. CALMIT

sity of Nebraska - Lincoln

Center for Advanced Land Management Information Technologies

101010104010101( N S '_‘;||o|

GeoComputatiomaqlol- ce a 01010
ngh performance Ge€ 1al Computing

(

50 O




Contents

2. GeoComputational Intelligence
- ANN-based Urban-CA model

3. High-performance Geospatial Computing

- Parallel Geostatistical Areal Interpolation
- pPRPL and pSLEUTH




Introduction — Computational Science

 Definition
“the field of study concerned with
constructing mathematical models and  MatgEuENE:
numerical solution techniques and
using computers to analyze and solve
scientific, social scientific and _
engineering problems.” (wikipedia) Science
* Domains include:
Numerical simulations Science & Enginee i

Model fitting and data analysis

 Massive computational
i N te ns | ty http://www.it.uu.se/edu/masters/CompSc/

Computational



Introduction - GeoCamputation
L 4_

-

 Definition
Couclelis (1998) identified the “core GeoComputation” as the

innovative (or derived from other disciplines) computer-based
geospatial modeling and analysis

Contrasted against the traditional computer-supported
spatial data analysis and geospatial modeling

Openshaw (2000) also emphasized _
Computational Science as the origin of GEOCOmpytl@lq](‘)ﬂ
GeoComputation (the Computation part) and the | “ﬁ‘mn
essential concerns about geographical and earth '

systems (the Geo part) g

* The capital G and C

RACHAEL Mo ! fa i1 .
Y GeoComputation
EDITEDBY TR0L 8 1pei s =

. YSTaN DPENS*AW AND ROBERTU. ABRAHART




* Methodology

A wide array of computer-based models and techniques, many
of them derived from the field of Artificial Intelligence (Al) and
the more recently defined area of Computational Intelligence (ClI)
(Couclelis, 1998)

» Expert Systems, Cellular Automata, Neural Networks, Fuzzy Sets,

Genetic Algorithms, Fractal Modelling, Visualization and Multimedia,
Exploratory Data Analysis and Data Mining, etc.

<+ High-performance geospatial computing

GeoComputation T
IRININ RIRINININ RIN §IE~




ANN-Urban-CA> an ughan growth model

< Overview

Combination of a Cellular Automata (CA) model, an Artificial

Neural Network (ANN), and a macro-scale socio-economic
model

Integration of Geography, Natural Resource Science, Social
Science, and Economics in a GeoComputation framework




Geospatial Cellular Automata

 Bottom-Up structure

Simple local rules to simulate complex
global spatio-temporal dynamics
* Widely used in geospatial
modeling
Land-use/Land-cover Change
Wildfire Propagation
Flood Spreading
Freeway Traffic Flow
More and More Coming up...

Prediction of urban development to the
year 2050 over southeastern
Pennsylvania and part of Delaware
using the SLEUTH model
http://www.essc.psu.edu/~dajr/chester/
animation/movie_small.htm



Issues of GeospatialyC A .

** Hard to set proper transition rules and
parameters
How to produce realistic simulations?
Brute-force calibration
» Generate results using all possible parameter values
e Find the “best-match” combination
» Highly computationally intensive
* Lack of global control
Bottom-up structure
Evolve without constraints




ANN-Urban-CA: Struc re

<+» An Artificial-Neural-Network-Based,
constrained, Cellular Automata model for
urban growth simulation

ANN-Urban-CA Model

Macro-scale socio- Micro-scale geospatial
economic simulation Simulation
Tietenber
ctenberg CA model |- ANN
Model
Socio-economic data \ 4 Y \ A Geo-spatial data
Optimization of Optimization of spatial CA transition rules
amount of land-use locations of urban areas and parameters

Urban growth Urban growth
forecasting istory simulation



ANN-Urban-CA: ANN
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<+ Artificial Neural Network

ANN is suited for dealing with
complex nonlinear relationships,
e.g., the impacts of driving factors
to urban growth

ANN can learn from available data,
and deal with redundancy,
inaccuracy, and noise

Knowledge and experience can be
easily learned and stored for
further simulation

‘
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» Macro-scale Socio-economic model

The Tietenberg model is used to generate the proper demand for
urban space in each period (e. g. year) in the future.

A Resource Economic model, which
usually is used to solve the problem of

“how to consume resources in the a— bqt / Pta —C

future according to the principle of — /7, =
sustainable development” (1_|_ r)t_l

Lands are treated as non-

regenerative resources, and the _ .

urbanization process is treated as L= (1’2’ J n)

land source consumption
Population increase as the driving

n
force of land consumpiti
plon Q . th — O
t=1

0



* Purpose
ANN adjusts the weight values
Determine the best-fit transition rules
and parameters of the CA

<+ Method
Back-Propagation (BP) training
algorithm
Input: Driving factors
Output: Urbanization probability
Target: Historical urban data

Input

Neural Network

™

Adjust Weights
and Biases



ANN-U rban-CA: Results

 History Simulation

Trained using samples of Beljing
urban maps of 1980, 1995, and
2000

Simulate urban growth in Beljing
1995 - 2000

Lee — Sallee = Area (1 Agr =0.8318

eal im

n
D€

correlatio n =

Real Beijing urban, 2000

= 0.9018

Ji(zi—zfoi(z,-—z

)’

Simulated Beijing urban, 2000




1400

» Future Forecast

1200

Increased populations of
Beijing 2001- 2015

By using the Tietenberg o0 |
Model, 6 scenarios of 200

1000 |
800 [
600

——Simulated Urban
Population

——Real Urban
Population

urbanization were derived 0

—

L T e T~ B e e B e |

Y Increased Pop Total Scenario 1
ears

Total Scenario 2 Total Scenario 3 (

(10,000) (hm?2) (hm?2) hm?2)
r=0 r=0.01 r=0 r=0.01 r=0 r=0.01
2001~2005 123.956 75229 8201.1 15186.8 15781.6 177415 18308.5
2006~2010 141.766 8687.9 8758.7 17538.6 17600.8 20488.8 20548.1
2011~2015 162.134 10033.2 9284.2 20254.6 19597.6 23661.7 23035.4




ANN-Urban-CA: Resulis

Urban Area

; [ 2000 I 2000
“ [ 2005 | [ 2005
B 2010

0510 20 30 [Mzo10 024 8 12
o Km [ 2015 sCarm—— K [ 2015

N Urban Area

Urban Growth in Beljing 2000 — 2015 (Scenarios 1)



ANN-Urban-CA® Results

Urban Area Urban Area
j',L I 2000 jL I 2000
[ 2005 / [ 2005

B 2010 024 5 12 [ 2010

o Km [ 2015

0510 20 30
o Km [ 2015

N

N

Urban Growth in Beijing 2000 — 2015 (Scenario 4)



< ANN’s capability of dealing with nonlinear complex
systems
Calibrated without heavy computing overhead and subjective
human interference
< Optimal quantity allocation + optimal spatial
allocation
Providing an ideal pattern of sustainable urban development, useful
in urban planning
* Highly flexible structure and modeling approach

Easily generalized to model other kinds of spatio-temporal dynamics
for various purposes, e.g., spread of invasive species and
vegetative epidemics, movement of toxic pollutants in water
systems, and land-cover change caused by climate change

Open to any possible/available datasets, e.g., numerous remotely
sensed data and other natural resource and environmental data



High-performance Geospatial COF;] utin
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* Why high-performance computing?
GeoComputation implies HPC

Increasing demand for computational power in geospatial research
and applications

— Sophisticated and complicated analytical algorithms
and simulation models

Integrated E&P GIS Data

~ High-resolution and large-volume datasets onG vt ermis

O&G Well Headers, IP/Test
Completion and Production

— Rapid processing and real-time response

O&G Field Outlines

O&G Pipelines and Facilities

BLM, MMS & State Leases,
Units and Agreements

Land Ownership -
Private, State and Federal

Colb.o _ Do ndaries, Water Pt

::mllﬂﬂlﬂﬂ.‘d" = lndTowns
R . | \ Jeatures
o & \
© & |
OB o8& ction Grids <
@ & \
OB > B |Models
Q - i to
— O &
== o B8 vl ce Geology,
== CD*- / 5ins,
2=t '-—' = and Thermal
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High-performance C@mputing

* Definition
Usually refers to parallel computing
* The use of multiple computing units (e.g.,
computers, processors/CPU cores, or
processes) working together on a common

task in a concurrent manner in order to
achieve higher performance

* In contrast to sequential computing that usually
has only one computing unit

Performance is usually measured with
computing time

’:’ Em e rg i N g Cybe ri nfraStrU CtU Fe A massive parallel computing
Grid Computing system

(http://ctbp.ucsd.edu/pc/html/i
Cloud Computing ntro4.html )




Areal Interpolation = Introduction

5 - - - -

- e Population of counties
®
* Definition

Predicts the unknown (target) attribute values

4.4+

at the required partition (target zones or

4.2 .

supports) from a set of known (source)

attribute data available on a different partition

3.8

(source zones or supports)

3.6

< Two main approaches -

Cartographical methods

» Use cartographical properties of supports, e.g.,
area, as the basis

« Simple and widely used
Geostatistical methods

» Use variants of Kriging

« Accounts for spatial autocorrelation

* Measure the reliability of prediction An areal interpolation problem

* Mass-preserving target prediction




Geostatistical Areal knterpolation

» Steps

Discretization of source and target supports with a
regular raster (point values not known, just
location)
Computation of support-to-support covariances as
integrals from a given point covariance model

* Between all source supports

* Between all source and target supports

Use of Kriging system with computed covariances
to derive weights for interpolation

Interpolated values computed as linear
combinations of the Kriging weights and the source
data




** Traditional geostatistical interpolation

Highly computationally intensive
* Massive memory space
* Long computing time

* FFT-based spectral method

Use Fast Fourier Transform (FFT) to compute support-to-support
covariances

o,(5,5.) =Cov{Z(s,), Z(s.)} = FFT (g,) ® FFT (C(L,2) ® FFT (g,.)

00 300
120 120
250 115 250 115
110 110
200 200
105 105
H 150
150 100 100
100 95 100 95
%0 %0
0 50
. 85
0 % 50 100 150 200 250 300
0 50 00 150 200 250 300

Execution times (for a 360x360 discretization grid)

Traditional method: ~4,000 sec FFT-based Spectral method: ~50 sec



* FFT-based method is STILL
computationally intensive

When it comes to real-world applications

* Population density from counties to 3-digit
zipcode regions in Northern California

« 500X500 discretization grid

« Matlab program
* Penium4 3.2GHz PC with 2GB RAM

* 900 seconds

¢ Solution

Parallel computing
* The computation of covariance between a pair of
supports is independent from that of other pairs

* The computation of prediction for a target support
Is independent from that for other target supports

{1
1 a7 12521 N\ J e i
R Ty P ST
2515/ - oAz
4 6 \ o
\7_(’/';_ N o il

- £ Layers
= Interpolation Result
.
= Source
O
= Target
(|




** Three parallel processes

Source-to-source, and source-to-target
covariance matrices by means of FFT

QR factorization of the source-to-
source covariance matrix

Source-to-target weights via Kriging,
and predicted attribute values for
target supports

Input Files » Output Files

libgsc

— Functions1
-Functions2

sFunctions3

—
Source
Data

— Determine Discretization
Target - [Read Scheme
Data 1 ‘
Processor 0
(Master)
Covariogram
Model Broadcast
—_— ) (
[ i
| 1
| )
| (
: :
I i
Processor 0 | Processor 1 3
Compute local source-to-source, source-to-target
covariance matrices using the FFT-based hybrid approach
(see Figure 5)
Local Source-to-Source Local Source-to-Target
Covariance Values Covariance Values
(the grey part in Figure 1a) (the grey part in Figure 1b)
Exchange

,,,,,,,,,,,,,,,,,,,,,,, ;
i
i
i
ol
[
‘ !
Processor 0 Processor 1 !

QR factorization of the global source-to-source
covariance matrix (see Figure 7)

Broadcast

Processor0 | Processor 1

Compute local source-to-target weights via Kriging,
then computes local target values (see Figure 8)

Local Target
Values

Gather

Global Target
Values

Processor 0
(Master)

Broadcast

_—
Write Target
Data



PAIl: 1<t Parallel Process

“ Support-to-support

covariance

Parallel over source supports
» Each processor handles a subset of

source supports

# Source Supports (K)

# Target Supports (P)

# Source Supports
assigned to the
processor (K.)

# Source Supports (K)

(M) spoddng aoinos #

(a) The source-to-source covariance
matrix held by a processor

(b) The source-to-target covariance
matrix held by a processor

Processor i

e N
¢~ Discretization
Scheme ,)

~— _

Data Data

z -
Source J Target

s
—

N

.

I—D\screlize

/

Source Sampling
Function Matrix

Target Sampling
Function Matrix

/’/ \"\ — T
/" Covariogram ™ /~ Discretization
\ Model ) . Scheme J
e ~ ~

~

First row of the extended
point covariance matrix

Forward FFT

%

|

. \_Jﬁ-gask mapping

Local Source supports:

Local Target supports:

Source 0

Target 0

Source 1

Target 1

Source K

Target P,

M

_‘ Forward FFT

%

FFT-ed point
covariance matrix

Local FFT-ed Source

Sampling Function Vectors

\

JL

< 7

Multiply and
Inverse FFT

Local Source-to-point

Covariance M

atrix

¥

Covariance Values
(the grey part in Figure

Local Source-to-Source

Local Source-to-Target
Covariance Values
1a) (the grey part in Figure 1b)




+ QR factorization

Needed to solve a Ax=b problem mmmmmmm e N
* In a Kriging system
— A: source-to-source covariance matrix

— X: source-to-target weight matrix
— b: source-to-target covariance matrix

Each processor handles a subset of
columns in the Q matrix

|
|
|
|
|
|
|
:
|
« Data exchange among processors at | | — . |
each iteration 4 ;‘*roz:,:;";ziﬁ::r;:;?;?;e
|
|
|
|
|
|
|
|
|
|
|
|

lobal|$ource-to
arjanc

[ds)
o
[
b
(@]
=

[

* Non-blocking communication
technique

— Overlap computation and data

|
|
|
|
|
|
|
|
exchange |
|
|




PAIl: 3" Parallel Process "

* Source-to-target weights
and target predictions
Parallel over target supports

» Each processor handles a subset . Lol Tt supors
lobal Source-to-Target Target 1
Of targ et Supports Covariance Matrix 9
Target P_
# Target Supports (P) @

Covariance Matrix

Q R Local Source-to-Target ‘

(the grey part in Figure 2)

The global source-to-target

The global source-to-source X
covariance matrix|(KxP)

covariance matrix (KxK)

N

-
Source Local Source-to-Target
Data Weight Matrix

-

T —

(M) spoddng a21nog #

The local source-to-target
weight matrix (KxP)
The local source-to-target
covariance matrix (KxPy)

Multiply

Local Target Values

# Target Supborts assigned
to the processor (P.)

[
|
|
|
|
|
[
|
[
|
|
|
[
|
|
|
|
|
| Kriging
[ 7
|
|
|
|
[
|
[
|
[
|
[
|
[
|




PAIL: Implementation 4

* Stand-along program
Written in C++
Based on Message Passing Interface (MPI)

Utilizes public-domain libraries
o FFTW (www.fftw.orqg)
o GsTL(http://[pangea.stanford.edu/~nremy/GTL/)
» Shapefile C Library (http://shapelib.maptools.org/) for data 1/0
« Template Numerical Toolkit (TNT, http://math.nist.gov/tnt/index.html)

* User-specified options
Shapefiles of source and target supports
Discretization density (point spacing distance)
Covariogram model

Task mapping scheme
Simple Kriging or Ordinary Kriging




< Two datasets

Eastern Time Zone dataset
« Source: population densities of counties in 2000 (2248 polygons)
» Target: population densities of watersheds (1633 polygons)

Continental U.S. dataset
« Source: population densities of counties in 2000 (4703 polygons)
« Target: population densities of watersheds (2848 polygons)
** Discretization scheme
2000-meter point spacing
Eastern Time Zone — 1333X917 grid (1.2 million points)
Continental U.S. - 1452X2348 grid (3.4 million points)

 Computer cluster
280 AMD quad core nodes (2.2 GHz, 8 GB RAM per node)
871 Opteron two-dual-core nodes (2.8 GHz, 8GB RAM per node)
800 MB/second InfiniBand



PAIl: Results

Population Densities of Counties Eastern Time Zone Population Densities of Watersheds

Population Density
(People/SquareMile)

B oo-247
I 268-384
[ 385-56.8
[ls69-748

[ ] 7a7-841

[ ]8a2-1142
[ 114.3-2023
P 202.4-350.2
I 350.3-805.8
B s0s.9 - 66934.3

0 400,000 800,000 1,600,000 Meters A




PAIl: Results

Continental U.S.

Population Densities of Counties Population Densities of Watersheds

el Population Density g ;
(People/SquareMile)
B oo-73
-85
[ 186-302
[7]303-395
[ ]396-582 2 5t
[ ]s83-798
[ 799-1142
P 114.3-202.3 5

0 700,000 1,400,000 2,800,000 Meters
202.4 -534.4 ' ) ' ' '
— ' . A

Bl 5345 -66934.3




PAl: Computing time .

(a) Eastern Time Zone Dataset
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(b) Continental U.S. Dataset
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** This parallel algorithm
Drastically reduced the computing time
Achieved fairly high speed-ups and efficiencies
Scaled reasonably well as the number of processors increased
and as the problem size increased
* Based on global Kriging
All source supports are used for the prediction for each target

Can be used for local Kriging
* Neighbor search

** Regular discretization grids
FFT-based technology requires regular grids

If irregular discretization is to be used, computational complexity
for support-to-support covariance is not uniform anymore

« Adaptive task mapping methods will help



* Raster Is born to be parallelized

A raster dataset essentially is a matrix of values, each of which
represents the attribute of the corresponding cell of the field

A matrix can be easily partitioned into sub-matrices and

assigned onto multiple processors so that the sub-matrices can
be processed simultaneously




PRPL: Introduction

 An open-source general-purpose parallel
Raster Processing programming Library

 Encapsulates complex parallel computing
utilities and routines specifically for raster
processing

Enables the implementation of parallel raster-processing
algorithms with minimal knowledge of parallel computing and
programming
Greatly reduces the development complexity
* Possible usage
Massive-volume geographic raster processing
Image (including remote sensing imagery) processing
Large-scale Cellular Automata (CA) and Agent-based Modeling
 Free downloadable and open source
http://sourceforge.net/projects/prpl/




PRPL: Features

“ Object-Oriented Parallel raster processing
programming style applications
Written in C++
Built upon the Message Passing
Interface (MPI)
% Class templates support
arbitrary data types

e.g. integer, char, double precision Parallel operating system
floating point number, even user-defined

types
** Transparent Parallelism

PRPL

Parallel programming
language/library (e.g. MPI)

Parallel hardware




PRPL: Features (Cont.) '

» Spatially Flexible
Supports any arbitrary neighborhood configuration
Supports centralized and non-centralized algorithms

[2,-2] | [2-1| 20 | [21 | 22 (0.50) | (0.50) | (0.50) | (0.50) | (0.50)
[-1, 0] [-1.-1] | [1.0] | [1.1] [-1,-2] | [-1,-1]) | [-1,0] | [-1,1] | [-1.2] (0.50) | (0.75) | (0.75) | (0.75) | (0.50)
(0.50) | (0.75) | (10} (0.75) | (0.50)
[0, -1] |'[0;0] | [0, 1] [0,-11 (001 [0, 1] [0.-2] | [0,-1] [I0;0] ] [0,1] | [0,2]
(0.50) | (0.75) | (0.75) | (0.75) | (0.50)
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[2,-2] | [2-1] | 20 | [2,1] | [2.2]
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(a) A weighting scheme for kernel algorithms
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22l ealeal izl ez 1.0) | (1.0) | 1.0) | o) | (1) ©00) | ©0) | ©.0) | (0O) | (0.0)
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PRPL: Features (cont.)

** Regular and irregular decomposition

0
1 0 1 2
2
(a) Row-wise decomposition (b) Column-wise decomposition
121 (122
11 21 22
123|124
0 1 2
241 (242
13 14 23
3 4 5 243 244
411|412
6 7 8 42
413|414
3
43 44

(c) Block-wise decomposition (d) Quad-tree decomposition



PRPL: Features (cont.)

“ Multi-layer processing

Layer0 Processing
& Updating
ﬁ
I
|
Layer1 :
Il
L
gy A |
//I//////g/ll // // - | I
cellspace0 / I
P 7 774 | :
| Layer2
. I S/
I| | Mapping & I P
| Distributing S e
: Process0
cellspace1 | Gathering cellspace0
I
I
|
. Process0 (Master)
- Processing
cellspace2 & Broadcasting & Updating
Y g
Process0 (Master)
A Moore neighborhood used
to construct sub-cellspaces
: e mmmmw—: A sub-cell
g sub-cellspace
MMMMh AHApARRRR 777 1] in a Layer
Process1




int main(int argc, char *argv[]) {

PRProcess myPrc(MPI_COMM_WORLD); /* Raster processor */
myPrc.init(argc, argv);

Layer<int> lyr2update(myPrc, “Int_Layer™);

.. /* load the data on the master processor */

lyr2update.smpIDcmpDstrbt(SMPL_ROW, 2*myPrc.nPrcs()); /* Decompose
distribute */

MyTransition myTrans; /* Customized Transition object */
lyr2update.update(myTrans) ; /* Apply the Transition on the Layer */

lyr2update.gatherCellSpace(); /* Gather the whole cellspace and store it
on the master processor */

myPrc.finalize();

return O;




Chester County

Pennsylvania
Growth Projections
1981-2025

Urban growth in Chester County, Pennsylvania,
1981 — 2025
http://mcmcweb.er.usgs.gov/de_river_basin/phil/mo
deling.html

< SLEUTH model

Uses a modified CA to model the
spread of urbanization across a
landscape (Clarke et al., 1996,
1997)

Its name comes from the GIS
data layers that are incorporated
into the model: Slope, Landuse,
Exclusion layer, Urban,
Transportation, and Hillshade



s Coefficients
Dispersion
Breed

Spread
Slope
Road Gravity

+* Rules

Spontaneous Growth Rule
(centralized)

New Spreading Centers Rule
(non-centralized)

Edge Growth Rule (non-
centralized)

Road-Influenced Growth Rule
(non-centralized)

- For more info. about SLEUTH: http://www.ncgia.ucsb.edu/projects/qgig/




PSLEUTH: Introduction (cont.)

. . , ‘ Conclude
Initial Conditions Generate Simulations  Simulations

*» Calibration
Determine best parameter values to
produce realistic results
Brute-force calibration

* Produce results using all possible
combinations of parameter values

« Compare with historical data to
determine the best-match
combination

* A large number of combinations of

— |SiMCiR;

input —(S2MC 4R,

images 0

0
*'snMCnR1

for Slope
(all coefficient .

settings) d Gover
{coefficient++} an (‘:v :

+

for {(all MC)
{seed++}

—S.MCiR,

Excluded |

[S.MC 2R,

Urban

Transportau N e | S.MCqR;

Hish &R parameters (101° coefficient sets)>
—* |90 1M\n . . .
Extremely intensive computing
—+[S.MCRs overhead
0
0
—FlSnMCan

Calibration of SLUETH
http://www.ncgia.ucsb.edu/projects/gig/



PSLEUTH: Parallelization
- .

* The four
growth rules
INn the
SLEUTH
model, were
Implemented
using pRPL

Urban
cellspace

Slope
cellspace

Exclusion
cellspace

Road
cellspace

Process0 (Master)

|_Mapping &
Distributing

Broadcasting

Urban

Slope

Excl

Road

Process0

Urban

Slope

Excl.

Road

Process1

Processing
& Updating

Gathering

Processing
& Updating

=

Urban

Process0 (Master)

The Moore neighborhood
used in SLEUTH

in a Layer

ﬁ A sub-cellspace



* Processer Grouping

With pRPL, pSLEUTH is able to organize the processors in

groups. Data parallelism within a group, task parallelism among
groups.

Static tasking and dynamic tasking

P e— o em— o m— o w—

Simulation 0

| I Simulation 1




PSLEUTH: Experiments,Settings

< Data
Urban areas of the continental US (1980 and 1990, 4948x3108)
* Calibration Settings
Only three values (0, 50, 100) will be evaluated for each coefficient

The total number of simulations is 243 (= 3°)
Each simulation includes 11 ( = 1990-1980+1) years




PSLEUTH - Performance
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Sub-Conclusions on pRPL and pSLEUTH

S

* pRPL greatly reduces the development
complexity of implementing a parallel raster
processing algorithm

* pPRPL can be used for many types of raster-
based processing, including Cellular Automata
(CA) and Agent-based Modeling

* pRPL largely reduces the computing time, and
enables extremely complex geospatial analysis
and modeling




Conclusions

 GeoComputation is the application of Computational
Science in geospatial studies

A large variety of computer-based statistical and mathematical
methods for the analysis and modeling of complex geospatial
phenomena

A natural next step of GIS

High-performance computing enables extremely complex geospatial
analysis and modeling using massive-volume data

 GeoComputation can be used as an exploratory-
analysis tool, a simulation method, a problem-
solving environment, a decision-making-support

and planning tool, a theory test-bed, and a theory-
discovery approach
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