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Abstract: The 90 kDa heat shock protein (Hsp90) is a molecular chaperone that is critical 

cellular survival and growth under both typical and stressful conditions. Hsp90 is responsible for 

the maturation and stability of more than 200 client proteins involved in a diverse assortment of 

cellular processes. Disruption of Hsp90’s chaperoning activity causes client protein degradation 

and ultimately leads to cytostasis and/or apoptosis. While this phenomenon is observed in normal 

cells, the effects of Hsp90 inhibition are more pronounced in oncogenic cell lines as a result of 

higher expression levels and increased cellular dependence on Hsp90 activity. As such, targeting 

Hsp90 inhibition with small molecules has emerged as a powerful strategy for the development 

of anticancer chemotherapeutics. 

 Several small molecule Hsp90 inhibitors are currently under evaluation in FDA 

sanctioned clinical trials for the treatment of various cancers, however, some undesired side 

effects have been observed. All of the Hsp90 targeting small molecules involved in these trials 

are ATP competitive inhibitors that bind at the N-terminal ATP binding domain. Inhibitors of 

this class elicit non-specific client protein degradation and cause the induction of the heat shock 

response that results in an upregulation of Hsp90 and other Hsp expression levels following 

incubation within cells. As a result, untoward toxicological effects are observed and the 

determination of appropriate dosing schedules to mitigate the heat shock response is highly 

complicated. A new strategy for Hsp90 inhibition capable of targeting specific client proteins for 

therapeutic efficacy that avoids heat shock response induction is desired. 

 Presented herein are preliminary studies that investigate potential strategies to target the 

selective degradation of Hsp90 client proteins while avoiding the heat shock response. 

Specifically, small molecule natural products that elicit Hsp90 co-chaperone disruption are 

considered and the chemical and biological results are discussed. These studies provide the first 
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steps toward developing a second generation of Hsp90 inhibitors that circumvent the detrimental 

effects observed for clinically evaluated inhibitors. 
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Chapter I 

Structure, Function, Mechanism and Strategies for Inhibition of Hsp90 

I.1 Introduction to Hsp90 as a Therapeutic Target 

 According to a 2010 report from the World Health Organization, cancer will soon replace 

heart disease as the number one cause of death.1 To combat this global problem, many cancers 

are now treated as chronic illnesses and managed by chemotherapy, requiring long-term care. In 

order to minimize deleterious side effects observed with traditional chemotherapies, new 

therapies that target cancer specific pathways are sought. 

One such therapeutic approach employs targeted multi-kinase inhibitors. While some 

success has been achieved, resistance development and the emergence of detrimental side effects 

remain a serious concern.2 For example, in a recent renal cell carcinoma clinical trial with the 

multi-kinase inhibitor sorafenib, nearly 30% of patients left the study due to negative side 

effects, including gastrointestinal and dermatological toxicities.3 Furthermore, in a clinical trial 

for chronic myeloid leukemia, resistance to multi-kinase inhibitors developed rapidly in 26%, 

73%, and 95% of patients with chronic, accelerated, or blast phase illness, respectively.4 Clearly, 

diminishing side effects and overcoming resistance is central to the long-term success for chronic 

treatment strategies. 

A therapeutic strategy that targets both cancer specific pathways and mechanisms of 

resistance could potentially eliminate side effects and be less prone to resistance development. 

The family of heat shock proteins (Hsps) represent a class of molecular targets around which 

such a strategy is being developed. Hsps function within cells as molecular chaperones and 

regulate/maintain proper protein function in normal cells. However, the chronic stress that results 
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from the cancer phenotype renders Hsps critical in oncogenic cells for survival, proliferation, and 

disease progression amid highly aberrant signaling pathways.5  

Protein dysfunction is a common physiological phenomenon, even in healthy cells. The 

accumulation of dysfunctional proteins, however, can lead to various pathological states.6-11 As a 

means to both promote cell survival and maintain genetic integrity, living cells have evolved 

mechanisms to refold or induce the degradation of misfolded proteins.12-14 This process is 

enabled by molecular chaperones, such as the Hsps, that comprise the class of bio-machinery 

responsible for quality control over protein structure.15-18 

One of the most studied molecular chaperones is the 90 kDa heat shock protein, Hsp90.19-

25 Potential clinical roles for Hsp90 inhibition are heavily pursued. Its therapeutic potential as a 

target for the development of cancer chemotherapeutics is particularly exciting.26-30 Toward this 

objective, several small molecules have been identified as Hsp90 inhibitors such as 

geldanamycin (GDA), radicicol (RAD), and novobiocin (NB) (Figure 1.1).31-33 Thus far, Hsp90 

targeting ligands have been discovered that bind the N-terminal ATP binding pocket,34-43 C-

terminal nucleotide-binding domain,44-47 or that target one of Hsp90’s protein-protein 

interactions.48-51 These mechanisms for target modulation provide various opportunities for the 

development of Hsp90 inhibitors with clinical applications toward multiple disease states.  
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Currently, the primary focus of Hsp90 modulation is based on competitive displacement 

of ATP from the N-terminal nucleotide-binding domain. Molecules that manifest this mode of 

activity have progressed from pre-clinical studies into human clinical trials for cancer,52-55 

serving to validate Hsp90 as a target for cancer,56 and opening the door for other therapeutic 

options including neurodegenerative disorders, cystic fibrosis, and pathological infection. After a 

discussion of the Hsp90 chaperoning process, these and other therapeutic areas will be discussed 

in more detail below. 

I.2 Hsp90, Master Chaperone 

Hsp90 is responsible for regulating cellular dysfunction by identifying 

denatured/misfolded proteins and stimulating either their rematuration or proteasomal 

degradation.  This master chaperone also facilitates the three-dimensional maturation and 

transport of more than 200 client proteins, i.e. proteins that require Hsp90 in either limited or 

extensive capacity for proper function (a complete listing of Hsp90 clients can be found at 

http://www.picard.ch/downloads/Hsp90interactors.pdf).57 The total protein folding process 

requires involvement of several macromolecular interactors (co-chaperones and/or partner 

proteins) that comprise the dynamic Hsp90 protein folding machinery, or the super chaperone 

complex (Table 1.1).15, 21, 58, 59 Through a series of conformational switching events that are 

dependent upon Hsp90’s ATPase activity, the super chaperone complex enables both protein 

refolding and the conformational maturation of clients.60-63 
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I.2.1 Hsp90 Structure 

Hsp90 exists as a homodimer in 

solution and contains three distinct 

structural domains: the C-terminus, the 

middle domain, and the N-terminus 

(Figure 1.2). Each domain participates in 

the protein folding process.64 

The Hsp90 C-Terminus 

The Hsp90 C-terminus is 

important for stabilizing Hsp90’s 

homodimeric nature and exhibits allosteric control over Hsp90’s N-terminal domain.23, 65 

Intermonomeric interactions create a dimeric surface that consists of a stable four-helix bundle, 

of which two-helices are contributed from each monomer, and forms an aromatic rich 

dimerization interface.19, 64 While this region does not house Hsp90’s ATPase activity, it 

provides allosteric regulation of N-terminal ATPase activity.66, 67 The C-terminal domain does, 

however, contain a non-hydrolyzing, nucleotide binding site responsible for exerting this 

allosteric control. When this site is occupied, ligands bound to the N-terminus, such as ADP or 

ATP-competitive inhibitors, are displaced through nucleotide switching.46, 47, 68-72 The C-terminal 

nucleotide-binding site is targeted by C-terminal Hsp90 inhibitors such as NB and its 

analogues.31, 47 

The dimeric interface of Hsp90 at the C-terminus is critical for super chaperone complex 

assembly. Several co-chaperone and immunophilin components of the complex (e.g. HOP [Hsp 

organizing protein] and FKBP52 [FK506 binding protein 52])67, 73 associate with Hsp90 via the 
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C-terminus. Such members of the complex express tetratricopeptide repeats (TPR, a conserved 

34 amino acid sequence) that recognize and bind to the C-terminal MEEVD domains of dimeric 

Hsp90. Transient MEEVD-TPR interactions between Hsp90 and various super chaperone 

components imparts essential mechanistic consequences throughout the protein folding process. 

For example, early stage HOP binding to the Hsp90 C-terminus facilitates client protein loading 

by halting N-terminal ATPase activity.74, 75 HOP is later displaced by FKBP52 following steroid 

hormone receptor client loading and primes reinitiation of the N-terminal ATPase cycle.76 A host 

of other co-chaperones, partner proteins, and immunophillins similarly participate at different 

stages of the protein folding process in a client protein dependent manner.77 While few client 

protein-specific super chaperone complexes have been described, further investigation will 

enable the development of strategies for selective rather than global client degradation. This 

attribute will allow the design of “tunable” Hsp90 inhibitors for specific clinical applications. 

The Hsp90 Middle Domain 

The middle domain of Hsp90, appended to the N-terminal domain by a charged linker, is 

intimately involved with super chaperone complex function.78 A majority of Hsp90-client protein 

interactions occur among middle domain amino acid residues.79, 80 

The precise mechanism responsible for this domain’s ability to stabilize client proteins is 

not well understood. In fact, only one crystal structure of Hsp90 bound to a client protein has 

been solved (Hsp90 bound to CDK4).81 While this crystal structure provides insights into 

important intra-protein interactions required for client binding, a fluid description of the overall 

maturation process remains inaccessible. Other processes mediated by the middle domain 

include ATP binding and hydrolysis, due to interactions with the gamma-phosphate of ATP 
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bound to the N-terminus, and coordination of several partner proteins such as Aha1 (activator of 

Hsp90 ATPase homologue 1), appropriately named for its ATPase stimulating effects.64, 80, 82 

The Hsp90 N-Terminus 

The N-terminus of Hsp90 contains the catalytically active ATPase domain that is 

responsible for ATP hydrolysis. Hsp90 is dependent on ATP hydrolysis for proper function.64 As 

a member of the GHKL family of ATPases, (Gyrase, Hsp90, Histidine Kinase, and MutL 

Kinase) Hsp90 exhibits a unique N-terminal nucleotide-binding pocket83 reminiscent of other 

members of the GHKL family of proteins.80  

The N-terminal ATP binding domain is distinct from the C-terminal nucleotide binding 

domain. The Bergerat fold containing ATPase domains of GHKL proteins like Hsp90 bind ATP 

in a unique, bent conformation.83 ATP binding leads to formation of the “lid” segment of the 

Hsp90 molecular clamp by promoting an N-terminal dimerization event, thereby “locking” client 

proteins into the super chaperone complex.84, 85 The N-terminus of Hsp90 also participates in 

protein-protein interactions critical for super chaperone complex formation (e.g. its interaction 

with the ATPase-inhibiting co-chaperone CDC37).86  

I.2.2 Hsp90 Protein Folding Mechanism 

Both intra- and intermolecular interactions between Hsp90’s three domains and various 

co-chaperones/partner proteins operate in concert to organize the super chaperone complex into a 

protein folding machine that acts as a master regulator of protein conformation.87 The 

mechanism by which the Hsp90 protein folding machinery manifests its protein folding abilities 

has been extensively reviewed (Figure 1.3).15, 21, 23, 29, 59, 64, 86, 88 To highlight the diverse nature of 

components required for client proteins manifested by the super chaperone complex, the protein 
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folding mechanism for steroid hormone receptor and kinase clients will be considered. 

Specifically, the client loading process for these two families is distinct. 

Nascent kinase polypeptides first associate with Hsp70, Hsp40, and CDC37 in the 

cytosol. HOP then bridges this heteroprotein complex by simultaneously binding to the Hsp70 

and Hsp90 MEEVD domains at distinct TPR expressing regions. The association of HOP with 

Hsp90 facilitates kinase client transfer by prohibiting N-terminal dimerization and ATP 

hydrolysis. In contrast, steroid hormone receptor client loading to Hsp90 ensues without 

stabilization by CDC37. Following client loading, a similar process for both client protein 

classes involving multiple co-chaperones and immunophillins is initiated. HOP displacement by 

FKBP52 or other immunophillins allows ATP binding and subsequent N-terminal dimerization, 

wherein the client is effectively clamped within the super chaperone complex. This clamped 

conformation is further stabilized by recruitment of p23 to the N-terminus of Hsp90. Aha1 

association with the middle domain sequentially induces ATP hydrolysis, proper client 

maturation, and finally client release (Figure 1.3).80 
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I.3 Clinical Evaluation of Hsp90 Inhibitors 

Several classes of Hsp90 inhibitors are under development for therapeutic applications. 

Currently, all clinically investigated compounds are anti-cancer agents.25, 36, 89-91 This anti-cancer 

activity derives from multiple oncogenic proteins being Hsp90 clients. In fact, individual 

members of this large clientele subset are implicated in all six hallmarks of cancer as defined by 

Weinberg and Hanahan (Table 1.2).27-29, 92 Consequently, therapeutic inhibition of Hsp90 results 

in the simultaneous disruption of all six hallmarks of cancer through modulation of a single 

target. As opposed to traditional cancer chemotherapy that utilizes a drug cocktail to affect 

multiple cancer pathways, the same effect can be accomplished by administration of a single 

Hsp90 inhibitor. 

Justification for Hsp90 as a target for the development of cancer chemotherapeutics has 

been extensively reviewed.17, 22, 30, 32, 35, 52, 54, 56, 89, 93, 94 Hsp90 has been implicated in oncogenic 

transformation, by stabilizing otherwise highly unstable oncoproteins/mutated clients and 
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promoting oncogenic progression. Furthermore, oncogene addiction and cancer related 

environmental stress renders these oncoproteins more dependent on Hsp90 function than the 

native forms found in normal cells. In fact, Hsp90 comprises 4–6% of total protein in cancer 

cells, four times higher than levels found in normal cells. Due to increased activity, Hsp90 is 

found highly associated with the super chaperone complex in cancer cells. Within the complex, 

Hsp90 displays higher affinity for both ATP and competitive inhibitors than the homodimeric 

form. These attributes result in a high differential selectivity, which has been observed for Hsp90 

inhibitors in transformed versus non-transformed cells. The cumulative effect of these attributes 

has poised Hsp90 as an attractive, highly sought chemotherapeutic target. 

I.3.1 Initial Natural Product Based Clinical Candidates 

Clinically evaluated Hsp90 inhibitors, all of which target the N-terminal ATP binding 

domain,95 demonstrate efficacious disease treatment, however, therapeutic limitations have 

manifested. Hepatotoxicity and the development of multidrug resistance via the overexpression 

of Pgp efflux pumps were the first limitations observed in clinical trials for the ansamycin-based 

inhibitors, 17-AAG and 17-DMAG (Figure 1.4).37 This observed toxicity arises from reactive 

structural motifs present in these inhibitors, rather than as a consequence of Hsp90 inhibition. As 

semi-synthetic derivatives of GDA, both 17-AAG and 17-DMAG contain a redox active 

benzoquinone capable of contributing to off target effects.  

I.3.2 Second Generation Synthetic Clinical Candidates 

The structural drawbacks associated with GDA-based inhibitors spurned the design of 

several synthetic Hsp90 inhibitors currently undergoing clinical evaluation. Examples include 

the purine containing CNF2024 developed by Biogen Idec., the benzamide containing SNX-

5422 developed by Serenex, and the resorcinylic based AUY922 developed by Novartis (Figure 
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1.4).90, 95 These compounds avoid some of the toxicological issues associated with the GDA-

derived inhibitors, a compromising hallmark of N-terminal Hsp90 inhibition remains, induction 

of the heat shock response. 

I.4 Induction of the Heat Shock Response 

All Hsp90 modulators that bind to the N-terminal ATP binding site induce the over-

expression of Hsps including Hsp27, Hsp40, Hsp70, and Hsp90.96 This phenomenon, known as 

the heat shock response, also occurs in the presence of cellular stressors such as extreme 

temperatures, oxidative stress, and nutrient deprivation.97 The transcription factor responsible for 

Hsp induction is heat shock factor 1 (HSF1), which is normally bound to Hsp90 and is a 

component of the super chaperone complex.98 N-Terminal inhibitors disassemble the Hsp90-

HSF1 complex, stimulating HSF1 trimerization, hyperphosphorylation, and translocation to the 

nucleus.99 Subsequently, trimeric HSF1 binds DNA at heat shock binding elements and initiates 
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transcription of heat shock 

genes (Figure 1.5). Due to 

the anti-apoptotic and pro-

survival effects 

manifested by Hsps, their 

overexpression in cancer 

may limit the potential of 

N-terminal inhibitors as 

anti-cancer agents by 

complicating dose 

schedules and potentially 

leading to resistance.96, 100 

I.4.1 Clinical Application of the Heat Shock Response 

Neurodegenerative Disorders 

While the heat shock response may be detrimental to the treatment of cancer, its 

induction may prove beneficial for the treatment of neurodegenerative diseases. Several diseases 

associated with the central and peripheral nervous system result from the accumulation of 

misfolded proteins, and several agents that induce the 

heat shock response are now considered as potential 

therapeutic leads (Figure 1.6). The upregulation and 

overexpression of Hsps not only prevents protein 

aggregation, but also refolds denatured proteins and 

resolubilizes protein aggregates.101, 102 Therefore, Hsp’s 
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may exhibit promising activities for the treatment of Alzheimer’s disease, Parkinson’s disease, 

amyotrophic lateral sclerosis, multiple sclerosis, polyglutamine disease, spinal bulbar muscular 

atrophy, diabetic peripheral neuropathy, and Huntington’s disease.103 

Inflammation and the Immune Response 

In contrast to both cancer and neurodegenerative disorders, it is not clear whether the heat 

shock response stimulated by N-terminal inhibitors is beneficial or detrimental to regulating the 

effects of inflammatory and immune responses from a therapeutic perspective. Several diseases 

including chronic and rheumatoid arthritis,104 systemic lupus erythematosus,105 

atherosclerosis,106 and diabetes16 result from aberrant inflammatory processes and/or auto-

immune responses that are regulated by Hsp90. Therefore, completely delineating Hsp90’s role 

in these stimulatory processes could lead to additional therapeutic options for Hsp90 inhibitors. 

The overexpression of Hsp70 and other Hsps due to the heat shock response has been 

shown to inhibit inflammatory processes.107 Heat shock adversely affects the transcriptional 

activity of nF-κB, thereby inhibiting the pro-inflammatory responses. Similarly, Hsp90 function 

is required for the proper functioning of Monarch-1, a negative regulator of NIK, the nF-κB 

inducing kinase.108 However, Hsp90 is also associated with several proteins necessary for pro-

inflammatory signaling. For instance, Hsp90 is required for the stabilization of the IKK complex, 

a pro-inflammatory mediator.109 Other examples include NOD1, NOD2, IPAF/NLRC4, and 

cryopyrin. Altogether, inhibition of Hsp90 appears to illicit a multifaceted approach toward the 

regulation of inflammation.109 

I.5 Hsp90 Inhibition: Heat Shock and Alternate Therapeutic Applications 

The collection of Hsp90 protein clients participate in numerous physiological processes 

and conduct a broad spectrum of functions. This diversity makes Hsp90 unique among other 
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chaperones and presents the opportunity for affecting a variety of signaling pathways through the 

modulation of a single target. Hsp90, therefore, offers the potential to affect several therapeutic 

areas including pathogenic infection, cystic fibrosis, and male contraception. Similar to cancer 

therapy, induction of the heat shock response would be contraindicated in these disease states, 

and therefore, the development of Hsp90 inhibitors that do not cause such a response are desired. 

I.5.1 Pathogenic Infection 

Molecular chaperones play a key role during the infection process of multiple invasive 

organisms including fungi, bacteria, and viruses. Upon entering a host cell, the pathogen is 

presented to a stressed environment and relies upon the expression of molecular chaperones for 

the maintenance of protein function.110 Several species of pathogenic fungi, including Candida 

albicans, Cryptococcus neoformans, Aspergillus spp., Histoplasma capsulatum, and 

Paracoccidioides brasiliensis, rely upon the expression of molecular chaperones for successful 

host infection and survival. The fungal Hsp90 homologe, Hsp82, is particularly essential. Unlike 

its mammalian counterpart, Hsp82 is not intimately involved with de novo protein folding. 

Rather, it is commonly associated with unstable proteins such as Wee1, Mik1, and Swe1. The 

level of Hsp82 overexpression in mouse fungal infection is directly proportional to increased 

virulence. Hsp82 is also extensively expressed on the cell surface of several fungal species, and 

acts as an immune response signal to the host.  

Targeting Hsps for the treatment of fungal infection is a valid approach. Several known 

Hsp90 inhibitors (GDA, RAD, NB, and cisplatin) manifest antifungal activity in whole cell 

assays. Targeting cytosolic or membrane bound Hsps with selective small molecule inhibitors or 

anti-body fragments respectively are potential approaches for antifungal therapy and overcoming 

drug resistance.111-116 
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Similar to pathogenic fungal species, several pathogenic bacterial and protozoan species 

rely upon molecular chaperones for successful invasion and virulence. Bacterial and protozoan 

species express both cytosolic and membrane bound Hsps. In bacterial species, the homologue of 

Hsp90 is HtpG.117 Strategies for targeting bacterial and protozoan infections such as Escherichia 

coli or Leishmania, respectively, would largely be the same as those that target fungal infections 

and would include selective pathogen Hsp inhibition and pathogen membrane bound recognizing 

antibodies.118-121 

Similarly, viral infection also requires molecular chaperones. However, in contrast to 

fungal, bacterial, and protozoan infection, several viruses (e.g. Denge virus, Hepatitis B, 

Hepatitis C, the influenza virus and the vesicular stomatitis virus) are capable of hijacking the 

host cell’s protein folding machinery for the maturation of viral encoded proteins associated with 

virus entry and multiplication. For example, host Hsp90 is required for the maturation of 

hepatitis B (HBV) reverse transcriptase, hepatitis C NSP2/3 protein, and RNA-dependent RNA 

polymerase of Influenza A. In addition, certain client proteins, such as AKT, are implicated in 

viral infection. In some cases, the virus incorporates host chaperones within its capsid prior to 

leaving the host cell, and are therefore immediately available upon subsequent cellular infection. 

Less commonly, viral genomes can encode for chaperone-like molecules.76, 110, 122-124  

Treatment of cells with Hsp90 inhibitors is efficacious in models of viral infection. Also 

of significance, targeting host Hsp90 in viral infected cells may prove an important strategy for 

circumventing resistance. Most viral DNA does not encode for molecular chaperones. Therefore, 

viral mutation would not lead to a mechanism for acquired resistance to Hsp90 inhibition. 
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I.5.2 Cystic Fibrosis 

Cystic fibrosis is a disease characterized by protein dysfunction. Generally, the cystic 

fibrosis transmembrane conductance regulator (CFTR) suffers a mutation, most commonly 

ΔF508, which prevents proper folding and trafficking to the cell membrane. Wild type CFTR 

undergoes an extensive, complicated, and inefficient biological synthesis and requires several 

chaperones, including the Hsc70/Hsp70-Hdj-1/2 cohort, calnexin, CHIP, Hsp90, Bag-2, and 

HspBP1. Only about 25 to 60% of wt-CFTR synthesized ever completely matures depending on 

the cell line. The biogenesis of mutated CFTR is even more inefficient. Hsp90 chaperoning is 

involved in promoting the degradation of mutant CFTR by the proteasome. Both Hsp90 

inhibitors and siRNA knockdown of Aha1, an activator of Hsp90 ATPase activity, have been 

demonstrated to revert levels of mutant CFTR degradation by the proteasome to levels similar to 

that of wild type CFTR, suggesting that association of the Hsp90 heteroprotein complex with 

mutant CFTR may play a role in facilitating the aberrant protein function underlying cystic 

fibrosis. This has therapeutic effects since mutant CFTR retains its intended activity, and, 

therefore the disassociation of CFTR from the Hsp90 protein folding machinery manifests 

efficacious activity.19, 125-127 

I.5.3 Male Contraception 

Several Hsp90 inhibitors show male contraceptive activity, including celastrol, gedunin, 

and gamendazole. Mechanistic investigations of gamendazole have provided evidence that 

suggest Hsp90 inhibition in concert with inhibition of EEF1A1 are responsible for the observed 

contraceptive effects.33 

Sertoli cells are responsible for spermatogenesis. Both Hsp90 and EEF1A1 demonstrated 

affinity for binding gamendazole in affinity chromatography experiments suggesting that these 
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proteins represent cellular targets for this small molecule. Both of these protein targets are 

known to promote the integrity of AKT1, which is important for maintaining Sertoli cell-

spermatid junctions. The modest inhibitory activity of both Hsp90 and EEF1A1 simultaneously 

may be responsible for gamendazole’s selective effect on Sertoli cells. Several other effects 

resulting from gamendazole administration to Sertoli cells were also observed, including nF-κB 

down regulation and the disruption of actin bundles.33 

I.6 Emerging Strategies for Hsp90 Inhibition 

Growing interest in the field of Hsp90 modulation is now focused on the development of 

strategies for chaperone inhibition through mechanisms that do not induce the heat shock 

response. Such strategies may not only provide an effective means for targeting Hsp90 in cancer, 

but also for safely attenuating the effects incurred in other diseases. The most extensively studied 

strategy for affecting super chaperone activity without concomitant induction of the heat shock 

response involves molecules that bind the Hsp90 C-terminal domain. Recent progress in this 

field is highlighted below, followed by a discussion of newly emerging strategies. 

I.6.1 C-Terminal Inhibition 

The nucleotide binding site located at the Hsp90 C-terminus provides allosteric 

regulation of N-terminal ATPase activity.23, 65 Thus, targeting the C-terminal binding domain 

presents a novel molecular strategy toward controlling Hsp90 chaperone activity. As a strategy 

for cancer chemotherapy, C-terminal inhibition possesses a major advantage over N-terminal 

inhibition. Unlike N-terminal inhibitors, C-terminal Hsp90 inhibitors do not elicit the heat shock 

response.45-47, 128 Several C-terminal targeting small molecules of a diverse structural nature have 

been identified. Examples include epigallocatechin-3-gallate (EGCG), the main antioxidant 

component of green tea;129 cis-platin, a clinically applied anticancer agent that causes DNA 
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crosslinking and induces apoptosis;130, 131 molybdate, an oxyanion mimic of phosphate;70 and 

taxol, a microtubule stabilizing, clinically applied anticancer agent.131, 132 NB and the related 

coumarin compounds, however, are the only C-terminal inhibitors undergoing development as 

potential therapeutic agents at present.  

The coumarin antibiotics, NB, chlorobiocin, and coumarmycin A1, represent the 

originally identified Hsp90 inhibitors that target the C-terminus.46, 47 Among these, NB is the 

most extensively investigated for pre-clinical development as an anticancer lead compound.  

NB was formerly investigated for clinical application in Europe as an antimicrobial drug 

with potent affinity for the ATP-binding domain of DNA gyrase B.133 This DNA gyrase B 

inhibitory activity spurned researchers to evaluate NB affinity for the ATP-binding domain of 

Hsp90. As members of the GHKL protein family, both DNA gyrase B and Hsp90 induce a 

unique, bent conformation of ATP upon ligand binding due to complimentary binding site 

topology. 

Marcu et al. hypothesized that the coumarin antimicrobial agents would display affinity 

for Hsp90 due to structural similarities between the ATP-binding sites of the DNA gyrase B and 

Hsp90. This hypothesis was confirmed through affinity chromatography by observing Hsp90 

retention on sepharose beads containing immobilized NB. Interestingly, neither solubilized GDA 

nor RAD effectively eluted Hsp90 from the NB containing sepharose beads. These seminal 

studies were the first to identify an alternate Hsp90 inhibitor binding mode distinct from the well 

known N-terminal ATP binding domain.46, 47  

Hsp90 inhibition by NB was confirmed by evaluating the effects on client and non-client 

proteins. This method of evaluating a compounds ability to cause Hsp90 inhibition is a common 

primary screen used to validate the molecular target. In the presence of an inhibitor, Hsp90 
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clients are degraded in a dose-dependent manner while non-clients, such as actin, demonstrate 

consistent levels. SKBr3 breast cancer cells and v-src-transformed NIH 3T3 fibroblasts were 

treated with varying NB concentrations and depletion of RAF-1, erbB2, mutant p53, and v-src 

client proteins was observed between 300 µM and 800 µM, but the non-client protein scinderin, 

an actin associating protein, was unaffected. Intriguingly, levels of Grp78, a chaperone related to 

Hsp70 that is overexpressed during the heat shock response, remained unaffected. This latter 

result was in contrast to GDA and RAD, which commonly induce the expression of Grp78, and 

thus provided the first indication that Hsp90 inhibition by NB did not induce a heat shock 

response.46, 47 Since it was observed that GDA and RAD did not compete for NB binding, it was 

proposed that NB might interact with Hsp90 via a novel mechanism. 

Prior to the studies by Marcu et al. described above, Csermly et al. proposed the 

expression of multiple nucleotide binding domains on the Hsp90 protein surface,23 and 

consequently, this potential was investigated. Additional affinity chromatography experiments 

employing truncated Hsp90 fragments were conducted to identify regions of preferential NB 

binding. While fragments corresponding to the N-terminal and middle domains of Hsp90 were 

not retained by NB-bound sepharose beads, the C-terminal fragment was retained. C-terminal 

fragments were then exposed to NB-bound sepharose beads and Hsp90 amino acid residues 657 

through 677 were identified as critical to NB binding. This observation confirmed the earlier 

hypothesis that suggested the existence of a C-terminal nucleotide binding domain proximal to 

the dimer interface.46, 47 

Other phenotypic effects derived from NB inhibition of Hsp90 have been investigated. 

Proteolytic fingerprinting, through Hsp90 trypsinolysis and fragment characterization, indicated 

the presence of a distinct conformational effect in NB-bound Hsp90 when compared to GDA-
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bound Hsp90 under the same conditions. The 

influence of NB on components of the super 

chaperone complex has also been investigated. 

Co-immunoprecipitation experiments revealed 

that NB reduced the amount of co-adsorbed 

super chaperone components Hsc70, p23, 

HOP, PP5, and FKBP5268 but had no effect on 

the interaction between CDC37 and Hsp90.134  

Despite a lack of potency, the unique 

biological consequences of NB administration 

encouraged its consideration as an attractive 

lead for the development of C-terminal Hsp90 

inhibitors.44, 45, 135 No definitive structural 

information of the C-terminal binding domain 

exists, nevertheless, significant structure-

activity relationships for NB have been formulated. Burlison et al. demonstrated that few 

chemical changes were required for conversion of this antimicrobial agent into a selective and 

potent Hsp90 inhibitor with anticancer activity.128 This transformation was accomplished by 

removal of the 4-hydroxy group on the coumarin scaffold and carbamate moiety of the noviose 

sugar and resulted in the discovery of DHN2 (Figure 1.7). 

 Significant optimization of the lead compound DHN2 has since ensued. Several highly 

potent Hsp90 inhibitors have been discovered and a detailed analysis of structure-activity 

relationships for these coumarin containing compounds has been collected (Figure 1.8). 
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Limitations of C-Terminal Inhibition 

 The C-terminal Hsp90 inhibitors have been 

successful in circumventing a major drawback 

derived from N-terminal inhibition. These inhibitors 

manifest potent cytotoxic effects similar to the N-

terminal counterparts while simultaneously avoiding 

induction of the heat shock response. This is a 

significant achievement, however, both strategies of 

Hsp90 inhibition cause non-specific client protein 

degradation, and the clinical implications of this effect are still unknown. As Hsp90 is 

ubiquitously expressed, targeting specific client proteins for degradation may lead to better 

clinical outcomes. It remains unknown whether N- or C-terminal inhibitors are capable of 

eliciting this type of specificity. Alternate strategies of Hsp90 inhibition that avoid induction of 

the heat shock response should be pursued where selective client protein degradation is possible. 

These strategies will be discussed below with a particular emphasis on the selective disruption of 

Hsp90-co-chaperone interactions 

I.6.2 Disruption of Hsp90’s interaction with client proteins. 

Most strategies for Hsp90 inhibition elicit an unbiased degradation of client proteins. The 

multipronged biological consequences of these strategies are desirable for aggressive treatment 

of a subset of cancers that display multilateral cell signaling cascade deregulation. However, the 

effects of global Hsp90 client degradation over an extended time course are unknown. The 

potential toxic effects of long-term Hsp90 inhibitor administration may thwart their indication 

for chronic cancer management or other disease states.  
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The aberrant expression or deregulation of a single biological pathway is implicated in 

some cancers and various other disease states. Targeting specific, rather than global, Hsp90 

client degradation in such disease states may prove to be a more efficacious treatment strategy. 

Such an inhibitor would avoid potential toxicities due to global client degradation and allow the 

application of selective Hsp90 inhibition for chronic therapy. Targeting selective Hsp90 client 

protein degradation is under investigated, however, success in this realm has been achieved. The 

nine amino acid polypeptide, shepherdin, displays anticancer activity by selectively disrupting 

the survivin client protein association with Hsp90.136, 137  

Survivin, a cancer promoting Hsp90 client protein, has emerged as a validated target for 

cancer chemotherapy.138 As a member of the “Inhibitors of Apoptosis” protein family, survivin 

manifests anti-apoptotic/cancer promoting effects through caspase inhibition.139 While survivin 

is highly expressed in most tumors, terminally differentiated cell lines are devoid of survivin 

expression.140 Selective disruption of the Hsp90-survivin interaction has been achieved. Plescia, 

et al. designed the polypeptide shepherdin by first determing survivin amino acid residues 

critical to the interaction with Hsp90. The researchers observed pronounced survivin-Hsp90 

disruption for mutations of survivin residues 79 – 87. Following incubation of this amino acid 

sequence (KHSSGCAFL, shepherdin) client selective degradation of survivn was observed. This 

effect is cancer cell specific, as normal cell lines were unaffected by shepherdin administration. 

However, pan client protein degradation was observed at increased shepherdin concentrations. 

The survivin binding domain of Hsp90 is proximal to the N-terminal ATP binding pocket. The 

observation of pan client degradation may result from ATP displacement by shepherdin at 

increased concentrations. Interestingly, shepherdin treatment does not lead to induction of a heat 
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shock response.141 The design of shepherdin 

represents an important discovery toward 

targeting selective client protein degradation. 

I.6.3 Hsp90 Hyperacetylation by HDAC 

Inhibition 

Histone deacetylase (HDAC) inhibition 

represents a target for cancer chemotherapy with 

multiple anticancer effects. In adition to 

catalyzing lysine deacetylation on histones, 

HDACs also deacetylate lysines on Hsp90 and 

other proteins.142, 143 Specifically, HDAC6 has 

been shown to deacetylate Hsp90, and a role for 

HDAC1 in this process has also been proposed.144 

Inhibitors of HDAC6 present a novel opportunity for indirect Hsp90 inhibition that avoids 

induction of the heat shock response. Prior studies have demonstrated that the super chaperone 

complex is inactivated by Hsp90 hyperacetylation during HDAC knockdown.145 siRNA induced 

HDAC6 specific or global HDAC knockdown as well as treatment with HDAC6 specific or pan-

HDAC inhibitors effectively dissolves Hsp90/client protein association. Several selective and 

pan-HDAC inhibitors have been investigated for their effects on Hsp90, including trichostatin 

A,146 LAQ-824,147 vorinostat,148 and MS-275 (Figure 1.9),149 all of which led to degradation of 

Hsp90-dependent client proteins and manifestation of anti-proliferative effects. Specific 

inhibition of HDAC6 using siRNA has manifested induction of the heat shock response, 
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however, the non-specific HDAC inhibitors FK228 and vorinostat lead to hyperacetylation of 

both Hsp90 and Hsp70, and demonstrate no heat shock response.148 

I.6.4 Targeting Co-chaperone-Hsp90 interactions. 

Hsp90 is the central component of a large cohort of proteins that comprise the super 

chaperone complex.150 Each protein-protein interaction presents the opportunity for disruption of 

the protein folding process, and therefore, a potential therapeutic target. In addition, the 

requirement for different super chaperone components of specific client proteins may allow for 

selective client targeting. To date, three such approaches are being investigated and include the 

interaction between Hsp90 and the partner protein HOP, co-chaperone CDC37, and co-

chaperone F1Fo-ATP 

synthase. The latter two 

approaches are central to the 

focus of this dissertation. 

Disruption of the 

HOP/Hsp90 interaction. 

HOP is essential for 

facilitating client protein 

loading to Hsp90, and is 

therefore an essential 

component of the protein 

folding process.75 Small 

molecule disruptors of this 

protein-protein interaction are 
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capable of preventing Hsp90 

client proteins from receiving 

chaperone activity. No natural 

product inhibitors have been 

described that manifest this 

biological activity. However, Yi and Regan have reported the identification of a class of 

synthetic small molecules capable of disrupting this interaction by binding to the TPR domain of 

HOP.49, 50 The researchers developed an AlphaScreen-based high-throughput assay capable of 

identifying this desired phenotype (Figure 1.10). Succinctly, Hsp90 is N-terminally linked to a 

donor bead while an N-terminal TPR expressing protein fragment is C-terminally linked with an 

acceptor bead. The TPR domain is free to interact with the MEEVD domain of Hsp90. 

Excitation of the donor bead at 680 nm leads to the production of singlet oxygen, which is 

capable of traveling the 200 nm distance between the donor and acceptor. If the MEEVD and 

TPR domains are interacting, the acceptor bead undergoes chemiluminescence at 520 nm to 620 

nm. In the presence of a HOP/Hsp90 disruptor, the MEEVD and TPR domains are kept separate, 

and no chemiluminescence is observed. Several small molecules were identified during initial 

screening with this assay (Figure 1.11). Although optimization of the hit compounds has not 

been reported, the results appear encouraging. Of note, these small molecule disrupters do not 

appear to manifest the heat shock response, suggesting that disruption of the HOP/Hsp90 

complex could eventually lead to efficacious alternatives to N-terminal inhibition. 

Disruption of the Hsp90/CDC37 interaction.  

CDC37 is required for the maturation of Hsp90-dependent protein kinases, and is critical 

for the stabilization of several otherwise unstable oncoprotein kinases, e.g. BRAF and EGFRvIII, 
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in cancer cells.151-154 CDC37 overexpression has been linked 

to oncogenic transformation, and interruption of its interaction 

with Hsp90 has been explored as a therapeutic target.155-157 

siRNA experiments have been conducted that demonstrate 

CDC37 knockdown is associated with the depletion of several 

Hsp90 protein kinase clients including HER-2, RAF-1, 

CDK4, and AKT. Also of significance, siRNA-mediated 

knockdown of CDC37 does not induce the heat shock 

response, therefore providing a favorable mechanism for 

Hsp90 modulation.158, 159 

Prior to the work described herein, the natural product 

celastrol was the only compound reported to disrupt 

Hsp90/CDC37 protein-protein interactions.48 Celastrol 

(Figure 1.12) is a quinone methide triterpene isolated from 

Tripterygium wilfordii Hook F. (the Chinese Thunder of God vine).160 It has been hypothesized 

that celastrol targets the Hsp90 N-terminus at the binding site of CDC37, effectively blocking the 

protein-protein interaction from occurring.48 However, a recent report suggests that celastrol 

forms a Michael adduct with cysteine residues of CDC37, and therefore acts as an irreversible 

inhibitor.161 Celastrol has also been reported to induce the heat shock response, in concert with 

its Hsp90/CDC37 disupting activity.162, 163 It appears as though celastrol may manifest anti-

proliferative effects through several mechanisms, and therefore, further studies into the exact 

mechanism of celastrol’s inhibitory effects on Hsp90 remain under investigation. 
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Identification and subsequent validation of celastrol as a small molecule disruptor of 

Hsp90/CDC37 interactions could lead to the elucidation of additional small molecules that 

exhibit similar activities. For instance, celastrol was recognized as a novel Hsp90 inhibitor from 

evaluation of its biological effects through the novel Connectivity Map technology.  

The Connectivity Map technology represents a systematic tool for identifying 

connections between diseases, genetic perturbations, and drug action. This technology provides 

potential for the discovery of novel protein targets and lead compounds for the development of 

directed therapeutic strategies against various disease states. Briefly, a “connectivity map” is 

generated by evaluating the positive or negative expression levels of mRNA that result upon 

incubation of small molecules with cellular models of various diseases. It was hypothesized that 

similar profiles of mRNA expression levels after evaluation would be indicative of small 

molecules that manifest similar mechanisms of action or related protein dysfunctions. In a 

demonstration of connectivity mapping, Lamb et al. evaluated several small molecules and 

disease states and determined “connections” during their publication. Of significance, the natural 

products gedunin and celastrol were identified as inhibitors of the Hsp90 protein folding 

machinery through this technology.164 

Gedunin (Figure 1.12), a tetranortriterpenoid from Azadirachta indica (Indian Neem 

Tree) was simultaneously identified with celastrol in the seminal studies of the Connectivity 

Map.164, 165 Structural similarities between celastrol and gedunin, along with the similar 

applications in traditional medicinal of their respective sources,166-168 indicate a potential 

common mechanism of action. Both the Thunder of God vine and the Neem Tree are used in 

traditional medicine practices to treat a variety of inflammatory and auto-immune diseases 

including cancer, and both natural products manifest anti-spermatogenic properties.169, 170  
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Through connectivity map screening, both 

celastrol and gedunin induced expression levels of 

varying mRNA molecules analogous to 17-AAG. 

Hsp90 inhibition was then validated through Western 

blot analyses to demonstrate the induced degradation of 

Hsp90-dependent client proteins. While celastrol has 

not undergone extensive investigation, a significant 

effort toward the application of gedunin as a lead 

compound for anticancer therapy is described in 

Chapter II. The synthesis of several semi-synthetic 

analogues and their biological activity will be 

described, as well as a detailed description of evidence 

suggesting that gedunin manifests Hsp90 inhibition by 

disruption of the Hsp90/CDC37 interaction.171 

Disruption of the F1Fo-ATP synthase/Hsp90 Interaction 

 F1Fo-ATP synthase (FAS) is a highly conserved, multidomain containing macromolecular 

motor localized to the innermitochondrial membrane (Figure 1.13).172 A majority of the ATP 

required for every cellular event is provided by FAS-catalyzed oxidative phosphorylation of 

ADP.173 As such, proper FAS function is critical for maintaining homeostasis under normal 

conditions, while aberrant function is associated with several disease states (e.g. cancer, 

autoimmune disorders, or cardiac ischemia) and is a therapeutic target of interest.174 A discussion 

of FAS as a target for cancer chemotherapy will be detailed in Chapter IV. 
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While FAS manifests dual catalytic propensity, capable of either ATP synthesis or 

hydrolysis, the membrane potential that exists as a result of the proton motive force between the 

perimembrane space and the mitochondrial matrix drives ATP synthesis under typical 

conditions.175 The Fo domain of FAS contains the binding site of the natural product inhibitor 

oligomycin and is membrane bound, largely hydrophobic, and consists of three subunits, a, b, 

and c of respective stoichiometry 1:2:12. The Fo domain subunits combine to form the proton 

pore that rotates as individual protons are actively transported from the innermitochondrial space 

to the mitochondrial matrix. Rotation of the Fo domain results in likewise rotation of the stalk 

that bridges this domain to the F1 domain wherein ATP synthesis occurrs. The F1 domain is 

comprised of the α, β, γ, δ, ε subunitis of respective stoichiometry 3:3:1:1:1. The β and γ 

subunits form the central stalk that tethers the two domains and couples ATP synthesis to proton 

transport.176 

 Until very recently, the observation of ectopically expressed FAS was highly 

controversial. In early reports where FAS was discovered in extramitochondrial cellular locations 

(e.g. in the plasma membrane or endoplasmic reticulum) this observation was assumed to be the 

result of sample contamination.177 Modern proteomic techniques for fractionating and analyzing 

specific cellular compartments has ruled this possibility out and not only confirmed the presence 

of ectopically expressed FAS, but delineated several possible biological roles for this 

expression.177 One such role involves the discovery FAS is an Hsp90 co-chaperone and 

component of the super chaperone complex. 

 The co-chaperoning propensity of FAS was discovered by Papathanassiu et al. through 

several co-immunoprecipitation experiments. FAS was found to immunoprecipitate from cancer 

cell lysates with both Hsp90 and several Hsp90 client proteins.178 This report was the first 
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indication of the chaperoning capability and association of FAS with Hsp90. Additional evidence 

for such an association has since been observed in both mammalian cell lines and yeast strains.179 

Following the discovery of FAS involvement in the super chaperone complex, the 

researchers investigated the effects of three known FAS inhibitors (i.e. efrapaptin, oligomycin, 

and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole) on Hsp90 activity.178, 180 Each FAS inhibitor 

adversely impacted the co-chaperoning activity of FAS, as no immunoprecipitation was observed 

between FAS and Hsp90 or client proteins in the presence of inhibitors. Typical antiproliferative 

activity after incubation of various inhibitor concentrations in breast and colon cancer cell lines, 

but three distinct features of indirect Hsp90 inhibition by FAS inhibitors were observed. 1) 

Effects of FAS inhibition on Hsp90 occurred independent of cellular ATP levels suggesting the 

FAS-Hsp90 relationship extended beyond the ability of FAS to supply ATP. At FAS inhibitor 

concentrations that caused protein degradation, ATP levels remained unchanged. Additionally, 

the Hsp90-FAS interaction remained unaffected in cancer cells treated with rotenone, a non-FAS 

targeting cellular ATP depleter. 2) Hsp70 and Hsp90 detection by western blot analysis 

demonstrated no induction of the heat shock response, as both proteins were degraded in a dose 

dependent manner, suggesting that FAS inhibition is not coupled to HSF1-Hsp90 association. 3) 

Selective client protein degradation was also observed. While FAS co-immunoprecipitated with 

Hsp90, ERα, and mutant p53 in several cancer cell lines, FAS inhibitors selectively prevented 

FAS immunoprecipitation with Hsp90, ERα, and mutant p53, but had no effect on the RAF-1 

kinase client. 

 These initial discoveries indicate that targeting FAS for indirect Hsp90 inhibition is an 

attractive strategy for selective client protein degradation that avoids the heat shock response. 

Promising results were obtained from the investigation of efrapeptins, oligomycin, and 7-chloro-



 32 

4-nitrobenzo-2-oxa-1,3-diazole, however, all of these inhibitors display a high degree of cross-

activity with other ATPases, such as the Vacuolar- and Na,K-ATPases.180, 181 In fact, this is a 

common feature of most known FAS inhibitors. Cruentaren A is a cytotoxic polyketide 

macrocycle belonging to the benzolactone class of natural products that selectively targets FAS 

with no affinity for any other ATPase.182-184 As a means to facilitate evaluation of indirect Hsp90 

inhibition by a selective FAS inhibitor, the convergent total synthesis of cruentaren A is 

described in Chapter III. 

I.7 Concluding Remarks 

Hsp90 has emerged as a therapeutic target to treat a variety of disease states including 

cancer, neurodegenerative disorders, inflammation, pathogenic infection, cystic fibrosis, and may 

represent a novel based strategy to ameliorate male contraception. At present, clinical 

applications for Hsp90 modulation have focused primarily on the treatment of cancer, and all 

clinically administered agents are competitive inhibitors of the N-terminal ATP binding site. 

While efficacy is achieved, induction of the heat shock response occurs, leading to potential 

drawbacks for N-terminal inhibitory use. Results from ongoing clinical trials will be integral in 

determining whether induction of the heat shock response will produce clinical limitations for N-

terminal Hsp90 inhibitors as anti-cancer agents. 

Induction of a heat shock response is desirable in some therapeutic areas where a 

deficiency of Hsp chaperoning activity is observed.  Examples include various 

neurodegenerative disorders, aberrant inflammatory and immuno-response diseases, and cardio-

protection. Non-toxic, N-terminal inhibitors could find application in these areas, however, none 

of these currently exist.  
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In contrast, a subset of disorders would benefit from the clinical development of Hsp90 

inhibitors that do not induce the heat shock response. In particular, agents that cause the 

disruption of Hsp90/co-chaperone interactions may be of particular importance as these also 

demonstrate selective client protein degradation. In the case of CDC37-Hsp90 disruptors, 

selective degradation of kinase clients is observed. FAS inhibitors that disrupt the co-

chaperone’s association with Hsp90 also demonstrate selective client protein degradation, but 

further investigation is required to delineate what characteristic clients are affected. 

     The past fifteen years have witnessed an exponential growth in Hsp90 research. From 

defining Hsp90s role in numerous biological processes to validating Hsp90 as target for cancer 

chemotherapy, and at present, establishing Hsp90 as a potential target for other therapeutic areas. 
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Chapter II 

Chemical and Biological Investigation of Gedunin, a Novel Disruptor of the CDC37-Hsp90 

Interaction 

II.1 Targeting Hsp90 by Disrupting Association with CDC37 Co-Chaperone 

The Hsp90 protein folding mechanism is a stepwise operation that progresses via a 

complex array of protein-protein interactions between homodimeric Hsp90 and several co-

chaperones, immunophillins, and partner proteins.1-5 Consensus has been reached on the general 

understanding of this process; however, a complete and detailed analysis remains elusive. While 

the requirement for specific co-chaperones for certain client proteins complicates such analysis, 

this individualized nature also represents a therapeutic opportunity for selective client protein 

degradation. 

Many oncogenic kinases are Hsp90-dependent client proteins that, unlike non-kinase 

clients, require participation of the co-chaperone CDC37 within the super chaperone complex.6, 7 

Disruption of the Hsp90/CDC37 interaction is 

therefore a target for selective degradation of kinase 

client proteins without affecting the maturation of non-

kinase substrates. Selective kinase client degradation 

is particularly attractive toward the management of 

oncogene-addicted cancers that are hypersensitive to 

perturbation of kinase activity.8-10 

Selective kinase degradation by disruption of 

the Hsp90/CDC37 interaction has been confirmed 

experimentally.11-16 CDC37 siRNA mediated 
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knockdown in colon cancer cells induced the degradation of kinase clients (erbB2, cRAF, CDK4 

and CDK6, as well as phosphorylated AKT) but not non-kinase clients (glucocorticoid receptor 

and survivin). Not only was selective kinase client degradation observed, Hsp90 and Hsp70 

levels were unaffected by CDC37 knockdown and no heat shock response was produced. 

Therefore, disruption of Hsp90/CDC37 interactions is an attractive therapeutic strategy that is 

capable of addressing limitations that result from induction of the pro-survival heat shock 

response, which is observed for every Hsp90 inhibitor in clinical trials. 

II.1.1 Hsp90/CDC37 disrupting small molecules 

 Hsp90 inhibitors that target the N- or C-terminus have been extensively investigated.3, 17-

22 Despite attractive features such as the absence of an induced heat shock response and the 

propensity for selectively targeting kinase clients for degradation, small molecule disruptors of 

Hsp90/CDC37 interactions remain largely underexplored. The lack of chemical leads that 

display such a biological profile has contributed to this current status. 

 The triterpenoid natural product celastrol was recently identified as a small molecule 

disruptor of Hsp90/CDC37 interactions and manifests anti-proliferative activity against 

pancreatic cancer cells.23 Celastrol was originally identified as an Hsp90 inhibitor that exhibits a 

novel mechanism of action through the use of “Connectivity Map” screening.24, 25 This same 

screen also identified the limonoid natural product gedunin as an Hsp90 inhibitor mechanistically 

similar to celastrol. This chapter will describe the semi-synthetic derivatization of gedunin for 

elucidation of structure-activity relationships, biological and mechanistic evaluation of such 

derivatives, and preliminary molecular docking studies that explore the Hsp90-gedunin 

interaction.24, 25  
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II.2 Semi-synthetic Modification of Gedunin 

Gedunin (1, Figure 2.2), a tetranortriterpenoid isolated 

from the Indian neem tree (Azadirachta Indica), manifests anti-

malarial, insecticidal, anti-spermatogenic, and most recently anti-

cancer activity.26, 27 The anti-tumor activity of gedunin was 

explored through the use of the Connectivity Map.24, 25 Lamb et 

al. demonstrated, via high connectivity scores with GDA, 17-AAG, and 17-DMAG, that gedunin 

exhibited its anti-proliferative activity through Hsp90 modulation.  In a subsequent report, these 

authors determined that the interaction of gedunin with Hsp90 occurred via a mechanism distinct 

from competitive inhibition of ATP, and therefore unlike known Hsp90 inhibitors such as GDA 

or RAD.  While gedunin induces Hsp90-dependent client protein degradation similar to other 

Hsp90 inhibitors, the natural product was unable to displace GDA in a fluorescence polarization 

assay with purified Hsp90 at concentrations up to 100 µM.  Conversely, similarity between the 

mechanism of action responsible for the anti-proliferative activity of celastrol, involving 

disruption of the interaction between Hsp90 and the co-chaperone CDC37, and that observed for 

gedunin suggests a common Hsp90 inhibitory mode. As a structurally and mechanistically 

distinct regulator of the Hsp90 protein folding machinery, gedunin represents a lead compound 

that may possess unique Hsp90 modulatory attributes. 

Prior to the work described herein, no structure-activity relationships had been 

established between Hsp90 and gedunin. The ease of acquiring both gedunin and its 7-desacetyl 

derivative from bulk, commercially available neem oil make them well-suited for semi-synthetic 

derivatization for the development of more efficacious compounds. In addition, these limonoid 

natural products present a variety of chemical surfaces ideal for chemoselective manipulation to 
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evaluate structure activity 

relationships at distinct locations. 

In total, 19 analogues of gedunin 

were prepared through semi-

synthetic procedures aimed at 

elucidating the role of the α,β-

unsaturated ketone, exploring the 

sensitivity of the ketone binding 

pocket to steric bulk, and the 

effects of various substituents at the 7-position.  All analogues were evaluated for anti-

proliferative activity against MCF-7 and SKBr-3 breast cancer cell lines, and a interesting 

compounds subsequently analyzed by Western blot analysis of Hsp90-dependent client 

proteins.28 

II.2.1 Natural product isolation 

 Commercially available neem oil presents an affordable resource for a rich supply of 

gedunin.  Several commercial samples of neem oil derived from cold-pressed seeds of the tree 

were analyzed to determine the source that provided oil containing the highest concentration of 

gedunin. Samples were analyzed by TLC, ESI HRMS, and HPLC. Sample oil from Ahim’sa 

Organics was found to contain the most gedunin and the following studies were conducted with 

natural product isolated from neem oil supplied by this vendor. 

Isolation of the natural product was straightforward (Figure 2.3). 1 Kg of neem oil from 

Ahim’sa was diluted with 1 L of methanol (MeOH) and vigorously stirred for 24 h. The alcohol 

and oil layers were then allowed to separate, and the alcoholic extract was collected and 
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concentrated under reduced pressure. After repeating this cycle for five iterations, all condensed 

alcoholic extracts were combined to afford a viscous, dark brown, translucent oil that was 

subsequently washed several times with nhexanes (Hex) under sonication in order to remove any 

remaining fatty oils. The resultant dark brown resin was subjected to flash column 

chromatography using a gradient of 100% Hex to 100% ethyl acetate (EtOAc). Fractions 

containing gedunin were pooled and subjected to successive columns, each using a tighter 

gradient of Hex and EtOAc, ultimately to afford a pale yellow resin that was crystallized from 

EtOAc by triteration with Hex to provide 3 g of a white crystalline solid, which contained 2 

products by TLC and HPLC. 1H and 13C NMR data depicted all peaks previously described for 

gedunin and 7-desacetylgedunin.13 These two compounds were obtained in their pure forms by a 

final isocratic purification using Hex:dichloromethane (DCM):diethyl ether (Et2O) in a ratio of 

5:3:2. 

II.2.2 Design and synthesis of gedunin semi-synthetic derivatives 

Compounds 3a–3f and 4 were synthesized from 7-desacetylgedunin (2) (Scheme 2.1) as a 

series of derivatives to probe the steric and electronic tolerance of replacements at C-7.  7-

desacetylgedunin (2) was treated with 2eq.uivalents of 1 M potassium tert-butoxide (KOtBu) in 



   61 

tetrahydrofuran (THF) and 

subsequently reacted with the 

requisite alkyl halide to afford 

ethers 3a–3d.  Standard 

acylation procedures were 

used to generate 3e.  

Compound 3f was produced by treatment of 7-desacetylgedunin with trichloroacetyl isocyanate 

followed by basic aqueous workup.  Pyridinium chlorochromate (PCC) oxidation of 7-

desacetylgedunin gave the corresponding ketone, 4. 

The synthesis of compounds 5–13 are provided in Schemes 2.2, 2.3, and 2.4. This series 

of derivatives was pursued to evaluate the effects of altering the Michael accepting ability of the 

α,β-unsaturated ketone and to probe the steric and electronic limitations of the A-ring binding 

domain of Hsp90. 

Treatment of 7-desacetylgedunin with sodium hydroxide and hydrogen peroxide afforded 

epoxide 5 (Scheme 2.2).  Dihydroxylation of the olefin in 1 using osmium tetroxide (OsO4) and 

N-methylmorpholine-N-oxide (NMO) gave vicinal diol 6, which upon treatment with 2,2-

dimethoxypropane (DMP) and p-toluenesulfonic acid (TsOH) yielded the corresponding 

acetonide, 7.  Hydrogenation of the double bond was accomplished by the use of 10 % palladium 

on carbon (Pd/C) and hydrogen gas to afford 8.  Standard Luche conditions surprisingly gave 

hemi-lactol product 9, presumably as a result of the increased electrophillic character of the D-

ring lactone induced by the α,β−epoxide moiety. Chemoselective reduction of the ketone was 

accomplished via Merwein-Pondorf-Verley conditions with aluminum isopropoxide and 

isopropanol to afford 10a.  The allylic alcohol 10a was acetylated under standard conditions to 
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give 10b.  Treatment of gedunin with excess sodium borohydride (NaBH4) without a lanthanide 

gave the corresponding alcohol, 11 (Scheme 2.3).   

Oxime ether derivatives of gedunin, 12a–c, were synthesized by the treatment of the 

natural product with the appropriately substituted hydroxylamine.  Compound 13 (Scheme 2.4), 
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the product 

resulting from the 

treatment of 

gedunin with 

hydroxylamine, 

further 

demonstrates the 

increased electrophillic nature of the lactone moiety of gedunin. 

II.3 Biological Evaluation of Gedunin Derivatives 

With no prior knowledge of the site to which gedunin binds Hsp90, the 19 semi-synthetic 

derivatives were designed to elucidate the importance of specific functional groups on the 

tetracyclic core, as well as to probe the chemical space surrounding these ring systems. Because 

the goal of this project was to generate preliminary structure-activity relationships, products of 

non-stereospecific reactions were not separated into their diastereomerically pure forms. 

Compounds were tested for anti-proliferative activity against two breast cancer cell lines. The 

most active compounds were subjected to Western blot analysis to confirm the disruption of 

Hsp90 kinase client activity. Additionally, experiments were conducted to determine the effects 

of gedunin on the Hsp90/CDC37 interaction and the heat shock response. 

II.3.1 Anti-proliferative activity 

Compounds 1, 2, 3a–f, 4, 5, 6, 7, 8, 9, 10a–b, 11, 12a–c, and 13 were evaluated for anti-

proliferative activity against MCF-7 and SKBr3 cells using GDA as a positive control. Rates of 

cellular proliferation in the presence of increasing analogue concentrations were measured using 

the Promega MTS/PMS assay system. Reductase enzymes present within living cells catalyze 
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MTS tetrazolium reduction to a colored formazan product that can be quantified by measuring 

absorbance at 490 nm. Degree of absorbance is directly related to cell count and therefore rate of 

proliferation. Results from these studies are listed in Table 2.1. While many of the prepared 

compounds retain activity, none of the derivatives is more active than the natural product, 

however, some important preliminary structure-activity relationships have been identified. 

Substituents at the 7-position are placed in an environment that is sensitive to the effects 

of increasing and decreasing steric bulk away from that presented by the native ligand.  From 

compounds 3a through 3e, a pronounced decrease in anti-proliferative activity resulted upon 

decreasing or increasing the size of the substituent from an ethyl ether (3b) to either a methyl 

ether or an n-propyl ether (3a and 3c) and complete loss in activity was produced by 

incorporation of the benzyl ether as evidenced by compound 3d.  A complete loss in activity was 

also noted upon incorporation of the propionate ester as in 3e.  The n-propyl ether in 3c may 

retain activity due to its less rigid nature as compared to the propionate ester, 3e.  Also, 

preliminary molecular modeling results suggest that the carbonyl oxygen present on the 

propionate is tilted out of alignment with the carbonyl oxygen of the natural product suggesting 

that this moiety, when present, is important for binding.   

From the initial data set, it also appears that the binding site for substituents at the 7-

position is not sensitive to a change in the electronic nature of the substituent.  Compound 3f, 

which incorporates a carbamate as a non-bulky hydrogen bond acceptor/donor, exhibited an IC50 

value almost identical to that of the natural product.  The most active analogue found in the 7-

position series is compound 4, the 7-oxo derivative, further demonstrating the tolerance of this 

binding site to small, hydrogen bond acceptors, rather than small hydrophobic moieties as in 3a.   
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These results support two reasonable conclusions in regards to the effect of differing 

substituents at the 7-position: (1) the binding site complementary to substituents at this position 

may provide a hydrogen bond donor that resides in a shallow pocket.  This would explain why 

hydrogen bond acceptors exhibit the best anti-proliferative activities, while decreasing or 

increasing steric bulk from that presented by the native ligand without the presence of a 

hydrogen bond acceptor at this position decreases activity; (2) substituents placed at the 7-

position of gedunin are positioned in an region critical to the overall conformation of the 

molecule, thereby exhibiting significant impact on binding.  This latter observation explains why 

even small changes in the size of substituents, e.g. the additional methyl group of 3e compared to 

1, cause a substantial decrease in anti-proliferative activity.  

The anti-proliferative activity of the α,β-unsaturated ketone series also provides key 

information regarding the importance of this functional group. Compounds lacking the 1,2-olefin 

of gedunin manifest IC50 values greater than 100 µM (i.e. 6, 7, 8, and 11).  At first inspection, 

this data might suggest that the α,β-unsaturated ketone is acting as a Michael acceptor, however, 

anti-proliferative activity of related compounds in this series suggest otherwise.  For example, 

compound 9, which contains the reduced ketone and lactone moieties, retains anti-proliferative 

activity.  Although 9 exhibits activity five to ten fold less potent than the natural product, 

evidence suggests that the α,β-unsaturated ketone is not acting as a Michael acceptor, as a far 

less potent compound would be expected.  The biological activity observed for compounds 10a 

and 12a provides additional support for a non-covalent mechanism of action for gedunin.  

Compound 10a manifests anti-proliferative activity five times less potent than gedunin in both 

MCF-7 and SKBr3 cells.  Compound 12a also retains some activity, and is only 3-4 times less 
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potent than the natural product and incorporates an electron-rich oxime, which serves as a poor 

Michael acceptor.   

Compounds 10b, 12a-12c, and 13 also provide valuable insight into the binding site of 

the α,β-unsaturated ketone.  This binding pocket appears sensitive to steric bulk and/or intolerant 

to hydrophobic moieties.  Compound 10b, the acetylated version of 10a, exhibits no activity.  

Compound 12a, the O-methyl oxime, also manifests no anti-proliferative activity.  This is 

interesting, because aside form the additional projection of steric bulk and the increase in 

hydrophobicity from the methyl group on the oxime ether, 12a appears to include the 

requirements for successful binding at other positions of the molecule, including the α,β-olefin, a 

hydrogen bond acceptor at the 3-position, and the appropriately fitting substituent at the 7-

position.  Neither 12b nor 12c exhibited anti-proliferative activity and also parallel this trend. 

II.3.2 Western 

blot analysis of 

Hsp90 client 

protein 

In order 

to demonstrate 

the retention of Hsp90 inhibition, despite structural manipulation, the most active compounds in 

this series were evaluated to determine their ability to induce Hsp90-dependent client protein 

degradation.  1, 3f, and 4 were subjected to Western blot analysis for the detection of two known 

Hsp90 client proteins, Raf and HER2 (Figure 2.4).  Both compounds 3f and 4 demonstrate client 

protein degradation similar to 1 and GDA, which further supports their activity, stems from 

modulation of the Hsp90 molecular chaperone. 
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II.3.3 Effects on Hsp90/CDC37 interaction 

To determine whether gedunin causes disassembly of the Hsp90/CDC37 complex, co-

immunoprecipitation experiments were conducted. SKBr3 breast cancer cells were incubated for 

24 hours with concentrations of celastrol, gedunin, NB, and GDA and then lysed with NP-40 

lysis buffer (Figure 2.5).  

Lysates were 

immunoprecipitated with an 

anti-Hsp90 antibody and 

Protein G agarose. Protein was 

submitted to SDS-PAGE and 

analyzed by immunoblot, 

using the Hsp90 and CDC37 

antibodies. The control 

compounds, GDA and NB, 

exhibited no effect on the concentrations of CDC37 following Hsp90 immunoprecipitation, in 

agreement with previously reported data,39 as these compounds are unable to disrupt the 

CDC37/Hsp90 complex. However, celastrol and gedunin decreased the levels of CDC37 in a 

concentration-dependent manner (Figure 2.6), supporting the hypothesis that all three 
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compounds manifest a similar mechanism of action that 

results from disruption of the Hsp90/CDC37 complex. 

II.3.4 Comparison of heat shock response induction by 

several Hsp90 modulators 

Heat shock transcription factor 1 (HSF1) is an 

Hsp90-dependent client protein that, when displaced from 

Hsp90, results in the heat shock response upon 

transcriptional activation of the heat shock genes by 

binding to the heat shock-binding element. Previous work 

has shown that human Hsp90 is functional in yeast lacking 

endogenous Hsp90. Therefore; we examined the effects of 

celastrol and gedunin on HSF activity. PP30 cells 

expressing hHsp90a (as the only copy of Hsp90) and containing the HSF-lacZ reporter (Heat 

Shock Binding Element, HSE-lacZ) were treated with 100µM of the above compounds for 3 

hours. In addition, these cells were subsequently stressed upon heat shock (39˚C) for 1 hour. 

Celastrol, and gedunin exhibited no altered effect on the heat shock response in yeast, suggesting 

these inhibitors do not interfere with Hsp90/HSF1 interactions (Chart 2.1). 

II.4 Concluding Remarks 

Preliminary structure-activity relationships between gedunin and Hsp90 were elucidated 

through this work.  We have shown that the α,β-unsaturated ketone, while required for anti-

proliferative activity, does not behave as a Michael acceptor, and may therefore evade toxicity 

associated with this type of motif.  We have also shown that the anti-proliferative activity of this 

series of compounds is drastically reduced by a decrease or increase in steric bulk at the 7-
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position from the native ligand, suggesting that the natural product has optimized the steric 

effects at this position.  Also, it appears that the activity of compounds within the 7-position 

series is not affected by a change in the electronic characteristics of substituents at this location.   

Of further note, the most active compounds, 3f and 4, may present scaffolds that exhibit 

advantages over the natural product, 1.  The acetate moiety present in 1 is quite labile in 

physiological systems, as it may be rapidly cleaved by endogenous and promiscuous esterases.  

Naturally derived 7-desacylgedunin exhibits significantly lower anti-proliferative activity, and 

this may prevent derivatives of gedunin containing the acetate moiety from producing clinical 

significance.  Conversely, the carbamate of 3f and the ketone of 4 represent more stable 

functional groups that can withstand robust physiological environments.  The carbamate of 3f 

also has the added feature of lowering the lipophilicity of the natural product, which also 

increases its solubility and perhaps, physiological relevance. 

Results obtained from this work also provide support for the hypothesis that the anti-

proliferative effects of gedunin are a consequence of disrupting the Hsp90/CDC37 interaction. 

Co-immunoprecipitation experiments confirmed that efficient protein-protein interactions 

between Hsp90 and CDC37 are prevented by the administration of gedunin and celastrol, but not 

by GDA or NB. Additionally, evidence supporting a lack of the heat shock response following 

Hsp90/CDC37 interaction disruption was also observed. 

II.5 Methods and Experimentals 

General Methods.  Unless otherwise indicated, all reagents were purchased from 

commercial suppliers and are used without further purification.  Commercial solvents were 

purified by activated alumina prior to use. All stir bars and glassware were flame dried and 

glassware was flushed with Argon immediately prior to use.  The 1H and 13C NMR spectra were 
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recorded at 500 and 125 MHz respectively, on a Bruker DRX 500 using CDCl3 as solvent, 

chemical shift values are reported in ppm (TMS as internal standard), and coupling constants (J) 

are reported in Hz.  Column chromatography was performed with silica gel (40-63 m particle 

size) from Sorbent Technologies (Atlanta, GA). Analytical HPLC was carried out on an Agilent 

1100 Series Capillary HPLC system with diode array detection at 254 nm (compounds 5–8, 10a, 

and 11 were detected at 214.15 nm) on an Agilent Eclipse XDB-C18 column (4.6 × 150 mm, 5 

mm) with isocratic elution in 70% acetonitrile (ACN) and 30% H2O at a flow rate of 5.0 

mL/min. 

 

Gedunin (1).  Spectral data match what was previously reported in the literature. 1H NMR (500 

MHz, CDCl3) δ 7.35 (s, 2H), 7.03 (d, J = 10.2 Hz, 1H), 6.28 (s, 1H), 5.80 (d, J = 10.2 Hz, 1H), 

5.55 (s, 1H), 4.49 (s, 1H), 3.46 (s, 1H), 2.42 (dd, J = 12.7, 6.0 Hz, 1H), 2.10 (d, J = 13.2 Hz, 1H), 

2.04 (s, 3H), 2.00 – 1.85 (m, 2H), 1.84 – 1.62 (m, 3H), 1.53 (dd, J = 13.3, 11.2 Hz, 1H), 1.18 (s, 

3H), 1.16 (s, 3H), 1.09 (s, 3H), 1.01 (s, 3H), 1.00 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 204.01, 

169.92, 167.48, 156.98, 143.11, 141.21, 126.03, 120.42, 109.88, 78.27, 73.23, 69.80, 56.91, 

46.04, 44.07, 42.62, 40.04, 39.52, 38.73, 27.19, 25.99, 23.27, 21.22, 21.11, 19.78, 18.34, 17.74, 

14.99. 

O

O

OO

O

O

O
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Desacetylgedunin (2).  Spectral data match what was previously reported in the literature. 1H 

NMR (500 MHz, CDCl3) δ 7.43 – 7.25 (m, 2H), 7.04 (d, J = 10.2 Hz, 1H), 6.28 (dd, J = 1.7, 0.8 

Hz, 1H), 5.78 (d, J = 10.2 Hz, 1H), 5.53 (s, 1H), 3.84 (s, 1H), 3.51 (d, J = 1.5 Hz, 1H), 2.45 (dd, 

J = 13.0, 6.5 Hz, 1H), 2.41 (dd, J = 13.5, 2.7 Hz, 1H), 1.96 – 1.80 (m, 2H), 1.81 – 1.69 (m, 1H), 

1.70 – 1.55 (m, 2H), 1.52 – 1.44 (m, 1H), 1.40 (d, J = 3.1 Hz, 1H), 1.17 (s, 3H), 1.13 (s, 3H), 

1.08 (s, 3H), 1.03 (s, 3H), 1.02 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 203.49, 167.14, 156.68, 

141.94, 140.14, 124.76, 119.62, 108.95, 77.40, 68.96, 68.74, 56.84, 52.41, 43.56, 43.15, 42.61, 

39.17, 37.31, 36.93, 26.31, 25.34, 20.48, 18.92, 17.67, 16.76, 14.02. 

 

General Procedure A.  A solution of 2 (20 mg, 0.045 mmol, 1eq..) in anhydrous THF 

(450 µL) was stirred at 0 ºC under argon atmosphere.  KOtBu (45 µL, 0.09 mmol, 2eq.) was 

added dropwise and the mixture stirred for 30 min before alkyl iodide (10eq) was added.  The 

resulting mixture was stirred at 0 ºC for 1.5 h and then quenched by the addition of H2O (1mL).  

The organic layer was removed and the aqueous layer extracted with DCM (3 × 5mL).  The 

combined organic layers were dried (Na2SO4), filtered, and concentrated.  The residue was 

purified via SiO2 chromatography (5:3:2, Hex:DCM:Et2O) to yield the desired compound. 

 

O

O

OHO
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(1S,3aS,41R,4a1S,5R,10aR,12aS)-1-(furan-3-yl)-5-methoxy-4a1,7,7,10a,12a-pentamethyl-

4a1,5,6,6a,7,10a,10b,11,12,12a-decahydronaphtho[2,1-f]oxireno[2,3-d]isochromene-

3,8(1H,3aH)-dione (3a).   

Compound 3a was synthesized from 2 using general procedure A and iodomethane to afford 13 

mg (64%) as a colorless solid.  1H NMR (500 MHz, CDCl3): δ 1.01 (s, 3H), 1.04 (s, 3H), 1.10 (s, 

3H), 1.13 (s, 3H), 1.13 (s, 3H), 1.44-1.52 (m, 2H), 1.67-1.75 (m, 2H), 1.82-1.90 (m, 2H), 2.23 

(dd, J = 2.1, 13.2 Hz, 1H), 2.38 (dd, J = 5.9, 12.7 Hz, 1H), 2.85 (d, J = 2.1 Hz, 1H), 3.25 (s, 3H), 

3.55 (s, 1H), 5.52 (s, 1H), 5.76 (d, J = 10.2 Hz, 1H), 6.27 (d, J = 0.6 Hz, 1H), 7.01 (d, J = 10.2, 

1H), 7.30-7.35 (m, 2H): 13C NMR (125 MHz, CDCl3);δ14.1, 16.7, 17.5, 18.9, 19.2, 20.5, 25.4, 

26.4, 37.3, 37.7, 39.0, 43.1, 43.2, 43.5, 54.6, 56.4, 69.1, 77.4, 78.2, 108.9, 119.7, 124.7, 140.1, 

141.9, 156.8, 167.1, 203.5;  HRMS (*ESI +pos.) (m/z): [M+H] calcd. for C27H35O6, 455.2434; 

found, 455.2419; HPLC tR = 10.09 min; Purity = > 99 %.  
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(1S,3aS,41R,4a1S,5R,10aR,12aS)-5-ethoxy-1-(furan-3-yl)-4a1,7,7,10a,12a-pentamethyl-

4a1,5,6,6a,7,10a,10b,11,12,12a-decahydronaphtho[2,1-f]oxireno[2,3-d]isochromene-

3,8(1H,3aH)-dione (3b).   

Compound 3b was synthesized from 2 using general procedure A and 1-iodoethane to afford 7 

mg (33%) as a colorless solid.  1H NMR (500 MHz, CDCl3): δ 1.00 (s, 3H), 1.03 (s, 3H), 1.08 (s, 

3H), 1.12 (s, 3H), 1.15 (s, 3H), 1.15 (t, J = 12.7 Hz, 3H), 1.46-1.50 (m, 1H), 1.53-1.57 (m, 1H), 

1.61-1.65 (m, 1H), 1.69-1.73 (m, 1H), 1.81-1.89 (m, 2H), 2.24 (dd, J = 2.2, 13.1 Hz, 1H), 2.26 

(dd, J = 5.8, 12.8 Hz, 1H), 2.95 (d, J = 2.1 Hz, 1H), 3.14 (dq J = 7.0, 8.7 Hz, 1H), 3.55 (s, 1H), 

3.57 (dq, J = 7.0, 8.7 Hz, 1H), 5.53 (s, 1H), 5.77 (d, J = 10.2 Hz, 1H), 7.02 (d, J = 10.3 Hz, 1H), 

7.31-7.35 (m, 2H); 13C NMR (125 MHz, CDCl3): δ 14.0, 14.5, 16.8, 17.4, 18.9, 20.0, 20.5, 25.4, 

26.4, 37.3, 37.8, 39.0, 43.0, 43.2, 43.7, 56.4, 62.8, 69.2, 77.1, 77.4, 109.0, 119.7, 124.7, 140.1, 

141.9, 156.8, 167.1, 203.6; HRMS (*ESI +pos.) (m/z): [M+H] calcd. for C28H37O6, 469.2590; 

found, 469.2581; HPLC tR = 12.71 min; Purity = > 99 %. 
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(1S,3aS,41R,4a1S,5R,10aR,12aS)-1-(furan-3-yl)-4a1,7,7,10a,12a-pentamethyl-5-propoxy-

4a1,5,6,6a,7,10a,10b,11,12,12a-decahydronaphtho[2,1-f]oxireno[2,3-d]isochromene-

3,8(1H,3aH)-dione (3c).   

Compound 3c was synthesized from 2 using general procedure A and 1-iodopropane to afford 5 

mg (23%) as a colorless solid.  1H NMR (500 MHz, CDCl3): δ 0.86 (t, J = 7.4 Hz, 3H), 1.01 (s, 

3H), 1.04 (s, 3H), 1.08 (s, 3H), 1.13 (s, 3H), 1.16 (s, 3H),  1.46-1.50 (m, 1H), 1.50-1.61 (m, 3H), 

1.62-1.67 (m, 1H), 1.70-1.74 (m, 1H), 1.84-1.88 (m, 1H), 1.90-1.95 (m, 1H), 2.25 (dd, J = 2.2, 

13.1 Hz, 1H), 2.42 (dd, J = 6.0, 12.8 Hz, 1H), 2.94 (d, J = 2.2 Hz, 1H), 3.10 (dt, J = 2.3, 6.2 Hz, 

1H), 3.42 (dt, J = 1.6, 6.5 Hz, 1H), 3.55 (s, 1H), 5.52 (s, 1H), 5.77 (d, J = 10.2 Hz, 1H), 6.27-

6.29 (m 1H), 7.02 (d, J = 10.2 Hz, 1H), 7.31-7.35 (m, 2H). 13C NMR (125 MHz, CDCl3): δ 10.1, 

14.0, 16.8, 17.5, 18.9, 19.9, 20.5, 22.3, 25.4, 26.5, 37.3, 37.8, 39.0, 43.0, 43.2, 43.7, 56.4, 68.9, 

69.1, 76.8, 77.4, 108.9, 119.7, 124.7, 140.1, 141.9, 156.9, 167.0, 203.6; HRMS (*ESI +pos.) 

(m/z): [M+H] calcd. for C29H39O6, 483.2747; found, 483.2737; HPLC tR = 15.90 min; Purity = > 

99 %. 
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(1S,3aS,41R,4a1S,5R,10aR,12aS)-5-(benzyloxy)-1-(furan-3-yl)-4a1,7,7,10a,12a-pentamethyl-

4a1,5,6,6a,7,10a,10b,11,12,12a-decahydronaphtho[2,1-f]oxireno[2,3-d]isochromene-

3,8(1H,3aH)-dione (3d).   

Compound 3d was synthesized from 2 using general procedure A and benzyl bromide and 

catalytic tetrabutylammonium iodide to afford 14 mg (59%) as a colorless solid.  1H NMR (500 

MHz, CDCl3): δ 1.02 (s, 3H), 1.04 (s, 3H), 1.07 (s, 3H), 1.12 (s, 3H), 1.14 (s, 3H), 1.42-1.46 (m, 

1H), 1.59-1.68 (m, 2H), 1.68-1.72 (m, 1H), 1.80-1.85 (m, 1H), 2.02 (dt, J = 3, 14.7 Hz, 1H), 2.32 

(dd, J = 2.2, 13.1 Hz), 2.41 (dd, J = 5.9, 12.7 Hz, 1H), 3.14 (d, J = 2.2 Hz, 1H), 3.67 (s, 1H), 4.25 

(d, J = 10.2 Hz, 1H), 4.45 (d, J = 10.2 Hz, 1H), 5.51 (s, 1H), 5.75 (d, J = 10.2 Hz, 1H), 6.25 (d, J 

= 1.0 Hz, 1H), 6.99 (d, J = 10.2 Hz, 1H), 7.24-7.30 (m, 2H), 7.35-7.21 (m, 5H); 13C NMR (125 

MHz, CDCl3): δ 14.0, 16.9, 17.6, 19.1, 19.9, 20.5, 25.5, 26.6, 37.3, 37.7, 39.1, 43.2, 43.3, 43.7, 

56.3, 69.0, 69.6, 76.4, 77.3, 109.0, 119.6, 124.7, 127.1, 127.5, 127.5, 127.7, 127.7, 135.8, 140.1, 

141.9, 156.9, 166.9, 203.4; HRMS (*ESI +pos.) (m/z): [M+H] calcd. for C33H39O6, 531.2747; 

found, 531.2762; HPLC tR = 16.08 min; Purity = 97.8%. 
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(1S,3aS,41R,4a1S,5R,10aR,12aS)-1-(furan-3-yl)-4a1,7,7,10a,12a-pentamethyl-3,8-dioxo-

1,3,3a,4a1,5,6,6a,7,8,10a,10b,11,12,12a-tetradecahydronaphtho[2,1-f]oxireno[2,3-

d]isochromen-5-yl propionate (3e).   

A solution of 2 (20 mg, 0.045 mmol, 1eq.), DMAP (catalytic), and Et3N (35 µL, 0.248 mmol, 

5.5eq.) in 450 µL anhydrous DCM was stirred under argon atmosphere at 0 ºC until completely 

dissolved.  Propionyl chloride (20 µL, 0.225 mmol, 5eq.) was added dropwise to the solution and 

then stirred for 5 h before the reaction was quenched by addition of H2O (1mL).  The organic 

layer was removed and the aqueous layer extracted with DCM (3 × 5mL).  The combined 

organic layers were dried (Na2SO4), filtered, and concentrated.  The resulting yellow oil was 

purified via SiO2 chromatography (4:3:3, Hex:DCM:Et2O) to yield 17 mg (76%) 3e as a 

colorless solid.  1H NMR (500 MHz, CDCl3): δ 0.98 (s, 3H), 1.00 (t, J = 7.6 Hz, 3H), 1.00 (s, 

3H), 1.12 (s, 3H), 1.17 (s, 3H), 1.36 (s, 3H), 1.66-1.97 (m, 4H), 2.09 (dd, J = 2.4, 13.4 Hz, 1H), 

2.20-2.38 (m, 1H), 2.30 (dq, J = 2.6, 7.7 Hz, 1H), 2.40-2.46 (m, 2H), 2.42 (dq, J = 2.6, 7.7 Hz, 

1H), 3.48 (s, 1H), 4.52 (m, 1H), 5.52 (s, 1H), 5.79 (d, J = 10.2 Hz, 1H), 6.26 (m, 1H), 7.02 (d, J 

= 10.2 Hz, 1H), 7.34 (m, 1H);   13C NMR (125 MHz, CDCl3): δ 10.5, 14.1, 15.2, 17.7, 18.9, 19.9, 

21.3, 23.3, 25.3, 27.3, 38.9, 39.6, 40.2, 42.8, 44.1, 46.1, 57.6, 69.4, 72.7, 78.0, 110.0, 114.0, 

120.5, 126.0, 141.2, 143.1, 157.0, 165.1, 166.9, 204.1; HRMS (*ESI +pos.) (m/z): [M+H] calcd. 

for C29H37O7, 497.2539; found, 497.2542; HPLC tR = 13.66 min; Purity = 97.1%. 
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(1S,3aS,41R,4a1S,5R,10aR,12aS)-1-(furan-3-yl)-4a1,7,7,10a,12a-pentamethyl-3,8-dioxo-

1,3,3a,4a1,5,6,6a,7,8,10a,10b,11,12,12a-tetradecahydronaphtho[2,1-f]oxireno[2,3-

d]isochromen-5-yl carbamate (3f).   

A solution of 2 (20 mg, 0.045 mmol, 1eq.) in 450 µL anhydrous DCM under argon atmosphere 

was stirred at 0 ºC.  Trichloroacetyl isocyanate (10.7 µL, 0.09 mmol, 2eq.) was added drop-wise, 

and the solution was allowed to warm up to room temperature and stirred for 3 h, at which point 

the reaction was quenched by the addition of H2O (1mL).  The organic layer was collected and 

the aqueous layer extracted with DCM (3 × 5mL).  The combined organic extracts were 

concentrated and then dissolved in 1mL 0.1M K2CO3 in MeOH, and stirred for 1.5 h at ambient 

temperature.  The reaction was quenched by the addition of H2O (1mL).  The reaction mixture 

was extracted with DCM (3 × 5mL).  The combined organic layers were dried (Na2SO4), filtered, 

and concentrated.  The resulting colorless oil was purified via SiO2 chromatography (4:3:3, 

Hex:DCM:Et2O) to yield 21 mg (97%) 3f as a colorless solid.  1H NMR (500 MHz, CDCl3): δ 

1.01 (s, 3H), 1.03 (s, 3H), 1.09 (s, 3H), 1.16 (s, 6H), 1.49-1.53 (m, 1H), 1.65-1.68 (m, 1H), 

1.778-1.81 (m, 2H), 1.85-1.93 (m, 2H), 2.15 (dd, J = 2.5, 12.7 Hz, 1H), 2.37 (dd, J = 6.1, 12.7 

Hz, 1H), 3.66 (s, 1H), 4.45 (s, 1H), 4.67 (br s, 2H), 5.54 (s, 1H), 5.79 (d, J = 10.2 Hz, 1H), 6.25-

6.27 (m, 1H), 7.02 (d, J = 10.2 Hz, 1H), 7.32-7.35 (m, 2H); 13C NMR (125 MHz, CDCl3): δ 

15.0, 18.0, 18.5, 19.8, 21.3, 23.6, 26.0, 27.2, 38.6, 39.5, 40.0, 42.9, 44.1, 45.9, 56.9, 69.7, 73.5, 
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78.2, 109.9, 120.5, 126.0, 141.2, 143.1, 155.1, 157.1, 167.4, 204.2; HRMS (*ESI +pos.) (m/z): 

[M+H] calcd. for C27H34N1O7, 484.2335; found, 484.2320; HPLC tR = 3.59 min; Purity = 

98.7%. 

 

(1S,3aS,41R,4a1R,10aS,12aS)-1-(furan-3-yl)-4a1,7,7,10a,12a-pentamethyl-

6,6a,7,10a,10b,11,12,12a-octahydronaphtho[2,1-f]oxireno[2,3-d]isochromene-

3,5,8(1H,3aH,4a1H)-trione (4).   

A solution of 2 (20 mg, 0.045 mmol, 1eq.) in 450 µL anhydrous DCM was stirred at ambient 

temperature.  PCC (29.1 mg, 0.135 mmol, 3eq.) was added in one portion and the reaction 

mixture was stirred overnight before the solution was filtered through a plug of silica using Et2O 

as eluent.  The colorless solution was dried (Na2SO4), filtered, and concentrated. The resulting 

colorless oil was purified via SiO2 chromatography (5:3:2, Hex:DCM:Et2O) to yield 19 mg 

(96%) 4 as a colorless solid.  1H NMR (500 MHz, CDCl3): δ 1.07 (s, 3H), 1.07 (s, 3H), 1.09 (s, 

3H), 1.15 (s, 3H), 1.29 (s, 3H), 1.41 (dt, J =  3.9, 9.8 Hz, 1H), 1.71-1.77 (m, 2H), 1.91-1.95 (m, 

1H), 2.10-2.17 (m, 2H), 2.34 (dd, J = 3.2, 14 Hz, 1H), 2.86 (t, J = 14.4 Hz, 1H), 3.80 (s, 1H), 5.4 

(s, 1H), 5.85 (d, J = 10.2 Hz, 1H), 6.29 (dd, J = 0.7, 1.8 Hz, 1H), 7.03 (d, J = 10.2 Hz, 1H), 7.32-

7-34 (m, 1H), 7.34-7.36 (m, 1H); 13C NMR (125 MHz, CDCl3): δ 16.2, 16.4, 18.8, 19.6, 19.9, 

25.7, 31.2, 35.7, 36.7, 35.7, 36.7, 38.6, 44.2, 46.6, 52.4, 52.6, 53.5, 64.5, 77.0, 108.8, 119.2, 

125.4, 140.0, 142.1, 154.9, 165.8, 202.2, 207.1; HRMS (*ESI +pos.) (m/z): [M+H] calcd. for 

C26H31O6,439.2121; found, 439.2129; HPLC tR = 5.45 min; Purity = > 99 %. 
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(1S,3aS,41R,4a1S,5R,10aR,12aS)-1-(furan-3-yl)-5-hydroxy-4a1,7,7,10a,12a-pentamethyl-

4a1,5,6,6a,7,10a,10b,11,12,12a-decahydronaphtho[2,1-f],[9,10]dioxireno[2,3-

d]isochromene-3,8(1H,3aH)-dione (5).   

A solution of 2 (20 mg, 0.045 mmol, 1eq.) in 450 µL acetone was stirred at 0 ºC.  A solution of 

8% aqueous sodium hydroxide (85 µL) and a solution of 30% aqueous hydrogen peroxide (52 

µL) were added.  The reaction mixture was allowed to warm to room temperature.  After stirring 

overnight, 2N hydrochloric acid (1mL) was added.  The reaction mixture was extracted with 

DCM (3 × 5 mL), and the combined organic layers were dried (Na2SO4), filtered, and 

concentrated.  The resulting colorless oil was purified via SiO2 chromatography (5:3:2, 

Hex:DCM:Et2O) to yield 14 mg (68%) 5 as a colorless solid.  1H NMR (500 MHz, CDCl3): δ 

0.92 (s, 3H), 0.96 (s, 3H), 1.00 (s, 3H), 1.04 (s, 3H), 1.22 (s, 3H), 1.45-1.52 (m, 2H), 1.63 (dd, J 

= 4.1, 8.1 Hz, 1H), 1.71-1.77 (m, 2H), 1.92-1.96 (m, 1H), 2.64 (dd, J = 2.6, 13.7 Hz, 1H), 2.72 

(dd, J = 6.6, 12.7 Hz, 1H), 3.32 (d, J = 4.6 Hz, 1H), 3.46 (s, 1H), 3.48 (d, J = 4.5 Hz, 1H), 3.85 

(s, 1H), 5.53 (s, 1H), 6.29 (s, 1H), 7.33 (s, 1H), 7.32-7.34 (m, 2H); 13C NMR (125 MHz, CDCl3): 

δ 14.5, 14.8, 16.4, 17.7, 19.8, 25.0, 26.0, 26.5, 35.9, 36.1, 37.4, 38.2, 42.2, 43.2, 55.6, 57.0, 62.1, 

68.5, 68.9, 77.4, 109.0, 119.6, 140.2, 141.9, 167.2, 210.7; HRMS (*ESI +pos.) (m/z): [M+H] 

calcd. for C26H33O7, 457.2226; found, 457.2220; HPLC tR = 6.40 min; Purity = 98.6%. 
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(1S,3aS,41R,4a1S,5R,10aR,12aS)-1-(furan-3-yl)-9,10-dihydroxy-4a1,7,7,10a,12a-

pentamethyl-3,8-dioxohexadecahydronaphtho[2,1-f]oxireno[2,3-d]isochromen-5-yl acetate 

(6). 

A solution of 1 (100 mg, 0.21 mmol, 1eq.) in 1.78 mL fully degassed acetone was stirred under 

argon atmosphere at 0 ºC.  A 4% solution of osmium tetroxide in water (72 µL, 0.011 mmol, 

0.05eq.) and a 1 M solution of N-methylmorpholine N-oxide in deionized water (315 µL, 0.315 

mmol, 1.5eq.) were added.  After stirring overnight, saturated aqueous sodium sulfite was added 

(4 mL) and the reaction mixture was stirred for 1 hour at room temperature.  The reaction 

mixture was extracted 4 times with EtOAc.  The combined organics were dried (Na2SO4), 

filtered, and concentrated.  The resulting black oil was purified via SiO2 chromatography (7:6:6, 

Hex:DCM:Et2O) to yield 97 mg (89%) 6 as a colorless solid.  1H NMR (500 MHz, CDCl3): δ 

0.99 (s, 3H), 1.02 (s, 3H), 1.07 (s, 3H), 1.18 (s, 3H), 1.19 (s, 3H), 1.48-1.51 (m, 1H), 1.60-1.63 

(m, 2H), 1.79-1.82 (m, 2H), 2.03 (s, 3H), 2.16 (dd, J = 4.1, 11.5 Hz, 1H), 2.48 (s, 1H), 2.96 (dd, 

J = 6.4, 12.1 Hz, 1H), 3.42 (s, 1H), 3.86 (d, J = 2.3 Hz, 1H), 3.89 (d, J = 2.8 Hz, 1H), 4.44 (br s, 

1H), 4.60-4.62 (m, 1H), 5.54 (s, 1H), 6.25-6.27 (m, 1H), 7.32-7.34 (s, 1H). 13C NMR (125 MHz, 

CDCl3): δ 13.5, 15.3, 15.7, 17.5, 19.9, 20.1, 22.0, 22.8, 24.6, 35.7, 37.9, 40.2, 40.8, 41.0, 45.5, 

55.7, 69.0, 70.2, 72.5, 75.9, 77.5, 109.0, 119.6, 140.1, 141.9, 166.6, 169.1, 213.0; HRMS (*ESI 
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+pos.) (m/z): [M+H] calcd. for C28H37O9, 517.2438; found, 517.2421; HPLC tR = 4.71 min; 

Purity = > 99 %. 

 

(1S,3aS,41R,4a1S,5R,10aR,12aS)-1-(furan-3-yl)-9,10-dihydroxy-4a1,7,7,10,10,10a,12a-

heptamethyl-3,8-dioxohexadecahydronaphtho-9,11-dioxol-[2,1-f]oxireno[2,3-d]isochromen-

5-yl acetate (7).   

A solution of 6 (10.5 mg, 0.02 mmol, 1eq.) in 100 µL of acetone was stirred at room 

temperature.  2,2-dimethoxypropane (11 µL, 0.088 mmol, 4.4eq.) was added followed by the 

addition of catalytic p-Toluenesulfonic acid.  After stirring for 3 h, solvent was blown dry, and 

residue was taken up in 300 µL of DCM and washed with sodium bicarbonate and brine.  The 

organic layer was dried (Na2SO4), filtered, and concentrated.  The resulting colorless oil was 

purified via SiO2 chromatography (5:3:2, Hex:DCM:Et2O) to yield 10 mg (90%) 7 as a colorless 

solid.  1H NMR (500 MHz, CDCl3): δ 0.98 (s, 3H), 1.02 (s, 3H), 1.13 (s, 3H), 1.22 (s, 3H), 1.23 

(s, 3H), 1.48 (s, 3H), 1.48-1.51 (m, 1H), 1.50 (s, 3H), 1.56-1.63 (m, 3H), 1.71-1.73 (m, 1H), 1.83 

(dt, J = 3.7, 14.9 Hz, 1H), 2.05 (s, 3H), 2.42 (dd, J = 3.6, 13.7 Hz, 1H), 2.95 (dd, J = 6.2, 12.4 

Hz, 1H), 3.48 (s, 1H), 4.05 (d, J = 7.5 Hz, 1H), 4.31 (d, J = 7.5 Hz, 1H), 4.45 (dd, J = 1.9, 3.4, 

1H), 5.55 (s, 1H), 6.27 (d, J = 1.0 Hz, 1H), 7.32-7.35 (m, 2H); 13C NMR (125 MHz, CDCl3): δ 

13.8, 14.5, 15.7, 16.9, 20.1, 20.4, 22.5, 22.9, 24.5, 24.9, 28.4, 32.6, 36.7, 37.8, 39.5, 40.4, 44.0, 

52.4, 55.7, 69.1, 72.3, 77.4, 81.1, 109.0, 109.4, 119.6, 140.1, 141.9, 166.7, 168.9, 210.9; HRMS 
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(*ESI +pos.) (m/z): [M+Na] calcd. for C31H40O9Na, 579.2570; found, 579.2548; HPLC tR = 

14.17 min; Purity = 96.1%.  

 

(1S,3aS,41R,4a1S,5R,10aR,12aS)-1-(furan-3-yl)-4a1,7,7,10a,12a-pentamethyl-3,8-

dioxohexadecahydronaphtho[2,1-f]oxireno[2,3-d]isochromen-5-yl acetate (8).   

A solution of 1 (20 mg, 0.041 mmol, 1eq.) and 10% Pd/C (2 mg) in 1 mL of methanol was 

stirred at room temperature under an atmosphere of argon.  The reaction flask was purged with 

H2 repeatedly.  The fully H2 purged flask was stirred at room temperature for 5 h after which, the 

solution was run through a plug of silica using ether as eluent.  The organic filtrate was dried 

(Na2SO4), filtered, and concentrated.  The resulting colorless oil was purified via SiO2 

chromatography (5:3:2, Hex:DCM:Et2O) to yield 7 mg (35%) 8 as a colorless solid.  1H NMR 

(500 MHz, CDCl3): δ 0.96 (s, 3H), 1.00 (s, 3H), 1.05 (s, 3H), 1.17 (s, 3H), 1.42 (s, 3H), 1.48-

1.53 (m, 2H), 1.63-1.71 (m, 4H), 1.77-1.81 (m, 1H), 1.81-1.83 (m, 1H), 1.84-1.86 (m, 1H), 2.24 

(dd, J = 6.9, 12.1 Hz, 1H), 2.38-2.40 (m, 1H), 2.50-2.52 (m, 1H), 3.45 (s, 1H), 4.44-4.47 (m, 

1H), 5.54 (s, 1H), 6.25-6.26 (m, 1H), 7.31-7.33 (m, 2H); 13C NMR (125 MHz, CDCl3): δ 14.0, 

14.7, 16.4, 17.0, 19.9, 20.1, 22.7, 24.8, 25.0, 32.7, 36.3, 37.8, 37.9, 40.9, 43.0, 45.6, 46.7, 55.7, 

68.78, 72.7, 77.3, 108.9, 119.5, 140.1, 142.0, 166.6, 169.0, 214.9; HRMS (*ESI +pos.) (m/z): 

[M+H] calcd. for C28H37O7, 485.2539; found, 485.2549; HPLC tR = 6.35 min; Purity = 97.6%. 
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(1S,3aS,41R,4a1S,5R,10aS,12aS)-1-(furan-3-yl)-3,8-dihydroxy-4a1,7,7,10a,12a-

pentamethyl-1,3,3a,4a1,5,6,6a,7,8,10a,10b,11,12,12a-tetradecahydronaphtho[2,1-

f]oxireno[2,3-d]isochromen-5-yl acetate (9).   

A solution of 1 (500 mg, 1.04 mmol, 1eq.) in 4 mL of a 2:1 mixture of methanol and chloroform 

was stirred under argon atmosphere at 0 ºC.  Cerium trichloride hexahydrate (740 mg, 2.08 

mmol, 2 eq) was added followed by the slow addition of sodium borohydride (39.33 mg, 1.04 

mmol, 1eq).  The reaction mixture was stirred for 3 minutes and quenched by the addition of a 

solution of 1% acetic acid in water.  The reaction mixture was extracted 3 times with 

dichloromethane.  The combined organic layers were dried (Na2SO4), filtered, and concentrated.  

The resulting colorless crystals were dissolved in minimal DCM and purified via SiO2 

chromatography (6:7:7, Hex:DCM:Et2O) to yield 473 mg (93%) 9 as a colorless solid.  Major 

Diastereomer: 1H NMR (500 MHz, CDCl3): δ 0.74 (s, 3H), 0.83 (s, 3H), 0.95 (s, 3H), 1.02 (s, 

3H), 1.16 (s, 3H), 1.45-1.80 (m, 7H), 2.05 (s, 3H), 2.30 (dd, J = 5.4, 12.9 Hz, 1H), 3.00-3.10 (m, 

2H), 3.21 (d, J = 1.8 Hz, 1H), 3.84 (bs, 1H), 4.56-4.60 (m, 1H), 4.92 (s, 1H), 5.05 (d, J = 10.2 

Hz, 1H), 5.28 (d, J = 10.2, 1H), 5.80 (m, 1H), 6.20 (m, 1H), 7.23 (m, 1H), 7.27 (m, 1H); 13C 

NMR (125 MHz, CDCl3): δ 14.6, 16.1, 17.2, 18.5, 18.7, 20.3, 22.2, 25.6, 26.5, 35.6, 35.7, 338.4, 

40.9, 41.9, 45.0, 57.5, 68.5, 71.4, 73.4, 73.4, 76.2, 86.8, 109.2, 121.9, 125.1, 136.3, 125.1, 136.3, 
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139.6, 141.3, 168.8; HRMS (*ESI +pos.) (m/z): [M+Na] calcd. for C28H38O7Na, 509.2515; 

found, 509.2500; HPLC tR = 6.12 min; Purity = > 99 %. 

 

(1S,3aS,41R,4a1S,5R,10aS,12aS)-1-(furan-3-yl)-8-hydroxy-4a1,7,7,10a,12a-pentamethyl-3-

oxo-1,3,3a,4a1,5,6,6a,7,8,10a,10b,11,12,12a-tetradecahydronaphtho[2,1-f]oxireno[2,3-

d]isochromen-5-yl acetate (10a).   

A solution of 1 (500mg, 1.04 mmol, 1eq.) in 1.3 mL toluene was stirred at ambient temperature 

under argon atmosphere.  Isopropyl alcohol (687 mg, 11.44 mmol, 11eq.) and aluminum 

triisopropoxide (127.5 mg, 0.624, 0.6eq.) were added, and the reaction mixture was heated at 

70oC for 20h.  After being allowed to cool to ambient temperature, the reaction mixture was 

quenched by the addition of 1 N HCl (4 mL) and EtOAc (4 mL) and stirred for 1.5h.  The 

organic layer was washed with water and concentrated.  The resulting colorless oil was purified 

via SiO2 chromatography (3:1:1,  Hex:DCM:Et2O) to yield 284 mg (56%) of 10a as a colorless 

solid.  1H NMR (500 MHz, CDCl3): δ 0.75 (s, 3H), 0.83 (s, 3H), 1.02 (s, 3H), 1.04 (s, 3H), 1.16 

(s, 3H), 1.44-1.48 (m, 1H), 1.57-1.61 (m, 1H), 1.59-1.63 (m, 1H), 1.66-1.69 (m, 2H), 1.82-1.86 

(m, 1H), 1.90 (dd, J = 2.6, 11.7 Hz, 1H), 2.05 (s, 3H), 2.29 (dd, J = 6.4, 12.6 Hz, 1H), 3.42 (s, 

1H), 3.84 (d, J = 8.3, 1H), 4.45 (bs, 1H), 5.29 (d, J = 10.5 Hz, 1H), 5.53 (s, 1H), 5.78 (d, J = 10.6 

Hz, 1H), 6.26 (s, 1H), 7.33 (s, 2H); 13C NMR (125 MHz, CDCl3): δ 15.4, 17.3, 17.5, 18.5, 19.6, 

21.2, 22.6, 26.0, 27.4, 36.5, 38.8, 39.7, 42.0, 42.7, 45.8, 56.8, 65.9, 69.9, 73.9, 78.4, 109.9, 120.6, 
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126.5, 136.7, 141.2, 143.0, 167.8, 170.0; HRMS (*ESI +pos.) (m/z): [M+H] calcd. for C28H37O7, 

485.2539; found, 485.2540; HPLC tR = 4.31 min; Purity = 98.1%. 

 

(1S,3aS,41R,4a1S,5R,10aS,12aS)-1-(furan-3-yl)-4a1,7,7,10a,12a-pentamethyl-3-oxo-

1,3,3a,4a1,5,6,6a,7,8,10a,10b,11,12,12a-tetradecahydronaphtho[2,1-f]oxireno[2,3-

d]isochromene-5,8-diyl diacetate (10b).   

A solution of 10a (10 mg, 0.0206 mmol, 1eq), DMAP (catalytic), and Et3N (15 µL, 0.103 mmol, 

5eq.) in anhydrous THF (250 µL) was stirred under argon atmosphere at 0 ºC.  Acetyl chloride (8 

µL, 0.103 mmol, 5eq.) was added drop-wise, and the reaction mixture was stirred overnight 

while allowing to warm to ambient temperature.  The reaction mixture was quenched by the 

addition of water (500 µL), and the organic layer was collected and the aqueous layer was 

washed with DCM (3 × 5mL).  The combined organic layers were dried (Na2SO4), filtered, and 

concentrated.  The resulting yellow oil was purified via SiO2 chromatography (5:3:2, 

Hex:DCM:Et2O) to yield 9 mg (83%) 10b as a colorless solid.  1H NMR (500 MHz, CDCl3): δ 

0.74 (s, 3H), 0.83 (s, 3H), 1.02 (s, 3H), 1.07 (s, 3H), 1.15 (s, 3H), 1.46-1.50 (m, 1H), 1.59-1.61 

(m, 1H), 1.66-1.72 (m, 2H), 1.81 (m, 2H), 1.90 (d, J = 15.0 Hz, 1H), 2.03 (s, 3H), 2.05 (s, 3H), 

2.31 (dd, J = 6.4, 12.7 Hz, 1H), 3.42 (s, 1H), 4.45 (bs, 1H), 5.07 (d, J = 1.8 Hz, 1H), 5.17 (dd, J 

= 1.4, 9.7 Hz, 1H), 5.52 (s, 1H), 5.82 (d, J = 10.5 Hz, 1H), 6.26 (s, 1H), 7.33 (s, 2H). 13C NMR 

(125 MHz, CDCl3): δ 14.4, 16.4, 17.3, 17.4, 18.4, 20.2, 21.4, 25.0, 26.4, 34.5, 37.7, 38.7, 41.0, 
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41.6, 44.8, 55.7, 68.8, 72.7, 77.4, 77.7, 108.9, 119.5, 121.8, 136.6, 140.1, 142.0, 166.6, 169.0, 

170.4; HRMS (*ESI +pos.) (m/z): [M+H] calcd. for C30H39O8, 527.2645; found, 527.2654; 

HPLC tR = 16.63 min; Purity = 96.2%. 

 

(1S,3aS,41R,4a1S,5R,10aS,12aS)-1-(furan-3-yl)-3,8-dihydroxy-4a1,7,7,10a,12a-

pentamethylhexadecahydronaphtho[2,1-f]oxireno[2,3-d]isochromen-5-yl acetate (11). 

A solution of 1 (20 mg, 0.041 mmol, 1eq.) in 450 µL ethanol was stirred at ambient temperature 

under argon atmosphere.  Sodium borohydride (10 mg, 0.25 mmol, 6eq.) was added in one 

portion and reaction mixture was stirred for 45 minutes.  The reaction mixture was quenched by 

the addition of 1% aqueous acetic acid.  The reaction mixture was extracted 3 times with 

chloroform.  The combined organic layers were dried (Na2SO4), filtered, and concentrated.  The 

resulting colorless oil was purified via SiO2 chromatography (4:3:3, Hex:DCM:Et2O) to yield 17 

mg (85%) 11 as a colorless solid.  Major Diasteromer: 1H NMR (500 MHz, CDCl3): δ 0.69 (s, 

3H), 0.81 (s, 3H), 0.85 (s, 3H), 0.94 (s, 3H), 1.18 (s, 3H), 1.15-1.36 (m, 2H), 1.45-1.75 (m, 9H), 

2.05 (s, 3H), 2.10-2.21 (m, 1H), 2.96 (d, J = 10.4, 1H), 3.17-3.20 (m, 1H), 3.22 (s, 1H), 4.56-

4.59 (m, 1H), 4.92 (s, 1H), 5.06 (d, J = 10.4, 1H), 6.21 (m, 1H), 7.22-7.26 (m, 1H), 7.26-7.28 (m, 

1H); 13C NMR (125 MHz, CDCl3): δ 14.2, 16.8, 17.2, 18.5, 20.4, 22.3, 25.4, 25.7, 26.5, 26.7, 

26.5, 26.7, 35.7, 36.8, 37.3, 37.4, 43.3, 45.0, 47.0, 52.4, 57.8, 72.2, 73.8, 77.5, 86.8, 109.3, 122.4, 
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139.6, 141.3, 168.9; HRMS (*ESI +pos.) (m/z): [M+Na] calcd. for C28H40O7Na, 511.2672; 

found, 511.2681; HPLC tR = 4.23 min; Purity = 98.3%. 

 

General Procedure B.  A solution of 1 (20 mg, 0.041 mmol, 1eq.) was stirred in 

pyridine (450 µL) at room temperature.  Hydroxylamine or appropriate hydroxylamine 

derivative (2eq.) was added and the reaction mixture was stirred at 70 ºC in a sealed tube 

overnight.  The reaction mixture was diluted with toluene and solvents were condensed in vacuo.  

The co-evaporation procedure was repeated 2 more times.  The resulting oil was dissolved in 

DCM and washed with saturated aqueous sodium bicarbonate (2 × 5 mL).  The organic layer was 

collected, and the aqueous layer was re-extracted with dichloromethane (2 × 5 mL).  The 

combined organic layers were dried (Na2SO4), filtered, and concentrated.  The resulting oil was 

purified via SiO2 chromatography (eluent: Hex:DCM:Et2O) to yield the desired oxime. 

  

(1S,3aS,41R,4a1S,5R,10aS,12aS)-1-(furan-3-yl)-8-(methoxyimino)-4a1,7,7,10a,12a-

pentamethyl-3-oxo-1,3,3a,4a1,5,6,6a,7,8,10a,10b,11,12,12a-tetradecahydronaphtho[2,1-

f]oxireno[2,3-d]isochromen-5-yl acetate (12a).   

Compound 12a was synthesized from 1 using general procedure B and methoxyhydroxylamine 

hydrochloride to afford 13 mg (62%) as a colorless solid.  1H NMR (500 MHz, CDCl3): δ 1.05 

(s, 3H), 1.06 (s, 3H), 1.07 (s, 3H), 1.08 (s, 3H), 1.16 (s, 3H), 1.46-1.50 (m, 1H), 1.63-1.65 (m, 
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1H), 1.67-1.71 (m, 1H), 1.77 (dd, J = 1.8, 13.4, 1H), 1.76-1.78 (m, 1H), 1.90 (dd, J = 2.2, 12.7, 

1H), 1.89-1.93 (m, 1H), 2.32 (dd, J = 6.0, 12.8 Hz, 1H), 3.45 (s, 1H), 3.79 (s, 3H), 4.45-4.49 (m, 

1H), 5.54 (s, 1H), 6.24-6.28 (m, 1H), 6.33 (d, J = 10.4 Hz, 1H), 6.49 (d, J = 10.4, 1H), 7.32-7.34 

(m, 1H); 13C NMR (125 MHz, CDCl3): δ 14.0, 16.7, 17.2, 18.0, 20.1, 21.9, 23.2, 25.0, 28.7, 36.3, 

37.7, 38.8, 38.9, 41.5, 45.4, 55.8, 60.6, 68.9, 72.5, 77.3, 108.9, 113.3, 119.5, 140.1, 142.0, 145.4, 

157.4, 166.6, 168.9; HRMS (*ESI +pos.) (m/z): [M+H] calcd. for C29H38N1O7, 512.2649; found, 

512.2635; HPLC tR = 21.37 min; Purity = > 99 %. 

 

(1S,3aS,41R,4a1S,5R,10aS,12aS)-8-(ethoxyimino)-1-(furan-3-yl)-4a1,7,7,10a,12a-

pentamethyl-3-oxo-1,3,3a,4a1,5,6,6a,7,8,10a,10b,11,12,12a-tetradecahydronaphtho[2,1-

f]oxireno[2,3-d]isochromen-5-yl acetate (12b).   

Compound 12b was synthesized from 1 using general procedure B and ethoxyhydroxylamine 

hydrochloride to afford 17 mg (79%) as a colorless solid.  1H NMR (500 MHz, CDCl3): δ 1.05 

(s, 3H), 1.06 (s, 3H), 1.08 (s, 3H), 1.16 (s, 3H), 1.18 (s, 3H), 1.18 (t, J = 6.9 Hz, 3H), 1.60-1.75 

(m, 5H), 1.75-1.92 (m, 2H), 2.02 (s, 3H), 2.33 (dd, J = 5.9, 12.8 Hz, 1H), 3.45 (s, 1H), 4.03 (q, J 

= 7 Hz, 2H), 4.47 (s, 1H), 5.54 (s, 1H), 6.26 (m, 1H), 6.32 (d, J = 10.3 Hz, 1H), 6.52 (d, J = 10.3 

Hz, 1H), 7.33 (m, 2H); 13C NMR (125 MHz, CDCl3): δ 14.6, 15.0, 17.7, 18.2, 19.1, 21.1, 22.9, 

24.2, 26.1, 29.6, 37.4, 38.7, 39.9, 40.0, 42.5, 46.5, 56.9, 69.4, 70.0, 73.6, 78.3, 109.9, 114.5, 
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120.5, 141.2, 143.0, 146.0, 158.1, 163.1, 164.0; HRMS (*ESI +pos.) (m/z): [M+Na] calcd. for 

C30H39NO7Na, 548.2624; found, 548.2616; HPLC tR = 28.90 min; Purity = > 99 %.  

 

(1S,3aS,41R,4a1S,5R,10aS,12aS)-8-(benzyloxyimino)-1-(furan-3-yl)-4a1,7,7,10a,12a-

pentamethyl-3-oxo-1,3,3a,4a1,5,6,6a,7,8,10a,10b,11,12,12a-tetradecahydronaphtho[2,1-

f]oxireno[2,3-d]isochromen-5-yl acetate (12c). 

Compound 12c was synthesized from 1 using general procedure B and benzyloxyhydroxylamine 

hydrochloride to afford 10 mg (42%) as a colorless solid. 1H NMR (500 MHz, CDCl3): δ 1.05 (s, 

6H), 1.06 (s, 3H), 1.07 (s, 3H), 1.15 (s, 3H), 1.60-1.75 (m, 5H), 1.78-1.88 (m, 2H), 2.02 (s, 3H), 

2.31 (dd, J = 6.05, 12.8 Hz, 1H), 3.45 (s, 1H), 4.46 (t, J = 1.6 Hz, 1H), 5.02 (s, 2H), 5.53 (s, 1H), 

6.26 (m, 1H), 6.32 (d, J = 10.4 Hz, 1H), 6.55 (d, J = 10.4 Hz, 1H), 7.25-7.28 (m, 5H), 7.28-7.29 

(m, 2H); 13C NMR (125 MHz, CDCl3): δ 14.0, 16.7, 17.2, 18.1, 20.1, 21.9, 23.2, 24.5, 28.6, 36.4, 

37.6, 38.8, 38.9, 41.4, 45.3, 55.8, 68.9, 72.5, 74.9, 77.3, 108.9, 113.5, 119.4, 126.6, 126.8, 127.2, 

127.2, 127.3, 137.0, 140.1, 142.0, 145.3, 157.8, 166.6, 169.0; HRMS (*ESI +pos.) (m/z): [M+H] 

calcd. for C35H42N1O7, 588.2961; found, 588.2915; HPLC tR = 15.06 min; Purity = 96.3%. 
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(1S,3aS,41R,4a1S,5R,10aS,12aS)-1-(furan-3-yl)-3,8-bis(hydroxyimino)-4a1,7,7,10a,12a-

pentamethyl-1,3,3a,4a1,5,6,6a,7,8,10a,10b,11,12,12a-tetradecahydronaphtho[2,1-

f]oxireno[2,3-d]isochromen-5-yl acetate (13).   

Compound 13 was synthesized from 1 using general procedure B and hydroxylamine 

hydrochloride to afford 7 mg (34%) as a colorless solid.  1H NMR (500 MHz, CDCl3): δ 1.06 (s, 

3H), 1.07 (s, 3H), 1.07 (s, 6H), 1.18 (s, 3H), 1.38-1.40 (m, 1H), 1.59 (m, 1H), 1.72 (m, 2H), 1.82 

(dd, J = Hz, 1H), 1.89 (m, 2H), 2.03 (s, 3H), 2.34 (dd, J = 6.1, 12.8 Hz, 1H), 3.48 (s, 1H), 4.50 

(m, 1H), 5.37 (s, 1H), 6.31 (m, 1H), 6.41 (d, J = 10.4 Hz, 1H), 6.60 (d, J = 10.4 Hz, 1H), 6.66 

(br. s, 1H), 7.34 (m, 1H), 7.38 (m, 1H); 13C NMR (125 MHz, CDCl3): δ 14.1, 16.8, 17.0, 18.1, 

20.2, 22.0, 23.1, 25.0, 28.6, 29.3, 36.4, 37.8, 39.0, 41.2, 45.3, 55.1, 66.5, 72.5, 76.5, 109.0, 112.4, 

120.0, 140.3, 141.9, 146.1, 149.2, 158.8, 169.0; HRMS (*ESI +pos.) (m/z): [M+H] calcd. for 

C28H37N2O7, 513.2595; found, 513.2509; HPLC tR = 4.26 min; Purity = > 99 %.  

 

Anti-proliferation Assay.  MCF-7 and SKBr3 cells were maintained in a 1:1 mixture of 

Advanced DMEM/F12 (Gibco) supplemented with non-essential amino acids, L-glutamine (2 

mM), streptomycin (500 mg/mL), penicillin (100 units/mL), and 10% FBS.  Cells were grown to 

confluence in a humidified atmosphere (37 °C, 5% CO2), seeded (2000/well, 100 µL) in 96-well 

plates, and allowed to attach overnight. Compound or GDA at varying concentrations in DMSO 

O

N

ON

O

O
HO

O

OH



 92 

(1% DMSO final concentration) was added, and cells were returned to the incubator for 72 h. At 

72 h, the number of viable cells was determined using an MTS/PMS cell proliferation kit 

(Promega) per the manufacturer’s instructions. Cells incubated in 1% DMSO were used as 100% 

proliferation, and values were adjusted accordingly.  IC50 values were calculated from separate 

experiments performed in triplicate using GraphPad Prism. 

 

Western Blot Assay.   SKBr3 cells were maintained in a 1:1 mixture of Advanced 

DMEM/F12 (Gibco) supplemented with non-essential amino acids, L-glutamine (2 mM), 

streptomycin (500 mg/mL), penicillin (100 units/mL), and 10% FBS.  Cells were grown to 

confluence in a humidified atmosphere (37 °C, 5% CO2), seeded (1000000/dish, 5 mL) in sterile 

culture dishes, and allowed to attach overnight.  Compounds or GDA at varying concentrations 

in DMSO (1% DMSO final concentration) was added, and cells were returned to the incubator 

for 24 h.  Cells were washed once with cold phosphate buffered saline (pH 7.0) and lysed by 

scraping in TMNS (50 mM Tris- HCl, pH 7.5, 20 mM Na2MoO4, 0.1% NP-40, 150 mM NaCl) 

supplemented with 20 mg/mL aprotinin, 20 mg/mL leupeptin, and 1 mM phenylmethanesulfonyl 

fluoride. Cell lysate was clarified by centrifugation at 14,000 rpm at 4 °C for 15 min, and protein 

concentration was determined using the BCA method (Pierce, Rockford, IL). Twenty 

micrograms of total protein from cell lysates was separated by 4-20% gradient SDS-PAGE (Bio-

Rad, Hercules, CA). Western blotting for ErbB2 was performed as described previously.18 

Blotting for actin was used to verifyeq.ual loading of lanes.  Antibodies for R-tubulin and HER2 

were from Calbiochem (La Jolla, CA).  Antibodies for Actin, HER2 and Raf were from 

Calbiochem (La Jolla, CA). 
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Hsp90 Co-immunoprecipitation: SKBr-3 cells were treated with vehicle, celastrol and 

gedunin. GDA and NB were used as control. Cells were lysed in 20 mM Tris HCl (pH 7.4), 25 

mM NaCl, 2 mM DDT, 20 mM Na2MoO4, 0.1 % NP-40, and protein inhibitors. Lysates were 

incubated for 2 hr at 4°C while rotating, and then centrifuged at 14,000 rpm for 10 min. Protein 

(500 µg) was incubated with anti-Hsp90 antibody for 2 hrs at 4°C. Protein G agarose (40 µl) was 

added to each sample, and samples were then incubated overnight at 4°C. The beads were 

washed with the same lysis buffer. Bound proteins were isolated by boiling in sample buffer, and 

subjected to SDS-PAGE. Co-immunoprecipitating proteins were analyzed by western blot 

analysis. 

 

β-Galactosidase Assay: PP30 yeast strain expressing Hsp90a as their sole Hsp9043 was 

transformed with the centromeric URA3 vector, pHSE,44 constitutively expressing β-

galactosidase (encoded by lacz) as a reporter gene under control of a promoter bearing 3× Heat 

Shock Element (HSE) response elements.44 Transformants were selected by DO medium 

(dropout 2% glucose medium) supplemented with appropriate amino acids without uracil.45 

Yeast cells were grown overnight to exponential phase with a cell density of 2-3×106 cells per ml 

in 50ml of the same medium at 30°C. Then, appropriate compounds were added to a final 

concentration of 30µM, followed by incubation at 30°C for 2h. Cells were additionally heat 

shocked at 39˚C for 1h, collected by centrifugation (2000×g; 5 minutes), washed once with 

ddH2O, and frozen at -80°C. The proteins were extracted as previously described,46 except for 

exclusion of EDTA in the extraction buffer. β-Galactosidase activities of HSE were measured as 

previously described.47 Cell lysate (10µl) was mixed witheq.ual volume of 2×buffer Z (0.12 M 

Na2HPO4.7H2O, 0.08 M NaH2PO4.H2O, 0.02 M KCl, 0.002 M MgSO4) pH 7.0. The mixture was 
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added to 700µl of 2mg/ml ONPG solution in 1×buffer Z pre-warmed at 30°C and incubated at 

30°C for 5-30 minutes. The reaction was stopped by adding 500 µL of 1 M Sodium Carbonate. 

The optical density at 420nm (OD420) of each reaction mixture was determined. The protein 

concentration of the lysate was determined by the BioRad assay (BioRad). The β-galactosidase 

activity was calculated using the following formula: Enzyme Activity = 

1000×OD420/minute/[10µl×protein concentration (µg/µl)]. 
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Chapter III 

Total Synthesis of Cruentaren A, Selective F1Fo ATP Synthase Inhibitor Isolated from 

Byssovorax cruenta. 

III.1 Targeting F1Fo ATP Synthase for Cancer Chemotherapy 

 F1Fo-ATP Synthase (FAS) is a ubiquitously 

expressed macromolecular machine (Figure 3.1).1-7 

Under normal conditions, FAS provides 90% of 

cellular energy in the form ATP by catalyzing the 

oxidative phosphorylation of ADP.8 The proton motive 

force that exists across the innermitochondrial 

membrane where FAS is bound drives this process.9 

The precise role of this mitochondrial protein in cancer 

cells is currently under dispute. Nevertheless, the 

biological effects that result from FAS inhibition make 

it an attractive target for cancer chemotherapy. 

III.1.1 Therapeutic effects of FAS inhibition 

The therapeutic potential of FAS as a target for cancer chemotherapy is delineated from 

an experimentally observed distinguishing characteristic of inhibition. Examples of both small 

molecule and antibody derived FAS inhibitors display remarkable differential selectivity. While 

normal cells display an inherent resistance to FAS inhibition, potent cytotoxic and apoptotic 

effects are observed in cancer cells following the administration of FAS inhibitors.  

Biological effects of three known FAS inhibitors, apoptolidin, Bz-423, and mAb6F2C4, 

demonstrate the selectivity observed for FAS inhibition. Apoptolidin, a complex polyketide FAS 
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inhibitor isolated 

from a strain of 

actinomycete 

bacteria, is a 

potent, yet 

selective, 

cytotoxin. All 

nontransformed 

cell lines screened 

against apoptolidin demonstrate an inherent resistance to its cytotoxicity.10, 11 Additionaly, this 

selective cytotoxic behavior is observed among the NCI-60 cancer cell lines. Of the roughly 

37,000 compounds that had been screened against the NCI-60 at the time, apoptolidin was found 

to be among the top 0.1% most selective cytotoxic agents.12, 13 Pathogenic cell selective effects 

are also observed following the administration of a synthetic 1,4-benzodiazepine FAS inhibitor, 

BZ-423, which is completely non-toxic in normal cell lines.14-16 Likewise, these observations 

extend to several FAS inhibiting antibodies, as exemplified by mAb6F2C4, a murine derived 

antibody that targets FAS at the β subunit of the F1 domain. Once again, potent cytotoxic effects 

are observed following both in vivo and in vitro administration of this antibody in cancer cells, 

while normal cells remain unaffected.17, 18 

III.1.2 FAS and cancer cell metabolism 

The favorable attributes of targeting FAS for cancer chemotherapy appear to contradict a 

generally accepted metabolic phenotype of cancer, known as “The Warburg Effect” (Otto 

Heinrich Warburg was the first to observe this effect and was subsequently awarded The Nobel 
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Prize in 1931).19, 20 The underlying premise of “The Warburg Effect” suggests that tumor cells 

acquire an almost exclusive dependence on “aerobic glycolysis” for ATP synthesis rather than 

mitochondrial oxidative phosphorylation. This phenotype is expressed independent of the 

abundance of molecular oxygen. Biological consequences of “The Warburg Effect” are clinically 

applied during tumor excision, by administering “lactate ringers” during surgery, and in positron 

emission topography scanning for cancer diagnosis, which relies on tumor’s increased glucose 

uptake.21-25 

“The Warburg Effect” was highly controversial at the time it was proposed.22 A vast 

collection of experimental observations relating to tumor metabolism has resulted in almost a 

dogmatic status for “The Warburg Effect” (Table 1).20, 22 Nevertheless, cancer cell metabolism 

remains under intense investigation. The mechanisms thought to be responsible for cancer’s 

acquisition of this phenotype involve a complicated milieu of transcriptional changes that result 

in distinct protein expression profiles (Table 1).26-28 However, recent experimental re-evaluation 

of these mechanisms has lead to controversy in our understanding of cancer cell metabolism 

once again, specifically regarding the role of FAS, oxidative phosphorylation, and mitochondrial 

function. 

Table 3.1. Aberant protein activity and the effects on cancer cell metabolism in support of “The 

Warburg Effect.” 

Observation in Cancer Metabolic Consequence 
reduced GSK3 activity increased glycogen synthesis 
decreased CD147 function increased lactate production 
dysfunctional SDH sustained HIF-1 activation 
UCP2 overexpression decreased mitochondrial oxidative phosphorylation 
PFKFB3 overexpression increased glycolysis 
dysfunctional IDH1 decreased oxygen consumption 
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Contradictions regarding the state of oxidative phosphorylation in cancer cells are 

abundant in the literature.29, 30 A number of prior studies reported repressed oxidative 

phosphorylation and mitochondrial function in cancer cells,6, 20, 21, 24, 27, 28 while more recent 

studies report overactive mitochondrial function.23, 31-33 The cause of this discrepancy may be 

related to differences in experimental technique. The earlier reports, in which repressed 

mitochondria function was found, were largely based on experiments conducted in vitro. Results 

from these studies were based on isolated cancer cell lines in non-physiological conditions. In 

contrast, more recent reports, in which increased mitochondrial function was observed in cancer, 

are based on a physiologically relevant model. These studies were conducted on cancer cells 

supported by associated fibroblasts. A new model for cancer cell metabolism, “The Reverse 

Warburg Effect,” has now been proposed to support these clinically relevant studies.30, 31, 34-36 

“The Reverse Warburg Effect” suggests that “aerobic glycolysis” is a phenomenon 

isolated to cancer associated fibroblasts, not cancer cells themselves. It is interesting to point out, 

that “The Reverse Warburg Effect” does not negate conclusions derived from “The Warburg 

Effect,” when the entire tumor is considered in a physiological context, not individual cells.19, 25 

In this model, cancer cells induce “The Warburg Effect” in surrounding stromal cells and rapidly 

absorb the highly energetic chemical by-products of “aerobic glycolysis” (e.g. pyruvate, lactate, 

3-hydroxybutyrate) as a fuel source for mitochondrial oxidative phosphorylation.30-32 A similar 

phenomenon is observed during neuron-glial coupling, in which astrocytes functionally “feed” 

associated neurons. In fact, several of the same glycolysis associated enzymes are overexpressed 

in the “support” cells for both of these processes.19, 25, 30-33, 35-39  

 Clearly, a complete description of the cancer metabolic phenotype will require significant 

investigation. Regardless of the available data concerning the expression levels of competent 
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FAS in transformed cells, the cancer selective cytotoxic effects that result from FAS inhibition 

remains undisputed.  

III.1.3 FAS activity and cancer cell biology 

While FAS expression was traditionally considered exclusively localized to the 

innermitochondrial membrane, the ectopic expression of FAS is now generally accepted.29 

Modern proteomic techniques have enabled the discovery of FAS in several extramitochondrial 

compartments including the plasma membrane, endoplasmic reticulum, and cytosol.9, 23 These 

observations have prompted the investigation of possible biological roles for FAS that extend 

beyond ATP synthesis. Furthermore, differences between FAS expression in normal vs. cancer 

cell lines may provide additional insight toward elucidating its disputed role in cancer.9 

 The ectopic overexpression of FAS has been observed in several cancer cell lines and 

this overepression is implicated in cancer cell biology.17, 40 Plasma membrane bound FAS, where 

the Fo domain is rooted within lipid rafts and the F1 domain is projected extracellularly, 

represents a significant region of ectopic expression. Additionally, FAS was recently identified 

as a co-chaperone component of the super chaperone complex required for a select group of 

Hsp90 client proteins.41, 42 

Plasma membrane bound FAS 

FAS overexpression and translocation to the plasma membrane is associated with highly 

metastatic tumors and increased angiogenic potential.29, 34 This implies a role for FAS in 

facilitating metastasis and angiogenesis. FAS localized to the cell surface demonstrates catalytic 

competency.29, 40 The hydrophobic Fo domain is membrane bound and oriented to project the 

catalytically active F1 domain extracellularly.43, 44 Because plasma membrane bound FAS is 

hyperactive in cancer cells, ATP concentrations are dramatically increased in the tumor 
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microenvironment.21 Cell surface purinergic receptors, such as P2Y and P2X, play a role in cell 

proliferation and angiogenesis and are overexpressed in many cancers.9 By supplying abundant 

ATP, overexpressed and catalytically active membrane-bound FAS is directly related to the 

maintenance of cancer cell hyper-proliferation and recruitment of vasculature to primary and 

metastatic tumors.9, 23, 29 

While undergoing the catalytic cycle of ATP synthesis, the orientation of membrane 

bound FAS creates a shuttle that pumps protons out of the cytosol and into the extracellular 

space. FAS is likely a key regulator of intracellular pH within cancer cells, and may be 

responsible for the acidic environment that surrounds tumors. Experiments employing confocal 

microscopy confirmed that plasma membrane bound FAS is targeted by the antibody derived 

FAS inhibitor mAb6F2C4. The cancer specific cytoxic effects of this FAS inhibitor have been 

attributed to cancer cell acidosis, supporting FAS’s role as a regulator of intracellular pH. 

Normal cell lines that manifest plasma membrane FAS expression maintain typical physiological 

pH ranges and are resistant to mAb6F2C4 induced cytoxicity due to a lack of appreciable 

intracellular proton accumulation.40 

FAS, Hsp90 co-chaperone 

Indirect inhibition of the Hsp90 super-chaperone complex by targeting FAS is a novel 

therapeutic strategy with anticancer potential. FAS was recently identified as an Hsp90 

associated co-chaperone component of the super chaperone complex.41, 42, 45 The evidence 

supporting a FAS-Hsp90 association is described in Chapter I. Succinctly, FAS co-

immunoprecipitated with Hsp90 and other members of the super chaperone complex, including 

several client proteins. Small molecule FAS inhibitors prevented this immunoprecipitation, 
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manifested anti-proliferative effects against various cancer cell lines, elicited Hsp90-dependent 

client protein degradation, and operated independent of cellular ATP concentrations.42, 45  

Two effects exhibited by FAS-derived Hsp90 inhibition are of particular significance: 1) 

FAS inhibitors demonstrated selective Hsp90 client protein degradation. While FAS inhibitors 

caused the degradation of ERα, mutant p53, and caspase-3, Raf-1 levels remained constant.42, 45 

This suggests a role for FAS as a specific co-chaperone of non-kinase Hsp90 clients, although 

further investigation is required to define the specific subset of FAS-dependent clients. 2) FAS 

inhibitors elicited anti-proliferative activities against cancer cells without concomitant induction 

of the pro-survival, heat shock response. In fact, the opposite effect was observed wherein Hsp70 

levels decreased in a dose-dependent manner. This unique activity has the potential to address 

limitations associated with every clinically evaluated Hsp90 inhibitor to date.42, 45  

 A caveat to these studies relates to the experimental use of non-selective ATPase 

inhibitors. All of the FAS inhibitors evaluated, including efrapeptin, oligomycin, and 7-chloro-4-

nitrobenzo-2-oxa-1,3-diazole, demonstrate inhibitory effects on several other ATPases. The 

application of a FAS-selective inhibitor is needed to confirm the observed biological effects are 

not a result of multiple ATPase inhibition. In an effort to conduct the first experiments 

investigating the FAS-Hsp90 relationship with a selective FAS inhibitor, this chapter describes 

the total synthesis of cruentaren A (1, Figure 3.3), a benzolactone macrocyclic myxobacterial 

isolate that exhibits potent anticancer effects by selective inhibition of FAS catalytic activity.46-48 
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III.2 Identification of Cruentaren A as a FAS 

Selective Inhibitor 

 The laboratory of Gerhard Hofle identified 

cruentaren A and its isomeric analogue cruentaren B 

as the first novel basic structures isolated from the 

fermentation broths of Byssovorax cruenta in 2006. 

Cruentaren A, 1, was the major component, isolated 

through bioassay guided fractionation46, 48 focused 

on identifying novel antifungal and cytotoic agents. 

While cruentaren A demonstrated potent cytotoxic 

effects (IC50 of 8.3 nM against L929 mouse 

fibroblasts), cruentaren B, 2, was only marginally 

toxic (no IC50 value reported).47 

Cruentaren A is a member of the growing 

class of benzolactone natural products that 

incorporates a resorcinol containing, 12-membered 

macrocyclic lactone and N-acylallylamine side chain (Figure 3.4). Despite the structural 

similarities to other natural products of this class, cruentaren A possesses a unique mechanism of 

action. This natural product induces cytoxicity through selective inhibition of FAS, but is devoid 

of inhibitory effects against other ATPases. Due to this unique biological activity, a strategy for 

the total synthesis of cruentaren A was developed with the ultimate goal of evaluating the effects 

of selective FAS inhibition on the super chaperone complex. The total synthesis of cruentaren A 

is described in detail below.46-48 
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III.3 Total Synthesis of Cruentaren A 

 At the outset of this synthetic endeavor, no total synthesis of cruentaren A had been 

reported. However, during the course of this work, three total syntheses were described. All three 

of the published syntheses followed a similar retrosynthetic scheme to what was originally 

conceived for this work and involved ring-closing alkyne metathesis (RCAM) as a key step for 

selective introduction of the cis-olefin present within the macrocyclic ring.49-55 These similarities 

prompted a re-evaluation of the original strategy and led to the design of an alternate approach 

that involved ring-closing olefin metathesis (RCM). Progress toward the original strategy is 

described below, followed by a detailed account of the alternate approach and subsequent 

completion of the total synthesis.56 

III.3.1 Initial approach 

The original retrosynthetic strategy led to disassembly of the natural product into four 

fragments (Figure 3.5). Bond disconnections were designed to provide a convergent synthesis to 

rapidly assess SAR for cruentaren A analogues by manipulating functional and stereochemical 

attributes of these fragments. The macrocycle was expected to be assembled from fragments 2 – 

5 through a stepwise process. The product resulting from nucleophillic attack of epoxide 2 by the 

ortholithiated species of 3 and subsequent hydrolysis would be esterified by alcohol 4. Next, the 
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product of RCAM and cis-selective alkyne reduction would be 

converted to the corresponding allylazide, which would be 

elaborated to the natural product following Staudinger ligation 

with acid 5 and global deprotection. 

 The synthetic strategy for epoxide 2 was envisioned to 

include asymmetric crotylation and Sharpless asymmetric 

dihydroxylation, followed by transformation to the epoxide. 

Synthesis of secondary alcohol fragment 4 involved the use of 

Myers’ pseudoephedrine chiral auxiliary,56 asymmetric 

crotylation, iodolactonization, and Grignard-mediated epoxide 

opening. The use of Myers’ pseudoephedrine chiral auxiliary 

was also chosen for the construction of acid 5 via alkylation of 

butyraldehyde (Figure 3.6).57 

 The Rationale for 

employing Myers’ 

pseudoephedrine instead of more 

popular chiral auxiliaries was 

governed by several unique 

chemical attributes. Products from 

these chiral auxiliaries manifest 

consistently high diastereomeric 

ratios independent of scale, are 

readily available from inexpensive 
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commercially available 

reagents via a simple, one 

step process, are isolated in 

high purity following 

crystalization from toluene, 

and can be recycled for application in subsequent stereoselective alkylations without loss of 

activity. Furthermore, these chiral auxiliaries can be elaborated into a variety of useful chemical 

entities (ketones, alcohols, aldehydes, carboxylic acids, alkyl halides) through well-defined 

synthetic protocols (Figure 3.7).55 

Progress toward epoxide fragment 2 

 The initial strategy for the synthesis of epoxide 2 was met with several complications. 

Because successful RCAM has only been applied to non-terminal, methyl acetylenes, the initial 

approach to 2 involved the asymmetric crotylation of 2-butynal, 7 (Scheme 3.1). Oxidation of 2-

butyn-1-ol (6) was surprisingly resistant to efficient conversion. Several oxidants were 

investigated including pyridinium chlorochromate (PCC), pyridinium dichromate (PDC), 

tetrapropylammonium perruthenate (TPAP) and manganese dioxide (MnO2), but all proved 

ineffective. Eventual application of the Dess-Martin periodinane58 at low temperature in DCM 

resulted in complete conversion to desired product and enabled a simple isolation protocol. 

Filtration through celite and distillation of the solvent provided pure 7. However, elaboration of 7 

to alcohol 8 under Brown’s asymmetric crotylation failed to induce enantiofacial selectivity.59  

 To circumvent this issue, the bulkier, commercially available 2-octynal 9 was subjected 

to Brown’s conditions. Despite no literature precedent describing extended alkyl gains present on 

non-terminal alkynes participating in RCAM, optimizing conditions for such an alkyne could 
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expand the practical utility of 

RCAM. Under the same 

reaction conditions, 

stereoselective crotylation of 

9 generated homoallylic 

alcohol 10 in good yield with 

an acceptable enantiomeric 

ratio (15:1). Deoxygenation of 

10 was accomplished via a Nicholas reaction upon treatment of the Co-complexed alkyne with 

NaBH4 and TFA, followed by CAN mediated decomplexation to afford unsaturated hydrocarbon 

11 (Scheme 3.2).60  

 Although terminal olefins undergo dihydroxylation with low stereoselectivity, an attempt 

was made to overcome this potential problem.61 Unfortunately, treatment of 11 with 

commercially available AD-Mix α, in the presence or absence of additives, failed to induce 

acceptable diastereoselectivity. However, treatment of 11 with catalytic osmium tetroxide (OsO4) 

in the presence of an enatiomerically enriched cinchona alkaloid ligand, DHQ2PHAL, and N-

methylorpholine oxide (NMO) proved useful, resulting in a 5:1 diastereomeric ratio (Scheme 

3.3).  
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Progress toward 1,3-diol fragment 4 

Synthesis of 1,3-diol fragment 4 commenced with the mono-tetrahydropyran (THP) 

protection of 2-butyne-1,4-diol (13) by reaction with dihydropyran and catalytic pyridinium p-

tuluenesulfonate (PPTS) in acetonitrile (ACN) and DCM (2:1) followed by iodination of 

propargyl alcohol 14 upon treatment with triphenylphosphine (PPh3), imidazole, and I2 in DCM. 

Alkylation of the corresponding (Z)-enolate of (S,S)-pseudoephedrine propionamide from the 

unhindered α-face (Figure 3.8) by propargyl iodide 15 gave α-methyl amide product 16, in both 

excellent yield and diastereomeric ratio (> 20:1 as determined by Myer’s NMR based analysis of 
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4,5-disubstituted oxazolium, 19; this is the method of choice for all subsequent stereochemical 

analyses of pseudoephedrine amide products) (Scheme 3.4). 

 Reduction of 16 to aldehyde 17 with 

Li(OEt)3BH was unsuccessful, presumably due to loss 

of the THP protecting group during acidic work-up.  

The initial product of Li(OEt)3BH-mediated reduction 

of pseudoephedrine amides is aminal 20, which 

requires treatment with strong acid (10 equiv of 

trifluoroaceitc acid in 1 N aqueous hydrochloric acid) 

for conversion to the desired aldehyde. Attempts to avoid THP-deprotection by employing 

weakly acidic conditions at reduced temperature were unsuccessful. However, conversion of 16 

to the corresponding alcohol 18, following treatment of in situ generated lithium 

amidotrihydroborate (LAB), proved effective. Alcohol 21, the enatiomer of 18, was synthesized 

in the same fashion from (R,R)-pseudoephedrine propionamide for stereochemical comparison. 

Mosher’s ester products of alcohol 18 and its enantiomer 21, analyzed using 19F NMR 

spectroscopy, showed the presence of a single enantiomer. PCC mediated oxidation of alcohol 

18 provided optically active aldehyde 17 (Scheme 3.4) in significant quantities.  

The accessibility of aldehyde 17 enabled the investigation of chemical methods to 

establish the desired stereochemistry at C-16 and C-17. Several procedures were investigated in 

order to determine an optimal method, however, aldehyde 17 proved ill suited for application in 

published asymmetric crotylation transformations. The first strategy considered involved 

crotylstannane and chiral acyloxy borane (CAB), 21, Lewis acid catalysis for alkylation (Figure 

3.9).62 Standard reaction conditions were effective for generating the desired stereochemical 
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outcome, however, only with 

concomitant THP-deprotection 

(Scheme 3.5). Undesired diol 24 was 

the only isolable product from this 

procedure. Subsequent attempts to 

affect successful asymmetric 

crotylation were also unsuccessful. 

Aldehyde 17 failed to react under conditions developed by Brown or Soderquist.59, 63 The lack of 

reactivity under these conditions may be attributed to the sequestration of the Lewis acidic boron 

of the chiral auxiliaries.  

Further development of 

either proposed synthetic 

routes toward fragments 2 or 4 

was not pursued due to the 

publication of cruentaren A total syntheses by two competing laboratories.50, 52, 53 Both of these 

reports employed RCAM as a synthetic strategy, which prompted the re-evaluation of the 

synthetic approach described above. 

III.3.2 Design and implementation of RCM strategy for the total synthesis of cruentaren A 

 A synthetic approach toward construction of the cis-olefin containing 12-membered 

lactone of cruentaren A by RCM questioned whether the sequence of RCAM/selective reduction 

was required. Implementation of RCM manifests the inherent risk that the conformational 

contraint of the metathesis substrate could lead to the undesired trans-macrocyclic product. 
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Nevertheless, a synthetic strategy employing RCM for construction of the desired cis-

macrocyclic product was devised (Figure 3.10). 

 The retrosynthetic analysis of cruentaren A incorporating RCM for synthesis of the 12-

membered lactone provided fragments 24, 25, 26, and 5 as synthetic targets. As opposed to the 

RCAM approach, Weinreb amide 24 was targeted in lieu of 

epoxide 2. Subsequent acylation of 24 with the benzylic anion of 

25 would provide a ketone synthetic intermediate that would 

allow investigation of distinct metathesis substrates. The ketone 

product was conceived to evaluate the role of C-9 oxidation state 

during the metathesis step. Esterification of secondary alcohol 26 

would provide the metathesis substrate and after RCM, the 

macrocycle. Staudinger ligation between allylazide and acid 5, 

followed by global deprotection would provide the natural 

product. The successful stereochemical induction observed for 

Myers’ pseudoephedrine chiral auxiliary in the original proposal 

led to the application of this strategy at several stages of the 

synthesis. 
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 Synthesis of secondary alcohol 26 was envisioned to proceed through the use of Myers’ 

psueodoephedrine to construct three tertiary stereocenters through sequential reactions. After 

transformation of the acid product to the Weinreb amide, alkylation with allylmagnesium 

bromide and subsequent stereoselective reduction of the resulting ketone, 26 would be provided. 

Access to fragment 5 through the employment of Myers’ chiral auxiliary was envisioned in the 

RCM strategy as in the RCAM strategy. Finally, Weinreb amide 24 was the target of 

pseudoephedrine mediated stereochemical induction (Figure 3.11). 

Synthesis of secondary alcohol fragment 26 

 Fragment 26 

was constructed in 

11 steps from cis-2-

butene-1,4-diol (27) 

with an overall yield 

of 44 %. Mono-p-

methoxybenzyl ether 

(PMB) protection of cis-2-butene-1,4-diol (27) under Finkelstein conditions employing sodium 

hydride (NaH), PMB chloride, and tetrabutylammonium iodide (TBAI). Treatment of 28 with 

carbon tetrabromide (CBr4) and PPh3 gave allyl bromide 29. Alkylation of (S,S)-

pseudoephedrine propionamide by 29 proceeded smoothly under Myers’ optimized conditions to 

provide a scalable synthesis of diastereomerically enriched α-methyl amide 30 (> 20:1). The use 

of PMB as a protecting group allowed the successful reduction of 30 to the corresponding 

aldehyde 31, although weaker acidic conditions (0.5 N aqueous HCl at 0 ºC) were required 

during work-up to prevent PMB-deprotection (Scheme 3.6).  
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Induction of the 

required stereochemistry at 

C-16 and C-17 was 

accomplished using a 

bis(cyclopentadienyl)zirco

nium(IV) dichloride 

(ZrCp2Cl2) Lewis acid-

mediated aldol reaction 

between the corresponding 

(Z)-enolate of (R,R)-

pseudoephedrine propionamide and enantiomerically enriched aldehyde 31. Diastereomerically 

pure 32 was the only product observed when addition of aldehyde 31 was conducted at -116 ºC 

(stereohemical confirmation was conducted at a later stage), in spite of the potential for four 

possible diastereomeric products. Although the application of pseudoephedrine chiral auxiliaries 

for aldol chemistry is underappreciated (a Scifinder search reported only seven reactions from 

two references), the remarkable diastereoselectivity observed within this example highlights its 

synthetic utility. In fact, the pseudoephedrine-mediated aldol reaction described herein is the first 

reported case that extends the scope of this reaction to α-substituted, chiral aldehydes. The 

diastereoselectivity remained consistent on both milligram and multi-gram scales, although the 

requirement of the reaction to be conducted at such a low temperature renders any further 

increase in scale impractical. Enatiofacial selectivity is controlled by coordination of two Zr-

complexes to the oxyanions of the (Z)-pseudoephedrine enolate. Metal coordination favors the 

chair-like, Zimmerman-Traxler transition state, A, with an axially positioned R group, which 
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leads to generation of the syn-product (Scheme 3.7A).  Transition state B, which would provide 

the anti-product, requires an equatorially positioned R group and is highly disfavored due to 

steric clash with N-CH3 of the chiral auxiliary (B, Scheme 3.7). 

Robust methods developed by Myers et al. enabled rapid transformation of 

pseudoproionamide 32 to Weinreb amide 35. Carboxylic acid 33 was accessed by treatment of 

32 tetrabutylammonium hydroxide (nBu4NOH) in aqueous tert-butylalcohol (tBuOH) with no 

loss of diastereoselectivity. Generation of Weinreb amide 34 was similarly straightforward, and 

occurred by subjecting acid 33 to standard peptide coupling conditions with (1-Cyano-2-ethoxy-

2-oxoethylidenaminooxy)dimethylamino-morpholino-carbenium hexafluorophosphate (COMU), 

N,N-diisopropylethylamine (DIPEA), and the hydrochloride salt of N,O-dimethylhydroxylamine 

in dimethylformamide (DMF). The COMU reagent was recently developed, and represents a 

significant advancement in peptide chemistry. This coupling reagent does not promote α-

stereocenter racemization, and unlike other common reagents is highly stable and not sensitive to 

aqueous contamination. Mosher’s ester analysis confirmed the stereochemical assignment of the 

β-carbonyl-alcohol, and confirmed the presence of desired (17R)-isomer of 34.64 Protection of 
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secondary alcohol of 37 with methoxymethyl chloride (MOMCl) and DIPEA in DCM gave 

methoxymethyl ether containing Weinreb amide 35 in excellent yield (Scheme 3.8).  

Weinreb amide 35 was efficiently converted to compound 38, the structurally defined 

synthon related to fragment 26. Treatment of 35 with allylmagnesium bromide in THF converted 

the Weinreb amide into the corresponding homoallylic ketone, 36. While several reagents for the 

stereoselective reduction of ketones have been developed, the strategic use of MOM for the 

protection of the alcohol component of the β-hydroxy ketone negated the requirement for these 

more expensive reagents. Subjection of 36 to standard Suzuki reduction conditions with lithium 

iodide (LiI) and lithium aluminum hydride (LAH) provided syn-1,3-diol 37 in high yield and 

diastereomeric ratio (10:1). Simple flash chromatography enabled removal of the minor 

undesired epimeric product, 38 (Scheme 3.9). 

Stereochemical assignment of advanced intermediate 37 (corresponding to fragment 26, 

Figure 3.10) was accomplished through several methods. Mosher’s ester analysis previously 

confirmed the proper stereochemical orientation of alcohol 34, and was again employed to 

validate the proper stereochemistry of 1,3-diol 37 C-15. To determine the relative stereochemical 

relationship of the C-16 methyl group, acid-mediated MOM deprotection and subsequent 
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acetonide protection of the resultant 1,3-diol enabled the application of Rychnovsky’s method to 

this system.65 Confirmation of the syn-orientation of the C-16 methyl group was obtained by 

comparison of the coupling constant, J in Hz, between the C-16 and C-15 hydrogens of both 39 

and 40. Consideration of both the conformation of 1,3-syn- and 1,3-anti-acetonide 6-membered 

ring systems as described by Rychnovsky, and observation of the effects that dihedral torsion 

angle between vicinal protons manifests upon coupling constants expected from the Karplus 

curve, are critical for this assignment. According to Rychnovsky, 1,3-syn-acetonide 6-membered 

rings adopt a stable chair conformation, which results in a dihedral torsion angle between the 

hydrogens of approximately 55º. In contrast, 1,3-anti-acetonide 6 membered rings adopt a twist-

boat conformation, which results in a dihedral torsion angle between the hydrogens of 

approximately 170º. According to the Karplus equation, larger coupling constants are expected 

for dihedral torsion angles as they approach 0º or 180º, but as the angle deviates toward 90º, the 

coupling constant also decreases. Therefore, the observation of a smaller coupling constant in 39 

than the analogous coupling constant of 40 would provide evidence for the desired 
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stereochemical relationship in 37. Spectral assignment and subsequent analysis of the coupling 

constants of the 1H NMR spectra acquired at a frequency of 500 MHz in d6-benzene of both 

epimers demonstrated that for 39, J = 2.2 Hz, and that for 40, J = 4.5 Hz. The relationship 

between the epimeric coupling constants is in direct agreement with predictions based on the 

Karplus equation, and confirms the proper stereochemical orientation of 37 (Scheme 3.10).  

Rychnovsky analysis also provided corroborating evidence with the Mosher’s ester 

analysis that the major product of the Suzuki reduction is a 1,3-diol, as depicted in 37. Analysis 

of the 13C NMR spectrum in d6-benzene of both epimers provided a simple method to 

differentiate the 1,3-syn-acetonide from the 1,3-anti-acetonide, due to differences in chemical 

shift values of the dimethyl groups as a result of conformation. The 13C NMR spectrum of 39 

displayed peaks at 19.7 ppm and 30.4 ppm, which corresponded to the axial and equatorial 

methyl carbons respectively. This phenomenon is typically observed for six-membered rings in 

the chair conformation, indicating a 1,3-syn relationship for the corresponding diol, 37. 

Conversely, the 13C NMR spectrum of 40 displayed peaks at 24.0 ppm and 25.3 ppm which 

corresponded to the nearly identical environment of the methyl groups forced by the adoption of 

a twist-boat conformation, and a 1,3-anti relationship for the corresponding diol, 38. 

Synthesis of Weinreb amide fragment 24 

The synthetic route to provide Weinreb amide fragment 24 was straightforward and 

provided a rapid means to generate significant quantities of this intermediate for subsequent 

optimization. To determine the appropriate olefin required in the RCM step, both the terminal 

olefin 47 and trans-methyl olefin 48 containing Weinreb amides were prepared through similar 

chemical routes. Alkylation of (R,R)-pseudoephedrine propionamide with allyl or trans-crotyl 

bromide under Myers’ conditions generated α-methyl amides 43 and 44 in excellent yield and 
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diastereoselectivity. 

Hydrolysis and 

subsequent COMU-

mediated coupling 

produced Weinreb 

amides 47 and 48 without 

loss of enantioenrichment 

(Scheme 3.11). 

Synthesis of carboxylic acid 5 

 A similar Lewis acid-mediated aldol reaction between (S,S)-pseudoephedrine 

propionamide and butanal as described above provided amide 50 as the sole diastereomeric 

product (Scheme 3.12). Hydrolysis of 50 gave carboxylic acid 5 without diastereomeric loss. The 

successful COMU-mediated coupling reaction en route to Weinreb amide 34 suggested that the 

hydroxyl group of compound 5 did not require a protecting group. Therefore, the free alcohol of 

5 was left unprotected. 

Comparison of present synthetic route to 

those reported in the literature 

 Synthesis of individual fragments 

was designed for optimal efficiency. A 

comparison of published synthetic methods 

for analogous synthons demonstrates that 

both step- and chemical-economy were 

improved over prior  reports (Figure 3.12). 
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Construction of the macrocycle 

 According to the retrosynthetic plan, the first step toward construction of the macrocyclic 

scaffold of cruentaren A involved alkylation of Weinreb amide 47 or 48 by the benzylic anion 

generated from methyl benzoate 51. Lithium diisopropylamide (LDA) proved to be ineffective 

toward this objective. Despite attempts to optimize these conditions, only poor yields were 

obtained. However, replacement of LDA with 1.1 equiv tert-butyllithium (tBuLi) provided 

ketone 52 in unexpectedly high yields (Scheme 3.13).  

 In one published synthesis of cruentaren A, the authors report successful reduction of a 

similar ketone, 55, under conditions of the Corey-Bakshi-Shibata (CBS) reaction.66 While 

stoichiometric quantites of CBS catalyst, rather than a catalytic amount, were required for this 

reduction, high diastereomeric-enrichment was achieved. These results served as a starting point 
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for the investigation of conditions to achieve the stereoselective reduction of ketone 52.  

Fortuitously, under identical reaction conditions, treatment of ketone 52 with stoichiometric (R)-

(+)-2-butyl-CBS-oxazaborolidine and catecholborane in toluene resulted in complete reduction 

to a single diastereomeric alcohol product, 53. To prevent lactone formation, the alcohol was 

quickly treated with MOMCl and DIPEA in DCM to provide MOM-protected product 54 

(Scheme 3.14).  

 To evaluate the stereochemical outcome of the CBS reduction, during the scale up 

process, a sample of the alcohol product was subjected to Mosher’s analysis. Surprisingly, 

despite identical conditions, spectral analysis of the Mosher’s ester analogues suggested the 

product was the undesired epimer (as drawn in Scheme 3.14). This analysis was repeated three 

times with different batches of commercially available catalyst in order to rule out the potential 

for experimental or human error. The presence of undesired epimeric product was consistently 

observed. Therefore, ketone 53 was subjected to CBS reduction with the corresponding 

enantiomeric catalyst in hopes of providing the desired diastereomer. (S)-(-)-2-butyl-CBS-

oxazaborolidine-mediated reduction of ketone 53 proved highly inefficient in terms of both 

chemical yield and diastereomeric ratio. Attempts to overcome this result by the investigation of 

various CBS catalysts, solvent effects, and boranes were similarly dismal.  
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 The observation of 

opposing stereochemical 

outcomes on highly similar 

ketones with 

enantiomerically identical 

catalysts is curious (Scheme 

3.15). One potential 

explanation involves 

differences in protecting 

groups between the 

compounds 52 and 55 (Figure 3.13). A phenolic methyl ether and (trimethylsilyl)ethoxy (TSE) 

ester were incorporated into the published ketone 55, while a phenolic TBS ether and methyl 

ester are present in ketone 

52. The CBS reduction 

proceeds via transition 

state 57, with the more 

sterically bulky 

substituent distal to the B-

butyl group. The 

stereochemical results 

indicate that the TSE ester 

of 55 functions as the 

bulky substituent, while in 
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the case of 52, the bulky substituent corresponds to the hydrocarbon chain.  

 Fortunately, an alternate synthetic route toward the metathesis substrate was 

simultaneously under consideration. Construction of the macrocyclic architecture under this 

strategy involved esterification of 37 with commercially available benzoic acid 58. Synthesis of 

ester 59 proved significantly challenging. The published syntheses of cruentaren A describe 

similar difficulties (Figure 3.14).50, 52, 53 Vintonyak and Maier found that esterification was 

inaccessible in the presence of protecting groups. Successful esterification only proceeded upon 

treatment of unprotected 1,3-diol 62 with imidazolidine 61, following conversion of acid 58 with 

carbonyl diimidazole (CDI) in DMF at 50 ºC for 4 h. The authors reported that the major product 

observed was indeed the desired alcohol. However, Furstner et al. were unable to repeat these 

experimental results in the course of their total synthesis. These authors reported that successful 

esterification could only be achieved through isolation of an acyl fluoride intermediate, 65, and 

subsequent nucleophillic attack by the corresponding sodium alkoxide of compound 66. These 

and several other esterification conditions were attempted in the present work with disappointing 

results. After significant investment, synthesis of ester 59 was realized upon treatment of acid 58 

with oxalyl bromide [(COBr)2], DIPEA, and catalytic DMF in DCM at 0 ºC for 30 min, followed 

by the addition of alcohol 37 and 4-(dimethylamino)pyridine (DMAP) (Scheme 3.16). Complete 

conversion to the desired ester 59 occurred within 5 min in nearly quantitative yield. These 

reaction conditions proved effective up to 500 mg scale. An extensive review of the available 

literature regarding esterification, acyl halide synthesis, and chemical utility of (COBr)2 

suggested that this is the first description of acyl bromide mediated esterification. 



 125 

 



 126 

 Unlike methyl 

benzoate 51, 

alkylation of Weinreb 

amide 47 by the 

benzylic anion of 59 

was effectively 

mediated by LDA to 

produce advanced 

intermediate 68  in 

appreciable yield. 

Synthesis of 68 

provided the first 

metathesis substrate. 

Successful RCM of 

substrate 68 to 

selectively produce the 

cis-macrocyclic 

product have provided 

the inherent benefit of 

potentially overcoming issues associated with asymmetric reduction of ketone 53. In this case, 

the ketone would be conformationally constrained by the ring to elicit higher enantiofacial 

selectivity. Unfortunately, variations in solvent, concentration, temperature, catalyst, and catalyst 

loading were unsuccessful, as the major product was trans-macrocycle 69 along with minor 
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traces of acyclic dimer and unreacted starting material. Several factors influence the cis:trans 

ratio of RCM products, including ring strain, steric bulk surrounding the alkene, and rate of 

productive vs. unproductive metallocyclobutane elimination for cis and trans ruthenium 

metallocycle intermediates.67, 68 Macrocycle 69 contains six sp2 hybridized carbon atoms. 

Exclusive production of the trans macrocycle suggests that product ring strain favors a dramatic 

increase in productive elimination for trans-metallocyclobutane compared to the cis-

metallocyclobutane. 

 During the investigation of RCM with ketone 69, a novel approach toward the selective 

synthesis of cis-olefin containing macrocycles via RCM was described by Wang et al.69 This 

work reported that the incorporation of a removable vinylsiloxane at the internal position of a 

single terminal olefin proved to be an effective method for producing cis-olefin macrocyclization 

products. This publication prompted synthesis of Weinreb amide 73, which contained a terminal 

alkyne, in similar fashion to the related Weinreb amides 47 and 48. LDA mediated alkylation of 

73 with ester 59 provided access to advanced intermediate 74, which subsequently underwent 

hydrosilylation in the presence of triethyoxysilane and catalytic pentamethylcyclopentadienyltris 

(acetonitrile)ruthenium(II) hexafluorophosphate to furnish vinylsiloxane 75.70 Subjection of this 

metathesis substrate to the published reaction conditions led to 76 as the only product. In 

hindsight, this result is not surprising considering the unreactive nature of 1,1-disubstituted 

olefins in RCM catalysis.71 In accordance with the published observations, variations in solvent, 

concentration, temperature, catalyst, and catalyst loading were incapable of generating the 

desired 12-membered macrocycle (Scheme 3.17). 
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Prior to attempting the RCM on 1-substituted terminal olefin synthons, the stereoselective 

reduction of ketone 8 was considered. Attempts to affect the stereoselective reduction of ketone 

68 under various conditions of CBS reduction were less successful than previous attempts on 

compound 52. Ketone 68 was highly resistant to reduction under CBS conditions. However, 

reduction of ketone 68 under conditions of Noyori asymmetric transfer hydrogenation was 

fruitful.72, 73 Owing to the complications encountered in prior attempts at asymmetric reduction, 

both enantiomers of Noyori’s Ru catalyst were tested. Following Mosher’s analysis of the 

corresponding products, RuCl[(S,S)-Tsdpen](p-cymene) was identified as the catalyst that 

induced the required stereochemical outcome (Scheme 3.18). Treatment of ketone 68 with 

sodium formate and catalytic RuCl[(S,S)-Tsdpen](p-cymene) in DMF and deionized water 

proved to be optimal for generation of alcohol 77 in good yield and acceptable diastereomeric 

ratio (~5:1). Unfortunately, the epimeric products were not separable via column 

chromatography. 
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 Consequently, alcohol 77 was subjected 

to RCM catalysis, and gratifyingly, the cis-olefin 

containing macrocycles were obtained in 

diastereomerically pure forms, as the alcohol 

epimers were readily separable via column 

chromatography (Scheme 3.18). While the 

desired epimer was amenable to column 

chromatography, the undesired epimer was not. Minor undesired product impurities, with an 

exact mass corresponding to acyclic homodimers, could not be removed from the minor epimeric 

product during initial attempts. Subsequent attempts at purification were not pursued.  

The selective nature of the metathesis reaction between the terminal olefins is somewhat 

surprising. Previous attempts employing vinylsiloxane 75 demonstrated the high propensity for 

metathesis reaction between the terminal olefin and cis-allylic ether. However, the potential 

eight-membered cyclic product was not observed in this case. An additional concern arising from 

incorporation of the cis-allylic ether was the potential for isomerization to the corresponding 

vinyl ether 80 (Figure 3.15). This type of isomerization is hypothesized to be the result of a 

catalytically incompetent Ru hydride complex.74 In spite of the likelihood for side reactions, no 

vinyl ether formation was observed. Unfortunately, an unexpected side reaction did occur, in 

which cis to trans isomerization of the side chain olefin was observed.  

Initial conditions, addition of 20 mol % Grubbs’ II at rt to a 2 mM solution of alcohol 77 

in toluene followed by stiring at 50 ºC overnight, resulted in a 1:2 (cis:trans) mixture of olefin 

isomers that were inseparable via column chromatography. A variety of conditions were 

surveyed to increase yield and decrease isomerization. The effects of solvent, concentration, 
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temperature, catalyst, and catalyst loading were examined alongside various alcohol protecting 

groups. Interestingly, the RCM reaction of MOM protected substrate resulted in several 

uncharacterizable products, while TBS protected substrate elicited an increased rate of 

isomerization. The effects of various solvents on the RCM reaction should also be noted. Several 

solvents, including THF, benzene, and methanol (MeOH) were screened, but the most dramatic 

decrease in isomerization was observed in DCM. Grubbs’ catalysts are known to be less stable in 

DCM than other solvents such as toluene, and additionally less reactive. This observation is in 

line with the experimental results. By decreasing the stability and reactivity of Grubbs II, DCM 

effectively disrupted catalyst complexation and subsequent formation of the ruthenocyclobutane 

intermediate with the cis-1,2-disubstituted olefin of the side chain, but had no effect on catalyst 

complexation and ruthenocyclobutane formation with the less hindered terminal olefins. 

The optimized reaction conditions included the addition of 5 mol% Grubbs II at 0 ºC to a 

0.5 mM solution of alcohol 77 in DCM, followed by warming to 20 ºC. RCM was complete after 

3.5 h, but required treatment with saturated aqueous potassium carbonate (K2CO3) for catalyst 

deactivation in order to prevent additional isomerization during work-up. These reaction 

conditions furnished epimerically pure cis-macrocyclic product, 78, in 63% yield from a 5:1 

mixture of alcohol epimers as a 3:1 (cis:trans) mixture of side chain olefin isomers. TBS 

protection of macrocycle 78 with TBSOTf and 2,6-lutidine in DCM afforded intermediate 79 in 

high yield. 

 Upon successful construction of the macrocyclic core of cruentaren A, the final synthetic 

steps were pursued. Deprotection of the allylic PMB ether was accomplished by treating 

intermediate 79 with 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) at room temperature in 

a 16:1 respective mixture of DCM and deionized water (Scheme 3.19). Next, conversion of 



 132 

allylic alcohol 81 to the corresponding allylic azide 82 for application in the Staudinger ligation 

was attempted. Tosylation of this alcohol, with the ultimate goal of nucleophillic displacement 

by azide, resulted only in an undesired product. Analysis of the 1H NMR spectrum of this 

product suggested the presence of a terminal olefin, presumably the result of secondary, SN2’ 

reaction of chloride anion (mass spectral analysis confirmed this hypothesis). Mitsunobu 

conditions were then investigated. Treatment of allylic alcohol 81 with diphenylphosphoryl 

azide, PPh3, and diisopropylazodicarboxylate (DIAD) in THF surprisingly afforded an undesired 

DIAD adduct. Evaluation of different batches of diphenylphosphoryl azide and DIAD resulted in 

the same undesired product. An alternate method for conversion of activated alcohols to the 

corresponding azide under Mitsunobu conditions involved the use of Zn(N3)2(pyridine)2 as an 

azide source.75  

No commercial source for this reagent was located and this azide donor surrogate is only 

available by warming a stirred solution of Zn(NO3)2 in deionized water to 50 ºC followed by the 

addition of an aqueous solution of 2 equiv of NaN3 and subsequent addition of 2 equiv of 

pyridine according to literature reports. This protocol provided the desired Zn complex, although 

in low yield and high water content, which would adversely effect its application to the 

Mitsunobu reaction. An optimized protocol was developed that involved combining all three 

reagents in minimal deionized water and subsequent sonication that, after 10 min, resulted in 
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rapid precipitation of the Zn complex. The aqueous solvent was decanted and any remaining 

water was removed by azeotroping with toluene. Gratifyingly, application of the Zn complex 

from this protocol to Mitsunobu conditions (DIAD and PPh3 in toluene) with allylic alcohol 81 

afforded allylic azide 82 in excellent yield. Surprisingly, no optimization was required for the 

application of allylic azide 82 to the Staudinger ligation with acid 5. Allylic azide was stirred 

with PPh3 in THF at 50 ºC for 2 h followed by cooling to rt. Acid 5 was then activated by 

COMU and DIPEA in DMF in a separate flask and subsequently added to the in situ generated 

iminophosphorane. Two products, corresponding to the cis and trans-olefinic side chain isomers, 

83, were isolated as a chromatographically inseparable mixture (Scheme 3.19).  

Advanced intermediate 83 required the removal of three protecing groups, the C-3 methyl 

ether, C-17 MOM ether, and the C-8 silyl ether. All of these functional groups demonstrate 

lability to acidic conditions, and, therefore, global deprotection was expected upon treatment 

with boron trichloride. Following the treatment of 83 with boron trichloride in DCM at -78 ºC, 

four products were isolated and identified: desired cis-olefin product 84, trans-olefin isomer 85, 

and an inseparable mixture of cruentaren A and its trans-olefin isomer 86 (Scheme 3.20). 

Because desired product 84 and undesired isomeric 85 could be separated, reaction conditions 

were sought that could avoid TBS-deprotection and provide 84 and 85 as the major products. 

Optimization involved a simple decrease in reaction time with 84 and 85 being the only products 

observed in excellent overall yield. Unfortunately, penultimate intermediate 84 was unexpectedly 

unstable. 
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Despite the appearance of a single peak in the high-resolution mass spectrum (HRMS) 

corresponding to the [M+Na]+ ion adduct of 84, a trace impurity was observed in the 1H and 13C 

NMR spectra. Attempts to chromatographically remove this impurity surprisingly lead to the 

isolation of a single component. Purified material was identical to 84 in HRMS, but surprisingly 

corresponded to what was previously present as a trace impurity in the 1H and 13C NMR spectra. 

Upon further analysis, this impurity was identified as the ring-expanded product 87, which was 

presumably the result of transesterification and ring-expansion of 84 apparently catalyzed by the 

weakly acidic nature of SiO2
 (Scheme 3.21).  
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The rearrangement of 84 to ring-expanded 87 was completely unexpected. No such 

rearrangement was observed during the isolation of cruentaren or reported in the published total 

syntheses of this natural product. Ring expansion of 84 to form 87 might arise from perturbation 

of macrocycle conformation and subsequent reorientation of the unprotected C-17 alcohol as an 

unintended consequence of the TBS protection of the C-8 alcohol. Therefore, a new synthetic 

route was devised that involved replacement of the C-17 MOM ether protecting group with TBS. 

Such a protecting group swap prevents application of the Suzuki reduction previously employed 

for the construction of the desired syn-1,3-diol moiety at C-15 and C-17 of compound 37. This 

expectation necessitated an alternate strategy for stereochemical induction at C-15. Therefore, 

the novel synthetic target 88 was envisioned to be acquired by stereoselective allylation of 

aldehyde 89, which could be accessed from advanced intermediate 34 (Figure 3.16). 
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Treatment of Weinreb amide 34 with TBSOTf and 2,6-lutidine in DCM afforded 90, 

which was subsequently transformed to aldehyde 89 by DIBAL-H mediated reduction. 

Soderquist allylation of aldehyde 89, using (+)-9-(1R,2R-pseudoephedrinyl)-(10S)-

(trimethylsilyl)-9-borabicyclo[3.3.2]decane and allylmagnesium bromide proceeded in high yield 

and dr, furnishing homoallylic alcohol 88 without the need for reaction condition optimization 

(Scheme 3.22).63 

Asymmetric allylboration is a powerful chemical tool for the stereoselective construction 

of carbon-carbon bonds.76 Several advancements since the pioneering studies of Brown and co-

workers have lead to increases in chemical efficiency, reaction yield, and enantio- and 

diastereoselectivity. The development of 10-trimethylsilyl-9-borabicyclo[3.3.2]decane for the 

asymmetric allylation of a variety of carbonyl species by Soderquist and co-workers is 

particularly exciting. The in situ generated allylborane intermediate 92 demonstrates increased 

yields and facial selectivity for the production of highly enantio-enriched homoallylic alcohols. 

This stereoselectivity is a result of the rigid, bicyclic nature of the borabicycle (Figure 3.17). 

Additionally, Soderquist’s allylboranes can be easily synthesized from racemic starting 
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materials, are 

recyclable, and are air 

and moisture 

insensitive for 

prolonged storage (as 

91), rendering it 

synthetically practical. 

Furthermore, due to the 

rigid nature of this 

bicyclic structure, 

Soderquist’s 

allylboranes are less 

temperature dependent than previously developed reagents, providing high levels of 

stereoselectivity even at rt. Finally, the mild, non-oxidative work-up procedure allows for a wide 

substrate scope that includes chemical entities incompatible with the harsh work-up conditions of 

other allylboration strategies.63 

Elaboration of 88 for completion of the formal synthesis of cruentaren A proceeded in an 

identical fashion as previously described (Scheme 3.23). Oxalyl bromide mediated esterification 

of 88 lead to 96, which was subsequently treated with LDA and Weinreb amide 47 to provide 97. 

Noyori asymmetric transfer hydrogenation of 97 to form 98 was accomplished with catalytic 

RuCl[(S,S)-Tsdpen](p-cymene) and sodium formate in aqueous DMF. Bis-terminal olefin 98 

underwent RCM to exclusively provide cis-olfein containing macrocycle 99, which was then 
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sequentially TBS-protected at C-8 to generate 100 and PMB-deprotected to lead to 101 and 

completion of the formal synthesis.  
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Elaboration of compound 101 to cruntaren A, and completion of the total synthesis 

involved four additional manipulations (Scheme 3.24). The allylic alcohol of 101 converted to 

the allyl-azide 102 following treatment with Zn(N3)2(pyridine)2, DIAD, and PPh3. One-pot azide 

reduction and amide formation was achieved via Staudinger ligation conditions in order to 

provide protected cruentaren A, compound 103. Methyl ether deprotection commenced by 

subjecting compound 103 to BCl3 in DCM at low temperature to afford 104. Treatment of the 

disilyl ether with HF in ACN and deionized water provided the final product cruentaren A (1). 
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III.4 Concluding Remarks  

 Successful completion of the formal synthesis of cruentaren A by the route described 

herein will facilitate the first investigation into the effects of a selective FAS inhibitor on the 

super chaperone complex. This realm of Hsp90 research remains uninvestigated, and provides 

incredible opportunities to further delineate the mechanisms manifested by the Hsp90 protein 

folding process. Furthermore, by approaching this synthetic endeavor from a medicinal 

chemistry standpoint, the route described above will also facilitate the investigation of cruentaren 

A SAR. Of particular interest is the potential to deconvolute structural features of cruentaren A 

that are responsible for its selectivity for FAS over other ATPases. Specific areas of interest 

include the macrocyclic olefin, stereochemistry at C-16, C-17, and C-18, bio-isosteric 

replacement of the macrocyclic lactone, and the potential for non-macrocyclic, constrained 

analogues. Additionally, precise identification of the FAS structural domain to which cruentaren 

A binds using natural product based chemical probes may lead to previously unknown inhibitory 

regions of this macromolecular machine. 

 While the synthetic route described above provides a stereoselective means for the 

production of cruentaren A, several aspects of this strategy require refinement in a second 

generation synthesis. Further screening of recently developed, tethered Ru catalysts should be 

evaluated for their ability to increase diastereoselectivity of the Noyori asymmetric transfer 

hydrogenation. Ru catalysts such as 105 demonstrate improved diastereocontrol by constraining 

the chiral elements of the ligand and the η6-aryl group in an optimized orientation for the 

transition state of the transfer hydrogenation reaction (Figure 3.18). Also, additional Ru 

metathesis catalysts should be screened in an effort to limit side chain olefin isomerization. The 

presence more sterically demanding NHC substituents, e.g. 106, may prove effective toward this 
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goal by occluding efficient metal complexation 

between catalyst and 1,2-disubstituted olefin at 

C-20 and C-21 while still allowing terminal 

olefin metathesis (Figure 3.18). 

 Aside from optimization of reaction 

conditions, one aspect of the synthetic strategy 

should be re-evaluated. In the recently published 

description of macrocycle geometrical control through incorporation of a vinylsiloxane by Trost 

et al., the authors note that varying vinylsiloxane location between terminal olefins dramatically 

impacts reaction outcome. Both yield and isomeric ratio were affected depending on which of 

the two terminal olefins were functionalized with the vinylsiloxane. An effort should be made 

toward the synthesis of metathesis substrate 107 to assess its reactivity in RCM. A likely finding 

is that increased reaction rate and temperature will be required to induce cyclization, and this 

may lead to increased side chain olefin isomerization (Figure 3.19). Nevertheless, unpredictable 

reactivity in spite of the predictable has been a common theme during the course of these studies.  

 In summation, a convergent and efficient total synthesis of cruentaren A has been 

described herein with a total overall yield of 5.2 % for the longest linear sequence of 19 steps, 
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and 23 steps overall. Completion of the total synthesis and subsequent biological evaluation of 

this natural product is in the capable hands of the Blagg laboratory and is primed for initiation. 

 

III.5 Methods and Experimentals 

 

General Methods. All reactions were carried out in flame dried glassware under argon 

atmosphere unless otherwise stated. Dichloromethane (DCM), diethyl ether, tetrahydrofuran 

(THF), and toluene were purchased from Sigma Aldrich and were passed through a column of 

activated alumina prior to use. Anhydrous methanol, acetonitrile, DMF (DMF), and 

dimethoxyethane (DME) were purchased from Sigma Aldrich and used without further 

purification. All reagents and other solvents [ethyl acetate (EtOAc) and hexanes (Hex)] were 

purchased from Sigma Aldrich and were used without further purification unless otherwise 

stated. Flash column chromatography was performed using silica gel (40 – 63 µm particle size) 

from Sorbent Technologies. The 1H and 13C-NMR (proton decoupled) spectra were recorded at 

500 and 126 MHz, respectively, on a Bruker AM 500 using CDCl3 or benzene-D6 purchased 

from Cambridge Isotope Laboratories, Inc., using solvent as an internal standard (CDCl3 at 7.260 

ppm for 1H and 77.160 ppm for 13C, benzene-D6 at 7.160 ppm for 1H and 128.060 ppm for 13C) 

or tetramethylsilane (0.00 ppm) unless otherwise stated. Data are reported as h = hextet, p = 

pentet, q = quartet, t = triplet, d = doublet, s = singlet, bs = broad singlet, m = multiplet; coupling 

constant(s) in Hz. 19F-NMR spectra were recorded at 376 MHz on a Bruker DRX 400 in C6D6 

using (R)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoic acid as an internal standard unless 

otherwise stated. Two-dimensional NMR experiments were run on a Bruker AM 500 at 500 

MHz. High resolution mass spectral data were obtained on a Ribermag R10-10 quadrupole, VG 
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Analytical ZA. Optical rotations were recorded with a Perkin Elmer polarimeter at 589 nm at 25 

°C with concentration reported as g/mL. 

 

Experimentals: 

 

 

(3R,4S)-3-methylhept-1-en-5-yn-4-ol, 8 

A 500 mL flask was flame dried and flushed with argon before DCM (250 mL) and 2-butyne-1-

ol (4 g, 58.0 mmol, 1 eq.) were added. DMP (31 g, 146.0 mmol, 2.5 eq.) was then slowly added 

and the reaction mixture was stirred at 0°C for 5 h. A 1:1 solution of diethyl ether and pentane 

(200 mL) was added to the reaction mixture, and the slurry was filtered through a plug of celite 

and additional 1:1, diethyl ether:pentane (500 mL) was used to wash the SiO2. Solvent was 

evaporated at 40 °C at 1 atm to afford aldehyde 7, which was subsequently used without further 

purification. A 250 mL flask was flame dried and flushed with argon before THF (38 mL) and 

potassium tert-butoxide (1 M in THF, 19 mL, 19 mmol, 1.3 eq.) were added. The solution was 

cooled to -78 °C, and cis-2-butene (3.2 mL, 36 mmol, 2.5 eq.) was added followed by the 

dropwise addition of butyllithium (2.5 M in hexanes, 7.6 mL, 19 mmol, 1.3 eq.). The suspension 

was warmed to -42 °C and stiring was continued for 30 min at which point the suspension was 

cooled back to -78 °C. A solution of (−)-B-methoxydiisopinocampheylborane (7 g, 22 mmol, 1.5 

eq.) in THF (20 mL) cooled to 0 °C was added, and the reaction mixture was allowed to warm to 

-42 °C and stirred for 1 h and then cooled back to -78 °C. Boron trifluoride diethyl etherate (3.02 

mL, 24 mmol, 1.7 eq.) was added followed by the addition of a solution of aldehyde 7 (1 g, 14.6 

OH
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mmol, 1 eq.) in THF (10 mL) cooled to 0 °C. Stirring was continued for 4 h at -78 °C, at which 

point the reaction was quenched by the addition of ethanolamine (1.8 g, 29.2 mmol, 2 eq.) and 

deionized water (5 mL). Stirring was continued as the suspension was allowed to warm to rt over 

1 h. The resulting suspension was filtered through a pad of celite, and the filtrate was collected, 

dried over anhydrous sodium sulfate, and solvent was removed under reduced pressure to afford 

a colorless oil that was purified by SiO2 flash chromatography (5 % – 20 % EtOAc in hexanes) 

to provide alcohol 8, 1:1 enantiomeric mixture, as a colorless liquid (1.5 g, 82 %). [α]25
D = 0.01° 

(c = 0.135, DCM). 1H NMR (500 MHz, CDCl3) δ 5.83 – 5.69 (m, 1H), 5.18 – 5.07 (m, 2H), 4.64 

(m, 1H), 4.03 (m, 1H), 2.35 – 2.25 (m, 1H), 1.85 (d, J = 2.1 Hz, 3H), *1.06 (d, J = 4.5 Hz, 3H). 

13C NMR (126 MHz, CDCl3) δ 140.39, 140.29, 116.04, 116.01, 81.51, 79.99, 74.58, 72.44, 

62.94, 61.46, 44.04, 43.88, 14.75, 14.72, 3.76, 3.72. HRMS (ESI, m/z): calcd for [C8H12O]+, ([M 

+ Na]+): 147.0786, found 147.0785. 

 

(3R,4S)-3-methylundec-1-en-5-yn-4-ol, 10 

A 250 mL flask was flame dried and flushed with argon before THF (38 mL) and potassium tert-

butoxide (1 M in THF, 19 mL, 19 mmol, 1.3 eq.) were added. The solution was cooled to -78 °C, 

and cis-2-butene (3.2 mL, 36 mmol, 2.5 eq.) was added followed by the dropwise addition of 

butyllithium (2.5 M in hexanes, 7.6 mL, 19 mmol, 1.3 eq.). The suspension was warmed to -42 

°C and stiring was continued for 30 min at which point the suspension was cooled back to -78 

°C. A solution of (−)-B-methoxydiisopinocampheylborane (7 g, 22 mmol, 1.5 eq.) in THF (20 

mL) cooled to 0 °C was added, the reaction mixture was allowed to warm to -42 °C, stirred for 1 

h and then cooled back to -78 °C. Boron trifluoride diethyl etherate (3.02 mL, 24 mmol, 1.7 eq.) 

OH
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was added followed by the addition of a solution of aldehyde 9 (1.8 g, 14.6 mmol, 1 eq.) in THF 

(10 mL) cooled to 0 °C. Stirring was continued for 4 h at -78 °C, at which point reaction was 

quenched by the addition of ethanolamine (1.8 g, 29.2 mmol, 2 eq.) and deionized water (5 mL). 

Stirring was continued as the suspension was allowed to warm to rt over 1 h. The resulting 

suspension was filtered through a pad of celite, filtrate was dried over anhydrous sodium sulfate, 

and solvent was removed under reduced pressure to afford a colorless oil that was purified by 

SiO2 flash chromatography (5 % – 20 % EtOAc in hexanes) to provide alcohol 10, 15:1 

diastereomeric mixture, as a colorless liquid (2.3 g, 86 %). [α]25
D = -27.4° (c =0.018 , DCM). 

(*Denotes minor diastereomeric peak) 1H NMR (500 MHz, CDCl3) δ 5.86 (ddd, J = 8,1, 9.8, 

17.9 Hz, 1H), *5.85 – 5.77 (m, 1H), 5.19 – 5.11 (m, 2H), 4.26 (dt, J = 2.4, 4.7 Hz, 1H), *4.19 

(dt, J = 6.3, 1.9 Hz, 1H), 2.48 – 2.39 (m, 1H), 2.21 (td, J = 7.1, 2.1 Hz, 2H), 1.55 – 1.46 (m, 2H), 

1.41 – 1.28 (m, 4H), *1.12 (d, J = 6.8 Hz, 3H), 1.10 (d, J = 6.9 Hz, 3H), 0.90 (t, J = 7.1 Hz, 3H). 

13C NMR (126 MHz, CDCl3) δ *139.69, 139.27, 117.07, *116.66, 86.91, *86.76, *79.53, 79.22, 

*66.53, 66.38, *44.88, 44.64, 31.15, 28.49, 22.31, 18.78, 15.79, *15.43, 14.13. HRMS (ESI, 

m/z): calcd for [C12H20O]+, ([M + Na]+): 203.1412, found 203.1412. 

 

(S)-3-methylundec-1-en-5-yne, 11 

A 500 mL flask was flame dried and flushed with argon before DCM (140 mL) and alcohol 10 

(6.3 g, 35 mmol, 1 eq.) were added. Solid cobalt carbonyl (12 g, 35 mmol, 1 eq.) was added. 

After stirring for 8 h, the solution was cooled to 0 °C and solid sodium borohydride (4 g, 105 

mmol, 3 eq.) was added followed by the dropwise addition of trifluoroacetic acid (35 mL, 454 

mmol, 13 eq.) over 1 h, and stirring was continued at 0 °C for 3 h. Reaction was quenched at 0 

H H
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°C by the careful addition of saturated aqueous sodium bicarbonate (200 mL). The organic layer 

was collected and the aqueous layer was extracted with DCM (3 X, 100 mL). The combined 

organic layers were dried over anhydrous sodium sulfate and solvent was removed under 

reduced pressure to afford a dark red oil that was diluted with methanol (50 mL). Ceric 

ammonium nitrate (76.8 g, 140 mmol, 4 eq.) was carefully added portionwise over several 

minutes. After complete addition of ceric ammonium nitrate, the reaction mixture was diluted 

with saturate aqueous sodium bicarbonate (100 mL) and organic solvent was removed under 

reduced pressure. The resultant slurry was diluted with diethyl ether (150 mL). The organic layer 

was collected and the aqueous layer was extracted by diethyl ether (2 X, 100 mL). The combined 

organic layers were dried over anhydrous sodium sulfate and solvent was removed under 

reduced pressure at 10 °C to afford an orange oil that was purified by SiO2 flash chromatography 

(5 % diethyl ether in pentane) to provide hydrocarbon 11 as a colorless oil (3.6 g, 62 %). [α]25
D = 

-13.2° (c = 0.006, DCM). 1H NMR (500 MHz, CDCl3) δ 5.82 (ddd, J = 17.2, 10.4, 6.8 Hz, 1H), 

5.02 (ddd, J = 17.2, 1.7, 1.4 Hz, 1H), 4.97 (ddd, J = 10.4, 1.7, 1.2 Hz, 1H), 2.37 – 2.28 (m, 1H), 

2.24 – 2.09 (m, 4H), 1.53 – 1.44 (m, 2H), 1.40 – 1.24 (m, 4H), 1.08 (d, J = 6.7 Hz, 3H), 0.90 (t, J 

= 7.2 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 143.22, 113.20, 81.72, 78.45, 37.29, 31.19, 28.98, 

26.36, 22.37, 19.22, 18.86, 14.17.  

 

(2S,3S)-3-methylundec-5-yne-1,2-diol, 12 

A 10 mL flask was charged with deionized water (0.38 mL), acetone (1.74 mL), hydrocarbon 11 

(454 mg, 2.76 mmol, 1 eq.), NMO (388 mg, 3.3 mmol, 1.2 eq.), and DHQ2PHAL (430 mg, 0.55 

mmol, 0.2 eq.). The solution was cooled to 0 °C and osmium tetroxide (25 mg per mL solution in 

OH
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toluene, 0.056 mL, 0.0055 mmol, 0.002 eq.) was added. The reaction mixture was stirred for 23 

h at which point the reaction was quenched by the addition of saturate aqueous sodium bisulfite 

(2 mL). Organic solvent was removed under reduced pressure and the resultant aqueous slurry 

was extracted with DCM (4 X, 3 mL). The combined organic layers were dried over anhydrous 

sodium sulfate and solvent was removed under reduced pressure to afford a black oil that was 

purified by SiO2 flash chromatography (30 % – 40 % EtOAc in hexanes) to provide diol 12, 5:1 

mixture of diastereomers, as a colorless oil (400 mg, 73 %). (*Denotes minor diastereomeric 

peak) 1H NMR (500 MHz, CDCl3) δ 3.79 – 3.72 (m, 1H), 3.70 – 3.51 (m, 2H), 2.36 – 2.18 (m, 

2H), 2.14 (tt, J = 7.1, 2.5 Hz, 2H), 1.82 – 1.74 (m, 1H), 1.54 – 1.43 (m, 2H), 1.40 – 1.26 (m, 4H), 

*1.02 (d, J = 6.9 Hz, 3H), 0.99 (d, J = 6.9 Hz, 3H), 0.89 (t, J = 7.1 Hz, 3H). 13C NMR (126 MHz, 

CDCl3) δ 82.65, *82.47, *78.10, 77.99, 75.64, *74.99, *65.05, 64.97, 35.49, *35.40, 31.23, 

28.88, *28.87, *23.22, 22.64, 22.34, 18.85, *18.83, 16.17, *14.79, 14.16. HRMS (ESI, m/z): 

calcd for [C12H22O2]+, ([M + Na]+): 221.1518, found 221.1514. 

 

4-((tetrahydro-2H-pyran-2-yl)oxy)but-2-yn-1-ol, 14 

A 2 liter round bottom flask was charged with acetonenitrile, (500 mL), DCM (500 mL), 1,4-

butynediol (10g, 116 mmol, 1 eq.), and dihydropyran (10.7 g, 127.6 mmol, 1.1 eq.). p-

toluenesulfonic acid (304 mg, 1.16 mmol, 0.01 eq.) was added and the reaction mixture was 

stirred at rt for 10 hrs, at which point saturated, aqueous sodium bicarbonate (500 mL) was added 

to quench. The organic layers were collected and the aqueous layer was extracted with DCM 

(3X, 300 mL). The organic layers were combined, dried over anhydrous sodium sulfate, filtered, 

and solvent was removed to afford a green oil, which was purified by SiO2 flash chromatography 

(60% EtOAc in hexanes). Mono-tetrahydropyran protected alcohol 14 was isolated as a colorless 

HO
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oil (14 g, 71%). 1H NMR (500 MHz, CDCl3) δ 4.81 (t, J = 3.4 Hz, 1H), 4.39 – 4.24 (m, 4H), 

3.89 – 3.81 (m, 1H), 3.59 – 3.50 (m, 1H), 1.90 – 1.79 (m, 1H), 1.79 – 1.71 (m, 1H), 1.70 – 1.60 

(m, 3H), 1.60 – 1.50 (m, 2H). 13C NMR (126 MHz, CDCl3) δ 96.96, 84.18, 81.88, 62.12, 54.26, 

51.18, 30.24, 25.37, 19.12. HRMS (ESI, m/z): calcd for [C9H14O3]+ ([M+H]+): 170.0943, found 

170.0947. 

 

2-((4-iodobut-2-yn-1-yl)oxy)tetrahydro-2H-pyran, 15 

THP-protected alcohol 14 (9.0 g, 52.9 mmol, 1 eq.), triphenylphosphine (27.8 g, 105.8 mmol, 2 

eq.), and imidazole (7.2 g, 105.8 mmol, 2 eq.) were dissolved in DCM (300 mL) under argon and 

cooled to 0 °C. Iodine (26.9 g, 105.8 mmol, 2 eq.) was added slowly over twenty minutes, and 

the reaction mixture was stirred for 30 minutes. Solvent was removed and the resulting slurry 

was purified by SiO2 chromatography (40% EtOAc in hexanes) to afford alkyl iodide 15 as a 

colorless oil (12.2 g, 82%). 1H NMR (500 MHz, CDCl3) δ 4.72 (t, J = 3.4 Hz, 1H), 4.20 (qt, J = 

15.8, 2.2 Hz, 2H), 3.79 – 3.73 (m, 1H), 3.67 (t, J = 2.2 Hz, 2H), 3.50 – 3.45 (m, 1H), 1.81 – 1.71 

(m, 1H), 1.71 – 1.64 (m, 1H), 1.59 – 1.52 (m, 2H), 1.52 – 1.43 (m, 2H). 13C NMR (126 MHz, 

CDCl3) δ 96.88, 82.68, 81.29, 61.98, 54.43, 30.19, 25.31, 19.00. HRMS (ESI, m/z): calcd for 

[C9H13IO2]+ ([M+H]+): 279.9960, found 279.9962. 

 

(2R)-N-((1S,2S)-1-hydroxy-1-phenylpropan-2-yl)-N,2-dimethyl-6-((tetrahydro-2H-pyran-2-

yl)oxy)hex-4-ynamide, 16 

A 1 L round bottom flask was flame dried and flushed with argon before tetraydrofuran (82 mL), 

anhydrous lithium chloride (15.4 g, 363 mmol, 7.8 eq.), and DIPA (17.54 mL, 124 mmol, 2.67 

I
OTHP

Ph
N

O
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eq.) were added. The solution was cooled to -78 °C and n-butyllithium (2.5 M in hexanes, 46.1 

mL, 115 mmol, 2.48 eq.) was added slowly to maintain temperature. The reaction mixture was 

briefly warmed to 0 °C and subsequently cooled back to -78 °C. N-((1S,2S)-1-hydroxy-1-

phenylpropan-2-yl)-N-methylpropionamide (13.31 g, 60.4 mmol, 1.3 eq.) was then added in 

anhydrous THF (192 mL) via cannula. The reaction mixture was stirred at -78 °C for 1 hr, 0 °C 

for 20 min, rt for 5 min, and then cooled to 0 °C before 2-((4-iodobut-2-yn-1-yl)oxy)tetrahydro-

2H-pyran (13.0 g, 46.5 mmol, 1 eq.) was added in one portion. Stirring was continued for 2 hr at 

0 °C, at which point the reaction was quenched by the careful addition of half-saturated, aqueous 

ammonium chloride (100 mL). The organic layer was collected, and the aqueous layer was 

extracted with EtOAc (3 X, 150 mL). The combined organic layers were collected, dried over 

anhydrous sodium sulfate, and solvent was removed under reduced pressure to afford a yellow 

oil that was purified by SiO2 flash chromatography (30 % – 50 % EtOAc in hexanes) to provide 

pure 16 as a colorless oil (17.6 g, 92%). [α]25
D = 74.3° (c = 0.023, DCM). (Isolated as a mixture 

of amide rotamers with two THP diastereomers, *denotes minor rotamer peak) 1H NMR (500 

MHz, CDCl3) δ 7.37 – 7.21 (m, 5H), *4.89 (t, J = 3.1 Hz, 1H), *4.79 (t, J = 3.4 Hz, 1H), 4.75 (t, 

J = 3.4 Hz, 1H), 4.69 – 4.56 (m, 1H), 4.55 (d, J = 8.5 Hz, 1H), *4.51 (d, J = 7.6 Hz, 1H), 4.49 – 

4.34 (m, 1H), 4.31 – 3.93 (m, 1H), 3.88 – 3.70 (m, 1H), 3.55 – 3.41 (m, 1H), *3.27 (bs, 1H), 

*3.25 – 3.14 (m, 1H), *3.14 – 3.05 (m, 1H), *2.88 (s, 3H), 2.88 (m, 1H), 2.87 (s, 3H), *2.68 – 

2.56 (m, 2H), 2.49 – 2.39 (m, 1H), 2.39 – 2.23 (m, 1H), 1.89 (bs, 1H), 1.85 – 1.73 (m, 1H), 1.73 

– 1.64 (m, 1H), 1.63 – 1.40 (m, 4H), 1.14 (d, J = 6.8 Hz, 3H), 1.08 (d, J = 6.8 Hz, 3H), *0.99 (d, 

J = 6.8 Hz, 3H), *0.96 (d, J = 6.8 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 177.27, *176.30, 

142.44, *141.26, *128.79, 128.47, 127.78, *127.05, *127.04, 126.47, 96.81, *96.73, *95.61, 

*86.22, *85.40, 84.54, 84.53, *77.07, 76.48, 76.46, *75.47, *75.21, 62.07, *61.94, *61.67, 
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*58.43, *58.21, *54.83, 54.65, 54.63, *54.46, 36.60, *36.22, *35.95, 30.35, 30.34, *30.11, 

*27.27, *27.14, *25.49, 25.43, *23.67, *23.56, 23.51, 19.17, *19.07, *18.80, *17.81, 17.06, 

*15.78, *15.62, 14.50. HRMS (ESI, m/z): calcd for [C22H31NO4]+, ([M + Na]+): 396.2151, found 

396.2149. 

 

(2R)-2-methyl-6-((tetrahydro-2H-pyran-2-yl)oxy)hex-4-yn-1-ol, 18 

A 1 L flask was flame dried and flushed with argon before anhydrous THF (180 mL) and DIPA 

(36.8 mL, 260.4 mmol, 4.2 eq.) were added. The solution was cooled to -78 °C followed by the 

careful addition of n-butyllithium (2.5 M in hexanes, 97 mL, 241.8 mmol, 3.9 eq.). The reaction 

mixture was allowed to warm to 0 °C and ammonia-borane complex (8.5 g, 248 mmol, 4 eq.) 

was slowly added. Vigorous stirring was continued, and the reaction mixture was allowed to 

warm to rt and then cooled back to 0 °C at which point 16 (23.2 g, 62 mmol, 1 eq.) was added in 

anhydrous THF (120 mL) via cannula. The reaction mixture was stirred for 3 hr at 0 °C or until 

the starting material was observed to be consumed by thin-layer chromatography. 3 N aqueous 

hydrochloric acid was then added dropwise until pH between 4.5 and 5 was attained. The organic 

layer was collected, and the aqueous layer was extracted with EtOAc (5 X, 80 mL) followed by 

sequential washing of the combined organic extracts with 2 N aqueous hydrochloric acid (2 X, 

50 mL) 2 N aqueous sodium hydroxide (2 X, 50 mL), and saturated aqueous sodium chloride (2 

X, 50 mL). The organic layer was then dried over anhydrous sodium sulfate and solvent was 

removed under reduced pressure to afford a colorless oil that was purified by SiO2 flash 

chromatography (15 % – 40 % EtOAc in hexanes) to provide pure 18 (12.2 g, 93%). [α]25
D = 

4.2° (c = 0.150, DCM).  (Mixture of THP diastereomers) 1H NMR (500 MHz, CDCl3) δ 4.78 
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(dd, J = 6.6, 3.2 Hz, 1H), 4.58 – 4.52 (m, 1H), 4.28 – 4.14 (m, 2H), 3.86 – 3.76 (m, 1H), 3.63 – 

3.54 (m, 1H), 3.54 – 3.43 (m, 2H), 3.28 – 3.20 (m, 1H), 2.46 (s, 1H), 2.40 – 2.10 (m, 2H), 1.98 – 

1.88 (m, 1H), 1.87 – 1.73 (m, 2H), 1.74 – 1.62 (m, 1H), 1.62 – 1.43 (m, 4H), 0.97 (d, J = 6.8 Hz, 

3H), 0.95 (d, J = 6.8 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 96.79, 84.75, 77.29, 67.06, 62.13, 

54.70, 35.18, 30.38, 25.46, 22.79, 19.20, 16.37. HRMS (ESI, m/z): calcd for [C12H20O3]+, ([M + 

Na]+): 235.1310, found 235.1313. 

 

(2R)-2-methyl-6-((tetrahydro-2H-pyran-2-yl)oxy)hex-4-ynal, 17 

A 500 mL flask was flame dried and flushed with argon before DCM (200 mL) and alcohol 18 

(10 g, 47 mmol, 1 eq.) were added. The solution was cooled to 0 °C and pyridinium 

chlorochromate (25.3 g, 118 mmol, 2.5 eq.) was slowly added over 20 minutes. Stirring was 

continued and the reaction mixture was allowed to warm to rt overnight at which point a 1:1 

mixture of hexanes and diethyl ether (250 mL) was added. The suspension was passed through a 

plug of SiO2 with a 1:1 mixture of hexanes and diethyl ether (500 mL) as eluent. The organic 

filtrate was collected and solvent was removed under reduced pressure to provide pure aldehyde 

17 as a colorless oil (8.2 g, 83%). [α]25
D = 3.1° (c = 0.012, DCM).  1H NMR (500 MHz, CDCl3) 

δ 4.81 (t, J = 3.4 Hz, 1H), 4.28 (dt, J = 15.4, 2.1 Hz, 1H), 4.21 (dt, J = 15.4, 1.8 Hz, 1H), 3.84 

(ddd, J = 11.5, 9.5, 5.0 Hz, 1H), 3.58 – 3.47 (m, 1H), 2.73 – 2.64 (m, 1H), 2.64 – 2.57 (m, 1H), 

2.46 – 2.38 (m, 1H), 1.87 – 1.77 (m, 1H), 1.77 – 1.69 (m, 1H), 1.65 – 1.48 (m, 4H), 1.29 (d, J = 

7.0 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 180.53, 96.77, 83.39, 77.83, 62.16, 54.59, 30.38, 

25.48, 22.91, 19.21, 16.41, 16.40. HRMS (ESI, m/z): calcd for [C12H18O3]+, ([M + H]+): 

211.1334, found 211.1333. 

O
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(E)-but-2-en-1-yltributylstannane 

THF (50 mL) and saturated aqueous ammonium chloride (50 mL) were added to a 250 mL flask 

followed by tributyltin chloride (1.0 g, 3.1 mmol, 1 eq.) and trans-crotyl bromide (0.42 g, 3.1 

mmol, 1 eq.). The solution was vigorously stirred at rt and zinc dust (2.0 g, 31 mmol, 10 eq.) was 

added in 0.2 g portions very slowly over 30 min (zinc must be added cautiously as the reaction is 

highly exothermic). The biphasic reaction mixture was then vigorously stirred for 2 h at which 

point deionized water (50 mL) was added. The organic layer was removed and the aqueous layer 

was extracted with EtOAc (3 X, 20 mL). The combined organic layers were dried over 

anhydrous sodium sulfate and solvent was removed under reduced pressure to afford a colorless 

oil that was purified by SiO2 flash chromatography (Hex) to provide pure 

tributyl(crotyl)stannane as a colorless liquid (1.0 g, 96%). Characterization matched literature 

data. 1H NMR (400 MHz, CDCl3) δ 5.64 – 5.46 (m, 1H), 5.17 (m, 1H), 1.72 (d, J = 9.1 Hz, 3H), 

1.76 – 1.37 (m, 12H), 1.58 (d, J = 6.8 Hz, 2H), 1.37 – 1.20 (m, 1H), 0.89 (t, J = 7.2 Hz, 9H), 0.95 

– 0.76 (m, 6H). 

 

(5R,6R,7R)-5,7-dimethylnon-8-en-2-yne-1,6-diol, 24 

A 5 mL flask was flame dried and flushed with argon before anhydrous propionitrile (0.5 mL) 

and chiral acyloxy borane catalyst (79 mg, 0.25 mmol, 0.5 eq.) were added. The solution was 

cooled to 0 °C followed by dropwise addition of borane THF complex (1 M solution in THF, 

0.375 mL, 0.375 mmol, 0.75 mmol). Stirring was continued for 1 h at 0 °C at which point the 

solution was further cooled to -78 °C followed by sequential addition of aldehyde 17 (105 mg, 

Bu3Sn
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0.5 mmol, 1 eq.) in anhydrous propionitrile (0.5 mL), trifluoacetic anhydride (0.140 mL, 1 mmol, 

2 eq.), and crotyl tributyltin (173 mg, 0.5 mmol, 1 eq.) in anhydrous propionitrile (0.5 mL) and 

the resultant reaction mixture was stirred for 10 h at -78 °C. Reaction was quenched at -78 °C by 

the addition of saturated aqueous sodium bicarbonate (1 mL). The organic layer was collected 

and the aqueous layer was extracted with diethyl ether (4 X, 1 mL). The combined organic layers 

were dried over anhydrous sodium sulfate and solvent was removed under reduced pressure to 

afford a yellow amorphous solid that was dissolved in minimal methanol and saturated with 

potassium carbonate. The heterogenous mixture was vigorously stirred for 2 h and subsequently 

diluted with deionized water (10 mL) and diethyl ether (4 mL). The organic layer was collected 

and the aqueous layer was extracted with diethyl ether (4 X, 4 mL). The combined organic layers 

were dried over anhydrous sodium sulfate and solvent was removed under reduced pressure to 

afford a colorless oil that was diluted with saturated aqueous potassium fluoride (5 mL) and 

diethyl ether and stirred for 5 h. The organic layer was collected and the aqueous layer was 

extracted with diethyl ether (4 X, 5 mL). The combined organic layers were dried over 

anhydrous sodium sulfate and solvent was removed under reduced pressure to afford a colorless 

oil that was purified by SiO2 flash chromatography (20 % – 30 % EtOAc in hexanes) to provide 

THP deprotected alcohol 24 as a colorless oil (50 mg, 54 %). [α]25
D = 3.1° (c = 0.012, DCM). 

(isolated as a ~3.5:1 inseparable mixture of α,β diastereomers at C-6 and C-7, *denotes minor 

diastereomer peak) 1H NMR (500 MHz, CDCl3) δ 5.90 – 5.81 (m, 1H), *5.68 (m, 1H), 5.16 – 

5.08 (m, 2H), *5.07 – 5.00 (m, 2H), 4.26 (bs, 2H), *3.45 (dd, J = 8.0, 3.5 Hz, 1H), 3.36 (dd, J = 

7.8, 4.2 Hz, 1H), 2.49 – 2.19 (m, 3H), *1.93 – 1.84 (m, 1H), 1.85 – 1.77 (m, 1H), *1.08 (d, J = 

6.7 Hz, 3H), 1.03 (d, J = 6.9 Hz, 3H), 1.00 (d, J = 6.8 Hz, 3H), *0.96 (d, J = 6.8 Hz, 3H). 13C 

NMR (126 MHz, CDCl3) δ 141.79, *141.05, 115.41, *115.12, *85.14, 85.11, 79.97, *79.91, 
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77.10, *77.06, 51.55, *51.50, *41.94, 39.78, 35.11, *34.92, *24.09, 22.12, *16.36, 16.28, *12.87, 

11.97. HRMS (ESI, m/z): calcd for [C11H18O2]+, ([M + K]+): 221.0944, found 221.0940. 

 

(Z)-4-((4-methoxybenzyl)oxy)but-2-en-1-ol, 28 

A 1 L round bottom flask was flame dried and flushed with argon before THF (500 mL) and 

sodium hydride (3.2 g, 80 mmol, 0.5 eq.) were added. The solution was cooled to 0 °C and 1,4-

butenediol (7.1 g, 80 mmol, 0.5 eq.) was added. The reaction mixtured was stirred at 0 °C for 1 

hr, at which point p-methoxybenzyl chloride (25 g, 160 mmol, 1 eq.) and sodium iodide (5.9 g, 

16 mmol, .1 eq.) were added. The reaction mixture was warmed to rt and stirred for 5 hr, and 

then quenched by the careful addition of saturated aqueous ammonium chloride. The organic 

layer was collected, and the aqueous layer was extracted with EtOAc (3 X 200 mL). The 

combined organic layers were dried over anhydrous sodium sulfate and solvent was removed to 

afford a yellow oil that was purified by SiO2 chromatography (30% – 50% EtOAc in hexanes). 

Mono PMB-protected alcohol 28 was obtained as a colorless oil (14.5 g, 87%). 1H NMR (500 

MHz, CDCl3) δ 7.26 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 5.81 – 5.75 (m, 1H), 5.73 – 

5.67 (m, 1H), 4.44 (s, 2H), 4.12 (s, 1H), 4.05 (d, J = 6.3 Hz, 2H), 3.79 (s, 3H). 13C NMR (126 

MHz, CDCl3) δ 159.29, 132.45, 129.91, 129.54, 128.04, 113.84, 72.10, 65.31, 58.49, 55.27. 

HRMS (ESI, m/z): calcd for [C12H16O3]+, ([M + Na]+): 231.0997, found 231.0999. 

 

(Z)-1-(((4-bromobut-2-en-1-yl)oxy)methyl)-4-methoxybenzene, 29 

A 500 mL flask was flame dried and flushed with argon before pyridine (150 mL), alcohol 28 

(10 g, 48.0 mmol, 1 eq.), and tetrabromomethane (19.1 g, 57.6 mmol, 1.2 eq.) were added. The 
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solution was cooled to 0 °C and triphenylphospine (13.5 g, 52.8 mmol, 1.1 eq.) was added 1 g at 

a time over 1 h. The reaction mixture was allowed to warm to rt and stiring was continued for 1 h 

when toluene (100 mL) was added. Solvent was removed under reduced pressure to afford an 

orange amorphous solid that was purified by SiO2 chromatography (2.5 % – 10 % EtOAc in 

hexanes) to provide pure allylic bromide 29 as a colorless oil (12 g, 92%). 1H NMR (500 MHz, 

CDCl3) δ 7.19 (d, J = 8.6 Hz, 1H), 6.80 (d, J = 8.6 Hz, 1H), 5.86 – 5.74 (m, 1H), 5.73 – 5.61 (m, 

1H), 4.37 (s, 1H), 4.03 (dd, J = 6.4, 1.4 Hz, 1H), 3.89 (d, J = 8.4 Hz, 1H), 3.71 (s, 2H). 13C NMR 

(126 MHz, CDCl3) δ 159.31, 131.27, 129.48, 128.34, 113.86, 72.15, 64.61, 55.29, 26.63. HRMS 

(ESI, m/z): calcd for [C12H15BrO2]+, ([M + H]+): 271.0334, found 271.0333. 

 

(R,Z)-N-((1S,2S)-1-hydroxy-1-phenylpropan-2-yl)-6-((4-methoxybenzyl)oxy)-N,2-

dimethylhex-4-enamide, 30 

A 1 L round bottom flask was flame dried and flushed with argon before tetraydrofuran (82 mL), 

anhydrous lithium chloride (15.4 g, 363 mmol, 7.8 eq.), and DIPA (17.54 mL, 124 mmol, 2.67 

eq.) were added. The solution was cooled to -78 °C and n-butyllithium (2.5 M in hexanes, 46.1 

mL, 115 mmol, 2.48 eq.) was added slowly to maintain temperature. The reaction mixture was 

briefly warmed to 0 °C and subsequently cooled back to -78 °C. N-((1S,2S)-1-hydroxy-1-

phenylpropan-2-yl)-N-methylpropionamide (13.31 g, 60.4 mmol, 1.3 eq.) was then added in 

anhydrous THF (192 mL) via cannula. The reaction mixture was stirred at -78 °C for 1 hr, 0 °C 

for 20 min, rt for 5 min, and then cooled to 0 °C before (Z)-1-(((4-bromobut-2-en-1-

yl)oxy)methyl)-4-methoxybenzene (12.6 g, 46.5 mmol, 1 eq.) was added in one portion. Stirring 

was continued for 2 hr at 0 °C, at which point the reaction was quenched by the careful addition 
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of half-saturated, aqueous ammonium chloride (100 mL). The organic layer was collected, and 

the aqueous layer was extracted with EtOAc (3 X, 150 mL). The combined organic layers were 

collected, dried over anhydrous sodium sulfate, and solvent was removed under reduced pressure 

to afford a yellow oil that was purified by SiO2 flash chromatography (30 % – 50 % EtOAc in 

hexanes) to provide pure 30 as a colorless oil (17.6 g, 92%). [α]25
D = 71.3° (c = 0.093, DCM). 

(*Denotes minor rotamer peak)  1H NMR (500 MHz, CDCl3) δ 7.39 – 7.29 (m, 5H), 7.29 – 7.23 

(m, 2H), 6.93 – 6.79 (m, 2H), 5.72 – 5.55 (m, 1H), 5.50 – 5.40 (m, 1H), 4.67 – 4.51 (m, 1H), 

4.44 (s, 2H), *4.44 (s, 2H), 4.44 (m, 2H), 4.15 – 3.97 (m, 4H), 3.80 (s, 3H), *3.79 (s, 3H), 2.83 

(s, 3H), 2.87 – 2.76 (m, 1H), *2.81 (s, 3H), 2.68 – 2.59 (m, 1H), 2.51 (m, 1H), 2.38 – 2.26 (m, 

1H), *2.17 – 2.06 (m, 1H), 1.15 – 1.11 (m, 3H), 1.09 (d, J = 6.8 Hz, 3H), *1.00 (d, J = 6.8 Hz, 

3H). 13C NMR (126 MHz, CDCl3) δ 178.38, *176.45, 159.33, 142.66, *141.16, *130.52, 130.45, 

129.57, *128.54, 128.49, *127.81, 127.75, *127.07, 127.05, *126.51, 126.44, 113.92, 77.37, 

76.61, 72.20, *72.14, *65.81, 65.71, 55.43, 36.98, 32.04, 27.76, 17.22, *14.66, 14.60. HRMS 

(ESI, m/z): calcd for [C25H33NO4]+, ([M + Na]+): 434.2307, found 434.2306. 

 

(R,Z)-6-((4-methoxybenzyl)oxy)-2-methylhex-4-enal, 31 

A 1 L flask was flame dried and flushed with argon before anhydrous hexanes (170 mL) and 

solid lithium aluminum hydride (95%, 2.95 g, 73.9 mmol, 2.30 equiv) were added. The 

suspension was cooled to 0 °C and EtOAc (10.7 mL, 110 mmol, 3.41 equiv) was added by 

addition funnel over a period of 1.5 h followed by cooling to -78 °C. A solution of amide 30 

(10.0 g, 32.1 mmol, 1 equiv) in anhydrous THF (110 mL) was added via cannula over 5 min, and 

the reaction mixture was warmed to 0 °C. After being stirred for 1 h at 0 °C, the reaction mixture 
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was transferred by cannula to a solution of trifluoroacetic acid (5 mL, 65 mmol, 2 equiv) in 0.5 N 

aqueous hydrochloric acid solution (400 mL) at 0 °C. The resulting biphasic mixture was stirred 

at 0 °C for 20 min and then diluted with 0.1 N aqueous hydrochloric acid solution (700 mL) 

when the layers were separated. The aqueous layer was extracted with EtOAc (3 X, 150 mL). 

The combined organic layers were neutralized by the cautious addition of saturated aqueous 

sodium bicarbonate (250 mL). The aqueous layer (pH 7-8) was separated and extracted with 

EtOAc (100 mL). The combined organic extracts were dried over anhydrous sodium sulfate and 

solvent was removed under reduced pressure to afford a yellow oil that was purified by SiO2 

flash chromatography (5 % – 10 % EtOAc in hexanes) to afford aldehyde 31 as a colorless oil 

(6.7 g, 84 %). [α]25
D = -4.6° (c = 0.021, DCM). 1H NMR (500 MHz, CDCl3) δ 9.54 (s, 1H), 7.20 

– 7.15 (m, 2H), 6.82 – 6.74 (m, 2H), 5.66 – 5.57 (m, 1H), 5.51 – 5.42 (m, 1H), 4.36 (s, 2H), 3.96 

(dd, J = 6.5, 1.4 Hz, 2H), 3.70 (s, 3H), 2.46 – 2.26 (m, 2H), 2.17 – 1.98 (m, 1H), 1.00 (d, J = 7.1 

Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 204.37, 159.24, 130.24, 129.47, 129.45, 128.72, 113.80, 

71.97, 65.29, 55.26, 46.23, 28.43, 13.07. HRMS (ESI, m/z): calcd for [C15H20O3]+, ([M + Na]+): 

271.1310, found 271.1310. 

 

(R,Z)-6-((4-methoxybenzyl)oxy)-2-methylhex-4-en-1-ol, 30a 

A 1 L flask was flame dried and flushed with argon before anhydrous THF (180 mL) and DIPA 

(36.8 mL, 260.4 mmol, 4.2 eq.) were added. The solution was cooled to -78 °C followed by the 

careful addition of n-butyllithium (2.5 M in hexanes, 97 mL, 241.8 mmol, 3.9 eq.). The reaction 

mixture was allowed to warm to 0 °C and ammonia-borane complex (8.5 g, 248 mmol, 4 eq.) 

was slowly added. Vigorous stirring was continued, and the reaction mixture was allowed to 
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warm to rt and then cooled back to 0 °C at which point 30 was added in anhydrous THF (120 

mL) via cannula. The reaction mixture was stirred for 3 hr at 0 °C or until the starting material 

was observed to be consumed by thin-layer chromatography. 3 N aqueous hydrochloric acid was 

then added dropwise until pH between 3.5 and 4 was attained. The organic layer was collected, 

and the aqueous layer was extracted with EtOAc (5 X, 80 mL) followed by sequential washing 

of the combined organic extracts with 2 N aqueous hydrochloric acid (2 X, 50 mL) 2 N aqueous 

sodium hydroxide (2 X, 50 mL), and saturated aqueous sodium chloride (2 X, 50 mL). The 

organic layer was then dried over anhydrous sodium sulfate and solvent was removed under 

reduced pressure to afford a colorless oil that was purified by SiO2 flash chromatography (15 % 

– 40 % EtOAc in hexanes) to provide pure 30a (14.4 g, 93%). [α]25
D = -11.4° (c = 0.043, DCM). 

1H NMR (500 MHz, CDCl3) δ 7.30 – 7.25 (m, 2H), 6.91 – 6.85 (m, 2H), 5.73 – 5.61 (m, 2H), 

4.46 (s, 2H), 4.07 – 3.94 (m, 2H), 3.81 (s, 3H), 3.45 (ddd, J = 25.4, 10.9, 5.8 Hz, 2H), 2.17 (dt, J 

= 13.7, 6.8 Hz, 1H), 2.04 – 1.97 (m, 1H), 1.79 – 1.68 (m, 1H), 0.93 (d, J = 6.8 Hz, 3H). 13C 

NMR (126 MHz, CDCl3) δ 159.40, 132.73, 130.27, 129.71, 127.10, 113.94, 72.26, 67.10, 65.23, 

55.42, 35.92, 31.14, 16.71. HRMS (ESI, m/z): calcd for [C15H22O3]+, ([M + Na]+): 273.1467, 

found 273.1466. 

 

(R,Z)-6-((4-methoxybenzyl)oxy)-2-methylhex-4-enal, 31 

A flame dried 500 mL flask was flame dried and flushed with argon before DCM (200 mL), 2.5 

Å activated molecular sieves (500 mg), alcohol 30a (10 g, 40.0 mmol, 1 eq.), and N-

Methylmorpholine-N-oxide (5.2 g, 44.0 mmol, 1.1 eq.) were added. The solution was cooled to 0 

°C, tetrapropylammonium perruthenate (703 mg, 2 mmol, 0.05 eq.) was add, and stirring was 
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continued for 1 h and the reaction mixture was allowed to warm to rt. DCM (200 mL) was added 

to the reaction mixture followed by sequential washing with saturated aqueous sodium sulphite 

(100 mL), saturate aqueous sodium chloride (100 mL), and saturated aqueous copper(II) sulphate 

(100 mL). The organic layer was collected and dried over sodium sulphate. Solvent was removed 

under reduced pressure to afford a colorless oil that was eluted through a SiO2 plug with 40 % 

EtOAc in hexanes. Solvent was removed under reduced pressure to provide pure aldehyde 31 as 

a colorless oil (84 %, 8.3 g). [α]25
D = -4.6° (c = 0.021, DCM). 1H NMR (500 MHz, CDCl3) δ 

9.54 (s, 1H), 7.20 – 7.15 (m, 2H), 6.82 – 6.74 (m, 2H), 5.66 – 5.57 (m, 1H), 5.51 – 5.42 (m, 1H), 

4.36 (s, 2H), 3.96 (dd, J = 6.5, 1.4 Hz, 2H), 3.70 (s, 3H), 2.46 – 2.26 (m, 2H), 2.17 – 1.98 (m, 

1H), 1.00 (d, J = 7.1 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 204.37, 159.24, 130.24, 129.47, 

129.45, 128.72, 113.80, 71.97, 65.29, 55.26, 46.23, 28.43, 13.07. HRMS (ESI, m/z): calcd for 

[C15H20O3]+, ([M + Na]+): 271.1310, found 271.1305. 

  

(2S,3R,4R,Z)-3-hydroxy-N-((1R,2R)-1-hydroxy-1-phenylpropan-2-yl)-8-((4-

methoxybenzyl)oxy)-N,2,4-trimethyloct-6-enamide, 32 

A 500 mL flask was flame dried and flushed with argon before anhydrous THF (45 mL) and 

DIPA (4.78 mL, 33.8 mmol, 2.1 eq.) were added. The solution was cooled to -78 °C and n-

butyllithium (2.5 M in hexanes, 13.2 mL, 33 mmol, 2.05 eq.) was slowly added. Stirring was 

continued as the solution was allowed to warm to 0 °C and then cooled back to -78 °C at which 

point a solution of (R,R)-pseudoephedrine propionamide (3.56 g, 16.1 mmol, 1 eq.) in anhydrous 

THF (45 mL) was added slowly via cannula. Stirring was continued at -78 °C for 2 hr, 0 °C for 

30 min, and rt for 10 min. The reaction mixture was cooled back to -78 °C followed by the 
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addition of a solution of Bis(cyclopentadienyl)zirconium(IV) dichloride (10.34 g, 35.4 mmol, 2.2 

eq.) in anhydrous THF (100mmL). The deep orange solution was stirred at -78 °C for 3 hr and 

then cooled to -116 °C when a solution of aldehyde 31 (4 g, 16.1 mmol, 1 eq.) in anhydrous THF 

(10 mL) was added dropwise. Stirring was continued at -116 °C for 3 hr at which point the 

reaction was quenched by the addition of saturated aqueous ammonium chloride (50 mL). The 

biphasic reaction mixture was warmed to rt and filtered through a pad of celite using EtOAc (300 

mL) to rinse. The organic layer was collected, and the aqueous layer was extracted with EtOAc 

(3 X, 100 mL). The combined organic layers were dried over anhydrous sodium sulfate and 

solvent was removed under reduced pressure to afford an orange oil that was purified by SiO2 

flash chromatography (40 % – 70%) to provide pure 32 as a colorless oil (6.7 g, 88 %). [α]25
D = -

45.6° (c = 0.123, DCM). (*Denotes minor rotamer peak) 1H NMR (500 MHz, CDCl3) δ 7.39 – 

7.31 (m, 5H), *7.30 – 7.28 (m, 5H), 7.28 – 7.24 (m, 2H), 6.89 – 6.84 (m, 2H), 5.71 – 5.54 (m, 

2H), 5.07 (d, J = 0.7 Hz, 1H), 4.63 (bs, 1H), 4.68 – 4.56 (m, 1H), *4.54 (d, J = 8.2 Hz, 1H), 

*4.50 (d, J = 1.4 Hz, 1H), 4.43 (s, 2H), *4.42 (s, 2H), 4.07 (d, J = 6.4 Hz, 2H), *4.04 – 3.97 (m, 

1H), 3.79 (s, 3H), *3.77 (s, 3H), 3.45 (dd, J = 16.7, 7.7 Hz, 1H), *3.07 – 2.99 (m, 1H), 2.91 (s, 

3H), *2.87 (s, 3H), 2.76 – 2.69 (m, 1H), 2.50 – 2.38 (m, 1H), 2.01 (m, 1H), 1.70 – 1.58 (m, 1H), 

*1.09 (d, J = 6.5 Hz, 3H), 1.07 (d, J = 7.1 Hz, 3H), 1.06 (d, J = 7.3 Hz, 3H), *1.00 (d, J = 7.0 Hz, 

3H), 0.78 (d, J = 5.6 Hz, 3H), *0.77 (d, J = 5.7 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 179.68, 

*179.61, 159.22, *159.17, 142.13, *141.45, 131.87, 131.59, *130.71, *130.64, *129.56, 129.55, 

128.99, *128.62, 128.57, *127.99, 127.92, *127.74, 126.74, 126.46, 113.85, 76.28, *75.57, 

74.65, 71.96, 71.89, 65.84, *58.02, 55.38, 36.77, *35.56, 35.39, 35.37, *30.97, 30.75, *27.31, 

*15.75, 15.42, *15.23, 14.30, *9.80, 9.26. HRMS (ESI, m/z): calcd for [C28H39NO5]+, ([M + 

K]+): 508.2465, found 508.2466. 
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(2S,3R,4R,Z)-3-hydroxy-8-((4-methoxybenzyl)oxy)-2,4-dimethyloct-6-enoic acid, 33 

A 500 mL flask was charged with amide 32 (8.4 g, 18 mmol, 1 eq.), t-Butylalcohol (55 mL), and 

deionized water (180 mL). A 1.5 M aqueous solution of tetrabutylammonium hydroxide (60 mL, 

90 mmol, 5 eq.) was added and the reaction mixture was heated at reflux for 20 hr. After cooling 

to rt, the reaction mixture was partitioned between 0.5 N aqueous sodium hydroxide (2.3 L) and 

diethyl ether (320 mL). The organic layer was removed, and the aqueous layer was extracted 

with diethyl ether (3 X, 320 mL). The aqueous layer was collected, cooled to 0 °C, acidified to 

pH 3, saturated with sodium chloride, and then extracted with dietyl ether (6 X, 300 mL). The 

organic extracts were collected, dried over anhydrous sodium sulfate, and solvent was removed 

under reduced pressure to afford pure acid 33 (5.5 g, 95 %). [α]25
D = -3.7° (c = 0.172, DCM). 1H 

NMR (500 MHz, CDCl3) δ 10.09 (s, 1H), 7.30 – 7.22 (m, 2H), 6.92 – 6.82 (m, 2H), 5.81 – 5.67 

(m, 2H), 4.46 (s, 2H), 4.10 (dd, J = 11.0, 6.3 Hz, 1H), 3.95 (dd, J = 11.1, 6.0 Hz, 1H), 3.81 (s, 

3H), 3.68 (dd, J = 9.5, 2.6 Hz, 1H), 2.67 (qd, J = 7.2, 2.7 Hz, 1H), 2.39 – 2.30 (m, 1H), 2.21 (dt, 

J = 9.1, 4.3 Hz, 1H), 1.83 – 1.72 (m, 1H), 1.19 (d, J = 7.2 Hz, 3H), 0.88 (d, J = 6.9 Hz, 3H). 13C 

NMR (126 MHz, CDCl3) δ 178.59, 159.57, 132.65, 129.87, 127.07, 114.04, 77.37, 73.84, 72.56, 

65.10, 55.45, 41.26, 35.39, 31.00, 15.86, 9.62. HRMS (ESI, m/z): calcd for [C18H26O5]-, ([2M + 

Na – 2H]+): 665.3302, found 665.3301. 
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(2S,3R,4R,Z)-3-hydroxy-N-methoxy-8-((4-methoxybenzyl)oxy)-N,2,4-trimethyloct-6-

enamide, 34 

A 250 mL flask was flame dried and flushed with argon before DMF (40 mL), acid 33 (5.50 g, 

17.1 mmol, 1 eq.), and DIPEA (6.3 mL, 36 mmol, 2.1 eq.) were added. COMU (8.14 g, 1.9 

mmol, 1.1 eq.) was then added in one portion and the reaction mixture was stirred at rt for 45 

min at which point N,O-Dimethylhydroxylamine hydrochloride (3.35 g, 34.2 mmol, 2 eq.) was 

added. Stirring was continued for 1 hr and the reaction was quenched by the careful addition of 

saturated aqueous sodium bicarbonate (30 mL). The resulting slurry was then extracted with 

EtOAc (5 X, 50 mL) and the combined organic portions were dried over anhydrous sodium 

sulfate. Solvent was removed under reduced pressure to afford a red oil that was purified by SiO2 

flash chromatography (25 % – 45% EtOAc in hexanes) to provide pure amide 34 as a yellow oil 

(5.8 g, 93 %). [α]25
D = -2.1° (c = 0.010, DCM). 1H NMR (500 MHz, CDCl3) δ 7.29 – 7.21 (m, 

2H), 6.88 – 6.83 (m, 2H), 5.71 – 5.55 (m, 2H), 4.43 (s, 2H), 4.11 (bs, 1H), 4.07 (d, J = 6.0 Hz, 

2H), 3.78 (s, 3H), 3.68 (s, 3H), 3.50 (dd, J = 9.2, 1.9 Hz, 1H), 3.18 (s, 3H), 3.10 – 3.03 (m, 1H), 

2.48 – 2.39 (m, 1H), 2.05 (dt, J = 14.0, 8.5 Hz, 1H), 1.67 (tqd, J = 13.6, 6.9, 3.5 Hz, 1H), 1.13 (d, 

J = 7.1 Hz, 3H), 0.81 (d, J = 6.8 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 178.66, 159.20, 

131.50, 130.64, 129.50, 127.94, 113.82, 77.36, 74.82, 71.93, 65.82, 61.62, 55.34, 35.50, 32.00, 

30.69, 15.32, 9.57. HRMS (ESI, m/z): calcd for [C20H31NO5]+, ([M + K]+): 404.1839, found 

404.1839. 
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(R)-(2S,3R,4R,Z)-1-(methoxy(methyl)amino)-8-((4-methoxybenzyl)oxy)-2,4-dimethyl-1-

oxooct-6-en-3-yl 3,3,3-trifluoro-2-methoxy-2-phenylpropanoate, 34a 

A 5 mL flas was flame dried and flushed with argon before anhydrous DCM (0.5 mL) and (R)-

3,3,3-trifluoro-2-methoxy-2-phenylpropanoic acid (12 mg, 0.051 mmol, 2 eq,) were added. The 

solution was cooled to 0 °C and oxalyl chloride (5 µL, 0.054 mmol, 2.1 eq.) and DMF (2 drops) 

were added. The reaction mixture was allowed to warm to rt and stirring was continued for 2 h at 

which point DIPEA (20 µL, 0.11 mmol, 4.3 eq.), amide 34 (10 mg, 0.026 mmol, 1 eq.), and 

DMAP (6.5 mg, 0.051 mmol, 2 eq.) were added. The reaction mixture was stirred for 1 h at 

which point solvent was removed to afford a yellowish-brown oil that was purified by SiO2 flash 

chromatography (5 % – 10 % EtOAc in hexanes) to afford pure R-Mosher’s ester 34a as a 

colorless oil (13 mg, 86 %). 1H NMR (500 MHz, Acetone) δ 7.66 – 7.58 (m, 2H), 7.50 – 7.41 

(m, 3H), 7.30 – 7.23 (m, 2H), 6.96 – 6.88 (m, 2H), 5.59 – 5.48 (m, 1H), 5.45 – 5.33 (m, 1H), 

5.36 (dd, J = 6.9, 5.0 Hz, 1H), 4.37 (s, 2H), 3.87 (d, J = 5.6 Hz, 2H), 3.79 (s, 3H), 3.78 (s, 3H), 

3.65 (s, 3H), 3.42 – 3.31 (m, 1H), 3.15 (s, 3H), 1.96 – 1.89 (m, 1H), 1.82 (m, 1H), 1.65 (m, 1H), 

1.12 (d, J = 6.9 Hz, 3H), 0.86 (d, J = 6.8 Hz, 3H). 13C NMR (126 MHz, Acetone) δ 175.24, 

166.82, 160.14, 133.18, 131.71, 130.73, 130.55, 129.99, 129.44, 129.15, 128.39, 114.41, 80.89, 

72.25, 66.14, 61.94, 56.34, 55.48, 37.44, 36.16, 30.24, 29.94, 15.97, 11.90. HRMS (ESI, m/z): 

calcd for [C30H38F3NO7]+, ([M + H]+): 582.2679, found 582.2678. 
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(S)-(2S,3R,4R,Z)-1-(methoxy(methyl)amino)-8-((4-methoxybenzyl)oxy)-2,4-dimethyl-1-

oxooct-6-en-3-yl 3,3,3-trifluoro-2-methoxy-2-phenylpropanoate, 34b 

A 5 mL flas was flame dried and flushed with argon before anhydrous DCM (0.5 mL) and (S)-

3,3,3-trifluoro-2-methoxy-2-phenylpropanoic acid (12 mg, 0.051 mmol, 2 eq,) were added. The 

solution was cooled to 0 °C and oxalyl chloride (5 µL, 0.054 mmol, 2.1 eq.) and DMF (2 drops) 

were added. The reaction mixture was allowed to warm to rt and stirring was continued for 2 h at 

which point DIPEA (20 µL, 0.11 mmol, 4.3 eq.), amide 34 (10 mg, 0.026 mmol, 1 eq.), and 

DMAP (6.5 mg, 0.051 mmol, 2 eq.) were added. The reaction mixture was stirred for 1 h at 

which point solvent was removed to afford a yellowish-brown oil that was purified by SiO2 flash 

chromatography (5 % – 10 % EtOAc in hexanes) to afford pure R-Mosher’s ester 34b as a 

colorless oil (13 mg, 86 %). 1H NMR (500 MHz, Acetone) δ 7.66 – 7.58 (m, 2H), 7.50 – 7.41 

(m, 3H), 7.25 (dd, J = 5.1, 3.6 Hz, 2H), 6.91 – 6.88 (m, 2H), 5.68 – 5.63 (m, 1H), 5.55 – 5.51 (m, 

1H), 5.36 (dd, J = 6.9, 5.0 Hz, 1H), 4.41 (s, 2H), 4.02 (d, J = 6.3 Hz, 2H), 3.78 (s, 3H), 3.76 (s, 

3H), 3.53 (s, 3H), 3.37 – 3.31 (m, 1H), 3.15 (s, 3H), 2.30 – 2.27 (m, 1H), 1.93 – 1.90 (m, 2H), 

0.98 (d, J = 6.9 Hz, 3H), 0.95 (d, J = 6.5 Hz, 3H). 13C NMR (126 MHz, Acetone) δ 175.22, 

166.83, 160.14, 132.97, 131.68, 130.97, 130.63, 130.00, 129.57, 129.23, 128.86, 114.41, 81.41, 

72.30, 66.19, 62.00, 56.02, 55.47, 37.45, 36.52, 30.25, 29.94, 16.36, 12.78. HRMS (ESI, m/z): 

calcd for [C30H38F3NO7]+, ([M + H]+): 582.2679, found 582.2681. 

O
OPMB

N

O

MeO

O

OMe

CF3



 165 

 

(2S,3R,4R,Z)-N-methoxy-8-((4-moethoxybenzyl)oxy)-3-(methoxymethoxy)-N,2,4-

trimethyloct-6-enamide, 35 

A 250 mL flask was flame dried and flushed with argon before anhydrous DCM (100 mL), 

amide 34 (4.0 g, 11.0 mmol, 1 eq.), and DIPA (1.2 mL, 69 mmol, 6.3 eq.) were added. The 

solution was cooled to 0 °C and MOMCl (6.0 M in dimethoxymethane, 11 mL, 66 mmol, 6 eq.) 

were added dropwise. Stiring was continued at 0 °C for 1 hr, at which point the reaction was 

quenched by the addition of saturated aqueous sodium bicarbonate (50 mL). The organic layer 

was collected and the aqueous layer was extracted with DCM (3 X, 35 mL). The combined 

organic layers were dried over anhydrous sodium sulfate and solvent was removed under 

reduced pressure to afford a yellow oil that was purified by SiO2 flash chromatography (15 % – 

30 % EtOAc in hexanes) to provide pure amide 35 as a colorless oil (4.1 g, 91 %). [α]25
D = 2.2° 

(c = 0.065, DCM). 1H NMR (500 MHz, Acetone) δ 7.29 – 7.22 (m, 2H), 6.92 – 6.87 (m, 2H), 

5.64 – 5.50 (m, 2H), 4.60 (dd, J = 10.2, 6.7 Hz, 2H), 4.42 (s, 2H), 4.09 – 4.00 (m, 2H), 3.78 (s, 

3H), 3.73 (s, 3H), 3.64 (dd, J = 7.1, 4.4 Hz, 1H), 3.32 (s, 1H), 3.19 – 3.04 (m, 1H), 3.12 (s, 3H), 

2.29 – 2.20 (m, 1H), 1.96 – 1.86 (m, 1H), 1.68 – 1.58 (m, 1H), 1.12 (d, J = 6.9 Hz, 3H), 0.92 (d, 

J = 6.9 Hz, 3H). 13C NMR (126 MHz, Acetone) δ 176.78, 160.09, 132.46, 131.75, 129.98, 

128.61, 114.38, 98.86, 84.81, 72.20, 66.24, 61.88, 56.17, 55.46, 38.69, 37.79, 30.37, 29.53, 

16.86, 14.01. HRMS (ESI, m/z): calcd for [C22H35NO6]+, ([M + Na]+): 432.2362, found 

432.2365. 
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(5S,6R,7R,Z)-11-((4-methoxybenzyl)oxy)-6-(methoxymethoxy)-5,7-dimethylundeca-1,9-

dien-4-one, 36 

A 250 mL flask was flame dried and flushed with argon before anhydrous THF (90 mL) and 

amide 35 (3.6 g, 9 mmol, 1 eq.) were added. The solution was cooled to -78 °C and allyl 

magnesium bromide (1 M in diethyl ether, 11 mL, 11 mmol, 1.2 eq.) was added dropwise. 

Stirring was continued at -78 °C for 30 min at which point the reaction was quenched by the 

addition of saturated aqueous ammonium chloride (30 mL). The solution was allowed to warm to 

rt, the organic layer was collected, and the aqueous layer was extracted with EtOAc (3 X, 30 

mL). The combined organic layers were dried over anhydrous sodium sulfate and solvent was 

removed under reduced pressure to afford a yellow oil that was purified by SiO2 flash 

chromatography (5 % – 10 % EtOAc in hexanes) to provide pure 36 as a colorless oil (3.3 g, 94 

%). [α]25
D = 11.1° (c = 0.023, DCM). 1H NMR (500 MHz, CDCl3) δ 7.30 – 7.22 (m, 2H), 6.87 

(d, J = 8.6 Hz, 2H), 5.91 (ddt, J = 17.1, 10.1, 6.9 Hz, 1H), 5.71 – 5.60 (m, 1H), 5.60 – 5.51 (m, 

1H), 5.17 (dd, J = 10.2, 1.1 Hz, 1H), 5.12 (dd, J = 17.2, 1.4 Hz, 1H), 4.56 (dd, J = 10.2, 6.8 Hz, 

2H), 4.44 (s, 2H), 4.03 (d, J = 6.4 Hz, 2H), 3.79 (s, 3H), 3.69 (dd, J = 6.3, 4.6 Hz, 1H), 3.30 (s, 

3H), 3.39 – 3.18 (m, 1H), 2.83 – 2.73 (m, 1H), 2.40 – 2.22 (m, 1H), 1.90 (dt, J = 13.9, 9.0 Hz, 

1H), 1.75 – 1.59 (m, 1H), 1.12 (d, J = 7.0 Hz, 3H), 0.89 (d, J = 6.8 Hz, 3H). 13C NMR (126 

MHz, CDCl3) δ 210.50, 159.29, 131.81, 131.00, 130.51, 129.52, 127.82, 118.80, 113.87, 98.14, 

83.37, 72.03, 65.66, 56.27, 55.37, 48.49, 46.41, 37.04, 30.41, 16.53, 11.10. HRMS (ESI, m/z): 

calcd for [C23H34O5]+, ([M + Na]+): 413.2304, found 413.2303. 
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(4S,5R,6R,7R,Z)-11-((4-methoxybenzyl)oxy)-6-(methoxymethoxy_5,7-dimethylundeca-1,9-

dien-4-ol, 37 

A 500 mL flask was flame dried and flushed with argon before anhydrous diethyl ether (200 mL) 

and ketone 36 (3.0 g, 7.7 mmol, 1 eq.) were added. The solution was cooled to -42 °C and 

lithium iodide (10.3 g, 77 mmol, 10 eq.) was added. Vigorous stiring was continued for 2 h or 

until the solution became a deep yellow color and lithium iodide was completely dissolved. The 

solution was cooled to -78 °C and lithium aluminum hydride (2.93 g, 77 mmol, 10 eq.) was 

slowly added. The reaction mixture was stirred at -78 °C for 30 min at which point deionized 

water (50 mL) was added dropwise via addition funnel over 20 min. The reaction mixture was 

allowed to warm to rt and a half saturated solution of aqueous sodium potassium tartrate added. 

Stiring was continued until the resultant emulsion became biphasic. The organic layer was 

collected, and the aqueous layer was extracted with EtOAc (6 X, 50 mL). The combined organic 

layers were dried over anhydrous sodium sulfate and solvent was removed under reduced 

pressure to afford a colorless oil consisting of a 10:1 mixture of alcohol epimers that was purified 

by SiO2 flash chromatography (5 % – 10 % EtOAc in hexanes) to provide pure 37 as a colorless 

oil (2.6 g, 87 %). Stereochemistry of the major product was confirmed by Mosher’s analysis 

(vide infra). [α]25
D = -12.9° (c = 0.006, DCM). 1H NMR (500 MHz, CDCl3) δ 7.26 (d, J = 8.5 

Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H), 5.81 (ddt, J = 17.2, 10.1, 7.1 Hz, 1H), 5.66 (dt, J = 12.6, 6.4 

Hz, 1H), 5.57 (ddd, J = 9.7, 8.0, 6.7 Hz, 1H), 5.18 – 5.06 (m, 2H), 4.67 (dd, J = 26.0, 6.2 Hz, 

2H), 4.44 (s, 2H), 4.03 (d, J = 6.4 Hz, 2H), 3.80 (s, 3H), 3.76 – 3.72 (m, 1H), 3.39 (s, 3H), 3.35 

(dd, J = 6.8, 2.7 Hz, 1H), 2.92 (s, 1H), 2.32 – 2.16 (m, 3H), 1.92 – 1.82 (m, 1H), 1.82 – 1.76 (m, 
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1H), 1.76 – 1.66 (m, 2H), 0.95 (d, J = 7.0 Hz, 3H), 0.85 (d, J = 6.7 Hz, 3H). 13C NMR (126 

MHz, CDCl3) δ 159.31, 135.62, 132.05, 130.49, 129.54, 127.60, 117.46, 113.89, 98.86, 88.12, 

74.68, 72.03, 65.62, 56.17, 55.39, 39.81, 38.72, 37.06, 30.75, 16.25, 7.47. HRMS (ESI, m/z): 

calcd for [C23H36O5]+, ([M + K]+): 431.2200, found 431.2198. 

 

(4S,5R,6S,7R,Z)-11-((4-methoxybenzyl)oxy)-6-(methoxymethoxy_5,7-dimethylundeca-1,9-

dien-4-ol, 38 

Alcohol 38 was isolated as a minor product from the Suzuki reduction of ketone 36 as a colorless 

oil (270 mg, 9 %). [α]25
D = 16.4° (c = 0.031, DCM). 1H NMR (500 MHz, CDCl3) δ 7.27 (d, J = 

7.5 Hz, 2H), 6.91 – 6.84 (m, 2H), 5.99 – 5.88 (m, 1H), 5.71 – 5.63 (m, 1H), 5.62 – 5.55 (m, 1H), 

5.17 – 5.06 (m, 2H), 4.69 – 4.64 (m, 2H), 4.44 (s, 2H), 4.03 (d, J = 6.4 Hz, 2H), 3.80 (s, 3H), 

3.61 (dd, J = 9.1, 1.9 Hz, 1H), 3.50 (bs, 2H), 3.41 (s, 3H), 2.45 (m, 1H), 2.30 (m, 1H), 2.14 (dt, J 

= 7.8, 14.4 Hz, 1H), 1.87 (dt, J = 14.1, 9.1 Hz, 1H), 1.79 – 1.70 (m, 1H), 1.70 – 1.62 (m, 1H), 

0.85 (d, J = 6.9 Hz, 3H), 0.80 (d, J = 6.8 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 159.32, 

135.91, 132.12, 130.55, 129.56, 127.69, 117.19, 113.91, 99.18, 84.26, 72.09, 72.04, 65.68, 56.34, 

55.42, 40.27, 39.39, 36.70, 31.41, 15.91, 10.22. HRMS (ESI, m/z): calcd for [C23H36O5]+, ([M + 

K]+): 431.2200, found 431.2198. 
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OPMB

OMOM



 169 

 

(R)-(4S,5R,6S,7R,Z)-11-((4-methoxybenzyl)oxy)-6-(methoxymethoxy)5,7-dimethylundeca-

1,9-dien-4-yl 3,3,3-trifluoro-2-methoxy-2-phenylpropanoate, 37a 

A 5 mL flas was flame dried and flushed with argon before anhydrous DCM (0.5 mL) and (R)-

3,3,3-trifluoro-2-methoxy-2-phenylpropanoic acid (12 mg, 0.051 mmol, 2 eq,) were added. The 

solution was cooled to 0 °C and oxalyl chloride (5 µL, 0.054 mmol, 2.1 eq.) and DMF (2 drops) 

were added. The reaction mixture was allowed to warm to rt and stirring was continued for 2 h at 

which point DIPEA (20 µL, 0.11 mmol, 4.3 eq.), alcohol 37 (10 mg, 0.026 mmol, 1 eq.), and 

DMAP (6.5 mg, 0.051 mmol, 2 eq.) were added. The reaction mixture was stirred for 1 h solvent 

was then removed under reduced pressure to afford a yellow-brown oil that was purified by SiO2 

flash chromatography (5 % – 10 % EtOAc in hexanes) to afford pure R-Mosher’s ester as a 

colorless oil (14 mg, 86 %). 1H NMR (500 MHz, Acetone) δ 7.62 – 7.55 (m, 2H), 7.51 – 7.43 

(m, 3H), 7.30 – 7.23 (m, 2H), 6.92 – 6.87 (m, 2H), 5.83 (dddd, J = 16.5, 10.2, 7.9, 6.2 Hz, 1H), 

5.66 – 5.53 (m, 2H), 5.32 (td, J = 6.6, 5.0 Hz, 1H), 5.18 (ddd, J = 17.1, 3.2, 1.6 Hz, 1H), 5.14 – 

5.10 (m, 1H), 4.59 (d, J = 6.8 Hz, 1H), 4.53 (d, J = 6.8 Hz, 1H), 4.42 (s, 2H), 4.04 (d, J = 5.9 Hz, 

2H), 3.78 (s, 3H), 3.59 (q, J = 1.2 Hz, 3H), 3.36 (s, 3H), 3.18 (dd, J = 6.0, 4.6 Hz, 1H), 2.68 – 

2.53 (m, 2H), 2.27 – 2.16 (m, 1H), 2.02 – 1.97 (m, 1H), 1.91 (m, 1H), 1.79 – 1.70 (m, 1H), 0.83 

(d, J = 7.6 Hz, 3H), 0.82 (d, J = 6.9 Hz, 3H). 13C NMR (126 MHz, Acetone) δ 166.69, 160.13, 

134.48, 133.22, 132.23, 131.73, 130.57, 130.02, 129.27, 128.75, 128.22, 124.53 (q, J = 289 Hz, 

C-F3), 118.89, 114.40, 99.45, 84.99, 78.57, 72.21, 66.17, 56.15, 55.47, 38.56, 37.13, 37.06, 
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30.54, 16.82, 10.15. HRMS (ESI, m/z): calcd for [C33H43F3O7]+, ([M + Na]+): 631.2859, found 

631.2858. 

 

(S)-(4S,5R,6S,7R,Z)-11-((4-methoxybenzyl)oxy)-6-(methoxymethoxy)5,7-dimethylundeca-

1,9-dien-4-yl 3,3,3-trifluoro-2-methoxy-2-phenylpropanoate, 37b 

A 5 mL flas was flame dried and flushed with argon before anhydrous DCM (0.5 mL) and (S)-

3,3,3-trifluoro-2-methoxy-2-phenylpropanoic acid (12 mg, 0.051 mmol, 2 eq,) were added. The 

solution was cooled to 0 °C and oxalyl chloride (5 µL, 0.054 mmol, 2.1 eq.) and DMF (2 drops) 

were added. The reaction mixture was allowed to warm to rt and stirring was continued for 2 h at 

which point DIPEA (20 µL, 0.11 mmol, 4.3 eq.), alcohol 37 (10 mg, 0.026 mmol, 1 eq.), and 

DMAP (6.5 mg, 0.051 mmol, 2 eq.) were added. The reaction mixture was stirred for 1 h solvent 

was then removed under reduced pressure to afford a yellow-brown oil that was purified by SiO2 

flash chromatography (5 % – 10 % EtOAc in hexanes) to afford pure S-Mosher’s ester as a 

colorless oil (14 mg, 86 %). 1H NMR (500 MHz, Acetone) δ 7.60 – 7.54 (m, 2H), 7.51 – 7.45 

(m, 3H), 7.29 – 7.24 (m, 2H), 6.92 – 6.87 (m, 2H), 5.70 – 5.53 (m, 3H), 5.31 (td, J = 6.6, 4.8 Hz, 

1H), 5.05 (ddd, J = 17.1, 3.1, 1.6 Hz, 1H), 5.00 (dd, J = 10.2, 0.8 Hz, 1H), 4.66 (d, J = 6.9 Hz, 

1H), 4.62 (d, J = 6.8 Hz, 1H), 4.42 (s, 2H), 4.05 (d, J = 7.1 Hz, 2H), 3.78 (s, 3H), 3.54 (q, J = 1.0 

Hz, 3H), 3.38 (s, 3H), 3.32 (dd, J = 6.3, 4.2 Hz, 1H), 2.60 – 2.42 (m, 2H), 2.29 – 2.23 (m, 1H), 

2.10 – 2.01 (m, 1H), 2.01 – 1.91 (m, 1H), 1.82 (m, 1H), 0.99 (d, J = 6.9 Hz, 3H), 0.87 (d, J = 6.8 

Hz, 3H). 13C NMR (126 MHz, Acetone) δ 166.81, 160.13, 134.16, 132.86, 132.22, 131.74, 

130.62, 130.02, 129.30, 128.79, 128.59, 124.51 (q, J = 289 Hz, C-F3), 118.86, 114.40, 99.44, 
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84.99, 78.86, 72.21, 66.17, 56.16, 55.47, 38.40, 37.25, 36.91, 30.76, 16.75, 10.42. HRMS (ESI, 

m/z): calcd for [C33H43F3O7]+, ([M + Na]+): 631.2859, found 631.2863. 

 

(4S,5R,6R)-4-allyl-6-((R,Z)-6-((4-methoxybenzyl)oxy)hex-4-en-2-yl)-2,2,5-trimethyl-1,3-

dioxane, 39 

A 5 mL flask was charged with methanol (0.5 mL) before compound 37 (15 mg, 0.038 mmol, 1 

eq.) was added. Concentrated hydrochloric acid (12 M in deionized water, 46 µL, 0.0038 mmol, 

0.1 eq.) was added and the solution was heated at reflux for 5 min and then cooled to 0 °C at 

which point saturated aqueous sodium bicarbonate (1 mL) was added to quench the reaction. 

Organic solvent was removed under reduced pressure and the resultant slurry was diluted with 

EtOAc (1 mL) and deionized water (1 mL). The organic layer was collected and the aqueous 

layer was extracted with EtOAc (3 X, 1 mL). The combined organic layers were dried over 

anhydrous sodium sulfate and solvent was removed under reduced pressure to afford a yellow oil 

that was purified by SiO2 flash chromatography (30 % – 50 % EtOAc in hexanes) to provide 

pure diol as a colorless oil (7.5 mg, 57 %), which was used in the subsequent step without further 

characterization. A 1/2 dram vial was charge with acetone (50 µL) before 2,2-dimethoxypropane 

(52 mL, 0.44 mmol, 20 eq.) diol  (7.5 mg, 0.022 mmol, 1 eq.), and pyridinium p-toluenesulfonate 

(0.5 mg, 0.0022 mmol, 0.1 eq.) were added. The solution was stirred at rt for 4 h and the reaction 

was quenched by the addition of saturated aqueous sodium bicarbonate (0.5 mL). Organic 

solvent was removed under reduced pressure and the resultant slurry was diluted with EtOAc (1 

mL) and deionized water (1 mL). The organic layer was collected and the aqueous layer was 

extracted with EtOAc (4 X, 1 mL). The combined organic layers were dried over anhydrous 



 172 

sodium sulfate and solvent was removed under reduced pressure to afford a colorless oil that was 

purified by SiO2 flash chromatography (10 % EtOAc in hexanes) to provide pure acetonide 39 as 

a colorless oil. 1H NMR (500 MHz, C6D6) δ 7.30 – 7.26 (m, 2H), 6.84 – 6.78 (m, 2H), 5.92 – 

5.85 (m, 1H), 5.85 – 5.78 (m, 1H), 5.62 – 5.52 (m, 1H), 5.10 (ddd, J = 17.2, 3.4, 1.7 Hz, 1H), 

5.07 – 5.03 (m, 1H), 4.46 – 4.39 (m, 2H), 4.13 (m, 2H), 3.71 (ddd, J = 8.0, 6.0, 2.2 Hz, 1H), 3.30 

(s, 3H), 3.24 (dd, J = 9.9, 2.1 Hz, 1H), 2.49 – 2.35 (m, 2H), 2.10 – 1.98 (m, 2H), 1.74 – 1.64 (m, 

1H), 1.49 (s, 3H), 1.29 (s, 3H), 1.26 – 1.19 (m, 1H), 0.88 (d, J = 6.8 Hz, 3H), 0.64 (d, J = 6.9 Hz, 

3H). 13C NMR (126 MHz, C6D6) δ 159.72, 135.37, 131.00, 129.50, 128.69, 128.35, 116.74, 

114.09, 99.01, 76.94, 73.43, 72.10, 66.09, 54.76, 37.93, 34.82, 32.72, 31.18, 30.36, 19.71, 13.94, 

4.80. HRMS (ESI, m/z): calcd for [C24H36O4]+, ([M + Na]+): 411.2511, found 411.2515. 

 

(4R,5R,6R)-4-allyl-6-((R,Z)-6-((4-methoxybenzyl)oxy)hex-4-en-2-yl)-2,2,5-trimethyl-1,3-

dioxane, 40 

A 5 mL flask was charged with methanol (0.5 mL) before compound 38 (15 mg, 0.038 mmol, 1 

eq.) was added. Concentrated hydrochloric acid (12 M in deionized water, 46 µL, 0.0038 mmol, 

0.1 eq.) was added and the solution was heated at reflux for 5 min and then cooled to 0 °C at 

which point saturated aqueous sodium bicarbonate (1 mL) was added to quench the reaction. 

Organic solvent was removed under reduced pressure and the resultant slurry was diluted with 

EtOAc (1 mL) and deionized water (1 mL). The organic layer was collected and the aqueous 

layer was extracted with EtOAc (3 X, 1 mL). The combined organic layers were dried over 

anhydrous sodium sulfate and solvent was removed under reduced pressure to afford a yellow oil 

that was purified by SiO2 flash chromatography (30 % – 50 % EtOAc in hexanes) to provide 
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pure diol as a colorless oil (7.5 mg, 57 %), which was used in the subsequent step without further 

characterization. A 1/2 dram vial was charge with acetone (50 µL) before 2,2-dimethoxypropane 

(52 mL, 0.44 mmol, 20 eq.) diol (7.5 mg, 0.022 mmol, 1 eq.), and pyridinium p-toluenesulfonate 

(0.5 mg, 0.0022 mmol, 0.1 eq.) were added. The solution was stirred at rt for 4 h and the reaction 

was quenched by the addition of saturated aqueous sodium bicarbonate (0.5 mL). Organic 

solvent was removed under reduced pressure and the resultant slurry was diluted with EtOAc (1 

mL) and deionized water (1 mL). The organic layer was collected and the aqueous layer was 

extracted with EtOAc (4 X, 1 mL). The combined organic layers were dried over anhydrous 

sodium sulfate and solvent was removed under reduced pressure to afford a colorless oil that was 

purified by SiO2 flash chromatography (10 % EtOAc in hexanes) to provide pure acetonide 40 as 

a colorless oil. 1H NMR (500 MHz, C6D6) δ 7.30 – 7.25 (m, 2H), 6.84 – 6.78 (m, 2H), 5.97 (ddt, 

J = 17.1, 10.2, 6.9 Hz, 1H), 5.89 – 5.81 (m, 1H), 5.62 – 5.54 (m, 1H), 5.15 – 5.05 (m, 2H), 4.43 – 

4.37 (m, 2H), 4.17 – 4.05 (m, 2H), 3.41 (dd, J = 10.6, 4.3 Hz, 1H), 3.35 – 3.30 (m, 1H), 3.30 (s, 

3H), 2.62 – 2.53 (m, 1H), 2.33 – 2.18 (m, 2H), 1.89 (dtd, J = 14.1, 8.9, 0.9 Hz, 1H), 1.67 – 1.54 

(m, 2H), 1.34 (s, 3H), 1.33 (s, 3H), 0.76 (d, J = 6.7 Hz, 3H), 0.66 (d, J = 6.7 Hz, 3H). 13C NMR 

(126 MHz, C6D6) δ 159.70, 135.76, 131.40, 129.48, 128.54, 128.35, 116.69, 114.07, 100.81, 

75.13, 72.96, 72.01, 66.02, 54.76, 39.69, 38.02, 33.59, 31.45, 25.29, 23.96, 14.96, 11.97. HRMS 

(ESI, m/z): calcd for [C24H36O4]+, ([M + Na]+): 411.2511, found 411.2515. 

 

(S,E)-N-((1R,2R)-1-hydroxy-1-phenylpropan-2-yl)-N,2-dimethylhex-4-enamide, 44 

A 250 mL flask was flame dried and flushed with argon before anhydrous THF (17 mL), 

anhydrous lithium chloride (3 g, 68 mmol, 5 eq.), and DIPA (4.4 mL, 31 mmol, 2.25 eq.) were 
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added. The suspension was cooled to -78 °C, butyllithium (2.5 M in hexanes, 11.3 mL, 28 mmol, 

2.08 eq.) was added, and stirring was continued as the solution was briefly warmed to 0 °C and 

then cooled back to -78 °C. An ice cooled solution of amide R,R-pseudoephedrinepropionamide 

(3 g, 13.6 mmol, 1 eq.) in anhydrous THF (43 mL) was added via cannula followed by a wash 

with THF (5 mL). Stirring was continued at -78 °C for 2 h, 0 °C for 30 min, and rt for 5 min, 

before the reaction mixture was finally cooled to 0 °C. trans-crotyl bromide (2.80 g, 20.4 mmol, 

1.5 eq.) was then added in one portion, and the reaction mixture was stirred for 2 h at 0 °C. 

Reaction was quenched at 0 °C by the addition of saturated aqueous ammonium chloride (2 mL) 

and the mixture was partitioned between saturated aqueous ammonium chloride (130 mL) and 

EtOAc (50 mL). The organic layer was collected and the aqueous layer was extracted with 

EtOAc (3 X, 50 mL). The combined organic layers were dried over anhydrous sodium sulfate 

and solvent was removed under reduced pressure to afford a yellow oil that was purified by SiO2 

flash chromatography (30 % EtOAc in hexanes) to provide pure 44 as a colorless oil (94 %). 

Diastereoselectivity (>20:1) was assessed using Myers oxazolium technique (vide infra). [α]25
D = 

-76.6° (c = 0.068, DCM). (*Denotes minor rotamer peak) 1H NMR (500 MHz, CDCl3) δ 7.42 – 

7.30 (m, 5H), *7.29 – 7.23 (m, 5H), *5.56 – 5.51 (m, 1H), 5.50 – 5.5 (m, 1H), 5.41 – 5.35 (m, 

1H), *5.33 – 5.27 (m, 1H), 4.62 (dd, J = 8.6, 7.2 Hz, 1H), 4.58 (d, J = 8.7 Hz, 1H), *4.55 – 4.45 

(m, 1H), 4.40 (bs, 1H), *4.12 – 4.04 (m, 1H), *2.91 (s, 3H), 2.84 (s, 3H), 2.67 – 2.58 (m, 1H), 

*2.49 – 2.40 (m, 1H), 2.26 (ddd, J = 14.0, 7.4, 6.5 Hz, 1H), *2.20 – 2.13 (m, 1H), *2.10 (m, 1H), 

2.01 (ddd, J = 14.0, 7.7, 7.1 Hz, 1H), *1.66 (d, J = 6.3 Hz, 3H), 1.63 (dd, J = 6.4, 1.0 Hz, 3H), 

1.13 (d, J = 6.9 Hz, 3H), *1.10 (d, J = 6.9 Hz, 3H), 1.09 (d, J = 6.7 Hz, 3H), *1.01 (d, J = 6.7 Hz, 

3H). 13C NMR (126 MHz, CDCl3) δ 178.87, *177.57, 142.71, *141.05, *129.07, *128.89, 

128.56, 128.48, 127.73, *127.46, 127.31, *127.10, 126.48, *126.04, 77.37, 76.70, *75.62, 
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*58.27, 37.21, 37.16, 37.13, *37.00, *36.38, *31.31, *18.16, 18.08, *17.75, 17.11, *15.62, 14.65. 

HRMS (ESI, m/z): calcd for [C17H25NO2]+, ([M + Na]+): 298.1783, found 298.1782. 

 

(S,E)-2-methylhex-4-enoic acid, 46 

A 500 mL flask was charged with tert-butanol (42 mL) and deionized water (136 mL) before 

amide 44 (3.56 g, 13.6 mmol, 1 eq.) and tetrabutylammonium hydroxide (1.5 M in deionized 

water, 50 mL, 68 mmol, 5 eq.) were added. The solution was heated at reflux for 23 h. Once the 

reaction was complete, the solution was allowed to cool to rt and suspended between 0.5 M 

aqueous sodium hydroxide (1.76 L) and diethyl ether (250 mL). The organic layer was removed, 

and the aqueous layer was extracted with diethyl ether (3 X, 250 mL). The aqueous layer was 

cooled to 0 °C, saturated with sodium chloride, and acidified to pH 2 with 4 N aqueous 

hydrochloric acid. The acid solution was extracted with diethyl ether (4 X, 300 mL) and the 

combined organic extracts were dried over anhydrous sodium sulfate. Solvent was removed 

under reduced pressure to afford pure acid 46 as a colorless liquid (1.64 g, 94%). [α]25
D = +9.7° 

(c = 0.031, DCM). 1H NMR (500 MHz, CDCl3) δ 10.68 (s, 1H), 5.53 – 5.45 (m, 1H), 5.41 – 5.33 

(m, 1H), 2.53 – 2.45 (m, 1H), 2.40 – 2.31 (m, 1H), 2.17 – 2.08 (m, 1H), 1.64 (dd, J = 6.3, 1.3 Hz, 

3H), 1.15 (d, J = 7.0 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 182.98, 127.90, 127.68, 39.73, 

36.49, 18.04, 16.38. HRMS (ESI, m/z): calcd for [C7H12O2]-, ([2M + Na – 2H]-): 277.1416, 

found 277.1415. 
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(S,E)-N-methoxy-N,2-dimethylhex-4-enamide, 48 

A 100 mL flask was flame dried and flushed with argon before DMF (20 mL), acid 46 (1.34 g, 

10.5 mmol, 1 eq.), and DIPEA (2.4 mL, 22.1 mmol, 2.1 eq.) were added. COMU (3.13 g, 11.6 

mmol, 1.1 eq.) was then added in one portion and the reaction mixture was stirred at rt for 45 

min at which point N,O-Dimethylhydroxylamine hydrochloride (1.3 g, 21 mmol, 2 eq.) was 

added. Stirring was continued for 1 hr and the reaction was quenched by the careful addition of 

saturated aqueous sodium bicarbonate (15 mL). The resulting slurry was then extracted with 

EtOAc (5 X, 30 mL) and the combined organic portions were dried over anhydrous sodium 

sulfate. Solvent was removed under reduced pressure to afford a red oil that was purified by SiO2 

flash chromatography (5 % – 15% EtOAc in hexanes) to provide pure amide 48 as a colorless oil 

(94 %). [α]25
D = 30.4° (c = 0.004, DCM). 1H NMR (500 MHz, CDCl3) δ 5.50 – 5.42 (m, 1H), 

5.41 – 5.32 (m, 1H), 3.67 (s, 3H), 3.17 (s, 3H), 2.88 (m, 1H), 2.36 – 2.29 (m, 1H), 2.08 – 2.00 

(m, 1H), 1.63 (dd, J = 6.3, 1.1 Hz, 3H), 1.09 (d, J = 6.9 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 

177.77, 128.73, 127.17, 61.59, 36.80, 18.07, 17.10. HRMS (ESI, m/z): calcd for [C9H17NO2]+, 

([M + Na]+): 194.1157, found 194.1156. 

 

(S)-N-((1R,2R)-1-hydroxy-1-phenylpropan-2-yl)-N,2-dimethylpent-4-enamide, 43 

A 250 mL flask was flame dried and flushed with argon before anhydrous THF (17 mL), 

anhydrous lithium chloride (3 g, 68 mmol, 5 eq.), and DIPA (4.4 mL, 31 mmol, 2.25 eq.) were 

added. The suspension was cooled to -78 °C, butyllithium (2.5 M in hexanes, 11.3 mL, 28 mmol, 



 177 

2.08 eq.) was added, and stirring was continued as the solution was briefly warmed to 0 °C and 

then cooled back to -78 °C. An ice cooled solution of R,R-pseudoephedrinepropionamide (3 g, 

13.6 mmol, 1 eq.) in anhydrous THF (43 mL) was added via cannula followed by a wash with 

THF (5 mL). Stirring was continued at -78 °C for 2 h, 0 °C for 30 min, and rt for 5 min, before 

the reaction mixture was finally cooled to 0 °C. Allyl bromide (1.77 mL, 20.4 mmol, 1.5 eq.) 

was then added in one portion, and the reaction mixture was stirred for 2 h at 0 °C. Reaction was 

quenched at 0 °C by the addition of saturated aqueous ammonium chloride (2 mL) and the 

mixture was partitioned between saturated aqueous ammonium chloride (130 mL) and EtOAc 

(50 mL). The organic layer was collected and the aqueous layer was extracted with EtOAc (3 X, 

50 mL). The combined organic layers were dried over anhydrous sodium sulfate and solvent was 

removed under reduced pressure to afford a yellow oil that was purified by SiO2 flash 

chromatography (30 % EtOAc in hexanes) to provide pure 43 as a colorless oil (94 %). 

Diastereoselectivity (>20:1) was assessed using Myers oxazolium technique (vide infra). [α]25
D = 

-71.5° (c = 0.142, DCM). (*Denotes minor rotamer peak) 1H NMR (500 MHz, CDCl3) δ 7.42 – 

7.30 (m, 5H), *7.29 – 7.23 (m, 5H), *5.80 (ddt, J = 17.2, 10.0, 7.0 Hz, 1H), 5.70 (ddt, J = 17.2, 

10.0, 7.0 Hz, 1H), *5.15 – 5.07 (m, 2H), 5.06 – 4.97 (m, 2H), 4.66 – 4.55 (m, 1H), *4.58 (d, J = 

8.7 Hz, 1H), 4.52 – 4.24 (m, 1H), *4.13 – 4.02 (m, 1H), *2.92 (s, 3H), 2.86 (s, 3H), 2.74 – 2.63 

(m, 1H), *2.58 – 2.47 (m, 1H), *2.47 – 2.40 (m, 1H), 2.40 – 2.28 (m, 1H), *2.24 – 2.13 (m, 1H), 

2.14 – 2.01 (m, 1H), 1.11 (d, J = 6.8 Hz, 6H), *1.02 (d, J = 6.8 Hz, 1H). 13C NMR (126 MHz, 

CDCl3) δ 178.55, *177.26, 142.61, *141.12, *136.80, 136.14, *128.90, *128.62, 128.49, 127.76, 

*127.05, 126.50, *116.72, 116.68, 77.37, 76.66, *75.64, *58.22, *38.21, 38.18, 36.71, 35.95, 

*27.19, *17.75, 17.15, *15.67, 14.65. HRMS (ESI, m/z): calcd for [C16H23NO2]+, ([M + Na]+): 

284.1626, found 284.1623. 
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(S)-2-methylpent-4-enoic acid, 45 

A 500 mL flask was charged with tert-butanol (42 mL) and deionized water (136 mL) before 

amide 43 (3.56 g, 13.6 mmol, 1 eq.) and tetrabutylammonium hydroxide (1.5 M in deionized 

water, 50 mL, 68 mmol, 5 eq.) were added. The solution was heated at reflux for 23 h. Once the 

reaction was complete, the solution was allowed to cool to rt and suspended between 0.5 M 

aqueous sodium hydroxide (1.76 L) and diethyl ether (250 mL). The organic layer was removed, 

and the aqueous layer was extracted with diethyl ether (3 X, 250 mL). The aqueous layer was 

cooled to 0 °C, saturated with sodium chloride, and acidified to pH 2 with 4 N aqueous 

hydrochloric acid. The acid solution was extracted with diethyl ether (4 X, 300 mL) and the 

combined organic extracts were dried over anhydrous sodium sulfate. Solvent was removed 

under reduced pressure to afford pure acid 45 as a colorless liquid (1.46 g, 94%). [α]25
D = +9.6° 

(c = 0.047, DCM). 1H NMR (500 MHz, CDCl3) δ 5.77 (ddt, J = 17.1, 10.2, 7.0 Hz, 1H), 5.09 

(ddt, J = 17.1, 1.7, 1.5 Hz, 1H), 5.06 (ddt, J = 10.2, 1.9, 1.0 Hz, 1H), 2.61 – 2.51 (m, 1H), 2.49 – 

2.41 (m, 1H), 2.21 (m, 1H), 1.19 (d, J = 7.0 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 175.41, 

135.29, 117.28, 39.17, 37.62, 16.46. HRMS (ESI, m/z): calcd for [C6H10O2]-, ([2M + Na – 2H]-): 

249.1103, found 249.1102. 

 

(S)-N-methoxy-N,2-dimethylpent-4-enamide, 47 

A 100 mL flask was flame dried and flushed with argon before DMF (20 mL), acid 45 (1.20 g, 

10.5 mmol, 1 eq.), and DIPEA (2.4 mL, 22.1 mmol, 2.1 eq.) were added. COMU (3.13 g, 11.6 
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mmol, 1.1 eq.) was then added in one portion and the reaction mixture was stirred at rt for 45 

min at which point N,O-Dimethylhydroxylamine hydrochloride (1.3 g, 21 mmol, 2 eq.) was 

added. Stirring was continued for 1 hr and the reaction was quenched by the careful addition of 

saturated aqueous sodium bicarbonate (15 mL). The resulting slurry was then extracted with 

EtOAc (5 X, 30 mL) and the combined organic portions were dried over anhydrous sodium 

sulfate. Solvent was removed under reduced pressure to afford a red oil that was purified by SiO2 

flash chromatography (5 % – 15% EtOAc in hexanes) to provide pure amide 47 as a colorless oil 

(94 %). [α]25
D = 27.3° (c = 0.007, DCM). 1H NMR (500 MHz, CDCl3) δ 5.73 (ddt, J = 17.0, 

10.2, 7.0 Hz, 1H), 5.03 (dd, J = 17.1, 1.4 Hz, 1H), 4.97 (dd, J = 10.2, 0.9 Hz, 1H), 3.65 (s, 3H), 

3.15 (s, 3H), 2.91 (m, 1H), 2.39 (m, 1H), 2.09 (m, 1H), 1.09 (d, J = 6.9 Hz, 3H). 13C NMR (126 

MHz, CDCl3) δ 177.41, 136.27, 116.47, 61.54, 37.91, 35.25, 17.09. HRMS (ESI, m/z): calcd for 

[C8H15NO2]+, ([M + Na]+): 180.1000, found 180.1002. 

 

(S,E)-methyl-2-((tert-butyldimethylsilyl)oxy)-4-methoxy-6-(3-methyl-2-oxohept-5-en-1-

yl)benzoate, 52 

A flame dried 10 mL flask was flame dried and flushed with argon before THF (1.7 mL) and 

ester 51 (200 mg, 0.83 mmol, 1 eq.) were added. The solution was cooled to -78 °C and tert-

butyllithium (1.7 M in pentane, 540 µL, 0.91 mmol, 1.1 eq.) was added dropwise over 5 min. 

The reaction mixture was stirred for 5 min at which point a solution of amide 48 (142 mg, 0.83 

mmol, 1 eq.) in THF (100 µL) was added at once. Stirring was continued at -78 °C for 5 min at 

which point the reaction was quenched at -78 °C by the careful addition of saturated aqueous 
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ammonium chloride (2 mL) and the biphasic mixture was allowed warm to rt. The organic layer 

was collected and the aqueous layer was extracted with EtOAc (4 X, 1.5 mL). The combined 

organic layers were dried over anhydrous sodium sulfate and solvent was removed under 

reduced pressure to afford a light yellow oil that was purified by SiO2 flash chromatography (5 

% – 15 % EtOAc in hexanes) to provide pure ketone 52 as a colorless liquid (87 %). [α]25
D = 

15.8° (c = 0.011, DCM). 1H NMR (500 MHz, CDCl3) δ 6.31 (d, J = 2.3 Hz, 1H), 6.29 (d, J = 2.3 

Hz, 1H), 5.48 – 5.40 (m, 1H), 5.34 – 5.26 (m, 1H), 3.79 (s, 3H), 3.85 – 3.67 (m, 1H), 3.76 (s, 

3H), 2.70 – 2.61 (m, 1H), 2.35 – 2.27 (m, 1H), 2.06 – 1.98 (m, 1H), 1.63 (dd, J = 6.3, 1.3 Hz, 

3H), 1.05 (d, J = 6.9 Hz, 3H), 0.96 (s, 9H), 0.21 (s, 6H). 13C NMR (126 MHz, CDCl3) δ 210.54, 

168.57, 161.22, 155.09, 135.77, 128.20, 127.55, 109.21, 105.61, 104.65, 55.43, 52.03, 47.07, 

45.59, 36.10, 26.11, 25.67, 18.07, 16.18, -4.23. HRMS (ESI, m/z): calcd for [C23H36O5Si]+, ([M 

+ Na]+): 443.2230, found 443.2231. 

 

methyl 2-((tert-butyldimethylsilyl)oxy)-6-((2S,3S,E)-2-hydroxy-3-methylhept-5-en-1-yl)-4-

methoxybenzoate, 53 

A 5 mL flask was flame dried and flushed with argon before toluene (1.2 mL), ketone 52 (60 mg, 

0.14 mmol, 1 eq.), and (R)-(+)-2-butyl-CBS-oxazaborolidine (1 M in toluene, 290 µL, 0.29 

mmol, 2 eq.) were added. The solution was cooled to -78 °C and catecholborane (1 M in THF, 

290 µL, 0.29 mmol, 2 eq.) was added dropwise over 5 h. Stirring was continued for an additional 

12 h at which point the reaction was quenched at -78 °C by the addition of saturated aqueous 

sodium bicarbonate (2 mL) and the biphasic solution was allowed to warm to rt. The organic 
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layer was collected and the aqueous layer was extracted with EtOAc (4 X, 2 mL). The combined 

organic layers were dried over anhydrous sodium sulfate and solvent was removed under 

reduced pressure to afford a yellow oil that was purified by SiO2 flash chromatography (10 % – 

20 % EtOAc in hexanes) to provide pure alcohol 53 as a colorless oil (84 %). [α]25
D = -35.7° (c = 

0.008, DCM). 1H NMR (500 MHz, CDCl3) δ 6.41 (d, J = 2.2 Hz, 1H), 6.26 (d, J = 1.9 Hz, 1H), 

5.51 – 5.38 (m, 2H), 3.84 (s, 3H), 3.77 (s, 3H), 3.72 – 3.65 (m, 1H), 2.73 (dd, J = 13.6, 3.1 Hz, 

1H), 2.60 (dd, J = 13.6, 10.1 Hz, 1H), 2.57 (m, 1H), 2.26 – 2.17 (m, 1H), 1.95 – 1.86 (m, 1H), 

1.66 (d, J = 5.3 Hz, 3H), 0.97 (s, 9H), 0.94 (d, J = 6.9 Hz, 3H), 0.23 (s, 3H), 0.20 (s, 3H). 13C 

NMR (126 MHz, CDCl3) δ 169.66, 161.39, 154.63, 140.80, 129.99, 126.53, 119.39, 108.28, 

104.03, 75.60, 55.44, 52.28, 39.31, 39.05, 36.73, 25.67, 18.21, 18.11, 13.92, -4.17, -4.29. HRMS 

(ESI, m/z): calcd for [C23H38O5Si]+, ([M + Na]+): 445.2386, found 445.2386.  

 

methyl 2-((tert-butyldimethylsilyl)oxy)-4-methoxy-6-((2S,3S,E)-2-(methoxymethoxy)-3-

methylhept-5-en-1-yl)benzoate, 54 

A 250 mL flask was flame dried and flushed with argon before DCM (100 mL), 53 (4 g, 9.5 

mmol, 1 eq.). and DIPEA (12 mL, 64 mmol, 6.5 eq.) were added. The solution was cooled to 0 

°C and MOMCl (6 M, 9.6 mL, 58 mmol, 6 eq.) was added and the reaction mixture was stirred 

for 30 min, followed by quenching by the addition of saturated aqueous sodium bicarbonate (70 

mL). The organic layer was collected the aqueous layer was extracted with dichloromethane (3 

X, 70 mL). The combined organic layers were dried over anhydrous sodium sulfate and solvent 

was removed under reduced pressure to afford a yellow oil that was purified by SiO2 flash 
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chromatography (15 % – 20 % EtOAc in hexanes) to provide pure 54 as a colorless oil (93%). 

[α]25
D = -46.4° (c = 0.132, DCM). 1H NMR (500 MHz, CDCl3) δ 6.40 (d, J = 2.3 Hz, 1H), 6.25 

(d, J = 2.3 Hz, 1H), 5.52 – 5.29 (m, 2H), 4.49 (d, J = 6.8 Hz, 1H), 4.40 (d, J = 6.8 Hz, 1H), 3.82 

(s, 3H), 3.76 (s, 3H), 3.68 – 3.61 (m, 1H), 3.24 (s, 2H), 2.80 (dd, J = 13.7, 8.0 Hz, 1H), 2.71 (dd, 

J = 13.7, 5.7 Hz, 1H), 2.23 – 2.13 (m, 1H), 1.81 (dt, J = 15.1, 7.3 Hz, 1H), 1.64 (dd, J = 6.0, 1.0 

Hz, 3H), 0.96 (s, 9H), 0.90 (d, J = 6.9 Hz, 3H), 0.20 (s, 6H). 13C NMR (126 MHz, CDCl3) δ 

168.88, 160.73, 154.18, 139.85, 130.18, 126.34, 119.84, 108.86, 103.80, 96.46, 81.71, 55.63, 

55.44, 52.04, 36.64, 36.08, 36.01, 29.85, 25.69, 18.14, 14.33, -4.23, -4.24. HRMS (ESI, m/z): 

calcd for [C25H42O5Si]+, ([M + Na]+): 473.2699, found 473.2704. 

 

(4S,5R,6R,7R,Z)-11-((4-methoxybenzyl)oxy)-6-(methoxymethoxy)-5,7-dimethylundeca-1,9-

dien-4-yl 2,4-dimethoxy-6-methylbenzoate, 59 

A 25 mL flask was flame dried and flushed with argon before DCM (10 mL) and 2,4-dimethoxy-

6-methylbenzoic acid (590 mg, 3.06 mmol, 3 eq.) were added. The suspension was cooled to 0 

°C and oxalyl bromide (300 µL, 3.20 mmol, 3.1 eq.) was added dropwise. The suspension was 

allowed to warm to rt and stirred until all solid was dissolved at which point 4 drops of 

anhydrous DMF was added. Stirring was continued at rt for 1 h and the solution was cooled 0 °C 

before DIPEA (1.12 mL, 6.40 mmol, 6.2 eq.) was added. Stirring was continued at 0 °C for 30 

min before a solution of alcohol 37 (400 mg, 1.02 mmol, 1 eq.) in DCM (1.00 mL) and DMAP 

(250 mg, 2.04 mmol, 2 eq.) were added. The reaction mixture was allowed to warm to rt and 

stirring was continued for 30 min at which point the reaction was quenched by the addition of 
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deionized water (10 mL). The organic layer was collected and the aqueous layer was extracted 

with DCM (4 X, 15 mL). The combined organic layers were dried over anhydrous sodium 

sulfate and solvent was removed to afford a brown oil that was purified by SiO2 flash 

chromatography (15 % – 20 % EtOAc in hexanes) to provide ester 59 as a faint yellow oil (530 

mg, 91%). [α]25
D = 2.8° (c = 0.074, DCM). 1H NMR (500 MHz, CDCl3) δ 7.31 – 7.24 (m, 2H), 

6.90 – 6.84 (m, 2H), 6.32 – 6.27 (m, 2H), 5.84 (ddt, J = 17.1, 10.1, 7.1 Hz, 1H), 5.70 – 5.62 (m, 

1H), 5.62 – 5.54 (m, 1H), 5.26 (m, 1H), 5.13 (ddt, J = 17.2, 1.8, 1.4 Hz, 1H), 5.09 (ddt, J = 10.2, 

1.8, 0.98 Hz, 1H), 4.65 (d, J = 6.8 Hz, 1H), 4.63 (d, J = 6.8 Hz, 1H) 4.44 (s, 2H), 4.05 (d, J = 6.3 

Hz, 2H), 3.80 (s, 3H), 3.80 (s, 3H), 3.77 (s, 3H), 3.43 (s, 3H), 3.33 (t, J = 5.1 Hz, 1H), 2.59 – 

2.47 (m, 2H), 2.29 (s, 3H), 2.25 – 2.20 (m, 1H), 2.04 – 1.95 (m, 1H), 1.95 – 1.82 (m, 2H), 1.03 

(d, J = 6.8 Hz, 3H), 0.87 (d, J = 6.5 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 168.15, 161.24, 

159.25, 158.02, 138.03, 133.96, 132.26, 130.56, 129.56, 127.59, 118.09, 117.07, 113.86, 106.55, 

98.75, 96.16, 84.64, 75.25, 72.00, 65.76, 56.33, 55.64, 55.50, 55.40, 37.88, 36.61, 36.14, 29.91, 

20.14, 16.83, 10.13. HRMS (ESI, m/z): calcd for [C33H46O8]+, ([M + K]+): 609.2830, found 

609.2824. 

 

(4S,5R,6R,7R,Z)-11-((4-methoxybenzyl)oxy)-6-(methoxymethoxy)-5,7-dimethylundeca-1,9-

dien-4-yl 2,4-dimethoxy-6-((S)-3-methyl-2-oxohex-5-en-1-yl)benzoate, 68 

A 10 mL flask was flame dried and flushed with argon before THF (0.2 mL) and ester 59 (100 

mg, 0.18 mmol, 1 eq.) were added. The solution was cooled to -78 °C before a 1 M solution of 
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lithium diisopropylamide (370 µL, 0.37 mmol, 2.1 eq.) in THF was added dropwise. Stirring was 

continued at -78 °C for 5 min at which point weinreb amide 47 (70 mg, 0.44 mmol, 2.5 eq.) in 

THF (100 µL) was quickly added. The solution was stirred for 5 min at -78 °C  and the reaction 

was quenched by the addition of half saturated aqueous ammonium chloride (1 mL). The 

biphasic mixture was allowed to warm to rt while stirring continued. The organic layer was 

collected, and the aqueous layer was extracted with EtOAc (4 X, 1 mL). The combined organic 

layers were dried over anhydrous sodium sulfate and solvent was removed under reduced 

pressure to afford a colorless oil that was purified by SiO2 flash chromatography (15 % – 25 % 

EtOAc in hexanes) to provide compound 68 as a colorless oil (100 mg, 83 %). [α]25
D = 8.6° (c = 

0.002, DCM). 1H NMR (500 MHz, CDCl3) δ 7.30 – 7.24 (m, 2H), 6.89 – 6.85 (m, 2H), 6.38 (d, J 

= 2.2 Hz, 1H), 6.26 (d, J = 2.2 Hz, 1H), 5.90 – 5.79 (m, 1H), 5.77 – 5.68 (m, 1H), 5.68 – 5.62 

(m, 1H), 5.62 – 5.54 (m, 1H), 5.26 – 5.19 (m, 1H), 5.15 – 4.98 (m, 4H), 4.68 – 4.60 (m, 2H), 

4.44 (s, 2H), 4.05 (d, J = 6.3 Hz, 2H), 3.80 (s, 3H), 3.79 (s, 3H), 3.79 (s, 3H), 3.83 – 3.72 (m, 

2H), 3.42 (s, 3H), 3.34 (t, J = 5.2 Hz, 1H), 2.72 (m, 1H), 2.58 – 2.44 (m, 2H), 2.45 – 2.37 (m, 

1H), 2.26 – 2.18 (m, 1H), 2.14 – 2.04 (m, 1H), 1.99 (m, 1H), 1.95 – 1.78 (m, 2H), 1.08 (d, J = 

7.0 Hz, 3H), 1.02 (d, J = 6.8 Hz, 3H), 0.87 (d, J = 6.7 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 

210.14, 167.72, 161.60, 159.30, 158.89, 135.89, 135.65, 134.15, 132.23, 130.62, 129.54, 127.62, 

117.98, 116.97, 113.90, 107.25, 98.78, 97.74, 84.63, 75.37, 72.01, 65.80, 56.29, 55.69, 55.56, 

55.41, 46.64, 45.24, 37.86, 37.21, 36.67, 36.14, 29.89, 16.89, 16.19, 10.10. HRMS (ESI, m/z): 

calcd for [C39H54O9]+, ([M + Na]+): 689.3666, found 689.3662. 
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(S)-N-((1R,2R)-1-hydroxy-1-phenylpropan-2-yl)-N,2-dimethylpent-4-ynamide, 71 

A 250 mL flask was flame dried and flushed with argon before anhydrous THF (17 mL), 

anhydrous lithium chloride (3 g, 68 mmol, 5 eq.), and DIPA (4.4 mL, 31 mmol, 2.25 eq.) were 

added. The suspension was cooled to -78 °C, butyllithium (2.5 M in hexanes, 11.3 mL, 28 mmol, 

2.08 eq.) was added, and stirring was continued as the solution was briefly warmed to 0 °C and 

then cooled back to -78 °C. An ice cooled solution of R,R-pseudoephedrinepropionamide (3 g, 

13.6 mmol, 1 eq.) in anhydrous THF (43 mL) was added via cannula followed by a wash with 

THF (5 mL). Stirring was continued at -78 °C for 2 h, 0 °C for 30 min, and rt for 5 min, before 

the reaction mixture was finally cooled to 0 °C. Propargyl bromide (80% in toluene, 3.03 g, 20.4 

mmol, 1.5 eq.) was then added in one portion, and the reaction mixture was stirred for 2 h at 0 

°C. Reaction was quenched at 0 °C by the addition of saturated aqueous ammonium chloride (2 

mL) and the mixture was partitioned between saturated aqueous ammonium chloride (130 mL) 

and EtOAc (50 mL). The organic layer was collected and the aqueous layer was extracted with 

EtOAc (3 X, 50 mL). The combined organic layers were dried over anhydrous sodium sulfate 

and solvent was removed under reduced pressure to afford a yellow oil that was purified by SiO2 

flash chromatography (30 % EtOAc in hexanes) to provide pure 71 as a colorless oil (94 %). 

Diastereoselectivity (>20:1) was assessed using Myers oxazolium technique (vide infra). [α]25
D = 

-69.5° (c = 0.029, DCM). (*Denotes minor rotamer peak) 1H NMR (500 MHz, CDCl3) δ 7.41 – 

7.31 (m, 5H), *7.29 – 7.24 (m, 5H), 4.66 – 4.61 (m, 1H), 4.59 (d, J = 8.5 Hz, 1H), 4.48 (bs, 1H), 

*4.39 (bs, 1H), *4.20 – 3.95 (m, 1H), *4.09 – 4.04 (m, 1H), *3.15 – 3.06 (m, 1H), 2.92 (s, 3H), 

*2.90 (s, 3H), 2.97 – 2.80 (m, 1H), *2.51 (ddd, J = 16.8, 6.8, 2.7 Hz, 1H), 2.45 (ddd, J = 16.8, 
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6.8, 2.7 Hz, 1H), *2.37 (ddd, J = 16.8, 8.0, 2.6 Hz, 1H), 2.29 (ddd, J = 16.8, 7.6, 2.6 Hz, 1H), 

*1.99 (t, J = 2.6 Hz, 1H), 1.96 (t, J = 2.6 Hz, 1H), 1.19 (d, J = 6.8 Hz, 1H), *1.16 (d, J = 7.0 Hz, 

1H), 1.11 (d, J = 6.6 Hz, 3H), *1.04 (d, J = 6.8 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 177.22, 

*177.14, 142.43, *140.99, 128.55, *128.47, 127.86, *127.79, 126.52, *126.49, *83.42, 82.61, 

76.62, *76.32, *75.62, 69.57, 69.50, *58.29, 36.62, *35.91, 23.21, *23.19, 23.11, *17.11, 17.06, 

14.55, *14.50. HRMS (ESI, m/z): calcd for [C16H21NO2]+, ([M + Na]+): 282.1470, found 

282.1469. 

 

(S)-2-methylpent-4-ynoic acid, 72 

A 500 mL flask was charged with tert-butanol (42 mL) and deionized water (136 mL) before 

amide 71 (3.53 g, 13.6 mmol, 1 eq.) and tetrabutylammonium hydroxide (1.5 M in deionized 

water, 50 mL, 68 mmol, 5 eq.) were added. The solution was heated at reflux for 23 h. Once the 

reaction was complete, the solution was allowed to cool to rt and suspended between 0.5 M 

aqueous sodium hydroxide (1.76 L) and diethyl ether (250 mL). The organic layer was removed, 

and the aqueous layer was extracted with diethyl ether (3 X, 250 mL). The aqueous layer was 

cooled to 0 °C, saturated with sodium chloride, and acidified to pH 2 with 4 N aqueous 

hydrochloric acid. The acid solution was extracted with diethyl ether (4 X, 300 mL) and the 

combined organic extracts were dried over anhydrous sodium sulfate. Solvent was removed 

under reduced pressure to afford pure acid 72 as a colorless liquid (1.43 g, 94%). [α]25
D = -1.23° 

(c = 0.269, DCM). 1H NMR (500 MHz, CDCl3) δ 9.09 (s, 1H), 2.76 – 2.64 (m, 1H), 2.56 (ddd, J 

= 16.8, 6.0, 2.7 Hz, 1H), 2.39 (ddd, J = 16.8, 7.6, 2.7 Hz, 1H), 2.02 (t, J = 2.7 Hz, 1H), 1.31 (d, J 
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= 7.1 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 180.87, 81.32, 70.24, 38.67, 22.45, 16.27. HRMS 

(ESI, m/z): calcd for [C6H8O2]-, ([2M + Na – 2H]-): 245.0790, found 245.0790. 

 

(S)-N-methoxy-N,2-dimethylpent-4-ynamide, 73 

A 100 mL flask was flame dried and flushed with argon before DMF (20 mL), acid 72 ( mg, 10.5 

mmol, 1 eq.), and DIPEA (2.4 mL, 22.1 mmol, 2.1 eq.) were added. COMU (3.13 g, 11.6 mmol, 

1.1 eq.) was then added in one portion and the reaction mixture was stirred at rt for 45 min at 

which point N,O-Dimethylhydroxylamine hydrochloride (1.3 g, 21 mmol, 2 eq.) was added. 

Stirring was continued for 1 hr and the reaction was quenched by the careful addition of 

saturated aqueous sodium bicarbonate (15 mL). The resulting slurry was then extracted with 

EtOAc (5 X, 30 mL) and the combined organic portions were dried over anhydrous sodium 

sulfate. Solvent was removed under reduced pressure to afford a red oil that was purified by SiO2 

flash chromatography (5 % – 15% EtOAc in hexanes) to provide pure amide 73 as a colorless 

oil. [α]25
D = 11.2° (c = 0.038, DCM). 1H NMR (500 MHz, CDCl3) δ 3.71 (s, 3H), 3.19 (s, 3H), 

3.15 – 3.01 (m, 1H), 2.52 (ddd, J = 16.7, 7.1, 2.6 Hz, 1H), 2.28 (ddd, J = 16.7, 7.5, 2.7 Hz, 1H), 

1.97 (t, J = 2.7 Hz, 1H), 1.20 (d, J = 6.9 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 176.03, 82.65, 

69.47, 61.72, 35.32, 32.28, 22.68, 17.10. HRMS (ESI, m/z): calcd for [C8H13NO2]+, ([M + Na]+): 

178.0844, found 178.0843. 
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(4S,5R,6R,7R,Z)-11-((4-methoxybenzyl)oxy)-6-(methoxymethoxy)-5,7-dimethylundeca-1,9-

dien-4-yl 2,4-dimethoxy-6-((S)-3-methyl-2-oxohex-5-yn-1-yl)benzoate, 74 

A 10 mL flask was flame dried and flushed with argon before THF (0.2 mL) and ester 59 (100 

mg, 0.18 mmol, 1 eq.) were added. The solution was cooled to -78 °C before a 1 M solution of 

freshly prepared lithium diisopropylamide (370 µL, 0.37 mmol, 2.1 eq.) in THF was added 

dropwise. Stirring was continued at -78 °C for 5 min at which point weinreb amide 73 (70 mg, 

0.44 mmol, 2.5 eq.) in THF (100 µL) was quickly added. The solution was stirred for 5 min at -

78 °C and the reaction was quenched by the addition of half saturated aqueous ammonium 

chloride (1 mL). The biphasic mixture was allowed to warm to rt while stirring continued. The 

organic layer was collected, and the aqueous layer was extracted with EtOAc (4 X, 1 mL). The 

combined organic layers were dried over anhydrous sodium sulfate and solvent was removed 

under reduced pressure to afford a colorless oil that was purified by SiO2 flash chromatography 

(15 % – 25 % EtOAc in hexanes) to provide compound 74 as a colorless oil (74 %). [α]25
D = 4.2° 

(c = 0.002, DCM). 1H NMR (500 MHz, CDCl3) δ 7.32 – 7.22 (m, 2H), 6.91 – 6.85 (m, 2H), 6.39 

(d, J = 2.2 Hz, 1H), 6.29 (d, J = 2.1 Hz, 1H), 5.90 – 5.77 (m, 1H), 5.70 – 5.62 (m, 1H), 5.58 (m, 

1H), 5.22 (m, 1H), 5.11 (m, 2H), 4.68 – 4.59 (m, 2H), 4.44 (s, 2H), 4.05 (d, J = 6.3 Hz, 2H), 3.88 

– 3.71 (m, 2H), 3.80 (s, 6H), 3.79 (s, 3H), 3.42 (s, 3H), 3.36 – 3.32 (m, 1H), 2.91 – 2.81 (m, 1H), 

2.58 – 2.43 (m, 3H), 2.34 – 2.19 (m, 2H), 1.98 (m, 1H), 1.97 (t, J = 2.7 Hz, 1H), 1.95 – 1.87 (m, 

1H), 1.84 (m, 1H), 1.22 (d, J = 7.1 Hz, 3H), 1.02 (d, J = 6.8 Hz, 3H), 0.87 (d, J = 6.8 Hz, 3H). 
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13C NMR (126 MHz, CDCl3) δ 208.81, 167.69, 161.71, 159.30, 159.03, 135.63, 134.16, 132.21, 

130.62, 129.54, 127.63, 117.99, 113.90, 107.48, 100.13, 98.77, 97.83, 84.60, 77.37, 75.41, 72.02, 

69.94, 65.80, 56.31, 55.71, 55.57, 55.42, 46.65, 44.58, 37.88, 36.69, 32.08, 31.10, 21.86, 16.88, 

16.30, 10.11. HRMS (ESI, m/z): calcd for [C39H52O9]+, ([M + Na]+): 687.3509, found 687.3511. 

 

(4S,5R,6R,7R,Z)-11-((4-methoxybenzyl)oxy)-6-(methoxymethoxy)-5,7-dimethylundeca-1,9-

dien-4-yl 2,4-dimethoxy-6-((S)-3-methyl-2-oxo-5-(triethoxysilyl)hex-5-en-1-yl)benzoate, 75 

A 5 mL flask was flame dried and flushed with argon before DCM (200 µL), compound 74 (10 

mg, 0.015 mmol, 1 eq.), and triethoxysilane (4 µL, 0.018 mmol, 1.2 eq.) were added. The 

solution was cooled to 0 °C, Pentamethylcyclopentadienyltris (acetonitrile)ruthenium(II) 

hexafluorophosphate (0.1 mg, 0.00015 mmol, 0.01 eq.) was added and stirring was continued for 

3 h. Solvent was removed under reduced pressure to afford a brown oil that was purified by SiO2 

flash chromatography (10 % EtOAc in hexanes) to provide pure vinyl silane 75 as a colorless oil 

(97 %). [α]25
D = 6.3° (c = 0.001, DCM). 1H NMR (500 MHz, CDCl3) δ 7.27 (m, 2H), 6.91 – 6.84 

(m, 2H), 6.37 (d, J = 2.2 Hz, 1H), 6.25 (d, J = 2.2 Hz, 1H), 5.84 (m, 1H), 5.73 – 5.53 (m, 4H), 

5.19 (m, 1H), 5.10 (m, 2H), 4.65 (d, J = 6.9 Hz, 1H), 4.63 (d, J = 6.8 Hz, 1H), 4.44 (s, 2H), 4.05 

(d, J = 6.2 Hz, 2H), 3.92 – 3.76 (m, 2H), 3.82 (q, J = 7.0 Hz, 6H), 3.80 (s, 3H), 3.79 (s, 3H), 3.78 

(s, 3H), 3.41 (s, 3H), 3.35 (m, 1H), 2.99 – 2.91 (m, 1H), 2.61 (dd, J = 13.9, 5.8 Hz, 1H), 2.57 – 

2.43 (m, 2H), 2.24 – 2.18 (m, 1H), 2.10 – 2.03 (m, 1H), 1.99 (m, 1H), 1.95 – 1.87 (m, 1H), 1.87 
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– 1.79 (m, 1H), 1.23 (t, J = 7.0 Hz, 9H), 1.05 (d, J = 6.9 Hz, 3H), 1.02 (d, J = 6.8 Hz, 3H), 0.87 

(d, J = 6.8 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 210.29, 167.64, 161.56, 158.93, 155.59, 

141.29, 136.09, 134.21, 132.28, 131.51, 130.63, 129.54, 127.58, 117.90, 116.83, 113.90, 107.51, 

98.80, 97.62, 84.66, 77.37, 75.20, 72.01, 65.82, 58.72, 56.28, 55.67, 55.50, 55.41, 46.64, 44.54, 

39.55, 37.78, 36.07, 31.10, 29.85, 18.39, 16.90, 16.18, 10.08. HRMS (ESI, m/z): calcd for 

[C45H68O12Si]+, ([M + Na]+): 851.4378, found 851.4377. 

 

(1S,6S,7R,8R,Z)-7-(methoxymethoxy)-6,8-dimethylcyclooct-3-en-1-yl 2,4-dimethoxy-6-((S)-

3-methyl-2-oxo-5-(triethoxysilyl)hex-5-en-1-yl)benzoate, 76 

A 10 mL flask was flame dried and flushed with argon before anhydrous toluene (6 mL) and 

vinyl siloxane 75 (10 mg, 0.012 mmol, 1 eq.) were added. After addition of dichloro[1,3-Bis(2-

methylphenyl)-2-imidazolidinylidene](benzylidene)(tricyclohexylphosphine)ruthenium(II) (2 

mg, 0.0024 mmol, 0.2 eq.), high vacuum was applied to the reaction flask for 5 min and 

subsequently recharged with argon. After repeating this operation cycle 5 times, the reaction 

mixture was warmed to 35 °C and vigorously stirred. Progress of the reaction was monitored by 

TLC (20 % EtOAc in hexanes) at 20 min intervals until complete consumption of starting 

material was observed (2.5 h), at which point the solution was filtered through a plug of SiO2 

that was thoroughly washed with EtOAc (100 mL). Solvent was removed under reduced pressure 

to afford a yellow oil that was purified by SiO2 flash chromatography (10 % EtOAc in hexanes) 

to provide major cyclic product 76 (69 %). No desired product was identified after spectral 
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analysis (ESI MS and 1H NMR) of minor components. 1H NMR (500 MHz, CDCl3) δ 6.37 (d, J 

= 2.2 Hz, 1H), 6.26 (d, J = 2.2 Hz, 1H), 5.83 – 5.65 (m, 4H), 4.87 (ddd, J = 7.5, 6.0, 3.7 Hz, 1H), 

4.62 (d, J = 6.8 Hz, 1H), 4.57 (d, J = 6.8 Hz, 1H), 4.00 – 3.74 (m, 2H), 3.82 (q, J = 7.0 Hz, 6H), 

3.79 (s, 3H), 3.78 (s, 3H), 3.63 (dd, J = 6.0, 2.8 Hz, 1H), 3.37 (s, 3H), 2.99 – 2.91 (m, 1H), 2.62 

(dd, J = 13.9, 5.9 Hz, 1H), 2.54 – 2.42 (m, 2H), 2.38 – 2.16 (m, 3H), 2.15 – 2.01 (m, 2H), 1.23 (t, 

J = 7.0 Hz, 9H), 1.05 (d, J = 6.9 Hz, 3H), 0.98 (d, J = 7.2 Hz, 3H), 0.96 (d, J = 6.4 Hz, 3H). 13C 

NMR (126 MHz, CDCl3) δ 210.19, 167.75, 161.53, 158.81, 141.27, 135.71, 131.53, 127.31, 

117.16, 107.48, 97.63, 96.45, 78.82, 78.26, 58.73, 55.79, 55.51, 46.46, 44.50, 39.63, 36.32, 

30.96, 30.10, 29.85, 18.39, 16.16, 16.14, 13.76. HRMS (ESI, m/z): calcd for [C34H54O10Si]+, ([M 

+ Na]+): 673.3384, found 673.3383. 

 

(4S,5R,6R,7R,Z)-11-((4-methoxybenzyl)oxy)-6-(methoxymethoxy)-5,7-dimethylundeca-1,9-

dien-4-yl 2-((2R,3S)-2-hydroxy-3-methylhex-5-en-1-yl)-4,6-dimethoxybenzoate, 77 

A 1 dram vial was flushed with argon before DCM (100 µL), deionized water (100 µL), 

compound 68 (10 mg, 0.015 mmol, 1 eq.), tetrabutylammonium chloride (2 mg, 0.0075 mmol, 

0.5 eq.), and sodium formate (10.2 mg, 0.15 mmol, 10 eq.) were added. The resultant suspension 

was cooled to 5 °C and RuCl[(S,S)-Tsdpen](p-cymene) (0.5 mg, 0.00075 mmol, 0.05 eq.) was 

added. Stirring was continued at 5 °C for 48 h at which point the reaction mixture was diluted 

with deionized water (0.5 mL) and EtOAc (0.5 mL). The organic layer was collected and the 

aqueous layer was extracted with EtOAc (7 X, 0.75 mL). The combined organic layers were 
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dried over anhydrous sodium sulfate and solvent was removed under reduced pressure to afford 

an orange oil that was purified by SiO2 flash chromatography (15 % – 25 % EtOAc in hexanes) 

to provide alcohol 77, 5:1 mixture of alcohol epimers, as a colorless oil (9.5 mg, 91 %). 

Stereochemistry of the major alcohol epimer was confirmed using Mosher ester analysis. [α]25
D 

= 10.7° (c = 0.001, DCM). 1H NMR (500 MHz, CDCl3) (Major product peaks are reported) δ 

7.31 – 7.21 (m, 2H), 6.91 – 6.84 (m, 2H), 6.36 (d, J = 2.3 Hz, 1H), 6.34 (d, J = 2.1 Hz, 1H), 5.94 

– 5.74 (m, 2H), 5.70 – 5.52 (m, 2H), 5.31 – 5.23 (m, 1H), 5.18 – 4.96 (m, 4H), 4.67 – 4.58 (m, 

2H), 4.44 (s, 2H), 4.05 (d, J = 6.3 Hz, 2H), 3.81 (s, 3H), 3.80 (s, 3H), 3.78 (s, 3H), 3.67 – 3.60 

(m, 1H), 3.42 (s, 3H), 3.32 – 3.28 (m, 1H), 2.80 (dd, J = 13.6, 2.9 Hz, 1H), 2.59 – 2.43 (m, 2H), 

2.39 – 2.28 (m, 1H), 2.28 – 2.17 (m, 1H), 2.06 – 1.93 (m, 3H), 1.92 – 1.87 (m, 1H), 1.86 – 1.79 

(m, 1H), 1.76 – 1.68 (m, 1H), 0.99 (d, J = 6.9 Hz, 3H), 0.95 (d, J = 6.8 Hz, 3H), 0.86 (d, J = 6.7 

Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 169.22, 161.85, 159.30, 158.61, 140.70, 137.74, 133.92, 

132.09, 130.59, 129.54, 127.70, 118.04, 117.12, 115.96, 113.90, 106.36, 98.62, 97.10, 84.32, 

77.37, 76.26, 72.02, 65.76, 56.30, 55.68, 55.54, 55.41, 39.35, 37.69, 37.65, 37.19, 36.46, 36.45, 

30.10, 16.73, 15.17, 10.14. HRMS (ESI, m/z): calcd for [C39H56O9]+, ([M + K]+): 707.3561, 

found 707.3562. 

 

(3S,8S,9R,Z)-9-hydroxy-12,14-dimethoxy-3-((2R,3R,4R,Z)-8-((4-methoxybenzyl)oxy)-3-

(methoxymethoxy)-4-methyloct-6-en-2-yl)-8-methyl-3,4,7,8,9,10-hexahydro-1H-

benzo[c][1]oxacyclododecin-1-one, 78 
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A 250 mL flask was flame dried and flushed with argon before DCM (150 mL) and alcohol 77 

(50 mg, 0.0075 mmol, 1 eq.) were added. The solution was cooled to 0 °C and Grubbs second 

generation catalyst (3.4 mg, 0.004 mmol, 0.05 eq.) was added. The reaction mixture was allowed 

to warm to rt and stirring continued for 4 h at which point the reaction was quenched by the 

addition of saturated aqueous potassium carbonate (10 mL). Solvent was removed under reduced 

pressure and the resultant slurry was diluted with DCM (10 mL). The organic layer was collected 

and the aqueous layer was extracted with DCM (5 X, 10 mL). The combined organic layers were 

dried over anhydrous sodium sulfate and solvent was removed under reduced pressure to afford a 

brown oil that was purified by SiO2 flash chromatography (30 % EtOAc in hexanes) to provide 

macrocycle 78, 3:1 mixture of cis:trans isomers at allylic ether olefin, as a colorless oil (63%). 

[α]25
D = 9.9° (c = 0.001, DCM). (*Denotes minor trans allylic ether product) 1H NMR (500 

MHz, CDCl3) δ 7.29 – 7.25 (m, 2H), 6.87 (m, 2H), 6.36 (d, J = 2.1 Hz, 1H), 6.34 (d, J = 2.0 Hz, 

1H), 5.71 – 5.56 (m, 2H), 5.56 – 5.44 (m, 2H), 5.40 – 5.31 (m, 1H), 4.67 – 4.57 (m, 2H), 4.44 (s, 

2H), *4.43 (s, 2H), 4.05 (d, J = 6.1 Hz, 2H), *3.94 (d, J = 5.8 Hz, 2H), 3.81 (s, 3H), 3.80 (s, 3H), 

3.77 (s, 3H), 3.75 (bs, 1H), *3.43 (s, 3H), 3.42 (s, 3H), *3.31 – 3.28 (m, 1H), 3.27 (t, J = 5.0 Hz, 

1H), 3.00 (m, 1H), 2.78 – 2.56 (m, 3H), *2.55 – 2.45 (m, 1H), 2.44 – 2.18 (m, 3H), 2.06 – 1.75 

(m, 4H), 1.06 (d, J = 6.8 Hz, 3H), *1.01 (d, J = 6.8 Hz, 3H), 1.00 (d, J = 6.8 Hz, 3H), *0.90 (d, J 

= 6.6 Hz, 3H), 0.89 (d, J = 6.5 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 166.58, 161.45, 159.23, 

158.77, 139.41, 133.31, 132.23, 130.57, 129.57, *128.98, 128.25, 127.59, 113.86, 104.02, 98.81, 

98.73, 97.19, 84.94, 84.69, 77.37, *72.00, 71.68, 70.68, 65.71, *60.57, 56.39, *55.99, 55.54, 

55.41, *55.40, 53.60, 38.15, 36.27, 35.96, 35.01, *34.44, *33.27, 32.07, 30.07, 29.85, 16.68, 

14.34, *14.30, 10.45, *10.39. HRMS (ESI, m/z): calcd for [C37H52O9]+, ([M + Na]+): 663.3509, 

found 663.3514. 
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(3S,8S,9R,Z)-9-((tert-butyldimethylsilyl)oxy)-12,14-dimethoxy-3-((2R,3R,4R,Z)-8-((4-

methoxybenzyl)oxy)-3-(methoxymethoxy)-4-methyloct-6-en-2-yl)-8-methyl-3,4,7,8,9,10-

hexahydro-1H-benzo[c][1]oxacyclododecin-1-one, 79 

A 5 mL flas was flame dried and flush with argon before DCM (500 µL), compound 78 (27 mg, 

0.042 mmol, 1 eq.), and 2,6-lutidine (17 µL, 0.14 mmol, 3.2 eq.) were added. The solution was 

cooled to 0 °C and tert-butyldimethylsilyl trifluoromethanesulfonate (TBSOTf) (30 µL, 0.13 

mmol, 3 eq.) was added dropwise over 5 min. Stirring was continued for 30 min as the reaction 

mixture was allowed to reach rt at which point saturated aqueous ammonium chloride (500 µL) 

was added to quench. The organic layer was collected and the aqueous layer was extracted with 

DCM (5 X, 500 µL). The combined organic layers were dried over anhydrous sodium sulfate and 

solvent was removed under reduced pressure to afford a yellow oil that was purified by SiO2 

flash chromatography (10 % – 15 % EtOAc in hexanes) to provide pure 79 as a colorless oil (30 

mg, 94%). [α]25
D = 5.3° (c = 0.003, DCM). (*Denotes minor trans allylic ether product) 1H NMR 

(500 MHz, CDCl3) δ 7.27 (m, 2H), 6.88 (m, 2H), 6.32 (d, J = 2.1 Hz, 1H), 6.30 (d, J = 2.1 Hz, 

1H), 5.73 – 5.52 (m, 3H), 5.33 (m, 2H), 4.65 – 4.55 (m, 2H), 4.44 (s, 2H), *4.43 (s, 2H), 4.05 (d, 

J = 5.1 Hz, 2H), *3.95 (d, J = 6.0 Hz, 2H), *3.80 (s, 3H), 3.80 (s, 3H), 3.79 (s, 3H), 3.77 (bs, 

1H), 3.74 (s, 3H), *3.42 (s, 3H), 3.40 (s, 3H), *3.26 – 3.23 (m, 1H), 3.23 – 3.20 (m, 1H), 3.13 

(m, 1H), 2.65 (m, 1H), 2.35 – 2.08 (m, 4H), 2.00 – 1.81 (m, 5H), 1.01 (d, J = 6.4 Hz, 3H), 0.99 

(d, J = 6.4 Hz, 3H), *0.91 (d, J = 6.6 Hz, 3H), 0.89 (d, J = 6.6 Hz, 3H), 0.76 (s, 9H), -0.19 (s, 
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3H), -0.60 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 166.47, 160.65, 159.32, 158.78, 140.70, 

132.36, *130.73, 130.69, 129.59, 129.53, *128.20, 127.94, *127.72, 127.55, 113.92, 109.33, 

98.97, *98.92, 97.30, 85.40, *85.23, 72.74, 71.99, 71.68, 70.74, 65.78, 56.35, 56.23, *55.42, 

55.41, 55.39, 40.44, 40.25, *36.15, 36.09, 35.77, 34.16, 32.34, 32.19, *29.84, 29.79, 29.62, 

25.97, 17.97, 17.04, *10.56, 10.52, -5.01, -5.67. HRMS (ESI, m/z): calcd for [C43H66O9Si]+, ([M 

+ Na]+): 777.4374, found 777.4367. 

 

(3S,8S,9R,Z)-9-((tert-butyldimethylsilyl)oxy)-3-((2R,3R,4R,Z)-8-hydroxy-3-

(methoxymethoxy)-4-methyloct-6-en-2-yl)-12,14-dimethoxy-8-methyl-3,4,7,8,9,10-

hexahydro-1H-benzo[c][1]oxacyclododecin-1-one, 81 

A 1 dram vial was charged with DCM (400 µL), deionized water (25 µL), and compound 79 (25 

mg, 0.033 mmol, 1 eq.). The solution was stirred at rt and 2,3-dichloro-5,6-dicyano-1,4-

benzoquinone (DDQ) (12 mg, 0.05 mmol, 1.5 eq.) was added at once. The reaction mixture was 

stirred at rt for 45 min and quenched by the addition of saturated aqueous sodium bicarbonate 

(700 µL). The organic layer was collected and the aqueous layer was extracted with DCM (5 X, 

1 mL). The combined organic layers were dried over anhydrous sodium sulfate and solvent was 

removed under reduced pressure to afford a red oil that was purified by SiO2 flash 

chromatography (10 % – 35 % EtOAc in hexanes) to provide pure 81 as a colorless oil (18 mg, 

86 %). [α]25
D = 8.7° (c = 0.001, DCM). (*Denotes minor trans allylic ether product) 1H NMR 

(500 MHz, CDCl3) δ 6.32 (d, J = 2.2 Hz, 1H), 6.30 (d, J = 2.2 Hz, 1H), 5.73 – 5.53 (m, 3H), 5.34 
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(m, 2H), 4.60 (m, 2H), 4.19 (ddd, J = 30.1, 12.7, 6.9 Hz, 2H), *4.09 (d, J = 3.1 Hz, 2H), 3.79 (s, 

3H), 3.76 (bs, 1H), *3.75 (s, 3H), 3.74 (s, 3H), 3.40 (s, 3H), *3.39 (s, 3H), *3.27 (t, J = 4.5 Hz, 

1H), 3.25 – 3.21 (m, 1H), 3.12 (dd, J = 12.6, 5.3 Hz, 1H), 2.76 – 2.61 (m, 1H), 2.34 – 2.07 (m, 

4H), 2.03 – 1.82 (m, 5H), 1.01 (d, J = 6.4 Hz, 3H), 1.01 (d, J = 6.7 Hz, 3H), 0.93 (d, J = 6.5 Hz, 

3H), *0.91 (d, J = 6.4 Hz, 3H), 0.76 (s, 9H), -0.19 (s, 3H), -0.60 (s, 3H). 13C NMR (126 MHz, 

CDCl3) δ 166.60, 160.72, 158.80, 140.77, 131.93, *131.87, 130.85, 129.74, 109.42, 99.00, 98.74, 

97.33, 85.55, 84.60, 72.78, 63.93, 58.67, *56.33, 56.26, 55.40, *40.58, 40.23, *36.09, 36.06, 

*34.65, *34.19, 34.15, 32.20, *29.85, 29.33, 25.98, 22.09, 17.97, 17.31, 16.75, 13.76, 10.60, 

*10.57, -5.00, -5.66. HRMS (ESI, m/z): calcd for [C35H58O8Si]+, ([M + Na]+): 657.3799, found 

657.3805. 

 

(3S,8S,9R,Z)-3-((2R,3R,4R,Z)-8-azido-3-(methoxymethoxy)-4-methyloct-6-en-2-yl)-9-((tert-

butyldimethylsilyl)oxy)-12,14-dimethoxy-8-methyl-3,4,7,8,9,10-hexahydro-1H-

benzo[c][1]oxacyclododecin-1-one, 82 

A 5 mL flask was flame dried and flushed with argon before anhydrous toluene (300 µL), 

compound 82 (10 mg, 0.016 mmol, 1 eq.), PPh3 (16 mg, 0.064 mmol, 4 eq.), and 

Zn(N3)2(C5H5N)2 (25 mg, 0.08 mmol, 5 eq.) were added. The suspension was cooled to 0 °C and 

DIAD (13.2 µL, 0.067 mmol, 4.2 eq.) was added dropwise over 15 min and the reaction mixture 

was stirred at this temperature for an additional 10 min before warming to rt, followed by an 

additional 30 min of stirring. Precipitate was removed by filtering through SiO2 with Et2O (50 
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mL) and solvent was removed under reduced pressure to afford an amorphous white solid that 

was purified by SiO2 flash chromatography (5 % – 10 % EtOAc in hexanes) to provide pure 82 

as a colorless oil (9 mg, 89%). [α]25
D = 2.1° (c = 0.001, DCM). (*Denotes minor trans allylic 

ether product) 1H NMR (500 MHz, CDCl3) δ 6.33 (d, J = 2.2 Hz, 1H), 6.30 (d, J = 2.1 Hz, 1H), 

5.82 – 5.48 (m, 3H), 5.42 – 5.23 (m, 2H), 4.69 – 4.52 (m, 2H), 3.80 (s, 3H), 3.78 – 3.71 (bs, 1H), 

3.75 (s, 3H), 3.69 (t, J = 6.6 Hz, 1H), 3.42 (s, 3H), 3.25 (dt, J = 11.0, 5.6 Hz, 1H), 3.12 (d, J = 

12.9 Hz, 1H), 2.75 – 2.59 (m, 1H), 2.38 – 2.08 (m, 4H), 2.03 – 1.81 (m, 5H), 1.31 – 1.27 (m, 

1H), 1.01 (d, J = 6.8 Hz, 3H), 1.01 (d, J = 6.7 Hz, 3H), 0.92 (d, J = 6.5 Hz, 3H), 0.76 (s, 9H), -

0.19 (s, 3H), -0.60 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 166.49, 160.64, 158.77, 140.73, 

135.94, 135.08, 129.72, 129.67, 127.66, 124.52, 123.36, 109.26, 98.94, 97.26, 85.38, 85.12, 

72.72, 56.37, 56.22, 55.40, 53.01, 47.39, 40.22, 35.79, 35.49, 34.47, 34.13, 32.17, 29.85, 25.96, 

17.96, 17.11, 16.92, 13.78, 10.68, 10.60, -5.02, -5.69. HRMS (ESI, m/z): calcd for 

[C35H57N3O7Si]+, ([M + Na]+): 682.3864, found 682.3863. 

 

(2R,3S)-N-((5R,6R,7R,Z)-7-((3S,8S,9R,Z)-9-((tert-butyldimethylsilyl)oxy)-12,14-dimethoxy-

8-methyl-1-oxo-3,4,7,8,9,10-hexahydro-1H-benzo[c][1]oxacyclododecin-3-yl)-6-

(methoxymethoxy)-5-methyloct-2-en-1-yl)-3-hydroxy-2-methylhexanamide, 83 

Flask A: A 5 mL flask was flame dried and flushed with argon before THF (400 µL), compound 

82 (8 mg, 0012 mmol, 1 eq.), and PPh3 (8 mg, 0.03 mmol, 2.5 eq.) were added. The reaction 

mixture was heated at 50 °C for 2 h and then allowed to cool to rt.  
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Flask B: A separate 5 mL flask was flame dried and flushed with argon before DMF (200 µL), 

acid 5 (3.4 mg, 0.024 mmol, 2 eq.), DIPEA (21 µL, 0.12 mmol, 10 eq.), and COMU (11 mg, 

0.025 mmol, 2.1 eq.) were sequentially added. The reaction mixture was stirred for 30 min at rt. 

After stirring the reaction mixtures for the designated time, the contents of flask B were added to 

flask A (rinse 1X with 100 µL DMF), and the combined reaction mixtures were stirred for 1 h at 

rt. Reaction was quenched by the addition of saturated aqueous sodium bicarbonate (1 mL). The 

resultant slurry was partitioned between Et2O (3 mL) and deinionized water (1 mL). The organic 

layer was collected and the aqueous layer was extracted with Et2O (10 X, 3 mL) and the 

combined organic extracts were dried over anhydrous sodium sulfate followed by the removal of 

solvent under reduced pressure to afford a red oil that was purified by SiO2 flash 

chromatography (15 % – 35 % EtOAc in hexanes) to provide pure 83 as a colorless oil (7 mg, 

72%). [α]25
D = 1.2° (c = 0.001, DCM). (*Denotes minor trans allylic ether product) 1H NMR 

(500 MHz, CDCl3) δ 6.31 (m, 2H), 6.27 (s, 1H), 5.70 – 5.45 (m, 3H), 5.39 – 5.20 (m, 2H), 4.61 

(d, J = 6.6 Hz, 1H), 4.58 (d, J = 6.6 Hz, 1H), *4.53 – 4.49 (m, 1H), 4.03 – 3.94 (m, 1H), 3.92 – 

3.81 (m, 2H), 3.80 (s, 3H), 3.73 (s, 3H), 3.76 – 3.67 (m, 1H), *3.39 (s, 3H), 3.32 (s, 3H), 3.29 – 

3.25 (m, 1H), *3.22 – 3.18 (m, 1H), 3.11 (m, 1H), 2.69 (m, 1H), 2.38 – 2.05 (m, 4H), 2.00 – 1.82 

(m, 3H), 1.55 – 1.43 (m, 3H), 1.37 – 1.21 (m, 4H), 1.14 (t, J = 7.1 Hz, 3H), *1.03 (d, J = 6.9 Hz, 

3H), 1.01 (d, J = 6.8 Hz, 3H), 1.00 (d, J = 6.9 Hz, 3H), *0.93 (d, J = 6.6 Hz, 3H), 0.93 (d, J = 7.0 

Hz, 3H), 0.90 (d, J = 6.3 Hz, 3H), 0.76 (s, 9H), -0.20 (s, 3H), -0.62 (s, 3H). 13C NMR (126 MHz, 

CDCl3) δ *176.97, 176.85, 166.97, 160.72, 158.67, 140.84, *140.77, 132.68, *132.55, *129.84, 

129.78, *127.51, 127.30, 126.38, 116.31, 109.26, *99.04, 98.38, *97.18, 97.15, 85.69, 83.60, 

72.90, *72.80, 71.79, *71.73, *56.33, *56.14, 56.11, 56.08, 55.41, *44.55, 44.50, 41.53, 40.20, 

36.53, 36.44, 36.30, 35.98, 35.95, 34.82, 34.11, *34.06, 32.16, 25.95, 19.40, *17.95, 16.33, 
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14.23, *14.22, 13.76, *11.18, 11.13, *10.70, 10.45, -5.00, -5.71. HRMS (ESI, m/z): calcd for 

[C43H73NO8Si]+, ([M + Na]+): 782.5003, found 782.5011. 

 

(2R,3S)-N-((5R,6R,7S,Z)-7-((3S,8S,9R,Z)-9-((tert-butyldimethylsilyl)oxy)-14-hydroxy-12-

methoxy-8-methyl-1-oxo-3,4,7,8,9,10-hexahydro-1H-benzo[c][1]oxacyclododecin-3-yl)-6-

hydroxy-5-methyloct-2-en-1-yl)-3-hydroxy-2-methylhexanamide, 84 and ring expanded 

product (2R,3S)-N-((S,Z)-5-((3R,4R,5S,10S,11R,Z)-11-((tert-butyldimethylsilyl)oxy)-5,16-

dihydroxy-14-methoxy-4,10-dimethyl-1-oxo-3,4,5,6,9,10,11,12-octahydro-1H-

benzo[c][1]oxacyclotetradecin-3-yl)hex-2-en-1-yl)-3-hydroxy-2-methylhexanamide, 87 

A 1 mL reaction vessel was flame dried and flushed with argon before DCM (200 µL) and 

compound 83 (3 mg, 0.004 mmol, 1 eq.) were added. The solution was cooled to -78 °C and 

boron trichloride (1M in DCM, 16 µL, 0.016 mmol, 4 eq.) was added dropwise over 10 min. 

Stirring was continued at -78 °C for 3.5 h at which point the reaction was quenched by the 

addition of saturated aqueous sodium acetate (2 mL) and subsequently diluted with DCM (1 

mL). The organic layer was collected and the aqueous layer was extracted with DCM (5 X, 1 

mL). The combined organic layers were dried over anhydrous sodium sulfate and solvent was 

removed under reduced pressure to afford a light yellow oil that was purified by SiO2 flash 
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chromatography (35 % – 50 % EtOAc in hexanes) to provide isomerically pure 84 as an 

amorphous solid (2.5 mg, 75 %). HRMS (ESI, m/z): calcd for [C39H65NO8Si]+, ([M + Na]+): 

726.4377, found 726.4383. 1H NMR (500 MHz, CDCl3) and 13C NMR (126 MHz, CDCl3) 

spectra suggest a ~1:1 mixture of 84 and 87. In lieu of chemical shift data, full 1H NMR and 13C 

NMR are included. Specific regions of the 1H NMR spectrum in support of the proposed ring-

expansion byproduct are provided. 
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(2S,3R,4R,Z)-3-((tert-butyldimethylsilyl)oxy)-N-methoxy-8-((4-methoxybenzyl)oxy)-N,2,4-

trimethyloct-6-enamide, 90 

A flame dried 50 mL flask was flame dried and flushed with argon before DCM (13 mL), amide 

34 (1.0 g, 2.7 mmol, 1 eq.), and 2-6-lutidine (0.70 mL, 5.94 mmol, 2.2 eq.) were added. The 

solution was cooled to 0 °C, tert-butyldimethylsilyl trifluoromethanesulfonate (1.24 mL, 5.4 

mmol, 2 eq.) was added dropwise, and stirring was continued for 30 min as the reaction mixture 

was allowed to warm to rt at which point the reaction was quenched by the addition of saturated 

aqueous sodium bicarbonate (10 mL). The organic layer was collected, and the aqueous layer 

was extracted with DCM (3 X, 10 mL). The combined organic layers were dried over anhydrous 

sodium sulfate and solvent was removed under reduced pressure to afford a yellow oil that was 

purified by SiO2 flash chromatography (20 % EtOAc in hexanes) to provide pure amide 90 as a 

colorless oil (1.23 g, 94 %). [α]25
D = 4.7° (c = 0.031, DCM). 1H NMR (500 MHz, CDCl3) δ 7.26 

(m, 2H), 6.90 – 6.85 (m, 2H), 5.68 – 5.57 (m, 1H), 5.57 – 5.50 (m, 1H), 4.42 (s, 2H), 4.03 (d, J = 

6.3 Hz, 2H), 3.86 (dd, J = 8.3, 2.7 Hz, 1H), 3.80 (s, 3H), 3.66 (s, 3H), 3.14 (s, 3H), 3.21 – 3.01 

(m, 1H), 2.19 – 2.08 (m, 1H), 1.85 (dt, J = 14.2, 9.7 Hz, 1H), 1.64 – 1.48 (m, 1H), 1.14 (d, J = 

6.9 Hz, 3H), 0.91 (s, 9H), 0.90 (d, J = 7.0 Hz, 3H), 0.08 (s, 3H), 0.06 (s, 3H). 13C NMR (126 

MHz, CDCl3) δ 177.11, 159.28, 132.79, 130.65, 129.50, 127.26, 113.90, 77.64, 72.01, 65.90, 

61.57, 55.41, 39.02, 38.73, 32.35, 29.48, 26.31, 18.55, 16.72, 15.73, -3.62. HRMS (ESI, m/z): 

calcd for [C26H45NO5Si]+, ([M + Na]+): 502.2965, found 502.2964. 
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(2S,3R,4R,Z)-3-((tert-butyldimethylsilyl)oxy)-8-((4-methoxybenzyl)oxy)-2,4-dimethyloct-6-

enal, 89 

A 25 mL flask was flame dried and flushed with argon before DCM (7 mL) and Weinreb amide 

90 (400 mg, 0.834 mmol, 1 eq.) were added. The solution was cooled to -78 °C and DIBAL-H 

(180 µL, 1.0 mmol, 1.2 eq.) in DCM (2 mL) was added dropwise over several minutes. The 

reaction mixture was stirred for 30 min at -78 °C and quenched by the careful addition of half 

saturated aqueous sodium potassium tartrate (10 mL) and stirred for an additional 4 hours while 

warming to rt. The organic layer was collecged and the aqueous layer was extracted with EtOAc 

(5 X, 10 mL). The combined organic layers were dried over anhydrous sodium sulfate and 

solvent was removed under reduced pressure to afford a colorless oil that was purified by SiO2 

flash chromatography (5 % EtOAc in hexanes) to provide pure aldehyde 89 as a colorless oil 323 

mg, 92%). [α]25
D = -3.6° (c = 0.014, DCM). 1H NMR (500 MHz, CDCl3) δ 9.72 (d, J = 0.8 Hz, 

1H), 7.30 – 7.24 (m, 10H), 6.88 (m, 2H), 5.70 – 5.51 (m, 2H), 4.44 (s, 2H), 4.02 (d, J = 6.9 Hz, 

2H), 4.00 (dd, J = 5.7, 3.5 Hz, 1H), 3.81 (s, 3H), 2.48 (qd, J = 6.9, 0.8 Hz, 1H), 2.24 – 2.14 (m, 

1H), 1.89 – 1.76 (m, 1H), 1.76 – 1.65 (m, 1H), 1.10 (d, J = 7.0 Hz, 3H), 0.88 (d, J = 6.7 Hz, 3H), 

0.87 (s, 9H), 0.06 (s, 3H), 0.00 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 205.26, 159.32, 132.84, 

131.84, 129.57, 127.79, 113.91, 77.37, 75.00, 72.10, 65.69, 55.42, 50.28, 38.36, 30.67, 26.07, 

16.25, 8.63, -3.90, -4.02. HRMS (ESI, m/z): calcd for [C24H40O4Si]+, ([M + Na]+): 443.2594, 

found 443.2591. 
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(4S,5R,6R,7R,Z)-6-((tert-butyldimethylsilyl)oxy)-11-((4-methoxybenzyl)oxy)-5,7-

dimethylundeca-1,9-dien-4-ol, 88 

A 25 mL flask was flame dried and flushed with argon before Et2O (13 mL) and (–)-9-(1R,2R-

Pseudoephedrinyl)-(10S)-(trimethylsilyl)-9-borabicyclo[3.3.2]decane (500 mg, 1.34 mmol, 2 eq.) 

were added. The suspension was cooled to -78 °C and allylmagnesium bromide (1M solution in 

Et2O, 1.3 mL, 1.3 mmol, 1.9 eq.) was added dropwise. The solution was continually stirred for 1 

h, allowed to warm, and then cooled back to -78 °C and a solution of aldehyde 89 (280 mg, 0.67 

mmol, 1 eq.) in Et2O (500 mL) was added dropwise. The reaction mixture was stirred for 4 h at -

78 °C and then allowed to warm to rt. Solvent was removed under reduced pressure and the 

resulting white solid was suspended in hexanes and solids removed by filtering through celite 

with hexanes (100 mL). Solvent was removed under reduced pressure, (R,R)-pseudoephedrine 

(222 mg, 1.34 mmol, 2 eq.) and ACN (2.7 mL) were added and the solution was heated at reflux 

for 4 h. After cooling to rt, precipitate was removed by decantation and washed thoroughly with 

hexanes. Decanted solution was combined with the hexane washes, and solvent was removed 

under reduced pressure to afford a yellow oil that was purified by SiO2 flash chromatography (5 

% – 10 % EtOAc in hexanes) to provide diastereomerically pure 88 as a colorless oil (290 mg, 

93%). [α]25
D = -14.1° (c = 0.011, DCM). 1H NMR (500 MHz, CDCl3) δ 7.29 – 7.24 (m, 2H), 

6.91 – 6.83 (m, 2H), 5.84 – 5.74 (m, 1H), 5.65 (ddd, J = 12.8, 11.7, 6.5 Hz, 1H), 5.61 – 5.53 (m, 

1H), 5.18 – 5.05 (m, 2H), 4.44 (s, 2H), 4.03 (d, J = 6.4 Hz, 2H), 3.80 (s, 3H), 3.67 (dd, J = 4.4, 

3.5 Hz, 1H), 3.69 – 3.62 (m, 1H), 2.28 – 2.09 (m, 3H), 1.91 – 1.80 (m, 1H), 1.81 – 1.71 (m, 1H), 

1.71 – 1.62 (m, 1H), 0.93 (d, J = 7.0 Hz, 3H), 0.90 (s, 9H), 0.89 (d, J = 7.1 Hz, 3H), 0.08 (s, 3H), 
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0.07 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 159.32, 135.44, 132.60, 130.53, 129.56, 127.27, 

117.88, 113.91, 78.25, 77.36, 73.75, 72.07, 65.71, 55.42, 39.88, 39.70, 38.95, 31.02, 26.23, 

18.50, 16.28, 9.16, -3.31, -4.00. HRMS (ESI, m/z): calcd for [C27H46O4Si]+, ([M + Na]+): 

485.3063, found 485.3070. 

 

(4S,5R,6R)-4-allyl-6-((R,Z)-6-((4-methoxybenzyl)oxy)hex-4-en-2-yl)-2,2,5-trimethyl-1,3-

dioxane, 39 

A 1 dram vial was charged with THF (200 mL) and compound 88 (6 mg, 0.013 mmol, 1 eq.) and 

tetrabutylammonium fluoride (1M in THF, 40 mL, 0.04 mmol, 3 eq.) was added dropwise. The 

reaction mixture was stirred at rt for 1 h and quenched by the addition of saturated aqueous 

ammonium chloride (500 mL) and then diluted with EtOAc (300 mL). The organic layer was 

collected and the aqueous layer was extracted with EtOAc (5 X, 500 mL). The combined organic 

layers were dried over anhydrous sodium sulfate and solvent as removed under reduced pressure 

to afford a yellow oil that was purified by SiO2 flash chromatography (15 % – 30 % EtOAc in 

hexanes) to provide pure 1,3-diol as colorless oil. The oil was dissolved in DMP (300 mL) and p-

Toluenesulfonic acid (0.3 mg, 0.001 mmol, 0.1 eq.) was added followed by stirring for 2 h at rt. 

After 2 h, the reaction was quenched by the addition of sodium bicarbonate (5 mg). Solvent was 

removed under reduced pressure to afford a white slurry that was purified by SiO2 flash 

chromatography (5 % – 10 % EtOAc in hexanes) to provide pure 39 as a colorless oil (4 mg, 

87%). All spectroscopic data matched what was previously observed for 39 from 37. 1H NMR 

(500 MHz, C6D6) δ 7.31 – 7.26 (m, 2H), 6.85 – 6.78 (m, 2H), 5.91 – 5.85 (m, 1H), 5.81 (dddd, J 

= 17.1, 10.2, 7.9, 6.1 Hz, 1H), 5.60 – 5.53 (m, 1H), 5.08 (m, 2H), 4.43 (d, J = 1.7 Hz, 2H), 4.16 
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(dd, J = 12.2, 6.4 Hz, 1H), 4.11 (dd, J = 12.0, 6.3 Hz, 1H), 3.71 (ddd, J = 8.0, 6.0, 2.2 Hz, 1H), 

3.29 (s, 3H), 3.24 (dd, J = 9.9, 2.1 Hz, 1H), 2.48 – 2.35 (m, 2H), 2.10 – 1.96 (m, 2H), 1.75 – 1.63 

(m, 1H), 1.49 (s, 3H), 1.29 (s, 3H), 1.27 – 1.18 (m, 1H), 0.88 (d, J = 6.8 Hz, 3H), 0.64 (d, J = 6.9 

Hz, 3H). 13C NMR (126 MHz, C6D6) δ 159.72, 135.37, 131.33, 130.99, 129.50, 128.69, 116.75, 

114.09, 99.01, 76.94, 73.42, 72.10, 66.09, 54.75, 37.93, 34.82, 32.71, 31.18, 30.36, 19.71, 13.94, 

4.80. HRMS (ESI, m/z): calcd for [C24H36O4]+, ([M + Na]+): 411.2511, found 411.2512. 

 

(4S,5R,6R,7R,Z)-6-((tert-butyldimethylsilyl)oxy)-11-((4-methoxybenzyl)oxy)-5,7-

dimethylundeca-1,9-dien-4-yl 2,4-dimethoxy-6-methylbenzoate, 96 

A 25 mL flask was flame dried and flushed with argon before DCM (4.3 mL) and 2,4-

dimethoxy-6-methylbenzoic acid (165 mg, 0.86 mmol, 2 eq.) were added. The suspension was 

cooled to 0 °C and oxalyl bromide (85 mL, 0.9 mmol, 2.1 eq.) was added dropwise. The 

suspension was allowed to warm to rt and stirred until all solid was dissolved at which point 4 

drops of anhydrous DMF were added. Stirring was continued at rt for 1 h and the solution was 

cooled 0 °C before DIPEA (390 mL, 2.2 mmol, 5 eq.) was added. Stirring was continued at 0 °C 

for 30 min before a solution of alcohol 88 (200 mg, 0.43 mmol, 1 eq.) in DCM (0.5 mL) and 

DMAP (105 mg, 0.86 mmol, 2 eq.) were added. The reaction mixture was allowed to warm to rt 

and stirring was continued for 30 min at which point the reaction was quenched by the addition 

of deionized water (5 mL). The organic layer was collected and the aqueous layer was extracted 

with DCM (4 X, 10 mL). The combined organic layers were dried over anhydrous sodium 

sulfate and solvent was removed to afford a brown oil that was purified by SiO2 flash 
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chromatography (5 % – 10 % EtOAc in hexanes) to provide ester 96 as a colorless oil (256 mg, 

93%). [α]25
D = 3.9° , c = 0.009, DCM). 1H NMR (400 MHz, CDCl3) δ 7.26 (m, 2H), 6.92 – 6.80 

(m, 2H), 6.31 (d, J = 9.9 Hz, 2H), 5.91 – 5.75 (m, 1H), 5.69 – 5.50 (m, 2H), 5.20 (m, 1H), 5.10 

(m, 2H), 4.43 (s, 2H), 4.04 (d, J = 5.8 Hz, 2H), 3.79 (s, 6H), 3.76 (s, 3H), 3.55 (t, J = 4.2 Hz, 

1H), 2.58 – 2.38 (m, 2H), 2.29 (s, 3H), 2.23 – 2.14 (m, 1H), 1.99 – 1.81 (m, 2H), 1.81 – 1.68 (m, 

1H), 0.99 (d, J = 6.8 Hz, 3H), 0.91 (s, 9H), 0.86 (d, J = 6.7 Hz, 3H), 0.08 (s, 3H), 0.05 (s, 3H). 

13C NMR (126 MHz, CDCl3) δ 168.07, 161.24, 159.28, 158.12, 138.05, 135.44, 134.11, 132.67, 

130.64, 129.53, 127.36, 117.95, 113.90, 106.61, 96.22, 76.67, 75.52, 72.02, 65.87, 55.72, 55.48, 

55.40, 39.88, 38.89, 37.92, 36.84, 30.04, 26.35, 20.22, 17.06, 10.90, -3.42. HRMS (ESI, m/z): 

calcd for [C37H56O7Si]+, ([M + Na]+): 663.3693, found 663.3698. 

 

(4S,5R,6R,7R,Z)-6-((tert-butyldimethylsilyl)oxy)-11-((4-methoxybenzyl)oxy)-5,7-

dimethylundeca-1,9-dien-4-yl 2,4-dimethoxy-6-((S)-3-methyl-2-oxopent-4-en-1-yl)benzoate, 

97 

A 5 mL flask was flame dried and flushed with argon before THF (600 µL) and compound 96 

(150 mg, 0.234 mmol, 1 eq.) were added. The solution was cooled to -78 °C and a freshly 

prepared 1M solution of LDA (468 µL, 0.468 mmol, 2 eq.) in THF was added dropwise. After 

stirring for 5 min at -78 °C, Weinreb amide 47 (92 mg, 0.585 mmol, 2.5 eq.) in THF (200 µL) 

was added at once and the solution was stirred for an additional 10 min at -78 °C at which point 

saturated aqueous ammonium chloride (1 mL) was added to quench. Stirring was continued as 
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the heterogenous mixture was allowed to warm to rt. The organic layer was collected and the 

aqueous layer was extracted with EtOAc (5 X, 2 mL). The combined organic layers were dried 

with anhydrous sodium sulfate and solvent was evaporated to afford a yellow oil that was 

purified by SiO2 flash chromatography (5 % – 10 % EtOAc in hexanes) to provide pure 97 as a 

colorless oil (140 mg, 81%). [α]25
D = 10.2° , c = 0.005, DCM). 1H NMR (500 MHz, CDCl3) δ 

7.26 (m, 2H), 6.87 (m, 2H), 6.38 (d, J = 2.0 Hz, 1H), 6.27 (d, J = 2.0 Hz, 1H), 5.85 (ddt, J = 

17.1, 10.1, 7.0 Hz, 1H), 5.71 (ddt, J = 17.1, 10.1, 7.1 Hz, 1H), 5.66 – 5.52 (m, 1H), 5.17 (q, J = 

6.1 Hz, 1H), 5.14 – 4.98 (m, 2H), 4.43 (s, 2H), 4.04 (d, J = 6.2 Hz, 2H), 3.79 (s, 3H), 3.79 (s, 

3H), 3.78 (s, 3H), 3.81 – 3.70 (m, 1H), 3.56 (t, J = 4.5 Hz, 1H), 2.73 (h, J = 6.9 Hz, 1H), 2.51 

(dt, J = 12.3, 6.1 Hz, 1H), 2.47 – 2.37 (m, 2H), 2.23 – 2.15 (m, 1H), 2.13 – 2.03 (m, 1H), 1.97 – 

1.81 (m, 2H), 1.80 – 1.68 (m, 1H), 1.08 (d, J = 7.0 Hz, 3H), 0.98 (d, J = 6.8 Hz, 3H), 0.92 (s, 

9H), 0.86 (d, J = 6.8 Hz, 3H), 0.09 (s, 3H), 0.06 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 210.06, 

167.64, 161.59, 159.34, 158.98, 135.95, 135.68, 134.28, 132.57, 130.72, 129.50, 127.46, 117.85, 

116.91, 113.95, 107.29, 100.15, 97.85, 76.58, 75.73, 72.04, 65.91, 55.80, 55.54, 55.41, 46.64, 

45.20, 38.91, 38.07, 38.00, 37.20, 36.90, 30.21, 26.35, 17.00, 16.22, 10.85, -3.33, -3.43. HRMS 

(ESI, m/z): calcd for [C43H64O8Si]+, ([M + Na]+): 759.4268, found 759.4271. 

 

(4S,5R,6R,7R,Z)-6-((tert-butyldimethylsilyl)oxy)-11-((4-methoxybenzyl)oxy)-5,7-

dimethylundeca-1,9-dien-4-yl 2-((2R,3S)-2-hydroxy-3-methylpent-4-en-1-yl)-4,6-

dimethoxybenzoate, 98 
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A 5 mL flask was flused with argon and charged with ketone 97 (110 mg, 0.15 mmol, 1 eq.), 

DMF (250 mL), deionized water (250 mL), sodium formate (156 mg, 2.3 mmol, 15 eq.), and 

RuCl[(S,S)-Tsdpen](p-cymene) (10 mg, 0.015 mmol, 0.1 eq.). The reaction mixture was stirred 

at 40 °C for 35 h and subsequently quenched by the addition of saturated aqueous ammonium 

chloride (2 mL) and then diluted with Et2O (1 mL). The organic layer was collected and the 

aqueous layer was extracted with Et2O (10 X, 1 mL). The combined organic layers were dried 

over anhydrous sodium sulfate and solvent was removed under reduced pressure to afford a 

brown oil that was purified by SiO2 flash chromatography (5 % – 15 % EtOAc in hexanes) to 

provide 98 in a 9:1 diastereomeric mixture as a colorless oil (82 mg, 74%). [α]25
D = 15.3° , c = 

0.003, DCM). (*Denotes minor epimeric alcohol product) 1H NMR (500 MHz, CDCl3) δ 7.30 – 

7.22 (m, 2H), 6.91 – 6.82 (m, 2H), *6.37 (d, J = 2.1 Hz, 1H), 6.35 (d, J = 2.1 Hz, 1H), 6.33 (d, J 

= 2.1 Hz, 1H), 5.95 – 5.71 (m, 2H), 5.68 – 5.50 (m, 2H), 5.21 (dd, J = 12.1, 6.3 Hz, 1H), 5.17 – 

4.96 (m, 4H), *4.43 (s, 2H), 4.43 (s, 2H), *4.04 (d, J = 6.0 Hz, 2H), 4.03 (d, J = 6.3 Hz, 2H), 

3.81 (s, 3H), 3.79 (s, 3H), 3.77 (s, 3H), *3.76 – 3.70 (m, 1H), 3.66 – 3.58 (m, 1H), *3.56 (t, J = 

4.6 Hz, 1H), 3.51 (t, J = 4.5 Hz, 1H), 2.77 (dd, J = 13.6, 2.9 Hz, 1H), 2.58 – 2.39 (m, 3H), 2.37 – 

2.26 (m, 1H), 2.24 – 2.15 (m, 1H), 2.03 – 1.89 (m, 2H), 1.89 – 1.79 (m, 1H), 1.79 – 1.65 (m, 

2H), *1.02 (d, J = 6.8 Hz, 3H), *0.96 (d, J = 6.2 Hz, 3H), 0.94 (d, J = 6.5 Hz, 6H), *0.92 (s, 9H), 

0.91 (s, 9H), 0.84 (d, J = 6.8 Hz, 3H), *0.10 (s, 3H), 0.07 (s, 3H), *0.06 (s, 3H), 0.04 (s, 3H). 13C 

NMR (126 MHz, CDCl3) δ 169.33, 161.90, 159.29, 158.68, 140.91, 137.76, 134.01, 132.49, 

130.60, 129.53, 127.47, 117.93, 116.62, 115.93, 113.90, 106.22, 97.12, 77.36, 76.43, 76.37, 

72.03, 65.84, 55.72, 55.52, 55.40, 39.48, 38.23, 37.97, 37.56, 37.25, 36.74, 30.34, 26.31, 16.87, 

15.12, 10.78, -3.40, -3.49. HRMS (ESI, m/z): calcd for [C43H66O8Si]+, ([M + Na]+): 761.4425, 

found 761.4420. 
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(3S,8S,9R,Z)-3-((2R,3R,4R,Z)-3-((tert-butyldimethylsilyl)oxy)-8-((4-methoxybenzyl)oxy)-4-

methyloct-6-en-2-yl)-9-hydroxy-12,14-dimethoxy-8-methyl-3,4,7,8,9,10-hexahydro-1H-

benzo[c][1]oxacyclododecin-1-one, 99 

A 100 mL flask was flame dried and flushed with argon before DCM (54 mL) and alcohol 98 (20 

mg, 0.0271 mmol, 1 eq.) were added. The solution was cooled to 0 °C, Grubbs’ second 

generation catalyst (1.2 mg, 0.0014 mmol, 0.05 eq.) was added, and the solution was continually 

stirred while warming to rt. After 4.5 h of stirring at rt, a catalyst was refreshed (1.2 mg, 0.0014 

mmol, 0.05 eq.) and the reaction mixture was stirred for an additional 4.5 h at which point 

solvent was removed under reduced pressure at 10 °C to afford a brown oil that was purified by 

SiO2 flash chromatography (15 % – 40 % EtOAc in hexanes) to provide 99 in a 4:1 mixture of 

side chain olefin isomers (cis:trans) as a colorless oil (13 mg, 79% based on desired epimeric 

alcohol). [α]25
D = 9.7° , c = 0.002, DCM). (*Denotes minor trans side chain olefin isomer) 1H 

NMR (500 MHz, CDCl3) δ 7.30 – 7.22 (m, 2H), 6.91 – 6.82 (m, 2H), 6.35 (d, J = 2.2 Hz, 1H), 

6.33 (d, J = 1.7 Hz, 1H), 5.68 – 5.54 (m, 2H), 5.54 – 5.44  (m, 2H), 5.32 – 5.26 (m, 1H), 4.42 (s, 

2H), *4.42 (s, 2H), 4.02 (d, J = 5.6 Hz, 2H), *3.91 (d, J = 6.0 Hz, 2H), 3.81 (s, 3H), 3.80 (s, 3H), 

3.76 (s, 3H), 3.76 – 3.72 (m, 1H), *3.57 – 3.54 (m, 1H), 3.54 – 3.51 (m, 1H), 3.07 – 2.91 (m, 

1H), 2.81 – 2.54 (m, 2H), 2.44 – 2.33 (m, 1H), 2.16 – 2.09 (m, 1H), 2.00 – 1.92 (m, 1H), 1.92 – 

1.82 (m, 2H), 1.82 – 1.71 (m, 2H), 1.05 (d, J = 6.8 Hz, 3H), *0.97 (d, J = 6.9 Hz, 3H), 0.97 (d, J 
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= 6.9 Hz, 3H), 0.90 (s, 9H), 0.88 (d, J = 6.9 Hz, 3H), 0.07 (s, 3H), *0.03 (s, 3H), 0.02 (s, 3H). 

HRMS (ESI, m/z): calcd for [C41H62O8Si]+, ([M + Na]+): 733.4112, found 733.4105. 

 

(3S,8S,9R,Z)-9-((tert-butyldimethylsilyl)oxy)-3-((2R,3R,4R,Z)-3-((tert-

butyldimethylsilyl)oxy)-8-((4-methoxybenzyl)oxy)-4-methyloct-6-en-2-yl)-12,14-dimethoxy-

8-methyl-3,4,7,8,9,10-hexahydro-1H-benzo[c][1]oxacyclododecin-1-one, 100 

A 1 dram vial was flame dried and flushed with argon before DCM (100 mL), 99 (6 mg, 0.008 

mmol, 1 eq.), and DIPEA (6 mL, 0.032 mmol, 4 eq.) were added. The solution was cooled to 0 

°C and tert-butyldimethylsilyl trifluromethanesulfonate (6.4 mL, 0.028 mmol, 3.5 eq.) was added 

dropwise. Stirring was continued for 30 min as the reaction mixture was allowed to warm to rt at 

which point the reaction was quenched by the addition of saturated aqueous ammonium chloride 

(1 mL). The biphasic mixture was diluted with DCM (1 mL), the organic layer was collected and 

the aqueous layer was extracted with DCM (10 X, 1 mL). The combined organic layers were 

dried over anhydrous sodium sulfate and solvent was removed under reduced pressure to afford a 

colorless oil that was purified by SiO2 flash chromatography (5 % – 10 % EtOAc in hexanes) to 

provide 100 in a 4:1 mixture of side chain olefin isomers (cis:trans) as a colorless oil (6 mg, 

91%). [α]25
D = 4.7° , c = 0.002, DCM). (*Denotes minor trans side chain olefin isomer) 1H NMR 

(500 MHz, CDCl3) δ 7.29 – 7.24 (m, 2H), 6.90 – 6.84 (m, 2H), 6.31 (d, J = 2.2 Hz, 1H), 6.29 (d, 

J = 1.7 Hz, 1H), 5.71 – 5.52 (m, 3H), 5.39 – 5.30 (m, 1H), 5.29 – 5.22 (m, 1H), 4.43 (s, 2H), 

*4.42 (s, 2H), 4.03 (d, J = 5.0 Hz, 2H), *3.93 (m, 2H), 3.80 (s, 3H), 3.79 (s, 3H), 3.77 – 3.74 (m, 



 215 

1H), 3.74 (s, 3H), 3.52 – 3.41 (m, 1H), 3.13 (d, J = 12.9 Hz, 1H), 2.74 – 2.60 (m, 1H), 2.28 – 

2.09 (m, 3H), 2.09 – 2.01 (m, 1H), 1.98 – 1.70 (m, 5H), 1.01 (d, J = 6.8 Hz, 3H), *0.96 (d, J = 

6.9 Hz, 3H), 0.94 (d, J = 6.9 Hz, 3H), 0.89 (s, 9H), 0.88 (d, J = 7.2 Hz, 3H), 0.76 (s, 9H), *0.01 

(s, 3H), -0.00 (s, 3H), -0.01 (s, 3H), -0.19 (s, 3H), -0.61 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 

166.39, 160.55, 159.27, 158.78, 140.76, 134.04, 132.85, *130.72, 130.66, *129.63, 129.54, 

*127.78, 127.68, 127.20, 116.58, 113.89, 109.21, 97.22, 77.37, 72.76, 71.98, 71.64, 65.82, 56.20, 

*55.42, 55.40, 55.37, *53.58, 41.58, 40.23, 37.84, 34.16, 32.55, 32.16, 31.74, 29.85, 29.52, 

26.34, 25.97, 18.62, 17.96, *17.43, 11.31, -3.50, -3.68, *-3.70, -5.03, -5.68. HRMS (ESI, m/z): 

calcd for [C47H76O8Si2]+, ([M + Na]+): 847.4976, found 847.4983. 

 

(3S,8S,9R,Z)-9-((tert-butyldimethylsilyl)oxy)-3-((2R,3R,4R,Z)-3-((tert-

butyldimethylsilyl)oxy)-8-hydroxy-4-methyloct-6-en-2-yl)-12,14-dimethoxy-8-methyl-

3,4,7,8,9,10-hexahydro-1H-benzo[c][1]oxacyclododecin-1-one, 101 

A 1 dram vial was charged with DCM (200 mL), deionized water (13 mL), and 100 (5.2 mg, 

0.0063 mmol, 1 eq.). DDQ (2.3 mg, 0.01 mmol, 1.5 eq.) was added in one portion and the 

reaction mixture was stirred at rt for 30 min and subsequently quenched by the addition of 

saturated aqueous sodium bicarbonate (2 mL). The biphasic mixture was diluted with DCM (2 

mL), the organic layer was collected, and the aqueous layer was extracted with DCM (10 X, 2 

mL). The combined organic layers were dried over anhydrous sodium sulfate and solvent was 

removed under reduced pressure to afford an orange oil that was purified by SiO2 flash 



 216 

chromatography (15 % – 30 % EtOAc in hexanes) to provide 101 in a 4:1 mixture of side chain 

olefin isomers (cis:trans) as a colorless oil (4.4 mg, 99%). [α]25
D = 7.7° , c = 0.001, DCM). 

(*Denotes minor trans side chain olefin isomer) 1H NMR (500 MHz, CDCl3) δ 6.32 (d, J = 2.3 

Hz, 1H), 6.30 (d, J = 1.9 Hz, 1H), 5.69 – 5.51 (m, 3H), 5.40 – 5.22 (m, 2H), 4.22 (dd, J = 12.2, 

5.6 Hz, 1H), 4.13 (dd, J = 12.2, 6.6 Hz, 1H), 4.10 – 4.01 (m, 1H), 3.79 (s, 3H), *3.75 (s, 3H), 

3.74 (s, 3H), 3.76 – 3.71 (m, 1H), *3.51 (dd, J = 5.3, 3.5 Hz, 1H), 3.46 (dd, J = 5.9, 3.1 Hz, 1H), 

3.12 (d, J = 12.7 Hz, 1H), 2.79 – 2.61 (m, 1H), *2.55 – 2.44 (m, 1H), 2.28 – 2.11 (m, 3H), 2.11 – 

2.02 (m, 1H), 1.98 – 1.74 (m, 4H), 1.00 (d, J = 6.8 Hz, 3H), 0.96 (d, J = 7.1 Hz, 3H), *0.95 (d, J 

= 7.7 Hz, 3H), 0.90 (d, J = 6.7 Hz, 3H), 0.89 (s, 9H), *0.87 (s, 9H), 0.76 (s, 9H), 0.01 (s, 3H), *-

0.00 (s, 3H), -0.03 (s, 3H), *-0.07 (s, 3H), -0.20 (s, 3H), -0.62 (s, 3H). 13C NMR (126 MHz, 

CDCl3) δ 166.56, 160.59, 158.77, 140.86, *132.35, 132.17, *130.58, *129.70, 129.50, 127.60, 

*126.49, 116.49, 109.24, 97.20, 75.80, 72.81, 64.03, 58.79, 56.20, *56.16, 55.38, 41.45, 40.19, 

38.01, 34.11, 32.59, 32.15, 30.10, 29.85, 29.26, 26.30, *26.24, 25.97, 17.96, 13.78, 11.40, 

*11.24, -3.56, -3.76, *-3.99, -5.03, -5.69. HRMS (ESI, m/z): calcd for [C39H68O7Si2]+, ([M + 

Na]+): 727.4401, found 727.4410. 
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(3S,8S,9R,Z)-3-((2R,3R,4R,Z)-8-azido-3-((tert-butyldimethylsilyl)oxy)-4-methyloct-6-en-2-

yl)-9-((tert-butyldimethylsilyl)oxy)-12,14-dimethoxy-8-methyl-3,4,7,8,9,10-hexahydro-1H-

benzo[c][1]oxacyclododecin-1-one, 102 

A 5 mL flask was flame dried and flushed with argon before anhydrous toluene (300 µL), 

compound  (4.4 mg, 0.006 mmol, 1 eq.), PPh3 (6 mg,  0.024 mmol, 4 eq.), and Zn(N3)2(C5H5N)2 

(9 mg,  0.030 mmol, 5 eq.) were added. The suspension was cooled to 0 °C and DIAD (5 mg, 

0.025 mmol, 4.2 eq.) was added dropwise over 15 min and the reaction mixture was stirred at 

this temperature for an additional 10 min before warming to rt, followed by an additional 30 min 

of stirring. Precipitate was removed by filtering through SiO2 with Et2O (50 mL) and solvent was 

removed under reduced pressure to afford an amorphous white solid that was purified by SiO2 

flash chromatography (5 % – 10 % EtOAc in hexanes) to provide 102 in a 4:1 mixture of side 

chain olefin isomers (cis:trans) as a colorless oil (4 mg, 89 %). [α]25
D = 1.9° , c = 0.001, DCM). 

(*Denotes minor trans side chain olefin isomer) 1H NMR (500 MHz, CDCl3) δ 6.32 (d, J = 2.2 

Hz, 1H), 6.30 (d, J = 2.2 Hz, 1H), 5.80 – 5.66 (m, 1H), 5.63 – 5.43 (m, 2H), 5.40 – 5.31 (m, 1H), 

5.30 – 5.22 (m, 1H), 3.80 (s, 3H), 3.78 – 3.72 (m, 2H), 3.75 (s, 3H), 3.66 (dd, J = 7.6, 3.8 Hz, 

1H), 3.49 (ddd, J = 11.4, 5.7, 3.2 Hz, 1H), 3.14 (d, J = 12.8 Hz, 1H), 2.69 (dd, J = 24.3, 11.2 Hz, 

1H), 2.33 – 2.13 (m, 3H), 2.12 – 2.03 (m, 2H), 1.99 – 1.75 (m, 4H), 1.01 (d, J = 6.8 Hz, 3H), 

0.96 (d, J = 6.8 Hz, 3H), 0.91 (d, J = 3.5 Hz, 3H), *0.90 (s, 9H), 0.90 (s, 9H), 0.75 (s, 9H), *0.08 

– 0.05 (s, 3H), 0.02 (s, 3H), -0.01 (s, 3H), -0.19 (s, 3H), -0.61 (s, 3H). 13C NMR (126 MHz, 
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CDCl3) δ 166.38, 160.60, 158.79, 140.83, 135.50, 129.72, 128.99, 127.59, 116.46, 109.26, 97.22, 

76.77, 76.40, 72.77, 56.20, 55.38, 53.58, 53.03, 47.37, 41.59, 40.21, 37.74, 34.16, 32.16, 30.10, 

29.85, 26.32, 25.97, 18.62, 14.28, 11.38, -3.48, -3.71, -5.03, -5.68. HRMS (ESI, m/z): calcd for 

[C39H67N3O6Si2]+, ([M + Na]+): 752.4466, found 752.4459. 

 

(2R,3S)-N-((5R,6R,7R,Z)-6-((tert-butyldimethylsilyl)oxy)-7-((3S,8S,9R,Z)-9-((tert-

butyldimethylsilyl)oxy)-12,14-dimethoxy-8-methyl-1-oxo-3,4,7,8,9,10-hexahydro-1H-

benzo[c][1]oxacyclododecin-3-yl)-5-methyloct-2-en-1-yl)-3-hydroxy-2-methylhexanamide, 

103 

Flask A: A 5 mL flask was flame dried and flushed with argon before THF (400 µL), compound 

102 (8 mg, 0012 mmol, 1 eq.), and PPh3 (8 mg, 0.03 mmol, 2.5 eq.) were added. The reaction 

mixture was heated at 50 °C for 2 h and then allowed to cool to rt.  

Flask B: A separate 5 mL flask was flame dried and flushed with argon before DMF (200 µL), 

acid 5 (3.4 mg, 0.024 mmol, 2 eq.), DIPEA (21 µL, 0.12 mmol, 10 eq.), and COMU (11 mg, 

0.025 mmol, 2.1 eq.) were sequentially added. The reaction mixture was stirred for 30 min at rt. 

After stirring the reaction mixtures for the designated time, the contents of flask B were added to 

flask A (rinse 1X with 100 µL DMF), and the combined reaction mixtures were stirred for 1 h at 

rt. Reaction was quenched by the addition of saturated aqueous sodium bicarbonate (1 mL). The 

resultant slurry was partitioned between Et2O (3 mL) and deinionized water (1 mL). The organic 

layer was collected and the aqueous layer was extracted with Et2O (10 X, 3 mL) and the 
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combined organic extracts were dried over anhydrous sodium sulfate followed by the removal of 

solvent under reduced pressure to afford a red oil that was purified by SiO2 flash 

chromatography (5 % – 10 % EtOAc in hexanes) to provide 103 as a colorless oil (5 mg, 50%). 

[α]25
D = 2.2° , c = 0.001, DCM). 1H NMR (500 MHz, CDCl3) δ 6.32 (d, J = 2.3 Hz, 1H), 6.30 (d, 

J = 2.2 Hz, 1H), 6.25 (s, 1H), 5.62 (m, 1H), 5.55 (ddd, J = 10.7, 3.0, 1.1 Hz, 1H), 5.48 (ddd, J = 

10.8, 4.5, 2.0 Hz, 1H), 5.38 – 5.24 (m, 2H), 3.99 (dddd, J = 14.7, 7.1, 5.9, 1.6 Hz, 1H), 3.92 – 

3.85 (m, 1H), 3.86 – 3.77 (m, 1H), 3.80 (s, 3H), 3.73 (s, 3H), 3.67 (d, J = 2.5 Hz, 1H), 3.43 (dd, J 

= 5.9, 3.0 Hz, 1H), 3.10 (d, J = 12.6 Hz, 1H), 2.74 (dt, J = 14.1, 11.3 Hz, 1H), 2.33 – 2.12 (m, 

5H), 2.08 – 2.01 (m, 1H), 1.98 – 1.82 (m, 2H), 1.83 – 1.74 (m, 1H), 1.61 – 1.40 (m, 2H), 1.38 – 

1.18 (m, 2H), 1.15 (d, J = 7.2 Hz, 3H), 1.01 (d, J = 6.8 Hz, 3H), 0.98 (d, J = 7.0 Hz, 3H), 0.92 (t, 

J = 7.0 Hz 3H), 0.89 (d, J = 7.2 Hz, 6H), 0.88 (s, 9H), 0.76 (s, 9H), 0.00 (s, 3H), -0.04 (s, 3H), -

0.20 (s, 3H), -0.62 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 177.03, 172.20, 169.99, 166.89, 

158.69, 132.86, 127.57, 126.22, 109.24, 106.49, 97.14, 77.74, 72.88, 72.84, 71.70, 56.11, 55.39, 

44.49, 40.18, 40.09, 38.28, 36.43, 36.39, 35.95, 34.05, 32.15, 32.08, 29.85, 28.96, 26.27, 25.95, 

19.40, 17.95, 14.23, 13.75, 11.50, 11.16, -3.56, -3.81, -5.00, -5.73. HRMS (ESI, m/z): calcd for 

[C46H81NO8Si2]+, ([M + Na]+): 854.5398, found 854.5401. 
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(2R,3S)-N-((5R,6R,7R,Z)-6-((tert-butyldimethylsilyl)oxy)-7-((3S,8S,9R,Z)-9-((tert-

butyldimethylsilyl)oxy)-14-hydroxy-12-methoxy-8-methyl-1-oxo-3,4,7,8,9,10-hexahydro-1H-

benzo[c][1]oxacyclododecin-3-yl)-5-methyloct-2-en-1-yl)-3-hydroxy-2-methylhexanamide, 

104 

A 1 mL reaction vessel was flame dried and flushed with argon before DCM (200 µL) and 

compound 103 (2.2 mg, 0.003 mmol, 1 eq.) were added. The solution was cooled to -78 °C and 

boron trichloride (1M in DCM, 12 µL, 0.012 mmol, 4 eq.) was added dropwise over 10 min. 

Stirring was continued at -78 °C for 3.5 h at which point the reaction was quenched by the 

addition of saturated aqueous sodium acetate (2 mL) and subsequently diluted with DCM (1 

mL). The organic layer was collected and the aqueous layer was extracted with DCM (5 X, 1 

mL). The combined organic layers were dried over anhydrous sodium sulfate and solvent was 

removed under reduced pressure to afford a light yellow oil that was purified by SiO2 flash 

chromatography (35 % – 50 % EtOAc in hexanes) to provide isomerically pure 104 as an 

amorphous solid (1.9 mg, 78 %). [α]25
D = 10.2° , c = 0.001, DCM). 1H NMR (500 MHz, CDCl3) 

δ 11.56 (s, 1H), 6.31 (d, J = 2.6 Hz, 1H), 6.29 (d, J = 2.6 Hz, 1H), 5.73 (bt, 1H), 5.47 (dd, J = 

20.6, 10.4 Hz, 1H), 5.40 – 5.32 (m, 2H), 5.31 – 5.25 (m, 1H), 5.11 (dd, J = 11.3, 4.5 Hz, 1H), 

3.90 – 3.81 (m, 2H), 3.78 (s, 3H), 3.78 – 3.72 (m, 2H), 3.67 (dd, J = 14.5, 6.7 Hz, 1H), 3.59 (d, J 

= 11.8 Hz, 1H), 3.49 (bs, 1H), 2.73 (dd, J = 25.1, 10.9 Hz, 1H), 2.27 (dt, J = 16.3, 12.6 Hz, 2H), 

2.22 – 2.13 (m, 2H), 2.11 – 2.05 (m, 2H), 1.97 – 1.93 (m, 1H), 1.93 – 1.82 (m, 2H), 1.80 – 1.71 
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(m, 2H), 1.67 – 1.59 (m, 3H), 1.17 (d, J = 7.2 Hz, 3H), 1.01 (d, J = 6.8 Hz, 3H), 0.96 (d, J = 6.7 

Hz, 3H), 0.93 (d, J = 7.2 Hz, 3H), 0.91 (s, 9H), 0.88 (t, J = 7.0 Hz, 3H), 0.74 (s, 9H), 0.10 (s, 

3H), 0.06 (s, 3H), -0.21 (s, 3H), -0.67 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 176.60, 171.70, 

165.17, 163.39, 144.87, 132.20, 131.63, 126.40, 125.88, 114.22, 105.30, 99.62, 78.27, 76.59, 

73.59, 71.77, 55.43, 44.62, 40.17, 39.90, 38.17, 36.31, 35.88, 33.25, 32.08, 29.59, 29.39, 29.21, 

26.18, 25.88, 24.88, 22.85, 19.37, 14.28, 14.21, 11.18, -3.19, -4.27, -4.83, -5.84. HRMS (ESI, 

m/z): calcd for [C45H79NO8Si2]+, ([M + Na]+): 840.5242, found 840.5245. 

 

Cruentaren A, 1 

A Teflon reaction vessel was equipped with a stir bar and charged with ACN (200 mL) and 

compound 104 (2.0 mg, 0.0021 mmol, 1 eq.). The solution was cooled to 0 °C and aqueous HF 

(48 % w/w, 200 mL) and stirring was continued for 1 h at 0 °C then continued for 1 h at rt. The 

reaction mixture was cooled back to 0 °C and was quenched by the addition of saturated aqueous 

sodium bicarbonate (5 mL) and diluted with EtOAc (5 mL). The organic layer was collected and 

the aqueous layer was extracted with EtOAc (5 X, 5 mL). The combined organic layers were 

dried over anhydrous sodium sulfate and solvent was removed under reduced pressure to afford 

an organge oil that was purified by thin-layer chromatography (20 % acetone in DCM) to afford 

cruentaren A (1) as a colorless amorphous solid (0.6 mg, 51 %). [α]25
D = 3.2°, c =0.0006 , 

DCM). 1H NMR (500 MHz, CDCl3) δ 11.50 (br s, 1H), 6.37 (d, J = 2.7 Hz, 1H), 6.31 (d, J = 2.6 

Hz, 1H), 6.09 (t, J = 5.4 Hz, 1H), 5.56 (dddt, J = 10.8, 8.6, 7.1, 1.4 Hz, 1H), 5.46–5.52 (m, 1H), 
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5.44 (ddd, J = 11.1, 4.5, 1.6 Hz, 1H), 5.40 (dddd, J = 11.0, 11.0, 4.5, 2.0 Hz, 1H), 5.30 (ddd, J = 

11.6, 5.6, 1.9 Hz, 1H), 3.91 (dddd, J = 14.9, 7.5, 5.8, 1.3, 1H), 3.80–3.87 (m, 2H), 3.80 (s, 3H), 

3.74 (dd, J = 12.8, 1.6 Hz, 1H), 3.64 (ddd, J = 10.8, 2.9, 1.7 Hz, 1H), 3.45 (ddd, J = 9.1, 6.7, 2.1 

Hz, 1H), 3.10 (d, J = 3.3 Hz, 1H), 2.83 (dt, J = 14.1, 11.5 Hz, 1H), 2.75 (d, J = 6.7 Hz, 1H), 2.34 

(dt, J = 14.3, 11.6 Hz, 1H), 2.27 (dq, J = 7.2, 2.9 Hz, 1H) 2.20–2.28 (m, 4H), 1.95–2.05 (m, 3H), 

1.70 (dddq, J = 9.1, 6.8, 6.8, 4.7 Hz, 1H), 1.42–1.51 (m, 2H), 1.27–1.35 (m, 3H), 1.15 (d, J = 7.2 

Hz, 3H), 1.01 (d, J = 6.9 Hz, 3H), 0.92 (t, J = 7.0 Hz, 3H), 0.89 (d, J = 7.0 Hz, 3H), 0.79 (d, J = 

6.9 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 176.35, 171.48, 165.67, 163.48, 143.73, 132.22, 

130.88, 126.74, 125.80, 112.27, 104.85, 99.64, 78.00, 74.68, 73.12, 71.74, 55.39, 44.80, 39.17, 

38.32, 36.81, 36.72, 36.55, 35.85, 31.60, 30.69, 29.82, 19.20, 16.11, 14.22, 14.01, 11.29, 8.55. 

HRMS (ESI, m/z): calcd for [C33H51NO8]+, ([M + Na]+): 612.3506, found 612.3508.  

 

(2R,3S)-3-hydroxy-N-((1S,2S)-1-hydroxy-1-phenylpropan-2-yl)-N,2-dimethylhexanamide, 

50 

A 250 mL flask was flame dried and flushed with argon before anhydrous THF (25 mL) and 

DIPA (2.70 mL, 19.0 mmol, 2.1 eq.) were added. The solution was cooled to -78 °C and n-

butyllithium (2.5 M in hexanes, 7.42 mL, 18.6 mmol, 2.05 eq.) was slowly added. Stirring was 

continued as the solution was allowed to warm to 0 °C and then cooled back to -78 °C at which 

point a solution of S,S-pseudoephedrine propionamide (2.0 g, 9.05 mmol, 1 eq.) in anhydrous 

THF (25 mL) was added slowly via cannula. Stirring was continued at -78 °C for 2 hr, 0 °C for 

30 min, and rt for 10 min. The reaction mixture was cooled back to -78 °C followed by the 

addition of a solution of Bis(cyclopentadienyl)zirconium(IV) dichloride (5.80 g, 19.9 mmol, 2.2 
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eq.) in anhydrous THF (56 mL). The deep orange solution was stirred at -78 °C for 3 hr and then 

cooled to -116 °C when a solution butyraldehyde (2.30 g, 9.05 mmol, 1 eq.) in anhydrous THF 

(5.6 mL) was added dropwise. Stirring was continued at -116 °C for 3 hr at which point the 

reaction was quenched by the addition of saturated aqueous ammonium chloride (25 mL). The 

biphasic reaction mixture was warmed to rt and filtered through a pad of celite using EtOAc (150 

mL) to rinse. The organic layer was collected, and the aqueous layer was extracted with EtOAc 

(3 X, 50 mL). The combined organic layers were dried over anhydrous sodium sulfate and 

solvent was removed under reduced pressure to afford an orange oil that was purified by SiO2 

flash chromatography (40 % – 70%) to provide pure 50 as a colorless oil (84 %). [α]25
D = 69.7° 

(c = 0.006, DCM). 1H NMR (500 MHz, CDCl3) δ 7.41 – 7.27 (m, 5H), 4.66 – 4.62 (m, 1H), 4.61 

(d, J = 8.0 Hz, 1H), 4.56 (bs, 1H), 4.23 (s, 1H), 4.06 (m, 1H), 3.85 – 3.80 (m, 1H), 3.75 (m, 1H), 

2.94 (s, 3H), 2.87 (s, 3H), 2.73 (m, 1H), 2.53 (qd, J = 7.0, 2.1 Hz, 1H), 1.56 – 1.41 (m, 2H), 1.40 

– 1.29 (m, 1H), 1.29 – 1.18 (m, 1H), 1.16 – 1.03 (m, 6H), 1.01 – 0.88 (m, 3H). 13C NMR (126 

MHz, CDCl3) δ 179.86, 179.16, 142.25, 141.33, 129.02, 128.76, 128.61, 128.00, 126.82, 126.43, 

77.37, 76.42, 76.02, 71.37, 71.06, 57.85, 40.04, 39.00, 36.13, 35.89, 27.45, 19.45, 19.38, 15.84, 

14.34, 14.28, 14.22, 10.52, 9.68. HRMS (ESI, m/z): calcd for [C17H27NO3]+, ([M + Na]+): 

316.1889, found 316.1890. 

 

(2R,3S)-3-hydroxy-2-methylhexanoic acid, 5 

A 50 mL flask was charged with tert-butanol (2 mL) and deionized water (6.3 mL) before amide 

# (200 mg, 0.68 mmol, 1 eq.) and tetrabutylammonium hydroxide (1.5 M in deionized water, 2.3 

mL, 3.4 mmol, 5 eq.) were added. The solution was heated at reflux for 23 h. Once the reaction 
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was complete, the solution was allowed to cool to rt and suspended between 0.5 M aqueous 

sodium hydroxide (82 mL) and diethyl ether (12 mL). The organic layer was removed, and the 

aqueous layer was extracted with diethyl ether (3 X, 12 mL). The aqueous layer was cooled to 0 

°C, saturated with sodium chloride, and acidified to pH 2 with 4 N aqueous hydrochloric acid. 

The acid solution was extracted with diethyl ether (4 X, 15 mL) and the combined organic 

extracts were dried over anhydrous sodium sulfate. Solvent was removed under reduced pressure 

to afford pure acid # as a colorless, amorphous solid  (94%). [α]25
D = -12.5° (c = 0.021, DCM). 

1H NMR (500 MHz, CDCl3) δ 3.96 (dt, J = 8.7, 3.8 Hz, 1H), 3.32 (bs, 1H), 2.63 (qd, J = 7.2, 3.5 

Hz, 1H), 1.58 – 1.31 (m, 4H), 1.21 (d, J = 7.2 Hz, 3H), 0.95 (t, J = 7.1 Hz, 3H). 13C NMR (126 

MHz, CDCl3) δ 179.74, 71.63, 44.11, 35.71, 19.32, 14.09, 10.69. HRMS (ESI, m/z): calcd for 

[C7H14O3]-, ([2M + Na – 2H]+): 313.1627, found 313.1627. 
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Chapter IV 

A Conformation-Based Approach for the Design of Simplified  

Natural Product Analogues of Trienomycin A 

IV.1 Therapeutic Relevance of Macrocyclic Natural Products 

Secondary metabolites have a historically dominant presence in the pharmacopeia. They 

have also remained a major contemporary contributor to human medicine, particularly in 

anticancer and antibiotic drug classes.1-3 Of the more than 100,000 known secondary 

metabolites, only 3% are macrocycles, i.e. contain a 12+-membered ring system.4 Despite this 

low natural abundance, a significant number of FDA approved natural product(-derived) drugs 

are macrocycles.5 Even among synthetic medicines, a macrocyclization strategy often provides 

compounds with improved pharmacological profiles in comparison to their linear counterparts. 

Therefore, the macrocycle is an important structural motif in drug development.6 

IV.1.1 The origin of macrocycle pharmacological attributes 

The application of bioactive molecules discovered in living organisms to the treatment of 

human disease is a remarkable phenomenon. Their clinical success is attributed to the limited use 

of protein domains common to every species. Despite vast interspecies genomic differences, 

these protein domains display an inherent pre-organization to form common three-dimensional 

structures from non-homologous amino acid sequences.5 

Large natural products (>500 Da) commonly incorporate macrocycles. Despite 

commonly being in violation of the “Rule of 5”, these compounds oftentimes display favorable 

pharmacological profiles in conjunction with high target specificity. Similar to the selectivity 

observed for three-dimensional protein-ligand interactions, this target specificity is a 

consequence of inherent pre-organization imparted by the macrocyclic geometry. As a result, 
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macrocycles maintain a delicate balance between flexibility and rigidity that influences solubility 

and permeability, and conformationally constrains the present pharmacophore.4, 5 

IV.1.2 Macrocycles and drug development 

Despite their inherent drug-like properties, the complicated architecture exhibited by such 

macrocyclic natural products represents a significant challenge toward their utility in drug 

development. While the discovery of novel chemical methodologies has led to the de novo 

synthesis of numerous macrocyclic natural products, approaches toward simplified analogues 

remains underinvestigated. This chapter describes a conformation-based strategy for predicting 

simplified, macrocyclic natural product analogues from limited SAR data.  

IV.2 Conformation-Based Approach to Predict Simplified Trienomycin A Analogues 

Mycobacteria produce the ansamycin family of natural products, which manifest diverse 

biological activities. Structural characteristics of this family include a macrocyclic polyketide 

bridged by an aromatic core. Several ansamycins display significant clinical attributes, including 

rifampicin, which manifests antimicrobial activity for the treatment tuberculosis,7 and 

geldanamycin, derivatives of which have entered phase III clinical trials for the treatment of 

cancer.8 In general, the ansamycin family exhibits a high degree of broad inhibitory activities 

that include antiviral, antifungal, and immunosuppressant activity.9, 10  

Trienomycin A (Figure 4.1, 1) is a member of the ansamycin family first isolated from 

Streptomyces sp. No. 83-16 by Umezawa and coworkers.11 In contrast to other members of the 

ansamycin family that possess a p-quinone or p-hydroquinone moiety within the aromatic bridge, 

trienomycin A contains a non-redox active phenol. In addition, trienomycin A displays a 

biological profile that contrasts the activity manifested by other ansamycins. For example, 

mycotrienin II, which is structurally identical to trienomycin A with the exception of a p-
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hydroquinone moiety, is a potent antifungal 

agent as well as a promising anticancer 

agent.9, 12 In contrast, trienomycin A 

manifests potent anticancer activity (IC50 of 

128 nM against HeLa cervical cancer 

cells),13 but displays no antifungal activity, 

nor does it display any significant 

antimicrobial, antiviral, or 

immunosuppressant activity.9, 11, 13-15  

A previous report indicated that 

while trienomycin A exhibits potent 

anticancer and antitumor activity, it was 

found to be significantly less toxic to non-

transformed cells.8 Thus, the unique 

biological activity manifested by 

trienomycin A poses this natural product as 

an attractive lead compound for cancer 

chemotherapeutic development. 

Unfortunately, limited structure-activity relationships (SAR) for trienomycin A have been 

reported and the mechanism of action remains unknown. Furthermore, significant quantities of 

the natural product are not available and only one total synthesis has been reported, which 

produces the natural product in 31 linear steps.16 Although elegant in nature, this route does not 

afford a succinct method for evaluation of SAR. Therefore, a generalized method for the 
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production of synthetically useful trienomycin A analogues employing a conformation-based 

approach was pursued. 

IV.2.1 Trienomycin A SAR 

Previously reported semi-synthetic modifications to the natural product including 

acetylation of the 13-OH (2), saturation of the triene motif (3), and deletion of the N-

cyclohexylcarbonyl D-Ala (NCxDA) side chain (4), resulted in almost complete ablation of 

anticancer activity (Figure 4.2, 2–4).9 However, methylation of the free phenol did produce an 

analogue equipotent to the natural product (Figure 4.2, 5). Without apparent SAR trends, and the 

lack of activity for semi-synthetic derivatives, no obvious hypothesis for further exploration was 

available. Therefore, an alternate approach was pursued based on the overall conformation of the 

macrocyclic compounds, and the lowest energy conformations of such analogues. 

IV.2.2 Conformational analysis of trienomycin A analogues 

The natural product (1) and four semi-synthetic derivatives (2-5) were constructed in the 

lowest energy conformations using SYBYL. The three-dimensional geometries of these 

compounds were then analyzed using the Surflex Ligand Similarity tool (default parameter 

settings).17 Rigid superposition maintained low energy conformations and provided informative 

differences in ligand similarity (Figure 4.2). Semi-synthetic derivatives 2–4 exhibited significant 

conformational perturbations in macrocycle geometry and placement of NCxDA side chain, but 

methyl-phenyl ether 5 retained the native geometry. Because these semi-synthetic derivatives 

maintain most of the hydrogen bonding capabilities of trienomycin A, we hypothesized that 

orientation of the NCxDA side chain and projection of the phenol are critical to the biological 

activity manifested by trienomycin A. 
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The efficiency by which simplified analogues of trienomycin A could overlay with the 

natural product was evaluated in silico, also via Surflex calculations. Sequential removal of 

functionality and subsequent comparison of the energy-minimized derivatives to the natural 

product were analyzed. The 13-OH, 12-CH3, and 3-OCH3 functionalities appeared to exhibit 

little effect on the overall conformation, which suggested they could be omitted without 

significantly affecting biological activity (Figure 4.3).  

The triene motif was evaluated next, with the aim of generating the most synthetically 

accessible derivatives. Twelve energy minimized “monoene” derivatives, containing all possible 

olefin isomers and the methyl ether of the reported derivative, were evaluated based upon their 

ability to adopt a conformation that allowed both the phenol and NCxDA side chain to occupy 

the same conformational space as the natural product. Olefin geometry was critical in these 

structures and was responsible for orienting both the NCxDA side chain and the phenol into 

conformations that were similar to the natural product. Most of the monoene derivatives 

exhibited significant differences in macrocycle geometry compared to trienomycin A. However, 

derivatives 7–10 manifested macrocycle geometry similar to the natural product and produced 
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relatively high similarity 

scores (Figure 4.4). Monoene 

A, which contains trans 

olefins at both C8 and C14, 

occupied the closest three-

dimensional orientation to 

trienomycin A and exhibited 

the highest similarity score 

(0.7815). 

IV.3.3 Synthesis and 

biological evaluation of a 

simplified trienomycin A 

analogue 

Since monoene A (7) 

exhibited the highest 

similarity score to 

trienomycin A, it was the 

target for chemical synthesis. 

Synthesis of 7 was envisioned 

retrosynthetically to occur through a Wittig olefination between salt 12 and ketone 13,18 followed 

by Mitsunobu coupling of the D-Ala side chain 14,19 and subsequent ring-closing metathesis 

(Figure 4.5).20 This synthetic route would also provide access to monoene E (11), which 
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exhibited the lowest similarity score and could be used as a negative control to evaluate our 

conformation-based approach. 

Synthesis of Wittig salt 12 commenced with nucleophillic aromatic substitution of methyl 

3,5-dinitrobenzoate 15 by lithium methoxide to provide methyl-phenyl ether 16,21 which was 

then reduced to aldehyde 17 by diisobutylaluminum hydride.22 Aldehyde 17 was subjected to 

Horner–Wadsworth–Emmons conditions to furnish 18,23 which was subjected to diimide 

mediated reduction to provide 19.24 The ethyl ester of 19 was reduced to the alcohol using 

diisobutylaluminum hydride to yield 20, the nitro moiety of which was reduced to the aniline 21 

by palladium on carbon under a hydrogen atmosphere. Selective amidation of compound 21 with 

non-8-enoic acid was accomplished using (1-Cyano-2-ethoxy-2-

oxoethylidenaminooxy)dimethylamino-morpholino-carbenium hexafluorophosphate (COMU) to 

afford amido-alcohol 22.25 Until this point, no chromatographic separation was required, 

enabling the preparation of large quantities. Amido-alcohol 22 was then iodinated and converted 

to Wittig salt 12 (Scheme 4.1).  
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Synthesis of ketone 13 was similarly straightforward. Oxidation of ketol 23 to the 

ketoaldehyde and treatment of the dicarbonyl species with 0.5 eq. of Brown’s allylborane 

furnished optically active ketol 24.26 Synthesis of ketone 13 was completed following silyl ether 

formation (Scheme 4.2). 

N-Cyclohexylcarbonyl D-alanine acid 14 was constructed in one step by treating D-

alanine with cyclohexylcarbonyl chloride in the presence of tribasic potassium phosphate in 

tetrahydrofuran (Scheme 4.3). 

With the synthons in hand, Wittig olefination reaction between 12 and 13, followed by 

silyl deprotection, and Mitsunobu coupling between 25 and 14 led to metathesis precursors 26 

(trans) and 27 (cis) in a 1:1 mixture, which was separable by chromatography. Originally, it was 

desired to obtain the macrocyclic alcoholafter ring closing metathesis, which could subsequently 

undergo diversification at a later stage. However, the macrocyclic alcohol failed to efficiently 

undergo esterification via 

Mitsunobu conditions or 

direct acylation, due to steric 

constraints resulting from 

the macrocyclic 
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conformation. Therefore, the NCxDA side was appended prior to cyclization. Each isomer was 

subjected to ring-closing metathesis with Grubbs first generation catalyst to yield products 7 and 

11 as a 2:1 and 5:1 (trans:cis) mixture of olefin isomers, respectively (Scheme 4.4). The isomeric 

mixtures were evaluated for anti-proliferative activity against MCF-7 and HeLa cancer cells. As 

predicted by our conformation based design, compound 7 retained anti-proliferative activity 

(IC50 = 0.47 µM) while compound 11 was inactive. 
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IV.3.4 Synthesis and 

biological evaluation of 

analogues to probe NCxDA 

side chain 

The anticancer activity 

exhibited by compound 7 

prompted investigations into the 

amino acid side chain. 

Specifically, the effects of 

increasing steric bulk in lieu of 

the methyl substituent and 

alterations of the amide to 

include small alkyl groups were 

pursued. The various side 

chains were synthesized from 

the corresponding amino acids 

and appropriate acyl chlorides 

similar to compound 14. Once synthesized, the side chains were coupled with compound 25 

using Mitsunobu conditions and subsequently cyclized with Grubbs first generation catalyst 

(Figure 4.6, 28-34).  

These compounds were evaluated for anti-proliferative activity against HeLa and MCF-7 

cancer cells (Table 4.1). From the data presented, deviation in steric bulk, with functionalities 
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that exhibit smaller or larger groups than methyl, is not tolerated at the alpha position of the D-

Ala side chain. Similarly, decreasing steric bulk of the alkyl amide decreases biological activity.  

 

IV.4 Concluding Remarks 

In conclusion, molecular modeling was used to predict simplified derivatives of 

trienomycin A that were energetically predisposed to adopt a conformation similar to the natural 

product. The analogues manifested potent anti-proliferative activities against MCF-7 and HeLa 

cancer cell lines and provide the first SAR for these natural product analogues. As a validation of 

the conformation-based approach, these simplified derivatives provided a method for rapid 

elucidation of SAR.   
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IV.5 Methods and Experimentals 

 

General Methods. All reactions were carried out in flame dried glassware under argon 

atmosphere unless otherwise stated. Dichloromethane (DCM), diethyl ether, tetrahydrofuran 

(THF), and toluene were purchased from Sigma Aldrich and were passed through a column of 

activated alumina prior to use. Anhydrous methanol, acetonitrile, dimethylformamide (DMF), 

and dimethoxyethane (DME) were purchased from Sigma Aldrich and used without further 

purification. All reagents and other solvents [ethyl acetate (EtOAc) and hexanes (Hex)] were 

purchased from Sigma Aldrich and were used without further purification unless otherwise 

stated. Flash column chromatography was performed using silica gel (40 – 63 m particle size) 

from Sorbent Technologies. The 1H and 13C-NMR (proton decoupled) spectra were recorded at 

500 and 126 MHz, respectively, on a Bruker AM 500 using CDCl3 or DMSO purchased from 

Cambridge Isotope Laboratories, Inc., using solvent as an internal standard (CDCl3 at 7.260 ppm 

for 1H  and 77.160 ppm for 13C) or tetramethylsilane (0.00 ppm) unless otherwise stated. Data 

are reported as p = pentet, q = quartet, t = triplet, d = doublet, s = singlet, bs = broad singlet, m = 

multiplet; coupling constant(s) in Hz. 19F-NMR spectra were recorded at 376 MHz on a Bruker 

DRX 400 in C6D6 using (R)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoic acid as an internal 

standard unless otherwise stated. Two-dimensional NMR experiments were run on a Bruker AM 

500 at 500 MHz. High resolution mass spectral data were obtained on a Ribermag R10-10 

quadrupole, VG Analytical ZA. Optical rotations were recorded with a Perkin Elmer polarimeter 

at 589 nm. 

 

OMe

O2N COOMe
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Methyl 3-Methoxy-5-nitrobenzoate (16): 

A flame dried 500 mL round bottom flask was flushed with argon before anhydrous methanol 

(200 mL) and lithium wire (0.231 g, 33.2 mmol, 1.5 eq) were added slowly at 0 °C. Methyl 

dinitrobenzoate (5 g, 22.1 mmol, 1 eq.) was added in one portion to the homogenous solution, 

and stirred at reflux for 2 h. The solution was cooled to rt, and quenched with a 2M solution of 

methanolic HCL and acidified to pH = 2. The solvent was removed to afford a brown solid, 

which was redissolved in EtOAc (70 mL) and washed with saturated aqueous sodium 

bicarbonate (2 X 30 mL) and saturated aqueous sodium chloride (2X, 30 mL). The organic layer 

was removed, dried with anhydrous sodium sulfate, filtered and triturated with Hex to give 

methyl 3-methoxy-5-nitrobenzoate crystallized as a white solid (4.53 g, 97%). 1H NMR (500 

MHz, CDCl3) δ 8.46 (dd, J = 2.0, 1.4 Hz, 1H), 7.92 (t, J = 2.3 Hz, 1H), 7.88 (dd, J = 2.6, 1.3 Hz, 

1H), 3.98 (s, 3H), 3.94 (s, 3H).13C NMR (126 MHz, CDCl3) δ 165.11, 160.37, 149.33, 132.75, 

121.26, 116.79, 113.06, 56.40, 53.01. HRMS (ESI, m/z): calcd for [C9H10NO5]+ ([M +H]+): 

212.0559, found 212.0554. 

 

3-Methoxy-5-nitrobenzaldehyde (17): 

A flame dried 500 mL round bottom flask was flushed with argon before anhydrous DCM (100 

mL) and 16 (4.53 g, 21.5 mmol, 1 eq.) were added. The solution was cooled to  -78°C, and a 

freshly made 0.258M solution of diisobutylaluminum hydride (100mL, 25.8mmol, 1.2 eq.) was 

added slowly via cannula . The solution was stirred for 10 min at -78 °C, and then quenched by 

the careful addition of saturated aqueous sodium potassium tartrate and stirred at RT for 5 hours. 

The organic layer was collected and the aqueous later was extracted with EtOAc (5X, 100 mL). 

OMe

O2N CHO
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The combined organic layers were collected and dried with anhydrous sodium sulfate. Solvent 

was removed to afford a tan solid, which was dissolved in EtOAc (70 mL) and subsequently 

triturated with Hex to give 3-methoxy-5-nitrobenzaldehyde crystallized as a beige solid (3.62 g, 

93%). 1H NMR (500 MHz, CDCl3) δ 10.05 (s, 1H), 8.30 (dd, J = 1.9, 1.3 Hz, 1H), 7.99 (t, J = 

2.3 Hz, 1H), 7.72 (dd, J = 2.5, 1.2 Hz, 1H), 3.97 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 189.80, 

161.00, 149.83, 138.35, 119.31, 117.26, 114.72, 56.53. HRMS (ESI, m/z): calcd for [C8H8NO4]+ 

([M +H]+): 182.0453, found 182.0448.  

 

 

(E)-Ethyl 3-(3-Methoxy-5-nitrophenyl)acrylate (18): 

A flame dried 500 mL round bottom flask was flushed with argon before anhydrous THF (100 

mL) and sodium hydride (60%, 796 mg, 19.9 mmol, 1.2 eq.) were added. The suspension was 

cooled to 0°C and triethylphosphono acetate (3.6 mL, 18.3 mmol, 1.1 eq.) was added. The 

solution was warmed to rt and stirred for 30 min. After cooling the solution to 0 °C, aldehyde 17 

(3 g, 16.6 mmol, 1 eq.) was added in one portion. The solution changed from colorless to dark 

green, at which point the reaction was quenched by the addition of saturated aqueous ammonium 

chloride. The organic layer was collected and the aqueous layer extracted with EtOAc (3X, 70 

mL). The combined organic layers were collected and dried with anhydrous sodium sulfate. The 

volume was condensed to ~30%, and the solution was filtered through a silica plug with 40% 

EtOAc in Hex. Solvent was removed to afford a yellow solid (3.91 g, 94%). 1H NMR (500 MHz, 

CDCl3) δ 7.99 (t, J = 1.6 Hz, 1H), 7.73 (t, J = 2.2 Hz, 1H), 7.65 (d, J = 16.0 Hz, 1H), 7.37 – 7.27 

(m, 1H), 6.53 (d, J = 16.0 Hz, 1H), 4.29 (q, J = 7.1 Hz, 1H), 3.92 (s, 3H), 1.35 (t, J = 7.1 Hz, 

OMe

O2N COOEt
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1H). 13C NMR (126 MHz, CDCl3) δ 166.28, 160.60, 149.77, 141.97, 137.03, 121.69, 120.26, 

114.93, 109.42, 61.08, 56.20, 14.42. HRMS (ESI, m/z): calcd for [C12H14NO5]+ ([M +H]+): 

252.0872, found 252.0876. 

 

 

 

 

Ethyl 3-(3-Methoxy-5-nitrophenyl)propanoate (19): 

A 500 mL round bottom flask was flushed with argon before 1,2-dimethoxy ethane (80 mL), a,b-

unsaturated ester 18 (3.2 g, 12.7 mmol, 1 eq.), and potassium azodicarboxylate (14.8 g, 76.2 

mmol, 6 eq.) were added. AcOH (1.85 mL, 45.72 mmol, 3.6 eq.) in 1,2-dimethoxy ethane (30 

mL) was added slowly, and the suspension was stirred at 50°C for 24 h. The solids were filtered 

off with celite and washed with EtOAc (300 mL). The combined organic layers were dried over 

anyhydrous sodium sulfate, and the solvent removed to afford a yellow solid (3.12 g, 97%). 1H 

NMR (500 MHz, CDCl3) δ 7.69 (q, J = 1.5 Hz, 1H), 7.58 (t, J = 2.2 Hz, 1H), 7.08 (dd, J = 2.2, 

1.6 Hz, 1H), 4.14 (q, J = 7.1 Hz, 1H), 3.87 (s, 1H), 3.01 (t, J = 7.6 Hz, 1H), 2.66 (t, J = 7.6 Hz, 

1H), 1.24 (t, J = 7.1 Hz, 2H). 13C NMR (126 MHz, CDCl3) δ 172.31, 160.28, 149.44, 143.56, 

121.57, 115.89, 106.20, 77.41, 77.16, 76.91, 60.86, 55.97, 35.32, 30.75, 14.34. HRMS (ESI, 

m/z): calcd for [C12H16NO5]+ ([M +H]+): 254.1028, found 254.1025.  

 

OMe

O2N COOEt
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3-(3-Amino-5-methoxyphenyl)propan-1-ol (21): 

A flame dried 500 mL round bottom flask was flushed with argon before toluene (50 mL) and 

ester 19 (3.1 g, 12.24 mmol, 1 eq.) were added. A fresh solution of diisobutylaluminun hydride 

(7.64 mL, 42.8 mmol, 3.5 eq.) in toluene (50 mL) was prepared. The solutions were cooled to      

-78°C, and the diisobutylaluminum hydride solution was cannulated into the solution of ester 19 

slowly. The reaction mixture was stirred and allowed to warm to rt at which point the reaction 

was quenched by the careful addition of saturated aqueous sodium potassium tartrate (150 mL). 

The emulsion was stirred at rt until the layers separated. The organic layer was collected and the 

aqueous layer was extracted with EtOAc (3X, 70 mL). The combined organic layers were 

collected and dried over anhydrous sodium sulfate. Solvent was removed to afford a yellow oil 

that was resuspended in EtOAc (90 mL). 10% Palladium on carbon (200 mg) was added and the 

reaction mixture was stirred at rt under a hydrogen atmosphere for 10 h. The reaction vessel was 

flushed with argon to remove hydrogen, and the solution was then filtered through a celite pad 

using EtOAc. Solvent was removed to afford amino-alcohol 5 as a colorless oil (2.1 g, 93% over 

two steps). 1H NMR (500 MHz, CDCl3) δ 6.20 – 6.17 (m, 1H), 6.16 (dd, J = 1.9, 1.4 Hz, 1H), 

6.09 (t, J = 2.1 Hz, 1H), 3.75 (s, 3H), 3.67 (t, J = 6.4 Hz, 2H), 3.63 (bs, 2H), 2.60 – 2.56 (m, 2H), 

1.90 – 1.83 (m, 2H). 13C NMR (126 MHz, CDCl3) δ 160.95, 147.77, 144.46, 108.20, 104.62, 

98.73, 77.41, 77.16, 76.91, 62.52, 55.22, 34.08, 32.41. HRMS (ESI, m/z): calcd for [C10H16NO2]+ 

([M +H]+): 182.1181, found 182.1185. 

 

N-(3-(3-Hydroxypropyl)-5-methoxyphenyl)non-8-enamide (22): 

OMe

HN
OH

O
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A 50 mL round bottom flask was flushed with argon before DMF (10 mL), 

diisopropylethylamine (1.62 mL, 9.3 mmol, 2.1 eq.), non-8-enoic acid (690.5 mg, 4.42 mmol, 1 

eq.), and COMU (2.1 g, 4.9 mmol, 1.1 eq.) were added. The reaction mixture was stirred at RT 

for 30 min, at which point amino-alcohol 21 (800 mg, 4.42 mmol, 1 eq.) was added. Stirring was 

continued for 1 h at rt and the reaction was quenched by the addition of saturated aqueous 

ammonium chloride (15 mL). EtOAc (20 mL) was added and the organic layer was collected. 

The aqueous layer was extracted with EtOAc (5X, 20 mL) and the combined organic layers were 

collected and dried over anhydrous sodium sulfate. Solvent was removed to afford a red oil that 

was purified by SiO2 flash chromatography (5% – 20% EtOAc in Hex). Amide-alcohol 22 was 

isolated as a colorless oil (1.28 g, 91%). 1H NMR (500 MHz, CDCl3) δ 7.13 (s, 1H), 7.11 (s, 1H), 

6.86 (s, 1H), 6.51 (s, 1H), 5.80 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 4.99 (ddd, J = 17.1, 3.6, 1.6 Hz, 

1H), 4.93 (ddt, J = 10.2, 2.2, 1.2 Hz, 1H), 3.79 (s, 3H), 3.66 (t, J = 6.4 Hz, 2H), 2.68 – 2.61 (m, 

2H), 2.33 (t, J = 7.5 Hz, 2H), 2.04 (dd, J = 14.0, 6.9 Hz, 2H), 1.87 (dq, J = 12.9, 6.4 Hz, 2H), 

1.72 (dt, J = 14.8, 7.5 Hz, 2H), 1.45 – 1.30 (m, 8H). 13C NMR (126 MHz, CDCl3) δ 171.49, 

160.33, 144.03, 139.19, 139.13, 114.46, 112.07, 110.55, 102.91, 62.28, 55.44, 38.00, 34.06, 

33.84, 32.29, 29.22, 28.97, 28.83, 25.62. HRMS (ESI, m/z): calcd for [C19H30NO3]+ ([M +H]+): 

320.2226, found 320.2225. 

 

N-(3-(3-Iodopropyl)-5-methoxyphenyl)non-8-enamide (35): 

A 100 mL round bottom flask was flushed with argon before DCM (30 mL), amide-alcohol 22 

(1g, 3.2 mmol, 1 eq.), triphenylphosphine (725 mg, 3.2 mmol, 1 eq.), and imidazole (265 mg, 

OMe
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3.84 mmol, 1,2 eq.) were added. The reaction mixture was cooled to 0 °C and iodine (813 mg, 

3.2 mmol, 1 eq.) was added slowly. The reaction mixture was allowed to warm to RT at which 

point the reaction was quenched by the addition of saturate aqueous ammonium chloride. The 

organic layer was collected and the aqueous layer was extracted with DCM (3X, 30 mL). The 

combined organic layers were washed sequentially with saturated aqueous sodium thiosulfate 

(1X, 30 mL) and saturate aqueous sodium chloride (2X, 30 mL). The organic layers were 

collected and dried over anhydrous sodium sulfate. Solvent was removed to afford alkyl iodide 

35 as a colorless oil (1.14 g, 83%). 1H NMR (500 MHz, CDCl3) δ 7.23 – 7.07 (m, 2H), 6.85 (s, 

1H), 6.50 (s, 1H), 5.80 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 4.99 (ddd, J = 17.1, 3.6, 1.6 Hz, 1H), 

4.93 (ddt, J = 10.2, 2.2, 1.2 Hz, 1H), 3.78 (s, 3H), 3.15 (t, J = 6.8 Hz, 2H), 2.66 (t, J = 7.3 Hz, 

2H), 2.34 (t, J = 7.5 Hz, 2H), 2.16 – 2.06 (m, 2H), 2.06 – 2.00 (m, 2H), 1.76 – 1.68 (m, 6H). 

13C NMR (126 MHz, CDCl3) δ 171.51, 160.37, 142.56, 139.31, 139.11, 114.46, 112.07, 110.65, 

103.15, 77.41, 77.16, 76.91, 55.45, 37.99, 36.37, 34.68, 33.83, 29.21, 28.96, 28.83, 25.60, 6.50. 

HRMS (ESI, m/z): calcd for [C19H29INO2]+ ([M +H]+): 430.1243, found 430.1246. 

 

N-(3-(3-(Iodotriphenylphosphoranyl)propyl)-5-methoxyphenyl)non-8-enamide (12): 

A flame dried 100 mL round bottom flask was flushed with argon before anhydrous acetonitrile 

(15 mL), alkyl iodide 35 (1.0 g, 2.53 mmol, 1 eq.), and triphenylphosphine (1.15 g, 5.06 mmol, 2 

eq.) were added. The reaction mixture was refluxed under argon for 12 hours. The reaction 

mixture was allowed to cool to rt and then extracted with Hex (13X, 20 mL). The Hex extract 

was back extracted with acetonitrile (2X, 20 mL) and the combined acetonitrile layers were dried 

OMe

HN
PPh3I

O
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over anhydrous sodium sulfate. Solvent was removed to afford Wittig salt 8 as a pale yellow 

foamy solid (1.58 g, 90%). 1H NMR (500 MHz, CDCl3) δ 8.91 (s, 1H), 7.79 (m, 4H), 7.71 – 7.60 

(m, 12H), 7.39 (s, 1H), 6.33 (s, 1H), 5.80 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 4.98 (ddd, J = 17.1, 

3.7, 1.6 Hz, 1H), 4.91 (ddt, J = 10.2, 2.3, 1.2 Hz, 1H), 3.79 (s, 3H), 3.43 – 3.35 (m, 2H), 2.82 (t, 

J = 6.2 Hz, 2H), 2.54 (t, J = 7.5 Hz, 2H), 2.07 – 2.00 (m, 2H), 1.97 – 1.86 (m, 2H), 1.73 (dt, J = 

15.1, 7.6 Hz, 2H), 1.45 – 1.29 (m, 6H). 13C NMR (126 MHz, CDCl3) δ 173.07, 160.47, 140.83, 

140.07, 139.43, 135.35, 135.32, 133.75, 133.67, 130.84, 130.74, 118.37, 117.69, 114.23, 113.43, 

110.24, 103.28, 77.41, 77.16, 76.91, 55.63, 37.78, 35.40, 35.27, 33.94, 29.24, 29.18, 28.95, 

25.70, 24.14. HRMS (ESI, m/z): calcd for [C37H43NO2P]+ ([M +H]+): 564.3031, found 564.3032. 

 

(S)-5-Hydroxyoct-7-en-2-one (24): 

A 250 mL round bottom flask was flushed with argon before DCM (125 mL) and 5-

hydroxypentan-2-one (2.5 g, 24.5 mmol, 1 eq.) were added. Pyridinium chlorochromate (11 g, 

51.0 mmol, 2.1 eq.) was added slowly in 0.5 g portions over 1 hour at rt. The reaction mixture 

was stirred for 3 h at rt at which point diethyl ether (100 mL) was added. The heterogenous 

solution was then filtered through SiO2 and subsequently washed with diethyl ether. The organic 

filtrate was then dried over anhydrous sodium sulfate. Solvent was removed to afford a light 

green oil (2.45 g, quant.) (aldehyde was carried forward without purification). A flame dried 500 

mL round bottom flask was flushed with argon before diethyl ether (240 mL) and (+)-B-

methoxydiisopinocampheylborane (7.6 g, 24 mmol, 2.4 eq.) were added. Solid was allowed to 

dissolve and the solution was cooled to -78 °C. Allylmagnesium bromide (1 M in diethyl ether, 

5.55 mL, 5.5 mmol, 0.5 eq.) was added slowly and the solution was allowed to warm to 0 °C 

O

OH
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over 2 h. The reaction mixture became cloudy at which point it was cooled back to -78 °C. 

Aldehyde (1g, 10 mmol, 1 eq.) was dissolved in 2 mL diethyl ether and was added dropwise to 

the reaction mixture at -78 °C. The solution was stirred for 1 h at -78 °C and subsequently 

allowed to warm to RT. Ethanolamine (4 mL) was added and the solution was stirred for 10 h. A 

yellow precipitate was formed, and the heterogenous solution was filtered through SiO2 (40% 

diethyl ether in Hex). The organic layer was dried over anhydrous sodium sulfate. Solvent was 

removed to afford a colorless oil that was purified by flash SiO2 chromatography (2% – 10% 

EtOAc in Hex) to afford 9 as a colorless oil (ee > 95% (see 19F NMR experiments of 53 and 54), 

1.16 g, 82% [BRSM], isolated as a mixture of ketone and hemiketal). [α]23
D = -9.5° (c = 0.015, 

DCM). 1H NMR (500 MHz, CDCl3) δ 5.85 – 5.76 (m, 1H), 5.17 – 5.00 (m, 2H), 3.66 – 3.60 (m, 

1H), 2.67 – 2.54 (m, 2H), 2.36 – 2.21 (m, 1H), 2.16 (s, 3H), 2.21 – 2.09 (m, 1H), 1.81 (dtd, J = 

14.4, 7.2, 3.5 Hz, 1H), 1.72 – 1.59 (m, 1H). 13C NMR (126 MHz, CDCl3) δ 209.62, 134.59, 

118.47, 70.19, 42.34, 40.16, 30.40, 30.18. HRMS (ESI, m/z): calcd for [C8H15O2]+ ([M +H]+): 

143.1072, found 143.1069. 

 

(S)-5-((tert-Butyldimethylsilyl)oxy)oct-7-en-2-one (13): 

A 50 mL round bottom flask was flushed with argon before DMF (5 mL), imidazole (980 mg, 

14.4 mmol, 2 eq.), and tert-butyldimethylsilyl chloride (2.17 g, 14.4 mmol, 2 eq.) were added. 

The solution was stirred for 30 min at rt followed by the addition of alcohol 24 (1 g, 7.04 mmol, 

1 eq.). The reaction mixture was stirred for 5 h at rt at which point the reaction was quenched by 

the addition of saturate aqueous ammoniun chloride (20 mL) and EtOAc (10 mL). The organic 

layer was collected and the aqueous layer was extracted with EtOAc (5X, 20 mL). The combined 

O
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organic layers were collected and dried over anhydrous sodium sulfate. Solvent was removed to 

afford a colorless oil that was purified by flash SiO2 chromatography (1% – 5% EtOAc in Hex). 

to afford 10 as a colorless oil (1.43 g, 79%). [α]23
D = -12.1° (c = 0.01, DCM). 1H NMR (500 

MHz, CDCl3) δ 5.78 (ddt, J = 17.7, 10.5, 7.2 Hz, 1H), 5.06 (dtd, J = 4.1, 2.1, 1.2 Hz, 1H), 5.03 

(t, J = 1.2 Hz, 1H), 3.77 – 3.69 (m, 1H), 2.56 – 2.41 (m, 2H), 2.24 – 2.17 (m, 2H), 2.14 (s, 3H), 

1.77 (dddd, J = 13.3, 8.9, 6.5, 4.4 Hz, 1H), 1.63 (dddd, J = 14.0, 8.8, 6.9, 6.3 Hz, 1H), 0.88 (s, 

9H), 0.05 (s, 3H), 0.04 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 209.15, 134.88, 117.25, 70.95, 

42.00, 39.46, 30.38, 30.10, 26.00, 18.23, -4.23, -4.49. HRMS (ESI, m/z): calcd for [C14H29O2Si]+ 

([M +H]+): 257.1937, found 257.1939. 

 

(S,E/Z)-N-(3-(7-((tert-Butyldimethylsilyl)oxy)-4-methyldeca-3,9-dien-1-yl)-5-

methoxyphenyl)non-8-enamide (36): A flame dried 50 mL round bottom flask was flushed 

with argon before anhydrous DMF (10 mL), Wittig salt 12 (1.4 g, 2.01 mmol, 1 eq.), and 2.5 Å 

molecular sieves were added. The solution was stirred 12 h at rt and subsequently cooled to 0°C. 

Potassium bis(trimethylsilyl)amide (0.5 M in toluene, 8.44 mL, 4.22 mmol, 2.1 eq.) was added 

dropwise. The reaction mixture was allowed to warm to RT and stirred for 1 h, followed by 

addition of ketone 13 (564 mg, 2.2 mmol, 1.1 eq.). After 30 min of stirring at rt, the reaction was 

quenched by the careful addition of saturated aqueous ammonium chloride (15 mL) and EtOAc 

(15 mL). The organic layer was collected and the aqueous layer was extracted with EtOAc (5X, 

20 mL). The combined organic layers were collected and dried over anhydrous sodium sulfate. 

Solvent was removed to afford a yellow oil that was purified by SiO2 flash chromatography (5% 

OMe
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– 10% EtOAc in Hex) to afford compound 36 as a colorless oil (850 mg, 78%, isolated as a 1:1 

mixture of olefin isomers). [α]23
D = -6.5° (c = 0.009, DCM). 1H NMR (500 MHz, CDCl3) δ 

7.20/7.16 (s, 1H), 7.05 (s, 1H), 6.80/6.75 (s, 1H), 6.50/6.50 (s, 1H), 5.86 – 5.75 (m, 2H), 5.17 – 

5.11 (m, 1H), 5.07 – 4.90 (m, 4H), 3.79 (s, 3H), 3.72 – 3.62 (m, 1H), 2.60 – 2.50 (m, 2H), 2.33 

(t, J = 7.5 Hz, 2H), 2.27 (dd, J = 15.2, 7.4 Hz, 2H), 2.24 – 2.16 (m, 2H), 2.13 – 1.85 (m, 3H), 

1.77 – 1.69 (m, 2H), 1.66/1.57 (s, 3H), 1.55 – 1.44 (m, 2H), 1.44 – 1.31 (m, 7H), 0.89/0.89 (s, 

9H), 0.05/0.04 (s, 6H). 13C NMR (126 MHz, CDCl3) δ 171.36, 160.24, 160.23, 144.62, 144.45, 

139.13, 139.05, 136.38, 136.17, 135.48, 135.41, 124.04, 123.40, 116.92, 116.83, 114.46, 111.95, 

110.64, 110.61, 102.81, 102.74, 77.41, 77.16, 76.91, 72.20, 71.90, 55.43, 41.98, 41.92, 38.04, 

36.51, 36.34, 35.61, 35.39, 35.29, 33.85, 30.10, 29.90, 29.56, 29.23, 28.97, 28.84, 27.93, 26.06, 

25.63, 23.63, 18.29, 18.27, 16.24, -4.18, -4.19, -4.35. HRMS (ESI, m/z): calcd for 

[C33H56NO3Si]+ ([M +H]+): 542.4029, found 542.4030. 

 

(S,E)-N-(3-(7-Hydroxy-4-methyldeca-3,9-dien-1-yl)-5-methoxyphenyl)non-8-enamide (25): 

A 50 mL round bottom flask was flushed with argon before THF (10 mL) and compound 36 

(630 mg, 1.16 mmol, 1 eq.) were added. The solution was cooled to 0 °C and 

tetrabutylammonium fluoride (1M in THF, 2.9 mL, 2.9 mmol, 2.5 eq.) was added dropwise over 

10 min. The reaction mixture was allowed to warm to rt and stirred for 12 h. Saturated aqueous 

ammoniun chloride (15 mL) and EtOAc (15 mL) were added and the organic layer was 

collected. The aqueous layer was extracted with EtOAc (3X, 20 mL). The combined organic 

layers were collected and dried over anhydrous sodium sulfate. Solvent was removed to afford a 
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colorless oil that was purified by flash SiO2 chromatography (10% – 30% EtOAc in Hex) to 

afford compound 25 as a colorless oil (610 mg, 97%, isolated as a 1:1 mixture of olefin isomers). 

[α]23
D = -4.2° (c = 0.012, DCM). 1H NMR (500 MHz, CDCl3) δ 7.25 (s, 1H), 7.14 (s, 1H), 

6.82/6.81 (s, 1H), 6.48 (s, 1H), 5.88 – 5.73 (m, 2H), 5.23 – 5.08 (m, 4H), 4.99 (ddd, J = 17.1, 

3.5, 1.6 Hz, 1H), 4.95 – 4.90 (m, 1H), 3.78/3.78 (s, 3H), 3.66 – 3.47 (m, 1H), 2.57 (t, J = 7.6 Hz, 

2H), 2.35 – 2.23 (m, 4H), 2.20 – 2.00 (m, 4H), 1.82 (dd, J = 15.9, 3.2 Hz, 1H), 1.76 – 1.68 (m, 

1H), 1.67 (d, J = 1.1 Hz, 1.5H)/1.55 (s, 1.5H), 1.54 – 1.29 (m, 10H). 13C NMR (126 MHz, 

CDCl3) δ 171.53, 160.18/160.14, 144.39, 139.12, 135.85/135.79, 135.01, 134.96, 124.78/124.14, 

118.15/118.09, 114.44, 112.26/112.10, 110.75/110.62, 102.85/102.83, 70.70/70.46, 55.41, 

42.15/42.08, 37.96, 36.39/36.21, 35.93, 34.94/34.78, 33.83, 29.69/29.52, 28.96/28.83, 28.11, 

25.62, 23.46, 16.03. HRMS (ESI, m/z): calcd for [C27H42NO3]+ ([M +H]+): 428.3165, found 

428.3167. 

 

General Procedure A (synthesis of acylated amino acids): 

A flame dried 25 mL round bottom flask was flushed with argon before THF (4 mL), tribasic 

potassium phosphate (1.06 g, 5 mmol, 2.5 eq.), and appropriate acyl chloride (2.2 mmol, 1.1 eq.) 

were added. Appropriate amino acid (2 mmol, 1eq.) was added and the heterogenous solution 

was stirred vigorously for 24 h. Deionized water (10 mL) and EtOAc (10 mL) were added to the 

reaction mixture. The aqueous layer was collected and the organic layer was washed with 

deionized water (10 mL). The combined aqueous layers were collected and acidified (pH = 2) by 

the addition of 2N aqueous hydrochloric acid. The heterogenous solution was extracted with 

EtOAc (3X, 10 mL) and the combined organic layers were collected and dried over anhydrous 

sodium sulfate. Solvent was removed to afford pure acylated amino acid. 



 259 

 

 

(R)-2-(Cyclohexanecarboxamido)propanoic acid (14): 

General procedure A was followed using cyclohexanecarbonyl chloride (323 mg, 2.2 mmol, 1.1 

eq.) and D-alanine (178 mg, 2 mmol, 1 eq.). Obtained as a fine white powder (300 mg, 76%). 

[α]23
D = 24.3° (c = 0.01, DCM). 1H NMR (500 MHz, DMSO) δ 12.29 (s, 1H), 7.95 (d, J = 7.4 

Hz, 1H), 4.16 (p, J = 7.4 Hz, 1H), 2.16 (tt, J = 11.4, 3.4 Hz, 1H), 1.80 (dd, J = 12.9, 2.7 Hz, 1H), 

1.73 – 1.50 (m, 3H), 1.37 – 1.25 (m, 2H), 1.24 (d, J = 7.3 Hz, 2H), 1.22 – 1.08 (m, 2H). 13C 

NMR (126 MHz, DMSO) δ 174.97, 174.35, 47.12, 43.48, 29.08, 29.01, 28.62, 25.43, 25.19, 

24.88, 17.11. HRMS (ESI, m/z): calcd for [C10H16NO3]- ([M - H]-): 198.1130, found 198.1131. 

 

(S)-2-(Cyclohexanecarboxamido)propanoic acid (37): 

General procedure A was followed using cyclohexanecarbonyl chloride (323 mg, 2.2 mmol, 1.1 

eq.) and L-alanine (178 mg, 2 mmol, 1 eq.). Obtained as a fine white powder (300 mg, 76%). 

[α]23
D = -24.5° (c = 0.01, DCM).  1H NMR (500 MHz, DMSO) δ 12.29 (s, 1H), 7.95 (s, 1H), 

4.16 (p, J = 7.4 Hz, 1H), 2.16 (tt, J = 11.4, 3.4 Hz, 1H), 1.80 (dd, J = 12.9, 2.7 Hz, 1H), 1.73 – 

1.50 (m, 3H), 1.37 – 1.25 (m, 2H), 1.24 (d, J = 7.3 Hz, 2H), 1.22 – 1.08 (m, 2H). 13C NMR (126 

MHz, DMSO) δ 174.97, 174.35, 47.12, 43.48, 29.08, 28.62, 25.43, 25.19, 24.88, 17.11. HRMS 

(ESI, m/z): calcd for [C10H16NO3]- ([M - H]-): 198.1130, found 198.1129. 
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2-(Cyclohexanecarboxamido)acetic acid (38): 

General procedure A was followed using cyclohexane carbonyl chloride (323 mg, 2.2 mmol, 1.1 

eq.) and glycine (150 mg, 2 mmol, 1 eq.). Obtained as a fine white powder (308 mg, 83%). 1H 

NMR (500 MHz, DMSO) δ 12.26 (s, 1H), 7.99 (d, J = 4.5 Hz, 1H), 3.70 (d, J = 5.3 Hz, 2H), 

2.16 (m, 1H), 1.80 (m, 1H), 1.75 – 1.53 (m, 3H), 1.41 – 1.06 (m, 6H). 13C NMR (126 MHz, 

DMSO) δ 175.47, 171.45, 43.60, 29.08, 28.62, 25.44, 25.39, 25.19, 24.89. HRMS (ESI, m/z): 

calcd for [C9H14NO3]- ([M - H]-): 184.0974, found 184.0973. 

 

(R)-2-Acetamidopropanoic acid (39): 

General procedure A was followed using acetyl chloride (172 mg, 2.2 mmol, 1.1 eq.) and D-

alanine (178 mg, 2 mmol, 1 eq.). Obtained as a colorless oil (92 mg, 35%). 1H NMR (500 MHz, 

DMSO) δ 12.38 (s, 1H), 8.22 (d, J = 7.2 Hz, 1H), 4.23 (p, J = 7.3 Hz, 1H), 1.89 (s, 3H), 1.30 (d, 

J = 7.3 Hz, 3H). 13C NMR (126 MHz, DMSO) δ 174.28, 168.95, 47.37, 22.28, 17.15. HRMS 

(ESI, m/z): calcd for [C5H8NO3]- ([M - H]-): 130.0504, found 130.0508. 

 

(R)-2-(Cyclopentanecarboxamido)propanoic acid (40): 

General procedure A was followed using cyclohexanecarbonyl chloride (323 mg, 2.2 mmol, 1.1 

eq.) and D-alanine (178 mg, 2 mmol, 1 eq.). Obtained as a fine white powder (300 mg, 76%, 

isolated as a mixture of amide rotamers). [α]23
D = 35.8° (c = 0.01, DCM). 1H NMR (500 MHz, 
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DMSO) δ 12.42 (s, 1H), 8.15/8.03 (d, J = 7.3 Hz, 1H), 4.23/4.17 (p, J = 7.3 Hz, 1H), 2.64 – 2.57 

(m, 1H), 1.76 – 1.69 (m, 2H), 1.65 – 1.54 (m, 4H), 1.53 – 1.48 (m, 2H), 1.26/1.25 (d, J = 7.3 Hz, 

3H). 13C NMR (126 MHz, DMSO) δ 175.31/175.14, 174.34/173.35, 47.45/47.34, 43.65/43.58, 

29.84/29.80, 25.70/25.69, 25.64/25.62, 17.13, 16.89. HRMS (ESI, m/z): calcd for [C9H14NO3]- 

([M - H]-): 184.0974, found 184.0973. 

 

 

(R)-2-(Cyclohexanecarboxamido)-3-methylbutanoic acid (41): 

General procedure A was followed using cyclohexanecarbonyl chloride (323 mg, 2.2 mmol, 1.1 

eq.) and D-valine (235 mg, 2 mmol, 1 eq.). Obtained as an amorphous colorless solid (410 mg, 

90%). [α]23
D = 3.31° (c = 0.01, DCM). 1H NMR (500 MHz, DMSO) δ 12.33 (s, 1H), 7.79 (d, J = 

8.7 Hz, 1H), 4.12 (dd, J = 8.7, 6.0 Hz, 1H), 2.28 (tt, J = 11.4, 3.3 Hz, 1H), 2.07 – 1.98 (m, 1H), 

1.84 – 1.76 (m, 1H), 1.64 (m, 3H), 1.38 – 1.08 (m, 6H), 0.87 (d, J = 6.8 Hz, 3H), 0.85 (d, J = 6.8 

Hz, 3H). 13C NMR (126 MHz, DMSO) δ 175.48, 173.27, 56.72, 43.36, 29.74, 29.53, 28.93, 

28.62, 25.28, 24.88, 19.14, 18.00. HRMS (ESI, m/z): calcd for [C12H20NO3]- ([M - H]-): 

226.1443, found 226.1439.  

 

(R)-2-(Cyclohexanecarboxamido)-4-methylpentanoic acid (42): 

General procedure A was followed using cyclohexanecarbonyl chloride (323 mg, 2.2 mmol, 1.1 

eq.) and D-valine (273 mg, 2 mmol, 1 eq.). Obtained as a colorless oil (454 mg, 94%). [α]23
D = 

N
H

OH

O

O

N
H

OH

O

O



 262 

80.39° (c = 0.01, DCM). 1H NMR (500 MHz, DMSO) δ 12.22 (s, 1H), 7.89 (d, J = 8.1 Hz, 1H), 

4.19 (ddd, J = 10.2, 8.2, 4.9 Hz, 1H), 2.17 (qt, J = 11.7, 3.3 Hz, 1H), 1.84 – 1.76 (m, 1H), 1.74 – 

1.38 (m, 6H), 1.37 – 1.08 (m, 6H), 0.88 (d, J = 6.6 Hz, 3H), 0.83 (d, J = 6.5 Hz, 3H). 13C NMR 

(126 MHz, DMSO) δ 175.21, 174.36, 49.78, 43.56, 29.31, 28.92, 28.62, 25.38, 25.15, 24.88, 

24.34, 22.87, 21.17. HRMS (ESI, m/z): calcd for [C13H22NO3]- ([M - H]-): 240.1600, found 

240.1599.  

 

(R)-2-(Cyclohexanecarboxamido)-3-phenylpropanoic acid (43): 

General procedure A was followed using cyclohexanecarbonyl chloride (323 mg, 2.2 mmol, 1.1 

eq.) and D-phenylalanine (331 mg, 2 mmol, 1 eq.). Obtained as a colorless amorphous solid (534 

mg, 97%). [α]23
D = -29.1° (c = 0.01, DCM). 1H NMR (500 MHz, DMSO) δ 12.37 (s, 1H), 7.97 

(d, J = 8.2 Hz, 1H), 7.29 – 7.14 (m, 5H), 4.39 (ddd, J = 10.0, 8.3, 4.7 Hz, 1H), 3.05 (dd, J = 13.8, 

4.7 Hz, 1H), 2.84 (dd, J = 13.8, 10.0 Hz, 1H), 2.22 – 2.06 (m, 1H), 1.84 – 1.76 (m, 1H), 1.70 – 

1.53 (m, 3H), 1.52 – 1.44 (m, 1H), 1.37 – 1.03 (m, 5H). 13C NMR (126 MHz, DMSO) δ 175.04, 

173.27, 137.79, 129.07, 128.03, 126.28, 53.00, 43.49, 36.63, 29.04, 28.87, 28.62, 25.38, 25.16, 

25.10, 24.88. HRMS (ESI, m/z): calcd for [C16H21NO3]- ([M - H]-): 275.1521, found 275.1517. 

 

General Procedure B (synthesis of pre-metathesis intermediates): 

A flame dried 5 mL flask was flushed with argon before THF (1 mL), appropriate acid (0.047 

mmol, 1eq.), triphenylphosphine (63 mg, 0.24 mmol, 5 eq.), and compound 12 (20 mg, 0.047 

mmol, 1 eq.) were added. Diethyl azodicarboxylate (40% in toluene, 128 mg, 0.24 mmol, 5 eq.) 
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was added dropwise at rt. After stirring for 4 h, the reaction mixture was quenched by the 

addition of saturated aqueous sodium bicarbonate (1 mL). The organic layer was collected and 

the aqueous layer was extract with EtOAc (4X, 2 mL). The combined organic layers were 

collected and dried over anhydrous sodium sulfate. Solvent was removed to afford a colorless oil 

that was purified by flash SiO2 chromatography (1% – 40% EtOAc in Hex). Pre-metathesis 

intermediates were isolated as colorless oils. 

 

(R)-(R,E)-10-(3-Methoxy-5-(non-8-enamido)phenyl)-7-methyldeca-1,7-dien-4-yl 2-

(cyclohexanecarboxamido)propanoate (26): 

General procedure B was followed using acid 14 (9.4 mg, 0.047 mmol, 1 eq.) Compound 26 was 

separated from compound 27 using SiO2 (10% – 30% EtOAc in Hex), isolated as a colorless oil 

(10.6 mg, 37%, isolated as a mixture of amide rotamers). [α]23
D = 2.43° (c = 0.005, DCM). 1H 

NMR (500 MHz, CDCl3) δ 7.66/7.59 (s, 1H), 7.33/7.29 (s, 1H), 6.73/6.66 (s, 1H), 6.47/6.46 (s, 

1H), 6.09/6.05 (d, J = 7.2 Hz, 1H), 5.80 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.70 (ddt, J = 14.0, 9.5, 

6.9 Hz, 1H), 5.20 – 5.10 (m, 1H), 5.10 – 5.03 (m, 2H), 4.99 (ddd, J = 17.1, 3.5, 1.6 Hz, 1H), 4.95 

– 4.91 (m, 1H), 4.90 – 4.82 (m, 1H), 4.63 – 4.51 (m, 1H), 3.79 (s, 3H), 2.61 – 2.48 (m, 2H), 2.40 

– 2.18 (m, 5H), 2.11 (tt, J = 11.7, 3.5 Hz, 2H), 2.04 (dd, J = 13.9, 6.8 Hz, 2H), 1.98 (t, J = 7.3 

Hz, 2H), 1.91 – 1.83 (m, 2H), 1.81 – 1.75 (m, 2H), 1.74 – 1.70 (m, 2H), 1.70 – 1.61 (m, 4H), 

1.51 (s, 3H), 1.48 – 1.15 (m, 10H), 1.37 (d, J = 7.1 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 

175.76, 173.21, 171.62, 160.26, 144.22, 139.30, 139.15, 134.55, 133.35, 124.53, 118.21, 114.43, 

112.07, 110.49, 102.69, 74.27, 55.42, 48.05, 45.43, 38.72, 37.94, 36.04, 35.27, 33.86, 31.56, 
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29.72, 29.68, 29.65, 29.28, 29.02, 28.86, 25.84, 25.80, 25.79, 25.66, 18.92, 15.94. HRMS (ESI, 

m/z): calcd for [C37H56KN2O5]+ ([M + K]+): 647.3826, found 647.3830. 

 

 

(R)-(R,Z)-10-(3-Methoxy-5-(non-8-enamido)phenyl)-7-methyldeca-1,7-dien-4-yl 2-

(cyclohexanecarboxamido)propanoate (27): 

General procedure B was followed using acid 14 (9.4 mg, 0.047 mmol, 1 eq.) Compound 26 was 

separated from compound 27 using SiO2 (10% – 30% EtOAc in Hex), isolated as a colorless oil 

(11.2 mg, 39%). [α]23
D = 1.97° (c = 0.005, DCM). 1H NMR (500 MHz, CDCl3) δ 8.62 (s, 1H), 

7.64 – 7.57 (m, 1H), 6.51 (s, 1H), 6.43 (s, 1H), 6.23 (d, J = 7.6 Hz, 1H), 5.80 (ddt, J = 16.9, 10.1, 

6.7 Hz, 1H), 5.77 – 5.65 (m, 1H), 5.21 (t, J = 7.2 Hz, 1H), 5.10 – 5.04 (m, 1H), 4.98 (ddd, J = 

17.1, 3.6, 1.6 Hz, 1H), 4.95 – 4.87 (m, 1H), 4.69 – 4.61 (m, 1H), 4.33 – 4.23 (m, 1H), 3.79 (s, 

3H), 2.52 – 2.45 (m, 2H), 2.42 – 2.37 (m, 2H), 2.37 – 2.25 (m, 3H), 2.23 – 2.08 (m, 3H), 2.08 – 

1.98 (m, 2H), 1.98 – 1.91 (m, 2H), 1.85 (dd, J = 14.2, 12.9 Hz, 2H), 1.83 – 1.70 (m, 6H), 1.66 (d, 

J = 1.0 Hz, 3H), 1.62 – 1.58 (m, 1H), 1.36 (d, J = 7.1 Hz, 3H), 1.46 – 1.11 (m, 10H). 13C NMR 

(126 MHz, CDCl3) δ 175.97, 173.10, 172.27, 160.18, 143.92, 140.20, 139.20, 134.76, 133.24, 

125.19, 118.35, 114.38, 111.01, 110.61, 102.74, 74.56, 55.43, 47.97, 45.50, 38.96, 37.73, 36.44, 

33.89, 31.93, 29.85, 29.77, 29.65, 29.09, 28.92, 27.40, 25.78, 25.76, 25.74, 23.24, 19.21, 14.28. 

HRMS (ESI, m/z): calcd for [C37H56KN2O5]+ ([M + K]+): 647.3826, found 647.3823. 
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(S)-(R,E)-10-(3-Methoxy-5-(non-8-enamido)phenyl)-7-methyldeca-1,7-dien-4-yl 2-

(cyclohexanecarboxamido)propanoate (44): 

General procedure B was followed using acid 37 (9.4 mg, 0.047 mmol, 1 eq.) Compound 44 was 

purified by SiO2 chromatography (10% – 30% EtOAc in Hex), isolated as a colorless oil (10.6 

mg, 37%). [α]23
D = 0.97° (c = 0.005, DCM). 1H NMR (500 MHz, CDCl3) δ 7.67 (s, 1H), 7.29 (s, 

1H), 6.73 (s, 1H), 6.46 (s, 1H), 6.10 (d, J = 7.6 Hz, 1H), 5.80 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 

5.75 – 5.65 (m, 1H), 5.18 (t, J = 6.9 Hz, 1H), 5.10 – 5.03 (m, 2H), 4.99 (ddd, J = 17.1, 3.6, 1.6 

Hz, 1H), 4.93 (ddt, J = 10.2, 2.2, 1.2 Hz, 1H), 4.90 – 4.81 (m, 1H), 4.64 – 4.51 (m, 1H), 3.79 (s, 

3H), 2.53 (t, J = 7.9 Hz, 2H), 2.39 – 2.30 (m, 3H), 2.30 – 2.16 (m, 3H), 2.12 (tt, J = 11.7, 3.4 Hz, 

1H), 2.04 (dt, J = 13.0, 3.9 Hz, 2H), 1.98 (t, J = 8.0 Hz, 2H), 1.91 – 1.82 (m, 2H), 1.81 – 1.75 

(m, 2H), 1.74 – 1.70 (m, 2H), 1.69 – 1.63 (m, 2H), 1.65 (s, 3H), 1.62 – 1.50 (m, 2H), 1.49 – 1.32 

(m, 7H), 1.35 (d, J = 7.1 Hz, 3H), 1.31 – 1.13 (m, 3H). 13C NMR (126 MHz, CDCl3) δ 175.74, 

172.80, 171.74, 160.17, 144.12, 139.47, 139.14, 134.83, 133.30, 125.20, 118.31, 114.43, 111.79, 

110.71, 102.85, 74.66, 55.43, 48.12, 45.42, 38.61, 37.91, 36.40, 33.86, 31.67, 29.75, 29.70, 

29.68, 29.28, 29.02, 28.87, 27.47, 25.84, 25.80, 25.79, 25.69, 23.36, 18.90. HRMS (ESI, m/z): 

calcd for [C37H56KN2O5]+ ([M + K]+): 647.3826, found 647.3829. 
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(R,E)-10-(3-Methoxy-5-(non-8-enamido)phenyl)-7-methyldeca-1,7-dien-4-yl 2-

(cyclohexanecarboxamido)acetate (45):  

General procedure B was followed using acid 38 (8.7 mg, 0.047 mmol, 1 eq.) Compound 45 was 

purified by SiO2 chromatography (20% – 40% EtOAc in Hex), isolated as a colorless oil (8.5 

mg, 31%). [α]23
D = 4.72° (c = 0.005, DCM). 1H NMR (500 MHz, CDCl3) δ 7.48 (s, 1H), 7.28 (s, 

1H), 6.70 (s, 1H), 6.48 (s, 1H), 5.99 (s, 1H), 5.80 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.70 (ddt, J = 

11.3, 9.4, 7.1 Hz, 1H), 5.11 (t, J = 6.7 Hz, 1H), 5.09 – 5.03 (m, 2H), 5.02 – 4.86 (m, 4H), 4.00 

(qd, J = 18.5, 5.1 Hz, 2H), 3.79 (s, 3H), 2.55 (t, J = 7.5 Hz, 2H), 2.39 – 2.22 (m, 5H), 2.16 (tt, J = 

11.5, 3.4 Hz, 1H), 2.04 (dd, J = 12.7, 7.0 Hz, 2H), 1.98 (t, J = 7.4 Hz, 2H), 1.89 (dd, J = 12.6, 1.5 

Hz, 2H), 1.83 – 1.76 (m, 2H), 1.76 – 1.62 (m, 5H), 1.60 (s, 3H), 1.39 – 1.21 (m, 11H). 13C NMR 

(126 MHz, CDCl3) δ 176.38, 171.59, 170.08, 160.25, 144.25, 139.26, 139.15, 134.56, 133.29, 

124.51, 118.29, 114.44, 112.08, 110.54, 102.72, 74.62, 55.43, 45.36, 41.51, 38.65, 37.95, 36.06, 

35.31, 33.86, 31.40, 29.85, 29.71, 29.70, 29.66, 29.27, 29.01, 28.86, 25.84, 25.80, 25.65, 15.95. 

HRMS (ESI, m/z): calcd for [C36H54KN2O5]+ ([M + K]+): 633.3670, found 633.3671. 
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(R)-(R,E)-10-(3-Methoxy-5-(non-8-enamido)phenyl)-7-methyldeca-1,7-dien-4-yl 2-

acetamidopropanoate (46): 

General procedure B was followed using acid 39 (6.2 mg, 0.047 mmol, 1 eq.) Compound 46 was 

purified by SiO2 chromatography (30% – 50% EtOAc in Hex), isolated as a colorless oil (8.5 

mg, 31%, mixture of amide rotamers). [α]23
D = 3.52° (c = 0.005, DCM). 1H NMR (500 MHz, 

CDCl3) δ 7.50/7.47 (s, 1H), 7.29/7.22 (s, 1H), 6.75/6.70 (s, 1H), 6.48/6.47 (s, 1H), 6.19/6.08 (d, J 

= 7.2 Hz, 1H), 5.80 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.75 – 5.64 (m, 1H), 5.18/5.13 (t, J = 7.0 

Hz, 1H), 5.11 – 5.03 (m, 2H), 4.99 (ddd, J = 17.1, 3.5, 1.6 Hz, 1H), 4.95 – 4.84 (m, 2H), 4.63 – 

4.51 (m, 1H), 3.79 (s, 1H), 2.58 – 2.51 (m, 2H), 2.40 – 2.16 (m, 6H), 2.02/2.01 (s, 3H), 2.08 – 

1.91 (m, 4H), 1.77 – 1.61 (m, 4H), 1.59/1.52 (s, 3H), 1.44 – 1.3 (m, 6H), 1.38/1.36 (d, J = 7.3 

Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 173.04/172.72, 171.67/171.57, 169.71, 160.25/160.17, 

144.29/144.23, 139.36/139.24, 139.15/139.14, 134.89/134.60, 133.34/133.27, 125.13/124.51, 

118.33/118.24, 114.45, 112.03/111.89, 110.75/110.55, 102.83/102.74, 74.74/74.39, 55.44, 

48.44/48.40, 38.73/38.64, 36.42/36.09, 36.06, 35.32/35.24, 33.85, 31.71/31.65, 29.85/29.79, 

29.68/29.26, 28.99/28.85, 27.54, 25.66/25.64, 23.39/23.31, 18.86/18.78, 15.97/15.94. HRMS 

(ESI, m/z): calcd for [C32H48KN2O5]+ ([M + K]+): 579.3200, found 579.3199. 
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(R)-(R,E)-10-(3-Methoxy-5-(non-8-enamido)phenyl)-7-methyldeca-1,7-dien-4-yl 2-

(cyclopentanecarboxamido)propanoate (47): 

General procedure B was followed using acid 40 (8.7 mg, 0.047 mmol, 1 eq.) Compound 47 was 

purified by SiO2 chromatography (10% – 30% EtOAc in Hex), isolated as a colorless oil (13.1 

mg, 47%, mixture of amide rotamers). [α]23
D = 3.25° (c = 0.005, DCM). 1H NMR (500 MHz, 

CDCl3) δ 8.55 (s, 1H), 7.58 (s, 1H), 6.53 (s, 1H), 6.43 (s, 1H), 6.22 (d, J = 7.5 Hz, 1H), 5.80 

(ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.75 – 5.65 (m, 1H), 5.20 (t, J = 7.2 Hz, 1H), 5.10 – 5.03 (m, 

2H), 4.98 (ddd, J = 17.1, 3.6, 1.6 Hz, 1H), 4.95 – 4.87 (m, 2H), 4.72 – 4.60 (m, 1H), 3.79 (s, 3H), 

2.62 – 2.52 (m, 1H), 2.49 (t, J = 8.1 Hz, 2H), 2.41 – 2.24 (m, 4H), 2.22 – 2.13 (m, 2H), 2.02 (dt, 

J = 17.1, 5.2 Hz, 3H), 1.97 – 1.83 (m, 4H), 1.66 (d, J = 0.9 Hz, 3H), 1.81 – 1.44 (m, 5H), 1.37 (d, 

J = 7.1 Hz, 3H), 1.43 – 1.30 (m, 10H). 13C NMR (126 MHz, CDCl3) δ 176.12, 173.10, 172.22, 

160.19, 143.95, 140.16, 139.21, 134.81, 133.24, 125.16, 118.35, 114.38, 111.04, 110.63, 102.74, 

74.58, 55.42, 48.16, 45.86, 38.94, 37.69, 36.44, 33.89, 31.96, 30.59, 30.42, 29.95, 29.33, 29.08, 

28.91, 27.43, 26.14, 26.06, 25.72, 23.27, 19.20. HRMS (ESI, m/z): calcd for [C36H54KN2O5]+ ([M 

+ K]+): 633.3670, found 633.3667. 
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(R)-(R,E)-10-(3-Methoxy-5-(non-8-enamido)phenyl)-7-methyldeca-1,7-dien-4-yl 2-

(cyclohexanecarboxamido)-3-methylbutanoate (48): 

General procedure B was followed using acid 42 (10.6 mg, 0.047 mmol, 1 eq.) Compound 48 

was purified by SiO2 chromatography (10% – 30% EtOAc in Hex), isolated as a colorless oil 

(10.5 mg, 35%, mixture of amide rotamers). [α]23
D = 1.86° (c = 0.005, DCM). 1H NMR (500 

MHz, CDCl3) δ 7.64 (s, 1H), 7.39/7.35 (s, 1H), 6.68/6.65 (s, 1H), 6.47/6.45 (s, 1H), 5.94/5.92 (d, 

J = 7.2 Hz, 1H), 5.80 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.70 (tdd, J = 17.5, 8.8, 5.1 Hz, 1H), 5.22 

– 5.03 (m, 3H), 5.03 – 4.95 (m, 1H), 4.95 – 4.83 (m, 2H), 4.59/4.57 (dd, J = 8.8, 4.5 Hz, 1H), 

3.79 (s, 3H), 2.61 – 2.49 (m, 2H), 2.37 – 2.30 (m, 3H), 2.29 – 2.23 (m, 1H), 2.22 – 2.10 (m, 2H), 

2.04 (dd, J = 13.4, 6.4 Hz, 2H), 1.98 (t, J = 7.4 Hz, 2H), 1.91 – 1.85 (m, 4H), 1.78 (ddd, J = 18.0, 

11.1, 7.2 Hz, 2H), 1.74 – 1.70 (m, 4H), 1.70 – 1.62 (m, 2H), 1.50 (s, 3H), 1.49 – 1.17 (m, 10H), 

0.95 (d, J = 6.9 Hz, 3H), 0.88 (d, J = 6.9 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 176.20, 

172.26, 171.64, 160.27, 144.19, 139.32, 139.15, 134.57, 133.35, 124.53, 118.30, 114.43, 112.09, 

110.51, 102.70, 74.43, 56.74, 55.43, 45.69, 38.56, 37.94, 36.04, 35.19, 33.86, 31.47, 31.40, 

30.12, 30.07, 29.61, 29.29, 29.02, 28.87, 25.85, 25.75, 25.67, 19.35, 17.62, 15.92. HRMS (ESI, 

m/z): calcd for [C39H60KN2O5]+ ([M + K]+): 675.4139, found 675.4138. 
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(R)-(R,E)-10-(3-Methoxy-5-(non-8-enamido)phenyl)-7-methyldeca-1,7-dien-4-yl 2-

(cyclohexanecarboxamido)-4-methylpentanoate (49): 

General procedure B was followed using acid 42 (11.3 mg, 0.047 mmol, 1 eq.) Compound 49 

was purified by SiO2 chromatography (10% – 30% EtOAc in Hex), isolated as a colorless oil 

(11.6 mg, 38%, mixture of amide rotamers). [α]23
D = 1.93° (c = 0.005, DCM). 1H NMR (500 

MHz, CDCl3) δ 7.83/7.69 (s, 1H), 7.54/7.50 (s, 1H), 7.36/7.33 (s, 1H), 6.69/6.66 (d, J = 7.1 Hz, 

1H), 6.48/6.46 (s, 1H), 5.79 (ddt, J = 17.0, 10.2, 6.7 Hz, 1H), 5.75 – 5.59 (m, 1H), 5.14 (t, J = 7.1 

Hz, 1H), 5.09 – 5.02 (m, 2H), 4.98 (ddd, J = 17.1, 3.6, 1.6 Hz, 1H), 4.92 (ddt, J = 10.2, 2.2, 1.1 

Hz, 1H), 4.89 – 4.75 (m, 1H), 4.32 (q, J = 7.1 Hz, 1H), 3.79 (s, 3H), 2.64 – 2.46 (m, 2H), 2.37 – 

2.18 (m, 5H), 2.15 – 2.07 (m, 3H), 2.07 – 2.00 (m, 2H), 1.96 –  1.90 (m, 3H), 1.90 – 1.53 (m, 

8H), 1.49 (d, J = 3.6 Hz, 3H), 1.44 – 1.16 (m, 13H), 0.95 (d, J = 6.6 Hz, 3H), 0.88 (d, J = 6.7 Hz, 

3H). 13C NMR (126 MHz, CDCl3) δ 175.97/173.25, 171.65/171.58, 168.38/168.33, 

162.96/160.25, 150.76, 139.21/139.16, 134.68/134.61, 133.43/133.37, 133.11/133.01, 

124.51/124.42, 118.35/118.23, 114.41, 112.25/112.15, 110.72/110.50, 102.78/102.69, 

75.44/74.22, 64.41/63.70, 55.42, 42.96/42.91, 42.07/42.04, 38.62/38.58, 38.17/38.14, 

37.91/37.59, 36.41/36.14, 34.79/34.70, 33.86, 31.70/31.57, 29.86/29.77, 29.29/29.26, 

29.05/29.04, 28.87, 26.11/26.09, 26.05/25.99, 25.71/25.63, 24.51/24.48, 24.17/24.15, 

23.47/23.46, 23.05/23.04, 16.08/16.03, 14.31/14.28. HRMS (ESI, m/z): calcd for 

[C40H62KN2O5]+ ([M + K]+): 675.4139, found 675.4138. 
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(R)-(R,E)-10-(3-Methoxy-5-(non-8-enamido)phenyl)-7-methyldeca-1,7-dien-4-yl 2-

(cyclohexanecarboxamido)-3-phenylpropanoate (50): 

General procedure B was followed using acid 43 (12.9 mg, 0.047 mmol, 1 eq.) Compound 50 

was purified by SiO2 chromatography (10% – 30% EtOAc in Hex), isolated as a colorless oil 

(12.2 mg, 38%). [α]23
D = -1.03° (c = 0.005, DCM). 1H NMR (500 MHz, CDCl3) δ 8.67 (s, 1H), 

7.67 (s, 1H), 7.23 (ddd, J = 5.1, 3.2, 1.1 Hz, 3H), 7.09 (dd, J = 7.6, 1.6 Hz, 2H), 6.53 (s, 1H), 

6.44 (s, 1H), 6.03 (d, J = 8.2 Hz, 1H), 5.80 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.69 (ddt, J = 17.3, 

10.2, 7.1 Hz, 1H), 5.21 (t, J = 7.2 Hz, 1H), 5.14 – 5.07 (m, 2H), 4.98 (ddd, J = 17.1, 3.6, 1.5 Hz, 

2H), 4.95 – 4.87 (m, 2H), 3.80 (s, 3H), 3.16 (dd, J = 13.9, 5.9 Hz, 1H), 2.95 (dd, J = 13.9, 6.6 

Hz, 1H), 2.56 – 2.42 (m, 2H), 2.39 – 2.23 (m, 3H), 2.18 (dd, J = 15.7, 8.0 Hz, 2H), 2.12 – 1.99 

(m, 4H), 1.89 (ddd, J = 13.1, 10.8, 5.9 Hz, 1H), 1.83 – 1.67 (m, 7H), 1.66 (d, J = 0.9 Hz, 3H), 

1.54 – 1.44 (m, 1H), 1.42 – 1.09 (m, 13H). 13C NMR (126 MHz, CDCl3) δ 175.88, 172.24, 

171.80, 160.21, 143.88, 140.33, 139.19, 135.90, 134.85, 133.30, 129.58, 128.56, 127.20, 125.12, 

118.50, 114.39, 110.95, 110.56, 102.64, 75.23, 55.43, 52.77, 45.49, 38.76, 38.54, 37.70, 36.52, 

33.89, 31.93, 29.95, 29.87, 29.47, 29.39, 29.13, 28.95, 27.44, 25.78, 25.70, 25.65, 23.28. HRMS 

(ESI, m/z): calcd for [C43H60KN2O5]+ ([M + K]+): 723.4139, found 723.4141. 
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General Procedure C (ring-closing metathesis with Grubbs first generation catalyst): 

A 25 mL round bottom flask was flushed with argon before DCM (13 mL) and appropriate pre-

metathesis intermediate (0.013 mmol, 1 eq.) was added. Grubbs first generation catalyst (2.15 

mg, 20 mol %) was added in one portion and the reaction was stirred at rt. After 30 min, solvent 

was removed to afford a black oil that was purified using SiO2 flash chromatography (2X, 1: 

20% – 40% EtOAc in Hex; 2: 1% – 20% acetone in DCM). Compounds were isolated as a 

mixture of cis and trans olefin macrocycles as colorless oils. 

 

 

Macrocycle 7: 

General procedure C was followed. Macrocycle 7 was isolated as a 2:1 mixture of olefin 

isomers. (6 mg, 83%). [α]23
D = 9.54° (c = 0.005, DCM). 1H NMR (500 MHz, CDCl3) δ 8.00/7.96 

(s, 1H), 7.50/6.96 (s, 1H), 6.70/6.60 (s, 1H), 6.43/6.39 (s, 1H), 6.01/5.94 (d, J = 7.3 Hz, 1H), 

5.50 – 5.38 (m, 1H), 5.33 – 5.22 (m, 1H), 5.19/5.10 (t, J = 7.2 Hz, 1H), 4.91 – 4.71 (m, 1H), 4.59 

(dq, J = 14.3, 7.1 Hz, 1H), 3.79/3.78 (s, 3H), 2.63 – 2.46 (m, 2H), 2.44 – 2.31 (m, 3H), 2.30 – 

2.13 (m, 3H), 2.07 (m, 2H), 1.99 – 1.89 (m, 2H), 1.87 – 1.80 (m, 3H), 1.79 – 1.70 (m, 2H), 1.69 

– 1.54 (m, 2H), 1.66/1.62 (d, J = 0.8 Hz, 3H), 1.54 – 1.30 (m, 6H), 1.38 (d, J = 7.1 Hz, 3H), 1.30 

– 1.13 (m, 8H). 13C NMR (126 MHz, CDCl3) δ 175.77/175.70, 173.82/173.76, 171.86/171.78, 

160.25/160.21, 143.84, 139.40/139.04, 134.46/133.61, 127.94, 125.11/124.99, 124.36/123.88, 
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114.04/113.14, 110.75/110.30, 103.19/102.90, 75.16/74.50, 55.48/55.42, 48.30/48.21, 

45.32/45.21, 38.42/37.92, 36.96/36.69, 35.63, 35.14/34.76, 31.80/31.53, 31.36/31.19, 

29.85/29.71, 29.60/29.46, 28.83/28.28, 27.93/27.65, 27.47/27.26, 26.84/26.30, 25.83/25.79, 

25.78/25.72, 25.45/25.31, 23.37, 18.95/18.76, 16.20/15.93. HRMS (ESI, m/z): calcd for 

[C35H52KN2O5]+ ([M + K]+): 619.3513, found 619.3513. 

 

Macrocycle 11: 

General procedure C was followed. Macrocycle 11 was isolated as a 5:1 mixture of olefin 

isomers. (6 mg, 83%). [α]23
D = 8.63° (c = 0.005, DCM). 1H NMR (500 MHz, CDCl3) δ 7.99/7.96 

(s, 1H), 7.50/7.29 (s, 1H), 6.70/6.60 (s, 1H), 6.43/6.39 (s, 1H), 6.00/5.93 (d, J = 7.1 Hz, 1H), 

5.50 – 5.39 (m, 1H), 5.33 – 5.23 (m, 1H), 5.19/5.10 (t, J = 7.1 Hz, 1H),  4.91 – 4.82 (m, 1H), 

4.78 – 4.70 (m, 1H), 4.64 – 4.55 (dq, J = 14.3, 7.1 Hz, 1H), 3.79/3.78 (s, 3H), 2.65 – 2.47 (m, 

2H), 2.44 – 2.31 (m, 2H), 2.30 – 2.15 (m, 3H), 2.14 – 2.01 (m, 2H), 1.94 (t, J = 7.8 Hz, 2H), 1.87 

– 1.79 (m, 3H), 1.78 – 1.69 (m, 3H), 1.68 – 1.59 (m, 2H), 1.66/1.62 (d, J = 0.6 Hz, 3H), 1.54 – 

1.45 (m, 2H), 1.38 (d, J = 7.2 Hz, 3H), 1.45 – 1.30 (m, 5H), 1.29 – 1.14 (m, 6H). 13C NMR (126 

MHz, CDCl3) δ 175.88/175.75, 173.55/173.43, 172.01/171.71, 160.20/159.89, 144.21/143.89, 

139.81/139.52, 135.65/135.28, 134.07/133.46, 125.17/125.06, 124.81/124.16, 111.87/111.60, 

111.27/110.87, 103.15/102.82, 76.13/76.03, 55.50/55.46, 48.18/48.09, 45.44/45.31, 38.24/37.89, 

37.36/36.95, 36.27/36.05, 32.26/32.06, 31.91/31.78, 30.00/29.87, 29.70, 29.59/29.55, 
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28.67/28.15, 27.77/27.38, 26.29/25.85, 25.81/25.79, 25.77/25.73, 25.42/25.31, 23.45/23.28, 

19.07, 18.89. HRMS (ESI, m/z): calcd for [C35H52KN2O5]+ ([M + K]+): 619.3513, found 

619.3515. 

 

Macrocycle 28: 

General procedure C was followed. Macrocycle 28 was isolated as a 1:1 mixture of olefin 

isomers. (6 mg, 83%). [α]23
D = 13.33° (c = 0.005, DCM). 1H NMR (500 MHz, CDCl3) δ 

8.23/7.91 (s, 1H), 7.62/7.32 (s, 1H), 6.61/6.49 (s, 1H), 6.49 (s, 1H), 5.94/5.86(t, J = 4.5 Hz, 1H), 

5.54 – 5.36 (m, 1H), 5.33 – 5.16 (m, 1H), 5.15 – 5.02 (m, 1H), 5.01 – 4.72 (m, 1H), 4.04/3.98 

(dd, J = 14.2, 5.1 Hz, 2H), 3.81/3.80 (s, 3H), 2.77 – 2.53 (m, 2H), 2.43 – 2.21 (m, 5H), 2.20 – 

1.92 (m, 5H), 1.92 – 1.73 (m, 5H), 1.73 – 1.53 (m, 3H), 1.47 – 1.32 (m, 6H), 1.32 – 1.15 (m, 

10H). 13C NMR (126 MHz, CDCl3) δ 180.93/179.41, 176.52/176.36, 170.30/170.12, 

160.24/159.98, 144.26/144.19, 139.63/139.34, 135.69/135.38, 134.30/133.59, 125.05/125.01, 

124.81/124.09, 112.57/111.96, 111.27/110.96, 103.77/103.28, 76.15/76.10, 55.47/55.44, 45.28, 

41.74/41.70, 37.83/37.33, 37.15/36.36, 36.21/36.16, 32.34/32.29, 32.05/31.86, 30.16/30.09, 

29.85/29.71, 29.68, 29.03/28.41, 28.21/28.13, 27.86/27.62, 27.38/26.46, 25.81/25.77, 

25.53/25.35, 23.41/23.31. HRMS (ESI, m/z): calcd for [C34H50KN2O5]+ ([M + K]+): 605.3357, 

found 605.3355. 
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Macrocycle 29: 

General procedure C was followed. Macrocycle 29 was isolated as a 2:1 mixture of olefin 

isomers. (6 mg, 83%). [α]23
D = 2.66° (c = 0.005, DCM). 1H NMR (500 MHz, CDCl3) δ 7.85/7.63 

(s, 1H), 7.42/7.04 (s, 1H), 6.86/6.66 (s, 1H), 6.50/6.46 (s, 1H), 6.12/6.03 (d, J = 7.3 Hz, 1H), 

5.51 – 5.37 (m, 1H), 5.30 (m, 1H), 5.23/5.16 (t, J = 7.2 Hz, 1H), 4.92 – 4.78 (m, 1H), 4.62 – 4.51 

(m, 1H), 3.80/3.78 (s, 3H), 2.65 – 2.47 (m, 2H), 2.41 – 2.33 (m, 2H), 2.30 – 2.16 (m, 3H), 2.14 – 

2.04 (m, 2H), 2.03 – 1.89 (m, 3H), 1.88 – 1.81 (m, 2H), 1.81 – 1.69 (m, 4H), 1.67/1.65 (d, J = 

0.9 Hz, 3H), 1.70 – 1.62 (m, 3H), 1.55 – 1.48 (m, 1H), 1.49 – 1.31 (m, 6H), 1.39 (d, J = 7.1 Hz, 

3H), 1.31 – 1.17 (m, 5H). 13C NMR (126 MHz, CDCl3) δ 175.65/175.59, 173.50/173.36, 

171.96/171.85, 160.30/160.06, 144.32/144.25, 139.65/139.18, 135.81/135.35, 134.16/133.17, 

124.99, 124.21/124.14, 112.73/112.02, 111.20/110.94, 103.75/103.24, 76.23/75.75, 55.48, 

48.24/48.21, 45.39, 37.17/36.96, 36.60/36.26, 32.41/32.24, 31.97/31.80, 30.40/29.99, 

29.85/29.61, 29.77, 29.66, 28.58/28.28, 27.91/27.65, 27.55/27.26, 26.38/25.76, 25.85, 25.81, 

25.78, 25.30/25.12, 23.44/23.37, 19.00/18.95. HRMS (ESI, m/z): calcd for [C35H52KN2O5]+ ([M 

+ K]+): 619.3513, found 619.3510. 
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Macrocycle 30: 

General procedure C was followed. Macrocycle 30 was isolated as a 2:1 mixture of olefin 

isomers. (7 mg, 83%). [α]23
D = 6.00° (c = 0.005, DCM). 1H NMR (500 MHz, CDCl3) δ 7.95/7.86 

(s, 1H), 7.44/7.24 (s, 1H), 6.71/6.62 (s, 1H), 6.43/6.39 (s, 1H), 5.90/5.87 (d, J = 9.1 Hz, 1H), 

5.50 – 5.39 (m, 1H), 5.34 – 5.22 (m, 1H), 5.20/5.10 (t, J = 6.9 Hz, 1H), 4.91 – 4.72 (m, 1H), 4.57 

(dd, J = 8.9, 4.9 Hz, 1H), 3.79/3.77 (s, 3H), 2.65 – 2.45 (m, 2H), 2.45 – 2.30 (m, 2H), 2.38 (t, J = 

6.2 Hz, 2H), 2.30 – 2.01 (m, 6H), 2.01 – 1.89 (m, 3H), 1.89 – 1.74 (m, 4H), 1.74 – 1.55 (m,5H), 

1.66/1.61 (s, 3H), 1.55 – 1.11 (m, 10H), 0.96/0.95 (d, J = 6.9 Hz, 3H), 0.91/0.90 (d, J = 6.9 Hz, 

3H). 13C NMR (126 MHz, CDCl3) δ 176.16/176.02, 172.79/172.50, 171.98/171.83, 

160.31/160.25, 143.82, 139.33/139.05, 134.87/134.28, 133.79/133.09, 125.03/124.71, 

124.41/124.01, 113.07/112.31, 110.70/110.35, 103.15/102.96, 75.30/75.04, 55.48/55.42, 

45.68/45.49, 37.93/37.75, 36.88/36.78, 35.59/35.20, 35.15/34.97, 31.85/31.76, 31.64/31.55, 

31.33, 30.11, 29.85, 29.51, 29.46/28.77, 28.31/27.71, 27.53/27.28, 26.92/25.83, 25.74, 

25.72/25.44, 25.33/23.44, 22.10, 19.37, 18.07/17.69, 16.15/15.88. HRMS (ESI, m/z): calcd for 

[C37H56KN2O5]+ ([M + K]+): 647.3826, found 647.3828. 
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Macrocycle 31: 

General procedure C was followed. Macrocycle 31 was isolated as a 2:1 mixture of olefin 

isomers. (8 mg, 85%). [α]23
D = -1.81° (c = 0.005, DCM). 1H NMR (500 MHz, CDCl3) δ 

7.94/7.79 (s, 1H), 7.40/7.30 (s, 1H), 7.29 – 7.11  (m, 3H), 7.17 – 7.10 (m, 2H), 6.68/6.63 (s, 1H), 

6.44/6.39 (s, 1H), 5.84/5.81 (d, J = 8.1 Hz, 1H), 5.50 – 5.38 (m, 1H), 5.32 – 5.22 (m, 1H), 

5.19/5.09 (t, J = 6.7 Hz, 1H), 4.92 – 4.85 (m, 1H), 4.85 – 4.69 (m, 1H), 3.79/3.77 (s, 3H), 3.21 – 

3.12 (m, 1H), 3.07 – 2.99 (m, 1H), 2.63 – 2.47 (m, 2H), 2.42 – 2.31 (m, 3H), 2.31 – 2.15 (m, 

4H), 2.14 – 1.78 (m, 8H), 1.78 – 1.58 (m, 6H), 1.65/1.60 (d, J = 0.9 Hz, 3H), 1.53 – 1.06 (m, 

10H). 13C NMR (126 MHz, CDCl3) δ 175.75, 172.13/172.11, 171.66, 160.10/160.08, 

143.79/143.75, 139.06, 135.77, 134.76/134.71, 133.16, 129.45, 128.42, 127.07, 125.04, 124.99, 

118.41/118.37, 110.86/110.82, 110.46/110.43, 102.57/102.51, 75.10, 55.30, 52.63/52.59, 45.36, 

38.62, 38.57, 38.41/38.36, 37.60/37.57, 36.43/36.38, 33.76/33.73, 31.92, 31.80, 29.97, 29.82, 

29.73, 29.34/29.25, 28.99/28.82, 27.31, 25.64, 25.57/25.51, 23.15. HRMS (ESI, m/z): calcd for 

[C41H56KN2O5]+ ([M + K]+): 695.3826, found 695.3826. 
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Macrocycle 32: 

General procedure C was followed. Macrocycle 32 was isolated as a 2:1 mixture of olefin 

isomers. (8 mg, 85%). [α]23
D = 12.22° (c = 0.005, DCM). 1H NMR (500 MHz, CDCl3) δ 

8.00/7.97 (s, 1H), 7.50/7.28 (s, 1H), 6.70/6.61 (s, 1H), 6.43/6.40 (s, 1H), 5.79/5.74 (d, J = 8.6 

Hz, 1H), 5.50 – 5.39 (m, 1H), 5.35 – 5.22 (m, 1H), 5.19/5.09 (t, J = 7.0 Hz, 1H), 4.91 – 4.70 (m, 

1H), 4.66 – 4.56 (m, 1H), 3.79/3.78 (s, 3H), 2.70 – 2.46 (m, 2H), 2.38 (t, J = 6.4 Hz, 2H), 2.32 – 

2.15 (m, 3H), 2.15 – 2.00 (m, 3H), 1.99 – 1.93 (m, 3H), 1.97 (t, J = 8.0 Hz, 2H), 1.93 – 1.70 (m, 

5H), 1.70 – 1.55 (m, 5H), 1.66/1.61 (s, 3H), 1.55 – 1.45 (m, 3H), 1.47 – 1.29 (m, 5H), 1.36 – 

1.11 (m, 5H), 0.95 (d, J = 3.7 Hz, 3H), 0.94 (d, J = 3.5 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 

176.01/175.88, 173.61/173.36, 171.83/171.76, 160.23/160.11, 150.11, 144.21, 139.77/139.75, 

135.72/134.00, 125.31/124.92, 125.06/124.11, 111.87/111.60, 111.26/110.84, 103.09/102.78, 

76.24/75.99, 55.47/55.45, 50.86/50.80, 45.42/45.37, 42.03/41.82, 37.21/36.87, 36.35/35.90, 

32.36/32.31, 31.88/31.82, 29.96, 29.89/29.84, 29.81, 29.52/29.49, 28.19/27.94, 27.69/27.65, 

27.46/27.34, 25.81, 25.74, 25.36/25.09, 25.10, 23.36/23.31, 23.27, 23.16/23.17, 23.06, 

22.18/22.15. HRMS (ESI, m/z): calcd for [C38H58KN2O5]+ ([M + K]+): 661.3983, found 

661.3981. 
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Macrocycle 33: 

General procedure C was followed. Macrocycle 33 was isolated as a 2:1 mixture of olefin 

isomers. (7 mg, 83%). [α]23
D = 11.01° (c = 0.005, DCM). 1H NMR (500 MHz, CDCl3) δ 

8.00/7.96 (s, 1H), 7.50/7.29 (s, 1H), 6.70/6.60 (s, 1H), 6.43/6.39 (s, 1H), 6.01/5.94 (d, J = 7.1 

Hz, 1H), 5.52 – 5.39 (m, 1H), 5.34 – 5.22 (m, 1H), 5.19/5.11 (t, J = 6.8 Hz, 1H), 4.93 – 4.69 (m, 

1H), 4.66 – 4.53 (m, 1H), 3.79/3.78 (s, 3H), 2.65 – 2.44 (m, 2H), 2.44 – 2.31 (m, 2H), 2.31 – 

2.15 (m, 3H), 2.15 – 2.00 (m, 2H), 2.00 – 1.89 (m, 2H), 1.89 – 1.69 (m, 3H), 1.66/1.62 (d, J = 

0.9 Hz, 3H), 1.69 – 1.54 (m, 3H), 1.53 – 1.29 (m, 2H), 1.38/1.37 (d, J = 7.2 Hz, 3H), 1.45 – 1.30 

(m, 3H), 1.30 – 1.11 (m, 9H). 13C NMR (126 MHz, CDCl3) δ 176.12/175.87, 173.55/173.10, 

172.31/172.22, 160.32/160.19, 144.00/143.95, 140.20/140.16, 139.21, 134.81, 133.24/133.19, 

125.30/125.16, 118.41/118.35, 111.04/110.63, 102.74, 74.58, 55.42, 48.16/48.11, 45.86/45.76, 

38.94, 37.69, 36.44, 33.89, 31.96, 30.59, 30.42, 29.95/29.85, 29.33/29.21, 29.08, 28.91, 27.43, 

26.14/26.06, 25.72, 23.27, 19.20/18.83, 14.42/14.28. HRMS (ESI, m/z): calcd for 

[C34H50KN2O5]+ ([M + K]+): 605.3357, found 605.3356. 
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Macrocycle 34: 

General procedure C was followed. Macrocycle 34 was isolated as a 2:1 mixture of olefin 

isomers. (5 mg, 75%). [α]23
D = 7.45° (c = 0.005, DCM). 1H NMR (500 MHz, CDCl3) δ 7.84/7.81 

(s, 1H), 7.44/7.37 (s, 1H), 6.78/6.64 (s, 1H), 6.44/6.41 (s, 1H), 6.07/6.01 (d, J = 7.3 Hz, 1H), 

5.53 – 5.39 (m, 1H), 5.33 – 5.22 (m, 1H), 5.19/5.12 (t, J = 7.2 Hz, 1H), 4.90 – 4.72 (m, 1H), 4.66 

– 4.55 (m, 1H), 3.79/3.78 (s, 3H), 2.63 – 2.49 (m, 2H), 2.42 – 2.33 (m, 2H), 2.30 – 2.17 (m, 2H), 

2.00/1.97 (s, 3H), 2.16 – 1.97 (m, 4H), 1.97 – 1.67 (m, 4H), 1.66/1.63 (s, 3H), 1.39/1.38 (d, J = 

7.2 Hz, 3H), 1.55 – 1.11 (m, 8H). 13C NMR (126 MHz, CDCl3) δ 172.95/172.92, 172.16/172.11, 

169.93, 160.24/160.18, 143.99, 140.10/140.04, 139.20, 134.86/134.76, 133.25, 125.19/125.00, 

118.35, 111.11/110.69, 102.76, 74.70/74.62, 55.43, 48.24, 38.95, 37.73, 36.45, 33.88/32.08, 

31.97, 29.85/29.82, 29.33, 29.05, 28.89, 27.46, 25.72, 23.43, 23.27, 19.12. HRMS (ESI, m/z): 

calcd for [C30H44KN2O5]+ ([M + K]+): 579.3200, found 579.3199. 

 

Non-8-enoic Acid: 

A 100 mL round bottom flask was equipped with a magnetic stir bar and deionized water (5.2 

mL), methanol (26 mL), 8-bromooct-1-ene (5g, 26.2 mmol, 1 eq.), and sodium cyanide (2.57 g, 

52.4 mmol, 2 eq.) were added. The reaction mixture was refluxed for 10 h. Solvent was removed 
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and the remaining slurry was taken up in EtOAc (30 mL), washed with deionized water (2X, 20 

mL) and saturated aqueous sodium chloride (2X, 20 mL), and dried over anhydrous sodium 

sulfate. Solvent was removed to afford a colorless oil that was dissolved in a mixture of 

deionized water and ethanol (17.5mL and 59 mL respectively) in a 250 mL round bottom flask. 

Potassium hydroxide (17.23 g, 307 mmol, 11 eq.) was added to the solution and the reaction 

mixture was refluxed for 10 h. Solvent was removed and the remaining slurry was taken up in 

EtOAc (30 mL) and deionized water (50 mL). The organic layer was removed and the aqueous 

later was extracted with EtOAc (2X, 30 mL). The aqueous layer was adjusted to pH = 2 using 3N 

HCl, and extracted with EtOAc (4X, 20 mL). The combined organic layers were collected and 

dried over anhydrous sodium sulfate. Solvent was removed to afford compound 35 as a colorless 

oil (3.8 g, 92% over two steps). 1H NMR (500 MHz, CDCl3) δ 10.95 (s, 1H), 5.80 (ddt, J = 16.9, 

10.2, 6.7 Hz, 1H), 4.99 (ddd, J = 17.1, 3.6, 1.6 Hz, 1H), 4.93 (ddt, J = 10.2, 2.2, 1.2 Hz, 1H), 

2.35 (t, J = 7.5 Hz, 2H), 2.07 – 2.01 (m, 2H), 1.68 – 1.59 (m, 2H), 1.43 – 1.27 (m, 6H). 13C NMR 

(126 MHz, CDCl3) δ 179.43, 139.12, 114.46, 34.01, 33.83, 29.01, 28.83, 28.80, 24.75. HRMS 

(ESI, m/z): calcd for [C9H15O2]- ([M - H]-): 155.1072, found 155.1076. 

 

(S)-1-(2-Methyl-1,3-dioxolan-2-yl)hex-5-en-3-ol (51): 

A 25 mL round bottom flask was charged with deionized water (5 mL), acetone (5 mL), 

compound 13 (200 mg, 0.78 mmol, 1 eq.), and pyridinium p-toluenesulfonate (608 mg, 2.4 

mmol, 3.1 eq.) and the reaction mixture was refluxed for 10 h. Solvent was removed and the 

remaining slurry was dissolved in EtOAc (20 mL) and washed with saturated aqueous sodium 

bicarbonate. The organic layer was dried over anhydrous sodium sulfate and solvent was 
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removed to afford a colorless oil that was purified by SiO2 flash chromatography (10% EtOAc in 

Hex) to afford compound 51 as a colorless oil (137 mg, 94%). [α]23
D = -1.89° (c = 0.005, DCM). 

1H NMR (500 MHz, CDCl3) δ 5.84 (dddd, J = 23.4, 10.6, 7.6, 6.8 Hz, 1H), 5.13 (dtd, J = 4.0, 

2.0, 1.3 Hz, 1H), 5.11 (t, J = 1.2 Hz, 1H), 3.99 – 3.92 (m, 4H), 3.69 – 3.62 (m, 1H), 2.31 – 2.24 

(m, 1H), 2.24 (d, J = 3.9 Hz, 1H), 2.22 – 2.13 (m, 1H), 1.84 (ddd, J = 14.2, 9.5, 5.9 Hz, 1H), 1.79 

– 1.72 (m, 1H), 1.67 – 1.58 (m, 1H), 1.54 (dddd, J = 14.1, 9.4, 8.3, 5.9 Hz, 1H), 1.33 (s, 3H). 

13C NMR (126 MHz, CDCl3) δ 135.05, 118.03, 110.15, 70.93, 64.79, 64.75, 42.16, 35.44, 31.17, 

23.87. HRMS (ESI, m/z): calcd for [C10H19O3]+ ([M + H]-): 187.1334, found 187.1338. 

 

(R)-1-(2-Methyl-1,3-dioxolan-2-yl)hex-5-en-3-ol (52): 

Compound 41 was synthesized using the same procedures as compound 51 from 5-

hydroxypentan-2-one using (-)-B-methoxydiisopinocampheylborane. [α]23
D = 1.96° (c = 0.005, 

DCM). 1H NMR (400 MHz, CDCl3) δ 5.83 (dddd, J = 16.6, 10.7, 7.6, 6.8 Hz, 1H), 5.16 – 5.11 

(m, 1H), 5.10 (t, J = 1.1 Hz, 1H), 4.00 – 3.91 (m, 4H), 3.70 – 3.59 (m, 1H), 2.35 – 2.09 (m, 3H), 

1.90 – 1.69 (m, 2H), 1.69 – 1.45 (m, 2H), 1.33 (s, 3H). (EtOAc is present as an impurity). All 

spectral data matched the enantiomer, compound 51. 

 

(R)-(S)-1-(2-Methyl-1,3-dioxolan-2-yl)hex-5-en-3-yl 3,3,3-trifluoro-2-methoxy-2-

phenylpropanoate (53): 
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A flame dried 5 mL round bottom flask was flushed with argon before DCM (1 mL), 

triphenylphosphine (18 mg, 0.081 mmol, 1.5 eq.), (R)-3,3,3-trifluoro-2-methoxy-2-

phenylpropanoic acid (19 mg, 0.081 mmol, 1.5 eq.), and compound 51 (10 mg, 0.054 mmol, 1 

eq.) were added. 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (16 mg, 0.081 mmol, 1.5 eq.) 

was added to the solution and the reaction mixture was stirred for 10 h. Solvent was removed and 

the remaining slurry was dissolved in d6-benzene. 19F NMR (376 MHz, C6D6) δ 70.19, 71.15. 

 

(R)-(R)-1-(2-Methyl-1,3-dioxolan-2-yl)hex-5-en-3-yl 3,3,3-trifluoro-2-methoxy-2-

phenylpropanoate (54): 

Compound 54 was synthesized following the procedure for compound 53. 19F NMR (376 MHz, 

C6D6) δ 70.19, 71.19. 

 

Compounds 52 and 53 were combined and analyzed by NMR. 19F NMR (376 MHz, C6D6) δ 

70.19, 71.15, 71.18. 

 

Molecular Modeling: Trienomycin A (1) and the four semi-synthetic derivatives (2-5) were 

constructed in the Sybyl software suite and their energy was minimized through dynamic 

simulations using default parameters. The structures were compared for overlay using the 

Similarity tool of Surflex software suite (default parameters). Functionality was sequentially 

removed, and each new structure was minimized. The structural overlays were compared using 

Surflex Sim after each minimization until a score of less than 0.7 was observed. The simplest 

O

OO

O

Ph
F3C

MeO



 284 

trienomycin A analogue, compound 6, maintained a similarity score of 0.7935. 12 olefin isomers 

representing all possible monoene derivatives were then constructed in the same manner and 

compared using the Surflex Similarity tool. 

 

Antiproliferation Assay.  MCF-7 and HeLa cells were maintained in a 1:1 mixture of Advanced 

DMEM/F12 (Gibco) or F-12 Kaighn’s médium (Gibco), respectively, supplemented with non-

essential amino acids, L-glutamine (2 mM), streptomycin (500 g/mL), penicillin (100 units/mL), 

and 10% FBS.  Cells were grown to confluence in a humidified atmosphere (37 °C, 5% CO2), 

seeded (2000 cells/well, 100 µL) in 96-well plates, and allowed to adhere overnight. Compound 

or GDA at varying concentrations in DMSO (1% DMSO final concentration) was added, and 

cells were returned to the incubator for 72 h. At 72 h, the number of viable cells was determined 

using an MTS/PMS cell proliferation kit (Promega) per the manufacturer’s instructions. Cells 

incubated in 1% DMSO were used as 100% proliferation, and values were adjusted accordingly.  

IC50 values were calculated from three separate experiments performed in triplicate using 

GraphPad Prism. 
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