
 i

A New Generation of Hsp90 Inhibitors:  Addressing Isoform Selectivity  
and Heat Shock Induction 

 
 

By 
 

Adam S. Duerfeldt 
 

Submitted to the graduate degree program in Medicinal Chemistry and the graduate faculty of 
The University of Kansas in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy 
 
 
 
 

 
 

 
       Committee: 

 
 

__________________________ 
Brian S. J. Blagg, Ph.D 

Committee Chair 
 
 

__________________________ 
Thomas E. Prisinzano, Ph.D 

 
 

__________________________ 
Jon A. Tunge, Ph.D 

 
 

__________________________ 
Michael F. Rafferty, Ph.D 

 
 

__________________________ 
Jeff P. Krise, Ph.D 

 
 

 
 
 

Date defended: August 26th, 2011 



 ii

The Dissertation Committee for Adam S. Duerfeldt certifies that this is the approved version of 
the following dissertation: 

 
 
 

A New Generation of Hsp90 Inhibitors:  Addressing Isoform Selectivity  
and Heat Shock Induction 

 
 
 
 
 
 

       
 
 
 
 
 
 
 
 
        
 

 
________________________________ 

Brian S. J. Blagg, Ph.D 
Committee Chair 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Date approved: September 8, 2011 



 iii  

Abbreviations: 
 
17-AAG = 17-allylamino-17-demethoxygeldanamycin 
17-AAGH2 = 17-allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride 
17-CEAG = 17-chloroethyl-17-demethoxygeldanamycin 
17-CEAGH2 = 17-chloroethyl-17-demethoxygeldanamycin hydroquinone 
17-DMAG = 17-dimethylamino-17-demethoxygeldanamycin 
 
ADP = adenosine diphosphate 
Aha1 = Hsp90 co-chaperone (ATPase activator) 
Akt = serine/threonine protein kinase 
Ala = alanine 
AlCl 3 = aluminum trichloride 
AMP = adenosine monophosphate 
AR = androgen receptor 
Arg = arginine 
Asn = asparagine 
Asp = aspartic acid 
AT13387 = Astex Therapeutics’ lead small molecule Hsp90 inhibitor 
ATP = adenosine triphosphate 
 
CDK = cyclin-dependent kinase 
CL = charged linker 
CNF1010 = Conforma Therapeutics’ small molecule Hsp90 inhibitor 
CNF2020 = Conforma Therapeutics’ small molecule Hsp90 inhibitor 
CoQ = co-enzyme Q 
cRDA = cis-radamide, compound 20 
CTD = C-terminal domain 
CYP = cytochrome P450 
Cys = cysteine 
 
DCM = methylene chloride 
dGrp94 = canine Grp94 
dGrp94N = canine Grp94 N-terminal truncate 
DMAP = 4-dimethylaminopyridine 
DMF = dimethylformamide 
DMSO = dimethylsulfoxide 
DTT = dithiothreitol 
 
EDCI = 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride 
eNOS = endothelial nitric oxide synthase 
ER = endoplasmic reticulum 
ERAD = endoplasmic reticulum-associated degradation 
ES936 = NQO1 specific inhibitor 
EtOH = ethanol 
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GDA = geldanamycin 
GHKL = Family of ATPases consisting of DNA Gyrase, Hsp90, Histidine Kinase, and Mut L 
Gln = glutamine 
Glu = glutamic acid 
Gly = glycine 
GR = glucocorticoid receptor 
Grp94 = glucose-regulated protein 94 kDa 
 
H2 = hydrogen 
HBL-100 = human breast cancer cell line 
HEK293 = kidney cancer cell line 
Her2 = human epidermal growth factor receptor-2 
hERG = human ether-á-go-go potassium ion channel 
H. fuscoatra = Humicola fuscoatra 
HIF = hypoxia-inducible factor 
His = histidine 
Hop = Hsp70/Hsp90 organizing protein 
HPLC = high-performance liquid chromatography 
H. sapiens = Homo sapiens 
HSE = heat shock element 
HSF = heat shock factor 
HSP = heat shock protein family 
Hsp = heat shock protein 
HSR = heat shock response 
hHsp90 = human Hsp90 
hHsp90N = human Hsp90 N-terminal truncate 
hTERT = human telomerase reverse transcriptase 
HWE = Horner–Wadsworth–Emmons 
 
KU-NG-1 = lead Grp94 inhibitor, compound 29 
KW-2478 = Kyowa Hakko Kirin’s lead small molecule Hsp90 inhibitor 
 
IC50 = inhibitory concentration eliciting half-maximal response 
IFN-γ = interferon gamma 
IGF = insulin-like growth factor 
IL-12 = interleukin-12 
Ile = isoleucine 
IP = immunophilin 
IRS = insulin receptor substrate 
ITC = isothermal titration calorimetry 
 
Kit = tyrosine protein kinase 
 
LDA = lithium diisopropylamide 
Leu = leucine 
LiOH = lithium hydroxide 
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Lys = lysine 
 
MAP = mitogen-activated protein 
MCF-7 = estrogen receptor negative breast cancer cell line 
mCPBA = meta-chloroperoxybenzoic acid 
MD = middle domain 
MDA-468 = human breast cancer cell line (NQO1-null) 
MDA-468 (NQO1) = human breast cancer cell line NQO1 overexpressing 
MDA-MB-231 = human breast cancer cell line 
MDA-MB-453 = human metastatic breast cancer cell line 
MeOH = methanol 
Met = methionine 
MET = hepatocyte growth factor receptor 
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siRNA = small interfering RNA 
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Abstract: The 90 kDa heat shock proteins (Hsp90) are molecular chaperones that are 

upregulated in response to cellular stress and are responsible for the conformational maturation, 

activation and/or stability of more than 200 client proteins.  Many of these clients are oncogenic 

and facilitate the progression of cancer.  Disruption of Hsp90’s inherent ATPase activity renders 

the chaperone inactive, leading to degradation of substrates and ultimately, apoptosis.  

Consequently, Hsp90 has become a highly sought after anti-cancer target and numerous 

pharmaceutical companies and academic labs are expending efforts to develop novel methods to 

regulate the Hsp90-mediated protein folding process.   

Included within the Hsp90 family are four isoforms, each of which exhibits a unique 

cellular localization, expression, function and clientele.  Hsp90α (inducible) and Hsp90β 

(constitutive) both localize to the cytoplasm and share similar functions; however, recent studies 

have identified isoform specific substrates.  Tumor necrosis factor receptor-associated protein 

(TRAP-1) is the Hsp90 isoform localized to the mitchondria and to date, no specific clients or 

selective inhibitors have been identified.  The fourth isoform is glucose-regulated protein 94 kDa 

(Grp94), which is localized to the endoplasmic reticulum and is responsible for the maturation 

and stability of specific secreted and membrane bound proteins.  Currently identified Hsp90 

inhibitors exhibit pan-inhibition, resulting in the disruption of all four isoforms’ ability to bind 

and hydrolyze ATP.  This activity is believed responsible for the undesired toxicities related to 

Hsp90 inhibition in the clinic, as proteins that are critical to cardio function and the central 

nervous system are dependent upon yet to be determined Hsp90 isoforms.  

Another detriment arising from N-terminal Hsp90 inhibition is induction of the pro-

survival, heat shock response.  Specifically, induction of the target, Hsp90, has resulted in 

therapeutic resistance and complications with dosing and administration protocols. 
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Presented herein is rationale for the development of Hsp90 isoform selective inhibitors 

and the first irreversible inhibitor of Hsp90 that mitigates induction of Hsp90; thus, providing 

key advancements towards addressing the detriments associated with Hsp90 inhibitors currently 

under clinical investigation.  
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Chapter I 
 

An Introduction to Hsp90 and Hsp90 Inhibitors Under Clinical Evaluation 
 

I.1 Molecular Chaperones 

 The ability of organisms to maintain a cellular environment consistent with vitality and 

well-being is referred to as homeostasis.  Multiple pathways regulate cellular homeostasis, many 

of which consist of feedback mechanisms that are critical to maintaining a viable cellular 

environment.  One of the most important aspects of cellular homeostasis is the ability to maintain 

the conformation of intracellular proteins, which encompasses their folding, stability, activation, 

trafficking and degradation.  This maintenance is provided by a group of unrelated protein 

families referred to as molecular chaperones.1-6 

    As essential components of cellular viability, molecular chaperones respond to cellular 

stress, and mitigate the effects of extra- or intra-cellular stressors.  Molecular chaperones interact 

with unfolded or partially folded proteins, to expedite the formation of biologically active 

structures, or remove the denatured substrates via degradation mechanisms.  Proteins that depend 

upon or interact with molecular chaperones are termed clients, and each molecular chaperone 

interacts with a unique set of clients, with some chaperones exhibiting more selectivity than 

others.3, 5  One class of molecular chaperone that has recently received significant attention is the 

heat shock protein family (HSP).  Consistent with the name of this class, HSP expression is 

increased upon cellular stress, including elevated temperatures.  However, induction can also 

result upon toxic insult,7 inflammation,8 hypoxia,9 infection,10 and/or nutrient starvation.11  The 

increase of HSPs is a major constituent of the heat shock response (HSR), which is activated 

through the transcription factor, heat shock factor-1 (HSF-1), and the heat shock element (HSE), 

resulting in gene upregulation.12 
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 The HSP family 

consists of multiple members 

that are named according to 

their molecular weight.  For 

example, Hsp90 refers to a 

subset of heat shock proteins 

with a molecular weight of 

~90 kDa.  The principle HSPs 

are presented in Table 1.  The upregulation of HSPs in response to cellular stressors has led to 

their implication in the progression of many disease states, highlighting their potential 

chemotherapeutic utility.4, 13, 14 

I.2 Heat Shock Protein 90 kDa 

 Heat shock protein 90 kDa (Hsp90) is one of the most abundant ATPases in eukaryotic 

organisms, comprising ~1-2% of total cellular protein under non-stressed conditions.15, 16  Upon 

introduction of stress, intracellular Hsp90 is increased to ~4-6% of total protein concentration.16  

In unstressed cells, Hsp90 exists in a latent state and aids homeostasis through transient protein 

folding assistance, intracellular transport, maintenance and degradation.  Under stressed 

conditions, especially in malignancies, Hsp90 is upregulated to handle the increased demand of 

client proteins for the conformationally viable states induced by the chaperone. Furthermore, in 

stressed conditions, Hsp90 exists in a heteroprotein complex that exhibits higher affinity for 

ATP.17  Thus, the prevalence of a high-affinity state, an addiction of cancer cells to oncogenic 

client proteins, and a greater dependency upon Hsp90 have supported Hsp90 inhibition as a 

novel chemotherapeutic target for the treatment of cancer.18-21  In addition, Hsp90 is responsible 

Table 1:  Principle heat shock proteins. 
Family Localization Function(s) 

Small Hsps (12-43 
kDa) 

cytosol 
general chaperone, co-

factor 

Hsp60 
mitochondria, cytosol, 

extracellular 
mitochondrial protein 

folding 

Hsp70 
cytosol, lysosome, 

mitochondria 
protein folding 

Hsp90 

cytosol, mitochondria, 
endoplasmic 
reticulum, 

extracellular 

protein folding, 
activation, 

stabilization, cell 
signaling 

Hsp100 mitochondria 
solubilization of 

protein aggregates 
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for clientele that maintain critical roles in all six hallmarks of cancer (Figure 1).22-24  Therefore, 

Hsp90 inhibition results in simultaneous disruption of all six events that are necessary for 

oncogenesis.25 

I.2.1 Architecture and Energy Requirements of Hsp90 

 Hsp90 chaperones exist as homodimers, with each monomer consisting of an N-terminal 

regulatory domain (NTD), a charged linker (CL), a middle domain (MD) and a C-terminal 

dimerization domain (CTD) (Figure 2).16  Hsp90 chaperone activity is linked to an ATP-driven 

conformational change within the NTD, leading to the closure of a helix-loop-helix “lid” over 

the ATP binding pocket.26  This lid closure allows for a transient NTD dimerization that 

stabilizes alignment of the catalytic residues from the NTD and MD of the protein, resulting in 

ATP hydrolysis.27  

 Hsp90 is a member of the GHKL superfamily, which consists of DNA Gyrase, Hsp90, 

Histidine Kinase and Mut L.  This superfamily contains a Bergerat-type ATP-binding domain 

Raf , Her2

CDK4
CDK6

MET
MMP2

hTERT

VEGF
VEGFR
HIF-1

AKT
RIP

Survivin

 
Figure 1.  Six hallmarks of cancer.  Example Hsp90 clients involved in each 
hallmark are listed in orange.23 
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that binds nucleotides in a bent conformation, which is in contrast to other ATPases that bind 

nucleotides in a linear fashion.  Mut L and Histidine kinase represent the other two members of 

this class expressed in the human genome.28  Thus, Hsp90 inhibitors exhibit excellent selectivity 

due to the unique binding geometry not accommodated by other ATPases. 

As shown in Figure 2, nascent polypeptides are delivered to the Hsp90 homodimer via 

heat shock proteins 70 kDa (Hsp70) and 40 kDa (Hsp40) along with Hsp70/Hsp90 organizing 

protein (Hop).29  Upon transfer of the substrate (client) to Hsp90 (1.2),30 client-dependent 

immunophilins and co-chaperones associate with the complex to form the activated heteroprotein 

complex (1.3).27  This activated complex exhibits a high affinity for N-terminal ligands, 

including ATP and competitive inhibitors.17  Upon binding ATP, N-terminal dimerization (1.4) 

occurs,26 followed by the binding of p23, which facilitates the hydrolysis of ATP to ADP (1.5).31  

This hydrolysis provides the requisite energy for client folding, which yields the biologically 

active client (1.6), and releases Hsp90 (1.1) for future catalytic turnover.27, 32  Introduction of a 

((

Figure 2. Hsp90 protein folding cycle.32 
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competitive ATP-inhibitor, arrests the substrate bound complex (1.7), resulting in 

ubiquitinylation of the client and subsequent degradation via the proteasome.33, 34 

I.2.2 Hsp90 Isoforms 

 Four isoforms of Hsp90 are expressed in the human genome including cytoplasmic 

Hsp90α (inducible) and Hsp90β (constitutive); tumor necrosis factor receptor-associated protein 

(TRAP-1), which is localized to the mitochondria; and glucose-regulated protein (Grp94), which 

is localized to the endoplasmic reticulum.35, 36  Similarities between the isoforms include 1) 

native existence as obligate homodimers; 2) dependence upon ATP-binding and hydrolysis; 3) a 

characteristic Bergerat-fold N-terminal ATP-binding pocket and 4) similar architecture including 

a NTD, MD and CTD.37  However, amongst the isoforms differences have been observed, which 

has led to investigations aimed at elucidating the biological roles of each isoform.  

Cytosolic Hsp90α and Hsp90β 

Cytosolic Hsp90 has received the most attention from the Hsp90 research community. 

Numerous crystal and co-crystal structures have been solved for the cytosolic forms of Hsp90 

and the list of identified clients continues to grow.  Substrates of cytosolic Hsp90 encompass a 

vast array of proteins necessary for cellular function including protein kinase signaling proteins 

(Her2, Raf, Akt), mutated signaling proteins (p53, Kit, TK3), transcription factors (steroid 

hormone receptors: GR, AR), angiogenic factors (HIF–1α), telomerase, and cell-cycle regulators 

(CDK4 and CDK6).22  As such, cytosolic Hsp90 is responsible for the conformational maturation 

of enzymes implicated in all six hallmarks of cancer (Figure 1).  Thus, it was hypothesized that 

inhibition of cytosolic Hsp90 would result in simultaneous disruption of all six hallmarks of 

cancer, providing a ‘magic bullet’ chemotherapeutic target.  However, no Hsp90 inhibitor has 

been approved by the FDA at present.  
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Hsp90α and Hsp90β exhibit ~95 % sequence homology at the ATP-binding region,36 

which has limited the potential for designing Hsp90α versus Hsp90β isoform selective inhibitors.  

With the lack of isoform specific inhibitors, it has been difficult to identify isoform dependent 

clients.  However, function and expression profiles of the two paralogs have been analyzed 

through siRNA techniques.  Constitutively active Hsp90β maintains key roles in early embryonic 

development, germ cell maturation, cytoskeletal stabilization, cellular transformation, signal 

transduction and long-term cell adaptation.  In contrast, the inducible form, Hsp90α, is essential 

for the promotion of growth, cell cycle regulation and stress-induced cytoprotection.37  Specific 

cellular functions of the two isoforms, suggest that each interacts with a unique subset of client 

proteins and co-chaperones.  As a consequence, the client proteins and co-chaperones proposed 

to interact with “cytosolic Hsp90” are undergoing more thorough investigation to identify which 

isoforms they interact with.  For this reason, the abbreviation, Hsp90 is accepted to encompass 

both cytosolic isoforms and will be used in this manner for the remainder of this dissertation.  

Mitchondrial TRAP-1 

 Tumor necrosis factor (TNF) receptor-associated protein 1 (TRAP-1) was discovered 

upon its interaction with the intracellular domain of type 1 TNF receptor (TNFR-1).38  

Subsequent characterization of TRAP-1 showed ~35% identity and ~50% overall similarity with 

cytosolic Hsp90, and a ~70% similarity of the N-terminal ATP binding domain.38, 39  

Furthermore, several known N-terminal inhibitors of cytosolic Hsp90 (discussed in-depth in 

section I.2.3) also competitively inhibit ATP binding to TRAP-1.40  In addition, every amino acid 

shown via mutational analysis to be essential for ATP binding to Hsp90 is conserved in the 

TRAP-1 N-terminal ATP-binding pocket.35, 36  Thus, due to the structural conservation at the N-
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terminal binding pocket, no TRAP-1 selective small molecule inhibitor has been developed to 

date. 

 Structurally, TRAP-1 lacks the charged linker connecting the N-terminal and middle 

domains noted in cytosolic Hsp90.  Furthermore, TRAP-1 only exhibits ~23% identity with 

cytosolic Hsp90 in the C-terminal domain35 and lacks the MEEVD tetratricopeptide repeat 

region responsible for the interactions with many co-chaperones.  Thus, it is not surprising that 

TRAP-1 fails to interact with cytosolic Hsp90 co-chaperones including tumor suppressor p23 

and Hop.39  Therefore, it is hypothesized that TRAP-1 exhibits unique cellular functions and 

interacts with a specific set of client proteins and co-chaperones distinct from those that interact 

with cytosolic Hsp90.  Identification of TRAP-1 selective inhibitors would be instrumental in 

delineating the biological function of this Hsp90 isoform.  However, to date, no solution, crystal 

or co-crystal structures have been solved for TRAP-1, which has made structure-based ligand 

design difficult. 

Endoplasmic Reticulum Localized Grp94  

 Glucose-regulated protein 94 kDa (Grp94) was first reported in 1977 upon the 

observation that its induction coincided with glucose deprivation.41  Subsequent studies have 

revealed additional functions of Grp94 leading to alternative names such as gp96 and 

endoplasmin.42  Unlike TRAP-1, co-crystal structures of Grp94 have been solved; however, no 

selective small molecule inhibitors have been developed. 

 Structurally, Grp94 exhibits ~50% overall identity with cytosolic Hsp90 in the N-

terminal domain; nonetheless, the amino acids required for ligand binding are completely 

conserved.43  The primary sequence for Grp94, however, contains a 3–5 species-dependent 

amino acid insertion, which has been shown to perturb the tertiary structure of the N-terminal 
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ATP-binding pocket.43  This perturbation may provide an opportunity for ligand selectivity and 

is therefore hypothesized for use in the design of selective inhibitors.  As with TRAP-1, Grp94 

also lacks the TPR domain required for interaction with cytosolic Hsp90 co-chaperones, which 

suggests Grp94 operates under a unique regulatory mechanism and interacts with a distinct set of 

client proteins.44, 45   

Recently, Grp94 has garnered considerable attention for its involvement in the biological 

maturation of secretory and membrane proteins including Toll-like receptors, integrins and 

growth factors.46  Furthermore, Grp94 has been implicated in apoptosis protection,47 cancer 

progression,48 immunomodulation46 and drug resistance.49  Thus, Grp94 has garnered the 

attention of the Hsp90 community as a novel target for diseases ranging from cancer to 

immunological conditions.  Grp94 is discussed in detail in Chapter III.     

I.2.3 Natural Product Inhibitors of Hsp90 

 Known inhibitors of Hsp90 ATPase activity (Figure 3) include the natural products 

geldanamycin (GDA) and radicicol (RDC).  Geldanamycin, a benzoquinone ansamycin 

antibiotic, was first isolated from the broth of Streptomyces hygroscopicus during the 1970s.50  

The first antitumor activity for GDA was reported nearly 20 years later, and the mode of action 

was believed to result from tyrosine kinase inhibition, 

due to its ability to reverse v-Src transformed cells into 

normal phentoypes.51, 52  Subsequent studies revealed 

GDA to bind the N-terminal ATP-binding site of Hsp90, 

resulting in disruption of v-Src’s maturation.53 

Radicicol, a natural product that maintains 

antifungal properties, was originally isolated from the 

 
Figure 3.  Natural product 
inhibitors of Hsp90. 
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fungus Monosporium bonorden in 1953.54  Subsequent studies revealed RDC to be a potent 

inhibitor of Hsp90 through competitive inhibition of the N-terminal ATP-binding domain.55, 56  

The identification of GDA and RDC as potent natural product inhibitors of the Hsp90 N-terminal 

binding domain has been instrumental towards the delineation of the biological functions 

manifested by Hsp90 and for the facilitation of small molecule Hsp90 inhibitor development.   

The co-crystal structures of adenosine nucleotides, GDA and RDC with Hsp90 have been 

solved, and have elucidated the key interactions of each ligand in the N-terminal nucleotide-

binding pocket (Figure 4).  The co-crystal structure of GDA bound to Hsp90 revealed the 

quinone moiety of GDA to occupy the diphosphate region of the binding pocket and to provide 

five hydrogen-bonding interactions with the protein (B, Figure 4).57  In contrast, the 2,4-diphenol 

of RDC occupies the binding region normally occupied by the adenine ring of ATP, producing 

three important hydrogen-bonding interactions with Hsp90 (C, Figure 4). The chlorine atom in 

RDC projects into a large hydrophobic cavity that is surrounded by aromatic amino acids.57  

Unlike the quinone ring of GDA, only one hydrogen bond is formed between the oxirane of 

RDC and the phosphate-binding region.57  Although GDA and RDC show no obvious structural 

compatibility with Hsp90’s endogenous ligand, ATP, each natural product binds with high 

affinity through a network of specific hydrogen bonding interactions.  Thus, both natural 

products have served as templates for the design of Hsp90 inhibitors; even though the biological 

profile exhibited by GDA and RDC limits their clinical utility. 
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GDA produces toxicity unrelated to Hsp90 inhibition and suffers from poor solubility.58-

61 Quinones are redox-active and recent studies have shown GDA to be a substrate for P-450 

reductases.62, 63 Upon reduction by these enzymes, GDA is converted to a semiquinone and upon 
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Figure 4.  Schematic depictions of ligand interactions with the N-terminal domain of Hsp90.  
A) ADP, B) GDA, and C) RDC.57   
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exposure to oxygen, generates superoxide radicals.62, 63 Superoxide radicals cause cell death in an 

Hsp90-independent manner. Therefore, new Hsp90 inhibitors lacking redox-active 

functionalities are being pursued to circumvent these effects. 

In contrast to GDA, RDC lacks in vivo activity, despite its higher affinity for the N-

terminal ATP-binding domain (GDA: Kd = 1.2 µM / RDC: Kd = 19 nM).57 In vivo, the 

electrophilic nature of the α,β,γ,δ–unsaturated carbonyl moiety and the allylic epoxide result in 

rapid conversion to inactive compounds that have little or no affinity for Hsp90.64, 65  

Replacement of the epoxide ring of RDC with a cyclopropane moiety resulted in 

cycloproparadicicol, which displays potent activity against several cancer cell lines and is being 

investigated further.65  

Although the clinical utility of GDA and RDC has been dismissed, the natural products 

have been instrumental in delineating selectivity of Hsp90 inhibitors towards malignant cells.  

Studies have shown that Hsp90 inhibitors accumulate in tumor cells and exhibit high differential 

selectivity.17, 66  Recent immunoprecipitation experiments have demonstrated Hsp90 from 

malignant cells to exist in a heteroprotein complex consisting of client proteins and co-

chaperones (1.3, Figure 2); whereas Hsp90 from normal cells was isolated as the uncomplexed 

homodimer (1.1, Figure 2).17  The heteroprotein complex in tumor cells demonstrates ~100-fold 

higher affinity for the semi-synthetic GDA derivative, 17-AAG.  Furthermore, upon incubation 

of the isolated heteroprotein complex with ATP, a significantly higher ATPase activity was 

measured than exhibited by homodimeric Hsp90; thus demonstrating that the heteroprotein 

complex not only exhibits higher affinity for N-terminal inhibitors but also for the natural 

substrate.17  Subsequent studies revealed ATPase activity of the heteroprotein complex to be 

inhibited at lower concentrations of inhibitors than observed for homodimeric Hsp90.17  These 
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results justify the differential selectivity manifested by N-terminal Hsp90 inhibitors for 

malignant cells over normal cells and demonstrate a promising therapeutic window.      

I.3 Clinical Candidate Profiles 

 Co-crystal structures of Hsp90 bound to numerous ligands have been solved, which has 

led to structure-based ligand design efforts.  These efforts have largely aimed at developing 

inhibitors for cytosolic Hsp90, as Hsp90α and Hsp90β have proven more prone to co-

crystallization.  As a result, small molecule inhibitors of Hsp90 are evaluated for inhibitory 

activity against the cytosolic forms of Hsp90; however, the results also suggest pan-inhibition 

against all Hsp90 isoforms.61  At present no research group has been successful towards the 

rational design of isoform selective inhibitors.  

I.3.1 Ansamycin-derived Inhibitors 

 Despite promising anti-tumor activity both in vitro and in vivo, clinical evaluation of 

GDA was halted due to metabolic instability, poor solubility and unfavorable toxicity profiles at 

therapeutically relevant doses.  Furthermore, GDA is a P-glycoprotein (P-gp) substrate and is 

often effluxed from cells prior to eliciting its biological action.67  Upregulation of P-gp pumps is 

recognized as a mechanism for drug resistance in transformed cells.  Consequently, analogs 

based on the benzoquinone ansamycin scaffold have been pursued with the objective of 

improving physicochemical and pharmacological properties amenable to clinical use.   
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Optimization of the ansamycin 

scaffold has centered on the 17-position, 

as substitution at this position results in 

maintained or improved biological activity 

and superior physicochemical 

properties.68, 69  The improved metabolic 

profile of these 17-amino substituted 

analogs is attributed, in part, to the 

enhanced electron-donating ability of the 

amino group, thus attenuating the electrophilicity of the quinone ring.60, 61, 68  Furthermore, 

research has shown the 17-position to project towards the solvent upon Hsp90 binding, which 

allows for the incorporation of solubilizing appendages without affecting Hsp90 affinity.70, 71   

The ansamycin-based analogs under clinical evaluation (Figure 5) include 17-allylamino-17-

demethoxygeldanamycin (17-AAG, tanespimycin, NSC330507, KOS953, CNF1010), 17-

dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG, alvespimycin, KOS1022), 

and the hydroquinone hydrochloride salt of 17-AAG (17-AAGH2, retaspimycin hydrochloride, 

IPI-504).60, 61 

 The first ansamycin-derived analog to enter clinical trials was 17-AAG, which entered 

evaluation in 1999.  17-AAG exhibits antitumor activity in Her2-positive metastatic breast 

cancer; however, current clinical trials of 17-AAG are aimed at treating myelomas and 

lymphomas.60, 61  Phase I and II clinical trials have been completed with 17-AAG using twice 

weekly and daily dosing schedules.  Preliminary results were promising, however, a lack of 

clinical efficacy for 17-AAG in various phase II trials has dampened enthusiasm.  Dose-
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Figure 5.  Ansamycin-based Hsp90 inhibitors 
under clinical evaluation. 
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dependent hepatotoxicity and inadequate solubility have precluded the approval of 17-AAG.60, 61  

Therefore, numerous strategies have been pursued to increase bioavailability.   

 Evaluation of 17-AAG has demonstrated the compound is reduced by NAD(P)H:quinone 

oxidoreductase (NQO1), resulting in the hydroquinone metabolite 17-AAGH2.
72, 73  Results from 

our laboratory74 and others have shown that the hydroquinone ansamycin-based analogs exhibit 

superior binding affinity versus the quinone counterpart for Hsp90, as well as a slow koff rate.75, 

76  Dependence of Hsp90 inhibitors upon NQO1 poses numerous liabilities, as NQO1 

polymorphisms are common and NQO1 expression is a known mechanism for drug resistance.77, 

78 Thus, considering the metabolic fate of 17-AAG, resistance acquisition through NQO1 

expression, and the superior affinity of hydroquinone analogs, researchers at Infinity 

Pharmaceuticals developed the hydroquinone hydrochloride salt, 17-AAGH2 (IPI-504).  

Development of this analog eliminated dependence upon NQO1, therefore mitigating metabolic 

liabilities.  Properties of this analog include high solubility in aqueous formulations, and 

improved Hsp90 inhibitory and tumor cell toxicity profiles when compared to 17-AAG.60, 61  

Although 17-AAGH2 is still undergoing phase I/II clinical evaluation, one trial terminated 

prematurely citing “a higher than anticipated mortality rate among patients enrolled in the 

treatment arm.”  Current clinical evaluation is ongoing and 17-AAGH2 is being evaluated for the 

treatment of non-small cell lung cancer (NSCLC), melanomas, and solid tumors as well as in 

combination therapy with the proteasome inhibitor, bortezomib.60, 61 

In parallel to formulation and mechanistic studies of 17-AAG, 17-DMAG was developed 

by Kosan, and incorporates a solubilizing dimethylamino-ethyl moiety that remains protonated at 

physiological pH.60, 61  An improved physicochemical profile is believed responsible for the 

observed improvement in Hsp90 inhibitory activity and biological affect on numerous cancer cell 
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lines.  Although 17-DMAG exhibits an identical binding mode to other ansamycins, it 

demonstrates superior chemical and metabolic stability, lower toxicity, higher solubility and 

bioavailability than both 17-AAG and GDA.60, 61  17-DMAG is now being evaluated in Phase I 

clinical trials for leukemias and advanced solid tumors.  

  Another ansamycin inhibitor of note is the unsubstituted amino analog, 17-AG, which has 

recently entered phase I evaluation and remains an intriguing lead compound. 17-AG is the 

major metabolite of 17-amino substituted ansamycins and maintains Hsp90 affinity and anti-

cancer activity.60, 61  In summary, ansamycin inhibitors of Hsp90 have advanced the furthest in 

clinical trials.  However, numerous detriments still exist with this class of drugs including 

formulation/scheduling difficulties due to heat shock induction, non-ideal toxicity profiles, and 

synthetic accessibility.  These detriments have resulted in efforts to identify small molecule, 

synthetically accessible Hsp90 inhibitors that exhibit improved properties.   

I.3.2 Benzamide Inhibitors 

Serenex developed an Hsp90-based ATP-affinity 

column to identify new inhibitors.61, 79  Cell lysates were 

loaded onto the column, resulting in the capture of ~2000 

ATP-binding proteins.  Compounds were screened for 

their ability to selectively displace Hsp90 from the ATP-

binding column, resulting in identification of small molecule benzamide inhibitors of Hsp90, 

which were subsequently acquired by Pfizer for development as chemotherapeutic agents.61, 79 

  The first benzamide inhibitor entered clinical trials in 2007.  Although the lead 

compound exhibited variable bioavailability due to poor solubility and crystal polymorphisms, 

prodrugs were developed to mitigate such detriments.  An orally bioavailable mesylate prodrug, 

 
Figure 6.  Benzamide inhibitor 
developed by Serenex/Pfizer. 
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SNX-5422 (Figure 6), is currently under phase I clinical evaluation with preliminary studies 

focusing on the determination of the maximum tolerated dose (MTD), safety, and toxicity 

profiles.61  Preclinical evaluation suggests a promising biological profile for this class of Hsp90 

inhibitor and the ability to outperform ansamycin analogs in specific trials.79  However, 

benzamide Hsp90 inhibitors, like ansamycins, continue to exhibit dose-dependent cardiotoxicity 

that has been attributed to the cardiac potassium human-ether-a-go-go (hERG) channel.80  

Furthermore, benzamide Hsp90 inhibitors are non-selective and bind Hsp90α, Hsp90β, Grp94 

and TRAP-1.61  The non-selective nature of benzamide inhibitors may be an insurmountable 

feature of this inhibitory class and may preclude FDA approval. 

I.3.3 Purine Inhibitors 

 Utilizing structure-based drug design (SBDD), researchers at Memorial Sloan Kettering 

Institute developed small molecule Hsp90 inhibitors consisting of the adenine ring of ATP and 

an aromatic moiety.61  SBDD studies resulted in a lead compound, PU3,81 which was optimized 

independently by Conforma Therapeutics and later by Biogen Idec following acquisition.  A 

pharmacophore model resulted from their optimization studies, which highlights three necessary 

features for the purine class of Hsp90 ATPase disruptors: 1) a necessary NH2–C=N capable of 

binding the purine pocket of Hsp90, which mimics the same functionality in ATP; 2) an attached 

aromatic ring positioned six bonds away from the NH2 group and 3) the presence of a purine 

moiety, which consists of optimally positioned basic nitrogen atoms to provide the requisite 

hydrogen bonding interactions.61  Purine based analogs became the first fully synthetic Hsp90 

inhibitors to enter clinical trials in 2005. 
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 Clinical evaluation of purine-based Hsp90 inhibitors has 

resulted in optimism regarding this particular scaffold, as these 

inhibitors exhibit disease-modifying activity against malignancies 

with minimal off-target toxicities.61  Two purine analogs, CNF1010 

and CNF2024 (BIIB021, Figure 7), are currently under evaluation for 

the treatment of hematological and solid tumors.  However, purine 

inhibitors retain detrimental heat shock induction and non-selective isoform binding profiles.60, 61  

Thus, as clinical evaluation progresses, it is hypothesized that similar scheduling difficulties and 

toxicities observed with other N-terminal Hsp90 inhibitors will also be found.  

I.3.4 Resorcinylic Inhibitors  

 Following the lead of numerous other pharmaceutical companies, Vernalis initiated a 

structure-based approach towards the identification of small molecule Hsp90 inhibitors.61, 82  

Eventually, Vernalis and Novartis commenced in collaboration, leading to the identification of 

resorcinylic Hsp90 inhibitors.  This series was optimized and decorated with solubilizing 

moieties, which produced NVP-AUY922 (Figure 8), and entered clinical 

trials in 2007 as an intravenous infusion.82, 83  Currently, NVP-AUY922 is 

undergoing phase I/II clinical evaluation in combinatorial formulations 

and as a stand-alone agent against a variety of malignancies.60, 61  

    Resorcinylic inhibitors demonstrate minimal selectivity between 

cytosolic Hsp90 and either Grp94 or TRAP-1, ~10-fold and ~60-fold 

respectively.61  However, detriments observed with other inhibitory 

scaffolds continue to plague this class, including heat shock induction and 

off-target toxicities. 

 
 
Figure 7.  Purine 
inhibitor developed 
by Biogen Idec. 

 
Figure 8.  
Resorcinylic 
inhibitor 
developed by 
Novartis. 



 18

 Another company pursuing resorcinylic inhibitors is Synta Pharmaceuticals.  The exact 

structure for Synta’s lead compound, STA-9090,84 has not been disclosed, however examination 

of the patent literature suggests the scaffold to contain a uniquely functionalized resorcinol.85  

Ongoing clinical evaluation for STA-9090 include phase I/II studies with one study utilizing co-

administration with docetaxel, a microtubule stabilizing agent.61  Published clinical results for 

STA-9090 have been limited; however, discussions with project leaders at the Hsp90 

Symposium in 2010 revealed that similar detriments observed with other classes of Hsp90 

inhibitors are also noted with STA-9090. 

I.3.5 Other Inhibitors 

 The inability to gain FDA approval for any chemotherapeutic, that targets Hsp90, has not 

deterred competitors.  Four other Hsp90 inhibitors have commenced clinical evaluation including 

Kyowa Hakko Kirin’s KW-2478, Myriad Pharmaceuticals’ MPC-3100, Exelixis’ XL888, and 

Astex Therapeutics’ AT13387.60, 61, 85  All of the aforementioned inhibitors are orally available 

except KW-2478, which is administered intraveneously.  None of the structures have been 

disclosed and little clinical data has been released.  However, it can be hypothesized that each of 

these inhibitors will also suffer from the detriments manifested by other N-terminal Hsp90 

inhibitors, as none have demonstrated novel profiles in preliminary disclosures.     

I.4 Biological Concerns with Hsp90 Inhibition 

 Other than detriments observed in the clinical evaluation of Hsp90 inhibitors, numerous 

research groups have identified problematic resistance mechanisms and biological consequences 

relating to Hsp90 inhibition worthy of consideration. 
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I.4.1 Resistance 

The ability of Hsp90 inhibitors to modulate multiple oncogenic pathways has launched 

many research endeavors to target this chaperone.  As with the development of any class of 

chemotherapeutic agents, resistance is a concern and recent reports have validated the potential 

for acquired and intrinsic resistance to Hsp90 inhibitors.   

Mutations  

As discussed previously, Hsp90 N-terminal inhibitors act through competitive inhibition 

of the ATP-binding site, disrupting the ability of the chaperone complex to bind and hydrolyze 

ATP.  Thus, the catalytic cycle is inhibited, which leads to client protein degradation and 

eventual cell death.  Due to the competitive nature of Hsp90 inhibitors versus ATP, it was 

assumed that target mutation could 

be dismissed as a potential 

mechanism of resistance; as such 

mutations would alter the ability of 

the protein to bind ATP and 

therefore be deleterious to its 

function.  This hypothesis was 

recently challenged through 

studies with Humicola fuscoatra, a 

fungus that produces RDC and 

exhibits resistance through a single 

point mutation (L34I).86  This 

mutation is located within the N-

 
Figure 9.  Comparison of the ligand interactions with 
L34I mutant Hsp90.  Amino acids from the co-crystal 
structures are shown RDC (green), GDA (cyan), and 
ADP (orange).  Water molecules for RDC (red), GDA 
(cyan), and ADP (Yellow) are shown as spheres.86  
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terminal nucleotide binding pocket and causes an increase in the hydration state of the binding 

domain (Figure 9).  This mutation decreases the affinity of H. fuscoatra Hsp90 for RDC, while 

allowing both GDA and ATP to bind normally; however, it has yet to be determined whether 

such a mutation can arise with human Hsp90.86   

Other mutations have been reported to allosterically alter the sensitivity of Hsp90 to 

inhibitors (Table 2).  A yeast-based approach has identified a single point mutation in yeast 

Hsp90 (yHsp90; A107N) that can alter its affinity for both RDC and 17-AAG, without 

compromising ATP binding.87  Expression of Hsp90α and Hsp90β with equivalent mutations, 

A121N for Hsp90α and A116N for Hsp90β, as the sole source of Hsp90 in the yeast system 

Table 2.  Reported mutations to Hsp90 orthologs and the associated 
affects. 

 
Ortholog Species Mutation Effect 

yHsp90  S. cerevisiae A107N 
Stabilizes ATP lid closure; Decreases 
efficacy of RDC and 17-AAG; ATP 

binding unaffected 

yHsp90  S. cerevisiae T22I 
Decreases efficacy of 17-AAG; 

Increases ATPase activity through 
Aha1 independent mechanism 

Hsp90α H. sapiens A121N 
Stabilizes ATP lid closure; Decreases 
efficacy of RDC and 17-AAG; ATP 

binding unaffected 

Hsp90α H. sapiens I128T 
Decreases efficacy of RDC and 17-

AAG in vivo; ATP binding unaffected; 
Increases affinity for Aha1 

Hsp90β H. sapiens A116N 

Stabilizes ATP lid closure; Decreases 
efficacy of RDC and 17-AAG; ATP 

binding unaffected; Increases affinity of 
Aha1 

Hsp90β H. sapiens I123T 
Decreases efficacy of RDC and 17-

AAG in vivo; ATP binding unaffected; 
Increases affinity for Aha1 

Hsp90β H. sapiens T31I 
Decreases efficacy of 17-AAG; 

Increases ATPase activity through 
Aha1 independent mechanism 

Hsp90 H. fuscoatra L34I 
Increased hydration state; Decreases 

affinity for RDC; GDA and ATP 
binding unaffected 
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produced identical results.  This alanine substitution favors closure of the ATP-lid over ATP 

stimulating N-terminal dimerization and association with Aha1, which increases ATPase 

activity.  This increase in ATPase activity blocks the ability of inhibitors to bind.87, 88  As shown 

in Table 2, this same Aha1 dependent mechanism of resistance has been linked to Hsp90α I128T 

and Hsp90β I123T mutations.  Additionally, an Hsp90β T34I mutation has been identified that 

causes resistance to Hsp90 inhibition, however the mechanism, although allosteric in nature, 

appears to be Aha1 independent.88   Like most chemotherapeutic agents, other mechanisms of 

resistance to Hsp90 inhibitors have been reported including target induction, alteration in drug 

influx or efflux, and expression modification to associated co-factors.89  

Heat Shock Response  

Another mechanism of resistance displayed towards Hsp90 inhibition involves the heat 

shock response (HSR).  Administration of Hsp90 N-terminal inhibitors leads to the release of 

HSF-1, subsequent trimerization of HSF-1, phophorylation and translocation to the nucleus, 

wherein HSF-1 acts as a transcription factor that binds the heat shock element to induce the 

HSR.  This induction results in the overexpression Hsp90, Hsp70, Hsp40 and Hsp27; all of 

which serve as anti-apoptotic chaperones that serve to protect the cell.90-92  Induction of these 

pro-survival chaperones, especially Hsp90, has resulted in dosing and scheduling conflicts in 

patients.  In addition, various cell lines exhibiting an increase in drug efflux and metabolism 

have been reported to correlate directly with heat shock induction.  Using photoaffinity labels, 

Benchekroun and colleagues demonstrated the ansamycin analogs act as both substrates and 

inhibitors of P-gp pumps, suggesting drug accumulation may be affected.67  Identification of 

Hsp90 inhibitors that fail to activate the HSR and do not interact with P-gp pumps is important to 

the progression of Hsp90 inhibitor development.  Elimination of these attributes will likely aid in 
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the identification of amenable dosing and scheduling for oncology patients.  Alternatively, 

strategies aimed at inhibiting Hsp90 and Hsp70 simultaneously or inhibiting the C-terminal 

putative binding domain may represent promising avenues to mitigate some of the 

aforementioned problems with current inhibitors.93-95  

Aberrant Function of Co-chaperones  

A myriad of partner proteins that interact with the Hsp90 machinery have been reported 

and it is well accepted that these co-chaperones work in collaboration to modulate the catalytic 

cycle.22  Alteration of the expression of these interactors has suggested yet another mechanism 

for acquired resistance to Hsp90 inhibition (Table 3).  One example is the overexpression of 

p23/Sba1, which is responsible for binding to and stabilizing the Hsp90·ATP complex.96  Upon 

stabilization, hydrolysis is blocked, and consequently the active site of Hsp90 remains occupied, 

eliminating the ability of inhibitors to modulate ATP binding.  Consequently, Cox and Miller 

have demonstrated that overexpression of p23/Sba1 leads to lower responses to N-terminal 

inhibitors.  Furthermore, Forafonov et al. reported that in the absence of p23/Sba1, cells are more 

responsive to Hsp90 inhibition.97  Additional studies have shown that mutants of p23/Sba1 are 

viable; suggesting that p23/Sba1 

interactions with Hsp90 may 

provide the first evolutionary 

mechanism designed to protect 

cells from Hsp90 inhibition.98  In 

total, resistance to Hsp90 

inhibition has been reported to 

arise through numerous 

Table 3.  Hsp90 co-chaperones and the associated affects 
on the ATPase cycle. 
 

Co-chaperone Effect 

HOP/Sti1 
Decreases ATPase activity through partial 
blockade of N-terminal nucleotide binding 

pocket; Decreases efficacy of GDA and RDC 

p23/Sba1 
Binds to Hsp90/ATP complex, inhibiting 

ATPase actitivity; decreases efficacy of GDA 
and RDC 

Aha1 
Increases ATPase actitivity; decreases 

efficacy of GDA and RDC 
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mechanisms, and these mechanisms must be further detailed and continually monitored during 

clinical studies. 

I.4.2 Genetic Polymorphisms 

Apart from acquired resistance to Hsp90 inhibitors, intrinsically expressed genetic 

polymorphisms have also been identified.  Two of these polymorphisms include NQO1 (DT-

diaphorase) and cytochrome P450 3A4 (CYP3A4).77  Although these polymorphisms seem to 

affect only certain ansamycin scaffolds, they deserve attention, as similar problems may arise 

with future Hsp90 inhibitors.77  Numerous polymorphisms of Hsp90 have been identified; 

however these polymorphisms usually result in diminished Hsp90 activity.99, 100  For this reason, 

only genetic polymorphisms of the enzymes responsible for the metabolism of select ansamycin 

analogs are discussed herein. 

Cytochrome P450 3A4 is one of the most active mixed-function oxidase enzymes in the 

human genome.  In fact, CYP3A4/CYP3A5 are responsible for ~36% of xenobiotic metabolism 

and the CYP3A subfamily is the most abundantly expressed CYP in the liver (30%) and intestine 

(70%).101, 102  Research has identified CYP3A4 as one enzyme responsible for the metabolism of 

17-AAG.103  Genetic polymorphisms of CYP3A4 are common, as over 40 single nucleotide 

polymorphisms have been identified in the CYP3A4 gene within the promoter and/or coding 

regions.  The variability in this metabolic enzyme must be monitored during clinical evaluations 

of ansamycin-based inhibitors of Hsp90, as dosing and scheduling protocols may need to be 

changed.  Furthermore, CYP3A4 is known to be inhibited and/or induced by many substrates, 

including currently used chemotherapeutic agents, antibiotics, immunomodulators and anti-

depressants, all of which are commonly prescribed to oncology patients.101, 102  Taken together, 

the genetic variability of the enzyme paired with the potential for serious drug-drug interactions 
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suggests the development of small molecule inhibitors that lack interaction with CYP3A4 is 

important to the development of future Hsp90 inhibitors with clinical applications.      

As discussed previously, outside of cytochromes P450 metabolism, research has shown 

the efficacy of 17-AAG to correlate directly with NQO1 gene expression in vitro.73, 76  High 

expression of the NQO1 gene results in high levels of the DT-diaphorase enzyme, believed to be 

responsible for conversion of 17-AAG to a more efficacious hydroquinone, although the 

mechanism by which this occurs remains under investigation.  Preliminary research suggests up 

to a ~32-fold increase in cellular sensitivity to 17-AAG in cells containing high levels of active 

DT-diaphorase.  Intriguingly, this phenomenon was not observed for GDA, suggesting that this 

mechanism is not applicable to all ansamycin-based Hsp90 inhibitors.  Furthermore, the 

correlation between NQO1 expression and 17-AAG efficacy is not observed in vivo.104  The 

discrepancy between in vitro and in vivo dependence upon NQO1 expression should be 

considered when evaluating quinone containing Hsp90 inhibitors in preliminary biological 

evaluation.  It is reported that 5−20% of the population is homozygous for the NQO1*2 

polymorphism72, 105 (diminished activity) and DT-diaphorase expression in human tumors is 

known to be variable,106-108 suggesting that although dependence of 17-AAG upon NQO1 has yet 

to be noted in vivo, subsequent quinone containing Hsp90 inhibitors should be evaluated for 

metabolic activation in vivo.    

In total, the variability of CYP3A4 and DT-diaphorase polymorphisms suggest the need 

to determine the levels of these enzymes and their effect on efficacy prior to administration of 

Hsp90 inhibitors.  Furthermore, the ability to correlate enzyme effects in vitro and in vivo may 

help predict the efficacy and/or toxicity of inhibitors before administration.  The design of 

inhibitors exhibiting activity independent of cytochromes P450 metabolism and intracellular 
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reductases especially CYP3A4 and DT-diaphorase, respectively, will likely enhance the 

predictability and widespread use of Hsp90 inhibitors.   

I.4.3 Downstream Biological Effects 

 The effect of Hsp90 inhibitors on the cell cycle and the mechanisms by which inhibitors 

induce cytostasis and/or apoptosis is well understood.18, 19, 109  However, recent research has shed 

light on unexpected biological events resulting from Hsp90 inhibition, leading to unanswered 

questions regarding downstream biological effects.  It is well accepted that Hsp90 inhibition 

results in disruption of the Hsp90 protein folding machinery and subsequent client protein 

degradation via the ubiquitin-proteasome pathway, culminating in eventual cell death.  However, 

detrimental downstream effects resulting from Hsp90 inhibition have recently surfaced.  For 

example, although previous research suggests intracellular Hsp90 inhibition to be anti-metastatic 

in nature.110 Price and colleagues report that inhibition of Hsp90 with 17-AAG upregulates 

osteoclast formation and augments bone metastasis.111  This is not surprising, as it was 

previously reported that 17-AAG exhibits pronounced effects on gene expression in cancer cells, 

including upregulation of genes responsible for tumor cell survival and/or growth in bone.112  

Considering metastatic tumor growths cause the majority of deaths in cancer patients, and only 

~20% of breast cancer patients survive longer than 5 years after bone metastasis is discovered,111, 

113 it provides an example as to why disease progression mechanisms must be further delineated.   

 Beyond specific disease progression, one must also look at the effects of Hsp90 inhibition 

on other tissues.  Although the “magic bullet” theory introduced by Erlich was intuitive, no such 

compounds have come to fruition.  Non-selective binding and localization to non-diseased 

tissues have and will continue to cause undesired toxicities for chemotherapeutic agents.  

Evidence shows that Hsp90 inhibition significantly alters dendritic cell function by reducing T-
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cell proliferation and decreasing the ability of mature dendritic cells to present antigens.114  

Importantly, the data suggest that the Hsp90-protein-folding machinery is essential to dendritic 

cell function and patients enrolled in Hsp90 inhibitor clinical trials should be carefully monitored 

for immunosupression. 

 Another example of deleterious downstream effects resulting from Hsp90 inhibition is 

the alteration of glomerular filtration, as reported by Ramirez et al..115  Multiple reports have 

established that Hsp90 is responsible for regulating nitric oxide (NO) synthesis, which is 

dependent upon endothelial nitric oxidase synthase (eNOS).116-119  Due to the eNOS regulation 

on glomerular filtration rate, Ramirez and colleagues investigated the effect of acute Hsp90 

inhibition with RDC on the eNOS pathway and glomerular filtration rate.  The study suggests 

that RDC induced Hsp90 inhibition leads to decreases in eNOS phosphorylation, eNOS 

dimer/monomer ratio and in renal blood flow, therefore decreasing glomerular filtration rate, 

which can be associated with hypertension and metabolic syndrome.115  Although eNOS is a 

known Hsp90-dependent client protein and these results are not too surprising, these effects 

should be monitored during clinical evaluation of Hsp90 inhibitors.     

 Needless to say, further studies are necessary to determine the downstream biological 

effects of Hsp90 inhibition in order to anticipate potential complications that may arise in clinical 

trials.  Future studies on the biology of Hsp90 inhibition will help identify potential side-effects 

including immunosuppression, hypertension, liver toxicity, and kidney failure. 

I.5 Concluding Remarks: The Next Generation of Hsp90 Inhibitors 

 Although cancer is generally defined as a malignant growth or tumor caused by 

uncontrolled cellular division, it is well accepted in the medical and scientific community that 

cancer is also an umbrella term encompassing more than 200 diseases.  It has been noted that 
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each cancer exhibits a unique biological profile and distinct mechanism of progression.  While 

the excitement surrounding Hsp90 research stems from the ability of Hsp90 inhibition to 

simultaneously disrupt all six hallmarks of cancer, many questions remain unanswered as to 

which cancer, which combination of therapies, and which patient population will be responsive 

to each Hsp90 inhibitory scaffold. 

 Until the recent advancement of various small molecule Hsp90 inhibitors into clinical 

trials, the majority of clinically relevant Hsp90 inhibitors have been ansamycin analogs.  Efforts 

to improve upon synthetic feasibility, compound solubility, pharmacological profiles and 

physicochemical properties have inspired further small molecule development.  Although all of 

the inhibitors in clinical trials bind and inhibit the ATPase activity of the N-terminal dimerization 

domain, each scaffold exhibits unique downstream effects and phenotypic changes in specific 

cancers.  Reported structures of clinical candidates include ansamycin, benzamide, purine, and 

resorcinylic based scaffolds. 

 Clinical results have shown Hsp90 inhibitory scaffolds to exhibit unique efficacy profiles, 

suggesting specific scaffolds may be beneficial towards certain cancer types or that 

administration of multiple Hsp90 inhibitory scaffolds may act synergistically against malignant 

growths.60, 61, 120  Furthermore, it is apparent that Hsp90 inhibitory scaffolds may prevent the 

ability of malignancies to develop resistance to commonly prescribed chemotherapeutic 

agents,121, 122 suggesting the identification of a combination therapy may represent the most 

promising strategy to treat patients.  This has been affirmed in the clinic as the efficacy of 

monotherapy with specific Hsp90 inhibitors, especially ansamycin based scaffolds, has been a 

disappointment; however combinatorial therapies have been promising.60, 61, 122    
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 Identification of new Hsp90 inhibitory scaffolds and elucidation of each scaffold’s 

biological profile will allow clinicians to more rapidly predict the proper indication and/or 

combination of therapies for each patient.  Technological advancements now allow clinicians to 

screen for various biological markers and forecast disease progression, confirming the beginning 

of the personalized medicine era.   

 Development of new Hsp90 inhibitory scaffolds and further evaluation of current 

scaffolds may also make it possible to identify isoform selective inhibitors.  Identification of 

such inhibitors may prove beneficial in eliminating potentially detrimental effects observed with 

pan-Hsp90 inhibition.  Multiple isoforms of Hsp90 are found in the human genome and include 

Hsp90α (inducible; cytoplasmic), Hsp90β (constitutive; cytoplasmic), Grp94 (endoplasmic 

reticulum) and TRAP1 (mitochondrial).  Each isoform may be responsible for the maturation of 

distinct client proteins.  Thus, the ability to target one isoform selectively may enhance efficacy, 

therapeutic control and further elucidate the physiological role of each isoform.  To date, little 

data exist suggesting isoform selectivity for any of the clinically relevant Hsp90 inhibitors.  

Identification of isoform selective inhibitors may allow for degradation of specific client 

proteins, which will further enhance selectivity and provide yet another class of Hsp90 

inhibitors, potentially giving rise to a series of tunable chemotherapeutic agents.         

 Although the ability to identify Hsp90 inhibitory scaffolds is becoming trivial, 

understanding the biological responses inherent to each inhibitory class is difficult.  Hsp90 has 

been validated as an anti-cancer target and clinical trials with various inhibitory scaffolds are 

ongoing.  Both academic and pharmaceutical research teams continue to invest resources in 

Hsp90 modulatory projects, however, the bottleneck for development of Hsp90 inhibitors 
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remains focused on patient responses to Hsp90 inhibition and subsequent effects in gene 

expression levels. 

Multiple Hsp90 inhibitory scaffolds have been identified and each scaffold appears to 

exhibit different binding modes and therefore different profiles of efficacy.  Focus has shifted 

from semi-synthetic ansamycin analogs to scaleable small molecules exhibiting superior 

physicochemical and pharmacological properties.  The utilization of competitive small molecule 

Hsp90 inhibitors should provide tools that elucidate mechanisms and downstream biological 

effects resulting from the administration of each scaffold.  Through collaborative efforts between 

medicinal chemists, pharmaceutical chemists and pharmacologists, new small molecule Hsp90 

inhibitors will undoubtedly progress towards clinical evaluation.  The continual development of 

novel Hsp90 inhibitory scaffolds paired with strong biological and mechanistic studies will help 

decipher the complicated network associated with Hsp90 inhibition and bring personalized 

chemotherapy to the forefront of medicine. 
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Chapter II 

cis-Radamide Analogs: 
Conformationally Constrained Chimeric N-terminal Hsp90 Inhibitors 

 

II.1 Rationale for the Development of cis-Amide Inhibitors  

 The 90 kDa heat shock proteins (Hsp90) are ATP-dependent molecular chaperones that 

are overexpressed in response to cellular stress and necessary for the folding, activation, 

stabilization and/or rematuration of polypeptides.1-4  Two natural products depicted in Figure 10, 

geldanamycin5 (GDA) and radicicol6 

(RDC), bind competitively to the 

Hsp90 N-terminal binding pocket, 

resulting in degradation of Hsp90-

dependent client proteins via the 

ubiquitin-proteasome pathway.7  

Hsp90 clientele play key roles in 

multiple hallmarks of cancer,8 

therefore, inhibition of the Hsp90 

protein folding machinery results in simultaneous disruption of numerous mechanisms of 

oncogenesis.9, 10  Consequently, not only has Hsp90 emerged as a promising anti-cancer target,11 

but GDA and RDC have proven to represent excellent models for which the development of new 

Hsp90 inhibitors can be pursued for drug development and mechanistic investigations.12 

 
 
Figure 10.  Structures of N-terminal Hsp90 
inhibitors.  GDA and RDC are natural product 
inhibitors and RDA is a chimeric inhibitor developed 
in the Blagg laboratory. 
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Although RDC and GDA both bind the Hsp90 N-terminal 

ATP Bergerat-fold with high affinity, their modes of binding and 

inhibitory activities are different.  Radicicol exists in a bent 

conformation whether bound or unbound to Hsp90 (Figure 11) 

and produces a favorable entropy of 8.3 cal/mol upon binding.13  

Not surprisingly, the predisposition of RDC to the bent 

conformation is believed to be a contributing factor towards its 

similar activity in both cellular and recombinant assays.13, 14  Even 

though RDC is the most potent in vitro natural product inhibitor 

of Hsp90 identified to date, its metabolic liabilities and 

physiologic instability preclude RDC’s use therapeutically.  Thiols such as dithiothreitol (DTT) 

inactivate RDC, suggesting physiological inactivation by endogenous antioxidants such as 

glutathione.15   

Numerous analogs of RDC, which address the instability of the electrophilic epoxide and 

α,β,γ,δ-unsaturated ketone moieties, have been prepared and evaluated for Hsp90 inhibitory 

activity.16, 17  Studies by Moulin et al. utilizing molecular dynamics simulations suggested a 

correlation between the conformation of RDC analogs and potency.14  Despite the syntheses of 

various analogs that exhibit greater stability, potency, and retain a bioactive ground-state 

conformation, no RDC-based analogs are currently under clinical evaluation.  In contrast, 

considerable effort has been devoted towards the development of GDA-based semi-synthetics as 

chemotherapeutics.18 

 In contrast to the bent, cis-amide conformation of GDA when bound to Hsp90, both 

solution and crystal structures have demonstrated that this natural product exists in an extended, 

 
Figure 11.  Solid-state 
structure of RDC (gray) 
overlapped with the 
Hsp90 bound 
conformation (cyan).  
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trans-amide conformation in the 

ground state (Figure 12).19  Multiple 

studies have shown that prior to 

binding Hsp90, GDA must undergo 

two conformational changes; the ansa 

ring must rotate over the 

benzoquinone moiety and the amide 

bond must isomerize from trans to 

cis by rotation about C1–N22 and C20–

N22 (Figure 10).20  The first event is reported to occur spontaneously; however, isomerization of 

the amide bond is suggested to be Hsp90-dependent.20   Accordingly, isothermal titration 

calorimetry (ITC) experiments have shown that GDA exhibits an entropic penalty of −6.4 

cal/mol upon binding Hsp90.21, 22    

As a consequence of these thermodynamic data, Jez and coworkers hypothesized that 

GDA analogs containing a predisposed cis-amide bond will result in ~1000 fold increase in 

Hsp90 affinity through reduction of entropic penalties.23  Such postulations have inspired 

subsequent studies aimed at determining the effect of trans/cis isomerization of the GDA-amide 

moiety.24-26  However, to the best of our knowledge, no analogs had been synthesized that 

exhibited a predisposed cis-amide functionality. 

 Recently, chimeric inhibitors of Hsp90 were disclosed that contained both the quinone 

ring from GDA and the resorcinol moiety of RDC in an attempt to mimic the hydrogen-bonding 

interactions exemplified by the two natural products when bound to the Hsp90 N-terminal 

nucleotide-binding pocket (Figure 13).27  Although this approach produced novel scaffolds for 

 
Figure 12.  Solution structure of GDA (left) and the 
Hsp90 bound structure (right). 
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Hsp90 inhibition, none of the reported 

analogs exhibited conformational 

characteristics observed by the natural 

products when bound to Hsp90.27-29  

Analysis of the seco derivative, 

radamide (RDA), revealed the potential 

to introduce conformational aspects of 

both natural products when bound to Hsp90, specifically a bent conformation and a ground-state 

cis-amide moiety.  Furthermore, of the three classes of chimeric inhibitors developed in our 

laboratory, RDA represented the most synthetically accessible scaffold for which to incorporate 

the desired conformational characteristics.  The compounds developed have been classified as 

cis-RDA analogs. 

II.2 Synthesis of cis-Radamide Analogs 

 Retrosynthetically, we envisioned the 

desired analogs to be obtained via a Horner–

Wadsworth–Emmons (HWE) olefination reaction 

between cyclic phosphonate 1 and homologated 

aldehydes, 2 and 3 (Scheme 1).  Compound 1 was 

proposed to result from tandem 

reduction/intramolecular cyclization of compound 

4, which could be obtained from commercially 

available 4-benzyloxy-3-methoxybenzaldehyde in 

4 steps.  Aldehydes 2 and 3 could be prepared 

 
Figure 13.  Chimeric Hsp90 inhibitors developed 
in the Blagg Laboratory. 
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Scheme 1.  Retrosynthetic analysis for 
the synthesis of cis-amide chimeric 
analogs. 
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directly from 528 and 6, respectively. 

 Commencing with commercially 

available 4-benzyloxy-3-methoxy 

benzaldehyde (7, Scheme 2), phenol 8 was 

formed via a Dakin oxidation.  Treatment 

of 8 with diazophosphonate 9, enlisting a 

rhodium carbenoid mediated O-H insertion, 

resulted in the phenolic ether 10.  

Regioselective nitration of 10 was 

accomplished utilizing mild ammonium 

nitrate and trifluoroacetic anhydride conditions.  Refluxing 4 with tin(II) chloride resulted in not 

only reduction of the nitro group to the corresponding aniline, but also cyclization to give the 

desired key intermediate, 1.  

The protected resorcinylic precursors were prepared by treatment of 5 with lithium 

diisopropylamide at -78°C to generate the 

benzylic anion, which was quenched upon 

addition of dimethylformamide to afford the 

aldehyde product, 2, or with allyl bromide to give 

6 (Scheme 3).  Oxidation of 6 with osmium 

tetroxide gave the corresponding diol, which was 

cleaved in situ with sodium periodate to yield the 

homologated aldehyde, 3.    

With the synthons in hand, the fragments 

 
Scheme 2.  Synthesis of cis-amide cyclic 
phosphonate. 

 
Scheme 3.  Synthesis of homologated 
aldehydes. 
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were joined via a Horner–Wadsworth–Emmons 

olefination reaction and subsequent removal of 

the tert-butyl-dimethylsilyl protecting groups 

with tetrabutylammonium fluoride provided 

compounds 11–14 (Scheme 4). 

 Originally, we were only interested in the 

saturated analogs, but realized the olefinated 

intermediates exhibited higher conformational 

rigidity than the saturated analogs.  Thus, we 

attempted to selectively remove the benzyl ether 

in the presence of the unsaturated amide with 

procedures reported in literature including FeCl3, 

Pd(OAc)2/Et3SiH/Et3N, and NaI/TMSCl.  However, none of these conditions afforded the 

desired products.  Eventually, conditions employing aluminum(III) chloride in anisole effectively 

cleaved the benzyl ether without alteration of the α,β-unsaturated amide to afford compounds 

15–18 (Scheme 4). 

 Standard hydrogenation conditions with palladium on carbon under hydrogen atmosphere 

yielded racemic products 19 and 20, which were subjected to chiral HPLC to afford the 

enantiopure analogs, 21–24 (Scheme 4). 

 

 

 

 

 
Scheme 4.  Fragment coupling and 
deprotection. 
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II.3 Biological Evaluation of cis-

Radamide Analogs 

II.3.1 Anti-proliferation Activity 

Anti-proliferation studies with 

compounds 15–24 were conducted 

against MCF-7 and SKBr3 breast 

cancer cell lines.  As shown in Table 4, 

the E-olefin is more active than the Z-

olefin for both linker lengths and the 

(+)-enantiomer is more active than the 

(−)-enantiomer.  Rationale for the observed results will be provided in section II.4.1. 

II.3.2 Inhibition of Hsp90 ATPase Activity 

To evaluate this series for inhibition of ATPase activity,30 recombinant yeast Hsp90 

(yHsp90) was overexpressed in Escherichia coli and purified.31  The purified protein was 

incubated with ATP in the presence of 15, 17, 21, and 23 following the assay protocol previously 

Table 4.  Anti-proliferative and ATPase activity of 
cis-amide analogs.  IC50 values expressed as µM 
concentrations unless otherwise noted. 
 

Compound MCF-7 SKBr3 ATPase 
15 3.2 ± 0.1 1.8 ± 0.1 2.4 ± 0.1 
16 78.9 ± 11.3 57.1 ± 8.4 − 
17 1.5 ± 0.1 1.2 ± 0.1 1.6 ± 0.0 
18 9.8 ± 1.9 15.9 ± 4.1 − 
19 4.8 ± 1.1 7.3 ± 0.2 − 
20 6.3 ± 0.9 7.8 ± 0.2 − 
21 3.6 ± 0.1 2.1 ± 0.2 1.5 ± 0.1 
22 14.9 ± 0.2 15.4 ± 0.8 − 
23 2.7 ± 0.5 2.1 ± 0.7 1.2 ± 0.0 
24 78.0 ± 4.4 15.4 ± 0.8 − 

Radamide 18.6 ± 0.9 23.7 ± 1.7 5.9 

GDA 9.8 ± 0.1 nM 8.5 ± 1.1 nM 2.5 ± 0.4 
RDC 47.7 ± 2.6 nM 37.5 ± 4.0 nM 0.4 ± 0.0 

IC50 = concentration needed to produce 50% inhibition 

 

 
Figure 14.  Mechanism of coupled ATPase assay.30 
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developed in our laboratory.  As depicted in Figure 14, inorganic phosphate is produced upon 

Hsp90 mediated ATP hydrolysis.  Maltose phosphorylase subsequently mediates the 

phosphorylation of maltose and cleavage of the glycosidic linkage to produce glucose-1-

phosphate and free glucose.  The free glucose is oxidized by glucose oxidase in the presence of 

molecular oxygen to produce hydrogen peroxide (H2O2) and gluconolactone.  The resulting 

H2O2, is utilized by horseradish peroxidase to reduce Amplex Red, which is present in the assay 

media, to resorufin, which can be measured spectroscopically.  However, in the presence of an 

Hsp90 inhibitor, Hsp90’s ATPase activity is inhibited and inorganic phosphate is not produced, 

thus the catalytic cycle responsible for resorufin production is circumvented.  This provides a 

method to measure inhibition of Hsp90’s inherent ATPase activity through measurement of 

resorufin absorption at 563 nm.   

As shown in Table 4, the ATPase IC50 values correlated to those observed in the anti-

proliferation studies, suggesting equipotency of these analogs for the heteroprotein complex 

present in transformed cells and the purified homodimeric species employed in the ATPase 

assay. 

II.3.3 Western Blot Analyses 

To confirm the anti-proliferative nature of these compounds resulted from Hsp90 

inhibition, representative compounds 17 and 23 were incubated with MCF-7 cells for 24 h and 

Western blot analyses were performed with the cell lysates (Figure 15).  As expected, the 

immunoblots confirmed concentration-dependent degradation of Hsp90-dependent client 

proteins, Her2 and Raf at concentrations reflective of the corresponding anti-proliferative IC50 

values, thus linking cell viability to Hsp90 inhibition.  Western blot analyses also demonstrated 

induction of the heat shock response, as indicated by induction of Hsp70, which is a common 
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downstream affect resulting from N-terminal Hsp90 inhibition.  Actin is not an Hsp90 client 

protein, therefore its concentration is unaffected by the compounds and can be used as a loading 

control. 

II.4 Interaction of cis-Radamide with Hsp90 and Grp94 

II.4.1 Co-crystal Structure of cRDA Bound to Hsp90 

 Preliminary biological studies with cis-RDA analogs confirmed a characteristic Hsp90 

inhibitory profile.  Since the cis-RDA class of chimeric Hsp90 inhibitors represented a new class 

of conformationally constrained N-terminal inhibitors, compound 20 (cRDA) was sent to Dr. 

Daniel Gewirth at the Hauptman–Woodward Medical Research Institute for co-crystallization 

studies.  The racemic compound was chosen solely on the basis of the quantity of material 

needed.  Inspired by the differences between the co-crystal structures for the seco-analog RDA 

with the N-terminal domains of both the yeast homolog of human Hsp90 (yHsp90N) and canine 

Grp94 (dGrp94N),32 the Gewirth laboratory attempted to co-crystallize cRDA with both 

chaperones; however, only a co-crystal structure for cRDA bound to the N-terminus of human 

Hsp90α (hHsp90N) was successful (Figure 16). 

 
Figure 15.  Western blot analyses of compounds 17 (left) and 23 (right).  
Concentrations denoted in µM. 
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As revealed in the next section, the inability to co-crystallize cRDA with Grp94 does not 

suggest lack of binding.  It is well accepted in the Hsp90 structural biology community that 

Grp94 is inherently difficult to co-crystallize.  This isoform is incredibly flexible and adopts 

numerous ligand dependent conformations.  Thus obtaining co-crystal structures of ligands 

bound to Grp94 is arduous and often unsuccessful.  

Nevertheless, comparison of RDA and cRDA with 

yHsp90N and hHsp90N, respectively, provides 

valuable insights. 

 In both RDA and cRDA (unpublished) co-

crystal structures, the resorcinol ring makes a direct 

hydrogen-bonding interaction with the carboxylate 

of the aspartic acid residue (Asp79 in yHsp90) 

required for ATP binding, thus inhibiting the ability 

of ATP to bind (Figure 17).32  This orientation is 

 
Figure 16.    RDA (left, green) bound to yHsp90N and cRDA (right, blue) 
bound to hHsp90N.   

Gly83

Asp79

Ile77

Leu34

Phe124

H2O

H2O

H2O

 
Figure 17.  Resorcinylic hydrogen-
bonding network of RDA (green) and 
cRDA (blue) with yHsp90N labeled 
amino acids. 
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consistent with all of the resorcinylic inhibitors to date.  

Furthermore, the chlorine functionality on both inhibitors 

projects towards a hydrophobic pocket containing 

Phe124, while the methyl ester participates in a water 

mediated hydrogen-bonding network with Asp79 and the 

backbone of Gly83.32 

 The difference in co-crystal structures becomes 

evident when examining the amide portion of both 

inhibitors.  The quinone moiety of RDA projects towards the solvent (Figure 18) and makes 

direct hydrogen-bonding interactions with Lys44 and Lys98.32  Water-mediated contacts 

between Lys44, Glu88, Asn91, Asn92 and Lys98 and the quinone are also observed.  An 

additional water-mediated hydrogen bond network is also observed between the amide-linker 

and Lys98, Gly121 and the Phe124 backbone.32  These hydrogen-bonding networks elicit a 

trans-amide conformation of RDA when bound to the Hsp90 N-terminal ATP-binding pocket, 

further exemplifying the inability of the chimeric seco 

analogs to bind in a manner observed by either natural 

product inhibitor of Hsp90. 

 In contrast to the linear conformation exhibited by 

RDA, cRDA binds the Hsp90 N-terminal ATP-binding 

pocket in a bent conformation indicative of the constraint 

induced via the cis-amide moiety and the appending 

stereocenter (Figure 19).  This binding mode, provides an 

explanation for the differences in anti-proliferative 

 
Figure 18.  Quinone interactions 
of RDA with yHsp90N. 

 
Figure 19.  Quinone mimic 
interactions of cRDA with 
hHsp90N.  
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activity exhibited by +/– enantiomers or E/Z olefins (Table 4), as a specific geometry is 

necessary for binding the Hsp90 N-terminal binding pocket.  This binding orientation results in 

direct hydrogen-bonding contacts between the cRDA phenol and the backbone of Phe138 

(Phe124 in yHsp90) and Asn51 (Asn37 in yHsp90).  An additional water-mediated hydrogen-

bonding network occurs between the amide carbonyl of cRDA and Lys58 (Lys44 in yHsp90).  

No obvious interactions are observed between cRDA and Asp102, Asn 105, Asn106 or Lys112 

(Glu88, Asn91, Asn92 and Lys98 in yHsp90); all of which are amino acids that interact with the 

quinone region of RDA.  Therefore, the binding mode of cRDA provides a unique set of 

interactions with Hsp90 and yields a novel scaffold exploitable for inhibitor design. 

II.4.2 Binding Affinity of cRDA for Hsp90 and Grp94 

 Although Gewirth and colleagues were unable to isolate high quality crystals of cRDA 

bound to Grp94, they were able to determine the binding affinity of cRDA to both full-length 

yHsp90 and dGrp94 through tryptophan fluorescence quenching (TFQ) analysis.  Proteins 

generally exhibit intrinsic fluorescence, which is predominantly derived from tryptophan 

residues.  Research has shown that upon binding N-terminal ligands, Hsp90 undergoes 

conformational changes that results in tryptophan fluorescence quenching.33  Thus, TFQ has 

 
Figure 20.  Tryptophan fluorescence titration for binding of RDA and 
cRDA to full-length yHsp90 and dGrp94.  
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been validated as a method to measure the binding affinity of Hsp90 N-terminal ligands.  The 

binding affinity values for cRDA were determined to be 0.24 ± 0.12 µM for yHsp90 and 0.11 ± 

0.02 µM for dGrp94.  A comparison of these values to the seco-analog RDA values (0.87 ± 0.14 

µM for yHsp90 and 0.52 ± 0.13 µM for dGrp94), shows ~4-fold increase in affinity for both 

Hsp90 isoforms (Figure 20).  These results suggest that both Hsp90 and Grp94 are sensitive to 

ligand conformation, which provides an avenue for the design of isoform selective inhibitors.  

II.5 Concluding Remarks 

    In conclusion, we have designed, synthesized, and provided biological data for a series 

of analogs that not only contain hydrogen bonding moieties exhibited by GDA and RDC, but 

also exhibit the conformational biases adopted by the natural products when bound to Hsp90 via 

inclusion of a bent conformation and a cis-amide moiety.  In accord with Jez and co-workers,23 

introduction of a cis-amide moiety increased Hsp90 inhibitory activity (~10 fold), compared to 

RDA.  As indicated by the biological results, introduction of both the cis-amide and the bent 

conformation to the chimeric inhibitors does not influence activity against purified recombinant 

Hsp90; however, the activity against cancer cells increased ~10-fold with respect to the seco 

derivative, RDA.  These results coincide with the hypotheses posed by multiple groups, who 

suggest a mechanistic difference between the heteroprotein complex and purified recombinant 

Hsp90.  In addition, the data demonstrates the heteroprotein complex is more sensitive to amide 

isomerization and conformational predisposition. 

 Examination of the co-crystal structures of RDA32 and cRDA bound to Hsp90 homologs 

shows different binding modes of the quinone portions.  RDA binds Hsp90 in a linear 

conformation resulting in hydrogen bonding interactions with the lid of the Hsp90 N-terminal 

ATP-binding pocket,32 whereas cRDA folds towards an α-helix at the front of the pocket forming 
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a unique set of hydrogen-bonding interactions.  The unique binding mode of cRDA coupled with 

the binding affinity data for this inhibitor with yHsp90 and dGrp94 led us to development of 

selective Grp94 inhibitors. 

II.6 Methods and Experimentals 

OBn

OMe

O

P

OEt

O

O(EtO)2  
 
Ethyl 2-(4-(benzyloxy)-3-methoxyphenoxy)-2-(diethoxyphosphoryl)acetate (10):  Rhodium 

(II) acetate (1 mol%) was added to a solution of 8 (2.90 g, 12.61 mmol) and 9 (1.58 g, 6.32 

mmol) dissolved in anhydrous toluene (50 mL) at rt.  The suspension was warmed to 90 °C for 

18 h under argon atmosphere.  The cooled solution was poured over a plug of celite and 

concentrated in vacuo.  Flash chromatography (SiO2, 20% EtOAc in Et2O) gave 10 (2.00 g, 

70%) as a colorless amorphous solid:  1H NMR (CDCl3, 400 MHz) δ 7.45 – 7.31 (m, 5H), 6.77 

(d, J = 8.8, 1H), 6.67 (d, J = 2.9, 1H), 6.31 (dd, J = 2.9, 8.8, 1H), 5.09 (s, 2H), 4.97 (d, J = 18.8, 

1H), 4.36 – 4.26 (m, 6H), 3.88 (s, 3H), 1.39 (t, J = 7.1, 6H), 1.30 (t, J = 7.1, 3H); 13C NMR 

(CDCl3, 100 MHz) δ 166.6, 152.8 (d, J = 13.6), 150.8, 143.7, 137.2, 128.5 (2C), 127.8, 127.4 

(2C), 114.9, 104.5, 102.1, 75.2 (d, J = 157.7), 71.8, 64.1 (d, J = 7.5), 64.0 (d, J = 6.3), 62.2, 55.6, 

16.4 (d, J = 6.3), 16.4 (d, J = 5.0), 14.1; ESI-HRMS m/z 453.1667 (M + H+, C22H29O8P requires 

453.1678).   
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Ethyl 2-(4-(benzyloxy)-5-methoxy-2-nitrophenoxy)-2-(diethoxyphosphoryl)acetate (4):  

Compound 10 (0.96 g, 2.12 mmol) was dissolved in anhydrous THF (22 mL) and cooled to 0 °C 

under an argon atmosphere.  Ammonium nitrate (0.25 g, 3.12 mmol) was added at once and 

trifluoroacetic anhydride (1.76 g, 8.38 mmol) was added dropwise to the stirred suspension.  The 

resulting solution was warmed to 25 °C and stirred 1 h, before saturated aqueous NaHCO3 (10 

mL) was added.  The resulting biphasic solution was poured into EtOAc (25 mL) and the 

aqueous layer washed with EtOAc (2 x 20 mL).  The combined organic layers were combined, 

dried with Na2SO4, and concentrated.  Flash chromatography (SiO2, 20% EtOAc in Et2O) gave 5 

(0.95 g, 91%) as a yellow amorphous solid:  1H NMR (400 MHz, CDCl3) δ 7.63 (s, 1H), 7.47 – 

7.33 (m, 5H), 6.75 (s, 1H), 5.15 (s, 2H), 5.10 (d, J = 17.3, 1H), 4.42 – 4.28 (m, 6H), 3.93 (s, 3H), 

1.44 – 1.36 (m, 6H), 1.31 (t, J = 7.1, 3H); 13C NMR (CDCl3, 100 MHz) δ 165.8, 154.9, 147.7 (d, 

J = 12.2), 143.3, 135.7 (2C), 132.5, 128.7 (2C), 128.4, 127.6, 110.9, 102.1, 77.2 (d, J = 155.4), 

71.6, 64.7 (d, J = 6.3), 64.4 (d, J = 7.5), 62.5, 56.5, 16.4 (d, J = 5.0), 16.4 (d, J = 6.3), 14.1; ESI-

HRMS m/z 496.1380 (M – H+, C22H28NO10P requires 496.1373).   

OBn
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HN

O
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P
O(EtO)2  
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Diethyl 6-(benzyloxy)-7-methoxy-3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-

ylphosphonate (1):  Tin (II) chloride (2.50 g, 13.16 mmol) was added to a solution of 4 (0.97 g, 

1.95 mmol) in absolute ethanol (2.5 mL) and the suspension was refluxed for 1 h before pouring 

into saturated aqueous NaHCO3 (25 mL).   Precipitate was filtered and washed with EtOAc (25 

mL) and H2O (25 mL).  The filtrate was rinsed with EtOAc (3 x 15 mL) and the organic layers 

were combined, dried with Na2SO4, and concentrated.  Recrystallization with EtOAc and 

hexanes gave 6 (0.59 g, 72%) as a white amorphous solid:  1H NMR (400 MHz, CDCl3) δ 8.71 

(s, 1H), 7.46 – 7.30 (m, 5H), 6.65 (s, 1H), 6.43 (s, 1H), 5.02 (s, 2H), 5.00 (d, J = 16.2, 1H), 4.25 

– 4.03 (m, 4H), 3.82 (s, 3H), 1.34 (t, J = 7.1, 3H), 1.24 (t, J = 7.1, 3H); 13C NMR (CDCl3, 100 

MHz) δ 161.7 (d, J = 3.1), 146.5, 143.7, 136.8, 136.4 (d, J = 1.8), 128.6 (2C), 128.0, 127.5 (2C), 

117.9, 103.8, 102.0, 74.1 (d, J = 151.5), 72.0, 63.8 (d, J = 6.3), 63.7 (d, J = 7.5), 56.4, 16.4 (d, J 

= 7.5), 16.3 (d, J = 5.0); ESI-HRMS m/z 420.1207 (M – H+, C20H24NO7P requires 420.1212).    

   

  
 
Methyl 4,6-bis(tert-butyldimethylsilyloxy)-3-chloro-2-(2-oxoethyl)benzoate (2):  A 1.0 M 

solution of lithium diisopropylamide (3.7 mL, 3.71 mmol) was added dropwise to a solution of 5 

(1.50 g, 3.37 mmol) dissolved in anhydrous THF (35 mL) at -78°C.  After stirring 5 min under 

argon atmosphere, DMF (4.93 g, 67.45 mmol) was added at once under the solution level and the 

reaction stirred at -78°C for 10 min.  The resulting solution was poured into saturated aqueous 

NH4Cl (100 mL) previously cooled to 0°C.  This mixture stirred at 0°C for 30 minutes.  The 

product was extracted with EtOAc (50 mL) and the aqueous layer was washed with EtOAc (3 x 

30 mL).  The combined organic layers were washed with saturated aqueous NaCl, dried with 



 61

Na2SO4, and concentrated.  Flash chromatography (SiO2, 5% EtOAc in hexanes) gave 2 as a 

yellow oil (0.53 g, 34%):  1H NMR (CDCl3, 400 MHz) δ 9.65 (t, J = 1.5, 1H), 6.42 (s, 1H), 3.84 

(s, 3H), 3.83 (d, J = 1.5, 2H), 1.05 (s, 9H), 0.98 (s, 9H), 0.27 (s, 6H), 0.24 (s, 6H); 13C NMR 

(CDCl3, 100 MHz) δ 195.3, 165.1, 151.1, 149.9, 128.7, 119.0, 117.3, 108.3, 49.9, 43.7, 23.2 

(3C), 23.1 (3C), 16.0, 15.7, -6.7 (2C), -6.8 (2C); ESI-HRMS m/z 473.1940 (M + H+, 

C22H37ClO5Si2 requires 473.1946).   

 
 
Methyl 4,6-bis(tert-butyldimethylsilyloxy)-3-chloro-2-(3-oxopropyl)benzoate (3):  Osmium 

tetraoxide (96 µL) and sodium periodate (0.42 g, 1.96 mmol) were added consecutively to a 

solution of 6 (0.32 g, 0.66 mmol) in dioxane : H2O (3 : 1) (10 mL) and the resulting solution 

stirred for 8 h.  The precipitate was filtered and washed with EtOAc (20 mL).  The filtrate was 

washed with H2O (2 x 20 mL) and saturated aqueous NaCl (20 mL).  The organic layer was 

collected, dried with Na2SO4, and concentrated in vacuo.  Flash Chromatography (SiO2, 5% 

EtOAc in hexanes) gave 3 as a colorless oil (0.27g, 84%):  1H NMR (CDCl3, 500 MHz) δ 9.59 

(s, 1H), 6.11 (s, 1H), 3.63 (s, 3H), 2.73 (dd, J = 6.6, 9.3, 2H), 2.56 (dd, J = 6.5, 9.3), 0.81 (s, 9H), 

0.74 (s, 9H), 0.02 (s, 6H), 0.00 (s, 6H); 13C NMR (CDCl3, 126 MHz) δ 201.0, 168.0, 153.1, 

151.6, 137.7, 121.1, 118.4, 109.6, 52.3, 43.4, 25.6 (3C), 25.4 (3C), 24.7, 18.3, 18.0, -4.4 (2C), -

4.4 (2C); ESI-HRMS m/z 487.2104 (M + H+, C23H39ClO5Si2 requires 487.2103).  

  



 62

 
 
(E)-Methyl 2-(2-(6-(benzyloxy)-7-methoxy-3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-

ylidene)ethyl)-3-chloro-4,6-dihydroxybenzoate (11):  Sodium hydride (30.0 mg) was added to 

a suspension of 1 (0.26 g, 0.62 mmol) in anhydrous THF (6 mL) at 0 °C.  The solution was 

warmed to 25 °C and stirred for 30 min under argon atmosphere before cooling to 0 °C.  A 0.1M 

solution of 2 (0.35 g, 0.74 mmol) in anhydrous THF was canulated into the reaction mixture.  

The reaction was stirred at 0 °C for 30 min then warmed to 25 °C for 12 h.  

Tetrabutylammonium fluoride (2.5 mL, 2.47 mmol, 0.1 M solution in THF) was added dropwise 

and the reaction mixture stirred for 1 h.  The reaction was quenched with saturated aqueous 

NH4Cl and extracted with EtOAc (20 mL).  The aqueous layer was rinsed with EtOAc (2 x 20 

mL).  The organic layers were combined, washed with saturated aqueous NaCl, dried with 

Na2SO4, and concentrated.  Repeated flash chromatography (SiO2, 30% EtOAc in hexanes) 

afforded the cis and trans (3:1) isomers giving 11 (0.16 g) and 12 (0.05g) in 67% overall yield:  

1H NMR (Acetone, 400 MHz) δ 9.58 (s, 1H), 7.48–7.32 (m, 5H), 6.72 (s, 1H), 6.66 (s, 1H), 6.53 

(s, 1H), 5.55 (t, J = 6.8, 1H), 5.04 (s, 2H), 4.49 (d, J = 6.8, 2H), 3.89 (s, 3H), 3.80 (s, 3H); 13C 

NMR (Acetone, 126 MHZ) δ 171.3, 162.1, 158.6, 158.3, 147.1, 144.7, 142.2, 142.1, 138.4, 

137.4, 129.2 (2C), 128.7, 128.6 (2C), 119.1, 118.9, 115.2, 108.6, 104.1, 103.3, 102.1, 72.5, 56.8, 

52.8, 31.1; ESI-HRMS 510.0938 (M – H+, C26H22ClNO8 requires 510.0956).  
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(Z)-Methyl 2-(2-(6-(benzyloxy)-7-methoxy-3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-

ylidene)ethyl)-3-chloro-4,6-dihydroxybenzoate (12):  1H NMR (Acetone, 400 MHz) δ 9.40 (s, 

1H), 7.37–7.17 (m, 5H), 6.73 (s, 1H), 6.61 (s, 1H), 6.42 (s, 1H), 5.78 (t, J = 6.9, 1H), 4.93 (s, 

2H), 3.97 (d, J = 6.9, 2H), 3.78 (s, 3H), 3.73 (s, 3H); 13C NMR (Acetone, 126 MHZ) δ 171.3, 

162.3, 158.8, 156.8, 147.1, 144.9, 143.4, 141.4, 138.4, 136.5, 129.2 (2C), 128.7, 128.6 (2C), 

115.2, 112.4, 108.3, 104.2, 104.1, 103.3, 102.2, 72.4, 56.8, 53.0, 28.9; ESI-HRMS 510.0959 (M 

– H+, C26H22ClNO8 requires 510.0956). 

 

 
 
(E)-Methyl 2-(3-(6-(benzyloxy)-7-methoxy-3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-

ylidene)propyl)-3-chloro-4,6-dihydroxybenzoate (13):  Following the procedure to generate 

11 and 12, cyclophosphonate 1 (0.26 g, 0.62 mmol) was reacted with 3 (0.32 g, 0.66 mmol) in 

anhydrous THF (6 mL).  Repeated flash chromatography (SiO2, 30% EtOAc in hexanes) 

afforded the cis and trans (3:1) isomers giving 13 (0.15 g) and 14 (0.05 g) in 70% overall yield:  

1H NMR (Acetone, 400 MHz) δ 9.44 (s, 1H), 7.48–7.29(m, 5H), 6.69 (s, 1H), 6.69 (s, 1H), 6.49 

(s, 1H), 5.72 (t, J = 8.0, 1H), 5.03 (s, 2H), 3.95 (s, 3H), 3.82 (s, 3H), 3.25–3.20 (m, 2H), 3.03–

2.96 (m, 2H); 13C NMR (Acetone, 126 MHZ) δ 171.6, 162.4, 158.6, 158.1, 147.1, 144.6, 143.5, 

142.2, 138.4, 137.4, 129.2 (2C), 128.7, 128.6 (2C), 120.4, 119.2, 114.8, 108.1, 104.1, 103.0, 
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102.1, 72.5, 56.8, 52.8, 32.9, 27.4; ESI-HRMS 524.1115 (M – H+, C27H24ClNO8 requires 

511.1112).   

 

(Z)-Methyl 2-(3-(6-(benzyloxy)-7-methoxy-3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-

ylidene)propyl)-3-chloro-4,6-dihydroxybenzoate (14):  1H NMR (Acetone, 400 MHz) δ 9.48 

(s, 1H), 7.50–7.29(m, 5H), 6.76 (s, 1H), 6.72 (s, 1H), 6.50 (s, 1H), 6.03 (t, J = 7.8, 1H), 5.06 (s, 

2H), 3.98 (s, 3H), 3.83 (s, 3H), 3.30–3.20 (m, 2H), 2.63–2.57 (m, 2H); 13C NMR (Acetone, 126 

MHZ) δ 171.5, 158.7, 156.9, 147.0, 144.7, 143.8, 143.3, 138.4, 136.5, 129.2 (2C), 128.7 (2C), 

128.6 (2C), 128.5, 118.7, 114.8, 113.9, 108.1, 104.2, 103.1, 102.1, 72.4, 56.8, 52.9, 32.0, 25.3; 

ESI-HRMS 524.1109 (M – H+, C27H24ClNO8 requires 511.1112). 
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(E)-methyl 3-chloro-4,6-dihydroxy-2-(2-(6-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-

benzo[b][1,4]oxazin-2-ylidene)ethyl)benzoate (15):  Aluminum (III) chloride (42.0 mg, 0.31 

mmol) was added to a solution of 11 (40.0 mg, 0.08 mmol) in anhydrous anisole (10 mL) at 0 

°C.  This mixture was stirred at 0 °C and monitored closely by TLC.  Upon complete conversion 

of 11, MeOH (10 mL) was added and stirring continued while warming to 25°C.  Concentration 

of the resulting solution followed by flash chromatography (SiO2, 50% EtOAc in hexanes) gave 

15 as a white amorphous solid (48.0 mg, 83%):  1H NMR (Acetone, 400 MHz) δ 9.58 (s, 1H), 
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6.63 (s, 1H), 6.57 (s, 1H), 6.52 (s, 1H), 5.52 (t, J = 6.8, 1H), 4.48 (d, J = 6.8, 2H), 3.89 (s, 3H), 

3.79 (s, 3H); 13C NMR (Acetone, 126 MHZ) δ 171.2, 162.0, 158.7, 158.5, 144.0, 142.9, 142.3, 

142.1, 136.0, 119.7, 118.6, 115.2, 108.6, 103.3, 103.1, 101.3, 56.8, 52.8, 31.1; ESI-HRMS 

420.0486 (M – H+, C19H16ClNO8 requires 420.0486). 
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(Z)-methyl 3-chloro-4,6-dihydroxy-2-(2-(6-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-

benzo[b][1,4]oxazin-2-ylidene)ethyl)benzoate (16):  Compound 12 (22.0 mg, 0.04 mmol) was 

subjected to the conditions used to generate 15.  Flash chromatography (SiO2, 50% EtOAc in 

hexanes) gave 16 as a white amorphous solid (4.0 mg, 24%):  1H NMR (Acetone, 400 MHz) δ 

9.53 (s, 1H), 6.83 (s, 1H), 6.58 (s, 1H), 6.53 (s, 1H), 5.90 (t, J = 6.9, 1H), 4.10 (d, J = 6.9, 2H), 

3.90 (s, 3H), 3.86 (s, 3H); 13C NMR (Acetone, 126 MHZ) δ 171.5, 162.6, 159.9, 157.0, 144.1, 

143.5, 143.1, 141.3, 135.1, 119.3, 115.7, 112.4, 107.4, 103.4, 103.3, 101.4, 56.9, 52.8, 29.0; ESI-

HRMS 420.0496 (M – H+, C19H16ClNO8 requires 420.0486). 
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(E)-methyl 3-chloro-4,6-dihydroxy-2-(3-(6-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-

benzo[b][1,4]oxazin-2-ylidene)propyl)benzoate (17):  Compound 13 (70.0 mg, 0.13 mmol) 

was subjected to the conditions used to generate 15.  Flash chromatography (SiO2, 50% EtOAc 

in hexanes) gave 17 as a white amorphous solid (36.0 mg, 62%):  1H NMR (Acetone, 400 MHz) 

δ 9.46 (s, 1H), 6.66 (s, 1H), 6.54 (s, 1H), 6.50 (s, 1H), 5.70 (t, J = 8.0, 1H), 3.95 (s, 3H), 3.82 (s, 

3H), 3.24 – 3.21 (m, 2H), 3.00 (dd, J = 7.9, 15.9, 2H); 13C NMR (Acetone, 126 MHZ) δ 171.6, 

162.4, 158.9, 158.3, 144.0, 143.4, 142.8, 142.4, 136.0, 120.1, 119.7, 115.0, 107.9, 103.0, 103.0, 

101.3, 56.9, 52.8, 33.0, 27.4; ESI-HRMS 434.0645 (M – H+, C20H18ClNO8 requires 434.0643). 
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(Z)-methyl 3-chloro-4,6-dihydroxy-2-(3-(6-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-

benzo[b][1,4]oxazin-2-ylidene)propyl)benzoate (18):  Compound 14 (7.0 mg, 0.013 mmol) 

was subjected to the conditions used to generate 15.  Flash chromatography (SiO2, 50% EtOAc 
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in hexanes) gave 18 as a white amorphous solid (3.2 mg, 57%):  1H NMR (Acetone, 400 MHz) δ 

9.37 (s, 1H), 6.59 (s, 1H), 6.43 (s, 1H), 6.37 (s, 1H), 5.88 (t, J = 7.8, 1H), 3.85 (s, 3H), 3.69 (s, 

3H), 3.16 – 3.06 (m, 2H), 2.49 – 2.42 (m, 2H); 13C NMR (Acetone, 126 MHZ) δ 171.5, 162.4, 

158.7, 157.1, 144.0, 144.0, 143.4, 143.0, 135.1, 119.2, 114.8, 113.6, 108.1, 103.2, 103.1, 101.4, 

56.8, 52.9, 32.1, 25.3; ESI-HRMS 434.0635 (M – H+, C20H18ClNO8 requires 434.0643). 

 

   
 
(±) Methyl 3-chloro-4,6-dihydroxy-2-(2-(6-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-

benzo[b][1,4]oxazin-2-yl)ethyl)benzoate (19):  Palladium on carbon (10 mol%) was added to a 

stirred solution of mixed isomers 11 and 12 (60.0 mg, 0.12 mmol) in EtOAc (10 mL).  Hydrogen 

was bubbled through the reaction mixture and then the reaction stirred under H2 atmosphere for 

12 h.  The reaction was filtered through a plug of celite and the resulting filtrate was 

concentrated and purified by flash chromatography (SiO2, 30% hexanes in EtOAc) to give 19 as 

an amorphous white solid (42.4 mg, 85%):  1H NMR (Acetone, 400 MHz) δ 9.38 (s, 1H), 6.70 (s, 

1H), 6.55 (s, 1H), 6.49 (s, 1H), 4.59–4.50 (m, 1H), 3.93 (s, 3H), 3.82 (s, 3H), 3.42–3.18 (m, 2H), 

2.18–2.08 (m, 2H); 13C NMR (Acetone, 126 MHZ) δ 171.4, 166.9, 162.3, 158.6, 144.0, 143.3, 

142.8, 136.3, 121.5, 114.8, 108.2, 103.6, 103.4, 103.0, 78.0, 56.9, 52.8, 30.7, 29.1; ESI-HRMS 

424.0783 (M + H+, C19H18ClNO8 requires 424.0799).  Chiral HPLC with 15% EtOAc in hexanes 
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provided the pure enantiomers:  (+)-21:  [α]D +137.1 (c = 0.24, CHCl3); (−)-22:  [α]D -164.9 (c = 

0.24, CHCl3).  

   
 

 
 
(±) Methyl 3-chloro-4,6-dihydroxy-2-(3-(6-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-

benzo[b][1,4]oxazin-2-yl)propyl)benzoate (20):  Following the same procedure used to 

generate 19, an E/Z mixture of 13 and 14 (106.9 mg, 0.20 mmol) were introduced to the 

conditions mentioned above.  The resulting filtrate was concentrated and purified by flash 

chromatography (SiO2, 30% hexanes in EtOAc) to give 20 as an amorphous white solid (49.0 

mg, 85%):  1H NMR (Acetone, 400 MHz) δ 9.32 (s, 1H), 6.68 (s, 1H), 6.54 (s, 1H), 6.49 (s, 1H), 

4.47 (dd, J = 4.4, 8.2, 1H), 3.94 (s, 3H), 3.80 (s, 3H), 3.17–3.05 (m, 2H), 2.01–1.91 (m, 2H), 

1.90–1.78 (m, 2H); 13C NMR (Acetone, 126 MHZ) δ 171.6, 167.3, 162.4, 158.7, 144.2, 144.0, 

142.8, 136.3, 121.6, 114.7, 107.9, 103.6, 102.9, 102.9, 77.6, 56.8, 52.8, 32.8, 31.0, 25.9; ESI-

HRMS 438.0969 (M + H+, C20H20ClNO8 requires 438.0956).  Chiral HPLC with 15% EtOAc in 

hexanes provided the pure enantiomers:  (+) [α]D +11.7 (c = 0.115, CHCl3); (−) [α]D -14.7 (c = 

0.115, CHCl3).  

 



 69

Anti-proliferation assay:  MCF-7 and SKBr3 cells were maintained in a 1:1 mixture of 

Advanced DMEM/F12 (Gibco) supplemented with non-essential amino acids, L-glutamine (2 

mM), streptomycin (500 µg/mL), penicillin (100 units/mL), and 10% FBS. Cells were grown to 

confluence in a humidified atmosphere (37 °C, 5% CO2), seeded (2000/well, 100 µL) in 96-well 

plates, and allowed to attach overnight. Compound or geldanamycin at varying concentrations in 

DMSO (1% DMSO final concentration) was added, and cells were returned to the incubator for 

72 h.  At 72 h, the number of viable cells was determined using an MTS/PMS cell proliferation 

kit (Promega) per the manufacturer’s instructions. Cells incubated in 1% DMSO were used as 

100% proliferation, and values were adjusted accordingly. IC50 values were calculated from 

separate experiments performed in triplicate using GraphPad Prism. 

 

ATPase assay:  Recombinant yHsp90 was overexpressed and purified.30, 31  The assay was run 

using optimized conditions previously reported and the PiPer™ Phosphate Assay Kit (Molecular 

Probes #P-22061).  Proper dilutions were made using the provided manufacturer’s instructions.  

Assay solutions and conditions were taken directly from the optimized conditions previously 

published.30  Each well contained a final volume of 100 µL.  Wells were mixed by pipette and 

then shaken for approximately 30 s.  Plates were then covered and incubated at 42 ºC while 

shaken for 2 h.  Absorbance was measured at 563 nm and IC50 values were calculated using 

GraphPad Prism.    Each compound was tested in triplicate on three separate occasions.       

 

Western blot analysis:  MCF-7 cells were cultured as described previously28 and treated with 

various concentrations of drug, GDA in DMSO (1% DMSO final concentration), or vehicle 

(DMSO) for 24 h.  Cells were harvested in cold PBS and lysed in RIPA lysis buffer containing 1 
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mM PMSF, 2 mM sodium orthovanadate, and protease inhibitors on ice for 1 h.  Lysates were 

clarified at 1400 g for 10 min at 4 ºC.  Protein concentrations were determined by using the 

Pierce BCA assay kit per the manufacturer’s instructions.  Equal amounts of protein (20 µg) 

were electrophoresed under reducing conditions, transferred to a nitrocellulose membrane, and 

immunoblotted with the corresponding specific antibodies.  Membranes were incubated with an 

appropriate horseradish peroxidase-labeled secondary anti-body, developed with 

chemiluminescent substrate, and visualized. 
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Chapter III 
 

Design and Synthesis of Proposed 
Grp94 Selective Inhibitors 

 
III.1 Introduction to Grp94 

 The complexity, localization, and uniqueness of each protein dictates the need for 

multiple chaperone systems.1  Furthermore, each cellular organelle maintains unique roles and 

must regulate its own proteostasis.  Thus, the endoplasmic reticulum (ER) contains its own 

chaperoning network required for the development and trafficking of secretory and membrane 

bound proteins.2  As such, the ER contains a resident member of the Hsp90 family, glucose-

regulated protein 94 kDa (Grp94).3, 4  Grp94 was first identified in 1977, upon observation that 

glucose depletion of Rous sarcoma virus transformed chick embryo fibroblasts resulted in the 

over expression of a ~94 kDa protein, which was subsequently named Grp94.5  Research groups 

have since shown that Grp94 exhibits activities unrelated to glucose levels, resulting in numerous 

aliases including gp96, endoplasmin, Tra-1, or Hsp108.6 

 Similar to other Hsp90 isoforms, Grp94 is ubiquitously expressed in humans.  As shown 

in Figure 21, secretory tissues maintain an especially high level of Grp94 expression.7  As 

expected, introduction of stress to the ER results in the induction of the resident heat shock 

response, the unfolded-protein response (UPR).8  Similar to the cytosol’s ubiquitin-proteasome 

pathway, the ER maintains a protein degradation mechanism, referred to as endoplasmic 

reticulum-associated protein degradation (ERAD).9, 10  Although Grp94 induction is a well 

accepted hallmark of ER stress, the functional role of Grp94 is poorly understood, with the only 

well-studied role for Grp94 being related to immunity.8, 11-13  Interestingly, inhibition of other 

proteins involved in ER proteostasis results in a global induction of the cellular heat shock 

response; however, Grp94 silencing fails to induce either the UPR or the cytosolic HSR.14, 15  
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The function of Grp94 is becoming 

less enigmatic, as its significance in 

cellular homeostasis and disease 

progression has recently attracted the 

attention of numerous researchers. 

III.2 Structure  

As mentioned in Chapter I, 

Grp94 exists as a soluble, obligate 

homodimer; comprised of an N-

terminal domain (NTD), charged-

linker (CL), middle domain (MD), and 

a C-terminal dimerization domain 

(CTD).6, 16-19  Although the NTD 

possesses the characteristic Bergerat-

fold ATP-binding pocket, interactions 

between both the NTD and MD 

cooperate to provide the requisite 

ATP-hydrolysis activity.20, 21  

Residence in the ER is maintained 

through a C-terminal tetrapeptide 

KDEL sequence, which is recognized 

by the KDEL retrieval receptor for 

sequestration.22  The structure of the full-length canine ortholog of Grp94 has been solved in 

 
Figure 21.  Grp94 expression profile in H. sapiens.7 
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addition to various Grp94 truncates with N-terminal ligands.6, 16-19, 23  However, the sites of 

interaction of both co-chaperones and partner proteins for Grp94 remain unknown.      

 Most noteably, Grp94 exhibits a 5-amino acid insertion (QEDGQ) at residues 182–186, 

which is not present in other Hsp90 isoforms (Figure 22).6  This insertion causes a dramatic 

effect on the secondary and tertiary organization of Grp94, especially within the N-terminal 

binding pocket.  As a consequence, the architecture of the binding pocket is unique. Therefore, it 

is not surprising that mechanistic and regulatory disparities between Hsp90 and Grp94 have been 

reported for specific ligands.6, 16, 17, 19, 23 

III.3 Cellular Functions of Grp94 

 Research that ablates Grp94 levels has indicated the chaperone to be essential for the 

development of plants,24 nematodes,14 fruit flies,25 and mice.15  However, its function is non-

essential to the growth of mammalian cell cultures, as Grp94 siRNA experiments demonstrate 

cell lines to grow normally and maintain the ability to differentiate.11, 14  Furthermore, Grp94 is 

essential only to metazoans, as it is not expressed in unicellular organisms, with the exception of 

Leishmania.21  Recent literature has revealed numerous intracellular proteins that are dependent 

upon Grp94 for proper maturation and biological activity.8  Whereas cytosolic Hsp90 maintains 

roles in cell-cycle regulation and signaling, Grp94 mediates cell-to-cell communication through 

the chaperoning of secretory and membrane proteins.  Thus, therapies that target Grp94 may 

represent promising chemotherapeutics for the treatment of pathological conditions that rely 

upon intercellular communication networks.8, 12, 26-28 

 
Figure 22.  Primary sequence alignment of canine Grp94 and hHsp90α depicting the 5-amino 
acid insertion at residues 182–186.6 
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 As shown in Figure 23, Grp94 is responsible for a variety of proteins implicated in cancer 

(IRS-1, IGF-I, IGF-II, integrins) and in immunological conditions (TLRs, integrins, IFN-γ).8  

Most intriguing about the list of clients is the selectivity with which Grp94 operates, even within 

families of proteins, such as TLRs and integrins.  This suggests that the ability to target Grp94 

may result in disease modification with a lower side-effect profile, as fewer clients appear to be 

dependent upon Grp94 than Hsp90.  Therefore, Grp94 isoform selective inhibitors represent 

novel biological tools and potential chemotherapies for diseases. 

III.4 Known Ligands: Non-Selective and Selective 

 Amino acids 35-274 of Grp94 exhibit high homology to fragments 9-236 and 1-220 of 

human cytosolic Hsp90 and yeast Hsp90 (yHsp90), respectively.  This domain comprises the N-

 
Figure 23.  Known Grp94 client proteins and method of determination.8 
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terminal nucleotide binding pocket and mediates the binding of structurally unrelated 

compounds, including ATP, GDA, and RDC.  Co-crystallization has shown all three natural 

products bind to the same Bergarat-type ATP-binding pocket, which is comprised of α-helices 

positioned around a platform of β-sheets.6, 17, 18, 23  Grp94 exhibits complete conservation of the 

requisite amino acids responsible for ligand binding to this pocket.  While the inherent ATPase 

activity and conformational equilibrium is comparable for Grp94 and other Hsp90 isoforms,20, 21 

the regulation of conformational reorganization seems mechanistically unique and ligand 

specific.   

III.4.1 Endogenous Ligand: ATP 

Similar to all other members of the GHKL family of ATP binding proteins, Grp94 binds 

ATP in a unique bent conformation.17  However, Grp94 exhibits a weak binding affinity for 

ATP, which is ~100-fold lower than that observed for cytosolic Hsp90.16, 17  In addition, unlike 

other Hsp90s which bind ADP ~5–10-fold tighter than ATP, Grp94 binds both ATP and ADP 

with similar affinities (Kd ≈ 5µM).16-18  With the exception of lid reorganization (discussed 

below), the structures of Grp94 in complex with 

nucleotides closely resemble the structures of Grp94 

bound to N-terminal inhibitors.  

Rationale for Grp94’s weak affinity for nucleotides 

is two-fold.  Firstly, the 5-amino acid insertion in Grp94’s 

primary sequence results in a sterically unfavorable 

orientation of Gly196 (Gly121 in Hsp90), which 

diminishes ATP affinity (Figure 24).6  Thus, Grp94 must 

undergo a large conformational reorganization, which 

 
Figure 24.  Depiction of the 
steric clash between Grp94 
Gly196 and the phosphate 
region of ADP.6 
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includes a ~30˚ outward rotation of helices 1-4-5 into an open conformation in order to 

accommodate ATP (Figure 25).17  Secondly, examination of the electrostatics of the Grp94 

ligand binding pocket revealed an acidic and negative surface potential in the phosphate binding 

region, resulting in electrostatic repulsion between the negatively charged phosphates of the 

nucleotide and the protein (Figure 26).23  This is in contrast to the phosphate binding region in 

yHsp90, in which basic groups compliment the phosphate charges.  Thus, electrostatic repulsion 

between Grp94 and nucleotides may further facilitate the rotation of helices 1-4-5, providing the 

requisite energy for conformational reorientation.23  Therefore, the extensive remodeling of 

helices 1-4-5 due to electrostatic repulsion and rotation appear to relieve congestion and may be 

responsible for the low affinity of Grp94 for ATP.  Furthermore, research has shown both of 

these attributes are necessary to result in an open conformation, as delineated in the discussion of 

GDA in section III.4.2.    

H1
H1

H5

H4

H5

H4

 
Figure 25.  Co-crystal structure comparison of ADP bound to yHsp90N (left) and dGrp94N 
(right).  Helices 1-4-5 are labeled and depicted in magenta (Hsp90) and yellow (Grp94). 
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Upon binding ATP, the open conformation of the N-terminal “lid” (helices 1-4-5) of 

Grp94 results in exposure of hydrophobic regions necessary for N-terminal dimerization.17  This 

is in contrast to other Hsp90 isoforms, which undergo lid closure upon binding ATP prior to 

dimerization (Figure 25).29  Therefore, the mechanistic regulation of N-terminal dimerization 

represents a key difference between Grp94 and Hsp90.18 

The aforementioned observations suggest Grp94 to be more sensitive to N-terminal 

ligand structure, but capable of reorganizing to accommodate various functionalities.  Although 

the affinity of Grp94 for ATP is low, the ATPase activity is on par with Hsp90β.21  The amount 

of reorganization exhibited by Grp94 has not been observed in other Hsp90 isoforms, which 

provides a mechanistic anomaly that may be exploitable in the design of isoform selective 

inhibitors. 

III.4.2 Geldanamycin 

 Geldanamycin was originally identified in 199430 as an inhibitor of cytosolic Hsp90 and 

co-crystal structures of GDA·yHsp90 were reported shortly thereafter in 1999.31  As a result of 

these seminal publications, much has been learned about the Hsp90 family, including the 

 
Figure 26.  Co-crystal structure comparison depicting the nature of the phosphate binding 
region between yHsp90N (left) and dGrp94N (right).23 



 82

existence of four isoforms in the human genome.32  These disclosures and subsequent studies 

revealed GDA to be a pan-inhibitor of all four Hsp90 paralogs, albeit with varying affinities.  

Neckers and colleagues uncovered GDA’s inhibitory activity of Grp94 in 1996.33  Subsequently, 

through competition binding studies, Neckers et al. demonstrated GDA to bind Grp94 (~1 µM) 

with a lower efficiency than Hsp90α or Hsp90β (170 nM);34 however, rationale for the observed 

selectivity was lacking.  The GDA·Grp94 co-crystal structure was not available until 2009, in 

which a collaborative publication between the Gewirth laboratory at Hauptman-Woodward 

Medical Research Institute and our laboratory disclosed the structure.23  This structure has been 

critical to understanding the mechanistic regulation of Grp94 by GDA. 

 Once again, Gly196 plays a critical role in ligand binding and may explain the lower 

affinity of GDA for Grp94.  Prior to co-

crystallization, GDA was modeled into the N-

terminal ATP-binding pocket of apo-Grp94.  

These modeling studies revealed a steric clash 

between the macrocyclic amide of GDA and 

the backbone carbonyl oxygen of Gly196 in 

Grp94 (Figure 27).23  Although this clash is 

similar to the predicted ATP clash, the co-

crystal structure between dGrp94N and GDA 

reveals only moderate rearrangement of the flexible “lid” (Figure 28).  Rationale for such a small 

perturbation of the lid can be proposed upon analysis of the electrostatic surface of the binding 

pocket.23  Although GDA exhibits a polar quinone ring that binds in the phosphate binding 

region, it is considerably less polar than the phosphate moiety of bound nucleotides.  Thus, the 

 
Figure 27.  Depiction of the Gly196/GDA 
clash observed upon docking GDA into 
apo-Grp94.23 
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lack of electrostatic repulsion allows for 

helices 1-4-5 to remain in a more compact 

conformation than that observed in the 

ADP·dGrp94N complex (Figure 25).  

Cytosolic Hsp90 can accommodate GDA 

through minor structural adjustments and 

the GDA·yHsp90 co-crystal structure is 

similar to that of ATP·yHsp90. 

 Similar to Hsp90, Grp94 binds 

GDA in a bent cis-amide conformation with 

the benzoquinone parallel to the ansamycin 

ring.  Inspection of the remaining GDA and Grp94 interactions reveal similar networks as those 

observed with Hsp90, including direct water-mediated contacts between the carbamate group and 

Asp149; direct hydrogen bonds to Asp110, Lys114, Gly196, 

Gly198, and Phe 199; water mediated interactions between Leu104, 

Asn107, and Thr254; and multiple hydrophobic contacts between 

GDA and Met154, Leu163, Val197, and Phe199.23 Considering the 

binding affinity data and co-crystal structure evidence, it is not 

surprising that GDA-derived analogs can be utilized to design 

isoform selective inhibitors.  In fact, GDA-derived WX514 (Figure 

29) exhibits a ~90-fold higher binding affinity for Hsp90 than 

Grp94.34  However, the rationale for cytosolic selectivity exhibited by analogs of this class 

remains undisclosed.  

H1

H4

H5

Figure 28.  Co-crystal structure of GDA with 
dGrp94N.  The mobile subdomain consisting of 
helices 1-4-5 is depicted in cyan. 
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Figure 29.  Structure 
of WX514, a selective 
inhibitor of cytosolic 
Hsp90. 
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III.4.3 Isoform Selective Inhibitor: N-ethylcarboxamidoadenosine      

 Studies regarding the adenosine receptors A1 and A2 in the 1980s resulted in significant 

knowledge pertinent towards understanding the adenosine receptor.35, 36  However, upon 

identification of the adenosine A2 receptor, a second class of proteins containing an adenosine 

A2-like binding site was identified.37  Subsequent studies revealed 

Grp94 to be a major contributor in adenosine A2 ligand binding, 

exhibiting a binding affinity of ~200 nM for 5’-N-

ethylcarboxamidoadenosine (NECA), a broad spectrum adenosine A2 

receptor agonist (Figure 30).38  In fact, Grp94 was eventually 

identified as the prominent cellular target of NECA.38  Furthermore, 

NECA was shown to exhibit no apparent binding affinity for Hsp90,16 establishing NECA as the 

only known Grp94 selective inhibitor. 

 In order to provide rationale for NECA’s Grp94 binding selectivity, Gewirth and 

colleagues solved the NECA·dGrp94N and the RDC·dGrp94N co-crystal structures.6  These 

structures provided a direct comparison between the Grp94 selective inhibitor, NECA, and a 

potent pan-Hsp90 inhibitor, RDC.  Prior to solution of the co-crystal structures, it was unknown 

what role the 5-amino acid insertion in Grp94’s primary sequence provided.  

 Analyses of the co-crystal structures, suggest a unique binding domain for Grp94, which 

is lacking in the RDC·yHsp90 structure, that interacts with the 5’-ethyl moiety of NECA.6  As 

expected, the adenine moiety of NECA exhibits identical interactions to Grp94 as observed in 

ATP/ADP·Hsp90 complexes.  This can be explained due to the complete conservation of 

requisite amino acids known to interact with nucleotides via direct and water-mediated 

hydrogen-bonding networks.  The second domain that interacts with NECA is a unique structural 
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Figure 30.  Structure 
of NECA. 



 85

feature specific to Grp94, which is introduced by the 5-amino acid insertion in its primary 

sequence.  The insertion occurs in the helix 1-4-5 subdomain and results in lengthening of helix 

4 and two structural modifications.6  Firstly, the orientations of Ala167 and Lys168 (Ala97 and 

Lys98 in Hsp90) are reorganized, which results in a volumetric increase of the second binding 

domain.  This increase in volume can accommodate the 5’-ethyl moiety present in NECA.  

Secondly, the lengthening of helix-4 produces increased flexibility and a conformational re-

orientation of helices 1-4-5, which may facilitate ligand binding.6  As observed in Figure 31, 

NECA provides a direct hydrogen-bond with the backbone carbonyl of Asn162 in dGrp94 and 

the 5’-ethyl moiety is stabilized through van der Waals 

interactions with Val197 and Tyr200.  This pocket is 

not present in yHsp90, and consequently it is not 

surprising that this type of “conformational switch” 

had not been previously observed in other Hsp90 

isoforms.  Furthermore, this pocket is present in apo-

Grp94, suggesting that it is not ligand-induced, but 

rather inherent in nature. 

 Rationale for the inability of NECA to bind 

Hsp90 can be postulated through molecular modeling studies.  Since the adenine portion of 

NECA, ATP, and ADP bind to Grp94 and Hsp90 with identical interactions, positioning of the 

5’-ethyl moiety of NECA is dictated by the adenine orientation.  Thus, upon modeling NECA 

into yHsp90’s N-terminal binding pocket, a clash between the 5’-ethyl group and the main chain 

carbonyl oxygen of yHsp90 Gly121 (Gly196 in Grp94) occurs.6  The repercussions of protein 

remodeling to accommodate the ligand are detrimental, as remodeling of the protein would result 

Figure 31.  Interaction of NECA 
within the second binding domain 
unique to Grp94. 
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in net energy expenditure.  Therefore, it can be hypothesized that the 5’-ethyl group of NECA is 

the sole factor responsible for the selective binding of NECA to Grp94. 

 Interestingly, these results suggest that the position of Gly196 in Grp94 maintains a 

discriminatory role towards ligand binding, as its orientation precludes the binding of 

endogenous nucleotides, but allows for the binding of NECA.  This is in contrast to yHsp90, as 

the respective Gly121 allows binding of ATP/ADP, but prevents NECA binding.  In total, the 

observations for ligand specificity and regulation provide evidence that Grp94 selective 

inhibitors can be designed; however, analogs based on the NECA scaffold have proved 

unsuccessful thus far.    

III.5 Proposal of Grp94 Selective Inhibitors 

 As mentioned previously, the chimeric inhibitor radamide (RDA) was co-crystallized 

with both yHsp90N and dGrp94N.23  Analysis of the two co-crystal structures revealed the 

resorcinol to bind similarly to both isoforms.  However, the quinone moiety of RDA binds 

yHsp90 in a linear, trans-amide conformation; while upon binding Grp94, two unique bent 

conformations that project the quinone into the hydrophobic NECA 5’-binding pocket are 

observed (50% occupancy each).  One conformation manifests a cis-amide orientation, while the 

second, orthogonal conformation contains a trans-amide (Figure 32).  The quinone moiety of 

RDA exhibits distinct interactions with each protein, which provides a starting point for the 

rational design of Grp94 selective inhibitors.  In fact, analysis of the RDA·yHsp90 co-crystal 

structure suggests the quinone to be involved in an intricate hydrogen-bonding network, whereas 

it’s interaction with Grp94 is limited.  This has led to speculation that the quinone may be 

dispensable for Grp94 binding, but obligatory for Hsp90 binding.   Considering these 
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observations, two approaches were utilized to design Grp94 selective inhibitors: 1) manipulation 

of the quinone moiety; and 2) conformational constraint to incorporate a cis-amide bioisostere. 

III.5.1 Quinone Substitution 

 The first series of analogs aimed at manipulating the substitution pattern of the quinone 

ring, and thus eliminating critical interactions required for binding Hsp90, but maintaining Grp94 

inhibitory activity.  Furthermore, analyses of the co-crystal structures suggested a more intricate 

 
Figure 32.  Co-crystal structures of RDA bound to yHsp90 (left) and Grp94 (right).  
The two RDA conformations populated when bound to Grp94 are depicted in cyan and 
yellow. 

G
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Figure 33.  Quinone hydrogen bonding network comparison between yHsp90 (left), and the 
cis-amide (middle) and trans-amide (right) conformations of RDA that bind Grp94. 
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hydrogen-bonding network between the quinone and yHsp90 than that which was observed for 

the quinone (in either orientation) and Grp94 (Figure 33).  Therefore, analogs 25–27 were 

proposed to systematically evaluate substituents of the RDA quinone ring.  To design these 

analogs, the trans-amide conformation 

exhibited by RDA when bound to Grp94 

was chosen as the design template, as this 

conformation represents the lowest energy 

and highest populated conformation of the 

amide in solution.   

Removal of the 5-carbonyl (25, 

Figure 34) on the RDA quinone would 

eliminate hydrogen-bonding interactions between the carbonyl and Lys98 as observed in the 

yHsp90 structure.  Interactions between Lys98 and the 5-carbonyl were also observed in the 

GDA·yHsp90 complex, which is critical to the binding affinity.  Although this manipulation will 

also change the oxidation state of the 2-carbonyl, this should not affect interactions with Lys44, 

as the hydroquinone of RDA interacts similarly in the yHsp90 N-terminal binding pocket.  

Furthermore, the trans-amide conformation exhibited by RDA when bound to Grp94 suggests no 

apparent function of the 5-carbonyl (Figure 33).  Thus, removal of this functionality should result 

in lower affinity for Hsp90, while unaffecting interactions with Grp94.   

Further reduction of 25 via removal of the 2-oxo functionality provides analog 26, which 

lacks the hydrogen bonding capability with Lys44 and Lys98 of yHsp90.  This manipulation is 

also predicted to affect the hydrogen-bonding network of the ligand with Grp94, as this 

functionality is involved in hydrogen bonding with the backbone amides of Gly196 and Phe199.  
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Figure 34.  Proposed analogs which lack key 
functionalities for Hsp90 binding. 
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However, the NECA·Grp94 co-crystal structure suggests this region of Grp94 to be hydrophobic 

in nature.6  Therefore, this manipulation may still provide beneficial van der Waals and/or π-

stacking interactions with Grp94.  Lastly, removal of the 4-methoxy moiety will provide analog 

27, which eliminates all functionalities present on the RDA quinone.  Development of this 

focused library allows for the rapid evaluation of the des-quinone hypothesis.  

III.5.2 Incorporation of a cis-Amide Bioisostere 

 The second approach towards the design Grp94 selective inhibitors encompasses a 

bioisosteric replacement strategy.  Previous evaluation of cRDA (Chapter II) revealed that 

chimeric analogs exhibiting a conformationally biased cis-amide moiety resulted in an improved 

binding affinity for Grp94.  While the affinity for Hsp90 also improved, the ~110 nM affinity for 

Grp94 and ~5-fold improvement from RDA was most intriguing.  However, the synthesis of 

cRDA was not amenable to facile SAR development.  Upon evaluation of cis-amide bioisosteric 

replacements, imidazole was chosen for two reasons: 1) aldehyde 3, utilized for the synthesis of 

RDA and cRDA, could be maintained as an advanced intermediate for the synthesis of a variety 

of analogs; and 2) optimized methodology had been previously reported, which enabled the rapid 

preparation of analogs in a straightforward manner with relatively inexpensive reagents.39-41 

 Closer analysis of the second 

Grp94 binding domain revealed the 

pocket to be hydrophobic in nature and 

to contain π-rich amino acids Phe199 

and Tyr200, which are poised for π-

stacking interactions.  In agreement 

with the "dispensable quinone" 

 
Figure 35: Initial 
imidazole analogs 
with varying linker 
length. 

Table 5.  Surflex binding 
scores of 28–32. 

Compound 
Binding 
Score 

28 4.80 
29 5.94 
30 - 
31 - 
32 - 

RDA 3.82 
cRDA 4.71 
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hypothesis, molecular modeling studies with imidazoles containing a pendent benzene ring 

(Figure 35) provided the desired interactions.  Utilizing Surflex docking software,42, 43 analogs 

28–32 were docked to the RDA·Grp94 complex (PDB: 2GFD).  As shown in Table 5, 28 and 29 

were the only analogs that bound successfully to Grp94; and both exhibited better binding scores 

than RDA and cRDA.  Furthermore, 28–32 failed to dock to the RDA·yHsp90 complex (PDB: 

2FXS).  Therefore, the first series of analogs synthesized consisted of an imidazole linkage 

flanked with a benzene ring attached with various linker lengths.  Because of the flexible Grp94 

lid region and inability of available modeling programs to consider this, linker lengths n = 3 and 

4 were synthesized to confirm the docking results.  The biological evaluation of these analogs 

will be described in detail in 

Chapter IV; however, analog 29 (n 

= 1) exhibited superior activity in 

the functional Grp94 inhibitory 

assay, which was in agreement with 

modeling studies.  Therefore, 

functionalized analogs based upon 

29 were designed for subsequent 

development. 

 Analogs chosen for 

synthesis are depicted in Figure 36.  

Compounds 33 and 34 were 

designed to evaluate steric 

constraints and stereochemical 

 
Figure 36.  Imidazole analogs based upon 29. 
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dependence.  Analogs 35–38 were designed to assess the compatibility and optimal location of 

hydrogen bond acceptors.  The exact binding orientation of the imadazole analogs remained 

unknown at the onset of analog development, however it was hypothesized that the presence of a 

hydrogen-bond acceptor may interact favorably with Tyr200 or the protein backbone, thus 

increasing affinity for Grp94.  Furthermore, incorporation of a cis-amide bioisostere altered the 

projection angle towards the 5’-binding pocket present in Grp94.  Thus, analogs 35–38 were 

devised to provide an evaluation of all possible locations, as hydrogen bonding is geometrically 

and directionally dependent.  Additionally, analog 39 

was designed to mimic the methyl ether present in 

RDA and cRDA, providing further information on the 

effects of hydrogen-bond donors, and to assess the 

spatial limitations of the binding pocket. 

 In parallel to the development of substituted 

analogs based on 29, alkyl-imidazoles (40–43, Figure 

37) were designed.  These compounds were 

hypothesized to mimic NECA’s 5’-ethyl functionality, 

which interacts with the Grp94 binding domain via van 

der Waals interactions with Val197 and Tyr200, rather than π-stacking interactions.    

III.6 Synthesis of Proposed Grp94 Selective Inhibitors 

 A key component of selecting the two aforementioned hypotheses for evaluation was the 

ability to utilize advanced intermediates previously reported by our laboratory.  This allowed for 

the rapid evaluation of the two hypotheses in an efficient manner without significant scaffold 

development. 

 
Figure 37.  Alkyl-imidazoles. 
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III.6.1 Synthesis of des-Quinone Analogs 

 Synthetically, analogs 25–27 were obtained in 3-steps from the previously disclosed 

aldehyde, 3 (Scheme 5).44, 45  Commencing with a Pinnick oxidation, acid 4444, 46 was obtained in 

high yield and subsequently coupled with the necessary anilines through employment of 

EDCI/DMAP peptide coupling conditions.  Facile removal of the tert-butyldimethylsilyl (TBS) 

protecting groups with tetra-n-butylammonium fluoride (TBAF) yielded the desired compounds 

25–27.  Biological evaluation of these analogs is discussed in detail in Chapter IV. 

III.6.2 Synthesis of Imidazole Bioisosteric Analogs 

The imidazole linked compounds were obtained in two steps from 3.  As shown in 

Scheme 6, aldehyde 3 was treated with primary amines, glyoxal, and ammonium bicarbonate,39, 

40 followed by subsequent TBS removal with 

TBAF to produce the desired compounds 

(28–43), in acceptable yields.  Biological 

evaluation of these analogs is discussed in 

detail in Chapter IV. 

III.7 Concluding Remarks 

 In conclusion, analysis of RDA·yHsp90N, cRDA·hHsp90N, and RDA·dGrp94N co-

crystal structures revealed ligand specific interactions, which were exploitable for isoform 

 
Scheme 5.  Synthetic route to des-quinone analogs. 

 
Scheme 6.  Synthetic route to analogs 28–43. 
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selective inhibitors.  Each of the 19 analogs designed provided information critical for the 

advancement of Grp94 selective inhibitors.  Furthermore, the proposed analogs allow for an 

efficient evaluation of both the des-quinone and the cis-amide bioisostere hypotheses.  Chapter 

IV will discuss the biological assays utilized to evaluate analogs 25–43 for isoform selectivity.  

III.8 Methods and Experimentals 

General procedure for analogs 25–27:  Acid 44 (1 equiv.) was dissolved in anhydrous DCM at 

25 ˚C.  To the reaction flask was added 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide) 

(EDCI, 3 equiv.) followed by 4-dimethylaminopyridine (DMAP, 3 equiv.).  After dissolution, a 

0.5 M solution of the required aniline (3 equiv.) in anhydrous DCM was added to the reaction 

flask.  The reaction was stirred at 25˚ C until complete conversion of the acid was observed by 

TLC.  Upon complete conversion, the reaction mixture was poured into H2O and extracted with 

DCM.  The organic layers were combined, dried with MgSO4 and concentrated in vacuo.  The 

resulting residue was redissolved in wet THF and tetra-n-butylammonium fluoride (TBAF, 4 

equiv.) was added dropwise to the reaction flask at room temperature.  After complete 

conversion of starting material, as observed by TLC, the reaction was quenched with saturated 

aqueous NH4Cl and extracted with EtOAc.  The organic layers were combined, dried with 

Na2SO4, and concentrated in vacuo.  Purification conditions and yields for all compounds are 

described below: 
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methyl 3-chloro-4,6-dihydroxy-2-(3-((2-hydroxy-4-methoxyphenyl)amino)-3-

oxopropyl)benzoate (25):  Purified by flash chromatography utilizing 95:5 (DCM:MeOH) as 

the eluent; Yield: 63 %; 1H NMR (CDCl3, 500 MHz) δ 9.27 (s, 1H), 7.19 (d, J = 8.8 Hz, 1H), 

6.52 (s, 1H), 6.48 (d, J = 2.8 Hz, 1H), 6.41 (dd, J = 8.8 Hz, 2.8 Hz, 1H), 3.96 (s, 3H), 3.75 (s, 

3H), 3.45–3.48 (m, 2H), 2.77–2.80 (m, 2H); 13C NMR (CDCl3, 125 MHz) δ 172.9, 171.4, 162.6, 

159.4, 158.9, 151.1, 142.8, 123.9, 120.9, 115.0, 108.0, 106.3, 104.4, 103.3, 55.6, 53.0, 36.1, 

30.6; ESI-HRMS m/z 394.0684 (M – H, C18H17ClNO7 requires 394.0694). 
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methyl 3-chloro-4,6-dihydroxy-2-(3-((4-methoxyphenyl)amino)-3-oxopropyl)benzoate (26):  

Purified by flash chromatography utilizing 97:3 (DCM:MeOH) as the eluent; Yield: 61 %; 1H 

NMR (Acetone-D6, 500 MHz) δ 10.98 (bs, 1H), 9.02 (s, 1H), 7.59 (d, J = 9.0 Hz, 1H), 6.87 (d, J 

= 9.0 Hz, 1H), 6.50 (s, 1H), 3.95 (s, 3H), 3.77 (s, 3H), 3.40–3.43 (m, 2H), 2.62–2.65 (m, 2H); 

13C NMR (Acetone-D6, 125 MHz) δ 171.4, 170.4, 162.4, 158.6, 156.7, 143.3, 133.7, 121.6 (2C), 

114.8, 114.6 (2C), 108.3, 103.1, 55.6, 52.9, 36.7, 29.1; ESI-HRMS m/z 378.0738 (M – H, 

C18H17ClNO6 requires 378.0744). 
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methyl 3-chloro-4,6-dihydroxy-2-(3-oxo-3-(phenylamino)propyl)benzoate (27):  Purified by 

flash chromatography utilizing 90:10 (DCM:MeOH) as the eluent; Yield: 83 %; 1H NMR 

(CDCl3, 500 MHz) δ 11.16 (s, 1H), 7.46 (d, J = 7.9 Hz, 2H), 7.27 (t, J = 7.9 Hz, 2 Hz), 7.10 (s, 

1H), 7.06 (t, J = 7.4 Hz, 1H), 6.53 (s, 1H), 6.05 (bs, 1H), 3.91 (s, 3H), 3.42–3.45 (m, 2H), 2.55–

2.58 (m, 2H); 13C NMR (CDCl3, 125 MHz) δ 170.4, 169.9, 163.0, 156.2, 141.7, 137.8, 129.1 

(2C), 124.4, 119.7 (2C), 113.9, 106.9, 103.0, 52.7, 36.7, 28.8; ESI-HRMS m/z 348.0629 (M – H, 

C17H15ClNO5 requires 348.0639). 

 

General procedure for compounds (28–43):  Aldehyde 3 (1 equiv.) was dissolved in wet 

MeOH at 25˚ C.  The required aniline/amine (1 equiv.) was added dropwise via a syringe to the 

reaction flask followed by addition of ammounim bicarbonate (NH3CH2O3, 1 equiv.).  Glyoxal 

(1 equiv.) was then added dropwise via a syringe and the reaction was allowed to stir at 25 ˚ C 

for 8 h.  Upon complete conversion of the aldehyde, TBAF as observed by TLC, TBAF was 

added dropwise via syringe and the reaction was allowed to stir at 25 ˚C for ~30 min, upon 

which time, the reaction was quenched with sat. aq. NH4Cl and extracted with EtOAc.  The 

organic layers were combined, dried with Na2SO4, and concentrated in vacuo.  All compounds 

were purified via flash chromatography utilizing 95:5 (DCM:MeOH) as the eluent.  Yields for all 

compounds are provided below:   
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methyl 3-chloro-4,6-dihydroxy-2-(2-(1-phenyl-1H-imidazol-2-yl)ethyl)benzoate (28): Yield: 

28%; 1H NMR (CDCl3, 400 MHz) δ 7.56 – 7.39 (m, 3H), 7.32 (d, J = 6.8, 2H), 7.14 (s, 1H), 7.05 
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(d, J = 1.0, 1H), 6.51 (s, 1H), 3.84 (s, 3H), 3.50 – 3.42 (m, 2H), 3.06 – 2.97(m, 2H); 13C NMR 

(CDCl3, 125 MHz) δ 171.0, 162.9, 158.2, 147.7, 141.4, 137.4, 129.6 (2C), 128.7, 127.0, 126.1 

(2C), 121.1, 114.9, 105.7, 102.6, 52.53, 31.15, 26.20; ESI-HRMS m/z 371.0797 (M – H, 

C19H16ClN2O4 requires 371.0799). 
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methyl 2-(2-(1-benzyl-1H-imidazol-2-yl)ethyl)-3-chloro-4,6-dihydroxybenzoate (29): Yield: 

54%; 1H NMR (CDCl3, 400 MHz) δ 11.74 (bs, 1H), 7.37 – 7.29 (m, 3H), 7.09 – 7.07 (m, 3H), 

6.88 (d, J = 1.4, 1H), 6.52 (s, 1H), 5.14 (s, 2H), 3.85 (s, 3H), 3.60 – 3.47 (m, 2H), 3.08 – 2.95(m, 

2H); 13C NMR (CDCl3, 125 MHz) δ 171.0, 162.8, 159.6, 147.8, 141.2, 135.9, 129.1 (2C), 128.2, 

126.7 (2C), 126.1, 120.3, 115.5, 105.0, 102.7, 52.6, 49.7, 30.9, 26.0; ESI-HRMS m/z 385.0953 

(M – H, C20H19ClN2O4 requires 385.0955). 

 

methyl 3-chloro-4,6-dihydroxy-2-(2-(1-phenethyl-1H-imidazol-2-yl)ethyl)benzoate (30): 

Yield: 51%; 1H NMR (CDCl3, 400 MHz) δ 7.35 – 7.22 (m, 3H), 7.07 (d, J = 6.9, 2H), 7.01 (s, 

1H), 6.82 (s, 1H), 6.48 (s, 1H), 4.16 (t, J = 7.1, 2H), 3.90 (s, 3H), 3.53 – 3.40 (m, 2H), 3.04 (t, J 

= 7.1, 2H), 2.85 – 2.72 (m, 2H); 13C NMR (CDCl3, 125 MHz) δ 170.8, 162.8, 158.5, 147.3, 

141.4, 137.2, 128.9 (2C), 128.7 (2C), 127.1, 126.4, 119.1, 115.0, 105.6, 102.7, 52.6, 47.4, 37.6, 

30.8, 25.8; ESI-HRMS m/z 399.1115 (M – H, C21H20ClN2O4 requires 399.1112). 
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methyl 3-chloro-4,6-dihydroxy-2-(2-(1-(3-phenylpropyl)-1H-imidazol-2-yl)ethyl)benzoate 

(31): Yield: 48 %; 1H NMR (CDCl3, 400 MHz) δ 7.32 – 7.11 (m, 5H), 7.04 (s, 1H), 6.89 (s, 1H), 

6.51 (s, 1H), 4.02 – 3.81 (m, 5H), 3.63 – 3.44 (m, 2H), 3.06 – 2.91 (m, 2H), 2.68 (t, J = 7.6, 2H), 

2.22– 2.04 (m, 2H); 13C NMR (CDCl3, 125 MHz) δ 170.9, 162.8, 159.3, 147.2, 141.3, 140.2, 

128.7 (2C), 128.3 (2C), 126.4, 126.2, 119.1, 115.4, 105.2, 102.8, 52.6, 45.3, 32.7, 32.2, 30.9, 

25.9; ESI-HRMS m/z 413.1272 (M – H, C22H23ClN2O4 requires 413.1268). 

 

methyl 3-chloro-4,6-dihydroxy-2-(2-(1-(4-phenylbutyl)-1H-imidazol-2-yl)ethyl)benzoate 

(32): Yield: 37 %; 1H NMR (CDCl3, 400 MHz) δ 7.33 – 7.13 (m, 1H), 7.02 (d, J = 1.1, 1H), 6.85 

(d, J = 1.2, 1H), 6.51 (s, 1H), 3.97 – 3.86 (m, 5H), 3.58 – 3.47 (m, 2H), 3.04 – 2.94 (m, 2H), 2.67 

(t, J = 7.4, 2H), 1.80 (dt, J = 11.3, 7.1, 2H), 1.68 (dt, J = 15, 7.1, 2H); 13C NMR (CDCl3, 125 

MHz) δ 171.0, 162.8, 159.4, 147.1, 141.4, 141.3, 128.5 (2C), 128.4 (2C), 126.1, 125.9, 119.2, 

115.4, 105.1, 102.7, 52.6, 46.0, 35.3, 30.8, 30.4, 28.4, 25.9; ESI-HRMS m/z 427.1421 (M – H, 

C23H25ClN2O4 requires 427.1425). 
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(S)-methyl 3-chloro-4,6-dihydroxy-2-(2-(1-(1-phenylethyl)-1H-imidazol-2-yl)ethyl)benzoate 

(33): Yield: 35 %; 1H NMR (CDCl3, 400 MHz) δ 7.28 – 7.17 (m, 3H), 7.01 (dd, J = 1.4, 1H), 

6.97 (m, 3H), 6.42 (s, 1H), 5.36 (q, J = 7.0, 1H), 3.71 (s, 3H), 3.42 (m, 2H), 2.84 (t, J = 8.2, 2H), 

1.74 (d, J = 7.0, 3H); 13C NMR (CDCl3, 125 MHz) δ 171.0, 162.8, 159.0, 147.5, 141.5, 141.4, 

129.0 (2C), 127.9, 126.2, 125.6 (2C), 116.7, 115.3, 105.3, 102.7, 54.8, 52.5, 30.7, 26.2, 22.5; 

ESI-HRMS m/z 399.111 (M – H, C21H21ClN2O4 requires 399.1112). 
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(R)-methyl 3-chloro-4,6-dihydroxy-2-(2-(1-(1-phenylethyl)-1H-imidazol-2-yl)ethyl)benzoate 

(34): Yield 42 %; 1H NMR (CDCl3, 400 MHz) δ 7.28 – 7.17 (m, 3H), 7.01 (dd, J = 1.4, 1H), 

6.97 (m, 3H), 6.42 (s, 1H), 5.36 (q, J = 7.0, 1H), 3.71 (s, 3H), 3.42 (m, 2H), 2.84 (t, J = 8.2, 2H), 

1.74 (d, J = 7.0, 3H); 13C NMR (CDCl3, 125 MHz) δ 171.0, 162.8, 159.0, 147.5, 141.5, 141.4, 

129.0 (2C), 127.9, 126.2, 125.6 (2C), 116.7, 115.3, 105.3, 102.7, 54.8, 52.5, 30.7, 26.2, 22.5; 

ESI-HRMS m/z 399.111 (M – H, C21H21ClN2O4 requires 399.1112). 
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methyl 3-chloro-4,6-dihydroxy-2-(2-(1-(pyridin-4-ylmethyl)-1H-imidazol-2-

yl)ethyl)benzoate (35): Yield: 40 %; 1H NMR (CDCl3, 400 MHz) δ 8.58 (dd, J = 4.5, 1.5, 2H), 

7.13 (d, J = 1.4, 1H), 6.96 (d, J = 6.0, 2H), 6.92 (d, J = 1.4, 1H), 6.47 (s, 1H), 5.19 (s, 2H), 3.89 

(s, 3H), 3.55 – 3.44 (m, 2H), 2.99 – 2.89 (m, 2H); 13C NMR (CDCl3, 125 MHz) δ 170.1, 162.5, 
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159.3, 150.1 (2C), 148.0, 145.8, 141.2, 127.2, 121.3 (2C), 120.3, 115.3, 105.4, 102.8, 52.6, 48.4, 

31.0, 26.0; ESI-HRMS m/z 386.0912 (M – H, C19H18ClN3O4 requires 386.0908). 

 

methyl 3-chloro-4,6-dihydroxy-2-(2-(1-(pyridin-3-ylmethyl)-1H-imidazol-2-

yl)ethyl)benzoate (36): Yield 48 %; 1H NMR (CDCl3, 400 MHz) δ 8.59 (dd, J = 4.6, 1.7, 1H), 

8.51 (d, J = 1.4, 1H), 7.40 – 7.30 (m, 2H), 7.11 (d, J = 1.3, 1H), 6.92 (d, J = 1.3, 1H), 6.50 (s, 

1H), 5.20 (s, 2H), 3.90 (s, 3H), 3.58 – 3.49 (m, 2H), 3.01 – 2.92 (m, 2H); 13C NMR (CDCl3, 125 

MHz) δ 170.5, 162.5, 158.8, 149.4, 148.0, 147.7, 141.4, 134.6, 132.1, 127.3, 124.1, 120.0, 115.1, 

105.6, 102.9, 52.6, 47.1, 31.1, 26.1; ESI-HRMS m/z 386.0903 (M – H, C19H18ClN3O4 requires 

386.0908). 

Cl

HO OH

O

O

NN N

 

methyl 3-chloro-4,6-dihydroxy-2-(2-(1-(pyridin-2-ylmethyl)-1H-imidazol-2-

yl)ethyl)benzoate (37): Yield: 45 %; 1H NMR (CDCl3, 400 MHz) δ 8.61 (d, J = 4.5, 1H), 7.69 

(td, J = 7.7, 1.7, 1H), 7.26 (dd, J = 7.3, 5.2, 1H), 7.11 (d, J = 1.3, 1H), 6.98 (d, J = 1.3, 1H), 6.85 

(d, J = 7.9, 1H), 6.49 (s, 1H), 5.29 (s, 2H), 3.88 (s, 3H), 3.58 – 3.45 (m, 2H), 3.06 – 2.91 (m, 

2H); 13C NMR (CDCl3, 125 MHz) δ 170.8, 162.7, 158.6, 156.0, 149.7, 147.9, 141.3, 137.5, 

127.0, 123.0, 120.7, 120.2, 115.1, 105.6, 102.8, 52.6, 51.2, 30.9, 26.0; ESI-HRMS m/z 386.0899 

(M – H, C19H18ClN3O4 requires 386.0908). 
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methyl 3-chloro-4,6-dihydroxy-2-(2-(1-(pyrimidin-5-ylmethyl)-1H-imidazol-2-

yl)ethyl)benzoate (38): Yield; 45 %; 1H NMR (CDCl3, 400 MHz) δ 9.19 (s, 1H), 8.54 (s, 2H), 

7.11 (d, J = 1.4, 1H), 6.91 (d, J = 1.4, 1H), 6.48 (s, 1H), 5.20 (s, 2H), 3.89 (s, 3H), 3.55 – 3.44 

(m, 2H), 3.02 – 2.92 (m, 2H); 13C NMR (CDCl3, 125 MHz) δ 169.1, 161.4, 157.6, 157.5, 154.4 

(2C), 146.7, 140.1, 128.9, 126.6, 118.7, 114.0, 104.8, 102.0, 51.6, 44.0, 30.1, 25.1; ESI-HRMS 

m/z 387.0861 (M – H, C18H17ClN4O4 requires 387.0860). 

Cl

HO OH

O

O

NN

O

 

methyl 3-chloro-4,6-dihydroxy-2-(2-(1-(4-methoxybenzyl)-1H-imidazol-2-yl)ethyl)benzoate 

(39): Yield 33%; 1H NMR (CDCl3, 400 MHz) δ 7.19 (m, 3H), 7.10 (d, J = 1.3, 1H), 6.93 (m, 

2H), 6.64 (s, 1H), 5.22 (s, 2H), 3.89 (s, 3H), 3.79 (s, 3H), 3.52 (dd, J = 9.0, 7.0, 2H), 3.10 (m, 

2H); 13C NMR (CDCl3, 125 MHz) δ 171.2, 162.2, 160.6, 158.9, 147.5, 141.6, 129.7 (2C), 128.8, 

123.9, 121.7, 115.1 (2C), 115.0, 108.2, 103.6, 55.6, 53.1, 50.1, 31.0, 26.1; ESI-HRMS m/z 

415.1061 (M – H, C21H21ClN2O5 requires 415.1061). 

NN

Cl

HO OH

OMe

O
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methyl 3-chloro-2-(2-(1-ethyl-1H-imidazol-2-yl)ethyl)-4,6-dihydroxybenzoate (40): Yield: 

43 %; 1H NMR (MeOH, 500 MHz) δ 6.91 (2, 1H), 6.77 (s, 1H), 6.12 (s, 1H), 3.82 (q, J = 7.3 Hz, 

2H), 3.73 (s, 3H), 3.30–3.33 (m, 2H), 2.84–2.87 (m, 2H), 1.24 (t, J = 7.3 Hz, 3H); 13C NMR 

(MeOH, 125 MHz) δ; 172.4, 163.1, 154.7, 148.6, 141.3, 135.1, 127.3, 119.9, 104.6, 101.3, 52.4, 

41.6, 32.0, 27.3, 16.5; ESI-HRMS m/z 323.0797 (M – H, C15H16ClN2O4 requires 323.0799). 

 

methyl 3-chloro-4,6-dihydroxy-2-(2-(1-isobutyl-1H-imidazol-2-yl)ethyl)benzoate (41): 

Yield: 42 %; 1H NMR (MeOH, 500 MHz) δ 7.02 (s, 1H), 6.91 (s, 1H), 6.39 (s, 1H), 3.87 (s, 3H), 

3.70 (d, J = 7.5 Hz, 2H), 3.32–3.37 (m, 2H), 2.96–2.99 (m, 2H), 1.92–2.05 (m, 1H), 0.91 (d, J = 

6.7 Hz, 6H); 13C NMR (MeOH, 125 MHz) δ 171.5, 161.1, 160.4, 148.7, 141.4, 126.9, 121.4, 

115.6, 109.3, 103.6, 54.0, 52.8, 31.7, 31.2, 27.4, 20.1 (2C); ESI-HRMS m/z 351.1115 (M – H, 

C17H20ClN2O4 requires 351.1112). 

 

 

methyl 3-chloro-4,6-dihydroxy-2-(2-(1-neopentyl-1H-imidazol-2-yl)ethyl)benzoate (42): 

Yield: 35 %; 1H NMR (MeOH, 500 MHz) δ 7.00 (s, 1H), 6.91 (s, 1H), 6.35 (s, 1H), 3.85 (s, 3H), 

3.70 (s, 2H), 3.35–3.38 (m, 2H), 2.98–3.01 (m, 2H), 0.96 (s, 9H); 13C NMR (MeOH, 125 MHz) δ 

171.7, 162.1, 161.6, 149.5, 141.4, 126.6, 122.5, 116.5, 107.9, 103.8, 57.6, 52.7, 34.3, 31.7, 28.1 

(3C), 27.8; ESI-HRMS m/z 365.1269 (M – H, C18H22ClN2O4 requires 365.1268). 
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methyl 3-chloro-4,6-dihydroxy-2-(2-(1-(2-methoxyethyl)-1H-imidazol-2-yl)ethyl)benzoate 

(43): Yield: 39 %; 1H NMR (MeOH, 500 MHz) δ 7.05 (d, J = 1.3 Hz, 1H), 6.88 (d, J = 1.2 Hz, 

1H), 6.27 (s, 1H), 4.05 (t, J = 5.2 Hz, 2H), 3.85 (s, 3H), 3.60 (t, J = 5.2 Hz, 2H), 3.40–3.42 (m, 

2H), 3.31 (s, 3H), 2.98–3.01 (m, 2H); 13C NMR (MeOH, 125 MHz) δ 172.2, 165.1, 162.6, 149.4, 

141.4, 127.1, 121.0, 118.1, 105.3, 104.4, 73.0, 59.2, 52.5, 46.7, 31.9, 27.4; ESI-HRMS m/z 

353.0902 (M – H, C16H18ClN2O5 requires 353.0904). 
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Chapter IV 
 

Evaluation of Proposed Grp94 Selective Inhibitors 
 

IV.1 Biological Roles of Grp94:  Implications for Grp94 Inhibition 

 As discussed previously, glucose-regulated protein 94 kDa (Grp94) was first identified as 

an induction product resulting from glucose deprivation.1  Subsequent studies identified Grp94 

as the endoplasmic reticulum (ER) paralog of heat shock protein 90 kDa (Hsp90).  Although 

potent Hsp90 inhibitors have been developed, no isoform selective inhibitors have been 

identified, other than NECA, which has proven to be an unacceptable starting point for small 

molecule development.  The highly homologous N-terminal binding domain has led the general 

research community to consider isoform selective inhibitors as an impractical venture.  However, 

analyses of the co-crystal structures has revealed obvious structural and mechanistic differences, 

specifically between Grp94 and cytosolic Hsp90 that can be exploited for inhibitor design.  

Identification of a selective Grp94 inhibitor would result in a paradigm shift for Hsp90 inhibition 

and help elucidate biological roles of Grp94.  Recently, siRNA, immunoprecipitation, and 

combinatorial Hsp90/Grp94 ATPase disruption has implicated Grp94 in cancer and the innate 

and adaptive immune responses.  Thus, small molecule selective Grp94 inhibitors have become 

desirable.  

IV.1.1 Grp94 and Cancer 

 The ER manifests its own response to cellular stress, a major component of which is the 

unfolded-protein response (UPR).2  Much like the heat shock response (HSR), which results in 

induction of cytosolic chaperones; activation of the UPR increases the concentration of resident 

ER chaperones.2  Therefore, not surprisingly, Grp94 levels are elevated in numerous 

malignancies.3  Known client proteins of Grp94, discussed in Chapter III, implicate Grp94 in the 
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maturation and trafficking of secretory and membrane bound proteins.4  Specific clients of Grp94 

that exhibit known roles in cancer progression include the insulin receptor substrate-1 (IRS-1), 

insulin-like growth factors I and II (IGF-1 and IGF-II), and integrins.4 

 IRS-1 is constitutively activated in numerous solid tumors including breast cancers, 

leiomyomas, Wilms' tumors, rhabdomyosarcomas, liposarcomas, leiomyosarcomas, and adrenal 

cortical carcinomas.5, 6  Tyrosine phyosphorylation of IRS-1 results in activation of the 

phospoinositide 3-kinase (PI3K) and mitogen-activated protein (MAP) kinase pathways; two 

pathways tied to oncogenesis.7-9  Furthermore, IRS-1 was found to play a key role in the 

constitutively activated β-catenin/Wnt signaling pathway, which contributes to transformation 

and cancer progression.5, 10  Blockade of the phosphorylation sites, through phenylalanine 

mutations, results in IRS-1 inactivation and a subsequent reduction in tumor growth.11  Recently, 

studies by Saitoh and colleagues have identified IRS-1 as a Grp94-dependent client protein12 and 

established Grp94 as a promising option for regulating aberrant IRS-1 function.  

 Another important class of client proteins dependent upon Grp94 is the integrin family.13, 

14  Intriguingly, not all integrins are Grp94-dependent, including β1 integrins which are Grp94 

independent.15  This intra-class specificity is a unique feature of Grp94 and further suggests 

Grp94 inhibition to yield a more acceptable toxicity profile than inhibitors targeting cytosolic 

Hsp90.  Integrins mediate adhesion between cells and their surrounding environment including 

other cell types or the extra cellular matrix.  Thus, it is not surprising that integrins regulate cell 

signaling, morphology, motility, and influence the cell cycle; all of which are features critical to 

intitiation, progression and metastasis of solid tumors.16  Therefore, indirect disruption of 

integrin formation, through Grp94 inhibition, represents a promising therapeutic venue. 
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 Of the client proteins dependent upon Grp94 for cancer progression, IGF-1 and IGF-II 

are the most studied.  Argon and colleagues have demonstrated the dependence of IGFs upon 

Grp94 and showed that upon Grp94 knockdown, pro-IGF intermediates are targeted for 

endoplasmic reticulum-associated degradation (ERAD) and mature IGF-I and IGF-II are not 

formed.17-20  Under normal cellular conditions, IGFs are tightly regulated, as the IGF signaling 

pathway is pro-growth and anti-apoptotic.  However under stressed conditions aberrant IGF 

signaling triggers a cascade of molecular events that can result in malignancy.21  Additionally, 

IGFs are known to activate signaling cascades through IRS-1 binding,22 thus intertwining two 

Grp94 clients to cancer progression. 

 Grp94 involvement in multiple facets of oncogenesis provides an impetus for the 

development of small molecule inhibitors.  Development of selective inhibitors may elucidate a 

novel anti-cancer target and thus provide a new class of cancer chemotherapeutics. 

IV.1.2 Grp94 and Inflammation  

 Beyond its role in the initiation and progression of cancer, Grp94 has been demonstrated 

to maintain an intricate role in immunomodulation.4, 23  Client proteins of Grp94 implicated in 

aberrant immuno-activity include major histocompatibility complex II (MHC II), 24 Toll-like 

receptors (TLR),14, 25 integrins,13, 14 interferon-γ (IFN-γ),26 and the p40 subunit of the interleukin-

12 (IL-12)27, 28 family of cytokines.  While all of these clients maintain roles in immunity, the 

affect on TLR activity has been most pursued. 

 TLRs are a component of the innate immune system responsible for recognizing foreign 

molecules present in the cellular milieu.29  Upon recognition of foreign material, TLRs trigger 

intracellular signaling cascades, which lead to immunoresponse through gene transcription.  

Immunoprecipitation and Grp94 knockout models have demonstrated the dependence of TLR1, 
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TLR2, TLR4 and TLR9 upon Grp94.13, 14  Inhibition of Grp94’s function leads to TLR retention 

in the ER and decreased surface presentation.  Expression levels of TLR mRNA remains 

unaffected by Grp94 inhibition, suggesting Grp94 is responsible for trafficking TLRs to the cell 

membrane.4  Thus, Grp94 represents a relevant therapeutic target for disease states in which an 

exaggerated response to infection is evident including sepsis, rheumatoid arthritis, asthma and 

chronic autoimmune disorders.4, 29 

IV.2 Biological Evaluation of Proposed Grp94 Isoform Selective Inhibitors 

 After synthesizing the proposed Grp94 isoform selective inhibitors described in Chapter 

III, our attention turned towards their evaluation.  With no established protocol for the 

identification of Grp94 inhibitors, prior studies guided our desire to evaluate such analogs. 

IV.2.1 Anti-proliferative Activity 

 Previous reports have demonstrated Grp94 to be essential for embryonic development, 

but unlike cytosolic Hsp90, non-essential for mammalian cell culture viability.14, 30  Considering 

this observation, compounds 25–43 were evaluated against MCF-7 and SKBr3 cell lines, two 

breast cancer cell lines sensitive to Hsp90 inhibition.  Thus, if analogs 25–43 exhibit Hsp90 

inhibitory activity, cell death will be apparent.  As shown in Table 6, none of the analogs 

designed to be selective Grp94 inhibitors exhibited cytotoxicity against MCF-7 or SKBr3 cell 

lines at concentrations as high as 50 µM.  This mimics the activity of NECA, a known Grp94 

selective inhibitor, which was discussed in Chapter III.  As a control, cRDA (Chapter II) is 

included in Table 6, which manifests low micromolar activity against both MCF-7 and SKBr3 

cells lines.  This preliminary study provided the foundation for collaboration with the Nicchitta 

laboratory at Duke University to evaluate the inhibitors in a functional Grp94 assay.  
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IV.2.2 Inhibition of Toll-trafficking: A Grp94 Functional Assay 

 As discussed previously, TLRs are dependent upon Grp94 for their trafficking to the cell 

membrane.  In collaboration with the Nicchitta laboratory, we developed a functional Grp94 

assay utilizing human embryonic kidney cells (HEK293) stably transfected to express the Toll 

receptor, the Drosphilia melanogaster ortholog of human interleukin-1 receptor (Figure 38).  

This receptor is of the same superfamily as the human TLR2 and TLR4 receptors, establishing it 

as a viable surrogate for monitoring TLR expression.  In the presence of functional Grp94, the 

Toll receptor is trafficked to the cell membrane; however, in the absence of functional Grp94, the 

Toll receptor is sequestered intracellulary and not present on the cell membrane.   

Table 6.  Anti-proliferative and Toll-trafficking results for compounds 
25–43.  IC50 values expressed in µM concentrations. 
 

Compound MCF-7 SKBr3 Grp94 
25 >50 >50 >50 
26 >50 >50 12.6 ± 1.0 
27 >50 >50 >50 
28 >50 >50 3.8 ± 0.2 
29 >50 >50 0.03 ± 0.02 
30 >50 >50 ND 
31 >50 >50 ND 
32 >50 >50 ND 
33 >50 >50 ND 
34 >50 >50 ND 
35 >50 >50 >50 
36 >50 >50 0.4 ± 0.3 
37 >50 >50 2.3 ± 1.6 
38 >50 >50 0.6 ± 0.1 
39 >50 >50 0.2 ± 0.2 
40 >50 >50 1.1 ± 0.7 
41 >50 >50 0.3 ± 0.1 
42 >50 >50 0.4 ± 0.1 
43 >50 >50 16.5 ± 1.2 

cRDA 6.3 ± 0.9 7.8 ± 0.2 8.5 ± 2.2 
NECA >50 >50 1.1 ± 0.2 

ND = not determined; compound exhibited <50% inhibition at 5 µM. 
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As expected, treatment of stably transfected HEK293 cells with Grp94 targeted siRNA 

resulted in inhibition of Toll membrane presentation (Figure 39).  Therefore, we proposed that a 

similar affect would be manifested 

by a small molecule Grp94 

inhibitor.  As shown in Table 6, 26, 

28, 29 and 36–43 exhibited 

inhibition of Toll-trafficking, 

indicative of Grp94 inhibition. 

des-Quinone Analogs 

 As discussed in Chapter III, 

the des-quinone RDA analogs (25–27, Figure 40) were designed to systematically evaluate the 

necessity of each moiety on the quinone ring for Hsp90 inhibition.  It was hypothesized that the 

functionalities on the quinone ring are necessary for Hsp90 inhibition and removal of such 

critical hydrogen-bonding functionalities should provide Grp94 selective inhibitors.   

 
Figure 38.  Functional Grp94 assay description.  HEK293 cells stably 
transfected with Toll are exposed to Grp94 target siRNA or small molecules and 
the presence of Toll expression is measured by confocal microscopy. 

Grp94 siRNA

treated (Grp94 )

Untreated

(Grp94 )

 
Figure 39.  Results of functional Grp94 Toll-
trafficking assay.  Cells treated with Grp94 targeted 
siRNA (left) and untreated cells (right). 
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 As predicted, removal of the 5-

carbonyl of RDA’s quinone ring (25), 

eliminated Hsp90 inhibitory activity up to 

concentrations as high as 50 µM.  

However, elimination of the 5-carbonyl 

failed to produce a Grp94 inhibitor, as 

shown in Table 6.  Subsequent removal of 

the 2-carbonyl (26) introduced micromolar Grp94 inhibition.  A representative depiction of the 

confocal microscopy results for 26, is shown in Figure 41.  As can be observed, Toll-expression 

on the cellular membrane is inhibited in a dose-dependent manner.  Although the IC50 value 

suggested by the graphic is 1–5 µM, it should be noted that IC50 calculations are conducted using 

at least 10 separate images, each containing 10–20 cells per concentration. 

Further manipulation of 

the RDA quinone ring via 

removal of the 4-methyl ether 

provided analog 27.  

Interestingly, 27 exhibited 

neither Hsp90 nor Grp94 

inhibitory activity at concentrations as high as 50 µM.  These results suggest that, for analogs 

based upon seco-RDA, the 4-methyl ether, or surrogate hydrogen-bond acceptor, is necessary for 

Grp94 inhibition.  Furthermore, the lack of activity for 25, suggests the presence of the 2-

hydroxy group, to inhibit the necessary conformation required for binding Grp94.  The 4-

methoxy functionality is proposed to hydrogen-bond with the free phenol of Tyr200 in the Grp94 

 
Figure 40.  Proposed analogs which lack key 
functionalities for yHsp82 binding. 

100 µM 5 µM 1 µM

Figure 41.  Representative confocal microscopy results for 
26 in the Toll-trafficking assay.   
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N-terminal nucleotide-binding pocket.  This is speculative, as docking studies with this 

compound failed.  This modeling failure was expected however, because in order to 

accommodate the interaction with Tyr200 the lid region of Grp94 must be displaced, which 

cannot be accomplished in the static representation of the protein in AutoDock31 or Surflex32, 33 

modeling programs.  Thus, to develop this class of Grp94 selective inhibitors further, analogs 

exploiting the interactions and spatial constraint of the 4-position will be synthesized.  

Additionally, it would be advantageous to acquire the co-crystal structure of 26, to account for 

the proposed lid displacement and provide a viable structure for subsequent modeling studies. 

Imidazole cis-Amide Bioisostere Analogs 

      The second hypothesis discussed in Chapter III was that cis-amide bioisosteric replacement 

of the amide bond, displayed by RDA, would provide selective Grp94 

inhibitors.  This proposal was a result of the analyses of 

RDA·yHsp90N and RDA·dGrp94N co-crystal structures.  

Furthermore, the binding data acquired for cRDA, demonstrates that 

cis-amide constraint results in a higher binding affinity for 

recombinant Grp94.  Thus, an imidazole linkage was hypothesized to 

provide a synthetically accessible scaffold capable of producing 

relevant analogs to test this hypothesis.  The first series of analogs synthesized were 28–32, 

which incorporated a phenyl substituted imidazole connected through varying tether linkages 

(Figure 42).  As observed in Table 6, only linker lengths of zero (28) and one (29) yielded 

significant Grp94 inhibition, with compound 29, exhibiting low-nanomolar activity.  This was in 

agreement with the initial Surflex docking studies reported in Chapter III, which suggest linker 

lengths of n = 0 or 1 exhibit superior Grp94 binding.  Compound 29 was hypothesized to project 

 
Figure 42:  Initial 
imidazole analogs 
with varying linker 
length. 
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into the NECA binding pocket and π-stack with either Phe199 or Tyr200.  The confocal 

microscopy results for 29 are shown 

in Figure 43.  Due to the superior 

Grp94 inhibitory activity, an 

expanded concentration range was 

evaluated.  Thus, compound 29 

served as our lead compound for 

further SAR development, leading 

to analogs 33–39 (Figure 44) and 

40–43 (Figure 45). 

As demonstrated in Table 6, 

steric bulk is not accommodated 

around the linker as introduction of 

a (S, 33) or (R, 34) methyl group 

dramatically decreased activity.  

 
Figure 44.  Imidazole analogs based upon 29. 

 
Figure 43.  Representative confocal microscopy results for 29 in the 
Toll-trafficking assay.   
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This result was not surprising, as addition of a chiral center alters the position of the aromatic 

ring.  Thus, the proposed π-stacking interactions with Phe199 and/or Tyr200 become hindered.  

Compound 35 also failed to elicit Grp94 inhibition even though it was hypothesized to hydrogen-

bond with Tyr200 similar to 26.  This was not entirely unexpected as electron-poor 4-pyridyl 

systems exhibit dramatically different properties than electron-rich anisoles; however, the 

inability of 35 to exhibit Grp94 inhibition suggests a different binding mode for the linear des-

quinone analogs than the constrained imidazole class of inhibitors.  This coincides with the 

alternative binding modes exhibited by trans- and cis-RDA when bound to Grp94, and suggests 

two exploitable scaffolds that can be optimized for Grp94 inhibition.  Thus, the trans-RDA 

conformation should be used as a model for des-quinone analogs.  Likewise, the cis-RDA 

conformation serves as a relevant model for development of the imidazole series.  Furthermore, 

the pyridine analogs 36–38, provide additional SAR data demonstrating the m-pyridine (36) to 

exhibit ~5-fold higher Grp94 inhibitory activity compared to the o-pyridine, 37.  Addition of an 

extra hydrogen-bond acceptor to yield pyrimidine 38 resulted in similar activity to 36, which 

suggests no additional hydrogen-bonding contacts are gained through the incorporation of an 

additional heteroatom.  The Grp94 inhibitory activity manifested by 36–38 is hypothesized to 

occur from beneficial binding interactions between the heterocyclic nitrogen and the protein 

backbone amides provided by Gly196 or Phe199, as shown in Figure 33 in Chapter III. 

 Incorporation of a p-methoxy group yielded the second-most active compound of this 

series, which manifests a Grp94 inhibitory IC50 value of ~200 nM.  Assuming a similar binding 

mode to 29, this suggests exploitable space surrounding the 4-position.  Thus, future analogs will 

aim to discern the size of this cavity. 
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 After evaluation of the synthesized benzylated 

imidazole analogs, compounds 40–43 (Figure 45), 

were evaluated in anti-proliferation and Toll-

trafficking assays.  As observed in Table 6, all of the 

analogs were active, with 41 exhibiting the most potent 

Grp94 inhibition.  However, none of the aliphatic 

analogs exhibited activity comparable to 29.  This 

suggests that π-stacking interactions outweigh 

hydrophobic interactions and contribute to the potency 

observed for 29.  Considering the results from the Toll-trafficking assay, compound 29 was 

selected as a lead compound for further evaluation and was re-named KU-NG-1. 

IV.3 Biological Profile of KU-NG-1 

IV.3.1 Western Blot Confirmation for Lack of Hsp90 Inhibition 

 Although no cytotoxicity was observed for 

KU-NG-1 up to 100 µM, Western blot analysis was 

conducted on MCF-7 cell lysates treated with KU-

NG-1 to confirm the lack of Hsp90 inhibition.  As 

shown in Figure 46, no dose-dependent client 

protein degradation was observed upon treatment 

with KU-NG-1, as indicated by Akt and Raf levels.  

Furthermore, no induction of Hsp90 or Hsp70 

occurred, which is a hallmark of Hsp90 N-terminal inhibition, as will be dicussed in detail in 

Chapter V.  Actin concentration is independent of Hsp90 and serves as a control. 

 
Figure 46.  Western blot analysis of 
MCF-7 cell lysates after treatment 
with KU-NG-1. 
 

 
Figure 45.  Alkyl-imidazoles 
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IV.3.2 NCI Cell Panel Profile                 

 Although Randow and Seed demonstrated a lack of dependency of immune cell-lines 

upon Grp94, very little evidence existed for transformed cell lines.  Our preliminary anti-

proliferative studies conducted with MCF-7 and SKBr3 breast cancer cells lines confirmed 

Randow and Seed’s findings; however, Grp94 expression is known to correlate with tumor 

growth and progression.  Therefore, KU-NG-1 was submitted to the National Cancer Institute 

(NCI) for evaluation against 60 cell-panel cytotoxicity assay in an attempt to elucidate the affect 

of Grp94 inhibition against various malignant cell cultures.  As shown in Figure 47, none of the 

cell-lines exhibited sensitivity to a 10 µM treatment of KU-NG-1.  This confirms Randow and 

Seed’s findings and provides evidence that cell culture viability, in general, is independent upon 

Grp94. 

 Interestingly, however, overexpression of Grp94 in numerous malignancies has been 

shown.  For instance, breast cancer carcinomas (HBL-100, MDA-MB-231, MCF-7, T47D, 

MDA-MB-453 and SkBR3) exhibit a ~3–5-fold increase of Grp94 in comparison to normal 

breast tissue.  Furthermore, in conditions deprived of glucose, which mimics conditions observed 

in a poorly vascularized tumor, a 9-fold induction of Grp94 was observed.34 Additionally, ductal 

and lobular invasive breast carcinomas show an increase in Grp94.35  A similar increase in Grp94 

expression is noted in gastric,36 pancreatic,37 colon,38 lung,39 esophageal40-42 and oral43 

malignancies; with Grp94 overexpression often correlating with poor prognosis.  Thus, the 

expression pattern of Grp94 specific to tumors suggests a role for cancer progression and 

metastasis, even though transformed cell cultures lack dependency upon Grp94.   
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As discussed previously, Grp94 is responsible for the biological maturation of signaling 

molecules and secretory proteins, both of which are more important to a three-dimensional 

tumors than a cell-culture monolayer.  This may provide an explanation for the apparent 

dependence upon Grp94 for tumor growth and invasion even though cell cultures demonstrate 

 
Figure 47.  NCI 60 cell-panel cytotoxicity results for KU-NG-1. 
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lack of dependence.  Therefore, in order to validate Grp94 as a promising anti-cancer target, 

three-dimensional tumor models must be utilized to fully understand the role of Grp94 in cancer 

biology.  Recent research suggests the three-dimensional tumor environment to influence drug 

sensitivity.44, 45  Additionally, specific signaling pathways are dependent upon the three-

dimensional phenotype,45 thus providing rationale that artificial monolayer cell-cultures may not 

suffice for the evaluation of Grp94 inhibitors as anti-cancer chemotherapeutic agents. 

IV.3.3 Binding Data for KU-NG-1 

 In collaboration with Daniel 

Gewirth at the Hauptman-Woodward 

Medical Research Institute, the binding 

affinity of KU-NG-1 for recombinant 

Grp94 and Hsp90 was obtained utilizing isothermal calorimetry (ITC) and tryptophan 

fluorescence quenching (TFQ) techniques.  In the ITC experiments, the binding affinity of KU-

NG-1 was determined for the N-terminal truncates of canine Grp94 (dGrp94N) and human 

Hsp90 (hHsp90).  These truncates have been shown to bind ligands in a similar fashion and with 

similar binding affinities as their full-length counterparts.  Furthermore, dGrp94N exhibits ~98% 

homology with hGrp94N and is an accepted surrogate for biochemical studies.46  Figure 48 

shows representative binding curves for ITC experiments.  As observed, KU-NG-1 shows 

reproducible binding curves for both dGrp94N and hHsp90N.  Surprisingly, KU-NG-1 binds 

hHsp90N with a ~2-fold higher binding affinity than dGrp94N, as shown in Table 7.  To confirm 

this observation, binding affinity was also determined with TFQ utilizing full-length dGrp94 and 

hHsp90.  As shown in Figure 49 and Table 7, the results verified a ~2-fold higher binding 

affinity for hHsp90 in comparison to dGrp94.   

Table 7.  Binding affinity data for KU-NG-1 
and Grp94 and hHsp90. 

Protein Method Affinity 
dGrp94N ITC 1.6 µM 
hHsp90N ITC 0.8 µM 
dGrp94 TFQ 0.25 µM 
hHsp90 TFQ 0.10 µM 
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Considering the preliminary evaluation of KU-NG-1, which demonstrated selective 

Grp94 inhibitory activity, we were surprised by the 

binding affinity results.  The observed binding 

affinities may provide information about the 

physiologically relevant form of Grp94, as purified 

recombinant Grp94 may not represent a viable 

model for the species present under physiological 

conditions.  Interactions between Grp94, co-

chaperones, and/or co-factors in cells may result in a 

conformation of Grp94 more conducive to N-

 
Figure 48.  Representative ITC binding curves for KU-NG-1 binding to dGrp94N (left) and 
hHsp90N (right). 

 
Figure 49.  TFQ KU-NG-1 titration 
results for Grp94 and hHsp90.  
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terminal ligand binding; a conformation which is not populated in recombinant assays.  

Likewise, KU-NG-1 binds tightly to recombinant Hsp90; however it may not bind to the 

heteroprotein complex exhibited by Hsp90 in transformed cells.  Thus, the binding data paired 

with KU-NG-1’s cellular profile suggests a complex-induced selectivity.  Although Grp94 has 

been shown to interact with co-chaperones and co-factors (unpublished data), no heteroprotein 

complexes have been identified or isolated.  Therefore, studies that could verify this complex-

induced selectivity are not currently possible with recombinant assays. 

A second hypothesis for the observed discrepancy is that Grp94 inhibitors may exhibit a 

slow-tight binding profile due to the necessity for lid displacement.  The binding studies 

completed to date were conducted on a short time scale, and do not account for time-dependent 

inhibition.  Thus, necessary studies are ongoing and will address this hypothesis. 

IV.4 Future Directions and Concluding Remarks 

 The development of a Grp94 isoform selective inhibitor represents an uncharted territory, 

and therefore the utility of such an inhibitor has yet to be demonstrated.  To date, all experiments 

identifying Grp94 dependent processes or client proteins have been conducted with Grp94 

targeted siRNA or unselective Hsp90 inhibitors.  Thus, the biological profile for Grp94 results 

from disruption of the protein at the pre-transcriptional level, or after combinatorial disruption of 

both Hsp90 and Grp94.  Considering the complex array of cellular responsibilities for Grp94 and 

the complex network involved with the mature chaperone, the only true mechanism to determine 

the utility of Grp94 inhibition is through the design of small molecule selective inhibitors. 

 Analysis of the Grp94 ATPase cycle can be utilized to explain the discrepancy between 

the binding and cellular data.  Upon binding client proteins, alterations in the tertiary structure 

arise, including changes to the N-terminal binding domain.47  Thus, it is plausible that the 
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conformation of the N-terminal binding pocket conducive to inhibitor binding is not revealed 

until client protein binding.  Furthermore, conformations of the Grp94 N-terminal binding pocket 

may be client specific.  Thus, Grp94 inhibitory scaffolds may disrupt specific clients, while not 

affecting others.  For example, the conformation of Grp94 N-terminal binding pocket induced 

upon binding TLR binding may not be reciprocated upon the binding of IGFs, thus, an inhibitor 

such as KU-NG-1 may only bind and inhibit the conformation of Grp94 necessary for TLR 

trafficking.  This leads to the proposal that small molecule Grp94 inhibitors can not only be 

designed, but can be manipulated to exhibit client specific affects.   

 As discussed in this chapter, we believe the first small molecule Grp94 inhibitor has been 

identified.  Utilizing structure-based design techniques in parallel with conformational 

constraints, we have identified two scaffolds exhibiting Grp94 inhibition, as demonstrated 

through a novel Toll-trafficking assay.  Development of a class of imidazole isosteres yielded 

nanomolar compounds, one of which, KU-NG-1, manifests ~ 30 nM activity.   

 Collaborations with the Gewirth laboratory have produced a co-crystal structure for KU-

NG-1 bound to Grp94N, which is undergoing the final stages of refinement.  Therefore, a clear 

picture of the interactions between KU-NG-1 and Grp94 will be available, expediting the 

structure-based development of novel compounds.  The progression of Grp94 inhibitors relies 

opon the ability to develop relevant functional assays.  Development of such assays will help 

analyze the proposal that client-induced conformation drives inhibitor binding, and may provide 

evidence that client specific inhibitors can be developed.       

IV.5 Methods and Experimentals 

Anti-proliferation Assay:  MCF-7 and SKBr3 cells were maintained in a 1:1 mixture of 

Advanced DMEM/F12 (Gibco) supplemented with non-essential amino acids, L-glutamine (2 



 125

mM), streptomycin (500 µg/mL), penicillin (100 units/mL), and 10% FBS. Cells were grown to 

confluence in a humidified atmosphere (37 °C, 5% CO2), seeded (2000/well, 100 µL) in 96-well 

plates, and allowed to attach overnight. Compound or geldanamycin at varying concentrations in 

DMSO (1% DMSO final concentration) was added, and cells were returned to the incubator for 

72 h.  At 72 h, the number of viable cells was determined using an MTS/PMS cell proliferation 

kit (Promega) per the manufacturer’s instructions. Cells incubated in 1% DMSO were used as 

100% proliferation, and values were adjusted accordingly. IC50 values were calculated from 

separate experiments performed in triplicate using GraphPad Prism. 

 

Western Blot Analysis:  MCF-7 cells were cultured as described previously48 and treated with 

various concentrations of drug, GDA in DMSO (1% DMSO final concentration), or vehicle 

(DMSO) for 24 h.  Cells were harvested in cold PBS and lysed in RIPA lysis buffer containing 1 

mM PMSF, 2 mM sodium orthovanadate, and protease inhibitors on ice for 1 h.  Lysates were 

clarified at 1400 g for 10 min at 4 ºC.  Protein concentrations were determined by using the 

Pierce BCA assay kit per the manufacturer’s instructions.  Equal amounts of protein (20 µg) 

were electrophoresed under reducing conditions, transferred to a nitrocellulose membrane, and 

immunoblotted with the corresponding specific antibodies.  Membranes were incubated with an 

appropriate horseradish peroxidase-labeled secondary anti-body, developed with 

chemiluminescent substrate, and visualized. 
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Chapter V 
 

The Design, Synthesis and Biological Evaluation  
of a Pro-mustard Irreversible Alkylator of Hsp90 

 
V.1 Rationale for an Irreversible Hsp90 Alkylator 

As discussed in Chapter I, numerous detriments exist with current Hsp90 inhibitors 

undergoing clinical evaluation.  While many of these complications arise from pan-inhibition of 

all four Hsp90 isoforms, biological events, such as heat shock induction, are believed inherent to 

N-terminal Hsp90 inhibition.  This is a consequence of heat shock factor-1 (HSF-1) release and 

subsequent binding to the heat shock element (HSE), which induces transcription of the heat 

shock genes.1, 2  Under non-stressed conditions, Hsp90 binds HSF-1, preventing its function as a 

transcription factor (1, Figure 50).3  In contrast, under stressed conditions, such as the 

accumulation of denatured proteins, HSF-1 is released from Hsp90 (2).  Subsequent trimerization 

 
Figure 50.  Heat shock factor-1 mediated induction of the heat shock response. 
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and phosphorylation of HSF-1 renders the active HSF-1 transcription factor (3).2-4  This 

phosphorylated trimer translocates into the nucleus and binds the HSE to promote transcription 

of HSP genes (4).2-4  N-terminal Hsp90 inhibitors also stimulate HSF-1 release, and induction of 

the heat shock response (HSR).5  Thus, while client proteins are degraded upon Hsp90 inhibition 

(5), the intracellular concentration of Hsp90 and various other anti-apoptotic chaperones (Hsp70, 

Hsp40 and Hsp27) are induced.  This pro-survival response, specifically induction of the target 

protein, Hsp90, has resulted in dosing and scheduling issues with Hsp90 inhibitors in the clinic.6  

Therefore, a solution to this problem may lie in an Hsp90 inhibitor that results in synchronous 

degradation of the chaperone alongside client proteins.  Although HSF-1 release and heat shock 

induction would still occur, a significant concentration of Hsp90 would succumb to proteasome 

degradation, culminating in an overall stagnant intracellular Hsp90 concentration. 

V. 2 Design of 17-CEAG   

 Studies resulting from our laboratory and others have revealed the hydroquinone of 

GDA, as compared to the quinone, to exhibit greater activity against transformed cells.7  This 

finding resulted in subsequent studies that identified NADH quinone oxidoreductase (NQO1) as 

the enzyme responsible for reduction of the quinone to the more active hydroquinone.8-10  

Xenobiotic metabolism is a secondary function of NQO1, as its primary biological role is to 

maintain a reduced antioxidant state of coenzyme Q (CoQ) in the mitochondrial electron 

transport chain.11-13  Nonetheless, NQO1’s secondary role in xenobiotic metabolism is one of 

importance, as numerous quinone containing molecules are known to undergo NQO1 mediated 

reduction.14   
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Previous studies have shown that 17-amino substitutions 

to the GDA scaffold maintain high affinity for Hsp90.15, 16  The 

dependence of ansamycin analogs upon NQO1 for reduction, 

provided a novel approach towards the development of a 

mechanism-based irreversible Hsp90 inhibitor that contained a 

pro-mustard functionality, namely 17-chloroethylamino-17-

demethoxygeldanamycin (17-CEAG, Figure 51).  This compound was previously patented in 

2006 for photolabeling purposes; however, alkylation studies were never disclosed.17   

In the quinone oxidation state, the pendent nitrogen lone-pair is delocalized into the 

quinone π-system.  Upon reduction by NQO1 the electron-deficient quinone is transformed into 

an electron-rich hydroquinone.  Thus, delocalization of the nitrogen lone pair is unfavorable, 

rendering the electrons reactive and available to displace the appended chlorine via an 

intramolecular SN2 mechanism (Figure 52).18, 19  The resulting aziridinium ion then provides the 

requisite functionality for Hsp90 alkylation upon binding.18, 19  As expected, Surflex20, 21 

molecular modeling studies suggest the 17-CEAG aziridine to bind Hsp90 similarly to 17-AAG 

with the nucleophilic Lys44 poised for attacked onto the aziridinium (Figure 53).  Once 

alkylated, the Hsp90 machinery should become ubiquitinylated and subsequently degraded by 

 
Figure 51.  Structure of 
17-CEAG. 

 
Figure 52.  Reduction/activation of 17-CEAG via NQO1.  Electron flow depicted by 
green (favorable) and red (unfavorable) arrows.  Electronic nature of quinone 
oxygens depicted with electron withdrawal in blue and electron donation in orange. 
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the proteasome.22  This degradation is 

proposed to counteract induction caused by 

HSF-1 release; thus, leading to a negligible 

change in Hsp90 concentration. 

V.3 Synthesis of 17-CEAG 

 In accordance with previous 17-

amino-17-demethoxygeldanamycin 

derivatives,23 17-CEAG was synthesized in 

one step from GDA (Scheme 7).  Upon 

treatment of GDA with 2-chloroethylamine 

hydrochloride and diisopropylethylamine 

(DIPEA) in dichloromethane (DCM) at room temperature, nucleophilic displacement of the 17-

methyl ether resulted in the desired compound, 17-CEAG, in 90% yield. 

V.4 Biological Evaluation of 17-CEAG 

 Upon synthesis of 17-CEAG, biological evaluation was undertaken in collaboration with 

David Ross’ laboratory at The University of Colorado Denver to elucidate the activity profile.   

 

 
Figure 53.  Overlay of 17-CEAG aziridine 
(yellow) and 17-AAG (magenta) in the N-
terminal Hsp90 ATP-binding pocket.   

 
Scheme 7.  Synthesis of 17-CEAG. 
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V.4.1 NQO1 Reduction Dependence 

 NQO1 (also known as DT-diaphorase) is an obligate 2-electron transfer flavoprotein that 

catalyzes the reduction of quinones to hydroquinones.12-14, 24  In 1999, researchers at the National 

Cancer Institute (NCI) aimed to determine the metabolic fate of ansamycin-based Hsp90 

inhibitors in hopes of elucidating toxicity issues associated with this class of inhibitors.  Results 

suggested 17-AAG to be a substrate for NQO1 reduction.8  Furthermore, the reduced form of 17-

AAG, 17-AAGH2, exhibited a 32-fold increase in growth inhibitory activity against various cell-

lines.8  These studies demonstrated that 17-amino substituted ansamycin analogs are substrates 

for NQO1. 

 In accordance with the studies completed at NCI, 17-CEAG was shown to be dependent 

upon NQO1 for reduction to 17-CEAGH2 (Figure 54).  Incubation of 17-CEAG with NADH in 

potassium phosphate buffer was not sufficient to reduce the parent compound, and only the 

quinone species was present by HPLC analysis.  However, upon addition of NQO1 to the 

reaction mixture, rapid reduction occurred revealing near complete conversion to 17-CEAGH2. 

 
Figure 54.  Dependence upon NQO1 for reduction of 17-CEAG to 17-CEAGH2.  Incubation 
of 17-CEAG without NQO1 (left) and incubation of 17-CEAG in the presence of NQO1 
(right). 
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 In order to further verify the 

dependence upon NQO1 for formation 

of 17-CEAGH2, a small molecule 

irreversible NQO1 inhibitor, ES936, 

was incubated with NQO1 prior to 

addition of 17-CEAG.  As observed in 

Figure 55, ES936 completely abolished 

the reduction of 17-CEAG, as only the 

quinone form was present.  Results from these experiments clearly demonstrate that 17-CEAG is 

an NQO1 substrate and is dependent upon the reductase for conversion to 17-CEAGH2. 

 V.4.2 Anti-proliferative Activity 

 Previous studies suggest mammalian cell cultures to be more sensitive to the 

hydroquinone form of ansamycins.7  Furthermore, research has shown cell lines exhibiting 

higher concentrations of NQO1 are more sensitive to ansamycin treatment than cell lines 

deficient in NQO1.25, 26  To parallel previously studies, 17-CEAG was evaluated for anti-

proliferative activity against two isogenic cell lines: 1) MDA-468 breast cancer cells, which are 

NQO1 null as a consequence of a genetic polymorphism; and 2) MDA-468 (NQO1) cells which 

have been stably transfected to express high levels of NQO1. 

Figure 55.  Affect of NQO1 inhibitor, ES936, on 
the reduction of 17-CEAG. 
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 Firstly, the intracellular concentration of each 17-CEAG species was measured via HPLC 

analysis.  As shown in Figure 56, the only species present in NQO1 null cells was 17-CEAG.  

Additionally, the size of the peak in the HPLC trace demonstrates poor membrane permeabililty 

for the quinone species, consistent with previous studies.  Other than improved binding 

interactions with the Hsp90 N-terminal binding pocket, superior intracellular sequestration and 

thus higher intracellular concentrations have been proposed as reasons for the improved activity 

manifested by hydroquinone ansamycin species.7  Therefore, it was not surprising that cells 

expressing high levels of NQO1, exhibited a high intracellular concentration of 17-CEAGH2, 

which further supports that ansamycin 

hydroquinone species are more efficiently 

sequestered intracellulary than the quinone 

counterparts. 

 In addition, as observed in Table 8, 17-

CEAG manifested ~12-fold higher anti-

proliferative activity against MDA-468 (NQO1) 

cells than MDA-468 cells.  This ~12-fold increase in activity was also observed upon treatment 

 
Figure 56.  Oxidation state of 17-CEAG in MDA-468 (NQO1 null) cells (left) and MDA-468 
(NQO1) cells (right). 

Table 8.  Anti-proliferation activity of 
17-CEAG against MDA-468 and MDA-
468 (NQO1) cell-lines. 
 

Compound MDA-468 
IC50 (µM) 

MDA-468 
(NQO1) 

IC50 (µM) 
17-AAG 10.05 0.86 

17-CEAG 4.53 0.37 
MTT cytotoxicity assay 
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of the cell-lines with 17-AAG, which is comparable to activity exhibited by other NQO1 

dependent ansamycins. 

V.4.3 Western Blot Analyses 

 To confirm cytotoxic activity resulted from Hsp90 inhibition, Western Blot analyses were 

conducted on MDA-468 (NQO1) cell lysates after treatment with 17-CEAG and 17-AAG, both 

in the presence and absence of NQO1 inhibitor ES936.  As shown in Figure 57, Akt, a client of 

Hsp90, demonstrated a dose-dependent degradation in the presence of both 17-AAG and 17-

CEAG, which is indicative of Hsp90 inhibition.  As discussed previously, inhibition of Hsp90 

with N-terminal inhibitors results in HSF-1 mediated heat shock induction.  In the presence of a 

reversible Hsp90 inhibitor (17-AAG), dissociation of the inhibitor from Hsp90 occurs, allowing 

the chaperone to continue the protein folding cycle.  Thus, no Hsp90 degradation occurs to 

counteract the HSF-1 mediated induction, which results in an overall increase in Hsp90 
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Figure 57.  Western Blot analyses of MDA-468 (NQO1) cell lysates after 
treatment with 17-AAG and 17-CEAG; both in the presence and absence of 
ES936.  Concentrations expressed as µM. 
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concentration.  This phenomenon is 

observed after treatment of MDA-468 

(NQO1) cells with 17-AAG, and is 

illustrated in Figure 58.  In contrast, 

upon treatment of MDA-468 (NQO1) 

cells with 17-CEAG, client protein 

degradation occurred at similar 

concentrations to 17-AAG (10–100 

nM); however, Hsp90 levels remained 

constant (Figure 59) while Hsp70 levels increased.  As expected, in the presence of ES936, 

Hsp90 induction is observed.  This can be attributed to inhibition of NQO1, which mitigates the 

formation of 17-CEAGH2, thus eliminating the alkylation of Hsp90.  However, at high 

concentrations of 17-CEAG, occupation of NQO1 by 17-CEAG prevents inhibition of the 

enzyme by ES936.  Thus, 17-CEAG reduction occurs and subsequent Hsp90 alkylation results in 

regression of Hsp90 concentration to 

control levels.  Therefore, Western 

Blot analyses confirm the hypothesis 

that NQO1 dependent formation of 17-

CEAGH2 leads to Hsp90 alkylation 

and subsequent degradation, resulting 

in a negligible overall change in 

Hsp90 levels.  

   

 
Figure 58.  Densitometry results of the Western 
Blots from MDA-468 (NQO1) cell lines after 
treatment with 17-AAG. 

 
Figure 59.  Densitometry results of the Western 
Blots from MDA-468 (NQO1) cell lines after 
treatment with 17-CEAG. 
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V.5 Future Studies and Concluding Remarks 

 Prior to publishing the profile for 17-CEAG, more studies are needed.  Firstly, Hsp90 

alkylation studies must be completed to ensure protein modification is occuring.  Preliminary 

alkylation studies have failed; however condition optimization is ongoing with the Desaire 

Laboratory at The University of Kansas.  Alkylation was hypothesized to be the rate-limiting 

experiment, as facile auto-oxidation back to the quinone species in vitro has been reported 

previously with 17-amino ansamycin inhibitors, which would mitigate the ability to alkylate the 

protein.  Secondly, Western Blot analyses need to be conducted in the presence of a proteasome 

inhibitor, such as bortezomib to verify the mechanism of Hsp90 degradation upon alkylation.  If 

Hsp90 alkylation leads to proteasome mediated degradation, then inhibition of the proteasome 

should reveal similar Hsp90 induction as seen with 17-AAG.  Both of these studies are 

imperative in confirming the mechanism of action for 17-CEAG.  

 As discussed in this chapter, a pro-mustard ansamycin-based Hsp90 inhibitor has been 

designed and synthesized.  Knowledge of NQO1 based reduction of this class of Hsp90 inhibitor 

has provided rationale for the development of 17-CEAG.  Our studies have shown 17-CEAG to 

be dependent upon NQO1 for reduction to 17-CEAGH2, dependent upon NQO1 for anti-

proliferative activity, and to exhibit dose-dependent Hsp90 client protein degradation while 

failing to increase Hsp90 levels up to ~1.0 µM.  Therefore, 17-CEAG has exhibited the 

biological profile proposed at the onset of studies and represents a promising lead for the first 

pro-mustard Hsp90 alkylating agent.    
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V.6 Methods and Experimentals 

 

(4E,6Z,8S,9S,10E,12S,13R,14S,16R)-19-((2-chloroethyl)amino)-13-hydroxy-8,14-

dimethoxy-4,10,12,16-tetramethyl-3,20,22-trioxo-2-azabicyclo[16.3.1]docosa-

1(21),4,6,10,18-pentaen-9-yl carbamate (17-CEAG): To a solution of 2-chloroethylamine 

hydrochloride (105 mg, 0.9 mmol, 10 equiv.) and N.N-diisopropylethylamine (DIPEA, 151 mg, 

1.17 mmol, 13 equiv.)  in anhydrous DCM under argon at 25 ˚C, was added geldanamycin 

(GDA, 50 mg, 0.09 mmol).  The reaction was stirred under argon at 25 ˚C for ~18 h.  After 

complete conversion of GDA, as observed by TLC, the solvent was removed in vacuo and the 

residue subjected to flash chromatography utilizing 97:3 (DCM:MeOH) as the eluent.  The 

desired product was isolated as a purple amorphous solid (49 mg, 90% yield). 1H NMR (CDCl3, 

500 MHz) δ 9.09 (s, 1H), 7.29 (s, 1H), 6.94 (bd, J = 11.5 Hz, 1H), 6.56 (ddd, J = 11.5 Hz, 11.0 

Hz, 1.0 Hz, 1H), 6.35 (bt, J = 5.0 Hz, 1H), 5.87 (bd, J = 9.5 Hz, 1H), 5.85 (bdd, J = 11.0 Hz, 

10.0 Hz, 1H), 5.18 (s, 1H), 4.72 (bs, 2H), 4.30 (bd, J = 10.0 Hz, 1H), 4.03 (bs, 1H), 3.94–3.83 

(m, 2H), 3.75–3.67 (m, 2H), 3.56 (ddd, J = 9.0 Hz, 6.5 Hz, 2.0 Hz, 1H), 3.43 (ddd, J = 9.0 Hz, 

3.0 Hz, 3.0 Hz, 1H), 3.35 (s, 3H), 3.26 (s, 3H), 2.73 (dqd, J = 9.5 Hz, 7.0 Hz, 2.0 Hz, 1H), 2.70 

(d, J = 14.0 Hz, 1H), 2.24 (dd, J = 14.0 Hz, 11.0 Hz, 1H), 2.01 (bs, 3H), 1.78 (d, J = 1.0 Hz, 3H), 

1.80–1.75 (m, 2H), 1.75–1.68 (m, 1H), 1.00–0.96 (m, 6H); 13C NMR (CDCl3, 125 MHz) δ 183.8, 

181.2, 168.3, 155.9, 144.7, 140.8, 135.9, 135.0, 133.6, 132.9, 127.0, 126.5, 110.0, 109.1, 81.6, 
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81.4, 81.2, 72.7, 57.1, 56.7, 46.9, 42.7, 35.1, 34.4, 32.4, 28.8, 23.0, 12.8, 12.6, 12.5; ESI–HRMS 

630.2548 (M + Na, C30H42ClN3ONa requires 630.2558). 

 

Western Blot Analyses: MDA468 or MDA468/NQ16 were maintained in RPMI 1640 media 

supplemented L-glutamine (2 mM), streptomycin (500 µg/mL), penicillin (100 units/mL), and 

10% FBS. Cells were grown to confluence in a humidified atmosphere (37 °C, 5% CO2), seeded 

(3x105/well, 2 mL) in 6-well plates, and grown to 60% confluency prior to dosing. Cells were 

then treated with various concentrations of 17-CEAG or 17-AAG in DMSO (1% DMSO final 

concentration), or vehicle (DMSO) for 24 h. Cells were harvested in cold PBS and lysed in 

mammalian protein extraction reagent (MPER, Pierce) containing protease inhibitors (Roche) on 

ice for 1 h. Lysates were clarified at 14,000g for 15 min at 4° C. Protein concentrations were 

determined using the Pierce BCA protein assay kit per the manufacturer’s instructions. Equal 

amounts of protein (5 µg) were electrophoresed under reducing conditions, transferred to a 

PVDF, and immunoblotted with the corresponding specific antibodies. Membranes were 

incubated with an appropriate horseradish peroxidase-labeled secondary antibody, developed 

with a chemiluminescent substrate, and visualized. Densitometry was performed using ImageJ 

“Gels” tool. 
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