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Abstract. A more thorough understanding of the multi-scale tial structure of the land surface. These results aid in iden-
spatial structure of land surface heterogeneity will enhancdifying the dominant cross-scale nature of local to regional
understanding of the relationships and feedbacks betweehiosphere-atmosphere interactions.

land surface conditions, mass and energy exchanges between
the surface and the atmosphere, and regional meteorolog-

ical and climatological conditions. The objectives of this )

study were to (1) quantify which spatial scales are dominang.  Introduction

in determining the evapotranspiration flux between the sur- o o _ _ _
face and the atmosphere and (2) to quantify how differentScaling issues are ubiquitous in land-atmosphere interactions
spatial scales of atmospheric and surface processes interd@runsell and Gillies2003a Anderson et a).2003. They

for different stages of the phenological cycle. We used the/MPact our ability to accurately model and measure the ex-
ALEXI/DisALEXI model for three days (DOY 181, 229 and Cchange of mass and energy across the surface atmosphere in-
245) in 2002 over the Ft. Peck Ameriflux site to estimate terface. Issues with scaling across different spatial and tem-
the latent heat flux from Landsat, MODIS and GOES sate|-Poral resolutions is complicated through non-linear interac-
lites. We then applied a multiresolution information theory tions Raupach and Finnigat999, feedbacks developing at
methodology to quantify these interactions across differenfPreferential scalexdpster et al, 2004 as well as incorporat-
spatial scales and compared the dynamics across the diffel?9 the impacts of Spatla_ll pattern on mass tranﬁehyman-_

ent sensors and different periods. We note several imporSKi €t al, 2010. These issues may ultimately be impacting
tant results: (1) spatial scaling characteristics vary with dayUr ability to adequately address the impacts of global cli-
but are usually consistent for a given sensor, but (2) differenfat€ changeWagener et a|2010.

sensors give different scalings, and (3) the different sensors One aspect of the scaling problem involves aggregation of
exhibit different scaling relationships with driving variables fine resolution data to accurately determine the areal average.
such as fractional vegetation and near surface soil moisturel Nis is complicated by the non-linearity of the exchange pro-
In addition, we note that while the dominant length scale ofc€Sses governing mass and energy transjiatifach and

the vegetation index remains relatively constant across th&innigan 1995 Western et a].2003. For example, the areal
dates, the contribution of the vegetation index to the derivecBverage value of evapotranspiration is not a function of the
latent heat flux varies with time. We also note that length SPatially averaged input fields such as air temperature. This
scales determined from MODIS are consistently larger thariS Particularly problematic when attempting to estimate the
those determined from Landsat, even at scales that shoulfiuxes from satellite data sources, as these platforms observe
be detectable by MODIS. This may imply an inability of the the spatially aggregated value of fields such as radiometric
MODIS sensor to accurately determine the fine scale spatémperature at the satellite resolution.

An approach to confronting this aspect of the scaling prob-
lem is the “effective parameters” approach, in which the con-

Correspondence ta\. A. Brunsell ceptual model (e.g. that the flux is proportional to the lo-
BY (brunsell@ku.edu) cal scalar gradient) was deemed correct, and only the “true”
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value of a conductivity term had to be determinetldmme Kullback-Leibler divergence), they were able to calculate
et al, 1994 Chehbouni et al.2000. On a more theoretical the amount of information contributed as the scale of obser-
level, this necessitates the assumption that the model physiogation was aggregated. Thus, they were able to define an
are also applicable across the range of scales under consitieptimum” pixel resolution based on the loss of information.
eration. Similar issues arise when downscaling from coarser |n addition to assessing the role of pixel aggregation, infor-
to finer resolutions, where the problem involves accuratelymation theory has also been used to examine the flow of in-
determining the distribution of the data at resolutions belowformation across the surface-atmosphere interf&ensell
that observed by the satellite (i.e. subgrid heterogeneity). (2010 used the information theory metrics of entropy, mu-
The use of satellite data provides the opportunity totual information content and relative entropy to assess spa-
achieve measurements at a variety of spatial resolutions, butal variation in the temporal scaling of daily precipitation.
the interpretation and validation of these measurements arghis technique was able to determine clear scale breaks in
often unclear (e.gWu and Li 2009. When considering en-  the temporal patterns of precipitation that were not captured
ergy and mass fluxes derived from satellite data, it is nechy traditional techniques.
essary to employ some model that translates the input fields gyynsell and Young2009 used the metrics to assess the
into the flux of interest. For example using a vegetation indexinformation gained by surface vegetation as a function of
and land surface temperature to derive the evaporative fluxhe time scales of input precipitation field across the Mis-
(e.g.Carlson 2007). This application of a model also entails soyri Basin using MODIS and NEXRAD data. They found
a scaling problem. A model calibrated to a particular resolu-a clear relationship between the information content and the
tion may or may not be useful when faced with a change ofresolution of the dataBrunsell et al(2008 examined how
resolution, i.e. the so-called equifinality concelpéyen and  eyapotranspiration derived from satellite data was sensitive
Freer 200]). McCabe et al(2009 directly incorporated this 14 different spatial scales of vegetation and soil moisture dy-
concept into a land surface model for determining derivingnamics and found a clear sensitivity to topographic position
Femporal variability of evapotranspiration from remote sens-ang moisture content. SimilarlRuddell and Kuma¢2009
Ing. o . examined surface—atmosphere fluxes by quantifying the in-
However, the application of a model across different spa-tormation transfer using eddy covariance observations. They

tial resolutions may also lead to different observed scalingyere able to quantitatively define surface—atmosphere feed-
relationships between modeled output fluxes and controlling,5cks using this technique.

variables Brunsell and Gillies2003h. An additional prob- The previous research has focused on assessing the infor-
lematic area that has not been given sufficient acknowledger ..o content and transfer using data from the same spa-
ment is when the models are developed using the preferrea1

| | f diff ientific discipli al or temporal resolutions. We are interested in continuing
conceptual scales of different scientific disciplines (e.9. atyis jing of research into the applicability of information the-

mospherig scientists and eC(_)physioIogists) re_sult in perhapgry metrics for assessing biosphere—atmosphere interactions.
contrary views of the underlying process (elarvis and Mc- Here, we wish to examine how different initial spatial resolu-

Na}ughtom 198?' felt that hiah il lution is b tions of satellite data impact the relationship between evapo-
tf'S genera >|/ elt t gt nigher ipatla resolution 's et transpiration and controlling variables such as soil moisture
ter for accurately quantifying exchange processes etweenny vegetation cover as a function of spatial resolution. This

the Ignd surface a;]r?dhthe atmosprered Hovye}/er, als the ioni]é essential knowledge for understanding both our ability to
munity moyes_to Igher _tempora an s_pat|a reso ution for 5 ,cerve scaling relationships as well as to model the impacts
global monitoring, there is a necessary increase in computag

! . ) correctly across a wide range of scales.

tional workload. In some cases higher resolution data may

not be necessary, meaning that it may not contribute ad-

ditional information about the process (eByunsell et al,

2008. For exampleMcCabe and Woo@2006 found that 2 Model Description

while MODIS was unable to ascertain the field scale evapo-

transpiration, it was able to accurately determine the waterThe Atmosphere Land Exchange Inverse (ALEXI) surface

shed scale flux. However, a quantifiable method to determingnergy balance model was specifically designed to minimize

this is necessary. Therefore, we are faced with the questiorthe need for ancillary meteorological data while maintain-

how can we assess the relative importance of different spaing a physically realistic representation of land-atmosphere

tial scales of remotely sensed observations, particularly withexchange over a wide range in vegetation cover conditions

respect to seasonal and interannual variations in phenology€.9- Anderson et al.2004. It is one of few land-surface

soil moisture etc. on the spatial structure of modeled fluxes?nodels designed explicitly to exploit the high temporal reso-
Recently, tools from information theory have been used tolution afforded by geostationary satellites like GOES.

attempt to address this type of questidstoy et al.(2009 Surface energy balance models estimate evapotranspira-

attempted to ascertain the “optimum” pixel scale. Usingtion (ET, Wm~2) by partitioning the energy available at the

Shannon entropy and the relative entropy (also called théand surfaceRn—G), whereRnis net radiation ands is the
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soil heat conduction flux, in W i into turbulent fluxes of  air temperature. In the ALEXI model, the TSEB is applied

sensible heatf{, W m—2) andET: at two times during the morning ABL growth phase (ap-
proximatelys; = 1.5 ands = 5.5 h after local sunrise), us-
Rn—G=H+ET 1) ing radiometric temperature data obtained from a geostation-

Surface temperature is a valuable metric for constrainingary platiorm like GOES_ aF spatial _resolut_|0ns of 5_19 km.
Energy closure over this interval is provided by a simple

ET because varying soil moisture conditions yield a distinc- ;
tive thermal signature: moisture deficiencies in the root zoneSlab modgl of ABL devqupmgnb{(cNaughton anq Sprlgg.s
986, which relates the rise in air temperature in the mixed

lead to vegetation stress and elevated canopy temperatureI Ver to the i int ted infl ¢ ible heat f th
while depletion of water from the soil surface layer caus:es;l"’lytér Of N m;\e-m egralte f|tr;1.ux ° f\f,ensut. € ZaLE)rgm ©
the soil component of the scene to heat up rapidly. and surtace. As a resuft ot this conniguration, Uses

The land-surface representation in ALEXI model is basedonly time-differential temperature signals, thereby minimiz-
ing flux errors due to absolute sensor calibration and atmo-

on the series version of the two-source energy balancé . . :
(TSEB) model ofNorman et al(1995, which partitions the spheric and spatial effectkistas et al.2001). The primary

composite surface radiometric temperatufgg, into char- radiometric signal is the morning surface temperature rise,
acteristic soil (denoted by the subscript S) and canopy (sub\-Nhlle the ABL model compon_ent uses only the g_eneral slope
script C) temperature§s and7c, based on the local vegeta- (lapse rate) of the atmospheric temperature proifederson

tion cover fraction Fr) apparent at the thermal sensor view et a.l’ 1997, which is more reliably analyzed from synoptic
angle, £ (6): radiosonde data than is the absolute temperature reference.

To map fluxes at higher resolution than afforded by geosta-
Trad(0) ~ f(0)Tc+[1— f(O)]Ts (2)  tionary satellites (typically 5-10km) a flux disaggregation
technique referred to as DiSALEXI (Norman et al., 2003)

For a homogeneous canopy with spherical leaf angle discan be applied. DisALEXI is a nested modeling approach
tribution and leaf area index (LAI)f(¢) can be approxi- that uses air temperature diagnosed by ALEXI along with

mated as: high resolution LAl andTaq information from polar orbit-
—05 LAl ing instruments like Landsat or MODIS or aircraft, normal-
f)=1- eXP<W> (3)  ized to conservé! at the GOES pixel scale. For comparison

with tower fluxes, DiSALEXI fluxes are reaggregated over
With information aboutl;aq, LAI, and radiative and me- the surface source area contributing to the sensor measure-
teorological forcing, the TSEB evaluates the soil and thement, typically on the order of 100-m in dimensiohnder-
canopy energy budgets separately, computing system ansbn et al.(2007) summarize ALEXI validation experiments
component fluxes of net radiatio®{ = Rnc + Rng), sen-  yielding typical root-mean-square-deviations in comparison
sible and latent heat (H Hc+Hs andET = ET¢+ Eg), and  with tower flux measurements (30-min averages){oand
soil heat conduction). Importantly, because angular ef- ET are 35-40 W m? (15 % of the mean observed flux) over a
fects are incorporated into the decompositionTafy, the range in vegetation cover types and climatic conditions. Fur-
TSEB can accommodate thermal data acquired at off-nadither details about the ALEXI/DiSALEXI modeling system
viewing angles and can therefore be applied to geostationargre provided byAnderson et al(2007).
satellite images.
The TSEB has a built-in mechanism for detecting thermal
signatures of vegetation stress. A modified Priestley-Taylor3 Site description
relationship, applied to the divergence of net radiation within
the canopyRrc), provides an initial estimate of canopy tran- The study area focuses on AmeriFlux tower site lo-
spiration ET¢), while the soil evaporation rat&g) is com-  cated outside of Fort Peck (4B8'36”, 10506007, eleva-
puted as a residual to the system energy budget. If the vegion=634m a.s.l.) in the northeast corner of Montana. The
etation is stressed and transpiring at significantly less tharower itself is situated in a grazed grassland along the Poplar
the potential rate, the Priestley-Taylor equation will overes-River, but the Landsat scene also contains a significant frac-
timate ET¢ and the residuak's will become negative. Con- tion of rainfed and irrigated agricultural fields. The topog-
densation onto the soil is unlikely midday on clear days, andraphy is predominantly flat, and there are several lakes and
thereforeEs<0 is considered a signature of system stress.reservoirs contained within the scene. Soils around the site
Under such circumstances, the Priestley-Tayler coefficient isire moderately drained clay loams. S#&#son and Meyers
throttled back untilEs~0 (expected under dry conditions). (2007 for further details on the Fort Peck AmeriFlux site.
Both ET¢ and Es will then be some fractionT/PET) of The remotely sensed imagery covers a domain of 102.4 km
the potentiaET rates associated with the canopy and soil. by 102.4 km centered on the tower location. We applied the
For regional-scale applications, the TSEB has been couALEXI/DisALEXI models to derive evapotranspiration on
pled with an atmospheric boundary layer (ABL) model to in- three days: 30 June (DOY 181), 17 August (DOY 229), and 2
ternally simulate land-atmosphere feedback on near-surfac8eptember (DOY 245) in 2002 over the Ameriflux sites in Ft.
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Peck Montana, USA. The Landsat imagery has a resolution This analysis returns band-pass filtered versions of the
of 100 m, while the MODIS and GOES imagery are resam-dataset at each scale of interest. Therefore, the original
pled to match the 100 m resolution which is output from the dataset ((x,y)) can be reconstructed from the coarsest
ALEXI/DisALEXI models. These three days were chosen scale (i.e. average) and the residual fluctuatigfigx( y) =

due to the relatively cloud free nature of the Landsat sceneg” Qﬁf;‘ f) at each pointx, y):

on those dates. Rainfall was recorded at the tower in day

prior to each day of analysis. However only DOY 228 re- f(x,y) & fin(x,y)+ Z F(x,y) (12)
ceived a large (18 mm) amount. The other days received m=mo

1.6 mm (DOY 181) and 0.6 mm (DOY 245). Band-pass and low-pass filtering was conducted for the in-

formation theory metrics. Information theory metrics from

4 Methods the band-pass filtered data were calculated using the detailed
coefficients at each scal@y,), while the low-pass filtered
4.1 Wavelets versions were calculated by progressively removing the finer

scales in Eq.X2). This was done in order to ascertain both
We conducted a wavelet multiresolution analysis to examinethe relative contribution of each scale to the spatial variability
the contribution of different Spatial scales to the modd&léd (band-pass) aswell asto investigate how the different resolu-
The wavelet transform is conducted via the translation andions of the input the data would appear when filtered to the
dilation of a mother wavelef across a data s¢tas a func-  coarser resolutions. These filtered reconstructions are then
tion of time: used to compute the information theoretic metrics at each
) spatial scale as described next.

W (m,n) =xg’”/2/ OV (™ —nto)dt )

—00 4.2 Information theory metrics
whereW are the wavelet coefficients; is the dilation and
n is the translation).q is the initial scale and is the initial
translation. The initial scale is twice the resolution of the
measurements and the initial translation is zero. In practice
the integration would be conducted over the full domain of
interest and not to infinity. The wavelet is given by:

_ m — - . .
Ly (r nioks ) () [®)==2 plilog(p(x) (13)
A /)xo )»0 i=1
The two-dimensional wavelet analysis is conducted as thred/Nerep(x;) is the probability density function (pdf) of vari-

one-dimensional wavelet transforméumar and Foufoula- ablex within a discrete bin of the probability density func-
Georgioy 1993. These are conducted in the horizontal tion. Entropy is a measure of the statistical uncertainty of

(Wl(x,y)), vertical @2(x,y)), and diagonal ¥3(x, y)) di- the random fieldv as descri'bed by thg pdf. The entropy i§
rections across the two dimensional dataset: a measure of the information (more information results in
lower entropy and vice versa).
\Ifl(x,y) =p(x)Y(y) (6) In addition to the entropy, the relative entropg(f,y))
W2(x,y) = (0¥ (x) (7) Was also caIcuIatgq. This.is a measure of the dista_nce be-
W3 y) = v () (y) () tween the probability density functions of the two variables
’ x andy given by p andg respectively. Here represents
whereg is the scaling function corresponding to the mother the pdf of the evapotranspiration agdrepresents either a
wavelet. coarser scale approximation given from the wavelet decom-
The discrete detailed coefficient®) at each scale are Position top or of the remotely sensed fields Bitq, Rn and
calculated by the inner product of the spatial data fieldFr- ThenR(x,y) is calculated as:

f(x,y) and the wavelet transfornfsi: b
R =Y pi Iog(q—f) (14)

In order to assess the statistical variability of the precipitation
fields, we combine the wavelet multi-resolution analysis with
the information theory metrics of entrop¥)(and the relative

entropy R).
The Shannon entropy is calculated as:

1/fm,n(l‘) =

1

=< fo V> ) _ _ -

a2 , N (10) This can be interpreted as the amount of additional infor-
O J =<1+ Wi mation necessary to represgngivenq. Thus, the smaller
0B f=<f w3 > (11)  the value, the better the agreement betwgand p.

where the<> denote the inner product.
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Fig. 1. ALEXI modeledET fluxes [W m_2] over Ft. Peck Montana USA for three days (left) 181, (middle) 229 and (right) 245 in 2002
derived from three sensors (top) Landsat (middle) MODIS and (bottom) GOES.

5 Results Here,ET/PET is used as a proxy for soil moisture content,
sampling the root-zone in well-vegetated areas and the soil
5.1 Spatial structure of remotely sensed fields and surface layer (top 5cm) in areas with sparse vegetahiain(
evapotranspiration etal, 2011). Each sensor captures the same temporal trend in

ET: maximum value on DOY 181 and decreasing with time.
We applied the ALEXI/DisALEXI models to derive evapo- All of the sensors show approximately the same spatial mean
transpiration on three days: 30 June (DOY 181), 17 Augustas well, although the MODIS value on day 181 is slightly
(DOY 229), and 2 September (DOY 245) in 2002 over the reduced compared to the other sensors. This same trend was
Ameriflux sites in Ft. Peck Montana, USA. The modelet observed in th&knvalues, but not in th&,g. The tempera-
fluxes for each of the days as derived from the sensors Landture values show a maximum on day 181, but a minimum on
sat and MODIS (DisALEXI) and GOES (ALEXI) are shown day 229, presumably due to a prior precipitation event. This
in Fig. 1. Note that the range of model&T fluxes increases is supported by the peak in the soil moisture praxy/PET)
with the higher resolution satellites, as would be expectedon this day observed by both the Landsat and MODIS sen-
On each day the observed spatial structure is generally cagsors. The fractional vegetation shows the expected trend of a
tured by each of the satellites, but this structure does appeanaximum value on day 181 and decreasing with time. Both

to change with time. the Landsat and MODIS sensors observe approximately the
The mearET flux and spatial standard deviation for each same values of fractional cover.
day derived from each sensor are shown in Tabll addi- To determine the changes in the spatial structure oEfhe

tion to theET flux, we have also shown the mean and stan-flux we calculated the wavelet spectra from each sensor for
dard deviations foRn Traq, Fr, and the ratio of actual to each day (Fig2). The overall wavelet variance (area un-

potentialET (ET/PET) all evaluated under clear-sky condi- der the curve) is highest for day 181, while the other days
tions whenT 54 can be retrieved from thermal band imagery. show approximately the same curves for both the Landsat

www.biogeosciences.net/8/2269/2011/ Biogeosciences, 8, 22682011
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Table 1. Spatial mean and standard deviation in parentheses for evapotranspiEFd(m—2]), net radiation Rn, [W m~2]), surface
temperatureq;aq, [C]), fractional vegetationRt, [-]), and water limitation ET/PET, [-]) for each sensor (Landsat, MODIS, and GOES) for

each day of consideration (181, 229, and 245).

Resolution (m)

Fig. 2. Spatial wavelet spectra [PowerTH for evapotranspira- ) “an
tion for each sensor (Landsat, MODIS, and GOES) for each day ofoverall variance decreases with time.
consideration (181, 229, and 245). The arrow denotes the 51km The MODIS spectra show the same general dominant

scale.

Biogeosciences, 8, 226228Q 2011

Sensor  Date ET Rn Trad Fr ET/PET
Wm=2 [Wm=?  [C] = -]
Landsat 181 301(104) 636(28) 30.9(3.5) 0.53(0.17) 0.66(0.19)
229 208(53) 527(18) 21.6(2.5) 0.26(0.12) 0.75(0.16)
245 166 (61) 478(19) 26.8(3.0) 0.22(0.09) 0.60 (0.20)
MODIS 181 276(87) 649(17) 32.7(2.2) 0.50(0.09) 0.61(0.17)
229 215(42) 549(11) 22.2(1.8) 0.27(0.07) 0.74(0.13)
245 170(59) 498 (14) 27.4(25) 0.21(0.06) 0.59 (0.19)
GOES 181 297(26) 627(8) 28.7(0.8) - -
229 210(18) 523(6) 20.6(1.0) - -
245 169 (25) 476(7) 25.9(L.3) - -
and MODIS sensors. The Landsat data (panel a) shows a
_ o dominant length scale (peak of the wavelet spectra) on the

o & ] i (a) order of 3.2 km for day 181, with large contributions from all

§ o | D% \ but the largest scale (102 km). For dates 229 and 245, the

= 8 1 = 0\0 ) role of this dominant scale is decreased and while the spectra
g % & 1 8 is relatively flat, there does seem to be a peak in the range of
2l © © 51km.

c [ .
=] > = 89
- § 18-8=* _"*4"4"’w The MODIS data (Fig2b) also shows larger spatial vari-
e e i B s o e e ance on day 181, but does not capture the 3.2km length
scale. The spectra is relatively constant over the range of
_— o 2_e+02 gk 6 to 51 km, with a slight peak at the 51 km scale. This peak

Q ® (b) becomes slightly more pronounced on the later dates.

E g | e O,O The GOES sensor (Figc) shows the same spatial struc-
wl € S /° ture regardless of the day of consideration, with a dominant
0| 8 o o length scale on the order of 51 km. The range of this length
g ° = / - 5 scale is slightly increased on day 181, exhibited by an in-

g g _2;:’__4;#—‘—"/ \. creased contribution to the variance from a smaller spatial

o _8-8- ; . )
— T T T T T 1T scale (25 km). As time progresses, the overall variance in the
26402 20403 2e+04 GOES signal decreases.
] . © In addition to calculating the wavelet spectra for tHeTE

¥ o« a flux, we also calculated the spectra for the dominant con-

8 o |- 181 ; P

_@ —e— 229 oM trolling variables of surface temperature, net radiation, and
wl & © —f|—e 245 /N fractional vegetation (Fig3). The Landsat wavelet spectra
‘5‘ B m / / for radiometric temperature (panel a) and net radiation (panel
0 % <+ .9 )/\’ d) show the same general behavior, with substantially higher

= I;O_:ﬂ-'—ﬂ/ T wavelet variance on DOY 181, and reduced values on the

e B e e e s e e other days. Similar to the wavelet spectra o, we see an
| 26402 2e+03 2e+04 increase in the dominant length scale from the 3.2 km scale

to the 51 km scale as time progresses, although the 3 to 6 km
range continues to contribute significant portions of the over-
all variance. Thd-r spectra (panel g) shows the same spatial
structure on all days with a peak at the 3.2 km scale, and the

length scale (51 km) regardless of the day of consideration
for both theT;a3g and Rn data fields (panels b and €). The

www.biogeosciences.net/8/2269/2011/
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Fig. 3. Spatial wavelet spectra [PowertH for radiometric temperature, net radiation, and fractional vegetation for each sensor (Landsat,
MODIS, and GOES) for each day of consideration (181, 229, and 245).

MODIS data also shows a general decrease in the overathis scale. The 51 km scale, on the other hand, is remarkably
wavelet variance as time progresses from DOY 181 to 22S%imilar regardless of the sensor.
to 245. The spectra show a reduced length scale for the frac- \yhije the spatial structure in Figklooks similar, the spa-
tional vegetation field relative to the temperature and net rasj probability density functions do show some variability as
diation, with a peak on the order of 6 km for each of the days. fnction of the initial sensor. At the 51km scale, MODIS
The GOES data (panels c and f) generally shows the samg.4 GOES both show an increased number of pixels in the
structure and variance with a spike in the DOY 229 radiomet-_»( 1o 20\WnT2 ET range (recall that these are the values
ne tempera_ture data. The length scale for the GOES tempelqripyted from only this scale, not the total flux), while
ature data is the same as the MODIS length scale (51km)y,q | angsat observed more of a single peak. When consider-
while theRnfrom GOES is continuously increasing across jnq the difference in the density functions between Landsat
the range of scales considered here. and MODIS, this may point to a fundamental difference in
the ability of the two sensors to detect small changes in the

5.2 Multiresolution entropy of evapotranspiration structure of the spatial field.

Next we applied the multiresolution information theory ap-  From the probability density functions, we calculated the
proach to quantify the information contentlBT and associ- scalewise entropy (Fid) using both band-pass and low-pass
ated data fields. An example of the approach is illustrated irfiltered versions of th&T flux for each sensor on each day.
Fig. 4, where we conducted a multiresolution analysis usingSince the band-pass filter decomposes the initial data field
a band-pass filter on the modelgd derived from each of the into only the contribution from an individual scale, the asso-
sensors for day of year 181. Panel a shows the decomposetiated entropy represents the information content of the flux
spatial fields for two selected scales (200m and 51.2 km)at that scale. Thus, this can be viewed as addressing “how
The 200 m scale is below the resolution of the MODIS andmuch information is contributed from that scale to the total
GOES sensors, so not surprisingly, there is little variability atsignal?” In the case of the Land4at flux (panel a), we see
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Fig. 4. (a) Example of band pass filtered evapotranspiration [Werfields for day 181 for (top) Landsat (middle) MODIS and (bottom)
GOES at two levels of decomposition (left) 200 m and (right) 51 200 m. Note that values indicate only the flux contributed from the individual
scale, not the total evapotranspiratidn) Shows the associated probability functions for each imaga)in

that each scale is contributing approximately equally to the5.3 Relative entropy between evapotranspiration and
observed information content. There is a slight reduction in other fields
the contribution from the largest scale on the later dates.

The MODIS data (panel b) shows a similar result, how- To further understand the nature of multiscale interactions
the sensor. On days 229 and 245, there is slight peak in thgow much information in the spatial structureff is due to
information contributed at the 25km scale. The GOES datanhe variability of other fieldsTjag, Rn Fr etc.) as a function
shows a similar behavior across scales (panel c). of spatial scale.

d The_ Iov;/r-]pass fll'igre.d“\r/]ersmn ththef data tI'S hglplfultfor ad- We calculated the relative entropy between the original
ressing the quels 'tc.m' q ?W?T;J_E 'E or(Tatlc()jn tls fos das Vi’gicaleET and the band-pass filtered versions of the radiomet-
use coarser resolution data- € Landsat data for day Lo, temperature and net radiation (Fig. Recall that the

(Fig. 5d).’ shows an almost continuous d.rop in information aShigher values of RE indicate that more information is neces-
the spatial resolution is coarsened. While for the other dates

this d i inf i tent is | ianificant until th sary to reconstruct thET flux, thus the less information is
IS drop In nformation content 1S /ess signiticant unti the being contributed by that scale to the evapotranspiration.
larger spatial scales. The information content from MODIS

ET (panel e), shows almost the same information content un- 1 N€ relative entropy between the Landgdt and 7raq is
til scales on the order of 25km. The GOES data is similar,SNOWN in Fig.6a. TheRE values show relatively constant
with the exception of day 181, where there is actually in- variation across scale, with an increase in the RE at the small-

creased information in the coarser scales est scales. In addition, this contribution becomes larger as
time passes, thus indicating that tB€ flux became less de-
pendent upon small scale variations in surface temperature.
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Fig. 5. Multiresolution entropy computed from low-pass (left) and Fig. 6. Relative entropy between each scale of controlling variable
band-pass (right) wavelet reconstructions for each sensor (rows) anleft) 7y5q and (right)Rnto the modeledET flux from each sensor
each day (lines).

This is also observed in the MODIS data (panel b). In addi-
tion, the MODIS data exhibits an interesting variation across
the smallest scales, where the scales up to 3.2 km becom:
increasingly less important with time. The GOES sensor is
generally unable to detect any change in the contribution as
a function of time, except that day 181 actually shows higher
RE values than the other dates contrary to what is observed| |

in the other sensors.

The role of net radiation on the spatial structure of the
evapotranspiration flux is also shown in Fi§j. The RE
betweenRrandET from Landsat (panel d) shows the same
variation for days 181 and 229, with slightly higher values
at the smaller scales. Day 245, however, shows a large in-

Landsat

MODIS

crease at all scales, in particular the smallest scales up t¢—

the 3.2 km range (except 400m). The relative entropy from
MODIS (panel e), shows a different behavior, where days
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(top) Landsat (middle) MODIS and (bottom) GOES for each day.

229 and 245 show generally the same values and day 18ig 7. Relative entropy between each scale of controlling variables
shows a similar relationship, but reduced values. The GOESJeft) Fc and (right)ET/PET to the modelecET flux from each
data (panel f) shows the same behavior as the MODIS sensogensor for each day for (top) Landsat and (bottom) MODIS.

Figure 7 shows the relative entropy betwedfil and
the fractional vegetation and near surface water conditions.

Again, recall that since the GOES sensor does not have the smallest scales through time. The relative entropy from
near-infrared band, these values are only computed for th&1ODIS (panel b) shows a pronounced increase with time up
Landsat and MODIS sensors. The fractional vegetation (panto the 6.4 km scale.

els a and b) show the same behavior as the radiometric tem- The relative entropy betwedtil andET/PET from Land-

perature did for the respective sensor. Landsat exhibits @at (Fig.7, panel ¢) shows generally the same behavior re-

large increase in the RE on day 245, with increasing RE aigardless of the day. As the spatial scale decreasesk khe
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increases indicating more additional information is necessarpf the land surface, and the different sensors characterize the
to capture the truT behavior. Larger RE values are seen at interactions with fundamental variables (e.g. fractional vege-
the smallest scale on day 245. MODIS RE values (panel d}ation and soil moisture) differently. This has large potential
show the same behavior on days 181 and 245, with day 22%amifications for the assessment of land surface interactions
exhibiting much larger values at the smallest scales. Sincacross spatial scales. It is essential to note that these changes
this date has the highest valuestSf/PET , we expect that in the observed interactions are not limited to the smallest
this is due to the combination of the resolution of MODIS scales (e.g. below the resolution of MODIS), these are at
and the convective nature of precipitation impacting the spascales (e.g. 2—6 km) that MODIS should be able to detect
tial scales of soil moisture. This is confirmed by the fact that (Fig. 7b and d).
the site received 18 mm of rainfall on day 228. Of course, it remains to be seen how general these results
are. We have examined three dates over one relatively small
geographic area. How land cover, vegetation phenology, etc.
6 Discussion impact these results remains to be seen. However, there is
clear evidence that changes in the spatial structure of soll
The information content of a modeled field such as evapomoisture as determined from the wavelet spectra has a clear
transpiration is dependent upon both interactions between thgnpact on the spatial structure of the evapotranspiration (e.g.
processes determining the evaporative flux such as vegetationoy 229, Fig.7d). In addition, the seasonal variation in the
and soil moisture dynamiCS and the resolution of the initial Vegetation productivity as seen in the wavelet spectra also
data. CharaCteriZing the nature of the relationShip with thEhaS a clear |mpr|nt on the e\/apotranspiration (Ft@_
initial data resolution is a primary objective of this paper. Arelated issue that is beyond the scope of the present work

We have shown that the change in information contentis the role of the higher temporal coverage provided by the
with resolution can be remarkably small (low pass filtered MODIS and GOES sensors. There is the generally acknowl-
entropies shown in Figh), and it may not be necessary to edged trade off between spatial resolution and temporal cov-
resort to the highest possible resolution of data to adequatelgrage in remote sensing, but how this trade off actually im-
characterize the spatial dynamics associated with the evapacts the information transfer should be investigated more
orative flux in a statistical sense. Obviously, however, thedeeply.
higher resolution data can provide information to the origi-  This raises an additional question for future research: how
nal data series (band pass filtered entropies in3jig. does the scale of observation impact our ability to model

It is not particularly surprising that GOES is incapable biosphere-atmosphere interactions at different spatial and
of determining the finer spatial structure that Landsat andkemporal scales? First, however, we must be able to have
MODIS is capable of. However, it was somewhat surpris-some understanding of how these dynamics change across
ing that Landsat fields decomposed to very coarse resolutionscale and what the potential ramifications may be. Only then
(e.g. compare DOY 245 in Fig panels d and f at the larger can we possibly begin to incorporate such dynamics into the
spatial scales) could still possess higher entropy values thaphysically based models.
finer resolution GOES data. We are inherently assuming that the values derived from

More significantly, the relationship between modeled flux the higher resolution source (i.e. Landsat) are correct. There
and the input variables depends on the sensor. This is mo$t no real evidence to support this assumption, and perhaps
clearly seen when examining the relative entropies betweetthis is simply another aspect of the scale problem that the
the controlling variables ofag, Rn Fr, andET/PET be-  community is largely ignoring. Or perhaps, we are simply
tween Landsat and MODIS. Even at scales that both sensorsusceptible to the same inherent assumption that higher reso-
can resolve, we have shown that different sensors exhibitution data is fundamentally better. Maybe a better statement
different sensitivities to quantities such as the near surfacef this assumption is simply that different data sources pro-
moisture conditiorET/PET or changes in the spatial struc- vide fundamentally different information and we must use
ture of the vegetation as captured in the relationshipskith  them all equally in order to fully characterize the cross-scale
(Fig. 7). nature of biosphere-atmosphere interactions.

This could indicate that MODIS is incapable of capturing  In order to address these types of concerns, models such as
the small scale spatial structure as exhibited in the waveleALEXI which are inherently designed to make use of differ-
variance in Fig3. The length scales of variability determined ent resolution data simultaneously are necessary for examin-
from MODIS are consistently larger than those determineding these dynamics. These provide a necessary tool for quan-
by Landsat even for scales that are detectable by the MODISifying the model sensitivity to changes in the initial spatial
sensor. Note that this does not imply that MODIS and GOESand/or temporal resolution of the input data.
are not capable of providing accurate estimation of the larger
scale fluxesicCabe and Wood20086.

Taken together these results suggest that the MODIS sen-
sor is unable to fully characterize the fine spatial structure

Biogeosciences, 8, 226228Q 2011 www.biogeosciences.net/8/2269/2011/



N. A. Brunsell and M. C. Anderson: Multi-scale spatial structure of evapotranspiration 2279

7 Conclusions Anderson, M. C., Norman, J., Mecikalski, J., Otkin, J., and Kus-
tas, W.: A climatological study of evapotranspiration and mois-

We have applied a wavelet based multiresolution analysis ture stress across the continental United States based on thermal

combined with information theory metrics to assess the ques- remote sensing: 1. Model formulation, J. Geophys. Res., 112,

tion: what s the relative importance of different spatial scales D10117, 1-17, 2007.

of the remotely sensed observations and the spatial structur@even. K. and Freer, J.: Equifinality, data assimilation, and uncer-

of modeled fluxes? When considering the three dates used tainty estimation |n.mechanlstlc modelling of complex environ-

in this analysis, we can also begin to assess the impacts of mental systems using the GLUE methodology, J. Hydrol., 249,

| variati in oh | i ist tc. We h 11-29, 2001.
seasonal varialions in phenoiogy, Soll moisture eic. Ye aVPBrunseII, N. A.: A multiscale information theory approach to as-

applied the ALEXI model to three days of data for which  sesq spatial-temporal variability of daily precipitation, Journal
we have Landsat, MODIS and GOES data estimates of the of Hydrology, 385, 165-172J0i:10.1016/}.jhydrol.2010.02.016

evaporative flux. 2010.

There are several important results from this research, inBrunsell, N. A. and Gillies, R.: Scale issues in land-atmosphere in-
cluding (1) spatial scaling characteristics vary with day, but teractions: implications for remote sensing of the surface energy
are usually (though not always) consistent for a given sen- balance, Agr. For. Meteorol., 117, 203-221, 2003a.
sor, but (2) different sensors give different scalings. (3) Dif- Brunsell, N. A. and _Gillies, R.: Length sce_lle analysis of surface
ferent sensors show different scaling relationships with the €nergy fluxes derived from remote sensing, J. Hydrometeorol.,
driving variables. This is related to cross-scale interactions 4,1212-1219, 2003b.

. . . AE Brunsell, N. A. and Young, C. B.: Land surface response to precip-
between different controlling variables and the m las itation events using MODIS and NEXRAD data, Int. J. Remote

well as the inherent resolution of the initial data. We also  go,c 29 1965-19880i-10.1080/0143116070137374008
note that while the dominant length scale of the vegetationg;nsell, N., Ham, J., and Owensby, C.. Assessing the multi-

index remains relatively constant across the dates, the con- resolution information content of remotely sensed variables and
tribution of the vegetation index to the derived latent heat elevation for evapotranspiration in a tall-grass prairie environ-
flux changes with time. The length scales of variability —ment, Remote Sens. Environ., 112, 2977-2987, 2008.
are consistently larger when determined from MODIS dataCarlson, T.: An overview of the “triangle method” for estimating
compared to Landsat, even when the Landsat derived length surface evapotranspiration and soil moisture from satellite im-
scales are at scales detectable by MODIS. agery, Sensors, 7, 16121629, 2007. _

These results highlight the importance of explicitly ac- Chehbouni, A, Watts, C., Kerr, Y., Dedieu, G., Rodnguez, J., San-
counting for spatial scaling when considering non-linear in- 1299 F-. Cayrol, P., Boulet, G., and Goodrich, D.: Methods to
teractions that govern biosphere—atmosphere exchange pro- aggregate turbulent fluxes over heterogeneous surfaces: appli-

. ; cation to SALSA data set in Mexico, Agr. For. Meteorol., 105,
cesses. The proposed methodology is one such technique for 132 144 2000

determining such scaling dynamics. Additional research isyain ¢ Crow, W., Mecikalski, J., Anderson, M. and Holmes,
necessary in order to understand the biophysical processes T.: An intercomparison of available soil moisture estimates
which give rise to the observed scaling characteristics. from thermal-infrared and passive microwave remote sensing
and land-surface modeling, J. Geophys. Res., 116, D15107, 18
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