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Abstract

This thesis presents various detection strategies and intercept metrics to evaluate

and design an intra-pulse radar-embedded communication system. This system

embeds covert communication symbols in masking interference provided by the

reflections of a pulsed radar emission. This thesis considers the case where the

communicating device is a transponder or tag present in an area that is illumi-

nated by a radar. The radar is considered to be the communication receiver.

As with any communication system, performance (as measured by reliability

and data rate) should be maximized between the tag and radar. However, un-

like conventional communication systems, the symbols here should also have a

low-probability of intercept (LPI). This thesis examines the trade-offs associ-

ated with the design of a practical radar-embedded communication system. A

diagonally-loaded decorrelating receiver is developed and enhanced with a sec-

ond stage based on the Neyman-Pearson criterion. For a practical system, the

communication symbols will likely encounter multipath. The tag may then use

a pre-distortion strategy known as time-reversal to improve the signal-to-noise

ratio at the radar receiver thereby enhancing communication performance. The

development of several intercept metrics are shown and the logic behind the de-

sign evolutions are explained. A formal analysis of the processing gain by the

desired receiver relative to the intercept receivers is given. Finally, simulations

are shown for all cases, to validate the design metrics.
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Chapter 1

Introduction

Covert communications has received a great deal of attention over the last century. In this

scenario, a transmitter sends information in such a way that an intended receiver can detect

the transmission, but any surveillance receiver will not be able to detect the transmission.

This concept is called low-probability-of-intercept (LPI) communications. A preliminary

technique involving digital telephony proved quite instrumental for high-level communica-

tions by the Allies in World War II [4]. Wireless transmissions provide a more flexible

framework on which to base an LPI communication system. A wireless paradigm is advan-

tageous for positioning transmitters and receivers. However, by using wireless techniques,

there are more opportunities and flexibility for an intercept receiver to detect the transmis-

sion. The foundation for LPI radio-frequency (RF) communications was laid in the 1930’s

and 1940’s via the spread-spectrum (SS) paradigm [5].

Reproduced from [5], a modern spread-spectrum system is characterized as meeting three

requirements:

1. The carrier is a pseudorandom, wideband signal.

2. The bandwidth of the carrier is much wider than the bandwidth of the data modulation.

3. Reception is accomplished by cross correlation of the received wide-band signal with a

synchronously generated replica of the wide-band carrier.
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Due to requirements 1 and 2, SS signals are very resistant to jamming and can be transmitted

at very low power. Therefore, they provide a very effective LPI communication method.

However, LPI SS communication systems suffer from the "near-far" problem. In other words,

it is difficult for a transmitter and a distant receiver to communicate covertly using SS

methods when an intercept receiver may be located close to the transmitter.

While SS signals are LPI by using noise to mask transmissions, further LPI gains can

be produced by using interference to mask communication transmissions. The high power

interference created by radar transmissions offers an attractive environment in which to

embed communications. A great deal of work has been done to embed communications on

an inter -pulse basis (e.g., [6–13]) where each pulse has a phase shift modulated onto it.

The communication symbol is formed from a sequence of phase shifts transmitted over the

multiple pulses. However, techniques based on an inter-pulse basis suffer from very low data

rates.

A novel method was proposed in [1] to embed covert communication symbols in radar

reflections on an intra-pulse basis. In this system, a transponder or tag communicates

with one or more receivers using communication symbols designed to be correlated with

the ambient radar interference. Three communication symbol design methods were defined

and compared using a decorrelating receiver [14]. These design methods were Eigenvectors-

as-Waveforms, Weighted Combining, and Dominant Projection. The primary metric for

waveform design was symbol-error-rate (SER) as a function of signal-to-interference-plus-

noise ratio (SINR). In addition, a candidate metric to bound the theoretical effectiveness

of intercept receivers was defined and examined. Further developments were given in [15]

illustrating the superiority of the Dominant Projection method of designing REC symbols

with respect to the other two design methods given in [1].

2



1.1 Motivation

The work in [1] and [15] provided a first step in the development of an LPI REC system.

This thesis is motivated by the desire to improve on the previous work and provide a more

formal mathematical framework for the design of a REC system. To design an effective covert

communication system, the rate and reliability of transmitted data should be maximized

while the capability of an intercept receiver to detect the transmissions must be minimized.

Based on the previous work, it is assumed that the Dominant Projection method of

designing waveforms is the preferred method. Therefore, the receiver used by the intended

recipients should be designed to maximize the data reliability while using the Dominant

Projection symbols. It is also necessary to establish the capability of an intercept receiver

to detect the symbols at a given SINR. Observing the SER and probability of intercept as

a function of SINR illustrates the LPI nature of the Dominant Projection symbols. Also,

previous work did not consider the problem of synchronization at the receiver.

This thesis develops a two-stage receiver to maximize data reliability between a trans-

mitter and receiver in the presence of interfering radar scattering. The first stage uses a

diagonally loaded decorrelating receiver to maximize detectability of the symbol with re-

spect to SINR. The receiver forms a K-hypothesis test to detect which symbol was most

likely transmitted. The null hypothesis (no symbol present) is not considered in the first

stage. The second stage uses a Neyman-Pearson criterion to maximize reliability through

the use of a user-defined probability of false alarm (i.e., detecting a symbol when no symbol

is present). In the second stage, the null hypothesis is considered against the symbol se-

lected in thee first stage. By framing the problem as a hypothesis detection, synchronization

is enabled. The first stage scans over time to provide the time instant with the highest

probability of containing a symbol. The scenario when the tag is communicating with the

illuminating radar is considered. In this case, it is shown that pre-distorting the symbols

with a time-reversed estimate of the channel can improve the communication performance.

The intercept metric developed in [1] is re-examined and an alternate metric is proposed.
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A formal analysis is derived comparing the processing gain afforded by the decorrelating

receiver with the gain at the intercept metric. This derivation verifies the potential of intra-

pulse REC as an LPI system. The results are considered at various SINR regimes (e.g., noise

dominant, clutter dominant).

1.2 Organization of Thesis

This thesis is organized as follows. Chapter 2 provides a thorough description of the LPI

communication problem, as well as a brief background on the various processes involved.

The mathematical definition of the received signal model at the radar receiver is given in

Chapter 3. The Dominant Projection method of waveform generation is also given therein.

Chapter 4 discusses the potential for incorporating time reversal when the tag is commu-

nicating with the illuminating radar. The design of the receiver is discussed in Chapter 5,

while the prospective intercept receiver metrics are given in Chapter 6. Chapter 7 formally

derives the processing gain of the diagonally loaded decorrelating receiver and the intercept

metric, as well as the gain advantage of the decorrelating receiver over the intercept metric.

Finally, Chapter 8 provides Monte Carlo simulation results verifying the concepts discussed

in Chapters 5, 6, and 7. Conclusions and future work are given in Chapter 9.
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Chapter 2

Background

Ever since the days of Aenas Tacticus in the 4th Century B.C., military forces have been

implementing systems of secure communications [16]. The objective of a secure commu-

nication system is to reliably distribute information among the intended recipients, while

denying access to the information to any individuals that might intercept the communica-

tions. Encryption has been used to great success in this area, and much research has been

devoted to designing and assessing the effectiveness of encryption strategies [17].

A covert communication system is a secure system that places a further constraint on

minimizing the detectability of the transmission by any unintended recipients. While it is

still important that information be securely and reliably conveyed between a transmitter and

desired receiver, it is of equal importance that any intercept receiver present be prevented

from detecting the transmission. These systems are called low-probability-of-intercept (LPI)

systems. LPI systems can take many forms. For example, steganography is the method of

hiding information in objects such as images or text [18]. Of interest here is the concept of

LPI communications in the radio frequency (RF) regime.

For any LPI system there must be some essential design parameter, known a priori

to the "friendly" transmitter and receiver(s) in the system, that renders the transmission

detectable. For an RF LPI system, an intercept receiver without knowledge of this key
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parameter cannot distinguish between the communication symbol and the background noise

and interference. In other words, the communication symbol must "hide" in interfering noise

and the friendly receivers must possess a "key" to detect its presence. It is important to

recognize that no signal will every be completely LPI (i.e. be impossible to detect) [19].

A frequency-based spread-spectrum approach can be used to form covert symbols. In

direct-sequence spread-spectrum, a communication symbol is chosen from a standard con-

stellation set (e.g., phase shift keying, quadrature amplitude modulation) [20]. This symbol

is then spread over a large bandwidth by multiplying it with a pseudo-random sequence

that has been sampled at a much higher frequency than the communication symbol. To

remain covert, the signal is transmitted at a very low SNR. Further increases in LPI may be

gained from frequency hopping. Knowledge of the spreading code used to form the signal

allows for a friendly receiver to coherently integrate the energy of the signal and distinguish

it from the noise. Due to the wide bandwidth used, this approach also is very resistant to

narrowband jamming [21]. The spread-spectrum approach depends on the noise to mask it

from detection. Therefore, great care must be taken to transmit at a power low enough to

prevent any nearby intercept receiver from detecting the signal. However, transmitting at

lower power also reduces the reliability of the covert communication system. This trade-off

between transmit power and detectability is a reoccurring problem in the covert communi-

cation paradigm.

Another approach is to use interference inherent to the RF environment. For example,

existing communication systems may be exploited to allow a covert signal to be transmit-

ted [22]. The interference will typically be of greater power than the noise, further reducing

the signal-to-interference-plus-noise ratio (SINR). The reduced SINR will make a properly

designed communication symbol harder to detect. Another approach is to use radar inter-

ference to mask a communication symbol.

A radar system obtains information about its environment by transmitting a pulsed or

continuous wave signal and analyzing the backscattered returns. In general, the transmitter
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and receiver may be located in different locations (bistatic systems), or there may be sev-

eral transmitters and receivers scattered throughout a region (multistatic systems). More

commonly, the radar transmitter and receiver are considered to be physically co-located

(monostatic). This thesis considers a monostatic radar transmitting pulsed waveforms.

Radar systems are used for many different purposes. One such modality is moving target

detection. In this scenario, the radar system must suppress unwanted interference, known as

clutter, and maximize the response of a desired target. For successful detection, the reflected

signal must be large enough to overcome thermal noise. For an imaging modality (e.g., syn-

thetic aperture radar, inverse synthetic aperture radar) the clutter may be considered to be

the signal of interest. Regardless of modality, it is common for pulsed systems to send mul-

tiple identical pulses at some pulse repetition frequency (PRF) and coherently integrate the

returns [23]. This coherent integration may be conducted in the time or frequency domains

to increase the signal-to-noise power ratio (SNR). Processing in the frequency domain also

improves moving target detection (i.e., Doppler processing). Assuming an additive white

Gaussian noise model for the thermal noise, it is easy to show that coherent integration

improves the SNR by a factor equal to the number of pulses.

Radar interference offers an attractive environment within which to embed LPI com-

munications. The pulsed, constant waveform structure may be exploited by embedding

communication symbols into radar backscatter. To maximize detection, it is common for

radar systems to transmit at high power. The scattering from this high power signal pro-

duces large amounts of interference, termed clutter. The high-powered clutter can be used

to mask a communication symbol. Further, due to transmitter effects, radar returns often

suffer from spectral spreading or bleeding [24]. This phenomenon is illustrated in Figure 2.1,

which was shown in [1]. The design strategies that will be discussed in this thesis will target

these regions of spectral spreading.

This thesis considers a communication system in which a tag or transponder [25] [26],

hereafter called the tag, is illuminated by a radar system. If the radar waveform scatters
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Figure 2.1: Radar spectral spreading [1]

off objects in the environment before it reaches the tag, the radiation incident on the tag is

termed forward scattered-radiation. In communication literature, forward scattering is more

commonly referred to as multipath. The two terms will be used interchangeably in this thesis.

The radiation scattered back to the radar system is termed backscattered radiation (or simply

backscatter). Previous approaches to embed a communication signal in radar backscatter

operated on an inter -pulse basis [6]. In other words, segments of a communication symbol

are embedded over multiple pulses. The earliest method employed mechanically-controlled

corner reflectors to modulate the radar backscatter over the course of several pulses. Further

early work can be found in [13]. More recent inter-pulse techniques involved embedding a

phase shift sequence over a series of pulses [7–11]. If the phase sequence is linear, this phase

shift would appear to be a Doppler signature to an intercept receiver.

The number of pulses coherently integrated by a radar is termed the coherent processing
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interval (CPI). Typical CPIs are on the order of 10’s-1000’s of pulses. The pulse repetition

frequency (PRF) of a radar is often on the order of 1-10 KHz. Due to the large number of

pulses needed to form a communication symbol, inter-pulse radar embedded communications

(REC) is capable of data rates on the order of 1-100 bits per second. While these data rates

are low, they are sufficient to provide "identify friend" information to a synthetic aperture

radar system [12]. This functionality helps to avoid "friendly fire" incidents.

For the embedding of symbols on an intra-pulse basis (i.e., the entire communication

symbol is embedded over the course of a single pulse), it is possible to achieve a communi-

cation rate on the order of the PRF of the radar system (∼ Kbps). Therefore, it may be

possible to achieve sufficient data rates to support audio data [27] [28] [29]. A conceptual

illustration of the intra-pulse system setup is given in Figure 2.2.

Figure 2.2: Radar embedded communication system framework [2]

Thus far, only LPI communication from tag to radar has been considered. In the frame-

work of a two-way communication system, this is considered the "reverse-link". Also of
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interest is the "forward-link" (i.e. radar-to-tag). Separate work has been done in the area

of embedding information in the transmitted radar waveform through the use of pulse-agile

radar [30].

This chapter discussed the general method of embedding a communication symbol on an

intra-pulse basis. However, in order to design symbols and receivers the system model and

physical model of the environment must be established. Explicit accurate modeling of the

processes involved allows quantifiable design of effective LPI symbols and optimal receivers.
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Chapter 3

Signal Model

When designing any engineering system, it is important to accurately model the system

and its physical environment. This section establishes the mathematical notations used

throughout the rest of the thesis and provides a clear picture of the physical environment

within which the radar-embedded communication (REC) framework is intended to operate.

It is important to note that all values and vectors in this thesis are considered to be complex

valued, unless otherwise stated.

In the REC system, all processing is performed in the discrete domain. However, the radar

waveform and communication symbols must pass through a continuous channel. Therefore,

both domains must be considered. First, define the continuous time baseband representation

of the radar waveform as s(t). As the radar waveform is radiated, it encounters the physical

environment (trees, ground, clouds, etc). Objects in the environment passively absorb and

re-radiate a portion of the electromagnetic energy that impinges on them. The process of

re-radiating electromagnetic energy is termed scattering. The portion scattered back to the

radar is called backscatter. This process is modeled as the continuous time clutter process

x(t). The interaction between the radar and clutter is considered to be a linear, time-

invariant (LTI) process. Therefore, this interaction is modeled as the convolution of s(t)

and x(t). This formulation ignores the contribution of motion-induced Doppler shifts over
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the pulse-width of the radar waveform. As with any system, the backscattered radiation

received by the radar is corrupted by thermal noise, represented by u(t). Therefore, when

no communication symbol is present the signal received by the radar is given as

y(t) = s(t) ∗ x(t) + u(t) (3.1)

where ∗ denotes convolution.

If the tag is present in the illuminated area, the energy impinging on it may be scattered

off of objects in the environment. The tag is then in the forward-scattering regime. Referred

to in another way, the radar waveform is reflecting from scatterers in the scene, producing

a multipath channel between the radar and tag. This multipath channel is denoted as h(t).

Using h(t) to improve communication performance will be discussed further in Chapter 4.

The tag will transmit one of K communication symbols to one or more desired receivers.

The kth transmitted communication symbol is defined as ck(t). The received signal when a

communication symbol is present is then given as

y(t) = s(t) ∗ x(t) + αck(t) ∗ h(t) + u(t) (3.2)

where α is a complex scalar attenuation constant. A graphical representation of the REC

system is shown in Figure 3.1, which appeared in [3]. A representation of (3.2) is illustrated

in Figure 3.2, which was given in [2].

Conceptually, (3.2) provides the basic design space for the REC problem. The clutter

term, s(t) ∗ x(t), can be thought of as interference. If the receiver in question is a desired

receiver (i.e, a receiver the tag wishes to communicate with), the receiver structure and

communication symbol should be designed to suppress the clutter and noise while maximizing

the response to ck(t). However, if the receiver is an intercept receiver, the communication

symbol should be designed to be indistinguishable from the clutter and noise.

The signals actually processed by the radar and tag must first be lowpass filtered and
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Figure 3.1: Graphical model of REC system [3]

sampled by an analog-to-digital converter. Typically, a receiver will oversample the received

signal by some amount greater than the Nyquist sampling rate. Let the Nyquist sampled

radar waveform have a time-bandwidth product of N , and be digitally sampled at a rate M

times the Nyquist rate. The sampled radar waveform is denoted as the length NM vector

s and the discrete clutter profile is x. When considering the convolution of s, notice that

there are 2NM − 1 possible shifts of s. Therefore, defining the NM × 2NM − 1 Toeplitz

matrix S as

S =



sNM−1 sNM−2 · · · s0 0 · · · 0

0 sNM−1 · · · s1 s0 · · · 0

...
... . . . ...

... . . . ...

0 0 · · · sNM−1 sNM−2 · · · s0


, (3.3)

13



Figure 3.2: Continuous time signal model [2]

the discrete convolution of the radar waveform and clutter can be represented as

Sx =



sNM−1 sNM−2 · · · s0 0 · · · 0

0 sNM−1 · · · s1 s0 · · · 0

...
... . . . ...

... . . . ...

0 0 · · · sNM−1 sNM−2 · · · s0





x1

x2
...

x2NM−1


. (3.4)

Note that the clutter process is theoretically of infinite length.

The discretely sampled received signal y is a vector of length NM . When a communica-
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tion symbol is not present, y may be given as

y = Sx + u. (3.5)

Typically, thermal noise is modeled as additive white Gaussian noise (AWGN). The AWGN

assumption is physically justified through use of the Central Limit Theorem (CLT) [31].

However, empirical measurements of high-resolution radars have shown that clutter distri-

butions are not best represented by a Gaussian process. As the resolution increases, the

number of discrete scatterers in a range cell may not be large enough for the CLT to apply.

Clutter distributions for high resolution radars are often better approximated by the K [32],

Weibull [33], or Log-normal distributions [34]. If the clutter samples are uncorrelated in

range, the derivations of this work are agnostic to the clutter distribution.

The primary waveform design strategies discussed in [1, 15] use the eigenspace of the

generic radar reflections to maintain correlation with the clutter. The eigenspace of the

received signal may be formed as the eigendecomposition of the normalized correlation matrix

1

σ2
x

E[(Sx)(Sx)H ] =
1

σ2
x

SE[xxH ]SH

=
1

σ2
x

S[σ2
xI]SH

= SSH

= VΛVH (3.6)

where (•)H represents the Hermitian, or complex conjugate transpose operation on a matrix,

E[•] is the expected value operator, and σ2
x is the clutter variance (power). It is assumed

that the individual samples of x are uncorrelated. The matrix V contains NM orthonor-

mal vectors of length NM . The diagonal matrix Λ contains the corresponding eigenvalues

in descending order. The ith eigenvalue corresponds to the power associated with the ith

eigenvector. Assuming the radar waveform’s power is normalized (i.e., ||s||2 = sHs = 1), it
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is easily seen that

tr{SSH} = NM ||s||2 = NM (3.7)

where tr{•} represents the matrix trace operation. Therefore, using (3.6) and (3.7),

tr{SSH} = tr{VΛVH}

= tr{Λ}

= NM. (3.8)

In other words, the sum of the eigenvalues is equal to the time-bandwidth product of the

radar waveform multiplied by the oversampling factor. However, the majority of the energy

in correlation matrix (and therefore the eigendecomposition) comes from the radar waveform,

which has dimensionality of N . Therefore, the first N eigenvalues contain most of the energy.

To illustrate this property, Figures 3.3 and 3.4 show plots of eigenvalues corresponding to

a linear frequency modulated (LFM) waveform [35] at oversampling factors of M = 2 and

M = 4 respectively.

The division between "large" and "small" eigenvalues leads to the concept of dominant

and non-dominant subspaces. The dominant subspace consists of the eigenvectors corre-

sponding to eigenvalues with large magnitudes. Similarly, the non-dominant subspace is

made up of the eigenvectors whose eigenvalues are relatively small. Formally, the eigenvec-

tors corresponding to the m largest eigenvalues are defined to be the dominant subspace.

Therefore, the non-dominant subspace is composed of the eigenvectors associated with the

NM −m smallest eigenvalues. Separating the eigenspace into dominant and non-dominant

subspaces allows the partitioning of the eigendecomposition of (3.6) as

SSH = VΛVH =

[
VD VND

] ΛD 0

0 ΛND


 VH

D

VH
ND

 (3.9)
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Figure 3.3: Eigenvalues of a downsampled and filtered N=100, M=2 LFM radar waveform

where VD is a NM ×m matrix of the m dominant eigenvectors, and VND is of dimension

NM × (NM −m) and consists of the non-dominant eigenvectors. Similarly, ΛD is a m×m

diagonal matrix of the m dominant eigenvalues, and ΛND is the (NM −m) × (NM −m)

diagonal matrix of non-dominant eigenvalues.

The communication symbol design methods compared in [1] take advantage of the separa-

tion between the dominant and non-dominant subspaces. Through use of the non-dominant

subspace, communication symbols can be designed to be correlated with, yet separable from,

the radar backscatter. For an intercept receiver, the correlation between the communication

symbol and clutter makes the symbol difficult to discern. However, knowledge of the sym-

bol allows the desired receiver to effectively cancel the clutter and retrieve the transmitted

message. Previous work considered three different communication symbol design strategies.
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Figure 3.4: Eigenvalues of a downsampled and filtered N=100, M=4 LFM radar waveform

However, only the Dominant Projection design method has been found to be robust to

multipath [1, 15]. Therefore, only the Dominant Projection approach is considered in this

thesis.

The Dominant Projection method projects a seed vector (of dimensionality NM) away

from the dominant subspace as a whole. To project away from the dominant subspace, the

projection matrix

P = I−VDVH
D = VNDVH

ND (3.10)

is used to form the kth communication symbol as

ck = Pbk. (3.11)
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The vector bk is a pseudo-random seed that is known to both the desired receiver(s) and the

tag.

When a communication symbol is present and there is no multipath (i.e. direct path

only), the discrete received signal is

y = Sx + αck + u (3.12)

where α is a complex scalar value that accounts for any phase shift and attenuation in the

channel. As the communication symbol is correlated with the radar backscatter (i.e., clutter),

the Sx term acts as interference. While the radar backscatter makes the communication

harder to detect by an intercept receiver, the clutter also makes it more difficult for the

desired receiver to determine the transmitted communication symbol.

Some parallels can be made between the Dominant Projection approach and traditional

direct-sequence spread-spectrum communications (DSSS). In traditional DSSS the spreading

vector can provide a basis for a user space (i.e., orthogonal spreading vectors are uniquely

assigned to a transmitter). The data symbol is then modulated on to the spreading vector.

In the Dominant Projection approach, the seed vector is both a spreading vector and the data

modulation. However, while a traditional spread-spectrum symbol is spread uniformly over

a frequency range, the Dominant Projection symbol is shaped by the projection matrix P.

The Dominant Projection symbol is projected away from the subspace where the dominant

portion of the radar signal is located, so it does not possess the degrees-of-freedom a DSSS

symbol would possess.

The dominant projection technique attempts to place the communication symbol in the

radar clutter. To further illustrate this phenomenon, Figure 3.5 shows the spectral content

of an LFM radar waveform passed through a clutter channel and corrupted by AWGN. For

the purposes of this example, the clutter is generated from a zero mean, complex Gaussian

random process. The clutter-to-noise ratio (CNR) is set to 30 dB. Figure 3.6 shows a REC
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Figure 3.5: LFM radar waveform convolved with Gaussian clutter in an AWGN channel

symbol designed using the Dominant Projection method at an oversampling factor ofM = 2.

This scenario has a signal-to-noise ratio (SNR) of 0 dB and a signal-to-clutter ratio (SCR)

of -30 dB. When superimposed, as in Figure 3.7, the behavior of the dominant projection

technique is clear. However, it is important to maintain a low oversampling factor. The

projection will attempt to place the communication symbol as "far away" from the radar

signal as possible. For instance, Figure 3.8 illustrates the case when M = 4. The REC

symbol is now embedded at frequencies with less clutter power. As a consequence, this

symbol will be more easily detected than the symbol transmitted in Figure 3.7 using an

oversampling factor of M = 2. As M gets large the communication symbols cannot depend
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Figure 3.6: Communication symbol designed for an LFM radar waveform

on clutter to mask their presence. Therefore, in the case of largeM the symbols must depend

on noise to mask their presence like traditional SS techniques.
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Figure 3.7: Symbol spectral content for M=2
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Figure 3.8: Symbol spectral content for M=4
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Chapter 4

Environmental Considerations

4.1 Multipath Effects

As mentioned in Chapter 3, the radar waveform may scatter from objects outside of

the direct path between the radar and tag. In the radar vernacular, this is called forward

scattering while for communications this phenomenon is known as multipath. Given the

presence of multipath, the received signal at the tag thus consists of the transmitted radar

waveform convolved with the multipath impulse response h(t) and corrupted by noise.

Convolving the radar waveform with the multipath impulse response produces multiple

copies of the radar waveform that have been modulated by an amplitude and phase shift,

as well as being shifted in time. The multipath-corrupted signal received at the tag may be

expressed mathematically as

ytag(t) = h(t) ∗ s(t) + utag(t). (4.1)

where utag is the noise at the tag. In standard communication systems multipath makes

symbol determination more difficult. The presence of multipath distorts the radar waveform

that is incident upon the tag.

Typical communication systems transmit multiple symbols in succession. The time

24



delayed-copies of previously transmitted symbols can interfere with successive symbols. This

is termed inter-symbol interference (ISI). The radar-embedded communication paradigm

does not suffer from ISI. The time between transmitted radar waveforms provides a guard

time, preventing ISI. Therefore, the multipath distortion only needs to be compensated for

on a per-symbol basis.

An important result of [15] was to show that multipath has an identical mathematical

structure as ambient scattering. This is due to the associative property of LTI systems where

s̃(t) ∗ x(t) = s(t) ∗ h(t) ∗ x(t) = s(t) ∗ x̃(t); (4.2)

for x̃(t) just another arbitrary impulse response.

4.2 Robustness to Multipath

It was shown in [15] and [2] that the Dominant Projection method suffers very little

degradation to communication performance if forward scattering (multipath) exists. To il-

lustrate this property, consider the correlation between the eigenvectors generated by (3.6).

The eigenvectors form an orthonormal basis. Therefore, the correlation matrix of the eigen-

vectors is the NM ×NM identity matrix. However, if the radar waveform is corrupted by

multipath, the eigendecomposition in (3.6) performed by the tag will not yield the same

eigenvectors as the receiver. Therefore, it is instructive to examine the correlation between

the eigenvectors generated from multipath corrupted radar waveforms. For example, con-

sider the case of an LFM radar waveform with N = 100, oversampled by a factor of M = 2.

This waveform encounters two independent random multipath profiles, each consisting of a

direct path and 9 multipath elements drawn from a complex Gaussian distribution. The

time delays are uniformly distributed over [0, T/2]. Figure 4.1 shows the average correlation

between the eigenvectors generated for each multipath corrupted waveform over the course

of 1000 independent trials.
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Figure 4.1: Eigenvector correlation (dB) between independent multipath-corrupted radar
waveforms

Notice that the multipath causes the eigenvectors to "smear". The ideal situation (i.e.,

no multipath) would lead to identical eigenvectors. In that case, the average correlation

would be equal to one along the main diagonal and identically zero everywhere else. When

the two sets of eigenvectors are generated from multipath-corrupted waveforms, the average

correlation is greater than zero away from the main diagonal. Consider the dominant space

to consist of the first N eigenvectors. Each set of eigenvectors corresponding to the dominant

subspace is highly correlated with the dominant subspace of the other set of eigenvectors

(top left quadrant of Figure 4.1). This correlation also holds true for the non-dominant

subspaces (bottom right quadrant of Figure 4.1). However, the subspaces as a whole are still

well separated (uncorrelated). For further discussion and illustration, see [2]. It should be
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noted that the tag and receiver will still be required to have knowledge of the seed vectors

bk from (3.11) used to create the communication symbols.

4.3 Time Reversal

Previous work established the robust nature of the Dominant Projection design method-

ology with respect to multipath [15]. If the radar is also the desired receiver, the multipath

channel between the tag and radar may be approximated as being stationary and reciprocal.

Therefore, it is possible to incorporate environmental knowledge into the design of the com-

munication symbols. If the radar waveform is known a priori to the tag, the multipath may

be estimated using matched filtering, mismatched filtering [36], least squares [37], or adap-

tive pulse compression (APC) [38] techniques. This estimate is denoted as ĥ(t). Assuming

the channel is approximately stationary and reciprocal, ĥ(t) may be complex conjugated, re-

versed in time, and convolved with the communication symbol as a form of pre-distortion [39].

The time-reversed communication symbol is given as

ĉk = ĥ∗(−t) ∗ ck(t). (4.3)

Therefore, using (4.3) the signal received by the radar is now given as

y(t) = s(t) ∗ x(t) + αĉk(t) ∗ h(t) + u(t)

= s(t) ∗ x(t) + αĥ∗(−t) ∗ ck(t) ∗ h(t) + u(t)

= s(t) ∗ x(t) + αr(t) ∗ ck(t) + u(t). (4.4)

where r(t) = ĥ∗(−t) ∗ h(t) is the approximate autocorrelation of the multipath channel.

Intuitively, it can be seen that this technique causes the multipath elements to constructively

combine at the match point (i.e. the radar receiver). Due to the high spatial dependence of

the multipath elements, it is also likely that this approach will cause destructive interference
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away from the match point, such as at an intercept receiver.

Figures 4.2 and 4.3 show the effects of time reversal at the radar and intercept receivers,

respectively. To construct each figure, a histogram was formed from 100,000 Monte Carlo

simulations. In these simulations, the channel was constructed with impulses uniformly

distributed over a channel half the length of a communication symbol (i.e. for P multipath

elements, time delay τi ∼ U(0, T/2), i = 1, . . . , P ). The complex amplitude of the multipath

impulses are all initially drawn from a complex Gaussian distribution, but are then scaled

by the inverse of the maximum element in the channel. Therefore, the maximum value is

set to one, while the magnitude of all other elements are less than one. This ensures the

existence of a direct path and constrains all indirect paths to have a smaller magnitude than

the direct path. The time reversed estimate is normalized to unit energy. Therefore, the

channel estimate has the same energy as a unit impulse (i.e. the non-time reversed case).

The magnitude shown in Figures 4.2 and 4.3 is the magnitude of the maximum response at

the receiver. Note that a unit energy impulse passed through the noiseless channel would

always have a magnitude of one. Therefore, any response greater than one indicates a gain

at the desired receiver. However, a response less than one is desired at the intercept receiver

(i.e., a gain less than one implies a more covert symbol at the intercept receiver).

Figure 4.2 shows the spatio-temporal focusing effect of time reversal at the desired receiver

(in this scenario, the radar). It is clear that even with only two multipath components (direct

path plus one additional) the time reversed symbol would outperform a non-time reversed

symbol. As the number of multipath elements increases, so does the magnitude of the

maximum response. The mean-shifting of the distribution of responses clearly illustrates the

spatio-temporal focusing effect.

Figure 4.3 illustrates the destructive interference that an arbitrary intercept receiver

experiences with respect to a time-reversed symbol. To form Figure 4.3, the time-reversed

symbol was formed but convolved with an independent channel constructed using the same

distribution of time delays and impulse amplitudes, and containing the same number of paths.
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Figure 4.2: Time reversal gains at the desired receiver

The mismatch between the time reversed symbol and the independent channel illustrates the

LPI improvement offered by the time-reversal processes. The received magnitude is largely

less than one, indicating a negative gain at the intercept receiver. An interesting problem

for future work would be to analytically examine the benefits of the time reversal.

4.4 Time Reversal with an Unknown Radar Waveform

If the radar waveform is not known at the tag a priori, the formation of the time reversed

profile becomes very difficult. As mentioned in Section 4.2, the Dominant Projection symbols

suffer very little degradation if a multipath-corrupted radar waveform is used at the design

stage. Unfortunately, if the radar waveform is not known, estimating the multipath profile
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Figure 4.3: Time reversal performance for intercept receiver v. desired receiver

becomes very difficult. This estimation requires blindly deconvolving the waveform from the

multipath. To solve a blind deconvolution problem, a priori or spatial information must

be used. Assuming the individual paths correspond to different angles of arrival at the tag,

direction-of-arrival (DOA) estimation may be used to distinguish the paths. If an antenna

array is available at the tag, algorithms such as MUSIC [40] in conjunction with a model

order selection algorithm (see [41] for a survey) can be used to isolate the direction-of arrival

(DOA) of multipath components. The MUSIC algorithm can identify a number of incident

signals equal to the number of antenna elements used. However, MUSIC cannot distinguish

temporally correlated signals. It is possible to decorrelate the signals using sub-arrays in a

spatial smoothing technique [42]. Unfortunately, spatial smoothing reduces the number of

signals the algorithm is capable of isolating. Further processing would need to be done to
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isolate complex amplitudes as well as relative time delays to fully reconstruct the channel.

Many blind deconvolution algorithms rely on the periodic nature of a waveform. Typical

waveforms used in radar and communications systems satisfy the periodic assumption. This

periodic nature gives rise to cyclo-stationary statistics (see [43] [44] [45] [46] for an excellent

treatment). This property can be exploited to blindly deconvolve a signal using either

second order or higher order statistics (i.e. skew, kurtosis). However, methods based on

higher order statistics require large sample sizes and many second order methods have large

computational costs [46]. Another approach is to use subspace methods such as MUSIC

in conjunction with cyclo-stationary statistics (e.g. [47]). However, correlated signals share

cyclic frequencies. Just as with the time domain implementation of MUSIC, this can be

rectified using spatial smoothing [48] [49].

In [3] we proposed using spatial selectivity to recover a transmitted radar waveform from

a multipath corrupted channel. This approach relies on the Re-Iterative Super Resolution

(RISR) [50] algorithm to isolate the transmitted radar waveform. Using the array narrow-

band assumption (i.e. the difference between the responses to a given signal over all array

elements can be modeled as a phase shift), the RISR algorithm produces a spatial filter bank

corresponding to the possible spatial angles from which a signal could arrive. When applied

to the temporal data collected from the antenna array, each filter isolates any signal from

that angle and nulls all other signals. The RISR algorithm is robust to correlated signals.

Unlike MUSIC, RISR can also be used to provide an estimate of the number of signals

present. Further, it can operate on extremely low sample support and for any arbitrary

array manifold (assumed known). Once the transmitted radar waveform is estimated, it can

be used to estimate the multipath channel as was discussed in Section 4.3.

The simulation setup in [3] departs from that used in the rest of this thesis. Figures

4.4 and 4.5 provide an example of the possible performance of the estimation technique.

A random polyphase radar code was used. Each of N = 40 chips si in the code s =

[s1, s2, . . . , sN ] was constructed as si = ejφi , φi ∼ U(0, 2π). Sampling is performed at the
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Nyquist sampling frequency. The simulation uses a 10 element linear array with λ/2 spacing.

The multipath channel consists of three total paths. The direct path signal arrived at an

angle of +14.48◦ from boresight with an SNR of 20 dB. The two multipath components arrive

at angles of ±30◦ at SNRs of 15 dB and 10 dB. Using a heuristic thresholding technique to

estimate the number of signals present, the three signals were easily extracted. To evaluate

the efficacy of the algorithm, the normalized amplitude and phases of the estimated signals

were compared to ground truth. As Figure 4.4 illustrates, the RISR algorithm does well in

Figure 4.4: Normalized amplitudes of estimated signals, as compared to transmitted wave-
form

estimating the amplitudes of the transmitted waveform. It should be noted that due to the

high output power and amplifier requirements practical radar waveforms are constrained to

have a constant modulus. This constraint can be used to estimate the normalized amplitude.
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Therefore, the wide variance of the estimate of the second multipath element should not

restrict the performance of the potential system.

Of more importance is the phase estimation. Figure 4.5 shows excellent agreement be-

tween the phases of the estimated signals and the ground truth waveform. In fact, the

direct path and first multipath component are visually virtually indistinguishable from the

transmitted waveform. This is a very encouraging result. It is clear that RISR can be used

Figure 4.5: Unwrapped phases of estimated signals, as compared to transmitted waveform

to estimate the received radar waveform. In theory, this spatial selectivity can be used to

estimate the transmitted radar waveform from a multipath channel. While this technique is

not a strict blind deconvolution technique, the results are the same. The estimated waveform

can be used to design the communication symbols and to estimate the multipath channel for

the purpose of time reversal.
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Chapter 5

Receive Processing

This chapter discusses the strategies used by a desired receiver to extract the embedded

symbol from the radar clutter and noise. It is assumed that the signal has been sampled

at baseband, lowpass filtered, and demodulated into in-phase and quadrature components.

For an analysis of the performance of the receiver structure presented in this chapter, see

Chapter 7.

The goal of a communication receiver is to minimize receive errors (i.e., maximize data

reliability). For the REC framework, the data rate is limited by the pulse repetition frequency

(PRF) of the radar and number of bits per communication symbol. The PRF of the radar

is outside the control of the tag. The optimal choice of constellation size is not discussed

here, but is a topic for future work. The receive bit error rate (BER) is dependent on the

signal-to-interference-plus-noise ratio (SINR) and design of the receiver. To minimize BER

the receiver should be capable of suppressing the interference (i.e. clutter) and performing

coherent integration to extract signals below the noise floor (as in traditional spread spectrum

communications). As stated in Chapter 3, previous work utilized a decorrelating filter to

suppress interference [15] [1]. In that formulation, the kth receive filter was given as

wk = (SSH)−1ck. (5.1)
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In other words, the filter consists of a whitening component (to decorrelate the interference)

and a matched filter (to maximize the SNR). The symbol corresponding to the maximum

residue after applying the decorrelating filterbank has been shown to be a maximum likeli-

hood estimator [14]. Defining the size of the dominant space to be m, the decorrelating filter

given in (5.1) can be diagonally loaded as

wk = (SSH + δI)−1ck (5.2)

where I is the identity matrix and δ = λm+1, where λm+1 is the largest non-dominant

eigenvalue. Introducing the variable m allows the tag to vary the size of the dominant

space. Valid values for m are 1 ≤ m ≤ NM − K. The non-dominant space must have

a rank that is greater than or equal to the number of possible communication symbols. If

it does not have the degrees-of-freedom necessary, the design space is rank deficient and

communication symbols will no longer be linearly independent. By varying the size of the

dominant subspace, the tag may optimize the gain advantage an intended receiver enjoys

over an intercept receiver. This is discussed in further detail in Chapter 7.

5.1 Maximum Likelihood Symbol Estimation

Previous analysis assumed that the transmitted signal is present within the observed

receive interval [1]. This assumption ignores the null hypothesis (i.e. no symbol present), as

well as the problem of synchronization. Here we propose the use of a Neyman-Pearson crite-

rion to both determine the presence/absence of a symbol and provide a means for automatic

synchronization at the receiver. This concept is further examined in Section 5.2.

In the original formulation, it was assumed that the receiver has clairvoyant knowledge

that a symbol is present during a prescribed time interval that is much longer than the

symbol duration. Using the signal model given in (3.12), the received sampled signal at time
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sample ` (for time interval ` = 1, . . . , L ) is the length NM vector

yr(`) =

[
yr(`) yr(`− 1) . . . yr(`−NM + 1)

]T
. (5.3)

The time interval therefore consists of the length NM + L − 1 collection of samples. The

received signal, communication symbol, and filter structures are given in (3.11), (3.12), and

(5.2). The sampled signal is then passed through a bank ofK filters from (5.2) corresponding

to the possible symbols. The magnitude of the response of the kth filter at time instant ` is

defined as

|z(k)y (`)| = |wH
k yr(`)|. (5.4)

To select the most likely symbol, the maximum of the set of all responses is found as

|z(k̂)y,max| = argmax`,k|zky (`)| (5.5)

where k̂ corresponds to the selected symbol. The symbol selection given by the output of

(5.5) can be considered as a K hypothesis test:

H1 : yr = Sx + αc1 + u

H2 : yr = Sx + αc2 + u

...

HK : yr = Sx + αcK + u. (5.6)

It should be noted that this formulation ignores the null hypothesis. In this formulation, a

communication symbol is always assumed to have been transmitted. In practice, the receiver

does not have clairvoyant knowledge of the presence of a symbol. Therefore, it is important

to establish a confidence level in the selection of a symbol.
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5.2 Neyman Pearson Detector

When the receiver does not possess clairvoyant knowledge of the presence of a communi-

cation symbol, the problem of symbol determination may be framed as a detection problem.

In this case, the receiver must not only determine which communication symbol was sent,

but whether a symbol is present at all. This raises the possibility of the receiver falsely

detecting a communication symbol when there is none present. Therefore, the three proba-

bilities of interest are the probability of correctly detecting a symbol (PD), the probability

of not detecting a present symbol (PM), and the probability of false alarm (PFA).

The Neyman-Pearson criterion [19] is a method of maximizing the probability of detec-

tion, while holding a constant probability of false alarm. To perform a Neyman-Pearson

test, the probability distribution function (PDF) of the null hypothesis must be known. In

the case of detecting a single known signal, the two hypotheses are signal present and signal

absent. A threshold for detection is set as the value where the integral of the right tail of the

signal absent PDF is equal to the acceptable probability of false alarm. The probability of

detection is then given as the integral of the right tail of the signal present PDF for all values

greater than the threshold. The receiver threshold T is set such that the probability of a

received value exceeding the threshold when a signal is not present is equal to the desired

probability of false alarm, PFA. The test statistic is then maximized when a signal is present.

As mentioned previously, the decorrelating receiver has been shown to be a maximum

likelihood estimator [14] that maximizes the probability of detection (assuming a symbol is

present). However, in order to express a degree of confidence in the symbol selection, we

consider the idea of bounding the PFA. First, the hypothesis test given in (5.6) is conducted

via (5.5), yielding an accepted hypothesis k̂ and K − 1 rejected hypothesis. The rejected

hypotheses may be grouped together and collectively treated as multiple realizations of the
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null hypothesis:

H̃0 : zy = zx + zu

H̃1 : zy = zx + α∆ + zu. (5.7)

The quantities zx and zu correspond to the residues of the clutter and noise after filtering,

respectively. By the Central Limit Theorem, the clutter and noise residues (resulting from the

filtering operation) tend to a complex Gaussian distributions. Therefore, the magnitude of

the residues tends to a Rayleigh distribution. Knowledge of the PDF allows for the generation

of a threshold for a given PFA. It can be shown that the Neyman-Pearson threshold in this

case is given as [19]

T =
√
−2 σ2

0 lnPfa (5.8)

where σ2
0 is the variance of the output of the K−1 filters corresponding to H̃0. The complete

receiver processing diagram is shown in Figure 5.1.

Figure 5.1: Neyman-Pearson receiver

Figure 5.2 shows the peak responses (i.e. magnitude of the maximum response over

all time delays) from the decorrelating filter bank for both correct and incorrect responses.

Numerically integrating the right tail using thresholds derived from (5.8) provided correct

probabilities of false alarm. It may be possible that increasing the number of symbols

improves the Rayleigh approximation.
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Figure 5.2: PDFs of hypothesized symbols

Note that the Neyman-Pearson formulation automatically accounts for the problem of

synchronization. The maximum likelihood receiver in the first stage maximizes the proba-

bility of detection over all time samples, therefore selecting the time sample most likely to

contain a communication symbol. This formulation gives two ways of examining the per-

formance of the receiver. First, the reliability of the receiver can be examined in terms of

the probability of incorrectly selecting a symbol. This is measured as the symbol-error-rate

(SER) or bit-error-rate (BER). At this stage, it is still assumed that a symbol is present.

Second, the receiver can be examined in terms of the detector performance. In this case, the

relevant metrics of interest are PD (and conversely the probability of miss, PM) and PFA.

This analysis further illuminates the capabilities of the receiver by considering the behavior

of the receiver when a symbol is absent. A more formal method of analyzing the receiver
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gain as a function of SINR and subspace size is given in Chapter 7.
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Chapter 6

Probability of Intercept

The ability of an intercept receiver to detect the presence of a radar-embedded communi-

cation (REC) symbol depends on many factors. For example, the time-width and bandwidth

of the communication waveform must be known to the desired receiver, but that informa-

tion is not available to the intercept receiver. For all LPI metrics, the intercept receiver

is assumed to have knowledge of the time-width and bandwidth used by the REC system.

This knowledge provides a "worst case" scenario, and should bound the performance of an

intercept receiver.

6.1 An Extension of Previous Work

An LPI metric was established in [1] that measures normalized correlation to quantify

the covert nature of the embedded communication symbol. This metric in effect "scans"

the eigenspace of the radar waveform by systematically projecting away the hypothesized

dominant subspace from the received signal and examining the normalized correlation be-

tween each possible communication symbol and the residue of the projection. In other words,

for m̃ = 1, 2, . . . , NM , define the hypothesized dominant subspace as the NM × m̃ matrix

ṼD,m̃ composed of the eigenvectors corresponding to the m̃ largest eigenvalues. Therefore,
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to project away from this subspace, form a projection matrix as

Pm̃ = I− ṼD,m̃ṼH
D,m̃ = ṼND,m̃ṼH

ND,m̃. (6.1)

Applying Pm̃ to the discretized received signal at time sample `, the m̃th residual is obtained

as

zm̃(`) = Pm̃y(`). (6.2)

This residue is then correlated with the kth communication symbol as [1]

ηk,m̃(`) =
|cHk zm̃(`)|√

(cHk ck)(zHm̃(`)zm̃(`))
. (6.3)

The efficacy of this metric was examined in [51]. Previous work has shown that the correct

symbol produces the maximum response to this metric [1]. Therefore, only the results for

the matching symbol are displayed. In all cases, the SNR at the intercept receiver is set to

-5 dB, and the SIR is -35 dB. The radar signal incident at the tag (used to estimate the

multipath) was corrupted by AWGN with an SNR of 30 dB. The communication symbols

are designed using a dominant subspace of size 100 (i.e., N), and 5000 Monte Carlo trials.

In Figure 6.1, the intercept receiver is placed at an identical location to the desired

receiver. Therefore, the multipath channel is identical to that of the desired receiver. For

each trial, time reversed and non-time reversed symbols are sent through identical channels

with 5 multipath elements with random amplitudes and phases. The focusing ability of

time reversal is once more observed, as the time-reversed waveform has a clearly greater

magnitude.

Figure 6.2 shows the benefits of time-reversal in a more realistic situation. In this simu-

lation, both the tag-radar channel and the tag-intercept receiver channel have 5 multipath

elements. However, each channel is independently distributed in amplitude, phase, and time

delay. In this scenario, the destructive interference given by time reversal in the tag-intercept
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Figure 6.1: Co-located intercept receiver, 5 multipath elements

receiver channel is apparent.

Figure 6.3 provides an illuminating result. In this case, the number of multipath elements

is increased to 20, but all other simulation parameters are identical to those used to produce

Figure 6.2. Notice that while the time reversed symbol has a lower normalized correlation

than the non-time reversed symbol for all hypothesized sizes of dominant subspace, the

correlation for both types of symbols does not appear to be lower than those in Figure 6.2.

One would expect that the increasing amount of multipath would have some effect on the

LPI nature of the communication symbols (i.e., lowered correlation), especially in the case

of the time-reversed symbol. It appears that there is some clutter residue that is correlated

with the symbol, providing a minimum response. It appears that there is a limit to the

efficacy of this metric. Therefore, an improved metric is needed to quantify the LPI nature

43



Figure 6.2: Independently located intercept receiver, 5 multipath elements

of an REC system.

6.2 Alternative LPI Metric I

Due to the limitations of the LPI metric in (6.3), we shall consider a new metric [2]:

εir(m̃, `)
.
= yH(`)Pm̃y(`) (6.4)

where y is the received discretized signal at the intercept receiver and the projection matrix

is defined according to (6.1). This metric is indexed by time sample ` and the size of the

dominant subspace m̃. Once more, the intercept receiver is assumed to have clairvoyant

knowledge of the time-width and bandwidth of the communication symbol. Note that (6.4)
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Figure 6.3: Independently located intercept receiver, 20 mulipath elements

is zHm̃(`)zm̃(`) from (6.2) by the idempotent (PP = P) and Hermitian ( PH = P) properties

of the projection matrix.

As before, this metric scans over all possible dimensionalities of the dominant subspace

and projects away from the hypothesized dominant subspace to perform an energy detection

on the residue. In other words, the intercept receiver attempts to determine the subspace

dimensionality of the REC symbols, project away the interference, and then detect the hidden

signal. This is similar to the interference canceling approach taken by the decorrelating

filter for the desired receiver, though the intercept receiver does not have knowledge of the

communication symbol and therefore does not benefit from the coherent integration gain.

Note that the intercept receiver still requires some method to determine the presence of a

symbol. The energy given in (6.4) does not provide any way to distinguish between a present
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symbol and an unusually high clutter/noise residue. Therefore, it is necessary to measure

how far above the average residual noise and interference is the residue at time sample `.

We define

εir,max(m̃)
.
= max

`
{εir(m̃, `)} (6.5)

as the maximum response over delay ` for each hypothesized dominant subspace dimension-

ality m̃. Similarly, the mean response is defined to be

εir,mean(m̃)
.
= mean

`
{εir(m̃, `)} (6.6)

over delay ` for each m̃. A detection statistic can then be formed as the ratio of the maximum

value to the mean value for each m̃. The intercept receiver requires a threshold Tir to compare

the detection statistic:

φ(m̃) =
εir,max(m̃)

εir,mean(m̃)
≷ Tir. (6.7)

If the intercept receiver is matched in time to a communication symbol, the maximum

values of εir should occur at the correct time sample `. All other energy residues should

correspond to noise and interference. Recall that multipath causes time delayed copies to be

superimposed at the receiver, which could increase the mean value of the residue as a function

of time. This increase in mean value further increases the LPI nature of the communication

system. Simulation analysis of this metric is discussed in Chapter 8.

It is instructive to analyze the expected value of the energy residue

E[εir(m̃, `)] = E[yH(`)Pm̃y(`)]. (6.8)

Redefining (6.2) as

zm̃(`)
.
= VH

ND,m̃y(`), (6.9)
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and using the definitions of (6.1) and (6.9), the expectation in (6.8) becomes

E[εir(m̃, `)] = E[yH(`)Pm̃y(`)]

= E
[
zHm̃(`)zm̃(`)

]
= E

[
NM∑

i=m̃+1

|zi,m̃(`)|2
]
. (6.10)

If a signal is absent, the Central Limit Theorem can be applied and the individual |zi,m̃(`)|2

components can be decomposed as

E
[
|zi,m̃(`)|2

]
= (λiσ

2
x + σ2

u)E
[
|z̃i,m̃(`)|2

]
(6.11)

where z̃i,m̃(`) ∼ CN (0, 1). The magnitude of a complex Gaussian is Rayleigh, and a squared

Rayleigh distribution has a χ2 distribution with 2 degrees of freedom. Recall that λi is

the ith eigenvalue, σ2
x is the clutter power, and σ2

u is the noise power. The details of this

decomposition are provided in Chapter 7, specifically using (7.43), (7.44), and the assumption

that the noise and interference are uncorrelated.

6.3 Alternative LPI Metric II

Upon examination of (6.11), it is noted that it may be advantageous for the intercept

receiver to equalize the noise and clutter. If the intercept receiver has knowledge of the

clutter and noise power, this equalization can be performed using the augmented eigenvalue

matrix:

Λ̃ND,m̃ = σ2
xΛND,m̃ + σ2

uI. (6.12)

An additional intercept metric is then given by the energy residue

ε̃ir(m̃, `)
.
= yH(`)P̃m̃y(`) (6.13)
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where

P̃m̃ = VND,m̃Λ̃−1
ND,m̃VH

ND,m̃. (6.14)

It is convenient to redefine (6.9), using the decomposition of (6.14), as

z̄m̃(`) = Λ̃
− 1

2
ND,m̃VND,m̃y(`). (6.15)

Therefore, when the communication symbol is absent, the expected value of this additional

intercept metric is

E [ε̃ir(m̃, `)] = E
[
yH(`)P̃m̃y(`)

]
= E

[
z̄Hm̃(`)z̄m̃(`)

]
=

NM∑
i=m̃+1

|z̄i,m̃(`)|2

=
NM∑

i=m̃+1

(λiσ
2
x + σ2

u)|z̃i,m̃(`)|2

(λiσ2
x + σ2

u)

=
NM∑

i=m̃+1

|z̃i,m̃(`)|2 (6.16)

The sum of the NM − m̃ magnitude squared Gaussian random variables is distributed

according to a χ2 distribution with 2(NM−m̃) degrees of freedom. This allows the intercept

receiver to numerically determine the threshold for its own Neyman-Pearson criterion.

The metric in threshold corresponding to the χ2 distribution could be tabulated and saved

prior to system deployment. Therefore, the intercept receiver would require estimations of

the noise and clutter powers to

This new formulation performs the same function as the first revision of the intercept

metric (i.e. (6.4)). In essence, the second metric is equalized so that the final distribution of

the noise and interference is known. However, the thresholds for the χ2 distribution can be

predetermined for given degrees of freedom and levels of PFA. However, this metric provides
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the intercept receiver additional clairvoyant knowledge. The receiver would be required to

estimate the clutter power and noise power. A more thorough analysis of (6.4) is given

in Chapter 7. Chapter 8 provides simulation results and discussion of the two alternate

intercept metrics.
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Chapter 7

Theoretical Analysis

This chapter provides a formal analysis of the processing gain afforded by the diagonally

loaded decorrelating receiver and the LPI metric given in (6.4). For an effective LPI system,

the desired receiver should possess a distinct processing gain advantage over a hypothetical

intercept receiver.

7.1 Processing Gain Analysis

This section analyzes the processing gain of the decorrelating filter from (5.2). The

processing gain ∆ is defined as the ratio of the signal-to-interference-plus-noise ratios at the

input to (SINRi) and output of (SINRo) receive processing:

∆
.
=
SINRo

SINRi

. (7.1)

The metric in (7.1) provides a performance metric for the effectiveness of the decorrelating

filter. For the sake of brevity, we shall ignore the dependence on time ` for this analysis.

The SINR before processing can be derived by analyzing the quantity E[||y||2] = E[yHy].
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Recalling (3.12), this expectation can be expanded as

E[yHy] = E[(Sx + αck + u)H(Sx + αck + u)]. (7.2)

Assuming that the clutter and noise are uncorrelated, all cross-correlation terms are zero

and (7.2) becomes

E[yHy] = E[xHSHSx] + |α|2E[cHk ck] + E[uHu]. (7.3)

The three expectations in (7.3) correspond to the clutter power, symbol power, and noise

power incident at the receiver. These quantities are examined in detail in Sections 7.1.1 and

7.1.2.

The SINR after receive filtering is derived from

E[|wH
k y|2] = E[(wH

k y)H(wH
k y)] = E[yHwkw

H
k y]. (7.4)

The expansion of (7.4) simplifies after examining the outer product of the filter, wkw
H
k .

Using (5.2) and the orthonormal nature of eigenvectors (i.e. VVH = I),

wk = (SSH + δI)−1ck

= (VΛVH + δI)−1ck

= (VΛVH + δVVH)−1ck

= (V[Λ + δI]VH)−1ck

= V(Λ + δI)−1VHck

= V(Λ + δI)−1VHVNDVH
NDbk. (7.5)

Due to the orthonormal and unitary nature of the eigenvector matrix, and recalling that it

is partitioned as V =

[
VD VND

]
, (7.5) becomes
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wk =

[
VD VND

] (ΛD + δI)−1 0

0 (ΛND + δI)−1


 0

I

VH
NDbk

=

 VD(ΛD + δI)−1 0

0 VND(ΛND + δI)−1


 0

I

VH
NDbk

= VND(ΛND + δI)−1VH
NDbk (7.6)

where 0 is a matrix of all zeros and VHVND =

 0

I

. However, as δ ≡ λND,max (i.e., the

largest non-dominant eigenvalue), we can approximate

(ΛND + δI) ≈ δI. (7.7)

Combining (7.6) and (7.7) yields

wk ≈ δ−1VNDVH
NDbk = δ−1ck. (7.8)

This result leads to the outer product of the filter being equal to the scaled outer product

of the communication symbol

wkw
H
k = δ−2ckc

H
k . (7.9)

The expressions for the symbol, clutter, and noise powers after receive filtering are derived

from the expected response of the filtered received signal. Using (7.9), the expected magni-
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tude squared response of the filtered received signal can be obtained as

E[|wH
k y|2] = E[yHwkw

H
k y]

= δ−2E[yHckc
H
k y]

= E[δ−2(Sx + αck + u)Hckc
H
k (Sx + αck + u)]. (7.10)

Once more, as the noise and clutter are independent from each other, all cross-correlation

terms are zero. The resultant filtered, received signal magnitude can be separated into

symbol So, interference Ro, and noise No terms as

E[|wH
k yr|2] = So +Ro +No (7.11)

So = δ−2|α|2cHk ckc
H
k ck (7.12)

Ro = δ−2E[xHSHckc
H
k Sx] (7.13)

No = δ−2E[uHckc
H
k u]. (7.14)

Recall that the seed vectors are assumed to be unit norm, so bHk bk = |bk|2 = 1. The symbol

power is examined in Section 7.1.3, while the noise and interference terms are analyzed in

Section 7.1.4.

7.1.1 Symbol Power Before Processing

Using (3.10) and (3.11), and observing that the symbol is purely deterministic, the symbol

power before processing becomes

Si = |α|2cHk ck = |α|2bHk VNDVH
NDVNDVH

NDbk. (7.15)
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Due to the orthogonal nature of eigenvectors, (7.15) is equivalent to

Si = |α|2bHk VNDIVH
NDbk = |α|2bHk VNDVH

NDbk. (7.16)

For convenience, define

γ , VHbk. (7.17)

Because an eigenvector matrix is composed of orthonormal vectors (i.e. it is a unitary matrix)

and using the assumption that bk is unit norm, it is easy to show that |γ|2 = |bk|2 = 1. Due

to the pseudo-random nature of the seed vectors, the average magnitude of each element is

|γavg|2 =
1

NM
γHγ

=
1

NM
bHk VVHbk

=
1

NM
bHk Ibk

=
1

NM
. (7.18)

As shown in (3.9), the eigenspace can be partitioned into dominant and non-dominant sub-

spaces. Similarly, γ can be partitioned as

γ =

 γD

γND

 =

 VH
Dbk

VH
NDbk

 . (7.19)

Using (7.18) and (7.19),

γHγ =

[
γHD γHND

] γD

γND


= γHDγD + γHNDγND

∼= (m)|γavg|2 + (NM −m)|γavg|2. (7.20)
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Substituting the results for the non-dominant portion of γ from (7.20) into (7.16), Si reduces

to

Si = |α|2bHk VNDVH
NDbk = |α|2γHNDγND ∼=

|α|2(NM −m)

NM
. (7.21)

7.1.2 Interference and Noise Power Before Processing

Using (7.3) and assuming all samples of the clutter are i.i.d., the interference power before

processing is

Ri = E[xHSHSx]

= E[tr{SxxHSH}]

= tr{SE[xxH ]SH}

= σ2
xtr{SSH}. (7.22)

It is interesting to note that tr{SSH} = tr{VΛVH} = tr{Λ} due to the orthonormal nature

of the eigenvector matrix (i.e., VHV = I ⇒ VH = V−1) and the commutative property of

the trace operation. Therefore, the interference power is given as

Ri = σ2
xtr{Λ}. (7.23)

Assuming the radar waveform is constant modulus and ||s||2 = 1, it is found that tr{SSH} =

NM . In this case, the interference power is

Ri = σ2
xtr{Λ} = σ2

xNM. (7.24)

Assuming that the noise is additive white Gaussian, the noise power before receive filter-

ing is given as

Ni = E[uHu] = σ2
uNM. (7.25)
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7.1.3 Symbol Power After Processing

Using (7.21) and (7.12), the symbol power after receive filtering becomes

So = δ−2|α|2cHk ckc
H
k ck

= δ−2|α|2NM −m
NM

NM −m
NM

=
|α|2(NM −m)2

(δNM)2
. (7.26)

7.1.4 Interference and Noise Power After Processing

Using (7.13) and the identity E[aHa] = E[tr{aaH}] for a some arbitrary vector, the

interference power after receive filtering can be given as

Ro = δ−2E[xHSHckc
H
k Sx]

= δ−2E[tr{cHk SxxHSHck}]

= δ−2tr{cHk SE[xxH ]SHck}

= δ−2σ2
xtr{cHk SSHck}

= δ−2σ2
xtr{bHk VNDVH

NDVΛVHVNDVH
NDbk}. (7.27)
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Note that VH
NDVΛVHVND simplifies to

VH
NDVΛVHVND = VH

ND

[
VD VND

] ΛD 0

0 ΛND


 VH

D

VH
ND

VND

=

[
0 I

] ΛD 0

0 ΛND


 0

I


=

[
0 ΛND

] 0

I


= ΛND. (7.28)

Substituting (7.17), (7.18), and (7.28) into (7.27), the interference power is shown to be

equivalent to

Ro = δ−2σ2
xtr{bHk VNDVH

NDVΛVHVNDVH
NDbk}

= δ−2σ2
xtr{γHNDΛNDγND}

∼= δ−2σ2
xtr{ΛND}

1

NM

=
σ2
xtr{ΛND}
δ2NM

. (7.29)

The residual noise power after receive filtering as given in (7.14) can be simplified using

the uncorrelated nature of additive white Gaussian noise and (7.17) and (7.18) as
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No = δ−2E[uHckc
H
k u]

= δ−2E[tr{cHk uuHck}]

= δ−2tr{cHk E[uuH ]ck}

= δ−2σ2
utr{cHk ck}

= δ−2σ2
ub

H
k VNDVH

NDVNDVH
NDbk

= δ−2σ2
uγ

H
NDγND

∼=
σ2
u(NM −m)

δ2NM
(7.30)

where σ2
u is the noise power.

7.1.5 SINR and Processing Gain

For an arbitrary radar waveform and using (7.21), (7.23), and (7.25), the SINR before

receive processing is

SINRi =
Si

Ri +Ni

=
|α|2(NM −m)

(NM)(σ2
xtr{Λ}+ σ2

u(NM))
. (7.31)

Using (7.26), (7.29), and (7.30), the SINR after receive processing with the decorrelating

filter from (5.2) is

SINRo =
So

Ro +No

=
|α|2δ2(NM −m)2NM

δ2(NM)2(σ2
xtr{ΛND}+ σ2

u(NM −m))

=
|α|2(NM −m)2

NM(σ2
xtr{ΛND}+ σ2

u(NM −m))
. (7.32)
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Using the definition for processing gain given in (7.1), and substituting in (7.31) and (7.32),

the processing gain paramaterized by the dominant subspace dimensionality m is

∆(m) =
SINRo

SINRi

=
(NM −m)(σ2

xtr {Λ}+ σ2
uNM)

σ2
xtr {ΛND}+ σ2

u(NM −m)
. (7.33)

If the radar waveform is constant modulus, (7.33) simplifies to

∆(m) =
(NM)(NM −m)(σ2

x + σ2
u)

σ2
xtr{ΛND}+ σ2

u(NM −m)
. (7.34)

Notice that with λm+1 the largest non-dominant eigenvalue,

tr{ΛND} ≤ λm+1(NM −m). (7.35)

Using (7.35) in (7.34) results in a lower bound of

∆(m) ≥ NM
σ2
x + σ2

u

σ2
xλm+1 + σ2

u

. (7.36)

This bound proves useful in visualizing the behavior of processing gain as a function of the

noise and interference. If σ2
u � σ2

x (i.e. the noise power is much greater than the clutter

power), then (7.36) results in ∆(m) ≈ NM . This is the expected gain from coherently

integrating the symbol energy. However, if σ2
x � σ2

u (i.e. the clutter power is much greater

than the noise power), then (7.36) simplifies to ∆(m) ≈ NMλ−1
m+1. It can be observed that

the majority of the clutter power is concentrated in the first N eigenvalues, as shown in

Figure 3.3. Therefore, assuming that m > N , the eigenvalues in the non-dominant space

are typically small. When optimizing (7.36) over values of m, it may be assumed that

λm+1 � 1. This inequality is due to the redundancy caused by oversampling the radar

waveform. Small values of λm+1 ensure the processing gain becomes much greater than the

coherent integration gain (NM). These concepts are explored in detail in Chapter 8.
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7.2 SINR at the Intercept Receiver

In order to analyze the processing gain of the LPI metric in (6.4), the SINR at the

intercept receiver after processing must be derived. Expanding (6.4) yields

εir(m̃) = E[(Sx + αck + u)HPm̃(Sx + αck + u)]. (7.37)

Due to the uncorrelated nature of the noise and interference, all cross-correlation terms go

to zero. Therefore,

εir(m̃) = E[xHSHPm̃Sx] + |α|2cHk Pm̃ck + E[uHPm̃u]

= Sir +Rir +Nir (7.38)

where the signal term Sir, interference term Rir, and noise term Nir of the received signal are

given by

Sir = |α|2cHk Pm̃ck (7.39)

Rir = E[xHSHPm̃Sx] (7.40)

Nir = E[uHPm̃u]. (7.41)

The SINR at the intercept receiver is then

SINRir =
Sir

Rir +Nir
(7.42)

60



Using (6.1), Rir in (7.42) can be simplified as

Rir = E[xHSHPm̃Sx]

= E[xHSHṼND,m̃ṼH
ND,m̃Sx]

= E[tr
{

ṼH
ND,m̃SxxHSHṼND,m̃

}
]

= σ2
xtr
{

ṼH
ND,m̃VΛVHṼND,m̃

}
= σ2

xtr

ṼH
ND,m̃

[
VD,m̃ VND,m̃

] ΛD,m̃ 0

0 ΛND,m̃


 VH

D,m̃

VH
ND,m̃

VND,m̃


= σ2

xtr


[

0 I

] ΛD,m̃ 0

0 ΛND,m̃


 0

I




= σ2
xtr {ΛND,m̃} . (7.43)

Similarly, the noise at the intercept receiver can be decomposed as

Nir = E
[
uHPm̃u

]
= E

[
uHṼND,m̃ṼH

ND,m̃u
]

= E
[
tr
{

ṼH
ND,m̃uuHṼND,m̃

}]
= σ2

utr
{

ṼH
ND,m̃ṼND,m̃

}
= σ2

u(NM − m̃). (7.44)

Using (7.43) and (7.44) in (7.42), the SINR at the intercept receiver becomes

SINRir =
|α|2cHk Pm̃ck

σ2
xtr {ΛND,m̃}+ σ2

u(NM − m̃)
. (7.45)

Recall that the intercept receiver does not have knowledge of the true dimensionality

of the dominant subspace. Therefore, all possible values of m̃ must be considered by the
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intercept receiver. If m̃ ≤ m, thenm−m̃ eigenvectors will be added to the true non-dominant

subspace. Let the NM × (m− m̃) matrix of extra eigenvectors be given as

Vr =

[
vD,m̃ vD,m̃+1 . . . vD,m

]
(7.46)

where vD,m is the eigenvector corresponding to smallest eigenvalue in the dominant subspace.

Note that in the case of m̃ = m, Vr is simply an empty matrix. Therefore, the hypothesized

non-dominant subspace can be expressed as

VND,m̃ =

[
Vr VND

]
. (7.47)

Using (3.10), (3.11), and (7.47) in (7.39), and recalling the orthonormal nature of eigenvec-

tors, the signal power incident on the intercept receiver when m̃ ≤ m becomes

Sir = |α|2bHk VND,mVH
ND,mVND,m̃VH

ND,m̃VND,mVH
ND,mbk

= |α|2bHk VND,mVH
ND,m

[
Vr VND,m

] VH
r

VH
ND,m

VND,mVH
ND,mbk

= |α|2bHk VND,m

[
0 I

] 0

I

VH
ND,mbk

= |α|2bHk VND,mVH
ND,mbk

= |α|2γHNDγND. (7.48)

From (7.21) and (7.48), the symbol power at the intercept receiver when the hypothesized

dominant subspace is less than or equal to the true dominant subspace is

Sir
∼=
|α|2(NM −m)

NM
. (7.49)

It is interesting to note that the symbol power is not affected by underestimating the size
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of the dominant subspace. Only the size of the dominant subspace chosen by the radar-

embedded communication (REC) system has any effect on the symbol power at the intercept

receiver.

Now consider the case where m̃ > m. Here it is convenient to define the NM × (m̃−m)

matrix

Vp
.
=

[
vND,m+1 vND,m+2 . . . vND,m̃

]
(7.50)

which can be used to partition the true non-dominant subspace as

VND,m =

[
VP VND,m̃

]
. (7.51)

Notice that

Sir = |α|2bHk VND,mVH
ND,mVND,m̃VH

ND,m̃VND,mVH
ND,mbk

= |α|2bHk PPm̃Pbk. (7.52)

Examining the quantity PPm̃P, and using (7.51),

PPm̃P =

[
VP VND,m̃

] VH
P

VH
ND,m̃

VND,m̃VH
ND,m̃

[
VP VND,m̃

] VH
P

VH
ND,m̃


=

[
VP VND,m̃

] 0

I

[ 0 I

] VH
P

VH
ND,m̃


= VND,m̃VH

ND,m̃. (7.53)

Substituting (7.53) into (7.52), and recalling that eigenvectors preserve the length of the

unit normed seed vectors bk, the signal power at the intercept receiver when the size of the
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dominant subspace is overestimated is

Sir = |α|2bHk VND,m̃VH
ND,m̃bk

= |α|2γHND,m̃γND,m̃

∼= |α|2
NM − m̃
NM

. (7.54)

Using the results of (7.49) and (7.54), it becomes apparent that the signal power at the

intercept receiver is expressed as

Sir = |α|2NM −max(m, m̃)

NM
. (7.55)

Using (7.55) in (7.45), the SINR at the intercept receiver is then

SINRir =
|α|2(NM −max(m, m̃))

(NM) (σ2
xtr {ΛND,m̃}+ σ2

u(NM − m̃))
. (7.56)

7.3 Analysis of the LPI Metric

Recall that the SINR before processing was derived in Section 7.1, yielding the expression

in (7.31). Therefore, we define the processing gain of the intercept receiver as

∆ir
.
=
SINRir

SINRi
. (7.57)

This processing gain can be simplified as

∆ir =
|α|2(NM −max(m, m̃))

(NM) (σ2
xtr {ΛND,m̃}+ σ2

u(NM − m̃))

NM (σ2
xtr {Λ}+NMσ2

u)

|α|2 (NM −m)

=
(NM −max(m, m̃))(σ2

xtr {Λ}+NMσ2
u)

(NM −m) (σ2
xtr {ΛND,m̃}+ σ2

u(NM − m̃))
. (7.58)
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Consider the ratio of the processing gains afforded by the diagonally loaded decorrelating

receiver and the new intercept receiver, defined as

Ψ(m, m̃)
.
=

∆

∆ir
. (7.59)

This definition provides a criterion with which to optimize the "gain advantage" via a Maxi-

Min approach. Using (7.33) and (7.58), this gain advantage can be expressed as

Ψ(m, m̃) =
∆

∆ir

=
(NM −m)(σ2

xtr {Λ}+ σ2
uNM)

σ2
xtr {ΛND,m}+ σ2

u(NM −m)

(NM −m) (σ2
xtr {ΛND,m̃}+ σ2

u(NM − m̃))

(NM −max(m, m̃))(σ2
xtr {Λ}+NMσ2

u)

=
(NM −m)2(σ2

xtr {ΛND,m̃}+ σ2
u(NM − m̃))

(NM −max(m, m̃))(σ2
xtr {ΛND,m}+ σ2

u(NM −m))
. (7.60)

The gain advantage of the decorrelating receiver can be divided into three different cases.

Case 1: Intercept Receiver Underestimates Size of Dominant Subspace

If the size of the dominant subspace is underestimated, then m > m̃. For this case, (7.60)

reduces to

Ψ(m, m̃) =
(NM −m)(σ2

xtr {ΛND,m̃}+ σ2
u(NM − m̃))

σ2
xtr {ΛND}+ σ2

u(NM −m)
. (7.61)

Notice that for m > m̃, tr {ΛND,m̃} > tr {ΛND} and (NM − m̃) > (NM −m). It is clear

that
σ2
xtr {ΛND,m̃}+ σ2

u(NM − m̃)

σ2
xtr {ΛND}+ σ2

u(NM −m)
> 1 (7.62)

so Ψ(m, m̃) > (NM −m). Therefore, when the intercept receiver underestimates the size of

the dominant subspace, the desired receiver always has a gain advantage.

Case 2: Intercept Receiver Matches Size of Dominant Subspace

If the size of the dominant subspace is estimated correctly, then m = m̃. For this case,

65



(7.60) reduces to

Ψ(m, m̃) =
(NM −m)(σ2

xtr {ΛND,m}+ σ2
u(NM −m))

σ2
xtr {ΛND,m}+ σ2

u(NM −m)

= NM −m. (7.63)

In this case, the desired receiver once more has a clear advantage.

Case 3: Intercept Receiver Overestimates Size of Dominant Subspace

If the size of the dominant subspace is overestimated, then m < m̃. For this case, (7.60)

reduces to

Ψ(m, m̃) =
(NM −m)2(σ2

xtr {ΛND,m̃}+ σ2
u(NM − m̃))

(NM − m̃)(σ2
xtr {ΛND,m}+ σ2

u(NM −m))
. (7.64)

Unfortunately, when m < m̃ the two portions of (7.64) provide conflicting results. Clearly,

(NM −m)2

NM − m̃
> 1. (7.65)

However, tr {ΛND,m̃} < tr {ΛND} and (NM − m̃) < (NM −m). Therefore,

σ2
xtr {ΛND,m̃}+ σ2

u(NM − m̃)

σ2
xtr {ΛND}+ σ2

u(NM −m)
< 1. (7.66)

Recall that the fundamental problem in the REC framework is to maximize the perfor-

mance of the desired receivers and to minimize the performance of any intercept receiver.

Therefore, optimizing (7.59) is a maxi-min problem. Formally, the optimization is given as

max
m

min
m̃

Ψ(m, m̃) (7.67)

under the constraint NM − m ≥ K. Fortunately, the search space for optimization is of

dimension (NM)(NM −K). Recall that M is constrained to be small, to maintain the LPI

nature of the system. Also, the optimization does not need to be performed in real time.

Therefore, this function can be optimized through a brute force search. Results of this brute
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force search are shown in Chapter 8.
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Chapter 8

Simulation Results

8.1 High Fidelity Modeling

For the purpose of this thesis, the simulation setup used in previous work was modified to

include a more realistic scenario. The only exception occurs in Section 4.4, and the differences

are explained there. First, all processing undertaken by the radar, tag, or intercept receiver

employ an oversampling rate of M = 2. This sampling rate is twice that required by the

Nyquist criterion. However, in a real system, the radar waveform and communication symbol

pass through a continuous channel. To simulate continuous time, all signals entering the

channel (e.g. communication symbol transmitted from the tag, radar waveform transmitted

from the radar system) are upsampled to a rate 14 times Nyquist. All channel phenomenon,

such as multipath, interference, and additive noise operations are simulated at this higher

sampling rate. The AWGN is filtered at this sampling rate to bandlimit it to the same

bandwidth as the signal.

All SNR, signal-to-interference (SIR), and signal-to-interference-plus-noise (SINR) calcu-

lations are obtained at the higher sampling rate. Unless otherwise noted, the interference-

to-noise ratio (INR) is 30 dB. The clutter (interference) was modeled as a Gaussian random

process for all simulations.
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All signals incident on a receiver (e.g. communication waveform impinging on radar

receiver, radar waveform incident on tag) are low pass filtered and downsampled to the

discrete sampling rate. The transmitted radar waveform used in all simulations is an LFM

radar waveform [35] with a time-bandwidth product of N = 100. In all simulations, there

are K = 16 possible communication symbols.

8.2 Simulation Plots

Figure 8.1 shows the BER for the decorrelating receiver given in (5.2). For Figures 8.1,

8.2, 8.3, and 8.5, the dominant subspace was chosen to be of size m = 160. This size was

chosen from a brute force optimization of (7.60) using the approximation (7.35) [2]. Notice

the multipath corrupted communication system performs similar to the case of no multipath.

However, the advantage of time reversal is clearly shown.
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Figure 8.1: BER before Neyman-Pearson processing

Figure 8.2 shows the effectiveness of the Neyman-Pearson two stage receiver. The simu-

lation setup is the same as used in Figure 8.1. The Neyman-Pearson criterion was set with

a Pfa of 10−5. As a worst case, the BER after the Neyman-Pearson detector is only ∼ 10−2,

implying very few incorrect symbols pass the detector.
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Figure 8.2: BER after Neyman-Pearson processing

If the Neyman-Pearson detector is used, then the performance of the receiver may be

analyzed in terms of the probability of detection, Pd, and the probability of miss, Pm. Define

Pd =
number of correct symbols detected
total number of symbols transmitted

(8.1)

and

Pm =
number of correct symbols not detected

total number of correct symbols
. (8.2)

In other words, (8.2) represents the number of correct symbols rejected between the two

stages. The results of the simulation of these two metrics are shown in Figures 8.3 and 8.4.
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Figure 8.3 also shows the probability of an intercept receiver detecting the communication

symbol. The intercept receiver has the same conditions as the multipath corrupted symbol.

It uses the equalized receiver given in (6.16) and has clairvoyant knowledge of the noise and

clutter powers. The threshold was found numerically using a Pfa = 10−5.

Figure 8.3: Probability of detection with equalization
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Figure 8.4: Probability of miss after Neyman-Pearson processing

Figure 8.5 shows the probabilities of detection for an intercept receiver using the non-

equalized metric given in (6.7) and the equalized metric given in (6.13). Curves for Pfa =

10−4and 10−5 are shown. The metrics produce similar results. As the intercept receiver is

given clairvoyant knowledge in these metrics, it is expected that these metrics closely bound

the performance of an intercept receiver.
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Figure 8.5: Probability of detection with and without equalization

As mentioned in Section 7.1 the processing gain at the decorrelating receiver is dependent

on the INR of the scenario. Figure 8.6 shows the case where the clutter is dominant. In this

case, the INR is set to 30 dB. Notice that the clutter cancellation allows for a much greater

gain than would be the case of simple coherent integration.
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Figure 8.6: Processing gain - clutter dominant

However, in the case when the noise is dominant, the clutter cancellation provides no

further gain. In Figure 8.7, the INR is set to -30 dB.
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Figure 8.7: Processing gain - noise dominant

Figure 8.8 shows the surface of Ψ(m, m̃) with K = 16 possible symbols. Therefore,

1 ≤ m ≤ 184 and 1 ≤ m̃ ≤ 199. It is informative to take cuts of this surface.
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Figure 8.8: Ψ(m, m̃)

Figure 8.9 shows three interesting cuts of Ψ(m, m̃). The cases ofm = 100,m = 160, and m =

184 are considered. It is interesting to see the advantage gained by using m = 160 versus

using m = 100. The size of the dominant subspace in previous work was set at m = 100,

though the diagonally loaded receiver was not used. Notice that the gain advantage is very

similar for the cases of m = 160 and m = 184 when m̃ is relatively small. However, when

the size of the hypothesized dominant subspace gets very large, the behavior is different. In

the case of m = 184, the communication symbols lie in a very small subspace. They are

of the same rank as the subspace available. Therefore, their energy is concentrated in that
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subspace. When everything else is projected out, the communication symbols will dominate

over what noise remains. However, if the dominant subspace is smaller, the waveforms are

more "spread out". The intercept receiver projects away signal energy in addition to noise

and interference as the hypothesized dominant subspace is increased.

Figure 8.9: Ψ(m, m̃) for 3 values of m

The progression of this effect is shown in Figure 8.10, where 34 cuts of Ψ(m, m̃) are

shown as a function of m̃. These cuts correspond to 150 ≤ m ≤ 184. There is very

little variance between these cuts at relatively large non-dominant subspaces (i.e. close

to dominant subspace size of 150), but the spreading is apparent at relatively small non-

dominant subspaces (i.e. close to dominant subspace size of NM −K = 184).
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Figure 8.10: Ψ(m, m̃) for 34 values of m

Figure 8.11 is a slightly different optimization. In this case, for each possible value of m,

the minimum value of Ψ(m, m̃) was selected. In other words, for each m,

min
m̃

Ψ(m, m̃) (8.3)

was evaluated. This gives the "worst" processing gain point for every dimensionality of non-

dominant subspace. Notice that there is a wide choice of values that give similar results.

Using the approximation in (7.35), it was numerically determined in [2] that selecting the

dominant subspace to be m = 160 maximized the function shown in Figure 8.11. This is

the "maximum" stage of the maxi-min criterion. However, for the exact surface (i.e. using

(7.60), the maximum is identically reached at values of m = 138, 139, 140.
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Figure 8.11: Minimum values of Ψ(m, m̃) as a function of m

The masking power of the interference is made clear in Figure 8.12. In this case, the

INR is set to -30. Notice that as the size of the dominant space increased, the decorrelating

receiver enjoys a much smaller advantage over the intercept receiver. In this case, the REC

system is essentially a standard spread-spectrum LPI communications system. It depends

only on the noise to mask the communication symbols.
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Figure 8.12: Minimum values of Ψ(m, m̃) as a function of m, noise dominant case
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Chapter 9

Conclusion

This thesis examined a method of covert wireless communications which used ambient

radar scattering to mask communication symbols from a transponder/tag. The Dominant

Projection method of symbol design is effective at forming symbols that can be embedded

on an intra-pulse basis, allowing for data rates on the order of the PRF of a pulsed radar

system.

Multipath distortion was shown to have little effect on symbols designed via the Domi-

nant Projection method. Furthermore, if the desired receiver is the illuminating radar, time

reversal may be used to improve performance in two ways. First, the spatio-temporal fo-

cusing afforded by time reversal improves the probability of correctly detecting a symbol.

Second, the spatial dependence of multipath causes destructive interference with respect to

a time reversed symbol at an intercept receiver. This destructive interference decreases the

probability that an intercept receiver can detect a communication symbol. Time reversal

results were shown for the case when the radar waveform is known at the tag. A method

of estimating the radar waveform using spatial degrees of freedom was shown for the case

when the radar waveform is not known at the tag.

A two-stage Neyman-Pearson receiver was developed. The first stage of the receiver

consists of a maximum likelihood receiver that maximizes the probability of detecting a
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symbol. This stage selects the most likely symbol sent over a given time interval. The

second stage uses the residues of the filters corresponding to the symbols not selected by

the first stage to form a null hypothesis. Due to the Central Limit Theorem the magnitude

of these residues is Rayleigh distributed. A threshold can then be determined to give an

acceptable probability of false alarm.

An LPI communication system must consider both maximizing data reliability and min-

imizing probability of intercept. Therefore, this thesis examined several intercept metrics

to provide a bound on the probability of intercept. A previous metric was shown to re-

quire improvement. An alternate metric was shown which systematically projected away

hypothesized dimensionalities of dominant subspace and performed an energy detection on

the residues. This metric used the ratio of the maximum to the minimum values of the

residues over a time period to establish the probability of a symbol being present. However,

the thresholds for determining a symbol while maintaining an acceptable rate of false alarm

where determined numerically. An equalized metric was then shown that, given clairvoy-

ant knowledge of clutter and noise powers, yielded a χ2 distributed null hypothesis. This

development allows for offline determination of thresholds.

Previous work had assumed the dimension of the dominant subspace to be equal to the

time-bandwidth product of the radar waveform. This thesis provided a formal analysis of

the processing gain given by the diagonally loaded decorrelating receiver and the alternative

intercept metric. The ratio of the processing gain of the decorrelating receiver to the inter-

cept metric provides the gain advantage of the desired receiver over an intercept receiver.

This gain advantage can then be optimized over possible dimensionalities of the dominant

subspace.

Finally, simulation results were shown to verify and explore the concepts discussed in this

thesis. The various properties of the Neyman-Pearson receiver were examined. In addition,

the gain advantage of the desired receiver over the intercept metric was shown in terms of the

probability of detection. The equivalence of the alternate intercept metric to the equalized
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alternate intercept metric was determined. Finally, the gain advantage surface was explored

in detail.

9.1 Future Work

There are several promising areas for future work. First, the analysis on time reversal

depended on simulation results to show the effectiveness of the pre-distortion. A rigorous

mathematical analysis would be beneficial.

Second, the impact of the REC symbols on the radar performance has not been analyzed.

Due to the radar receiver having exact knowledge of the waveforms, it is assumed that they

may be nulled with little effect on the radar detection. However, due to the correlation of the

radar waveform with the communication symbol, this may result in some loss of sensitivity

and/or dynamic range. A thorough analysis of this effect should be explored.

A third avenue of questioning arises from the assumptions on the clutter distribution. For

the purposes of the derivations in this thesis, it is assumed that the clutter is uncorrelated

in range. If this were not the case, what would be the impact on the performance? How

much error would this introduce into the formal analysis conducted in this thesis?

The simulations in this thesis assumed a constellation size of 16 symbols. This selection

of constellation size impacted the numerical optimization of the dominant subspace size. It

would be useful to optimize the design of the REC over possible constellation sizes as well

as subspace sizes.
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