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Abstract  

To understand the underlying molecular mechanisms of cancer and therefore to 

improve pathogenesis, prevention, diagnosis and treatment of cancer, it is necessary 

to explore the activities of cancer-related genes and the interactions among these 

genes. In this dissertation, I use machine learning and computational methods to 

identify differential gene relations and detect gene-gene interactions. To identify gene 

pairs that have different relationships in normal versus cancer tissues, I develop an 

integrative method based on the bootstrapping K-S test to evaluate a large number of 

microarray datasets. The experimental results demonstrate that my method can find 

meaningful alterations in gene relations. For gene-gene interaction detection, I 

propose to use two Bayesian Network based methods: DASSO-MB (Detection of 

ASSOciations using Markov Blanket) and EpiBN (Epistatic interaction detection 

using Bayesian Network model) to address the two critical challenges: searching and 

scoring. DASSO-MB is based on the concept of Markov Blanket in Bayesian 

Networks. In EpiBN, I develop a new scoring function, which can reflect 

higher-order gene-gene interactions and detect the true number of disease markers, 

and apply a fast Branch-and-Bound (B&B) algorithm to learn the structure of 

Bayesian Network. Both DASSO-MB and EpiBN outperform some other 

commonly-used methods and are scalable to genome-wide data.  

Keywords: Cancer, Bioinformatics, System Biology, Machine Learning, Differential 

Gene Relations, Gene-Gene Interactions 
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Chapter 1 Introduction  

1.1 Significance of Detecting Cancer-related Genes and 
Gene-Gene Interactions  

 

Cancer is one type of fatal disease which causes about 13% of all deaths. It is 

generally estimated that roughly 7.2 to 7.5 million people worldwide die from cancer 

each year. In the development of cancer, abnormal cells divide without control and 

invade nearby parts of the body. Comparing to abnormal cells, healthy cells can 

control their own growth and death [1].  

Almost all types of cancers are caused by dynamic changes in the genome. These 

genetic aberrations will typically affect two types of genes: oncogenes and tumor 

suppressor genes [2]. In the development of cancer, the dominant gain of function for 

oncogenes and the recessive loss of function for tumor suppressor genes deeply 

change the molecular mechanism regulating growth and death of cells, thus driving 

the progressive transformation of normal cells into tumor cells.    

 In the past several decades, most cancer researchers have been trying to detect 

cancer-related genes including both oncogenes and tumor suppressor genes. These 

cancer-related genes can be used as diagnostic and prognostic signatures or as 

potential targets for future therapy. However, cancer is a system biology disease that 

involves a number of fundamental cell processes such as death, proliferation, 

differentiation, and migration. Genes play an important role in some key signaling 

pathways that control these cell processes [1]. Therefore exploring the activities of 
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cancer-related genes and the interactions among these genes in the complex cell 

processes can contribute to the understanding of the underlying molecular 

mechanisms of cancer.  

Microarray technology is a powerful tool to identify cancer-related genes and 

explore their activities in a biological system. Microarrays can monitor the abundance 

of messenger RNA (mRNA) of tens of thousands of genes simultaneously. In cancer 

research, microarray experiments are used to identify a list of genes which show 

differential activities between normal cells and tumor cells. However, a simple list of 

individual differentially expressed genes can only tell us which genes are altered by 

biological differences between different cell types and/or states. Besides detecting 

differential genes, it is also crucial to explore the reason of the significant alteration 

of gene expression level and its effect on other genes’ activities. Thus an alternative 

method to differential genes identification is to detect differential gene relations in 

different cell states.  

Compared to Mendelian disorders that are rare in population, some common 

complex diseases like various types of cancers are conjectured to be caused by two 

types of interactions related with multiple genetic factors: gene-gene interactions and 

gene-environment interactions [3]. Interactions between genes or single nucleotide 

polymorphisms (SNPs) in chromosomal regions are called epistasis [4]. Detecting 

epistasis associated with complex and common diseases became an important issue in 

human genetics [5]. While the recent development of genome-wide association 

studies (GWAS) [6] and the International Hapmap project [7-8] has made it possible 
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to identify common genetic variation or heritable risk factors in diseases from 

population-based data, the size of the genotyped data is typically very large and the 

number of combinations of all the genetic factors to be checked for the interactions is 

enormous, which cannot be exhaustively detected by experimental methods. 

Therefore, it is essential to detect causal interacting genes or SNPs by heuristic 

computational methods.  

In this dissertation, I use machine learning and computational methods to address 

two problems in cancer research: (1) identifying differential gene relations and (2) 

detecting gene-gene interactions (epistasis). The detected differential gene relations 

and gene-gene interactions can help to build a new pavement towards the 

improvement of prevention, diagnosis and treatment of cancer.  

1.2 My Contribution  

One important area in microarray-based cancer research is to identify genes that are 

differentially expressed between cancerous and normal cells. However, a simple list 

of differential genes can not reflect activities and roles of cancer-related genes in a 

biological system. It is well known that genes interact with each other to form various 

biological pathways in order to carry out a multitude of biological processes. Hence, 

detecting differential gene relations in different cell states is a complementary 

approach to identifying cancer-related genes.  

Several statistical methods have been proposed for the analysis of differential 

gene relations. Most of these methods often perform the analyses on a single 
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microarray dataset and typically generate unreliable results; the results from different 

microarray datasets and various statistical methods could hardly overlap using these 

methods. Therefore, the confidence level for discoveries based on these methods is 

low. Furthermore, these methods fail to grasp the common molecular changes in cells 

transitioning from a normal state to the cancerous state.  

In this dissertation, a novel integrative method to detect the differentially 

changed gene relations in cancer versus normal tissues is presented. Comparing to 

those previous methods for detecting differential gene relations, I have made several 

contributions. First, I use bootstrapping K-S test to integrate multiple microarray 

datasets across different types of cancers. Integrating multiple microarray datasets 

can increase sample size, eliminate study-specific biases, and lead to more valid and 

more reliable results. Moreover, the integrative method can detect the most common 

altered gene relations across different types of cancer. Second, the searching process 

for differential gene relations is guided by the information of some key signaling 

pathways related with cancer. This helps to better understand the roles of 

cancer-related genes and their key interactions in a complex biological system. Third, 

a non-parametric statistical test method, K-S test, is used to compare two 

distributions. K-S test requires fewer assumptions for the data and may be preferred, 

especially, when the number of samples is small.  

To detect gene-gene interactions and explore how these gene-gene interactions 

contribute to increase the disease risk, a number of statistical methods and machine 

learning methods have been proposed. Despite the success of statistical methods to 
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some degrees, they can only be applied to small-scale analysis due to their 

computational complexity. On the other hand, the common limitation of machine 

learning-based methods is that they typically identify a SNP set that produces the 

highest classification accuracy, but not necessarily has the strongest association with 

the diseases. Moreover, machine learning-based approaches tend to introduce many 

false positives, since the including of more SNPs increases classification accuracies.  

To address the two critical challenges (searching and scoring) in gene-gene 

interaction detection, two methods are presented in this dissertation:  DASSO-MB 

(Detection of ASSOciations using Markov Blanket) and EpiBN (Epistatic interaction 

detection using Bayesian Network model). Both methods are based on Bayesian 

Networks. Bayesian Networks provide a succinct representation of the joint 

probability distribution and conditional independence among a set of variables. 

Therefore we can use Bayesian Networks to represent the relationship between 

genetic variants and a phenotype (disease status).  

DASSO-MB is a new Markov Blanket based method to detect gene-gene 

interactions in case-control studies. The Markov Blanket is a minimal set of variables, 

which can completely shield the target variable from all other variables based on the 

Markov condition property. Thus we can guarantee that the SNP set detected by 

DASSO-MB has a strong association with diseases and contains fewest false 

positives. Furthermore, DASSO-MB performs a heuristic search by calculating the 

association between variables to avoid the time-consuming training process as in 

some machine learning methods such as SVMs and Random Forests.  
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EpiBN is a Bayesian Network structure learning method, which employs a 

Branch-and-Bound technique and a new scoring function. In general, a structure 

learning method for Bayesian Networks first defines a scoring function reflecting the 

fitness between each possible structure and the observed data, and then searches for a 

structure with the maximum score. Comparing to Markov Blanket based methods, the 

merits of applying Bayesian Network structure learning method to gene-gene 

interaction detection include: (1) the new scoring function for Bayesian Network 

structure learning can reflect higher-order interactions and detect the true number of 

disease SNPs, and are not sample-consuming; and (2) heuristic Bayesian Network 

structure learning method can solve the classical XOR problem, which may hinder 

the applications of Markov Blanket based approaches.   

The rest of my dissertation is organized as follows. Chapter 2 introduces the 

background about identifying differential gene relations and detecting gene-gene 

interactions (epistasis). It also introduces some methods on detecting differential 

genes and differential gene networks. Three machine learning and computational 

methods are respectively discussed in Chapter 3, 4, and 5. 

(1) An integrative pathway analysis from multiple microarray datasets based on 

bootstrapping K-S test to identify differential gene relations. 

(2) A Markov Blanket based approach for gene-gene interaction detection. 

(3) A novel Bayesian Network structure learning method to detect gene-gene 

interactions. 
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Chapter 6 ends up with a summary of research in this dissertation and a discussion of 

future work. 
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Chapter 2 Background and Related Work 

2.1 Differential Gene Detection  

Cancer is one type of fatal disease caused by genetic aberrations, and identifying 

cancer-related genes is very important for prevention, diagnosis, and treatment of 

cancer. Most cancer-related genes show differential activities between normal cells 

and cancer cells, and thus we call these genes as differential genes. Inside the body of 

a healthy person, normal cells grow and die under the mechanisms that regulate cell 

growth and differentiation. However, if these molecular mechanisms regulating 

growth and death of cells are out of control, normal cells will develop into cancer 

cells. Typically, the transformation of normal cells into tumor cells is associated with 

two types of genes: oncogenes and tumor suppressor genes. Oncogenes and tumor 

suppressor genes act in opposite roles during the development of cancer. Oncogenes 

make normal cells gain self-sufficiency in growth signals and evade antigrowth 

signals and programmed cell death (apoptosis). On the contrary, tumor suppressor 

genes suppress the function of oncogenes. In cancer research, molecular biologists 

use microarray technology to measure gene expression, which reflects the activities 

of genes. Therefore we need a reliable method to detect differential genes based on 

microarray datasets. 
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2.1.1 Statistical Methods for Detecting Differential Genes  

Fold Change Rule 

The simplest method to identify differential genes is the fold change (FC) rule. 

The general fold change is as follows: 

YXFC /=                                     (2-1) 

where X is the mean of expression value of one certain gene from normal samples, 

and Y is the mean of expression value of the same gene from tumor samples. Then 

the fold change rule will identify the gene as differential gene if mFC >  or 

mFC /1<  based on the m-fold change rule. In this case, m is a fold 

increase/decrease cutoff to identify differentially expressed genes [9-10]. As a 

non-statistical and parametric method, how to select an optimal fold 

increase/decrease cutoff m is a big problem for fold change. We don not know which 

m value is better, 10, 5 or only 2. If we select a low m value, perhaps we will 

introduce a lot of false positives. On the contrary, if we select a high m value, we will 

take the risk of missing some true differential genes.  

T-statistic 

T-statistic is one method to detect differential genes from microarray datasets 

containing both normal samples and tumor samples. We define T-statistic as follows: 

mnS
YXT

/1/1 +
−

=                            (2-2) 
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where X represents normal microarray dataset with n samples, and Y represents tumor 

microarray dataset with m samples. S is the pooled sample standard deviation. There 

are two disadvantages for traditional T-statistic to detect differential genes. First, it 

assumes both X and Y have a normal distribution. But even microarray expression 

data after normalization may not satisfy this assumption. Second, if the expression 

levels of some certain genes are very low, the pooled sample standard deviation S 

will be extremely small for lack of sufficient information. Thus, the T-statistic will be 

very high, which may produce a significant bias. A variety of methods have been 

proposed to overcome the above two disadvantages of traditional T-statistic. 

Significant Analysis of Microarrays (SAM)  

One method to avoid the small variance problem of the T-statistic is to add a 

constant to its denominator. For instance, Tusher et al. proposed Significance 

Analysis of Microarrays (SAM) to detect differential genes [11]. The SAM statistic is 

0/1/1 SmnS
YXT

++
−

=                          (2-3) 

where the value of 0S  is chosen to minimize the coefficient of variation. SAM also 

calculates the false discovery rate by the permutation of repeated measurements to 

estimate the percentage of differential genes identified by chance. Comparing to the 

standard T-statistic, SAM adds a small positive constant to the denominator of the 

T-statistic. By this modification, SAM will not select genes with low expression 

levels or small fold changes as significant differential genes. This eliminates the 
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small variances problem of the standard T-statistic and makes SAM more stable than 

standard T-statistic.  

Bayes T-test 

SAM is one variant of the standard T-statistic, and another variant of the 

standard T-statistic is Bayes T-test. Baldi and Long developed a Bayesian 

probabilistic framework, Bayes T-test, to solve the small variance problem in low 

expression level [12]. Bayes T-test estimates parameters such as population mean and 

variance by Bayesian method instead of sample mean and sample variance of the 

standard T-statistic. When deriving the variance of each gene, Bayes T-test combines 

the empirical variance with a local background variance associated with neighboring 

genes. By this way, Bayes T-test borrows some information from neighboring genes 

to solve the small variance problem caused by lack of samples. Baldi and Long 

showed that Bayes T-test outperforms the standard T-statistic on simulation data. 

Although Bayes T-test can analyze microarray dataset with small size for differential 

genes effectively, it still heavily depends on the parametric assumption.  

B-statistic  

Some methods based on B-statistic can also solve the small variance problem of 

the standard T-statistic for detecting differential genes. Lönnstedt and Speed 

proposed the B-statistic [13]. B-statistic is the logarithm of a ratio of probabilities, 

and the ratio of probabilities is equal to the probability that a gene is differentially 

expressed divided by the probability that the gene is not differentially expressed. 
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Lönnstedt and Speed estimated both probabilities from the entire microarray data by 

the empirical Bayes approach. The empirical Bayes approach shrinks the estimated 

gene-wise sample variances towards a pooled estimate (a common value) and 

combines information across genes. This can help B-statistic generate a more stable 

list of differential genes than the standard T-statistic when the number of samples is 

small. 

2.1.2 Integrative Methods 

Almost all applications of microarray technology in cancer research encounter an 

issue that the number of genes far exceeds the number of samples, which will lead to 

serious biases sometimes. Integrating multiple microarray datasets can solve this 

issue. There are two types of integration method: transformation methods and 

meta-analysis. Transformation methods transform gene expression data from 

different studies into a common scale and then combine these transformed data into 

one larger dataset. An alternative approach for integrating independent and 

heterogeneous microarray datasets into one large dataset is meta-analysis. 

Meta-analysis combines the summary statistics from each dataset. Commonly used 

summary statistics are significant levels (p-values), ranks of genes, and effect sizes. 

Both transformation methods and meta-analysis can increase sample size, eliminate 

study-specific biases, and lead to more reliable results. 
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Transformation Methods 

Transformation methods are one type of integration methods, which translate 

gene expression measurements from different studies into a common scale and then 

unify these transformed data into one larger dataset [14-16]. For instance, Jiang et al. 

proposed a transformation method to integrate two cancer microarray datasets based 

on joint analysis [14]. First, they performed chip normalization which means the 

expression of each gene in each microarray was divided by the median of the 

microarray. Second, they filtered out genes that show significantly different 

expression patterns between the two datasets based on T-test. Third, they proposed a 

distribution transformation (disTran) method to let the two datasets have a similar 

distribution. Finally, they normalized each gene in the two datasets. Although Jiang 

et al. only selected a minimum number of marker genes from one dataset and applied 

these marker genes to the survival prediction based on the other dataset by the data 

normalization and transformation method [14]; however, we know that combining 

two transformed datasets into one larger dataset can increase sample size. This will 

yield more reliable results than those from one single dataset because the estimated 

parameters from the enlarged dataset are more confident.  

Meta-analysis 

An alternative approach for integrating microarray datasets is meta-analysis, and 

one type of summary statistic to integrate is p-value. For example, to generate a 

cohort of consistent differential genes from four prostate cancer microarray datasets, 

Rhodes et al. proposed a meta-analysis method to combine p-values (extreme value 
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probabilities) for each gene from the four microarray datasets [17]. This 

meta-analysis method is based on Fisher’s Inverse 2χ  test, which combines 

p-values ip obtained from the analysis of the ith dataset by  

∑−=
i ipS )log(2                             (2-4) 

where S follows a 2χ distribution with 2I degrees of freedom under the joint null 

hypothesis [18]. Traditionally, we calculate the overall p-value of S based on the 

2χ distribution with 2I degrees of freedom. Rhodes et al. used a random permutation 

method to generate the overall p-value of S. They first generated 100,000 Ss 

randomly and then compared the S with the 100,000 random Ss. The overall p-value 

of S equaled the fraction of random Ss that were greater than or equal to S. Adding 

weights for each dataset in Eq. (2-4) is an advanced method. We can assign weights 

to each dataset based on data quality or on other factors considered important and 

now 

)log(2 ii i pwS ∑−=                          (2-5) 

P-value-based meta-analysis method can increase statistical power by detecting 

consistent differential genes that might be false negatives in the individual microarray 

dataset. It is expected that true differential genes will have high p-values in most 

datasets. Rhodes et al. implemented their model on four prostate cancer microarray 

datasets coming from different platforms; two datasets are based on spotted cDNA 

technology and the remainders are based on oligonucleotide-based technology. The 
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resulting differential genes were more reliable and helped them to reconstruct the 

transcriptional events of two metabolic pathways important in prostate cancer [17].  

The T-statistic and various modified T-statistics are the most widely used 

statistics for identifying differential genes, and integrating the T-statistic or various 

modified T-statistics is another meta-analysis method. Choi et al. proposed an 

integration method based on effect size model using a T-like statistic (defined as 

effect size) as the summary statistic for each gene from each individual dataset [19]. 

They applied a hierarchical model to estimating both within- and between-study 

variances, which they used as weights when combining the summary statistic across 

multiple datasets. Then they obtained an overall estimate of the average effect size 

through parameter estimation and model fitting. Like the method in [17],  they 

determined the statistical significance of the average effect size by a permutation test. 

A better method proposed by Hu et al. used a quality measure to weight the 

importance of each gene in each experiment [20]. They incorporated this quality 

measure into the effect size method to model inter-study variation of gene expression 

profiles. There are several merits for integration methods based on effect size model. 

For example, effect size model uses a standard index (T-like statistic) and is a 

well-established statistical framework for combining different microarray datasets. 

Another merit of effect size model is that it has the ability to handle the variability 

between different microarray datasets. 

The integration method based on rank is an alternative method to the above two 

meta-analysis methods.  Meta-analysis methods based on p-values or T-statistic are 
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parametric methods, and their performance is heavily dependent on the estimation of 

parameters. To avoid this shortcoming, Breitling et al. proposed a non-parametric 

rank product (RP) method to integrate multiple microarray datasets for differential 

gene detection [21]. The rank product method first ranks genes by the FC criterion 

introduced in section 2.1.1. Assume one gene have ranks nrrr ,...,, 21  from n 

microarray datasets, the rank product of this gene is as follows: 

n

i
irRP /1)(∏=                          (2-6) 

Breitling et al. permuted the expression value within each array in a microarray 

dataset to determine the statistical significance of RP in Eq. (2-6). Basically, the rank 

product method computes FC for each gene, transforms FC into rank among all genes 

in each microarray dataset, then searches for genes that are consistently top ranked 

across multiple microarray datasets. Converting FC into ranks overcome the 

heterogeneity among multiple microarray datasets because some researchers 

demonstrated that, although the differential gene lists from fold-change method had 

poor consistency across multiple microarray datasets, the rank orders of genes were 

comparable [22]. Therefore, the rank product method can detect genes that are 

consistently differential genes in a number of microarray datasets.  

2.2 Differential Coexpression Analysis  

An alternative method to differential gene identification is to detect differential 

coexpression patterns in different cell states. A simple list of differentially expressed 
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genes, however, only tells us which genes are altered by biological differences 

between different cell types and/or states. In a biological system, genes are well 

known for forming a variety of complex networks to perform different molecular 

functions and regulate various biological processes. Besides detecting differential 

genes, it is also crucial to explore the reason of significant alteration of gene 

expression level and its effect on other genes’ activities. Hence, detecting 

differentially changed gene relations in different cell states is a complementary 

approach to identifying cancer-related genes. Researchers proposed several statistical 

or machine learning methods for the analysis of differential gene relations based on 

different score schemes of coexpression and different searching methods. 

The biclustering method is one method to detect the differential coexpression of 

genes. Kostka and Spang observed that some genes show no differential expression 

between normal and tumor samples; however, in normal samples these genes display 

a coexpression pattern, which disappears in tumor samples [23]. Thus, they proposed 

a method to investigate differentially coexpressed groups of genes that displays a 

striking difference in the coexpression pattern between two different types of samples. 

Kostka and Spang  chose the mean squared residual of an additive model used in 

biclustering method [24] for scoring coexpressed groups of genes and then searched 

groups of genes showing differential coexpression patterns by a greedy stochastic 

downhill search algorithm, which is an heuristic algorithm for finding groups of 

genes with low scores. One problem for Kostka and Spang’s method is that they only 

focus on detection of groups of genes that show significant difference between 
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normal samples and tumor samples but omit the biological meaning of these groups 

of genes. Moreover, the authors can not provide the biological explanation of 

detected groups of genes.  

Another approach to detect the differential coexpression of groups of genes is 

based on the hierarchical cluster method. Watson developed CoXpress to identify 

groups of genes that are differentially coexpressed. There are two phases in CoXpress 

[25]. In the first phase, CoXpress selects several groups of coexpressed genes by the 

hierarchical cluster method. In the second phase, CoXpress determines whether these 

groups of gene are differentially coexpressed between normal samples and tumor 

samples by a resampling approach. Generally, cluster analysis generates groups of 

genes that are correlated with each other. However, this is only a static analysis, 

which can not indicate the change of the coexpression pattern of genes. CoXpress 

paves a pathway for the dynamic analysis of the coexpression pattern of genes.  

Some methods for the analysis of differential gene relations only focus on the 

detection of differential coexpresssion pattern of gene pairs. This will reduce the 

searching space to 2n , assuming the number of genes is n. One method to detect 

differential gene pairs is Liquid Association (LA). Li observed differences of gene 

coexpression patterns in different cellular states and attributed these changes in gene 

coexpression patterns to some third influential genes [26]. Therefore, Li proposed a 

LA method that conducts a genome-wide search and identifies the most critical 

influential genes that may affect the coexpression pattern for any two genes. He used 

the term Liquid Association to define the internal evolution of coexpression pattern 
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for a pair of genes. Li et al. also proposed a strategy to generalize LA method for 

multiple genes [27]. Lai et al. proposed a similar method to identify differential 

gene-gene coexpression patterns in cells from normal state to cancerous state based 

on expected conditional F-statistic [28].  

The LA method is suitable to detect gene coexpression patterns. First, different 

cellular states can alter the biological roles of genes and break up the joint activities 

of a pair of interacting genes. Thus, if some third influential genes change the cellular 

state, LA method can detect association changes of gene pairs by conditioning on 

these third influential genes. On the other hand, the genome-wide search in LA 

method can find these unknown influential genes.  

Another method of detecting differential coexpresssion pattern of gene pairs is 

based on the comparison of Pearson correlation coefficients from different types of 

samples. Dettling et al. proposed a novel approach, CorScor, to find gene pairs with 

joint differential expression as a complement to the widely used one-gene-at-a-time 

testing methods [29]. CorScor first defines the score function  

||),,( 1010 αρρρρρρ −+=S                    (2-7) 

to help to find gene pairs with differential coexpresssion pattern, where 0ρ , 1ρ , and 

ρ are Pearson correlation coefficients from normal samples, tumor samples, and the 

whole samples. Then, CorScor performs an exhaustive search to find gene pairs with 

differential coexpresssion pattern. CorScor is a straightforward method, and it can be 

performed very quickly, which is the biggest advantage.  



20 

Detecting differential coexpresssion pattern by integrative methods can generate 

more confident results. The above methods for detecting differential coexpresssion 

pattern performed analysis on one single microarray dataset and will face the same 

problem as identifying differentially expressed genes where the results from different 

microarray datasets and various statistical methods can hardly overlap [30-31]. Choi 

et al. introduced a model to find differential coexpression patterns related to cancer 

by combining independent datasets for different cancers [32]. They calculated 

correlation values from several microarray datasets for normal samples and tumor 

samples. Then they used effect size model to construct two distinct gene networks for 

normal samples and tumor samples and compared the difference between the normal 

gene network and tumor gene network. Integrative methods based on multiple 

microarray datasets can increase the confidence of the results and grasp the common 

molecular changes in cells from normal state to cancerous state. 

2.3 Detection of Differential Gene Networks 

Detecting differential genetic signaling pathways (gene networks), which 

respond to different cell states, is a superior approach for cancer research [33]. The 

shortcoming of the above two methods to detect differential genes or differential gene 

relations is that they only investigate a single and isolated element in a biological 

system, but neglect the integrity of the entire system [34]. System biology should 

explore the behavior of all elements in a biological system and the relationships 

among them in order to model and ultimately control the mechanism of the biological 
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system [35]. Therefore, detecting differential genetic signaling pathways is a better 

tool for cancer research according to the perspective of system biology.  

One key issue for detecting differential genetic signaling pathways is how to 

measure pathway expression. Levine et al. used five different measures of pathway 

expression to analyze gene-set activation: Z-score, Hypergeometric, Principal 

component analysis, Wilcoxon Z-score, and Kolmogorov-Smirnov [36]. These five 

measures are based on gene expression. They found most results from these five 

measures are the same. However, some incoherent pathways can only be identified as 

differential by a subset of the measures. On the other hand,  Rahnenfuhrer et al. 

proposed a measure of pathway activity based on Pearson correlation coefficient of 

gene pairs [37]. They first calculated the mean of Pearson correlation coefficients of 

all possible gene pairs in a pathway and then determined the statistical significance of 

changes of pathway activity by a non-parametric permutation test. The above two 

pathway expression measures only consider one aspect of the activity of a pathway. 

A better measure scheme should consider changes of both genes and gene relations. 

The change of expression level reflects the altered activity of a gene and the change 

of gene relation reflects the alteration of gene functions. These two aspects of the 

inside mechanism in living cells are equally important. 

 Some differential network detection methods first identify differential genes 

and then construct a differential network by these differential genes. Traditionally, 

identifying differential genes and detecting differential subnetworks are two separate 

tasks. Sanguinetti et al. integrated identifying differential genes into the task of 
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differential gene network detection [38]. They first introduced a Mixture Model on 

Graphs (MMG) to detect differential genes. Then they identified coherent differential 

submodules by a simple percolation algorithm. Starting from a given node 

(differential gene), the percolation algorithm extends the submodule by iteratively 

adding all the neighboring nodes which are differential. Sanguinetti et al. 

demonstrated that certain gene networks are consistently differentially expressed and 

have a clear biological meaning in terms of cellular metabolic functions, which were 

validated by high-throughput proteomic experiments. However, Sanguinetti et al. 

only considered the difference of gene expression and omitted the importance of the 

alteration of gene relations.  

Another approach for differential gene network detection constructs a whole 

gene network from a variety of biological databases first and then determines which 

sub-networks are differential. The assumption of this approach is that coherent 

sub-networks would show differential activities. Cabusora et al. constructed a large 

biological network from protein interaction, metabolic reactions and gene 

coexpression databases [39]. They selected seed genes from this biological network 

by machine learning methods such as genetic algorithms or singular value 

decomposition. Next they filtered sub-networks with the shortest paths between each 

pair of seed genes and the highest mean of Pearson correlation coefficients of all gene 

pairs in the sub-network. Finally, they considered these sub-networks as differential 

networks. The problem of Cabusora et al’s method is that not all coherent networks 

are differential networks. Short paths and high Pearson correlation coefficients for 
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most gene pairs in a coherent network do not mean that these genes will respond to 

different cell states simultaneously.  

The alteration of gene network connectivity is also important in the detection of 

differential gene network.  Fuller et al. argued that differential network analysis 

should be concerned with identifying both differentially connected and differentially 

expressed genes [40]. So they considered the change of the connectivity of genes and 

defined a measure of differential connectivity. For the ith gene in a gene network, 

they represented its connectivity in networks 1 and 2 by )(1 ik and )(2 ik , respectively. 

For convenient comparison between the connectivity measures of each network, they 

normalized the connectivity of each gene by the maximum network connectivity as 

follows:  

)max(
)()(
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ikiK =                               (2-8) 
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2

2
2 k

ikiK =                               (2-9) 

Next they defined the differential connectivity of the ith gene as: 

)()()( 21 iKiKiDiffK −=                           (2-10) 

To select some interesting gene modules (differential gene networks), they produced 

a scatter plot of differential connectivity vs. T-statistic for each gene. The scatter plot 

demonstrates how differential connectivity relates to the traditional T-statistic 
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describing differential gene expression between two networks. Fuller et al. found 

some significant sectors in the scatter plot and showed that the genes in these sectors 

are related with some specific molecular functions. The differential gene network 

detection method based on differential connectivity tries to find differential network 

consisting of genes that are both differentially expressed and differentially connected. 

Searching for differentially connected genes focuses on the preservation of modules 

between two cell states because genes in these modules are highly connected in 

coexpression networks. Although differentially connected genes may or may not be 

differentially expressed, changes in connectivity of genes may reveal their responses 

to environmental alterations.  

2.4 Detection of Gene-Gene Interactions 

Detecting gene-gene interactions is critical for pathogenesis, prevention, 

diagnosis, and treatment of complex human diseases, and designing an efficient 

computational method to detect gene-gene interactions presents a challenge to the 

bioinformatics society. Epistasis refers to the joint and interactive effect of two or 

more genetic variants on complex human diseases. Interactions among multiple 

genetic factors can result in some common complex diseases such as various types of 

cancers, cardiovascular disease, and diabetes. Genome-wide association study 

(GWAS) is an examination to check the genetic variants from individual to 

individual and the number of the SNPs (single-nucleotide polymorphism) to be 

checked in a typical GWAS is up to 10 million. Moreover, the number of possible 
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combinations of SNPs is enormous. Therefore, we must resort to some heuristic 

computational methods to detect gene-gene interactions. There are two types of 

methods to detect gene-gene interactions: statistical methods and machine learning 

methods.  

2.4.1 Statistical Methods for Detection of Gene-Gene Interactions 

Statistical methods are one type of computational methods for gene-gene 

interaction detection, and the most commonly-used parametric statistical method is 

logistic regression. Marchini et al. tried to fit the logistic regression method to three 

genetic interaction disease models [41]. Logistic regression predicts the probability of 

disease based on the combination of independent SNPs and finds an optimal logical 

SNP set which can generate the highest probability of disease. When used for 

modeling high-order interactions with small number of samples, the estimation of a 

large number of parameters is not confident because of the poor number of samples 

per parameter. This will often results in an overfitting problem.  

There are some methods to overcome problems in logistic regression method, 

and MDR (multifactor dimensionality reduction) is one of them. Ritchie et al. 

proposed a multifactor dimensionality reduction method to detect statistical patterns 

of epistatis [42]. MDR first constructs a risk table for every SNP combination. If the 

cases/controls ratio in a cell of this risk table is larger than 1, MDR will label it as 

“high risk”, otherwise, MDR will label it as “low risk”. By the risk table, MDR can 

predict disease risk and will select the SNP combination with the highest prediction 
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accuracy. MDR is a novel method for gene-gene interaction detection in its 

construction of a risk table for prediction. Moreover, unlike logistic regression, MDR 

is non-parametric and model-free. However, the process of labeling each cell as “high 

risk” or “low risk” is a process of estimating parameters. This will lead to a huge 

number of parameters to be estimated when the size of SNP combination is large. 

Furthermore, MDR has two fundamental limitations: (1) MDR selects the SNP 

combination purely by the prediction performance. This type of method can not find 

true causal factors because the high prediction accuracy of a SNP set does not mean 

that this SNP set has a strong association with disease and might cause disease. (2) 

MDR employs an exhaustive searching strategy to avoid local optima. Thus MDR is 

impractical for large-scale datasets.  

Some variants of logistic regression can also overcome problems in standard 

logistic regression method for detecting gene-gene interactions.  Park and Hastie 

proposed a penalized logistic regression (stepPLR) using a forward stepwise method 

to detect gene-gene interactions [43]. StepPLR makes some simple modifications for 

standard logistic regression. For example, stepPLR combines the LR (Logistic 

Regression) criterion with a penalization of the L2-norm of the coefficients. This 

modification makes stepPLR more robust to high-order gene-gene interactions. 

However, stepPLR is time-consuming when estimating parameters, which is one 

essential limitation of regression methods. Moreover, like standard LR and MDR, 

stepPLR is also based on prediction, and this is the common limitation of most 

gene-gene interaction detection methods.    
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Some researchers apply the Bayesian method to detecting gene-gene 

interactions. Zhang and Liu proposed a Bayesian epistasis association mapping 

(BEAM) method. BEAM partitions SNPs into three groups: group 0 is for normal 

SNPs, group 1 contains disease SNPs affecting disease risk independently, and group 

2 contains disease SNPs that jointly contribute to the disease risk (interactions) [44]. 

Given a fixed partition, BEAM can get the posterior probability of this partition from 

SNP data based on Bayes theory. Thus, BEAM is a Bayesian marker partition model 

to identify both single disease SNP and SNP combination with maximum posterior 

probability. Zhang and Liu used a Markov Chain Monte Carlo method to reach the 

optimal SNP partition in BEAM. Zhang and Liu also proposed a new B statistic to 

check each SNP or set of SNPs for significant associations with the disease. The 

experiment results on the synthetic data from six disease models demonstrated that 

BEAM is more powerful than other approaches such as MDR and stepwise logistic 

regression. However, the performance of BEAM is worse than that of some recently 

proposed methods for gene-gene interaction detection such as SNPHarvester [45]. 

One possible reason is that BEAM is over-complex. Zhang and Liu tried to detect 

single disease SNPs and gene-gene interactions simultaneously in BEAM, which 

impairs the performance of BEAM. 

2.4.2 Machine Learning Methods for Detection of Gene-Gene 
Interactions  
 

The alternative approaches for statistical methods to detect gene-gene 

interactions are machine learning methods. Machine learning methods for gene-gene 
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interaction detection are based on binary classification (prediction) and treat cases as 

positive samples and controls as negative samples in SNP data from GWAS. Chen et 

al. proposed to use the Support Vector Machine (SVM) method to detect gene-gene 

interactions [46]. SVM is a state-of-the-art classification/prediction method and they 

used SVM to select a combination of SNPs with the highest prediction accuracy and 

transform detecting gene-gene interactions into a process of feature selection. Chen et 

al. tried three feature selection methods: RFE (recursive feature elimination), RFA 

(recursive feature addition), and GA (genetic algorithm) and found that the 

performance of GA is the best. Jiang et al. adopted random forests, which is an 

ensemble learning technique and can also be used as a classifier/predictor, to 

detecting gene-gene interactions in GWAS [47].  They first ranked SNPs based on 

the importance of each SNP and then performed a greedy search for a small subset of 

SNPs with the capacity of minimizing the classification error. Both SVM and random 

forests show greater powers than MDR on the synthetic data. However, 

prediction-based methods can not detect true causal factors like MDR. Moreover, the 

feature selection process for prediction-based methods is time-consuming, which 

means that we can not apply them to genome-wide datasets directly.   

2.5 Genetics of Gene Expression 

In the past few years, researchers combine genetic and gene expression 

approaches under the name of ‘genetical genomics’ and study the genetic basis of 

variation in gene expression. Even though the significances of the association signals 
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in some GWAS are extraordinary, the detection of gene-gene interactions based on 

SNP data from GWAS can not provide us a full understanding of how genetic 

variants contribute to disease susceptibility. Polymorphisms in regulatory regions of 

gene sequence can regulate gene expression directly, and variation in gene expression 

is probably a major mechanism affecting the risk of complex diseases. Therefore, 

some researchers conduct studies of genetics of gene expression, whcih are referred 

to as GOGE (genetics of gene expression) and also known as expression quantitative 

trait loci (eQTL) studies or genetical genomics [48-49]. It has been known that gene 

expression levels are controlled by a combination of cis- and trans-acting regulators. 

However, the goal of GOGE studies is not to identify all the cis- and trans-acting 

regulators but to find polymorphic variants that contribute to gene expression 

variation. In fact, identifying the precise causal sequence variants is a challenging 

task. GOGE combines whole-genome genetic association studies and the microarray 

data of global gene expression to identify genetic factors that affect gene expression. 

Results from GOGE are then functionally investigated to obtain a clear map from 

SNPs to diseases. 

GOGE studies try to identify the DNA variants (polymorphisms) that influence 

expression levels of genes — that is, the gene expression phenotype. There are three 

merits for GOGE studies. First, GOGE studies construct a bridge between variations 

at the DNA sequence level and variations at the RNA level. There are over 3 million 

SNPs, and most of them are presumably neutral, while some are functional. However, 

determining which SNPs are functional is challenging. GOGE studies can find 
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regions and ultimately variants that regulate gene expression. Furthermore, we can 

compare the susceptibility SNPs for human diseases from GWAS with results from 

GOGE studies to perform consistency test. Second, GOGE studies identify variants 

that influence gene expression by scanning the genome for regulators without prior 

knowledge of the regulatory mechanisms. Therefore, GOGE studies can identify 

unknown regulators of gene expression. Third, in addition to identifying regulators of 

individual genes, GOGE studies can be applied to genetic regulatory network 

analysis. GOGE studies treat gene expression as a phenotype to identify regulators 

that influence the expression levels of individual genes. Many GOGE studies results 

show that most identified regulatory variants are close to the target (regulated) gene. 

GOGE studies have the ability to survey the genome for regulatory variants and can 

uncover novel regulatory mechanisms and assign new roles to known genes by 

identifying regulatory variants. Thus, we can construct a more confident genetic 

regulatory network by combining results from GOGE studies with correlation 

analysis.  
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Chapter 3 Detecting Differential Gene Relations by 
Bootstrapping K-S Test 
 

To better understand the roles of differentially expressed genes in a complex 

biological system, a comprehensive pathway analysis is needed to find the most 

common pathways, which reveal the relationship between these genes. Biological 

pathways are significantly influenced by those differentially expressed genes from 

different datasets or different statistical methods. Moreover, it is crucial to explore 

the reason of the significant alteration of gene expression level and its effect on other 

genes’ activities. It is well known that in a biological system genes form a variety of 

complex networks to perform different molecular functions and regulate various 

biological processes. Hence, it is also important for us to detect gene relation 

alterations and to explore how these changes of gene relations affect some key 

pathways related to cancer. To detect the differentially changed gene relations 

between cancer and normal tissues [50], a novel integrative method based on multiple 

datasets across different microarray platforms and from various types of cancer is 

developed in this dissertation.  

3.1 Methodology  

3.1.1 Microarray Datasets and Genetic Signaling Pathways  

We collect 36 microarray datasets from NCBI GEO (Gene Expression Omnibus) [51]. 

These microarray datasets contain both normal samples and tumor samples across 21 
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different types of cancer and their platforms come from one of the three platforms: 

GPL570 (Affymetrix GeneChip Human Genome U133 Plus 2.0 Array), GPL96 

(Affymetrix GeneChip Human Genome U133 Array Set HG-U133A) and GPL91 

(Affymetrix GeneChip Human Genome U95 Version Set HG-U95A). We divide 

every dataset into two expression data matrix: one matrix includes all normal samples 

and the other includes all tumor samples. To integrate multiple microarray datasets 

across different platforms, we map each probe in different platforms to a unique 

Entrez Gene ID or a unique UniGene symbol. For genes with more than one probe in 

one platform, we choose the probe with the highest mean expression value. 

We apply our method to analyze three cancer-associated pathways. These 

pathways are related to three common traits in most and perhaps all types of human 

cancer: self-sufficiency in growth signals, insensitivity to antigrowth signals, and 

evading programmed cell death (apoptosis) [1]. In fact, Hanahan and Weinberg have 

already shown some signaling pathways to demonstrate some capabilities cancer cells 

acquire during tumor development in [1]. We extend these signaling pathways to 

three relatively complete and larger cancer-associated pathways (antigrowth signaling 

pathway, apoptosis pathway, and growth signaling pathway) from the cell cycle 

pathway, the apoptosis pathway and the MAPK pathway in KEGG [52]. We use 

these three pathways (i.e., cell cycle, apoptosis and MAPK pathways) as our seeds 

and the genes in these pathways as our seed genes. Next we construct three gene 

networks corresponding to the three cancer-associated pathways from HPRD (Human 

Proteins Reference Database, http://www.hprd.org/) and TRANSFAC [53] based on 



33 

seed genes and their interacting partners. We download the protein-protein 

interaction (PPI) data released by HPRD on Sep 1, 2007. This PPI dataset contains 

37107 human binary protein-protein interactions whose supporting experiments are 

indicated as in vivo, in vitro or yeast two-hybrid. We also collect 1042 transcription 

factor-target gene relations on human species from TRANSFAC. So our gene 

networks include seed genes, protein interaction partners and transcription factors 

(TFs) of seed genes or target genes for which seed genes serve as their TFs.  

3.1.2 Kolmogorov–Smirnov (K-S) Test  

Kolmogorov–Smirnov test (K-S test) can determine whether the distributions of 

values in two data sets differ significantly. The two-sample K-S test is most useful 

for comparing two samples because it is non-parametric and distribution free [54]. 

The null hypothesis for this test is that two data sets are drawn from the same 

distribution. The alternative hypothesis is that they are drawn from different 

distributions.   

For n iid samples 1X ,…, nX  with some unknown distribution, we can define an 

empirical distribution function by 
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where 1X ,…, nX  are ordered from smallest to largest value.  

Then the Kolmogorov-Smirnov statistic for a given function )(xS is  
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|)()(|max xSxSD nxn −=                                                   (3-2)                            

Dn will converge to 0 if the sample comes from distribution )(xS [54]. Moreover, the 

cumulative distribution function of Kolmogorov distribution is 
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It is easy to prove that |)()(|max xSxSnDn n
x

n −=  will converge to 

Kolmogorov distribution [54]. Therefore if ααα −=≤=> 1)Pr( KKKDn n , the 

null hypothesis for the Kolmogorov-Smirnov test will be rejected at level α. 

For the case of determining whether the distributions of two data vectors differ 

significantly, the Kolmogorov-Smirnov statistic is 

|)()(|max, xSxSD mnxmn −=                          (3-4) 

and the null hypothesis will be rejected at level α if 
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The p-value from K-S test can measure the confidence of the comparison result 

against the null hypothesis. It is obvious that the smaller the p-value, the more 

confident we are to reject the null hypothesis.  
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3.1.3 Bootstrapping K-S Test 

We use the Kolmogorov-Smirnov test (K-S test) to determine whether the 

distributions of values in two datasets differed significantly. Assume that we have n 

microarray datasets and a list of m genes, we denote the expression data matrix for 

normal samples as: 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

k
kmp

k
m

k
m

k
kp

kk

k
kp

kk

k

XXX

XXX
XXX

N

)(21

)(22221

)(11211

...
....

...

...

  k=1,…,n                                         (3-6) 

and the expression data matrix for tumor samples as: 
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where p(k) is  the number of normal samples in the kth dataset and q(l) is the 

number of tumor samples in the lth dataset. 

For these two types of expression data matrix, each row represents one gene and 

each column represents one sample. The correlation coefficient for gene i and gene j 

from the kth normal sample can be calculated by 
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where 
k
iX  and 

k
jX  are the average of expression levels for gene i and gene j. 

The correlation coefficient for every gene pair from tumor samples can be 

calculated similarly.  

We use bootstrapping K-S test to detect some gene relations with different PC 

(Pearson coefficient) distribution.The bootstrapping method can give us an empirical 

distribution of p-value θ , with which, we can estimate the probability that the 

distribution of two PC vectors are different. In our computational experiment, for a 

gene pair, if its value of )05.0Pr( <θ is larger than 0.8, we consider it as a pair of 

genes with the correlation relation significantly different between normal and cancer 

cells. 

Our method can be described as follows:  

Step1. Compute n correlation coefficient Matrices 1NPC — nNPC  from the 
normal samples in n datasets for every gene pairs. For example, 

1NPC  is an mm× Matrix from normal samples in the 1st dataset and 
1
ijNPC  represent the correlation coefficient between gene i and gene j. 

Step2. Compute n correlation coefficient Matrixes 1TPC — nTPC  from the 
tumor samples in the n datasets for every gene pair.  

Step3. For every gene pair (gene i and gene j), let 
            ijNPC  = [ 1

ijNPC      
2
ijNPC    

3
ijNPC  … n

ijNPC ] 

ijTPC  = [ 1
ijTPC      

2
ijTPC    

3
ijTPC  … n

ijTPC ] 
Step4. Perform the following: 

            For k=1 to N 
              Do generate bootstrapping samples NPC and TPC from NPCij and 

TPCij respectively 
               kθ  = p-value of K-S test on NPC and TPC.  
            End –For 
            Output N/)05.0(#)05.0Pr( <=< θθ . 
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During step 4, we generate N bootstrapping samples NPC and TPC by repeatedly 

sampling with replacement from the original NPCij and TPCij respectively. When 

using bootstrapping, we randomly extract a new element from the original sample 

every time and then put it back before extracting the next element until the sample 

size of the bootstrapping sample NPC(TPC) is the same as that of the original 

NPCij(TPCij). Therefore each element in the original sample can be selected many 

times. 

3.2 Experimental Results 

We apply the bootstrapping K-S test method for analyzing three cancer related 

pathways: antigrowth signaling, apoptosis, and growth signaling pathways. The 

experimental results of our method on these three genetic signaling pathways are 

demonstrated in this section.  

Antigrowth signaling pathway 

Antigrowth signals can control proliferation in normal samples. Cancer cells have the 

ability to evade these antiproliferation signals. In the antigrowth signaling pathway, 

transforming growth factor beta (TGFβ) initiates this pathway by binding to two 

TGFβ receptors: Tgfbr1 and Tgfbr2 [1]. These two activated Tgfβ receptors can 

phosphorylate Smad2, Smad3, and Smad4 [55]. The SMAD family proteins then 

transduce antigrowth signals to cell cycle inhibitors: p21, p16, p27, and p15, which 

can inhibit the action of cyclin-CDK complex. The cyclin-CDK complex can 

phosphorylate RB and make RB dissociate from the E2F/RB complex to liberate E2F 



38 

to activate the cell cycle procession from G1 to S phase (Figure 3.1A).  

There are 19 genes in the antigrowth signaling pathway (Figure 3.1A). We can 

find 689 unique genes related to these 19 genes from TRANSFAC and HPRD. 

Among these 708 genes, there are 4215 paired gene interactions, among which the 

correlation relations of 47 gene pairs are identified as significantly changed between 

normal and cancer cells. Among these 47 relations, we detect a cluster around SMAD 

family proteins which contains 15 relations with different distribution between 

normal samples and tumor samples (Figure 3.1B). Most of them come from 

large-scale protein-protein interaction experiments without the associated molecular 

function. For example, (Smad1—Arl4d), (RHOD—Smad2) and (WEE1--Smad3) in 

[56], (PAPOLA—Smad2), (SNRP70—Smad5), (GPNMB—Smad4), 

(PSMD11-Smad3) and (Smad9—MBD1) in [57] and (EWSR1—Smad4) in [58], all 

of them are detected from large-scale protein-protein interaction experiments without 

annotation of molecular function. Our results indicate that although their associated 

functions and internal mechanisms are still unclear, these gene pairs are related to the 

Tgfβ-SMAD signaling pathway and the relation between the two genes in each pair is 

significantly different in cancer and normal cells.  Additionally, we identify some 

differentially changed relations with known molecular functions as listed below:   

(1) MAGI2 (a.k.a. ARIP1)—Smad3. MAGI2 (ARIP1) can interact with Smad3 

and overexpression of ARIP1 can significantly suppress Smad3-induced 

transcriptional activity [59]. We can validate this from the boxplot for 

MAGI2 (ARIP1)--Smad3 (Figure 3.2A). In normal samples, MAGI2 (ARIP1) 
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and Smad3 show a high positive correlation, while they have a high negative 

correlation in tumor samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Antigrowth signaling pathway. (A) Antigrowth signaling pathway. Nodes and edges 
represent human proteins and protein-protein interactions respectively. Edges with direction represent 
a regulatory relation.  means an activating relation and --| means an inhibitory relation. (B) Cluster 
around smads. Red edges represent differentially changed relations. Blue edges represent unchanged 
relations. Red nodes represent tumor suppressor genes and green nodes represent oncogenes. 
 

  A 

  B 
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 (2) EWSR1—Smad4. Although the experiment type of the interaction between 

EWSR1 and Smad4 is yeast two-hybrid [58], mutations in EWSR1 are known to 

cause Ewing sarcoma and other members of the Ewing family of tumors [60]. 

From the boxplot for EWSR1--Smad4, we find that the third quartile is the densest 

part of the whole distribution for both normal and tumor samples. But the third 

quartile for normal samples shows a positive correlation, while it shows a negative 

correlation for tumor samples (Figure 3.2B). So we suspect that EWSR1 can 

suppress the activity of Smad4 in tumor samples. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2 Boxplots for differential gene relations in antigrowth signaling pathway. (A) Boxplot for 
MAGI2 (ARIP1)—Smad3. 986.0)05.0Pr( =<θ . (B) Boxplot for EWSR1—Smad4. 

954.0)05.0Pr( =<θ . (C) Boxplot for TRAP1—TgfbetaR2. 944.0)05.0Pr( =<θ . 
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(3) TRAP1—Tgfbr2. TRAP1 has been shown to bind to TGFβ receptors and play a 

role in TGFβ signaling pathway. TRAP1 can interact with Smad4 and affect the 

SMAD-mediated signal transduction pathway. Mutant TRAP1 can prevent the 

formation of the Smad2-Smad4 complex to inhibit the TGFβ signaling pathway 

[61]. Thus in the boxplot for TRAP1—Tgfbr2 (Figure 3.2C), the densest quartile 

for tumor samples shows a high negative correlation. 

 

Apoptosis pathway 

Cancer cells have the ability to evade programmed cell death or apoptosis. TNFα, 

FASL, TRAIL and other genes can initiate apoptosis by binding to their receptors 

such as TNFR1, FAS, and TRAIL-R. A lot of apoptosis signals go through 

mitochondria. Mitochondria can help transduce the apoptosis signals by releasing 

cytochrome C (Cytc) which is a potent catalyst of apoptosis. There are two different 

Bcl-2 family members: proapoptotic members (Bid, BAD) and antiapoptotic 

members (Bcl-2, Bcl-xl), which activate and inhibit, respectively, the release of Cytc. 

Finally, two key caspases (Casp8 and Casp9) activate other downstream caspases that 

perform the cascading events of cell death (Figure 3.3A) [1]. 

In our result, we detect 33 relations with different distributions in the apoptosis 

pathway and some are supported by existing evidences. Examples include (Figure 

3.3B):  

(1) PUMA—Bcl-XL (BCL2L1). PUMA can interact with Bcl-XL and meanwhile 

PUMA can also neutralize and antagonize all the Bcl-2-like proteins [62]. From 
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the boxplot for PUMA—Bcl-XL, we can find that Bcl-XL and PUMA show a 

higher negative correlation in normal samples than in tumor samples (Figure 

3.4A). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3 Apoptosis pathway. (A) Apoptosis pathway. (B) Differentially changed gene relations in 
apoptosis pathway. Red edges represent differentially changed relations. Blue edges represent 
unchanged relations. Red nodes represent tumor suppressor genes and green nodes represent 
oncogenes. 
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(2) AKT1—BAD. Active forms of Akt can phosphorylate BAD in vivo and in vitro 

to prevent it from promoting cell death [63]. In the boxplot for AKT1--BAD, the 

first quartile which is the densest for normal samples shows a higher positive 

correlation than the second quartile (densest) of tumor samples (Figure 3.4B). So 

we speculate that Akt can suppress BAD's activity in tumor samples. 

(3) KRT18—TRADD. TRADD is a KRT18-interacting protein. KRT18 may 

inactivate TRADD to prevent interactions between TRADD and the activated 

TNFR1 and then affect TNFα-induced apoptosis [64]. So in the boxplot for 

KRT18—TRADD, normal samples show a higher positive correlation (Figure 

3.4C). 

(4) TNFR1—RIPK1 (RIP). The interaction between the death domain of TNFα 

receptor-1 (TNFR1) and TRADD can trigger distinct signaling pathways leading 

to apoptosis. TRADD also interacts strongly with another death domain protein, 

RIP and RIP plays an important role in the TNF signaling cascades leading to 

apoptosis [65]. In the boxplot for TNFR1—RIPK1, TNFR1 and RIPK1 show a 

preference for high positive correlation in normal samples (Figure 3.4D).  

(5) TNFR1—RASSF1. RASSF1A is a tumor suppressor gene and the apoptosis 

initiation by TNFα or TRAIL recruit RASSF1A and MAP-1 to form complexes. 

RASSF1A and MAP-1 are the key links between death receptors and the 

apoptotic machinery [66]. We can verify this by the Boxplot for 

TNFR1—RASSF1. In most normal samples, they show a high positive 

correlation. In most tumor samples, they show a zero or negative correlation 
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(Figure 3.4E).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.4 Boxplots for differential gene relations in apoptosis pathway. (A) Boxplot for 
PUMA—Bcl-XL(BCL2L1). 998.0)05.0Pr( =<θ . (B) Boxplot for AKT1—BAD. 

859.0)05.0Pr( =<θ . (C) Boxplot for KRT18—TRADD. 991.0)05.0Pr( =<θ .(D) Boxplot 
for TNFR1—RIPK1(RIP). 831.0)05.0Pr( =<θ . (E) Boxplot for TNFR1—RASSF1. 

946.0)05.0Pr( =<θ . (F) Boxplot for IAP—CASP9. 826.0)05.0Pr( =<θ . 
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(6) IAP—CASP9. Inhibitor of apoptosis (IAP) suppresses the activities of caspases 

and inhibits different apoptotic pathways [67]. Therefore IAP and CASP9 show a 

high negative correlation in tumor samples (Figure 3.4F). 

Among the eight differential gene relations in Figure 3.3B, three of them are in 

the seed pathway: TRAIL-R FADD, IAP CASP9 and AKT BAD, which 

demonstrates the effectiveness of the proposed method. 

Growth signaling pathway 

Cancer cells have the ability to produce their own growth promoting signals. EGF, 

TGFα and PDGF are activated and then bind to their receptors to transduce the 

growth signals. The activated growth factor receptors can then activate the 

SOS-Ras_Raf_Mapk cascade [1]. In the growth signaling pathway (Figure 3.5), Ras, 

JUN and Fos are oncogenes. 

We find 68 relations with different distributions in growth signaling pathway and 

we discuss three relations here: 

(1) RASSF2—KRAS. Although different forms of Ras are frequently thought as 

oncogenes, they also have the ability to incite antigrowth effects such as cell 

cycle arrest, differentiation, and apoptosis. RASSF2 can bind directly to K-Ras. 

Moreover, RASSF2 can inhibit the growth of tumor cells and the activated K-Ras 

can enhance this ability [68]. This is why RASSF2 and RAS show a preference 

for a high positive correlation in normal samples in the boxplot (Figure 3.6A). 
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Figure 3.5 Growth signaling pathway. (A) Growth signaling pathway. (B) Differentially changed 
relations in growth signaling pathway. Red edges represent differentially changed relations. Blue 
edges represent unchanged relations. Red nodes represent tumor suppressor genes and green nodes 
represent oncogenes. 

 

(2) MAZ—MYC. MAZ family can increase the oncogene MYC's transcriptional 

activity [69]. As expected, MAZ and MYC demonstrate a higher positive 

correlation in tumor samples (Figure 3.6B).  

(3) PLSCR1—EGFR. Activated epidermal growth factor receptors (EGFR) can both 

physically and functionally interact with PLSCR1. PLSCR1 can interact with Shc 

and then accelerate the activation of Src kinase through the EGF receptor while 

Src can initiate some activating pathway for the oncogene JUN [70]. Thus in the 

A 

 

B 
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boxplot for PLSCR1—EGFR, the densest quartile for normal samples shows a 

low negative correlation while the densest quartile for tumor samples shows a 

low positive correlation (Figure 3.6C). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.6 Boxplots for differential gene relations in growth signaling pathway. (A) Boxplot for 
RASSF2—KRAS. 983.0)05.0Pr( =<θ . (B) Boxplot for MAZ—MYC. 

833.0)05.0Pr( =<θ . (C) Boxplot for PLSCR1—EGFR. 963.0)05.0Pr( =<θ      
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Chapter 4 Markov Blanket Based Method for Detecting 
Gene-Gene Interactions  
 

Some common complex diseases such as various types of cancers, cardiovascular 

disease, and diabetes are influenced by multiple genetic variants [5]. Therefore, 

detecting high-order epistasis (gene-gene interaction), which refers to the interactive 

effect of two or more genetic variants on complex human diseases, can help to 

unravel how genetic risk factors confer susceptibility to complex diseases [4].  

However, the very large number of SNPs checked in a typical GWAS (more than 10 

million) and the enormous number of possible SNP combinations make detecting 

high-order gene-gene interactions from GWAS data computationally challenging 

[71-72]. Moreover, how to measure the association between a set of SNPs and the 

phenotype presents another grand statistical challenge.  

Some statistical and machine learning methods for gene-gene interaction 

detection are introduced in Section 2.4. These statistical and machine learning 

methods can also be grouped into two categories: prediction/classification-based 

methods and association-based methods. Prediction/classification-based methods try 

to find the best set of SNPs which can generate the highest prediction/classification 

accuracy including,  for example,  multifactor dimensionality reduction (MDR) [42, 

73-75], penalized logistic regression (stepPLR [43], lassoPLR [76]), Support Vector 

Machines (SVMs) [46], and random forest [47]. Some prediction/classification-based 

methods can only be applied to small-scale analysis (i.e., a small set of SNPs) due to 

their computational complexity. Moreover, almost all prediction/classification-based 
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methods tend to introduce many false positives, which may result in a huge cost for 

further biological validation experiments. BEAM is a scalable and association-based 

method [44]. One drawback of BEAM is that identifying both single disease SNP and 

SNP combinations simultaneously makes BEAM over-complex and weakens its 

power.    

To address the challenges in gene-gene interaction detection and overcome the 

drawbacks of existing methods, I propose a novel Markov Blanket based method, 

DASSO-MB (Detection of ASSOciations using Markov Blanket), to detect 

gene-gene interactions in case-control studies [77]. The Markov Blanket is a minimal 

set of variables, which can completely shield the target variable from all other 

variables based on Markov condition property. Thus, DASSO-MB can detect the 

SNP set that shows a strong association with diseases with the fewest false positives. 

Furthermore, the heuristic search strategy in DASSO-MB can avoid the 

time-consuming training process as in SVMs and Random Forests.  

4.1 Markov Blanket 

Bayesian Networks are probabilistic graphical models representing a joint probability 

distribution J over a set of random variables },...,,{ 21 nXXX  by a directed acyclic 

graph (DAG) G and encode the Markov condition property: each node is 

conditionally independent of its non-descendents given its parents [78]. In this case, 

the joint probability distribution J can be represented as  
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  ∏
=

=
n

i
iin XPaXPXXP

1
1 ))(|(),...,(                        (4-1) 

where )( iXPa denotes the set of parents of iX in G. 

For three random variables X, Y and Z, if the probability distribution of X 

conditioned on both Y and Z is equal to the probability distribution of X conditioned 

only on Y, i.e., )|(),|( YXPZYXP = , X is conditionally independent of Z given Y. 

This conditional independence is represented as )|( YZX ⊥ . Similarly, 

)|( YZX ⊥/ represents conditional dependence.  

Definition 1 (Faithfulness) A Bayesian Network N and a joint probability 

distribution J are faithful to each other if and only if every conditional independence 

entailed by the DAG of N and the Markov Condition is also present in J  [79]. 

Theorem 1. If a Bayesian Network N is faithful to a joint probability distribution J, 

then: (1) nodes X and Y are adjacent in N if and only if X and Y are conditionally 

dependent given any other set of nodes, (2) for the triplet of nodes X, Y , and Z in N, 

X  and Z are  adjacent to Y , but Z is not adjacent to X, X Y Z is a subgraph of 

N if  and only if X and Z are dependent conditioned on every other set of nodes that 

contains Y . 

We can define the Markov Blanket of a target variable of T, MB(T), as a minimal 

set for which ))(|( TMBTX ⊥ , for all )(}{ TMBTVX −−∈ where V is the variable 

set in Bayesian Network N. The Markov Blanket of a variable T is a minimal set of 

variables which can completely shield variable T from all other variables. All other 
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variables are probabilistically independent of the variable T conditioned on the 

Markov Blanket of variable T.   

Theorem 2. If Bayesian Network N is faithful to its corresponding joint probability 

distribution J, then for every variable T, MB(T) is unique and is the set of parents, 

children, and spouses of T. 

We show an example of the Markov Blanket in Figure 4.1. The MB(T) of the 

variable T is the set of gray-filled nodes } X D, M, L, {B,  and variable S and U are 

independent of T conditioned on } X D, M, L, {B,  

 

 

 

 

 

 

 

 

Figure 4.1 Markov Blanket in a Bayesian Network. The gray-filled nodes are the Markov Blanket of 
node T.  

Given the definition of Markov Blanket, the probability distribution of T is 

completely determined by the values of variables in MB(T). Therefore, the detection 

of Markov Blanket has been applied for optimal variable selection problem [80]. In 

addition, the Markov Blanket can be used for causal discovery because MB(T) is the 

union of direct cause variables (parents), direct effect variables (children), and direct 
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cause variables (spouse) of direct effect variables of T. Thus the Markov Blanket 

learning method is suitable for detection of gene-gene interactions in genome-wide 

case-control studies, e.g., to identify a minimal set of SNPs which may cause the 

disease for further experiments.  

4.2 2G Test 

The 2G test is commonly used to test independence and conditional independence 

between two variables for discrete data as an alternative to the 2χ test because 

2G -values are additive and can be applied to more complicated statistical designs [79, 

81-82]. The null hypothesis for 2G test is that the two variables are independent.  

Assume that we have a contingency table to record and analyze the joint 

distribution of two variables. The count in a particular cell in a contingency table, ijx , 

is the value of a random variable from N samples with a multinomial distribution. Let 

•ix  represent the sum of elements in all cells along the ith row, and jx• denote the 

sum of the counts in all cells along the jth column. If these two variables are 

independent based on the null hypothesis, the expected value of the random variable  

ijx  is: 

N
xx

xE ji
ij

••=)(                             (4-2) 

We can compute the conditional independence from appropriate marginal 

distributions in a similar way. For instance, to determine whether the first variable is 
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independent of the second conditioned on the third, we can calculate the expected 

value of a cell ijkx as 

k

jkki
ijk x

xx
xE

••

••=)(                         (4-3) 

For n cells in a contingency table, assume that the observed numbers are denoted 

by O1, O2, …, On and the corresponding expected numbers by E1, E2, …, En, then, the 

2G  is given by        

∑=
n

i i

i
i E

OOG )ln(22                             (4-4) 

which has an asymptotical distribution as chi-square ( 2χ ) with appropriate degrees of 

freedom. The degrees of freedom (df) for the 2G test between two variables A and B 

can be calculated as: 

)1)(()1)(( −×−= BCatACatdf                    (4-5) 

and the degrees of freedom (df) for the 2G  test between A and B conditional on the 

third variable C can be calculated as:  

∏
=

×−×−=
n

i
iCCatBCatACatdf

1
)()1)(()1)((              (4-6) 

where Cat(X) is the number of categories of the variable X and n is the number of 

variables in C. Here in Eq. (4-5) and Eq. (4-6) we assume that there are no empty cells 

in the contingency table. If there are some empty cells in the contingency table, we 
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should reduce the degrees of freedom from Eq. (4-5) or Eq. (4-6) by the number of 

empty cells.  

As described in section 4.4, the proposed DASSO-MB uses 2G  to test the 

association and independence between SNPs and disease status.  

4.3 Markov Blankets Learning Methods 

There are several Markov Blanket learning methods such as: Koller-Sahami (KS) 

algorithm [83], Grow-Shrink (GS) algorithm [84], Incremental association Markov 

Blanket (IAMB) algorithm [85], Max-Min Markov Blanket (MMMB) algorithm [86], 

HITON_MB [80], and PCMB [87].  

Koller-Sahami (KS) algorithm is the first algorithm to employ Markov Blanket 

for feature selection. However, there is no theoretical guarantee for Koller-Sahami 

(KS) algorithm to find optimal MB set [83]. The GS algorithm [84] and IAMB 

methods [85] are two similar algorithms with two search procedures: forward phase 

and backward phase. In the forward phase, the nodes of MB(T) are admitted into MB, 

while in the backward phase false positives are removed from MB. Under the  

assumptions of faithfulness and correct independence test, both the GS algorithm and 

IAMB are proved correct [85]. Comparing to GS algorithm, IAMB might achieve a 

better performance with fewer false positives admitted during the forward phase. A 

common limitation for GS algorithm and IAMB is that both methods require a very 

large number of samples to perform well. IAMB can be revised in two ways: (1) after 

each admission step in forward phase, perform a backward conditioning phase to 
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remove false positives to keep the size of MB(T) as small as possible, and (2) 

substitute the backward conditioning phase with the PC algorithm instead [79]. In 

other words, the backward phase will perform the independence test conditioned on 

all subsets of the current Markov Blanket. Tsamardinos et al. proposed three IAMB 

variants: interIAMB, IAMBnPC, and interIAMBnPC [85]. They also proved the 

correctness of interIAMBnPC. The time complexity of IAMB is O(|MB|×N) where 

|MB| is the size of MB and N is number of variables. 

To overcome the data inefficient problem of IAMB and its variants, Max-Min 

Markov Blanket (MMMB) algorithm [86], HITON_MB [80], and PCMB [87] are 

proposed. All these three algorithms take a divide-and-conquer method that breaks 

down the problem of identifying Markov Blanket of variable T into two subproblems: 

First, identifying parents and children of T (PC(T)) and, second, identifying the 

spouses of T. Meanwhile, they have the same two assumptions as IAMB (i.e. 

faithfulness and correct independence test) and take into account the graph topology 

to improve data efficiency. However, results from MMPC/MB and HITON-PC/MB 

are not always correct since some descendants of T other than its children will enter 

PC(T) during the first step of identifying parents and children of T [87]. PCMB can 

be proved correct in [87]. In every loop, PCMB first remove unrelated variables, then 

PCMB use IAMBnPC method to admit one feature and remove false positives. The 

problem of PCMB is that the PC algorithm performs an exhaustive conditional 

independence test, which is very time consuming. The reason that PC algorithm was 

used in PCMB and interIAMBnPC is that PC algorithm is a more sample-efficient 
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method and is sound under the assumption of faithfulness [85]. In fact if the size of 

Markov Blanket is large, PC algorithm still needs a lot of samples to guarantee its 

performance. There is no theoretical proof and guarantee that the PC algorithm 

admits less false positives than other methods. 

4.4 DASSO-MB  

Detecting gene-gene interactions is a special application of Markov Blanket learning 

method because we only need to detect the parents of the target variable T and don’t 

need to design a complex algorithm to detect spouses of T. Here target variable T is 

the disease status labels and the parents of T are those disease SNPs. The Barkov 

Blanket of T, MB(T), only contains the parents of T. 

All Markov Blanket learning methods are based on the following two Theorems. 

Theorem 3. If a variable belongs to MB(T) which only contains the parents of T, 

then it will be dependent on T given any subset of the variable set {T}-V . 

Proof: This is a direct consequence of Theorem 1 because now MB(T) only contains 

the parents of T.                                                      □ 

Theorem 4. If a variable is not a member of MB(T), then conditioned on MB(T), or 

any superset of MB(T), it will be independent of T.  

Proof: Let X, Y, Z and W represent four mutually disjoint variable sets. Any 

probability distribution p satisfies the weak union property: 

)(|)( WZYXZWYX UU ⊥⇒⊥  [88]. Based on the definition of Markov Blanket, 
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we get that ))(|()( TMBTXTMBX ⊥⇒∉ . Thus, by the weak union property, we 

have ))((|( STMBTX U⊥  for any subset )(}{}{ TMBXTVS −−−⊆ .    □ 

We use a Markov Blanket based algorithm, DASSO-MB, to detect gene-gene 

interactions (Algorithm 4.1). Let T denote the disease status and V the set of all 

variables containing T and all SNPs. There are two types of phases in DASSO-MB: 

forward phase and backward phase. In each loop of the forward phase, if one variable 

shows a maximal 2G score conditioned on MB(T) and is dependent on target variable 

T , it will be admitted into MB(T). This admission operation is followed by a 

backward phase to remove false positives by conducting conditional independence 

tests. If no more variable will be added into MB(T) in the forward phase, we will 

enter the final backward phase to remove variables that do not belong to MB(T). 

Comparing to IAMB, DASSO-MB adds a backward phase after each step of 

selecting a variable in the forward phase to remove false positives, make the size of 

MB(T) as small as possible and therefore improve the sample-efficiency. In addition, 

it uses subset S of MB(T) rather than the remaining set }{)( YTMB −  while 

conducting the conditional independence tests in the backward phase. Here we let the 

size of subset S of MB (T) be larger than zero and exclude the empty set because of 

the joint effect of set of SNPs on the disease status. These two changes can make the 

detected results more reliable.  
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Algorithm 4.1 DASSO-MB 
 
/*Initialization*/ 
V : set of all variables; T: Target variables; 
MB(T)= φ ; 
/*DASSO-MB algorithm*/ 
Begin procedure 
  Forward-MB; 
  Backward-MB; 
End procedure 
 
/* Forward phase */ 
Begin Forward-MB 
Repeat  
   For all }{)( TTMBVxi −−∈ ; 
      ))(|:()( 2 TMBTxGxg ii = ; 
      ))(max(arg ixgX = ; 
         If ))(|( TMBTX ⊥/  
           }{)()( XTMBTMB ∪= ;  
         End If 
   End For 
   Backward-MB; 
   Until MB(T) has not changed; 
End 
 
/*Backward phase*/ 
Begin Backward-MB 
   For all )(TMBY ∈  
     If  }){)(( YTMBS −⊆∃  

s.t. )|( STY ⊥  and 0)( >Ssize  
}{)()( YTMBTMB −= ; 

     End If 
   End For 
End 
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4.5 Experimental Results  

4.5.1 Epistatic Models 

We evaluate the proposed DASSO-MB on simulated data sets, which are generated 

from three commonly-used disease models developed elsewhere [41, 44]. We show 

the three disease models in Table 4.1. 

Table 4.1 Three two-locus epistatic models 
Model 1 AA Aa aa 

BB α  )1( θα +  
2)1( θα +  

Bb )1( θα +  
2)1( θα +  

3)1( θα +  

bb 
2)1( θα +  

3)1( θα +  
4)1( θα +  

Model 2 AA Aa aa 

BB α  α  α  

Bb α  )1( θα +  2)1( θα +  

bb α  
2)1( θα +  4)1( θα +  

Model 3 AA Aa aa 

BB α  α  α  

Bb α  )1( θα +  )1( θα +  

bb α  )1( θα +  )1( θα +  

 

Table 4.1 lists the disease odds for these three epistatic models, where α  is the 

baseline effect and θ  is the genotypic effect. Assume an individual has genotype 
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Ag  at locus A and genotype Bg  at locus B in a two-locus epistatic model, then the 

disease odds are defined as   

),|(/),|( BABA ggDpggDp                       (4-7) 

where ),|( BA ggDp is the probability that an individual has the disease given 

genotype ),( BA gg  and ),|( BA ggDp  is the probability that an individual does not 

have the disease given genotype ),( BA gg .  

In Model1 the odds of disease increase in a multiplicative mode both within and 

between two loci. For example, an individual with Aa at locus A has larger odds 

which are θ+1  times relative to those of an individual who is homozygous AA; the 

aa homozygote has further increased disease odds by 2)1( θ+ . We can also find 

similar effects on locus B. Finally the odds of disease for each combination of 

genotypes at loci A and B can be obtained by the product of the two within-locus 

effects. Model2 demonstrates two-locus interaction multiplicative effects because at 

least one disease-associated allele must be present at each locus to increase the odds 

beyond the baseline level. Moreover the increment of the disease-associated allele at 

loci A or B can further increase the disease odds by the multiplicative factor θ+1 . 

Model3 specifies two-locus interaction threshold effects. Like Model2, Model3 also 

requires at least one copy of the disease-associated alleles at both loci A and B. 

However the increment of the disease-associated allele does not increase the risk 

further. We call this as disease threshold effect. It means a single copy of the 

disease-associated allele at each locus is required to increase odds of disease and this 
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is the disease threshold. But after the disease threshold has already been met, having 

both copies of the disease-associated allele at either locus has no additional influence 

on disease odds.    

To generate data, we need to determine three parameters associated with each 

model: the marginal effect of each disease locus (λ ), the minor allele frequencies 

(MAF) of both disease loci, and the strength of linkage disequilibrium (LD) between 

the unobserved disease locus and a genotyped locus. LD is a non-random association 

of alleles at different loci and is quantified by the squared correlation coefficient 

2r calculated from allele frequencies [89]. The prevalence of a disease is the 

proportion the total number of cases of the disease in the population and in this paper 

we assume that the disease prevalence is 0.1 for all these three disease models [41]. 

The marginal effect of each disease locus (λ ) can be determined by the baseline 

effect α  and the genotypic effect θ  in Table 4.1 and the minor allele frequencies 

(MAF) of both disease loci. So first we fix λ , the disease prevalence and MAF of 

both disease loci. Then we numerically derive the model parameters θ  and α . 

Based on θ  and α , we calculate the conditional probability of each genotype 

combination given disease status which is necessary for generating data [90]. We set 

parameters for each model as follows: 

 Model1: λ =0.3; 2r =0.7, 1.0;  MAF=0.05, 0.1, 0.2, 0.5. 

 Model2: λ =0.3; 2r =0.7, 1.0;  MAF=0.05, 0.1, 0.2, 0.5.  

 Model3: λ =0.6; 2r =0.7, 1.0;  MAF=0.05, 0.1, 0.2, 0.5. 



62 

For each non-disease marker, we randomly chose its MAF from a uniform 

distribution in [0.0. 0.5]. We generate 50 datasets and each dataset contains 100 

markers genotyped for 1,000 cases and 1,000 controls based on each parameter 

setting for each model.   

4.5.2 Simulation Analysis 

We compare the DASSO-MB algorithm with four commonly used methods: 

BEAM, SVM, MDR, and stepPLR on the three simulated disease models.  We use 

power as our evaluation criterion, which is defined as the proportion of simulated 

datasets in which all diseases associated markers are identified without any false 

positives, to measure the performance of each method.  

BEAM uses a Bayesian marker partition model to partition SNPs into three 

groups: group 0 contains markers unlinked to the disease, group 1 contains markers 

contributing independently to the disease, and group 2 contains markers that jointly 

influence the disease. After the partition step by MCMC, candidate SNPs or groups of 

SNPs are further filtered by the B statistic [44]. The BEAM software is downloaded 

from http://www.fas.harv-ard.edu/~junliu/BEAM. We set the p-value threshold of the 

B statistic as 0.1. 

For SVM, we use LIBSVM with a RBF kernel to detect gene-gene interactions 

[91]. A grid search is used for selecting optimal parameters. Instead of using the 

exhaustive greedy search strategy for SNPs as in [46], which is very time-consuming 

and infeasible to large-scale datasets, we turn to a search strategy used in [47]. First 
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we rank SNPs based on the mutual information between SNPs and disease status label 

that is 0 for the control and 1 for the case. Then, we use a sliding window sequential 

forward feature selection (SWSFS) algorithm in [47] based on SNPs rank. The 

window size in SWSFS algorithm determines how robust the algorithm could be and 

we set it to 20.  

Since MDR algorithm can not be applied to a large dataset directly, we first select 

top 10 SNPs by ReliefF [92], a commonly-used feature selection algorithm, and then 

MDR performs an exhaustive search for a model consisting of no more than four 

SNPs that can maximize cross-validation consistency and prediction accuracy. When 

one model has the maximal cross-validation consistency and another model has the 

maximal prediction accuracy, MDR follows statistical parsimony (selects the model 

with fewer SNPs).  

For stepPLR, we download the R package from CRAN 

(ftp://200.17.202.1/CRAN/ web/packages/stepPlr). StepPLR provides both stepwise 

forward and backward methods for feature selection procedure. We use both methods 

and set the regularization parameter λ  to default value (10-4) for the L2 norm of the 

coefficients. 

The results on the simulated data are shown in Figure 4.2. As can be seen, among 

the five methods, the DASSO-MB algorithm performs the best. BEAM is the second 

best. Interestingly, BEAM prefers to assign the two disease-associated markers to 

group 1, which means that BEAM considers that the two disease SNPs affect the 

disease independently. In most cases, the powers of both MDR and SVM are much 
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smaller than those of the DASSO-MB and BEAM algorithms. For the MDR 

algorithm, the poor performance may be due to the use of ReliefF to reduce SNPs 

from a very large dimensionality. 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Performance comparison of DASSO-MB, BEAM, SVM, MDR, and stepPLR. The power is 
defined as the proportion of simulated datasets whose result only contains all disease associated markers 
without any false positives. 

In some other studies, the definition of power is not in a strict sense. For example, 

in [44, 47], the power is defined as the proportion of 50 data sets in which all 

associated markers are identified at a significance threshold of 0.1 after Bonferroni 

correction. In other words, false positives are allowed in the final SNP sets. 

Accordingly, we also evaluate the methods in terms of the power defined as the 
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proportion of simulated datasets in which two diseases associated markers are 

identified with no more than two false positives. The results of those three models are 

shown in Table 4.2. In parentheses we list the average number of false positives. From 

Table 4.2, we can see that the DASSO-MB again outperforms other algorithms. 

Furthermore, the DASSO-MB algorithm finds SNP sets with fewer false positives.  

Table 4.2 Comparison of performance of DASSO-MB, BEAM and SVM. We show the number of 
datasets in which two disease-associated markers can be identified with no more than two false 
positives. The average number of false positives is in the parentheses. 

MAF Model 1 ( 2r =0.7) 
0.05 0.1 0.2 0.5 

DASSO-MB 0(0) 0(0) 0(0) 32(0.16) 
BEAM 0(0) 0(0) 0(0) 22(0.05) 
SVM 1(3) 1(3) 0(0) 33(0.7) 

MAF Model 1 ( 2r =1) 
0.05 0.1 0.2 0.5 

DASSO-MB 0(0) 0(0) 0(0) 46(0.11) 
BEAM 0(0) 0(0) 0(0) 36(0.07) 
SVM 0(0) 0(0) 1(2) 43(0.76) 

MAF Model 2 ( 2r =0.7) 
0.05 0.1 0.2 0.5 

DASSO-MB 0(0) 8(0) 26(0.12) 18(0) 
BEAM 0(0) 2(0) 10(0.3) 9(0.11) 
SVM 0(0) 2(1.5) 14(0.93) 21(0.8) 

MAF Model 2 ( 2r =1) 
0.05 0.1 0.2 0.5 

DASSO-MB 10(0) 22(0.05) 42(0.05) 33(0.03) 
BEAM 8(0.13) 7(0) 17(0.24) 27(0.11) 
SVM 1(2) 3(0.67) 22(1.18) 33(0.94) 

MAF Model 3 ( 2r =0.7) 
0.05 0.1 0.2 0.5 

DASSO-MB 24(0.04) 44(0.14) 47(0.02) 11(0.09) 
BEAM 21(0.14) 24(0) 32(0.09) 11(0.09) 
SVM 1(1) 6(1.83) 29(0.83) 29(0.83) 

MAF Model 3 ( 2r =1) 
0.05 0.1 0.2 0.5 

DASSO-MB 34(0.03) 50(0.08) 49(0.04) 31(0.06) 
BEAM 33(0.03) 47(0.04) 43(0.09) 31(0.1) 
SVM 5(1.6) 23(1.52) 42(0.64) 38(0.55) 



66 

Compared to the strict definition of power, a difference we can see is that for MAF > 

10%, SVM actually detects the two disease associated markers in more datasets than 

BEAM, however, at the cost of introducing more false positives.  
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Chapter 5 Detecting Gene-Gene Interactions using Bayesian 
Networks with a New Scoring Function 
 

Chapter 4 demonstrates that the Markov Blanket based method, DASSO-MB, 

outperforms other commonly used statistical and machine learning methods in 

gene-gene interaction detection. In this Chapter, I propose a Bayesian Network 

structure learning method, EpiBN (Epistatic interaction detection using Bayesian 

Network model), to detect gene-gene interactions. Comparing to Markov Blanket 

based methods, the merits of applying Bayesian Network structure learning method 

to gene-gene interaction detection include: (1) the new scoring function for Bayesian 

Network structure learning in EpiBN can reflect higher-order interactions and detect 

the true number of disease SNPs, and are not sample-consuming; and (2) heuristic 

Bayesian Network structure learning method can solve the classical XOR problem, 

which may hinder the applications of Markov Blanket based approaches. 

5.1 Bayesian Networks 

A Bayesian Network is a directed acyclic graph (DAG) G consisting of nodes 

corresponding to a random variable set },...,,{ 21 nXXX  and edges between nodes, 

which determine the structure of G and therefore the joint probability distribution of 

the whole network [78, 93]. The DAG G encodes the Markov condition property: 

each variable is conditionally independent of its nondescendants, given its parents in 

G. By applying the Markov condition property, the joint probability distribution J can 

be represented as  
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∏
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n

i
iin XPaXPXXP

1
1 ))(|(),...,(                       (5-1) 

where )( iXPa  denotes the set of parents of iX in G . Therefore, there are two 

components in a Bayesian Network. The first component is the DAG G reflecting the 

structure of the network. The second component, θ , describes the conditional 

probability distribution ))(|( ii XPaXP  to specify the unique distribution J on G.  

Bayesian Networks provide models of causal influence and allow us to explore 

causal relationships, perform explanatory analysis, and make predictions. 

Genome-wide association studies attempt to identify the gene-gene interaction among 

a set of SNPs, which are associated with one certain type of disease. Therefore, we 

can use Bayesian Networks to represent the relationship between genetic variants and 

a phenotype (disease status), as shown in Figure 5.1. The n SNP nodes and the 

disease status/label node form a two-layer Bayesian Network and we want to 

determine which SNP nodes are the parent nodes of the disease status node.    

 

 

 

 

 

 

Figure 5.1 A Bayesian Network for detecting gene-gene interactions in genome-wide association 
studies. Genome-wide association studies attempt to identify the k-way gene-gene interaction among 
SNPs: SNP1, SNP2,…,SNPk, which are associated with disease.  
 

Disease

SNP1 SNP2 SNPk SNPnSNPk+1
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By modeling the association between SNPs and the disease status based on 

Bayesian Networks, we transform detecting gene-gene interactions into structure 

learning of Bayesian Networks from GWAS data. There are two types of structure 

learning methods for Bayesian Networks: constraint-based methods and 

score-and-search methods. The constraint-based methods first build the skeleton of 

the network (undirected graph) by a set of dependence and independence 

relationships. Next they direct links in the undirected graph to construct a directed 

graph with d-separation properties corresponding to the dependence and 

independence determined [79, 94-95]. Even though constraint-based methods are 

developed with a rigorous theoretical foundation, errors in conditional dependence 

and independence will affect the stability of constraint-based methods, and this 

problem is especially serious when the number of samples is small. The 

score-and-search methods view a Bayesian Network as a statistical model and 

transform the structure learning of Bayesian Networks into a model selection 

problem [96]. To select the best model, a scoring function is needed to indicate the 

fitness between a network and the data. Then the learning task is to find the network 

with the highest score. Thus, score-and-search methods typically consist of two 

components, (1) a scoring function, and (2) a search procedure.  In this disseartation, 

I focus on structure learning approaches for Bayesian Networks based on 

score-and-search methods because score-and-search methods are more robust for 

small data sets than constraint-based methods.  



70 

5.2 A New BN Scoring Function 

One of the most important issues in score-and-search methods is the selection of 

scoring function. A natural choice of scoring function is the likelihood function. 

However, the maximum likelihood score often overfits the data because it does not 

reflect the model complexity. Therefore, a good scoring function for Bayesian 

Networks’ structure learning must have the capability of balancing between the 

fitness and the complexity of a selected structure. There are several existing scoring 

functions based on a variety of principles, such as the information theory and 

minimum description length (e.g. BIC  score, AIC  score, and MDL score) [97-99] 

and Bayesian approach (BDe score) [100].   

Suppose that a dataset D includes n variables },...,,{ 21 nXXX  and N samples, 

we can write a general information-based scoring function as:  

)()(),ˆ|(log)|(log NfSCSDPSDP S −= θ                          (5-2) 

)1()(
1

−= ∑
=

i

n

i
i rqSC                                           (5-3) 

where Sθ̂ is an estimate of parameters from the maximum likelihood method for the 

structure S, qi is the number of configurations of the parent set Pa(Xi) of  Xi, ri  is 

the number of states of Xi, C(S) represents the structure complexity, and f(N) is a 

penalization function. The first term of this score scheme measures the fitness 

between the structure and data, and the second term reflects structure complexity. 

With the maximum likelihood method [96], we can get  
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where Nijk is the number of instances where Xi takes its k-th value and the set of 

variables Pa(Xi) takes its j-th configuration; Nij is the number of instances where the 

set of variables Pa(Xi) takes its j-th configuration. Obviously, ∑ =
= ir

k ijkij NN
1

. 

If we set f(N)=1, we get the AIC score as 

)(),ˆ|(log)|(log SCSDPSDP S −= θ                   (5-5) 

If we set f(N)=1/2log(N), then the BIC score is  

)log()(2/1),ˆ|(log)|(log NSCSDPSDP S −= θ             (5-6) 

The BIC score and AIC score are derived from some approximations when the 

number of samples N approaches infinity [101]. If the number of samples is small, 

the approximation in the inference of both AIC score and BIC score can not hold any 

more and the structure penalty term in Eq. (5-5) and Eq. (5-6) are not suitable. When 

using information-based scores in the Bayesian Network model to detect gene-gene 

interactions, the BIC score is too strict and prefers to select simple structures, while 

the AIC score prefers to select complex structures [102].  

We herein describe a new information-based scoring function to detect 

gene-gene interactions by Bayesian Network model. In the Bayesian Network for 

gene-gene interaction detection in Figure 5.1, we are only concerned with one target 

node, the disease status node, and we want to detect its parent SNP nodes. We 

represent the local structure around the disease status node as LDS (Local Disease 

Structure), which consists of the disease status node and edges from candidate 
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disease SNP nodes to the disease status node.  Because of the decomposability 

property of information-based scoring function, the AIC score for LDS is:  

)1()/log(

)(),ˆ|(log)|(log

1 1
−−=

−=

∑∑
= =

rqNNN

LDSCLDSDPLDSDP

jjk

q

j

r

k
jk

LDSθ
               (5-7) 

where C(LDS) is the complexity of the local disease structure, q is the number of 

configurations of parent SNP nodes, r is the number of states of the disease status 

node, Njk is the number of instances where the disease status node takes its k-th value 

and the parent SNP nodes take their j-th configuration, Nj is the number of instances 

where the parent SNP nodes take their j-th configuration, and ∑ =
=

r

k jkj NN
1

.  

We start our search from an empty local disease structure LDS0, and we can 

obtain the AIC score for LDS0: 

)1()/log(

)(),ˆ|(log)|(log

1

000 0

−−=
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LDSθ
            (5-8) 

where Nk is the number of instances in which the disease status node takes its k-th 

value, and ∑ =
=

r

k kNN
1

. 

For further inference, we use X for the target disease status node and use Pa(X) 

for its parent SNP nodes. Based on the concept of mutual information and Eq. (5-7) 

and Eq. (5-8), the mutual information between X  and Pa(X) can be expressed as 

[103]: 
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i.e. the mutual information between X and Pa(X) coincides with the difference 

between the log-likelihood of LDS and LDS0. 

The G2 test is commonly used to test independence and conditional 

independence between two variables for discrete data. From the general formula for 

G2, we know that the value of G2 can also be calculated from mutual information [81]. 

Thus, we can write the G2 test value between X and Pa(X) as: 

         )))(,((2))(,(2 XPaXMINXPaXG =                     (5-10) 

The number of degrees of freedom for G2 test between X and Pa(X) is: 

)1)(1(
)1))(()(1)(()))(,(( 2

−−=
−−=

qr
XPaCatXCatXPaXGDF

           (5-11) 

where Cat(V) is the number of categories of the variable V, and thus rXCat =)( and 

qXPaCat =))(( [79].  

It is interesting to note that the difference between the complexity of LDS and 

LDS0 is equal to the degree of freedom of G2(X,Pa(X)) by 

           
)))(,(()1)(1(

)1()1()()(
2

0

XPaXGDFqr

rqrLDSCLDSC

=−−=

−−−=−
                     (5-12) 

By applying Eq. (5-7)-(5-12), the difference of AIC scores between LDS and 

LDS0 is: 
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Thus, the AIC score becomes:  

)|(log))))(,((2))(,((2/1
)|(log

0
22 LDSDPXPaXGDFXPaXG

LDSDP
+−=

        (5-14) 

where )|(log 0LDSDP is a constant.  

The distribution of G2 asymptotically approximates to that of chi-square with the 

same number of degrees of freedom [79]. The chi-square distribution with k degrees 

of freedom has a variance of 2k, and therefore 2DF(G2(X,Pa(X))) is the variance of 

the corresponding G2  distribution. Since G2(X,Pa(X)) reflects the bias, the AIC 

score in Eq. (5-14) indicates a trade-off between bias and variance in terms of the G2 

statistic G2(X,Pa(X)) and its variance. One problem for the AIC score in Eq. (5-5), Eq. 

(5-7), and Eq. (5-14) is that it assumes that the noise variance is equal to one, which 

is not true especially when applied to discrete data like SNP data [104-105]. We can 

confirm this by comparing 2DF(G2(X,Pa(X))) with the true variance of G2(X,Pa(X)) 

from data. There is a large deviation between them when Pa(X) contains more than 

two parent nodes. The more parent nodes Pa(X) contains, the larger the deviation is. 

One simple but practical way to consider and estimate the noise variance in AIC 

score is replacing 2DF(G2(X,Pa(X))) in Eq. (5-14) with the true variance of 

G2(X,Pa(X)) from data , and our new epistatic scoring function (EpiScore) becomes:   
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where VarianceD(G2(X,Pa(X))) comes from the estimation of the variance of the 

corresponding G2 distribution from data. Our new scoring function estimates the 

penalty term from data to guarantee its reliability.   

5.3 A Branch-and-Bound Algorithm for Local Structure 
Learning in Bayesian Networks  
 

The computational task in score-and-search methods is to find a network structure 

with the highest score. The searching space consists of a super-exponential number of 

structures and thus exhaustively searching optimal structure from data for Bayesian 

Networks is NP-hard [106]. One simple heuristic search algorithm is greedy 

hill-climbing algorithm. In greedy hill-climbing algorithm, there are three types of 

operators that change one edge at each step: add an edge, remove an edge, and 

reverse an edge. By these three operators, we can construct the local neighborhood of 

the current network. Then we select the network with the highest score in the local 

neighborhood to get the maximal gain. This process can be repeated until it reaches a 

local maximum. However, greedy hill-climbing algorithm cannot guarantee a global 

maximum [96].  Other structure learning methods for Bayesian Networks include 

Branch-and-Bound (B&B) [107-109], genetic algorithms, [110] and Markov chain 

Monte Carlo [111].  

We employ B&B algorithm in our study because the B&B algorithm can 

guarantee the optimal results in a significantly reduced search time compared to 
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exhaustive search. Our EpiBN method uses B&B algorithm to search a local disease 

structure that maximizes the EpiScore in Eq. (5-15). The pseudo code of EpiBN is 

shown in Algorithm 5.1. In EpiBN, the procedure BN_B&B starts from an empty 

parent node set and constructs a depth-first search tree to find the optimal parent 

(disease SNPs) set for the disease status node. In our B&B search, instead of using 

the pruning strategy as in [107-108], which sets a lower bound for the MDL score to 

prune the search tree, we stop the recursive calls when we observe that the score will 

decrease on the children state of the current state. This strategy cannot guarantee  

Algorithm 5.1 EpiBN                 
Input: Data D, Disease status node, all n SNP nodes  

Output: Disease SNP nodes, which has the maximum 
EpiScore on Disease status node 

Procedure [S1 P1] = BN_B&B (V1) 

Input: SNP node set V1.  

Output: EpiScore S1, parent SNP node set P1.  

Begin 

1. Compute EpiScore tempS1 for V1, S1=tempS1, P1=V1 
2. IF V1=null then i=0 else i= V1 (end) 
3. For  i+1≤q≤n 

Begin 

   (1) V2= V1∪q Compute EpiScore tempS2 for V2  

   (2) IF tempS2 > tempS1 then [S2  P2] = BN_B&B (V2) 

   (3) IF S2 > S1 then S1=S2, P1= P2 

   End 

End                                   
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global optima theoretically. However, it will significantly speed up the search process 

and perform well practically.   

5.4 MCMC Screening Method for Real Datasets 

Even though the B&B algorithm uses a lower bound to reduce the searching space, it 

still has an exponential time complexity in the worst case and is not feasible to be 

directly applied to real GWAS data. Therefore, an efficient screening method is 

necessary. Traditional screening methods assign a score to every single SNP and 

select a subset of SNPs with high scores. However, these methods ignore the joint 

effect of SNPs on disease and are not suitable for detecting gene-gene interactions 

from real GWAS data.  

In this dissertation, we use the Markov chain Monte Carlo (MCMC) method 

[111] to perform the screening process. In the Bayesian Network for gene-gene 

interaction detection, we use a Metropolis-Hastings method to build a Markov chain 

to get the posterior probability for each edge from the SNP nodes to the disease status 

node. At each step of the Markov chain, we use two types of moves: add an edge and 

remove an edge. The proposed move is accepted with probability  

},1min{ αα R=                                      (5-16) 

where 

)|())'((#
)|'())((#

DLDSPLDSnbd
DLDSPLDSnbdR =α                         (5-17) 

where #(nbd(LDS)) is the cardinality of the neighborhood of the current local disease  

structure and LDS’ is the candidate local disease  structure in each step of the 
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Markov chain. Since LDS and LDS’ differ in one move, the ratio 

))'((/#))((# LDSnbdLDSnbd  is one. In addition, the posterior probability of the 

local disease structure, )|( DLDSP , is that )()|()|( LDSPLDSDPDLDSP ∝ and we 

take a uniform distribution over the considered local disease structures. Therefore, 

the acceptance ratio in Eq. (5-17) becomes: 

)|(/)'|( LDSDPLDSDPR =α                           (5-18) 

The likelihood of local disease structure, )|( LDSDP , can be calculated by Eq. 

(5-15). 

Based on the result from MCMC method, we select SNP nodes associated with 

edges whose posterior probabilities larger than 0. Since we consider the association 

of multiple SNPs with disease status at each step of the Markov chain in our MCMC 

method, the potential disease SNPs related with gene-gene interactions will be kept in 

the final subset of SNPs. 

5.5 Experimental results 

In this section, we assess the proposed EpiBN method on both simulated datasets and 

real biological datasets. 

5.5.1 Analysis of Simulated Data 

We first evaluate the proposed EpiBN method on four simulated data sets, which are 

generated from three commonly used two-locus epistatic models in section 4.5 and 

one three-locus epistatic model developed in [44]. We show the three-locus epistatic 
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model (model4) in Table 5.1. There are three disease loci in model4 [44]. Some 

certain genotype combinations can increase disease risk in model4 and there are 

almost no marginal effects for each disease locus.    

 

Table 5.1 A three-locus epistatic model 
AA 

Model 4 
BB Bb bb 

CC α  α  α  

Cc α  α  )1( θα +  

cc α  )1( θα +  α  

Aa 
 

BB Bb bb 

CC α  α  )1( θα +  

Cc α  )1( θα +  α  

cc )1( θα +  α  α  

aa 
 

BB Bb bb 

CC α  )1( θα +  α  

Cc )1( θα +  α  α  

cc α  α  α  

 

For model1, model2, and model3, we use the same parameters as in section 4.5. 

For model4, we arbitrarily set 7=θ  because there are almost no marginal effects in 

model4. We first generate 50 datasets and each dataset contains 100 markers 

genotyped for 1,000 cases and 1,000 controls based on each parameter setting for 
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each model.  To measure the performance of each method, we use power as our 

evaluation criterion, which is defined as the proportion of simulated datasets in which 

all diseases associated markers are identified without any false positives. 

We compare the EpiBN algorithm with three methods: BEAM, SVMs, and MDR 

on the four simulated disease models. The results on the simulated data are shown in 

Figure 5.2 and Figure 5.3. As can be seen, among the four methods, the EpiBN 

method performs the best, and BEAM is the second best. One possible reason is that 

BEAM tries to detect single disease locus and epistatic interactions simultaneously. 

This strategy makes BEAM unnecessarily over-complex. In most cases, the powers 

of both MDR and SVM are much smaller than those of the EpiBN and BEAM 

algorithms. 

 

 

 

 

 

 

 

 

 

Figure 5.2 Performance comparison of EpiBN, BEAM, SVM and MDR ( 2r =0.7). 
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Figure 5.3 Performance comparison of EpiBN, BEAM, SVM and MDR ( 2r =1). 

 

Typically, GWAS can not generate a large number of samples due to the high 

experiment cost. Thus, the performance of various computational methods for 

gene-gene interaction detection in case of small samples is important. We explore the 

effect of the number of samples on the performance of EpiBN, MDR, BEAM and 

SVM.  The parameters used are: 1.1=λ for model1, 9.0=λ  for model2, 

8.1=λ for model3, and 7=θ  for model4. To test the scalability of EpiBN on large 

number of SNPs, we generate synthetic datasets containing different number of 

markers (40, 200, and 1000) genotyped for different number of samples (100, 200, 

300, 400, 600, 1000, and 2000) with 12 =r and MAF=0.5.   

The results are shown in Figure 5.4, Figure 5.5, and Figure 5.6. We find that 

EpiBN is more sample-efficient than other methods in that it can achieve the highest 
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power when the number of samples is the same. In addition, it needs fewer samples 

to reach the perfect power comparing to other methods. BEAM is still the second best. 

The powers of both MDR and SVM are still smaller than those of the EpiBN and 

BEAM algorithms. However, MDR and SVM demonstrate a better performance 

comparing to Figure 5.3 and Figure 5.4. This is perhaps due to the fact that increasing 

the marginal effect sizeλ for model1-model3 makes the detecting task suitable for the 

pre-filtering based methods such as MDR and SVM. The result from model4 is 

particularly interesting: EpiBN exhibits overwhelming superiority over other three 

methods, as EpiBN yields a perfect power even the number of samples is small 

(around 600), which indicates that EpiBN is especially suitable for detecting epistatic 

interactions with weak or no marginal effects. From Figure 5.4, Figure 5.5, and  

 

 

 

 

 

 

 

 

 

 
Figure 5.4 Comparison of sample efficiency on datasets with 40 SNPs. 
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Figure 5.5 Comparison of sample efficiency on datasets with 200 SNPs. 
 

 

 

 

 

 

 

 

 

 

Figure 5.6 Comparison of sample efficiency on datasets with 1000 SNPs.  
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Figure 5.6, we can also find that increasing the number of genotyping markers, like 

adding some noise to the data, will impair the power of all methods, especially in 

case of small samples. 

5.5.2 Analysis of AMD Data 

From the results on simulated data, EpiBN demonstrates a better performance than 

three other methods. Notice that a real genome-wide case-control association study 

may require genotyping of 30,000–1,000,000 common SNPs. In this section, we show 

that EpiBN algorithm can also handle large-scale datasets in real genome-wide 

case-control studies. We consider an Age-related Macular Degeneration (AMD) 

dataset, which contains 116,204 SNPs genotyped with 96 cases and 50 controls [112]. 

AMD (OMIM 603075) [113] is a common genetic disease related to the progressive 

visual dysfunction in age over 70 in the developed country. A GWA study was 

successfully conducted on this disease finding two associated SNPs, rs380390 and 

rs1329428 (‘rs’: assigned reference SNP ID by dbSNP [114]) in non-coding region of 

the gene for complement factor H (CFH), which is located on chromosome 1 in a 

region linked to AMD [112]. 

In the phase of preprocessing data, we remove non-polymorphic SNPs and those 

that significantly deviated from Hardy-Weinberg Equilibrium (HWE). We also 

remove all SNPs that have more than five missing genotypes. After filtering, there 

are 97, 327 SNPs lying in 22 autosomal chromosomes remained.  
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We first perform the screening process and select 51 potential disease SNPs 

related with AMD by MCMC method (see detail in section 5.4). Among these 51 

selected SNPs, EpiBN detects two associated SNPs: rs380390 and rs2402053, which 

have a 2G test p-value of 5.36×10-10. The first SNP, rs380390, is already found in 

[112] with a significant association with AMD. The other SNP detected by the 

EpiBN algorithm is SNP rs2402053, which is intergenic between TFEC and TES in 

chromosome 7q31 [115].  

Even though no evidences show that rs2402053 is related with AMD, it is worth 

noting that mutations in some genes on 7q31-q32 are revealed in patients with retinal 

disorders [116-117]. Therefore, rs2402053 may be a new genetic factor, on 

chromosome 7q, contributing to the underlying mechanism of AMD. The real 

mechanism of interaction between rs380390 and rs2402053 should be explored further 

by biological experiments.   

5.5.3 Analysis of LOAD Data 

Late-onset Alzheimer's disease (LOAD) is the most common form of Alzheimer's 

disease and usually occurs in persons over 65. It causes patients’ degeneration of the 

ability of thinking, memory, and behavior. The apolipoprotein E (APOE) gene is one 

genetic factor that accounts for affecting the risk of LOAD. There are three common 

variants of the APOE gene: 2ε , 3ε , and 4ε . The appearance of the 4ε  allele in a 

person’s APOE genotype increases the LOAD risk. Rieman et al. conducted 

genome-wide association studies to detect other generic risk factors related with 
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LOAD [118]. They found 10 SNPs showing significant association with LOAD in 

the APOE 4ε carriers. All these 10 SNPs are in the GRB-associated binding protein 

2 (GAB2) gene.  

We download the LOAD GWAS data from 

http://www.tgen.org/neurogenomics/data. After pre-processing, we have 287,479 

SNPs and 1408 samples (857 cases and 551 controls). EpiBN keeps APOE as one 

parent of the disease status node and identifies two other SNPs: rs1931565 and 

rs4505578, which may interact with APOE and affect the LOAD risk. The rs1931565 

SNP is intergenic between ABCA4 and ARHGAP29 in chromosome 1p22. ABCA4 

is related with some brain-related diseases including stargardt disease 1, early-onset 

severe retinal dystrophy and age-related macular degeneration. On the other hand, 

some ABC transporter family genes such as ABCA1, ABCA2, ABCA7, and 

ABCA12 are associated with Alzheimer's disease [119]. Therefore, we can speculate 

that the interaction among rs1931565, rs4505578 and APOE may affect some brain 

functions and therefore increase the LOAD risk.  

Our results do not contain any of the 10 SNPs in GAB2 found in [118]. One 

reason is that Rieman et al. only explored two-locus interactions related with LOAD. 

In fact, the gene-gene interactions are very complicated. If we restrict the number of 

genetic risk factors as two, we will miss some potential disease SNPs associated with 

complex diseases.  
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Chapter 6 Conclusion and Future Work 

Cancer is a system biology disease and two types of genes: oncogenes and tumor 

suppressors play the central role in the process of transforming normal cells into 

tumor cells. These cancer-related genes may cooperate with each other or affect other 

genes to regulate some fundamental cell processes such as death, proliferation, 

differentiation, and migration. Thus, identifying differential gene relations and 

gene-gene interactions associated with cancer can contribute to the understanding of 

the underlying molecular mechanisms of cancer and therefore help to improve 

pathogenesis, prevention, diagnosis, and treatment of cancer. 

6.1 Summary of Research 

In this dissertation, I use machine learning and computational methods to address two 

problems in cancer research: (1) identifying differential gene relations and (2) 

detecting gene-gene interactions (epistasis). Over the past two decades, a lot of 

high-throughput techniques have been developed to generate different types of cancer 

research data such as gene expression, chip-on-chip, next generation sequencing, 

RNA-seq, and genome-wide association studies (GWAS). In this dissertation, I focus 

on gene expression data and GWAS data and perform the analysis at two levels: 

genes and genetic variants. Identifying differential gene relations can reveal the 

activities of cancer-related genes in a biological system. On the other hand, detecting 

gene-gene interactions can determine genes that influence the phenotype (disease and 

non-disease).  
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To identify gene pairs that have different relationships in normal versus cancer 

tissues, I develop an integrative method based on the bootstrapping K-S test to 

evaluate a large number of microarray datasets generated from 21 different types of 

cancer. The significant alteration of gene relations can greatly extend our 

understanding of the molecular mechanisms of human cancer. My method avoids the 

disadvantage of the traditional t-test, which only considers the mean and variance of 

samples and fails in the analysis of microarray data with small numbers of samples. 

Instead of the t-test, I propose the use of the bootstrapping K-S test method to detect 

gene pairs with different distributions of Pearson correlation coefficient values in 

normal and tumor samples. The experimental results demonstrate that our method can 

find meaningful alterations in gene relations and open a potential door for further 

cancer research.  

For gene-gene interaction detection, I propose to use two Bayesian Network 

based methods, DASSO-MB and EpiBN, to address two critical challenges: 

searching and scoring. DASSO-MB is based on the concept of Markov Blanket in 

Bayesian Networks. Comparing with many computational methods used for 

identification of gene-gene interactions, DASSO-MB can increase power and reduce 

false positives. This is critical in saving the potential costs of biological experiments 

and being an efficient guideline for pathogenesis research. However, DASSO-MB is 

sample-consuming and the greedy searching strategy in DASSO-MB is not suitable 

for detecting some interaction models with no independent main effects for each 

disease locus. To address the problems of DASSO-MB, I propose EpiBN, a Bayesian 
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Network structure learning method. In EpiBN, I develop a new scoring function, 

which can reflect higher-order gene-gene interactions and detect the true number of 

disease markers, and apply a fast Branch-and-Bound algorithm to learn the structure 

of a two-layer Bayesian Network containing only one target node. To make my 

method scalable to GWAS data, I use a MCMC method to perform the screening 

process. The experimental results demonstrate that EpiBN outperforms some other 

commonly-used methods and is scalable to GWAS data. 

6.2 Future Work 

6.2.1 New Score Scheme for Differential Gene Network Detection  

Most cancer research methods based on microarray technology only focus on 

identifying differential genes as biomarkers for cancer detection or future therapy and 

detecting differential gene relations is a complementary approach. An obvious 

drawback of these two methods is that they ignore the importance of cancer research 

at system level. System biology explores the interactions between subsets of genes or 

all genes and how these interactions regulate functions and behaviors of a biological 

system.  

In order to understand the inside mechanism of cancer, we must examine the 

alteration of system structures and dynamics related with cellular functions and 

biological processes, rather than just a simple list of differential genes or differential 

gene relations. Identifying all differential genes and differential gene relations in an 

organism is like listing all the malignant parts in a system. While such a list provides 
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a catalog of the individual components for further research, it is not sufficient to 

understand the complex mechanism underlying different types of cancer. We need to 

know how these parts affect and change the inside mechanism in a system. Therefore 

detecting differential signaling pathways which respond to different cell states is a 

better choice for cancer research. It is an extension of the method for detecting 

differential genes or differential gene relations.  

We have already introduced several different methods for detecting differential 

gene networks in Chapter 2. There are several shortcomings of these methods. First, 

it is hard to measure the alteration of a pathway or to determine whether a pathway 

has been significantly altered. For example, Levine et al. use five score schemes as 

pathway ‘activation metrics’ [36]. Rahnenfuhrer et al. analyze the change of activity 

of a pathway for different samples based on the calculation of correlation coefficients  

[37]. These two methods only consider a part of the activity of a pathway. Second, all 

the methods for differential pathway analysis are based on a single dataset thus lack 

the power of integrative methods. Integrating microarray datasets obtained from 

different laboratories can combine complementary pieces of information in various 

datasets, enable broader understanding of gene regulation, and achieve more reliable 

and more valid results. Moreover, integrative methods for multiple microarray 

datasets across different types of cancers help us identify deregulated signaling 

pathways that are common to all types of cancer or specific to some certain types of 

cancer. Third, several differentia pathway analysis methods extract pathways from 
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KEGG to determine whether these pathways are significantly altered or not. However, 

pathways in KEGG database give us incomplete information.  

For future studies, I would like to detect differential gene networks by an 

integrative method using multiple microarray datasets. A new score scheme should 

be used to measure the alteration of a gene network by considering both gene 

expression and gene relation. The change of expression level reflects the altered 

activity of a gene and the change of gene relation can reflect the alteration of gene 

function. So we treat gene and gene relation as equally important entities.  

6.2.2 Detect Substantial SNP-Gene Pairs 

Genetical genomics provide the genetic basis of variation in gene expression. 

However, one serious issue of genetical genomics in case-control studies is that 

genetical genomics can only find strongly associated SNP-gene pairs. How these 

SNPs influence disease susceptibility via affecting the activity of genes is still 

mysterious for us. Therefore a novel method is needed to detect substantial SNP-gene 

pairs related with the alteration of disease susceptibility. 

We show the relations of GWAS, genetical genomics (GOGE, eQTL) and 

detection of differential genes in Figure 6.1, and Figure 6.1 demonstrates that GOGE 

studies connect SNP data and gene expression data as a bridge. By analyzing Figure 

6.1, we can find that there are two types of phenotype data: expression data and 

label/disease status. Expression data are one type of intermediate phenotype data that 

are related to DNA sequence variants. The assumption of GOGE studies is that 
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genetic variants can exert effects on gene expression and these changes of gene 

expression will cause diseases. But the issue of current GOGE studies is that no 

consistent result can be obtained in Figure 6.1. In other words, causal SNPs detected 

by GOGE studies are not the SNPs showing a strong association with disease status. 

The genes affected by genetic variants are also not differential genes. This issue may 

arise from the association calculation method between SNPs and genes in GOGE 

studies. GOGE studies only calculate associations between SNPs and genes by 

expression data and SNP data in case/control studies, omitting the importance of 

sample labels. Therefore, I would like to design a novel method to detect some 

essential SNP-gene pairs. Among these detected SNP-gene pairs, SNPs should be 

associated with disease status substantially. Genes should show a sound differential 

activity between different types of samples. In the meanwhile these SNPs’ influence 

on the differential activity of genes from controls to cases should be confirmed.  

 

 

 

 

Figure 6.1 Relations of GWAS, genetical genomics (GOGE, eQTL) and detection of differential 
genes/pathways. 
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