-valley fills at the base and highstand
deposits with marine shoreface at the top. The incomplete depositional sequence R; is
represented by incised-valley fills alone. The vertical chronostratigraphic architecture of
the sequence set (CZ;, CZ, CZs, R;) show a regional change in stacking pattern from
retrogradational (CZ;, CZ,, and CZs3) to progradational (R;). The turnaround from
retrogradational to progradational stacking is probably the stratigraphic limit between the
Cozzette and the Rollins Sandstone members; its stratigraphic expression is probably
gradational and complex in a landward direction. Incised valleys are superimposed
landward, probably along axes between raised mires, and exhibit highly variable log

patterns that reflect complex marginal-marine deposits.
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Chapter I: INTRODUCTION

I. Introduction
This study examines the upper part of the Upper Cretaceous Mount Garfield
Formation of the Piceance basin in western Colorado. It is a subsurface sequence-
stratigraphic study based mainly on well-log analyses and supplemented by a cursory
examination of outcrop exposures located near Grand Junction, Colorado.

The outcrop exposures of the Rollins and the Cozzette Sandstone members are
located on the western edge of the Piceance basin, and contain complex depositional
settings. The complexity of these strata includes abrupt lateral facies changes, complex
estuarine deposits, and multiple erosion surfaces that may be of both local and regional
origin. To resolve the significance of the regional erosion surfaces, the study requires
detailed stratigraphic correlation and subsurface analysis of the Rollins and the Cozzette
Sandstone members. These extensive erosion surfaces may be interpreted as important

sequence boundaries over the eastern part of the Piceance basin.

II. Research Problem
This study aims to analyze the complicated internal stratigraphy of the uppermost
part of the Mount Garfield Formation through sequence-stratigraphic analysis, using
mainly subsurface data. Well logs record regional stratigraphic boundaries and cyclical
successions of the sedimentary rocks in the subsurface. The stratigraphic history of these
sedimentary rocks can be understood when interpreted with reference to the time

framework within which they were deposited (Van Wagoner et al., 1990). The time



framework is established through a sequence-stratigraphic study that allows sedimentary
rocks to be interpreted as genetically related facies. Genetically related facies are
grouped into stratal units that are bounded by unconformable surfaces and their
correlative conformities, as outlined by Mitchum et al. (1977) and Van Wagoner et al.
(1990). These surfaces form in relation to local and global sea-level changes and can be
identified in the subsurface through interpretation of well logs. These surfaces divide
sedimentary successions of both Rollins and Cozzette Sandstone members into time-
stratigraphic units, including systems tracts, and hence provide a genetic significance.

In summary, this research study applies concepts of sequence stratigraphy to
subsurface data (aided by outcrop study), relates lithostratigraphic packages to a time
framework, identifies a hierarchy of chronostratigraphic units, and clarifies stratigraphic
member-limits for both Rollins and Cozzette Sandstone members of the Mt. Garfield

Formation.

III. Study area
1. Geographic Location
The study area is located in the southern half of the Piceance basin, within
Garfield and Mesa Counties, Colorado. Including outcrop sections, the study area covers

about 1165 km * of north-central Mesa County and south-central Garfield County (Figure

1.
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Figure 1. (A) Location map of the Piceance basin, Western Interior Seaway, and Sevier orogenic belt.
(B) Location map of the study area within the Piceance basin in Colorado (modified from Johnson, 1988).



2. Geologic Location

The Piceance basin is an asymmetrical, northwest-trending Laramide structure,
and occupies an area of 15,500 km® (Brown et al., 1986). The Piceance basin is
surrounded on the east by the White River Uplift and the Elk Mountains, on the south and
southwest by the Gunnison Uplift and Upcompahgre Uplift, on the west by the Douglas
Arch, and on the north by the Uinta Mountains and the Axial Basin Anticline (Figure 2).
The study area contains the Rulison gas field on the northeast, the Sheep Creek and Vega
gas fields on the northeast, and is bounded by the Book Cliff exposures on the west, and

the Coal Basin gas field and the Grand Mesa Plateau on the south (Figure 3).
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the basin (adapted from Cole and Cumella, 2003).
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IV. Background Geology
1. Stratigraphy

In the Piceance basin, the upper part of the Mt. Garfield Formation is composed of
three lithostratigraphic members. These members are, in ascending order, the Corcoran,
Cozzette and Rollins Sandstone members (Young, 1955; Johnson, 1988). They are
overlain by the Cameo-Wheeler coal zone of the Williams Fork Formation.

The Cameo-Wheeler coal zone is composed of multiple horizons of coal and
channelized sandstone. The average thickness of the Cameo-Wheeler coal zone in the
Piceance basin is about 61 m (200 feet) and approximately 70 m in the study area. Coal
intervals within the Cameo-Wheeler coal zone reach a thickness of 10 m (Cole and
Cumella, 2003). Presently, no correlation of the individual coal seams is published.

The Mount Garfield Formation is underlain by the Sego Sandstone to the west and
by the Mancos Shale to the east (Figure 4). On a regional scale, all three
lithostratigraphic members consist of marine and non-marine strata, which thin seaward
(to the east) and inter-tongue with the marine Mancos Shale (Young, 1955; Johnson,
1988) (Figure 4). These formations are Campanian in age (Gill and Hail, 1975; Madden,
1989). The Rollins Sandstone Member is the youngest member of the Mt. Garfield
Formation and is the most laterally extensive lithostratigraphic member in the Piceance

basin (Johnson, 1988) (Figure 4).
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Using outcrop and well-log data, Hettinger and Kirshbaum (2002) placed the Sego
Sandstone and the Mt. Garfield Formation within a general sequence-stratigraphic
framework. A more detailed sequence-stratigraphic interpretation of parts of the Mt.
Garfield Formation was completed based on outcrop study: Zater (2005) interpreted the
Corcoran Sandstone Member, and Madof (2006) interpreted the Cozzette Sandstone
Member. Both latter interpretations show a more complex stratigraphy than proposed
earlier by Hettinger and Kirshbaum (2002).

Although a detailed sequence-stratigraphic interpretation was completed for both
the Corcoran and Cozzette Sandstone members, the member boundary is still difficult to
distinguish in the outcrop (personal conversation with Zater and Madof, 2005). The
depositional signature of these member boundaries is not a typical depositional response
of major flooding events. In some places, it is a simple flooding surface; in others, it is a
more complicated expression where it is riddled with erosion surfaces. Multiple erosion
surfaces locally erode into the member boundary. Some of these erosion surfaces may
represent sequence boundaries and are difficult to resolve at the individual exposure

alone.

2. Tectonic History
During the Cretaceous Sevier orogeny, thrusting and coeval folding gave rise to
an orogenic belt in western North America, which extended from Mexico to Alaska
(Jordan, 1981). The Sevier orogenic belt grew progressively through time, causing the
Western Interior foreland basin to form (Jordan, 1981, 1995). The Sevier belt is

proposed to be the sediment source for the Mount Garfield Formation (Armstrong, 1968;



Fouch et al., 1983; Franczyk et al., 1989). Strata of the Mt Garfield Formation were
deposited along the western margin of the Western Interior foreland basin.

During the late Cretaceous to early Tertiary, the Cretaceous sedimentary strata of
the foreland basin were dissected into a number of intermontane basins by basement-
involved faulting of the Laramide orogeny. The Piceance basin is one of these Laramide
intermontane basins (Tweto and Sims, 1963; Tweto, 1973; Taylor, 1975; Dickinson,

1978, 1987).

V. Methodology
1. Outcrop Analysis

In this study, two measured sections were described for the upper part of the Rollins
Sandstone Member in the Book Cliffs exposures near the western edge of the Piceance
basin. A thickness of about 26 m was described in Hunter Canyon, Section 8, Township
9 South, Range 100 West. A thickness of about 30 m was described in Corcoran Mine,
Section 22, Township 9 South, Range 100 West.

Facies analysis for the Rollins Sandstone Member was achieved by recording
different aspects of sedimentary facies, including lithology, texture, grain size and
physical and biogenic sedimentary structures. Interpretation of the depositional
environments of the Rollins Sandstone Member was carried out by examining the various
aspects of sedimentary facies, listed above, as well as the lateral and vertical arrangement
of facies. To interpret the sedimentary record of the study interval and to aid in well-log
correlations, the measured section of the Rollins Sandstone Member in Corcoran Mine

(this study) was combined with outcrop data from Madof (2005). Madof’s data includes
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measured sections from the lower part of the Rollins Sandstone Member and the upper

part of the Cozzette Sandstone Member.

2. Subsurface Analysis

In the subsurface study, the stratigraphic interval was interpreted in terms of
system tracts, parasequence stacking patterns and depositional sequences based on
sequence stratigraphic concepts of Mitchum et al. (1977) and Van Wagoner (1995).
More than one hundred well logs were initially examined to collect the database for the
sequence-stratigraphic correlation. The two described measured sections along with 31
wells are used for detailed sequence-stratigraphic correlation. Well-log data were chosen
based upon location and availability of gamma-ray, neutron and density (NPH-DPH) well
logs. They were obtained from a State of Colorado sponsored website http://www.oil-
gas.state.co.us. A high concentration of well logs exists in close proximity to outcrops,
whereas well-log density decreases progressively toward the east. The dearth of well-log
data toward the east limits the study area.

Four cross-sections are established to cover the southern part of the Piceance
basin (Figure 5). Cross-section 3 is oriented oblique to depositional dip and oriented
NNE-SSW. Cross-sections 1, 2 and 4 are depositional dip sections. Cross-sections 1 and

2 are NW-SE oriented sections, whereas cross-section 4 is a W-E oriented section.
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Sequence-Stratigraphic Correlation

The base of the Cameo-Wheeler coal zone directly overlies the top of the Rollins
Sandstone Member throughout the Piceance basin (Collins, 1977; Johnson 1988). It is
considered an excellent time horizon (i.e., datum) for the Piceance basin because it is the
most laterally extensive and the most recognizable marker horizon (Hettinger and
Kirschbaum, 2002; Cole and Cumella, 2003). It is characterized by a distinctive peak on
the gamma-ray log (GR) response that separates the mud-rich intervals of the lower part
of the Cameo-Wheeler coal zone from the sand-rich intervals of the Rollins Sandstone
Member. Throughout the study interval, this horizon symbolizes a regional stratigraphic
break.

In the eastern strata of the Piceance basin, a second datum is identified at the top
of a rich-coal interval at the top of the Corcoran Sandstone Member. This is considered
to be an auxiliary datum. This auxiliary datum is parallel to the principal datum in the
western part of the study area. It supports the choice of the basal surface of the Cameo-
Wheeler coal zone as the principal datum for cross-sections. West of the Piceance basin,
beyond the study area, the upper part of the Rollins Sandstone Member contains non-
marine strata (fluvial and coal bearing deposits). The auxiliary datum may form another

best datum to the west.

Electrofacies Analysis
The use of an electrofacies model for the study interval standardizes the
terminology of well-log curve shapes and provides a classification of log shape

irregularities encountered in both the Cozzette and Rollins Sandstone members. The
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electrofacies model used is derived from those of Cant (1992) and Rider (1986), and is
based on geometrical considerations, such as log shape, curve characteristics, and nature
of lower and upper contacts (Figure 6-a). Cylindrical (blocky), funnel, bell, irregular and
“no-trend” are the main descriptions used for the overall shape of curve characteristics,
specifically for GR logs; the terminology of “smooth” and “serrated” are used to describe
curve characteristics (Figure 6-b).

Different electrofacies types are identified for the study interval using the GR
curve characteristics, thickness, and NPH-DPH log separation. These electrofacies
features are crucial for well-log correlations. The electrofacies types are different log
patterns that reflect various depositional facies. In a single well log, different deflections
on the GR log define significant and numerous stratigraphic breaks that may reflect the
common electrofacies types that are established in the model of Cant (1992) and Rider
(1986). The different electrofacies types are then traced laterally throughout the well logs
indicating distinct vertical and lateral electrofacies sets that may represent a distinct
spatial relationship of depositional facies. The combination of the GR log and the NPH-
DPH log separations may place the depositional facies with confidence into a spatial
relationship that should impart a coherent history to the sedimentary record, i.e., the
NPH-DPH log is a good indicator of coal beds that are common in non-marine to

marginal marine environments.
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Correlation Process

After the regional datum was established, individual well logs are correlated. This
consists of multiple steps. First, GR-electrofacies types were interpreted for individual
well logs. Electrofacies were then correlated from log to log, and regional facies trends
were interpreted. Through this procedure and aided by NPH-DPH curve separations,
parasequence boundaries (flooding surfaces) were identified. Parasequence boundaries
were traced up and down dip between well logs. The correlation of parasequence
boundaries allowed the recognition of facies change from proximal to distal facies along

depositional dip.
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Chapter II: OUTCROP ANALYSIS

I. Introduction

Three distinct units are identified in outcrop for the Rollins Sandstone Member,
based on field observations. Outcrop unit 1 occurs at the base of the Rollins Sandstone
Member and consists of a heterolithic assemblage of complex small vertical trends with
an overall slight upward-coarsening succession. Outcrop unit 2 occurs mostly throughout
the upper outcrop exposures of the Rollins Sandstone Member and consists of an upward-
coarsening succession, which is locally truncated by outcrop unit 3. This latter consists
mainly of amalgamated sandstone with no typical vertical trend. Outcrop unit 2 is
described in the outcrop exposures in Corcoran Mine; description of outcrop units 1 and 3
is based upon the exposures in Hunter Canyon. Outcrop analysis was completed to
provide a guide in interpretation of the well-log data. Lithostratigraphy of the Mt.

Garfield Formation is presented in Figure 7 as a guide in subsurface correlation.
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II. Description
1. Outcrop Unit 1

Outcrop unit 1 is located in Hunter Canyon at the base of the Rollins Sandstone
Member (Figure 8). It displays a heterolithic assemblage with an overall upward-
coarsening trend. It contains three subunits, which are described in ascending order.

Subunit 1: The base of this subunit is covered. The first exposed interval is
composed of brownish siltstone with continuous thin wavy mudstone drapes, overlain by
a coal bed with enclosed siltstone layers, and is approximately 2 m thick (Figure 8).
These mudstone drapes are less than 1 cm in thickness, alternate with centimeter-thick
siltstone layers and together with the siltstone form an interval approximately 1 m thick.
This interval is intensely burrowed. Burrows such as Ophiomorpha and Planolites are
present throughout the alternating mud-siltstone interval, but most easily observed within
siltstone beds where they show a random orientation. This interval is overlain by
approximately 1 m of coal with siltstone partings. Siltstone partings range from 10 cm to
30 cm in thickness, are light brown to gray in color, and are well laminated. The
laminations contain shale and carbonaceous material. Slickensides are present in the
surrounding coal deposits.

Subunit 2: This subunit is 1.5 m thick (Figure 8). It displays minor intercalations
of mudstone and siltstone at the base that pass into a thin bed of very fine-grained to silty
sandstone at the top. Both siltstone and mudstone are locally bioturbated. Siltstone beds
(~20 cm) are sharp-based, light brown to gray in color, and are interbeded with mudstone

beds.
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Coal with siltstone
- Trough-cross bedding

" Laminae/flaser bedding/burrows
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Subunit 1
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Figure 8. Hlustration of outcrop unit 1 showing a complex heterolithic assemblage which is divided
into 3 subunits. It exhibits a complex verical trend. It is located at the lower part of the Hunter Canyon
measured section. Grain size: Cl (clay), St (silt), VT (very fine sand), F (fine sand), M (medium sand),
C (coarse sand).
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The mudstone beds are black-gray in color, are thinly laminated with carbonaceous
material, and exhibit a thickness that decreases gradually upward (from 20 to 5 cm or
less). The overlying silty sandstone is approximately 10 to 15 cm thick, flaser bedded,
with discontinuous mudstone drapes of less than 1 mm in thickness. The mudstone
drapes accentuate wave-ripple cross-stratifications. Subunit 2 terminates with an
intensely burrowed surface that is increasingly well-cemented, providing a cohesive and
dense texture, and is yellow-brown-red in color. The color may be due to the presence of
oxidized products such as hematite or magnetite that may derive from the oxidation of
ferrous carbonate-siderite. This surface is marked by unidentified vertical to sub-vertical
burrows.

Subunit 3: This unit is approximately 5 m thick and consists of cross-bedded
sandstone that locally scours into the underlying silty sandstone layers of subunit 2
(Figure 8). The sandstone is white, very fine to fine-grained, well to moderately-well
sorted with an overall slight upward decrease in grain size, and contains trough cross-
stratification. The cross-bed sets are 20 to 40 cm thick, and are bioturbated with
Ophiomorpha. Ophiomorpha traces are sporadically distributed across the interval and
highly concentrated toward the top. The basal contact of the sandstone is sharp and
undulatory. The middle is locally marked by a continuous wavy lamination (~1 mm),

highlighted with very thin mudstone drapes.

2. Outcrop Unit 2:

Outcrop unit 2 is described in Corcoran Mine where it occurs at the top of the

Rollins Sandstone Member. It is laterally continuous, distinctively white colored, and
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capped with a coal bed (Figure 9). This unit is composed of six subunits arranged in an
upward-coarsening trend and is described in ascending order.

The first subunit is approximately 4 m in thickness, contains carbonaceous, gray-
black to gray-brown thinly laminated siltstone, interbedded with thin gray, very fine and
sharp-based sandstones and contains hummocky cross-stratification. Sandstone beds
thicken upward and range from 10 to 25 cm. Locally, siltstone and sandstone beds are
heavily bioturbated and appear mottled. Ophiomorpha occurs in abundance.

The second subunit consists of approximately 10 m of white to light brown,
mostly fine-grained, well sorted sandstone with amalgamated hummocky cross-
stratification (maximum bed thickness ranges from 1 to approximately 3 m) (Figure 9).
At the base, however, the hummocky structures are locally draped with silty shale.
Burrows in this facies include Ophiomorpha.

The third subunit is approximately 5 m thick, contains white to light brown, well
to moderately sorted, fine-grained sandstone with planar bedding (Figure 9). Locally, it
is heavily bioturbated. The burrows are restricted to Ophiomorpha and occur abundantly
throughout the entire interval. Traces of Ophiomorpha are also present in the bioturbated
beds.

The fourth subunit is 5 m thick, and is composed of white, clean, fine to medium-
grained, well to moderately sorted sandstone with low-angle troughs (Figure 9). Planar-
tabular cross-stratification is local and exhibits similar cross-bed set thickness as the main
low-angle troughs. Cross-bed sets of low-angle troughs are 20 to 40 cm thick, slightly

bioturbated, and locally contain current-ripple laminations towards the top.
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Figure 9. Illlustration of outcrop unit 2 showing an overall
upward-coarsening succession from subunit 1 to subunit 4. This
succession fines upwards through subunit 5 to subunit 6. It is
described from the measured section in Corcoran Mine. Grain
size: Cl (clay), St (silt), VT (very fine sand), F (fine sand), M
(medium sand), C (coarse sand).
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These current ripples are rare and poorly preserved. This interval is slightly bioturbated.
Identifiable trace fossils are restricted to Ophiomorpha.

Subunit 5 is less than 3 m thick and consists of a white, moderately well-sorted,
fine-grained sandstone with sub-horizontal to planar-parallel bedding. Bioturbation is
rare. The top of this facies is an intensely bioturbated with root traces. Subunit 5 is

overlain by 2 m of coal assigned to subunit 6 (Figure 9).

3. Outcrop Unit 3

This outcrop unit is described in Hunter Canyon where it laterally replaces the
upper part of outcrop unit 2. Viewed from a distance, this facies seems to be laterally
continuous and similar to that outcrop unit 2. The measured section in this area,
however, reveals more complications (Figure 10).

The basal contact of this unit is sharp and planar. It truncates the underlying
hummocky cross-stratified beds of outcrop unit 2, and is overlain by approximately 4 m
thick interval of white to beige, fine to medium-grained sandstone, intensely bioturbated
with Thalassinoides and Ophiomorpha. No distinctive physical sedimentary structures
are observed. A continuous, undulatory surface occurs in the middle of this interval
(Figure 10). This surface is marked by very thin shale partings. Locally, the weathering
process causes the bedding plane of this structure to be exposed. The bedding plane
exposure is covered with horizontal burrows of Thalassinoides and Ophiomorpha that

form branched features.
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Figure 10. Illustration of outcrop unit 3 showing amalgamated sandstones with no typical
vertical trend. It is located at the upper part of Hunter Canyon measured section. Grain size:
Cl (clay), St (silt), Vf (very fine sand), F (fine sand), M (medium sand), C (coarse sand).
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Diplocraterion, the U-shaped, vertical trace fossil was also detected by the presence of a
multitude of paired swelling features (or paired vertices) visible on the bedding surface.
Diplocraterion was not as abundant as Ophiomorpha. The interval of white massive
sandstone of outcrop unit 3 extends laterally to a better stratified interval, where several
beds of varying character are observed. Both intervals are truncated at the top by brown-
reddish, multiple-stacked thin and low-angle trough cross-bedded sandstones. Because of
the color contrast and the intense oxidation of the overlying sandstones, the brown-red
sandstones were interpreted to belong in the Cameo-Wheeler coal zone, and thus it was

not included in the description of outcrop unit 3.

I11. Interpretation
1. Outcrop Unit1

Subunit 1: The alternating mudstone-siltstone interval, associated with mudstone
drapes, may be interpreted as a tidal deposit. These interbeds can be related to a variety
of depositional settings, ranging from tidal flats to bay fill deltas, estuarine, and lagoonal
settings (Masters, 1967; Van Wagoner et al., 1990; Reading and Collinson, 1996).

The existence of a coal bed with siltstone layers, toward the top of subunit 1,
indicates the coexistence of two sub-environments. One is the marsh deposit that is
related to coal beds, and the other is the overbank deposit that explains the siltstone
partings (splits). Coal originates from vegetation in a poorly-drained setting or mire that
undergo the process of coalification (McCabe, 1984; Collins, 1977). Coal beds can
represent a deposition setting that developed between interdistributary channel systems

and protected by natural levees. The siltstone partings within these coal settings may
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occur during local and short-lived flood events. During periods of flood events, sporadic
deposition of sand, mud and silt occurs when the levees are breached. Coal beds can also
represent a depositional setting of plant roots and remains that develops within
widespread mire (McCabe, 1984). The siltstone partings within these coal settings may
represent both tributive and distributive channel systems (i.e., anastomosing) that develop
in low-laying areas (mire and marsh) and that may be abandoned afterward. Channel
abandonment results in fine-grained sediments (siltstone) that are deposited out of
suspension and are trapped during the rapid compaction process of mire or marsh
accumulations (coal) (McCabe, 1984).

Subunit 2: The sharp-based siltstone beds that thicken upward and the slight
upward increase of the grain size from silt to silty sandstone indicate a general upward
increase in energy. The increase in energy is often associated with progradational events.
Subunit 2 may be interpreted as distal bay-fill deltas.

The presence of flaser bedding and mudstone drapes is interpreted as a tidal
signature (Nio and Yang, 1991). The interbeds of siltstone and mudstone are interpreted
to indicate a low-energy environment where silt and mud deposition periodically
alternates as the energy levels fluctuate. The low energy of these depositional settings
forms favorable conditions for burrowing organisms to rework sediments. The densely
burrowed surface indicates a termination of sedimentation that may have been caused by
either an erosional vacuity or a sudden shift in the favorable conditions of burrows. The
red- and yellow-colored surface may be a result of oxidation of ferrous minerals that may
be caused by a chemical weathering of sediments. For example, these sediments may

contain authigenic ferrous minerals such as siderite (Lorenz, 1982; Brown et al, 1986).
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Siderite (FeCOs) is a ferrous carbonate mineral that forms as a diagenetic response to
reducing conditions in non-marine or other iron-containing, sulfur-depleted water. Also,
siderite may form during a decrease in water oxygenation that is caused by early
compactional process of shallow marine deposits (Tucker, 2001). The early
compactional process may cause a sudden shift in the favorable conditions for burrowing.
Deposition and oxidation of siderite during the burial history of sediments may explain
the yellow-brown-red color and the cohesive (resistant) texture of the surface (Tucker,
2001; Pemberton et al., 2004).

This surface may be interpreted as a significant stratigraphic boundary. The
boundary is a discontinuity in the sedimentary process that is linked to either a flooding
event (transgressions), a lowstand erosional event or both (Frey and Pemberton, 1984,
1985; Pemberton et al., 2002, 2004). For example, the marine flooding event that
produces a parasequence boundary is associated with a significant increase in water depth
and that may result in intense burrowing (Van Wagoner et al., 1990). The lowstand
erosional event that produces a sequence boundary can be associated with a significant
decrease in water depth (or subaerial erosional truncation), which may form subaerial
exposure surface and sediment bypass landward and a rapid deposition of sediment
seaward. Rapid deposition may cause early compaction of shallow marine deposits (Van
Wagoner et al., 1990). Flooding events can also be accompanied by erosion (Van
Wagoner et al., 1990).

Subunit 3: The sharp lower contact is interpreted as a basal scour. The overall
upward decrease in grain size indicates a slight upward decrease in energy. The cross-

stratification indicates the migration of megaripples. The uniformity and size of cross-
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beds suggests a predominantly high-energy depositional environment. The presence of
the mudstone drapes in the middle of subunit 3, however, is interpreted to indicate
deposition in low-energy conditions, and a change in energy in the overall succession.
Presence of Ophiomorpha documents a marine influence. This subunit is interpreted as a
channel-fill succession with marine influence.

Subunits 1, 2 and 3 show either marine or tidal influence (Figure 11). The vertical
stacking of these subunits is complex and shows a vertical succession through tidal
environments. This vertical stacking and the landward position of these subunits support
the conclusion that these are marginal-marine deposits and may represent the complex fill
of an incised valley. An incised-valley fill can include many sub-environments,
including channels with marine influence (as described in subunit 3), tidal flats (lower
part of subunit 1), bay-fill deltas (subunit 2), and mires and swamps (upper part of
subunit 1). Each subunit is interpreted as a parasequence. Subunit 1 and 2 are separated
by a parasequence boundary. The boundary between subunit 2 and subunit 3, however, is
more complicated. The top of subunit 2 (bay-fill delta), which is marked by a densely
burrowed surface, is overlain by sharp-based channel-fill sandstones. The overlap
between the basal sharp surface of subunit 3 and the upper densely burrowed surface of
subunit 1 may or may not be a parasequence boundary. The stratigraphic relationship of
these subunits, to be discussed later, will help establish the significance of these

boundaries.
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2. Outcrop Unit 2

Outcrop 2 is an overall upward-coarsening succession; a progradational shoreface
deposit. This unit is interpreted as the deposit of a wave-dominated shoreface deposit
and contains a series of sub-facies (Figure 12).

The alternating sandstone and siltstone at the base of this succession indicate
episodic sedimentation. The episodic sedimentation represents alternation of storm and
fair-weather conditions at depth near effective storm wave base (Bourgeois, 1980;
Howard and Reineck, 1981; Dott and Bourgeois, 1982; Walker, 1985; Elliot, 1986;
Greenwood and Sherman, 1986). As fluctuations in energy levels occur, the erosion
forms a sharp surface, peak and waning storms form sandstones beds, and slow
deposition of fine particles forms beds of siltstone. Storm events are followed by a long
period of quiescence allowing intensive bioturbation to develop at the top of the sharp-
based sandstones (Harms, et al., 1975; Bourgeois, 1980; Pemberton et al., 1992). The
environment of deposition for this facies, therefore, can be interpreted as an offshore-
transition deposit.

Sandstones with hummocky cross-stratification indicate wave- and storm-
dominated conditions that occur below the fair-weather wave base of the marine shelf
(Harms, et al., 1975; McCubin, 1982; Walker, 1984). During storms, high-amplitude
waves intensely rework the lower shoreface and probably the offshore area through a

combined flow/oscillatory process (Reinson, 1984).
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(Corcoran Mine). Grain size: Cl (clay),

St (silt), VI (very fine sand), F (fine sand),

M (medium sand), C (coarse sand).

32



The existence of interbedded siltstone with hummocky cross-stratification within the
lower part of this facies may be explained by intermittent low-energy conditions
associated with a decrease in storm intensity as the storm progressively moves inland or a
return to fair-weather conditions (Bourgeois, 1980; Yang et al, 2005). This succession
represents a lower shoreface deposit.

The planar beds of subunit 3 indicate intermittent upper flow-regime conditions,
and the intense bioturbations are induced by long periods of quiescence. Reinson (1984)
interpreted a similar succession in the Cretaceous strata of northeast New Brunswick,
along the coastline of Canada as a middle shoreface. Planar beds similar to these are
interpreted as a barred shoreface (Davidson-Arnott and Greenwood, 1974). Others have
interpreted similar facies as a middle shoreface deposit (Howard and Reineck, 1981;
Reinson, 1984).

Cross-bedded sandstone of subunit 4 indicates deposition under lower flow-
regime conditions. The rare occurrence of current ripples and planar-tabular cross
stratifications in association with the cross-bedded sandstone is probably due to a
complex combination of wave-velocity fluctuation, sediment flux and water depth
(Harms et al., 1975; Swift and Thorne, 1991). The cross-bedded sandstone interval is
interpreted as an upper shoreface, which is found landward of the fair-weather wave base
(high energy surf zone) (Howard, and Reineck, 1981; Reinson, 1984). In shoreface
settings, the wave motions are brief and strong in landward-oriented flow (shallow water
depth), but the seaward-directed flow return is weak (Bourgeois, 1980; Reinson, 1984).
Such wave motions may cause complex hydrodynamics that may explain the occurrence

of current ripples and planar-tabular cross stratifications (Carter, 1978; Howard and
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Reineck, 1981). Under multidirectional wave flow and bottom conditions, the varying
flow velocity and flow depth may result in migration of sinuous- and straight-crested
dunes and ripples. For example, planar-tabular cross-stratifications can be associated
with longshore drift currents (Reinson, 1984) whereas current-ripple structures can be
associated with a gradational deceleration of flow velocity, which may occur when strong
landward-oriented wave currents reverse directions and retreat, i.e., current-ripple
structures are lower-low-flow regime (Reading and Collinson, 1996; Yang et al., 2005).

The fifth subunit reflects upper flow regime at shallower water depth. The rarity
of trace fossils may indicate constant erosion that prevents adequate conditions for
burrowing. This facies is interpreted as a foreshore deposit. The uppermost surface,
characterized by abundant bioturbated root traces, is an exposure surface (Howard and
Reineck, 1981). The overall white color of this facies reflects leaching of Fe-bearing
minerals by acidic ground waters from the overlying coal-forming environments (Flores
etal., 1984). This leaching occurred during an early diagenetic phase. The acidic ground
waters are derived from the decay of organic matter in the overlying peat deposits (Flores
et al., 1984; Nowak, 1991).

The final interval (coal) is interpreted to represent deposition in a marsh or swamp
where concentration of carbonaceous material can occur with small silt or sand influx
(McCabe, 1984). The minor silt or sand influx indicates that this facies (coal) is probably
formed in a protected environment (e.g., raised mire). Coal beds are common within the
study area and are associated often with thick intervals of shoreface sandstone within the

Western Interior foreland basin (Fassets and Hinds, 1971; Ryer and McPhillips, 1983;
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Cross, 1988). Similar coal beds within the Mt. Garfield Formation are described by Zater

(2005) and Madof (2006).

3. Outcrop Unit 3

The outcrop extent and exposure of this unit is small; therefore, details of the
deposition setting cannot be fully resolved (Figure 11). The lack of physical structures of
this unit is explained by the abundance of trace fossils Thalassinoides, Ophiomorpha, and
Diplocraterion. This ichnofacies assemblage indicates marine influence (Frey and
Pemberton, 1984, 1985). The sharp base of this interval indicates a sudden truncation of
the underlying shoreface succession. The prevailing sandy composition of the entire
interval indicates a high-energy setting. Intense bioturbation suggests that the deposition
of this succession was followed by a period of quiescence, allowing organisms to
intensely rework sediments (Frey and Pemberton, 1984, 1985). The existence of a thin
and continuous mud drape in the middle of this sandstone is interpreted to indicate that
outcrop unit 3 was deposited as two events, separated by a period of low-energy
conditions in which mud could be deposited. Sharp-based contacts of these two
sandstone bodies may be erosional and may be attributed to a channel floor, but the
prevailing bioturbation throughout this interval indicates marine influence. Outcrop unit
3 may represent a marine or a marginal-marine complex within an incised-valley fill

(Figure 13).
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Outcrop unit 3 was deposited unconformably over the lower shoreface deposit of
the wave-dominated shoreface of outcrop unit 2. In a complete vertical sequence of a
wave-dominated shoreface, the HCS bedforms of the lower shoreface are overlain,
usually, by either trough-cross beds of the upper shoreface or planar beds of the middle
shoreface. These two intervals, upper and middle shoreface, are missing and are replaced
by white massive sandstone of outcrop unit 3. Also, the occurrence of a continuous,
undulatory, mud-draped surface in the middle of the massive white sandstones is a facies
characteristic of neither the upper shoreface nor the middle shoreface. The surface
separating outcrop unit 3 from outcrop unit 2 may represent a significant break of the
stratigraphic succession and may indicate that outcrop units 2 and 3 are not genetically
related deposits. The undulatory mud-draped surface marking the middle part of outcrop
unit 3, however, may or may not represent a significant break of the stratigraphic
succession. Such mud drapes may occur during the nature reversing tidal currents of
flood and ebb deltas, or they may have a post-storm origin in relation to storms that are
frequent during periods of rising sea levels (Johnson and Baldwin, 1996; Yang et al,
2005; Wanless, 2011). For example, the mud-draped surface combined with the heavily
bioturbated character of outcrop unit 3 may represent separate pulses of sandstone
entering a partly enclosed environment, such as an inner estuary (or bay), during storms.
During storms, muddy deposits of the offshore are recycled and are shifted in a landward
direction to be deposited as a mud drape through river mouths (Johnson and Baldwin,
1996). Repetitive storms may fill inner estuaries episodically with pulses of sand and
salty water, gradually increasing salinity of the estuary and leading marine organisms to

flourish in situ during periods of quiescence (Reading and Collinson, 1996; Wanless,
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2011). According to Nummedal and Molenaar (1995) Ophiomorpha and Thalassinoides
can be common in estuarine mouth bars.

The uppermost surface separating the massive white sandstone of outcrop unit 3
from the overlying reddish-brown sandstone of the Hunter Canyon Formation may also
indicate a significant break in the stratigraphic succession. The regional significance of
these boundaries that defines stratigraphic relationships of facies can only be resolved
through detailed outcrop description and correlation, and which are not part of this study.
Yet the distinction between these boundaries is important to note because similar

stratigraphic relationships might be encountered in the analysis of subsurface data.
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Chapter I11: SUBSURFACE ANALYSIS

I. Introduction

The combination of outcrop and well-log data presents an important approach for
sequence stratigraphic analyses. The recognition of facies based on conventional
gamma-ray models and outcrop data remains a necessary step in subsurface correlation.
Subsurface analysis consists of three steps: (1) identification of well-log patterns, (2)
interpretation of electrofacies lithology, and (3) interpretation of the depositional
environments (Rider, 1986). The results will be used in the next chapter for stratigraphic
correlations.

Well-log trends are classified following an approach based on the electrofacies
model of Cant (1992) and Rider (1986). The electrofacies model is established based on
the geometric features of the gamma-ray curve (GR). The overall curve shape is
described as cylindrical (blocky), funnel, bell, irregular or no-trend. The curve shape can
be either smooth or serrated. As the character of GR and NPH-DPH log responses was
the key to mapping electrofacies in the study area, an overview log expressions and their

relationship to lithologies is necessary.

1. Gamma-Ray log
The gamma ray log (GR) is the most useful log for sequence-stratigraphic
interpretation (Schlumberger, 1972; Serra, 1984). In the conventional model, the GR log

is primarily used as a depth reference for all running well logs, qualitatively as a
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stratigraphic tool to correlate strata (log patterns), and generally as an overall clay volume
evaluator.

The GR tool records natural radioactivity of a formation. Gamma rays are
naturally and continuously emitted in the formation by radionuclides such as uranium
(V), potassium (K) and thorium (Th). These three radioactive elements are usually more
abundant in shale and dispersed clay. High pulses detected by GR log indicate a high
occurrence of radioactive elements, and so, a high GR reading is used to interpret clay
content. The GR log is scaled in API units. The average scale ranges from 0 to 150 or 0
to 200 API units and then wraps to record greater values. Each scale contains 10
divisions, and each division equals 15 or 20 units. Values on the scale increase to the
right side of the log track. For example, the typical GR reading for sand is 20-30 API

and, for shale, is 75 or 80 to 300 API (Dewan, 1983).

a. Radius of investigation and vertical resolution of GR tool

The radius of investigation of a GR tool is illustrated in Figure 15. The radius of
investigation, or the sphere of influence of the GR tool, is paraphrased from Serra (1984;
p100-110) as follows. The radius of investigation of the GR tool, in a homogenous
formation, is a sphere centered on the detector. “R” is the radius of the sphere of
investigation and corresponds to the volume of radiation absorbed by the rocks
surrounding the GR tool. “R” varies from 15 cm to 30 cm and depends on formation, GR
energy, and drilling-mud density. It is higher at low drilling-mud densities and lower at
high drilling-mud densities. According to Dewan (1983), 90% of data is collected from

the first 15 cm interval (Figure 14).
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Figure 14. Sphere of investigation of gamma-ray measurements. Gamma
rays are emitted in the formation by uranium (U), potassium (K) and
thorium (Th). GR tool primarily records radioactivity from the first 15 cm
interval (R) (modified from Serra, 1984).

AP units
0

Figure 15. Logging speed of the gamma-ray
tool influences the bed resolution (modified
from Dewan, 1983).
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Regarding vertical bed resolution of the GR tool, beds that are thinner than the
diameter of the sphere of investigation will not be differentiated. In a succession of thin
beds, the log reading will reflect the volume average of the beds within the sphere (Serra,
1984). According to Dewan (1983), the vertical bed resolution can also be affected by

the speed with which the GR tool is run up the borehole (Figure 15).

b. Limitations of gamma-ray log and lithology reconstruction

High gamma-ray measurements indicate concentrations of radionuclides (thorium,
potassium and uranium) that reflect clay content, but these radionuclides can occur in
both clay and non-clay minerals (Serra, 1984; Rider, 1986). Therefore, both clay and
non-clay minerals contribute to a high GR log response, e.g., k-feldspar-rich sand,
potassium salt, apatite grains. High APl measurements do not reflect directly the mean
grain size in clastic deposits, e.g., clay pebbles in conglomerates will yield high API
measurements (Serra, 1984; Rider, 1986). A layer of conglomerate with a high
concentration of clay pebbles is classified as a high energy setting, but the high API
measurements that reflect the radioactivity of clay pebbles can induce to the opposite
interpretation.

Even though the GR log is used significantly in lithology identification, other
lithologies cannot be resolved with the GR log alone. The combination of the GR log
with other tools is, therefore, required. For example, high and low ash contents in a coal
bed provide high- and low-natural radioactivity readings respectively, and thus coal beds
may not be detected by GR log itself (Koczy, 1956; Schmoker and Hester, 1983; Dewan,

1983; Ellis, 1987). The combination, however, of gamma-ray log with neutron-density
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logs allows for the interpretation of coal beds with confidence (Dewan, 1983; Rider,
1986). Because coal is a key reference for time boundaries in non-marine deposits, the

gamma-ray and neutron-density-log combination is used to identify coal beds.

2. Neutron-Density Log (NPH-DPH)
a. Density log

The density log is used to estimate formation porosity and determine the overall
formation density (Shclumberger, 1972; Serra, 1984). Formation density includes the
solid matrix and the fluids enclosed in pore spaces.

The basis of the density log consists of gamma-ray bombardments that penetrate
the surrounding formation. As gamma rays interact with electrons of the formation, they
lose energy and return to the detector. This loss in energy is measured in electron/cm?,
and a low number of gamma rays detected indicates high electron density (the denser the
rock, the higher the gamma ray loss). The values of the gamma rays detected are
converted directly either to bulk density, or computed to be expressed in percentage. For
bulk density, values are measured with an average scale that ranges from 2 to 3 (g/cm®)
where values increase to the right side of the log track. Measurements of the computed
values, however, are expressed in percentage and form a density porosity log (DPH).
DPH logs are calibrated to some rock type, commonly either quartz sandstone (density of
quartz=2.65) or limestone (density of calcite=2.72). The porosity scale runs from -10%
on the right to 30% on the left (with 20 divisions), and wraps to go from 30% to 70%.

Neutron porosity uses the same scale.
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Density logs have various limitations. In infrequent cases, the shape of the
borehole will affect the density-log values (Serra, 1984; Rider, 1986). If the borehole is
caved, the drilling mud will fill in the cavity, and the density log will record the
petrophysical properties of the drilling mud rather than that of the surrounding lithology.
The caliper log is often run with the gamma-ray log and can be used to determine if the

borehole has caved and if abnormal density values need to be corrected.

b. Neutron porosity log

The neutron porosity log (NPH) is used primarily to determine the formation
porosity by combining the neutron log with other tools, such as the density log. It is an
excellent discriminator between oil and gas and can be used to determine lithology and
fluid type (Schlumberger, 1972; Serra, 1984).

NPH tools emit neutrons into the formation, which lose energy as they collide
with hydrogen atoms in the rocks around the borehole. Hydrogen atoms drastically
decrease neutron energy levels because hydrogen nuclei and neutrons have a similar
mass. Attenuation of neutron energy, therefore, is tightly related to the amount of
hydrogen in the formation. The more abundant the hydrogen nuclei are in the formation,
the faster the neutrons are absorbed. Consequently, the intensity of the neutron log
response is proportional to the porosity of the rock, other things being equal. As
hydrogen amounts vary with fluid types that are present in pore space, neutron readings
will reflect direct measurement of the fluid in the pore space. Hydrogen is primarily
present in water, oil and coal, and so high values of neutron porosity are recorded with

these substances. Gas-bearing formations, however, contain less hydrogen in comparison
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to oil and water, and so very low neutron porosity values occurred with gas (Dewan,
1983; Serra, 1984). Clay and other hydrogen minerals, also offer the neutron reading,
appearing as anomalously high porosity. The NPH log is scaled in percentages, and it is

usually recorded with the same scale and in the same well log track as DPH log.

c. NPH-DPH log versus lithology

The use of NPH-DPH log separation in lithologic interpretations is displayed in
Figure 16. The figure summarizes the fundamental ideas that explain the general effect
of lithology on both pore spaces and rock density, which in turn affects the neutron-
density log responses. The interpretations in Figure 16 are simplified and exclude any
realistic drilling complications, such as caving or chemical and physical properties of the
drilling fluid (mud) that both may influence log responses.

Interpretation of NPH-DPH logs in siliciclastic sediments is complicated. The
NPH log is sensitive to the hydrogen index of water in pore spaces, so it is sensitive to
both free water and bound water which are primarily present in clays. The DPH log,
however, is a function of the solid-matrix density of the formation (grain framework) and
reflects mineralogy and intragranular water content.

An example of how mineralogy influences the DPH log response is observed
when pyrite or chamosite are intercolated with coal. Coal is rich in light-weight organic
matter, while pyrite and chamosite are much more dense. Pyrite and chamosite may
contain high concentrations of iron and nickel, which are heavy metals. The greater the
heavy metal content in chamosite, the denser the coal becomes (Dewan, 1983; Serra,

1984; Rider, 1986). As the coal density increases (g/cm®), the DPH log measurements
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(%) decrease (D of Figure 16). The DPH log response is also influenced by intragranular
water content. Compacted shale beds contain less water and are more dense than under-
compacted shale beds; the DPH log indicates lower apparent porosity readings with
increasing shale compaction, relative to the NPH log (B of Figure 16).

In compacted shale beds, the NPH log response records a relatively high
hydrogen index because of the shale mineralogy and the high shale porosity (Dewan,
1983; Rider, 1986; Tuckers, 2001). Under-compacted shale beds are much less dense
because the water content drastically “dilutes” the weight of the solid matrix in shale.
The solid matrix of shale is composed of clay and silt-sized quartz, feldspars, and heavy
minerals. Both the sand/shale ratio and distribution mode of shale within sand have an
effect on both hydrogen index (NPH log) and bulk density (DPH log) (F, E, and C of
Figure 16).

Unusual or complicated NPH-DPH log patterns are difficult to interpret. For
example, the overall linear relationship of NPH-DPH log separations (C), when both
curves increase and decrease together, is probably related to a steady and a gradual
substitution of sand with shale laminae or vice versa (Rider, 1986). It is difficult to
provide a detailed lithologic interpretation to this phenomenon because of the different
depositional processes that deposit clay laminae in sediments (Rider, 1986). Clay
laminae within sandstone are caused by different physical processes such as bioturbations
(Dewan, 1983), slumps, and current fluctuations (flaser bedding, mud drapes).
Therefore, one cannot tie the NPH-DPH log-separation pattern to specific environments,

such as bay-head deltas, overbank deposits, tidal channel, and mouth bars.
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Figure 16. a) NPH-DPH log response chart
illustrating effects of lithology on both neutron

and density measurements for compatible sand

scale (normalized for sandstone, porosity=10%).

A, B, C, G and H are meter-scale log

responses. D, E and F effects are of general occurence
within A, B, C, G. b) Interpretation of log responses
(next page) (illustrated based on published

data of Serra, 1984; Dewan; 1983; Rider,1986).
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Figure 16 continued.

A: PURE SAND (porosity=10%)
-NPH and DPH log curves merge and
show intermediate values, ie., plot near
the center of the log (Serra, 1984; Rider,
1986).

D: SAND WITH GRAINS OF
HEAVY MINERALS

-DPH log values are at a minimum, and
NPH log values plots to the left of DPH
curve (Schlumberger, 1972; Rider, 1986)

B: PURE SHALE

-In interbeded silt and shale
(phyllosilicates) intervals (>1cm), the
DPH log plots to the right of NPH log
response, the degree of separation
depends on the amount of shale present
and the degree of compaction
(Schlumberger, 1972; Doveton, 1994).
-The greater the shale or clay content,
the greater the curve separation.
B.1-Sudden change from pure sand
below to pure shale above; Simultaneous
curve divergence

B.2-Gradual change from pure sand
below to pure shale:

-NPH curve deflects upward to
the left.

-DPH curve deflects upward to
the right, and reaches a minimum value
and remains stable when the overall
shale amount exceeds 50% in the
formation (Rider, 1986)

C: SAND WITH SHALE LAMINAE
-Shale laminae include all clays and
phyllosilicates that are not altered from a
framework grain.

-Laminae are defined here to include
layers with burrows, slumps, flaser and
wavy beds (Dewan, 1983).

-In sandstone with shale laminae
(<lem), DPH log plots to the right of,
juxtaposed with NPH log response. Both
curves move together in linear mode
(Dewan, 1983; Rider, 1986):

C1-High sand /shale ratio, both curves
exhibit low values

C2-Low sand /shale ratio, both curves
exhibit high values

E: SAND WITH CLAY CEMENT
(pore lining, filling, or bridging)
-DPH log plots right of NPH log
response
-NPH log values are highly variable
relative to DPH log values depending on
clay type present in pore space (Serra,
1984; Dewan, 1983)
-No linear relationship between both
curves

-NPH log response is more
sensitive to the clay cement than DPH
log response

F: SAND WITH CLAY GRAINS
- DPH log plots to the right of the NPH
log response but with variable values
relative to NPH log response
- No linear relationship between both
curves:

- DPH log response is more
sensitive to clay grains than NPH log
response

G: COAL

-Generally, DPH log almost merges with
the NPH log response, exhibiting
abnormally high values (Serra, 1984;
Dewan, 1983). Unless gas is present in
the coal, both logs responses are
juxtaposed.

H: SAND WITH HYDROCARBON
- DPH log plots to the left of the NPH
log response

-Curve separation is more pronounced
in gas-bearing interval (H1) than in oil-
bearing intervals (H2) (Schlumberger,
1972). Both logs have high values of
porosity.
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An attempt to interpret the distinctive NPH-DPH log separations (C), however, is
analyzed in the discussion chapter. Where the NPH-DPH well logs are unavailable, the

resistivity well-logs are used to complete the lithologic interpretation.

I1. Description
The analysis of GR well logs is used to identify numerous trends throughout the
study area. Description of well-log responses is structured by using an electrofacies
model that is modified from the classification of Cant (1992) and of Rider (1986), and
refined using thickness, GR log variation, and NPH-DPH log separation when it is

necessary. Seven different electrofacies types are described as follows.

1. Electrofacies 1
a. Description

This electrofacies is often found concentrated in the upper hundred feet of the
Rollins Sandstone Member and the upper part of the Cozzette Sandstone Member. Itis a
funnel- to a cylinder-shaped pattern. Curve characteristics on GR log ranges from
smooth to slightly serrated. The upper contact is usually sharp, whereas the lower contact
ranges from sharp to gradational or rounded. The vertical scale of this log shape ranges
from about 15 to 30 m. Throughout the study area, the average API values oscillate
between 40 to 60 API with a minimum API of 30 and maximum API of 80. The NPH-
DPH curve separation, however, progressively decreases upward. At the base, the two
curves are widely separated (B1), but at the top, both curves converge to the center of the

log track (A). Both curves are strongly to moderately serrated.
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This electrofacies is the thickest and the most laterally extensive electrofacies for
the Rollins Sandstone Member. This electrofacies occurs in the extreme basinward

expression and the lowermost part of the Cozzette Sandstone Member.

b. Interpretation
Log shape and lithology reconstruction

The funnel-shaped pattern of GR indicates an overall upward-coarsening trend in
grain size from mud rich at the base to sand rich at the top. The same observation in
lithology reconstruction is also identified from NPH-DPH curve separation. The upward
and progressive convergence of NPH-DPH curves indicates an overall increase in
sand/mud ratio with an overall change from predominantly shale at the bottom to mainly
sand at the top. The strong serration or the repetitive small curve separation of NPH-
DPH at the top is a pattern that can be explained by small variations in matrix
mineralogy. This pattern can be explained by the mix of clean sand with negligible

amounts of shale (phyllosilicate), feldspars or heavy minerals (Serra, 1984; Rider, 1986).

Depositional environment
Based on the GR models of Rider (1986) and Cant (1992), thick, upward-
coarsening trends identified from the GR log are interpreted to be progradational units of
marine strata. This electrofacies is analogous to the proximal expression of wave-

dominated shoreface succession in the outcrop (upper sandy part of outcrop unit 2).
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2. Electrofacies 2
a. Description

The GR log response of this electrofacies type is identified throughout the study
area. It occurs throughout the Cozzette Sandstone Member (Figure 17). It is typically a
cylindrical pattern. Curve characteristics on GR logs range from smooth to slightly
serrated with sharp upper and lower contacts. The vertical scale of this electrofacies
varies from 6 to 10.5 m. Throughout the study area, the average API values range from
45 to 60 API with a minimum API of 40 and a maximum API of 75. The trend of NPH-
DPH curve separation is more variable. It ranges from constant (A), progressively
converging, or increasing upward (B2), and locally the curves cross over each other (H),

as shown in Figure 16. Both NPH and DPH log curves are strong to moderately serrated.

b. Interpretation
Log shape and lithology reconstruction

The slightly serrated cylindrical pattern of the GR log indicates a mainly sand-rich
interval with minor shale (phyllosilicate) content. The varying shale content causes curve
serration, but not significant to cause an upward-fining or coarsening trend in grain size.
The phyllosilicates (sheet silicates which include clay minerals and micas) are either
sporadically dispersed throughout the interval or form thin intervals of shale that are
below GR log resolution.

The variability in NPH-DPH curve separation signifies variation in both hydrogen

nuclei and bulk density of a formation, and consequently a variation in the
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sand/phyllosilicate ratio; curves converge as, sand increases and diverge as
phyllosilicates increase.

NPH-DPH log curves that generally exhibit a constant low separation may reflect
relatively clean sandstone with the presence of shale or feldspars. Finally, DPH log
curves that cross over NPH log curve indicate extremely low bulk formation density, so
that the DPH log reads higher values of porosity than NPH log. Low values of the NPH
log are due to low hydrogen content within intervals that enclose oil or gas, rather than
water. This last log separation pattern is, therefore, the typical response of oil/gas effect
which points to primarily clean sandstone with negligible amounts of shale
(phyllosilicates) dispersed in an unpredictable manner. The different curve separations of
NPH-DPH logs that reflect unpredictable distributions of shale or mud within
electrofacies 2 may be attributed to a lateral facies change in the depositional setting.
The negative separation of NPH-DPH curves, however, often indicates clean sandstone

with good ability to store hydrocarbons.

Depositional environment
Based on the GR trend models of Rider (1986) and Cant (1992), this electrofacies
type may represent an overall high energy channelized succession. The presence of
variable clay or micas content can reflect energy fluctuation within principally high
energy settings forming, for example, mud drapes in sand-rich channel successions. The
sharp basal contact of GR log indicates an abrupt vertical change in lithology from

coarser grains above the contact limit to finer grains below it, and may be interpreted as
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an erosive surface. Combined with the outcrop study, this electrofacies may be

interpreted as sand-rich channel successions, analogous to subunit 3 of outcrop unit 1.

3. Electrofacies 3
a. Description

Electrofacies 3 is an irregular pattern, with a tendency toward a gradational funnel
trend, and is slightly serrated (Figure 18). The upper contact is sharp to gradational, and
the lower contact is usually gradational to rarely sharp. The vertical thickness of this
electrofacies ranges from about 9 to 75 m, and its average GR values are higher than
those of electrofacies 1. The average API values of electrofacies 3 range from about 95
to 130 API with a minimum API of 80 and a maximum API of 150. NPH-DPH curve
separation generally decreases upward (B2 of Figure 16), and both curves are slightly to
moderately serrated. The DPH log often exhibits a steady trend with a very slight
decrease in values towards the top. The NPH log, however, exhibits a gradational
upward decrease in values. The GR log response of this electrofacies is generally
identified in the lower part of both Cozzette and Rollins Sandstone members, particularly

in the extreme eastern part of the Piceance basin.

b. Interpretation
Log shape and lithology reconstruction
High GR values combined with irregular-shaped pattern with funnel-shaped

tendency indicates a slight decrease in clay or micas content toward the top.
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The overall upward convergence of the NPH-DPH curve separation and the
decreasing GR reading indicate a slight upward increase in sand content. The decrease of
NPH log values toward the top indicates a gradational increase of sand at the expense of
clay. The overall steady density porosity values (DPH log), however, may indicate a
thick compacted shale interval. With high rate of compaction, free water is exuded from
shale intervals, and dehydrated shale may form. Dehydrated shale is composed mainly of
clay and silt-sized quartz, feldspars, heavy minerals, and dehydrated organic matter,
which without free-water content; such shale beds may become as dense as quartz or
more dense. The very slight decrease in porosity density (DPH) values toward the top

may be interpreted to indicate clean and porous sandstone layers.

Depositional environment
Gamma-ray trend models of Rider (1986) and Cant (1992) suggest that this
electrofacies indicates a progradational succession. The combination of a slight funnel-
shaped pattern with high GR values indicates distal low-energy settings of progradational
unit. Outcrop study suggests that this electrofacies is analogous to the distal mud to silt-
rich deposits that interfinger with sandy intervals of the wave-dominated shoreface. This
electrofacies is interpreted to be the offshore transition succession similar to that of

outcrop unit 2.
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4. Electrofacies 4
a. Description

The GR log presents an irregular pattern with no vertical trend, yet smooth to
moderately serrated. The upper contact is sharp to gradational, and the lower contact is
usually sharp (Figure 18). The average vertical scale of this electrofacies ranges from 6
to 25 m. GR values vary from 90 to 100 API with minimum and maximum API of 80-
200, respectively. NPH-DPH curves are widely separated, and both curves are strong to
moderately serrated. The NPH curve displays an irregular to trendless pattern and is
slightly disrupted toward the top where NPH values tend to fluctuate. The DPH log,
however, displays irregular to stable patterns with no major change in values. This

electrofacies is concentrated basinward.

b. Interpretation
Log shape and lithology reconstruction
The irregular pattern of the GR log associated with high API values and with no
specific trend indicates prominently clay-rich interval with a consistently low content of
silt or sand. The wide curve separation of NPH-DPH logs reflects essentially clay-rich
composition of the electrofacies. The disruption in NPH log values implies sporadic
additions of sand grains. The stability of the DPH log indicates that the sporadic sand

inputs, recorded by NPH log, are of negligible amounts.
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Depositional environment
The GR trend models of Rider (1986) and Cant (1992) suggests that the steady,
high GR values with an irregular pattern indicate interbedded mudstone and siltstone to
predominantly mudstone lithology. This indicates very low-energy depositional settings.
Electrofacies 4 may be attributed to pro-delta or offshore settings. Outcrop study
indicates that this electrofacies is analogous to an offshore mudstone similar to the lowest
interval of outcrop unit 2 and may be part of the Mancos Shale, which was not studied in

the outcrop.

5. Electrofacies 5
a. Description
This electrofacies is concentrated mainly in the middle part of the study interval.
The GR log response is a funnel-shaped pattern, but substantially thinner than
electrofacies 1 with a vertical thickness of 6 to 10.5 m (Figure 19). It is smooth to
slightly serrated. The upper and lower contacts vary from sharp to gradational. The GR
values throughout the study area vary from ~120 API at the base to ~50 API at the top.
Both NPH and DPH curves are strongly serrated, and they track each other

simultaneously (C).
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b. Interpretation
Log shape and lithology reconstruction
The small vertical scale of this electrofacies coupled with the funnel-shaped
pattern of GR indicates small upward-coarsening trends in grain size. The overall trend
pattern of NPH-DPH curve separation indicates either a simultaneous increase or
decrease in both bulk density and hydrogen index. The NPH-DPH pattern may reflect a
steady upward replacement of shale laminae with sandstone or vice versa, without
affecting the overall upward-coarsening trend (Schlumberger, 1972; Dewan, 1983; Rider,

1986).

Depositional environment
Based on GR trend models of Rider (1986) and Cant (1992), thin funnel- shaped
patterns indicate small progradational units with an upward increase in energy. Based on
outcrop study, this electrofacies is lithologically analogous to either subunit 1 (distal bay-
fill delta), subunit 2 (bay-fill delta), which exhibit a progradational character, or to the

entire succession of outcrop unit 1 which exhibits a slight upward increase in grain size.

6. Electrofacies 6
a. Description
This electrofacies is encountered mainly in the center and the extreme western
part of the study area. The GR log response of this electrofacies is a bell-shaped pattern.
Curve characteristics range from smooth to slightly serrated, and the lower and upper

contacts are usually sharp (Figure 19). The vertical scale reaches up to 6 m, and the GR
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values recorded throughout the study area varies from 50 to 60 at the base to 100 API
near the top.

NPH-DPH curve patterns are variable exhibiting log-separation pattern B, C and
G (Figure 16). In some cases, DPH log values are low relative to NPH log values. Both

NPH and DPH logs range from smooth to strongly serrated.

b. Interpretation
Log shape and lithology reconstruction

The bell-shaped pattern of the GR is an upward fining trend that indicates an
upward decrease in grain size. The variable nature of NPH and DPH log separation (B
and C) indicates the presence of a relatively small shale content with an overall upward
increase in shale throughout the succession, and which is in agreement with the GR bell-
shaped pattern. The presence of log pattern G, however, indicates coal at the top of the
succession. In this case, the DPH log records low values while NPH log exhibits
abnormally high values. This can be interpreted to be coal layers mixed with sand/shale
input. Because coal is less dense than both shale and sand, a small amount of shale or
sandstone will increase the overall density matrix of coal interval, and result in a relative

decrease of DPH log values.

Depositional environment
The GR trend models of Rider (1986) and Cant (1992) suggest that the bell-shaped
pattern indicates a gradational upward decrease of energy, characteristic of low-energy

channel systems. Fluvial interpretation based upon log pattern and association with coal.
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The sharp base of this electrofacies may be interpreted as an erosive surface with an
abrupt vertical change in lithology. The NPH-DPH log pattern G that is located toward
the top of this electrofacies is interpreted to indicate coal. Coal is often associated with
overbank deposits, bogs and marshes. The vertical variability of clay, displayed by NPH-
DPH log separation, is consistent with the low-energy depositional setting of the sinuous
fluvial systems. Outcrop study suggests that the uppermost part of this electrofacies is
analogous to the uppermost part of subunit 1 of outcrop unit 1, where a coal bed with silt
partings indicates sporadic deposition of fine-grained sediment within a low-lying,
protected area (overbank deposit in swamps). It may also be attributed to subunit 3 of
outcrop unit 1, where a slight gradational decrease in grain size characterizes the channel-

fill succession.

7. Electrofacies 7
a. Description

This electrofacies is generally identified in the western part of the study area. The
GR log response is an irregular pattern with high fluctuations in APl values and is
strongly serrated (API values fluctuate up to 4 times within an interval of 3 m). The
lower and upper contacts are usually sharp (Figure 20). The vertical scale of this
electrofacies ranges from 3 to 15 m, and the API values range from 30 to 160 API.

NPH-DPH curve-separation is wide and the curves deflect simultaneously (C of
Figure 17). In some cases, NPH values are abnormally high. Generally, both NPH and
DPH logs are strongly serrated and present a sudden and rapid fluctuation in NPH and

DPH log values in synchronization with the GR log values.
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b. Interpretation
Log shape and lithology reconstruction

The irregular pattern of the GR with strong oscillations in API units may indicate
abrupt changes in lithology or a heterolithic composition of mudstone, sandstone and
coal. The heterolithic composition signifies fluctuation in energy levels within the
depositional environment. The repetitive wide and simultaneous curve deflection of
NPH-DPH curves may indicate abrupt change in the sand to shale ratio within a primarily
mud-rich interval. The rapid deflection of both curves with abnormally high values of
NPH may indicate an abnormally high hydrogen index. The abnormally hydrogen index
can be explained by the high hydrogen index of coal to which was added the high
hydrogen index of shale, for example. The highly serrated feature of NPH-DPH log
pattern with no specific trend indicates random episodic flooding events that deposit
sandstone layers with probably heavy minerals into areas of low energy, mud-rich
settings. Because sand is more dense than shale, and shale contains more hydrogen than
sand, the NPH and the DPH logs are strongly influenced by the sand/shale inputs, which
results in a rapid deflection of both logs. The overall wide log pattern C, however,
indicates an overall cyclicity of energy levels where a gradational increase of sand or

shale occurs throughout the depositional succession.

Depositional environment
In GR trend models of Rider (1986) and Cant (1992), a strongly serrated and
irregular pattern of GR log response indicates sporadic and heterolithic deposits in either

a subaqueous or subaerial depositional environment, such as distal edge of deltas or
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crevasse-splay deposits. The high values of the NPH log that indicate the presence of a
coal interval likely place this electrofacies in an overbank deposit rather than a distal
delta. Based on outcrop study, this electrofacies is analogous to coal beds with sand or

silt lenses as interpreted in outcrop unit 1.

I11. Continuity of Electrofacies and NPH-DPH Log Input
1. Complications and Continuity of Electrofacies
Curve shapes of some well-log intervals can be easily identified with the defined
electrofacies patterns. Some other well-log patterns, however, do not fit in the defined
patterns. The indefinable electrofacies patterns may represent a variation of an idealized
pattern or a distal signature of the idealized electrofacies (Figure 21). Such electrofacies

are not easily interpreted.

GR (API)
0 150

=

0

N icy

SULFUR GULCH#9-98-23#1

Figure 21. An example of a complicated log-shape
pattern that is difficult to interpret. This log-shape
pattern is probably a variation of the idealized log
pattern of electrofacies 2 or 5.
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The lateral continuity of each electrofacies is established through correlation of
the well logs. The lateral extent can be used to help refine the depositional setting of
each electrofacies type. Generally, electrofacies within continental and marginal-marine
settings show abrupt lateral and vertical facies changes. Electrofacies within the marine
environments, however, are not characterized by abrupt lateral changes. Marine sands
are generally continuous over an area of tens of kilometers (Reinson, 1984). The lateral
continuity of each electrofacies type falls into two groupings. The first grouping is
composed of electrofacies 2, 5, 6, and 7 (Figures 22 and 23). These electrofacies are
classified as non-marine to marginal-marine deposits. Electrofacies 2, 5, 6, and 7 cover a
distance that ranges from approximately 5 km to 10 km. The second grouping is
represented by electrofacies 1, 3, and 4. These electrofacies are the most laterally
continuous over the study area. They are classified as open-marine deposits and cover a

distance of more than 90 km (Figures 24 and 25).
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2. NPH-DPH Logs Input

The use of NPH- DPH log separation can help refine facies interpretation that is
first established based on the GR log shapes alone. NPH-DPH curve separation is the
best indicator of shale distribution and amount, which reflect energy setting in a facies.
NPH-DPH log separations of electrofacies 1, 3, and 4 (wave-dominated shoreface
successions) are either continually wide or stable. Arbitrary and rapid log deflections,
however, are observed in shallow and complicated depositional settings, such as
marginal-marine deposits. These observations are typical responses in the study area and
may indicate the sensitivity of the NPH-DPH log values to the prevailing energy setting.
NPH-DPH logs can also distinguish some key lithologies that may define key surfaces,
such as parasequence boundaries (organic-rich shale of a condensed layer or coal
horizon). In conclusion, neutron-density logs combined with GR logs provide an
improved tool for interpreting the stratigraphic relationship between electrofacies and
depositional environments because the combination respond differently to the various

depositional settings.
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Chapter 1V: SEQUENCE STRATIGRAPHY

I. Introduction and Terminology

The study interval is placed in a sequence-stratigraphic framework to establish a
regional stratigraphic relationship of these strata within a time framework. A sequence-
stratigraphic interpretation will place the study interval into sequences and systems tracts.
The sequence stratigraphic terminology used in this study is based on VVan Wagoner et al.
(1990).

1. Parasequence

The fundamental stratal unit is a parasequence. A parasequence is defined as “a
relatively conformable succession of genetically related beds or bedsets bounded by
marine flooding surfaces and their correlative surfaces” (Van Wagoner et al., 1990).

Strata within parasequences have lateral and vertical variability of facies. Within
a single parasequence, strata may exhibit a gradual and down-dip transitional facies
change from coastal plain to shelf. Parasequences can be traced from the non-marine
realm to the marine. The down-dip change in facies within the marine environment, from
shallow to deep water strata, is also recognizable in the vertical succession. In shallow
marine strata, the vertical succession of a parasequence exhibits an upward shallowing
succession that is arranged in an upward-coarsening trend (electrofacies 1 over
electrofacies 3). The wave-dominated shoreface of the Rollins Sandstone Member is an
upward shallowing succession that reveals a predictable progression from distal to
proximal facies deposits. In non-marine realm, however, strata within a parasequence are

less predictable (Kamola and VVan Wagoner, 1995).
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2. Parasequence Set

Parasequences can stack vertically to form parasequence sets. Each parasequence
set is characterized by a different stacking pattern that forms under different
accommodation rates. A parasequence set is “a succession of genetically related
parasequences forming a distinctive stacking pattern bounded by major flooding surfaces
and their correlative surfaces (Van Wagoner et al., 1990).” A genetically related set of
parasequences exhibits one of three distinctive stacking patterns: progradational,
retrogradational, aggradational. These three stacking patterns can represent an ideal

response to a single sea-level cycle at a regional scale.

3. Depositional Sequence

A depositional sequence as defined by Vail et al. (1977) is *“a stratigraphic unit
composed of genetically related strata bounded at its top and base by an unconformities
or their correlative surfaces.” A depositional sequence can be subdivided into systems
tracts based on its stratal geometry (Posamentier et al., 1988; VVan Wagoner et al., 1990).

The highstand systems tract (HST) is the youngest stratal pattern within a
depositional sequence.  Highstand systems tracts consist of progradational or
aggradational parasequence sets that are deposited during periods of stillstands in the sea
level or during periods of a decreasing rate of a relative rise in the sea level (Vail et al.,
1977; Posamentier et al., 1988, 1992; Mitchum et al., 1994). Highstand systems tracts
are bounded by a maximum flooding surface at the base and by a sequence boundary at

the top.
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The transgressive systems tract (TST) is the middle systems tract of a depositional
sequence and is older than the highstand systems tract (HST) (Emery and Myers, 1996).
The transgressive systems tract consists of a retrogradational parasequence set deposited
during the maximum rate of a relative rise in sea level (Vail et al., 1977; Posamentier et
al., 1988, 1992). Transgressive systems tracts are bounded by a transgressive surface at
the base and by a maximum flooding surface at the top.

The lowstand systems tract (LST) is the oldest system tract in a depositional
sequence and may consist of complex depositional sets that are deposited during an early
and a late phase of a relative fall in sea level. Both phases are followed by an early
relative rise in sea level. Lowstand systems tracts may include the following elements in
this order: basin floor fan, lowstand fan, and lowstand wedge, each of which may exhibit
a different set of parasequence stacking patterns. The stacking pattern of lowstand
systems tracts commonly consists of progradational parasequence sets. Lowstand
systems tracts are bounded by a sequence boundary at the base and by a transgressive

surface at the top (\Van Wagoner et al., 1990).

4. Sequence Boundaries
A sequence boundary (SB) is a significant subaerial-erosional truncation and its
correlative conformity that bounds a depositional unit. A sequence boundary is a
regional surface of erosion which is often tied to a fall in sea level. This sequence
boundary separates younger strata from older strata along a significant hiatal surface.
Two criteria used to identify sequence boundaries are a basinward shift in facies, and a

regional surface of erosion or abnormal subaerial exposure.
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Generally, during a fall in sea level, river systems incise significantly into the
underlying strata and form an incised valley. The plains adjacent to the valley are called
interfluve areas. In interfluve areas, the sequence boundary is a flat surface and is often
expressed by an abnormal subaerial exposure along which a basinward shift in facies
occurs. The most common example of basinward shifts in facies is where non-marine
deposits (soil horizons, flood plains, or overbank deposits) are placed directly on top of
distal marine deposits (Van Wagoner et al., 1990).

The same criteria are used to recognize sequence boundaries in both outcrops and
well logs. An abrupt vertical juxtaposition of different electrofacies types that marks a
basinward shift in facies is used to recognize sequence boundaries (SB) in well logs.
Generally, where a parasequence set with a progradational stacking pattern (HST) is
overlain by a parasequence set with a retrogradational stacking pattern (TST), a sequence
boundary may separate the two parasequence sets (Van Wagoner et al., 1990). In the
study area, a sequence boundary is commonly placed at the base of a blocky sand-rich
pattern (channel-fill sandstone of electrofacies 2), if it overlies a highly radioactive
irregular pattern (open-marine mudstone of electrofacies 4). In the interfluve areas, a

sequence boundary may become hard to recognize.

5. Incised-Valley Fills
Incised valleys are *...valleys formed by fluvial systems that extend their
channels basinward and erode into underlying strata in response to a relative fall in sea
level (Van Wagoner, 1995).” An incised valley is a local erosional event, initiated at a
lowstand of base level and fills as the rate of the relative fall in sea level decreases or as

the base level begins to rise (Posamentier and Allen, 1993a; Blum, 1993). Incised valleys
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range in width from less than one kilometer to tens of kilometers (\Van Wagoner et al.,
1990).

During the relative fall in sea level that may expose steeper shelf gradient, erosion
by river systems and sediment bypass must occur in order to adjust the river profile to the
lower base level, thus approaching the equilibrium fluvial profile (Van Wagoner et al,
1990). The rate of fluvial incision within an incised valley depends on the previous
fluvial gradient and the lowest base-level position on the shelf. Therefore, as the sea
level falls, rivers incise, and sediment is carried downstream and deposited basinward as
a lowstand deposit.

During the subsequent rise in sea level, variable and complex vertical successions
of depositional environments are deposited within the incised valley. The most common
vertical succession consists of fluvial deposits of either braided or meandering rivers,
overlain by deposits with progressively more marine influence (Van Wagoner et al,
1990).

In the extreme landward extent of incised valleys, the valley fill is dominantly
fluvial and characterized by vertically coalesced or nested channels. From the base to the
top, fluvial deposits show a typical evolution in response to the relative rise in base level,
transitioning from a higher gradient fluvial system at the base to a lower gradient fluvial
system at the top. Toward the top, sediment fill ideally is a mixture of high-sinuosity
fluvial systems and floodplain deposits.

In the extreme seaward extent of incised valleys, the basal fill is either fluvial or
tidal, but the remaining fill is often dominated by marine to marginal marine strata.

Marginal marine environments are complex by nature, and many sub-environments and
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internal surfaces of erosion are observed within the valley fills (Dalrymple et al., 1992;
Blum, 1993). Furthermore, additional complexity can occur if a significant surface of
erosion, associated with a marine transgression, removes parts of the underlying deposits

to form a transgressive surface of erosion (VVan Wagoner, 1995).

I1. Sequence Nomenclature

Nomenclature applied to this study follows the terminology that was initiated by
Zater (2005) and followed by Madof (2006). Sequences are named according to the
name of the member in which the basal sequence boundary lies. For example, if a basal
sequence boundary of a sequence occurs within the Cozzette Sandstone Member, the
sequence will be given the prefix of that member (for example CZ). If more than one
sequence occurs within a lithostratigraphic member, they are named numerically in
ascending order, starting with the prefix of that member, i.e., CZ;, CZ,. Parasequences
are named for the sequence within which they occur: PS;-CZ;, and if more than one
parasequence occurs within the sequence, numbers will be applied in ascending order:
PS1-CZ;, PS,-CZ;. Sequence boundaries across the study interval are numbered in

ascending order, i.e., SB1, SBs.

I11. Description
Five high-frequency sequences are identified in the interval between the top of the
Corcoran Member and the top of the Rollins Sandstone Member. Each depositional
sequence is marked at the base by a surface of erosional truncation and a basinward shift

in facies. The basal parts of these depositional sequences vary laterally across the study
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area. The lateral variability can fit into one of two end-member categories. The first
group is characterized by an incised-valley fill at the base of the depositional sequences
and is common through the western part of the study area (cross-sections 1, 3, and
western part of cross-section 2; Figure 26, 28, 27, respectively. The second group
exhibits a highstand parasequence at the base of the depositional sequence and is
common in the eastern part of the study area (cross-section 4, and the eastern part of

cross-section 3; Figure 28 and 29).

1. Sequence 1l (CZ,)

Sequence 1 makes up the lower part of the Cozzette Member and exhibits a
constant thickness of about 40 m across all four cross-sections, except for cross-section 1.
In cross-section 1, the depositional sequence is locally reduced to 18 m thick. Thickness
reduction is caused by the erosional removal of strata associated with the overlying
sequence boundary SB-2. The erosional removal is measured from the erosional surface
SB-1 to the overlying flooding surface that seals the filling of the incised valley.

The depositional sequence in the western part of the study area (cross-sections 1,
2 and 3) is described as follows. The sequence boundary (SB-1) is generally observed as
an erosional surface with interfluve expression in some locations. The maximum
erosional relief of this sequence boundary is 9 m (Figure 26). Strata overlying the
erosional expression of the sequence boundary SB-1 are the overbank deposits of

electrofacies 7 and the sand-rich channelized succession of electrofacies 2.
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These electrofacies patterns occur within an incised-valley fill (IVF-1) and are overlain
by offshore transition deposits of electrofacies 3, which in turn, is overlain by the wave-
dominated shoreface succession of electrofacies 1. Electrofacies 3 and 1 make up the
marine deposits of parasequence PS;-CZ;. In some locations, electrofacies 1 is truncated
at different depths by the overlying sequence boundary SB-2. Electrofacies 3 thickens
basinwards.

In the eastern part of the study area, particularly in cross-section 4, the incised
valley is not present and sequence boundary SB-1 is an interfluve expression. It is
directly overlain by the offshore transition deposit of electrofacies 3, which in turn, is

overlain by the wave-dominated shoreface of electrofacies 1 (PS;-CZ;).

2. Sequence 2 (CZ,)

This sequence is located in the middle of the Cozzette Sandstone Member. Its
maximum thickness is ~37 m, and it reaches a minimum thickness of less than 2 m at the
extreme eastern part of cross-section 4. The minimum thickness is caused by the
erosional removal of strata associated with the overlying sequence boundary SB-3
(Figure 26).

In the western part of the study area, particularly throughout cross-sections 1 and
the extreme western part of both cross-sections 2 and 4 (Figure 26 and 29), the sequence
boundary SB-2 is an erosional surface that rests unconformably on the underlying
parasequence with a maximum erosional relief of about 11 m (cross-sections 3 and 4).

There are multiple electrofacies patterns that overlie the sequence boundary SB-2.
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These electrofacies patterns are characterized by lateral facies change and comprise sand-
rich channelized successions of electrofacies 2, deltaic deposits of electrofacies 5,
heterolithic channelized successions of electrofacies 6, or thin intervals of overbank
deposits of electrofacies 7. These electrofacies are stacked vertically and all occur within
an incised-valley fill (IVF-2). Landward, incised-valley fill (IVF-2) is overlain by very
thin successions of offshore transition succession of electrofacies 3, which in turn, is
followed by thicker succession of wave-dominated shoreface of electrofacies 1, or it is
overlain directly by electrofacies 1 locally. In a seaward direction, the incised-valley fill
is overlain by a more developed succession of the offshore transition of electrofacies 3
and electrofacies 1.

Locally, the overlying sequence boundary, SB-3, truncates both the underlying
deposits, both marine (including strandplain deposits) and non-marine to marginal-marine
deposits of sequence 2 (CZ;). The marine deposits (PS;-CZ,) are associated with both
electrofacies 1 and 3, and locally overlie the non-marine to marginal-marine deposits of
IVF-2, which consists of electrofacies 2, 5, 6, and 7 (Figure 26 and 28).

The basal surface of erosion, SB-2, climbs stratigraphically eastward before it
transitions into an interfluve surface expression. As this occurs, the overlying incised-
valley fill gradually thins eastward.

In the extreme eastern part of cross-section 2 and throughout cross-section 4, the
sequence boundary, SB-2, is an interfluve expression. It is directly overlain by the
offshore transition deposits (electrofacies 3), which in turn, are overlain by a wave-

dominated shoreface succession (electrofacies 1; PS;-CZ,).
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In cross-section 2, electrofacies 1 thins progressively and completely disappears eastward
through a downdip facies change, where it is replaced laterally by beds assigned to
electrofacies 3. These beds thin significantly basinward (cross-section 4) because of the

erosion associated with the overlying sequence boundary SB-3 (Figure 29).

3. Sequence 3 (CZ;)

Sequence 3 extends from the upper stratigraphic limit of the Cozzette Sandstone
Member to the upper stratigraphic limit of the tongue of the Mancos Shale where it
underlines the Rollins Sandstone Member. Sequence 3 is 49 m thick in the western part
of the study area (cross-section 1) and a minimum of 3 m to the east. Thickness
reduction in the western part of the study area is caused by the erosional removal of strata
associated with the overlying sequence boundary (SB-4).

Unlike the other sequence boundaries that are mainly interfluve expressions in
cross-section 4 (extreme eastern part of the study area), sequence boundary SB-3 is there
expressed as an erosional surface. Throughout all the four cross-sections, the erosional
surface SB-3 cuts extensively into the underlying marine strata (electrofacies 1) of
parasequence PS;-CZ,, and locally transitions to an interfluve expression in the middle
part of the study area (eastern part of line 2).

In the western part of the study area, sequence boundary SB-3 has a maximum
erosional relief of 36.5 m. The maximum relief is recorded when sequence boundary SB-
3 incises deeply into the underlying non-marine to marginal-marine strata of sequence 2.
Various electrofacies overlie the erosional expression of sequence boundary SB-3 and are

characterized by a lateral facies change. These electrofacies patterns include sand-rich
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channelized successions of electrofacies 2, deltaic deposits of electrofacies 5, heterolithic
channelized successions of electrofacies 6, and thin intervals of overbank deposits of
electrofacies 7. These electrofacies (2, 5, 6 and 7) are interpreted to fill an incised valley.
The valley fill is overlain by the offshore transition succession of electrofacies 3, which is
overlain by the wave-dominated shoreface succession of electrofacies 1.

In a seaward direction, the valley fill is overlain by the open-marine offshore
deposits of electrofacies 4. The electrofacies patterns 4, 3, and 1 form the marine
signature of parasequence PS;-CZ;. As with sequence 2 (CZy), the marine sandstone of
sequence 3 (CZ3) thins basinward. The lateral extent of the marine sandstone (PS;-CZ3),
however, is very small. Locally, in the extreme western part of the study area, the
incised-valley fill is truncated by the overlying sequence boundary (SB-4). Sequence
boundary SB-4 transitions abruptly to an interfluve expression in cross-section 1, and at
this location, the interfluve expression is overlain by the open-marine offshore deposits of
electrofacies 4 (Figure 26).

Along the cross-sections 1, 2 and 4, the erosive surface SB-3 locally scours the
underlying strata in two separate areas, crossing sections in two places. This erosive
surface (SB-3) climbs stratigraphically between the incised-valley fills and transitions
into an interfluve expression. As this occurs in the middle part of the study area, the
incised-valley fill thins, and electrofacies patterns 2, 5, 6 and 7 lap out against the valley
wall. In the extreme eastern extent of the study area, electrofacies 6 and 7 also lap out at
the margins of the incised valley. The interfluve expression here is overlain directly by

thin open-marine offshore deposits of electrofacies 4 (Figure 26-29).
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The occurrence of incised-valley fill (IVF-3) in the extreme eastern part of the
study area (cross-section 4; basinward), when compared with the other incised-valley
fills, may be an artifact of the orientation of the cross-section lines. The artifact may be
explained by the overall trend of incised valley (IVF-3) which may be northwest-

southeast or more complicated when small and large embayments of the sea occur.
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4. Sequence 4 (Ry)

Sequence 4 occurs within the upper part of the Rollins Sandstone Member. Its
thickness ranges from 56 to 152 m. Unlike the underlying sequences that progressively
thin eastward, this sequence thickens toward the east. Sequence boundary SB-4 is
usually expressed as an interfluve surface throughout the study area. The erosional
expression of SB-4 is limited to the western part of cross-section 1 (extreme landward
area), where it cuts into PS;-CZ3 and an incised-valley fill of sequence 3.

In the western part of cross-section 1, sequence boundary SB-4 is an erosional
surface that becomes an interfluve expression in a seaward direction. The maximum
erosional relief of SB-4 is 21 m. Rocks that overlie the erosional expression of sequence
boundary SB-4 are characterized by a lateral facies change among several electrofacies
and thin eastward abruptly. These rocks include sand-rich channelized successions
(electrofacies 2), heterolithic channelized successions of electrofacies 6, thin intervals of
overbank deposits (electrofacies 7), and deltaic deposits (electrofacies 5). The various
lithologies are stacked vertically and are interpreted as part of an incised-valley fill (IVF-
4). The incised-valley fill (IVF-4) is overlain by an offshore transition succession
(electrofacies 3), or an open- marine offshore succession (electrofacies 4), marine rocks,
which in turn, are overlain by the wave-dominated shoreface succession (electrofacies 1).
This succession, overlying incised-valley fill (IVF-4), forms a marine signature of
parasequence PS;-R;.

Erosional relief associated with SB-4 is limited to the western area of the study
area. Erosion associated with sequence boundaries 1, 2 and 3 extend to the central and

almost the extreme eastern part of the study area. In sequence 4, the basal surface of
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erosion, SB-4, passes abruptly to an interfluve surface (cross-section 1), and rocks of
electrofacies 2, 5, 6 and 7 lap out onto the edge of the incised-valley fill (IVF-4).
Incised-valley fill (IVF-4) is directly overlain by thin open-marine offshore successions
(electrofacies 4).

In the eastern part of the study area, sequence boundary SB-4 is an interfluve
expression. It is overlain by a thick interval of open-marine offshore deposits
(electrofacies 4), which is overlain by an offshore transition succession (electrofacies 3),
which in turn, is overlain by the wave-dominated marine shoreface succession of

electrofacies 1.

5. Sequence 5 (Ry)

Sequence 5 is located at the upper part of the Rollins Sandstone Member and at
the base of the Cameo-Wheeler coal zone. It is incompletely described because it
extends beyond the upper boundary of the study interval. Sequence 5 (Ry) is represented
by the basal incised-valley fill (IVF-5), and is covered by the complex fluvial channel-fill
succession of the Cameo-Wheeler coal zone. IVF-5 is discontinuous and ranges from 6
to 12 m in thickness; the maximum erosional relief of 12 m is recorded in the eastern part
of cross-section 1. Sequence boundary SB-5 cuts into PS;-R;.  Where sequence
boundary SB-5 is an interfluve expression, it coincides with the basal stratigraphic limit
of the Cameo-Wheeler coal zone.

The different rock types that overlie the erosional expression of sequence
boundary SB-5 occur within an incised-valley fill and consist mainly of heterolithic

channelized successions (electrofacies 6; at the base) and overbank deposits (electrofacies
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7; at the top of the incised-valley fill). This lithologic assemblage extends laterally to 1.6
to 10 km. The same lithologic assemblage in other depositional sequences extends up to

37 km.

IV. Stratal Geometry

A typical vertical stratal geometry exists within these depositional sequences:
marine strata (electrofacies 1, 3, and 4) overlie strata of the incised-valley fill
(electrofacies 2, 5, 6, and 7) along a maximum flooding surface (parasequence boundary).
The thickness of a depositional sequence and the vertical architecture within a sequence
is primarily controlled by sediment supply and accommodation (Figure 30).

At the landward extent of the study area, the facies succession at the base of each
depositional sequence (complex deposits of incised-valley fills) is considered the most
proximal deposition observed. The proximal succession is abruptly overlain by thin
intervals of a more distal succession (distal marine shale), which in turn, progressively
shallows upward into thicker marine sandstone. In seaward locations, however, the
proximal deposits are not present (except those in CZ3), because the valley incision only

occurred in the landward extent of the study area.
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The incised-valley fills are interpreted as deposits of the lowstand systems tract
(LST) and transgressive systems tract (TST), and make up most of the depositional
sequences in the western part of the study area. The LST exhibits an upward-coarsening
succession where the lower part of proximal signature of non-marine to marginal marine
deposits (overbanks and swamps of electrofacies 6 and 7) are overlain by the distal
marginal-marine deposits (bay-head deltas or marine-influenced channels of electrofacies
5 or 2 respectively).

The transgressive systems tract comprises an upward-fining succession, where the
basal part includes either a multiple stacking of beds of electrofacies 2 or 5, and ends by
multiple stacking of beds of electrofacies 6 and 7. In the extreme western extent of the
study area, and because of the nested feature of the incised-valley fills (Figure 31), the
vertical trend within each incised-valley fill is difficult to resolve in terms of lowstand or
transgressive systems tracts.

In the eastern extent of the study area, the marine strata that overlie the incised-
valley fills are interpreted as highstand systems tracts (HST). The highstand systems
tracts thicken basinward and form most of the depositional sequence. Highstand systems
tracts (HST) exhibit an upward-coarsening succession where offshore marine or offshore-
shoreface transition deposits (electrofacies 4 and 3) are overlain by rocks of the shoreface

deposits (electrofacies 1).
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Chapter V: SEQUENCE STRATIGRAPHIC EVOLUTION

I. Sequence Evolution

The 5 stratigraphic sequences described in the Cozzette and Rollins Sandstone
members are generally similar, with deposits of incised-valley fills at the proximal end
and deposits of marine shelf and shoreface at the distal end. Sequence 3 (CZ3) will be
described as an example of the evolution of all five of the sequences.

Sequence 3 (CZ3) is underlain by parasequence PS;-CZ,, which is the highstand
phase of sequence 2 (CZ,). PS;-CZ, was deposited as the shoreface built seaward to fill
the space available during the former highstand phase (Figure 32-Time A). Following
progradation, river systems incised as sea level fell. The widespread stage of sea-level
fall marks the end of sequence 2 (CZ,) and the beginning stage of sequence 3 (CZ3)
(Figure 32-Time B). As this occurs, vast areas of the shelf are exposed to subaerial
conditions and are incised locally by fluvial systems. The incision surface and its
correlative interfluve surface, SB-3, mark the base of depositional sequence 3 (CZ3). SB-
3 erodes a significant amount of the underlying parasequence PS;-CZ, (including
strandplain) to form an incised valley on the exposed shelf.

The subsequent rise of sea level results in an increase in accommodation and a
gradual fill of the incised valley (IVF-3). The fill occurs in two phases, a late lowstand
into early transgressive phase and a late transgressive phase. The resultant facies patterns
change as the transgression progresses from the seaward to the landward extent of the

incised-valley fill (IVF-3) as follows.
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During the late lowstand or early transgressive phase, the seaward extent of the
incised valley is overlain by amalgamated channel-fill sandstones that form a continuous
cover over the erosive surface SB-3 (Figure 32-Time C). The electrofacies patterns
observed in well logs show that the valley floor during this phase is dominated by
channelized sandstones that coalesce to form connected sandstone bodies. These
sandstones may be the deposits of a high-energy fluvial system (low-sinuosity). During
the late phase of deposition of the transgressive systems tract (TST), the shoreline
continues to advance landward. As this occurs, the gradient of fluvial systems decreases
and the water table rises to support peat growth (Figure 32-Time Final). The valley fill
during this phase is dominated by overbank and flood plain fines and lower energy fluvial
channel-fill sandstones. The electrofacies patterns observed in well logs show isolated
channel-fill sandstones of probable high-sinuosity fluvial systems.

In the updip extent of the study area, the upper reaches of the incised valleys
incise into strandplain and earlier incised-valley-fill deposits (Figure 33). This results in
the overlap of incised-valley fills of different age. Incised valleys, which occur in
response to a lowering of base level, are influenced by many factors including the shelf
gradient (Van Wagoner et al., 1990), and the occurrence of peat beds. The strandplain is
interpreted as a horizontal to near-horizontal surface. This interpretation is supported by
observations from modern strandplains, and by the consistent thickness between coal
beds located at the top of the Corcoran Sandstone Member and the top of the Rollins
Sandstone Member. Coal beds form from extensive peat horizons, which would have
protected the underlying strandplain from incisions. The trends of fluvial systems and

incised valleys may reflect trends established further up dip, partially controlled by peat
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horizons. The morphology (including depth) of each incised valley may differ. This
further complicates parasequence correlations within nested incised valleys (Figure 33-b).
Facies of different incised-valley fills may be juxtaposed, and when that occurs, it is
difficult to determine where one valley-fill ends and another starts. Tracing sequence

boundaries in succession of incised-valley fills is difficult at best.
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In the last phase of deposition of the transgressive systems tract (TST), the
shoreline transgresses landward of the former highstand shoreline position (point X).
The rate of landward movement of the shoreline increases dramatically at point “X”
(Figure 34) where the gradient of the surface being transgressed decreases significantly

(Wehr, 1994).

TRANSGREg
< > $ec B

. 0 y
T _.‘---‘-'\- ‘H--
Strandplain of fo‘N Sc-;x{'l_“.:vc]
highstand systems tract ise
v
Lowstand
Shoreline
e Point to which the shoreline had
X

~~ prograded prior to sea level fall, and
corresponds to a change in gradient profile.

Figure 34. Rate of transgression changes at the deflection point (X). Increasing line-weight of arrows
indicates progressive increase in transgression rate as shoreline migrates landward at the point (X).
As this occurs, vast areas of the strandplain (interfluves) are flooded quickly, and a
parasequence boundary (flooding surface) is formed at the top of the incised-valley fill
and strandplain deposits. The parasequence boundary forms the base of the overlying
parasequence PS;-CZ;. During the subsequent highstand, the shoreline of this
parasequence (PS;-CZ3) prograded seaward, throughout the study area (Figure 28-Time
E). Following the shoreline progradation of PS;-CZ3, another fall in sea level occurs, and

river systems incise into the highstand deposits of PS;-CZ3, forming yet another incised-
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valley fill. This fall in sea level results in the erosive surface SB-4, which terminates the
deposition of sequence 3 (CZ3) (Figure 32-Time Final).

The same processes and sequence of events occurred in all the depositional
sequences with slight variations in each. These variations concern facies patterns within
the incised-valley fills and continuity of the marine sandstone. The different combination
of facies patterns noticed within each fill may be an artifact of the orientation of the
cross-section lines. Variation in the continuity of the marine sandstones across the study
area is related to the extent to which each shoreline has prograded. Those shorelines with
the greatest amount of progradation, i.e., PS1-R1 will have the greatest continuity of

sandstone in the downdip direction.

I1. Stacking Pattern of Sequences

The vertical architecture of sequences indicates an overall change in stratal
pattern from retrogradational to progradational. Sequences CZ; through CZ3 exhibit a
retrogradational stacking pattern. The retrogradational stacking pattern changes with the
last sequence, Ry, as the marine shoreline of PS;-R; progrades extensively (>100 km) and
slightly thickens basinward. The retrogradational phase is identified to overlap the
stratigraphic limit between the Cozzette and the Rollins members. Sequence R, appears
only as incised-valley fills, and is therefore a continuation of the regression noted in
sequence R;. The stacking pattern between sequences R, and Ry, however, is difficult to
establish because no prograding or retrograding marine strata within the overlying

sequence R, was established in this current study, and also the extensive coal beds of the
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Cameo-Wheeler coal zone throughout the Piceance basin may suggest a significant rise in

sea level prior to the development of the overlying non-marine fluvial systems.
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DISCUSSION

NPH-DPH logs are porosity logs that help greatly in preliminary stratigraphic
correlations, distinguishing marine from non-marine environments. The analysis of log
responses of the current study shows that the NPH-DPH log separation C is not typical of
open-marine deposits. It may occur, however, in areas where thin marginal-marine
successions inter-tongue with the marine. In these areas, lateral facies change is
complicated and the distinction between marine and non-marine to marginal-marine
strata remains difficult using well-log data alone.

In heterogeneous strata (shaly sandstone/sandy shale), shale laminae is a facies
characteristic of non-marine to marginal-marine deposits. Shale laminae are also the
main factor that explains the overall linear relationship of NPH-DPH log separation (C)
where a gradual change from silt (shale) to sand, or vice versa, must occur at a millimeter
scale (NPH-DPH-laminae chart). This feature prevails in environments of smaller
cyclicity, such as fluvial systems and bayhead deltas. For example, the periodicity of
rivers provides constantly a sand-shale mixture that is reworked quickly into small
sequences with upward-fining or coarsening trend, and in which shale, for example, is
scattered throughout the small sand-rich sequences as laminae, ripples or bioturbation
linings. The bed resolution of the log tool (2-3 feet) considers the highly heterogeneous
sequences as a homogenous sand-shale mixture, where the change from shale to sand (or
sand to shale) occurs indistinguishably. The process of a gradual increase of sand results
in a loss of hydrogen index and a gain of bulk density. The loss in hydrogen index,

which induces the NPH log measurements to decrease, is compensated with an increase
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of bulk density, which in turn, induces the DPH log measurements to decrease. The
apparent porosity recorded by both NPH and DPH logs, therefore, decrease together
gradually. The opposite takes place when the process of a gradual change of shale in
detriment of sand occurs. When the shale or silt laminae prevail (abundant draping
structures or burrows), both NPH and DPH log values increase. The increase of DPH log
reflects a decrease in bulk density and is explained as follows. Shale is less dense than
quartz and becomes much lighter when the dispersed shale invades the pore-space
network by adsorbing more water content and escaping the process of a maximum
compaction.

The strong and simultaneous deflection of the log pattern (C) is a feature that is
not likely to occur in marine strata. In marine environments, wave energy is greater and
reworks the sand/shale mixture into thicker sequences of either sand-rich intervals
(electrofacies 1) or mud-rich intervals (electrofacies 3 and 4). The vertical bed resolution
of both NPH-DPH tool (2-3 feet) detects the burrowed offshore deposits, for example, as
homogenous shale because the prevailing lithology is mud (>50%). The offshore-
shoreface transition deposits are extensively burrowed and are subject to alternating
deposition of clay and sand. However, as the sand beds grade upwards, the replacement
of shale by sand does not occur at a millimeter scale, which annihilate the main condition
for the log pattern (C) to occur. In conclusion, neutron and density logs should be

analyzed carefully to better support the distinction between marine and non-marine rocks.

105



CONCLUSION

An outcrop description of the Rollins Sandstone Member of the Mt. Garfield
Formation records a depositional succession that changes from complex marginal-marine
deposits at the base to marine wave-dominated shoreface succession at the top. The
uppermost parasequence is a wave-dominated shoreface succession that forms a
continuous and dominant stratigraphic element. The lower marginal-marine deposits are
interpreted to occur within multiple incised-valley fills. The deposional complexity is
caused, in part, by multiple sequence boundaries and nested incised-valley fills.

The subsurface analysis for this Cozzette and Rollins Sandstone members
distinguishes 5 sequence boundaries, expressed as either erosional surfaces or interfluve
expressions. An additional sequence boundary was identified within the Cozzette
Sandstone Member in comparison with the results of Madof’s outcrop study. Sequence
boundaries in this current study delineate 5 depositional sequences of variable thickness
and are identified on each of the four cross-sections. The depositional sequences are all
similar with proximal incised-valley fill on the west passing to marine shoreface and
shelf or offshore deposits to the east. Sequence 1 (CZ,) is the basal sequence. It presents
a nearly constant thickness throughout the study area and contains both marine (distal)
and non-marine (proximal) successions. Sequence 2 (CZ,) and sequence 3 (CZs) thin
depositionally toward the east. They contain both marine and non-marine successions.
Sequence 4 (R;), which thickens slightly and progressively eastward, is marine

dominated. Sequence 5 (Ry) is the youngest and its expression within the Rollins
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Sandstone Member is limited to isolated basal incised-valley fills. The incised-valley
fills are dominated by marine to marginal-marine strata.

Each depositional sequence is composed of incised-valley fills at the base and
proximally and highstand deposits with marine shoreface sandstone at the top and
distally. Incised-valley fills within the CZ;, CZ; and CZ; (IVF-1, IVF-2, and IVF-3) are
nested and form important stratigraphic elements. The incised-valley fill of the
uppermost part of the Cozzette Sandstone Member (IVF-3; CZ3) is the most extensive
laterally because it occurs in both western and eastern extents of the study area. The
incised-valley fill (IVF-4) of sequence R; is thinner, less extensive than that of CZ;-CZs,
and is limited to the extreme western extent of the study area where it overlaps with
incised-valley fill (IVF-3). The incised-valley fill (IVF-5) is also thinner and crosses
sections in separate places, extending to the central part of the study area.

Depositional sequences CZ;-CZ3 show a retrogradational stacking pattern.
Sequence R; does not follow this pattern and builds basinward. The youngest sequence
R, is incomplete and its stacking relationship with the underlying sequence R; is unclear
within the study interval. The stratigraphic limit between the Cozzette and the Rollins
Sandstone members may lie at the turnaround from the retrogradational sequences (CZ;
through CZ3) and the overlying progradational sequence (R;). The turnaround is a major
turning point from retrogradational to progradational staking and coincides with a
maximum flooding surface. In outcrop areas, the stratigraphic limit should be located at
the top of both incised-valley fill and marine strata that exhibit the most limited lateral
extent throughout the Piceance basin (subsurface data) because flooding events

(transgressions) trap sediment and prevent it from being transported to the shelf.
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The lowstand and transgressive systems tracts occur in the basal incised-valley fill
within each sequence. All incised-valley fills present a basinward-thinning wedge.
Basinward, the incised-valley fill consists of mainly electrofacies 2, and is overlain by an
upward-fining trend associated with rocks of electrofacies 6 and 7. Landward, the
incised valleys are nested and show highly variable log patterns that reflect complex
marginal marine deposits. The complexity inhibits differentiation into systems tracts.
The highstand systems tract occurs in the upper part of each depositional sequence and is
the most prevalent basinward. The stratigraphic signature of highstand systems tract is
presented by the funnel-shaped pattern on well logs (electrofacies 1, 3 and 4), which

indicates a progradational, upward-coarsening succession.
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