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Abstract

Anisotropic diffusion problems arise in many fields of science and engineering and are

modeled by partial differential equations (PDEs) or represented in variational formu-

lations. Standard numerical schemes can produce spurious oscillations when they are

used to solve those problems. A common approach is to design a proper numerical

scheme or a proper mesh such that the numerical solution satisfies discrete maximum

principle (DMP). For problems in variational formulations, numerous research has been

done on isotropic mesh adaptation but little work has been done for anisotropic mesh

adaptation.

In this dissertation, anisotropic mesh adaptation for the finite element solution of

anisotropic diffusion problems is investigated. A brief introduction for the related top-

ics is provided. The anisotropic mesh adaptation based on DMP satisfaction is then

discussed. An anisotropic non-obtuse angle condition is developed which guarantees

that the linear finite element approximation of the steady state problem satisfies DMP. A

metric tensor is derived for use in mesh generation based on the anisotropic non-obtuse

angle condition. Then DMP satisfaction and error based mesh adaptation are combined

together for the first time.

For problems in variational formulations, two metric tensors for anisotropic mesh

adaptation and one for isotropic mesh adaptation are developed. For anisotropic mesh

adaptation, one metric tensor (based on Hessian recovery) is semi-a posterior and the
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other (based on hierarchical basis error estimator) is completely a posterior. The metric

tensor for isotropic mesh adaptation is completely a posterior. All the metric tensors

incorporate structural information of the underlying problem into their design and gen-

erate meshes that adapt to changes in the structure.

The application of anisotropic diffusion filter in image processing is briefly dis-

cussed. Numerical examples demonstrate that anisotropic mesh adaptation can signifi-

cantly improve computational efficiency while still providing good quality result. More

research is needed to investigate DMP satisfaction for parabolic problems.

iv



Acknowledgment

I would like to express sincere appreciation to my advisor Professor Weizhang Huang

for his sagacious guidance and inspiring encouragement through out my PhD study in

Mathematics. Without his grateful support, I would never have completed this degree.

I greatly appreciate my committee members Professor Tyrone Duncan, Professor

Jie Han, Professor Erik Van Vleck and Professor Hongguo Xu for their support for my

research and caring about my living. I would also like to thank Professor Margaret

Bayer for her support in my teaching.

Thanks should also go to Ms. Debbie Garcia, Ms. Gloria Prothe, Ms. Kerrie

Brecheisen and Ms. Erinn Barroso for their help with administrative arrangement and

many other things.

I would like to thank my son David Lawrence Li who brings great joy into my life,

my wife Hongjuan Zhou who provides unlimited love and support, and my parents-in-

law who helped taking care of little David during their visit.

Thanks also go to my friends for their help in many ways. The financial support

provided by the National Science Foundation (USA) under Grants DMS-0410545 and

DMS-0712935 is also highly appreciated.

v



Table of Contents

Abstract iii

Acknowledgment v

Some Notations viii

1 Introduction 1

1.1 Anisotropic diffusion problems . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Plasma physics . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Petroleum engineering . . . . . . . . . . . . . . . . . . . . . . 8

1.1.3 Image processing . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Variational problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Anisotropic mesh adaptation through metric specification . . . . . . . . 17

1.4 Finite element approximation . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Discrete maximum principle (DMP) . . . . . . . . . . . . . . . . . . . 23

1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 An anisotropic non-obtuse angle condition for DMP satisfaction 28

2.1 Anisotropic non-obtuse angle condition . . . . . . . . . . . . . . . . . 29

2.2 Metric tensor based on DMP satisfaction . . . . . . . . . . . . . . . . . 36

2.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vi



2.4 Conclusions and comments . . . . . . . . . . . . . . . . . . . . . . . . 42

3 DMP satisfaction and mesh adaptivity 48

3.1 Metric tensor based on both DMP satisfaction and mesh adaptivity . . . 49

3.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Conclusions and comments . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Variational formula for anisotropic mesh adaptation 69

4.1 Metric tensor for anisotropic mesh adaptation . . . . . . . . . . . . . . 70

4.2 Metric tensor for isotropic mesh adaptation . . . . . . . . . . . . . . . 79

4.3 Error estimation based on hierarchical bases . . . . . . . . . . . . . . . 82

4.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Conclusions and comments . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Application in Image Processing 111

5.1 Anisotropic diffusion in image processing . . . . . . . . . . . . . . . . 111

5.2 Anisotropic mesh adaptation in image processing . . . . . . . . . . . . 113

5.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4 Conclusions and comments . . . . . . . . . . . . . . . . . . . . . . . . 117

6 Summary and future research topics 126

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2 Future research topics . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

vii



Some Notations

If not defined otherwise, the following notations are used throughout this dissertation.

Ω : domain, a connected polygon or polyhedron;

Th : a triangulation of Ω;

K : a mesh element;

|K| : the volume of element K;

DK : the diffusion matrix on element K after applying numerical quadrature;

FK : affine mapping from reference element to K;

M : = M(xxx), the metric tensor used for mesh generation;

MK : =
1
|K|

∫
K

M(xxx)dxxx, the average of metric on element K;

ρK : =
√

det(MK);

N : number of elements in the mesh;

Nv : number of vertices in the mesh;

αh : regularization parameter to prevent MK from being singular.
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Chapter 1

Introduction

Anisotropic diffusion problems arise in many fields of science and engineering such

as plasma physics, petroleum engineering, and image processing. Some problems are

modeled by partial differential equations (PDEs) and others are represented naturally

in variational formulations.

A common feature of anisotropic diffusion problems is the heterogeneity and anisotropy

of the diffusion coefficient, which varies with location (heterogeneity) and direction

(anisotropy). When standard numerical methods are used to solve those problems, spu-

rious oscillations may occur in the computed solution and can cause problems in the

sequential computation. A common approach to avoiding this difficulty is to design a

proper numerical scheme and/or a proper mesh so that the numerical solution validates

the discrete counterpart of the maximum principle (DMP) satisfied by the continuous

solution. For variational problems, it is desirable for the mesh to retain the properties

of the materials or structure of the underlying problem.

On the other hand, mesh adaptation has become an imperative tool for use in numer-

ical solution of PDEs and variational problems. It has been amply demonstrated that

anisotropic mesh adaptation can significantly improve computational efficiency over

isotropic mesh adaptation, especially for problems with strong anisotropic features.
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In this dissertation, we study anisotropic mesh adaptation for the finite element

solution of anisotropic diffusion problems. Problems in both PDE and variational forms

are considered. A prototype PDE model for the steady state diffusion problems is given

by

−∇ · (D∇u) = f , in Ω (1.1)

subject to the Dirichlet boundary condition

u(xxx) = g(xxx), on ∂Ω (1.2)

where Ω⊂Rd (d = 1,2, or 3) is the physical domain, f and g are given functions, and

D=D(xxx) is the diffusion matrix assumed to be symmetric and strictly positive definite

on Ω.

The variational form of (1.1) is

I[u] =
∫

Ω

(
1
2

∇u ·D∇u− f u
)

dxxx, ∀u ∈Ug (1.3)

where Ug is the set of functions satisfying the Dirichlet boundary condition (1.2).

Although only the Dirichlet boundary condition is considered in this dissertation,

mixed boundary conditions can be treated without major modification.

The boundary value problem (BVP) (1.1) and (1.2), or (1.3) and (1.2) becomes

a heterogeneous anisotropic diffusion problem when D changes with location and its

eigenvalues are not all equal at least on a portion of Ω.

When the anisotropy is significant, spurious oscillation and numerical dissipation

may occur in the computed solution. Existing research shows that the alignment of

mesh elements along the fast diffusion direction helps reduce the numerical dissipation.

However, it is very difficult to align the elements, especially when D is heterogeneous.
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On the other hand, tremendous research has been done to improve the satisfaction of

discrete maximum principle (DMP), either by designing a proper numerical scheme or

a better mesh. A well-known mesh condition is the “non-obtuse angle condition” by

Ciarlet and Raviart [39], which guarantees the linear finite element solution to satisfy

DMP for isotropic diffusion problems. For anisotropic diffusion problems, however,

none of the existing research can guarantee the satisfaction of DMP.

In this dissertation, we develop the so-called anisotropic non-obtuse angle condition

for the finite element solution of heterogeneous anisotropic diffusion problems, which

guarantees the DMP satisfaction. The condition is a generalization of the well known

non-obtuse angle condition. Several variants of the new condition are obtained for

convenience of mesh adaptation.

For variational problems, numerous research has been done on isotropic mesh adap-

tation for the finite element solution. However, little work has been done on anisotropic

mesh adaptation. In this dissertation, a bound for the first variation is derived and a

formula for the metric tensor is defined for use in anisotropic mesh adaptation.

In the next few sections, we give a brief introduction of the background for related

topics including anisotropic diffusion problems, variational problems, anisotropic mesh

adaptation, finite element approximation and discrete maximum principle (DMP). The

outline of this dissertation is given in §1.6.

1.1 Anisotropic diffusion problems

Anisotropic diffusion problems arise in various areas of science and engineering includ-

ing plasma physics in fusion experiments and astrophysics [67, 68, 69, 99, 110, 113],

petroleum reservoir simulation [1, 2, 43, 55, 97], and image processing [36, 37, 87,
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98, 102, 123]. Brief descriptions for problems in those three areas are given in the

following subsections.

1.1.1 Plasma physics

Plasma is a macroscopically neutral gas which consists of free electrons and ions. It is

often called the fourth state of matter. The positive and negative charges can move in-

dependently and respond strongly to electromagnetic fields, which causes the properties

of the plasma in the direction parallel to the magnetic field to be different from those

perpendicular to it. In this sense, magnetized plasma (plasma with a strong magnetic

field) are anisotropic.

Magnetohydrodynamics (MHD) is commonly used to describe the behavior of mag-

netized plasmas. The set of equations which describe MHD is a combination of the

Navier-Stokes equations of fluid dynamics and Maxwell’s equations of electromag-

netism, which have to be solved simultaneously. But using operator splitting, heat con-

duction equation can be evolved independently of the MHD equations [100]. Hence,

some researchers consider only the heat conduction equation and focus on important

issues such as monotonicity and pollution of perpendicular heat flux.

The heat flux in plasma contains contributions from two parts. One part is from

electron motions moving primarily along magnetic field lines, and the other part arises

due to particle collisions driving cross-field diffusion. Heat flows primarily along the

field lines with little conduction in the perpendicular direction. Let χ‖ and χ⊥ denote

the heat conductivity coefficient parallel and perpendicular to the magnetic field line,

respectively. Then χ‖ is much larger than χ⊥ in magnetized plasmas [113, 99, 110]. In

fusion experiments, the ratio χ‖/χ⊥ can exceed 1010 [69].
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The general heat conduction equation for the plasma is in the following form:

∂e
∂ t

= −∇ ·qqq+Q, (1.4)

qqq = −n
[
χ‖bbbbbbT +χ⊥(I−bbbbbbT )

]
∇T, (1.5)

where e is the internal energy per unit volume, qqq is the heat flux, Q is the heat source,

n is the number density (i.e., the average number of particles per unit volume), T ≡

(γ−1)e/n is the temperature with γ = 5/3 as the ratio of specific heats for an ideal gas,

and bbb is the unit vector along the magnetic field line. Generally speaking, n may vary in

space and time, but in many studies, n is considered as uniformly distributed and taken

as constant (e.g. n = 1).

As can be seen from the definition of the heat flux qqq (1.5), the problem (1.4) is an

anisotropic diffusion problem with significant anisotropy due to the large ratio χ‖/χ⊥.

One goal in the plasma physics research is to control the thermonuclear fusion

power by magnetic confinement or inertial confinement. In toroidal magnetic con-

finement, the magnetic coils are arranged to produce a toroidal field, and additional

poloidal magnetic field inside the cross section of the torus is applied to suppress insta-

bility due to charge separation. The net magnetic field line is helically twisted as shown

in Fig. 1.1.

The most advanced toroidal confinement system is the tokamak. The plasma current

is driven in pulses along the toroidal direction by magnetic induction using the electric

transformer method and produces the poloidal component of the helical magnetic field.

The poloidal magnetic field produced by the plasma current inside the plasma ring is

stronger than that outside the plasma ring. For the tokamak equilibrium, a vertical field

is added to reduce the poloidal field inside the ring and to increase the poloidal field

outside the ring. Fig. 1.2 shows a schematic of ITER (International Thermonuclear
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Figure 1.1: Schematic of ITER-8, from http://www.laetusinpraesens.org/iter/iter8.php

Energy Reactor), which is currently under construction and will be the largest tokamak

in the world.

The hot plasma is confined and isolated from the relatively cold vessel walls so that

the energy can be retained for as long as possible. The vacuum vessel is not in contact

with the plasma and acts as the first safety confinement barrier [96]. Fig. 1.3 shows a

sketch of the energy flow in a plasma.

In laboratory plasmas, the ratio of parallel and perpendicular conduction coeffi-

cients is very high (χ‖/χ⊥ ∼ 1010). If an improper scheme is used, the numerical dissi-

pation in the perpendicular direction may swamp the true perpendicular diffusion. One

way to solve the problem is to align the coordinate along the field direction. However,

it is very difficult and also expensive to align the coordinate in computations, especially

when the plasma is also heterogeneous. Moreover, spurious solution (e.g., negative

temperature) may occur which may lead to imaginary sound speed and cause problems

in sequential computations.
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Figure 1.2: Schematic of ITER, from http://www.iter.org

Therefore, the numerical simulation of the heat conduction of plasmas must not

only produce a physically meaningful temperature distribution but also avoid excessive

numerical dissipation in the directions perpendicular to the magnetic field. Numerous

research has been done in these topics. For example, Sharma and Hammett ([110])

showed that standard algorithms for anisotropic diffusion based on centered asymmetric

and symmetric differencing do not preserve monotonicity. They applied slope limiters

to modify the heat flux to avoid negative temperature. Günter et al. applied symmetric

finite difference schemes ([69]) and a finite element scheme ([68, 67]) for unaligned

coordinates to reduce the pollution of perpendicular numerical diffusion.
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Figure 1.3: Energy flow of ions and electrons in a plasma. Bold arrows: thermal con-
duction (χ). White arrows: convective loss (D). Dashed arrows: radiation loss (R).
Dot-dashed arrows: charge exchange loss (CX). (from [96])

1.1.2 Petroleum engineering

Another important field exhibiting anisotropic diffusion is Petroleum Engineering. A

great deal of oil and gas are produced everyday but it still cannot meet the world’s

demand. Besides reservoirs in simple geologic formations, a large amount of oil and

gas reservoirs in complicated geologic formations and deep seabeds have been explored

and put in production. A major topic in oil and gas production is on fluid flow in

porous media in geologic formations. A porous medium is a material permeated by an

interconnected network of pores which are typically filled with a fluid (liquid or gas).

Fig. 1.4 shows a sketch of a porous medium.

One of the major tasks of petroleum engineering is to produce crude oil or natural

gas which is stored in the porous media in geologic formations. The flow of liquid

(water, crude oil, or gas) in the reservoir rock depends on the properties of the rock

including porosity, permeability, adhesion and reaction with the fluid.
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Figure 1.4: Sketch of a porous medium.

Porosity is the ratio of the pore space in a rock to the total volume of the rock.

Some of these pores are isolated, while others are interconnected. The ratio of volume

of interconnected pores to total volume of the rock is called effective porosity since

only the fluid from interconnected pores can be produced out. In this sense, porosity is

a measure of the capacity of the reservoir rock to store producible fluids in its pores.

Permeability is the capacity of a porous medium to transmit fluids through its inter-

connected pores. If the medium is saturated with a single liquid phase, the capacity is

called absolute permeability (or permeability). If more than one phase of liquid exist

in the medium, the observed permeability by the porous medium to one fluid phase is

called the effective permeability to the particular liquid phase. Permeability changes

with location, and even at the same location, may depend on the flow direction.

If one of the properties (porosity or permeability) is independent of location, the

reservoir rock is called homogeneous in that property; otherwise, the rock is called

heterogeneous in that property. If one property is independent of directions, the porous

medium is called isotropic in that property; otherwise, it is called anisotropic and the
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property shows a directional bias. For example, a reservoir can be homogeneous in

porosity but heterogeneous in permeability.

The relation between the flux and pressure gradient for a single phase flow in a

porous medium is described by Darcy’s law as follows.

qqq =−KKK
µ

∇p,

where qqq is flux, KKK is the permeability tensor, µ is the viscosity, and ∇p is the pressure

gradient.

Combining Darcy’s law and the mass-conservation equation yields the single phase

flow equation

C
∂ p
∂ t

= ∇ ·
(

KKK
µ

∇p
)
+Q, (1.6)

where C is the compression coefficient, Q is the source (e.g., oil production rate) and

the fluid is assumed to be slightly compressible. In the steady state case, the equation

becomes

∇ ·
(

KKK
µ

∇p
)
= 0.

Ignoring the capillary pressure and gravity force and assuming that water and oil

are not miscible and incompressible, a simplified two-phase (crude oil and water) flow

under constant temperature is described by

φ
∂So

∂ t
= ∇ ·

(
KKK0

µo
∇p
)
+Qo,

φ
∂Sw

∂ t
= ∇ ·

(
KKKw

µw
∇p
)
+Qw, (1.7)

So +Sw = 1,
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where φ is the porosity, So and Sw are the saturations of oil and water, respectively,

KKK0 and KKKw are the relative permeabilities of oil and water, respectively, µo and µw are

viscosities of oil and water, respectively; Qo and Qw are oil production rate and water

injection rate, respectively.

In geological formation, the permeability in vertical direction is usually much less

than that in horizontal direction in reservoir rocks. Many oil reservoirs contain natural

fractures, which have much higher permeability than general reservoir rocks. Hence,

problem (1.6) or (1.7) is typically an isotropic diffusion problem.

1.1.3 Image processing

The third field of anisotropic diffusion is image processing. Image processing is a tech-

nique of signal processing for which the input is an image. The technique includes

mathematical operations which are applied to the image data in order to improve the

visual appearance (enhancement or restoration) or reveal key features and structures

(shape recognition or object detection) of the image. Image processing has a variety

of field applications [65] such as medicine, biology, astronomy, morphology, light mi-

croscopy, and remote sensing.

A traditional method in image processing is accomplished by a simple transforma-

tion usually performed by convolution with a filter function, which can hardly satisfy

some mathematical axioms required by the procedure. On the other hand, the image

processing methods based on partial differential equations (PDEs) are suitable to meet

the axioms and provide some advantages. PDE-based image processing techniques are

widely used for smoothing, restoration, segmentation, and recognition.
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The simplest and best investigated PDE method for smoothing images is to apply a

linear diffusion process:

∂tu = ∆u, u(xxx,0) = f (xxx),

which is equivalent to the convolution with a Gaussian kernel [123]. It is difficult for the

linear model to obtain accurately the locations of the edges at coarse scales. The only

way to locate the edges that have been detected at a coarse scale is by tracking across

the scale space to their position in the original image. This technique is complicated

and expensive.

The first PDE formulation of a nonlinear diffusion method was proposed by Perona

and Malik [102] in order to avoid the blurring and localization problems of linear dif-

fusion filtering. An inhomogeneous process is applied to reduce the diffusivity at the

locations which are likely to be edges. The Perona-Malik filter is based on the equation

∂tu = ∇ · (g(|∇u|2)∇u), g(s2) =
1

1+ s2/λ 2 , (1.8)

for some parameter λ > 0. This model provides high quality edge detection. However,

the diffusion coefficient is a scalar (which varies spatially), so it is in fact an heteroge-

neous but isotropic model, and the flux jjj =−g∇u is always parallel to ∇u.

In certain applications, it is desirable to bias the flux towards the orientation of

interesting features. Then an anisotropic diffusion tensor has to be applied. The general

form is

∂tu = ∇ · (D∇u)+β ( f −u), (1.9)

where D(xxx,u,∇u) is a diffusion tensor, β ≥ 0 is a parameter and f is the given (or

observed) image. The diffusion tensor D can be taken differently corresponding to
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various applications and requirements and is anisotropic in general. Hence the problem

(1.9) is an anisotropic diffusion problem.

Nonlinear diffusion filtering is usually performed with explicit schemes, which re-

quires small time step size to be stable. Weickert et al. [124] presented semi-implicit

schemes which are stable for all time step sizes. Some finite element schemes are also

developed, for example, see [10, 11, 12, 51, 106].

A major application of image processing is magnetic resonance imaging (MRI).

The diffusion coefficient is a parameter that directly reflects the molecular diffusion in

the tissues. Molecular diffusion refers to the random translational motion of molecules

that results from the thermal energy carried by these molecules [16]. Since molecular

mobility in tissues may not be the same in all directions, the diffusion is an anisotropic

three-dimensional process. The overall effect observed in a diffusion MRI image voxel

reflects the displacement distribution of the water molecules present within this voxel.

The observation of this displacement distribution may then provide unique clues to the

structure and geometric organization of the tissues. Since 1990s, the diffusion MRI

has been successfully applied to the analysis of brain tissues for some disease and it

provides some patients with the opportunity to receive suitable treatment at a stage

when their brain tissues might still be salvageable.

Anisotropic diffusion models work well in many image processing applications.

The majority of effort focus on designing new continuous PDE models and discussing

their mathematical properties but pay less attention to improving the numerical solu-

tions. If improper numerical schemes are applied, spurious solutions (e.g., image arti-

facts) may occur, especially when heterogeneity and anisotropy are significant. Hence

it is desirable to study the numerical solutions of existing PDE models. Furthermore,

mesh adaptation can be applied to improve efficiency, especially for large scale images

[11, 12, 106].
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1.2 Variational problems

A brief description for variational problems is given in this section. Many anisotropic

diffusion problems are modeled naturally in variational form. The diffusion problems

introduced in PDE form (1.1) can also be casted into the variational form (1.3). A

general variational problem is given by

I[u] =
∫

Ω

F(xxx,u,∇u)dxxx, ∀u ∈Ug (1.10)

where Ω ⊂ Rd (d = 1, 2, or 3) is the physical domain and Ug is the set of functions

satisfying the Dirichlet boundary condition

u(xxx) = g(xxx) on ∂Ω

for a given function g = g(xxx).

One common feature of those problems is that they have a natural variational for-

mulation with which the governing equation can be derived through minimization. In

most cases, variational problems can be transformed into boundary value problems

of PDEs. Methods specially designed for solving PDEs can thus be used for solv-

ing many variational problems. Unfortunately, these methods generally do not take

structural advantages of variational problems in their design. In the context of mesh

adaptation and mesh movement, it has been argued by a number of researchers that

the variational formulation should be used as a natural, compelling optimality criterion

for the design of computational meshes for variational problems; see, among others,

[13, 14, 15, 18, 28, 30, 31, 33, 41, 42, 46, 58, 59, 60, 66, 81, 119].

For example, Felippa [58, 59] proposes a variational principle associated with the

governing equations to select optimal finite elements.
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Delfour et al. [47] study the optimal triangular meshing for a class of linear sec-

ond order elliptic problems using the idea of “speed method”. They provide explicit

expressions for partial derivatives of the associated energy functional with respect to

coordinates, and obtain the best positions of the nodes which minimizes the solution

error in the natural norm associated with the original problem.

Becker and Rannacher [13, 14] develop a “dual-weighted-residual method” for error

control and mesh adaptation for finite element approximations of variational problems.

They employ duality techniques and combine it with Galerkin orthogonality to derive

a posteriori error estimates, which provide the basis of a feedback process for suc-

cessively constructing economical meshes. By this approach, information about some

local quantities of interest can be obtained, which may not be represented by meshes

generated based on global error estimates.

Tourigny and Hülsemann [119] develop a mesh movement strategy with which both

the node and approximate solution are updated by sequentially solving local minimiza-

tion problems derived from the variational formulation of the original problem. A simi-

lar idea has been used in studies of the finite element solution for nonconvex variational

problems [66, 41, 42] and for a relaxed variational problem [60].

Bochev and Lehoucq [18] present the interplay between the algebraic and varia-

tional problems for the pure Neumann problem, and demonstrate that finite element

methods for the pure Neumann problem originate from two optimization settings. One

requires minimization of a quadratic energy functional on a factor space and leads to

singular linear system, and the other involves constrained minimization of a quadratic

functional and leads to an equality-constrained quadratic program.

Some research has been focused on first-order system least squares (FOSLS) meth-

ods for finite element solution of PDEs. In this method, the second-order elliptic

problem L u = f (together with appropriate boundary conditions) is written as a sys-
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tem of first-order PDEs Liu = fi, i = 1, · · · ,M. The resulting FOSLS L2 functional

is
M
∑

i=1
ai‖L〉u− fi‖2, ai > 0. For example, Jiang and Carey in [81] and Carey and

Pehlivanov in [33] use local residuals as the error indicator to develop mesh adaptation

scheme. Berndt, Manteuffel and Mccormick [15] establish a local a posteriori error

estimate that is valid for any FOSLS L2 minimization problem. Cai etc. [28] develops

ellipticity estimates and discretization error bounds for FOSLS, and establish optimal

convergence of multiplicative and additive multigrid algorithms of the discrete systems

in [29]. Later, Cai and Starke study the least-squares methods for linear elasticity (see.

[30, 31]).

It should be pointed out that most of the existing work for the adaptive numerical so-

lution of variational problems employ isotropic meshes for which the size of elements

is allowed to vary from place to place according to some error estimate or indicator

while elements are kept almost equilateral. Although this isotropic mesh adaptation has

been successfully applied to numerous application problems, it has a tendency to con-

centrate too many mesh elements in regions of large solution error. This is especially

true for problems whose solutions exhibit strong anisotropic features. For this type of

problems, computational efficiency can be significantly improved by using a properly

chosen anisotropic mesh for which the size, shape, and orientation of elements all are

allowed to vary. Anisotropic mesh adaptation has been successfully applied to the nu-

merical solution of PDEs, e.g. see [5, 6, 21, 34, 45, 49, 74, 73, 88, 107, 111], but little

work has been done for variational problems. Hence, it is desirable to study anisotropic

mesh adaptation for variational problems.
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1.3 Anisotropic mesh adaptation through metric speci-

fication

It is well-known that mesh adaptation has become an indispensable tool for use in the

numerical solution of partial differential equations and variational problems. Compu-

tational efficiency can be significantly improved by placing more mesh elements in

regions of larger solution error and less elements in regions of smaller error [8, 26, 32,

64, 80, 118].

When the adaptive finite element solution is concerned, the mesh Th is generated

according to the behavior of the error in the approximation uh. In this dissertation, the

so-called M-uniform mesh approach is taken [75, 80], with which an adaptive mesh

is generated as a uniform mesh in the metric specified by a strictly positive definite

tensor M = M(xxx). Such a mesh will hereafter be called an M-uniform mesh. In this

approach a scalar metric tensor (i.e. the product of a scalar function with the identity

matrix) will lead to an isotropic mesh, while a full metric tensor will generally result in

an anisotropic mesh. In this sense, the mesh generation procedure is the same for both

isotropic and anisotropic mesh generation in this approach.

The key to the approach of mesh adaptation is to specify the metric tensor M and to

generate M-uniform meshes for a given M. The second task can be achieved using var-

ious meshing strategies. Indeed, a number of algorithms and computer codes have been

developed in the last decade for generating M-uniform meshes for a given M. Exam-

ples include the Delaunay-type triangulation method [19, 20, 34, 101], the advancing

front method [63], the bubble mesh method [126], the method combining local modifi-

cation with smoothing or node movement [70, 4, 21, 49, 109], and the computer code

BAMG (Bidimensional Anisotropic Mesh Generator) developed by Hecht [71] using

the Delaunay-type triangulation method [34]. On the other hand, a number of strategies
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have been developed for specifying the metric tensor M; e.g. see [19, 20, 34, 61, 74].

Particularly, formulas for M based on the Hessian of the physical solution are used

in [19, 20, 34], largely motivated by the results of D’Azevedo [44] and D’Azevedo

and Simpson [45] on linear interpolation for quadratic functions on triangles. Several

formulas for the metric tensor are developed in [74] based on interpolation error on

simplicial elements.

An iterative procedure for solving PDEs is shown in Fig. 1.5. In our computa-

tion, each run is stopped after ten iterations. We have found that there is very little

improvement in the computed solution after ten iterations for all the examples con-

sidered. A new mesh is generated using the computer code BAMG (bidimensional

anisotropic mesh generator) developed by Hecht [71] based on a Delaunay-type trian-

gulation method [34]. The code allows the user to supply his/her own metric tensor

defined on a background mesh. In our computation, the background mesh has been

taken as the most recent mesh available.

iteration

Given a mesh Solve PDE
Compute metric

tensor M

Generate
new mesh

according to M

Figure 1.5: An iterative procedure for numerically solving PDE using M-uniform mesh
approach.

It is shown in [75, 80] that when the reference element K̂ is taken to be equilateral

and unitary in volume, a simplicial M-uniform mesh Th for a given M = M(xxx) satisfies

ρK|K| =
σh

N
, ∀K ∈Th (1.11)

1
d

tr
(
(F ′K)

T MKF ′K
)

= det
(
(F ′K)

T MKF ′K
) 1

d , ∀K ∈Th (1.12)
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where |K| denotes the volume of K, N is the number of mesh elements, FK is the affine

mapping from K̂ to K, F ′K is the Jacobian matrix of FK , and

MK =
1
|K|

∫
K

M(xxx)dxxx, ρK =
√

det(MK), σh = ∑
K∈Th

ρK|K|. (1.13)

Condition (1.11), referred to as the equidistribution condition, determines the size of

K from ρK . The larger ρK is, the smaller |K| is. On the other hand, (1.12), called the

alignment condition, characterizes the shape and orientation of K in the sense that the

principal axes of the circumscribed ellipsoid of K are parallel to the eigenvectors of MK

while their lengths are reciprocally proportional to the square roots of the respective

eigenvalues [75].

The focus of this dissertation is to develop and specify metric tensors for finite ele-

ment approximation of anisotropic diffusion problems and variational problems. More

details are discussed in later chapters.

1.4 Finite element approximation

The finite element method is a popular discretization method used to find approximate

solutions for differential or integral equations arising from engineering and science. A

given domain is decomposed into a collection of subdomains (or elements) and the gov-

erning equation is approximated over each subdomain. Then all elements are assembled

using the relationships among them to obtain the solution to the whole domain.

Compared to other discretization methods such as the finite difference method and

the finite volume method, the finite element method has some advantages including

good mathematical foundation and flexible domain approximation (cf. [82, 54, 25, 108,

122]). For example, when the boundary of the geometric domain is complicated, it is
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hard to use rectangular grids in the finite difference method to approximate the domain

accurately. In this dissertation, finite element method is the only chosen discretization

method.

Consider the linear finite element solution of BVP (1.1) and (1.2). Assume that Ω

is a connected polygon or polyhedron and an affine family of simplicial triangulations

{Th} is given thereon. Let

Ug = {v ∈ H1(Ω) | v|∂Ω = g}.

Denote by Uh
gh
⊂Ugh the linear finite element space associated with mesh Th, where gh

is a linear approximation of g. Then a linear finite element solution ũh ∈Uh
gh

to BVP

(1.1) and (1.2) is defined by

∫
Ω

(∇vh)T D∇ũhdxxx =
∫

Ω

f vhdxxx, ∀vh ∈Uh
0 . (1.14)

This equation can be rewritten as

∑
K∈Th

∫
K
(∇vh)T D∇ũhdxxx = ∑

K∈Th

∫
K

f vhdxxx, ∀vh ∈Uh
0 . (1.15)

Generally speaking, the integrals in (1.15) cannot be carried out analytically, and nu-

merical quadrature is needed. We assume that a quadrature rule has been chosen on the

reference element K̂ for this purpose,

∫
K̂

v(ξ )dξ ≈ |K̂|
m

∑
k=1

ŵkv(b̂k),
m

∑
k=1

ŵk = 1, (1.16)

where ŵk’s are the weights and b̂k’s the quadrature nodes. A 2D example of such

quadrature rules is given by ŵk =
1
3 (k = 1,2,3) and the barycentric coordinates (or
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areal coordinates for triangles) of the nodes (1
6 ,

1
6 ,

2
3 ), (1

6 ,
2
3 ,

1
6 ), and (2

3 ,
1
6 ,

1
6 ). And a 3D

example is ŵi =
1
4 (i= 1,2,3,4) and the barycentric coordinates of the nodes (a,a,a,1−

3a), (a,a,1−3a,a), (a,1−3a,a,a), and (1−3a,a,a,a) with a = 5−
√

5
20 ; e.g., see [54].

Let FK be the affine mapping from K̂ to K such that K = FK(K̂), and denote bK
k =

FK(b̂k), k = 1, · · · ,m. Upon applying (1.16) to the integrals in (1.15) and changing

variables, the finite element approximation problem becomes seeking uh ∈ Uh
gh

such

that

∑
K∈Th

|K|
m

∑
k=1

ŵk (∇vh|K)T D(bK
k ) ∇uh|K = ∑

K∈Th

|K|
m

∑
k=1

ŵk f (bK
k ) vh(bK

k ), ∀vh ∈Uh
0

(1.17)

where ∇vh|K and ∇uh|K denote the restriction of ∇vh and ∇uh on K, respectively. Note

that we have used in (1.17) the fact that ∇vh|K and ∇uh|K are constant. Letting

DK =
m

∑
k=1

ŵkD(bK
k ), (1.18)

we can rewrite (1.17) into

∑
K∈Th

|K| (∇vh|K)T DK ∇uh|K = ∑
K∈Th

|K|
m

∑
k=1

ŵk f (bK
k ) vh(bK

k ), ∀vh ∈Uh
0 . (1.19)

We now express (1.19) in a matrix form. Denote the numbers of the elements,

vertices, and interior vertices of Th by N, Nv, and Nvi, respectively. Assume that the

vertices are ordered in such a way that the first Nvi vertices are the interior vertices.

Then Uh
0 and uh can be expressed as

Uh
0 = span{φ1, · · · ,φNvi} (1.20)
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and

uh =
Nvi

∑
j=1

u jφ j +
Nv

∑
j=Nvi+1

u jφ j, (1.21)

where φ j is the linear basis function associated with the j-th vertex, aaa j. Note that the

boundary condition (1.2) can be approximated by

u j = g j ≡ g(aaa j), j = Nvi +1, ...,Nv. (1.22)

Substituting (1.21) into and taking vh = φi (i = 1, ...,Nvi) in (1.19) and combining the

resulting equations with (1.22), we obtain the linear algebraic system

Auuu = fff , (1.23)

where

A =

 A11 A12

0 I

 , (1.24)

I is the identity matrix of size (Nv−Nvi), and

uuu = (u1, ...,uNvi,uNvi+1, ...,uNv)
T ,

fff = ( f1, ..., fNvi,gNvi+1, ...,gNv)
T .

The entries of the stiffness matrix A and the right-hand-side vector fff are given by

ai j = ∑
K∈Th

|K| (∇φi|K)T DK ∇φ j|K, i = 1, ...,Nvi, j = 1, ...,Nv, (1.25)

fi = ∑
K∈Th

|K|
m

∑
k=1

ŵk f (bK
k ) φi(bK

k ), i = 1, ...,Nvi. (1.26)
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Recall that (1.23) and (1.24) have been obtained under the Dirichlet boundary condition

(1.2). It is not difficult to show that a linear system in the same form can be obtained

for mixed boundary conditions provided that ΓD 6= /0, with ΓD being the part of the

boundary where the Dirichlet condition is imposed. Therefore, the mesh conditions

developed in this dissertation also work for mixed boundary conditions with ΓD 6= /0.

1.5 Discrete maximum principle (DMP)

BVP (1.1) and (1.2) is a representative example of anisotropic diffusion problems which

satisfies the (continuous) maximum principle

max
xxx∈Ω∪∂Ω

u(xxx)≤max{0,max
sss∈∂Ω

g(sss)} (1.27)

provided that f (xxx) ≤ 0 holds for all xxx ∈ Ω. When a standard numerical method, such

as a finite element, a finite difference, or a finite volume method, is used to solve the

problem, spurious oscillations can occur in the computed solution.

The numerical solution of BVP (1.1) and (1.2) has been studied extensively in the

past, and a major effort has been made to avoid spurious oscillations in the numerical

solution. A common strategy is to develop numerical schemes satisfying the discrete

counterpart of (1.27) – the so-called discrete maximum principle (DMP), which are

known to produce numerical solutions free of spurious oscillations [38, 121]. The stud-

ies can be traced back to early works by Varga [121], Ciarlet [38], Ciarlet and Raviart

[39], and Stoyan [114, 115], where a number of sufficient conditions in a general and

abstract setting are obtained for a class of linear elliptic partial differential equations

(PDEs). For example, denote by Auuu = fff the linear algebraic system resulting from the

application of a numerical scheme to a linear elliptic PDE supplemented with a Dirich-
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let boundary condition, where A is the n×n stiffness matrix, uuu is the unknown vector,

and fff the right-hand-side vector. Then, a sufficient condition is given as follows.

Lemma 1.5.1. ([115]) If the stiffness matrix A satisfies

(a) that A is monotone with A(−) being nonsingular, or singular but irreducible; and (1.28)

(b) that A(−)eee(n) ≥ 0, (1.29)

then the numerical scheme satisfies DMP.

Here, matrix A is said to be monotone if A is nonsingular and A−1 ≥ 0 (i.e., all

entries of A−1 are non-negative), and A(−) and eee(n) are defined as

a(−)i j =


aii, for i = j

ai j, for i 6= j, ai j ≤ 0

0, for i 6= j, ai j > 0

, eee(n) =


1
...

1

 . (1.30)

Note that condition (1.29) is equivalent to that A(−) has nonnegative row sums. More-

over, A = A(−) and the condition (1.28) holds when A is an M-matrix [120]. From

Lemma 1.5.1 we have the following lemma.

Lemma 1.5.2. If the stiffness matrix A is an M-matrix and has nonnegative row

sums, then the numerical scheme satisfies DMP.

Numerical schemes satisfying DMP have been developed along the line of those

sufficient conditions by either designing a proper discretization for the underlying PDE

or employing a suitable mesh. To date most success has been made for the isotropic

diffusion case where D is in the scalar matrix form, D= a(xxx)I, with a(xxx) being a scalar

function; e.g., see [23, 27, 39, 84, 85, 86, 90, 91, 116, 125]. In particular, it is shown
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in [23, 39] that the linear finite element method (FEM) satisfies DMP when the mesh

is simplicial and satisfies the so-called non-obtuse angle condition requiring that the

dihedral angles of all mesh elements be non-obtuse. In two dimensions this condition

can be replaced by a weaker condition (the Delaunay condition) that the sum of any

pair of angles opposite a common edge is less than or equal to π [91, 116]. Similar

mesh conditions are developed in [84, 85, 86, 90] for elliptic problems with a nonlinear

diffusion coefficient in the form D= a(xxx,u,∇u)I and with mixed boundary conditions.

Burman and Ern [27] propose a nonlinear stabilized Galerkin approximation for the

Laplace operator and prove that it satisfies DMP on arbitrary meshes and for arbitrary

space dimension without resorting to the non-obtuse angle condition.

On the other hand, the anisotropic diffusion case is more difficult and only limited

success has been made [43, 50, 67, 68, 69, 89, 103, 104, 105, 93, 94, 95, 97, 110].

For example, Drǎgǎnescu et al. [50] show that the non-obtuse angle condition fails to

guarantee DMP satisfaction in the anisotropic diffusion case. The techniques proposed

by Liska and Shashkov [95] and Kuzmin et al. [89] to locally modify (or repair) the un-

derlying numerical scheme, by Sharma and Hammett [110] to employ slope limiters in

the discretization of the PDE, by Mlacnik and Durlofsky [97] to optimize the mesh for

a multipoint flux approximation (MPFA) finite volume method (e.g., see [1, 2] for the

method), and by Li et al. [93] to optimize a triangular mesh for the finite element so-

lution, help reduce spurious oscillations. A nonlinear, first order finite volume method

developed by Le Potier [103, 104] and further improved by Lipnikov et al. [94] gives

rise to a stiffness M-matrix on arbitrary meshes when applied to parabolic PDEs but

fails to satisfy DMP when applied to steady-state elliptic problems. A first order finite

difference method having similar features is proposed by Le Potier [105].
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1.6 Outline

In the above sections of this chapter, we have given a brief introduction of the back-

ground of related topics in this dissertation, including anisotropic diffusion problems,

variational problems, anisotropic mesh adaptation, finite element approximation and

discrete maximum principle (DMP). This section gives an outline of the following

chapters.

Chapter 2 discusses the DMP satisfaction for the linear finite element approxima-

tion of BVP (1.1) and (1.2). The “anisotropic non-obtuse angle condition” and several

variants are derived which guarantee the satisfaction of DMP. The metric tensor based

on the anisotropic non-obtuse angle condition is derived to account for DMP satisfac-

tion. Examples are given to demonstrate the successful application of the derived metric

tensor.

In Chapter 3, mesh adaptation based on both DMP satisfaction and interpolation

error estimate is addressed, and an optimal metric tensor is obtained by minimizing an

interpolation error bound. Numerical examples are presented to show the advantage of

the combination.

Chapter 4 discusses anisotropic mesh adaptation for variational problems (1.10).

A bound for the first variation of a general functional is derived. A formula for the

metric tensor for use in anisotropic mesh adaptation is defined such that the bound is

minimized on an M-uniform mesh. Numerical examples are given to demonstrate the

feature that the resulting mesh also adapts to changes in the structure of the underlying

problem.

Chapter 5 discusses the application of anisotropic mesh adaptation in image pro-

cessing. The advantage of anisotropic mesh adaptation is demonstrated and DMP sat-

isfaction is discussed.
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Chapter 6 summarizes the obtained results from this study and discusses further

research interests.
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press)([78]).

• X. Li and W. Huang, An anisotropic mesh adaptation method for the finite ele-

ment solution of heterogeneous anisotropic diffusion problems. J. Comput. Phys.

229 (2010), 8072-8094 ([92]).

• W. Huang and X. Li, An anisotropic mesh adaptation method for the finite ele-
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Chapter 2

An anisotropic non-obtuse angle condition for DMP

satisfaction

In this chapter we study the linear finite element solution of BVP (1.1) and (1.2) with a

general diffusion matrix D= D(xxx).

Firstly, we develop a generalization of the well known non-obtuse angle condition,

the so-called anisotropic non-obtuse angle condition, so that the linear finite element

approximation satisfies DMP when the mesh is simplicial and satisfies this condition.

Then we derive a metric tensor for use in mesh generation based on the anisotropic

non-obtuse angle condition. This is done by adopting the so-called M-uniform mesh

approach (cf. §1.3) where an anisotropic mesh is generated as a uniform mesh in the

metric specified by a tensor M. M-uniform meshes generated with the metric tensor

satisfy the anisotropic non-obtuse angle condition and are aligned with the diffusion

matrix D in the sense that the principal axes of the circumscribed ellipsoid of the ele-

ments are parallel to the primary diffusion direction of D.
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2.1 Anisotropic non-obtuse angle condition

Following the notation in §1.4, we now study under what mesh conditions the scheme

(1.23) satisfies DMP. Our basic tool is Lemma 1.5.2, i.e., we show that A is an M-matrix

and has non-negative row sums when the mesh satisfies the condition (2.5) below. To

this end, we first introduce some notation.

Denote the vertices of K by aaaK
1 ,aaa

K
2 , · · · ,aaaK

d+1. The edge matrix of K is defined as

EK = [aaaK
2 −aaaK

1 , aaaK
3 −aaaK

1 , · · · , aaaK
d+1−aaaK

1 ].

From the definition of simplices, EK is nonsingular [112]. Then, as shown in Fig. 2.1,

a set of qqq-vectors can be defined as

[qqqK
2 , qqqK

3 , · · · , qqqK
d+1] = E−T

K , qqqK
1 =−

d+1

∑
i=2

qqqK
i . (2.1)

This set of vectors has the following properties.

(i) By definition, it follows that

qqqK
i · (aaaK

j −aaaK
1 ) = δi j,

qqqK
1 · (aaaK

j −aaaK
i ) = δ1 j,

i = 2, · · · ,d +1; j = 1, · · · ,d +1 (2.2)

where δi j is the Kronecker delta function.

(ii) Denote by SSSK
i the face opposite to vertex aaaK

i (i.e., the face not having aaai as a

vertex). Then (2.2) implies that qqqK
i is the inward normal to the face SSSK

i ; see Fig.

2.1.

(iii) The dihedral angle, αi j, between any two faces SSSK
i and SSSK

j (i 6= j) is defined as

the supplement of the angle between the inward normals to the faces. It can be
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calculated by

cos(αi j) =−
qqqK

i ·qqqK
j

‖qqqK
i ‖ ‖qqqK

j ‖
, i 6= j. (2.3)

(iv) It is known [22, 90] that, for any vertex of K with the global and local indices i

and iK , respectively, there holds

∇φi|K = qqqK
iK . (2.4)

x

y

aaa1 aaa2

aaa3

α β

qqq3

qqq1
qqq2

Figure 2.1: A sketch of the qqq vectors for an arbitrary element. The angles sharing the
edge connecting vertices aaa1 and aaa2 are α and β .

The main result of this section is stated in the following theorem.

Theorem 2.1.1. If the mesh satisfies the anisotropic non-obtuse angle condition

(qqqK
i )

T DK qqqK
j ≤ 0, ∀i 6= j, i, j = 1,2, ...,d +1, ∀K ∈Th (2.5)

then the linear finite element scheme (1.19) for solving BVP (1.1) and (1.2) satisfies

DMP.

Proof. We prove this theorem using Lemma 1.5.2. That is, we show that the stiff-

ness matrix A has non-negative row sums and is an M-matrix when the mesh satisfies

condition (2.5).
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(i) We first show that A has non-negative row sums. From (1.24) we only need to

show ∑
Nv
j=1 ai j ≥ 0 for i = 1, ...,Nvi. From (1.25) we have

Nv

∑
j=1

ai j =
Nv

∑
j=1

∑
K∈Th

|K| (∇φi|K)T DK ∇φ j|K

= ∑
K∈Th

|K| (∇φi|K)T DK ∇

(
Nv

∑
j=1

φ j

)∣∣∣∣∣
K

= 0, (2.6)

where we have used the fact that
Nv

∑
j=1

φ j(xxx)≡ 1 for any xxx ∈ K.

(ii) Next we show that

ai j ≤ 0, ∀ i 6= j, i, j = 1, ...,Nv (2.7)

aii ≥ 0, ∀ i = 1, ...,Nv. (2.8)

Let ωi (or ω j) be the patch of the elements containing aaai (or aaa j) as a vertex. Notice

that ∇φi|K = 0 when K /∈ ωi. Denote the local indices of vertices aaai and aaa j on K by

iK and jK , respectively. Then from (1.25), (2.4), and (2.5), we have, for i 6= j, i =

1, ...,Nvi, j = 1, ...,Nv,

ai j = ∑
K∈ωi∩ω j

|K| (∇φi|K)T DK ∇φ j|K

= ∑
K∈ωi∩ω j

|K|(qqqK
iK)

T DK qqqK
jK (2.9)

≤ 0. (2.10)

From (1.24) it is obvious that ai j = 0 for i 6= j, i = Nvi +1, · · ·Nv, j = 1, ...,Nv. Hence,

the off-diagonal entries of A are non-positive.

31



The inequality (2.8) follows immediately from (1.24), (1.25), and the positive defi-

niteness of DK .

(iii) We now show that A11 defined in (1.24) is an M-matrix. Notice that the non-

negativeness of the row sums of A and the properties (2.7) and (2.8) imply that A11 is

diagonally dominant. In theory, we can show that A11 is an M-matrix by proving it is

irreducible [120]. However, we will need to assume that any pair of interior vertices is

connected at least by an interior edge path [50]. To avoid this additional restriction on

the mesh, we instead opt to show A11 is symmetric and positive definite, which together

with (2.7) and (2.8) implies that A11 is an M-matrix [120].

From (1.25) it is obvious that A11 is symmetric. It suffices to show A11 is positive

definite. From the strictly positive definiteness of the diffusion matrix D, there exists a

positive constant β such that

DK ≥ β III, ∀K ∈Th.

For any vector vvv = (v1, ...,vNvi)
T , we define vh =

Nvi

∑
i=1

viφi ∈Uh
0 . From the definition of

A11 and the fact that ∇vh|K is constant on K, we have

vvvT A11vvv = ∑
K∈Th

|K| (∇vh|K)T DK ∇vh|K

≥ β ∑
K∈Th

|K| (∇vh|K)T
∇vh|K

= β ∑
K∈Th

∫
K
(∇vh)T

∇vhdxxx

= β

∫
Ω

(∇vh)T
∇vhdxxx

≥ βCp

∫
Ω

|vh|2dxxx,
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where in the last step we have used Poincare’s inequality and Cp > 0 is the associ-

ated constant. For any nonzero vector vvv, vh =
Nvi

∑
i=1

viφi 6≡ 0 and is piecewise linear and

continuous on Ω. Consequently,

vvvT A11vvv≥ βCp

∫
Ω

|vh|2dxxx > 0, ∀vvv 6= 0,

which implies that A11 is positive definite. Hence, A11 is an M-matrix.

(iv) From (1.24) it is easy to verify that the inverse of A is given by

A−1 =

 A−1
11 −A−1

11 A12

0 I

 .
Then (2.7) and the fact A−1

11 ≥ 0 imply that A−1 ≥ 0 and therefore A is an M-matrix.

We have shown above that A is an M-matrix and has non-negative row sums. By

Lemma 1.5.2 we conclude that the linear FEM satisfies DMP when the simplicial mesh

satisfies (2.5).

Remark 2.1.1. For the isotropic case where D = a(xxx)III for some scalar function

a(xxx), condition (2.5) reduces to the well known non-obtuse angle condition [22, 39]

qqqK
i ·qqqK

j ≤ 0, ∀i 6= j, ∀K ∈Th, (2.11)

which requires the dihedral angles αi j (cf. (2.3)) of all mesh elements be non-obtuse.

Thus, condition (2.5) is a generalization of the non-obtuse angle condition. An alter-

native interpretation of (2.5) is that the dihedral angles of element K, measured in the

Riemannian metric DK (piecewise constant), are non-obtuse.

Remark 2.1.2. It is interesting to point out that an explicit mesh condition similar

to (2.5) is obtained by Eigestad et al. [52] for a multipoint flux approximation (MPFA)
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finite volume method on triangular meshes for anisotropic homogeneous media (i.e., D

is constant). Moreover, (2.5) reduces to a mesh condition obtained by Li et al. [93] for

a similar situation with constant D and triangular meshes. To see this, let the eigen-

decomposition of the constant diffusion matrix D be

D=

 cosθ −sinθ

sinθ cosθ


 k1 0

0 k2


 cosθ sinθ

−sinθ cosθ

 . (2.12)

For an arbitrary triangular element K, denote the angles sharing the edge connecting

vertices aaa1 and aaa2 by α and β ; see Fig. 2.1. Then, a mesh condition of [93] is given by


−k1 sinβ sinα + k2 cosβ cosα ≤ 0,

−k2 cosβ ≤ 0,

−k2 cosα ≤ 0,

(2.13)

provided that the edge connecting aaa1 and aaa2 is parallel to the primary diffusion direction

(cosθ ,sinθ)T (the eigenvector corresponding to the first eigenvalue of D, k1). We now

show that (2.5) reduces to (2.13) for the current situation. Without loss of generality we

assume that the primary diffusion direction and the edge connecting aaa1 and aaa2 are in

the direction of the x-axis; cf. Fig. 2.1. (In this case we have θ = 0.) It is not difficult

to obtain

qqq1 = c1

 −sinβ

−cosβ

 , qqq2 = c2

 sinα

−cosα

 , qqq3 = c3

 0

1

 ,
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where c1, c2, and c3 are positive constants. From these and (2.12), (2.5) reduces to


qqqT

1 DKqqq2 = qqqT
1 Dqqq2 = c1c2(−k1 sinα sinβ + k2 cosα cosβ )≤ 0,

qqqT
1 DKqqq3 = qqqT

1 Dqqq3 = c1c3(−k2 cosβ )≤ 0,

qqqT
2 DKqqq3 = qqqT

2 Dqqq3 = c2c3(−k2 cosα)≤ 0,

which gives (2.13).

It is often more convenient to express the anisotropic non-obtuse angle condition

(2.5) in terms of mapping FK from K̂ to K. Denote the Jacobian matrix of FK by F ′K .

We define the vectors q̂qqk, k = 1, ...,d + 1 for the reference element K̂ as in (2.1). The

chain rule of differentiation implies

∇φi = (F ′K)
−T

∇ξ φ̂i,

where φ̂i(ξξξ ) = φi(FK(ξξξ )). From (2.4), we have

qqqi = (F ′K)
−T q̂qqi.

Inserting this into (2.5) we obtain the following theorem.

Theorem 2.1.2. If the mesh satisfies

q̂qqT
i (F

′
K)
−1DK(F ′K)

−T q̂qq j ≤ 0, ∀i 6= j, i, j = 1, ...,d +1, ∀K ∈Th (2.14)

then the linear finite element scheme (1.19) for solving BVP (1.1) and (1.2) satisfies

DMP.
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Corollary 2.1.1. Suppose that the reference element K̂ is taken as a simplex with

non-obtuse dihedral angles. If the mesh satisfies

(F ′K)
−1DK(F ′K)

−T =CKI, ∀K ∈Th (2.15)

where CK is a positive constant on K and I is the d×d identity matrix, then the linear

finite element scheme (1.19) for solving BVP (1.1) and (1.2) satisfies DMP.

Proof. Since K̂ is a simplex with non-obtuse dihedral angles, we have

q̂qqT
i q̂qq j ≤ 0, i 6= j, i, j = 1, ...,d +1.

From this it is easy to see that (2.15) is sufficient for (2.14) to hold.

The mesh condition (2.15) will be used in the next section to develop metric tensor

accounting for DMP satisfaction. The metric tensor is needed in anisotropic mesh

generation. It is emphasized that (2.15), as well as mesh conditions (2.5) and (2.14), can

also be used more directly via direct minimization [93, 97] or variational formulation

[72] for optimizing the current mesh to improve DMP satisfaction.

2.2 Metric tensor based on DMP satisfaction

In this section we develop a metric tensor for use in anisotropic mesh generation based

on mesh condition (2.15). We adopt the so-called M-uniform mesh approach [74, 75,

80] as introduced in §1.3.

To determine M from mesh condition (2.15), we first notice that the left and right

sides of (1.12) represents the arithmetic and geometric means of the eigenvalues of

matrix (F ′K)
T MKF ′K , respectively. From the arithmetic-mean geometric-mean inequal-

36



ity, (1.12) implies that all of the eigenvalues are equal to each other. In other words,

(F ′K)
T MKF ′K is a scalar matrix, i.e.,

(F ′K)
T MKF ′K = C̃KI or (F ′K)

−1M−1
K (F ′K)

−T = C̃−1
K I (2.16)

for some constant C̃K . A direct comparison of (2.16) with (2.15) suggests that the

metric tensor M be chosen in the form

MDMP,K = θKD−1
K , ∀K ∈Th, (2.17)

where θ = θK > 0 is an arbitrary piecewise constant function. Thus, any M-uniform

mesh associated with a metric tensor in the form (2.17) satisfies condition (2.15). The

following theorem follows from Corollary 2.1.1.

Theorem 2.2.1. Suppose that the reference element K̂ is taken to be equilateral

and unitary in volume. For an M-uniform mesh associated with any metric tensor in

the form (2.17), the linear finite element scheme (1.19) for solving BVP (1.1) and (1.2)

satisfies DMP.

Remark 2.2.1. Since an M-uniform mesh satisfies the alignment condition (1.12),

we can conclude that when M is chosen in the form (2.17), a corresponding M-uniform

mesh is aligned with the diffusion matrix D in the sense that the principal axes of the

circumscribed ellipsoid of the elements are parallel to the eigenvectors of DK while

their lengths are proportional to the square roots of the respective eigenvalues. As

a consequence, the length of an element is greater in a faster diffusion direction and

smaller in a slower diffusion direction. A small length scale of mesh elements in slow

diffusion directions helps reduce numerical dissipation in those directions.
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Remark 2.2.2. Note that θ = θK in (2.17) is arbitrary. Thus, in addition to satis-

fying DMP, there is a degree of freedom for the mesh to account for other considera-

tions. In the next chapter we shall consider mesh adaptation based on error estimate

and choose θK to minimize a certain error bound.

2.3 Numerical results

In this section we present three two-dimensional examples to demonstrate the perfor-

mance of metric tensors MDMP in (2.17) with θK = 1 based on DMP satisfaction. For

comparison purpose, we also include numerical results obtained with almost uniform

meshes (labelled with Muni f ). The iterative procedure for solving PDEs has been given

in §1.3 (cf. Fig. 1.5).

Example 2.3.1. The first example is to consider BVP (1.1) and (1.2) with

f ≡ 0, Ω = [0,1]2\
[

4
9
,
5
9

]2

, g = 0 on Γout , g = 2 on Γin,

where Γout and Γin are the outer and inner boundaries of Ω, respectively; see Fig. 2.2.

The diffusion matrix is given by (2.12) with k1 = 1000, k2 = 1, and θ being the angle

of the primary diffusion direction (parallel to the first eigenvector of D).

This example satisfies the maximum principle and the solution (whose analytical

expression is unavailable) stays between 0 and 2. Our goal is to produce a numerical

solution which also satisfies DMP and stays between 0 and 2. This example has been

studied in [89, 93].

We first consider the case of constant D with θ = π/4. Fig. 2.3 shows finite element

solutions obtained with Muni f and MDMP. Meshes and solution contours obtained with

those two metric tensors are shown in Figs. 2.4 and 2.5, respectively. No overshoots
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in the finite element solutions are observed for all cases. However, undershoots and

unphysical minima occur in the solution obtained with Muni f (umin = −0.0602) (cf.

Fig. 2.5)(a)).

The results confirm the theoretical prediction that the solutions obtained with MDMP

satisfy DMP and no overshoot/undershoot and no unphysical extremum occur. It should

be pointed out that the solution contour obtained with an almost uniform mesh is

smooth and the sharp jumps of the solution are smeared; see Figs. 2.3(a) and 2.5(a).

Next we consider a case of variable D with θ = π sin(x)cos(y). The finite ele-

ment solutions, meshes, and solution contours are shown in Figs. 2.6, 2.7, and 2.8,

respectively. Similar observations as for the constant D case can be made. Especially,

undershoots and unphysical extrema occur in the solutions obtained with Muni f but not

with MDMP. Once again, the results confirm our theoretical predictions in the previous

sections.

u = 0

Γout
u = 2

Γin

Figure 2.2: The physical domain and boundary conditions for Example 2.3.1.

Example 2.3.2. In this example, we consider BVP (1.1) and (1.2) with

f ≡ 0, g(x,0) = g(16,y) = 0,
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(b): MDMP

Figure 2.3: Example 2.3.1 with constant D. Finite element solutions obtained with (a)
Muni f and (b) MDMP.

g(0,y) =

 0.5y if 0≤ y < 2,

1 if 2≤ y≤ 16,
and g(x,16) =

 1 if 0≤ x≤ 14,

8−0.5x if 14 < x≤ 16.

The diffusion matrix is defined as

D(x,y) =

 500.5 499.5

499.5 500.5

 .

This is a simple example with a constant but anisotropic D and with a continuous

boundary condition. It satisfies the maximum principle and its solution stays between

0 and 1.

Numerical solutions, meshes, and solution contours are shown in Figs. 2.9, 2.10,

and 2.11, respectively. For this example, both undershoots and overshoots are observed

in the computed solutions with Muni f but not with with MDMP. This example demon-

strates that a scheme violating DMP can produce unphysical extrema even for a simple
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(a): Muni f , Nv = 2460
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Figure 2.4: Example 2.3.1 with constant D. Meshes obtained with (a) Muni f and (b)
MDMP.

problem with constant diffusion, continuous boundary conditions, and a convex do-

main.

Example 2.3.3. This example is given by (1.1) and (1.2) with

Ω = (0,1)× (0,1), f (x,y) =

 4.0, if x < 0.5

−5.6, if x > 0.5
, u = uexact on ∂Ω,

D(x,y) =

 D1, if x < 0.5,

D2, if x > 0.5,
D1 =

 1 0

0 1

 , D2 =

 10 3

3 1

 .

The problem has the exact solution

u(x,y) =

 1−2y2 +4xy+2y+6x, if x≤ 0.5

−2y2 +1.6xy−0.6x+3.2y+4.3, if x > 0.5.
(2.18)

Note that the value and primary diffusion direction of the diffusion matrix change across

the line x = 0.5. This example has been studied in [89].
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(a): Muni f , umin =−0.0602 (b): MDMP, umin = 0

Figure 2.5: Example 2.3.1 with constant D. Contours of the finite element solutions
obtained with (a) Muni f and (b) MDMP.

Solutions and meshes obtained with Muni f and MDMP are shown in Fig. 2.12. For

this example, no overshoots and undershoots is observed for all numerical solutions.

The meshes obtained with MDMP show a better alignment with the primary diffusion

direction than that obtained with Muni f . The results are consistent with what is expected

from the construction of the metric tensors. The errors were computed and compared

in §3.2 with other results.

2.4 Conclusions and comments

In this chapter we have developed a mesh condition (2.5) under which the linear finite

element approximation of anisotropic diffusion problem (1.1) and (1.2) validates the

discrete counterpart of the maximum principle satisfied by the continuous problem. The

condition is a generalization of the well known non-obtuse angle condition developed

for isotropic diffusion problems and requires that the dihedral angles of mesh elements

measured in a metric depending only on the diffusion matrix be non-obtuse.
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(b): MDMP

Figure 2.6: Example 2.3.1 with variable D. Finite element solutions obtained with (a)
Muni f and (b) MDMP.

We have also developed two variants of the anisotropic non-obtuse angle condition,

(2.14) and (2.15), which can be more convenient to use in actual mesh generation.

Indeed, metric tensor (2.17) for use in anisotropic mesh generation is derived based

on (2.15) for accounting for DMP satisfaction. Features of these metric tensors are

illustrated in numerical examples.

It is worth pointing out that condition (2.5) has been derived based on the local

stiffness matrix on a mesh element. Like the non-obtuse angle condition for isotropic

diffusion problems, (2.5) can be relaxed by considering the global stiffness matrix as

a whole in two dimensions [76]. Moreover, we have restricted our attention to linear

PDE (1.1) and Dirichlet boundary condition (1.2). But the procedure developed in this

work can be extended to problems with nonlinear diffusion D=D(xxx,u,∇u) and mixed

boundary conditions (e.g., see [84, 85, 86, 90]) without major modification.

Although the numerical examples have been presented in 2D, the anisotropic non-

obtuse angle condition (2.5) and the corresponding metric tensor formula (2.17) are

d-dimensional (d = 1,2,3). In 3D, a Delaunay triangulation may not guarantee the sat-
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Figure 2.7: Example 2.3.1 with variable D. Meshes obtained with (a) Muni f and (b)
MDMP.

isfaction of DMP [91]. Nevertheless, polyhedrons can be decomposed into tetrahedra

satisfying the non-obtuse angle condition (2.11) and therefore the numerical solution

satisfies DMP; e.g., see [24]. It is interesting to know that if it also works for the

anisotropic non-obtuse angle condition (2.5) for a given metric tensor M and if a 3D

triangulation can be generated to (approximately) satisfy the M-uniform mesh condi-

tions (1.11) and (1.12). Those will be the topics to investigate in the future.
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obtained with (a) Muni f and (b) MDMP.
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Figure 2.9: Example 2.3.2. Finite element solutions obtained with (a) Muni f and (b)
MDMP.
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Figure 2.10: Example 2.3.2. The adaptive meshes obtained with (a) Muni f and (b)
MDMP.
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(c): MDMP, numerical solution, umin = 0
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Figure 2.12: Example 2.3.3. Numerical solutions and meshes obtained with Muni f and
MDMP.
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Chapter 3

DMP satisfaction and mesh adaptivity

In the previous chapter, we have discussed anisotropic mesh adaptation based on DMP

satisfaction. If the mesh satisfies the anisotropic non-obtuse angle condition (2.5), the

linear finite element solution is guaranteed to satisfy DMP.

On the other hand, mesh adaptation based on error estimate is important for improv-

ing the efficiency and accuracy of the computation as mentioned in §1.3. Moreover, for

anisotropic diffusion problems (cf. §1.1), the numerical dissipation along slow diffu-

sion directions can be reduced via both the alignment of the mesh elements along the

fast diffusion direction and the small spacing of mesh elements in the slow diffusion

direction. Hence, both DMP satisfaction and error based mesh adaptation are important

for the numerical solution of anisotropic diffusion problems. So far, existing research

has focused on either DMP satisfaction or mesh adaptation. But none has combined

both DMP satisfaction and error based mesh adaptation for the numerical solution of

anisotropic diffusion problems.

For simplicity, we refer to mesh adaptation based on error estimates as “mesh adap-

tivity”, and the adaptation based on DMP satisfaction as “DMP satisfaction”. In this

chapter, the combination of DMP satisfaction and mesh adaptivity is investigated. An

optimal metric tensor accounting for both considerations is obtained by minimizing an
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interpolation error bound, and advantages of using adaptive, DMP-satisfied meshes are

demonstrated in numerical examples. To our best knowledge, this is the first effort

that mesh adaptivity and DMP satisfaction are combined in the numerical solution of

isotropic/anisotropic diffusion problems.

3.1 Metric tensor based on both DMP satisfaction and

mesh adaptivity

In Chapter 2, we have developed a metric tensor based on DMP satisfaction in the form

of (2.17). As mentioned in Remark 2.2.2, the parameter θK can be taken to account for

mesh adaptivity. In this section we develop a metric tensor taking both the satisfaction

of DMP and mesh adaptivity into consideration with the scalar function θ = θK in

(2.17) being determined to minimize an interpolation error bound. For simplicity, we

consider here an error bound for linear Lagrange interpolation. Other interpolation

error bounds (e.g., see [75]) can be considered without major modification.

Lemma 3.1.1. ([75]) Let K ⊂ Rd be a simplicial element and Πh be the linear

Lagrange interpolation operator. Then,

|v−Πhv|H1(K) ≤C‖(F ′K)−1‖
[∫

K

[
tr
(
(F ′K)

T |H(v)|F ′K
)]2

dxxx
] 1

2

, ∀v ∈ H2(K) (3.1)

where ‖ ·‖ denotes the l2 matrix norm, H(v) is the Hessian of v, and |H(v)|=
√

H(v)2.

Lemma 3.1.2. For any given d×d symmetric matrix S, there holds that

| tr(AT SA)| ≤ tr(AT A) ‖S‖, ∀A ∈ Rd×d. (3.2)
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If S is further positive definite, then

‖S‖−1 tr(AT SA)≤ tr(AT A)≤ tr(AT SA) ‖S−1‖. (3.3)

Proof. Denote the eigen-decomposition of S by

S = QΣQT ,

where Q is an orthogonal matrix, Σ = diag(λ1, ...,λd), and λi, i = 1, ...,d are the eigen-

values of S. Write

AT Q = [vvv1, ...,vvvd].

Then

AT SA = (AT Q)Σ(QT A) = [vvv1, ...,vvvd]Σ[vvv1, ...,vvvd]
T = ∑

i
λivvvivvvT

i .

It follows that

| tr(AT SA)| = |∑
i

λi tr(vvvivvvT
i )|

= |∑
i

λi‖vvvi‖2|

≤ ∑
i
‖vvvi‖2 · |λ |max

= tr(AT A)‖S‖,

which gives (3.2). Inequality (3.3) follows from (3.2) and that

tr(AT A) = tr(AT S
1
2 S−1S

1
2 A)≤ tr(AT SA) ‖S−1‖. (3.4)
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The scalar function θ = θK in (2.17) is then determined based on interpolation error

bound (3.1). From the definition of the Frobenius matrix norm, we have

‖A‖ ≤ ‖A‖F =
√

tr(AT A) =
√

tr(AAT ), ∀A ∈ Rd×d.

Using this, taking squares of both sides of (3.1), and summing the result over all ele-

ments of Th, we have

|u−Πhu|2H1(Ω) = ∑
K∈Th

|u−Πhu|2H1(K)

≤C ∑
K∈Th

‖(F ′K)−1‖2
∫

K

[
tr
(
(F ′K)

T |H(u)|F ′K
)]2

dxxx

≤C ∑
K∈Th

‖(F ′K)−1‖2
F

∫
K

[
tr
(
(F ′K)

T |H(u)|F ′K
)]2

dxxx

=C ∑
K∈Th

[
tr((F ′K)

−1(F ′K)
−T )
]∫

K

[
tr
(
(F ′K)

T |H(u)|F ′K
)]2

dxxx.

From Lemma 3.1.2 it follows that

|u−Πhu|2H1(Ω)

≤C ∑
K∈Th

[
tr((F ′K)

−1DK(F ′K)
−T )
]
· ‖D−1

K ‖ ·
∫

K

[
tr((F ′K)

TD−1
K (F ′K))

]2 ‖DK |H(u)|‖2dxxx

=C ∑
K∈Th

|K| ·
[
tr((F ′K)

−1DK(F ′K)
−T )
]
·
[

tr((F ′K)
TD−1

K (F ′K))
]2

×‖D−1
K ‖ ·

1
|K|

∫
K
‖DK |H(u)|‖2dxxx. (3.5)

Consider an M-uniform mesh Th corresponding to a metric tensor MK in the form

(2.17). Then, alignment condition (1.12) reduces to

1
d

tr
(
(F ′K)

TD−1
K F ′K

)
= det

(
(F ′K)

TD−1
K F ′K

) 1
d . (3.6)
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From the arithmetic-mean geometric-mean inequality, (3.6) implies that all of the eigen-

values of matrix (F ′K)
TD−1

K F ′K are equal to each other. As a consequence, all of the

eigenvalues of the inverse of (F ′K)
TD−1

K F ′K are equal to each other, which in turn im-

plies
1
d

tr
(
(F ′K)

−1DK(F ′K)
−T)= det

(
(F ′K)

−1DK(F ′K)
−T) 1

d . (3.7)

Inserting (3.6) and (3.7) into (3.5) and noticing

det
(
(F ′K)

TD−1
K F ′K

)
= |K|2 det(DK)

−1 , det
(
(F ′K)

−1DK(F ′K)
−T)= |K|−2 det(DK) ,

we have

|u−Πhu|2H1(Ω) ≤ C ∑
K∈Th

|K|
d+2

d det(DK)
− 1

d ‖D−1
K ‖ ·

1
|K|

∫
K
‖DK |H(u)|‖2dxxx. (3.8)

Rewrite this bound as

|u−Πhu|2H1(Ω) ≤C ∑
K∈Th

|K|
d+2

d BK, (3.9)

where

BK = det(DK)
− 1

d ‖D−1
K ‖ ·

1
|K|

∫
K
‖DK |H(u)|‖2dxxx. (3.10)

Notice that
∫

K ‖DK |H(u)|‖2dxxx and therefore BK can vanish locally. To ensure the posi-

tive definiteness of the metric tensor to be defined, we regularize the above bound with

a parameter αh > 0 as

|u−Πhu|2H1(Ω) ≤C ∑
K∈Th

|K|
d+2

d [αh +BK] =Cαh ∑
K∈Th

|K|
d+2

d

[
1+

1
αh

BK

]
. (3.11)
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From Hölder’s inequality, we have

∑
K∈Th

|K|
d+2

d

[
1+

1
αh

BK

]
= ∑

K∈Th

(
|K|
[

1+
1

αh
BK

] d
d+2
) d+2

d

≥ N−
2
d

(
∑

K∈Th

|K|
[

1+
1

αh
BK

] d
d+2
) d+2

d

, (3.12)

with equality in the last step if and only if

|K|
[

1+
1

αh
BK

] d
d+2

= constant, ∀K ∈Th. (3.13)

A direct comparison of this with equidistribution condition (1.11) suggests that the

optimal ρK be defined as

ρK =

[
1+

1
αh

BK

] d
d+2

. (3.14)

From the relation ρK =
√

det(MK), we find the optimal θK and MK as

θK = ρ
2
d
K det(DK)

1
d =

[
1+

1
αh

BK

] 2
d+2

det(DK)
1
d , (3.15)

MDMP+adap,K =

[
1+

1
αh

BK

] 2
d+2

det(DK)
1
d D−1

K , (3.16)

where BK is defined in (3.10). With the so-defined metric tensor, the error bound can

be obtained from (3.11) and (3.12) for a corresponding M-uniform mesh as

|u−Πhu|H1(Ω) ≤CN−
1
d
√

αhσ
d+2
2d

h . (3.17)
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To complete the definition, we need to determine the regularization parameter αh.

We follow [74] to define αh such that

σh ≡ ∑
K∈Th

ρK|K| ≤ 2|Ω|, (3.18)

with which roughly 50% of the mesh points are concentrated in regions of large ρK .

From (3.14) and Jensen’s inequality, we have

σh = ∑
K∈Th

|K|
[

1+
1

αh
BK

] d
d+2

≤ ∑
K∈Th

|K|
[

1+α
− d

d+2
h B

d
d+2
K

]
= |Ω|+α

− d
d+2

h ∑
K∈Th

|K|B
d

d+2
K . (3.19)

By requiring the above bound to be less than or equal to 2|Ω|, we obtain

αh =

(
1
|Ω| ∑

K∈Th

|K|B
d

d+2
K

) d+2
d

. (3.20)

Combining (3.17) with (3.18) and (3.20) and summarizing the above derivation, we

have the following theorem.

Theorem 3.1.1. Suppose that the reference element K̂ is chosen to be equilateral

and unitary in volume. For any M-uniform simplicial mesh corresponding to the metric

tensor (3.16), the linear finite element scheme (1.19) for solving BVP (1.1) and (1.2)

satisfies DMP and the interpolation error for the exact solution u is bounded by

|u−Πhu|H1(Ω) ≤CN−
1
d

(
∑

K∈Th

|K|B
d

d+2
K

) d+2
2d

, (3.21)
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where BK is defined in (3.10).

It is remarked that the metric tensor (3.16) (cf. (3.10)) depends on the second deriva-

tives of the exact solution u which is what we are seeking/approximating. In actual

computation, the second derivatives are replaced with approximations obtained with a

Hessian recovery technique such as the one of using piecewise quadratic polynomials

fitting in least-squares sense to nodal values of the computed solution (e.g., see [74]).

A hierarchical basis error estimator can also be used to approximate the Hessian of

the exact solution. It is shown in [77] that the least-squares fitting and the hierarchical

basis methods work comparably for all considered cases except for one where the dif-

fusion coefficient is discontinuous and the interfaces are predefined in the mesh. In this

case, the latter works better than the former since hierarchical basis estimation does not

over-concentrate mesh elements near the interfaces. Since our main goal is to study

DMP satisfaction instead of the discontinuity of the diffusion coefficient, we choose to

use the least squares fitting method for Hessian recovery in our computation due to its

simplicity and problem independent feature.

It is interesting to note that the term in the bracket in (3.21) can be viewed as a

Riemann sum of an integral, i.e.,

∑
K∈Th

|K|B
d

d+2
K ∼

∫
Ω

det(D)−
1

d+2 ‖D−1‖
d

d+2 · ‖D |H(u)|‖
2d

d+2 dxxx.

Thus, the interpolation error has an asymptotic bound as

|u−Πhu|H1(Ω) ≤ CN−
1
d

(
∑

K∈Th

|K|B
d

d+2
K

) d+2
2d

∼ CN−
1
d

(∫
Ω

det(D)−
1

d+2 ‖D−1‖
d

d+2 · ‖D |H(u)|‖
2d

d+2 dxxx
) d+2

2d

.(3.22)
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We emphasize that both the satisfaction of DMP and mesh adaptation (through min-

imization of an error bound) are taken into account in the definition of metric tensor

(3.16). An interesting question is what the interpolation error bound looks like if mesh

adaptation is not taken into consideration. For example, we consider a case θK = 1 in

(2.17). This gives the metric tensor

MK = D−1
K . (3.23)

Recall that the interpolation error is bounded in (3.9), i.e.,

|u−Πhu|H1(Ω) ≤C

(
∑

K∈Th

|K|
d+2

d BK

) 1
2

, (3.24)

where BK is defined in (3.10). Moreover, for an M-uniform mesh corresponding to this

metric tensor the equidistribution condition (1.11) reduces to

det(DK)
− 1

2 |K|= σh

N
, (3.25)

where σh = ∑
K∈Th

det(DK)
− 1

2 |K|. Inserting (3.25) into (3.24), we have

|u−Πhu|H1(Ω) ≤ C

(
∑

K∈Th

|K|
(

det(DK)
1
2

σh

N

) 2
d

BK

) 1
2

= CN−
1
d σ

1
d

h

(
∑

K∈Th

|K|det(DK)
1
d BK

) 1
2

= CN−
1
d

(
∑

K∈Th

det(DK)
− 1

2 |K|

) 1
d
(

∑
K∈Th

|K|det(DK)
1
d BK

) 1
2

.
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Thus,

|u−Πhu|H1(Ω) ≤ CN−
1
d

(
∑

K∈Th

det(DK)
− 1

2 |K|

) 1
d
(

∑
K∈Th

|K|det(DK)
1
d BK

) 1
2

(3.26)

∼ CN−
1
d

(∫
Ω

det(D)−
1
2 dxxx
) 1

d
(∫

Ω

‖D−1‖ · ‖D |H(u)|‖2dxxx
) 1

2

. (3.27)

This is the interpolation error bound for an M-uniform mesh corresponding to metric

tensor (3.23).

From Hölder’s inequality, it follows that

(
∑

K∈Th

|K|B
d

d+2
K

) d+2
2d

≤

(
∑

K∈Th

det(DK)
− 1

2 |K|

) 1
d
(

∑
K∈Th

|K|det(DK)
1
d BK

) 1
2

.

Thus, the solution-dependent factor of bound (3.21) is small than or equal to that of

bound (3.26). In this sense, MDMP+adap defined in (3.16) leads to a more accurate

interpolant than MDMP defined in (3.23) (or (2.17) with θK = 1).

Moreover, from the standard interpolation theory we recall that the interpolation

error for a uniform mesh is bounded by

|u−Πhu|H1(Ω) ≤CN−
1
d

(∫
Ω

‖∇2u‖2dxxx
) 1

2

. (3.28)

It is easy to see that the solution dependent factor in error bound (3.22) for MDMP+adap

is in the order of |∇2u|
L

2d
d+2 (Ω)

and those in (3.27) for MDMP and (3.28) for a uniform

mesh are in the order of |∇2u|L2(Ω). Thus, (3.22) has the smallest solution dependent

factor, an indication of the advantage of using adaptive meshes. On the other hand, the

error bounds (3.22) and (3.27) depend on the determinant and norm of the diffusion

matrix D and its inverse. This indicates that DMP satisfaction may sacrifice accuracy.

57



Indeed, as we shall see in §3.2, the solution error for DMP-bound meshes can some-

times be larger than that for a uniform mesh.

3.2 Numerical results

In this section, we take the same examples as shown in §2.3 but for MDMP+adap in

(3.16) combining DMP satisfaction and mesh adaptivity. The results are compared with

those obtained with MDMP in §2.3. For comparison purpose, we also include numerical

results obtained with a metric tensor Madap based on minimization of a bound on the

H1 semi-norm of linear interpolation error [74]:

Madap,K = ρ
2
d
K det

(
I +

1
αh
|HK(u)|

)− 1
d
[

I +
1

αh
|HK(u)|

]
, (3.29)

where

ρK =
∥∥∥I +

1
αh
|HK(u)|

∥∥∥ d
d+2

F
det
(

I +
1

αh
|HK(u)|

) 1
d+2

,

and αh is defined implicitly through

∑
K∈Th

ρK|K|= 2|Ω|.

As mentioned before, the second derivatives of the exact solution are replaced with

approximations obtained with a Hessian recovery technique in actual computation. An

iterative procedure for solving PDEs is given in §1.3 (cf. Fig. 1.5).

Example 2.3.1. For both cases with a constant and a variable θ we consider, the

exact solution has sharp jumps near the inner boundary (cf. Figs. 2.3 and 2.6) so mesh

adaptation is needed for a proper resolution of them.
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Fig. 3.1 shows finite element solutions obtained with Madap and MDMP+adap for the

case of constant D with θ = π/4. The meshes and solution contours are shown in Figs.

3.2 and 3.3, respectively. No overshoots in the finite element solutions are observed for

all cases. However, undershoots and unphysical minima occur in he solutions obtained

with Madap (umin = −0.0039) (cf. Fig. 3.1 (a), 3.3(a)). Fig. 3.4 shows the decrease of

−umin as the mesh is refined. For the range of the number of mesh elements considered,

the undershooting improves at a rate of −umin = O(N−0.5) for both Muni f and Madap.

The results confirm the theoretical prediction that the solutions obtained with MDMP+adap

satisfy DMP and no overshoot/undershoot and no unphysical extremum occur. The so-

lution contour obtained with MDMP+adap is comparable to the one obtained with MDMP

(cf. Fig. 2.5(b)). Furthermore, the mesh obtained with MDMP+adap (cf. Fig. 3.2 (b))

distributes more elements than the one obtained with MDMP (cf. Fig. 2.4 (b)) near the

inner boundary where the sharp jump of the solution occurs, which helps to improve

the accuracy and reduce the numerical dissipation.

For the case of variable D with θ = π sin(x)cos(y), the finite element solutions,

meshes, and solution contours are shown in Figs. 3.5, 3.6, and 3.7, respectively. Similar

observations as for the constant D case can be made. Again, more mesh elements are

distributed near the inner boundary for MDMP+adap (cf. Fig. 3.6(b)) than for MDMP (cf.

Fig. 2.7(b)).

Example 2.3.2. Numerical solutions, meshes and solution contours are shown in

Figs. 3.8, 3.9, and 3.10, respectively. For this example, both undershoots and over-

shoots are observed in the computed solutions with Madap but not with MDMP+adap.

Comparing Fig. 3.9(b) and 2.10(b), MDMP+adap gives better mesh adaptation in the

place where sharp jump of solution occurs than MDMP.

Example 2.3.3. Solutions and meshes obtained with Madap and MDMP+adap are

shown in Fig. 3.11. For this example, no overshoots and undershoots are observed
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Figure 3.1: Example 2.3.1 with constant D. Finite element solutions obtained with (a)
Madap and (b) MDMP+adap.

for all numerical solutions. The meshes obtained with MDMP+adap show a better align-

ment with the primary diffusion direction than that obtained with Madap. Elements are

concentrated along the line x = 0.5 for the meshes obtained with MDMP+adap (cf. Fig.

3.11(d)) whereas there is no concentration in the mesh for MDMP (cf. Fig. 2.12)(d). The

results are consistent with what is expected from the construction of the metric tensors.

When the interface (x = 0.5) is not predefined in the mesh, the H1 semi-norm and

L2 norm of the error are shown in Fig. 3.12 as functions of the number of mesh el-

ements. Metric tensor Madap leads to far more accurate results than the other three

metric tensors, which produce comparable results for the considered range of N. More-

over, Madap and MDMP+adap give the same convergence rate, i.e., |eh|H1(Ω) = O(N−0.5)

and ‖eh‖L2(Ω) = O(N−1), while Muni f and MDMP result in a slower convergence rate,

|eh|H1(Ω) = O(N−0.25) and ‖eh‖L2(Ω) = O(N−0.5). This demonstrates the advantage

of using adaptive meshes. Interestingly, the results in [89] (Table 4) obtained with a

slope-limited scheme for triangular meshes also show a similar slow convergence.
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Figure 3.2: Example 2.3.1 with constant D. Meshes obtained with (a) Madap and (b)
MDMP+adap.

If the interface is predefined in the mesh, then the solution (2.18) can be approx-

imated accurately in the linear finite element space. As shown in Fig. 3.13, all met-

ric tensors produce comparable solutions and the same convergence rate |eh|H1(Ω) =

O(N−0.5) and ‖eh‖L2(Ω) = O(N−1).

3.3 Conclusions and comments

In this chapter, we have developed an optimal metric tensor MDMP+adap (3.16) account-

ing for both DMP satisfaction and mesh adaptivity (based on error estimate) for the

linear finite element approximation of anisotropic diffusion problem (1.1) and (1.2).

The metric tensor is obtained from (2.17) (which satisfies (2.15)) by minimizing an

interpolation error bound.

In terms of DMP satisfaction, the results are comparable with those obtained with

metric tensor MDMP (2.17) discussed in Chapter 2. The numerical solutions obtained

with MDMP and MDMP+adap both satisfy the discrete maximum principle (DMP). More-
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Figure 3.3: Example 2.3.1 with constant D. Contours of the finite element solutions
obtained with (a) Madap and (b) MDMP+adap.

over, MDMP+adap provides mesh adaptation based on error estimate in addition to DMP

satisfaction, which helps improving the efficiency and accuracy and reducing the nu-

merical dissipation in the computations.
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Figure 3.4: Example 2.3.1 with constant D. The undershoot, −umin, is shown as func-
tions of the number of elements.
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Figure 3.5: Example 2.3.1 with variable D. Finite element solutions obtained with (a)
Madap and (b) MDMP+adap.
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Figure 3.6: Example 2.3.1 with variable D. Meshes obtained with (a) Madap and (b)
MDMP+adap.
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Figure 3.7: Example 2.3.1 with variable D. Contours of the finite element solutions
obtained with (a) Madap and (b) MDMP+adap.
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Figure 3.8: Example 2.3.2. Finite element solutions obtained with (a) Madap and (b)
MDMP+adap.
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Figure 3.9: Example 2.3.2. The adaptive meshes obtained with (a) Madap and (b)
MDMP+adap.
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Madap and (b) MDMP+adap.

66



0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
1

2

3

4

5

6

7

xy

so
lu

tio
n

(a): Madap, numerical solution, umin = 0

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b): Madap, mesh, Nv = 2362

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
1

2

3

4

5

6

7

xy

so
lu

tio
n

(c): MDMP+adap, numerical solution, umin = 0
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Figure 3.11: Example 2.3.3. Numerical solutions and meshes obtained with Madap and
MDMP+adap.
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Figure 3.12: Example 2.3.3. The H1 semi-norm and L2 norm of solution error are
shown as functions of the number of elements for metric tensors Muni f , Madap, MDMP,
and MDMP+adap.
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Figure 3.13: Example 2.3.3. The H1 semi-norm and L2 norm of solution error are
shown as functions of the number of elements for metric tensors Muni f , Madap, MDMP,
and MDMP+adap. The interface (x = 0.5) is predefined in the mesh.
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Chapter 4

Variational formula for anisotropic mesh adaptation

In Chapters 2 and 3, we have studied anisotropic mesh adaptation for anisotropic diffu-

sion problems in PDE forms. In this chapter, we consider the anisotropic mesh adapta-

tion for problems in the variational form as introduced in §1.2.

To be specific but without loss of generality, we consider the functional of the form

I[u] =
∫

Ω

F(xxx,u,∇u)dxxx, ∀u ∈Ug (4.1)

where Ω ⊂ Rd (d = 1, 2, or 3) is the physical domain and Ug is the set of functions

satisfying the Dirichlet boundary condition

u(xxx) = g(xxx) on ∂Ω (4.2)

for a given function g = g(xxx). As mentioned before, we consider only the Dirichlet

boundary condition for simplicity, but other types of boundary conditions can be treated

without major modification. Note that BVP (1.1) can be written in the form (4.1) with

F(xxx,u,∇u) =
1
2

∇uT (D∇u).
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The variational problem associated with (4.1) is to seek a minimizer u ∈Ug such

that

I[u] = min
v∈Ug

I[v]. (4.3)

A necessary condition for u to be a minimizer is that the first variation of the functional

vanishes. This leads to the Galerkin formulation

δ I[u;v]≡
∫

Ω

(Fu(xxx,u,∇u)v+F∇u(xxx,u,∇u) ·∇v)dxxx = 0, ∀v ∈U0 (4.4)

where Fu and F∇u are the partial derivatives of F with respect to u and ∇u, respectively,

and U0 =Ug with g = 0.

We consider the linear finite element approximation for the variational problem.

Assume that Ω is a polygon or a polyhedron and an affine family of triangulations

{Th} is given for Ω. Denote by Uh
gh

the linear finite element space associated with Th.

Then, a linear finite element approximation uh ∈Uh
gh

can be sought either through direct

minimization

I[uh] = min
vh∈Uh

gh

I[vh] (4.5)

or by solving the Galerkin formulation

δ I[uh,vh] =
∫

Ω

(Fu(xxx,uh,∇uh)vh +F∇u(xxx,uh,∇uh) ·∇vh)dxxx = 0, ∀vh ∈Uh
0 . (4.6)

4.1 Metric tensor for anisotropic mesh adaptation

In this section we define the metric tensor M for use in anisotropic mesh adaptation for

the variational problem (4.3). The procedure is to first derive a bound on the variation
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δ I[uh,v] and then to define M such that the obtained bound is minimized on correspond-

ing M-uniform meshes.

The use of the variation is motivated by the following observation. For a uniformly

convex quadratic functional [56] in the form (4.1), there exists a positive constant β

such that

‖e′h‖2
L2(Ω) ≤ β |δ I[eh,eh]|= β |δ I[uh,eh]|, (4.7)

where eh = u−uh is the error and ‖e′h‖L2(Ω) is the L2 norm of the gradient of the error.

Thus, the quantities

|δ I[uh,eh]| and

(
|δ I[uh,eh]|
‖e′h‖L2(Ω)

)2

(4.8)

are equivalent to ‖e′h‖2
L2(Ω)

and minimizing their bounds is equivalent to minimizing

error bounds. Consequently, it is reasonable to define M based on bounds for these

quantities. This idea is extended to general functionals in this and next sections. Specif-

ically, a bound on the first quantity in (4.8) is used in this section for defining M for

anisotropic mesh adaptation while a bound on the second quantity is employed in the

next section for isotropic mesh adaptation.

It is worth pointing out that the so-obtained metric tensor is semi-a posteriori in the

sense that it is defined in terms of residuals, edge jumps, and the Hessian of the exact

solution. This is in contrast to most previous work (e.g. [19, 20, 34, 61, 74]) where

M is defined based on the Hessian of the exact solution and thus completely a priori.

As mentioned in §3.1, in the actual computation the Hessian of the exact solution is

replaced with approximations obtained through a recovery process from the computed

solution. In this section, least squares fitting is used for Hessian recovery, while a

hierarchical basis error estimator is discussed in §4.3.
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We begin with deriving a bound for δ I[uh,eh]. Denote by Πh the operator of lin-

ear finite element interpolation on mesh Th. Recall that for any v ∈U0, we have the

orthogonality condition, δ I[uh,Πhv] = 0. Then we have

δ I[uh,v] = δ I[uh,v−Πhv]

=
∫

Ω

[Fu(xxx,uh,∇uh)(v−Πhv)+F∇u(xxx,uh,∇uh) ·∇(v−Πhv)]dxxx

= ∑
K∈Th

∫
K
[Fu(xxx,uh,∇uh)(v−Πhv)+F∇u(xxx,uh,∇uh) ·∇(v−Πhv)]dxxx

= ∑
K∈Th

∫
K
[Fu(xxx)(v−Πhv)+F∇u(xxx) ·∇(v−Πhv)]dxxx, (4.9)

where, for simplicity, we have used the notation

Fu(xxx) = Fu(xxx,uh(xxx),∇uh(xxx)), F∇u(xxx) = F∇u(xxx,uh(xxx),∇uh(xxx)).

From the divergence theorem, we can rewrite (4.9) as

δ I[uh,v] = ∑
K∈Th

∫
K
[Fu(xxx)−∇ ·F∇u(xxx)] (v−Πhv)dxxx

+ ∑
K∈Th

∫
∂K

(v−Πhv)F∇u(xxx) ·−→n ds, (4.10)

where −→n denotes the outward normal to the face ∂K.

Let ∂Th be the collection of all faces of mesh Th and K and K′ be the two elements

sharing the common face γ . We define the residual rh and the edge jump Rh as

rh(xxx) = Fu(xxx)−∇ ·F∇u(xxx), ∀xxx ∈ K, ∀K ∈Th (4.11)

Rh(xxx) =

 (F∇u(xxx) ·−→n γ)|K +(F∇u(xxx) ·−→n γ)|K′, xxx ∈ γ, ∀γ ∈ ∂Th\∂Ω

0, xxx ∈ γ, ∀γ ∈ ∂Ω.
(4.12)

72



Then (4.10) becomes

δ I[uh,v] = ∑
K∈Th

∫
K

rh(xxx)(v−Πhv)dxxx+ ∑
γ∈∂Th

∫
γ

(v−Πhv)Rh(xxx)ds. (4.13)

Taking v = eh ≡ u−uh in the above equation and from Schwarz’s inequality, we obtain

|δ I[uh,eh]|

≤ ∑
K∈Th

∫
K
|rh(xxx)(eh−Πheh)|dxxx+ ∑

γ∈∂Th

∫
γ

|(eh−Πheh)Rh(xxx)|ds

≤ ∑
K∈Th

‖rh‖L2(K) ‖eh−Πheh‖L2(K)+ ∑
γ∈∂Th

‖Rh‖L2(γ) ‖eh−Πheh‖L2(γ) (4.14)

= ∑
K∈Th

[
‖rh‖L2(K) ‖eh−Πheh‖L2(K)+

1
2 ∑

γ∈∂K
‖Rh‖L2(γ) ‖eh−Πheh‖L2(γ)

]
. (4.15)

For further derivation, we need to estimate ‖eh−Πheh‖L2(K) and ‖eh−Πheh‖L2(γ).

To this end, we recall that {Th} is assumed to be an affine family of triangulations on

Ω. As a consequence, for any element K ∈Th, there exists an invertible affine mapping

FK : K̂ → K such that K = FK(K̂), where K̂ is the reference element chosen here to

be equilateral and have the unitary volume. The Jacobian matrix of the mapping FK

is denoted by F
′
K . Note that it is a constant matrix on K. The following Lemma gives

anisotropic bounds on interpolation error on elements and element faces.

Lemma 4.1.1. Assume that u ∈ H2(Ω). Then for any K ∈Th,

‖eh−Πheh‖L2(K) ≤C
[∫

K

(
tr
(
(F
′
K)

T |H (u)|F
′
K

))2
dxxx
] 1

2

, (4.16)[
∑

γ∈∂K

1
|γ|
‖eh−Πheh‖2

L2(γ)

] 1
2

≤C
[

1
|K|

∫
K

(
tr
(
(F
′
K)

T |H (u)|F
′
K

))2
dxxx
] 1

2

, (4.17)
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where tr(·) denote the trace of a matrix, H(u) is the Hessian of the solution u, |H(u)|=√
H2(u), |K| denotes the volume of K, and C is a constant independent of Th and u.

The inequality (4.16) is proved in [74] and (4.17) is a consequence of the trace

theorem and the change of variables.

We continue to develop the bound on δ I[uh,eh]. From (4.16) we have

‖rh‖L2(K) ‖eh−Πheh‖L2(K)

≤ C‖rh‖L2(K)

[∫
K

(
tr
(
(F
′
K)

T |H (u)|F
′
K

))2
dxxx
] 1

2

= C‖rh‖L2(K)|K|
1
2

[
1
|K|

∫
K

(
tr
(
(F
′
K)

T |H (u)|F
′
K

))2
dxxx
] 1

2

. (4.18)

On the other hand,

∑
γ∈∂K
‖Rh‖L2(γ) ‖eh−Πheh‖L2(γ)

= ∑
γ∈∂K
|γ|

1
2 ‖Rh‖L2(γ) |γ|−

1
2 ‖eh−Πheh‖L2(γ)

≤

(
∑

γ∈∂K
|γ|‖Rh‖2

L2(γ)

) 1
2
(

∑
γ∈∂K
|γ|−1 ‖eh−Πheh‖2

L2(γ)

) 1
2

≤

(
∑

γ∈∂K
|γ|

1
2 ‖Rh‖L2(γ)

)(
∑

γ∈∂K
|γ|−1 ‖eh−Πheh‖2

L2(γ)

) 1
2

≤ C

(
∑

γ∈∂K
|γ|

1
2 ‖Rh‖L2(γ)

) [
1
|K|

∫
K

(
tr
(
(F
′
K)

T |H (u)|F
′
K

))2
dxxx
] 1

2

. (4.19)
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Substituting (4.18) and (4.19) into (4.15), we have

|δ I[uh,eh]|

≤ C ∑
K∈Th

[
‖rh‖L2(K)|K|

1
2 + ∑

γ∈∂K
|γ|

1
2‖Rh‖L2(γ)

]

·
[

1
|K|

∫
K

(
tr
(
(F
′
K)

T |H (u)|F
′
K

))2
dxxx
] 1

2

= C ∑
K∈Th

[
‖rh‖L2(K)

|K| 12
+

1
|K| ∑

γ∈∂K
|γ|

1
2‖Rh‖L2(γ)

]

· |K|
[

1
|K|

∫
K

(
tr
(
(F
′
K)

T |H (u)|F
′
K

))2
dxxx
] 1

2

≈ C ∑
K∈Th

[
‖rh‖L2(K)

|K| 12
+

1
|K| ∑

γ∈∂K
|γ|

1
2‖Rh‖L2(γ)

]
· |K| tr

(
(F
′
K)

T |HK(u)|F
′
K

)
, (4.20)

where HK(u) denotes the value of H(u) at the center of element K and in the last step

we have used

[
1
|K|

∫
K

(
tr
(
(F
′
K)

T |H (u)|F
′
K

))2
dxxx
] 1

2

≈ tr
(
(F
′
K)

T |HK(u)|F
′
K

)
.

Denoting

〈rh〉L2(K) =
‖rh‖L2(K)

|K| 12
=

[
1
|K|

∫
K

r2
hdxxx
] 1

2

, 〈Rh〉L2(γ) =
‖Rh‖L2(γ)

|γ| 12
=

[
1
|γ|

∫
γ

R2
h ds
] 1

2

,

(4.21)

then (4.20) becomes

|δ I[uh,eh]|.C ∑
K∈Th

[
〈rh〉L2(K)+

1
|K| ∑

γ∈∂K
|γ|〈Rh〉L2(γ)

]
|K| tr

(
(F
′
K)

T |HK(u)|F
′
K

)
.

(4.22)
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We now use this bound to define the metric tensor M. To ensure that M is strictly

positive definite, we need to regularize the bound (4.22). For a positive constant αh

(which is to be determined), we have

|δ I[uh,eh]|

. C ∑
K∈Th

[
αh + 〈rh〉L2(K)+

1
|K| ∑

γ∈∂K
|γ|〈Rh〉L2(γ)

]
· |K| tr

(
(F
′
K)

T (αhI + |HK(u)|)F
′
K

)
= C α

2
h ∑

K∈Th

[
1+

1
αh
〈rh〉L2(K)+

1
αh|K| ∑

γ∈∂K
|γ|〈Rh〉L2(γ)

]

· |K| tr
(
(F
′
K)

T
(

I +
1

αh
|HK(u)|

)
F
′
K

)
= C α

2
h ∑

K∈Th

[
1+

1
αh
〈rh〉L2(K)+

1
αh|K| ∑

γ∈∂K
|γ|〈Rh〉L2(γ)

]
· |K| tr

(
(F
′
K)

T HK,αF
′
K

)
, (4.23)

where

HK,α = I +
1

αh
|HK(u)|. (4.24)

The metric tensor M is determined so that the bound (4.23) is minimized for M-

uniform meshes. As mentioned in §1.3, an M-uniform mesh satisfies the alignment and

equidistribution conditions (see [73])

1
d tr
(
(F
′
K)

T MKF
′
K

)
= det

(
(F
′
K)

T MKF
′
K

) 1
d
, (4.25)

ρK|K|= σh
N , (4.26)
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where MK is an average of M over K, ρK =
√

det(MK), det(·) denote the determinant

of a matrix, N is the number of elements of Th, and

σh = ∑
K∈Th

ρK|K|. (4.27)

Comparing (4.23) with (4.25) suggests that M be chosen in the form

MK = θK HK,α ∀K ∈Th (4.28)

for some scalar function θ = θK . Inserting this into (4.25), the alignment condition

yields

1
d

tr
(
(F
′
K)

T HK,αF
′
K

)
= det

(
(F
′
K)

T HK,αF
′
K

) 1
d
= |K|

2
d det(HK,α)

1
d , (4.29)

where we have used det(F
′
K) = |K|. Substituting (4.29) into (4.23), we have

|δ I[uh,eh]|

. C α
2
h ∑

K∈Th

[
1+

1
αh
〈rh〉L2(K)+

1
αh|K| ∑

γ∈∂K
|γ|〈Rh〉L2(γ)

]
· |K|

d+2
d det(HK,α)

1
d . (4.30)

We now proceed to determine θ = θK in (4.28) using the equidistribution condition

(4.26). From Hölder’s inequality, we have

[
1
N ∑

K
(|K|ρK)

d+2
d

] d
d+2

≥ 1
N ∑

K
|K|ρK =

σh

N
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or

∑
K
(|K|ρK)

d+2
d ≥ (σh)

d+2
d N−

2
d , (4.31)

with the lower bound being attained for a mesh satisfying (4.26). This suggest, by

comparing the left-hand side of (4.31) with the right-hand side of (4.30), that ρ = ρK

be defined as

ρK =

[
1+

1
αh
〈rh〉L2(K)+

1
αh|K| ∑

γ∈∂K
|γ|〈Rh〉L2(γ)

] d
d+2

det(HK,α)
1

d+2 ,

or

ρK =

[
1+

1
αh
〈rh〉L2(K)+

1
αh|K| ∑

γ∈∂K
|γ|〈Rh〉L2(γ)

] d
d+2

det
(

I +
1

αh
|HK(u)|

) 1
d+2

.

(4.32)

With the so-defined ρ , the right-hand side of (4.30) attains its lower bound for a mesh

satisfying the equidistribution condition (4.26). Now the variation of the functional

(4.1) has a bound as

|δ I[uh,eh]|.C α
2
h (σh)

d+2
d N−

2
d (4.33)

for an M-uniform mesh. Recall that |δ I[uh,eh]| is equivalent to ‖e′h‖2
L2(Ω)

for uniformly

convex quadratic functionals. In this case, (4.33) implies that, when αh and σh are

bounded, ‖e′h‖L2(Ω) = O(N−
1
d ) or the H1 semi-norm of the error has a first order con-

vergence as N→ ∞.

From the relation ρ =
√

det(M) and the form (4.28), we obtain the metric tensor as

MK = ρ
2
d
K det

(
I +

1
αh
|HK(u)|

)− 1
d
[

I +
1

αh
|HK(u)|

]
. (4.34)
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Following [74], we choose the parameter αh such that

σh ≡ ∑
K∈Th

ρK|K|=== 2|Ω|

or

∑
K∈Th

|K|

[
1+

1
αh
〈rh〉L2(K)+

1
αh|K| ∑

γ∈∂K
|γ|〈Rh〉L2(γ)

] d
d+2

det
(

I +
1

αh
|HK(u)|

) 1
d+2

= 2|Ω|. (4.35)

With this choice, roughly fifty percents of the mesh elements will be concentrated in

the regions of large ρ [74]. Moreover, mesh concentration is invariant under the scaling

transformation of the solution u. It is easy to show that (4.35) has a solution αh >

0. Once αh is computed, the adaptation function ρ and the metric tensor M can be

determined by (4.32) and (4.34), respectively. A new mesh can then be generated based

on the metric tensor.

From (4.32) and (4.34), one can see that this definition of the metric tensor involves

the residual rh, the edge jump Rh, and the Hessian of the solution, HK(u). The former

two are computable because they are based on the computed solution, whereas HK(u) is

not since the exact solution is generally unknown. In this sense, (4.34) is semi-a poste-

riori. In actual computation, the Hessian of the exact solution is typically approximated

through recovery from the computed solution.

4.2 Metric tensor for isotropic mesh adaptation

Interestingly, a completely a posteriori formula can be obtained for isotropic mesh

adaptation in a similar procedure as that used in the previous section. To see this,
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we first recall some isotropic bounds for interpolation error on elements and element

faces in the following lemma. The reader is referred to [3] for its proof.

Lemma 4.2.1. Assume that u ∈ H2(Ω) and {Th} is an affine family of regular

triangulations for Ω. Then, for any K ∈Th,

‖eh−Πheh‖L2(K) ≤C hK ‖e′h‖L2(K̃), (4.36)

‖eh−Πheh‖L2(γ) ≤C h
1
2
K ‖e′h‖L2(K̃), (4.37)

where hK is the diameter of the element K and K̃ is the subdomain consisting of ele-

ments sharing a common face with element K.

Substituting (4.36) and (4.37) into (4.14) and applying Schwarz’s inequality, we

have

|δ I[uh,eh]| ≤C‖e′h‖L2(Ω)

[
∑

K∈Th

h2
K ‖rh‖2

L2(K)+ ∑
γ∈∂Th

hK ‖Rh‖2
L2(γ)

] 1
2

. (4.38)

Thus, using the notation (4.21) we have

(
|δ I[uh,eh]|
‖e′h‖L2(Ω)

)2

≤ C

[
∑

K∈Th

h2
K ‖rh‖2

L2(K)+ ∑
γ∈Th

hK ‖Rh‖2
L2(γ)

]

≤ C ∑
K∈Th

[
h2

K ‖rh‖2
L2(K)+

1
2 ∑

γ∈∂K
hK ‖Rh‖2

L2(γ)

]

≤ C ∑
K∈Th

|K|1+
2
d

[
〈rh〉2L2(K)+

1

|K| 2d
∑

γ∈∂K
〈Rh〉2L2(γ)

]
, (4.39)

where in the last step we have used |K| ∼ hd
K and |γ| ∼ hd−1

K and denotation of 〈rh〉

and 〈Rh〉 as in (4.21). As pointed out in the previous section (cf. (4.8)), the left-hand

side of the above inequality is equivalent to ‖e′h‖2
L2(Ω)

when the functional is uniformly
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convex and quadratic. In the same time, the right hand-side term is of the same form as

a standard a posteriori error estimate for elliptic PDEs; e.g., see [3].

The bound in (4.39) is used to define M in such a way that it is minimized for M-

uniform meshes. The same procedure employed in the previous section for anisotropic

mesh adaptation can be used for this purpose. Indeed, we obtain

MK = ρ
2
d
K I (4.40)

and

ρK =

[
1+

1
αh
〈rh〉2L2(K)+

1

αh|K|
2
d

∑
γ∈∂K
〈Rh〉2L2(γ)

] d
d+2

, (4.41)

where αh is defined as

αh =

 1
|Ω| ∑

K∈Th

|K|

〈rh〉
2d

d+2
L2(K)

+

(
1

|K| 2d
∑

γ∈∂K
〈Rh〉2L2(γ)

) d
d+2


d+2
d

. (4.42)

It is remarked that for this choice of αh, we have

σh = ∑
K∈Th

ρK|K| ≤ 2|Ω|. (4.43)

Moreover, for the corresponding M-uniform mesh it holds

(
|δ I[uh,eh]|
‖e′h‖L2(Ω)

)2

≤CαhN−
2
d . (4.44)

For the case of uniformly convex quadratic functionals, the left-hand side is equivalent

to ‖e′h‖2
L2(Ω)

and thus (4.44) implies ‖e′h‖L2(Ω) = O(N−
1
d ), meaning that the error has

a first order convergence (which corresponds to O(h) for a uniform mesh) as N → ∞.
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Furthermore, it is obvious that the metric tensor defined in (4.40) involves only residual

rh and edge jump Rh and thus is completely a posteriori.

4.3 Error estimation based on hierarchical bases

In §1.2, we developed a metric tensor for use in anisotropic mesh adaptation for vari-

ational problems. The metric tensor developed is a semi-posterior in the sense that it

involves the Hessian of the exact solution. As mentioned before, the Hessian is approx-

imated by least squares fitting in the actual computation.

In this section, we investigate the use of a global hierarchical basis error estima-

tor (HBEE) developed in [77] for the development of an anisotropic metric tensor for

variational problems. The new metric tensor is completely a posteriori and based on

residual, edge jumps and the hierarchical basis error estimator. Numerical results show

that it performs comparable with existing metric tensors based on Hessian recovery. A

few sweeps of the symmetric Gauss-Seidel iteration for solving the global error prob-

lem prove sufficient to provide directional information necessary for successful mesh

adaptation.

The procedure is similar to the one described in §1.2. A posterior hierarchical basis

error estimator (HBEE) is employed on elements and element faces in the bound (4.15).

The computation of the error estimator is based on a general framework, details on

which can be found among others in the work of Bank and Smith [9] or Deuflhard et

al. [48]. The approach is briefly explained as follows.

Recall that uh ∈Uh
g is a linear finite element solution of the Galerkin formulation

(4.6) and the error is eh = u−uh. Let

Ūh
g =Uh

g ⊕W h,
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where W h is the linear span of the edge bubble functions. Obviously, Ūh
g is a subspace

of piecewise quadratic functions. Recall also that

δ I[uh + eh,v] = 0 ∀v ∈U0.

Denote by Bh[uh; ·, ·] a bilinear form resulting from a linearization of δ I[·, ·] about uh

with respect to the first argument. The error estimate zh is then defined as the solution

of the approximate linear error problem


Find zh ∈W h such that

δ I[uh,wh]+Bh[uh;zh,wh] = 0 ∀wh ∈W h.

The estimate zh can be viewed as a projection of the true error onto the subspace W h.

Note that Πhzh = 0 by construction, and thus zh = zh−Πhzh.

This definition of the error estimate is global and its solution can be costly. To avoid

the expensive exact solution in numerical computation, we employ only a few sweeps

of the symmetric Gauss-Seidel iteration for the resulting linear system, which proves to

be sufficient for the purpose of mesh adaptation [77].

We now assume that zh provides a reliable local estimate on eh−Πheh, i.e., there

exist constants C1 > 0 and C2 > 0 such that

‖eh−Πheh‖L2(K) ≤C1‖zh‖L2(K) and ‖eh−Πheh‖L2(γ) ≤C2‖zh‖L2(γ).

Then we can replace eh−Πheh with zh in (4.15) and develop the bound on δ I[uh,eh] in

terms of zh.
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Recalling that Πhzh = 0 and using element-wise interpolation error estimates in

[74], we have

‖zh‖L2(K) = ‖zh−Πhzh‖L2(K)

≤C
[∫

K

(
tr
(
(F ′K)

T |H(zh)|F ′K
))2

dxxx
] 1

2

=C |K|
1
2 tr
(
(F ′K)

T |HK(zh)|F ′K
)
, (4.45)

and

[
∑

γ∈∂K

1
|γ|
‖zh‖2

L2(γ)

] 1
2

=

[
∑

γ∈∂K

1
|γ|
‖zh−Πhzh‖2

L2(γ)

] 1
2

≤C
[

1
|K|

∫
K

(
tr
(
(F ′K)

T |H(zh)|F ′K
))2

dxxx
] 1

2

=C tr
(
(F ′K)

T |HK(zh)|F ′K
)
,

where tr(·) denote the trace of a matrix, HK(zh) is the Hessian of zh on K, |HK(zh)| =√
H2

K(zh), |K| is the volume of K, FK is a mapping from the reference element K̂ to

element K, and C is a constant independent of Th and zh. Thus,

∑
γ∈∂K
‖Rh‖L2(γ)‖zh‖L2(γ) = ∑

γ∈∂K
|γ|

1
2 ‖Rh‖L2(γ) |γ|

− 1
2 ‖zh‖L2(γ)

≤

(
∑

γ∈∂K
|γ|‖Rh‖2

L2(γ)

) 1
2
(

∑
γ∈∂K

1
|γ|
‖zh‖2

L2(γ)

) 1
2

≤

(
∑

γ∈∂K
|γ|

1
2 ‖Rh‖L2(γ)

)(
∑

γ∈∂K

1
|γ|
‖zh‖2

L2(γ)

) 1
2

≤C

(
∑

γ∈∂K
|γ|

1
2 ‖Rh‖L2(γ)

)
tr
(
(F ′K)

T |HK(zh)|F ′K
)
. (4.46)

84



Substituting (4.45) and (4.46) into (4.15) leads to

|δ I[uh,eh]| ≤C ∑
K∈Th

[
|K|

1
2 ‖rh‖L2(K)+ ∑

γ∈∂K
|γ|

1
2 ‖Rh‖L2(γ)

]
tr
(
(F ′K)

T |HK(zh)|F ′K
)

=C ∑
K∈Th

[
‖rh‖L2(K)

|K|
1
2

+
1
|K| ∑

γ∈∂K
|γ|
‖Rh‖L2(γ)

|γ|
1
2

]
|K| tr

(
(F ′K)

T |HK(zh)|F ′K
)

=C ∑
K∈Th

[
〈rh〉L2(K)+

1
|K| ∑

γ∈∂K
|γ| 〈Rh〉L2(γ)

]
|K| tr

(
(F ′K)

T |HK(zh)|F ′K
)
,

(4.47)

where 〈rh〉 and 〈Rh〉 are defined in (4.21).

We now use bound (4.47) to define the metric tensor M. To ensure that M is strictly

positive definite, we first regularize the bound with a positive constant αh (to be deter-

mined), i.e.,

|δ I[uh,eh]| ≤C ∑
K∈Th

[
αh + 〈rh〉L2(K)+

1
|K| ∑

γ∈∂K
|γ| 〈Rh〉L2(γ)

]

· |K| tr
(
(F ′K)

T (αhI + |HK(zh)|)F ′K
)

=Cα
2
h ∑

K∈Th

[
1+

1
αh
〈rh〉L2(K)+

1
αh |K| ∑

γ∈∂K
|γ| 〈Rh〉L2(γ)

]

· |K| tr
(
(F ′K)

T HK,α(zh)F ′K
)
, (4.48)

where

HK,α(zh) = I +
1

αh
|HK(zh)| .

The optimal metric tensor is obtained by minimizing bound (4.48) for M-uniform

meshes. As mentioned in §1.3, an M-uniform mesh satisfies the alignment condition

(1.12) and the equidistribution condition (1.11). The conditions are repeated below for
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convenience. The alignment condition is

1
d

tr
(
(F ′K)

T MKF ′K
)
= det

(
(F ′K)

T MKF ′K
) 1

d (4.49)

and the equidistribution condition is

ρK |K|=
σh

N
, (4.50)

We now pay our attention to the tr(·) factor in (4.48). Notice that in general,

1
d

tr
(
(F ′K)

T HK,α(zh)F ′K
)
≥ det

(
(F ′K)

T HK,α(zh)F ′K
) 1

d .

From (4.49) we can see that the equality in the above inequalities holds if we choose

M = MK in the form

MK = θKHK,α(zh) ∀K ∈Th (4.51)

for some scalar function θ = θK . Indeed, with this choice of MK the alignment condi-

tion (4.49) reads as

1
d

tr
(
(F ′K)

T HK,αF ′K
)
= det

(
(F ′K)

T HK,αF ′K
) 1

d = |K|
2
d det(HK,α(zh))

1
d , (4.52)

where we have used |det(F ′K)| = |K| and assumed |K̂| = 1. Substituting (4.52) into

(4.48) yields

|δ I[uh,eh]| ≤Cα
2
h ∑

K∈Th

[
1+

1
αh
〈rh〉L2(K)+

1
αh |K| ∑

γ∈∂K
|γ| 〈Rh〉L2(γ)

]

· |K|
d+2

d det(HK,α(zh))
1
d . (4.53)
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Next, we use the equidistribution condition (4.50) to determine θ = θK in (4.51). From

Hölder’s inequality, we have

[
1
N ∑

K
(|K|ρK)

d+2
d

] d
d+2

≥ 1
N ∑

K
|K|ρK =

σh

N

or

∑
K
(|K|ρK)

d+2
d ≥ (σh)

d+2
d N−

2
d , (4.54)

with the lower bound being attained for a mesh satisfying (4.50). Comparing the left-

hand side of (4.54) with the right-hand side of (4.53) suggests that ρ = ρK be defined

as

ρK =

[
1+

1
αh
〈rh〉L2(K)+

1
αh |K| ∑

γ∈∂K
|γ| 〈Rh〉L2(γ)

] d
d+2

det(HK,α(zh))
1

d+2

=

[
1+

1
αh
〈rh〉L2(K)+

1
αh |K| ∑

γ∈∂K
|γ| 〈Rh〉L2(γ)

] d
d+2

det
(

I +
1

αh
|HK(zh)|

) 1
d+2

.

(4.55)

From relations ρK =
√

det(MK) and MK = θKHK,α(zh) we can obtain θK . The metric

tensor MK is then given by

MK = ρ
2
d
K det

(
I +

1
αh
|HK(zh)|

)− 1
d
[

I +
1

αh
|HK(zh)|

]
. (4.56)

With this choice of ρK (and MK), the right-hand side of (4.53) attains its lower

bound for a mesh satisfying the equidistribution condition (4.50). Then, the variation

87



of the functional (4.1) has an upper bound as

|δ I[uh,eh]| ≤Cα
2
h (σh)

d+2
d N−

2
d .

To complete the definition of the metric tensor, we need to choose the regularity

parameter αh. Following [74], we choose it such that

σh ≡ ∑
K∈Th

ρK |K|=== 2 |Ω|

or

∑
K∈Th

|K|
[

1+
1

αh
〈rh〉L2(K)+

1
αh |K| ∑

γ∈∂K
|γ| 〈Rh〉L2(γ)

] d
d+2

det
(

I +
1

αh
|HK(zh)|

) 1
d+2

= 2 |Ω| . (4.57)

With this choice, roughly fifty percents of the mesh elements will be concentrated in

the regions of large ρ [74]. It is easy to show that (4.57) has a unique solution since

its left-hand side is monotonically decreasing with αh increasing and tends to |Ω| as

αh → ∞ and to +∞ as αh → 0. Moreover, it can be solved using a simple iteration

scheme such as the bisection method.

Once αh is computed, the adaptation function ρ and the metric tensor M can be

determined by (4.55) and (4.56), respectively. A new mesh can then be generated based

on the metric tensor.

This definition of the metric tensor involves the residual rh, the edge jump Rh, and

the HBEE zh. All these quantities are based on the computed solution; in this sense,

(4.56) is a posteriori.
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4.4 Numerical results

In this section we present numerical results obtained for a selection of two-dimensional

problems. The metric tensors (4.34), (4.40) and (4.56) are used with the mesh adapta-

tion procedure outlined in §1.3. The corresponding results are labelled with “VPaniso”,

“VPiso” and “VPhb”, respectively.

For comparison purpose, we also include the results obtained with a formula for

the metric tensor developed in [74] based on interpolation error. For completeness, we

record the formula as

MK = ρ
2
d
K det

(
I +

1
αh
|HK(u)|

)− 1
d
[

I +
1

αh
|HK(u)|

]
,

ρK =
∥∥∥I +

1
αh
|HK(u)|

∥∥∥ d
d+2

F
det
(

I +
1

αh
|HK(u)|

) 1
d+2

,

where ‖ · ‖F is the Frobenius matrix norm. Results obtained with this metric tensor are

labelled with “IEaniso”.

Since formulas (4.34), (4.40) and (4.56) are developed based on the bounds on the

quantities in (4.8) that are equivalent to the H1 seminorm of the error for uniformly

convex quadratic functionals, we measure the error in the H1 seminorm in our compu-

tation and comparison. We first focus on comparison among “IEaniso”, “VPiso” and

“VPaniso”. Then “VPhb” is considered and compared with “VPiso” and “VPaniso”.

Example 4.4.1. The first example is

I[u] =
∫

Ω

(
1
2
|∇u|2−u f

)
dxdy, (4.58)
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where Ω is the unit square. The function f is chosen such that the exact solution is

uexact =
1

1+ e
x+y−1.25

2ε

. (4.59)

The parameter is taken as ε = 0.005 in the computation. Note that the problem is

equivalent to the boundary value problem


−∇ · (∇u) = f in Ω

u = uexact on ∂Ω.

(4.60)

Fig. 4.1 shows adaptive meshes corresponding to “IEaniso”, “VPiso” and “VPaniso”.

One can see that they all have correct mesh concentration. Moreover, the meshes ob-

tained with IEaniso and VPaniso are obviously anisotropic. They have a much better

alignment with the solution and lead to smaller error than the isotropic mesh obtained

with VPiso. In Fig. 4.2, the H1 seminorm of the finite element error is plotted as

functions of the number of elements (N). It can be seen that the error has a first or-

der convergence, i.e., ‖e′h‖L2(Ω) = O(N−
1
2 ), for all three formulas of the metric tensor.

The result confirms the theoretical prediction in (4.33) and (4.44). It also shows that

anisotropic meshes produce a significantly smaller error than an isotropic one, a known

fact in the context of anisotropic mesh adaptation for numerical solution of PDEs.

It is emphasized that the formulas of the metric tensor based on the variational

formulation, VPiso and VPaniso, work well for solving the current variational problem.

Moreover, VPaniso is comparable in performance with IEaniso, an existing formula

based on interpolation error.
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To give some sense of the estimates (4.22) and (4.39), we let

ηh,aniso ≡

{
∑

K∈Th

[
〈rh〉L2(K)+

1
|K| ∑

γ∈∂K
|γ|〈Rh〉L2(γ)

]
|K| tr

(
(F
′
K)

T |HK(u)|F
′
K

)} 1
2

,

ηh,iso ≡

{
∑

K∈Th

|K|1+
2
d

[
〈rh〉2L2(K)+

1

|K| 2d
∑

γ∈∂K
〈Rh〉2L2(γ)

]} 1
2

,

and plot them as functions of N in Fig. 4.3. In the current situation, each of ηh,aniso and

ηh,iso, up to a multiplicative constant, defines a bound for the error ‖e′h‖L2(Ω). Particu-

larly, ηh,iso has the same form as a standard residual-based a posteriori error estimate. It

should be pointed out that they cannot be directly compared against each other because

they are not asymptotically exact and the multiplicative constants can have a different

value. On the other hand, Fig. 4.3 does show that the quantities decrease at the rate of

N−0.5, confirming the theoretical predictions (4.33) and (4.44).

Example 4.4.2. Our second example is the functional

I[u] =
∫

Ω

(
1
2

∇u ·D∇u− f u
)

dxdy, (4.61)

where Ω is the unit square and

D=

 cosθ sinθ

−sinθ cosθ


 1000 0

0 1


 cosθ −sinθ

sinθ cosθ

 (4.62)

with constant θ . The function f is chosen such that the exact solution is given by

uexact = 2cos(πx)sin(2πy)+2. (4.63)

The solution is shown in Fig. 4.4.
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We consider two cases of θ : θ = π/6 and θ = 5π/6. Note that when θ changes

from π/6 to 5π/6, the structure of the problem changes while the exact solution re-

mains the same. The numerical solution is shown in Fig. 4.4. By construction, we

expect that the mesh concentration changes for methods VPiso and VPaniso but stays

the same for IEaniso. This is confirmed in Fig. 4.5 where adaptive meshes are shown

for the three formulas of the metric tensor and for the two values of θ .

The error in the H1 seminorm is plotted in Fig. 4.6 as function of the number of

elements. Once again, the first convergence order of the error can be observed from the

figure.

Example 4.4.3. The next example is an anisotropic variational problem [17] defined

by the functional

I[u] =
∫

Ω

((
1+ |∇u|2

) 3
4 +1000

∣∣∣∣∂u
∂y

∣∣∣∣2
)

dxdy, (4.64)

where Ω is the unit square. The boundary condition is given as


u = 1 on x = 0 or x = 1,

u = 2 on y = 0 or y = 1.
(4.65)

No analytical solution is available for this example. Unlike the previous two examples,

the functional (4.64) is not quadratic. Hence, the quantities in (4.8) are not equivalent

to ‖e′h‖2
L2(Ω)

, and this example is a test for the formulas of the metric tensor based on

the variational formulation.

A computed solution is shown in Fig. 4.7, from which we can see that the solution

has sharp layers near boundaries x = 0 and x = 1. Fig. 4.8 shows adaptive meshes

obtained corresponding to IEaniso, VPiso and VPaniso. One can see that they have
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correct mesh concentration. The result shows that VPaniso is comparable to IEaniso

even for the variational problem with a non-quadratic functional.

Adaptive meshes obtained with the three different metric tensors (VPiso, VPaniso,

and VPhb) are given in Fig. 4.9. They all have correct mesh concentration, but the

anisotropic metric tensors (Figs. 4.9(b) and 4.9)(c) provide a much better alignment

with the boundary layers. Again, both anisotropic meshes are comparable, although

mesh elements near the boundary layer in the HBEE-based adaptive mesh (“VPhb”)

have a larger aspect ratio than elements of the mesh obtained by means of the Hessian

recovery (“VPaniso”). This could be due to the smoothing nature of the Hessian re-

covery: usually, it operates on a larger patch, thus introducing an additional smoothing

effect, which affects the grading of the elements’ size and orientation. The global hi-

erarchical basis error estimator does not have this handicap and, in this example, the

mesh obtained by means of HBEE is slightly better aligned with the steep boundary

layers.

Example 4.4.4. This example is an energy functional used in image processing with

observed image p(x,y) and reconstructed image u(x,y) [7, 37]:

I[u] =
∫

Ω

(
p(x,y)− (Ru)(x,y))2 +α φ(|∇u|)

)
dxdy, (4.66)

where Ω is the unit square, R is a linear operator of L2(Ω)→ L2(Ω), φ is a function

R+→ R+, α ∈ R+ is a parameter, and 0≤ p(x,y)≤ 1.

In our computation, we choose R = I, φ(t) =
√

1+ t2, α = 1 and p = 1
1+e1000(x+y−1.25)

together with the boundary condition

u = p(x,y) on ∂Ω. (4.67)
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The functional (4.66) becomes

I[u] =
∫

Ω

((
1+ |∇u|2

) 1
2 +(p−u)2

)
dxdy, (4.68)

which, once again, is not quadratic. No analytical solution is available for this exam-

ple. A computed solution and adaptive meshes are shown in Fig. 4.10. The results

demonstrate that VPaniso is comparable to IEaniso.

The adaptive meshes obtained based on VPiso, VPaniso and VPhb are shown to-

gether in Fig. 4.11. As in the previous example, the anisotropic metric tensors are

comparable and provide a better mesh adaptation than the isotropic one. Again, the

HBEE-based mesh has a slightly larger maximum aspect ratio.

Fig. 4.12 shows a result for p = 0.5 together with the boundary condition


u = 0 on x = 0 or x = 1,

u = 1 on y = 0 or y = 1.
(4.69)

Again, the results demonstrate that VPaniso is comparable to IEaniso.

Example 4.4.5. Lastly, we compare the results obtained from VPaniso (4.34) based

on variational formulation and IEaniso (or (3.29) based on PDE formulation for the

anisotropic diffusion problems discussed in chapters 2 and 3. We consider again the

Example 2.3.1. For convenience, we restate the problem here.

The PDE form of the example is

−∇ · (D∇u) = 0, in Ω,
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and the variational form is

I[u] =
∫

Ω

(
1
2

∇u ·D∇u
)

dxxx, ∀u ∈Ug.

The domain and boundary conditions are

Ω = [0,1]2\
[

4
9
,
5
9

]2

, u = 0 on Γout , u = 2 on Γin,

where Γout and Γin are the outer and inner boundaries of Ω, respectively; see Fig. 2.2.

The diffusion matrix is given by

D=

 cosθ −sinθ

sinθ cosθ


 1000 0

0 1


 cosθ sinθ

−sinθ cosθ

 .
with θ being the angle of the primary diffusion direction (parallel to the first eigenvector

of D). This problem satisfies the maximum principle and the solution stays between 0

and 2.

We first consider the case of constant D with θ = π/4. Fig. 4.13 shows finite el-

ement solutions obtained with VPaniso and IEaniso (or Madap). Meshes and solution

contours obtained with those two metric tensors are shown in Figs. 4.14 and 4.15,

respectively. Undershoots and unphysical minima are observed in both the solution ob-

tained with IEaniso (umin =−0.0039) and VPaniso (umin =−0.0119). The undershoot

is more significant with VPaniso than that with IEaniso.

The results obtained from both VPaniso and IEaniso (or Madap) violate discrete

maximum principle, which is reasonable since no DMP-satisfied condition is applied

in the derivation of the corresponding metric tensors. The mesh obtained with IEaniso

has better alignment with the solution than the one obtained with VPaniso. On the
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other hand, the mesh obtained with VPaniso may preserve more structure information

for the underlying problem than IEaniso. However, we cannot see much benefit of

using VPaniso based on the examples we have studied. More studies are needed to

demonstrate the adavantage of using VPaniso.

Next we consider a case of variable D with θ = π sin(x)cos(y). The finite ele-

ment solutions, meshes, and solution contours are shown in Figs. 4.16, 4.17, and 4.18,

respectively. Similar observations as for the constant D case can be made.

4.5 Conclusions and comments

In this chapter, the metric tensor for use in the adaptive finite element solution of vari-

ational problems has been developed based on the underlying variational formulation.

Three formulas, (4.34), (4.40), and (4.56) have been obtained. The first one (4.34) is

semi-a posteriori in the sense that it involves the residual rh and the edge jump Rh, both

dependent on the computed solution, and the Hessian of the exact solution which is

approximated using least squares fitting in actual computation. The second one (4.40)

is for isotropic mesh adaptation and is completely a posteriori, involving only rh and

Rh. The third one (4.56) is for anisotropic mesh adaptation but also a posterior based

on residual, edge jumps and the hierarchical basis error estimator.

Unlike the existing ones, the new formulas incorporate structural information of

the underlying problem into their design and generate meshes which adapt to changes

in the structure of the underlying problem. This work is motivated by the argument

that the underlying variational formulation should naturally be used for the design of

computational meshes for the numerical solution of variational problems. This idea has

been used and advocated in the past by a number of researchers such as in [13, 14, 15,

18, 28, 30, 31, 33, 41, 42, 46, 58, 59, 60, 66, 81, 119]. The numerical results have
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shown that the approach is feasible and can be used for anisotropic mesh adaptation

for variational problems. More studies are needed to demonstrate the advantages of

the approach over interpolation error based methods or other methods without using

variational structures.

Numerical results confirm the conclusion of [77] that a global HBEE can be a

successful alternative to Hessian recovery in mesh adaptation; a fast approximate so-

lution of the global error problem is sufficient to provide directional information for

anisotropic mesh adaptation. They also confirm the conjecture that good mesh adapta-

tion does not require a convergent Hessian recovery or an accurate error estimator, but

rather some additional information of global nature, although it is still unclear which

information exactly is necessary for successful anisotropic adaptation.
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(a) IEaniso, Nv = 2387, |e|H1 = 0.28, and a close-up at (0.65,0.65).
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(b) VPiso, Nv = 2390, |e|H1 = 0.79, and a close-up at (0.65,0.65).
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(c) VPaniso, Nv = 2353, |e|H1 = 0.17, and a close-up at (0.65,0.65).

Figure 4.1: Example 4.4.1. Adaptive meshes obtained with different formulas of the
metric tensor.
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Figure 4.2: Example 4.4.1. A comparison of H1 seminorm of the error for the finite
element solutions obtained using different mesh adaptation strategies, ε = 0.005.
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Figure 4.3: Example 4.4.1. Error estimates associated with VPiso and VPaniso are
plotted as functions of the number of elements.
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(a): IEaniso, θ = π/6
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(b): IEaniso, θ = 5π/6
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(c): VPiso, θ = π/6
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(d): VPiso, θ = 5π/6
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(e): VPaniso, θ = π/6
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(f): VPaniso, θ = 5π/6

Figure 4.5: Example 4.4.2. Adaptive meshes obtained with different formulas of the
metric tensor for θ = π/6 and θ = 5π/6.
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Figure 4.6: Example 4.4.2. The H1 seminorm of the error is plotted as function of the
number of elements for θ = π/6 and θ = 5π/6.
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Figure 4.7: A computed solution for Example 4.4.3.
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(a) IEaniso, Nv = 2676, and a close-up at (0,0).
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(b) VPiso, Nv = 2643, and a close-up at (0,0).
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(c) VPaniso, Nv = 2666, and a close-up at (0,0).

Figure 4.8: Adaptive meshes obtained with different formulas of the metric tensor for
Example 4.4.3.
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(a) VPiso, Nv = 644, and a close-up at (0,0).

(b) VPaniso, Nv = 649, and a close-up at (0,0).

(c) VPhb, Nv = 639, and a close-up at (0,0).

Figure 4.9: Example 4.4.3: adaptive meshes obtained based on VPiso, VPaniso and
VPhb.
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(a): Computed solution
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(b): IEaniso Mesh, Nv = 2545
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(c): VPiso Mesh, Nv = 2518
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(d): VPaniso Mesh, Nv = 2527

Figure 4.10: Example 4.4.4. A computed solution and adaptive meshes obtained based
on IEaniso, VPiso and VPaniso.
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(a) VPiso, Nv = 657, and a close-up at (0,0).

(b) VPaniso, Nv = 662, and a close-up at (0,0).

(c) VPhb, Nv = 656, and a close-up at (0,0).

Figure 4.11: Example 4.4.4. Adaptive meshes obtained based on VPiso, VPaniso and
VPhb.
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(a): Computed solution
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(b): IEaniso Mesh, Nv = 2667
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(c): VPiso Mesh, Nv = 2656
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(d): VPaniso Mesh, Nv = 2666

Figure 4.12: A computed solution and adaptive meshes obtained with different formu-
las of the metric tensor for Example 4.4.4 with p = 0.5 and boundary condition (4.69).
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(a): VPaniso
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(b): IEaniso

Figure 4.13: Example 4.4.5 with constant D. Finite element solutions obtained with (a)
VPaniso and (b) IEaniso.
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(a): VPaniso, Nv = 2584
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(b): IEaniso, Nv = 2583

Figure 4.14: Example 4.4.5 with constant D. Meshes obtained with (a) VPaniso and
(b) IEaniso.
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Figure 4.15: Example 4.4.5 with constant D. Contours of the finite element solutions
obtained with (a) VPaniso and (b) IEaniso.
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Figure 4.16: Example 4.4.5 with variable D. Finite element solutions obtained with (a)
VPaniso and (b) IEaniso.
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(a): VPaniso, Nv = 2593
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Figure 4.17: Example 4.4.5 with variable D. Meshes obtained with (a) VPaniso and (b)
IEaniso.
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Figure 4.18: Example 4.4.5 with variable D. Contours of the finite element solutions
obtained with (a) VPaniso and (b) IEaniso.
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Chapter 5

Application in Image Processing

In this chapter, we study the application of anisotropic mesh adaptation in image pro-

cessing. Background of image processing was introduced in §1.1.3. The application of

anisotropic diffusion in image processing is addressed in the next section. The applica-

tion of anisotropic mesh adaptation is discussed in §5.2.

5.1 Anisotropic diffusion in image processing

As mentioned in §1.1.3, anisotropic diffusion filters have become a popular tool in

image processing; e.g. see [102, 123, 16, 57, 117, 62, 51]. They have many applications

including noise removal, edge detection, texture enhancement or segmentation. Since

the focus of this dissertation is on mesh adaptation, we restrict our attention to noise

removal and edge detection. A basic model, as mentioned in §1.1.3, is the Perona-Malik

filter (1.8). In this section, we consider a general model based on [53].
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ut = ∇ · (D∇u)+β (u0−u), in ΩT = Ω× (0,T ] (5.1)

∂u = 0, on ∂Ω× [0,T ] (5.2)

u = u0, on Ω×{t = 0}, (5.3)

where Ω = [0,1]× [0,1], u0 is the given (or observed) image called “initial image”,

β ≥ 0 is a parameter, and D = D(xxx) is the diffusion matrix assumed to be symmetric

and strictly positive definite on Ω.

The model (5.1) is called the Generalized Perona-Malik model (GPM) if the diffu-

sion tensor D is chosen as

D=
1(

1+ |∇u|2
λ

)α III2, (5.4)

where III2 is the identity matrix of dimension 2 and α > 0, λ > 0 are parameters. The

model becomes the well-known Perona-Malik model (PM) when choosing β = 0 in

(5.1) and α = 1 in (5.4).

If choosing β = 0 in (5.1) and α = 0.5, λ = 1 in (5.4), the model represents a

regularized version of the Total Variation model (TV), which is given by

D=
1
|∇u|

III2. (5.5)

For the examples we studied, we choose λ = 100 in TV model which provides better

denoising effect than λ = 1.

As can be seen from (5.4) and (5.5), PM model and TV model are in fact isotropic

models. For anisotropic model, the diffusion tensor D should be chosen anisotropic,

i.e., its eigenvalues should not be all equal at least on a portion of Ω.
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5.2 Anisotropic mesh adaptation in image processing

This section discusses anisotropic mesh adaptation for finite element solution of the

General Perona-Malik model (5.1). Conventionally, anisotropic diffusion models in

image processing are solved using finite difference method which provides a natural

discretization on a fixed rectangular grid. Explicit schemes are commonly used al-

though they are restricted to small time step sizes to ensure stability. Semi-implicit

schemes which posses better stability properties are considered in [35].

On the other hand, finite element techniques in image processing are considered in

[10, 106, 11, 12, 51]. One of the advantages of using the finite element method is the

ease to apply mesh adaptation to improve the computational efficiency. For example,

considering a gray scale image with size 256×256. The number of degree of freedom

(DOF) using the finite difference method will be 65,536, and the number of vertices

will also be 65,536 for a regular triangle mesh using the finite element method. With

an adaptive mesh, only a small amount of elements (or DOF) is sufficient to provide

comparable image quality. Another advantage of anisotropic mesh adaptation is that

some important features of the original image can be preserved by the concentration of

mesh elements in the corresponding area.

Since PM model and TV model do not show much difference for the examples we

examined, only the results from PM model are included in this dissertation. For com-

putational convenience, we just consider gray scale images of size 256×256. Colorful

images with large sizes can be treated similarly.

The results obtained from three meshing strategies are compared. One strategy is

to use fixed mesh with 65,536 vertices, the results is labeled with “M f ixed” where no

adaptation is applied for the mesh. Another strategy is to use the metric tensor Madap

(3.29) based on minimization of an interpolation error bound [74]. The third strategy is
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to use the metric tensor MDMP (2.17) developed in §2.2. Note that MDMP is developed

for steady state problem (1.1) and (1.2). Although it guarantees DMP satisfaction for

the finite element solution of (1.1) and (1.2), it does not guarantee DMP satisfaction for

parabolic PDEs.

5.3 Numerical results

In this section, we present the results of anisotropic mesh adaption applied in image

processing. In all of the computations except addressed otherwise, a fixed time step

∆t = 10−5 is used and the computation stops after 10 time evolutions, i.e., at t = 10−4.

For the Perona-Malik (PM) model, we choose β = 0 in (5.1), λ = 100 and α = 1 in

(5.4).

The noisy images (J) are obtained by applying Gaussian noise (with mean 0 and

variance 0.01) to the original images (I) using the following MATLAB commands:

% read original image

I = imread(’image name’);

% apply Gaussian noise to I

J = imnoise(I, ’gaussian’, 0, 0.01);

Finite element discretization for space and backward Euler method for time are

applied to solve the parabolic problem. The discrete linear system is solved via the

UMFPACK Direct Solver. The computations are performed on a computer with 2.1

GHz Intel Core 2 Duo processor and 3 GB 667 MHz DDR2 SDRAM memory.

Example 5.3.1. Our first example is an noise removal or edge detection problem

for image shown in Fig. 5.1. The results are shown in Fig. 5.2. The goal is to remove

the noise around the triangle and rectangle. Adaptive meshes using Madap and MDMP
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with about 5,000 vertices provide good quality of final image comparing to fixed mesh

using M f ixed with 65,536 vertices. It is noted that both Madap and MDMP provide results

that are comparable to [10] and better than [12].

For the computation of 10 time evolutions, it takes 377 seconds using M f ixed (Nv =

65536) and 28 seconds using either Madap with Nv = 5118 or MDMP with Nv = 5108.

As can be seen, the computational efficiency is improved significantly.

(a): Original image (b): Noisy image

Figure 5.1: Example 5.3.1. Image before processing.

Example 5.3.2. Our second example is similar to Example 5.3.1 except the edge is

on a circle. The results are shown in Fig. 5.3 and are consistent with the observations

made in Example 5.3.1.

Example 5.3.3. The third example is denosing of a picture of “famous” Lena in

Fig. 5.4. The results are shown in Fig. 5.5. As can be seen from 5.5(d) and (f), the

concentration of mesh elements preserves some features of the image. However, the

processed images, 5.5(c) based on Madap and (e) based on MDMP are not as clear as the

one obtained using fixed full image mesh 5.5(a). This is reasonable since a mesh with
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just 5,500 vertices cannot preserve all the information in the initial image with 65,536

vertices. By using more mesh elements during anisotropic mesh adaptation, the results

are getting better, see Fig. 5.6 and 5.7.

Fig. 5.7 demonstrate that Madap and MDMP are comparable to M f ixed for a compli-

cated image when the numbers of elements are comparable. In this case, however, the

advantage of using anisotropic mesh adaptation is not obvious. For the 10 time evo-

lutions, it takes 366 seconds for M f ixed with Nv = 65536, 457 seconds for Madap with

Nv = 68657 and 312 seconds for MDMP with Nv = 49803. To improve computational

efficiency, the number of elements should be reduced. Therefore, anisotropic mesh

adaptation is helpful to preserve key features with less elements.

Example 5.3.4. The last example is an image of human lung. The results are shown

in Fig. 5.8. For image data, all the solution values should be between 0 and 1. However,

the minimum value of the solution obtained based on the three meshing strategies are

negative. Specifically, umin =−1.9e−7 for M f ixed (5.8(b)), umin =−1.4e−4 for Madap

(5.8(c)), and umin =−1.9e−3 for MDMP (5.8(d)). The negative solution violates DMP

and provides artifact in the final image.

After 30 time evolutions, the artifacts become significant and observable, see 5.8(e)

and (f). Even using more mesh elements (Nv = 13,000) in computation, artifact still

exists. This example demonstrates that DMP satisfaction is really an important topic in

image processing.

Mass lumping technique [40, 83] is commonly used in the finite element method

to preserve monotonicity of the numerical solution. Fig. 5.9 shows the results while

mass lumping is applied for the computation. The solution is improved significantly

(in terms of DMP) but still violates DMP. Hence, it is desirable to investigate DMP

satisfaction for parabolic problems.
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5.4 Conclusions and comments

Anisotropic mesh adaptation based on Madap (3.29) and MDMP (2.17) are applied in

image processing. The results are compared with those obtained using a fixed full

image mesh. The results demonstrate that anisotropic mesh adaptation can improve

computational efficiency while keeping comparable quality of the final solution. The

concentration of mesh elements also preserves some features of the initial image. Our

results are comparable to those in [10] and [106], and better than those in [12].

For computations using Madap and MDMP, there exists interpolation error from im-

age data to initial adaptive mesh. One way to resolve this problem is to use the full

image mesh with 65,536 vertices as the initial mesh for the computation. By this way,

the quality of the final image can be improved to some extent. However, the initial

computation using full image mesh is costly, especially when the image size is large.

For computational efficiency, we prefer starting with a small mesh while accepting the

initial interpolation error.

It is worth mentioning that DMP satisfaction is also important during image pro-

cessing. Improper schemes or meshes may lead to the occurrence of artifact in the final

solution (see Example 5.3.4). Hence, it is desirable to utilize a DMP-satisfied mesh

in the image processing. This will be a future research topic to develop DMP mesh

conditions for time dependent anisotropic diffusion problems.
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(a): Solution using M f ixed (b): Mesh using M f ixed , Nv = 65536

(c): Solution using Madap
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(d): Mesh using Madap, Nv = 5118

(e): Solution using MDMP
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(f): Mesh using MDMP, Nv = 5108

Figure 5.2: Example 5.3.1. Image processing using PM model.
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(a): Original image (b): Noisy image

(c): Solution using Madap
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(d): Mesh using Madap, Nv = 5171

(e): Solution using MDMP
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(f): Mesh using MDMP, Nv = 4899

Figure 5.3: Example 5.3.2. Image processing using PM model.
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(a): Original image (b): Noisy image

Figure 5.4: Example 5.3.3. Image before processing.
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(a): Solution using M f ixed (b): Mesh using M f ixed , Nv = 65536

(c): Solution using Madap
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(d): Mesh using Madap, Nv = 5477

(e): Solution using MDMP
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(f): Mesh using MDMP, Nv = 5425

Figure 5.5: Example 5.3.3. Image processing using PM model.

121



(a): Solution using Madap
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(b): Mesh using Madap, Nv = 12581

(c): Solution using MDMP
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(d): Mesh using MDMP, Nv = 10626

Figure 5.6: Example 5.3.3. Image processing using PM model with more mesh ele-
ments.
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(a): Solution using M f ixed (b): Mesh using M f ixed , Nv = 65536

(c): Solution using Madap (d): Mesh using Madap, Nv = 68657

(e): Solution using MDMP (f): Mesh using MDMP, Nv = 49803

Figure 5.7: Example 5.3.3. Image processing using PM model.
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(a): Original image (b): M f ixed , Nv = 65536, umin =−1.9e−7

(c): Madap, Nv = 6539, umin =−1.4e−4 (d): MDMP, Nv = 5221, umin =−1.9e−3

(e): Madap, 30 time evolutions,
Nv = 7345, umin =−86.7

(f): MDMP, 30 time evolutions,
Nv = 5437, umin =−11.4

Figure 5.8: Example 5.3.4. Image processing using PM model.
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(a): Madap, 10 time evolutions,
Nv = 6467, umin =−9.8e−5

(b): MDMP, 10 time evolutions,
Nv = 5309, umin =−2.5e−4

(c): Madap, 30 time evolutions,
Nv = 6668, umin =−2.9e−6

(d): MDMP, 30 time evolutions,
Nv = 5227, umin =−6.1e−5

Figure 5.9: Example 5.3.4. Image processing using PM model and mass lumping tech-
nique.
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Chapter 6

Summary and future research topics

This section summarizes the obtained results in this dissertation, and discusses future

research topics in this area.

6.1 Summary

In this study, anisotropic mesh adaptation for the finite element solution of anisotropic

diffusion problems has been considered. The background of related topics is introduced

in Chapter 1. For the boundary value problem (1.1) and (1.2), the discrete maximum

principle (DMP) is discussed in Chapters 2 and 3. In particular, an anisotropic non-

obtuse angle condition (2.5) is derived in Chapter 2, which is a generalization of the

well known non-obtuse angle condition developed for isotropic diffusion problems.

Two variants of the anisotropic non-obtuse angle condition, (2.14) and (2.15), are de-

veloped for actual mesh generation. A metric tensor (2.17) is derived based on (2.15)

for accounting for DMP satisfaction. Chapter 3 discusses the combination of DMP

satisfaction and error based mesh adaptation, and a metric tensor accounting for both

(3.16) is developed. This is the first time to combine the error based anisotropic mesh

adaptation and DMP satisfaction for isotropic/anisotropic diffusion problems.
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Chapter 4 discusses the mesh adaptation for the linear finite element solution for

variational problem (4.1). Three formulas, (4.34), (4.40), and (4.56) have been devel-

oped based on the underlying variational formulation. The first one (4.34) is semi-a

posteriori in the sense that it involves the residual rh and the edge jump Rh, both de-

pendent on the computed solution, and the Hessian of the exact solution which is ap-

proximated using least squares fitting in actual computation. The second one (4.40) is

for isotropic mesh adaptation and is completely a posteriori, involving only rh and Rh.

The third one (4.56) is for anisotropic mesh adaptation and also is a posterior based on

residual, edge jumps and the hierarchical basis error estimator. All the formulas incor-

porate structural information of the underlying problem into their design and generate

meshes which adapt to changes in the structure of the underlying problem.

Chapter 5 discusses the application of anisotropic mesh adaptation in image pro-

cessing. Examples demonstrate that anisotropic mesh adaptation can significantly im-

prove computational efficiency while still providing good quality processing. Metric

tensors Madap (3.29) based on interpolation error estimate and MDMP (2.17) based on

DMP satisfaction for elliptic problem (1.1) are applied in image processing and provide

results comparable to published literature. More research is needed to investigate DMP

satisfaction for parabolic problems to avoid artifacts in the final image.

6.2 Future research topics

Violating discrete maximum principle (DMP) during computations may cause severe

consequences. For instance, in laboratory plasmas, the ratio of parallel and perpen-

dicular conduction coefficients is very high. Improper schemes may produce spurious

solutions (such as negative temperature) which may lead to imaginary sound speed. In

image processing, artifacts may occur if DMP is not satisfied.
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In this dissertation, DMP is considered only for the particular form of elliptic prob-

lem (1.1) in Chapters 2 and 3. It is desirable to study the DMP satisfaction for a general

elliptic problem in the form of

−∇ · (D(xxx,u,∇u)∇u)+bbb(xxx)∇u+ c(xxx)u = f , in Ω, (6.1)

and for parabolic problems in the form of

ut−∇ · (D(xxx,u,∇u)∇u)+bbb(xxx)∇u+ c(xxx)u = f , in Ω. (6.2)

Some research has been done on DMP of particular parabolic problems, which uti-

lizes the concept of M-matrices and provides sufficient conditions which are relatively

restrictive. It is worthwhile to extend the anisotropic non-obtuse angle condition and to

provide a more relaxed sufficient condition for general elliptic and parabolic problems.

For variational problems, more studies are needed to demonstrate the advantages

of the approach over interpolation error based methods or other methods without using

variational structures.

Finally, it is desirable to apply schemes that satisfies DMP to real world problems

arising from science and engineering. The application to image processing is discussed

in Chapter 5. However, only the metric tensor based on steady state problems is used for

mesh adaptation, which does not guarantee DMP satisfaction for time dependent prob-

lem. Once the condition for DMP satisfaction for parabolic problems is developed, it

can be applied to the PDE-based image processing techniques in order to prevent oc-

currence of artifacts during the computation. Applications to other diffusion problems,

for instance, flow in porous media, can also be considered.
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[86] J. Karátson, S. Korotov, and M. Křı́žek. On discrete maximum principles for
nonlinear elliptic problems. Mathematics and Computers in Simulation, 76:99–
108, 2007. Cited on 24, 25, 43

[87] D.A. Karras and G.B. Mertzios. New pde-based methods for image enhancement
using som and bayesian inference in various discretization schemes. Meas. Sci.
Technol., 20:104012, 2009. Cited on 4

[88] G. Kunert. A posteriori error estimation for anisotropic tetrahedral and triangular
finite element meshes. Technical report, TU Chemnitz, 1999. Ph. D. Thesis.
Cited on 16

[89] D. Kuzmin, M.J. Shashkov, and D. Svyatskiy. A constrained finite element
method satisfying the discrete maximum principle for anisotropic diffusion prob-
lems. J. Comput. Phys., 228:3448–3463, 2009. Cited on 25, 38, 41, 60
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