
GeoComputational Intelligence and
High-performance Geospatial Computing
GeoComputational Intelligence and
High-performance Geospatial Computing

Qingfeng (Gene) Guan, Ph.D
Center for Advanced Land Management Information Technologies
School of Natural Resources
University of Nebraska - Lincoln

GIS Day @ University of Kansas
Nov. 16th, 2011

Contents

1. Computational Science and GeoComputation

2. GeoComputational Intelligence
- ANN-based Urban-CA model

3. High-performance Geospatial Computing
- Parallel Geostatistical Areal Interpolation
- pRPL and pSLEUTH

4. Conclusion

Introduction – Computational Science

Definition
 “the field of study concerned with

constructing mathematical models and
numerical solution techniques and
using computers to analyze and solve
scientific, social scientific and
engineering problems.” (wikipedia)

Domains include:
 Numerical simulations
 Model fitting and data analysis

Massive computational
intensity http://www.it.uu.se/edu/masters/CompSc/

Introduction - GeoComputation

Definition
 Couclelis (1998) identified the “core GeoComputation” as the

innovative (or derived from other disciplines) computer-based
geospatial modeling and analysis

Contrasted against the traditional computer-supported
spatial data analysis and geospatial modeling

 Openshaw (2000) also emphasized
Computational Science as the origin of
GeoComputation (the Computation part) and the
essential concerns about geographical and earth
systems (the Geo part)

 The capital G and C

Introduction – GeoComputation (cont.)

Methodology
 A wide array of computer-based models and techniques, many

of them derived from the field of Artificial Intelligence (AI) and
the more recently defined area of Computational Intelligence (CI)
(Couclelis, 1998)

• Expert Systems, Cellular Automata, Neural Networks, Fuzzy Sets,
Genetic Algorithms, Fractal Modelling, Visualization and Multimedia,
Exploratory Data Analysis and Data Mining, etc.

High-performance geospatial computing

ANN-Urban-CA: an urban growth model

Overview
 Combination of a Cellular Automata (CA) model, an Artificial

Neural Network (ANN), and a macro-scale socio-economic
model

 Integration of Geography, Natural Resource Science, Social
Science, and Economics in a GeoComputation framework

Geospatial Cellular Automata

 Bottom-Up structure
 Simple local rules to simulate complex

global spatio-temporal dynamics
Widely used in geospatial

modeling
 Land-use/Land-cover Change
 Wildfire Propagation
 Flood Spreading
 Freeway Traffic Flow
 More and More Coming up…

Prediction of urban development to the
year 2050 over southeastern
Pennsylvania and part of Delaware
using the SLEUTH model
http://www.essc.psu.edu/~dajr/chester/
animation/movie_small.htm

Hard to set proper transition rules and
parameters
 How to produce realistic simulations?
 Brute-force calibration

• Generate results using all possible parameter values
• Find the “best-match” combination
• Highly computationally intensive

 Lack of global control
 Bottom-up structure
 Evolve without constraints

Issues of Geospatial CA

ANN-Urban-CA: Structure

 An Artificial-Neural-Network-Based,
constrained, Cellular Automata model for
urban growth simulation

ANN-Urban-CA: ANN

 Artificial Neural Network
 ANN is suited for dealing with

complex nonlinear relationships,
e.g., the impacts of driving factors
to urban growth

 ANN can learn from available data,
and deal with redundancy,
inaccuracy, and noise

 Knowledge and experience can be
easily learned and stored for
further simulation

ANN-Urban-CA: Macro Constrain

Macro-scale Socio-economic model
 The Tietenberg model is used to generate the proper demand for

urban space in each period (e. g. year) in the future.
 A Resource Economic model, which

usually is used to solve the problem of
“how to consume resources in the
future according to the principle of
sustainable development”

 Lands are treated as non-
regenerative resources, and the
urbanization process is treated as
land source consumption

 Population increase as the driving
force of land consumption

0
)1(

/
1 




 t
tat

r
cPbqa

),,2,1(nt 

0
1




n

t
tqQ

ANN-Urban-CA: Training

 Purpose
 ANN adjusts the weight values
 Determine the best-fit transition rules

and parameters of the CA
Method

 Back-Propagation (BP) training
algorithm

 Input: Driving factors
 Output: Urbanization probability
 Target: Historical urban data

ANN-Urban-CA: Results

History Simulation
 Trained using samples of Beijing

urban maps of 1980, 1995, and
2000

 Simulate urban growth in Beijing
1995 - 2000

Real Beijing urban, 2000

Simulated Beijing urban, 2000

0.8318
simreal

simreal

AA
AASalleeLee





0.9018
)()(22









n

k
jj

n

k
ii

n

k
ij

zzzz

c
ncorrelatio

ANN-Urban-CA: Results

 Future Forecast
 Increased populations of

Beijing 2001- 2015
 By using the Tietenberg

Model, 6 scenarios of
urbanization were derived 0

200

400

600

800

1000

1200

1400

1
9
7
8

1
9
8
1

1
9
8
4

1
9
8
7

1
9
9
0

1
9
9
3

1
9
9
6

1
9
9
9

2
0
0
2

2
0
0
5

2
0
0
8

2
0
1
1

2
0
1
4

Simulated Urban
Population

Real Urban
Population

Years Increased Pop
（10,000）

Total Scenario 1
（hm2）

Total Scenario 2
（hm2）

Total Scenario 3（
hm2）

r=0 r=0.01 r=0 r=0.01 r=0 r=0.01
2001～2005 123.956 7522.9 8201.1 15186.8 15781.6 17741.5 18308.5
2006～2010 141.766 8687.9 8758.7 17538.6 17600.8 20488.8 20548.1
2011～2015 162.134 10033.2 9284.2 20254.6 19597.6 23661.7 23035.4

ANN-Urban-CA: Results

Urban Growth in Beijing 2000 – 2015 (Scenarios 1)

ANN-Urban-CA: Results

Urban Growth in Beijing 2000 – 2015 (Scenario 4)

Sub-Conclusion on ANN-Urban-CA

 ANN’s capability of dealing with nonlinear complex
systems
 Calibrated without heavy computing overhead and subjective

human interference
 Optimal quantity allocation + optimal spatial

allocation
 Providing an ideal pattern of sustainable urban development, useful

in urban planning
 Highly flexible structure and modeling approach

 Easily generalized to model other kinds of spatio-temporal dynamics
for various purposes, e.g., spread of invasive species and
vegetative epidemics, movement of toxic pollutants in water
systems, and land-cover change caused by climate change

 Open to any possible/available datasets, e.g., numerous remotely
sensed data and other natural resource and environmental data

High-performance Geospatial Computing

Why high-performance computing?
 GeoComputation implies HPC
 Increasing demand for computational power in geospatial research

and applications
– Sophisticated and complicated analytical algorithms

and simulation models
– High-resolution and large-volume datasets
– Rapid processing and real-time response

High-performance Computing

Definition
 Usually refers to parallel computing

• The use of multiple computing units (e.g.,
computers, processors/CPU cores, or
processes) working together on a common
task in a concurrent manner in order to
achieve higher performance

• In contrast to sequential computing that usually
has only one computing unit

 Performance is usually measured with
computing time

 Emerging Cyberinfrastructure
 Grid Computing
 Cloud Computing

A massive parallel computing
system
(http://ctbp.ucsd.edu/pc/html/i
ntro4.html)

Areal Interpolation – Introduction

Definition
 Predicts the unknown (target) attribute values

at the required partition (target zones or
supports) from a set of known (source)
attribute data available on a different partition
(source zones or supports)

 Two main approaches
 Cartographical methods

• Use cartographical properties of supports, e.g.,
area, as the basis

• Simple and widely used
 Geostatistical methods

• Use variants of Kriging
• Accounts for spatial autocorrelation
• Measure the reliability of prediction
• Mass-preserving target prediction

0 2 4 6
x 105

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

4.6

x 106

Population of counties

0 2 4 6
x 10

5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

4.6

x 10
6

Population of watersheds = ?

An areal interpolation problem

Geostatistical Areal Interpolation

 Steps
 Discretization of source and target supports with a

regular raster (point values not known, just
location)

 Computation of support-to-support covariances as
integrals from a given point covariance model

• Between all source supports
• Between all source and target supports

 Use of Kriging system with computed covariances
to derive weights for interpolation

 Interpolated values computed as linear
combinations of the Kriging weights and the source
data

FFT-based Areal Interpolation

 Traditional geostatistical interpolation
 Highly computationally intensive

• Massive memory space
• Long computing time

 FFT-based spectral method
 Use Fast Fourier Transform (FFT) to compute support-to-support

covariances
)(:)),1(()()}(),({),(''' kkkkkkz gFFTCFFTgFFTsZsZCovss 

0 50 100 150 200 250 300
0

50

100

150

200

250

300

85

90

95

100

105

110

115

120

0 50 100 150 200 250 300
0

50

100

150

200

250

300

85

90

95

100

105

110

115

120

Execution times (for a 360x360 discretization grid)

Traditional method: ~4,000 sec FFT-based Spectral method: ~50 sec

→

FFT-based Areal Interpolation

 FFT-based method is STILL
computationally intensive
 When it comes to real-world applications

• Population density from counties to 3-digit
zipcode regions in Northern California

• 500X500 discretization grid
• Matlab program
• Penium4 3.2GHz PC with 2GB RAM
• 900 seconds

 Solution
 Parallel computing

• The computation of covariance between a pair of
supports is independent from that of other pairs

• The computation of prediction for a target support
is independent from that for other target supports

pAI: Algorithm Overview

 Three parallel processes
 Source-to-source, and source-to-target

covariance matrices by means of FFT
 QR factorization of the source-to-

source covariance matrix
 Source-to-target weights via Kriging,

and predicted attribute values for
target supports

pAI: 1st Parallel Process

 Support-to-support
covariance
 Parallel over source supports

• Each processor handles a subset of
source supports

pAI: 2nd Parallel Process

QR factorization
 Needed to solve a Ax=b problem

• In a Kriging system
– A: source-to-source covariance matrix
– x: source-to-target weight matrix
– b: source-to-target covariance matrix

 Each processor handles a subset of
columns in the Q matrix

• Data exchange among processors at
each iteration

• Non-blocking communication
technique

– Overlap computation and data
exchange

pAI: 3rd Parallel Process

 Source-to-target weights
and target predictions
 Parallel over target supports

• Each processor handles a subset
of target supports

pAI: Implementation

 Stand-along program
 Written in C++
 Based on Message Passing Interface (MPI)
 Utilizes public-domain libraries

• FFTW (www.fftw.org)
• GsTL(http://pangea.stanford.edu/~nremy/GTL/)
• Shapefile C Library (http://shapelib.maptools.org/) for data I/O
• Template Numerical Toolkit (TNT, http://math.nist.gov/tnt/index.html)

User-specified options
 Shapefiles of source and target supports
 Discretization density (point spacing distance)
 Covariogram model
 Task mapping scheme
 Simple Kriging or Ordinary Kriging

pAI: Experiment Settings

 Two datasets
 Eastern Time Zone dataset

• Source: population densities of counties in 2000 (2248 polygons)
• Target: population densities of watersheds (1633 polygons)

 Continental U.S. dataset
• Source: population densities of counties in 2000 (4703 polygons)
• Target: population densities of watersheds (2848 polygons)

Discretization scheme
 2000-meter point spacing
 Eastern Time Zone – 1333X917 grid (1.2 million points)
 Continental U.S. - 1452X2348 grid (3.4 million points)

 Computer cluster
 280 AMD quad core nodes (2.2 GHz, 8 GB RAM per node)
 871 Opteron two-dual-core nodes (2.8 GHz, 8GB RAM per node)
 800 MB/second InfiniBand

pAI: Results

pAI: Results

pAI: Computing time

0
500

1000
1500
2000
2500
3000
3500
4000

1 2 4 8 16 32 64 128 256 512

C
o

m
p

u
ti

n
g

 T
im

e
(s

ec
o

n
d

s)

Number of CPU Cores

(a) Eastern Time Zone Dataset

0

5000

10000

15000

20000

25000

30000

35000

1 2 4 8 16 32 64 128 256 512

C
o

m
p

u
ti

n
g

 T
im

e
(s

ec
o

n
d

s)

Number of CPU Cores

(b) Continental U.S. Dataset

Sub-Conclusion on pAI

 This parallel algorithm
 Drastically reduced the computing time
 Achieved fairly high speed-ups and efficiencies
 Scaled reasonably well as the number of processors increased

and as the problem size increased

 Based on global Kriging
 All source supports are used for the prediction for each target
 Can be used for local Kriging

• Neighbor search

Regular discretization grids
 FFT-based technology requires regular grids
 If irregular discretization is to be used, computational complexity

for support-to-support covariance is not uniform anymore
• Adaptive task mapping methods will help

pRPL: parallel Raster Processing Library

Raster is born to be parallelized
 A raster dataset essentially is a matrix of values, each of which

represents the attribute of the corresponding cell of the field
 A matrix can be easily partitioned into sub-matrices and

assigned onto multiple processors so that the sub-matrices can
be processed simultaneously

 An open-source general-purpose parallel
Raster Processing programming Library

 Encapsulates complex parallel computing
utilities and routines specifically for raster
processing
 Enables the implementation of parallel raster-processing

algorithms with minimal knowledge of parallel computing and
programming

 Greatly reduces the development complexity
 Possible usage

 Massive-volume geographic raster processing
 Image (including remote sensing imagery) processing
 Large-scale Cellular Automata (CA) and Agent-based Modeling

 Free downloadable and open source
 http://sourceforge.net/projects/prpl/

pRPL: Introduction

Object-Oriented
programming style
 Written in C++
 Built upon the Message Passing

Interface (MPI)

 Class templates support
arbitrary data types
 e.g. integer, char, double precision

floating point number, even user-defined
types

 Transparent Parallelism

pRPL: Features

 Spatially Flexible
 Supports any arbitrary neighborhood configuration
 Supports centralized and non-centralized algorithms

pRPL: Features (cont.)

Regular and irregular decomposition

pRPL: Features (cont.)

Multi-layer processing

pRPL: Features (cont.)

int main(int argc, char *argv[]) {

PRProcess myPrc(MPI_COMM_WORLD); /* Raster processor */
myPrc.init(argc, argv);

Layer<int> lyr2update(myPrc, “Int_Layer”);

… /* load the data on the master processor */

lyr2update.smplDcmpDstrbt(SMPL_ROW, 2*myPrc.nPrcs()); /* Decompose
distribute */

MyTransition myTrans; /* Customized Transition object */

lyr2update.update(myTrans) ; /* Apply the Transition on the Layer */

lyr2update.gatherCellSpace(); /* Gather the whole cellspace and store it
on the master processor */

myPrc.finalize();

return 0;

}

pRPL: Programming

pSLEUTH: Introduction

 SLEUTH model
 Uses a modified CA to model the

spread of urbanization across a
landscape (Clarke et al., 1996,
1997)

 Its name comes from the GIS
data layers that are incorporated
into the model: Slope, Landuse,
Exclusion layer, Urban,
Transportation, and Hillshade

Urban growth in Chester County, Pennsylvania,
1981 – 2025
http://mcmcweb.er.usgs.gov/de_river_basin/phil/mo
deling.html

 Coefficients
 Dispersion
 Breed
 Spread
 Slope
 Road Gravity

Rules
 Spontaneous Growth Rule

(centralized)
 New Spreading Centers Rule

(non-centralized)
 Edge Growth Rule (non-

centralized)
 Road-Influenced Growth Rule

(non-centralized)

 For more info. about SLEUTH: http://www.ncgia.ucsb.edu/projects/gig/

pSLEUTH: Introduction (cont.)

 Calibration
 Determine best parameter values to

produce realistic results
 Brute-force calibration

• Produce results using all possible
combinations of parameter values

• Compare with historical data to
determine the best-match
combination

• A large number of combinations of
parameters (1015 coefficient sets)
Extremely intensive computing
overhead

Calibration of SLUETH
http://www.ncgia.ucsb.edu/projects/gig/

pSLEUTH: Introduction (cont.)

 The four
growth rules
in the
SLEUTH
model, were
implemented
using pRPL

pSLEUTH: Parallelization

 Processer Grouping
 With pRPL, pSLEUTH is able to organize the processors in

groups. Data parallelism within a group, task parallelism among
groups.

 Static tasking and dynamic tasking

pSLEUTH: Parallelization (cont.)

Data
 Urban areas of the continental US (1980 and 1990, 4948×3108)

 Calibration Settings
 Only three values (0, 50, 100) will be evaluated for each coefficient
 The total number of simulations is 243 (= 35)
 Each simulation includes 11 (= 1990-1980+1) years

pSLEUTH: Experiments Settings

pSLEUTH – Performance

Computing times of pSLEUTH

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 4 8 16 32

static

dynamic - 2 gouprs

dynamic - 4 groups

dynamic - 8 groups

 pRPL greatly reduces the development
complexity of implementing a parallel raster
processing algorithm

 pRPL can be used for many types of raster-
based processing, including Cellular Automata
(CA) and Agent-based Modeling

 pRPL largely reduces the computing time, and
enables extremely complex geospatial analysis
and modeling

Sub-Conclusions on pRPL and pSLEUTH

Conclusions

 GeoComputation is the application of Computational
Science in geospatial studies
 A large variety of computer-based statistical and mathematical

methods for the analysis and modeling of complex geospatial
phenomena

 A natural next step of GIS
 High-performance computing enables extremely complex geospatial

analysis and modeling using massive-volume data
 GeoComputation can be used as an exploratory-

analysis tool, a simulation method, a problem-
solving environment, a decision-making-support
and planning tool, a theory test-bed, and a theory-
discovery approach

Thank You!

