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Abstract 

CD8+ T cells are the branch of the adaptive immune system responsible for recognizing and 

killing tumor cells or cells infected with intracellular pathogens, such as Listeria monocytogenes 

(LM). However, when CD8+ T cells target our own tissues, they can cause autoimmune 

diseases, such as type I diabetes, rheumatoid arthritis. For CD8+ T cells to fulfill these functions, 

the T cell receptors (TCRs) on CD8+ T cells must recognize pathogens or antigens presented 

on the surface of target cells. TCR ligation triggers multiple signaling pathways that lead to the 

activation and proliferation of CD8+ T cells. The goal of our research is to define the TCR-

proximal signaling events that regulate CD8+ T cell-mediated immunity. To accomplish this goal, 

we are focusing on an adaptor protein Gads, which is critical for optimal TCR-mediated calcium 

mobilization. We reported the first analysis of the function of Gads in peripheral naïve CD8+ T 

cells. 

To examine the function of Gads in CD8+ T cell mediated immune responses, we crossed 

Gads-/- mice with mice expressing an MHC class I-restricted transgenic TCR recognizing 

ovalbumin (OVA). The transgenic mice are called ovalbumin-specific T cell receptor-major 

histocompatibility complex class I restricted (OT-I) mice. We investigated the effect of Gads on 

the proliferation of CD8+ T cells following stimulation with peptide antigen in vivo and in vitro. 

We stimulated splenocytes from Gads+/+ OT-I and Gads-/- OT-I mice with the peptide agonist. 

The experiments revealed that Gads is required for optimal proliferation of CD8+ T cells. The 

regulation of Gads is most evident at the early time points of proliferation. Then we 

demonstrated that Gads-/- CD8+ T cells have impaired TCR-mediated exit from G0 phase of the 

cell cycle. In addition, Gads-/- CD8+ T cells have delayed expression of c-myc and the activation 

markers CD69 and CD25, upon stimulation with peptide antigen.  

Next, we investigated how Gads affects CD8+ T cell-mediated immunity in the context of 

infection with LM. We adoptively transferred naïve CD8+ T cells from Gads+/+ OT-I mice and/or 
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Gads-/- OT-I mice into congenic wild-type hosts. Then the recipient mice were infected with 

recombinant LM expressing ovalbumin (rLM-OVA). The CD8+ T cells from OT-I mice recognize 

and respond to the ovalbumin provided by this strain of LM. By using this system, we 

investigated how Gads regulates the activation of antigen-specific CD8+ T cells as well as the 

expansion and memory phases of CD8+ T cell-mediated immune responses following infection 

with rLM-OVA. We also examined the recall response of CD8+ T cells after the secondary 

encounter with the same pathogen. Our data demonstrated that Gads regulates the expression 

of activation markers CD69 and CD25 of antigen-specific CD8+ T cells but Gads is not required 

for the onset of accumulation of antigen-specific CD8+ T cells following infection. However, 

Gads is critical to sustain the expansion of CD8+ T cell-mediated immune response following 

infection. Although the differentiation of naïve CD8+ T cells into memory cells is independent of 

Gads, Gads is required for an optimal recall response.  

Our data indicating that Gads regulates the initiation of proliferation of CD8+ T cells upon 

TCR ligation by peptide antigen seemed to contradict with our in vivo infection data showing that 

Gads is not required for the initiation of expansion of CD8+ T cell population. In order to explain 

the “discrepancy”, we hypothesized that the homotypic interactions among CD8+ T cells 

compensate for Gads deficiency at the initial stage of accumulation of antigen-specific CD8+ T 

cells upon infection. Our data indicated that the need for Gads in cell cycle progression of CD8+ 

T cells when total splenocytes were stimulated could be overcome by stimulating purified CD8+ 

T cells. These data suggested that the homotypic interactions among CD8+ T cells facilitate the 

TCR signaling so as to compensate for Gads deficiency in promoting cell cycle entry and 

proliferation. 

To conclude, the role of Gads in TCR-mediated activation and proliferation of CD8+ T cells is 

dependent on the interactions of CD8+ T cells and their partners. Interestingly, if CD8+ T cells 

interact with non-CD8+ T cells, Gads regulates the kinetics of cell cycle entry; however, if CD8+ 
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T cells interact with other CD8+ T cells, Gads is dispensable for cell cycle entry of CD8+ T cells. 

Overall, these studies will help us better understand how TCR-proximal signaling regulates the 

activation of CD8+ T cells.  
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Chapter I Introduction 

General goals of this dissertation 

The activation and function of CD8+ T cells are critical in the treatment for tumors, bacterial 

or viral infections. The T cell receptors (TCRs) on T cells recognize pathogens or antigens 

presented by target cells. TCR ligation initiates signaling cascades, which are required for the 

activation and function of T cells. It is unknown how TCR ligation links to the activation of CD8+ 

T cells. The major goal of our research is to define the TCR-proximal signaling events that 

regulate CD8+ T cell-mediated immunity. I sought to accomplish the goal by investigating the 

role of Gads in CD8+ T cell-mediated immunity. Why did I choose Gads in my dissertation?  The 

adaptor protein Gads is critical for optimal TCR-mediated calcium mobilization, which is 

important for T cell activation and development. However, there was no documentation on the 

physiological relevance of Gads in peripheral CD8+ T cells before our study. There is another 

reason why we looked at Gads first: Gads-/- mice have partial defect in T cell development so 

that there are peripheral CD8+ T cells in Gads-/- mice, making the study on the role of Gads in 

peripheral CD8+ T cells possible by comparing Gads-/- cells and Gads+/+ cells. Based on the 

above reasons, I focused on the effect of Gads on CD8+ T cell-mediated immunity in Chapter II 

to IV.  

In addition to the results regarding the function of Gads in CD8+ T cell-mediated immune 

responses, I worked on another important project in Chapter V. This study has enriched not only 

my knowledge in the field of Immunology but also the experimental experiences, and has 

expanded the scope of my research beyond peripheral CD8+ T cells. Our goal was to determine 

the mechanisms through which the lymphocyte populations deplete and recover following 

morphine treatment. By addressing these mechanisms, we could better understand how 
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morphine affects immunity and it will help develop strategies to counteract the detrimental 

effects of morphine in clinical use or morphine abuse. 

 

Immune system   

The immune system is a versatile defense system within an organism to protect against 

invading pathogens and cancer. The immune system protects the host by identifying and killing 

pathogenic microorganisms (such as virus, bacteria) and tumor cells. It can also react against 

proteins, polysaccharides and other substances. In order to function properly, the immune 

system needs to distinguish the “non-self” from the “self”. The “self” part points to the organism’s 

own healthy cells and tissues. If the immune system targets the “self”, autoimmune diseases, 

such as type I diabetes and rheumatoid arthritis, might be induced.  

Generally, the immune system can be divided into two categories: innate immunity and 

adaptive immunity. Innate immunity is available from birth and it provides the first line of 

immediate defense against pathogens by recognizing widely distributed “pathogen-associated 

molecular patterns”. Adaptive immunity is not available at birth but needs to be established 

gradually later on, so that it is also known as acquired immunity. The immune cells recognize 

and process the specific antigens, trigger a series of signaling events to produce antibodies and 

effector lymphocytes to specifically target and eliminate the antigen-bearing cells. More 

importantly, the adaptive immune system generates memory lymphocytes in response to the 

antigen so that it can carry out the recall immune responses in a much faster and stronger 

manner once encountering the same antigen again.  

All immune cells are derived from the hematopoietic stem cells (HSCs). One classical model 

of hematopoiesis is that HSCs differentiate into common myeloid progenitors (CMPs) and 
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common lymphoid progenitors (CLPs). CLPs differentiate into B and T cell precursors, and 

develop into B cells in bone marrow and T cells in thymus, respectively. In Chapter V, I will talk 

about the effect of morphine administration on B cell development and T cell development. 

 The adaptive immune responses can be divided into humoral immune responses (mediated 

mainly by B lymphocytes, also known as B cells) and cell-mediated immune responses 

(primarily governed by T lymphocytes, T cells for short). B cells play the crucial role in humoral 

immune responses by producing antibodies against antigens. They get the name “B” from 

“bursa of Fabricius” where they mature in birds. In mammals, B cells develop in “bone marrow”. 

T cells, as well as other immune cells, such as macrophages and NK cells, are involved in the 

cell-mediated immune responses. Antigen presenting cells (APCs) present antigens to the T cell 

receptors (TCR) on the surface of T cells. The abbreviation “T” in “T cells” stands for thymus, 

which is the principal organ for T cell development. T cells can be divided into two major 

subsets: αβ T cells and γδ T cells. Most T cells in blood and lymphoid organs are αβ T cells. 

Their TCR consists of an α chain and a β chain, which form the α-β disulfide-linked 

heterodimeric glycoprotein. Less than 5% of T cells in blood and lymphoid organs and most T 

cells in skin and gut are γδ T cells. In γδ T cells, an alternative TCR heterodimer (γ-δ chains) is 

expressed. My research work focuses on αβ T cells (“T cells” is used in my dissertation to stand 

for αβ T cells except where indicated specifically). 

According to the membrane glycoproteins (CD4 or CD8) on the surface of peripheral T cells, 

there are two well-defined subpopulations of T cells: CD4+ T cells and CD8+ T cells. CD4+ T 

cells are mainly T helper (Th) cells and CD8+ T cells are mainly T cytotoxic (Tc) cells. My 

primary research interest is on CD8+ T cells. CD8+ T cells are cytotoxic T cells as they recognize 

and kill target cells such as tumor cells and virus-infected cells. Target cells present antigen 

through major histocompatibility complex (MHC) class I molecule to the TCR complex on the 

surface of CD8+ T cells. Upon TCR ligation, the naïve CD8+ T cells become activated and 
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proliferate. There is an interesting question: How do the TCR-mediated signaling pathways 

affect CD8+ T cells? To address this, I have focused on the role of Gads, a signaling protein 

downstream of the TCR, in CD8+ T cell activation (Chapter II) and CD8+ T cell-mediated 

immunity following infection with an intracellular pathogen (Chapter III). Furthermore, I 

investigate the homotypic interactions among CD8+ T cells which can compensate for Gads 

deficiency in cell cycle progression (Chapter IV). 

 

What is Gads? 

Gads is an adaptor protein that plays an important role in TCR-mediated signaling. It was 

cloned by six different labs around the same time (1998-1999) using different strategies. Gads 

was also named as Mona, GrpL, Grap-2, Grf40, and GRID (1-6). Those analyses all revealed 

that Gads, which is around 37 kDa, belongs to the Grb2 protein family, which includes Grb2, 

Grap, and Gads and shares the SH3-SH2-SH3 structure (7). Different from Grb2 and Grap, 

there is a proline/glutamine-rich region between the SH2 domain and the C-terminal SH3 

domain of Gads (1-6). Not like Grb2, which is ubiquitously expressed on mammalian cells (8), 

Gads is strictly expressed in hematopoietic cells (1-4, 6). 

Gene level 

Human Gads gene is located on chromosome 22q13.2 (Pubmed gene ID: 9402, updated on 

May-12-2011) and mouse Gads is located on chromosome 15E2 (Pubmed gene ID: 17444, 

updated on May-08-2011). In both human and mouse, the Gads gene is encoded by seven 

exons (4, 9).  

Gads transcripts are relatively restricted to hematopoietic tissues, including lymph node, 

bone marrow, spleen, thymus, and peripheral blood leukocytes in adult mice and in day 11-17 
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mouse embryos, with the highest level of expressions in thymus. The level of Gads mRNA is 

low in testis, but not in stomach, thyroid, spinal cord, trachea, adrenal glands, prostate, ovary, 

small intestine or germinal center B cells in mice (3, 4, 6). Gads mRNA was also found in 

human thymus, spleen, lymph nodes and peripheral blood leukocytes (4, 5). In cell lines, Gads 

mRNA is expressed in chronic myelogenous and lymphoblastic leukemia cell lines, such as in 

the mature T-cell lines Jurkat and Molt-4, the pre-B cell line Nalm-6, the myeloid cell lines KG-1, 

KG-1a, and RC2A, and the K562 and HEL cell lines that exhibit megakaryocytic differentiation 

potential. No Gads mRNA expression could be detected in pre-B cell line Reh, the mature B-cell 

line Raji, the myelomonocytic cell line PLB-985, nor the monocytic cell line THP-1 (3, 4, 9). The 

distribution of Gads mRNA level suggests that Gads mRNA expression is highly regulated and 

restricted to subsets within hematopoietic lineages. 

The Gads gene locus has been characterized to have two promoter segments (Gads-1A 

and Gads-1B) driving expression of alternate 5’ untranslated exons, which were detected in a 

cell-lineage specific manner.  T cells and immature myelomonocytic cell lines express 

transcripts containing 1A 5΄- untranslated region (UTR), whereas Gads mRNA found in platelets 

and megakaryocytic cell lines contains 1B 5΄-UTR (9, 10). In mouse Gads-1A promoter, the 

putative binding sites include IRF-2, myb, AML (acute myeloid leukemia)-1, Sp1, Sp3 and Spi-1 

(11, 12). The AML-1 transcription factor has been implicated in transcriptional regulation of T 

cell and monocytic cell promoters (13). AML-1 regulates the expression of Gads in T cells and 

myeloid cells (11). The Gads-1B promoter, which exhibits typical features of megakaryocyte-

specific promoters, has potential binding sites for Ikaros, Sp1, AP-1, Oct-1, NFAT, E12/E47, 

Bright, glucocorticoid receptor (GR), Myb, GATA, MEF2, CREB and Ets (10, 12). Garrett-Sinha 

et. al. (12) demonstrated that Spi-1and Spi-B bind to both Gads-1A and Gads-1B promoters but 

they transactivate the Gads-1B promoter only so as to regulate the expression of Gads on B 

cells. However, the inclusion of identical 3΄-UTR of Gads gene is irrespective of the cell type (9).  
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Protein level 

The human and murine Gads protein are highly conserved, sharing >90% identity in the 

SH3 and SH2 domains and 74% identity in proline-rich region (6). T cells have the highest 

expression level of Gads protein (14), but Gads expression was also detected in B cells, 

megakaryocytes, mast cells, NK cells, macrophages, plasmacytoid dendritic cells (pDCs), and 

platelets (9, 12, 14-16). Besides primary cells, Gads protein is expressed in various cell lines 

such as T cell lines (Jurkat, CTLL-2), monocyte/macrophage cell line (NFS-60/MAC, an M-CSF-

dependent derivative of bipotential NFs-60 cells), NK and macrophage cell lines (1, 15). 

Interestingly, the expression of Gads changes after activation in cells of monocytic lineage or B 

cells: 1) Gads expression is induced during monocytic differentiation of NFS-60 cells (1); 2) 

Gads is expressed in mature naïve B cells. Upon BCR ligation, Gads expression is down-

regulated. Germinal center (GC) B cells and memory B cells do not express Gads (14, 17).  

Does the expression of Gads protein change through the B cell development? The first 

stage in which committed B cell precursors can be identified in the bone marrow is the pro-B cell 

stage (B220+IgM-CD43+). Then the cells enter the pre-B cell stage (B220+IgM-CD43-) and 

immature B cell stage (B220loIgM+). Some immature B cells migrate to the spleen where they 

can be identified as transitional stage 1 (T1) B cells (IgM+IgD-CD21-CD23-).  T1 cells 

differentiate into transitional stage 2 (T2) cells (IgM+IgD+CD23+) and ultimately mature and 

become either follicular (FO) B cells (IgMloIgD+CD23+) or marginal zone (MZ) B cells (IgM+IgD-

CD21+CD23-) (18, 19). Gads expression was not detected in pro-B cells or pre-B cells in bone 

marrow. However, Gads protein was expressed in T1B cells, T2B cells, FO B cells, and MZ B 

cells in splenocytes (16).  

As the main focus of this dissertation is on the role of Gads in TCR-mediated T cell function, 

Let’s look at the expression of Gads protein in T cell development. The T cell precursors in the 
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thymus have no expression of either CD4 or CD8 and are called CD4-CD8- double negative (DN) 

stage.  According to CD44 and CD25 expression, DN thymocytes can be divided into the DN1 

(CD44hiCD25-), DN2 (CD44hiCD25+), DN3E (CD44loCD25hi), DN3L (CD44loCD25lo), and DN4 

(CD44loCD25-) subsets (20, 21). T cell lineage commitment is made and rearrangement of the 

genomic locus encoding TCR  chain or γδ chains begins in the DN1 and DN2 stages. In the 

thymus, Gads is expressed starting as early as in DN1 and DN2 stages (17). 

  

The role of Gads in TCR signaling   

 TCR complex is composed of eight transmembrane proteins derived from six different 

genes (22-24): the α and β chains are responsible for recognition of antigen presented by MHC. 

The CD3 complex is composed of two heterodimers (γ-ε and δ-ε). The  chains in the TCR 

complex form a homodimer. The CD3 complex and the  chains are responsible for signal 

transduction (25, 26). TCR ligation by Ag-MHC complexes leads to the activation of Src family 

tyrosine kinases, such as Lck and Fyn. The activated Lck and Fyn phosphorylate the 

immunoreceptor tyrosine-based activation motifs (ITAMs) on the TCR chains and each chain 

of CD3 molecule (27, 28). After being phosphorylated, the tyrosine residues within ITAMs form 

docking sites for the protein tyrosine kinase Zeta-chain-associated protein kinase of 70 kDa 

(ZAP-70), which binds the phosphorylated ITAM sites and gets activated. In addition, Lck further 

activates ZAP-70.  ZAP-70 phosphorylates the tyrosine residues of the transmembrane adaptor 

protein linker of activated T cells (LAT). 

After TCR ligation, the SH2 domain-containing adaptor protein Gads binds the 

phosphotyrosine residues on LAT. Gads is constitutively in complex with SH2 domain-

containing leukocyte protein of 76 kDa (SLP-76) (2, 6, 17, 29-31). Upon TCR ligation, LAT and 

Gads-SLP-76 achieve a relatively stable and specific complex LAT-Gads-SLP-76. Then, the 
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TCR signaling is further transduced. For example, after being brought to the signaling complex 

of LAT by Gads, SLP-76 can be phosphorylated directly by ZAP-70 to facilitate the activation 

(32). Phospholipase C (PLC)-γ1 binds to tyrosine-phosphorylated LAT [ref (33, 34) and 

reviewed in (35, 36)]. The activation of PLC-γ1 catalyzes the formation of the second 

messengers inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) from the hydrolysis of 

phosphatidylinositol-4,5-bisphosphate (PIP2). IP3 triggers calcium signaling, which leads to the 

activation of nuclear factor of activated T cells (NF-AT) and nuclear factor κ-light-chain-

enhancer of activated B cells (NF-κB) signaling pathways (37). DAG activates Ras-dependent 

signals (38, 39), such as the extracellular signal–regulated kinase (ERK) pathway, which are 

important for a number of cellular events, such as cytokine secretion and cell proliferation (40).  

The LAT-Gads-SLP-76 signaling complex serves as the scaffold/platform for the recruitment 

of multiple signaling proteins as shown above. LAT becomes phosphorylated on multiple 

tyrosine residues (41-43). The interaction between LAT and Gads is via tyrosine-171 and 

tyrosine-191 residues of LAT and the SH2 domain of Gads upon TCR ligation (15, 41, 44-47).  

SLP-76 contains three domains: 1) The N-terminal acidic domain, which contains three 

tyrosines phosphorylation sites within consensus motifs for SH2 binding; 2) The proline-rich 

central region; 3) The C-terminal SH2 domain named P-I region. Via its R-X-X-K motif in the 

proline-rich region (amino acid 224-244), SLP-76 binds to C-terminal SH3 domain of Gads (2, 6, 

15, 17, 29, 30, 48). They form a unique structure with high binding affinity, as described in 

“Structure” section below. Besides Gads, LAT also interacts with membrane-bound guanine 

nucleotide-binding protein Sos1, the E3 ubiquitin-protein ligase c-Casitas B-lineage lymphoma 

(c-Cbl) (49), the guanine nucleotide exchange factors (GEF) for the Rho family of GTP binding 

proteins Vav1, PLC-γ1 (44, 50), Grb2 (44), and SH2 domain-containing adapter protein B (Shb) 

(36, 50-52).  SLP-76 also can interact with Vav1 (53-55), the adaptor protein Nck, which can 

regulate tyrosine kinase signaling (56, 57), the interleukin-2 (IL-2)-inducible tyrosine kinase (Itk) 
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(58-60), PLC-γ1(61), Lck (62), the adhesion and degranulation promoting adapter protein 

(ADAP) [formerly known as SLP-76 associated phosphoprotein of 130 kDa (SLAP-130), or Fyn 

binding protein (Fyb)] (63, 64), and the Ser/Thr kinase HPK1 (56, 65). By bridging LAT and 

SLP-76 upon TCR ligation, Gads brings many signaling proteins above into the signaling 

complex. Based on these evidences, the role of Gads in TCR signaling is important. 

The Gads-binding domain of SLP-76 is required for the inducible association of SLP-76 with 

PLC-γ1(61, 66). Itk binds to SLP-76 while Lck phosphorylates and activates Itk, which then 

phosphorylates and activates PLC-γ1. Vav1 regulates PLC-γ1 phosphorylation and facilitates 

the interaction between Gads-SLP-76 and PLC-γ1. However, the adaptor protein complex LAT-

Gads-SLP-76 is the center of all these signaling proteins. The adaptor proteins, also known as 

molecular scaffolds, lack any intrinsic enzymatic activity or transcription activation domains. 

Instead, they create a platform for other signaling molecules so as to facilitate coupling of 

antigen receptor as well as to trigger functional responses in lymphocytes (67, 68). The 

formation of LAT-Gads-SLP-76 is important for signal transduction in T cells (68).  

The critical role of LAT-Gads-SLP-76 signaling complex in TCR signaling was supported by 

visualized microcluster results. T cell activation is initiated and sustained in TCR-containing 

microclusters generated at the initial contact sites and the periphery of the mature 

immunological synapse (IS) (69). By using imaging techniques, such as dynamic fluorescent 

and interference reflection microscopy, microclusters could be visualized. Upon TCR ligation, 

the TCR-rich microclusters are 200 to 500 nm in diameter. They are assembled within seconds 

of TCR-APC ligation (48, 69-73) and are the dominant locations where TCR-mediated tyrosine 

phosphorylation happens and tyrosine kinases and critical adaptor proteins co-accumulate (48, 

49, 70, 74). Adaptor proteins including LAT, Gads, and SLP-76 co-cluster together with the TCR 

early and transiently in T cell activation (70). Gads enters persistent clusters in response to TCR 

ligation, colocalizing precisely with SLP-76. The recruitment of Gads to LAT requires SLP-76 
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and the recruitment of SLP-76 to LAT requires Gads (48). Mutation of various domains 

demonstrated that C-terminal domain of Gads plays a critical role in the persistence and 

movement of SLP-76-containing cluster, whereas the N-terminal SH3 and SH2 domains of 

Gads cooperate to recruit Gads into LAT-nucleated microclusters (48). Purbhoo et. al. (47) used 

multicolor, live-cell microscopy to visualize the protein organization. They also found during the 

activation of T cells, Gads always colocalized and co-migrated with microclusters of SLP-76. 

The trajectories of microclusters of Gads fully coincided with the ones of SLP-76. After TCR 

ligation, the LAT-Gads-SLP-76 signaling complex is localized in glycolipid-enriched membrane 

microdomains (GEMs), also known as lipid rafts (33, 34). Gads is inducibly recruited to GEMs 

while the SLP-76 mutant in which the Gads binding region was deleted ∆224-244 could not 

localize in GEMs after TCR ligation suggesting that Gads is essential for SLP-76 to localize to 

GEMs after TCR stimulation (75).  

Gads plays an important role in the formation and function of the LAT-Gads-SLP-76 

signaling complex. In activated Gads deficient thymocytes, SLP-76 was readily phosphorylated 

but failed to associate with LAT (76). By using a 50-amino acid polypeptide to block the binding 

between SLP-76 and Gads, Singer et. al. (56) found that it disrupted the proper localization of 

SLP-76 and SLP-76-dependent TCR signaling such as inhibiting TCR-induced integrin activity 

in Jurkat cells. It also significantly impaired SLP-76 recruitment as well as the activation marker 

expression upon TCR ligation. Single point mutations of the Gads-binding site on SLP-76 

completely abrogated SLP-76 association with Gads in vivo and impaired SLP-76 function such 

as preventing its binding to Itk and Vav (30). In the thymocytes expressing the dominant-

negative Gads mutant, Grf40-dSH2, the tyrosine phosphorylation of SLP-76 and 

phosphorylation levels of both PLC-γ1 and ERK1/2 were profoundly reduced (77). T cells from 

mice reconstituted with Gads-binding site ∆224-244 of SLP-76 mutant had defective ERK 

phosphorylation (78). Gads is very important in TCR-mediated calcium signaling as indicated in 
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the following evidences: 1) Gads-/- peripheral T cells had no detectable calcium influx upon TCR 

ligation (17, 76). 2) Blocking the binding between SLP-76 and Gads diminished the TCR-

induced Ca2+ flux (56, 79). 3) T cells from SLP-76 mutant mice reconstituted with Gads-binding 

site ∆224-244 to block Gads-binding site had defective calcium mobilization and diminished 

proliferation upon TCR ligation (78). Calcium signaling is critical to NF-AT activation because 

calmodulin (CaM), a calcium sensor protein, activates the serine/threonine 

phosphatase calcineurin (CN) (80). The activated calcineurin dephosphorylates the NF-AT 

transcription factor, resulting in the nuclear localization of NF-AT (81, 82). Consistent with the 

model that calcium signaling regulates NF-AT activation, Gads regulates NF-AT activation as 

Gads-binding domain of SLP-76 is required NF-AT activation (48, 70). Furthermore, 

overexpression of Gads alone increased anti-CD3-induced NF-AT activation. An additive effect 

between Gads and SLP-76 on NF-AT activation was observed when both were overexpressed 

in Jurkat cells (6). Gads regulates the signaling threshold of the TCR as T cells are able to 

generate a small calcium response in the absence of Gads under the higher concentration of 

stimuli (17).  

 

Structure of Gads 

  The low-resolution structure model of full-length Gads via using small-angle x-ray 

scattering (SAXS) also reveal that Gads remains monomeric in solution (83). Gads retains an 

overall compact structure though it possesses a long unstructured region. There are two 

structure models of Gads. One model is that the C-terminal SH3 domain is at one extreme of 

the molecular volume and the N-terminal SH3 domain is at the other extreme, whereas SH2 

domain is in between, near the N-terminal SH3 domain. The alternative model is that 
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localization of N-terminal SH3 and SH2 domains is inverted, so that the SH2 domain is at the 

extreme of the molecular volume (83).  

The C-terminal SH3 domain of Gads was observed to form a homodimer in solution and has 

the SH3 domain fold, formed from two antiparallel β-strands with a small 310-helix between β4 

and β5 strands (29, 84, 85). The binding between C-terminal SH3 domain of Gads and SLP-76 

is unique: Many SH3 domains bind classical proline-based P-X-X-P motif, often with moderate 

affinities. However, a subset of SH3 domains bind alternate peptide motif R-X-X-K with high 

affinity (86-88). For example, the Gads SH3 domain, bind 233PSIDRSTKP241 in SLP-76 (85, 89, 

90), which is necessary for optimal TCR signaling (2, 6, 15, 17, 29, 30). In addition, the peptide 

forms a unique structure characterized by a right-handed 310 helix at the R-X-X-K locus, in 

contrast to the left-handed polyproline type II helix formed by canonical proline-rich SH3 ligands 

(84). It was further demonstrated that the 310 helix formed by the central R-X-X-K motif inserts 

into a negatively charged double pocket on the ion (Zn2+)-dependent dimerization formed by C-

terminal SH3 domain of Gads while several other residues complement binding through 

hydrophobic interactions, creating a short linear C-terminal SH3 binding epitope of uniquely high 

affinity (85). In addition, SLP-76 was demonstrated to promote and stabilize the Gads C-

terminal SH3 homodimerization (90).  

The proline/glutamine-rich linker region between SH2 and C-terminal SH3 domain is 

unstructured and disordered (83), which likely makes it difficult to get the high resolution of 

crystal structure of full-length Gads. Recently, it was discovered that the disordered regions are 

often functional. They could regulate transcription, translation, cellular signal transduction, 

protein phosphorylation. In addition, they could serve as storage of small molecules and 

facilitate the self-assembly of large multiprotein complexes (91, 92). The unstructured linker 

region of Gads might provide the flexibilities in steric configuration of the signaling complex LAT-

Gads-SLP-76 to promote the formation of the TCR proximal multiprotein complex. 
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Function of Gads  

Three groups generated Gads-deficient mice to study the function of Gads in T cell 

development. The Cheng group (76) used R1 ES cells and deleted the SH2 linker region and 

the C-terminal SH3 domain, but not the exon encoding the N terminal SH3 domain. By using 

this strategy, the binding sites of LAT and SLP-76 were depleted. The Sugamura laboratory (77) 

made a transgenic mouse expressing an SH2 mutant Gads in the dominant-negative form, 

Grf40-dSH2, to block the binding with LAT. The Clark laboratory (17) used C57BL/6 ES cells to 

generate mice deleted exons 1,2, and 3 of the gads gene, including the start ATG, to encode 

the N terminal SH3 domain, which was essentially equal to complete knock out of Gads. 

Although they used different strategies, the three groups reported the similar findings, for 

example, there was drastic decrease in the total thymocyte number and the T cell development 

has defect in mice with Gads deficiency (17, 76, 77). The role of Gads in each stage of T cell 

development is discussed as follows: 

Gads does not regulate the α/γδ T cell lineage commitment 

The T cell precursors in the thymus have no expression of either CD4 or CD8 and are in the 

CD4-CD8- double negative (DN) stage.  According to CD44 and CD25 expression, DN 

thymocytes can be divided into the DN1 (CD44hiCD25-), DN2 (CD44hiCD25+), DN3E 

(CD44loCD25hi), DN3L (CD44loCD25lo), and DN4 (CD44loCD25-) subsets (20, 21). T cell lineage 

commitment is made and rearrangement of the genomic locus encoding TCR  chain or γδ 

chains begins in DN1 and DN2 stages. In the thymus, Gads is expressed starting as early as in 

DN1 and DN2 stages (17). TCR and TCRγδ protein can be first detected at the DN3E stage. 

Gads does not regulate α/γδ T cell lineage commitment as the absolute cell numbers of TCR+ 

DN3E and TCRγδ+ DN3E thymocytes in Gads-/- mice are identical to those in Gads+/+ mice (21).  
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Gads regulates  selection in T cell development 

After expressed in DN3E stage, the TCR protein pairs with an invariant protein, pre-Tα, to 

form the pre-TCR (93). The expression of the pre-TCR complex provides the survival signal of 

DN3E thymocytes as well as promotes the proliferation and differentiation through the DN3L 

and DN4 stages.  Gads plays a critical role in the DN3L to DN4 transition of T cell development 

as Gads-/- mice or Gads mutant mice have a block at DN3L stage (17, 21, 76, 77). Lower 

percentages of Gads-/- DN4 cells express TCRβ than Gads+/+ DN4 cells while higher 

percentages of Gads-/- DN4 cells express TCRγδ than Gads+/+ DN4 cells (21). Gads regulates 

the proliferation and survival and of DN thymocytes in DN3L and DN4 stages as there were 

lower percentages of Gads-/- TCRβ+ DN3L and DN4 thymocytes in S, G2, or M phases of cell 

cycle than Gads+/+ thymocytes. In addition, Bcl-2 expression was dependent on Gads in TCRβ+ 

DN3L cells (21). IL-7 and its receptor CD127 are critical factors in T cell development (94), not 

only important in DN1, DN2, and DP stages (95), but also regulate the survival of thymocytes in 

DN3E, DN3L and DN4 stages between β selection and positive selection (unpublished data 

from our laboratory). Gads regulates CD127 expression in TCRβ+ DN3E and DN3L cells but not 

in TCR+ DN4 cells (21). We hypothesize that Gads and CD127-related signaling co-regulate the 

survival of DN3L cells via the expression of Bcl-2. 

 

Gads regulates positive selection and negative selection in T cell development 

After the DN4 stage, cells express CD8 and become immature single positive (ISP) CD8+ T 

cells before expressing CD4 and becoming DP thymocytes.  During the DP stage, cells 

rearrange the genomic locus encoding TCR, express TCR protein, and express a complete 

TCR complex.  Once the TCR is expressed, positive and negative selection occur, the 

processes by which the T cell repertoire is selected. There are various models about positive 



15 
 

and negative selection in T cell development. The quantitative models relate response to the 

affinity, avidity or kinetics of TCR binding, whereas qualitative models require conformational or 

spatial changes in the TCR or associated molecules to modulate signal transduction (96). 

Currently, the affinity model has been widely accepted (97, 98): If there is no or very low binding 

affinity between TCR and self-peptides, which are presented on MHC, the thymocytes will be 

eliminated by “death by neglect” process. If the binding affinity between TCR and self-peptides 

on MHC is moderate, the thymocytes will be positively selected. If the binding affinity is high, the 

thymocytes will be developed into regulatory T cells. If there is very high binding affinity between 

TCR and self-peptides on MHC, the thymocytes will undergo negative selection. 

Gads deficiency impairs positive selection. Gads is required for TCR upregulation in DP and 

SP thymocytes as lower percentages of DP, SP CD4, or SP CD8 thymocytes in Gads-/- mice 

were TCRhi , as compared with those in Gads+/+ mice (99). TCR-induced activation of ERK is 

significantly impaired in the thymocytes expressing dominant-negative Gads, Grf40-dSH2 (77). 

The usage of a 50-amino acid polypeptide to block the binding between SLP-76 and Gads 

diminished the positive selection (56, 79). The block in positive selection in Gads-/- mice was 

more severe when an MHC class II-restricted TCR was expressed than when an MHC class I-

restricted TCR was expressed (99). So that the ratio of CD4+ to CD8+ thymocytes was skewed 

toward the SP CD8+ population in Gads-/- mice (17, 76). CD3 and CD69 up-regulation in CD4+ 

thymocytes is much more sensitive to Gads deficiency than in CD8+ thymocytes (17). These 

data support the hypothesis that the development of CD4+ thymocytes requires stronger signals 

than the development of CD8+ thymocytes (100, 101). Some DP thymocytes down-regulate 

CD8 to become transitional single positive (TSP) CD4+ thymocytes, which then mature into 

single positive (SP) CD4+ and SP CD8+ thymocytes (99, 102-104). So that during positive 

selection, the T cell lineage commitment to either CD4+ or CD8+ subsets is accomplished.  Gads 

is not required for progression into the TSP CD4+ stage of development (99).  
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Yoder et. al. (76) reported that both positive selection and negative selection were impaired 

in Gads-/- thymocyes. However, the question regarding how Gads regulates negative selection 

needs to be investigated extensively. 

Gads is required more in CD4+ T cells than in CD8+ T cells 

The function of Gads differs in CD4+ and CD8+ T cells (17). In periphery there are more 

defects of cell number and function in Gads-/- CD4+ T cells than in Gads-/- CD8+ T cells. For 

example, few peripheral CD4+ T cells were present in peripheral lymphoid tissues (spleen and 

lymph nodes) of Gads-/- mice. TCR-mediated proliferation is more impaired in CD4+ Gads-/- T 

cells than in CD8+ Gads-/- T cells. Furthermore, Gads-/- CD4+ T cells have an activated 

phenotype and a rapid turnover rate and produced cytokines in response to in vitro stimulation 

(17). When transferred into a wild-type host, Gads-/- CD4+ T cells proliferate at a higher rate than 

wild-type CD4+ T cells, demonstrating a defect in homeostatic proliferation in Gads-/- CD4+ T 

cells. 

Gads is a substrate of caspases 

Different groups reported that the cleavage of Gads is mediated by caspase 3: in Jurkat T 

cells, cell death triggered by activation of CD95, also known as Fas, results in the cleavage of 

Gads, which alters TCR-mediated signaling. Gads cleavage is mediated by caspase 3 and the 

cleavage site lies within the unique linker region of Gads (105-107). Besides that, Yankee et. al. 

(106) also reported that the cleavage removes the C-terminal SH3 domain of Gads to dissociate 

Gads from SLP-76 so that the truncated form of Gads inhibits TCR-mediated NF-AT signaling.  

Oral administration of antigens can lead to systemic antigen-specific hyporesponsiveness, 

which is called oral tolerance (108, 109). Long term feeding of egg white diet to OVA23-3 mice 

of which the TCR recognize ovalbumin (OVA, antigen from egg white diet) induced oral 
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tolerance of peripheral T cells in which calcium/NF-AT signaling was impaired (110, 111). 

Furthermore, the caspase 3 was activated so as to cleave Gads and SLP-76 in the tolerized 

CD4+ T cells (110). As a result, the cleavage of Gads and SLP-76 inhibits the associations 

between the two signaling proteins so as to impair TCR signaling in orally tolerized CD4+ T cells 

(110, 112).  

The function of Gads in cells other than T cells 

Gads is important in signaling and function of immune cells other than T cells. Followings 

are some examples: In bone marrow-derived mast cells, the Gads binding domain together with 

N-terminal domain of SLP-76 are critical for FcεRI-mediated degranulation and IL-6 secretion 

(113). In addition, deletion of Gads-binding sites on LAT blocked the tyrosine phosphorylation of 

PLC-γ1 and PLC-γ2, calcium mobilization to affect the signaling in FcεRI-mediated mast cell 

activation (114). The Gads-binding site of SLP-76 is absolutely required for FcεRI-mediated 

mast cell degranulation or cytokine production (113, 115). These data suggested that the 

association of Gads with SLP-76 and LAT is required for FcεRI signaling in mast cells. Due to 

the defect in FcεRI signaling, Gads-/- mice had suppressed IgE-mediated allergic reaction, which 

is mediated by mast cells and basophils, with minimum adverse effects on both innate and 

acquired immune responses (116). In B cells, Gads regulates B cell receptor (BCR) signaling, 

as evidenced by Gads-/- B cells have increased calcium mobilization, but normal ERK and p38 

MAPK phosphorylation (16). However, the exogenous expression of Gads in Gads-negative B 

cells enhancing phosphorylation of ERK and p38 MAPK (14) Further, the sera from the SLP-76 

mutant mice reconstituted with Gads-binding site ∆224-244 had significant decreased level of 

OVA-specific IgE level (78), which demonstrated that Gads play an important role in the function 

of B cell. Macrophage generation is also modulated by Gads as overexpression of Gads in 

mouse bone marrow cells strongly decreases macrophage production in vitro (1). Cutaneous 

hypersensitivity responses, which are mediated by B cell, macrophages, and NK cells, in 
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addition to T cells (117), were significantly reduced in SLP-76 mutant mice reconstituted with 

Gads-binding site ∆224-244 (78).  

 

Interactions involving Gads and their applications 

Besides LAT and SLP-76, Gads can bind to a number of other proteins under different 

conditions in primary cells or cell lines. 

HPK1 

Hematopoietic Progenitor Kinase 1 (HPK1), also known as MAP4K1, is a hematopoietic-

specific protein serine-threonine kinase and is a member of the MAP4K family of mammalian 

Ste20-related protein kinases (118-120). In DO11.10 murine T cell hybridoma cell line, HPK1 

becomes tyrosine phosphorylated and inducibly associates with Gads upon TCR ligation. The 

interaction is mediated by the C-terminal SH3 domain of Gads and amino acid 467-471 in the 

fourth proline-rich region of HPK1. Deletion the Gads-binding site on HPK1 or a Gads SH2 

mutant in T cells inhibits TCR-induced HPK1 tyrosine phosphorylation (121).  Lewitzky et. al. 

(122) revealed that HPK1 has the consensus motif R-X-X-K and it is essential for the interaction 

between C-terminal SH3 domain of Gads and HPK1. HPK1 negatively regulates proximal TCR 

signaling involving LAT-Gads-SLP-76 complex; in HPK1-/- T cells, tyrosine phosphorylation of 

Gads-associated SLP-76 and LAT were higher than in HPK1+/+ T cells (123).  

Gab family 

Proteins in the Gab family are Grb2-associated-binding proteins. Gab proteins regulate the 

signaling transduction triggered by activation of many different types of receptors, such as 

growth factor receptor, cytokine receptors (124).  Gab1 and Gab2 are important mediators of 

branching tubulogenesis and play a central role in cellular growth response, transformation 
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and apoptosis (125). The extended P-X-X-X-R-containing motif, PX3RX2KPX7PL, found in 

Gab1 and Gab2, is the binding motif for the C-terminal SH3 domains of Gads or Grb2 protein 

(126). In the yeast two-hybrid system, Gads binds Gab1 (3). In 293T cells, Gab2 constitutively 

interacts with Gads or Grb2. Then Gab2 is recruited to the lipid raft to inhibit T cell activation 

(127). Gads interacts with both Gab2 and Gab3 in vitro but only with Gab3 in myeloid progenitor 

cells FDC-P1 cell line. C-terminal SH3 domain of Gads interacts with Gab3 via the atypical 

proline-rich domain of Gab3. During M-CSF-stimulated macrophage differentiation of mouse 

bone marrow cells, Gads and Gab3 expression is co-induced. In macrophage differentiation, the 

association of Gads and Gab3 is M-CSF dependent and the complex of Gads and Gab3 plays 

an important role in M-CSFR signaling (128). Gab family proteins modulate the activation of 

PI3K (125) and interact with PLC-γ1 (129, 130). They might play an important role in Gads-

mediated TCR signaling. 

CD28 

The transmembrane protein CD28 contains the Y-M-N-M motif and two proline-rich P-X-X-P 

motifs in its cytoplasmic region (131, 132). The SH2 domain of Gads binds to the Y-M-N-M motif 

of CD28 upon phosphorylation at Tyr189 (131, 132). It was also documented that in Jurkat cells, 

following activation of CD28, the SH2 domain of Gads associates with CD28 via the 

phosphorylation of CD28 at tyrosine 173 (5). In mouse T cells, the interaction of Gads and 

CD28 requires the phosphorylation of CD28 at tyrosine 170 (133). The overall association of 

Gads and CD28, is stabilized by interactions between C-terminal SH3 domain of Gads and the 

P-X-X-P motifs in the CD28 cytoplasmic tail. The association between Gads and CD28 peaked 

at 1-4 min and declined thereafter (5). Besides Gads, CD28 has been shown to bind to several 

other intracellular proteins including PI3K, Grb2, and Itk (132, 134, 135). Gads is more efficiently 

involved in CD28-mediated IL-2 gene transcription than Grb2, and the maximal IL-2 promoter 
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activation by CD28 ligation may primarily require activation of NF- κB. The association between 

Gads and CD28 has a critical role in CD28-mediated activation of the NF-κB signaling pathway 

via PKCθ, CARMA1 and Bcl10 (131, 132).   

SHP-2  

The ubiquitously expressed SH2-containing protein tyrosine phosphatases (PTP), also 

known as SHPs, regulates numerous intracellular signaling cascades so as to control cell 

proliferation, differentiation, cell survival, migration, adhesion, and apoptosis (136). SHP-2 is a 

positive component of many receptor tyrosine kinase signaling pathways (137). In Jurkat cells, 

the SH2 domain of Gads interacts with SHP-2 (6). In addition, SHP-2 is recruited to the Gads-

SLP-76 complex, but does not target SLP-76 itself as a substrate, and directly regulates the 

phosphorylation of key signaling proteins Vav1 and ADAP (138). SHP-2 functions as a facilitator 

of the Ras-Raf-MEK-ERK pathway through dephosphorylation of an unknown substrate (139, 

140).  

LIME  

Lck-interacting membrane protein (LIME) is a raft-associated transmembrane adaptor 

protein, which regulates the T cell activation via association with Lck (141) and mediated by 

CD4 or CD8 coreceptor singlaing (142). Gads interacts with LIME in Jurkat T cells expressing 

CD8-LIME chimera (141). Moreover, phosphorylated LIME interacts with SH2 domain of Lck as 

its substrate (141). The recruitment and activation of Lck is a critical step in activating CD3-TCR 

complex and ZAP-70 (143). In addition to Gads, LIME also associates with some other SH2 

domain–containing proteins: PI3K, Grb2, SHP-2 (141). It might indicate that the interaction 

among Gads, SHP-2 and LIME might play an indispensable role in TCR signaling. It needs to 

be investigated extensively. 
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GCIP 

GCIP (Grap2 cyclin-D interacting protein) interacts with full-length and C-terminal proline-

rich and SH3 domains of Gads in both yeast two-hybrid assays and co-transfection of Gads and 

GCIP in mammalian cell line COS-7. GCIP associates with cyclin D1 both in vitro and in COS-7 

cell line (144). The roles of GCIP haven been demonstrated to inhibit the transcription activity of 

the cyclin D1 promoter, decrease the phosphorylation of the retinoblastoma (Rb) protein at 

Ser780, slow cell cycle progression, and decrease susceptibility to carcinogenesis (145, 146). 

GCIP also binds Rad (Ras associated with diabetes) and the latter translocates GCIP from the 

nucleus to the cytoplasm, thereby inhibiting the tumor suppressor activity of GCIP in nucleus. 

Besides that, in the presence of Rad, GCIP loses its ability to reduce Rb phosphorylation and 

inhibit cyclin D1 activity (147). Whether Gads is involved in these processes together with GCIP 

needs to be studied further. 

RET 

Gads is expressed in neuroendocrine tumors and cell lines known to bear mutated forms of 

rearranged during transfection (RET) (148). Activation of RET kinase activity is dependent on 

autophosphorylation of tyrosine residues located in the cytoplasmatic tail of RET. Constitutive 

ligand-independent activation of RET causes different forms of human thyroid cancer (149, 150). 

In 293T cell, Gads directly associates with RET and expression of activated RET relocates 

Gads to the plasma membrane. Overexpression of Gads inhibits RET-induced NF-κB activation. 

NF-κB inhibition mediated by Gads could be applied in a therapeutic strategy in neuroendocrine 

tumor cells transformed by oncogenic RET (148).   The association between Gads and RET 

was also identified in human neuroendocrine cell lines LCC18 (colonic carcinoid), BON 

(pancreatic carcinoid), and TT (medullary thyroid carcinoma) cell line (148).  
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BLNK 

In a yeast two-hybrid screen, Gads interacts with BLNK constitutively in a Syk 

(phosphotyrosine)-independent manner (65). In B cells, it was also found that Gads 

constitutively interacts with BLNK via C-terminal SH3 domain of Gads (14). BLNK (also known 

as SLP-65), CLNK and SLP-76 belong to the SLP-76 family (151). BLNK is expressed in B cells 

and macrophages. Following BCR stimulation, BLNK associates with Grb2, PLC-γ1, and Vav1 

(152). Gads might regulate BCR signaling through interacting with BLNK.  

Fms 

In myeloid FDC-P1 cells, SH2 domain of Gads interacts with Fms (also called c-fms, M-

CSFR, CSF-1R, CD115) via phosphorylated Tyr697 upon M-CSF stimulation (1, 153). 

Overexpression of Gads in the myeloid FDC-P1 cell line enhances ERK activity as indicated by 

phosphorylation of ERK in response to M-CSF (153). The inducible association between Fms 

and Gads might be important in the activation of myeloid progenitor cells.   

Shc 

It has been reported that in transfection of 293T cell line, Gads SH2 domain specifically 

binds to Shc via its phosphorylated Y239 or Y317 residues (154). It was also reported that in 

K562 cell line, through its SH2 domain, Gads binds to Shc. And the phosphorylation of Shc at 

Y240 was shown to inhibit the interaction of Shc and Gads (4). Phosphorylation of Shc at 

Y239/Y240 may lead to c-myc induction and suppression of apoptosis in BaF3 cells in a Ras-

independent manner (154).  

Others 

In Jurkat cells, Gads binds Sos2 and Sam68 via the C-terminal SH3 domain of Gads (5).  

But it was reported by another group that isolated C-terminal, but not the full length of Gads, 
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binds to Sos, Sam68 and Cbl, suggesting the Gads C-terminal SH3 domain is covered with 

spatial orientation in the context of full length Gads protein (4).  

In Jurkat cell line, Gads was found to associate with p55 Shb fusion protein independently of 

phosphotyrosine (155). Gads, but not Grb2 or Grap, associates with RACK-1 (receptor for 

activated protein kinase C-1) (5). In Jurkat cells and Daudi cells, after stimulation via the T or B 

cell receptor, respectively, membrane–associated adaptor protein, LAX (Linker for Activation of 

X cells), which is a negative regulator in lymphocyte signaling, interacts with Gads, Grb2, and 

the p85 subunit of PI3K (156).  

The interactions involving Gads altered in cell types other than T cells. For example, in 

human B cell lines, Gads constitutively interacts with c-Cbl via the N-terminal SH3 domain of 

Gads (14), as compared to the fact that only the isolated C-terminal, but not the full length of 

Gads, binds to Cbl in Jurkat T cell line and 293T cell line (4). 

The snake venom toxin convulxin activates platelets through the collagen receptor 

glycoprotein VI (GPVI). After stimulated with convulxin, besides SLP-76 and LAT, Gads 

associates with FcR-γ chain in platelets (157). In K562 cell line, through its SH2 domain, Gads 

binds to c-kit and Bcr-Abl oncoprotein (4).  

 

Morphine and immune system 

Opioids are very powerful and effective analgesic drugs frequently used in hospitals and 

abused by addicts. Morphine was first isolated in early 1800’s (158) from opium, which is the 

dried latex derived from shallowly slicing the unripe seed capsule of opium poppy (Papaver 

somniferum) (159). Morphine is the prototypic and potent opioid commonly used for relieving 
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moderate to severe pain. However, the application of morphine has a variety of side effects, 

such as addiction, respiratory depression, constipation, anxiousness, and tolerance (160, 161).  

Morphine and other opioids exert their pharmacological effects by binding to opioid 

receptors which belong to the family of G-protein coupled receptors (GPCR). The GPCRs are 

composed of an extracellular N-terminal domain, seven transmembrane guanine domains 

connected by three extracellular and three intracellular loops and an intracellular C-terminal tail 

(161, 162). There are three major types of opioid receptors: the μ-, κ-, and δ-opioid receptors 

which are distributed in various sites in the central nervous system. Besides that, opioid 

receptors are expressed on peripheral sensory neurons and non-neurologic tissues, such as 

heart, gastrointestinal tract (163-165).     

Opioid receptors and a non-classic opioid-like binding receptor are present on cells of the 

immune system, including lymphocytes (166, 167). The modulatory effect of morphine on the 

immune system was discovered a long time ago. As early as in the late 19th and early 20th 

century, morphine was reported to have immunomodulatory effects. As Krueger et. al., reviewed 

(168): In 1860, Laurence found that morphine had anti-inflammatory role for treating sclerotitis 

and iritis. In 1898, Cantacuzene reported that morphine regulates the level of chemotactic and 

phagocytic activity. In 1902, Cloetta showed chronic morphine injections resulted in leukopenia 

in rabbits. In 1901, Archard and Loeper described that leukopenia was detected among 

morphine addicts. Till now, morphine has been discovered to affect the cell numbers and 

functions of a variety of cell types in the immune system: natural killer (NK) cells, T cells, B cells, 

macrophages (169-172). However, it is still not clear that: 1) what are the direct and indirect 

effects of morphine on immune system and 2) what are the signaling events that mediate these 

effects from the interaction of the opioid receptors with their endogenous or exogenous ligands.  
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The effects of opioids on the immune system could be mediated through central (173) as 

well as peripheral mechanisms (158, 174). The central pathways include 1) the hypothalamic-

pituitary-adrenal (HPA) axis, which is the major part of the neuroendocrine system and 2) the 

autonomic nervous system. Generally, the acute administration of morphine affects immune 

function primarily through the autonomic nervous system while chronic exposure to morphine 

alters immune system predominantly by activation of the HPA axis (158, 174, 175). Besides 

central pathway, the immunomodulatory function of morphine could also be fulfilled directly 

through the opioid receptors on immune cells in peripheral system without the involvement of 

central nervous systems, which is called peripheral pathways (158, 174) . 

HPA axis: Activation of the HPA axis results in the production of a series of hormone and 

hormonal cascade from the hypothalamus, pituitary and adrenal glands. These hormones 

include corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), 

corticosteroids, and are released into the peripheral systems and affect immune system (172, 

176, 177). The immunosuppressive effect of endogenous corticosteroids was found by the 

following two approaches. 1) Sepsis or stress-induced elevation of corticosteroids decreased 

the thymocyte numbers and accelerated thymic programmed cell death (178, 179). 2) Zinc-

deficiency or restraint stress-induced thymic atrophy was attenuated by blocking the function of 

corticosteroids via one of the three strategies: surgical adrenalectomy, chemical adrenalectomy, 

and blocking of corticosteroid receptors (179, 180). What is the effect of exogenous 

corticosteroids on immune cells? In vivo treatment with corticosteroids caused a drastic loss of 

thymic weight and thymocyte numbers (181-183) as well as reduced peripheral lymphocyte 

numbers and their functions (184-186). These observations were consistent with the 

observations made when mice were treated with morphine (187-189). Furthermore, the 

administration of morphine stimulated the HPA axis by elevating the production of corticosteroid 

(176, 190-193). And the morphine-induced lymphopenia was abolished in adrenalectomized 
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animals (172). From those data, we believe that some immunomodulatory effects of morphine 

are mediated by activating HPA, specifically increased level of corticosteroids. 

Autonomic nervous system: The sympathetic nervous system, the enteric system and 

parasympathetic system are three major parts of autonomic nervous system. Primary and 

secondary lymphoid organs are innervated by the sympathetic nervous system. Administration 

of morphine activated the sympathetic nervous system and increased the circulatory level of 

catecholamines, including epinephrine, norepinephrine, and dopamine (194, 195). Activation of 

the autonomic nervous system, such as elevated level of catecholamine, is responsible for 

some of the observed immunomodulatory effects following opioid administration. For example, 

the inhibitory effect of morphine on the proliferation of lymphocytes derived from blood was 

mediated through activation of the autonomic nervous system (196, 197). 

Morphine could also modulate immune cells via peripheral pathways, in which the central 

nervous system is not involved.  On one hand, immune cells can release endogenous opioids 

so as to modulate analgesia and immune responses such as inflammation. For example, Boue 

et. al. (198) demonstrated that analgesia was dependent on opioid release by Ag-primed 

CD4+ T lymphocytes at the inflammatory site.  On the other hand, as opioid receptors are 

expressed on the surface of immune cells (166, 167), the exogenous opioids might directly 

affect the immune cells. This has been demonstrated by a variety of in vitro experiments. For 

example, in vitro treatment of morphine has been reported to affect Th1/Th2 differentiation (199), 

antibody production(200), and chemotaxis (201, 202). Those data indicate that morphine alone 

has direct immunomodulatory effects. It was hypothesized that in the aspect of modulating 

immune system, opioids behave like cytokines. Their similarities include pleiotropy and synergy 

and the immunomodulatory effect of both cytokines and opioids involve complicated interactions 

with multiple cell types and unpredictable biologic effects (174).   
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We hypothesize that the immunomodulatory effects of morphine are through 1) the direct 

interaction with opioids receptors on immune cells and 2) stimulating HPA and increasing the 

blood level of corticosteroids. Furthermore, we asked two questions: 1) Which sub-populations 

of immune system are selectively targeted by morphine itself directly and which subsets are 

affected by the elevated corticosteroid level induced by the treatment of morphine? 2) What are 

the mechanisms by which morphine exerts its role on immune system through the opioid 

receptors on immune cells directly and through activating HPA, respectively? To address those 

questions and test our hypothesis, I did extensive studies with the focus on morphine-induced T 

and B lymphocyte depletion and recovery and described the detail in Chapter V. 
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Chapter II 

Gads regulates the kinetics of CD8+ T cell activation and proliferation 

Abstract 

The Gads adaptor protein is critical for T cell receptor (TCR)-mediated Ca2+ mobilization. We 

investigated the effect of Gads deficiency on the proliferation of the antigen-specific CD8+ T cell 

population following stimulation with cognate antigen (SIINFEKL) in vivo. After stimulation, a 

lower percentage of CD8+ T cells derived from Gads-/- donor mice proliferated than those from 

Gads+/+ donor mice.  Next, we stimulated CD8+ T cells from Gads+/+ OT-I and Gads-/- OT-I mice 

in vitro with SIINFEKL or altered peptide ligand (A2) and found that Gads regulated proliferation 

rather than survival of CD8+ T cells. This defect was most evident at the early time points of 

proliferation and when low doses of antigen were used as stimuli. Cell cycle analysis revealed 

that Gads-/- CD8+ T cells had impaired TCR-mediated exit from G0 phase of the cell cycle. 

Furthermore, Gads-/- CD8+ T cells had delayed expression of c-myc and CD69 upon the 

stimulation with SIINFEKL. We conclude that Gads is required for the proliferation of CD8+ T 

cells upon TCR ligation by regulating the signaling threshold of TCR and the kinetics of cell 

cycle entry and activation.   
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Introduction 

CD8+ T cells represent the branch of the adaptive immune system responsible for 

recognizing and killing target cells such as tumor cells, virus-infected cells with intracellular 

pathogens.  For CD8+ T cells to fulfill this function, the TCR on the CD8+ T cells must recognize 

foreign peptides presented on MHC class I. When the TCR binds peptide-MHC complexes, 

signals are transmitted to the CD8+ T cells that induce activation and proliferation. Thus, to fully 

understand the role of Gads in the function of CD8+ T cells, we must first understand how 

proliferation is initiated. 

The interaction of the TCR complex with a peptide-MHC complex leads to the recruitment 

and activation of Src- and Syk/ZAP-70 families of protein tyrosine kinases (35, 203). This kinase 

activity results in the phosphorylation of the membrane-bound adaptor protein LAT and the 

recruitment of the SLP-76 adaptor protein. Gads, a member of the Grb2 family of adaptor 

proteins, bridges LAT and SLP-76 enabling the recruitment of SLP-76 to LAT (1, 2, 4-6).  The 

SH2 domain of Gads binds phosphorylated LAT and the C-terminal SH3 domain of Gads 

constitutively binds SLP-76. The formation of the LAT-Gads-SLP-76 complex leads to the 

activation of phospholipase C (PLC)-γ1 and calcium mobilization. Consistent with this model, 

TCR-mediated calcium influx in Gads-deficient T cells was markedly impaired (17, 76).  

However, when Gads-/- T cells were stimulated with high doses of anti-CD3, there was 

detectable calcium mobilization (17), suggesting that Gads might regulate the signaling 

threshold through the TCR. 

To examine the function of Gads in T cells, Gads-deficient mouse lines were generated (17, 

76).  Gads-/- mice had defects in T cell development at stages that correspond to the expression 

of TCR and TCR.  During the CD4-CD8- double negative (DN) stage of T cell development, 

Gads is required for the survival of thymocytes expressing TCR (21). Later, when TCR is 
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expressed, Gads is required for positive and negative selection of CD4+CD8+ double positive 

(DP) thymocytes (99). While the locations of these blocks are consistent with a role for Gads in 

regulating TCR-mediated signal transduction, the fact that the blocks are not complete indicates 

that Gads expression is not an absolute requirement for TCR-mediated signal transduction.  

Rather, Gads may regulate a subset of signaling pathways or the intensity of signals through all 

pathways.  Further, the function of Gads may change during T cell development and activation. 

Gads-/- mice had few mature peripheral T cells (17).  However, within the peripheral T cell 

population, CD4+ T cells were more dependent on Gads expression for survival and 

homeostasis than CD8+ T cells. This conclusion must be tempered by the observation that 

nearly all T cells in Gads-/- mice were of a memory-like phenotype.  The signaling pathways 

required for the activation of memory T cells are different than those required for the activation 

of naïve T cells (204-206). 

During our analysis of the function of Gads in T cell development, we found that crossing 

Gads-/- mice with mice expressing an MHC class I-restricted transgenic TCR could rescue the 

production of naïve CD8+ T cells (99).  These transgenic TCR-expressing Gads-/- mouse lines 

enable us to examine the function of Gads during the activation of naïve CD8+ T cells.  We 

present data from studies in which cells were stimulated with peptide antigen.  We analyzed the 

kinetics of proliferation as well as cell cycle entry and expression of activation markers in this 

context.   
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Materials and Methods 

Mice 

C57BL/6 Gads-/- mice and Gads-/- OT-I mice were described previously (17, 99) and 

backcrossed onto the CD45.1+ C57BL/6 genetic background.  All mice were housed under 

specific pathogen-free conditions and all experiments were performed in compliance with the 

University of Kansas Medical Center Institutional Animal Care and Use Committee (IACUC).  

Mice were used between the ages of six and eight weeks for the experiments. 

 

Antibodies  

Anti-CD8-FITC, anti-CD8-Alexa Fluor 647, anti-CD44-PE-Cy7, anti-CD44-Horizon V450, 

anti-CD45.1-PE, anti-CD45.1-allophycocyanin-Cy7, anti-CD45.2-PE-Cy5.5, anti-CD45.2-PE, 

anti-CD69-FITC, anti-CD62L-PE-Cy7, anti-CD122-PE, anti-TCRV2-FITC, and anti-CD25-

allophycocyanin-Cy7 were purchased from BD Biosciences (San Jose, CA), eBioscience, Inc. 

(San Diego, CA) or Biolegend, Inc. (San Diego, CA). 

 

Cell labeling, and flow cytometry 

Surface labeling of cells was performed as described previous (99).  Briefly, single cell 

suspensions were prepared and labeled in staining buffer (PBS containing 2% FetalClone I 

bovine serum product (HyClone Laboratories, Inc., Logan, UT)) before fixing with 1% 

paraformaldehyde in PBS overnight or at least one hour at room temperature.  
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For carboxyfluorescein succinimidyl ester (CFSE) labeling, cells were labeled with CFSE as 

described in previously (17). Briefly, the cell concentration was adjusted to 2 x 107 cells/ml, and 

an equal volume of 10 µM CFSE (Invitrogen, Carlsbad, CA) was added.  Cells were incubated 

for 10 min at 37°C and the reaction was quenched with cell culture media.   

For 4',6-diamidino-2-phenylindole (DAPI) labeling, cells were harvested after stimulation, 

labeled with anti-CD8, and fixed in 1% paraformaldehyde.  Then, cells were washed twice with 

staining buffer, incubated with 1ml of 1 g/mL DAPI (Invitrogen, Carlsbad, CA) in 0.3% Tween-

20 in staining buffer for 30 min at room temperature and analyzed immediately by flow 

cytometry.   

For pyronin Y (PY) staining, cells were pelleted after DAPI staining and 850 L of the 

supernatant were aspirated.  Twenty μl of 25μg/mL PY (Polyscience, Inc., Warrington, PA) in 

staining buffer containing 0.3% Tween-20 were added into each tube. Cells were incubated for 

10 min at room temperature and analyzed by flow cytometry.   

Samples were analyzed using a BD LSRII (BD Biosciences, San Jose, CA). Data were 

analyzed using BD FACSDiva (BD Biosciences) and FlowJo (Tree Star, Inc., Ashland, OR). 

 

Proliferation and activation assays 

Splenocytes and lymphocytes were isolated from CD45.1+ Gads+/+ OT-I or CD45.1+ Gads-/- 

OT-I mice and loaded with CFSE. The numbers of total splenocytes and lymphocytes were 

adjusted so that 2 x 106 CD8+ T cells were injected i.v. into CD45.2+ congenic mice. The next 

day, recipient mice were injected i.v. with SIINFEKL peptide (ProImmune Limited, Oxford, UK). 
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Three days later, lymphocytes were harvested, labeled with anti-CD45.1, anti-CD8, and anti-

CD44 and analyzed by flow cytometry. 

For in vitro assays, splenocytes from Gads+/+ OT-I or Gads-/- OT-I mice were isolated, 

labeled with CFSE, and stimulated with varying doses of SIINFEKL or A2 peptide (ProImmune 

Limited, Oxford, UK) for the indicated amount of time.  At harvest, cells were labeled with anti-

CD8 and analyzed by flow cytometry. 

For activation assays, splenocytes were isolated from Gads+/+ OT-I or Gads-/- OT-I mice and 

were stimulated with SIINFEKL. At the indicated time points, splenocytes were labeled with anti-

CD8, anti-CD69, anti-CD25 and analyzed by flow cytometry. 

 

Cell death analysis 

Splenocytes from Gads+/+ OT-I mice or Gads-/- OT-I mice were stimulated with SIINFEKL. 

Two days later, the cells were labeled with anti-CD8, propidium iodide (PI) and Annexin V-Cy5 

(BD Biosciences Pharmingen, San Jose, CA) at 4 C for 30 min and analyzed by flow cytometry. 

 

Immunoblot assay 

Splenocytes from Gads+/+ OT-I or Gads-/- OT-I mice were isolated and stimulated with 1 nM 

SIINFEKL. At various time points, CD8+ T cells were isolated using anti-mouse CD8 Magnetic 

Particles-DM (BD Biosciences Pharmingen) and positive selection.  Lysates were prepared, 

separated by SDS-PAGE, and transferred to PVDF membrane. Membranes were probed with 

anti-c-myc, anti-cyclin D2, anti-p27kip1 and anti-β-actin (Cell Signaling Technology, Inc., Danvers, 

MA). 
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Statistics 

All data are presented as mean ± SD and were analyzed using two-tailed Student's t tests.  
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Results 

Most CD8+ T cells in Gads-/- OT-I mice have a naïve phenotype 

Our previous analysis of Gads-/- mice revealed that nearly all peripheral CD8+ T cells in 

Gads-/- mice were of a memory-like phenotype (17), but crossing Gads-/- mice with mice 

expressing the MHC class I-restricted TCR OT-I partially restored T cell development (99).  On 

average, spleens from Gads+/+ OT-I mice contained 13 ± 2.5 x 106 CD8+ cells and spleens from 

Gads-/- OT-I mice contained 2.2 ± 0.80 x 106 CD8+ cells. 

To characterize the peripheral CD8+ T cells in Gads+/+ OT-I and Gads-/- OT-I mice, we 

compared CD44, CD62L, CD122, and TCR expression in Gads+/+, Gads-/-, Gads+/+ OT-I, and 

Gads-/- OT-I mice (Fig. 2-1).  Despite the reduced numbers of CD8+ T cells in Gads-/- OT-I mice, 

as compared to Gads+/+ OT-I mice, most CD8+ T cells in each mouse line were 

CD44hiCD62LloCD122-.  On average, 78  5.3% of Gads-/- OT-I CD8+ cells were CD44loCD62Lhi, 

as compared to 90  3.8 % of Gads+/+ OT-I CD8+ cells (p <0.001, n > 12 mice of each genotype).  

In addition, naïve CD8+ T cells from Gads+/+ OT-I and Gads-/- OT-I mice were CD122- (Fig. 2-1 B) 

and had comparable surface TCR levels (Fig. 2-1 C).  Thus, while the number of naïve CD8+ T 

cells in Gads-/- OT-I mice was lower than in Gads+/+ OT-I mice, we are able to use this model to 

obtain a sufficient number of naïve T cells to examine the function of Gads in naïve CD8+ T cells. 
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Fig. 2-1. OT-I expression in Gads-/- mice restores the production of naïve CD8+ T cells.  

Lymphocytes from Gads+/+, Gads-/-, Gads+/+ OT-I, and Gads-/- OT-I mice were labeled with anti-

CD8, anti-CD44, anti-CD62L, anti-CD122, and anti-TCRV2.  A) Expression of CD44 and 

CD62L was analyzed on CD8+ cells.  Shown are the percentages of CD8+ cells that were 

CD44loCD62Lhi, CD44hiCD62Lhi, and CD44hiCD62lo.  B) CD44 and CD122 expression was 

analyzed on CD8+ cells.  Shown are the percentages of CD8+CD44lo cells that expressed 

CD122. C) TCR expression on naïve CD8+ cells from Gads+/+ OT-I (shaded histogram) and 

Gads-/- OT-I (dark line) mice is shown.  The negative control is shown in the dotted line. 
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Gads regulates proliferation of CD8+ T cells 

To test whether Gads could regulate proliferation of CD8+ T cells, CD8+ T cells from Gads+/+ 

OT-I or Gads-/- OT-I mice were injected into congenic wild-type hosts.  The following day, 

recipient mice were injected i.v. with SIINFEKL peptide.  After three days, fewer Gads-/- cells 

divided than Gads+/+ cells and Gads-/- cells that divided did not divide as extensively as Gads+/+ 

cells (Fig. 2-2), suggesting that Gads regulates proliferation of CD8+ T cells. 

To examine the defect in proliferation more closely, we stimulated Gads+/+ and Gads-/- CD8+ 

T cells in vitro for three days with varying doses of SIINFEKL or the altered peptide ligand (APL) 

SAINFEKL, called A2.  A2 binds the MHC and TCR with comparable affinity and kinetics as 

SIINFEKL (207, 208), but has been shown to be less efficient as SIINFEKL in inducing 

proliferation in an in vitro thymidine incorporation assay (209).  Using a CFSE-based assay, we 

found that nearly all Gads+/+ CD8+ cells proliferated after stimulation with SIINFEKL or A2 (Fig. 

2-3).  There was little difference in the extent of proliferation of Gads+/+ cells across the dose 

curve used.  By contrast, Gads-/- cells only proliferated efficiently in response to the highest 

doses of SIINFEKL and A2 (Fig. 2-3).  As the concentration of peptide was reduced, the 

percentage of Gads-/- cells that divided declined.  This dose effect was more evident when cells 

were stimulated with A2 than SIINFEKL. 

Regardless of the stimulating conditions, Gads-/- CD8+ T cells failed to complete as many 

cell divisions as Gads+/+ cells.  When data were gated on those cells that divided more than five 

times, fewer Gads-/- cells were detected, even under conditions in which nearly all Gads-/- cells 

divided (Fig. 2-3). 
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Fig. 2-2. Gads regulates proliferation of CD8+ T cells in vivo.  CFSE-labeled splenocytes 

from Gads+/+ OT-I and Gads-/- OT-I mice were adoptively transferred into congenic hosts.  Then, 

mice were injected with the indicated quantity of SIINFEKL.  Proliferation was measured by flow 

cytometry three days later.  A) Shown are the percentages of CD8+ cells that proliferated.  B) 

Bar graph is summary of multiple experiments. Shown are the means  SD of the percentages 

of CD8+ cells that proliferated.  **p < 0.01, n = 4.   
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Fig. 2-3. Gads regulates proliferation of CD8+ T cells in vitro.  CFSE-labeled splenocytes 

from Gads+/+ OT-I and Gads-/- OT-I mice were cultured for three days with the indicated 

concentrations of SIINFEKL or A2.  A) Overlays show proliferation of Gads+/+ CD8+ T cells (filled 

histograms) and Gads-/- CD8+ T cells (open histograms). B)  Left bar graph – Shown are the 

means  SD of the percentages of cells that proliferated. *p < 0.05, **p < 0.01, n = 3.  Right bar 

graph – Shown are the means  SD of the percentages of cells that completed more than five 

rounds of cell division. *p < 0.05, **p < 0.01, n = 3. 
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These data suggest that Gads regulates the sensitivity of the TCR to ligand and regulates 

the kinetics of cell proliferation.  However, these in vitro assays could reflect differences in 

antigen presentation.  To test this possibility, we purified CD8+ T cells from Gads+/+ OT-I and 

Gads-/- OT-I mice and stimulated the cells with wild-type peritoneal macrophages loaded with 

peptide.  This experiment resulted in data similar to that shown in Fig. 2-3 (data not shown). 

 

Gads regulates cell cycle entry 

To examine the function of Gads in regulating the onset of proliferation, we analyzed the 

progression through the S phase of the cell cycle and the completion of the first cell cycle after 

peptide stimulation.  After 28 hours of stimulation with 1 nM SIINFEKL, 29  4.3% of Gads+/+ 

cells entered the S phase of the cell cycle, as compared to 9.7  3.2% of Gads-/- cells (p < 0.001, 

n = 4) (Fig. 2-4 A).  The percentage of Gads-/- cells entering S phase after stimulation with 1 nM 

SIINFEKL was statistically identical to the percentage of Gads+/+ cells entering S phase after 

stimulation with 0.1 nM SIINFEKL (9.7  3.2% vs. 13  6.3%, p = 0.34, n = 4). 

We also analyzed cells after 32 and 36 hours and found similar trends (Figs. 2-4 B and 2-4 

C); fewer Gads-/- cells than Gads+/+ cells entered the S phase of the cell cycle and the 

percentage of Gads-/- cells entering the cell cycle after stimulation with 1 nM SIINFEKL was 

comparable to the percentage of Gads+/+ cells entering the cell cycle after stimulation with 0.1 

nM SIINFEKL.  These experiments were repeated using A2 peptide and identical trends were 

seen (Fig. 2-4).  

These data suggest that Gads regulates the kinetics of cell cycle entry and the sensitivity of 

CD8+ T cells to antigen.  Alternatively, Gads could regulate survival of CD8+ T cells.  To test if 

Gads could regulate survival, Gads+/+ and Gads-/- splenocytes were stimulated with varying  
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Fig. 2-4. Gads is required for entry into the S phase of the cell cycle.  CFSE-labeled 

splenocytes from Gads+/+ OT-I and Gads-/- OT-I mice were cultured with the indicated 

concentrations of SIINFEKL or A2 for 28 h (A), 32 h (B), or 36 h (C).  At harvest, cells were 

permeabilized and labeled with DAPI.  Dot plots – Shown are representative data from cells 

stimulated with SIINFEKL.  The percentages of CD8+ T cells in the S, G2, or M phase of the first 

cell cycle, G1 phase of the second cell cycle, and S, G2, or M phase of the second cycle are 

shown.  Bar graphs – Shown are the means  SD of the percentages of CD8+ T cells that 

progressed beyond the G1 phase of the cell cycle. *p < 0.05, **p < 0.01, n = 4. 
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doses of SIINFEKL for 48 hours.  Cell death was assessed by Annexin V and propidium iodide 

staining (Fig. 2-5).  No differences were observed in the survival of Gads+/+ and Gads-/- cells, 

indicating that the primary function of Gads within the first two days of antigen stimulation is to 

regulate proliferation. 

 

Gads regulates exit from G0 phase of cell cycle progression 

To further define the stage of the cell cycle regulated by Gads, we stimulated splenocytes 

from Gads+/+ OT-I and Gads-/- OT-I mice with varying doses of SIINFEKL and analyzed RNA 

content using PY and DNA content using DAPI (Fig. 2-6).  After fifteen hours of stimulation with 

1 nM SIINFEKL, 27  5.4% of Gads+/+ CD8+ T cells had exited the G0 phase of the cell cycle, as 

compared to 6.7  5.2% of Gads-/- cells (p < 0.0001, n = 6).  As in the previous assay, a 

comparable percentage of Gads-/- cells stimulated with 1 nM SIINFEKL entered the cell cycle as 

Gads+/+ cells stimulated with 0.1 nM SIINFEKL.  By 21 hours after stimulation, some Gads+/+ 

cells proceeded through the G1 phase and entered S phase, whereas most Gads-/- cells 

remained in the G0 phase of the cell cycle (Fig. 2-6 B).  Because Gads is proposed to regulate 

PLC1 activity, we tested whether phorbol 12-myristate 13-acetate (PMA) 0.1 g/ml and 

ionomycin 0.25 g/ml could overcome the need for Gads.  Indeed, cell cycle entry in Gads-/- 

cells was fully restored by PMA and ionomycin (Fig. 2-6).  In fact, at the 15-hour time point, we 

noted a consistent increase in the percentage of Gads-/- cells that exited the G0 phase of the 

cell cycle, as compared to Gads+/+ cells.  This difference was not seen at the 21-hour time point.  

These data indicate that Gads regulates early signaling pathways that control the exit from the 

G0 phase of the cell cycle. 
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Fig. 2-5. Gads is not required for survival of CD8+ T cells. Splenocytes from Gads+/+ OT-I 

and Gads-/- OT-I mice were cultured with the indicated concentrations of SIINFEKL for two days.  

Cells were analyzed for Annexin V and propidium iodide (PI) staining.  Shown are the 

percentages of cells that were Annexin V+PI+.  Representative of three independent 

experiments. 
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Fig. 2-6. Gads is required for entry into the G1 phase of the cell cycle. Splenocytes from 

Gads+/+ OT-I and Gads-/- OT-I mice were cultured with the indicated concentrations of SIINFEKL, 

A2, or PMA and ionomycin for 15 h (A) or 21 h (B).  At harvest, cells were labeled with DAPI 

and PY.  Dot plots – Shown are representative data from cells stimulated with SIINFEKL and 

PMA and ionomycin.  The percentages of cells in the G1 phase or the S, G2, or M phase of the 

cell cycle are shown. Bar graphs – Shown are the means  SD of the percentages of CD8+ T 

cells that exited the G0 phase of the cell cycle. *p < 0.05, **p < 0.01, n ≥ three independent 

experiments for each sample. 
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To identify the mechanism by which Gads regulates cell cycle entry, we analyzed the 

expression of c-myc (Fig. 2-7), a regulator of quiescence in T cells (210-212).  In Gads+/+ cells, 

c-myc was expressed within one hour of stimulation and remained expressed throughout the 

duration of the experiment.  By contrast, no c-myc expression was detected in Gads-/- cells until 

three hours after stimulation.  Within 24 hours of stimulation, c-myc expression in Gads+/+ and 

Gads-/- cells was comparable, consistent with our model that Gads regulates the onset of 

proliferation. Besides binding to cyclin-dependent kinases (CDK) 4/6 to regulate cell cycle 

progression, cyclin D, which is initially synthesized in G1 phase, plays a kinase independent role 

by sequestering cell cycle inhibitors p27KIP1 and p21CIP1 (213).  We looked at the expression of 

cyclin D2, which is expressed in murine T cells, and p27KIP1 at various time points, and found 

that at 1h, 3h and 24h after TCR ligation, there were lower expression of cyclin D2 and higher 

expression of p27KIP1 in Gads-/- cells than in Gads+/+ cells (Fig. 2-7).  

 

Gads regulates the expression of early activation markers 

Next, we tested whether Gads could regulate the kinetics of expression of the early 

activation marker CD69 (Fig. 2-8 A and B).  Like c-myc expression, CD69 expression was 

reduced on Gads-/- cells at early time points, but nearly indistinguishable at later time points, as 

compared to Gads+/+ cells.  Upon TCR ligation, CD25 turns on later than CD69. Since six hours 

after stimulation, Gads-/- CD8+ T cells had lower expression of CD25, compared with Gads+/+ 

CD8+ T cells (Fig. 2-8 C and D). These data indicate that Gads regulates the kinetics of 

activation and proliferation of CD8+ T cells but is not required for the activation and proliferation 

of CD8+ T cells.  
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Fig. 2-7. Gads regulates the expression of c-myc, cyclin D2, and p27KIP1. Splenocytes from 

Gads+/+ OT-I and Gads-/- OT-I mice were stimulated with SIINFEKL for the indicated lengths of 

time. After stimulation, CD8+ T cells were isolated, lysed, and analyzed for c-myc, cyclin D2 and 

p27KIP1 and -actin expression by immunoblot.  Representative of three independent 

experiments.  
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Fig. 2-8. Gads is required for the kinetics of CD69 and CD25 expression. Splenocytes from 

Gads+/+ OT-I and Gads-/- OT-I mice were stimulated with SIINFEKL for the indicated lengths of 

time. A) and B), After stimulation, splenocytes were labeled with anti-CD8 and anti-CD69. A) 

Shown is CD69 expression on Gads+/+ CD8+ cells (filled histograms) and Gads-/- CD8+ cells 

(outlined histograms).  The upper number in each histogram represents the percentage of 

Gads+/+ CD8+ cells that expressed CD69 and the lower number represents the percentage of 

Gads-/- CD8+ cells that expressed CD69. Representative of three independent experiments. B) 

Shown are the means  SD of the percentages of CD8+ T cells that that expressed CD69.  C) 

and D), After stimulation, splenocytes were labeled with anti-CD8 and anti-CD25. C) Shown is 

CD25 expression on Gads+/+ CD8+ cells (filled histograms) and Gads-/- CD8+ cells (outlined 

histograms).  The upper number in each histogram represents the percentage of Gads+/+ CD8+ 

cells that expressed CD25 and the lower number represents the percentage of Gads-/- CD8+ 

cells that expressed CD25. Representative of three independent experiments. D) Shown are the 

means  SD of the percentages of CD8+ T cells that that expressed CD25. In each time point, 

top asterisks indicate the p value between Gads-/- cells and Gads+/+ cells, which were stimulated 

with SIINFEKL at 1nM; bottom asterisks represent the p value between Gads-/- cells and Gads+/+ 

cells, which were stimulated with SIINFEKL at 0.1nM.  *p < 0.05, **p < 0.01, n ≥ three 

independent experiments for each sample.  
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Discussion 

We report the first analysis of the function of Gads in peripheral naïve CD8+ T cells. We 

examined the activation and proliferation of T cells in response to cognate peptide antigen and 

found that Gads-dependent signaling pathways accelerate exit from the G0 phase of the cell 

cycle and enhance the sensitivity of CD8+ T cells to antigen. 

As we previously described, the CD8+ T cells in Gads-/- mice were nearly exclusively of a 

memory phenotype (17), making a thorough analysis of the function of Gads in naïve CD8+ T 

cells impossible.  Also in our previous studies, we found that the single positive (SP) CD8+ 

thymocytes in Gads-/- mice were of an unusual phenotype; nearly half the Gads-/- SP CD8+ 

thymocytes expressed CD122 (99).  This unusual phenotype within the SP thymocyte 

population was overcome by the expression of an MHC class I-restricted TCR.  In Fig. 2-1, we 

demonstrate that many peripheral CD8+ T cells in Gads-/- OT-I mice were naïve, as seen by the 

expression of CD44, CD62L, and CD122.  These data indicate that the OT-I system provides us 

an opportunity to examine the effects of Gads deficiency on the proliferation and activation of 

naïve CD8+ T cells. 

We found that the major function of Gads is during the initiation of CD8+ T cell activation and 

proliferation. Even when using high doses of SIINFEKL where nearly all Gads-/- CD8+ T cells 

could proliferate, Gads-/- cells completed fewer rounds of cell division than Gads+/+ cells (Fig. 2-4 

B).  Completion of fewer rounds of cell division was most likely caused by a delay in cell cycle 

entry.  

Among proliferating cells several days after stimulation, the percentage of Gads-/- cells in the 

S, G2, or M phase of the cell cycle was comparable to that of Gads+/+ cells and proliferating 

Gads-/- cells survived in vitro at the same rate as proliferating Gads+/+ cells (data not shown).  
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This indicates that once Gads-/- CD8+ T cells begin proliferating, they progress through 

subsequent cycles normally. 

A key event that is required for the onset of proliferation is the expression of c-myc (214, 

215).  Expression of c-myc is initiated within thirty minutes of TCR ligation and its expression 

precedes that of CD25 (216, 217).  Analysis of c-myc expression during T cell development 

revealed that c-myc expression tightly correlates with stages of T cell development in which 

cells proliferate (212).  The importance of c-myc in the proliferation of CD4-CD8- double 

negative thymocytes was seen when c-myc-deficient double negative thymocytes could not 

proliferate following pre-TCR expression (218).  Further, loss of c-myc expression in CD4+ T 

cells resulted in a lack of TCR-induced proliferation, despite the up-regulation of the activation 

markers CD25 and CD44 (211).  These observations illustrating the importance of c-myc during 

cell cycle progression were supported by studies showing that c-myc expression can regulate 

the exit from quiescence in T cells (210). 

Because c-myc expression is critical for exit from quiescence and cell cycle entry, we 

examined c-myc expression following TCR ligation of Gads+/+ and Gads-/- CD8+ T cells.  In the 

absence of Gads, c-myc expression was delayed, as compared to Gads+/+ cells (Fig. 2-7).  In 

addition, expression of the early activation marker CD69 was also delayed in Gads-/- cells (Fig. 

2-8 A and B), and the expression of CD25 was defective in Gads-/- cells (Fig. 2-8 C and D). 

These data indicate that the function of Gads is to regulate the kinetics of CD8+ T cell activation 

and proliferation.  

Gads-/- cells were more sensitive to our decreasing the dose of SIINFEKL than Gads+/+ cells. 

Despite the fact that TCR-peptide-MHC complexes with SIINFEKL and A2 have comparable 

dissociation constants and half-lives (207, 208), A2 is a less potent agonist for CD8+ T cell 

activation and proliferation than SIINFEKL (209, 219).  So that we stimulated Gads+/+ and Gads-
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/- CD8+ T cells with the APL A2. When using Gads+/+ cells, we noted little difference in 

proliferation and cell cycle entry between SIINFEKL and A2.  However, proliferation of Gads-/- 

cells was more dramatically impaired when stimulated with varying concentrations of A2 than 

with SIINFEKL.  This result is consistent with our model that Gads regulates the signaling 

threshold through the TCR as proliferation of Gads-/- cells in response to a weak agonist was 

more impaired than the proliferation in response to a strong agonist. 

Like Gads-deficiency, APLs have been demonstrated to slow the kinetics of T cell activation 

(220-223).  T cells stimulated with APLs have reduced phosphorylation of  chain and reduced 

recruitment of ZAP-70 to  chain than cells stimulated with cognate antigen (224, 225).  The 

result of this decrease in ZAP-70 recruitment is less LAT and SLP-76 phosphorylation, reduced 

calcium mobilization, and reduced MAPK activation (221, 226).  This decreased signaling when 

T cells are stimulated with APLs leads to reduced expression of activation markers and 

proliferation (223). 

  Similarly, Gads-/- CD8+ T cells and delayed expression of activation markers and delayed 

cell cycle entry.  Because of the defects in activation and proliferation seen when Gads-deficient 

CD8+ T cells were stimulated with cognate antigens, Gads-/- cells were predicted to be more 

susceptible to reducing the potency of the antigen.  Indeed, defects in cell cycle entry of Gads-/- 

CD8+ T cells were more evident when the cells were stimulated with A2 peptide than SIINFEKL.  

The biochemical function of Gads in TCR-mediated signal transduction that is most 

understood is to couple TCR ligation to calcium mobilization.  The mechanism by which Gads 

fulfills this function is via the binding of the SH2 domain of Gads to the membrane-bound 

adaptor protein LAT.  Following TCR ligation, LAT becomes phosphorylated on tyrosine 

providing the docking site for Gads.  Gads constitutively interacts with the SLP-76 adaptor 
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protein and the formation of the LAT-Gads-SLP-76 complex is required for optimal calcium 

mobilization. 

Analyses of T cell development in LAT-/-, Gads-/-, and SLP-76-/- mice support the model that 

these proteins regulate a common pathway (227-229); however, the pathway is not linear.  LAT-

/- mice and SLP-76-/- mice could not generate T cells beyond the double negative stage, while 

Gads-/- mice could generate mature T cells.  In peripheral T cells from Gads-/- mice, we showed 

that calcium mobilization is dramatically impaired, but a calcium response could be detected 

when cells were stimulated with high doses of anti-CD3 (17). 

The observations using Gads-/- mice indicate that Gads, unlike LAT and SLP-76, is not 

required for TCR-mediated calcium mobilization, but rather Gads enhances TCR signaling.  The 

results presented here support this model.  We observed that CD8+ T cells could become 

activated and proliferate without Gads, but Gads expression enhanced the rate at which CD8+ T 

cells become activated and entered the cell cycle.  The most likely mechanism by which Gads 

fulfills this modulatory function is by stabilizing the LAT-centered signaling complex (48). 

To test the effect of Gads deficiency on the proliferation of the antigen-specific CD8+ T cell 

population, we stimulated cells with cognate antigen and an APL.  We found that Gads-/- cells 

could not expand in number to the same extent as Gads+/+ cells (Fig. 2-3).  This impairment 

could be caused by a failure of Gads-/- cells to initiate proliferation, sustain proliferation, or 

survive.  In investigating these possibilities, we found that the major function of Gads in peptide-

induced proliferation is during the initiation of CD8+ T cell activation and proliferation.  Among 

proliferating cells several days after stimulation, the percentage of Gads-/- cells in the S, G2, or 

M phase of the cell cycle was comparable to that of Gads+/+ cells and proliferating Gads-/- cells 

survived in vitro at the same rate as proliferating Gads+/+ cells (data not shown).  This indicates 
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that once Gads-/- CD8+ T cells begin proliferating, they progress through subsequent cell cycles 

normally. 

A key event that is required for the onset of proliferation is expression of c-myc (214, 215).  

Expression of c-myc is initiated within thirty minutes of TCR ligation and its expression precedes 

that of CD25 (216, 217).  Analysis of c-myc expression during T cell development revealed that 

levels of c-myc expression tightly correlate with stages of T cell development in which cells 

proliferate (212).  The importance of c-myc in the proliferation of CD4-CD8- double negative 

thymocytes was seen when c-myc-deficient double negative thymocytes could not proliferate 

following pre-TCR expression (218).  Further, loss of c-myc expression in CD4+ T cells resulted 

in a lack of TCR-induced proliferation, despite the up-regulation of the activation markers CD25 

and CD44 (211).  These observations illustrating the importance of c-myc during cell cycle 

progression were supported by studies showing that c-myc expression can regulate exit from 

quiescence in T cells (210). 

Because c-myc expression is critical for exit from quiescence and cell cycle entry, we 

examined c-myc expression following TCR ligation of Gads+/+ and Gads-/- CD8+ T cells.  In the 

absence of Gads, c-myc expression was delayed, as compared to Gads+/+ cells (Fig. 2-7).  In 

addition, expression of the early activation marker CD69 was also delayed in Gads-/- cells (Fig. 

2-8 A). Another activation marker CD25 was expressed in a significantly lower level in Gads-/- 

CD8+ T cells, as compared with that in Gads+/+ CD8+ T cells. These data indicate that the 

function of Gads is to regulate the kinetics of CD8+ T cell activation and proliferation. 

The impaired onset of proliferation seen in Gads-/- CD8+ T cells was most dramatic when the 

concentration of stimulating peptide was reduced or when a less potent peptide agonist, A2, 

was used (Fig. 2-3).  Although TCR-SIINFEKL-MHC and TCR-A2-MHC complexes have 

comparable dissociation constants and half-lives (207, 208), A2 is a less potent agonist for 
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CD8+ T cell activation and proliferation than SIINFEKL (209, 219).  The more dramatic delay in 

cell cycle entry seen when Gads-/- cells were cultured with weaker stimuli is consistent with our 

model that Gads regulates the signaling threshold through the TCR. 

Like Gads-deficiency, APLs have been demonstrated to slow the kinetics of T cell activation 

(220-223).  T cells stimulated with APLs have reduced phosphorylation of  chain and reduced 

recruitment of ZAP-70 to  chain than cells stimulated with cognate antigen (224, 225).  The 

result of this decrease in ZAP-70 recruitment is less LAT and SLP-76 phosphorylation, reduced 

calcium mobilization, and reduced MAPK activation (221, 226).  This decreased signaling when 

T cells are stimulated with APLs leads to reduced expression of activation markers and 

proliferation (223), similar to our results with Gads-/- cells. 

In conclusion, we demonstrate that Gads regulates the signaling threshold through the TCR 

by promoting cell cycle entry and expression of early activation markers of CD8+ T cells 

following TCR ligation with a peptide agonist.  
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Chapter III 

Gads regulates the expansion phase of CD8+ T cell-mediated immunity 

Abstract 

The Gads adaptor protein is critical for TCR-mediated Ca2+ mobilization. We investigated 

how Gads regulates CD8+ T cell-mediated immunity following infection with an intracellular 

pathogen. Naïve CD8+ T cells from Gads+/+ OT-I or Gads-/- OT-I mice were adoptively 

transferred into congenic wild-type mice that were subsequently infected with recombinant 

Listeria monocytogenes expressing ovalbumin or altered peptide ligand. After infection, 

expression of the activation markers CD69 and CD25 was impaired in Gads-/- cells. Our analysis 

of the kinetics of the immune response to infection indicates that Gads was not required for the 

onset of expansion of CD8+ T cell population as at early time points, Gads+/+ and Gads-/- CD8+ T 

cells accumulated to a similar extent. However, Gads was required for the optimal expansion of 

the CD8+ T cell populations as the peak response of Gads-/- cells was significantly lower than of 

Gads+/+ cells. Restimulation of Gads-/- cells in vitro resulted in comparable Interferon- (IFN-) 

production as Gads+/+ cells, suggesting Gads-/- cells were functional. We also found that Gads-/- 

cells persisted sixty days after infection, indicating that Gads was not required for the 

differentiation of naïve CD8+ T cells into memory cells. However, Gads-/- memory cells did not 

expand as well as Gads+/+ memory cells upon re-infection. We conclude that Gads regulates the 

expansion phase of CD8+ T cell-mediated immune response upon infection as well as optimal 

recall responses but not the formation of memory CD8+ T cells.  
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Introduction 

CD8+ T cells are cytotoxic T cells that recognize and kill cells infected with intracellular 

pathogens.  For CD8+ T cells to fulfill this function, the TCR on the CD8+ T cells must recognize 

foreign peptides presented on MHC class I.  When the TCR binds peptide-MHC complexes, 

signals are transmitted to the CD8+ T cell that induce activation and proliferation, which 

precedes differentiation into effector or memory cells.  Like with CD4+ T cells (230), proliferation 

of CD8+ T cells is required for the differentiation of CD8+ T cells into effector and memory cells 

(231-236). In Chapter II, I demonstrated that Gads regulates the kinetics of cell cycle entry to 

affect the proliferation of CD8+ T cells (237).  

After primary encounter with a pathogen, the CD8+ T cell-mediated immune responses can 

be divided into three distinct phases. 1) Expansion Phase (Days 0-8 p.i.): Naïve CD8+ T cells 

are activated, undergo clonal expansion, and differentiate into effector cells and memory cells. 2) 

Contraction Phase (Days 8 to 30 p.i.): About 90% of the effector T cells are eliminated by 

apoptosis. Several groups (238-240) proposed the hypothesis that during expansion and 

contraction phases, effector CD8+ T cells can be subdivided into two populations: short lived 

effector cells (SLECs) and memory precursor effector cells (MPECs). The majority of SLECs are 

considered terminally differentiated and destined for apoptosis while MPECs are not terminally 

differentiated, retaining the potential to survive and differentiate into memory CD8+ T cells. 3) 

Memory Phase (>Days 30 p.i.): Upon the primary infection, a relatively stable number of 

pathogen-specific memory CD8+ T cells is maintained indefinitely (238, 241). After encountering 

the same pathogen, memory CD8+ T cells proliferate in a much faster and stronger manner in 

the secondary response, also called the recall response. 

Listeria monocytogenes (LM) is gram positive bacterium discovered in 1926. Since then the 

epidemics have affected various species including rabbits, guinea pigs, and human (242, 243). 
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LM is recognized as a food borne pathogen which can be present in the gastro-intestinal tract of 

human. It can lead to severe diseases including septicemia, meningitis, meningo-encephalitis, 

and abortions, especially in immune-compromised individuals, such as newborn babies, the 

elderly, or pregnant women (244, 245). As LM is also a blood borne pathogen, many studies 

were performed by infecting mice with LM i.v. and studying the immune responses to the 

systemic infection (219, 246-249). In this model, the spleen is the main tissue for immune 

responses to LM infection to take place. The innate immune system can detect and restrict LM 

infection. However, leukocytes in the adaptive system, especially CD8+ T cells, are the main 

force for clearance of LM and protection against future infection by memory cells (250, 251). We 

would like to know how Gads affects CD8+ T cell- mediated immunity. In the previous chapter, 

we demonstrate that Gads regulates the kinetics of cell cycle entry as well as activation of CD8+ 

T cells in vitro. In this chapter, the focus will be on the effect of Gads on the immune response 

of CD8+ T cells to LM infection.  

To examine the function of Gads in CD8+ T cell mediated immune responses, we crossed 

Gads-/- mice with mice expressing the transgenic TCR OT-I.  As we previously reported (99) and 

as shown in Chapter II (Fig. 2-1), expression of the OT-I TCR in Gads-/- mice could rescue T cell 

development so that Gads-/- OT-I mice have peripheral CD8+ T cells. Thus, we are able to use 

Gads-/- OT-I mice to examine the function of Gads during CD8+ T cell-mediated immune 

responses.  I adoptively transferred the naïve CD8+ T cells from Gads+/+ OT-I mice and/or Gads-

/- OT-I mice. We then examined how Gads regulates the expansion and memory phases of 

CD8+ T cell-mediated immune responses against the live intracellular pathogen, recombinant 

LM expressing ovalbumin (rLM-OVA) or rLM expressing altered peptide ligand (rLM-APL).
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Materials and Methods 

Mice 

C57BL/6 Gads-/- mice and Gads-/- OT-I mice were described previously (17, 99) and 

backcrossed onto the CD45.1+ C57BL/6 genetic background.  To generate CD45.1+CD45.2+ 

OT-I mice, CD45.1+ OT-I mice were bred with CD45.2+ wild-type C57BL/6 mice.  All mice were 

housed under specific pathogen-free conditions and all experiments were performed in 

compliance with the University of Kansas Medical Center Institutional Animal Care and Use 

Committee (IACUC).  Mice were used between the ages of six and ten weeks at the start of the 

experiments. 

 

Antibodies, cell labeling, and flow cytometry 

Anti-CD8-FITC, anti-CD8-Alexa Fluor 647, anti-CD45.1-PE, anti-CD45.1-allophycocyanin 

-Cy7, anti-CD45.2-PE-Cy5.5, anti-CD45.2-PE, anti-CD69-FITC, anti-CD25-allophycocyanin-Cy7, 

anti-CD127-allophycocyanin-e-Fluor® 780, and anti-KLRG1-PE were purchased from BD 

Biosciences (San Jose, CA), eBioscience, Inc. (San Diego, CA) or Biolegend, Inc. (San Diego, 

CA). 

Surface labeling of cells was performed as described previous (99).  Briefly, single cell 

suspensions were prepared and labeled in staining buffer (PBS containing 2% FetalClone I 

bovine serum product (HyClone Laboratories, Inc., Logan, UT)) before fixing with 1% 

paraformaldehyde in PBS overnight or at least one hour at room temperature.  
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For IFN- assays, splenocytes were re-stimulated in culture with SIINFEKL 1 nM in the 

presence of Brefeldin A.  After fixation with 1% paraformaldehyde, cells were permeabilized with 

0.3% Tween-20 and labeled with anti-CD8, anti-CD45.1, anti-CD45.2, and anti-IFN-. 

Samples were analyzed using a BD LSRII (BD Biosciences, San Jose, CA). Data were 

analyzed using BD FACSDiva (BD Biosciences) and FlowJo (Tree Star, Inc., Ashland, OR). 

 

Homing assays 

Splenocytes and lymphocytes were isolated from CD45.1+ Gads+/+ OT-I or CD45.1+ Gads-/- 

OT-I mice. The numbers of total splenocytes and lymphocytes were adjusted so that 2 x 106 

CD8+ T cells were injected i.v. into CD45.2+ congenic mice. Four days later, splenocytes and 

lymphocytes were harvested, labeled with anti-CD45.1, anti-CD8 and analyzed by flow 

cytometry. 

 

Recombinant Listeria monocytogenes-expressing OVA infections 

Splenocytes were harvested from CD45.1+CD45.2+ Gads+/+ OT-I or CD45.1+ Gads-/- OT-I 

mice and naïve CD8+ (CD8+CD44lo) T cells were FACS-purified using a BD FACSAria (BD 

Biosciences). 104 naïve CD8+ T cells were adoptively transferred into CD45.2+ congenic mice.  

For competition assays, 5 x 103 cells of each genotype were injected.  rLM-OVA was a 

generous gift of Dr. Leo LeFrançois, University of Connecticut Health Center and rLM-APL 

(rLM-A2 and rLM-Q4) were kindly provided by Dr. Michael Bevan, University of Washington. 

rLMs were made by the LeFrançois lab and the Bevan lab as previously reported (219, 252). 

They were cultured in 5 mL brain heart infusion (BHI) broth containing 7.5 μg/ mL 
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chloramphenicol overnight and 1:10 diluted to 20 mL fresh BHI broth with same concentration of 

chloramphenicol. When they grew till the appropriate density according to the OD value 

(OD=0.8), they were centrifuged and re-suspended in 4 mL saline with the density of 5×108 CFU 

of rLM/100 μL. After diluted as 1:2.5×105, 2×103 CFU rLM-OVA, rLM-A2, or rLM-Q4 in 100 μL 

saline or vehicle control 100 μL saline was injected i.v. into each mouse. At the indicated time 

points, blood or splenocytes were harvested, labeled with anti-CD45.1, anti-CD45.2, anti-CD8, 

anti-KLRG1, and anti-CD127 and analyzed by flow cytometry.  RBCs from blood samples were 

lysed with ACK lysis buffer prior to staining.  For challenge assays, mice were re-infected i.v. 

sixty days post-infection with 104 CFU rLM-OVA.  Blood and splenocytes were harvested and 

analyzed four days post-challenge. 

For short-term activation assays, 2 x 106 CD8+ T cells were positively selected from Gads+/+ 

OT-I and Gads-/- OT-I mice using anti-CD8 Magnetic Particles-DM (BD Pharmingen) and 

injected into congenic wild-type mice.  The following day, mice were infected with 2 x 103 CFU 

rLM-OVA, SIINFEKL or vehicle control.  Twenty-four hours after infection, splenocytes were 

harvested and labeled with anti-CD8, anti-CD45.1, anti-CD45.2 and anti-CD69 and analyzed by 

flow cytometry. 

 

Statistics 

All data are presented as mean ± SD and were analyzed using two-tailed Student's t tests.  
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Results 

Gads regulates the expansion phase of CD8+ T cell-mediated immunity 

To test how a delay in peptide-induced activation and proliferation could relate to an immune 

response against a live pathogen, we adoptively transferred naïve CD8+ T cells from Gads+/+ 

OT-I or Gads-/- OT-I mice into congenic wild-type mice, infected the recipients with rLM-OVA, 

and analyzed the CD8+ T cells derived from the donor mice.  For these experiments, we 

generated CD45.1+CD45.2- Gads-/- OT-I mice and CD45.1+CD45.2+ Gads+/+ OT-I mice, so we 

could test the expansion of Gads+/+ and Gads-/- cells when the cells were injected into separate 

CD45.2+ hosts as well as in a competition assay where the cells were mixed and injected into 

the same CD45.2+ host.  Regardless of whether the cells were injected separately or together, 

the expansion of Gads+/+ and Gads-/- cells was statistically identical for the first five days after 

infection (Fig. 3-1 A and B).  This similarity in expansion suggests that Gads did not regulate the 

onset of proliferation or homing of naïve CD8+ T cells into lymphoid tissues.  As another 

measure of homing, we injected Gads+/+ and Gads-/- cells into congenic hosts and examined the 

percentages of CD8+ T cells in the spleen and lymph nodes that were derived from the donor.  

In the absence of stimulation, identical percentages of Gads+/+ and Gads-/- CD8+ T cells were 

found (Fig. 3-2). 

Despite not being required for expansion of the antigen-specific CD8+ T cells early after 

infection, Gads was required to sustain the expansion of the naïve CD8+ T cell population after 

infection with rLM-OVA.  On day 7, 38  3.2 % of CD8+ T cells in infected mice were derived 

from Gads+/+ mice and 11  3.6 % were derived from Gads-/- mice (p < 0.0001, n = 10) (Fig. 3-1).  

This difference was exacerbated when Gads+/+ and Gads-/- cells were mixed and injected into 

the same host; 8.5  5.3-fold more Gads+/+ CD8+ T cells were recovered than Gads-/- cells. 
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Fig. 3-1. Gads regulates the expansion phase of CD8+ T cell-mediated immunity following 

infection.  Naïve CD8+ T cells from CD45.1+ Gads-/- OT-I mice, CD45.1+CD45.2+ Gads+/+ OT-I 

mice, or both were adoptively transferred into separate CD45.2+ wild-type mice or mixed and 

injected into the same CD45.2+ wild-type mice before mice were injected i.v. with rLM-OVA.  A) 

The percentages of CD8+ T cells derived from the donor mice were calculated at the indicated 

time points. B) Shown are the means  SD of the data from (A).  Left panel - Shown are the 

means  SD of the data from (A) in which Gads+/+ and Gads-/- cells were injected into separate 

hosts.  Right panel - Shown are the means  SD of the data from (A) in which Gads+/+ and 

Gads-/- cells were mixed and injected into the same hosts. **p < 0.01, n = 4 in two independent 

experiments.  
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Fig. 3-2. Gads is not required for the homing of CD8+ T cells in spleen and lymph nodes.  

Total splenocytes from CD45.1+ Gads+/+ OT-I or Gads-/- OT-I mice were injected into congenic 

hosts such that 2 x 106 CD8+ T cells were injected.  Lymphocytes from the spleens and lymph 

nodes were analyzed four days later.  Shown are the percentages of CD8+ T cells derived from 

Gads+/+ and Gads-/- donors.  Representative of three independent experiments. 

  



 

Figu

 

re 3-2 

 

72 

 



73 
 

In Chapter II, we demonstrated that in vitro proliferation of Gads-/- cells stimulated with a 

weak agonist A2 was more impaired than cells stimulated with a strong agonist SIINFEKL. We 

would like to know whether this is true in the context of immune response to infection. We 

looked at the effect of Gads on the immune responses of CD8+ T cell upon infection with rLM-

OVA or two of rLM-APLs with different potency. APLs for the OT-I TCR are peptide variants 

derived from the original antigenic OVA peptide SIINFEKL, with substitutions at particular 

residue(s) (208). SAINFEKL is called A2 as at the second amino acid position of SIINFEKL, 

alanine (A) replaces isoleucine (I). SIIQFEKL is named as Q4 because glutamine (Q) 

substitutes for asparagine (N) at the position of the forth amino acid of SIINFEKL. The rLM 

strains stably express secreted OVA containing either the native ligand SIINFEKL, or APL A2, 

or Q4 (219, 252). Among various strains of rLM-APLs (rLM-A2,Y3,Q4,T4,V4), infection with 

rLM-A2 could induce the strongest immune response of CD8+ T cells, although it was still 

slightly weaker, as compared with that induced by infection with rLM-OVA. Infection with rLM-

Q4 yielded an expansion phase, which was markedly reduced, but was still readily detectable. 

(219). Therefore, we have chosen rLM-A2 and rLM-Q4, besides rLM-OVA in our studies. After 

the adoptive transfer of Gads+/+ and Gads-/- CD8+ T cells into congenic hosts, the recipients 

were injected with rLM-OVA, rLM-A2, or rLM-Q4. Among these three strains of rLM, rLM-OVA is 

the strongest stimuli, rLM-A2 is the second and rLM-Q4 is the weakest one. At 5 days p.i. with 

rLM-OVA, there were similar percentages of CD8+ T cells derived from Gads-/- donor mice to 

that from Gads+/+ donor mice in blood (Fig. 3-3 A), which were consistent with the results 

generated from spleen of mice infected by rLM-OVA (Fig  3-1). In contrast, from blood samples 

harvested at 5 days p.i. with rLM-A2 or rLM-Q4, lower percentages of CD8+ T cells were derived 

from Gads-/- donor mice than from Gads+/+ donor mice (Fig. 3-3 A). However, at 7 days p.i. with 

any of the rLM strains, lower percentages of CD8+ T cells in blood were derived from Gads-/-  
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Fig. 3-3. Gads regulates the expansion of CD8+ T cell population following infection with 

rLM-APL.  Naïve CD8+ T cells from CD45.1+ Gads-/- OT-I mice, CD45.1+CD45.2+ Gads+/+ OT-I 

mice, or both were adoptively transferred into separate CD45.2+ wild-type mice or mixed and 

injected into the same CD45.2+ wild-type mice before mice were injected i.v. with rLM-OVA, 

rLM-A2, and rLM-Q4.  A) Five days and B) seven days postinfection, the percentages of CD8+ T 

cells derived from the donor mice in blood were calculated. Shown are the representative data 

from two mice.  
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mice than from Gads+/+ mice (Fig. 3-3 B). These data were consistent with the results in the 

spleen at 7 days p.i. with either of the rLM strains (Fig. 3-4 A).  

In order to address the question whether the diminished accumulation of Gads-/- CD8+ T cell 

population is caused by a defect in proliferation of Gads-/- CD8+ T cells, we analyzed cell cycle 

progression of OVA-specific CD8+ T cells in spleen. At 7 days p.i. with either rLM-OVA or rLM-

A2, there were comparable percentages of OVA-specific CD8+ T cells in the S, G2, or M phase 

of the cell cycle between mice receiving naïve Gads-/- CD8+ T cells and mice receiving naïve 

Gads+/+ CD8+ T cells. When the recipient mice were infected with rLM-Q4, lower percentage of 

antigen-specific CD8+ T cells were in S, G2, or M phase of the cell cycle, as compared with 

mice infected with rLM-OVA or rLM-A2. However, there were comparable percentages of 

antigen-specific Gads-/- CD8+ T cells were in S, G2, or M phase of the cell cycle, as compared 

with antigen-specific Gads+/+ CD8+ T cells in spleen at 7 days p.i. with rLM-Q4 (Fig. 3-4).  

The above results demonstrated that Gads is not required for the onset of accumulation of 

antigen-specific CD8+ T cell but is required for the optimal expansion of the antigen-specific 

CD8+ T cell population upon infection with different strains of rLM. 

 

Gads regulates the expression of early activation markers upon infection 

We tested whether Gads could regulate the expression of the activation markers CD69 and 

CD25 in vivo.  After the adoptive transfer of Gads+/+ and Gads-/- CD8+ T cells into congenic 

hosts, the recipients were injected with SIINFEKL (Fig. 3-5 A) or rLM-OVA (Fig. 3-5 B and C). 

There were lower percentages of Gads-/- OVA-specific CD8+ T cells expressing CD69 or CD25 

24 hours post stimulation with SIINFEKL in vivo or 24 hours and 5 days p.i. with rLM-OVA, as 
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Fig. 3-4. Gads regulates the expansion of CD8+ T cell population upon infection with rLM-

OVA, rLM-A2, or rLM-Q4.  Naïve CD8+ T cells from CD45.1+ Gads-/- OT-I mice, 

CD45.1+CD45.2+ Gads+/+ OT-I mice, or both were adoptively transferred into separate CD45.2+ 

wild-type mice or mixed and injected into the same CD45.2+ wild-type mice before mice were 

injected i.v. with rLM-OVA, rLM-A2, and rLM-Q4.  A) The percentages of CD8+ T cells derived 

from the donor mice in spleen were calculated at seven days postinfection and show are the 

representative data. B) Shown are the cell cycle status analyses of the CD8+ T cells derived 

from donor mice.  
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Fig. 3-5. Gads regulates the expression of CD69 and CD25 on CD8+ T cells in vivo.  CD8+ 

T cells from CD45.1+ Gads-/- OT-I mice, CD45.1+CD45.2+ Gads+/+ OT-I mice, or both were 

adoptively transferred into CD45.2+ wild-type mice.  Mice were injected i.v. with SIINFEKL (A) or 

rLM-OVA (B and C). A and B) Splenocytes were analyzed 24 hours post-stimulation. C) Cells 

were analyzed five days post-infection.  Dot plots are representative data showing the 

percentages of donor-derived CD8+ T cells that were CD69+, CD25+, or CD69+CD25+.  Bar 

graphs – Shown are the means  SD of the percentages of donor-derived CD8+ T cells from A 

and B expressing CD69 and CD25.  *p < 0.05, **p < 0.01, when comparing stimulated Gads+/+ 

and Gads-/- cells, n = 5 from two independent experiments. 
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compared with Gads+/+ OVA-specific CD8+ T cells. These data indicate that Gads is required for 

CD69 and CD25 expression in vivo. It was consistent with our results in vitro that Gads 

regulates the expression of CD69 and CD25 on CD8+ T cells at early time points after 

stimulation with SIINFEKL (Fig. 2-8). Gads-/- CD8+ T cells have a defect in turning on the 

expression of early activation markers as early as Gads+/+ CD8+ T cells but without Gads, the 

antigen-specific CD8+ T cells have a normal start in expanding their population in vivo following 

infection. This suggests that there are different pathways to control the expression of activation 

markers and to regulate the initiation of accumulation of CD8+ T cells upon infection. 

 

Gads is not required for the secretion of IFN- after infection 

Gads regulates sustained expansion and the expression of activation markers. How is the 

function of Gads-/- CD8+ T cells upon infection? To address this question, we investigated the 

ability of Gads-/- CD8+ T cells to produce IFN- after infection. We re-stimulated the splenocytes 

harvested from infected mice with SIINFEKL and examined IFN- expression. As controls, the 

endogenous CD8+ T did not produce IFN- under the stimulation of SIINFEKL (data not shown). 

In addition, the OVA-specific CD8+ T cells, that were derived from donor OT-I mice did not 

produce IFN- either, if the re-stimulation with SIINFEKL in vitro was not provided (Fig. 3-6). 

Those data in control groups indicated that the detected IFN- production was OVA-specific. 

Like Gads+/+ cells, Gads-/- CD8+ T cells recovered from mice at indicated days post-infection 

were able to produce IFN-. Despite impaired expansion and expression of activation markers, 

Gads-/- CD8+ T cells are capable of secreting IFN- upon infection (Fig. 3-6).  Interestingly, a 

higher percentage of OVA-specific CD8+ T cells could produce IFN- in Gads-/- CD8+ T cells, as 

compared with Gads+/+ CD8+ T cells at 5 days p.i. with rLM-OVA. Gads-/- CD8+ T cells actually  
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Fig. 3-6. Gads is not required for IFN- production.  Mice were adoptively transferred with 

naïve CD8+ T cells from Gads+/+ OT-I mice or Gads-/- OT-I mice. Five, seven, and ten days 

postinfection, splenocytes were stimulated in vitro with SIINFEKL (open histogram) or vehicle 

(shaded histogram).  Shown are the representative data indicating the percentages of donor-

derived CD8+ T cells that expressed IFN-γ after re-stimulation. 
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have the ability to secrete more IFN- than Gads+/+ CD8+ T cells at 5 days but not 7 days p.i. 

(Fig. 3-6). This suggested in the early time points p.i., Gads-/- CD8+ T cells exert the effector 

function better than Gads+/+ CD8+ T cells. 

 

Gads is not required for the differentiation of naïve CD8+ T cells into memory cells, but is 

required for an optimal recall response 

To determine whether Gads was required for the differentiation of naïve CD8+ T cells into 

memory cells, naïve CD8+ T cells from Gads+/+ OT-I and Gads-/- OT-I mice were adoptively 

transferred into separate congenic hosts or mixed and injected into the same host.  Mice were 

infected with rLM-OVA and the percentage of CD8+ T cells in the blood derived from donor mice 

was tracked over time (Fig. 3-7 A).  As shown in the previous experiment (Fig. 3-1), Gads was 

necessary for optimal expansion of the CD8+ T cell population.  However, both Gads+/+ and 

Gads-/- cells persisted sixty days after infection, indicating that Gads-/- cells could differentiate 

into memory cells.  When Gads+/+ and Gads-/- cells were injected into separate mice, the 

percentages of CD8+ T cells derived from the donor mice were identical after three weeks.  

When in direct competition, the percentages of donor-derived CD8+ T cells that were Gads+/+ 

cells were 2.4 ± 0.46-fold greater than the percentages of donor-derived CD8+ T cells that were 

Gads-/- cells.   Because Gads-/- cells were readily detectable 60 days post-infection, we 

concluded that Gads-/- cells could differentiate into memory cells. 

As an additional indicator of whether Gads is required for memory T cell development, we 

analyzed CD127 and KLRG1 expression, markers that can identify the short-lived effector cells 

(KLRG1+CD127-) and memory precursor effector cells (CD127+KLRG1-) (239, 253-256).  There 

were no statistically significant differences in the percentages of Gads+/+ and Gads-/- CD8+ T 

cells that were SLECs and MPECs (Fig. 3-7 B).  However, more Gads-/- cells were  
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Fig. 3-7. Gads is not required for the memory T cell development.  Mice were injected with 

naïve CD8+ T cells from Gads+/+ OT-I mice, Gads-/- OT-I mice, or both and infected with rLM-

OVA, as described in Fig. 3-1. A) The percentages of CD8+ T cells in the blood of recipient mice 

that were derived from each donor are shown (mean ± SD) Upper panel – recipient mice were 

injected with either Gads+/+ or Gads-/- cells. Lower panel – recipient mice were injected with a 

mixture of Gads+/+ and Gads-/- cells. B) On day 7 post-infection, donor-derived CD8+ T cells in 

the spleen were analyzed for KLRG1 and CD127 expression. *p < 0.05, **p < 0.01, n > 7, from 

three independent experiments. 
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CD127+KLRG1+ than Gads+/+ cells.  These data are consistent with a model in which Gads is 

not required for the differentiation of naïve CD8+ T cells into memory T cells. 

We next tested whether Gads-/- memory CD8+ T cells could expand in number in response 

to re-infection with rLM-OVA.  More Gads-/- cells were found four days post-challenge than pre-

challenge, indicating that Gads-/- cells had differentiated into memory cells and could proliferate 

in response to challenge (Fig. 3-8).  However, Gads-/- cells did not expand in number as robustly 

as Gads+/+ cells, suggesting that, like in the primary immune response, Gads is required for 

optimal expansion of CD8+ T cells in a secondary immune response.  Also, as with the primary 

immune response, the defect with Gads-/- cells was more apparent when Gads+/+ and Gads-/- 

cells were in direct competition.  
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Fig. 3-8. Gads is required for the expansion phase of the secondary immune response.  

Mice were injected with naïve CD8+ T cells from Gads+/+ OT-I mice, Gads-/- OT-I mice, or both 

and infected with rLM-OVA, as described in Fig. 4-1. Sixty days post-infection, mice were 

challenged with rLM-OVA.  A) Dot plots – Shown are representative data indicating the 

percentage of CD8+ T cells in the blood and spleen before and after challenge.  B) Bar graphs - 

Shown are the means  SD of the percentages of CD8+ T cells derived from Gads+/+ (black bars) 

and Gads-/- (grey bars) donors. *p < 0.05, **p < 0.01, n > 7, from three independent experiments. 

  



 

Figure 3-8 

89 
  



90 
 

Discussion 

We used the rLM-OVA infection model to demonstrate how Gads regulates the CD8+ T cell-

mediated immune response against a live pathogen.  In contrast to peptide-induced proliferation, 

there was no apparent defect in Gads-/- cells during the initial stages of CD8+ T cell expansion 

following infection (Fig. 3-1).  This discrepancy between peptide-induced proliferation and 

infection-induced proliferation is consistent with cells stimulated with APLs.  As described in 

Chapter III, CD8+ T cells stimulated with APLs in vitro have reduced proliferation and expression 

of activation markers.  However, CD8+ T cells responding to rLM-APLs proliferated at a similar 

rate as cells responding to rLM-OVA, during the first few days post-infection (219).  

Our data showed that at 5 days p.i. with rLM-OVA, the percentage of Gads-/- CD8+ T cells 

that were derived from donors were identical to that of Gads+/+ CD8+ T cells. In contrast, at 5 

days p.i. with rLM-A2, and rLM-Q4, which are weaker stimuli than rLM-OVA, there were 

significantly lower percentages of CD8+ T cells derived from Gads-/- donors than Gads+/+ donors. 

Why did Gads have different effects on the expansion of antigen-specific CD8+ T cell population 

upon infection with different rLM strains? We demonstrated that Gads is required for 

optimization, but not onset, of the expansion of antigen-specific CD8+ T cell population (Fig. 3-1). 

By analyzing CD8+ T cell expansion at multiple time points following infection with different rLM-

APL strains, Zehn et. al. (219) revealed that the weaker the ligand, the earlier the antigen-

specific CD8+ T cells reached their peak level of expansion and began to contract. Upon 

infection with rLM-OVA, the expansion of CD8+ T cell population peaked at 7 days p.i. (Fig. 3-1); 

while the peak of expansion of CD8+ T cell population upon infection with rLM-A2 or rLM-Q4 

was expected to be prior to 7 days p.i. Gads regulates the accumulation of antigen-specific 

CD8+ T cells upon infection with rLM-A2 or rLM-Q4 at 5 days p.i., as the time point was around 

the time of expansion peak. However, at 7 days p.i. with rLM-OVA, rLM-A2, or rLM-Q4, there 

were much lower percentages of Gads-/- CD8+ T cells derived from donors, as compared with 
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Gads+/+ cells (Fig. 3-3). In order to get the more direct and convincing conclusion, detailed 

kinetics studies with rLM-A2 or rLM-Q4 need to be performed. 

Why could Gads-/- CD8+ T cells in spleen secrete more IFN-γ than Gads+/+ CD8+ T cells at 5 

days p.i. but similar percentages of OVA-specific CD8+ T cells derived from Gads-/- and Gads+/+ 

mice could secrete IFN-γ at 7 and 10 days p.i.? It was consistent with the data showing 

percentages of OVA-specific CD8+ T cells which were SLECs (KLRG1+CD127-), which is related 

to the effector function (238, 239, 254, 257). There was higher percentage of Gads-/- OVA-

specific CD8+ T cells which were SLECs at 5 days p.i. than Gads+/+ cells. However, at 7 and 10 

days p.i., the percentages of OVA-specific CD8+ T cells that were SLECs were similar between 

Gads-/- cells and Gads+/+ cells. The difference in SLECs population between Gads-/- and Gads+/+ 

cells at 5 days p.i. might be caused by the same reason by which Gads is not required for the 

accumulation of OVA-specific CD8+ T cells at 4 and 5 days p.i.. This possibility will be discussed 

in Chapter VI. 

Despite normal expansion of the CD8+ T cells within the first few days of infection, Gads-/- 

cells could not sustain the accumulation of CD8+ T cell population necessary for an optimal 

peak response. One possible explanation is that, after 5 days p.i., Gads-/- CD8+ T cells have a 

defect in proliferation. For example, Gads-/- CD8+ T cells slow or stop their proliferation though 

they have a normal start. Another possibility is that Gads-/- CD8+ T cells fail to survive as well as 

Gads+/+ CD8+ T cells. The analysis of cell cycle progression (Fig. 3-4) supported a model in 

which Gads promotes the CD8+ T cell survival after the initiation stage of the expansion phase 

upon infection. When we compared the percentages of OVA-specific CD8+ T cells that were in S, 

G2, M phases of the cell cycle, there were no differences between Gads-/- CD8+ T cells and 

Gads+/+ CD8+ T cells at the peak of the expansion (Fig. 3-4) or 5 days p.i., when the expansion 

were still the same between Gads-/- CD8+ T cells and Gads+/+ CD8+ T cells (data not shown). 

The infection with rLM-Q4 induced the lower percentages of antigen-specific CD8+ T cells were 
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in S, G2, or M phase of the cell cycle at 7 days p.i., as compared with infection with rLM-OVA or 

rLM-A2. The difference might be caused by the following reason. Seven days p.i. is the time 

around the peak response for infection with rLM-OVA and rLM-A2, in which the OVA peptide or 

A2 peptide, which has been presented by rLM, are relatively stronger stimuli for OVA-specifc 

CD8+ T cells. For infection with rLM-Q4, which is the weakest stimuli among the three strains of 

rLM, 7 days p.i. falls within the contraction phase of the immune response so that the 

proliferation of antigen-specific CD8+ T cells may have already slowed down in this case, as 

compared with the proliferation at peak expansion. However, it will be more convincing to look 

at the cell death of the OVA-specific CD8+ T cells upon infection directly.  

Why could not Gads-/- CD8+ cells sustain the expansion of the population? This 

phenomenon may be related to the reduced level of CD25 expression observed in Gads-/- cells 

(Fig. 3-3).  The function of IL-2 and CD25 in CD8+ T cells is controversial.  In the context of 

infection with LM, IL-2 is required for sustained expansion of antigen-specific T cells (258).  This 

is consistent with an in vitro role for IL-2 in driving sustained proliferation of CD8+ T cells after 

the removal of antigen (234), but in contrast to studies using LCMV infection, where IL-2 did not 

contribute to the expansion phase of the primary immune response (259-262).  These 

observations suggest that the reduced CD25 expression seen in Gads-/- cells may result in 

reduced responsiveness to IL-2 and a lower peak of the expansion phase. 

Consistent with a role for CD25 in Gads-/- cells, when CD8+ T cells were stimulated with low 

doses of IL-2, more cells express CD127 than when cells were stimulated with high 

concentrations of IL-2 (261).  In our studies, more Gads-/- cells than Gads+/+ cells expressed 

CD127 after rLM-OVA infection (Fig. 3-5 B). CD127 is a marker typically associated with 

memory precursors (253, 263).  Among CD127-expressing Gads-/- cells, many also expressed 

KLRG1, a marker typically associated with short-lived effector cells (239, 254, 255).  The 
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function of these CD127+KLRG1+ cells is unknown, but these cells may represent a transition 

point in the differentiation between effector and central memory cells (264). 

The increased percentage of Gads-/- CD8+ T cells expressing CD127 seen at the peak of the 

primary immune response suggested that Gads may not be required for the differentiation of 

naïve CD8+ T cells into memory T cells.  Indeed, when Gads+/+ and Gads-/- cells were injected 

into separate hosts, the percentage of CD8+ T cells that derived from donor in the blood was 

identical during the memory phase of the immune response, even though the peak response 

was lower with Gads-/- cells (Fig. 3-5).  This is in contrast to data from experiments using APL-

expressing rLM, where the number of memory cells produced was proportional to the peak 

primary response (219).  The increase in CD127 expression and persistence of memory T cells 

seen with Gads-/- cells was similar to that reported for mice expressing tyrosine phosphorylation 

mutants of SLP-76 (257), supporting the biochemical model of TCR signaling in which Gads is 

upstream of SLP-76 phosphorylation.  

While Gads-/- CD8+ T cells could differentiate into memory cells, they could only produce 

normal numbers of memory cells when injected into mice where the number of competing OVA-

specific CD8+ T cells was quite small.  When Gads+/+ and Gads-/- cells were in direct competition 

with each other, the expansion of Gads-/- cells and the number of Gads-/- memory cells produced 

was more dramatically impaired than when Gads+/+ and Gads-/- cells were injected into separate 

mice.  These data suggest that multiple factors influence the expansion of antigen-specific T 

cells and the number of memory cells that differentiated from a T cell population.  While strength 

of signaling intensity may be a component, another important factor is the nature of the other T 

cell populations in the mouse responding to the infection.  If there are competing cells with 

higher affinity for the antigen or cells more capable of efficient signal transduction, then these 

competing populations are more likely to dominant the effector and memory T cell pools.  The 

mechanisms by which some populations dominate the immune response are unclear, but 
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subdominant cells may cease proliferating and undergo apoptosis earlier in the immune 

response than dominant cells. 

In conclusion, we demonstrate in the context of infection, the initial expansion of the antigen-

specific CD8+ T cell population is independent of Gads.  However, Gads is necessary to sustain 

the expansion phase.  The differentiation of naïve CD8+ T cells into memory T cells is 

independent of Gads. In addition, Gads is required for the optimal expansion of CD8+ T cell 

population in both primary and recall responses.  
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Chapter IV 

Homotypic interactions can compensate for Gads deficiency  

in promoting cell cycle progression of CD8+ T cells 

Abstract 

In this chapter, I have examined the effect of homotypic interactions among CD8+ T cells on 

cell cycle progression. Analyses of cell cycle progression and the related cellular events were 

made between Gads-/- CD8+ T cells and Gads+/+ CD8+ T cells when total splenocytes or purified 

CD8+ T cells were stimulated. The defect of Gads deficiency in cell cycle progression of CD8+ T 

cells when total splenocytes were stimulated could be overcome by stimulating the purified 

CD8+ T cells. The homotypic interactions altered the TCR-mediated signals in a Gads-

dependent manner. These observations suggested that the signals mediated by adhesion 

molecules on the surface of Gads-/- CD8+ T cells are more activated than those of Gads+/+ CD8+ 

T cells. Expression of an important adhesion integrin, LFA-1, was higher in Gads-/- CD8+ T cells 

than Gads+/+ CD8+ T cells. In addition, we found that more Gads-/- CD8+ T cells were in the lung 

than Gads+/+ cells. Furthermore, we demonstrated that the formation of more and bigger cell 

clusters observed in purified Gads-/- CD8+ T cells, as compared with that in Gads+/+ CD8+ T cells 

was mediated by LFA-1. However, the cell cycle progression of CD8+ T cells, which were 

stimulated in the context of total splenocytes but not purified CD8+ T cells, was mediated by 

LFA-1. Furthermore, Gads regulates the conjugation between CD8+ T cells and EL-4 cells. We 

conclude that the activation of adhesion molecules on the surface of CD8+ T cells regulates the 

interactions involving CD8+ T cells. The homotypic interactions among CD8+ T cells can 

compensate for Gads deficiency in cell clustering and cell cycle progression.  
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Introduction     

In vitro culture of lymphocytes has been performed extensively and widely to mimic the in 

vivo situation in biomedical studies. When splenocytes from OT-I mice are stimulated with 

SIINFEKL in vitro, the CD8+ T cells need to interact with APCs which have MHC class I on their 

surface. The cell-cell interactions promote TCR-mediated signaling and also the cellular events 

triggered by TCR ligation. The adhesion molecules mediate cell-cell interactions to ensure the 

TCR-MHC binding can occur. Furthermore, the adhesion molecules, such as LFA-1 and 

intercellular adhesion molecule 1 (ICAM-1), could deliver signals that promote the activation and 

proliferation as well as influence the differentiation of T cells (265-270). When T cells interact 

with APCs, the stable regions of contact between the cells are called immunological synapses 

(IS); adhesion molecules in the peripheral supermolecular activation cluster (pSMAC) stabilize 

the IS (271, 272).   

Cell adhesion molecules (CAMs) are proteins located on the cell surface that regulate 

the binding with other cells or with the extracellular matrix (ECM) in the process called cell 

adhesion. There are four protein families in CAMs: immunoglobulin superfamily (IgSF), integrins, 

cadherins, and selectins (273). Integrins are a large family of proteins that function as adhesion 

molecules as well as signaling molecules. They are transmembrane heterodimers, consisting of 

one α-subunit and one β-subunit. There are 18 α-subunits and 8 β-subunits that have been 

identified so far. The β2 class of integrins, which are selectively expressed on hematopoietic 

cells, mediates leukocyte-leukocyte and leukocyte-endothelial cell interactions (272, 274-276). 

This β2 integrin family has 4 αβ combinations. They share a common β2 chain (CD18) and 

associate with one of four α subunits: αLβ2 (CD11a), αMβ2 (CD11b), αXβ2 (CD11c), and αDβ2 

(CD11d). Among them, αLβ2 integrin, also known as lymphocyte function-associated antigen-1 

(LFA-1), is primarily expressed on T cells. The αL chain is also called CD11a. 
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There are two major roles of LFA-1 in T cell activation. Firstly, in lymphocytes, activated 

LFA-1 regulates the formation of transient attachments to the vasculature and causes 

leukocytes to slow down the movement in circulation. Ultimately, activated LFA-1 leads to the 

firm adhesion and transmigration of leukocytes into the lymphoid tissues, such as lymph nodes 

and spleens, or injury sites. Secondly, when T cells interact with ICAM-expressing and Ag-

bearing APCs to form an IS, the pSMAC is mainly composed of LFA-1 and its ligand ICAM-1 

(277). The strength of this contact reduces the amount of antigen required for T cell activation 

as Wang et. al. (278) revealed that LFA-1 decreases the strength of TCR signal for T cell 

activation in vivo as well as in vitro. 

The activity of LFA-1 is controlled by signaling through other membrane receptors. The 

intracellular signaling, which converts LFA-1 from an inactive to an active conformation, is called 

“inside-out” signaling (279). The signaling pathways of LFA-1 activation have been studied 

using three different modes of stimulation: 1) Chemokine signaling through activation of G 

protein-coupled receptors (GPCRs); 2) TCR ligation and 3) Selectin binding to the ligands P-

selectin glycoprotein ligand 1 (PSGL1), CD44 and E-selectin ligand 1 (ESL1) on neutrophils 

(280). We investigate the role of LFA-1 in CD8+ T cell activity in this chapter, so let’s look at the 

TCR-mediated LFA-1 activation. TCR ligation activates LFA-1 by increasing the binding affinity 

of LFA-1 to its ligand ICAM-1(279, 281). The TCR proximal signaling is important for LFA-1 

activation. We would like to investigate how the TCR signaling regulates LFA-1 activation. The 

modulating role of some key proteins of TCR proximal signaling in LFA-1 activation has been 

revealed: Baker et. al. (282) reported that SLP-76 is a key component of transmitting TCR 

signaling to LFA-1 signaling such as in SLP-76 deficient T cells, LFA-1 failed to bind ICAM-1. In 

addition, upon TCR ligation, the SLP-76–ADAP complex is recruited to LFA-1-initiated 

microclusters (282). Finkelstein et. al. demonstrated that the Tec kinase ITK is required for 

TCR-mediated up-regulation of adhesion via the LFA-1 (283). However, little is known about the 
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role of Gads is in transmitting TCR proximal signaling to LFA-1 signaling. That is what we are 

going to test in this chapter. 

As a signaling receptor, activated LFA-1 transduces the intracellular signal. This process is 

called “outside-in” signaling (279, 284). The “outside-in” signaling can lead to adhesion 

strengthening and the final stage of LFA-1 activation. The LFA-1-mediated signaling can 

modulate T cell activation (265, 267, 285), proliferation (266), survival (286) and differentiation 

(267). Baker et. al. (282) reported that SLP-76 relocalizes to LFA-1-initiated signaling 

complexes and mediates “outside-in” signaling of LFA-1. Although SLP-76 and Gads 

constitutively interact with each other (2, 6, 17, 29-31), there is no report on the role of Gads in 

LFA-1-mediated signaling. In order to investigate the role of Gads in LFA-1-mediated signaling, 

one of the objectives of this chapter is to identify whether and how LFA-1 mediated signaling is 

involved in the regulation of Gads in CD8+ T cell activation.     

As cell-cell contact is critical in T cell activation, we initiated our studies on the effect of 

homotypic interactions among CD8+ T cells on TCR-mediated cellular events such as cell cycle 

progression. It is of note that CD8+ T cells express both LFA-1 and its ligand ICAM-1, which 

regulate cell-cell contact, so that the role of LFA-1 in homotypic interactions as well as 

interactions between CD8+ T cells and other cells are also included in this chapter.   
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Materials and Methods 

Mice 

C57BL/6 Gads-/- mice and Gads-/- OT-I mice were described previously (17, 99). All mice 

were housed under specific pathogen-free conditions and all experiments were performed in 

compliance with the University of Kansas Medical Center Institutional Animal Care and Use 

Committee (IACUC).  Mice were used between the ages of six and eight weeks for the 

experiments. 

 

Antibodies  

Anti-CD8-Alexa Fluor 647, anti-CD44-Horizon V450, anti-CD11c-PE-Cy7, anti-CD11a-PE, 

anti-TCRV2-FITC, anti-TCRVβ5-PE, and purified anti-CD11a were purchased from BD 

Biosciences (San Jose, CA), eBioscience (San Diego, CA) or Biolegend (San Diego, CA). 

 

Cell labeling, and flow cytometry 

Single cell suspensions of splenocytes and lymphocytes were collected by gently disrupting 

the tissue using a wire mesh and a syringe plunger.  Blood samples were withdrawn in the 

presence of heparin and the red blood cells were lysed using ACK lysis buffer.  Lungs were 

isolated and then homogenized. Cells were filtered through a 100 m nylon mesh.  Surface 

labeling of cells was performed as described previously (99).  Briefly, single cell suspensions 

were prepared and labeled in staining buffer (PBS containing 2% FetalClone I bovine serum 
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product (HyClone Laboratories, Inc., Logan, UT)) before fixing with 1% paraformaldehyde in 

PBS overnight or at least one hour at room temperature.  

For DAPI labeling, cells were harvested after stimulation, labeled with anti-CD8, and fixed in 

1% paraformaldehyde.  Then, cells were washed twice with staining buffer, incubated with 1ml 

of 1 g/mL DAPI (Invitrogen, Carlsbad, CA) in 0.3% Tween-20 in staining buffer for 30 min at 

room temperature and analyzed immediately by flow cytometry.   

For pyronin Y (PY) staining, cells were pelleted after DAPI staining and 850 L of the 

supernatant were aspirated.  Twenty μl of 25μg/mL PY (Polyscience, Inc., Warrington, PA) in 

staining buffer containing 0.3% Tween-20 were added into each tube. Cells were incubated for 

10 min at room temperature and analyzed by flow cytometry.   

Samples were analyzed using a BD LSRII (BD Biosciences, San Jose, CA). Data were 

analyzed using BD FACSDiva (BD Biosciences) and FlowJo (Tree Star, Inc., Ashland, OR). 

 

Cell clustering assay 

Splenocytes were isolated from Gads+/+ OT-I or Gads-/- OT-I mice and CD8+ T cells were 

isolated by positive selection using anti-mouse CD8 Magnetic Particles-DM (BD Biosciences 

Pharmingen). Total splenocytes or purified CD8+ T cells were stimulated with 1 μg/mL plate-

bound anti-CD3 and 0.25 μg/mL plate-bound anti-CD28 or 1 M SIINFEKL (ProImmune Limited, 

Oxford, UK) in the absence or presence of anti-LFA-1 or anti-CD48 at 1 μg/mL, respectively. At 

indicated time points, pictures of cell morphology were taken using a Nikon Ti inverted 

microscope (Nikon Instruments Inc., Melville, NY) or scanned by Celigo cytometer (Cyntellect 

Inc., San Diego, CA).   
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Cell conjugation assay 

Splenocytes were isolated from Gads+/+ OT-I or Gads-/- OT-I mice and CD8+ T cells were 

isolated by using anti-mouse CD8 Magnetic Particles-DM (BD Biosciences Pharmingen) and 

positive selection. EL-4 cells were loaded with CFSE as described previously (17). Briefly, the 

cell concentration was adjusted to 2 x 107 cells/ml, and an equal volume of 10 µM CFSE 

(Invitrogen, Carlsbad, CA) was added. Cells were incubated for 10 min at 37°C and the reaction 

was quenched with cell culture media. Then CFSE-labeled EL-4 cells were pulsed with 

SIINFEKL at different concentrations for 60 min. Then, cells were washed to remove peptide 

and the EL-4 cells were incubated with purified CD8+ T cells for indicated time. After gentle 

vortexing (1 sec per sample), the cell conjugates were fixed with 1% paraformaldehyde in PBS 

for 30 min and then stained for anti-CD8 before fixing again. Those CD8 cells, that are 

interacting with EL-4 cells would appear large and CFSE+ by flow cytometry. Samples were 

analyzed using a BD LSRII (BD Biosciences, San Jose, CA). Data were analyzed using BD 

FACSDiva (BD Biosciences).  

 

Immunoblot assay 

Stimulation of total splenocytes for longer time than 1 hour: Splenocytes from Gads+/+ OT-I 

or Gads-/- OT-I mice were isolated and stimulated with 1 nM SIINFEKL. At various time points, 

CD8+ T cells were isolated using anti-mouse CD8 Magnetic Particles-DM (BD Biosciences 

Pharmingen) and positive selection.   

Stimulation of purified CD8+ T cells for shorter time within 1 hour: CD8+ T cells were purified 

by positive selection with anti-mouse CD8 Magnetic Particles. After resting in serum free 

media for 30 min, the cells were incubated biotinylated anti-CD3 and biotinylated anti-CD28 in 
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50 μL RPMI 1640 media for 30min at 4°C and then cross-linked by adding 50 μL pre-warmed 

avidin in RPMI 1640 at 37°C 25ug/mL for indicated time. The final concentrations of biotinylated 

anti-CD3, biotinylated anti-CD28, and avidin were 10, 10, and 25 μg/mL respectively. Twenty-

five μL of 5Χ lysis buffer was added to quench the stimulation. 

Lysates were prepared, separated by SDS-PAGE, and transferred to PVDF membrane. 

Membranes were probed with anti-c-myc (Cat. No. 9402), anti-PKCθ (Cat. No. 2059), anti-

phopspho-PKCθ (Cat. No. 9377), anti-phospho-AKT (Cat. No. 4060), anti-phospho-ERK (Cat. 

No. 9101), and anti-β-actin (Antibodies are all from Cell Signaling Technology, Inc., Danvers, 

MA).  

 

Statistics 

All data are presented as mean ± SD and were analyzed using two-tailed Student's t tests.  
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Results 

Homotypic interactions among CD8+ T cells rescue the defect of Gads-/- CD8+ T cells in 

TCR-mediated cell cycle progression 

Firstly, we compared the role of Gads in TCR-mediated cell cycle progression in different 

stimulation contexts: total splenocytes or purified CD8+ T cells. My previous results in Chapter III 

showed that Gads is required in cell cycle progression of CD8+ T cells. The cell cycle analysis 

revealed that there was delayed cell cycle entry of Gads-/- CD8+ T cells, compared with Gads+/+ 

CD8+ T cells, when total splenocytes were stimulated with SIINFEKL (Fig. 4-1 A). However, 

when purified CD8+ T cells were stimulated with 1 nM SIINFEKL, which was the same 

concentration to stimulate the splenocytes, there were similar percentages of CD8+ T cells that 

were in S, G2, or M phase of cell cycle between Gads-/- CD8+ T cells and Gads+/+ CD8+ T cells 

(Fig. 4-1 B).    

As PKCθ-mediated expression of c-myc is critical for T cell growth during G1 phase of cell 

cycle (287), we investigated the expression of c-myc and the activation of PKCθ of Gads+/+ 

CD8+ T cells and Gads-/- CD8+ T cells upon TCR ligation in two different contexts: total 

splenocytes or purified CD8+ T cells. We first looked at c-myc expression. Our results revealed 

that Gads regulates the kinetics of c-myc expression when splenocytes were stimulated. The 

expression of c-myc was turned on in Gads+/+ CD8+ T cells but not in Gads-/- CD8+ T cells after 1 

hour of stimulation. But 24 hours after stimulation, there were comparable levels of c-myc 

expression in Gads+/+ cells and Gads-/- cells (Fig. 4-2 A). When purified CD8+ T cells were 

stimulated, within the first 60 min, purified Gads+/+ CD8+ T cells had stronger expression of c-

myc than Gads-/- CD8+ T cells. This result was consistent with the results when splenocytes 

were stimulated. In contrast, 24 hours after TCR ligation, purified CD8+ T cells from either 

Gads+/+ or Gads-/- mouse had drastically elevated expression of c-myc, as compared with the  
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Fig. 4-1. Homotypic interactions among CD8+ T cells overcome the defect of Gads-/- CD8+ 

T cells in cell cycle progression.  A) Splenocytes from Gads+/+ OT-I and Gads-/- OT-I mice 

were cultured with 1μM SIINFEKL for 21h and were labeled with anti-CD8, DAPI and PY.  Cells 

were analyzed by flow cytometry.  Shown are the percentages of cells in the S, G2, or M phase 

of the cell cycle. n = 5 in five independent experiments. B) Purified CD8+ T cells from Gads+/+ 

OT-I mice or Gads-/- OT-I mice were stimulated with SIINFEKL at 1μM for 21h. At harvest, cells 

were labeled with DAPI. Shown are the percentages of cells in the S, G2, or M phase of the cell 

cycle. n = 2 in two independent experiments. 
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Fig. 4-2. Homotypic interactions among CD8+ T cells alter TCR-mediated signals in both 

Gads-/- CD8+ T cells and Gads+/+ CD8+ T cells.  A) Splenocytes from Gads+/+ OT-I and Gads-/- 

OT-I mice were stimulated with SIINFEKL for the indicated lengths of time. After stimulation, 

CD8+ T cells were isolated, lysed, and analyzed for phospho-PKCθ, PKCθ, c-myc, and -actin 

protein expression by immunoblot. n = 1. B) Splenocytes from Gads+/+ OT-I and Gads-/- OT-I 

mice were harvested, CD8+ T cells were isolated, and cells were stimulated with anti-CD3 and 

anti-CD28 for the indicated lengths of time. The cell lysates were analyzed for phospho-PKCθ, 

PKCθ, phospho-AKT, phospho-ERK, c-myc, and -actin protein expression by immunoblot.       

n = 1. 
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expression of c-myc within 1 hour of stimulation. In addition, purified Gads-/- CD8+ T cells had 

much stronger c-myc expression than Gads+/+ CD8+ T cells at 24 hours (Fig. 4-2 B).  

Then, we examined the expression and phosphorylation of PKCθ. When splenocytes were 

stimulated and analyzed for PKCθ in CD8+ T cells, the expression of PKCθ increased and 

peaked at 1 hour, went down to a level slightly above baseline within 3 hours and increased 

again at 24 hours in Gads+/+ CD8+ T cells (Fig. 4-2 A). PKCθ expression of Gads-/- CD8+ T cells 

stayed almost the same as unstimulated cells, except a slight increase at 24 hours. When we 

looked at the phosphorylation level of PKCθ, there was increased phosphorylation of PKCθ in 

Gads+/+ cells at 1 hour, compared with other time points tested. In Gads-/- CD8+ T cells, the 

phosphorylation of PKCθ increased slightly at 1 hour and decreased drastically at 24 hours after 

stimulation. At 1 and 24 hours, there was slightly reduced PKCθ phosphorylation in Gads-/- cells, 

as compared to Gads+/+ cells. Except these two time points, phosphorylation of PKCθ was 

comparable between Gads+/+ cells and Gads-/- cells. In striking contrast to the results when 

splenocytes were stimulated, PKCθ expression of purified CD8+ T cells remained constant for 

both Gads+/+ CD8+ T cells and Gads-/- CD8+ T cells throughout the experiment. In addition, 

stronger phosphorylation of PKCθ was detected in Gads-/- CD8+ T cells at each time point tested 

(Fig. 4-2 B). 

  The Altman group and the Bault group reported that Phosphoinositide 3-kinase (PI3K) 

activities are required for the membrane recruitment and phosphorylation of PKCθ in T cells 

(288, 289). In addition, Gads and PI3K are linked by CD28 (131, 132, 135) or LIME (141). In 

order to investigate the effect of Gads on PI3K activity, we compared the phosphorylation of 

AKT, which is a substrate of PI3K, between Gads-/- CD8+ T cells and Gads+/+ CD8+ T cells. The 

phosphorylation of AKT was slightly elevated in purified Gads+/+ CD8+ cells at 2 min and the 

signal declined to baseline within 30 min. Starting 2 min after TCR ligation, Gads-/- CD8+ T cells 

had higher phosphorylation of AKT than Gads+/+ CD8+ T cells. The phosphorylation of AKT 
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gradually decreased after 5min of TCR ligation in Gads-/- CD8+ T cells, but was still higher than 

in Gads+/+ CD8+ T cells. The increased phosphorylation of AKT in Gads-/- cells than in Gads+/+ 

cells was also observed at 24 hour after stimulation, when both Gads+/+ and Gads-/- CD8+ T cells 

had elevated phosphorylation of AKT (Fig. 4-2 B).  

Unpublished data from our lab demonstrated that Gads can regulate ERK phosphorylation 

in thymocytes. In addition, inhibition of ERK dramatically decreased c-myc expression level in a 

number of human cancer cell lines (290). So we tested the role of Gads in phosphorylation of 

ERK when purified CD8+ T cells were stimulated. Within the first hour after TCR ligation, Gads-/- 

cells and Gads+/+ cells had similar intensity in the peak of ERK phosphorylation. However, 

purified CD8+ T cells from Gads+/+ mice and Gads-/- cells showed different kinetics in ERK 

phosphorylation. In Gads+/+ CD8+ T cells, the peak of ERK phosphorylation occurred at 5 min, 

but for Gads-/- CD8+ T cells, the peak appeared at 60 min. The results indicate that Gads-/- CD8+ 

T cells had a delayed phosphorylation of ERK, as compared with Gads+/+ CD8+ T cells. In 

addition, there was drastically stronger phosphorylation of ERK in purified Gads-/- CD8+ cells 24 

hours after stimulation, than in Gads+/+ CD8+ T cells (Fig. 4-2 B).  

These data indicated that the delayed cell cycle entry observed in Gads-/- CD8+ T cells, as 

compared with Gads+/+ CD8+ T cells, upon TCR ligation observed in the context of total 

splenocytes could be rescued by stimulating purified CD8+ T cells. Changing the stimulation 

context from total splenocytes to purified CD8+ T cells also resulted in altered TCR-mediated 

signaling. Homotypic interactions among CD8+ T cells might account for these observations. 
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Gads negatively regulates the expression of LFA-1 protein on CD8+ T cells. 

 In order to study the mechanisms by which homotypic interactions among CD8+ T cells 

rescue the impaired cell cycle entry and TCR signaling in Gads deficiency, we first targeted one 

β2 integrin molecule, LFA-1, which largely expresses on T cells. LFA-1 is an important molecule 

in the integrin family to mediate cell adhesion. In order to function properly, LFA-1 needs to be 

expressed and activated on the surface of CD8+ T cells. We examined the role of Gads in LFA-1 

expression by flow cytometry. Higher percentages of Gads-/- CD8+ T cells were LFA-1hi, as 

compared with Gads+/+ CD8+ T cells. This finding was also observed in the naïve CD8+ T cells 

(CD44loCD8+) and memory CD8+ T cells (CD44hiCD8+) (Fig. 4-3). Besides percentages, the 

mean fluorescence intensity (MFI) was also checked on these populations of CD8+ T cells. 

Gads-/- CD8+ T cells had higher MFI than Gads+/+ CD8+ T cells. This observation was also true 

for naïve CD8+ T cells and memory CD8+ T cells (Fig. 4-3). 

 

Gads regulates the distribution of CD8+ T cells in a tissue-dependent manner. 

 The ability of leukocytes to penetrate into tissues and to make contacts with other cells 

depends mainly on LFA-1 (272). As Gads-/- CD8+ T cells had higher expression of LFA-1 protein 

than Gads+/+ cells, CD8+ T cells might have a different distribution pattern between Gads+/+ and 

Gads-/- mice. The comparisons were made in lymphoid tissues such as lymph nodes and spleen 

and non-lymphoid tissues such as blood and lung. In lymph nodes (Fig. 4-4 A) and spleens (Fig. 

4-4 B), there were lower percentages of lymphocytes expressing CD8 in Gads-/- OT-I mice than 

in Gads+/+ OT-I mice. The frequency of CD8+ T cells in blood was also lower in Gads-/- OT-I mice 

than in Gads+/+ OT-I mice (Fig. 4-4 C). In contrast, higher percentages of lymphocytes were 

CD8+ T cells in the lungs of Gads-/- mice, as compared with Gads+/+ mice (Fig. 4-4 D). In all the 

tissue tested, there were lower percentages of Gads-/- CD8+ T cells that express the OT-I TCR,  
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Fig. 4-3. Gads-/- CD8+ T cells have higher expression of LFA-1 than Gads+/+ CD8+ T cells.  

Splenocytes from Gads+/+ OT-I and Gads-/- OT-I mice were stained with anti-CD8, anti-CD44 

and anti-CD11a. Inside the histogram – Shown are the percentages of CD8+ T cells that were 

CD11ahi.  Above the histogram – Shown are the mean fluorescence intensity (MFI) of LFA-1 on 

total CD8+ T cells, naïve CD8+ T cells, and memory CD8+ T cells). Representative of 2 mice in 

two independent experiments. 
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Fig. 4-4. A comparison of the distribution of CD8+ T cells in lymphoid tissues and lungs in 

Gads-/- OT-I mice and in Gads+/+ OT-I mice.  Lymphocytes were harvested from the axillary 

and inguinal lymph nodes (A), spleens (B), blood (C), and lung (D) from Gads+/+ OT-I or Gads-/- 

OT-I mice.  Shown are the representative data indicating the percentages of lymphocytes that 

were CD8+. E) Bar graph summarizes data from multiple experiments.  *p < 0.05, **p < 0.01, n ≥ 

4  from at least two independent experiments. 

  



 

Figure 4-4 

114 
            



115 
 

than Gads+/+ CD8+ T cells, especially the expression of TCR Vα2 was turned down in some 

Gads-/- CD8+ T cells. The phenomenon might be caused by allelic exclusion of TCR α-chain 

(291, 292). Results from multiple experiments revealed that significantly lower percentages of 

lymphocytes, splenocytes, and blood leukocytes, that express CD8+ T cell are in Gads-/- mice 

than in Gads+/+ mice (Fig. 4-4 E). In contrast, the lung from Gads-/- mice has significantly higher 

percentage of lymphocytes expressing CD8+ T cells, as compared with Gads+/+ mice.   These 

data suggested that Gads negatively regulates the penetration of CD8+ T cells into lung. 

 

Increased quantity and size of cell clusters in purified Gads-/- CD8+ T cells than Gads+/+ 

CD8+ T cells were mediated by LFA-1. 

 In order to examine whether the homotypic interactions among CD8+ T cells are mediated 

by LFA-1, an in vitro culture assay was performed to analyze the formation of cell clusters in the 

absence and presence of a neutralizing antibody, soluble anti-LFA-1 (Fig. 4-5 A and C) or 

soluble anti-CD48 (Fig. 4-5 C).  

Total splenocytes (Column 1 and 3) formed small clusters when stimulated with SIINFEKL, 

but not when stimulated with anti-CD3 and anti-CD28 at 21 hours. In addition, more cell clusters 

in wells containing Gads+/+ total splenocytes were observed than Gads-/- cells. Anti-LFA-1 

seemed to have little effect on clustering of total splenocytes.   

In contrast to total splenocytes, purified CD8+ T cells (Column 2 and 4) showed significant 

amount of cell clustering regardless of stimuli. The cell clusters even could be observed in 

unstimulated purified CD8+ T cells. Gads-/- CD8+ T cells consistently formed more and bigger 

clusters than Gads+/+ CD8+ T cells, under all three experimental conditions: unstimulated, 

stimulated with anti-CD3+anti-CD28, or stimulated with SIINFEKL. Interestingly, cells stimulated  
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Fig. 4-5. More cell clusters are present in purified CD8+ T cells from Gads-/- OT-I mice than 

from Gads+/+ OT-I mice in an LFA-1 dependent manner.  Splenocytes were harvested from 

Gads+/+ OT-I or Gads-/- OT-I mice and red blood cells were lysed. A) Total splenocytes (column 

1 and 3) and purified CD8+ T cells (column 2 and 4) were stimulated with plate-bound anti-CD3 

and anti-CD28 (row 3-4), SIINFEKL (row 5-6) or left unstimulated (row 1-2). 0.2 Χ 106 cells were 

cultured in each well of 96-w plate in the absence (column 1-2) or presence (column 3-4) of 

soluble anti-LFA-1. Gads+/+ cells are shown in the row 1, 3, and 5, while Gads-/- cells are shown 

in the row 2, 4, and 6. Twenty-one hours after cultured in vitro, the cells were observed under 

microscope and pictures were taken to display the cell clustering. Magnification: 100 Χ. n = 2 

from two independent experiments. B) FACS-purified naïve CD8+ T cells (CD44loCD8+) from 

Gads+/+ OT-I mice or Gads-/- OT-I mice were stimulated with SIINFEKL at 1μM for 21h (1 Χ 106 

per well in 24-w plate). Shown are the pictures of the cell clustering from duplicate samples.     

Samples 1 and 2 were the representatives to show the cell clusters from Gads+/+ naïve CD8+ T 

cells. Samples 3 and 4 were from Gads-/- naïve CD8+ T cells. Sample 3 was focused on the 

center area of the huge bulk of cell clusters and sample 4 showed the edge of the huge bulk of 

cell clusters. Magnification: 200 Χ. n = 1. A) Total splenocytes (column 1, 3 and 5) and purified 

CD8+ T cells (column 2, 4 and 6) were stimulated with plate-bound anti-CD3 and anti-CD28 (row 

3-4), SIINFEKL (row 5-6) or left unstimulated (row 1-2). 0.2 Χ 106 cells were cultured in each 

well of 96-w plate in the absence (column 1-2) or presence of soluble anti-LFA-1 (column 3-4) or 

soluble anti-CD48 (column 5-6). Gads+/+ cells are shown in the row 1, 3, and 5, while Gads-/- 

cells are shown in the row 2, 4, and 6. Twenty-one hours after cultured in vitro, the plate was 

scanned by Celigo. n = 1. 
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with SIINFEKL formed bigger clusters than those stimulated by anti-CD3 and anti-CD28. This 

observation is probably caused by the nature of the stimuli as plate bound anti-CD3 and anti-

CD28 cross-linked cells in a relatively immobilized manner while the peptide SIINFEKL allowed 

more CD8+ T cells to aggregate freely. The addition of anti-LFA-1 into the cell culture media 

significantly decreased the size and numbers of cell clusters seen with purified Gads-/- CD8+ T 

cells. The effect of anti-LFA-1 on formation of cell clusters was also obvious in purified Gads+/+ 

CD8+ T cells, but not as dramatic as in Gads-/- CD8+ T cells. The differences in the formation of 

cell clusters between Gads-/- CD8+ T cells and Gads+/+ CD8+ T cells was reduced by anti-LFA-1 

treatment. As a result, when anti-LFA-1 was present, the cell cluster pattern in the two groups 

looked similar under same culture condition (Fig. 4-5 A and C Column 4). The role of anti-CD48 

in the formation of cell cluster was not obvious (Fig. 4-5 C).  

We compared the cell clustering formed by purified total CD8+ T cells (Fig. 4-5 A Column 2, 

Row 5 and 6) and purified naïve CD8+ T cells (Fig. 4-5 B) after stimulation with SIINFEKL for 21 

hours. Gads+/+ naïve CD8+ T cells formed fewer and smaller cell clusters than Gads+/+ total 

CD8+ T cells. In contrast, Gads-/- naïve CD8+ T cells formed much bigger cell clusters than 

Gads-/- total CD8+ T cells. When we compared the cell clusters formed from Gads-/- naïve CD8+ 

T cells and Gads+/+ naïve CD8+ T cells, drastically bigger cell cluster were observed in Gads-/- 

cells than in Gads+/+ cells.   

Collectively, these data indicated that purified CD8+ T cells form more and bigger cell 

clusters upon TCR ligation than total splenocytes. In addition, as compared with purified Gads+/+ 

CD8+ T cells, Gads-/- CD8+ T cells have higher level of cell clustering, which is mediated by LFA-

1. Furthermore, purified naïve CD8+ T cells and purified total CD8+ T cells behave differently in 

cell clustering. The level of cell clustering is: Gads-/- naïve CD8+ T cells > Gads-/- total CD8+ T 

cells > Gads+/+ total CD8+ T cells > Gads+/+ naïve CD8+ T cells. 
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Homotypic interactions partially rescued the defect of cell cycle entry in Gads-/- CD8+ T 

cells in a LFA-1-independent manner. 

Previous data showed that Gads-/- CD8+ T cells have delayed antigen-induced cell cycle 

entry, when compared with Gads+/+ CD8+ T cells (Fig. 2-6). Here, in total splenocytes (Column 

1), the defect in cell cycle entry was observed not only in Gads-/- CD8+ T cells stimulated with 

SIINFEKL (Row 5 and 6), but also in Gads-/- CD8+ T cells stimulated with anti-CD3 and anti-

CD28 (Row 3 and 4); upon TCR ligation, there were lower percentages of Gads-/- CD8+ T cells 

in G1 phase of cell cycle, as compared with Gads+/+ CD8+ T cells. Overall, cells stimulated with 

SIINFEKL had better cell cycle progression than those stimulated with anti-CD3 and anti-CD28. 

After the stimulation with SIINFEKL, lower percentages of Gads-/- CD8+ T cells exited from G0 

phase of the cell cycle, as compared with Gads+/+ CD8+ T cells (Fig. 4-6). The purified CD8+ T 

cells (Column 2) underwent a faster cell cycle progression than total splenocytes, even though 

they were cultured with the same stimuli. This applied to both Gads+/+ and Gads-/- cells. The 

defect of cell cycle entry was largely rescued by culturing purified CD8+ T cells instead of 

splenocytes under the stimulations of either anti-CD3 and anti-CD28 or SIINFEKL. Although the 

purified CD8+ T cells stimulated with SIINFEKL had lower percentage of cells in G1 phase of 

cell cycle in Gads-/- CD8+ T cells, as compared with Gads+/+ CD8+ T cells, the percentages of 

CD8+ T cells in S, G2, and M phase of cell cycle were similar between Gads+/+ and Gads-/- cells 

(Fig. 4-6).  This suggests that homotypic interactions among CD8+ T cells overcome the need 

for Gads in promoting cell cycle entry. 

LFA-1 can regulate T cell activation (265, 267, 285) and proliferation (266). In order to 

investigate the effect of LFA-1 on cell cycle entry of CD8+ T cells, soluble anti-LFA-1 was added 

to the cell culture media to block the interaction between LFA-1 and its ligand (Column 3 and 4). 

When total splenocytes were stimulated with either stimuli, anti-LFA-1 inhibited the cell cycle 

entry in both Gads+/+ cells and Gads-/- cells. However, for purified CD8+ T cells stimulated with  
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Fig. 4-6. Gads promotes cell cycle progression of CD8+ T cells when stimulating total 

splenocytes but does not when stimulating the purified CD8+ T cells.  Splenocytes were 

harvested from Gads+/+ OT-I or Gads-/- OT-I mice and red blood cells were lysed. Total 

splenocytes (column 1 and 3) and purified CD8+ T cells (column 2 and 4) were stimulated with 

plate-bound anti-CD3 and anti-CD28 (row 3-4), SIINFEKL (row 5-6) or left unstimulated as 

control (row 1-2). Cells were cultured in the absence (column 1-2) or presence (column 3-4) of 

soluble anti-LFA-1. Gads+/+ cells are shown in the row 1, 3, and 5, while Gads-/- cells are shown 

in the row 2, 4, and 6. Twenty-one hours after cultured in vitro, the cells were harvested, labeled 

with anti-CD8, DAPI and PY. Shown are the percentages of cells, which were gated on CD8+ 

population, in the G1 phase (top left gates) as well as in the S, G2, or M phase (top right gates) 

of the cell cycle. n = 1. 
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anti-CD3 and anti-CD28, adding anti-LFA-1 promoted the cell cycle entry in Gads+/+ CD8+ T 

cells while it did not affect the cell cycle entry in Gads-/- CD8+ T cells. When stimulated with 

SIINFEKL, both purified Gads+/+ CD8+ T cells and Gads-/- CD8+ T cells were not affected in 

terms of cell cycle pattern by adding anti-LFA-1 (Fig. 4-6). These data indicated that LFA-1 

promotes cell cycle entry when CD8+ T cells are stimulated in the context of total splenocytes. 

However, LFA-1 is not required for the cell cycle entry when purified CD8+ T cells are stimulated. 

 

Gads regulates the conjugation of CD8+ T cells and EL-4 cells. 

Homotypic interactions among CD8+ T cells, which can rescue the defect of Gads deficiency 

of cell cycle progression upon TCR ligation, is likely mediated by adhesion molecules, such as 

integrins, on the surface of CD8+ T cells. In the cell culture of splenocytes including T cells, B 

cells, DCs, and microphages, the adhesion molecules can stabilize the interactions between T 

cells and APCs to facilitate the formation of TCR-Ag-MHC complex. Next, we looked at the 

interaction between CD8+ T cells and APCs (EL-4 cells) to identify the role of Gads in the 

formation of CD8+ T cell-EL-4 cell conjugates.   

Percentages of CD8+ T cells that were CFSE+, indicating the percentages of CD8+ T cells that 

were conjugated with EL-4 cells, were displayed to compare the conjugation ability between 

Gads-/- CD8+ T cells and Gads+/+ CD8+ T cells (Fig. 4-7 A). Higher percentages of Gads-/- CD8+ 

T cells than Gads+/+ CD8+ T cells formed conjugates with antigen-pulsed EL-4 cells after co-

incubation for 90 min (Fig. 4-7 B). Then, we tested varying the concentration of SIINFEKL, 

ranging from 0.1 pM to 10 μM. Within the range from 10 pM to 10 μM, the highest concentration 

of SIINFEKL tested, more Gads-/- CD8+ T cells than Gads+/+ CD8+ T cells formed conjugates 

with EL-4 cells. In both Gads+/+ and Gads-/- group, at the doses of 1 μM and 10 μM, decreased 

percentages of CD8+ T cells were observed in conjugation with EL-4 cells, as compared with the 
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Fig. 4-7. Higher percentages of Gads-/- CD8+ T cells than Gads+/+ CD8+ T cells are 

conjugated with EL-4 cells. CD8+ T cells were purified from Gads+/+ OT-I or Gads-/- OT-I 

splenocytes and incubated with EL-4 cells that had been loaded with CFSE and pulsed with 

SIINFEKL for indicated time. A) Shown is the gating strategy: the CD8+ population was gated 

first. Within the CD8+ gate, CFSE positive cells were the CD8+ T cells that were conjugated with 

EL-4 cells. The percentages of CD8+ T cells that were CFSE positive were calculated.  B) EL-4 

cells were pulsed with 100nM of SIINFEKL and incubated with CD8+ T cells for 90 min. Shown 

are the representative data indicating the percentages of CD8+ T cells that were conjugated with 

EL-4 cells. C) Top –EL-4 cells were incubated with CD8+ T cells for 90 min after pulsed with the 

indicated concentrations of SIINFEKL. Shown are the percentages of CD8+ T cells that were 

conjugated EL-4 cells, which have been pulsed with various concentrations of SIINFEKL. n = 1. 

Middle –EL-4 cells were pulsed with 100 nM SIINFEKL and then incubated with CD8+ T cells for 

indicated time points. Shown are the percentages of CD8+ T cells that were conjugated EL-4 

cells after co-incubation for various time points. n = 1.  Bottom – Bar graph indicates the 

statistical analysis of the conjugation results when EL-4 cells were pulsed with SIINFEKL at 0 

and 100 nM for 90min. *p < 0.05, n = 3 from three independent experiments.   
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lower doses (Fig. 4-7 C). Then the dose of 100 nM was used to pulse EL-4 cells for determining 

the time course of incubation between EL-4 cells and CD8+ T cells. At 30 min, 60 min, and 90 

min of incubation, more Gads-/- CD8+ T cells than Gads+/+ CD8+ T cells were conjugated with 

EL-4 cells (Fig. 4-7 D). Data from multiple experiments revealed that significantly more Gads-/- 

CD8+ T cells than Gads-/- CD8+ T cells formed conjugates with EL-4 cells, which were pulsed 

with 100nM SIINFEKL before incubated with CD8+ T cells for 90 min (Fig. 4-7 E).        

These results indicate that Gads expression in CD8+ T cells inhibits the conjugation between 

CD8+ T cells and EL-4 cells, suggesting that the signaling mediated by adhesion molecules is 

more activated in Gads-/- CD8+ T cells than Gads+/+ CD8+ T cells.  
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Discussion 

In this chapter, we raise the model that homotypic interactions among CD8+ T cells could 

trigger the optimal signaling mediated by the adhesion molecules to promote the TCR signaling.  

We stimulated the CD8+ T cells in two different contexts: total splenocytes and purified CD8+ T 

cells from Gads+/+ OT-I mice and Gads-/- OT-I mice. CD8+ T cells behaved differently in both cell 

clustering and cell cycle progression when stimulated in different contexts, regardless of in the 

presence or absence of Gads. Furthermore, upon TCR ligation, signals triggered in the context 

of purified CD8+ T cells compensated the defect of Gads deficiency in cell cycle progression 

observed when total splenocytes were stimulated. In addition, the model was supported by the 

results indicating that adhesion molecules, such as LFA-1, regulate the formation of cell clusters. 

 Our model of signaling pathways linking Gads to c-myc can be enriched by involving 

homotypic interactions and the mediator: adhesion molecules, such as LFA-1 (Fig. 4-8). I 

propose that Gads regulates the activation of PKCθ via PI3K to trigger LFA-1-mediated 

signaling of CD8+ T cells, when they interact with APCs. However, during the homotypic 

interactions among CD8+ T cells, Gads inhibits the expression and function of LFA-1. The 

activated LFA-1 can regulate the expression of c-myc via PKCθ and PI3K.  

To test this model, we first examined the activation of PKCθ and AKT, which is the readout 

of the PI3K activity. Based on the published data demonstrating that Gads regulates PI3K and 

PKCθ in Jurkat cell (131, 132), we examined the role of Gads in phosphorylation of PKCθ and 

AKT in CD8+ T cells, especially when the homotypic interactions among CD8+ T cells occurred. 

In purified CD8+ T cells, shortly (2-15 min) after TCR ligation, Gads-/- CD8+ T cells had much 

elevated phosphorylation level of AKT while Gads+/+ CD8+ T cells almost stayed at the baseline 

level. The phosphorylation of AKT was consistent with phosphorylation of PKCθ, suggesting 

that PI3K activity might be also regulated by LFA-1 in homotypic interactions among CD8+ T 

cells.  
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Fig. 4-8. A model of TCR-mediated, LFA-1-dependent signaling pathways linking Gads to 
c-myc in CD8+ T cells.  
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We also extend the investigation of the signaling pathways from the other side, c-myc to the 

upstream proteins. Marampon et. al. (290) showed that c-myc expression was largely 

decreased by inhibition of ERK in human cancer cell lines, suggesting that c-myc is a target of 

ERK signal. So we also examined the phosphorylation of ERK in purified Gads+/+ CD8+ T cells 

as well as in Gads-/- CD8+ T cells. ERK did not show the stronger phosphorylation in purified 

Gads-/- CD8+ T cells than Gads+/+ CD8+ T cells until 30 min after TCR ligation. The earlier time, 5 

min after TCR ligation, purified Gads-/- CD8+ T cells had obviously lower phosphorylation of ERK, 

as compared with Gads+/+ CD8+ T cells. Another group reported that a delayed and longer 

lasting CD8-TCR interaction induced by weaker agonists (APLs) resulted in the delayed 

phosphorylation of ERK recruitment to the synapse, as compared to the one induced by 

SIINFEKL (208). This result was consistent with our previous observations in Chapter II and III 

that Gads-/- cells stimulated with SIINFEKL mimic Gads+/+ cells stimulated with APL in cell cycle 

progression (Fig. 2-4 and 2-6) and accumulation of CD8+ T cells upon infection [Fig. 3-3, 3-4 

and ref (219)]. In addition, unpublished data from our lab showed a similar pattern of ERK 

phosphorylation in Gads-/- thymocytes when stimulated with anti-CD3 and anti-CD28. These 

data were consistent with the pattern of ERK phosphorylation seen in our purified Gads-/- CD8+ 

T cells. However, these results seem to contradict with our previously published data that 2-10 

min after stimulation, CD8+ T cells from conventional Gads-/- mice and wild type (WT) mice 

showed comparable level of phosphorylation of ERK (17). It might be due to the fact that nearly 

all peripheral CD8+ T cells from conventional Gads-/- mice were of a memory-like phenotype. In 

contrast, most of the peripheral CD8+ T cells from WT mice were naïve cells [Fig. 2-1 and ref 

(17)]. CD8+ T cells in ref (17) were isolated from conventional Gads-/- mice and WT mice before 

we crossing Gads- mice with OT-I mice. However, comparable frequencies of peripheral CD8+ T 

cells from both Gads+/+ OT-I mice and Gads-/- OT-I mice were naïve cells (Fig. 2-1). So I used 

the OT-I system in my dissertation work.  
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The expression of c-myc in purified Gads-/- CD8+ T cells caught up with and exceeded 

purified Gads+/+ CD8+ T cells later than 60 min after TCR ligation. Our data in mouse T cells 

support the model that c-myc is downstream of ERK (290). The adhesion molecule(s)-mediated 

signaling pathway have cross-talk with the other TCR-mediated signaling pathways. It is of note 

that the expression of c-myc is the overall result of various pathways. Though within the first 60 

min, purified Gads-/- CD8+ T cells had lower expression of c-myc than Gads+/+ CD8+ T cells, 24 

hours after TCR ligation, purified Gads-/- CD8+ T cells indeed had much stronger c-myc 

expression (Fig. 4-3). I suspect that at longer stimulation, in purified CD8+ T cells, LFA-1-PKCθ-

mediated signaling overwhelms signals generated from other pathways. In order to test the 

LFA-1- PKCθ-mediated signaling pathway in this model, we will carry out a series of similar but 

more extended experiments as done in Fig 4-2. We will 1) stimulate the splenocytes followed by 

purification of CD8+ T cells or 2) purify CD8+ T cells from splenocytes before stimulation. Firstly, 

we will incubate the cells in the presence or absence of anti-LFA-1 to see the effect of LFA-1 on 

a series of signaling events such as the activation of AKT, PKCθ, ERK and expression of c-myc. 

Then, we will compare the expression and activation of those proteins after stimulation with: 

anti-CD3 alone, anti-CD3 and anti-CD28, anti-CD28 alone, anti-LFA-1 alone, or anti-CD3+anti-

LFA-1. We will do these comparisons as LFA-1 is a co-stimulatory molecule on T cells and anti-

CD3 and anti-CD28 has been used as standard stimulation for crosslinking TCR and 

coreceptors.  

LFA-1 is usually in an inactive form until it receives stimulation signals from other receptors 

through “inside-out” signaling. There are three distinct conformations of LFA-1, which exist in 

equilibrium on the cell membrane. In the low affinity form of LFA-1, the extracellular regions of 

the α- and β-subunits are in the bent and compact shape and the subunits are closely packed 

and held together by outer and inner “membrane clasp”. The high affinity form of LFA-1 is 

extended and when fully activated, the globular headpiece opens and the β-subunit hybrid 
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domain and the rest of the LFA-1 “leg” swing out. In the intermediate affinity form of LFA-1, the 

inner membrane clasp is disrupted and in the high-affinity LFA-1 conformation, both inner and 

outer clasps are disrupted (271). It will be important to determine the expression of high-affinity 

LFA-1 in both Gads+/+ and Gads-/- CD8+ T cells upon TCR ligation. Thus far, we have tested the 

expression of total LFA-1, including all three conformations by targeting other common epitopes 

(Fig. 4-3). Gads-/- CD8+ T cells have higher expression of LFA-1+ population than Gads+/+ CD8+ 

T cells without stimulation. It is possible that Gads-/- CD8+ T cells have the constitutively 

activated LFA-1. Following are some data to support the model that LFA-1 is more activated in 

Gads-/- CD8+ T cells. 

Firstly, LFA-1 regulates leukocyte distribution by mediating the process of rolling on vascular 

surfaces to recruit circulating leukocytes to specific organs or to sites of infection or injury (280). 

In peripheral lymphoid tissues (lymph nodes and spleens) and blood, there are fewer CD8+ T 

cells in Gads-/- OT-I mice than Gads+/+ OT-I mice.  By contrast, Gads-/- OT-I mice have more 

CD8+ T cells in the lungs than Gads+/+ OT-I mice. This phenomenon supports the model that 

LFA-1-mediated signal is more activated in Gads-/- CD8+ T cells than Gads+/+ CD8+ T cells. LFA-

1 and other integrin family proteins mediate the arrest and rolling of T cells (280) so as to 

regulate the attachment between T cells and the vasculature as well as migration of T cells into 

lymphoid and non-lymphoid tissues (272). Higher expression and more elevated activation of 

LFA-1 in Gads-/- CD8+ T cells might cause more Gads-/- CD8+ T cells than Gads+/+ CD8+ T cells 

to migrate to non-lymphoid tissues. Besides lung, are there any other non-lymphoid tissues 

where the activated LFA-1 signal drives Gads-/- CD8+ T cell accumulation? In order to answer 

the above question, extensive studies need to be performed regarding the distribution of CD8+ T 

cell in various organs between Gads-/- OT-1 mice and Gads+/+ OT-I mice. 

Secondly, we noticed that the resting purified CD8+ T cells spontaneously formed cell 

clusters and Gads-/- CD8+ T cells had more and bigger cell clusters than Gads+/+ CD8+ T cells 
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(Fig. 4-5 A). The clustering of cells happened within a couple of hours after purification. These 

observations support the hypothesis that Gads-/- CD8+ T cells have the constitutively activated 

LFA-1. 

  We raised the possibility that homotypic interactions among CD8+ T cells compensate for 

Gads deficiency in promoting cell cycle progression by activating the signals mediated by 

adhesion proteins on the surface of CD8+ T cells. Besides this explanation, there are other 

possibilities to explain our data showing the different behaviors of CD8+ T cells in different 

contexts of stimulation. For example, the interaction between CD8+ T cells and other cells in 

splenocytes might inhibit cell cycle progression more in Gads-/- splenocytes, as compared with 

Gads+/+ splenocytes. In detail, the signal mediated by co-receptors on CD8+ T cells can inhibit T 

cell activation, and Gads-/- CD8+ T cells are affected more by this inhibitory signaling than 

Gads+/+ CD8+ T cells. So that after disturbing the inhibitory signal in splenocytes by removing 

other cells that express ligands of the inhibitory molecules, purified Gads-/- CD8+ T cells behave 

similar to Gads+/+ CD8+ T cells in homotypic interactions. Cytotoxic T-lymphocyte antigen 

(CTLA)-4 and Programmed Death (PD)-1 on the surface of T cells act as negative regulators of 

T cell activation (293-295). These two proteins are structurally similar to CD28 and all the three 

proteins bind the B7 family proteins on APCs (294, 296). CD28 and CTLA-4 can bind CD80 (B7-

1) and CD86 (B7-2), while the ligands of PD-1 are PD-L1 (B7-DC) and PD-L2 (B7-H1) (297-

299). In contrast to the inhibitory proteins CTLA-4 and PD-1, the costimulatory protein CD28 can 

promote TCR signaling (300). Upon stimulation, CD28 directly binds Gads (5, 131, 132). Gads 

could be associated with CTLA-4 or PD-1, which are similar to CD28 in terms of structure, to 

block the inhibitory signal to T cell activation.  

We noticed the difference in cell clustering between stimulating purified total CD8+ T cells 

and naïve CD8+ T cells. When stimulated, naïve Gads-/- CD8+ T cells (FACS-purified) formed 

much bigger and more cell clumps than naïve Gads+/+ CD8+ T cells, or purified Gads-/- total 
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CD8+ T cells (positively selected using magnetic beads). Thummler et. al. (301) demonstrated 

that homotypic interactions between naïve and memory CD4+ T cells could generate suppressor 

T cells. It is possible that in magnetic bead-purified CD8+ T cells, the interactions between naïve 

CD8+ T cells and memory CD8+ T cells suppressed the signaling induced by homotypic 

interactions among naïve CD8+ T cells, like the suppression among CD4+ T cells (301). So that 

compared to naïve CD8+ T cells, culturing total CD8+ T cells reduced the level of cell clusters. 

In summary, homotypic interactions among CD8+ T cells overcome the defect of Gads-/- 

CD8+ T cells in cell cycle entry and alters the TCR-mediated signals in a Gads-dependent way. 

In addition, Gads-/- CD8+ T cells, as compared with Gads+/+ CD8+ T cells, have higher 

expression of LFA-1, which might account for the accumulation of Gads-/- CD8+ T cells in lung. 

Furthermore, the results indicated that the homotypic interactions among CD8+ T cells, in terms 

of the formations of cell clusters are mediated by LFA-1. However, LFA-1 regulates the cell 

cycle progression of CD8+ T cells under the stimulation context of total splenocytes not purified 

CD8+ T cells. Gads negatively regulates the formation of conjugates between CD8+ cells and 

EL-4 cells. Does Gads regulate the conjugation among CD8+ T cells? What is the role of LFA-1 

in the conjugations among CD8+ T cells? I talk about the experiments including possible results 

and interpretation in detail in Chapter VI. 
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Chapter V 

Depletion and recovery of lymphoid subsets following morphine administration 

Abstract 

Opioid use and abuse has been linked to significant immunosuppression, which has been 

attributed, in part, to drug-induced depletion of lymphocytes.  We sought to define the 

mechanisms by which lymphocyte populations are depleted and recover following morphine 

treatment in mice. Mice were implanted with morphine pellets and B and T cell subsets in the 

bone marrow, thymus, spleen, and lymph nodes were analyzed at various time points.  We also 

examined the effects of morphine on T cell development using an ex vivo assay. The 

lymphocyte populations most susceptible to morphine-induced depletion were the precursor 

cells undergoing selection.  The mechanism by which lymphocyte precursors were depleted 

could be due to the cytotoxic effects of corticosteroids released following morphine treatment.  

As the lymphocytes recovered, more lymphocyte precursors proliferated in morphine-treated 

mice than in control mice.  In addition, peripheral T cells in morphine-treated mice displayed 

evidence that they had undergone homeostatic proliferation during the recovery phase of the 

experiments. The recovery of lymphocytes following morphine-induced depletion occurred in the 

presence of morphine and via increased proliferation of lymphoid precursors and homeostatic 

proliferation of T cells. 
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Introduction 

Opioid use and abuse renders individuals susceptible to infection (302, 303) and a variety of 

mechanisms have been proposed to explain how opioids suppress the immune system.  These 

mechanisms include effects on both the innate and adaptive branches of the immune system.  

Within the adaptive immune system, morphine treatment in mice has been demonstrated to 

induce profound loss in thymic and splenic mass, but the lymphoid tissues recover over time 

(304-307).  In addition to inducing lymphocyte depletion, morphine can also alter lymphocyte 

function (158).  Our goal here is to determine the mechanisms by which the lymphocyte 

populations recover after depletion and whether this recovery can occur while serum morphine 

levels remain at physiologically significant levels.  By understanding these mechanisms, we will 

be able to understand how morphine affects immunity and develop strategies to avoid the 

detrimental effects of morphine. 

To determine the mechanisms of recovery, one must first characterize the B and T cell 

populations that remain after morphine treatment.  Although it is known that morphine treatment 

can deplete total B and T cells, the subpopulations of lymphocytes that remain after morphine 

treatment are not defined, especially for B cells. 

Lymphoid development is characterized by an ordered set of steps that result in fully 

functional mature B and T cell subsets.  For B cell development, the first stage in which 

committed B cell precursors can be identified in the bone marrow is the pro-B cell stage (18).  

During this stage, rearrangements in the  heavy chain genomic locus begin.  Upon expression 

of , the cells enter the pre-B cell stage.  Then, cells rearrange the light chain genomic loci and 

become immature B cells.  Some immature B cells migrate to the spleen where they can be 

identified as transitional stage 1 (T1) B cells (19).  T1 cells differentiate into transitional stage 2 
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(T2) cells and ultimately become either follicular (FO) B cells or marginal zone (MZ) B cells.  

The effects of morphine treatment on these B cell subsets have not been defined. 

Like B cell development, T cell development proceeds in an ordered manner.  The earliest T 

cell precursors identified within the thymus lack CD4 and CD8 expression and are called CD4-

CD8- double negative (DN) stage.  DN thymocytes can be divided into the DN1 (CD44hiCD25-), 

DN2 (CD44hiCD25+), DN3E (CD44loCD25hi), DN3L (CD44loCD25lo), and DN4 (CD44loCD25-) 

subsets (20, 21).  During the DN1 and DN2 stages, cells receive signals that induce 

commitment to the T cell lineage and begin rearrangement of the genomic locus that encodes T 

cell receptor (TCR)  chain.  TCR protein can be first detected at the DN3E stage of 

development; approximately 20% of DN3E thymocytes express TCR protein.  Upon expression 

of TCR, DN thymocytes proliferate and differentiate through the DN3L and DN4 stages.  After 

the DN4 stage, cells express CD8 and become immature single positive (ISP) CD8+ T cells 

before expressing CD4 and becoming DP thymocytes.  During the DP stage, cells rearrange the 

genomic locus encoding TCR, express TCR protein, and express a complete TCR complex.  

Once the TCR is expressed, positive selection and negative selection occur, the processes by 

which the T cell repertoire is selected.  Some DP thymocytes down-regulate CD8 to become 

transitional single positive (TSP) CD4+ thymocytes, which then mature into single positive (SP) 

CD4+ and SP CD8+ thymocytes (99, 102-104).  Previous analyses of the thymocyte populations 

in morphine-treated mice demonstrated that DP thymocytes are highly susceptible to morphine 

treatment (306, 307).  However, the effects of morphine on the DN and SP subsets have not 

been investigated. 

In this chapter, we define the B and T cell subsets that remain when mice are treated with 

morphine and examine the mechanisms by which B and T cells repopulate the primary and 

secondary lymphoid organs.  In particular, we examine the production of lymphocytes in primary 
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lymphoid organs and homeostatic proliferation of cells in secondary lymphoid organs.  We 

demonstrate that morphine-induced corticosteroid production is the most likely cause of 

depletion of immature lymphocytes.  After depletion, B and T cell subsets recover via a 

combination of increased proliferation of lymphoid precursors and homeostatic proliferation of 

mature T cells. 
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Materials and Methods 

Mice 

Male C57BL/6 mice were housed and bred under specific pathogen-free conditions and all 

experiments were performed in compliance with the University of Kansas Medical Center 

Institutional Animal Care and Use Committee.  At the onset of the experiments, mice were 

between the ages of 8 and 12 weeks. 

 

Pellet implantation 

Mice were anesthetized with ketamine (75 mg/kg) and xylazine (7.5 mg/kg) and pellets were 

implanted subcutaneously.  Morphine 75 mg, naltrexone 30 mg, and placebo pellets were 

obtained through the NIH AIDS Research and Reference Program, Division of AIDS, NIAID, 

NIH.  Tissues were harvested on days 7, 14, and 21 post-implantation. 

 

Antibodies 

Anti-CD3-PE-Cy7, anti-CD8-Alexa Fluor 647, anti-CD4-FITC, anti-CD44-PE-Cy7, anti-

CD44-Horizon V450, anti-CD25-allophycocyanin-Cy7, anti-CD24-PE-Cy7, anti-TCRβ-PE, anti-

B220-PE, anti-IgM-FITC, anti-CD34-Alexa Fluor 647, anti-IgD-Alexa Fluor 647, anti-CD21-PE-

Cy7, anti-CD23-Pacific blue, and anti-CD62L-PE-Cy7 were purchased from BD Biosciences 

(San Jose, CA), eBioscience (San Diego, CA) or Biolegend (San Diego, CA). 
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Cell labeling and flow cytometry  

Single cell suspensions of thymocytes, splenocytes, and lymphocytes were collected by 

gently disrupting the tissue using a wire mesh and a syringe plunger.  Bone marrow cells were 

collected by flushing one femur with PBS using a 27-gauge needle.  Cells were filtered through 

a 100 m nylon mesh.  Surface, intracellular staining, and DNA staining were performed as 

described (21).  Briefly, cells were surface labeled by incubating cells with antibodies for 30 min 

on ice in staining buffer [PBS containing 2% Fetal Clone I (HyClone Laboratories, Inc., Logan, 

UT)].  After washing, cells were fixed in 1% paraformaldehyde.  For intracellular staining, fixed 

cells were permeabilized and labeled in permeabilization buffer (0.3% Tween-20 in PBS with 2% 

Fetal Clone I).  For DNA staining, fixed cells were incubated with 1 g/ml 4',6-diamidino-2-

phenylindole (DAPI) in permeabilization buffer for 30 min and analyzed immediately.  For cell 

cycle analysis, single flow cytometric events were defined using DAPI-Area versus DAPI-Height 

and cells in the S, G2, or M phase of the cell cycles were defined as those cells that contained 

greater than 2N DNA.   Samples were analyzed using a BD LSRII (BD Biosciences, San Jose, 

CA). Data were analyzed using BD FACSDiva (BD Biosciences) or FlowJo (TreeStar, Inc., 

Ashland, OR). 

 

Serum morphine concentrations 

To 10 l serum, the internal standard, d3-morphine, was added.  Protein was removed by 

extracting the morphine into acetonitrile.  The concentration of morphine was determined by 

liquid chromatography (LC)-mass spectroscopy (MS)/MS using a Waters ACQUITY ultra 

performance LC system, a Waters Quattro Premier XE triple quadrupole instrument with an ESI 

source (Waters, Milford, MA), and MassLynx 4.1 software.  Morphine was separated using an 

ACQUITY UPLC C18 column (1.7 μm, 100 mm × 2.1 mm internal diameter) equipped with an 
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ACQUITY UPLC C18 guard column (Waters, Milford, MA).  The flow rate through the column at 

ambient temperature was 0.30 ml/min with 80% acetonitrile and 20% H2O containing 0.1% 

formic acid. The MS was operated in a positive mode with electrospray ionization. Source and 

desolvation temperatures were 120°C and 350°C, respectively. Nitrogen was applied as the 

cone gas (10 liters/h) and desolvation gas (700 liters/h) and argon as the collision 

gas. Detection and quantification were performed using the multiple reactions monitoring mode 

with m/z 286/152 for morphine and 289/152 for d3-morphine. 

 

Serum corticosterone concentrations  

Corticosterone concentrations in sera were determined using the Corticosterone EIA Kit 

(Cayman, Ann Arbor, MI). Briefly, 50 l sera or standard, tracer, and anti-corticosterone 

antiserum were added into the pre-coated plate. The plate was then incubated at room 

temperature with gentle shaking. After washing, the substrate reagent (Ellman’s) was added into 

each well, incubated for 40 min, and analyzed using Synergy HT Microplate Reader (BioTek, 

Winooski, VT). 

 

Fetal thymic organ culture 

Fetal thymic organ culture (FTOC) was performed as described (308, 309). Briefly, thymic 

lobes were isolated from E15.5 fetus and placed on the surface of membrane filters (0.8 µm, 

Millipore, Billerica, MA), which were supported by surgical gelfoam (Pfizer Inc, NY, NY) soaked 

in DMEM-10 media.  Thymic lobes were cultured for 7 days, minced, and analyzed by flow 

cytometry. 
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Statistics 

All data are presented as mean ± SD. For day 7 analyses, 13 mice were implanted with 

morphine pellets and 7 mice each were implanted with placebo, naltrexone, or morphine and 

naltrexone pellets.  Data were analyzed using a one-way ANOVA and a multiple comparisons 

post-hoc analysis (Dunnett’s method) between the morphine group and the control groups.  For 

other time points, statistics were based on three to ten mice for each parameter.  All data 

included represent at least three independent experiments and were analyzed using two-tailed 

Student's t tests.  For the FTOC experiments, data were analyzed using a one-way ANOVA and 

a multiple comparisons versus a control group post-hoc analysis (Dunnett’s method). 
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Results 

Morphine induces the depletion of peripheral lymphocytes 

Previous studies showed that morphine pellet implantation induces loss of thymic and 

splenic tissue weight and depletion of lymphocytes and then cells recover over time.  We 

initiated our studies on day 7 after morphine pellet implantation, a time point at which the spleen 

has recovered most of its mass (187) and after the thymocyte numbers reached their nadir (306, 

307), and examined the lymphocyte populations.  The total number of B cells, CD4+ T cells, and 

CD8+ T cells in the spleens and lymph nodes of morphine-treated animals remained significantly 

lower than placebo-treated mice (Table 5-1).  Naltrexone treatment prevented the morphine-

induced lymphocyte depletion, although variability within groups prevented some differences 

between the morphine and morphine plus naltrexone groups from being statistically different.  It 

is feasible that the duration of morphine administration exceeded that of naltrexone in some 

mice, accounting for this variability.  Few differences were noted between mice treated with 

placebo, naltrexone, or morphine plus naltrexone. 

 

Morphine induces depletion of immature B cells 

To determine which subsets of splenic B cells were most susceptible to morphine treatment, 

we analyzed IgM and IgD expression on B220+ cells, which allowed us to distinguish among 

follicular (FO) B cells (IgD+IgMlo), transitional stage 2 (T2) B cells (IgD+IgM+), and transitional 

stage 1 (T1)/marginal zone (MZ) B cells (IgM+IgD-).  The percentages of B220+ splenocytes that 

were in the T1/MZ B cell populations were dramatically decreased in morphine-treated mice, as 

compared to the other groups (Fig. 5-1 A).  In morphine-treated mice, 1.5 ± 0.53% of the splenic 

B cells were T1 or MZ B cells.  Using CD21 to differentiate between T1 (CD21-CD23-) and MZ  
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Table 5-1. Spleen, lymph node, bone marrow, and thymus cell numbers in 

morphine-treated and control groups.a 

  Morphine Mor + Nal Naltrexone Placebo 

 n = 13 7 7 7 

Spleen B cells 6.9  7.2 14  7.7 14  7.2b 18  15b

CD4+ cells 2.3  1.1 6.1  1.8b 6.2  2.0b 6.0  3.5b

CD8+ cells 2.1  0.91 3.9  0.85b 3.8  1.1b 5.7  4.3b 

Lymph nodes B cells 1.2  0.96 7.5  3.1 2.7  1.4 2.4  1.5b

CD4+ cells 0.95  0.50 3.1  1.3b 2.4  0.44b 2.8 0.46b

CD8+ cells 0.90  0.49 2.0  1.3 1.2  0.46 3.1  2.7b

Bone marrow  14  3.2 15  1.1 14  2.2 15  2.9 

Thymus  2.6  2.2 32  9.3b 41  25b 46  29b

aAbsolute number of cells (x 106) in the indicated tissues (mean  S.D) in morphine-

treated, morphine+naltrexone-treated, naltrexone-treated, and placebo-treated mice. 

bp < 0.05, as compared to morphine-treated group 
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Fig. 5-1. Morphine treatment depletes immature B cells in spleen. Mice were treated with 

morphine (M), morphine and naltrexone (M+N), naltrexone (N), or placebo (P) and analyzed 

seven days later. A) Splenocytes were gated on B220+ cells and analyzed for IgM and IgD 

expression.  The percentages of B cells in each gate are shown.  B) B220+IgM+IgD- cells from 

(A) were analyzed for CD21 and CD23 expression.  The percentages of gated cells that were 

T1 (CD21-) and MZ (CD21+) B cells are shown.  C) B220+IgM+IgD- cells (shaded histogram), 

B220+IgM+IgD+ cells (grey line), and B220+IgMloIgD+ cells (black line) from (A) were analyzed for 

CD23 expression.  
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(CD21+CD23-) B cells revealed that nearly all of the IgM+IgD- cells in morphine-treated mice 

were MZ B cells in morphine-treated mice (Fig. 5-1 B).  By contrast, 4.4 ± 0.60% of splenic B 

cells in placebo-treated mice were T1 or MZ B cells (p < 0.001) and 2.4 ± 0.40% of B cells were 

MZ B cells (p = 0.015).  To further demonstrate that the IgM+IgD- cells lacked CD23 expression 

and were indeed T1 or MZ B cells, we analyzed CD23 expression on the IgM+IgD-, IgM+IgD+, 

and IgMloIgD+ populations (Fig. 5-1 C).  As previously reported (310), T2 and FO B cells 

expressed higher levels of CD23 than T1 and MZ B cells, supporting our conclusion that the 

IgM+IgD- gate contained only T1 and MZ B cells.  These data indicated that the T1 B cells were 

most sensitive to morphine treatment and suggested that B cell development could be impaired 

by morphine treatment.  In addition, the MZ B cells were more sensitive to morphine treatment 

than T2 and FO B cells, as the percentage of B cells that were MZ B cells declined after 

morphine treatment. 

We traced B cell development to the bone marrow and analyzed the B cell precursor 

populations.  The absolute numbers of bone marrow cells in each group were nearly identical 

across treatment groups (Table 5-1).  Further, the percentage of bone marrow cells expressing 

CD34 was similar across groups (Fig. 5-2 A).  These data indicated that morphine did not 

induce the depletion of all hematopoietic precursors.  In contrast to the CD34+ population, the 

percentage of bone marrow cells that expressed B220 was reduced in morphine-treated mice 

(Fig. 5-2 B).  In particular, pro-B/pre-B (B220+IgM-) cells and immature B (B220loIgM+) cells were 

markedly decreased in morphine-treated mice, as compared to the control groups.  In morphine-

treated mice, 0.74 ± 0.35% of the bone marrow cells were pro-B/pre-B cells while 5.0 ± 2.4% of 

the bone marrow cells in placebo-treated mice were pro-B/pre-B cells (p < 0.001).  These data 

indicated that morphine treatment in mice impairs B cell development by inducing the deletion of 

B cell precursors. 
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Fig. 5-2. Morphine treatment selectively depletes immature B cells in bone marrow. 

A) The percentages of bone marrow cells that expressed CD34 are shown.  B) Bone marrow 

cells were analyzed for B220 and IgM expression.  The percentages of cells in each gate are 

shown.  Data shown represent one mouse from each group. 
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B cells recover from morphine-induced depletion via proliferation of B cell precursors 

By day 21 of the experiment, the number of B cells in the spleen recovered to levels that 

were nearly identical to that of placebo-treated mice (Fig. 5-3 A).  Because there were few 

differences between the three groups of control mice (placebo, naltrexone, and morphine plus 

naltrexone) at day 7, we used the placebo-treated mice as controls for the latter time points.  

We also compared the data throughout the experiment to a control group of untreated mice.  

We tested whether peripheral B cells might proliferate as a mechanism by which splenic B cells 

recover in number.  Less than 2% of splenic B cells were in the S, G2, or M phase of the cell 

cycle in any of the groups (Fig. 5-3 B), indicating that B cell recovery did not occur via 

proliferation of the remaining cells. 

Like splenic B cells, the B cell precursors in the bone marrow also recovered during the 

course of the experiment (Fig. 5-3 C).  The percentage of bone marrow cells that were B220+ 

cells were decreased in all groups seven days after pellet implantation, but the morphine-treated 

mice had the largest decrease.  By day 14, the percentage of bone marrow cells that were pro-

B/pre-B cells in morphine-treated mice, placebo-treated mice, and untreated mice were 

comparable.  The immature B cells and mature B cells recovered more slowly in the morphine-

treated mice than placebo-treated mice. 

A possible mechanism by which bone marrow B cell precursors could recover in number is 

through increased proliferation.  The most dramatic increase in the percentage of cells in the 

cell cycle were found in the immature B cell subset at day 14 (Fig. 5-3 D); 28 ± 11% of immature 

B cells in morphine-treated mice were in the S, G2, or M phase of the cell cycle, as compared to 

7.1 ± 3.1% of immature B cells in placebo-treated mice (p < 0.001).  In addition, more mature B 

cells in the bone marrow were in the S, G2, or M phase in morphine-treated mice than placebo-

treated mice at day 21. 
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Fig. 5-3. Recovery of B cells after morphine treatment is due to proliferation of B cell 

precursors.  Mice were treated with morphine (closed circles) or placebo (open circles) for 7, 

14, or 21 days.  Untreated control mice are shown as a dashed line. A) The absolute numbers 

of splenic B cells are shown.  B) The percentage of splenic B cells in the S, G2, or M phase of 

the cell cycle are shown. C) Bone marrow cells were analyzed for B220 and IgM expression and 

the percentages of cells in each gate are shown.  D) Cells were gated as in (C) and analyzed for 

DNA content.  The percentages of cells in each gate that were in the S, G2, or M phase of the 

cell cycle are shown. *p < 0.05, **p < 0.01, comparing morphine-treated mice and placebo-

treated mice. 
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Collectively, these data suggest that the mechanism by which the B cells recover is primarily 

through increased proliferation of B cell precursor populations.  While splenic B cells did not 

display elevated percentages of cells in the S, G2, or M phase of the cell cycle, B220hi bone 

marrow B cells in morphine-treated mice did increase their proliferation.  This suggests that 

different populations of B cells may recover from depletion using different mechanisms.  

 

Morphine treatment induces depletion of naïve and memory T cell subsets  

Morphine also induced the depletion of CD4+ and CD8+ T cells in the spleens and lymph 

nodes (Table 5-1).  To determine whether some T cell subsets were more susceptible to the 

effects of morphine than others, we analyzed whether naïve, central memory, or effector 

memory subsets were preferentially depleted by morphine treatment.  There were no 

differences across groups of mice between the percentages of CD4+ or CD8+ T cells that were 

naïve (CD44loCD62Lhi), central memory (CD44hiCD62Lhi), or effector memory (CD44hiCD62Llo) 

in the spleen (Fig. 5-4) or in the lymph node (data not shown), indicating that the major 

peripheral T cell subsets were depleted by morphine to the same extent. 

 

Morphine treatment induces depletion of thymocytes undergoing selection 

As shown in Table 5-1, the number of thymocytes per mouse was greatly reduced in 

morphine-treated mice, as compared to other groups.  However, not all thymocyte subsets were 

depleted to a comparable extent.  The population of cells most dramatically depleted by 

morphine treatment was the DP subset (Fig. 5-5 A), consistent with previous reports (306, 307).  

Within the DN population, DN3L and DN4 cells were most susceptible to depletion by morphine 

treatment (Fig. 5-5 B). 
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Fig. 5-4. Morphine treatment does not affect the percentages of T cells that are naïve, 

central memory, and effector memory. Splenocytes were labeled with anti-CD4, anti-CD8, 

anti-CD44, and anti-CD62L seven days after pellet implantation.  The percentages of CD4+ cells 

(A) and CD8+ (B) in each gate are shown.  Data shown represent one mouse from each group. 
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Fig. 5-5. Morphine treatment depletes thymocytes in DN3L and DN4 subsets. Mice were 

treated with morphine (M), morphine and naltrexone (M+N), naltrexone (N), or placebo (P) and 

analyzed seven days later. Thymocytes were analyzed for surface expression of CD4, CD8, 

CD44, and CD25 and intracellular expression of TCR. (A-C) Data shown represent one mouse 

from each group.  A) The percentages of thymocytes that were DN, DP, SP CD4+, and SP CD8+ 

cells are shown.  B) Thymocytes were gated on the DN population and analyzed for CD44 and 

CD25 expression.  Shown are the percentages of DN cells that were DN1, DN2, DN3E, DN3L, 

and DN4.   
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Consistent with our previous report in untreated mice (21), more than 80% of DN3L and 

DN4 thymocytes in control mice expressed TCR (Fig. 5-6 A) and many of these cells were in 

the S, G2, or M phase of the cell cycle (Fig. 5-6 B).  Following morphine-treatment, the 

percentage of DN3L and DN4 thymocytes that expressed TCR was reduced, as compared to 

control groups.  In morphine-treated mice, 31 ± 18% of DN3L cells expressed TCR and 40 ± 

27% of DN4 cells expressed TCR (p ≤ 0.001, as compared to placebo-treated mice).  In 

addition, fewer TCR+ DN3E, TCR+ DN3L, and TCR+ DN4 thymocytes were in the S, G2, or 

M phase of the cell cycle in morphine-treated mice than placebo-treated mice (Fig. 5-6 B), 

although only in the DN4 population did this difference reach statistical significance.  These data 

indicate that morphine treatment blocks cell cycle progression and induces the depletion of 

TCR+ DN thymocytes. 

The stage of T cell development following the DN4 stage is the immature single positive 

(ISP) CD8+ thymocyte stage, defined as CD8+CD4-CD24hiTCRlo.  ISP CD8+ thymocytes were 

nearly absent in morphine-treated mice, whereas they represent approximately half of SP CD8+ 

thymocytes in control mice (Fig. 5-7 A).  Following the ISP CD8+ stage, cells become DP 

thymocytes and then down-regulate CD8 to become transitional single positive (TSP) CD4+ 

thymocytes, a population defined as CD4+CD8-/loCD24hi.  Like ISP CD8+ and DP thymocytes, 

TSP CD4+ thymocytes were also nearly completely depleted in morphine-treated mice; nearly 

all SP CD4+ thymocytes in morphine-treated mice were CD24lo, indicating that the cells were 

mature (Fig. 5-7 B).  These data suggest that cells in the developmental stages immediately 

following the  selection and positive selection steps are most susceptible to morphine-induced 

depletion. 
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Fig. 5-6. Morphine treatment depletes thymocytes undergoing  selection. Mice were 

treated with morphine (M), morphine and naltrexone (M+N), naltrexone (N), or placebo (P) and 

analyzed seven days later. A) Thymocytes were gated on DN3E, DN3L, and DN4 thymocytes 

and analyzed for intracellular TCR expression.  Shown are the percentages of DN3E, DN3L, 

and DN4 thymocytes that expressed TCR.  B) TCR+ DN3E, TCR+ DN3L, and TCR+ DN4 

thymocytes were analyzed for their cell cycle status.  The percentages of cells that were in the S, 

G2, or M phase of the cell cycle are shown. *p < 0.05, **p < 0.01, as compared to morphine-

treated mice. 
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Fig. 5-7. Morphine treatment induces depletion of ISP CD8+ and TSP CD4+ thymocytes. 

Mice were treated with morphine (M), morphine and naltrexone (M+N), naltrexone (N), or 

placebo (P) and analyzed seven days later.  Thymocytes were surface labeled with anti-CD4, 

anti-CD8, anti-CD24, and anti-TCR.  Cells were gated on SP CD8+ (A) or SP CD4+ (B) 

thymocytes and analyzed for CD24 and TCR expression.  The percentages of SP CD8+ or SP 

CD4+ thymocytes in each gate are shown.  Data shown represent one mouse from each group. 
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Peripheral T cell subsets recover via homeostatic proliferation 

Unlike splenic B cells, peripheral T cells failed to completely restore their numbers to that of 

placebo-treated mice over the course of the experiment (Fig. 5-8 A).  Although the amount of 

recovery in the peripheral T cells was subtle and not statistically significant within the time frame 

of the experiment, we examined the peripheral T cells for signs of homeostatic proliferation, the 

process by which lymphocytes expand in number in response to a lymphopenic environment.  

Seven days after pellet implantation, more CD4+ and CD8+ T cells in the lymph node were in the 

S, G2, or M phase of the cell cycle than in placebo-treated mice (p < 0.10) (Fig. 5-8 B).  In the 

spleen, more CD4+ T cells were in the S, G2, or M phase of the cell cycle 14 days after 

morphine treatment than placebo treatment (p < 0.10) (Fig. 5-8 B). 

As a further test of whether T cells underwent homeostatic proliferation, we examined 

whether the T cells converted to a memory-like phenotype during the study (Fig. 5-9).  T cells 

undergoing homeostatic proliferation convert to a memory-like phenotype (311-315).  Greater 

percentages of CD4+ T cells in the spleens and lymph nodes on days 14 and 21 of the 

experiment displayed central memory and effector memory phenotypes in morphine-treated 

mice than placebo-treated mice.  Likewise, more CD8+ T cells in morphine-treated mice had a 

central memory phenotype than in placebo-treated mice. 

In summary, the analysis of peripheral T cells suggested that the T cells in morphine-treated 

mice underwent homeostatic proliferation.  However, homeostatic proliferation is likely a minor 

component of the recovery of T cells following morphine treatment, as the T cells failed to 

recover to normal numbers during the experiment. 

 

 



164 
 

Fig. 5-8. Peripheral T cells from morphine-treated mice proliferate more than placebo-

treated mice in the recovery from morphine-induced depletion. Mice were treated with 

morphine (closed circles) or placebo (open circles) for 7, 14, or 21 days.  Untreated control mice 

are shown as a dashed line.  A) The absolute number of splenic (SP) and lymph node (LN) T 

cells are shown.  B) The percentages of SP and LN CD4+ and CD8+ cells that were in the S, G2, 

or M phase of the cell cycle are shown.  
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Fig. 5-9. Peripheral T cells from morphine-treated mice proliferate more than placebo-

treated mice in the recovery from morphine-induced depletion. Splenocytes were labeled 

with anti-CD4, anti-CD8, anti-CD44, and anti-CD62L 7, 14 or 21 days after pellet implantation.  

CD4+ cells were gated and analyzed in A) and CD8+ cells were gated and analyzed in B).  The 

percentages of cells that were central memory or effector memory are shown. *p < 0.05, **p < 

0.01. 
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T cells recover from morphine via increased proliferation of precursor cells 

In the weeks following morphine pellet implantation, the number of thymocytes returned to 

nearly normal numbers (Fig. 5-10 A).  In addition, the distribution of thymocytes into the DN, DP, 

SP CD4+, and SP CD8+ populations was fully restored within three weeks of morphine pellet 

implantation (Fig. 5-10 B).  After two weeks of morphine treatment, the percentage of 

thymocytes that were DP slightly exceeded that of placebo-treated mice.  The percentages of 

DN thymocytes that were DN1, DN2, DN3E, DN3L, and DN4 returned to nearly normal levels 

within three weeks (Fig. 5-10 C).  Also, the percentage of SP CD8+ thymocytes that were ISP 

CD8+ cells and the percentage of SP CD4+ thymocytes that were TSP CD4+ cells returned to 

normal levels (Fig. 5-10 D). 

Because we observed a decrease in the percentage of DN3L and DN4 thymocytes that 

expressed TCR after seven days of morphine treatment (Fig. 5-6 A), we examined these 

populations over time.  The percentage of TCR+ DN3E thymocytes in mice treated with 

morphine for 14 days exceeded that of placebo-treated mice (Fig. 5-10 E), suggesting that 

increased production of TCR+ DN3E thymocytes could contribute to the restoration of the T cell 

populations.  We next examined mechanisms by which this rebound in the TCR+ DN3E 

population could occur.  We found that a greater percentage of DN1, DN2, and TCR+ DN3E 

thymocytes were in the S, G2, or M phase of the cell cycle in morphine-treated mice than 

placebo-treated mice (Fig. 5-10 F).  The percentage of TCR+ DN3L and TCR+ DN4 

thymocytes in the S, G2, or M phase of the cell cycle did not differ between the groups of mice 

on days 14 and 21 of the experiment (data not shown).  However, more DP thymocytes were in 

the S, G2, or M phase of the cell cycle seven days after pellet implantation in morphine-treated 

mice than placebo-treated mice (Fig. 5-10 F). 
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Fig. 5-10. Recovery of T cells via increased proliferation of precursor cells.  Mice were 

treated with morphine (closed circles) or placebo (open circles) for 7, 14, or 21 days.  Untreated 

control mice are shown as a dashed line.  Thymocytes were analyzed as described in Figs. 5-5, 

5-6 and 5-7.  A) The absolute number of thymocytes are shown.  B) The percentages of 

thymocytes that were DN, DP , SP CD4+, and SP CD8+ thymocytes and shown.  C) The 

percentages of DN thymocytes that were DN1, DN2, DN3E, DN3L, and DN4 thymocytes are 

shown.  D) The percentages of SP CD8+ and SP CD4+ thymocytes that were ISP CD8+ and 

TSP CD4+ thymocytes, respectively, are shown.  E) The percentages of DN3E, DN3L, and DN4 

thymocytes that expressed TCR are shown.  F) The percentages of DN1, DN2, TCR+ DN3E, 

and DP thymocytes that were in the S, G2, or M phase of the cell cycle are shown. *p < 0.05, **p 

< 0.01.  
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      In summary, these data suggest that thymocyte populations recover following morphine 

treatment via increased proliferation of DN1, DN2, TCR+ DN3E, and DP thymocytes.  This 

proliferation seen in morphine-treated mice may cause the percentage of thymocytes that were 

TCR+ DN3L, ISP CD8+, and DP cells to transiently exceed that of placebo-treated mice. 

 

Morphine pellet implantation results in sustained plasma morphine levels and a transient 

increase in corticosterone levels 

Previous reports suggested that morphine treatment in mice could induce elevated 

corticosteroid production (173, 176, 192, 193, 306).  To test whether this occurred during our 

experiments, we examined serum morphine and corticosterone levels in mice from each group.  

Serum concentrations of free, unconjugated morphine reached an average of 4.3 ± 0.56 M 

within six hours of implantation, decayed to 1.3 ± 0.61 M within seven days, and was 0.22 ± 

0.11 M on day 21 (Fig. 5-11 A).  Within six hours of morphine pellet implantation, 

corticosterone levels reached levels that were 5.3 ± 1.6-fold greater than pre-implantation levels 

(Fig. 5-11 B).  Mice receiving placebo, naltrexone, and morphine plus naltrexone had 

corticosterone levels six hours after implantation that were approximately two-fold greater than 

pre-surgery levels. 

These data indicated that lymphocyte populations were depleted while corticosterone levels 

were elevated and recovered when corticosterone levels returned to nearly baseline levels.  In 

addition, lymphocyte recovery occurred while morphine levels remained at physiologically 

significant levels. 
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Fig. 5-11. Morphine pellet implantation leads to sustained serum morphine levels and a 

transient increase in serum corticosterone levels. Mice were implanted with pellets 

containing morphine (M), morphine and naltrexone (M+N), naltrexone (N), or placebo (P) and 

blood was collected at the indicated time points. The concentrations of morphine (A) and 

corticosterone (B) in sera of mice treated for the indicated lengths of time are shown.  Untreated 

control mice (C) were also analyzed (B). 
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Morphine does not directly impair T cell development 

We tested whether morphine could directly impair T cell development using fetal thymic 

organ culture (FTOC).  Thymi were collected from day E15.5 fetuses and cultured in the 

presence of morphine, morphine plus naltrexone, or no drug.  The higher dose of morphine 

used in this experiment was based on the peak concentration of morphine in sera of morphine-

treated mice.  The lower dose of morphine used resembled the concentration of morphine in 

sera of mice treated with morphine for seven days.  In addition, dexamethasone was added to 

some samples to mimic the effects of increased corticosteroid production in vivo.  The 

concentration of dexamethasone used in this assay was approximately one-tenth the 

concentration of corticosterone observed in vivo.  Because dexamethasone is approximately 10-

fold more potent at inducing apoptosis of thymocytes than corticosterone (316), the relative 

activity of dexamethasone in our assay is comparable to the activity of corticosterone seen in 

vivo. 

Similar numbers of thymocytes were recovered from thymi cultured with morphine, morphine 

plus naltrexone, and no drug (Fig. 5-12 A).  Further, the distributions of DN, DP, SP CD4+, and 

SP CD8+ thymocytes were similar between morphine-treated samples and the control samples 

(Fig. 5-12 B).  To ensure that morphine was not rapidly degraded in culture, we analyzed the 

concentration of morphine in a separate tissue culture experiment and found that the 

concentration remained stable for at least ten days (data not shown). 

In contrast to morphine-treated samples, few thymocytes were harvested from 

dexamethasone-treated samples and most thymocytes recovered were DN thymocytes (Fig. 5-

12).  These data suggested that morphine does not directly induce loss of thymocyte 

populations.  Rather, the depletion of thymocytes observed in vivo was most likely due to the 

surge in corticosterone levels. 
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Fig. 5-12. Morphine does not directly impair thymic development.  FTOC was performed as 

described in Methods in the presence of 6 M (M(H)) or 1 M (M(L)) morphine, 6 M morphine 

plus 6 M naltrexone (M+N), 1 M dexamethasone (D), or media (C).  A) The absolute numbers 

of thymocytes recovered after seven days of culture are shown.  B) Thymocytes were analyzed 

for CD4 and CD8 expression.  The percentages of cells that were DN, DP, SP CD4+, and SP 

CD8+ thymocytes are shown. Dot plots represent one mouse from each group. 
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Discussion 

In this report, we provide the most detailed analysis of B and T cell populations that remain 

after morphine treatment in mice.  This level of description directed us toward discovering the 

mechanisms by which lymphocytes recover following morphine-induced depletion.  We found 

that the mechanisms of recovery included a combination of accelerated B and T cell 

development and homeostatic proliferation of peripheral T cells.  Understanding these 

mechanisms will enable us to comprehend the immunologic changes observed in patients using 

or abusing opioids. 

The populations of lymphocyte precursors that were most susceptible to morphine-induced 

depletion were generally the populations that normally undergo positive selection.  For example, 

the pro-B/pre-B cell, immature B cell, and T1 B cell subsets were dramatically depleted in 

morphine-treated mice (Fig. 5-1).  The pre-B and immature B cell subsets are the populations in 

which rearrangements of the immunoglobulin genetic loci occur and the cells are under 

selection pressure to respond to pre-BCR and BCR signals.  The T1 stage of B cell 

development is a transient stage that is also subjected to selection pressure (19).  T1 cells also 

undergo a high degree of turnover (16).  Although it is not clear whether MZ B cells continuously 

receive selection signals, MZ B cells proliferate and are eliminated at a higher rate than T2 and 

FO B cells (16).  MZ B cells are also susceptible to morphine-induced depletion (Fig. 5-1), 

suggesting that cells that undergo high rates of turnover are particularly sensitive to morphine-

induced depletion. 

T cell precursors undergoing selection were also depleted following morphine treatment.  

Namely, TCR+ DN thymocytes, ISP, and DP thymocyte subsets include cells that recently 

completed genomic rearrangements at the TCR and TCR loci and receive signals from the 

pre-TCR or TCR to undergo positive selection.  These populations were also highly sensitive to 
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morphine-induced depletion (Fig. 5-6).  The TSP CD4+ thymocyte population, which was 

depleted in morphine-treated mice, consists primarily of cells that completed positive selection 

(99) and receive signals that determine whether the cells become mature SP CD4+ or mature 

SP CD8+ cells (102-104).  In our studies, we could not determine whether TSP CD4+ 

thymocytes were direct targets of the effects of morphine or whether this population was 

depleted because of the dramatic losses in the cell populations that precede the TSP CD4+ 

stage. 

The stages of early T cell development that were most resistant to morphine treatment were 

the DN1 and DN2 stages (Fig. 5-5 A).  These stages of T cell development are unique in that 

they are highly dependent upon Notch signaling for their survival (317, 318).  After cells express 

TCR and cells proceed through the DN3L, DN4, ISP, and DP stages, Notch1 expression 

declines and the cells no longer respond to Notch ligands (319, 320).   Thus, cells that respond 

to Notch ligands were relatively resistant to morphine-induced cell depletion.  This observation 

is similar to previous studies that demonstrated that Notch signaling could render thymocytes 

resistant to corticosteroid-induced cell death (321), implying that corticosteroids, not morphine, 

are responsible for the thymocyte depletion observed in our studies.  Indeed, we observed a 

large increase in serum corticosterone levels following morphine pellet implantation (Fig. 5-11 

B), consistent with previous reports (322, 323). 

We tested whether morphine could directly impair T cell development using FTOC.  In this 

system, developing T cells are provided the stroma required for T cell development in vivo.  

Cells are able to survive, proliferate, and undergo positive and negative selection using FTOC.  

Further, because T cell development is a lifelong process, the FTOC system likely mimics T cell 

development at all stages of life.  Morphine had no effect on the expansion and differentiation of 

thymocytes (Fig. 5-12).  By contrast, few thymocytes were recovered from dexamethasone-
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treated cultures.  These observations were consistent with previous reports showing that 

morphine-induced thymic hypoplasia did not occur in adrenalectomized mice (306).  These data 

indicate that morphine does not directly impair T cell development.  Rather, the corticosterone 

production that resulted from morphine treatment likely prevented thymocyte expansion and 

differentiation. 

The toxic effects of corticosteroids in the FTOC experiment are consistent with previous 

reports showing that corticosteroids induce apoptosis of developing B and T cells.  In vivo 

administration of corticosterone resulted in a dramatic loss of thymic weight (180, 184, 185).  

Further, the immature T cell populations were most susceptible to corticosteroid treatment (178, 

179, 181, 182).  Like developing T cells, immature B cells were also susceptible to 

corticosterone-induced apoptosis, while other bone marrow cell types were resistant to 

corticosteroids (183-186, 324).  The selective loss of lymphoid precursors in corticosterone-

treated mice was similar to morphine-induced depletion of lymphocyte precursors. 

Like immature lymphocytes, mature B and T cells were also susceptible to the depleting 

effects of morphine (Table 5-1), consistent with previous reports (187-189).  While depletion of 

immature lymphocyte was most likely due to the effects of corticosteroids, depletion of mature 

lymphocytes was likely due to the interplay between corticosteroids and the µ opioid receptor.  

Stress responses, which lead to elevated corticosteroid levels, can trigger lymphocyte apoptosis 

in a manner dependent on elevated CD95/Fas expression and expression of the  opioid 

receptor on splenocytes (325-327).  Consistent with a role of corticosteroids in the depletion of 

splenocytes, the total number of splenocytes in mice decreased within two days of systemic 

prednisolone treatment (328, 329).  In vitro experiments showed that prednisolone could induce 

apoptosis of mature lymphocytes (330-332).  In our studies, we provided exogenous morphine 

and induced a corticosteroid response.  Thus, cell depletion in our studies is likely due to the 
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direct effects of morphine as well as the indirect effect of corticosteroids influencing endogenous 

opioid production. 

We observed a slight increase in serum corticosterone levels in all mice undergoing pellet 

implantation, although the increase was significantly greater in morphine-treated mice than 

control mice (Fig. 5-11 B).  This transient increase in corticosterone levels likely accounts for the 

fact that the placebo pellets also affected some parameters analyzed within the B and T cell 

populations (Figs. 5-3, 5-8, 5-9 and 5-10). 

The serum concentrations of morphine observed in our studies resembled physiologically 

relevant levels.  While many opioid addicts have sustained serum morphine concentrations less 

that 0.1 M (333), chronic morphine use can result in levels greater than 4 M (334).  This 

indicates that, while the levels of morphine observed in our studies are high, they are achievable 

in humans. 

At least two mechanisms contributed to the recovery of peripheral B cell and T cells 

following morphine-induced depletion: increased lymphocyte production and homeostatic 

proliferation.  For both B and T cells, there was an increase in the production of progenitor 

populations.  Immature B cells and DN1, DN2, TCR+ DN3E, and DP thymocytes proliferated 

more extensively two weeks after morphine pellet implantation than in control mice (Fig. 2D and 

Fig. 5-10 F).  This proliferation would create a larger pool of cells to be released from the 

primary lymphoid organs into the secondary lymphoid organs. 

These data are consistent with experiments in which dexamethasone was injected into mice 

and elevated serum levels of IL-7 and stromal cell-derived factor (SDF)-1 were observed (335).  

These cytokines are critical for B and T cell development (94, 336, 337).  The primary function 

of IL-7 in T cell development is to promote the survival and proliferation of DN1 and DN2 

thymocytes.  In B cells, IL-7 promotes differentiation beyond the pre-B cell stage.  Thus, IL-7 
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levels are likely elevated in morphine-treated mice and IL-7 would likely induce the increased 

proliferation of lymphoid precursors seen in this study. 

In secondary lymphoid organs, B cells recovered to nearly normal levels in the three weeks 

after morphine pellet implantation while T cell numbers lagged.  During the recovery, we did not 

observe an increase in the percentage of B cells that were in the S, G2, or M phase of the cell 

cycle (Fig. 5-3 B), suggesting that homeostatic proliferation was unlikely to be a mechanism by 

which peripheral B cell numbers recovered.  By contrast, peripheral T cells displayed evidence 

of homeostatic proliferation, yet failed to restore their numbers to normal levels (Fig. 5-8 and 5-

9).  The consequence of this homeostatic proliferation is that an increased percentage of T cells 

had a memory phenotype and function.  Memory T cells can be activated by a lower 

concentration or affinity of antigen than naïve cells and memory cells do not have a strict 

requirement for co-stimulation.  This increase in memory cells is similar to what is observed in 

elderly patients, who are at increased risk for autoimmune disease (338, 339). This increase in 

memory cells also resembles that observed in patients undergoing therapy that causes 

lymphocyte depletion, such as cancer chemotherapy or anti-T cell therapy.  In these patients, 

the conversion to memory cells is associated with autoimmune disease and transplant rejection 

(340, 341).  Thus, it is possible that depletion and recovery of the T cell population may render 

patients susceptible to autoimmune disease. 

In summary, we determined the mechanisms by which morphine administration to mice 

caused depletion of the B and T cell populations.  We found that morphine had no direct effect 

on thymocyte populations and the profound depletion of thymocytes seen in vivo was most likely 

caused by an increase in the serum corticosterone levels.  For mature lymphocyte subsets, 

depletion was most likely caused by a combination of corticosteroids and the direct effects of 

morphine.  Once the corticosterone levels returned to control levels, the lymphocytes recovered 

even though morphine was still present at significant levels.  This recovery was due to a 
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combination of increased B and T cell production and homeostatic proliferation.  Homeostatic 

proliferation was most evident among T cells and not detected in B cells, indicating that different 

populations of lymphocytes have different propensities to undergo homeostatic proliferation in 

morphine-treated mice. 
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Chapter VI 

Discussion and Conclusions 

The studies presented in my PhD dissertation can be divided into two sub-topics. Firstly, in 

Chapters II-IV, I emphasize the studies on peripheral CD8+ T cells, which represent my primary 

research interest, and the role of Gads in CD8+ T cell-mediated immune responses. In Chapter 

II, I address the role of Gads in proliferation and cell cycle entry of CD8+ T cells upon TCR 

ligation in vitro. The focus of Chapter III is placed on the effect of Gads on CD8+ T cell-mediated 

immune responses upon infection with an intracellular pathogen, rLM. In Chapter IV, I 

investigate the homotypic interactions among CD8+ T cells and the role of Gads in the 

interactions. Then, the process of morphine-induced lymphocyte depletion and recovery is 

studied in Chapter V with focus on the mechanisms by which T and B lymphocyte populations 

are depleted and recovered following morphine treatment in mice. Here, I will summarize the 

findings of the research projects for my dissertation, integrate the experimental results from 

Chapter II to IV, and propose a model which is supported by the data from Chapter II to Chapter 

IV. In addition, I will discuss future directions for the “Gads-CD8” project.  

 

The “discrepancy” between in vitro cell cycle data in Chapter II and in vivo infection data 

in Chapter III 

In Chapter II, I demonstrate that Gads regulates the kinetics of cell cycle entry of CD8+ T 

cells, as Gads-/- CD8+ T cells had impaired TCR-dependent exit from G0 phase of the cell cycle.  

However, in Chapter III, regarding the immune response to infection, I showed that Gads is not 

required for the onset of accumulation CD8+ T cells, as for the first 5 days p.i., Gads+/+ and 

Gads-/- CD8+ T cells accumulated to a similar extent. How do we explain these apparently 

contradictory results? A possibility is that rLM-OVA infection results in the production and 
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presentation of a large quantity of high affinity antigen that can overcome Gads deficiency.  As 

we showed in Chapter II, stimulating Gads-/- cells with a high concentration of SIINFEKL largely 

rescued the defect in proliferation in vitro (Fig 2-3). However, analyses of results in Chapter IV 

revealed a more likely interpretation: the homotypic interactions among CD8+ T cells might 

facilitate the TCR signaling so as to compensate for Gads deficiency in promoting cell cycle 

entry and proliferation. In addition, we acknowledge that the potential influence of inflammatory 

mediators induced by the infection might also contribute to overcoming the need for Gads. 

In Chapter II, total splenocytes, including CD8+ T cells, B cells, DCs, and macrophages, 

were stimulated with SIINFEKL. Most likely, antigen presenting cells (APCs) (mainly B cells in 

this context) serve as the major resources to present antigen and provide ligands for the 

adhesion molecules and other co-receptors on CD8+ T cells. In the following text, “conventional 

APCs” will be used to stand for these APCs, which express MHC class I and are non-CD8+ T 

cells. When total splenocytes were stimulated, the defect of Gads-/- CD8+ T cells in cell cycle 

entry and proliferation is so obvious that it affects proliferation later on (Fig 2-3). In Chapter III, 

Gads does not regulate the initiation stage of proliferation of antigen-specific CD8+ T cells in the 

context of infection. However, Gads regulates the optimal expansion of the CD8+ T cell 

population. In Chapter IV, the homotypic interactions among CD8+ T cells and the interactions 

between CD8+ T cells and conventional APCs were compared to reveal their role in TCR-

mediated signaling. Based on the previous results, I hypothesize that adhesion molecule-

dependent signaling regulates the expansion phase of CD8+ T cell-mediated immune responses 

induced by infection with rLM, in a stage (early and later stage)-dependent manner. During the 

early stage of the expansion phase, after DCs present antigen to CD8+ T cells, homotypic 

interactions among CD8+ T cells promote the accumulation of antigen-specific CD8+ T cells, 

while the association between CD8+ T cells and conventional APCs sustains the expansion 

phase later on. Both the homotypic interactions among CD8+ T cells during the early stage and 
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the interactions between CD8+ T cells and conventional APCs during the later stage are 

regulated by either different adhesion molecules or same adhesion molecules via different 

mechanisms. Gads regulates the interactions between CD8+ T cells and conventional APCs at 

later stage rather than the homotypic interaction among CD8+ T cells at early stage of 

expansion phase in the immune responses. 

The experimental systems were different between in vitro proliferation of CD8+ T cells where 

total splenocytes were stimulated with peptides in Chapter II and the in vivo accumulation of 

CD8+ T cells triggered by rLM infection in Chapter III. In vivo infection system is much more 

complicated than in vitro culture system as infection triggers the responses from the entire 

immune system rather than several types of immune cells in vitro. For example, pathogen-

induced inflammatory cytokines, such as type I interferons (IFN-αβ), type II interferon (IFN-γ) 

and IL-12, act directly on the responding CD8+ T cells to regulate the expansion and 

differentiation of pathogen-specific CD8+ T cells (342-345). IL-15 and IL-7 have been reported to 

promote the survival of SLECs and MPECs, individually (346, 347). In addition, IL-2, IL-15 and 

IL-21 regulate the fate decision of memory precursors into either central memory or effector 

memory populations (347, 348).  

In order to avoid involving the differences of experimental systems, I stimulated CD8+ T cells 

in vitro with SIINFEKL or anti-CD3 and anti-CD28 and then checked the formation of cell 

clusters and the cell cycle entry. The only difference was that either total splenocytes or purified 

CD8+ T cells were stimulated. By stimulating purified CD8+ T cells instead of the total 

splenocytes, CD8+ T cells had much bigger cell clusters accompanied with advanced cell cycle 

progression. This observation was true for both Gads+/+ cells and Gads-/- cells (Fig. 4-5 A).  As 

compared with Gads+/+ CD8+ T cells, Gads-/- CD8+ T cells behaved similarly or better in terms of 

cell cluster formation. In addition, the defect of cell cycle progression in Gads-/- CD8+ T cells was 

largely rescued. These data support my model that the homotypic interactions among CD8+ T 
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cells overcome the need for Gads in the accumulation of OVA-specific CD8+ T cells at early 

stage of infection with rLM-OVA. 

In order to test the hypothesis using infection model, we would like to see the interactions 

involving antigen-specific CD8+ T cells after infection. Recently, in situ imaging using 

multiphoton microscopy (349) and dynamic imaging of live tissue using intravital microscopy 

(249) were applied to the study of the immune response to LM infection. Both studies revealed 

that after activation, antigen-specific CD8+ T cells aggregate together in spleen during the 

expansion phase of the immune response.  

The above experimental results from others and us suggest that the homotypic interactions 

between CD8+ T cells in vivo might play a critical role in TCR-mediated cell cycle entry so as to 

overcome the need for Gads in the initiation stage of CD8+ T cell-mediated immune responses 

upon infection with rLM-OVA.  

We raise the concept that T cells can serve as APCs to present Ag to other T cells as well 

as provide costimulatory signals through adhesion molecules so as to activate T cells. The 

homotypic interactions was described as “in the absence of APCs” by several groups (301, 350). 

Are APCs really absent? In those T cell clusters, we believe, T cells themselves serve as APCs. 

Let’s take an example in the experimental system using purified CD8+ T cells, which were from 

OT-I mice, stimulated with SIINFEKL. The MHC class I molecules on the surface of CD8+ T 

cells present SIINFEKL to other CD8+ T cells. The binding of ligands and receptors, which are 

adhesion molecules, regulates the homotypic interactions and facilitate the TCR signaling. 

However, we have no solid data to reveal whether the MHC class I molecules and ligands of 

coreceptors have to come from a different CD8+ T cells or could be from the stimulated CD8+ T 

cell itself. In other words, can a CD8+ T cell serve as APC to itself? It is possible that the self-

presenting and self-costimulation as well as regular antigen presentation and costimulation 

between different CD8+ T cells happen simultaneously. This possibility needs to be tested.  
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Then, we ask whether homotypic interactions can stimulate CD8+ T cells without antigen. 

The results in chapter IV indicate that homotypic interactions among CD8+ T cells could induce 

the formation of cell clusters (Fig. 4-5 A) but could not initiate cell cycle progression in 

unstimulated samples, as almost all the CD8+ T cells were in G0 phase of the cell cycle (Fig. 4-

6). So that we conclude that homotypic interactions among CD8+ T cells can facilitate TCR 

signaling only when antigen is present to initiate the TCR signaling. Is antigen still required after 

the initiation stage? In the case of immune response of CD8+ T cells upon infection with LM, the 

answer is “no”. The Pamer group demonstrated that generation of Ag-specific CD8+ T cell 

population could occur when Ag exposure was transient upon infection with rLM (351, 352). 

Prlic et. al. (353) further reported that upon infection with LM, shortening antigen exposure time 

significantly reduced the primary immune response but not recall response of CD8+ T cells. In 

primary response to LM infection, there were less antigen-specific CD8+ T cells accumulated 

with reduced proliferating rate by shortening antigen exposure time. In contrast, the antigen 

exposure time does not affect CD8+ T cell functionality in terms of IFN-γ secretion in both 

primary and recall response. These results indicate that the expansion and differentiation of 

CD8+ T cells can take place without persistent exposure to antigen. Is antigen required all the 

time for homotypic interactions among CD8+ T cells in the context of infection? In order to 

address this question, we could perform the experiment based on what we did in Chapter III. In 

addition, at 1-2 days p.i., antibiotics will be administered to infected mice to eliminate the 

antigen. Then we could visualize the effect of antigen removal on interactions involving antigen-

specific CD8+ T cells: interactions with conventional APCs as well as homotypic interactions 

among CD8+ T cells, using microscopic techniques.  
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The role of LFA-1-mediated signaling in Gads-dependent homotypic interactions and its 

application 

In order to identify the adhesion molecules on the surface of CD8+ T cells to mediate the 

homotypic interactions, we looked at the first candidate: LFA-1. We found that Gads negatively 

regulates the expression level of LFA-1 protein (Fig. 4-3), which was further supported by the 

fact that the peripheral tissues, such as lung, from Gads-/- mice have higher percentages and 

larger quantities of CD8+ T cells than Gads+/+ mice (Fig. 4-4). Anti-LFA-1 (anti-CD11a) binds the 

α chain of the LFA-1 molecule so that the application of the antibody in vitro or in vivo could 

reduce LFA-1-mediated functions, such as cell-cell adhesion, T cell-mediated cytotoxicity, and  

the severity of graft-versus-host reactions (354-358). In order to test whether LFA-1 regulates 

interactions between CD8+ T cells and conventional APCs and the homotypic interactions 

among CD8+ T cells, soluble anti-LFA-1 was added into the cell culture media to block LFA-1-

mediated signaling. In total splenocytes, LFA-1 not only regulates the formation of cell clusters, 

but also regulates cell cycle entry; in purified CD8+ T cells, LFA-1 does facilitate the formation of 

cell clusters, but not cell cycle entry. These observations indicate that LFA-1 mediates 

homotypic interactions among CD8+ T cells, but not their cell cycle progression. 

How did anti-LFA-1, however, decrease the degree of cell cluster formation in purified CD8+ 

T cells 21 hours after TCR ligation but not cell cycle entry? One possibility is that some of the 

anti-LFA-1 stuck to the bottom of the plate and became plate-bound anti-LFA-1 during the 21-

hour incubation, resulting in the functional change from blocking LFA-1 signaling earlier to 

stimulat later on. During the first several hours, the added anti-LFA-1 mainly functions as a 

blocker. If we shorten the duration the incubation time to several hours, it might give us a direct 

answer to whether LFA-1 can regulate the homotypic interactions to promote cell cycle 

progression of CD8+ T cells. We might measure the increasing RNA content in purified CD8+ T 

cells in the first several hours, to look at the early stage of cell cycle entry.  
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In the conjugation assay, during which anti-LFA-1 was present for a relatively short time, 

anti-LFA-1 inhibited the formation of CD8+ T cell-EL-4 cell conjugates (data not shown). It 

supported the conclusion that LFA-1 mediates the interaction between CD8+ T cells and other 

cells (EL-4 cells here). To address the question whether Gads and LFA-1 can regulate the 

homotypic interactions among CD8+ T cells, we could perform the conjugation assay among 

CD8+ T cells. CD8+ T cells will be purified from Gads-/- OT-I and Gads+/+ OT-I mice. Then an 

aliquot of the CD8+ T cells, which play the role as APCs, will be pulsed with peptide ligand 

SIINFEKL, A2 or G4 after CFSE loading. After removing the free peptide in solution by 

centrifugation, the peptide-pulsed Gads+/+ or Gads-/- CD8+ T cells (I will call them “APC”-CD8 for 

short in the following text) will be incubated with non-CFSE loaded, non-pulsed Gads+/+ or Gads-

/- CD8+ T cells in the presence or absence of anti-LFA-1. The analyses will be based on 

comparisons of the percentages of CD8+ T cells which will have been conjugated with “APC”-

CD8 between different samples. Samples will include:  

① Gads-/- CD8+ T cells incubated with SIINFEKL-pulsed Gads-/- “APC”-CD8, w/ anti-LFA-1; ② Gads-/- CD8+ T cells incubated with SIINFEKL-pulsed Gads+/+ “APC”-CD8, w/ anti-LFA-1; ③ Gads+/+ CD8+ T cells incubated with SIINFEKL-pulsed Gads-/- “APC”-CD8, w/ anti-LFA-1; ④ Gads+/+ CD8+ T cells incubated with SIINFEKL-pulsed Gads+/+ “APC”-CD8, w/ anti-LFA-1; ⑤ Gads-/- CD8+ T cells incubated with SIINFEKL-pulsed Gads-/- “APC”-CD8, w/o anti-LFA-1; ⑥ Gads-/- CD8+ T cells incubated with SIINFEKL-pulsed Gads+/+ “APC”-CD8, w/o anti-LFA-1; ⑦ Gads+/+ CD8+ T cells incubated with SIINFEKL-pulsed Gads-/- “APC”-CD8, w/o anti-LFA-1; ⑧ Gads+/+ CD8+ T cells incubated with SIINFEKL-pulsed Gads+/+ “APC”-CD8, w/o anti-LFA-1. 

There will be another set of the above samples for un-pulsed group as control. If anti-LFA-1 

reduces the conjugation level among CD8+ T cells, it would suggest that LFA-1 indeed plays a 

role in the homotypic interactions among CD8+ T cells. Besides this important conclusion, we 

might also get other information from this experiment. For example, does Gads regulate the 
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conjugation among CD8+ T cells? Is the role of Gads in the formation of conjugates on the side 

of CD8+ T cells or on the side of “APC”-CD8 or both? Possible results and explanations are 

listed here (Table 6-1). 

LFA-1-/-, also known as CD11a-/- mice, were generated by deletion of CD11a gene (359, 

360). Using LFA-1-/- mice, recently, the effect of LFA-1 on CD8+ T cell-mediated immune 

response to infection with LM was reported (361). After infection with LM, compared with wild 

type mice, LFA-1-/- mice generated blunted primary CD8+ T cell responses after infection. In 

detail, in the absence of LFA-1, there was decreased immune response of CD8+ T cells, 

together with the reduced differentiation of the SLEC subset. However, LFA-1-/- CD8+ T cells 

had similar level of cytokine secretion, when compared with LFA-1+/+ CD8+ T cells during 

primary responses. Generally, the CD8+ T cell-mediated primary immune responses against LM 

infection had a lot of similarities between LFA-1-/- mice and our Gads-/- mice. In Chapter IV, our 

data showed, however, Gads-/- CD8+ T cells had higher expression of LFA-1 than Gads+/+ CD8+ 

T cells (Fig. 4-3). Thus, the relationship between Gads and LFA-1 in TCR-dependent immune 

responses could be complicated.  

At the early stage of the immune response: in the absence of LFA-1, antigen-specific CD8+ 

T cells had diminished expansion of the population from the beginning of the immune response. 

It was consistent with our data and hypothesis that LFA-1 is a critical regulator for the formation 

of cell conjugates among CD8+ T cells in the spleen after infection so as to promote proliferation 

of antigen-specific CD8+ T cells. With the regulation of LFA-1, Gads-/- CD8+ T cells had normal 

beginning of immune responses.  

There is one possibility that LFA-1 regulates the interaction between CD8+ T cells and APCs 

and the homotypic interactions among CD8+ T cells via binding different ligands. ICAM 

regulates the memory phase of immune response of CD8+ T cells, as ICAM-/- mice have  
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Table 6-1. Possible results of the conjugation experiments among CD8+ T cells. 

Compare conjugation 

level among samples 
Interpretation 

① < ⑤, ② < ⑥, 

③ < ⑦, ④ < ⑧. 
LFA-1 promotes homotypic interactions among CD8+ T cells. 

① = ⑤, ② = ⑥, 

③ = ⑦,④ = ⑧. 
LFA-1 does not promote homotypic interactions among CD8+ T cells. 

① > ⑤, ② > ⑥, 

③ > ⑦,④ > ⑧. 
LFA-1 inhibits homotypic interactions among CD8+ T cells. 

① > ②, ③ > ④, 

⑤ > ⑥,⑦ > ⑧. 

Gads inhibits homotypic interactions among CD8+ T cells on “APC”-CD8 

side. 

① = ②, ③ = ④, 

⑤ = ⑥,⑦ = ⑧. 

Gads does not regulate homotypic interactions among CD8+ T cells on 

“APC”-CD8 side. 

① < ②, ③ < ④, 

⑤ < ⑥,⑦ < ⑧. 

Gads promotes homotypic interactions among CD8+ T cells on “APC”-

CD8 side. 

① > ③, ② > ④, 

⑤ > ⑦,⑥ > ⑧. 

Gads inhibits homotypic interactions among CD8+ T cells on CD8+ T cell 

side. 

① = ③, ② = ④, 

⑤ = ⑦,⑥ = ⑧. 

Gads does not regulate homotypic interactions among CD8+ T cells on 

CD8+ T cell side. 

① < ③, ② < ④, 

⑤ < ⑦,⑥ < ⑧. 

Gads promotes homotypic interactions among CD8+ T cells on CD8+ T 

cell side. 

① > ②, ① > ③, ① > ④, 

⑤ > ⑥, ⑤ > ⑦, ⑤ > ⑧. 

Gads inhibits homotypic interactions among CD8+ T cells on both 

“APC”-CD8 side and CD8+ T cell side. 

① = ② = ③ = ④, 

⑤ = ⑥ = ⑦ = ⑧. 
Gads does regulate homotypic interactions among CD8+ T cells. 

①<②,①<③,①<④, 

⑤<⑥,⑤<⑦,⑤<⑧. 

Gads promots homotypic interactions among CD8+ T cells on both 

“APC”-CD8 side and CD8+ T cell side. 
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reduced memory CD8+ T cell activity (362). In contrast, LFA-1 not only regulates the survival 

ofmemory CD8+ T cells in memory phase, but also the survival of effector CD8+ T cells in the 

expansion  and contraction phases (286). These findings support the model that LFA-1 has a 

ligand other than ICAM-1 to regulate TCR singling in CD8+ T cells. Besides ICAM-1, ligands of 

LFA-1 include ICAM-2, ICAM-3, and JAM-1 (363, 364). In addition, Scholer et. al. (362) reported 

that ICAM-1 on mature DCs is critical for long-lasting contacts with CD8+ T cells but is 

dispensable for short-lived antigen-specific interactions. So that during the CD8+ T cell-mediated 

immune responses, such as those upon LM infection, the signaling mediated via homotypic 

interactions among CD8+ T cells might mainly regulate the onset of the response; and 

interaction between DCs and CD8+ T cells plays a major role later on. I hypothesize the role of 

LFA-1 in CD8+ T cell-mediated immune response is dependent on the stages of the response. 

In detail, the signaling, which is not mediated by the interaction between LFA-1 and ICAM-1, 

regulates the homotypic interactions among CD8+ T cells in the initiation stage. In contrast, the 

association between LFA-1 on CD8+ T cells and ICAM-1 on “conventional APCs” sustains the 

expansion phase later on. Gads is required for the optimal expansion of CD8+ T cell population 

(Fig. 3-1). Furthermore, homotypic interactions among CD8+ T cells, which can compensate for 

Gads deficiency in the formation of cell clusters, are mediated by LFA-1 (Fig. 4-5). The 

modulatory effect of Gads in the later stage of expansion of CD8+ T cell population in primary 

response to infection might be mediated through LFA-1.    

In addition, other evidences suggest that the role of Gads in the secondary immune 

responses of CD8+ T cells is not mediated by LFA-1. Gads is required for the secondary 

responses of CD8+ T cells (Fig. 3-8) to LM infection, while LFA-1 is dispensable, as the antigen-

specific memory CD8 T cells in LFA-1-/- mice responded robustly (361).  
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Other thoughts about LM infection 

The classic rLM infection model has been widely used to study CD8+ T cells (219, 243, 252). 

Many studies, including ours, were performed by adoptively transferring CD8+ T cells from TCR 

transgenic (such as OT-I) mice into recipient mice and then infecting with the strain of bacteria 

expressing the antigen recognized by the transgenic TCR (such as rLM-OVA). However, these 

models involving the exogenous TCR transgenic T cells might not mimic very well the authentic 

immune responses upon infection. Firstly, by administrating the transgenic T cells, the model 

brings a lot of complexities. For example, the number of exogenous TCR transgenic CD8+ T 

cells affects immune responses including the formation and proliferation of memory cells. The 

more CD8+ T cell adoptively transferred, the more central memory cells formed and the faster 

the memory CD8+ T cells proliferated (365). In addition, TCR transgenic T cells, which are 

adoptively transferred, exhibits distinct physiological characteristics from endogenous congenic 

wild type CD8+ T cells. The characteristics include different survival and lymphopenia-driven 

proliferation requirements (366). Secondly, the endogenous CD8+ T cells also respond to LM 

infection, so the immune responses mediated by endogenous and exogenous CD8+ T cells 

might affect each other such as secreting cytokines or competing with “space” for expanding 

their own populations. It would be better to avoid using the adoptive transfer the OT-I cells by 

infecting mice with LM and using GYKDGNEYI MHC class I Pentamer to identify the antigen-

specific CD8+ T cell response to LM infection (367, 368). LM secretes, listeriolysin O (LLO), 

which is pore-forming cytolysin, into the cytosol of infected host cells (369, 370). The peptide 

GYKDGNEYI is the amino acid 91-99 of LLO, a known immunodominant epitopes of LM (371). 

GYKDGNEYI MHC class I Pentamer comprises five MHC class I-peptide complexes assembled 

through a coiled-coil domain. All five MHC class I-peptide complexes in the Pentamer bind to 

TCR of LLO specific-CD8+ T cells. A drawback of this method is, in peripheral lymphoid tissues, 

most of the CD8+ T cells in conventional Gads-/- mice are memory CD8+ T cells, while most of 
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them in wild type C57BL/6 mice are naïve CD8+ T cells (Fig. 2-1). Memory T cells are more 

responsive to antigen than naive T cells, and there is increased TCR-mediated signaling in 

memory T cells than naïve T cells (204). So if the study is performed by infecting conventional 

Gads-/- mice and wild type mice without adoptive transferring OT-I cells, it is not fair to compare 

naïve Gads+/+ CD8+ T cells and memory-like Gads-/- CD8+ T cells in respond to LM infection. 

Based on the above information regarding different method, at present, the method we used in 

my dissertation probably is a better way to study the effect of Gads on CD8+ T cell-mediated 

immune response upon infection. Meanwhile, we also acknowledge that both methods have 

their own advantages and limitations.  

We reveal the role of Gads in different phases of CD8+ T cell-mediated immune responses 

here in my dissertation. However, we did not directly show the effect of Gads on the clearance 

of LM. In the future, we might isolate spleen and liver and analyze the CFU of LM at different 

times (at 4 to 7 days p.i.) and compare whether Gads+/+ CD8+ T cells and Gads-/- CD8+ T cells 

have different ability to mediate killing LM. Alternatively, we could perform a cytotoxic T 

lymphocyte assay in vitro and in vivo. To measure cytotoxicity in vitro, a chromium-release 

assay could be performed. Briefly, OVA-specific Gads-/- or Gads+/+ CD8+ T cells, which are 

effector cells, will be FACS-purified from infected mice. EL-4 cells, which are target cells, will be 

incubated with radioactive chromium (51Cr) and pulsed with SIINFEKL. After washing to remove 

the extra peptide and 51Cr, target cells will be mixed with effector cells at different ratios. 51Cr, 

which have been absorbed by target cells during incubation, will be released into supernatant 

when the cells die. We will have spontaneous lysis control by measuring 51Cr release from 

target cells in the absence of effector cells. Maximum lysis control will be measured when 

detergent (Triton X-100), but not effector cells, is added. Radioactivity of the supernatants is 

measured using scintillation counter. The amount of radioactivity measured in the supernatant is 

a proxy for the number of cells that have been killed by effector cells (372). The difference of 



195 
 

released chromium between samples containing Gads-/- cells or Gads+/+ will be compared. To 

measure cytotoxicity in vivo, splenocytes from CD90.1 C57BL/6 are harvested and split into two 

aliquots. One aliquot is labeled with a high concentration of CFSE, while the other aliquot is 

labeled with a low concentration of CFSE. Then, the CFSEhi splenocytes are pulsed with 

SIINFEKL while the CFSElo splenocytes are pulsed with an irrelevant peptide to serve as an 

internal control. After washing to get rid of the extra peptides, the two populations are mixed at a 

1:1 ratio. Then, the mixture of cells are injected i.v. into the recipient mice, which will have been 

adoptively transferred with CD8+ T cells from Gads-/- or Gads+/+ OT-I mice 7 days ago and 

infected with rLM-OVA 6 days ago as what we have done in Chapter IV. The next day, 

splenocytes of recipient mice are isolated and the ratio CFSEhi cells to CFSElo cells will be 

analyzed by flow cytometry as evidence of in vivo killing. SIINFEKL-pulsed CD90.1 cells will be 

recognized by OVA-specific CD8+ T cells in the recipient, resulting in the destruction of target 

cells. The “killing” ability of OVA-specific CD8+ T cells will be determined by the decreased 

percentages of CFSEhi cells, which have been pulsed with SIINFEKL, as compared with CFSElo 

cells, which have not been pulsed with SIINFEKL. The effect of Gads on cytotoxicity of CD8+ T 

cells will be evaluated by the results of the above three experiments comparing the killing 

activities between Gads-/- CD8+ T cells and Gads+/+ CD8+ T cells. The differences of between 

the percentages of CFSEhi cells targeted by Gads-/- CD8+ T cells and Gads+/+ CD8+ T cells.       

Upon infection with blood borne pathogens, such as LM, immune responses mainly occur in 

spleen. DCs in the MZ and red pulp of spleen encounter LM from blood and present the antigen 

from LM to T CD8+ T cells to initiate the immune responses to infection (246-248). Although the 

innate immune system can restrict LM infection to certain extent, CD8+ T cells are required for 

sterilizing immunity (251). Driven by the inflammatory signals, which start to be generated in the 

innate immune responses, chemokines and chemokine receptors regulate the migration of 

CD8+ T cells and may also facilitate the cell clustering among them. So that, besides adhesion 
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molecules, such as integrin family proteins on the surface of CD8+ T cells, chemokines and 

chemokine receptors might also contribute to the homotypic interactions among CD8+ T cells. 

 

Other evidence supporting that Gads regulates adhesion signaling 

ADAP, is also known as FYN binding protein (FYB-120/130), FYB, and SLAP-130 (SLP-

76 associated phosphoprotein of 130 kDa). ADAP is necessary for optimal T cell responses and 

activation of integrins (373, 374). For example, ADAP is required for TCR-induced clustering of 

LFA-1 and the associated changes in the adhesion of antigen-stimulated T cells (375). The 

interaction of ADAP with SLP-76 is required for TCR-induced, LFA-1-mediated cell clustering 

(376). Upon TCR ligation, Gads associates with ADAP via SLP-76 (138). Gads constitutively 

interacts with SLP-76 (2, 6, 15, 17, 29, 30, 48). From these evidences, Gads might regulate 

TCR-induced cell clustering through ADAP.  

TCR microclusters, which are formed after TCR ligation, provide an actin-dependent scaffold 

for signal amplification (71). Cytoskeletal changes are required for lymphocyte movement, and 

they accompany and control adhesive interactions to regulate cell-cell interactions (377). A 

number of TCR signaling-dependent proteins including WASP and ADAP, have been found to 

regulate actin polymerization (378-380). Those proteins have been detected directly or indirectly 

associated with Gads. In addition, Gads associates with Ezrin, which belongs to the ERM 

(Ezrin-Radixin-Moesin) protein family. The above results suggest that Gads might closely 

regulate cytoskeletal movement. More research needs to be performed to investigate whether 

and how Gads regulates actin remodeling in T cells. 
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Conclusions and implications 

The primary goal of my dissertation is to investigate the role of Gads in CD8+ T cell-

mediated immunity. In Chapter II, I have addressed in detail how Gads regulates the activation 

and proliferation of CD8+ T cells following stimulation with peptide agonists. Then in Chapter III, 

The results indicated that Gads regulates the expansion phase of CD8+ T cell-mediated immune 

response upon infection with an intracellular pathogen as well as optimal recall responses but 

not the formation of memory CD8+ T cells. Next in Chapter IV, Our recent data showed that the 

homotypic interactions among CD8+ T cells could overcome the need for Gads in promoting cell 

cycle progression. To conclude, the research in my dissertation demonstrates that the role of 

Gads in TCR-mediated activation of CD8+ T cells is dependent on the interaction of CD8+ T cells 

and their partners. Interestingly, if CD8+ T cells interact with conventional APCs, Gads promotes 

the interaction and regulate the kinetics of cell cycle entry; if CD8+ T cells interact with other 

CD8+ T cells, however, Gads inhibits the homotypic interactions and Gads is dispensable for 

cell cycle entry of CD8+ T cells. Potentially, this knowledge can be applied to the therapies such 

as increasing the activation of CD8+ T cells in the treatment for tumors and bacterial or viral 

infections and inactivating CD8+ T cells in the treatment for autoimmune diseases.    
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