
Applied Psycholinguistics 13 (1992), 53-76 
Printed in the United States of America 

Competing complexity metrics 
and adults' production 
of complex sentences 

HINTAT CHEUNG and SUSAN KEMPER 
University of Kansas 

ADDRESS FOR CORRESPONDENCE 
Susan Kemper, 1082 Robert Dole Human Development Center, Child Language Program, 
University of Kansas, Lawrence, KS 66045 

ABSTRACT 
The adequacy of 11 metrics for measuring linguistic complexity was evaluated by applying 
each metric to language samples obtained from 30 different adult speakers, aged 60-90 years. 
The analysis then determined how well each metric indexed age-group differences in complex­
ity. In addition, individual differences in the complexity of adults' language were examined as 
a function of these complexity metrics using structural equation modeling techniques. In a 
follow-up study, judges listened to sentences in noise, rated their comprehensibility, and 
attempted to recall each sentence verbatim. Hierarchical multiple regression was used to evalu­
ate the structural equation model, derived from the language samples, with respect to sentence 
comprehensibility and recall. While most of the metrics provided an adequate account of 
age-group and individual differences in complexity, the amount of embedding and the type of 
embedding proved to predict how easily sentences are understood and how accurately they are 
recalled. 

Psycholinguists have frequently attempted to formulate ways of measuring 
the complexity of different sentences (Brown, 1973; Crain & Schankweiler, 
1988; Fay, 1980; Ford, 1983; Frazier, 1988; Lee, 1974; Scarborough, 1990; 
Smith, 1988; Watt, 1970). Complexity metrics have been theoretically de­
rived from specific linguistic theories, experimentally devised from models 
of syntactic processing, and empirically developed from research on lan­
guage acquisition and sentence processing. Complexity metrics are impor­
tant research tools since they enable researchers to order experimental stim­
uli from least to most complex, examine developmental trends in children's 
mastery of grammatical constructions, make cross-linguistic comparisons 
as to the relative complexity of grammatical constructions in different lan­
guages, and so on. 

The most widely known attempt to develop a complexity metric was 
labeled by Fodor, Bever, and Garrett (1974) as the Derivational Theory of 
Complexity (DTC). The DTC tried to equate the complexity of sentences 
with the number of transformations, required in the then-current model of 
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generative transformational grammar, intervening between the sentence's 
deep and surface structures. Experimental findings, which indicated that 
not all transformations increase processing complexity (see Fodor et al., 
1974, for a review), and theoretical changes in syntactic theory (Bresnan, 
1982) led to the abandonment of the DTC. 

Nonetheless, a variety of approaches to measuring syntactic complexity 
have been undertaken since the abandonment of the DTC. The most com­
mon approach does not postulate a general complexity metric, but rather 
contrasts children's or adults' processing of alternative grammatical con­
structions (see, for example, Clancy, Lee, & Zoh, 1986; Frazier & Fodor, 
1978; Shapiro, Zurif, & Grimshaw, 1987; Smith & van Kleeck, 1986). Other 
researchers have attempted to develop metrics that will generally apply to 
sentences in order to scale the sentences as to their relative difficulty for 
production or comprehension. Some, like mean length of utterance (MLU) 
(Brown, 1973) and mean clauses per utterance (MCU) (Kemper, Kynette, 
Rash, Sprott, & O'Brien, 1989) measure sentence length and assume that 
sentence length - whether measured in morphemes, words, or clauses -
indexes complexity. Other metrics, like those of Botel and Granowsky 
(1972), Lee (1974), and Rosenberg and Abbeduto (1987), establish an order­
ing of grammatical constructions based on developmental patterns or the 
frequency of occurrence of target constructions in speech. A final class of 
metrics examine structural aspects of sentences and attempt to quantify the 
processing demands of various sentence structures (Frazier, 1985; Yngve, 
1960). 

The present investigation of the utility of different complexity metrics 
was undertaken as part of a study of age-group and individual differences 
in adults' language. Kemper (1988) suggested that there is an age-related 
decline in the complexity of adults' language. Previous research (Kynette & 
Kemper, 1986) established that elderly adults in their 70s and 80s are less 
likely than younger adults to produce sentences with multiple embedded 
clauses. MCU appears to decline with advancing age for written diary en­
tries (Kemper, 1987a), spontaneous statements (Kemper et al., 1989), and 
oral narratives (Kemper, Rash, Kynette, & Norman, 1990), although there 
are genre differences in the overall incidence of sentence embedding. Of 
particular interest is the finding that the age-group decline in sentence em­
bedding is somewhat more precipitous for sentences with left-branching 
structures, including those with sentence-initial subordinate clauses, that 
clauses and wh- clauses as subjects, and relative clauses modifying the 
sentence subject, than for sentences with right-branching structures, such 
as those with sentence-final subordinate clauses, verb phrase infinitive com­
plements, or relative clauses modifying the sentence predicate. 

Kemper and Rash (1988) and Kemper (1988) linked this asymmetry in 
the production of left- and right-branching sentences to similar asymmetries 
in processing left- and right-branching sentences; elderly adults have more 
difficulty recalling (Kemper, 1987b) and imitating (Kemper, 1986) left-
branching sentences. Left-branching sentences are presumed to be more 
difficult to process (Fodor, Bever, & Garrett, 1974) because they impose 
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more demands on working memory to retain and manipulate grammatical 
constituents than do right-branching sentences. 1 

As evidence for this linkage between working memory and the produc­
tion of embedded sentences, Kemper and Rash (1988) computed the Yngve 
depth (Yngve, 1960) of a sample of adults' sentences. Yngve (1960) assumed 
that the production of a sentence imposed demands on a limited-capacity 
working memory in order to retain planned but not yet articulated gram­
matical constituents. The depth of any word in a sentence represents the 
number of planned grammatical constituents that have not yet been realized 
during the left-to-right production of the sentence. In general, sentence 
embedding, particularly left-branching embedding, increases the Yngve 
depth of sentences since words within the embedded sentence are at greater 
depth than words in the main clause. 

Kemper and Rash (1988) showed that Yngve depth declines with the age 
of the speaker. They also found that Yngve depth is correlated with adults' 
backward digit span (Wechsler, 1958). Kemper et al. (1989) found that 
adults' backward digit is correlated with MCU and the production of left-
branching clauses; adults with larger backward digit spans produce sen­
tences with more embedded clauses, particularly left-branching clauses, and 
greater Yngve depth. This finding implies that the age-related decline in 
adults' production of complex sentences, particularly left-branching sen­
tences, is due to age-related declines in the capacity of working memory, as 
measured by backward digit span. 

Frazier (1985) challenged Yngve depth as a valid measure of syntactic 
complexity and suggested an alternative metric which was explicitly moti­
vated by considerations of the complexity of sentence-processing opera­
tions. Frazier's account differs from Yngve depth in two ways: first, sen­
tence embeddings are explicitly acknowledged as sources of complexity and, 
hence, increase the complexity of a particular sentence; second, the com­
plexity is computed over three-word sequences such that a cluster of many 
processing decisions contributes more to the complexity of a sentence than 
a distributed sequence of processing decisions. 

Experiment 1 was undertaken in order to compare Yngve depth to Fra­
zier's alternative as well as to other complexity metrics. Following a survey 
of the literature on language processing and language acquisition, a set of 
11 complexity metrics was chosen according to two criteria. First, clear 
rules or procedures for computing each metric were given in the original 
source, and second, each metric was, in principle, applicable to a wide 
range of sentences. This last criterion excluded metrics that apply to limited 
types of sentences such as relative clauses (Clancy, Lee, & Zoh, 1986) or 
multiclause sentences with missing complement subjects (Hsu, Cairns, & 
Fiengo, 1985). 

The measures were: MLU in words, traditionally used in the child lan­
guage literature to measure linguistic development (Miller & Chapman, 
1981); MCU, used by Kemper et al. (1989) to measure adults' linguistic 
development; Developmental Sentence Scoring (DSS), developed by Lee 
(1974) to assess children's grammatical development; Index of Productive 
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Syntax (IPSyn), which was derived by Scarborough (1990) to scale chil­
dren's grammatical development; Developmental Level (DLevel), used by 
Rosenberg and Abbeduto (1987) to evaluate the grammatical competence 
of retarded adults; Directional Complexity (DComplexity), based on the 
Botel and Granowsky (1972) formula (developed as an alternative to read­
ability formulas) to measure the linguistic difficulty of texts; two alternative 
ways of measuring Yngve depth; and two variants of Frazier's node count. 
In addition, Propositional Density (PDensity), based on Kintsch and Kee-
nan's (1973) analyses of text difficulty, was also computed in order to assess 
whether semantic content covaries with grammatical complexity. 

Experiment 1 was designed to compare the reliability of these complexity 
metrics and their utility as models of language change in adulthood. Each 
metric was evaluated as to its adequacy for describing both age-group and 
individual differences in linguistic complexity. Experiment 2 then provided 
converging evidence as to the selection of an adequate complexity metric for 
predicting the relative comprehensibility and verbatim recall of sentences. 

EXPERIMENT 1 

In order to compare alternative ways of measuring linguistic complexity, 
11 different complexity measures were applied to language samples ob­
tained from 30 different adults. The analysis then determined how well each 
measure indexed age-group differences in complexity. Finally, individual 
differences in linguistic complexity were examined as a function of each 
metric. At issue was which metric(s) would provide the best account of 
both age-group and individual differences in complexity. 

The metrics differ in three regards. First, some of the metrics are sensitive 
to sentence length: MLU, obviously, provides a measure of sentence length, 
and one each of the Yngve and Frazier metrics must necessarily increase as 
sentences increase in length, since these metrics are computed by summing 
scores assigned to each word in a sentence. To the extent that syntactically 
complex constructions involve more words and more word types, such as 
complementizers and subordinating conjunctions, MCU, DLevel, DSS, and 
DComplexity will also increase with sentence length. Hence, one issue is 
whether there are age-group and individual differences in complexity when 
sentence length (or MLU) is held constant. 

Second, several of the measures explicitly assume that some grammatical 
constructions are more complex than others; DSS, DComplexity, DLevel, 
and both Frazier metrics award more points per sentence to embedded 
clauses (particularly those producing left-branching structures) and subor­
dinate clauses. For these metrics, multiple levels of sentence embedding and 
subordination must lead to higher scores. Thus, a second issue is whether 
age-group and individual differences in complexity due to the occurrence 
of particular types of embedding and subordination will be found even 
when MCU (or the amount of embedding and subordination per se) is held 
constant. 

Finally, 10 of the metrics assess differences in grammatical form, whereas 
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PDensity attempts to measure information load (or semantic content). The 
third issue is whether age-group and individual differences in complexity 
will be obained when PDensity, or semantic content, is held constant. 

The relationships among amount of embedding, type of embedding, and 
semantic content as alternative sources of complexity were evaluated by 
comparing a series of structural equation models of the data. 

Method 

Language samples. The language samples were taken from the oral narra­
tives analyzed by Kemper et al. (1990). The narratives were collected from 
adults aged 60-90 years. Ten narratives were selected from each age group 
with the requirement that each contained at least 50 sentences; short narra­
tives containing less than 50 sentences were excluded. There were 10 narra­
tives from adults aged 60 to 69 years, 10 from adults aged 70 to 79 years, 
and 10 from adults aged 80 to 90 years. Each narrative was told by a 
native speaker of English. The vocabulary score of each speaker and each 
speaker's forward and backward digit span scores from the Wechsler Adult 
Intelligence Scales (WAIS) (Wechsler, 1958) were available. For this sam­
ple, age correlated, r(28) = - . 5 4 , p < .01 (two-tailed), with backward 
digit span, and r(28) = - . 3 2 , p < .05, with forward digit span. The two 
digit span measures were correlated, r(28) = + . 9 1 , p < .01. Age was not 
significantly correlated, r(28) = + .27, p > .05, with vocabulary, nor was 
vocabulary significantly correlated with forward or backward digit span, 
both r(28) < ± .12, p > .05. The speakers' educational level (years of for­
mal education completed) was also available. Educational level correlated, 
r(28) = + . 4 4 , p < .01, with vocabulary, but educational level was not 
correlated with age or forward or backward digit span, all r(28) < d b . 1 2 , 
p > .10. 

Analyses. A total of 1,500 sentences was analyzed. Fifty consecutive sen­
tences were selected from each language sample for analysis. Only complete 
sentences were analyzed. Eleven different complexity measures were then 
obtained for each sentence: 

1. MLU. The number of words per sentence was determined and each 
speaker's MLU was calculated. 

2. MCU. The number of syntactic clauses per sentence was determined 
by counting each main clause and each embedded or subordinate clause. 
Each speaker's MCU was calculated. 

3. DSS. Eight different categories of grammatical forms were scored: 
indefinite pronouns, personal pronouns, main verbs, secondary (embedded 
verbs), conjunctions, negatives, and two types of questions. Within each 
category, variants were assigned different points to reflect the develop­
mental order of appearance in children's speech. A total score was derived 
for each sentence by summing the points for each category plus 1 point if 
the sentence was fully grammatical. The average DSS for each speaker was 
determined based on the sample of 50 sentences. 
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4. IPSyn. Unlike the other metrics, which apply to grammatical tokens 
(individual sentences), IPSyn is based on the analysis of grammatical types. 
This metric is a summary score of how many of 56 target grammatical 
types each speaker produces. A maximum of two occurrences of each type 
is tallied; maximal IPSyn score is, therefore, 112. IPSyn grammatical types 
include: 11 different types of noun phrases, 16 different types of verb 
phrases, 10 different types of questions (which rarely occurred in the narra­
tives), and 19 different types of sentence structures. The IPSyn score of 
each speaker was determined for the 50 sentences. 

5. DLevel. Eight developmental levels were used to classify the sentences. 
The original scale, developed by Rosenberg and Abbeduto (1987) specified 
seven levels of complex sentences; a zero level was added to this system to 
classify simple, one-clause sentences (42% of the corpus). The eight levels, 
therefore, were: (0) simple, one-clause sentences; (1) complex sentences 
with embedded infinitival complements, (2) complex sentences with wh-
predicate complements, conjoined clauses, and compound subjects, (3) 
complex sentences with relative clauses modifying the object noun phrase 
or with predicate noun phrase complements, (4) complex sentences with 
gerundive complements or comparative constructions, (5) complex sen­
tences with relative clauses modifying the subject noun phrase, subject 
noun phrase complements, and subject nominalizations, (6) complex sen­
tences with subordinate clauses, and (7) complex sentences with multiple 
forms of embedding and subordination. The average DLevel for each 
speaker was calculated. 

6. DComplexity. The rules given by Botel and Granowsky (1972) were 
applied to each sentence to determine DComplexity. These rules assign 0 , 1 , 
2, or 3 points to various sentence patterns and structures. 0-point structures 
include subject-verb, subject-verb-object, and subject-verb-infinitive con­
structions; interrogative sentences; and coordinate clauses joined by and. 
1-point structures include sentences with both direct and indirect objects; 
noun modifiers such as adjectives and possessives; adverbials; coordinate 
clauses joined by but, or, and so forth; gerunds used as subjects; and 
infinitive complements to subject-verb-object clauses. 2-point structures 
include comparatives, subordinate clauses, infinitives used as subjects, and 
passives. 3-point structures include wh- and that clauses used as subjects. 
The average DComplexity of each speaker's utterances was calculated. 

7. and 8. Yngve depth. Both the total Yngve depth and the maximum 
Yngve depth of each sentence were determined according to the procedures 
given by Yngve (1960). Figures 1 and 2 illustrate the calculation of the 
Yngve depth measures. Yngve depth was determined by first performing a 
surface phrase structure analysis of the sentence to construct a syntactic 
tree with nodes and branches, and then by numbering the branches below 
each node from right to left, starting with zero. The depth of each word 
was the sum of all the branches connecting the word to the root or top-most 
node of the sentence. 

In performing this analysis, a surface phrase structure approach (McCaw-
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N P 

RUNNING A NURSERY SCHOOL FOR 2 0 YEARS S U R E TEACHES YOU SELF— CONTROL 

W o r d d e p t h — 3 4 3 2 2 2 1 3 2 1 0 

M a x i m a l d e p t h — 4 ; T o t a l d e p t h =* 2 3 

Figure 1. Yngve analysis of a left-branching sentence, showing both maximal and 
total Yngve depths. 

ley, 1989) was used to parse the sentences. Note that an inflated Yngve 
depth measure would be produced if, for example, the bar-X notation 
(Jackendoff, 1977) was employed. Thus, "the big girl" was analyzed as [ n p 
the D E T big A D j girl n ] rather than as [N the S P E C [N big S P E C [N girl]]]. 

Many of the speakers* sentences began with conjunctions, usually and; 
consequently, Yngve depth would also be inflated by treating these 
sentence-initial conjunctions as branches originating from the root of the 
tree structure. Such conjunctions inflate Yngve depth by 1 since three 
branches (i.e., the conjunction, the subject noun phrase, and the verb 
phrase) originate from the root of the tree. To avoid inflating Yngve depth, 
sentence-initial conjunctions were not included in its computation. 

Two Yngve depth measures were determined for each sentence: (a) Maxi­
mal Yngve depth is the largest number associated with any word in the 
sentence, and (b) Total Yngve depth is the sum of all depth counts for 
each word in the sentence. Maximal Yngve depth was, therefore, a "local" 
measure that was independent of sentence length, whereas Total Yngve 
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N P 

V P 

Y O U S U R E L E A R N S E L F — C O N T R O L F R O M R U N N I N G A N U R S E R Y S C H O O L F O R 2 0 Y E A R S 

W o r d d e p t h — 1 3 2 1 1 2 3 2 0 1 1 0 

M a x i m a l d e p t h — 3 ; T o t a l d e p t h — 1 7 

Figure 2. Yngve analysis of a right-branching sentence, showing both maximal and 
total Yngve depths. 

depth was confounded with the number of words in the sentence. The 
average Maximum Yngve depth and the average Total Yngve depth were 
computed for each speaker. 

9. and 10. Frazier count. Two measures, Local Frazier node count and 
Total Frazier node count, were derived from the rules given by Frazier 
(1985). Figures 3 and 4 illustrate the calculation of the Local Frazier and 
Total Frazier counts. The Frazier counts were based on a surface phrase 
structure analysis in which all (nonterminal) nodes in the phrase structure 
of the sentence were assigned a point value of 1 except for sentence nodes 
and sentence-complement nodes, which were assigned a point value of 1.5. 
Counts for each word were then determined by summing up the points 
assigned to all the nodes dominating each word in the sentence. 

As implied by the analyses given in Frazier (1985), nodes in the phrase 
structure of a sentence were counted as if the sentence was being parsed 
from left to right in a deterministic manner, as in the parser developed by 
Marcus (1980) and discussed by Berwick and Weinberg (1984). Conse­
quently, nodes were assigned to possessive markers and deleted noun 
phrases that introduce new syntactic constituents or that are required in 
order to connect each new word to the preceding structure. For example, a 
gerund is used as the subject of the main sentence in the left-branching 
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N P 

1 . 5 

NP V P . 

NP 

V DET ADJ 

V P 

PP 

N Q N ADV V P f ? ° 

N P NP 

RUNNING A NURSERY SCHOOL FOR 2 0 YEARS S U R E TEACHES YOU SELF—CONTROL 

W o r d c o u n t = 6 1 0 0 1 1 0 1 0 1 1 

L o c a l c o u n t = 6 + 1 - 4 - 0 = 7; T o t a l c o u n t = 1 2 

Figure 3. Frazier analysis of a left-branching sentence, showing both local and total 
Frazier counts. 

version (Figure 3) and as the object of a preposition in the right-branching 
version (Figure 4); in either version, the subject of the embedded verb has 
been deleted, and the entire gerund functions as a noun phrase. The gerund 
is given 1 point as a noun phrase, 1.5 points for the embedded S node, 1 
point for the empty N P subject node, and 1 point since it is a verb; in the 
left-branching version (Figure 3), it also receives 1.5 points for the main S 
node since the gerund is the subject of the main sentence. 

Two variants of the Frazier count were computed. The Local Frazier 
count was determined by summing the node points for each sequence of 
three adjacent words and identifying the largest such sum in the sentence. 
This three-word window is assumed to reflect the capacity of the parser to 
hold partially analyzed constituents (Marcus, 1980) and thus represents a 
cluster of many processing decisions. The Total Frazier count was deter­
mined by summing all node points for all the words in each sentence. The 
Local Frazier count, therefore, reflects a concentration of grammatical 
constituents, whereas the Total Frazier count was confounded with the 
length of the sentence. Average Local Frazier and Total Frazier counts 
were obtained for each speaker. 

11. PDensity. Using the procedures given by Turner and Greene (1977), 
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Y O U S U R E L E A R N S E L F — C O N T R O L F R O M R U N N I N G A N U R S E R Y S C H O O L F O R 2 0 Y E A R S 

W o r d c o u n t — 2.5 1 o 1 1 4 . 5 1 0 0 1 1 0 

L o c a l c o u n t 1 4- 4 . 5 -+- 1 - 6 . 5 ; T o t a l c o u n t = 1 3 

Figure 4. Frazier analysis of a right-branching sentence, showing both local and total 
Frazier counts. 

each sentence was decomposed into a set of underlying propositions. Prop­
ositions are "idea units" and fall into three classes: predicates expressing 
actions or states; modifications expressing restrictions or limitations, in­
cluding qualifications, quantifications, and negations; and connections, 
including conjunction, disjunction, causality, and contrast. The work of 
Kintsch and his colleagues (Kintsch & Keenan, 1973; Kintsch & Vipond, 
1978) suggested that propositional density (PDensity), or the number of 
propositions per 100 words of text, is a determinate of reading difficulty. It 
can also be interpreted as a measure of the semantic content of a passage. 
The average PDensity of each speakers' sentences was computed using the 
step-by-step procedures given in Turner and Greene (1977). 

Reliability. One coder analyzed all 1,500 sentences; the sentences were ran­
domized such that sentences from the same narrative or the same speaker 
were not analyzed consecutively. A second coder independently analyzed 
100 sentences using 10 of the metrics; intercoder reliability was high for all 
these measures: MLU = 100%; MCU = 100%; DSS = 98%; IPSyn = 
92%; DLevel = 100%; DComplexity = 94%; Maximal Yngve = 100%; 
Total Yngve = 100%; Local Frazier = 95%; Total Frazier = 94%. Ten 



Applied Psycholinguistics 13:1 
Cheung & Kemper: Complexity metrics 

63 

Table 1. The results of the univariate ANOVAs for 
the 11 complexity metrics 

Age group Linear 

F(2, 27) *U. 27) 

MLU 2.36 2.14 
MCU 4.72* 4.36* 
DSS 5.24* 4.38* 
DLevel 15.87** 11.04** 
IPSyn 1.68 1.12 
DComplexity 4.89* 4.27* 
MaximalY 11.98* 4.61** 
TotalY 20.20** 13.78** 
LocalF 5.51* 5.01* 
TotalF 14.71* 12.37* 
PDensity 2.03 1.01 

*p < .05; **p < .01. 

of the language samples had been previously propositionalized as part of a 
prior analysis of adults' narrative structure (Kemper et al., 1990); for this 
analysis, two coders independently analyzed each language sample, and 
intercoder agreement for PDensity was 94%. Split-half reliabilities for 10 
of the measures were high, ranging from 92% for Total Frazier to 98% for 
DLevel; the split-half reliability for PDensity was somewhat lower, 85%. 

Results 

The 11 complexity measures were compared by performing a MANOVA 
with age group of the speaker as the between-subjects factor. The multivari­
ate effect of age group was significant, F(2, 270) = 19.83, p < .01, and 8 
measures produced significant age effects: MCU, DSS, DLevel, DComplex­
ity, Maximal Yngve Depth, Total Yngve Depth, Local Frazier count, and 
Total Frazier count. The univariate Fs are listed in Table 1. For these 
metrics, the linear component of the age effect was significant in each case; 
the higher order polynomial trends were not significant. No significant age 
group differences were found for the remaining 3 measures, MLU, IPSyn, 
and PDensity. Figure 5 plots age-group differences for each measure. 

Table 2 presents the matrix produced by correlating the 11 complexity 
measures with the speakers' age, educational level, vocabulary, and digit 
span scores. Individual differences in complexity appear to reflect an age-
related decline in working memory in producing sentences with multiple 
levels of embedding since speaker age was negatively correlated with MCU, 
DSS, DLevel, DComplexity, both Yngve Depth measures, and both Frazier 
counts, and since digit spans were positively correlated with these same 
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Figure 5. Age-group differences in complexity, according to each of the 11 metrics. 

Table 2. Matrix of correlations between the complexity measures and the 
speakers'age, educational level, vocabulary score, and digit span 

Age Education Vocabulary Digit span 

MLU - . 0 7 + .30 + .28 + .04 
MCU - .52** + .11 + .14 + .82** 
DSS - . 46* + .13 + .15 + .59** 
DLevel - . 4 8 * + .13 + .16 + .61** 
IPSyn - . 0 3 + .34 + .35 + .02 
DComplexity - . 4 1 * + .11 + .17 +.52** 
MaximalY - .52** + .14 + .17 +.66** 
TotalY - .54** + .15 + .17 + .69** 
LocalF - . 5 1 * * + .13 + .17 + .65** 
TotalF - .58** + .15 + .19 + .74** 
PDensity - . 1 1 + .31 + .29 - . 0 6 

*p < .05; **p < .01, two-tailed. 

metrics. Older speakers produced sentences with fewer embedded clauses, 
thus lowering all these measures. Speakers with greater digit spans pro­
duced sentences that contained more embedded clauses; this increased all 
these metrics. Individual differences in educational level or vocabulary are 
not correlated with these measures of complexity, although they are some-
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what correlated with MLU and IPSyn. Better educated adults and adults 
with larger vocabularies tend to produce longer sentences, as measured by 
MLU, and sentences containing a greater variety of grammatical forms, as 
measured by IPSyn. PDensity is weakly correlated with educational level 
and vocabulary, suggesting that better educated adults and adults with 
larger vocabularies tend to pack more ideas into fewer words than other 
speakers. Table 3 presents the matrix of correlations among the 11 complex­
ity measures. 

To further examine age-group and individual differences in linguistic 
complexity as a function of length, the amount and type of embedding, 
and semantic content, structural equation modeling using EQS (Bentler, 
1989) was used to test the fit of various models of linguistic complexity. 
The series of models was designed to clarify the relationship of amount of 
embedding, type of embedding, and semantic content as alternative sources 
of linguistic complexity. 

The input to the structural equation models was a variance-covariance 
matrix including: speaker age, WAIS vocabulary, WAIS digit span 
(summed forward and backward span), educational level, and the average 
score on each of the 11 complexity metrics. Each structural model was 
evaluated using the maximum likelihood chi-square approach which mea­
sures the goodness-of-fit of the covariance matrix predicted by the model 
to the observed, input matrix. EQS fits both a measurement model, includ­
ing factor loadings and measurement errors, and a structural equation 
model of the relations among the endogenous or independent variables 
(age, vocabulary, digit span, and education) and the dependent variables 
(the complexity metrics), which define latent factors. The fit of a series of 
structural equation models was then tested against the input covariance 
matrix. The series of models specified different latent factors, measured by 
various combinations of the complexity metrics. 

The first model to be tested is summarized in Figure 6. In this model, 
Linguistic Complexity was assumed to be a single dependent latent factor 
which was measured by 11 metrics; Verbal Ability A g c was also assumed to 
be an independent latent variable which reflected the common variation 
among age, educational level, vocabulary, and digit span; in other words, 
this variable is the age-related component of verbal ability as measured 
by education, vocabulary, and digit span. This model specified that Ver­
bal Ability A g c determines Complexity. A significant chi-square, ^(90) = 
1036.90, p < .001, was obtained. This indicates that the model does not fit 
the observed variance-covariance matrix and can be rejected. 

A series of further models were then specified by defining additional 
latent factors by measured variables and the paths holding between the 
latent factors. The goal was to find a model, using maximum likelihood 
estimation procedures, that fits the data as well as the saturated model in 
which each measured variable corresponds to a latent factor and each factor 
is correlated with all the other factors. The series of models is summarized 
in Table 4. 

The second model tested differed from the first in specifying two corre-
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Figure 6. Initial structural equation model specifying one independent factor, Verbal 
Ability, and one dependent factor, Complexity. 

Table 4. Summary of structural equation models that were tested 
against the data 

Independent 
factors Dependent factors x 2 df P 

1. Verbal ability Complexity 1036.90 90 <.001 
2. Verbal ability Complexity 960.15 85 <.001 

Working memory 
3. Verbal ability Length 769.98 82 <.001 

Working memory Complexity 
4. Verbal ability Content 36.98 80 >.50 

Length 
Working memory Embedding 

Complexity 
5. Verbal ability Content 15.09 79 >.50 

Working memory 
Length 
Amount of Embedding 
Type of Embedding 
Complexity 

lated factors, Verbal Ability A g c , the age-related change in verbal ability 
as measured by education and vocabulary, and Working Memory A g e , the 
age-related change in working memory as measured by digit span. One 
dependent factor, Complexity, was specified as jointly determined by Ver­
bal Abil i ty A g e and Working Memory A g e . This model provided a closer ap-



Figure 7. Final model specifying two correlated, independent factors, Verbal Ability 
and Working Memory; four dependent factors, Length, Amount of Embedding, and 
Type of Embedding, which determine Complexity; and a fifth factor, Content, which 
is unrelated to Complexity. 

proximation to the data, but it still does not reproduce the observed vari­
ance-covariance matrix. 

The third model specified both Verbal Ability A g e and Working Memory A g c 

as correlated factors, as in model 2, and distinguished two dependent fac­
tors, Length measured by MLU and Complexity measured by the remaining 
10 metrics. Both Length and Complexity were specified as determined 
jointly by Verbal Ability A g e and Working Memory A g c . This model, there­
fore, tested whether there are differences in linguistic complexity due to 
age-related changes in the speakers' verbal ability and working memory 
apart from those associated with sentence length. This model also does not 
fit the data. 

The fourth model assumed two correlated factors, Verbal Ability A g e and 
Working Memory A g e , and three dependent factors: Length, measured by 
MLU; the Amount of Embedding, measured by MCU; and Complexity, 
measured by DSS, DLevel, DComplexity, both Yngve metrics, and both 
Frazier metrics. PDensity and IPSyn were specified as loading on a Content 
factor which was predicted by the Verbal Ability A g e factor. Length was 
also predicted by Verbal Ability A g e , whereas Embedding was specified as 
determined by Working Memory A g c . This model provides a close approxi­
mation to the data. 

The fifth and final model is summarized in Figure 7; this model fits the 
data by specifying two correlated factors, Verbal Ability A g c and Working 
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Memory A g c . Age is negatively associated with Working Memory, leading to 
a decline in digit span with advancing age, and somewhat positively associ­
ated with Verbal Ability, reflecting a slight improvement in vocabulary 
with advancing age. Linguistic Complexity is determined by three latent 
factors: Length, measured by MLU; the Amount of Embedding, measured 
by MCU; and the Type of Embedding, measured by DSS, DLevel, and 
DComplexity. Linguistic Complexity, in this model, is measured by both 
Yngve Depth metrics and both Frazier counts. Length, the Amount of 
Embedding, and the Type of Embedding are not correlated over and above 
their intercorrelation with Verbal Ability A g c and Working Memory^. How­
ever, Length, the Amount of Embedding, and the Type of Embedding 
contribute to linguistic Complexity. Finally, Verbal Abi l i ty^ predicts an­
other latent factor, Content, measured by both PDensity and IPSyn, which 
is not correlated with Complexity. Model 5 fits the data, x 2(79) = 15.09, 
p > .50, comparative fit index = .944. 

Discussion 

With the exception of PDensity and IPSyn, each of the complexity metrics 
appears to provide an adequate account of age-group and individual differ­
ences in linguistic complexity. These metrics, MLU, MCU, DSS, DLevel, 
DComplexity, Maximal and Total Yngve depth, and Local and Total Fra­
zier node count, are sensitive to the effects of age, verbal ability, and 
working memory on the production of complexity grammatical construc­
tions. The structural equation models indicate that verbal ability and work­
ing memory are correlated factors that change with advancing age and 
determine how speakers' sentence length, the amount of embedding, and 
the type of embedding vary with advancing age. The final model also indi­
cates that these three factors - Length, Amount of Embedding, and Type 
of Embedding - determine the overall complexity of adults' speech inde­
pendently of the semantic content of speech, as measured by PDensity, and 
the grammatical content of speech, as measured by IPSyn. 2 

EXPERIMENT 2 

Experiment 2 was designed to determine whether syntactic complexity de­
termines sentence comprehensibility and to evaluate each metric as a mea­
sure of sentence comprehensibility. Sentences varying in complexity were 
used as stimuli. A panel of judges listened to the sentences against a back­
ground of white noise, rated the sentences' comprehensibility, and then 
attempted to recall the sentences verbatim. 

Method 

Subjects. Five graduate students in speech-language-hearing or related 
fields served as judges. Each was naive with respect to the purposes of the 
study or the source of the stimuli. 
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Table 5. Matrix of correlations between ratings of 
comprehensibility and verbatim recall and the 
complexity measures 

Comprehensibility 
Verbatim 

recall 

r(98) = r(98) = 

MLU - . 4 3 * * - .47** 
MCU - .60** - . 6 1 * * 
DSS - .54** - . 4 8 * * 
DLevel - .59** - . 5 1 * * 
IPSyn - . 1 2 + .14 
DComplexity - .54** - . 5 3 * * 
MaximalY - .64** - . 6 1 * * 
TotalY - .50** - . 69** 
LocalF - .62** - . 5 8 * * 
TotalF - . 6 1 * * - .67** 
PDensity + .21* + .19 

*p < .05;**p < .01, two-tailed. 

Stimuli. One hundred sentences were selected from the language samples 
analyzed by Kemper et al. (1990). Five sentences were selected from each 
of 20 different speakers. These sentences were analyzed by both the primary 
and the secondary coder and scored on each of the 11 complexity metrics; 
intercoder reliability was better than 95% for each metric. The sentences 
were audiorecorded, in a random order, by a female speaker. The recording 
was then mixed with white noise. The sentences were presented binaurally 
over speakers in an audiometric room at 75 db with a —15 db signal-to-
noise ratio. A 30-second pause, filled by white noise, occurred after each 
sentence. 

Procedure. The judges were tested simultaneously. The judges received test 
booklets in which to record their responses, and rated each sentence on a 
10-point scale ranging from (1) very easy to understand to (10) very difficult 
to understand. After rating each sentence, the judges then attempted to 
write down the sentence verbatim. 

Results 

Two measures were obtained for each sentence: the mean comprehensibility 
rating, averaged over the five judges, and the mean proportion of words, 
recalled by the five judges. These measures were somewhat correlated, r(3) 
= + .58, p > .10, indicating that they were not independent responses. 

The comprehensibility ratings and recall scores were then correlated with 
the 11 measures of syntactic complexity obtained in Experiment 1. The 
matrix of correlations is presented in Table 5. Comprehensibility and recall 
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were negatively correlated with complexity, with the exception of the IPSyn 
and PDensity metrics; this indicates that longer sentences, as measured by 
MLU, and more complex sentences, as measured by MCU, DSS, DLevel, 
DComplexity, both Yngve metrics, and both Frazier metrics, were more 
difficult to understand and recall than less complex sentences. Variations 
in IPSyn and PDensity do not appear to affect sentence comprehensibility 
and verbatim recall. 

Hierarchical multiple regression was then used to identify the best set of 
complexity metrics for predicting sentence comprehensibility and recall. In 
the analyses, a hierarchical procedure was used in which sets of variables 
were sequentially added to regression equations for predicting comprehensi­
bility or verbatim recall; the steps were ordered to reflect the structural 
equation model obtained in Experiment 1. At each step, the best predictor 
of a set of one or more intercorrelated variables, defining a latent factor, 
was entered into the regression equation. At each step, only those variables 
were entered into the equation whose partial correlation with comprehensi­
bility and recall (with the effects of all previously entered variables con­
trolled) was significant at p < .05 or better for the F-to-enter statistic. 
Then, at each step, any improvement in prediction of the resulting regres­
sion equation reflects the contribution of that step after the effects of all 
previously entered variables have been partialed out. Hierarchical multiple 
regression was used to avoid problems associated with multicollinearity 
since these measures of syntactic complexity are highly intercorrelated. 

In step 1, semantic Content, measured by PDensity and IPSyn, was 
initially used to predict comprehensibility and recall. In step 2, sentence 
Length, measured by MLU, was added. In step 3, the Amount of Embed­
ding, measured by MCU, was entered into the regression model. In step 4, 
Type of Embedding, measured by DSS, DLevel, and DComplexity, was 
added. In step 5, overall Complexity, measured by both Yngve and both 
Frazier metrics, was added. The results are summarized in Table 6. 

In these analyses, PDensity, DLevel, and Maximal Yngve Depth were 
selected as the best predictors of Content, Type of Embedding, and overall 
Complexity, respectively. As Table 6 indicates, comprehensibility and recall 
are not predicted by semantic Content, and adding sentence Length to 
Content results in a marginally insignificant improvement in the fit of the 
regression equation. Adding the Amount of Embedding does significantly 
improve the prediction of both comprehensibility and recall, and a further 
significant improvement is obtained by adding the Type of Embedding. 
None of the overall measures of Complexity resulted in a further improve­
ment in the fit of the regression model for either comprehensibility or 
recall. 

Discussion 

Experiment 2 validates the model of linguistic complexity that resulted from 
the language sample analysis conducted in Experiment 1. Sentence Length, 
Amount of Embedding, and Type of Embedding not only determine the 
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Table 6. Results of the hierarchical multiple regression analyses of 
comprehensibility and verbatim recall 

Comprehensibility Recall 

R2 F(change) R2 F(change) 

1 Content 
PDensity .19 — .15 — 

2 Length 
MLU .27 3.75* .29 3.98* 

3 Amount of Embedding 
MCU .39 9.87** .43 11.23** 

4 Type of Embedding 
DLevel .56 9.24** .57 10.05** 

5 DComplexity 
MaximalY .61 1.21 .59 <1.0 

*p < .05; **p < .01. 

complexity of adults' speech but also determine how easily individual sen­
tences can be understood and how accurately individual sentences can be 
recalled. 

GENERAL DISCUSSION 

Experiment 1 confirmed prior research by showing that the complexity of 
adults' speech declines with advancing age and appears to reflect a reduc­
tion in the capacity of working memory rather than differences in education 
or vocabulary. The complexity of adults' speech declined with age as mea­
sured by 8 of the 11 metrics: MCU, DSS, DLevel, DComplexity, both 
Yngve Depth Measures, and both Frazier counts. Semantic content does 
not appear to vary with age, nor does MLU in words or the IPSyn inventory 
of grammatical forms. 

The structural equation modeling suggests that the age-related decline in 
complexity occurs because of a reduction in sentence length and a loss of 
embedding per se as well as a loss of particular types of sentence embed-
dings, such as left-branching embeddings. Sentence embeddings impose 
demands on working memory for the simultaneous construction and ma­
nipulation of multiple syntactic constituents. Since working memory ap­
pears to decline with advancing age, adults become less able to construct 
complex syntactic structures with embedded gerunds, that and wh~ clauses, 
and other embedded and subordinate structures. 

Sentence complexity is somewhat determined by sentence length, as mea­
sured by MLU, as well as by the amount of embedding and subordination, 
as measured by MCU, and the type of embedding and subordination, as 
measured by DSS, DLevel, and DComplexity. Embeddings, such as the use 
of that and wh- clauses as sentential subjects (particularly those that pro-
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duce left-branching structures), increase DSS, DLevel, and DComplexity. 
Thus, not only does the amount of embedding per se increase linguistic 
complexity, but the type of embedding also contributes to complexity. Lin­
guistic complexity can be measured directly by computing either Yngve 
Depth metric or either Frazier count. These measures are sensitive to varia­
tion in length, amount of embedding, and type of embedding. 

This model of linguistic complexity was validated by Experiment 2. How 
easily sentences are understood and how accurately they are recalled cannot 
be predicted on the basis of the content and length of sentences as measured 
by PDensity and MLU, respectively. Rather, sentence comprehensibility 
and recall reflect the amount of embedding, as measured by MCU, and 
type of embedding, as measured by DLevel. The resulting regression for­
mula with four predictors - content, length, amount of embedding, and 
type of embedding - accounts for 78% of the variance in comprehensibility 
and 76% of the variance in recall. 

Applications 

In looking for the determinants of sentence processing difficulties, psycho­
linguists have identified many contributing syntactic factors either by sys­
tematically contrasting sentences with different syntactic properties, or by 
developing formulae for ordering sentences as to their overall complexity. 
The choice of a complexity metric for research purposes will depend on 
practical considerations. For most language samples, MLU and MCU can 
be easily computed; however, MLU, while widely used to scale children's 
language acquisition, shows little variation over the adult years and may 
not be sensitive to developmental differences once the basics of morphology 
and syntax have been mastered (Kemper et al., 1989; Klee & Fitzgerald, 
1985). MCU has limited utility for the study of the early stages of language 
acquisition, since young children do not begin to master the syntax of 
embedding until rather late in the acquisition period (Limber, 1973). 

While MLU and MCU can be computed with some ease, the other com­
plexity metrics require skilled analysis for their application. DSS, DLevel, 
and DComplexity require that the researcher carefully examine each sen­
tence for a wide range of different syntactic constructions and assign appro­
priate point values to these constructions. The Yngve and Frazier metrics 
require the researcher to perform a surface phrase structure analysis of the 
sentence. The Frazier analysis is more difficult to execute than the Yngve 
analysis, since it attempts to emulate a deterministic, left-to-right parser. 
The analysis must detect and fill in gaps in the structure of the sentence 
whenever noun phrases have been deleted or fronted. For example, a gap 
occurs in "The students tried to learn" since the subject of the infinitive 
("the students"), which is coreferential with the subject of the main clause, 
has been deleted. This gap contributes to the complexity of the sentence 
according to the Frazier analysis, although it makes no contribution to any 
of the other analyses. 

The most difficult metric to compute is PDensity. The reliable identifica-
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tion of individual propositions requires extensive training. The process of 
propositionalizing an entire language sample is also slow; for adult speak­
ers, PDensity averages approximately 43 and can range from 20 to 80 
(Kemper et al., 1990). Thus, for a sample of 100 words, between 20 and 80 
propositions may have to be identified. 

For these reasons, MCU may provide an adequate index of linguistic 
complexity for many purposes; this measure can be easily calculated, it 
appears to be a central determinate of age-related and individual differences 
in linguistic complexity, and it correlates strongly with comprehensibility 
and verbatim recall. Additional control over linguistic complexity can be 
gained by computing DLevel. 
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NOTES 
1. Working memory limitations have been implicated in some forms of childhood 

reading impairments (Gathercole & Baddeley, 1989,1990; Shankweiler & Crain, 
1986) and individual differences in reading comprehension (Daneman & Car­
penter, 1980). Baddeley (1986) proposed a tripartite model of working memory 
in which a central executive component is responsible for most processing oper­
ations and two subordinate storage systems, an articulator^ loop and a visual-
spatial sketchpad, provide temporary storage of verbal and visual-spatial in­
formation, respectively. Under this framework, processing deficits can arise 
because the central executor is overloaded with processing operations or because 
the capacity of either temporary store is exceeded. Daneman and Tardiff (1987) 
suggested that the articulator^ loop and visual-spatial sketchpad are not simply 
storage systems but also specialized, limited-capacity processors; the articula­
t o r loop would correspond to the syntactic parser. Under this reformulation, 
working memory limitations on language processing would be expected to arise 
from limitations on the kinds of syntactic operations that can be performed by 
the parser during production and comprehension. Other conceptions of work­
ing memory (Hasher & Zacks, 1988; Salthouse, Babcock, & Shaw, 1991) also 
imply that age-related differences in working memory will hinder older adults' 
language processing. 

2. The small sample size leads to some cautions in the interpretation of the present 
series of models: (a) the model parameter estimates may be sample-specific 
since the input covariance matrix may not provide asymptotic estimates of the 
population covariance matrix, (b) The likelihood ratio tests have low power 
and may lead to Type II errors such that a model will be accepted that would 
have been rejected on the basis of a larger sample size. Further, the input to 
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this series of models was a covariance matrix, rather than a correlation matrix; 
rescaled, standardized parameter estimates are reported in Figure 7 for the final 
model since standardized statistics are easier to interpret. Only the maximum 
likelihood estimates of the final model are reported. Readers interested in the 
maximum likelihood estimates for the rejected models should contact S. 
Kemper. 
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