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Abstract: 
Extant coelacanths (Latimeria chalumnae) were first discovered in the western Indian Ocean in 1938; in 

1998, a second species of coelacanth, Latimeria menadoensis, was discovered off the north coast of 

Sulawesi, Indonesia, expanding the known distribution of the genus across the Indian Ocean Basin. This 

study uses ecological niche modeling techniques to estimate dimensions of realized niches of 

coelacanths and generate hypotheses for additional sites where they might be found. Coelacanth 

occurrence information was integrated with environmental and oceanographic data using the Genetic 

Algorithm for Rule-set Production (GARP) and a maximum entropy algorithm (Maxent). Resulting 

models were visualized as maps of relative suitability of sites for coelacanths throughout the Indian 

Ocean, as well as scatterplots of ecological variables. Our findings suggest that the range of coelacanths 

could extend beyond their presently known distribution and suggests alternative mechanisms for 

currently observed distributions. Further investigation into these hypotheses could aid in forming a 

more complete picture of the distributions and populations of members of genus Latimeria, which in 

turn could aid in developing conservation strategies, particularly in the case of L. menadoensis. 
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Predicting suitable environments and potential occurrences for coelacanths (Latimeria spp.) 

 

Abbreviations: 

 ENM: Ecological Niche Modeling 

 GARP: Genetic Algorithm for Rule-Set Prediction 

 GBIF: Global Biodiversity Information Facility 

 OBIS: Ocean Biogeographic Information System 

 MESS: Multivariate Environmental Similarity Surface 

Introduction: 

 The order Coelacanthiformes, notable as an apparent link between lungfishes and tetrapods, was originally 

known only from fossils that were more than 80 million years old (Holder, et al., 1999). In 1938, the first known 

specimen of an extant species of coelacanth, Latimeria chalumnae, was discovered off the east coast of Africa 

(Smith, 1939). Latimeria chalumnae is now known to inhabit a range encompassing the east coast of Africa from 

Kenya to South Africa, and extending east to Madagascar and the Comoros Islands. In 1997, a second species of 

coelacanth, L. menadoensis, was discovered off the northeast coast of Sulawesi, Indonesia (Erdmann, et al., 1998).  

Latimeria menadoensis cannot be differentiated conclusively from its African sister species on the basis of 

morphology, but the species diverge substantially enough in their genetics that they are recognized as unique 

lineages (Holder, et al., 1999). The IUCN currently lists L. chalumnae as critically endangered and L. menadoensis 

as vulnerable (IUCN, 2011). Further investigations into the evolutionary relationships, biogeography, life history 

and appropriate conservation status of this genus are hampered by their rarity in their natural environment and their 

inaccessibility: coelacanths typically live at depths of 100-300 m in underwater caves on steep, rocky cliffs, 

emerging only at night to feed (Fricke and Hissmann, 2000). 

 This study seeks to contribute to the understanding of distributions of Latimeria by generating hypotheses 

for additional sites where the environment might be suitable for coelacanths using ecological niche modeling 

(ENM).  The distribution of a species is limited by the interactions between biotic and abiotic factors, as well as 

dispersal capability—the realized niche of a species (Soberón, 2007). ENMs ideally arrive at an estimation of the 

realized niche of a species after being trained in a geographic area limited to habitats that are accessible to the 

species of interest (Barve, et al., 2011). Biotic factors, which are challenging to model explicitly, may nonetheless 

be implicitly represented in the model because they strongly correlate with abiotic factors, or disappear because such 

fine-scale interactions disappear in large-scale analysis (Soberón and Nakamura, 2009). Projections of such models 

into other geographic areas are primarily an expression of abiotic niche—the combinations of environmental factors 

that, based on the model’s estimations, are most similar to areas where the species is known to occur.   

 ENM is a technique that has been implemented successfully for prediction and subsequent field verification 

of additional localities of known endangered species (Siqueira, et al., 2009) and to focus searches for new species 

(Raxworthy, et al., 2004). Such studies often are subject to very low sample sizes, which pose methodological 

challenges but are still useful, especially if researchers adopt a conservative interpretation of model results as areas 

similar to those from which a species is known (Pearson, et al., 2007). While ENM applications to marine 

ecosystem studies are not new (e.g. Wiley, et al., 2003), this methodology has yet to be applied explicitly to the 

problem of locating suitable habitat for reclusive marine species. In the present case, to the extent that coelacanth 

niche characteristics are conservative in their evolution (c.f., Peterson, 2011), such models may help in focusing 

future searches for new populations — or even additional species — of coelacanths. 
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Materials and Methods: 

 Occurrence locality records for Latimeria chalumnae were downloaded from the Ocean Biogeographic 

Information System (OBIS) database via the Global Biodiversity Information Facility (GBIF) biodiversity 

information portal (http://www.gbif.org); data were quality-controlled by removing duplicate records, records 

sharing cells at the resolution of our data layers, and data points which did not fall within the area covered by these 

layers (e.g. terrestrial records). This information was supplemented with data from submersible sightings (South 

African Institute for Aquatic Biodiversity/African Coelacanth Ecosystem Programme/JAGO-Team), which were 

also reduced to unique localities. Two L. menadoensis locality records were taken from Erdmann (1999) and 

Erdmann et al. (1999). All localities used are listed in Table 1.  

 To limit over-fitting ENMs (Peterson, et al., 2007) the number of environmental variables was restricted to 

13. Data on world ocean bathymetry were drawn from Amante and Eakins (2009); slope and aspect were calculated 

from bathymetry in ArcGIS 9.3 (ESRI, Redlands, CA) to incorporate documented preferences of these fish for steep 

slopes (Fricke and Hissmann, 2000). Worldwide sediment thickness estimates, used as a proxy for substrate type, 

were supplied by the National Geophysical Data Center (Divins, 2009). Owing to scarcity of detailed knowledge of 

definitive ecological preferences of the species, we used datasets with previously demonstrated predictive power for 

a number of marine fish species (Wiley, et al., 2003) summarizing benthic temperature, salinity, dissolved oxygen, 

percent oxygen saturation, apparent oxygen utilization, phosphate, silicate, nitrate, and chlorophyll were derived 

from NOAA’s World Oceanic Atlas 1998 (NOAA, 1999). Preliminary ENM runs using parameters as described 

below were run, jackknifing environmental variables. to investigate the amount of noise introduced by each variable, 

Suitability scores of each jackknifed model were qualitatively compared to the known range of L. chalumnae to 

assess the degree to which individual variables influenced the model’s ability to predict the range of the species. 

 Latimeria chalumnae occurrence data were integrated with environmental data via two common ENM 

algorithms: a maximum entropy algorithm (Maxent; Phillips, et al., 2006) and a genetic algorithm (GARP; 

Stockwell and Peters, 1999). Models were trained using a region encompassing the western Indian Ocean from the 

approximate tip of the Indostanic Peninsula in the northeast to the Cape of Good Hope in the southwest. The GARP 

algorithm develops a model by choosing a rule iteratively to describe the occurrence-environment relationship, 

testing the rule’s accuracy based on an independent random subset of occurrence points, and consequently evolving, 

accepting, or rejecting that rule. Desktop GARP (ver. 1.1.6; www.nhm.ku.edu/desktopgarp, Stockwell and Peters, 

1999) was used to develop these models, deriving 1000 replicate models with 1250 pseudoabsence points, a 0.01 

convergence limit and a maximum of 1000 iterations. Best subsets of model replicates were selected using 50% of 

the occurrence points for intrinsic model testing, with an omission error tolerance of 0%, producing 20 models for 

that omission tolerance and a commission error tolerance of 50%, resulting in a sample of 10 models (Anderson, et 

al., 2003). Maxent estimates the suitability of each grid cell by generating a probability distribution of maximum 

entropy from environmental variable layers on that map subject to the constraints of observed presences. Maxent 

(ver. 3.2.19; www.cs.princeton.edu/~schapire/maxent, Phillips, et al., 2006) models were developed using 10,000 

background points, a  maximum of 1000 iterations, a convergence threshold of 0.00001, and a random 50% of the 

data points set aside for intrinsic testing. Maxent generates an additional layer for “clamping” the model (i.e., 

extending the terminal values of suitability beyond the limits of environmental variables represented in the 

calibration region), incorporating combinations of environmental variables that do not exist in the training region in 

predictions that tends to lead to over-prediction; no clamping was tolerated in generating Maxent ecological 

suitability maps—cells with nonzero clamping scores were removed from the final projection. Maxent also 

calculates a multivariate environmental suitability surface (MESS) map indicating areas where environmental 

variables occur outside the range of values in the training region; ENM suitability projections in these regions are 

unreliable (Elith, et al., 2010). ENMs were not developed for L. menadoensis owing to paucity of locality 

information available for this species. 

 As a consequence of the relatively small number of available locality records for Latimeria chalumnae, 

typical independent model validation approaches involving partitioning the data into training and testing subsets 

were inappropriate; instead, we used a jackknife approach to validate ENM that is specifically designed for 
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situations of small sample size (Pearson, et al., 2007). In this method, independent GARP and Maxent models were 

generated iteratively, excluding one locality in each turn. The lowest suitability score of a presence point, or lowest 

presence threshold (LPT), for each model was then used to determine areas of predicted presence. The proportion of 

the training area predicted as present and the failure or success of the model to predict jackknifed points were then 

used to calculate the probability of the observed degree of coincidence between independent test data and predicted 

areas of suitability for L. chalumnae, as described by Pearson and colleagues (2007). 

 To provide a basis for comparison between our ENMs and previously collected ecological information, a 

coarse-resolution exploration of model rule parameters in environmental space for Latimeria chalumnae was 

visualized by taking a random sample of 5000 points from the training region. At each point, the abiotic variable 

values and the Maxent and GARP suitability scores were extracted, and scatterplot visualizations of the niche of 

these fish developed. Two scatterplots were generated for each model using environmental variables measured by 

Fricke and Hissmann (2000) describing the ecology of L. chalumnae in Jesser Canyon off the coast of South Africa: 

ocean depth versus salinity and temperature versus dissolved oxygen concentration. Each point represented a 

combination of variables that exists in the environment and was classified as unsuitable, suitable, or intermediate. 

For GARP models, points in which none of the 10 best models predicted potential for coelacanth occurrence were 

categorized as unsuitable, points in which all of the best models predicted potential for coelacanth occurrence were 

categorized as suitable, and all other points were categorized as representing intermediate suitability. For the Maxent 

model, suitability thresholds were chosen to yield the same percentage of each classification as the GARP model—

for example, if 95% of the points were unsuitable according to GARP suitability scores, the points with the lowest 

95% of Maxent suitability scores were also characterized as unsuitable.  

 

Results: 

 Qualitative comparison of preliminary ENM runs in which environmental variables were jackknifed with 

the known range of L. chalumnae indicates that none of the variables incorporated introduced a disproportionate 

amount of noise into model results. Predictions of the potential distribution of Latimeria chalumnae in the western 

Indian Ocean as measured by the Pearson jackknife-based test procedure were significantly better than random 

expectations (P > 0.01) for both GARP and Maxent (Table 1). All 10 best subset GARP models trained using L. 

chalumnae occurrence points predicted habitat suitability for all L. chalumnae occurrences, and L. menadoensis 

occurrences were predicted by 3 of the 10 models. Maxent-estimated suitability at occurrence points for L. 

chalumnae ranged from 0.24 to 0.78, while suitability for L. menadoensis ranged from 0.63 to 0.64.  

 When all Latimeria chalumnae occurrence points were pooled to generate models identifying areas of 

suitable habitat across the Indian Ocean and western Pacific Ocean, these models identified potentially suitable sites 

scattered over the known range of the species were it has not as-yet been recorded (Figures 1a and 1b). These areas 

include most of the east coast of sub-Saharan Africa, as well as along the Mascarene Plateau, and the coasts of India, 

Indonesia, the Philippines, and the northern Australia. Worldwide projections of suitable habitat (Figures 2a and 2b) 

also indicate areas of suitability far from known coelacanth localities, including off the coasts of Argentina and the 

Lesser Antilles. Environmental differences between the training region and the worldwide projections are expressed 

in the form of a MESS map (Figure 3). 

 Ecological suitability maps were similar for both the GARP and Maxent models; however, some 

differences are notable in the suitability ranges of bathymetry, temperature, dissolved oxygen concentration, and 

salinity between the two models (Figures 4a-d). Perhaps most notable is the disagreement between Maxent and 

GARP as to whether low-temperature high-oxygen environments were unsuitable or merely unlikely habitat for 

Latimeria chalumnae.  Combinations of field measurements of these variables reported in Fricke and Hissmann’s 

(2000) study of coelacanth ecology were not well-represented in the sample (6 points from bathymetry vs. salinity 

plots, none from temperature vs. dissolved oxygen). 
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Discussion: 

 Species in general occur at sites that satisfy three sets of considerations (Soberón and Peterson, 2005; 

Pulliam, 2000). First, abiotic conditions must be suitable—these physical characteristics of environments are the 

focus of the analyses in this paper. Second, the biotic realm must be appropriate (i.e. the correct suite of positive 

interactor species present, and negative interactor species absent)—in this paper, because detailed information on 

biotic interactions is lacking, we implicitly assume that biotic dimensions will have abiotic correlates. Finally, a site 

must be accessible for dispersal to and colonization by the species:  sites that are readily accessible will likely be 

inhabited by populations of the same species, while less accessible sites will either be uninhabited or perhaps 

inhabited by related species. 

 Owing to the small sample size of occurrence points used to generate ecological niche models, it would be 

unreasonable to expect these models to describe the complete realized niche of L. chalumnae; however, as they do 

describe dimensions of ecological space in which the species is known to occur, they are still of some utility. The 

models generated herein predict areas of suitable habitat well beyond the known localities of the two coelacanth 

species. Among these areas are several previously postulated as harboring coelacanths (although sightings remain 

unconfirmed), including localities locations off the northern coast of Madagascar and the islands of Mwali and 

Maore in the Comoros (Stobbs, 2002). Taking into account projection uncertainty as expressed by the MESS map in 

Figure 3, additional areas in the western Indian Ocean that show promise as potential coelacanth localities include 

parts of the Seychelles and the Mascarene archipelago, as well as the Malay Archipelago. Further investigation of 

these localities, informed by regional geology (i.e. the presence of caves) may provide insight into biotic and 

accessibility factors that influence the range of the coelacanths. Additional information gleaned by these 

investigations could contribute to a more complete picture of how best to conserve the rare Latimeria species. 

 There has been a great deal of speculation in the literature as to the nature of the disjunct distribution of the 

genus Latimeria in the Indian Ocean.  Springer (1999) hypothesized that the genus had been continuously 

distributed off the shores of Africa and Eurasia, but that the collision of India with Eurasia had led to a vicariance 

event when the major rivers of India began depositing large amounts of silt in the Indian Ocean, rendering those 

areas of habitat unsuitable.  Our findings lend support to Springer’s hypothesis—suitable coelacanth habitat extends 

almost continuously along the coasts of the northern rim of the Indian Ocean, broken up by large areas of unsuitable 

habitat at the mouths of the Ganges and Indus Rivers. 

 When one compares the performance of GARP and Maxent models in predicting both the training species, 

L. chalumnae, and the second species, L. menadoensis, it becomes apparent that these algorithms do not behave 

entirely similarly. All ten GARP models predicted training points to be within suitable habitat, whereas only three 

predicted suitable habitat for L. menadoensis; in contrast, Maxent gave a wide range of suitability scores at training 

points (from 0.24 to 0.95), with the L. menadoensis points falling squarely into the suitability range (at 0.63 and 

0.64). Maxent was able to predict one more jackknife point successfully than GARP, which echoes a pattern from 

previous studies (Pearson, et al., 2007). Unfortunately, the occurrence sample size for L. menadoensis is too small to 

test niche conservatism conclusively in the group, or the differing abilities of the algorithms to predict sister species.  

 

Conclusions: 

 Coelacanths are rare and reclusive fish about which little is known, so no definitive idea of the full extent 

of the range exists for either L. chalumnae or L. menadoensis. Ecological niche model predictions of suitable areas 

based on occurrence data for L. chalumnae through the oceans of the world, combined with rigorous efforts to 

ground-truth the models, may prove very useful in searches for new populations of coelacanths. 
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Figure Legends: 

Figure 1. Maps of areas identified as suitable for the species in model projections for Latimeria chalumnae 

projected across the Indian Ocean Basin, with a detail map of Sulawesi in Indonesia. Latimeria chalumnae localities 

are indicated by a filled dot (  ) and L. menadoensis localities are indicated by a hollow dot (  ). Suitability scores 

are represented by shades of blue, with darker shades indicating greater suitability. A rectangle of missing data 

exists in the East China Sea extending northeast from Taiwan up through the Ryuku Islands. (a) GARP (b) Maxent.  

 

Figure 2. Maps of areas identified as suitable for the species in model projections for Latimeria chalumnae 

projected worldwide. (a) GARP (b) Maxent. 

 

Figure 3. MESS map for Latimeria chalumnae. Cells shown in red indicate areas for at least one environmental 

variable value occurs outside the range of values in the training region.  

 

Figure 4. Exploration of model rule parameters in environmental space for Latimeria chalumnae. X’s represent 

overall availability of environmental combinations at intermediate levels of predicted suitability; black squares 

represent variable combinations found unsuitable, and white circles represent variable combinations found highly 

suitable. Gray lines represent the range of observed ecological variables experienced by Latimeria chalumnae in 

Jesser Canyon off the coast of South Africa (Fricke and Hissmann, 2000). (a,b) Bathymetry (m) versus salinity (ppt). 

(a) GARP. (b) Maxent. (c,d) Temperature vs. dissolved oxygen concentration. (c) GARP. (d) Maxent. 

 

Table Legends: 

Table 1. Occurrence Point Statistics. Occurrence points localities are followed by the source of the locality: 

submersible sighting—Sub., GBIF records—GBIF, or scientific literature—Lit. Also provided is a summary of 

model success in predicting the excluded point in question, and the percent of training area predicted as suitable. 

The last statistic is the suitability score of each point in GARP and Maxent models trained using all Latimeria 

chalumnae occurrence points. 
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Figure 3. 
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