
THE TRUE COST OF PAIR PROGRAMMING: DEVELOPMENT OF A COMPREHENSIVE

MODEL AND TEST

BY

©2011

Wenying Sun

Submitted to the graduate degree program in Business and the

Graduate Faculty of the University of Kansas

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Committee Members: ______________________________

Dr. George M. Marakas (chairperson)

Dr. Andrew N. K. Chen

Dr. James A. Heintz

Dr. Gilbert Karuga

Dr. Todd D. Little

 Date Defended: ____________________________

i

The Dissertation Committee for Wenying Sun

certifies that this is the approved version of the following dissertation:

THE TRUE COST OF PAIR PROGRAMMING: DEVELOPMENT OF A COMPREHENSIVE

MODEL AND TEST

 Chairperson: Dr. George M. Marakas

Date Approved: ____________________________

ii

ABSTRACT

To advance the nomological net and theory, this dissertation proposed a comprehensive

pair programming research model where the relationships among system complexity,

programming methods, pair composition, effort, duration, defect rate, knowledge transfer, and

various cost constructs were investigated. A multi-method, multi-study empirical approach was

adopted. The survey method was employed for Study 1, and the bootstrap simulation method for

Study 2. The reponses from 191 industry software developers and the simulation results suggest

the previous conclusions regarding pair programming are limited in nature and the pair

programming approach may not be as desirable in all situations as was previously assumed. The

pair programming approach clearly adds value in situations where it is appropriate but certain

conditions must be met for this goal to be achieved. Pair composition must be taken into account,

and it is important to examine the interactions of multiple cost factors such as defect, effort,

duration, and knowledge transfer and consider their combined effect on the ultimate goal of the

project.

iii

ACKNOWLEDGEMENT

First and foremost I would like to thank my advisor, George M. Marakas, who was

abundantly helpful and offered invaluable assistance, support, and guidance throughout my study

at KU. His positive attitude, passion for research, and willingness to share his knowledge made

his seminars and our weekly dissertation meetings something to look forward to.

I am grateful to other members of my dissertation committee, Andrew N. K. Chen, Jim

A. Heintz, Gilbert Karuga, and Todd D. Little. I appreciate their constructive feedback and

commitment to see me through the long dissertation journey.

I would also like to express my gratitude to Jim A. Heintz, Director of Accounting and

Information Systems. The warm gatherings at his home and his tireless support of the IS PhD

program will always be remembered.

I am also indebted to Charly Edmonds and Deb Deering. Without their help in

navigating processes, procedures, forms, and many other things, my study at KU would have

been much less smooth.

Finally, I would like to thank my husband Baili and son Benjy for their loving support.

Their understanding and endless love sustained me through the demanding process.

iv

TABLE OF CONTENTS

1. Introduction ……………………... 1

2. Literature Review ……………………... 10

Quality ……………………... 14

 Cost ……………………... 19

 Effort ……………………... 23

 Duration ……………………... 24

Knowledge Transfer and Learning ……………………... 25

Confidence, Enjoyment, and Retention ……………………... 27

 Subject Variables ……………………... 29

 Task Variables ……………………... 33

 Environmental and Organizational Variables ……………………... 34

Summary of Literature Review ……………………... 35

3. Research Model and Hypotheses ……………………... 41

System Complexity, Effort, Defect Rate, and Knowledge Transfer ……………………... 43

Programming Method as a Moderator ……………………... 46

Pair Composition ……………………... 49

Duration ……………………... 52

Cost ……………………... 52

4. Methodology ……………………... 54

 Survey ……………………... 55

 Bootstrap Simulation ……………………... 58

5. Results ……………………... 60

 Survey Sample ……………………... 61

 Hypothesis Testing ……………………... 63

 Cost ……………………... 75

6. Discussions, Limitations, Future Research ……………………... 89

 Discussions ……………………... 89

 Limitations ……………………... 97

 Conclusions ……………………... 99

 Future Research ……………………... 101

7. Appendixes ……………………... 102

 Survey Instrument ……………………... 102

 Bootstrap Sampling Program ……………………... 109

 Cost Calculation Program ……………………... 110

 Training Cost ……………………... 160

8. References ……………………... 162

1

1.INTRODUCTION

Software is used in virtually every part of human life. From embedded systems in our

kitchen appliances to control systems for space exploration, from book keeping systems to

monitoring systems for surgical operations, humans rely heavily on software for processing

information and providing recommendations for actions and interactions.

Given the ubiquitous nature of software, it should not be surprising that the software

industry has seen tremendous growth in the past decade and is expected to continue to grow in

the future. According to reports by Data Monitor, a leading business information company

specializing in industry analysis, the United States software market generated total revenues of

$85.9 billion in 2007 and is forecast to have a value of $116.6 billion by 2012 (Datamonitor,

2008a); the global software market was valued at $251.5 billion in 2007 and is expected to reach

$347.3 billion in 2012 (Datamonitor, 2008b). Industry estimates point to as many as 17 million

professional software developers in the world including three million developers in the US

(Woyke, 2008; Mahalo, 2009).

Despite its growth and rapid maturity, software development remains challenging.

Yourdon (2004) classified many software development projects as “Death March” projects

where participants helplessly watch the projects sink into the sea of failure. While there are

conceivably an infinite number of issues that must be addressed across the wide spectrum of

software development, arguably the two most important issues are the quality of the software and

the cost of developing it.

The quality of software is of paramount importance. National Institute of Standards and

Technology reports (Tassey, 2002) software errors cost the U.S. economy $59.5 billion annually.

This represents over half of the 2007 software industry revenues generated by selling the

products. Serious problems and significant losses may result when a system fails to deliver its

2

services as expected (Sommerville, 2007). For instance, the wrong dosage suggested by a

medical expert system intended to be used in support of treatment could result in patient deaths

(Kirby, 2007; Computing Cases, 2009); a defect in the computer controlling the space shuttle

could cause catastrophic losses (Sommerville, 2009); a failure in the traffic control system could

shut down traffic lights and cause chaotic traffic jams or potentially disasterous results

(Geoghegan, 2005); a fault in the electronic switching systems of a telecommunications

company could cause an outage, blocking millions of phone calls (Washington Technology,

1999); an error in calculating classroom exam results could misinform educators, students, and

their parents, and a mistake in tax software could distort tax assessments and result in many

taxpayers experiencing unnecessary audits and penalties (BBC News, 1998; 2009).

Regardless of the degree of criticality, software quality is essential. Even when liability

is not a major concern, users are not likely to stay with software products full of inconvenience

as a result of development deficiencies and errors. Companies producing poor quality software

will likely not stay in the marketplace for too long.

The cost of developing software is high due to its increased size and complexity (Tassey,

2002). Brooks (1995) reported the IBM OS/360 project he managed required 5000 man-years in

its design, construction, and documentation during a three-year period, and at peak time, had

over 1000 people working on it. Microsoft NT operating systems was reported to have more

than 35 million lines of code (Markoff, 1998). A commercial video game typically calls for over

three million lines of code with budgets ranging from $5 million to $50 million (Hurt, 2009).

The cost of developing software is comprised of several elements: labor costs, training

costs, and hardware and software costs, with labor as the largest cost component (Sommerville,

2007). According to the May 2010 labor statistics (Bureau of Labor Statistics, 2011), the

3

average hourly wage of a software developer in the US is $36.01, and the average annual wage is

$74,900. Statistics based on 1,238 software projects from International Software Benchmarking

Standards Group (ISBSG) report the average software effort among the projects is 8,414.80

man-hours and the maximum is 645,694 man-hours (Pendharkar and Rodger, 2009), which

suggests the average direct labor cost for these projects is $303,000, and $23 million for the

largest project.

Developing quality software within budget constraints is a universal challenge faced by

all software projects. Quality comes at a cost. In programming, the bulk of cost is not simply

labor associated with writing codes, but labor associated with writing quality codes. As Figure 1

illustrates, quality sits in the center of the triangle of money, scope, and time, and is affected by

any changes made to any side of the triangle (Microsoft, 2009). When time and scope are fixed,

money necessarily increases as quality goes up.

Figure 1.1 Quality and the Triangle (Microsoft, 2009)

Furthermore, Juran (1974) depicts a concave upward curve in Figure 1.2 as the

relationship between cost and quality where he defines the “zone of improvement” and the “zone

of perfectionism”. The “zone of improvement” lies to the left of the optimum quality level,

while the “zone of perfectionism” lies to the right. The graphs suggest quality in the

improvement zone can be improved without incurring additional cost; as a matter of fact, it

reduces cost per unit of product, but in the perfectionism zone, every little improvement in

4

quality comes with a high price. This can be metaphorically thought of in terms of the

commonly used heuristic known as the “Pareto principle”. The Pareto 80/20 principle states 80%

of the effects come from 20% of the causes. When applied to quality and cost in software

development, one can argue that generally 80 percent of the project quality is achieved by only

20 percent of the resources. This suggests, to achieve the remaining 20 percent of the total

quality, up to 80 percent of the resources will be required.

Figure 1.2 Quality and Cost (Juan, 1974)

Given the importance of this issue, numerous approaches have been developed to

improve software quality while staying within cost constraints. Waterfall software development,

rapid application development (RAD), object-oriented analysis and design (OOAD), and the

5

most recent agile software development (Pressman, 2005; Sommerville, 2007) all have the same

goal: developing high quality software within budget. Although sharing the same goal, these

approaches adopt different, sometimes even contradictory, techniques to achieve it (Dennis,

Wixom, and Tegarden, 2005; Schach, 2006; Pfleeger and Atlee, 2008). For example, waterfall

development endorses rigorous document “sign-off” processes thus minimizing changes as the

project proceeds, while agile software development welcomes changing requirements even late

in the project (Agile Manifesto, 2011). Waterfall does not deliver working software until the

very end of the project while RAD develops some part of the system quickly and puts it into the

hands of the users for suggestions to bring the system closer to what is needed. OOAD takes

advantage of basic object-oriented characteristics such as classes, methods, inheritance,

encapsulation, and polymorphism and focuses on reusability, which introduces concepts vastly

different from the procedure-oriented analysis and design associated with Waterfall.

One of the most recent, and seemingly attractive, approaches is pair programming. Solo

programming is the traditional programming method while pair programming has recently

emerged as an attractive alternative to address the challenges solo programming faces such as

quality and speed.

Pair programming is a programming method where two programmers work on the same

programming task side by side in front of one computer (Beck, 2000; Williams, Kessler,

Cunningham, and Jeffries, 2000; Arisholm, Gallis, Dybå, and Sjøberg, 2007). In pair

programming, one programmer is the driver, and the other is the navigator. The driver sits in

front of the computer screen, types the code, and pays close attention to the coding details. The

navigator sits beside the driver, reviews the code, and takes the lead in developing alternative

6

strategies in the event of a problem. The programmers change roles periodically during the

project to avoid role fatigue.

Pair programming is one of the twelve principles Extreme Programming (XP) follows

(Sommerville, 2007). XP, the brainchild of Kent Beck and colleagues Ron Jeffries and Ward

Cunningham (Beck, 2000), has emerged as the most successful and best-known of the agile

software development method (Sommerville, 2007). Beck credits much of its success to the use

of pair programming (Williams et al., 2000).

Despite the worldwide prevalence - used in 58.3% of the projects in India, 22.2% in

Japan, 35.5% in US, and 27.2% in Europe and other countries (Cusumano, MacCormack,

Kemerer, and Crandall, 2003) and the increased adoption – seven percent increase from 2007 to

2008 (VersionOne, 2008), our literature review suggests the adoption of pair programming

seems to be based on limited and sometimes questionable studies reporting its effectiveness. The

appeal of the pair programming method appears to come from the reported improvement in

quality and shortened software development cycle. However, a close review of the literature

reveals several problems with these conclusions.

First, with a few exceptions (Arisholm et al., 2007; Balijepally, Mahapatra, Nerur, and

Price, 2009), the majority of the empirical studies were conducted using neither theory nor

research framework. The comprehensive pair programming research framework suggested by

Gallis, Arisholm, and Dybå (2003) and extended by Ally, Darroch, and Toleman (2005) has been

largely ignored. Gallis et al. (2003) suggest individual factors and human interactions, as well as

task characteristics are crucial elements in determining its effectiveness. Yet, few studies

consider personal factors such as programmer expertise, prior pair programming experience,

interpersonal factors such as pair composition, and external factors such as the complexity of the

7

programming task, as contributing forces and components in their research. Lack of theoretical

guidance arguably puts the studies’ conclusions in doubt.

Second, across the studies, there is no consensus on the measurement of software quality.

For example, quality was measured by such varietal and opposing metrics as error rate (Jensen,

2003), readability and functionability (Nosek, 1998), correctness (Lui and Chan, 2003),

percentage of test cases passed (Williams et al., 2000), and scores on classroom programming

assignments (McDowell, Werner, Bullock, and Fernald, 2003; 2006). Consequently, findings

from individual studies cannot be readily generalized beyond the measurement method the

authors adopted.

Third, findings on how much more time is required by the pair programming method

varied from a decrease in time (Lui and Chan, 2003), a 15 percent increase (Williams et al.,

2000), a 41 percent increase (Nosek, 1998), to a 100 percent increase (Nawrocki and

Wojciechowski, 2001), thus failing to provide a definitive answer to whether pair programming

requires more programming hours than solo programming, and if so, by how much.

Finally, there has been very little empirical work, to date, on the issue of cost in the pair

programming arena. In fact, only two major studies emerge from a comprehensive review of the

literature. These two studies aimed to address the economics of pair programming but yielded

different conclusions: in one study, pair programming was more cost effective than solo

programming in all situations (Erdogmus and Williams, 2003), while in the other the economic

benefit of pair programming depended on factors such as market pressure (Padberg and Müller,

2003). Moreover, both study results were hampered by the lack of reliable parameter values

used in the simulation models. Erdogmus and Williams (2003) relied on data on programmer

productivity, defect rate, and rework speed. Padberg and Müller (2003) depended on data about

8

pair speed advantage and pair defect advantage. However, in both cases, empirical evidence of

the parameter values was very limited. As Erdogmus and Williams stated (p. 315-316) in the

limitation section of their research, they derived the parameter data from different sources, but

did not verify the data consistency among the sources. In addition, they did not have information

on the software development methods of the companies involved in those statistics.

Given what we have learned from the present, albeit limited, body of research on pair

programming, no empirical study has truly addressed all the issues associated with cost. From

previous research, one cannot confidently answer the question: is pair programming a cost

effective method for software development? While it might be true that pair programming can

produce higher quality code with shortened development cycle, it may not come without a cost in

other areas, such as increased programming hours. Since no study has addressed the entire

complexity of cost as it relates to pair programming, an empirical study that thoroughly

considers its many different contributing factors is warranted.

The purpose of this research is to propose and empirically validate a comprehensive

theoretical model of pair programming as it relates to project cost. The outcome of the research

aims to answer the following research questions:

1) Is pair programming a cost effective method compared to solo programming when

overall project costs and quality are considered?

2) What are the conditions that determine the cost effectiveness, or lack thereof, of the

pair programming method over solo programming?

Answers to these research questions will be derived via a multi-method empirical

approach. The first method is a survey study with two primary objectives:

9

 a). Gather information on practitioners’ perceptions regarding the cost of pair

programming and provide an initial validation of the research model;

b). Acquire data on project and developer characteristics to provide the necessary

foundation for a simulation study.

The second method is a series of bootstrapping simulations. Using responses from the

survey as input parameters, its objective is to determine in what situations pair programming is

expected to be more cost effective than solo programming. We examine both the project and

developer characteristics and vary parameter values to investigate the effects of the pair

programming method on the overall cost of a project under a variety of conditions.

It is important to note that programming is only one phase of software development. We

fully recognize activities both preceeding and after can have impacts on the total cost of the

project. For the purpose of this research, however, we are interested in two different

programming approaches and their associated effects on cost.

We believe this research has several theoretical and practical implications for researchers

as well as practitioners. From a theoretical perspective, this research is expected to be one of the

first few to examine several under-studied constructs and relationships: prior pair programming

experience, knowledge transfer, the moderating effects of pair programming method on the

relationship between system complexity and constructs such as effort, defect rate, and knowledge

transfer, and all the cost-related constructs are new. We hope the mechanism we develop to

acquire parameter values will provide a basis for future research in this area.

From the practical perspective, the study will likely provide foundational guidelines to

the industry when one needs to decide which programming method to adopt in different project

environments. Specifically, three situations and their associated project and developer

10

characteristics will be determined: situation 1 - pair programming is more cost effective than solo

programming, situation 2 – the two methods are pretty much the same, and situation 3 – solo

programming is more suitable than pair programming. Such findings are expected to provide

suggestions to organizations in regards to which programming method to use given their unique

project and developer characteristics.

The remainder of the research is organized into five chapters, a bibliography, and

appendixes in the following manner. Chapter Two presents a review of the related literature on

pair programming. Chapter Three presents the research model and hypotheses. Chapter Four

delineates the research design and methodology of the study. An analysis of the data and a

discussion of the findings are presented in Chapter Five. Chapter Six contains the identifiable

limitations, summary, conclusions, and recommendations of the research. The research

concludes with a bibliography and appendixes.

2. LITERATURE REVIEW

Practitioners and academia have both contributed to the body of pair programming

knowledge and research. Despite occasional overlap, practitioners tend toward sharing their

personal experiences and observations while academia typically contribute by collecting and

analyzing data based on grounded theories and standard research methods.

It is important to note that the literature presented here represents a totality of both

practitioner and academic work on pair programming. Suffice to say, the extant literature in pair

programming is both immature and lacking strong empirical focus. Appended to the end of this

chapter is Table 2.1 which contains a summary of the extant literature in pair programming.

Despite the volume of the table, most of the studies are either practitioner-oriented anecdote (17

out of 85 = 20%) or published in conference proceedings (37 out of 85 = 43.5%). Among

11

refereed academic journal publications (29 out of 85 = 34%), nearly half of the studies focused

on university computer science education rather than real world industrial practice. We can

conclude from these descriptions that, in one sense, all studies become important when the extant

literature is so young. In another sense, the academic and empirically focused portion of the

literature is weak with respect to theory and foundation. It is our hope that this research effort

will improve on this condition.

Practitioners have utilized several outlets to share their opinions and experiences. One

major outlet is Internet websites such as Agile Alliance, Agile Software Development, Agile

Manifesto, Extreme Programming, and Wikipedia on pair programming. The other outlet is

practitioner’s journals such as Computer World, Information Week, and Dr. Dobb’s. In addition

to the above, several popular news media have opinion pieces on pair programming. For

example, a September 2009 New York Times article Olsen (2009), argued pair programming

was the only way to work from the stand point of a programmer at a web development firm in

Florida. A September 2009 Wall Street Journal article Price (2009), called pair programming a

“trendy practice”. The annual agile conference, which attracts over 1000 attendees, is another

outlet for practitioners to share their industrial experience alongside academic colleagues.

The major outlets for academic publications are the Institute of Electrical and Electronics

Engineers (IEEE), the Association for Computing Machinery (ACM), and premiere IS

conference proceedings and journals. There has been substantial academic literature on pair

programming research with most conducted by researchers trained in computer science and

software engineering. The focus and the quality of the research varies greatly, ranging from

opinion pieces based on observations, to studies that present descriptive statistics without

conducting any significance test, to studies that rigorously adopt scientific research methods. We

12

include all the extant literature in this chapter for comprehensiveness, but we caution readers

regarding the generalizability of the conclusions from some of the studies due to their lack of

sound empiricism.

Among the studies we reviewed, two stand out as exemplars of important contributions:

Gallis et al. (2003) and Dybå, Arisholm, Sjøberg, Hannay, and Shull (2007). These two studies

present a comprehensive list of constructs that have been the focus of interest by most academic

researchers in the pair programming arena.

Gallis et al. (2003) proposed a comprehensive research framework for pair programming.

To address the problem of no available theoretical framework to support pair programming

research, the authors developed such a framework based on existing studies and theories from

group dynamics such as egoless programming (Weinberg, 1971), surgical team (Brooks, 1975),

and dynamic duos (Constantine, 1995). Figure 2.1 illustrates this proposed research framework.

Figure 2.1 Research Framework for Pair Programming (Gallis et al., 2003)

This framework suggests that time, cost, quality, knowledge transfer, morale, and risk are

13

salient dependent variables with context variables such as subject, task, and environmental

characteristics moderating the relationship between programmer collaboration methods and

outcomes. This framework was later extended by adding organizational factors such as team

building, pair management, human resource management, accountability, customer resistance,

organizational culture, and collective code ownership to the moderating context variables (Ally,

Darroch, and Toleman, 2005).

The second exemplar, Dybå et al. (2007), conducted a meta-analysis which represents the

most current research aimed at synthesizing results from multiple empirical studies. The meta-

analysis focused on the effect of programming method (solo vs. pair) on quality, duration, and

effort. Figure 2.2 contains their findings.

Figure 2.2 Findings from Meta-analysis (Dybå et al., 2007)

14

This meta-analysis, consisting of 15 studies, suggests pair programming leads to a

medium-sized increase in quality (effect size = 0.38), a medium-sized overall reduction in

duration (effect size = 0.40), and a medium-sized negative effect on effort (effect size = -0.57).
1

In building upon the presentation of the two previous exemplars, the remainder of this

literature review presents the findings from studies in pair programming using an organizing

approach that separates the constructs identified in the two previous exemplars. We believe this

approach presents the clearest understanding of the variables of interest in pair programming

research in general, and this research effort in particular. Variables such as trust and risk were

not included since few studies were identified to focus on those constructs. In addition, since the

focus of this research effort is to compare pair programming to solo programming, literature that

compares pair programming to other team development methods such as traditional team

development, peer review, and inspection are also not presented or discussed.
2

2.1. Quality

Numerous stories from the industry attest to the relationship between the use of pair

programming and improved software quality. Tom Ayerst, an architectural consultant at a

London-based investment bank, suggested that pair programmers made fewer coding mistakes

and stupid choices because it was like having a pilot to focus on flying, while the navigator made

strategic decisions about where to go next (Copeland, 2001a). At Royal & Sun Alliance

Insurance Group, a $16 billion London-based insurer, pairing two developers on each assignment

helped produce more stable code (Copeland, 2001a). Haungs (2001) noted the combined efforts

1
 For studies in software engineering, 0-0.37, 0.38-1.00, 1.01-3.40 represent small, medium, and large effects

respectively (Kampenes, Dybå, Hannay, and Sjøberg, 2007).

2
 Interested readers are referred to Ciolkowski and Schlemmer (2002), Tomayko (2002), Heiberg, Puus, Salumaa,

and Seeba (2003), Müller (2004; 2005), Chong (2005), Phongpaibul and Boehm (2006), and Xu and Rajlich (2006)

for these areas of interest. Readers who are interested in research on distributed vs. co-located pair programming are

referred to Baheti, Gehringer, and Stotts (2002), Prashant, Edward, and Stotts (2002), Natsu, Favela, Moran,

Decouchant, and Martinez-Enriquez (2003), Canfora, Cimitile, Lucca, and Visaggio (2006), and Flor (2006).

http://main.dresdnerkb.com/
http://www.royalsunalliance.com/

15

in pair programming on the Chrysler 3 project produced a tool that was much better than the sum

of its parts. At Iona Technologies and Wotif, the adoption of pair programming improved the

quality of the final product (Poole and Huisman, 2001; Luck, 2004). The Quality Assurance

teams at Symantec produced cleaner test classes and better coverage tests through the pair-

programming process (Morales, 2002). Jensen, a consultant for the Software Technology

Support Center, Hill Air Force Base, reported an error rate of 0.001 in a pair programming

experience compared to the normal error rate experienced without using the pair approach. He

further revealed integration of the first two components (approximately 10,000 source lines) was

completed with only two coding errors and one design error; the third component was integrated

with no errors; and the remaining three components had more errors, but the number of errors

was significantly less than normal (Jensen, 2003). At Sabre Airline Solutions, actual coding was

done in pairs by teams in open labs. Reports from Sabre suggest that the use of the pair approach

cut defects dramatically: 100 defects for their Profit Manager project (500 KLOC),
3
 zero defects

for their Host Access project (15 KLOC), and four defects for their Peripheral Manager project

(28 KLOC) (Anthes, 2004). At Intel pair-programmed components had the lowest defect density

in the IXP2xx project and one of the paired teams achieved zero defect quality (Fitzgerald and

Hartnett, 2005). Finally, Marchenko (2008a; 2008b; 2008c) stated his personal observations

supported the notion of better quality when using the pair programming method.

The anecdotal claim about quality improvement through pair programming has been

supported by academic-based empirical studies involving college students as well as

practitioners. Nosek (1998) examined the effectiveness of pair programming with 15 full-time

system programmers: five individuals and five pairs. The study results revealed pairs produced

3
 KLOC refers to thousand of lines of code.

16

more readable and functional solutions than solos. Lui and Chan (2003) used 15 full-time

industrial programmers from different companies as subjects in their experiment, five pairs and

five individuals, to solve two problems: a deduction problem and a procedural algorithm. Study

results revealed that pairs outperformed individuals in terms of correctness. Nilsson (2003)

conducted a pair programming survey that involved both students and practitioners and noted

that most of the 67 survey respondents believed pair programming would reduce defect rate.

Tessem (2003) conducted a field study with six students and researchers at the University of

Bergen, Norway. The project lasted three weeks. All six programmers reported that they found

pair programming led to higher quality. Canfora, Cimitile, Garcia, Piattini, and Visaggio (2007)

conducted an experiment involving 18 developers in a software company in Spain. The authors

reported that pairs consistently produced higher quality products than solos. Vanhanen and

Lassenius (2007) surveyed 28 developers in a medium-sized Finnish software product company.

Findings suggested a clearly positive effect for quality aspects such as understandability and

maintainability of code, defect count, and customer satisfaction.

A series of experiments involving hundreds of college students in various programming

classes were conducted by McDowell, Williams, and colleagues at the University of Utah, North

Carolina State University, and the University of California Santa Cruz. Study results suggest,

when compared to programs created by solos, those produced by paired students were

significantly higher quality (Cockburn and Williams, 2001; McDowell, Werner, Bullock, and

Fernald, 2002; McDowell, Hanks, and Werner, 2003; McDowell et al., 2003; 2006; Williams et

al., 2003), passed more test cases (Williams et al., 2000), and had higher scores (Nagappan,

Williams, Wiebe, Miller, Balik, Ferzli, Petlick, 2003; Nagappan, Williams, Ferzli, Wiebe, Yang,

Miller, Balik, 2003). These same results were confirmed by several other student subject

17

experiments and surveys. Sanders (2001) conducted a student survey and reported based on 60

responses that the students believed pair programming would lead to higher quality of the

program. Declue (2003) collected a survey in a CS2 course at Southwest Baptist University.

Responses were highly skewed in favor of increased quality with pair programming. Mendes,

Al-Fakhri, and Luxton_Reilly (2005) reported pairing improved the quality of assignments,

examination scores, and percentage passing rate. Müller (2006) noticed the programs produced

by solo students showed 14 percent more failures than the paired programs, and the failures of

the solo programs were more severe than the failures of the paired programs. Wray (2010)

applied theories such as expert programmer theory and change blindness to explain why pair

programming was a superior approach over solo. He stated when two programmers are working

together, one was more likely to ask a deep question that would prompt a novel inference from

the stuck programmer. In addition, two people programming together wouldn’t have the same

prior categorization so one would spot some things faster and the other different things faster.

Despite the overwhelming support for the relationship between pair programming use

and software quality, several studies yielded mixed results for the improved quality assertion.

Madeyski (2006) conducted an experiment on 188 students who developed a finance-

accounting system using four different programming approaches: classic solo, test-driven

development solo, classic pair, test-driven development pair. Quality, which was measured by

relationships among the system’s packages: coupling, stability, abstractness, and distance from

main sequence, was not significantly affected by development methods. Hulkko and

Abrahamsson (2005) revealed comment ratios were higher for pair programming than for solo,

and pair programmed code was more readable, but there was no significant difference in defect

density. Vanhanen and Lassenius (2005) found paired student programming teams wrote code

18

with fewer initial defects but delivered the final systems with more defects because they were

less careful in system testing. Balijepally et al. (2009) concluded a pair was not necessarily better

than a solo. They compared the performance of pairs with those of the best performers and the

second best performers and found that pairs performed at the level above the second best

performers but no better than the best performers.

Additionally, some studies found quality improvement was not consistent across tasks or

projects. Gehringer (2003) required students to implement three projects simulating various

aspects of a mciroarchitecture (cache, branch predictor, dynamic instruction scheduler) and

revealed paired students obtained significantly higher grades on the first project but not in the

subsequent projects. Hanks et al. (2004) asked students to work on three programming

assignments – writing programs to play the card game blackjack, to implement a simple dice

game, and to implement a text-based version of the Mine-sweeper game. The study found that

paired students successfully implemented more features than solos in two of three assignments

but no significant difference between the two groups on the second assignment. Vanhanen and

Korpi (2007) reported a project carried out in a large telecommunications company in Finland

where four developers were involved and pair programming was adopted from the beginning. All

developers reported that pair programming lowered the number of defects, but in a team

interview, the developers were somewhat uncertain because the navigators did not spot many

defects during the programming.

Several studies noted quality improvement to be dependent on the complexity of the task.

Al-Kilidar, Parkin, Aurum, and Jeffery (2005) indicated when requirements were simple, pairs

produced a better quality product, but when requirements were complex, there was no significant

difference in quality between pairs and solos. In direct contrast to Al-Kilidar, et al., (2005),

19

Arisholm et al. (2007) conducted a one day experiment using 295 professional java consultants

with 99 individuals and 98 pairs. They reported that on more complex tasks, the pair

programmers had a 48 percent increase in the proportion of correct solutions but for simpler

systems there was no significant difference between pairs and solos.

In software development, quality is a complex concept with many different dimensions.

Our review of the extant literature suggests little consensus on the measurement of software

quality across studies. Quality was measured by defect rate (Vanhanen and Lassenius, 2005),

readability and functionability (Nosek, 1998), correctness (Lui and Chan, 2003), percentage of

test cases passed (Williams et al., 2000), and scores on classroom programming assignments

(McDowell et al., 2003; McDowell et al., 2003; 2006). The lack of cumulative research on

standard measures of quality makes it challenging to generalize conclusions across such studies

and serves as a challenge for researchers focusing on this area.

2.2. Cost

As with quality in the previous section, studies are split in their conclusions regarding

whether pair programming reduces the overall cost of a software development project compared

to solo.

Some anecdotal stories suggest pair programming will reduce the overall cost of a project

while others believe the benefits of pair programming do not justify the increased expense of the

second programmer. Stephen Hutchinson, senior technical architect at Royal & Sun Alliance

Insurance Group, claims pairing two developers on each assignment helped the company come

in 15% lower than the projected budget (Copeland, April 2001). An application development

manager at a major U.S. bank commented the cost issue was moot because through pair

20

programming there would be fewer defects and less time would be spent on bug fixing (Radding,

2002).

In contrast, Larry Zucker, executive director of application development at Dollar Rent-a-

Car Systems in Tulsa, Oklahoma, said that while he appreciated the benefits of having two

programmers on one task, the gains didn’t justify the doubled expense. He also expressed the

fear that the programming process could turn into a social event (Copeland, 2001a). This same

view was echoed by the concern brought about several times by the programmers in Nilsson’s

survey (Nilsson, 2003): the benefits of pair programming did not cover the very expensive costs.

Stephens and Rosenberg (2003) identified cost as the major issue facing a decision to employ

pair programming (p. 150-151). Aiken’s (2004) interview of three developers identified the same

view: there are surely additional development costs, especially because productivity might suffer

at first while people are adjusting. Luck (2004) reported a 15% extra cost from an industrial

experience.

 As with the practitioner community, conclusions drawn from the empirical studies are

equally far from reaching consensus with regard to the relationship between pair programming

and project cost. Müller (2006) found no difference in terms of development cost between a pair

and a solo implementation if the cost for developing programs of a similar level of correctness

was concerned, while Rostaher and Hericko (2002) revealed the average time spent to complete

all three tasks by solo and pair programmers was very similar, which means pairs needed almost

twice as much time and basically doubled the cost to complete the same amount of work

compared to individuals.

Two major simulation studies attempted to address the economics of pair programming

and yielded markedly different conclusions: in one study pair programming was more cost

21

effective than solo programming in all situations (Erdogmus and Williams, 2003), while in the

other the realized economic benefit of pair programming depended on factors such as market

pressure (Padberg and Müller, 2003).

Given that these two studies represent major efforts in addressing the cost benefits of pair

programming vs. solo, we present a summary of the studies below. It should be noted that Müller

and Padberg (2002) and Müller and Padberg (2003) appear to be earlier reports of studies similar

to Padberg and Müller (2003). Since Padberg and Müller (2003) provided more comprehensive

discussions of the study, only Padberg and Müller (2003) is presented here.

Erdogmus and Williams (2003) conducted a major research effort on the economics of

pair programming. Three empirical parameters were crucial to their model: productivity

(LOC/hour), defect rate (defects/LOC), and rework speed (defects fixed/hours). The abstract

models for solo and pair used by the researchers is shown below:

 where π is productivity, β is defect rate, and p is rework speed.

Solo = {N=1, π=25.0, β=0.00585, p=0.0303}

Pair = {N=2, π=43.478, β=0.00351, p=0.0527}

Based on these parameters, the authors compared solo and pair on three measures:

efficiency, unit effort, and unit time and revealed that pair was better in all of the three metrics:

nearly 100% improvement in efficiency, over 40% reduction in unit effort, and over 70%

reduction in unit time.

The authors then considered two value realization models: single-point delivery (value

realized at the end) and incremental delivery (value realized incrementally on a continuous

basis). The comparison of solo and pair based on breakeven unit value ratio (solo breakeven unit

value/pair breakeven unit value) suggested that pair was better in both situations.

22

Padberg and Müller (2003) constructed a mathematical model and applied the model in

two different scenarios: conventional development and development using pair programming.

To realize the models, the authors adopted some values from previous studies.

Productivity was defined as 250-550 LOC/month (Sommerville, 1996), pair speed advantage

ranged from 1.3 to 1.8 (Nosek, 1998; Williams et al., 2000), defect density was assumed to be

0.03/LOC (Humphrey, 1995), pair defect advantage was set to 15% (Williams et al., 2000), and

defect removal time was 5-20 hours/defect (Humphrey, 1989; 1995). In addition, several other

values were assumed: discount rate was set to 25% to 100% per year, developer salary was set at

$50,000 per year, leader salary at $60,000 per year, and work time was assumed to be 135 hours

per month.

Based on the model analysis, several conclusions were drawn. First, the pair speed

advantage, pair defect advantage, discount rate, and number of pairs each have a strong impact

on the value of a pair programming project. Second, pair programming appears beneficial when

the market pressure is really strong and programmers are much faster when working in pairs as

compared to working alone. Third, if the workforce is limited, it will take a pair programming

project a very strong market pressure, a large pair speed advantage, and a significant pair defect

advantage to break even with the conventional project.

To summarize, these two economic models yielded different conclusions: Erdogmus and

Williams (2003) suggested a positive economic picture for pair programming while Padberg and

Müller (2003) concluded the benefit of pair programming depended on a variety of factors. Both

models are severely restricted by one major limitation: the lack of reliable parameter values for

the models. For example, Erdogmus and Williams (2003) heavily relied on productivity, defect

rate, and rework speed, and Padberg and Müller (2003) depended on the data of pair speed

23

advantage and pair defect advantage. However, empirical evidence of these data items was very

limited (Erdogmus and Williams, 2003; Padberg and Müller, 2003). The research study

contained herein will attempt to mitigate this lack of reliable parameter values through the

collection of data from a large sample of subjects experienced in pair and solo programming.

2.3. Effort

The majority of the extant literature focusing on effort in a pair environment concluded

pair programming required more total development hours than solo programming. Nosek (1998)

reported from an industrial experiment the average completion time for pairs was 40% more than

solos. Williams et al. (2000) and Cockburn and Williams (2001) reported on average, pairs took

60% more programmer hours to complete the assignment, but after the adjustment period, this

60% decreased dramatically to a minimum of 15%. Rostaher and Hericko (2002) had 16

programmers, four solos and six pairs, to implement three tasks in a specified order. The

experiment was limited to one day. The results suggested the average time spent to complete all

three tasks by solo and pair programmers was very similar, which means pairs needed almost

twice as much time to complete the same amount of work compared to individuals. This result

was confirmed by student experiments conducted by Nawrocki and Wojciechowski (2001) and

McDowell et al. (2003).

A few other studies shared similar findings. Arisholm et al. (2007) reported study results

did not support the hypothesis that pair programming, in general, reduced the time required to

solve the tasks correctly. Vanhanen and Lassenius (2007) surveyed 28 developers and found the

development effort for individual features was higher for pair programming.

However, this finding was contradicted by several studies. Lui and Chan (2003) found

even though pairs spent 20.9% more time, but in consideration of the same quality, pairs spent

24

4.2% less time than did solos on the same task. Canfora et al. (2007) reported despite

cumulatively pairs using more effort, the finding was not consistent across the tasks. On the first

round of tasks, the authors reported the average effort for pairs was half an hour less than that for

solos (6.58 vs. 7.08 hours), but on the second round, they found the average for pairs was 2.7

hours more than that for solos (8.5 vs. 5.2 hours).

Once again, we find equivocality in the current empirical findings relating pair

programming to effort.

2.4. Duration

When looking at overall project duration, most studies report pair programming served to

shorten the project. Williams et al. (2000), Cockburn and Williams (2001), Williams and Kessler

(2001), and Lui and Chan (2003) report findings from experiments suggesting pairs solved

problems faster than solos. Rumpe and Schroer (2002) reported from a survey study that

developers believed coding was completed much faster with pair programming. Vanhanen and

Lassenius (2007) reported from another survey study that the opinions on the effect of pair

programming on the probability of finishing a task on schedule were very positive, with the

median being 6.0 using a 7 point Likert scale. Marchenko (2008c) stated his personal

observations supported the claim of faster development when using the pair programming

method.

In contrast, three studies suggest contradictory results. Rostaher and Hericko (2002)

involved 16 developers who could choose six small tasks to form a simple insurance contract

administration system. Each pair or individual had to implement as many of the tasks as possible

in the exact order specified. Study results revealed that most of the developers finished four tasks

and did not start the fifth one, suggesting pairs did not program faster than solos. Arisholm et al.

25

(2007) reported whether pair programming reduced duration depending on the task. The authors

found that on more complex tasks the pair programmers had no significant differences in the

time taken to solve the tasks correctly but for the simpler system, there was a 20 percent decrease

in time taken. Dawande, Johar, Kumar, and Mookerjee (2008) developed analytical models to

compare the performance of pair development, solo development, and mixed development under

two separate objectives: effort minimization and time minimization. Their study results

suggested solo programming was more appropriate for projects with a tight deadline than pair

programming.

It appears from the literature that, while there is a level of equivocality with regard to the

relationship between the use of pair programming and project duration, there is also material

evidence to suggest the presence of an effect and the nature of that effect to be positive.

2.5. Knowledge Transfer and Learning

All industrial experience reports suggest that pair programming had a positive effect on

both learning and knowledge transfer. Haungs (2001) noted pair programming on the Chrysler 3

project was very successful since it allowed him and his pair mate to synthesize unique

individual expertise into an effective combination. At Iona Technologies, a great amount of

knowledge transfer was witnessed through pair programming (Poole and Huisman, 2001). At

Sabre Airline Solutions, the weaker people were paired with the stronger people and business

knowledge and coding knowledge were transferred quickly (Anthes, 2004). At Wotif, the sharing

of knowledge about the code has been perceived to be greatly improved through pair

programming. (Luck, 2004). At Silver Platter Software, a startup company in California, a field

experiment was conducted and pairing was found to be an effective means of knowledge transfer

(Belshee, 2005). The authors stated when two people were paired, they shared knowledge. When

26

the pair split for a pair swap, the knowledge spread to all four participants. At Intel, two projects

reported higher knowledge transfer through the pair programming method: in the IXP2xx

project, developers believed they learned quite a lot from each other (Fitzgerald and Hartnett,

2005); in another project that developed firmware for processors, cross-training happened when

pair programming was practiced even though it was not to the extent as the developers had hoped

(Greene, 2004). Ambler (2007) reported pair programming allowed knowledge and skills to

spread widely throughout the team and helped new employees learn the environment and build

bonds with other team members quickly. Siobhan (2007) revealed pair programming offered

learning opportunities for all team members and had a positive impact on team development due

to effective communication through an open and transparent environment. At IBM, pair

programming was a tool to mitigate the risk of relying on highly skilled individuals to produce

results (Ambler, 2008). Marchenko (2008a) found pair programming was a very efficient tool for

learning and competence transfer. Marchenko (2008c) stated, compared to pair programming,

one major risk of solo programming was slow learning - especially for just graduated rookies.

These anecdotal findings were confirmed by some studies conducted by academics.

Williams (1999) had 20 students in an experiment and most of the students (84%) stated they

learned the materials faster and better when working with a partner. Müller and Tichy (2001) had

11 graduate students in an experiment and 43% of the participants stated that they learned

something from pair programming even though this effect declined with the duration of the

course. Sanders (2001) found the students believed pair programming led to higher knowledge

transfer. Rumpe and Schroer (2002) stated there was immense knowledge transfer between the

developers during pair programming. Janes et al. (2003) revealed pair programming was

effective in sharing knowledge among 15 students who met occasionally in a three-month

27

summer internship. Tessem (2003) conducted a field study involving both students and

practitioners and reported that all programmers found pair programming enhanced learning.

Aiken (2004) found from his interviews of three industrial developers pair programming helped

new people develop the knowledge of the system. VanDeGrift (2004) collected 293 responses

from students and most students stated they learned about concepts covered in the course by

working with a partner on the projects. Vanhanen and Lassenius (2005) conducted an experiment

involving 20 college students in a programming class and found a better knowledge transfer

among the pair programming teams than the solos. Vanhanen and Korpi (2007) reported from a

case study that all four developers considered pair programming increased their knowledge of

the system. Vanhanen and Lassenius (2007) surveyed 28 developers regarding the effects of pair

programming and noted that the positive effect of pair programming was largest for learning.

Dewande et al. (2008) concluded the pair programming approach was preferable for efficient

knowledge sharing between developers.

There are a couple of exceptions, however. Cliburn (2003) found from a survey study that

most of the students stated they learned more when they worked by themselves. In Hanks et al.

(2004), the hypothesis of paired students showing a better understanding of the programming

concepts were not supported.

Despite these two contrasting studies, it appears from practitioner and academic literature

that pair programming is positively associated with the transfer of knowledge when compared to

rival methods.

2.6. Confidence, Enjoyment, and Retention

Studies in this category were largely conducted by Williams, McDowell, and colleagues

in programming classes at university settings. Virtually all of their findings suggest students

28

pairs were more confident in their solutions (Williams, 1999; William et al., 2000; Williams and

Kessler, 2000; 2001; McDowell et al., 2003; 2006; Hanks, McDowell, Draper, and Krnjajic,

2004), enjoyed completing the assignments more (Williams, 1999; Williams et al., 2000;

Williams and Kessler, 2000; 2001; Cockburn and Williams, 2001; Nagappan, Williams, Wiebe,

Miller, Balik, Ferzli, Petlick, 2003; Nagappan, Williams, Ferzli, Wiebe, Yang, Miller, Balik,

2003; Williams, McDowell, Nagappan, Fernald, and Werner, 2003; McDowell et al., 2003;

2006; Hanks et al., 2004), and one year later were more likely to pursue computer science-related

majors than students who programmed alone (McDowell et al., 2002; Nagappan, Williams,

Wiebe, Miller, Balik, Ferzli, Petlick, 2003; Nagappan, Williams, Ferzli, Wiebe, Yang, Miller,

Balik, 2003; Williams et al., 2003; McDowell et al., 2003; 2006).

Their results were supported by several other studies. Nosek (1998) reported paired

developers expressed higher confidence about their work and enjoyment of the process. Poole

and Huisman (2001) reported from an industry experience that developers enjoyed the pair

programming process. Luck (2004) echoed these same findings from a different industrial

experience. Succi, Pedrycz, Marchesi, and Williams (2002) reported from 108 survey responses

collected from around the world that there was a very positive effect of pair programming on job

satisfaction; Declue (2003) suggested pair programming increased confidence. Fitzgerald and

Hartnett (2005) stated the paired developers in the project reported they had more fun, found the

work more interesting and were more enthusiastic about their work. Müller & Tichy (2001),

Sanders (2001), Cliburn (2003), Gehringer (2003), VanDeGrift (2004), and Mendes et al. (2005)

all found the majority of the students enjoyed the pair programming experience.

As with much of the pair programming research, a few studies reported mixed results.

Tessem (2003) stated although all programmers reported that pair programming was a positive

29

experience, it was contradicted by three of the six programmers who also used negative phrases

such as “very exhausting”, “tiresome”. Vanhanen and Lassenius (2005) found half of the 12

student participants in the pair programming teams actually enjoyed solo programming more

than pair programming. Vanhanen and Korpi (2007) revealed from a four-developer pair

programming project that even though all of the four developers agreed pair programming

promoted the formation of good team spirit in the beginning, only two developers liked pair

programming more than solo programming and the other two found no difference. Finally,

Balijepally et al. (2009) found programming pairs reported higher levels of satisfaction than

those of the best and second-best performing members in nominal pairs. Regarding confidence,

however, the confidence levels of pairs were no different from those of the best performing

members in nominal pairs.

Such variables have clearly not been researched in either large samples or with consistent

measurements. This remains an unanswered question with regard to pair programming.

2.7. Subject Variables

Several industrial comments and stories suggest it would take people with unique

characteristics for successful pair programming. James Gosling, a former vice president and

fellow at Sun Microsystems Inc., commented the company used some extreme programming

(XP) techniques but passed on pair programming because he didn’t think people would do it. “[It

gives] most of the people I know the creeps." (Copeland, 2001b). As an editor, in the Loyal

Opposition section of IEEE Software, Glass (2001) disaggregated XP and examined its

constituent elements in isolation. He listed pair programming as the number one Bad News. He

stated he could not imagine holding ongoing conversations with a pair mate when he was

operating in creative mode and did not believe that many programmers he knew would want to

30

operate that way. This view was echoed by Fitzgerald and Hartnett (2005) which noted the

difficulty for one partner to reflect and concentrate with someone by his/her side. Taking this

further, Greene (2004) reported that even though pair programming worked well, in general, at

Intel, hard deadlines created problems for pair programming when one developer had more

domain knowledge. He suggested at crunch time it was more expeditious for the expert to work

on the implementation alone; pairing with another developer would reduce productivity.

Several studies identified pair composition as an important factor. Sanders (2001) found

from a student survey that pair compatibility was considered a crucial attribute to pair

programming success. In an opinion paper that provided guidelines on how to successfully

implement pair programming in college programming courses, Bevan, Werner, and McDowell

(2002) suggested it was important to pair students by skill level to avoid compatibility issues.

Even though studies agreed on the importance of pair composition, results differed in

terms of how to achieve the best pair. Thomas, Ratcliffe, and Robertson (2003) paired student

subjects based on their self perception of programming abilities. Study results revealed that

students produced their best work when placed in pairs with students of similar self-confidence

levels. In contrast, however, Jensen (2003) reported pairing programmers of the same experience

and capability level was often counter-productive. The most troublesome pairs they dealt with

during the experiment were two teams in which both members were near the same capability

level. The worst-case team consisted of two prima donna programmers. They found teams

functioned more smoothly, if one member was slightly more capable than the other. Katira,

Williams, Wiebe, Miller, Balik, and Gehringer (2004) conducted experiments with 564 students.

They examined compatibility among freshman, advanced undergraduate, and graduate students

and found that the students’ perception of their partner’s skill level had a significant influence on

31

their compatibility. Bryant (2004) conducted a case study in a large internet banking company.

Study results suggested novice pairs and more experienced pair programmers displayed different

interaction patterns. For instance, novice pairs suggested and counter-suggested much more

frequently. Also, where more experienced pair programmers worked together, there seemed to be

a defined set of behaviors which remained common whoever was driving. By contrast, less

experienced pair programmers seemed to behave quite differently from one another, even when

filling the same role. The study revealed the effect of programmer experience on pair

programming effectiveness. Cao and Xu (2005) conducted an experiment involving 23 college

students. They compared activity patterns between different pair combinations and found

differences in the activity patterns amongst different pair combinations. The High-High (ability)

pairs enjoyed the pair programming process, passed most of the test cases, were confident on

their programs, and believed there was higher knowledge transfer. Medium-Medium and High-

Low pairs reported conflicting results on all aspects. Nedland (2005) suggested pairing with less

motivated coworkers made it hard to maintain enthusiasm when every part of the practice was

questioned and there was a general attitude of hostility. Lui and Chan (2006) noted novice-

novice pairs against novice solos were much more productive in terms of completion time and

software quality than expert-expert pairs against expert solos. In addition, a pair was much more

productive when the pair was new to a programming problem and the problem was challenging.

This suggests that pair programming may reduce costs when utilized in a more novice

environment. Van Toll III, Lee, and Ahlswede (2007) confirmed Jensen’s theory — pair

programming worked best when the pairs were composed of slightly different skill levels.

Programming with significantly less experience seemed to create problems: the programmer with

more experience must be patient since he found himself constantly having to answer the same

32

questions over and over again. If there was a deadline set, he probably would have ended by

doing the entire project himself. Dewande et al. (2008) reported the same finding: pair approach

was better at leveraging expertise by pairing experts with less skilled partners.

A couple of studies noted the importance of pair rotation which suggests pair partners

need to be changed on a regular basis. Tessem (2003) found from a field study that frequent

partner changes were necessary to achieve optimal learning and also to increase the sense of

collective ownership amongst the programmers. Srikanth et al. (2004) collected 287 survey

responses and found the majority of students perceived pair rotation to be a desirable approach.

Several studies addressed other issues such as expertise, personal traits, and other

developer characteristics. Dick and Zarnett (2002) opined that not all developers were suited for

paired development. The team members should be selected with personality traits that were

beneficial to paired programming, which could be determined through various interview

techniques and the corresponding behavioral responses of the candidates. Nilsson (2003) found

from a survey study that developers believed the “personal chemistry” was very important for

pairs to work efficiently. Aiken (2004) interviewed three software engineers. The engineers did

not think pair programming would work for everybody. Many software engineers were

accustomed to working alone. Some people were uncomfortable to make a mistake in front of

someone else. From a scheduling perspective, pairing up different capability levels slowed down

the more productive leaders. However, the engineers believed pair programming would be a

great way to get people up to speed on something, especially when somebody was new. Müller

and Padberg (2004) had 38 student subjects in two controlled experiments and found a

significant correlation between pair performance and how comfortably the developers feel with

pair programming during the session (the “feelgood” factor). Langr (2005) listed several reasons

33

for resisting pair programming. He stated pair programming was not for everybody. Some people

had fear of exposing personal weakness, while others might have personality issues such as

introversion. Arisholm et al. (2007) reported from their one-day experiment that the moderating

effect of system complexity depended on the programmer expertise: the observed benefits of pair

programming in terms of correctness on the complex system applied mainly to juniors, whereas

the reductions in duration to perform the tasks correctly on the simple systems applied mainly to

intermediates and seniors. Chong and Hurlbutt (2007) conducted a four month ethnographic

study of professional pair programmers from two software development teams. They found the

programmers with more expertise dominated the interactions and had the final authority in

decision making.

It can be seen from a review of the literature in this area that pair composition generates a

wide variety of opinions and findings with no consensus forthcoming. This research effort

intends to shed significant light in this area of investigation.

2.8. Task Variables

Several studies noted that pair programming was better suited for complex tasks. Nilsson

(2003) reported from survey responses pair programming was ill suited for simple and routine

tasks. Through experiments Lui and Chan (2003) found that pairs outperformed individuals in

terms of effort and quality when there was a new and challenging problem. Fitzgerald and

Hartnett (2005) found out pair programming helped solve difficult coding problems and was

better suited for complex tasks. Hulkko and Abrahamsson (2005) revealed developers did not

consider pair programming to be efficient for simple and routine-like tasks and many developers

preferred to do simple tasks on their own. Arisholm et al. (2007) examined the moderating effect

of task complexity in an one-day experiment and reported that on the more complex tasks, pair

programmers had a 48 percent increase in the proportion of correct solutions but for simpler

34

systems there was no significant differences in the time taken to solve the tasks correctly.

Vanhanen and Korpi (2007) discovered effort depended on the type of task. For complex tasks,

the use of pair programming lowered the total effort, but the effort was considered higher for

simple tasks than when using solo programming.

There are a couple of exceptions, however. While other studies suggested pair

programming led to better quality when the task was complex, Al-Kilidar, Parkin, Aurum, and

Jeffery (2005) found pairs produced better quality product when requirements were simple with

no significant difference in quality between pairs and solos when requirements were complex.

The authors attributed this result partly to the solos in the more complex module having

developed and enhanced their skills through their earlier work experience. Vanhanen and

Lassenius (2005) did not support the claim that pair programming was most useful for complex

tasks. In their study, task complexity did not affect the effort differences between solo and pair

programming.

Again we find equivocality and confound.

2.9. Environment and Organizational Variables

Several industrial reports and studies suggested the importance of work space facilities

and management support for pair programming to work. Connextra Ltd., a London start-up and

maker of Web browser software, reorganized its offices to accommodate XP, installing curved

desks that let two developers sit side by side and share a computer (Copeland, 2001a) thus

allowing for a pair programming environment. Jensen (2003) posited that coordination among

the developers in a particular development setting he studied would have improved if the teams

had been working in a common area. He used the term war room (or skunk works) to describe

the ideal open environment, which would be a large area with worktables in the center and

35

cubicles around the outside. Software engineers in Aiken’s interviews (2004) argued for getting a

common work environment to remove distractions and to provide feelings of a team. Vanhanen,

Lassenius, and Mäntylä (2007) presented experiences from a two-year study focused on the

adoption of pair programming and noted that issues identified in the infrastructure of pair

programming were solved through the adoption of the pair programming rooms.

The importance of management support was echoed by some studies. Jensen (2003)

noted that managers must be supportive of the pair programming process. In a particular

anecdote, a classic manager observed a programming pair working on a task over a period of

time and suggested to the supervisor that one of the two programmers be laid off because only

one was doing anything constructive (the driver always gets the credit). When the supervisor

heard the suggestion, he replied that these programmers were the most productive people in the

organization. The manager then asked that the programmers keep their office door closed so

others would not reach the same wrong conclusion. Williams and Kessler (2003) noted it was

crucial to overcome management resistance (chapter 4, pp.33-44): pair programmers create noise

and resolving this problem may require a commitment from the organization in terms of a

facility change or equipment purchase; pairing can also be difficult if cubicles or desks are

arranged improperly. At Intel, managers tore down cubicle walls to lower the physical barriers

to communication and introduced a new individual evaluation criterion: teamwork that

reinforced the value of collaborative work (Greene, 2004).

2.10. Summary of Literature Review

To summarize this arguably small and disparate body of literature focusing on pair

programming suggests both contributions to the body of knowledge and little consensus.

36

Possibly the greatest single accomplishment is the realization that pair programming has

become one of the most studied principles in XP (Erickson, Lyytinen, and Siau 2005). A

substantial number of studies have been conducted to study the variety of effects of pair

programming in different contexts: industrial setting, classroom setting, comparing pair to solo,

comparing pair to other group development methods, distributed pair programming, pair

composition, and the economic aspects of pair programming. The results of these studies

undoubtedly provide valuable information to the overall picture of the efficacy of pair

programming but many disagreements and questions remain.

There are several caveats that must be noted when reviewing this body of literature. First,

the majority of the studies were conducted using neither theory nor any recognizable or

identified research framework. The one extant and comprehensive pair programming research

framework suggested by Gallis et al. (2003) and extended by Ally et al. (2005) has been largely

ignored. Few empirical studies have been conducted to test and refine the model. Actually,

among the studies reviewed above, the only empirical studies that explicitly presented a research

model are Arisholm et al. (2007) and Balijepally et al. (2009).

Second, most of the results were obtained from experimental studies in university

settings. Only a few empirical studies involved industrial practitioners. And even with those

studies, since professional programmers worked on short tasks, the complexity of real world

software development was not reflected.

Third, most survey studies were conducted without academic rigor. None of the survey

studies went through the standard cycle of reliability and validity checks, which brings the

subsequent results further under question.

37

Finally, studies on the economic aspect of pair programming, upon which the study

herein is focused, are limited. Only two major studies were identified. The two studies looked

into different factors, used unsure parameters, and drew different conclusions. No other study,

thus far, has attempted to reconcile the different conclusions from the two studies.

In conclusion, our literature review echoes the comments several authors made in their

studies. Gallis et al. (2003) noted that results from existing empirical work contradicted each

other due to the lack of a theoretical framework to support the pair programming research.

Hulkko and Abrahamsson (2005) stated that the current body of knowledge in pair programming

is scattered and unorganized. Parrish, Smith, Hale, and Hale (2004) suggested more empirical

evidence from real industry projects is needed.

Table 2.1 is presented as a tabular summary of the extant literature on pair programming.

Table 2.1 Summary of Pair Programming Studies

LEGEND

Publication Outlet: A=Refereed Academic Journal P=Practitioner Journal or Practitioner-Oriented websites

 B=Book or Book Chapters T=Student Thesis C=Conference Proceeding

Research Method: C=Case Study MA=Meta Analysis I=Industrial Report S=Survey

 E=Experiment O=Opinion Paper IV=Interview SM=Simulation

Subject Type: I=Industrial Practitioner S=Student M=Mixed of Students and Practitioners

Statistical Analysis: DC=Descriptive Statistics Only Y=Performed Statistical Analysis N=No Statistical Analysis

Constructs of Interest: Y=Supported N=Not Supported M=Mixed Results

Study

Study Characteristics Constructs of Interest

P
u

b
lica

tio
n

 O
u

tle
t

R
e
se

a
r
c
h

 M
e
th

o
d

S
a

m
p

le
 S

ize

S
u

b
je

c
t T

y
p

e

S
ta

tistica
l A

n
a
ly

sis

B
e
tte

r Q
u

a
lity

H
ig

h
e
r
 C

o
st

P
r
o

d
u

c
tiv

ity

M
o

re
 E

ffo
r
t

S
h

o
r
ter

 D
u

ra
tio

n

K
n

o
w

le
d

g
e

 C
o

n
fid

e
n

ce

 E
n

jo
y

m
e
n

t

R
e
te

n
tio

n

P
a

ir
 C

h
a

ra
c
ter

istic
s

T
a

sk
 C

h
a

ra
c
te

ristic
s

E
n

v
iro

n
m

e
n

t V
a

ria
b

le
s

Nosek (1998) A E 15 I Y Y Y Y Y Y

Williams (1999)

Williams and Kessler (2000)

Williams and Kessler (2001

Exp #1)

C

C

A

S 20 S D Y Y Y Y Y

38

Study

Study Characteristics Constructs of Interest

P
u

b
lica

tio
n

 O
u

tle
t

R
e
se

a
r
c
h

 M
e
th

o
d

S
a

m
p

le
 S

ize

S
u

b
je

c
t T

y
p

e

S
ta

tistica
l A

n
a
ly

sis

B
e
tte

r Q
u

a
lity

H
ig

h
e
r
 C

o
st

P
r
o

d
u

c
tiv

ity

M
o

re
 E

ffo
r
t

S
h

o
r
ter

 D
u

ra
tio

n

K
n

o
w

le
d

g
e

 C
o

n
fid

e
n

ce

 E
n

jo
y

m
e
n

t

R
e
te

n
tio

n

P
a

ir
 C

h
a

ra
c
ter

istic
s

T
a

sk
 C

h
a

ra
c
te

ristic
s

E
n

v
iro

n
m

e
n

t V
a

ria
b

le
s

Williams et al. (2000),

Williams and Kessler (2001

Exp #2)

Williams and Upchurch

(2001)

A

A

C

E 41 S Y Y Y Y Y Y

Cockburn and Williams

(2001)

B O M D Y M Y Y Y Y

Copeland (2001a) P I Y M Y

Copeland (2001b) P I Y

Haungs (2001) A I Y Y Y

Müller & Tichy (2001) C S 11 S N Y Y

Nawrocki and

Wojciechowski (2001)

A E 21 S D N Y

Poole and Huisman (2001) A I 40-70 I N Y Y Y Y

Sanders (2001) C S 60 S N Y Y Y

Bevan, Werner, and

McDowell (2002)

C O Y Y

Dick and Zarnett (2002) C O Y

McDowell et al. (2002) C E 600 S Y Y Y

Morales (2002) P I Y

Müller and Padberg (2002) C SM Y M M M Y Y

Radding (2002) P I Y N

Rostaher and Hericko (2002) C E 16 I Y Y N

Rumpe and Schroer (2002) C S 45 I D Y Y

Succi et al. (2002) C S 108 I Y Y

Cliburn (2003) A S 17 S N Y N Y

Declue (2003) A S 24 S D Y Y

Erdogmus and Williams

(2003)

A SM Y N

39

Study

Study Characteristics Constructs of Interest

P
u

b
lica

tio
n

 O
u

tle
t

R
e
se

a
r
c
h

 M
e
th

o
d

S
a

m
p

le
 S

ize

S
u

b
je

c
t T

y
p

e

S
ta

tistica
l A

n
a
ly

sis

B
e
tte

r Q
u

a
lity

H
ig

h
e
r
 C

o
st

P
r
o

d
u

c
tiv

ity

M
o

re
 E

ffo
r
t

S
h

o
r
ter

 D
u

ra
tio

n

K
n

o
w

le
d

g
e

 C
o

n
fid

e
n

ce

 E
n

jo
y

m
e
n

t

R
e
te

n
tio

n

P
a

ir
 C

h
a

ra
c
ter

istic
s

T
a

sk
 C

h
a

ra
c
te

ristic
s

E
n

v
iro

n
m

e
n

t V
a

ria
b

le
s

Gehringer (2003) C E 73/75/9

6/101

S Y M Y

Janes et al. (2003) C E 15 S Y Y

Jensen (2003) P I Y Y Y Y

Lui and Chan (2003) A E 15 I D Y M Y Y

McDowell, Hanks, and

Werner (2003)

A E 288 S Y Y Y

McDowell, Werner, Bullock,

and Fernald (2003, 2006)

C E 554 S Y Y Y Y Y

Müller and Padberg (2003)

Padberg and Müller (2003)

A

C

SM Y M Y Y

Nagappan, Williams, Wiebe,

Miller, Balik, Ferzli, Petlick

(2003)

A E 412 S Y Y Y Y

Nagappan, Williams, Ferzli,

Wiebe, Yang, Miller, Balik

(2003)

A E 495 S Y Y Y Y

Nilsson (2003) T S 67 M D Y Y Y

Stephens and Rosenberg

(2003)

B O Y Y Y Y

Tessem (2003) C C 1 I N Y M Y M Y

Thomas, Ratcliffe, and

Robertson (2003)

C E 64 S Y M M Y

Williams and Kessler (2003) B O Y N Y N Y Y Y Y Y Y Y Y

Williams, McDowell,

Nagappan, Fernald, and

Werner (2003)

C E 1200 S Y Y Y Y

Aiken (2004) A IV 3 I N Y N Y Y Y

Anthes (2004) P I Y Y

Bryant (2004) C C 1 I N Y

Greene (2004) C I N Y Y Y

Hanks et al. (2004) A E 150 S Y M N Y Y

Katira et al. (2004) A E 564 S Y Y

40

Study

Study Characteristics Constructs of Interest

P
u

b
lica

tio
n

 O
u

tle
t

R
e
se

a
r
c
h

 M
e
th

o
d

S
a

m
p

le
 S

ize

S
u

b
je

c
t T

y
p

e

S
ta

tistica
l A

n
a
ly

sis

B
e
tte

r Q
u

a
lity

H
ig

h
e
r
 C

o
st

P
r
o

d
u

c
tiv

ity

M
o

re
 E

ffo
r
t

S
h

o
r
ter

 D
u

ra
tio

n

K
n

o
w

le
d

g
e

 C
o

n
fid

e
n

ce

 E
n

jo
y

m
e
n

t

R
e
te

n
tio

n

P
a

ir
 C

h
a

ra
c
ter

istic
s

T
a

sk
 C

h
a

ra
c
te

ristic
s

E
n

v
iro

n
m

e
n

t V
a

ria
b

le
s

Luck (2004) C I Y Y Y Y

Müller and Padberg (2004) C E 38 S Y Y

Parrish et al. (2004) A E 48 Mod I Y N

Srikanth et al. (2004) C S 287 S Y Y

VanDeGrift (2004) A S 293 S D Y Y Y Y

Williams, Shukla, and Anton

(2004)

C S 30 I Y Y

Al-Kilidar et al. (2005) C E 150 S Y M Y

Belshee (2005) C E I N Y

Canfora et al. (2005) C E S Y N

Cao and Xu (2005) C E 23 S N M M M M Y

Fitzgerald and Hartnett

(2005)

A C 1 I N Y Y Y Y Y

Hulkko and Abrahamson

(2005)

C C 4 M D M N Y

Langr (2005) P O Y

Mendes et al. (2005) C E 300 S Y Y Y

Nedland (2005) P I Y Y Y

Preston (2005) A O Y

Vanhanen and Lassenius

(2005)

C E 20 S Y N N Y M N

Lui and Chan (2006) A E 40 S D M Y Y

Madeyski (2006) C E 188 S Y N

Müller (2006) A E 18 S Y Y M

Ambler (2007) P I Y

Arisholm et al. (2007) A E 298 I Y M M M Y Y

Canfora et al. (2007) A E 18 I Y Y M

Chong and Hurlbutt (2007) C C 2 I N Y

Dybå et al. (2007) A MA 15 M Y Y Y Y

Siobhan (2007) P O Y

Van Toll III, Lee, and

Ahlswede (2007)

C E NR S N Y

Vanhanen and Korpi (2007) C C 4 I Y M M Y M Y

41

Study

Study Characteristics Constructs of Interest

P
u

b
lica

tio
n

 O
u

tle
t

R
e
se

a
r
c
h

 M
e
th

o
d

S
a

m
p

le
 S

ize

S
u

b
je

c
t T

y
p

e

S
ta

tistica
l A

n
a
ly

sis

B
e
tte

r Q
u

a
lity

H
ig

h
e
r
 C

o
st

P
r
o

d
u

c
tiv

ity

M
o

re
 E

ffo
r
t

S
h

o
r
ter

 D
u

ra
tio

n

K
n

o
w

le
d

g
e

 C
o

n
fid

e
n

ce

 E
n

jo
y

m
e
n

t

R
e
te

n
tio

n

P
a

ir
 C

h
a

ra
c
ter

istic
s

T
a

sk
 C

h
a

ra
c
te

ristic
s

E
n

v
iro

n
m

e
n

t V
a

ria
b

le
s

Vanhanen and Lassenius

(2007)

C S 28 I Y Y Y Y Y

Vanhanen, Lassenius, and

Mäntylä (2007)

C C 1 I Y Y

Ambler (2008) P I Y

Dawande, Johar, Kumar,

and Mookerjee (2008)

A SM Y Y Y

Marchenko (2008a) P O Y Y

Marchenko (2008b) P O Y Y

Marchenko (2008c) P O Y Y

Balijepally et al. (2009) A E 120 S Y M M Y

Wray (2010) A O Y Y

3. RESEARCH MODEL AND HYPOTHESES

When considering a synthesis of the reviewed literature, findings from pair programming

research suggest the research model shown in Figure 3.1. In this model, the programming

method solo vs. pair is the independent variable while the project characteristics such as

complexity and the developer characteristics such as expertise moderate the relationships

between programming method and the dependent variables. All previous pair programming

studies that presented an explicit research model (Gallis et al., 2003; Arisholm et al., 2007;

Balijepally et al., 2009) followed this approach, even though none of the studies empirically

tested the knowledge transfer construct.

42

Figure 3.1 Research Model based on Previous Pair Programming Studies

Building upon the known relationships shown in Figure 3.1, we extend these findings in

an effort to advance the nomological net and propose the research model for this study in Figure

3.2. As shown in the figure, we argue the nature of the project (system complexity) has a direct

impact on the project outcome, and programming method can be used to mitigate the strength of

the relationship between the project and dependent variables such as effort, defect rate, and

knowledge transfer. Therefore, we propose system complexity as the independent variable and

programming method as a moderator.

We also argue pair composition affects the effectiveness of pair programming method.

While this argument is in line with suggestions from previous pair programming studies, in our

model, pair composition is presented as a moderator to the effect of programming method.

Additionally, as discussed later in this chapter, we believe our operationalization of the salient

constructs to be more comprehensive than previously accomplished.

We further argue project duration can be derived from effort and, therefore, does not need

to be viewed as a stand-alone dependent variable. Another extension in this model, as we are

interested in the cost of the project as it relates to programming method, is the inclusion of

43

several cost-related constructs. Note that the constructs within the dashed box are derived from

logic rather than effect. As such, they require no specific hypothesis testing. They are included to

demonstrate how cost is considered in this research. These variables are more important in

Study 2 than Study 1 (as illustrated in chapter 4).

Figure 3.2 Research Model for this Study

3.1. System Complexity, Effort, Defect Rate, and Knowledge Transfer

Some software projects are simple in nature while others can be highly complex. Writing

a program to display the message “Hello World!” is a simple task that requires a few lines of

code and can be accomplished in minutes. Developing a web-based business application for

retail sales represents a medium-level complexity requiring thousands of lines of code and

project durations measured in months. Constructing an operating system such as Windows 7 is

an extremely complex task as it constitutes millions of lines of code and demands years of hard

work.

According to March and Simon (1958), complexity can be generally characterized by

unknown or uncertain alternatives, unknown means-ends connections, and existence of a number

of subtasks that may not be easily factored into independent parts. As system complexity

44

increases, the number of alternatives, the number of unknown connections, and the number of

interrelated tasks all increase. In order to identify the best or optimal solution among the many

possibilities, developers have to weigh different alternatives, clarify various connections, and

sort out the variety of tasks involved. This process becomes more time consuming and error

prone as complexity increases.

However, despite the challenges of system complexity, a positive note is that a complex

system requires more diverse knowledge in order to identify a good solution. Compared to a

simple system where a solution is obvious and does not warrant much discussion, a complex

system forces developers to share, process, and synthesize a variety of information, therefore

increasing knowledge transfer among the team members.

In keeping with the above, we hypothesize:

H1a. Regardless of programming approach, as system complexity increases, the

programming effort increases.

H1b. Regardless of programming approach, as system complexity increases, defect rate

increases.

H1c. Regardless of programming approach, as system complexity increases, there is

higher knowledge transfer rate amongst the project team members.

In this study, system complexity is operationalized as the number of modules in a given

project, and then classified into low, medium, and high. A module is a self-contained program

that carries out a clearly defined task. As the number of modules grows, more communications

amongst the modules are required, thus increasing system complexity. This argument is in line

with what is suggested by several studies in project complexity (Banker, Davis, and Slaughter,

1998; Kemerer, 1995; Espinosa, Slaughter, Kraut, and Herbsleb, 2007).

45

Previous pair programming studies have adopted a variety of measures for complexity:

application control style-delegated vs. centralized (Arisholm et al., 2007), deduction vs.

procedural problem (Lui and Chan, 2003), modification of five methods in two classes vs. seven

methods in five classes (Balijepally et al., 2009). Although these measures were reasonable for

their respective experimental studies, they could not be readily generalized to other studies:

control style is only applicable for projects that adopt different control styles, whether developers

solve a deduction or procedural problem depends on the project domain, and the concepts of

methods and classes pertain only to object-oriented development. In this study, we adopt a

measure that can be generalized across the projects.

Effort is defined as the total number of hours spent by a developer or developers on the

programming aspect of a project. In solo programming, for a particular programming task, the

effort is the number of hours one developer spends on the task. In pair programming, since two

developers work on the same task at the same time, the effort is two times the number of hours

one developer spends on the task.

This definition of effort is widely used for software project effort measurement

(Pressman, 2005; Sommerville, 2007), and was adopted by many previous pair programming

studies (Nosek, 1998; Williams et al., 2000; Nawrocki and Wojciechowski, 2001; Rostaher and

Hericko, 2002; McDowell et al., 2003; Dybå et al., 2007).

A defect is a quality problem in the source code that is found after the software has been

released to the end-users, and defect rate is the number of defects per thousand lines of codes

(defects/KLOC). This definition represents a commonly used software engineering metric

developed to measure the correctness aspect of software quality (Pressman, 2005; Sommerville

2007). It has been adopted by the industry and several empirical studies on software

46

development (Abdel-Hamid, Sengupta, and Swett, 1999; Ji, Mookerjee, and Sethi, 2005; Kandt,

2009).

The previous pair programming studies reported results on defects, error rate, and defect

density without providing explicit definitions of the constructs. In this study, we intend to

enhance the nomological net of pair programming research by adopting a commonly agreed-

upon metric for software defects.

Knowledge transfer is the communication of knowledge from a source so that it is

learned and applied by a recipient (Ko, Kirsch, and King, 2005). In this research effort, three

aspects of knowledge transfer are measured: knowledge transfer with regard to programming

syntax and logic, understanding of the program itself and its relationship to the overall system,

and the approaches to solve problems in general.

None of the previous pair programming studies, to the best of our knowledge, developed

explicit measures for knowledge transfer. In this study, we develop measures for knowledge

transfer through tailoring concepts introduced in information systems.

3.2. Programming Method as a Moderator

Pair programming studies generally found pair programming incurred more programming

effort than solo. Nosek (1997) reported 41% more effort compared to solo. Williams et al. (2000)

and Cockburn and Williams (2001) noted 15% more effort compared to solo. Nawrocki and

Wojciechowski (2001), Rostaher and Hericko (2002), and McDowell et al. (2003) found 100%

more effort compared to solo. The meta analysis study conducted by Dybå, et al. in 2007

reported a medium-sized negative effect due to pair programming (effect-size=-0.57).

We argue the magnitude of effort increase by pair programming is associated with system

complexity. With a low complexity system, a solution is obvious regardless of whether one

47

programmer or two programmers work on the task, therefore pairing up two programmers on

such a task is likely to waste one of the programmers’ time, thus doubling the programming

effort. As complexity increases, however, the amount and diversity of information needed to

solve the problem increases — possibly exponentially. In pair programming, two programmers

can share the information processing load and therefore have the potential to reach a workable

solution more efficiently. With an extremely complex system, it is possible the information is so

overwhelming that it takes a solo programmer a long time to figure out the solution. Conversely,

in a pair programming environment, the programmers share the information processing load and

have the chance to create synergy thus solving the problem more quickly. Following this logic, it

is feasible to assume the possibility of pair programming resulting in a decrease in programming

effort when compared to solo.

The above argument is in line with findings from Vanhanen and Korpi (2007) which

suggest pair programming reduced the total effort for complex tasks but increased effort for

simple tasks.

Thus, we hypothesize:

H2a. When compared to solo programming, as system complexity increases, pair

programming will moderate the effect of system complexity on programming effort thus

reducing effort.

In a low complexity system, defect rate is generally low regardless of the programming

method adopted. Assuming pair programming has the potential to reduce the defect rate when

compared to solo programming, in low complexity systems there isn’t much room to

demonstrate improvement. For example, any programmer with a bit of training can write the

“Hello World” program with zero defects, so pairing two programmers to work on such a

program does not help with defect rate since the best they can do is to produce a program with

48

zero defects. Though admittedly contrived and simplistic when compared to actual programming

efforts, this example nonetheless illustrates the small effect pair programming can have to reduce

defect rate when the baseline is already very low.

However, in the case of a complex system where a good solution hides among many

possible alternatives, pair programming enables the programmers to bring a variety of skills to

the table, to more thoroughly weigh different alternatives, and to have a better chance to identify

the best solution. This argument is in line with the theories of distributed cognition (Flor and

Hutchins, 1991; Williams and Kessler, 2001; Williams and Upchurch, 2001) and co-discovery

(Papert, 1980; Lim, Ward, and Benbasat, 1997). The theories state by engaging in deeper level

thinking and searching through larger spaces of alternatives, working as a pair helps improve

one’s mental model and reduces the chances of selecting a bad plan. It is also in line with

findings from group/team research in organizational behavior which suggests complex tasks

benefit more from discussions amongst the group members on alternative solutions (Robbins,

2000). This argument is further supported by several pair programming studies (Lui and Chan,

2003; Nilsson, 2003; Fitzgerald and Hartnett, 2005; Hulkko and Abrahamsson, 2005).

We hypothesize:

H2b. When compared to solo programming, as system complexity increases, pair

programming will reduce the effect of complexity on defect rate thus reducing the overall

defect rate.

To our knowledge, no empirical studies in pair programming have examined the

relationship between project complexity and knowledge transfer. We argue a complex task

requires more diverse knowledge and heavier load of information processing in order to identify

a good solution. Compared to a simple task, where a solution is obvious and does not warrant

49

much discussion, a complex task will force developers to share, process, and synthesize a variety

of information, therefore transferring more knowledge amongst themselves. This argument is in

line with the cognitive load theory in a group setting which states the cognitive load can be

shared amongst group members enabling them to deal with more complex problems than

individuals (Kirschner, Paas, and Kirschner, 2008). Therefore, we hypothesize:

H2c. When compared to solo programming, as system complexity increases, pair

programming will increase the effect of system complexity on knowledge transfer thus

enhancing knowledge transfer.

3.3. Pair Composition

Studies generally suggested pair composition as an important factor affecting the overall

success of a pair programming effort (Sanders, 2001; Bevan et al., 2002; Gallis et al., 2003;

Arisholm et al., 2007; Dybå et al., 2007). In this study, we consider programmer expertise and

prior pair programming experience as two salient characteristics of pair composition. No prior

research, to our knowledge, has empirically tested the effect of prior pair programming

experience on pair effectiveness.

Several studies report the effectiveness of pair programming depends on the programmer

expertise. Nosek (1998) found programmers with more years of experience performed better

than programmers with fewer years of experience in a pair environment. Jensen (2003) and Van

Toll III et al. (2007) suggested pair programming worked best when the pairs were of a slightly

different skill level. Lui and Chan (2006) concluded novice-novice pairs against novice solos

were more productive than expert-expert pairs against expert solos. Chong and Hurlbutt (2007)

noted pairing a less knowledgeable programmer with a more knowledgeable programmer was

effective when the less knowledgeable one was new to both the team and the code base. Finally,

50

Arisholm et al. (2007) tested programmer expertise as a moderator in their study and found the

effect of pair programming on duration and defects dependent upon expertise.

We argue the effectiveness of pair programming varies when pairs of different

compositions - junior-junior, senior-senior, and junior-senior are compared to junior/senior solos.

As such, we hypothesize:

H3a: Programmer expertise moderates the effectiveness of the pair programming

method.

In this study, we adopt the terms of junior and senior to create a binary representation for

levels of programmer expertise in a project. A senior programmer is defined as one who has at

least six years of experience within the project domain. A junior programmer is defined as one

who has less than two years of experience within the project domain. The area occupied by these

two experience anchors can be considered to be a mid-level programmer. For this study, we are

focusing on the extremes of the continuum and, as such, a mid-level programmer will not be

specifically considered.

Among the pair programming studies that reported on the effect of programmer expertise,

only a few reported explicit measures for this construct. Arisholm et al. (2007) measured

programmer expertise by two indicators: programmer skill category as reported by the project

managers and skill levels based on the results of a pretest programming task. Balijepally et al.

(2009) treated programming ability as a control variable and determined it by computing the

subject’s weighted average GPA in information systems courses taken at the university. In our

study, since we adopt different research methods than have been previously employed (described

in detail in chapter 4), it is not possible to adopt either of these measures. However, our method

of using the number of years of experience to differentiate expertise is in keeping with common

51

practice in information systems research in general and in line with the recommendations made

by studies such as Harel and McLean (1985) in software development literature.

Regarding prior pair programming experience, despite no study empirically testing this

construct, two studies suggest its importance on programmer interaction patterns and project

outcomes. Bryant (2004) found there were different interaction frequencies and interaction types

between novice and expert pair programmers: expert pair programmers averaged 27% fewer

interactions per hour and novice pair programmers suggested and counter-suggested more

frequently (82.5 times per session) than experts (42.5 times per session).

The concept of pair jelling was discussed in Williams et al. (2000). The authors suggested

that programmers went through an initial adjustment period in the transition from solitary to

collaborative programming. This adjustment period varied from hours to days. The authors

reported that in their student experiments, after the adjustment in the first assignment, the paired

students performed much better in the subsequent tasks. For example, on average, pairs took

60% more programmer hours than their solo counterparts to complete the assignment, but after

the adjustment period, this 60% decreased to 15%.

We argue prior pair programming experience allows the programmers to get adjusted to

each other and become productive quickly. As such, we hypothesize:

H3b: Prior pair programming experience moderates the effectiveness of the pair

programming method.

Prior pair programming experience is measured by whether a programmer has

programmed in pairs before. Since none of the prior studies provided an explicit definition on

this construct, one of the contributions of this study is to define this construct explicitly.

52

3.7. Duration

Numerous anecdotes and several empirical studies support the notion that pair

programming allows the faster delivery of a project when compared to solo. Lui and Chan (2003)

suggested pairs were faster than solos. Williams et al. (2000) and Williams and Kessler (2001)

both found that pairs produced programs with shorter cycle time. Rumpe and Schroer (2002) and

Vanhanen and Lassenius (2007) reported from survey studies that developers believed coding

was completed much faster with pair programming. Dybå et al. (2007) noted a medium-sized

overall reduction of the project duration (effect-size = 0.40) in their meta-analysis.

Project duration is defined as time elapsed from the start to the delivery of a project.

While previous studies usually develop hypotheses to test the effects of programming method on

duration, we argue duration, ceteris paribus, can be derived from a measure of effort. For

instance, if the measured efforts in solo and pair programming are 140 and 210 hours

respectively, then assuming a seven hours workday, solo programming will finish the project in

20 days (140/7) while pair will finish it in 15 days (210/2/7). While we freely acknowledge there

are other aspects to a project besides the level of programming effort, we believe the choice of

programming method will not dramatically alter those aspects of the project and, therefore, we

believe there is no need of additional data collection for explicit hypothesis testing.

3.8. Cost

Study results are mixed regarding whether pair programming increases overall project

cost. Several studies suggest pair programming increases cost (Cockburn and Williams, 2001;

Rostaher and Hericko, 2002; Nilsson, 2003: Aiken, 2004; Luck, 2004) while others argue pair

programming to be a cost saving mechanism (Copeland, 2001a; Radding, 2002; Erdogmus and

Williams, 2003). A few studies found the project cost depends upon other factors such as market

53

pressure and the nature of the task (Müller and Padberg, 2002; Müller and Padberg, 2003;

Padberg and Müller, 2003).

In this study, we follow the cost definition provided by Sommerville (2007). According

to Sommerville, project cost is primarily the costs of the labors involved. These direct labor costs

are the costs of paying software developers for the hours spent on a project.

Therefore, for each task, the direct labor cost is the number of hours developers spend on

the task times their corresponding pay rate. For the overall project, the direct labor cost is the

sum of the costs for all tasks involved. Since the direct labor cost is a function of hours and pay

rate, assuming constant pay rates, the more hours developers spend on the project, the higher the

direct labor cost will be.

One direct labor cost is the labor spent on programming and defect fixes. As developers

spend more time on programming, the labor cost increases. As defects are uncovered, developers

will incur rework time to fix the problems. Therefore, labor cost increases as developers spend

more programming hours on the project, and labor cost decreases as there are fewer defects in

the system.

The other category of cost is training cost. Trainings are mechanisms to educate the

developers so they have the skills and information to successfully complete the project. Trainings

are essential when developers do not have the technical skills to implement the project, do not

have a good understanding of the system, and/ or do not have good problem solving skills. We

do not expect knowledge transfer between the pairs to replace all trainings. However, we argue

that knowledge transfer between the pairs helps developers acquire a better understanding of the

modules and the overall system, improve technical and general problem solving skills, and, thus,

reduces training cost.

54

Opportunity cost is defined as costs associated with opportunities an organization loses

for undertaking a given project. An example of opportunity cost is the profit the organization

could have made by working on a different project. With a short-term project, organizations can

jump into other business opportunities rather quickly, thus minimizing opportunity cost. When a

project goes on forever, an organization’s resources are tied up in the project, and therefore

cannot be made available to undertake other projects. As a result, opportunity cost increases.

Labor slack occurs when a project is finished ahead of schedule. When an organization

has labor slack, more work, presumably, can be brought to the work force, so more projects can

be started and finished. Alternatively, if labor slack is consistent, head count can be reduced thus

creating a cost savings to the organization. This argument suggests labor slack contributes

positively to the project cost by representing a deduction from total project cost as a result of

shortened duration.

Other costs include costs of hardware, software and computer networks needed to support

the project, costs of office space, utilities, central facilities, and employee benefits like pensions

and health insurance (Sommerville, 2007). These overhead costs tend to be fixed. In this study,

we consider the total cost of a software development project as a function of labor cost, training

cost, opportunity cost, and labor slack. The total cost changes as any of the four costs changes.

Because these costs can be either calculated or derived, we offer no specific hypotheses with

regard to them.

4. METHODOLOGY

To facilitate the testing of our hypotheses and draw sufficient conclusions to answer the

research questions at hand, we adopted a multi-method, multi-study empirical approach. The

survey method was employed for Study 1 (S1) and the bootstrap simulation method for Study 2

55

(S2). For S1, we developed and administered a survey instrument to a targeted subject population

of industrial software developers. This survey instrument had two objectives: (1) to gather data

on practitioner perceptions with regard to the cost and effectiveness of the pair programming

when compared to the more traditional solo approach and to provide sufficient data for testing

our hypotheses and provide an initial validation of the research model (2) to acquire parameter

data on a variety of project and developer characteristics to provide the necessary foundation for

a simulation study.

Study 2 is a series of bootstrapping simulations. Using responses from the survey as input

parameters, this study had two objectives: (1) to provide additional validation of the research

hypotheses presented in the research model and (2) to determine in what situation pair

programming is more cost effective than solo programming.

4.1. Survey

4.1.1. Survey Instrument

Because the level of complexity and focus contained herein had not been conducted in

prior pair programming studies, our instrument for S1 required both generation and validation of

the majority of survey items. With the exception of the knowledge transfer related questions

adapted from Ko, Kirsch, and King (2005), the remaining questions were generated by the

researchers. Table 4.1 provides a side-by-side match between the survey items intended to

collect data for hypothesis testing and their associated hypothesis. Additionally, the complete

survey instrument is attached in Appendix A.

Table 4.1 Instrument Items and Associated Hypothesis

H Q# Instrument Items

H1a Q1a
Estimate effort in programming hours assuming a

 Low, Medium, and High-complexity project.

56

H1b Q1b
Estimate defect rate (# of defects / 1000 LOC) assuming a

 Low, Medium, and High-complexity project.

H1c

Q1c

As system complexity increases

 more communication will occur regarding the understanding of a module and how this

module integrates with other modules

 it improves a programmer’s knowledge of the programming language in use.

 it improves a programmer’s general problem solving skills

H2a

Q2a

Estimate the percentage difference in effort between solo programming and pair

programming, assuming a

 Low, Medium, and High-complexity project.

H2b

Q2b

Estimate the percentage difference in defect rate between solo programming and pair

programming assuming

 Low, Medium, and High-complexity project.

H2c

Q2c

Estimate the percentage difference in knowledge transfer between solo programming and

pair programming assuming a

 Low, Medium, and High-complexity project.

Note: The following questions are repeated for low, medium, and high complexity projects.

H3a

Q3a_1

Estimate the percentage difference in effort between a JUNIOR SOLO programmer and a

pair if a pair is comprised of:

 Two SENIOR programmers

 A JUNIOR programmer and a SENIOR programmer

 Two JUNIOR programmers

Q3a_2

Estimate the percentage difference in effort between a SENIOR SOLO programmer and a

pair if a pair is comprised of:

 Two SENIOR programmers

 A JUNIOR programmer and a SENIOR programmer

 Two JUNIOR programmers

Q3a_3

Estimate the percentage difference in defect rate between a JUNIOR SOLO programmer

and a pair if a pair is comprised of:

 Two SENIOR programmers

 A JUNIOR programmer and a SENIOR programmer

 Two JUNIOR programmers

Q3a_4

Estimate the percentage difference in defect rate between a SENIOR SOLO programmer

and a pair if a pair is comprised of:

 Two SENIOR programmers

 A JUNIOR programmer and a SENIOR programmer

 Two JUNIOR programmers.

Q3a_5

Estimate the percentage difference in knowledge transfer between a SOLO programmer

and a pair if a pair is comprised of

 Two SENIOR programmers

 A JUNIOR programmer and a SENIOR programmer

 Two JUNIOR programmers.

H3b

Q3b_1

Estimate the percentage difference in effort between solo programming and pair

programming, assuming a pair is comprised of two

 BOTH have prior pair programming experience

 ONE of whom has prior pair programming experience

 NEITHER of whom has prior pair programming experience

Q3b_2

Estimate the percentage difference in defect rate between solo programming and pair

programming, assuming a pair is comprised of two

 BOTH have prior pair programming experience

 ONE of whom has prior pair programming experience

 NEITHER of whom has prior pair programming experience

57

4.1.2. Construct Validity and Reliability

To ensure the content validity of the survey instrument, an extensive review of prior

literature was conducted and, whenever possible, pre-existing questionnaire items were

considered and incorporated. Due to lack of literature in pair programming surveys, the adoption

of existing questionnaires was found to be rather limited. However, commonly accepted

measures by the computer science, software engineering, and information systems were available

for review and appropriate items were adapted for use herein. Furthermore, following initial

creation of the instrument, an informed pilot involving appropriate faculty and PhD students was

conducted.

Most of the constructs in the instrument are best represented as single-item constructs,

therefore, the traditional construct validity technique was not applicable. Knowledge transfer is

a reflective construct with three measurement items. Confirmatory factor analysis utilizing

varimax rotation (Johnson and Wichern 1992; Banker, Davis, and Slaughter 1998) was employed

to verify the validity of this construct. The factor loadings from the three measurement items

were 0.747, 0.868, and 0.862 respectively, which provides satisfactory evidence of convergent

validity and internal consistency. Since knowledge transfer is the only reflective construct in this

study, discriminant validity is not applicable. The Cronbach Alpha for the knowledge transfer

construct is 0.764 which exceeded the 0.70 criterion (Nunnally 1978), suggesting the construct is

reliable.

Q3b_3

Estimate the percentage difference in knowledge transfer between solo programming and

pair programming, assuming a pair is comprised of two

 BOTH programmers have prior pair programming experience.

 ONE of the two programmers has prior pair programming experience.

 NEITHER of the two programmers has prior pair programming experience.

58

To improve survey reliability, only complete surveys were used for the data analysis.

During data collection, the authors received numerous comments from respondents stating

reasons why they didn’t complete the survey. Not having sufficient knowledge of the measures

was the primary reason. Therefore, it is reasonable to believe respondents who didn’t know the

measures or didn’t feel comfortable reporting the measures abandoned the survey and, therefore,

were not appropriate respondents. The respondent profile presented in Chapter 5 suggests the

responses came from well-educated and highly experienced practitioners (91.4 percent have

college or graduate degrees, 77.8 percent have over 10 years of industrial experience). Hence, it

is fair to assume what was reported in the survey reflected the projects that went on in the

industry.

4.2 Bootstrap Simulation

4.2.1 Bootstrap

The bootstrap, introduced by Efron (1979), is a statistical technique which allows a

description of the variability of a statistic based on a unique finite sample. The bootstrap

estimates standard errors by resampling with replacement of the original finite sample. The

samples obtained are “pseudo sample” or “bootstrap sample” which are used to estimate the

statistics of interest. The bootstrap samples are expected to behave similarly to the underlying

distribution of the data and serve to control and check the stability of the results. Bootstrap is

recommended in situations where the distribution of a statistic of interest is unknown, or when

the sample size is insufficient for statistical inference (Adèr et al. 2008). It is a suitable

technique for this research because the distributions of many of the parameters we gather from

the survey and need to use for analysis (e.g. project hours, project defects, team size) are

59

unknown. For a more detailed description of the bootstrap technique see Efron (1979, 1982),

Freedman and Peters (1984), and Efron and Tibshirani (1993), among others.

The number of bootstrap samples recommended in the literature has increased as

available computing power has increased. To reduce the effects of random sampling errors from

the bootstrap procedure, we have chosen to do 5,000 bootstrap samples. The original data set

contained 191 records. We took 5,000 bootstrap samples of size 191 each with replacement

from the original dataset and computed the means on pertinent data variables for each of these

5,000 bootstrap samples. The bootstrap estimates then became a sample of size 5,000 from

which further analyses were conducted. The program that extracted the bootstrap samples and

calculated the mean estimates is attached in Appendix B.

4.2.2. Cost Calculation

Since one primary goal is to investigate the cost constructs, columns were added to the

original survey data to capture the cost information before the bootstrap process started. As

specified in the research model in chapter 3, the cost constructs are labor cost, training cost,

opportunity cost, labor slack, and total cost. Labor cost has two components: one is effort cost

that resulted from initial system development and the other is defect cost which is cost associated

with fixing defects. Since opportunity cost and labor slack are direct derivations of the project

duration, we include duration in our calculation as well.

As stated in chapter 3, the measures of the cost constructs were calculated from their

precedents. Therefore, one primary step in file preparation is to follow the formulas to calculate

the costs. Table 4.2 below describes the formulas used for the cost calculation. Hours, defects,

defect fixing speed, team size are supplied by the survey respondents. Hourly pay rates are from

60

the Bureau of Labor Statistics (2011). Team size was rounded to an even number so both solo

and pair programming methods have the same number of developers on the team.

Table 4.2 Formulas for Cost Calculation

Construct Formula

Effort cost Hours spent * hourly pay rate

Defect cost (Defects * defect fixing speed) * hourly pay rate

Duration Total hours / (team size * working hours per day)

Opportunity cost/

Labor slack cost

(Difference between actual duration and ideal duration) * Team size *

Pay rate. The ideal duration is the average duration calculated through

5000 bootstraps on the duration data.

Training cost Original training cost – savings on training cost due to knowledge

transfer.

Total cost Effort cost + Defect cost + Training cost + Opportunity cost - Labor

slack cost

A random generating function was used to return a random value given a range as we

calculate the cost on several variables: hourly pay rates, survey choices, and knowledge transfer

coefficients. For example, the hourly pay rate for a senior software developer was randomly

assigned by the following function (rand (lowerLimit, upperLimit)). The lowerLimit and

upperLimit are the range of hourly pay rates for a senior software developer obtained from Labor

Statistics. Following the same logic, the questions that ask the percentage difference between

programming methods are randomly assigned values between 1 and 20 given 1 as the survey

choice, 21 and 40 given 2 as the choice, etc. The Rand() function returns a random value from

the specified range. The random function is well suited since it introduces randomness while

keeping the value within the range of interest.

The program that performs all the file preparation steps is attached in Appendix C.

5. RESULTS

This chapter presents the sample characteristics, results from the hypotheses testing, and

results on the cost constructs.

61

5.1 Survey Sample

The sample for the survey consisted of software practitioners who have professional

programming experience in the industry. Over 2,500 email addresses were collected through

conference attendance, association memberships, paper authorships, and referrals. Each

participant was contacted by the authors through a personalized email requesting participation in

the survey. One reminder, 10 days after the initial message, was sent to the non-respondents.

Data collection lasted for approximately one month. 191 surveys were returned complete,

yielding a net response rate of approximately seven percent.

To the best of our knowledge, this is the first industry-wide survey focused on pair

programming. Due to the lack of baseline data, it is hard to judge whether the response rate was

high, low, or comparable. The fact that past literature only published a handful of survey studies

which either used students as respondents or collected responses from specific organizations

seems to imply that conducting an industry wide survey on this topic is a challenging task. We,

therefore, consider the seven percent response rate reasonable.

We tested for the possibility of response bias by comparing the responses from the first

20 percent of the responses received to those from the last 20 percent received. Statistical tests

revealed that all relevant measurement items shared the same results (p < 0.05). We thus

conclude there is little evidence of a difference in responses between early and late responders.

This suggests that nonresponse bias is unlikely to be an issue in this study (Chatterjee, Grewal,

and Sambamurthy 2002).

The profile of the respondents and their associated organizations is shown in Table 5.0.

The profile indicates the respondents worked in various industries with projects of different

sizes. The profile also suggests the responses came from well-educated and experienced

62

practitioners. 91.5 percent of the respondents have baccalaureate or advanced degrees. 75.9

percent have over 10 years of working experience in the information technology field. 128

respondents have pair programming experience, and 63 respondents indicated no pair

programming experience. Only 10.0% of the responses were female. This is most likely a

reflection of the gender imbalance in the software development industry.

Table 5.0 Respondents Profile
 N % N %

Pair programming experience

Never

<1 year

1-2 years

3-4 years

5-6 years

7-8 years

9-10 years

>10 years

63

27

34

28

22

6

4

7

32.9%

14.1%

17.8%

14.6%

11.5%

3.1%

2.1%

3.6%

Experience in IS/IT field

< 2 years

2-5 years

6-10 years

11-20 years

20+ years

4

8

34

88

57

2.1%

4.1%

17.8%

46.1%

29.8%

Current Position

Developer

Project manager

Team Leader

VP/Director of Development

Development Manager

Consultant/Trainer

Architect

QA/Tester

Product Manager

IT Staff

CIO/CTO/CEO/President

Other

22

41

19

25

18

19

13

16

3

4

1

9

11.5%

21.4%

9.9%

13.0%

9.4%

9.7%

6.8%

8.3%

1.6%

2.0%

0.5%

4.7%

Highest education

High school or equivalent

Some college

College degree

Graduate degree

Location

North America

Europe

Asia

Australia/NZ

1

15

74

101

160

13

15

3

0.5%

7.8%

38.7%

52.8%

83.7%

6.8%

7.8%

1.6%

Age

<30

30-39

40-49

50-59

60-69

>69

19

70

64

30

7

1

9.9%

36.6%

33.5%

15.7%

3.6%

0.5%

Gender

Male

Female

172

19

90.0%

10.0%

Industry

e-Commerce

Financial

Government

IT Consulting

Manufacturing

Retail

Technology

Other

13

19

13

33

8

2

69

34

6.8%

10.0%

6.8%

17.2%

4.1%

1.0%

36.1%

17.8%

Total Software Organization

(# of employees in software

development and delivery)

<5

5-20

21-50

51-100

101-250

 >250

13

34

56

26

22

40

6.8%

17.8%

29.3%

13.6%

11.5%

20.9%

Average Project Budget

<$10K

$10K-$49K

$50K-99K

100K-499K

500K-999K

1,000K-$2,000K

 >2,000K

9

22

51

59

22

18

10

4.7%

11.5%

26.7%

30.8%

11.5%

9.4%

5.2%

63

5.2. Hypothesis Testing

Hypothesis testing was conducted on both the original survey data and the simulation

data. In this section, we present the hypotheses, results, and a brief explanation of the results.

H1a. Regardless of programming approach, as system complexity increases, the programming

effort increases.

H1b. Regardless of programming approach, as system complexity increases, defect rate

increases.

H1c. Regardless of programming approach, as system complexity increases, there is higher

knowledge transfer rate amongst the project team members.

To test for support of H1a and H1b based on the original survey responses, non-

parametric related sampled tests were applied. This approach is the most appropriate for several

reasons. First, respondents have experience on projects of different sizes in different

organizations. As they estimate the number of modules and the defect rate for projects at three

levels of complexity (low, medium, high), there is inevitably a large dispersion of entries where

distribution cannot be assumed and outliers are common. Rank-based nonparametric tests do not

make distribution assumptions and are not affected by outliers (Hollander and Wolfe 1999).

Second, the survey was designed such that the same subject is asked to provide responses for

low, medium and high complexity projects, thus, the data points are not independent of each

other and related sample tests are suitable.

To test for support of H1a and H1b based on the simulation data, multivariate tests on

repeated measures were employed. Data examination on the simulation data suggests through

the bootstrapping process data on effort and defect approximate normal (skewness -0.12 to 0.92,

Kurtosis -0.03 to 1.11), therefore, there is no need to conduct non-parametric testing.

To test for support of H1c, a one sample t-test was adopted on both the survey and

simulation data. T-test is appropriate in this case because we intend to test the difference

between the sample mean and the population mean. All the measurement items, as well as the

64

grand mean which is calculated from the three measurement items, meet the assumptions for t-

test: independence and normal distribution (Warner 2007).

Table 5.1 is a summary of the results for H1a, H1b, and H1c. Each variable’s basic

statistics are reported as well. For variables where no distribution can be assumed, their mean

ranks are reported. The three items to measure knowledge transfer approximate normal

distributions, therefore, their means and standard deviations are reported.

Table 5.1 Results for H1a, H1b, and H1c

 From Survey

 (N=191)

From Simulation

 (N=5000)

Overall

H Item
Mean

Rank
SD

 p-value

=<

H

Support
Mean SD

P-value

=<

H

Support

H

Support

H1a Q1a Effort in

NA 0.001 Yes

0.001 Yes Yes
LCP 1.05 459 70

MCP 1.99 1699 196

HCP 2.95 25011 6303

H1b Q1b Defect rate in

NA 0.001 Yes

0.001 Yes Yes
LCP 1.21 9 1.38

MCP 2.01 25 4.07

HCP 2.78 55 7.63

H1c Q1c Mean

0.001 Yes

0.001 Yes Yes

Module understanding 5.24 1.73 5.25 0.12

Programming language 4.46 1.61 4.43 0.11

Problem solving 4.51 1.59 4.51 0.11

Grand mean 4.74 1.35 4.74 0.10

LCP=Low complexity project MCP=Medium complexity project HCP=High complexity project

These results are further illustrated in Figure 5.1. Figure 5.1-a1 shows the mean ranks of

effort at three system complexity levels: low, medium, and high. The upward trend suggests

effort increases as system complexity increases. Wilcoxon Signed Ranks Tests on related

samples suggest the ranks between different complexity levels (medium vs. low, high vs.

medium) are statistically significant (p-value < 0.001), thus, supporting H1a. Figure 5.1-b1

depicts the mean ranks of defect rate at three complexity levels and suggests as system

complexity increases defect rate increases. Wilcoxon Signed Ranks Tests on related samples

65

suggest the differences in ranks between complexity levels (medium vs. low, high vs. medium)

are statistically significant (p-value < 0.001), supporting H1b. Figure 5.1-c1 plots the mean from

each of the three measurement items for knowledge transfer as well as the grand mean from the

three items. The sample mean was compared to the population mean (4-Neutral). Results

indicate each of the sample means is significantly different from the population mean (p-value <

0.001), suggesting the respondents generally agree that as the system complexity increases, there

is a higher knowledge transfer. Therefore, H1c is supported. As demonstrated in Figure 5.1-a2,

5.1-b2, and 5.1-c2 which present the means on effort, defect rate, and knowledge transfer, and

statistics in Table 5.1 (p-value < 0.001), results based on the simulation data suggest the same

conclusions.

Figure 5.1 Results for H1a, H1b, and H1c

 Survey Simulation

H1a

H1b

Mean Rank,
Low, 1.05

Mean Rank,
Medium,

1.99

Mean Rank,
High, 2.95

Mean Rank
on Effort

Complexity

a1

Mean, Low,
0.4

Mean,
Medium,

1.7

Mean, High,
25

Effort
in 1000
hours

Complexity

a2

Mean Rank,
Low, 1.21

Mean Rank,
Medium,

2.01

Mean Rank,
High, 2.78

Mean Rank
on Defect

Rate

Complexity

b1

Mean, Low,
9

Mean,
Medium, 25

Mean, High,
56

Defect Rate
per 1000

LOC

Complexity

b2

66

H1c

H2a. When compared to solo programming, as system complexity increases, pair programming

will moderate the effect of system complexity on programming effort thus reducing effort.

H2b. When compared to solo programming, as system complexity increases, pair programming

will reduce the effect of complexity on defect rate thus reducing the overall defect rate.

H2c. When compared to solo programming, as system complexity increases, pair programming

will increase the effect of system complexity on knowledge transfer thus enhancing knowledge

transfer.

To test for support of H2a, H2b, and H2c, multivariate tests on repeated measures were

employed. These tests are appropriate for several reasons. First, each survey respondent was

asked to provide answers at multiple specified conditions. Second, data screening suggests the

variables meet the assumption of multivariate repeated measures: the variables are quantitative

and approximately normally distributed, scores on the repeated measure variables have a

multivariate normal distribution, and relationships among repeated measures are linear (Warner

2007).

As discussed in Chapter 4, a significant concern was that perceptions on the effectiveness

of pair programming could differ between practitioners who have and do not have pair

programming experience. Thus, each respondent was coded based on whether he/she had pair

programming experience and the coded variable was used as the between-subject factor in the

multivariate test to examine any possible differences between the two subject groups. Table 5.2

is a summary of the hypothesis testing results along with each variable’s basic statistics.

Mean,
Module,

5.24 Mean,
Language,

4.46

Mean,
Problem
Solving,

4.51

Mean,
Grand

Mean, 4.74

Mean on
Knowldge
Transfer

c1

Mean,
Module,

5.25 Mean,
Language,

4.43

Mean,
Problem

Solving, 4.51

Mean,
Grand

Mean, 4.74

Mean on
Knowledge

Transfer

c2

67

Table 5.2 Results for H2a, H2b, and H2c

Survey Simulation Overall

H Item
With PPE

(N=128)

Without PPE

(N=63)

WSE

p-

value

=<

H

Supp

BSE

p -

value

=<

With PPE

(N=5000)

Without PPE

(N=5000)
WSE

H

Supp

BSE

p-

value

=<

 % diff.

b/t

SP and

PP in …

* µ SE µ SE

µ SE µ SE

H2a

Q2a

Effort

0.001 Yes 0.012

0.001 Yes 0.001 Yes
LCP 0.85 0.22 1.4 0.32 0.92 0.01 1.39 0.006

MCP -0.28 0.18 0.59 0.25 -0.13 0.01 0.62 0.006

HCP -1.09 0.2 -0.19 0.28 -1.01 0.004 -0.14 0.004

H2b

Q2b

Defect

rate

0.001 Yes 0.001

0.001 Yes 0.001 Yes LCP -1.61 0.14 -0.66 0.2 -1.72 0.01 -0.86 0.006

MCP -2.22 0.13 -1.19 0.19 -2 0 -1.04 0.002

HCP -2.61 0.16 -1.77 0.23 -2.62 0.01 -1.86 0.006

H2c

Q2

Knowle

dge

transfer

0.001 Yes 0.088

0.001 Yes 0.001 Yes LCP 1.35 0.2 0.5 0.29 1.13 0.01 0.48 0.006

MCP 1.81 0.21 1.21 0.3 1.79 0.01 1.1 0.005

HCP 2.23 0.25 1.77 0.35 2.04 0.01 1.84 0.005

WSE=within subject effect BSE=between subject effect

PPE=pair programming experience

SP=solo programming PP=pair programming

LCP=low complexity project MCP=medium complexity project HCP=high complexity project

* Measurement scales:

0=No difference

Pair increases: 1=1-20% 2-21-40% 3+41-60% 4=61-80% 5=81-100% 6=>100%

Pair decreases: -1=1-20% -2=21-40% -3=41-60% -4=61-80% -5=81-99%

The results are further illustrated in Figure 5.2. Figure 5.2-a1 and a2 show a downward

trend, which suggests both respondent groups agree as system complexity increases, compared to

the solo programming method, pair programming will result in a decrease in programming effort

(p-value < 0.001), supporting H2a. However, despite sharing the same trend, the two groups

disagree significantly on the magnitude of change on effort at all complexity levels (p-value =

0.012 from the original responses, p-value < 0.001 from simulation). Specifically, in all three

complexity levels, practitioners with pair programming experience viewed pair programming

more positively than practitioners without pair programming experience. Figure 5.2-b1 and b2

demonstrate a downward trend regarding defect rate, suggesting as system complexity increases,

68

pair programming method will decrease the defect rate (p-value < 0.001), supporting H2b. Once

again the two respondent groups disagree on the magnitude of decrease (p-value < 0.001).

Figure 5.2-c1 and c2 show an upward trend, implying as the system complexity increases,

compared to solo programming, pair programming method will result in higher knowledge

transfer (p-value < 0.001), supporting H2c. The two respondent groups differ on the magnitude

of increase on knowledge transfer. While this difference based on simulation is statistically

significant (p-value < 0.001), the difference based on the original survey responses is not (p-

value = 0.088).

Figure 5.2 Results for H2a, H2b, and H2c

 Survey Simulation

H2a

H2b

w/o pair
experience,
Low, 1.403

w/o pair
experience,

Medium, .597
w/o pair

experience,
High, -.194

with pair
experience,
Low, .854

with pair
experience,

Medium,
-.285 with pair

experience,
High, -1.098

%
Difference

in Effort

Complexity

a1
w/o pair

experience,
Low, 1.394 w/o pair

experience,
Medium,

.629
w/o pair

experience,
High, -.142

with pair
experience,
Low, .929

with pair
experience,

Medium,
-.138 with pair

experience,
High, -1.019

%
Difference

in Effort

Complexity

a2

w/o Pair
Experience,
Low, -.661 w/o Pair

Experience,
Medium, -

1.194 w/o Pair
Experience,
High, -1.774

with Pair
Experience,
Low, -1.610

with Pair
Experience,
Medium, -

2.228

with Pair
Experience,
High, -2.618

%
Difference
in Defect

Rate

Complexity

b1

w/o Pair
Experience,
Low, -.866

w/o Pair
Experience,
Medium, -

1.048

w/o Pair
Experience,
High, -1.860

with Pair
Experience,
Low, -1.728 with Pair

Experience,
Medium, -

2.009 with Pair
Experience,
High, -2.621

%
Difference
in Defect

Rate

Complexity

b2

69

H2c

 Mean responses from practitioners without pair programming experience

 Mean responses from practitioners with pair programming experience

Y-Axis: 0=No difference
 Pair increases: 1=1-20% 2=21-40% 3=41-60% 4=61-80% 5=81-100% >100%

 Pair decreases: -1=1-20% -2=21-40% -3=41-60% -4=61-80% -5=81-99%

H3a: Programmer expertise moderates the effectiveness of the pair programming method.

H3b: Prior pair programming experience moderates the effectiveness of the pair programming

method.

To test for support of H3a and H3b, multivariate repeated measures were employed for

the same reasons as stated previously. Table 5.3 provides a summary of the hypothesis testing

results and each variable’s basic statistics.

Table 5.3 Results for H3a and H3b

Survey Simulation Overall

H Item With PPE

(N=128)

Without PPE

(N=63)

WSE

p-

value

=<

H

Supp

BSE

p-

value

=<

With PPE

(N=5000)

Without PPE

(N=5000)

WSE

p-

value

=<

H

Supp

BSE

p-

value

=<

 % diff. b/t

SP and PP

in… µ SE µ SE

µ SE µ SE

H3a

Q3a Effort

Jr-Jr 1.02 0.22 1.8 0.3

0.001 Yes 0.006

1.00 0.004 1.86 0.00

0.001 Yes 0.001 Yes Jr-Sr -0.43 0.21 0.64 0.3 -0.43 0.007 0.70 0.01

Sr-Sr -0.92 0.21 -0.06 0.3 -0.98 0.003 -0.06 0.00

Defect rate

Jr-Jr -1.1 0.14 -0.38 0.2

0.001 Yes 0.001

-1.00 0.004 -0.19 0.004

0.001 Yes 0.001 Yes Jr-Sr -2.19 0.13 -1.41 0.19 -2.01 0.005 -1.26 0.005

Sr-Sr -2.79 0.15 -1.83 0.21 -2.96 0.003 -1.94 0.003

Knowledge

transfer

Jr-Jr
1.32 0.19 0.83 0.27

0.001 Yes 0.28

1.08 0.004 0.94 0.004

0.001 Yes 0.001 Yes Jr-Sr
2.24 0.24 1.85 0.34 2.06 0.004 1.9 0.004

Sr-Sr
1.89 0.22 1.61 0.31 1.87 0.006 1.65 0.006

w/o Pair
Experience,
Low, .500

w/o Pair
Experience,

Medium,
1.210

w/o Pair
Experience,
High, 1.774

With Pair
Experience,
Low, 1.358

With Pair
Experience,

Medium,
1.813

With Pair
Experience,
High, 2.236

% Difference
in

Knowledge
Transfer

Complexity

c1

w/o Pair
Experience,
Low, .487

w/o Pair
Experience,

Medium,
1.101

w/o Pair
Experience,
High, 1.840

with Pair
Experience,
Low, 1.132

with Pair
Experience,

Medium,
1.792

with Pair
Experience,
High, 2.042

%
Difference

in
Knowledge

Transfer

Complexity

c2

70

H3b

Q3b Effort

Prior PP0 1.34 0.21 2.03 0.3

0.001 Yes 0.006

1.25 0.006 2.03 0.006

0.001 Yes 0.001 Yes Prior PP1 0.016 0.19 0.82 0.27 -0.01 0.004 0.89 0.004

Prior PP2 -1.24 0.21 -0.8 0.29 -1.17 0.005 -0.06 0.005

Defect rate

Prior PP0 -0.92 0.15 -0.4 0.21

0.001 Yes 0.003

-0.99 0.004 -0.24 0.004

0.001 Yes 0.001 Yes Prior PP1 -1.9 0.14 -1.12 0.2 -1.99 0.002 -1.01 0.002

Prior PP2 -2.65 0.15 -1.82 0.22 -2.82 0.005 -1.86 0.005

Knowledge

transfer

Prior PP0 1.24 0.25 0.79 0.25

0.001 Yes 0.162

1.05 0.003 0.93 0.003

0.001 Yes 0.001 Yes Prior PP1 1.98 0.21 1.37 0.29 1.93 0.005 1.28 0.005

Prior PP2 2.08 0.24 1.69 0.33 1.95 0.005 1.79 0.005

Jr-Jr=junior-junior pair Jr-Sr=junior-senior pair Sr-Sr=senior-senior pair

Prior PP0 =pair neither has prior pair programming experience

Prior PP1 = pair one has prior pair programming experience

Prior PP2 = pair both have prior pair programming experience

Figure 5.3 depicts the impact of one aspect of pair composition - the expertise of the

developers, on the effectiveness of pair programming method. Figure 5.3-a1 and a2 show the

junior-junior composition will result in an increase in effort when applying the pair programming

method compared to the solo programming method, the junior-senior composition will result in

an increase in effort according to practitioners who do not have pair programming experience,

but will result in a decrease in effort according to practitioners who have pair programming

experience, and the senior-senior composition will lead to a decrease in effort from the

perspectives of both respondent groups. Figure 5.3-b1 and b2 suggest a junior-junior

composition will result in the least decrease in defect rate while a senior-senior composition will

result in the largest decrease. Figure 5.3-c1 and c2 demonstrates the junior-senior composition

leads to the highest amount of knowledge transfer, while the junior-junior composition generates

the least amount of knowledge transfer.

The results further indicate the effectiveness of pair programming varies when pairs of

different compositions - junior-junior, senior-senior, and junior-senior are compared to solos (p-

value < 0.001). Therefore, H3a is supported. Again, even though the respondent groups agree

71

on the general trend (p-value < 0.001), they disagree on the magnitude of the changes. Results

from simulation suggest all disagreements are statistically significant (p-value < 0.001). Results

based on the original survey data indicate the disagreements on effort and defect rate are

statistically significant (p-value = 0.006 for effort, < 0.001 for defect rate) but the disagreement

on knowledge transfer is not (p-value =0.28).

Figure 5.3 Results for H3a

Survey Simulation

w/o Pair
Experience, Jr-

Jr, 1.806

w/o Pair
Experience, Jr-

Sr, .645 w/o Pair
Experience,
Sr-Sr, -.065 With Pair

Experience, Jr-
Jr, 1.024

With Pair
Experience, Jr-

Sr, -.439 With Pair
Experience,
Sr-Sr, -.927

%
Diffference

in Effort

a1
w/o Pair

Experience,
Jr-Jr, 1.869

w/o Pair
Experience,
Jr-Sr, .704

w/o Pair
Experience,
Sr-Sr, -.060

With Pair
Experience,
Jr-Jr, 1.006

With Pair
Experience,
Jr-Sr, -.437

With Pair
Experience,
Sr-Sr, -.984

%
Difference

in Effort

a2

w/o Pair
Experience,

Jr-Jr,
-.387

w/o Pair
Experience, Jr-

Sr, -1.419 w/o Pair
Experience, Sr-

Sr, -1.839
With Pair

Experience, Jr-
Jr, -1.106

With Pair
Experience, Jr-

Sr, -2.195 With Pair
Experience, Sr-

Sr, -2.797

% Difference
in Defect

Rate

b1

w/o Pair
Experience,
Jr-Jr, -.197

w/o Pair
Experience,
Jr-Sr, -1.264

w/o Pair
Experience,
Sr-Sr, -1.941

With Pair
Experience,
Jr-Jr, -1.002

With Pair
Experience,
Jr-Sr, -2.010

With Pair
Experience,
Sr-Sr, -2.960

%
Difference
in Defect

Rate

b2

With Pair
Experience, Jr-

Jr, .839

With Pair
Experience, Jr-

Sr, 1.855

With Pair
Experience, Sr-

Sr, 1.613

w/o Pair
Experience, Jr-

Jr, 1.325

w/o Pair
Experience, Jr-

Sr, 2.244
w/o Pair

Experience, Sr-
Sr, 1.894

% Difference
in

Knowledge
Transfer

c1

w/o Pair
Experience, Jr-

Jr, .947

w/o Pair
Experience, Jr-

Sr, 1.905
w/o Pair

Experience,
Sr-Sr, 1.658

With Pair
Experience, Jr-

Jr, 1.088

With Pair
Experience, Jr-

Sr, 2.060
With Pair

Experience,
Sr-Sr, 1.877

%
Difference

in
Knowledge

Transfer

c2

72

Figure 5.4 depicts the impact of another aspect of pair composition - prior pair

programming experience, on the effectiveness of pair programming. Figure 5.4-a1 and a2

suggest a pair without prior pair programming experience will lead to the highest amount of

effort increase, a pair with one having prior pair programming experience will lead to a slight

effort increase, while a pair with prior pair programming experience will result in a decrease in

effort.

Figure 5.4-b1 and b2 reveal a pair with prior pair programming experience will lead to

the highest decrease in defect rate, a pair with one having prior pair programming experience

will result in the second highest decrease, and a pair without prior pair programming experience

will have the least decrease in defect rate.

Figure 5.4-c1 and c2 suggests a pair with prior pair programming experience will have

the highest amount of knowledge transfer, and a pair without pair programming experience will

generate the least amount of knowledge transfer. Results indicate the effectiveness of pair

programming varies when pairs of different compositions based on whether they have prior pair

programming experience – neither has, one has, and both have are compared to solos (p-value <

0.001). Therefore, H3b is supported. Results based on the original survey data suggest the

difference between the two respondents groups is significant in effort (p-value = 0.006) and

defect rate (p-value=0.003), but the group difference is not significant on knowledge transfer (p-

value=0.162). Results from simulation indicate all differences are significant (p-value < 0.001).

73

Figure 5.4 Results for H3b

Survey Simulation

w/o Pair
Experience,
PP0, 2.032

w/o Pair
Experience,

PP1, .823
w/o Pair

Experience,
PP2, -.081

With Pair
Experience,
PP0, 1.341

With Pair
Experience,

PP1, .016

With Pair
Experience,
PP2, -1.244

% Difference
in Effort

a1

w/o Pair
Experience,
PP0, 2.037

w/o Pair
Experience,

PP1, .891

w/o Pair
Experience,
PP2, -.065

With Pair
Experience,
PP0, 1.259

With Pair
Experience,
PP1, -.007

With Pair
Experience,
PP2, -1.171

% Difference
in Effort

a2

w/o Pair
Experience,
PP0, -.403

w/o Pair
Experience,
PP1, -1.129

w/o Pair
Experience,
PP2, -1.823

With Pair
Experience,
PP0, -.927

With Pair
Experience, PP

1, -1.902

With Pair
Experience,
PP2, -2.659

% Difference
in Defect

Rate

b1
w/o Pair

Experience,
PP0, -.245

w/o Pair
Experience,
PP1, -1.019

w/o Pair
Experience,
PP2, -1.865

With Pair
Experience,
PP0, -.997

With Pair
Experience,
PP1, -1.997

With Pair
Experience,
PP2, -2.829

% Difference
in Defect

Rate

b2

w/o Pair
Experience,

PP0, .790

w/o Pair
Experience,
PP1, 1.371

w/o Pair
Experience, PP

2, 1.694

With Pair
Experience,
PP0, 1.244

With Pair
Experience,
PP1, 1.984

With Pair
Experience,
PP2, 2.081

% Difference
in

Knowledge
Transfer

c1

w/o Pair
Experience,

PP0, .839

w/o Pair
Experience,
PP1, 1.282

w/o Pair
Experience,
PP2, 1.689

With Pair
Experience,
PP0, 1.150

With Pair
Experience,
PP1, 1.934

With Pair
Experience,
PP2, 2.054

% Difference
in

Knowledge
Transfer

c2

74

Table 5.4 is a summary of all the statistical tests and their outcomes. As one can see from

the results, all hypotheses stated in the Research Model and Hypotheses section are supported by

both the original survey responses and simulation data.

Table 5.4 Summary of the Hypotheses Testing Results

 From Survey From Simulation Overall

H Path Test

Within

Subject
p-value

=<

Between
Subject

Effect

p-value
=<

H
Supp

Test

Within

Subject
p-value

=<

Between
Subject

Effect

p-value
=<

H
Supp

H1a Complexity  Effort NP 0.001 NA Yes
GLM-
RM

0.001 NA Yes Yes

H1b
Complexity  Defect

Rate
NP 0.001 NA Yes

GLM-

RM
0.001 NA Yes Yes

H1c
Complexity 
Knowledge Transfer

t-test 0.001 NA Yes t-test 0.001 NA Yes Yes

H2a
Pair Programming

moderates Complexity and
Effort

GLM-

RM
0.001 0.012 Yes

GLM-

RM
0.001 0.001 Yes Yes

H2b
Pair Programming
moderates Complexity and

Defect Rate

GLM-

RM
0.001 0.001 Yes

GLM-

RM
0.001 0.001 Yes Yes

H2c

Pair Programming

moderates Complexity and

Knowledge Transfer

GLM-
RM

0.001 0.088 Yes
GLM-
RM

0.001 0.001 Yes Yes

Programmer Expertise
affects the effectiveness of

pair programming in

H3a1 Effort
GLM-

RM
0.001 0.006 Yes

GLM-

RM
0.001 0.001 Yes Yes

H3a2 Defect Rate
GLM-

RM
0.001 0.001 Yes

GLM-

RM
0.001 0.001 Yes Yes

H3a3 Knowledge Transfer
GLM-

RM
0.001 0.28 Yes

GLM-

RM
0.001 0.001 Yes Yes

Prior Pair Programming

Experience affects the
effectiveness of pair

programming in

H3b1 Effort
GLM-

RM
0.001 0.006 Yes

GLM-

RM
0.001 0.001 Yes Yes

H3b2 Defect Rate
GLM-

RM
0.001 0.003 Yes

GLM-

RM
0.001 0.001 Yes Yes

H3b3 Knowledge Transfer
GLM-

RM
0.001 0.162 Yes

GLM-

RM
0.001 0.001 Yes Yes

NP = nonparametric related sample tests – Wilcoxon Signed Ranks Test

GLM_RM=general linear model on repeated measures

75

5.3 Cost

Figure 5.5 is the cost aspect of the research model presented in Chapter 3. As illustrated

in the figure, in this project, the overall project cost consists of opportunity cost, labor slack,

labor cost, and training cost. Opportunity cost and labor slacks are derived from duration, labor

cost consists of effort cost and defect cost, and training cost is calculated as a result of

knowledge transfer. In this section, we discuss results on these cost constructs from the

bootstrap simulation.

Figure 5.5 Research Model – Cost Constructs

As described in Chapter 4, in the survey we asked responses regarding eight groups:

generic solo, generic pair, junior-junior pair, junior-senior pair, senior-senior pair, pair without

prior programming experience, pair with one having prior pair programming experience, and

pair with prior pair programming. Generic solo refers to solos with no predefined skill levels.

Generic pair refers to pairs without consideration of their compositions. As such, our analysis

and discussions in this study are limited to these eight groups. We recognize the importance of

other plausible groups, e.g. junior solo, senior solo, and other variations of pair compositions.

76

However, they are beyond the scope of this research and are left for future research as discussed

in the Future Research section in the next chapter.

To enable group comparisons, z-scores were computed ((x - μ) / σ). It is important to

note, despite dollar amounts presented along with the z-scores, the emphasis of the study is not

on specific dollar amounts, but rather on the relative contributions to cost associated with the

different programming methods represented by the eight groups described above. Bonferroni

pair-wise comparisons were conducted on all groups at each project complexity level on all

constructs to ensure against alpha build-up. Results suggest most of the group differences are

statistically significant (p-value < 0.05). The ones that are not statistically significant are marked

with an ampersand (&), and the ones that are not significantly different from the means are

marked with the pound sign (#).

5.3.1 Labor Cost

Labor cost has two components: effort cost which is the labor cost incurred during initial

development, and defect cost which are labor costs associated with fixing defects. We first

present results on effort cost, then defect cost, and finally overall labor cost.

Effort Cost

Table 5.5 presents the standardized scores on effort cost as well as the dollar amounts

from the means. Dollar amounts below the mean (meaning the cost is lower than an average

project) are in parentheses. Means and standard deviations for low, medium, and high

complexity projects are presented at the end of the table. Those represent the μ and σ used in the

z-score calculation.

77

Table 5.5 Effort Cost

Z-Score $ Amount from the Mean

Low Medium High Low Medium High

Solo -.208 -.005# -.098& (2,809) (385) (111,237)

Pair .032& -.125 -.102& 437 (8,864) (116,158)

Jr-Jr -.154 -.073 -.404 (2,083) (5,191) (458,503)

Jr-Sr .029&# -.177 -.194 396 (12,627) (219,519)

Sr-Sr .091 .116 .097 1,230 8,252 109,656

Prior PP0 .214 .430 .653 2,887 30,624 740,291

Prior PP1 .126 .169 .202 1,699 12,053 228,676

Prior PP2 -.130 -.335 -.153 (1,756) (23,862) (173,205)

Mean 30,742 183,340 2,688,511

 SD 13,330 69,702 1,138,701

 Jr-Jr=junior-junior pair Jr-Sr=junior-senior pair Sr-Sr=senior-senior pair

Prior PP0=pair neither having prior pair programming experience

Prior PP1=pair one having prior pair programming experience

Prior PP2=pair both having prior pair programming experience

Results suggest project complexity matters. As complexity increases, effort cost

increases (p-value < 0001). In low complexity projects, solo is the most cost effective.

However, in medium and high complexity projects, junior-junior, junior-senior, and pair both

with prior pair programming experience are more cost effective than solo.

Results further suggest pair composition matters. For example, considering expertise in

pair composition, junior-senior is the most cost effective in medium complexity projects, junior-

junior is the most cost effective in low and high complexity projects, and senior-senior is the

most expensive in all cases. Considering prior pair programming experience in pair

composition, pairs with prior pair programming experience are consistently the most cost

effective while pairs without prior pair programming experience are consistently the most

expensive across all project complexity levels.

This finding is further illustrated in Figure 5.5. Figure 5.5 indicates, considering all the

groups, solo incurs the least effort cost in low complexity projects, pairs with prior pair

programming experience are the least expensive in medium complexity projects, and the junior-

78

junior pair is the most cost effective in high complexity projects. In addition, the generic pair

appears to behave just like a generic pair. Its performance presents neither the best pair nor the

worst pair. It is between the best and the worst. For example, generic pair does not perform as

well as pairs with prior pair programming experience, but it consistently outperforms pairs

without prior pair programming experience. The same trend is identified as the generic pair is

compared to pairs comprised of different levels of expertise.

Figure 5.5 Effort Cost

Defect Cost

Table 5.6 presents the standardized scores on defect cost as well as the dollar amounts

from the means.

Table 5.6 Defect Cost

Z-Score $ Amount from the Mean

Low Medium High Low Medium High

Solo .594 .410& 1.143 15,924 153,391 2,448,516

Pair -.217 .094 .006# (5,809) 35,251 12,284

Jr-Jr .411 .413& .341 11,007 154,406 730,037

Jr-Sr -.135 -.050 -.379 (3,607) (18,693) (812,628)

Sr-Sr -.612 -.554 -.569 (16,389) (207,170) (1,219,902)

Prior PP0 .528 .464 .406 14,139 173,512 870,407

Prior PP1 -.020# -.139 -.271 (524) (52,170) (580,955)

Prior PP2 -.550 -.637 -.676 (14,740) (238,526) (1,447,756)

Mean 56,302 628,166 4,905,760

 SD 26,791 374,236 2,142,952

Solo,
-.208

Pair,
.032

Jr-Jr,
-.154

Jr-Sr,
.029

Sr-Sr,
.091

PP0,
.214

PP1,
.126

PP2,
-.130

Z-Score

μ

Low Complexity Projects

Solo,
-.005 Pair,

 -.125

Jr-Jr,
 -.073

Jr-Sr,
-.177

Medium,
Sr-Sr, .116

PP0,
.430

 PP1, .169

PP2,
-.335

Z-Score

μ

Medium Complexity Projects

Solo,
-.098

Pair,
-.102

Jr-Jr,
-.404

Jr-Sr,
-.194

High, Sr-
Sr, .097

PP0, .653

PP1, .202

PP2,
-.153

Z-Score

μ

High Complexity Projects

79

Results suggest in low complexity projects, solo, junior-junior pairs, and pairs without

prior pair programming experience incur a relatively high defect cost. In medium complexity

projects, junior-junior pairs and pairs without prior pair programming experience incur higher

defect costs than solo but all the other pairs incur less defect costs than solo. In high complexity

projects, all pairs incur less defect costs than solo. Considering expertise in pair composition,

senior-senior is the most cost effective and junior-junior is the most expensive. Considering

prior pair programming experience in pair composition, pairs with prior pair programming

experience are the most cost effective while pairs without prior pair programming experience

are the most expensive.

This finding is further illustrated in Figure 5.6. Figure 5.6 demonstrates considering all

the groups, senior-senior incurs the least defect cost in low complexity projects, and pairs with

prior pair programming experience incur the least cost in medium and high complexity projects.

The defect cost is high for solo, junior-junior pair, and pair without prior pair programming

experience in all situations. The generic pair incurs less defect cost than solo in all

circumstances.

Figure 5.6 Defect Cost

Solo,
.594

Pair,
-.217

Jr-Jr,
.411

Jr-Sr,
 -.135

Sr-Sr,
-.612

PP0,
.528

PP1,
-.020

PP2,
-.550

Z-Score

μ

Low Complexity Projects

Medium,
Solo,
.410 Pair,

.094

Jr-Jr,
.413

Jr-Sr,
-.050

Sr-Sr,
-.554

 PP0,
.464

PP1,
-.139

PP2,
-.637

Z-Score

μ

Medium Complexity Projects

High,
Solo,
1.143

High,
Pair,
.006

High, Jr-
Jr, .341

Jr-Sr,
-.379 Sr-Sr,

-.569

PP0,
.406

PP1,
-.271

PP2,
 -.676

Z-Score

μ

High Complexity Projects

80

Labor Cost

Table 5.7 presents the standardized scores on overall labor cost as well as the dollar

amounts from the means.

Table 5.7 Labor Cost

Z-Score $ Amount from the Mean

Low Medium High Low Medium High

Solo .406 .389& .878 10,870 145,727 1,882,040

Pair -.166 .068 -.039 (4,446) 25,306 (84,053)

Jr-Jr .276 .380& .101 7,398 142,213 217,130

Jr-Sr -.099 -.079 -.388 (2,659) (29,578) (832,030)

Sr-Sr -.468 -.507 -.417 (12,546) (189,609) (893,804)

Prior PP0 .524 .518 .607 14,051 193,806 1,299,759

Prior PP1 .036 -.103 -.132 956 (38,446) (282,943)

Prior PP2 -.509 -.666 -.609 (13,624) (249,418) (1,306,094)

Mean 87,045 811,507 7,594,271

 SD 26,791 374,236 2,142,952

In low and medium complexity projects, solo does not incur the highest labor cost. In

low complexity projects, pairs without prior pair programming experience are more expensive

than solo. In medium complexity projects, besides pair without prior pair programming

experience, junior-junior pairs also incur higher labor costs than solo. In high complexity

projects, however, all pairs regardless of their pair composition incur less labor cost than solo.

Considering expertise in pair composition, senior-senior pairs are the best in low and

medium complexity projects. In high complexity projects, junior-senior pairs are the most cost

effective. Considering prior pair programming experience in pair composition, pairs with prior

pair programming experience appear to be the most cost effective.

This finding is further illustrated in Figure 5.7. Figure 5.7 indicates considering all

groups, pairs with prior pair programming experience are the most cost effective. In low and

medium complexity projects, pairs without prior pair programming experience are the most

81

expensive. In high complexity projects, solo is the most expensive. The generic pair is more

cost effective than solo in all situations.

Figure 5.7 Labor Cost

5.3.2. Training Cost

No data is available to suggest how much impact knowledge transfer through different

programming methods has on overall training cost. Therefore, to provide the widest possible

insight into this relationship, a series of analyses were conducted assuming knowledge transfer

ranges of 10% to 100% impact on training cost. The detailed z-scores and their associated

means and standard deviations are included in Appendix D.

The z-score data from appendix D suggests regardless of percent of impact, the relative

contribution of programming methods to training cost as a result of knowledge transfer

demonstrates the same trend. This is illustrated in Figure 5.8. To be specific, in low complexity

projects, junior-senior pairs result in the highest savings in training cost, followed by pairs with

prior pair programming experience, pairs one with prior pair programming experience, and

senior-senior pairs. In medium complexity projects, the same trend continues except the generic

pair has training costs lower than the mean. In high complexity projects, pairs with prior pair

Solo,
.406

Pair,
-.166

Jr-Jr,
.276

Jr-Sr,
 -.099

Sr-Sr,
 -.468

PP0,
.524

PP1,
.036

PP2,
-.509

Z-Score

μ

Low Complexity Projects

Solo,
.389

Pair,
.068

Jr-Jr,
.380

Jr-Sr,
 -.079

Sr-Sr,
-.507

PP0,
 .518

PP1,
-.103

PP2,
-.666

Z-Score

μ

Medium Complexity Projects

Solo,
.878

Pair,
-.039

Jr-Jr,
.101

Jr-Sr,
 -.388

Sr-Sr,
-.417

PP0,
 .607

PP1,
-.132

PP2,
-.609

Z-Score

μ

High Complexity Projects

82

programming experience results in the lowest training cost. Solo incurs the highest training cost

in all situations.

Figure 5.8 Training Cost – General Trend

To illustrate the findings further, a single point in our testing range 40% impact on

training cost - is chosen to present the detailed findings. Table 5.8 diplays the standardized

scores on training cost for the 40% impact range as well as the dollar amounts from the means.

The results are demonstrated in Figure 5.9 as well.

Table 5.8 Training Cost – 40% Impact

Z-Score - 40% Impact $ Amount from the Mean

Low Medium High Low Medium High

Solo .412 1.317 .947 53 911 983

Pair .116 -.103 -.099 15 (71) (103)

JJ .060 .395 .351 8 273 364

JS -.300 -.706 -.511 (39) (488) (530)

SS -.145 -.460 -.314 (19) (318) (326)

None .157 .423 .119 20 293 124

One -.077 -.371 -.402 (10) (257) (417)

Both -.223 -.496 -.591 (29) (343) (613)

Mean 3,384 16,962 45,978

SD 129 692 1,037

Solo

Pair

Jr-Jr

Jr-Sr

Sr-Sr

PP0

PP1

PP2

Z-Score

μ

Low Complexity Projects

Solo

Pair

Jr-Jr

Jr-Sr

Sr-Sr

PP0

PP1

PP2

Z-Score

μ

Medium Complexity Projects

Solo

Pair

Jr-Jr

Jr-Sr

Sr-Sr

PP0

PP1

PP2

Z-Score

μ

High Complexity Projects

83

Figure 5.9 Training Cost – 40% Impact

Even though Bonferroni pair-wise comparisons on the z-scores suggest all pair

differences are statistically significant (p-value < 0.05), amounts from the means indicate there

may not be any practical significance resulting from knowledge transfer. In the 40% impact

scenario, the largest amount below the average is $613, and the largest amount above the average

is $983. Examinations on the dollar amounts from the means on all percentage impact scenarios

reveal that the largest deduction is $1,125, and highest increase is $2,518. Whether twenty-five

hundred dollars carries any practical significance to the entire project cost will be highly

dependent on the budget situation in the organization. Nonetheless, the potential impact in any

given situation could easily be material and, as such, we must consider it in this research.

5.3.3. Duration, Opportunity Cost, and Labor Slack

Table 5.9 presents project duration in days by programming methods at three different

project complexity levels. Based on results of the simulation data, the mean duration for a low

complexity project is 20 days, the mean duration for a medium complexity project is 93 days,

and the mean duration for a high complexity projects is 1,010 days. The differences are

statistically significant (p-value < 0.001).

Low,
Solo,
.412 Low,

Pair, .116
Jr-Jr, .060

Jr-Sr,
-.300

Sr-Sr,
-.145

PP0, .157

PP1,
-.077 PP2,

-.223

Z-Score

μ

Low Complexity Projects

Medium,
Solo,
1.317

Pair,
-.103

Jr-Jr,
.395

Jr-Sr,
-.706

Sr-Sr,
-.460

PP0,
.423

PP1,
-.371 PP2,
 -.496

Z-Score

μ

Medium Complexity Projects

High,
Solo,
.947

Pair,
-.099

Jr-Jr,
.351

Jr-Sr,
-.511

Sr-Sr,
-.314

PP0,
.119

PP1,
-.402

PP2,
-.591

Z-Score

μ

High Complexity Projects

84

The data suggests in both low and medium complexity projects, solo is the fastest

programming method. In high complexity projects, however, pairs with prior pair programming

experience are the fastest, followed by solo and generic pairs (the difference between solo and

generic pairs is not statistically significant, p-value = 1.0). Among all programming methods

and pair compositions, the junior-junior pairs are the slowest, followed by pairs without prior

pair programming experience. These finding are further illustrated in Figure 5.10.

Table 5.9 Duration

Z-Score Days from the Mean

Low Medium High Low Medium High

Solo -.305 -.342 -.339& (3) (15) (129)

Pair -.070 -.163 -.336& (1) (7) (128)

Jr-Jr .669 .907 .924 7 40 350

Jr-Sr .079 -.055 -.072 1 (2) (27)

Sr-Sr -.250 -.147 -.296 (3) (7) (112)

Prior PP0 .008# .096 .611 0 4 232

Prior PP1 .022# .007# -.020# 0 0 (8)

Prior PP2 -.152 -.303 -.470 (2) (13) (178)

Mean 20 93 1,010

 SD 10 44 379

Figure 5.10 Duration

Solo,
-.305

Pair,
-.070

Low, Jr-
Jr, .669

Low, Jr-
Sr, .079

Sr-Sr,
 -.250

PP0,
.008

PP1,
.022

PP2,
 -.152

Z-Score

μ

Low Complexity Projects

Solo,
-.342

Pair,
-.163

Medium,
Jr-Jr, .907

Jr-Sr,
 -.055

Sr-Sr,
 -.147

PP0, .096

PP1, .007

PP2,
-.303

Z-Score

μ

Medium Complexity Projects

Solo,
-.339

Pair,
-.336

High, Jr-
Jr, .924

Jr-Sr,
-.072

Sr-Sr,
-.296

PP0,
.611

PP1,
-.020

PP2,
-.470

Z-Score

μ

High Complexity Projects

85

Opportunity cost is cost associated with those opportunities an organization potentially

loses for committing to, and therefore undertaking a given project. When a project falls behind

schedule (in this case, the duration mean), an organization’s resources are tied up in the project,

and therefore cannot be made available to undertake other projects. As a result, opportunity costs

are incurred. Results suggest in low complexity projects, solo incurs the lowest opportunity cost,

however in medium and high complexity projects, pairs with prior pair programming experience

incur the least opportunity cost. Furthermore, junior-junior pairs incur the highest opportunity

cost in all situations, followed by solo. Table 5.10 presents the z-scores on opportunity cost as

well as the dollar amounts from the means. The finding is further illustrated in Figure 5.11.

Table 5.10 Opportunity Cost

Z-Score Opportunity Cost

Low Medium High Low Medium High

Solo -.299 -.152& -.141 (4,462) (10,615) (163,955)

Pair -.032& -.148& -.100 (479) (10,332) (116,082)

Jr-Jr .143 .327 .637 2,141 22,790 740,834

Jr-Sr .048 .019# .059 710 1,325 68,467

Sr-Sr .042&& -.071 -.150 628 (4,934) (174,496)

Prior PP0 .039&& .212 .296 583 14,734 344,411

Prior PP1 .098 .125 .178 1,464 8,725 207,324

Prior PP2 -.037& -.311 -.188 (556) (21,624) (218,500)

Mean 22,279 127,663 2,384,615

 SD 14,928 69,636 1,163,733

86

Figure 5.11 Opportunity Cost

In contrast to opportunity costs, labor slack occurs when a project is finished ahead of

schedule. When an organization has labor slack, more work, presumably, can be brought to the

work force, so more projects can be started and finished. Alternatively, if labor slack is

consistent, head count can be reduced thus creating a cost savings to the organization. This

argument suggests labor slack contributes positively to the project cost by representing a

deduction from total project cost as a result of shortened duration.

Table 5.11 presents the z-scores on labor slack as well as the dollar amounts from the

means. Results suggest senior-senior pairs incur the highest labor slack at all three project

complexity levels, followed by pairs with prior pair programming experience, pairs with one

having prior pair programming experience, and generic pairs. Despite the z-scores

demonstrating the same trend across three project complexity levels, the magnitude of increase in

dollar amount is significant as the project complexity increases. The finding is illustrated in

Figure 5.12.

Solo,
-.299

Pair,
-.032

Low, Jr-
Jr, .143 Low, Jr-

Sr, .048 Low, Sr-
Sr, .042

 PP0,
.039

PP1,
.098

PP2,
 -.037

Z-Score

μ

Low Complexity Projects

Solo,
-.152

Pair,
-.148

Medium,
Jr-Jr,
.327

Medium,
Jr-Sr,
.019

Sr-Sr,
-.071

PP0, .212

PP1, .125

PP2,
-.311

Z-Score

μ

Medium Complexity Projects

Solo,
-.141

Pair,
-.100

Jr-Jr,
.637

High, Jr-
Sr, .059

Sr-Sr,
-.150

PP0,
.296

PP1,
 .178

PP2,
-.188

Z-Score

μ

High Complexity Projects

87

Table 5.11 Labor Slack

Z-Score Labor Slack

Low Medium High Low Medium High

Solo -.117 -.217 -.162 (1,244) (9,977) (80,684)

Pair .127 .228 .270 1,347 10,479 134,669

Jr-Jr -1.130 -1.085 -1.157 (11,980) (49,903) (576,340)

Jr-Sr -.193 -.179 -.222 (2,047) (8,216) (110,431)

Sr-Sr .819 .786 .839 8,683 36,166 417,981

Prior PP0 -.034 -.014# .016# (363) (638) 8,047

Prior PP1 .176 .133 .125 1,861 6,127 62,415

Prior PP2 .353 .347 .290 3,743 15,962 144,343

Mean 41,404 173,148 2,063,020

 SD 10,602 46,005 498,345

Figure 5.12 Labor Slack

5.3.4. Total Cost

Table 5.12 presents the standardized scores on total project cost as well as the dollar

amounts from the average.

Table 5.12 Total Project Cost

Z-Score $ Amount from the Mean

Low Medium High Low Medium High

Solo .220 .355 .622 9,982 153,288 2,207,970

Pair -.158 .013# -.100 (7,188) 5,689 (355,221)

Jr-Jr .476 .496 .142 21,584 214,213 503,463

Jr-Sr .020& -.065 -.309 898 (28,263) (1,097,673)

Sr-Sr -.511 -.542 -.411 (23,180) (234,249) (1,459,621)

Solo,
-.117

Low,
Pair, .127

Jr-Jr,
-1.130

Jr-Sr,
 -.193

Low, Sr-
Sr, .819

PP0,
-.034

PP1, .176
PP2, .353

Z-Score

μ

Low Complexity Projects

Solo,
-.217

Medium,
Pair,
.228

Jr-Jr,
-1.085

Jr-Sr,
-.179

Medium,
Sr-Sr,
.786

PP0,
-.014

PP1,
.133

PP2,
.347

Z-Score

μ

Medium Complexity Projects

Solo,
-.162

Pair,
.270

Jr-Jr,
-1.157

Jr-Sr,
-.222

Sr-Sr,
.839

PP0,
.016

PP1,
.125

PP2,
.290

Z-Score

μ

High Complexity Projects

88

Prior PP0 .396 .526 .661 17,960 227,170 2,345,984

Prior PP1 .017&# -.088 -.058 749 (38,027) (206,822)

Prior PP2 -.459 -.694 -.546 (20,805) (299,821) (1,938,083)

Mean 71,304 782,984 7,961,844

 SD 45,361 432,003 3,550,279

Results suggest project complexity clearly matters. As project complexity increases, the

project cost goes up. The cost differences at three complexity levels are statistically significant

(p-value < 0.001). Results also suggest the savings associated with pair programming become

substantially significant as project complexity increases. The savings range from thousands of

dollars in low complexity projects to over one million dollars in high complexity projects.

Results indicate, despite the pair programming method’s effectiveness in mitigating the

increased project costs, as complexity increases, pair composition matters. Considering expertise

in pair composition, even though junior-senior and senior-senior pairs consistently perform better

than solos, the junior-junior pairs do not perform as well unless it is a high complexity project. In

addition, projects done by junior-senior pairs cost approximately the same as an average project

in the low complexity situation, but incur measurable savings in both medium and high

complexity projects.

Considering prior pair programming experience in pair composition, projects finished by

pairs without pair programming experience are more costly than those finished by solos. Also,

pairs with prior pair programming experience are consistently the most cost effective group

across the three project complexity levels, while pairs with one having prior pair programming

experience only result in savings in medium and high complexity projects. The generic pair is

more cost effective than solo and its performance lies between the best and the worst pair

combinations.

89

The findings are illustrated in Figure 5.11. Considering all programming methods and

pair compositions, the method that results in highest project cost is, surprisingly enough not solo,

but rather the junior-junior pairs for low complexity projects, and pairs without prior pair

programming experience for medium and high complexity projects. It seems apparent that the

junior-junior pair does not seem to be a good cost saving mechanism unless the situation is a

high complexity project. Senior-senior pairs result in the highest savings in low complexity

projects while pairs with prior pair programming experience result in highest savings in medium

and high complexity projects. Nonetheless, it seems reasonable to conclude that pair

programming represents a cost saving mechanism but system complexity and pair composition

must be considered if such cost savings are to be realized.

Figure 5.11 Total Project Cost

6. DISCUSSIONS, LIMITATIONS, AND FUTURE RESEARCH

6.1.Discussion

One principal objective of this study was to provide a validation of the research model

proposed in the Research Model and Hypotheses section. The results obtained have provided the

Solo,
.220

Pair,
-.158

Jr-Jr,
.476

Jr-Sr,
.020

Sr-Sr,
-.511

PP0,
.396

PP1,
.017

PP2,
-.459

Z-Score

μ

Low Complexity Projects

Medium,
Solo,
.355

Medium,
Pair,
.013

Medium,
Jr-Jr,
.496

Jr-Sr,
-.065

Sr-Sr,
-.542

PP0, .526

PP1,
 -.088

PP2,
-.694

Z-Score

μ

Medium Complexity Projects

High,
Solo,
.622

Pair,
-.100

High, Jr-
Jr, .142

Jr-Sr,
-.309

Sr-Sr,
-.411

PP0,
.661

PP1,
-.058

PP2,
 -.546

Z-Score

μ

High Complexity Projects

90

desired insights. The following discussion is organized around hypotheses and the implications

of the results.

H1 argued as system complexity increases, effort increases, defect rate increases,

knowledge transfer increases. While the arguments appeared intuitive, there have been very few

empirical studies providing support of these arguments. The studies we identified to be

somewhat close to our approach did not consider knowledge transfer, and instead of system

complexity, primarily focused on program size and its relationship between program effort and

defect (e.g. Kemerer 1987; Banker and Kermerer 1989; Mukhopadhyay et al. 1992; Krishnan et

al. 2000; Matson et al. 2002). Furthermore, in pair programming research, the handful of

studies that considered system complexity in their research models (Arisholm et al. 2007;

Balijepally et al. 2009) treated system complexity as a moderator instead of an independent

variable as in this research. Therefore, our study is one of the few that provides strong empirical

evidence to support the claim that system complexity is the salient driver with regard to the

outcome of a software development project.

H2a proposed when compared to solo programming, as system complexity increases, pair

programming will moderate the effect of system complexity on programming effort, thus

reducing effort. Results suggest pair programming will incur less programming effort than solo

programming in high complexity projects but more effort in low complexity projects; in terms of

medium complexity projects, the perceptions were split: practitioners who had pair programming

experience believed pair programming would reduce effort while practitioners who did not have

pair programming experience thought pair programming would increase effort. Despite the

different views in medium complexity projects, it is clear that practitioners agree pair

programming can be an effort-reduction mechanism in high complexity projects. The

91

implication of this result is the pair programming method is best suited for a high complexity

project and ill suited for a low complexity project given the goal to reduce overall programming

effort. This also serves to explain the equivocality in findings reported by prior pair

programming studies: some noted effort increase (Nosek 1998; Williams et al. 2000; Rostaher

and Hericko 2002), others revealed effort decrease (Lui and Chan 2003; Canfora et al. 2005), and

one presented inconsistent findings across the tasks (Canfora et al. 2007). Our study suggests

pair programming studies must consider the complexity of the programming tasks in order to

draw a sensible conclusion.

H2b states when compared to solo programming, as system complexity increases, pair

programming will reduce the effect of complexity on defect rate, thus reducing the overall defect

rate. Results suggest pair programming helps reduce defect rate in projects at all complexity

levels, but as complexity increases, there is a higher reduction in defect rate. The implication of

this result is pair programming is an effective mechanism to reduce defects, which is particularly

true in high complexity projects. This result supports the finding shared by the majority of the

previous pair programming research, although, in prior studies, the effect of complexity was

largely ignored.

H2c argued when compared to solo programming, as system complexity increases, pair

programming will increase the effect of system complexity on knowledge transfer thus

enhancing knowledge transfer. Results suggest pair programming increases knowledge transfer

in projects at all complexity levels and the effect is higher as complexity increases. The

implication of this result is pair programming is an effective mechanism to transfer knowledge

among the team members, and this is particularly true in high complexity projects. This study

represents the first pair programming study that operationalized knowledge transfer, validated its

92

validity, and provided strong empirical evidence on the effect of pair programming on

knowledge transfer.

H3a proposed programmer expertise would affect the effectiveness of the pair

programming method. The study examined three pair expertise compositions: junior-junior,

junior-senior, and senior-senior. Results suggest senior-senior pairs will incur the least amount

of programming effort and produce programs with the lowest defect rate, junior-senior pairs fall

second, and junior-junior pairs will achieve the worst results. In terms of knowledge transfer,

junior-senior pairs work the best, senior-senior pairs the second, and junior-junior pairs the last.

The implication of these results is to assist in determining what optimal pair composition to

adopt depending on the goals/constraints of the project: if the goal is to complete the project with

the least effort or the least defect, then senior-senior pairs should be the choice; if the goal is to

share knowledge, then junior-senior pairs will be the best. Our results suggest junior-junior pairs

do not seem to be a good option in any of the three circumstances. Although several studies

examined pair compatibility, the majority of them did not operationalize pair composition, and

none examined its effect on knowledge transfer. Therefore, this study is the first that took a

comprehensive and systematic approach to the study of pair composition in relation to the

outcome of the project.

H3b stated prior pair programming experience would affect the effectiveness of the pair

programming method. Results indicate pairs with prior pair programming experience achieved

the best results in all three aspects (least effort, lowest defect rate, and highest knowledge

transfer) while pairs without prior pair programming experience work the worst (highest effort,

highest defect rate, and lowest knowledge transfer). While the results appeared to be intuitive,

this study is the first one to provide empirical evidence to support the claim prior pair

93

programming experience is an important factor: it directly contributes to how effectively a pair

performs.

Furthermore, based on whether they have or do not have pair programming experience,

perceptions are different. In general, practitioners who had pair programming experience tended

to favor the pair programming method over the solo. For instance, in the case of medium

complexity projects, practitioners with pair programming experience thought pair programming

would reduce effort while practitioners without pair programming experience believed pair

programming would increase effort. The same was true when considering junior-senior

composition: practitioners with pair programming experience thought junior-senior pairs would

reduce effort while practitioners without pair programming experience believed junior-senior

pairs would increase effort.

Another principal objective of the study is to investigate the cost constructs to determine

in what situations pair programming is more cost effective than solo programming. Simulation

results suggests the selection of the most cost effective approach depends on the complexity of

the project and pair composition. In particular, several findings are suggested. First, our results

make clear that project complexity is the driving force of project cost. As project complexity

increases, all costs go up: labor cost, training cost, opportunity cost, labor slack, and overall

project cost. In addition, even though there are cost variations among the programming methods,

no method is likely to reduce the cost of a medium or high complexity project to the cost range

of a low complexity project, as suggested by the dollar ranges of projects at different complexity

levels: a low complexity project ranges from $48,000 to $92,000, a medium complexity project

runs from $400,000 to a million, and a high complexity project is from five million to ten

million. While this finding is not surprising, this study is, as above, the first in pair programming

94

research to treat complexity as the independent variable and derive dollar ranges on projects at

different complexity levels.

Second, results suggest pairs with prior pair programming experience incur the lowest

labor cost in all situations while pairs without prior pair programming experience incur the

highest labor cost in low and medium complexity projects and solos incur the highest labor cost

in high complexity projects. This finding illustrates the importance of prior pair programming

experience in pair composition and suggests pairs with prior pair programming experience can

achieve the best results yet pairs without prior pair programming experience will achieve the

worst outcome. Also, the impact of hourly pay rate and defect cost are important factors to

consider: for example, junior-junior pairs have the lowest effort cost because of the low hourly

pay rate, but senior-senior pairs have the lowest overall labor cost despite their high hourly pay

rate due to savings in defect cost, and solos are the least cost effective in overall labor cost in

high complexity projects due to high defect cost despite its low effort cost. Previous studies

usually investigated effort and defect separately and the typical conclusion was pairs incurred

more effort but lowered defects. Our study suggests it is important to examine the combined

effect of effort cost and defect cost on the overall labor cost.

Third, most previous studies concluded, when compared to solo programming, pair

programming serves to shorten the project duration (e.g. Williams et al. 2000; Cockburn and

Williams 2001; Rumpe and Schroer 2002; Williams and Kessler 2003). Our study yielded

contradictory results. Our findings suggest solos are faster than pairs except in one situation:

pairs with prior pair programming experience are found to be faster than solos in high

complexity projects. A closer examination of the previous studies revealed that previous studies

tended to compare pair (two developers) to solo (one developer) and their conclusions,

95

intuitively enough, suggested two developers worked faster than one developer. However,

comparing two developers to one developer is not a fair comparison. A fair comparison should

be a pair (two developers) to two solos (two developers), which is the approach we followed in

this study. In pair programming, each pair works together on one particular task, while in solo

programming, the same task is divided into two, and each solo works on a different subtask

concurrently. Consider the following: a given project is divided into 12 programming tasks with

a team size of four (two pairs vs. four solo developers). In pair programming, since there are two

pairs, two tasks are being worked on simultaneously whereas in solo programming, since there

are four developers, four tasks are being worked on simultaneously. Using the same team size

for both pair and solo programming, it is not surprising that solos will usually finish the project

sooner than pairs given the fact that in solo programming more tasks are being worked on

simultaneously. Our finding concurs with the conclusion drawn by Parrish et al. (2004). Their

study showed, as developers divided the tasks into subtasks and worked on subtasks

independently, they were several times faster than developers working together on the same

tasks. Our study did, however, discover one circumstance where pairs are faster than solos.

Results suggest project complexity and pair composition are influential factors: when the

complexity of the project is high and pairs are comprised of developers with prior pair

programming experience, pairs are faster than solos. Besides considering duration, we also

investigated the impact of shortened or prolonged duration on the project cost: opportunity cost

and labor slack. As far as we know, this is, again, the first study to include opportunity cost and

labor slack in the total cost calculation.

Fourth, this study is the first to quantify knowledge transfer and to relate knowledge

transfer to training cost. Since no data is available to suggest how knowledge transfer influences

96

training cost, we conducted a series of sensitivity analyses assuming knowledge transfer ranges

from 10% to 100% impact on training cost. Results suggest solos incur the highest training cost

in all situations, junior-senior pairs result in highest savings in training cost in low and medium

complexity projects and pairs with prior pair programming experience result in highest savings

in training cost in high complexity projects. A close examination of all of the impact scenarios

suggests the dollar savings range from $500 to $2500. Therefore, based on our calculation, the

impact of knowledge transfer on training cost may not carry practical significance. Nonetheless,

it is important to consider as a means to reduce overall training costs in a particular project. As

we learn more about this effect, we may find it to be a more significant variable in the equation.

Finally, regarding the overall project cost, two prior studies research the total project cost

and drew different conclusions: one concluded pairs are more cost effective than solos in all

situations (Erdogmus and Williams 2003), and the other suggested pairs are more cost effective

when market pressure is high (Padberg and Müller 2003). Our results indicate pair

programming is not more cost effective than solo programming in all situations. Whether pairs

are more cost effective than solos depends on pair composition and project complexity.

Considering expertise in pair composition, junior-junior pairs are not cost effective compared to

solos unless the project is a high complexity project; considering prior pair programming

experience in pair composition, pairs without prior pair programming experience are consistently

more expensive than solos. In low complexity projects, junior-senior pairs, senior-senior pairs,

pairs with one having prior pair programming experience, pairs with prior pair programming

experience are more cost effective than solos while junior-junior pairs and pairs without prior

pair programming experience are more costly than solos; in medium complexity projects, the

same trend continues; in high complexity projects, however, all pairs except pairs without prior

97

programming experience are more cost effective than solos. Furthermore, as discussed along

with duration earlier, our study suggests, with the same team size, when market pressure is high,

the best choice is solo programming over pair programming since in solo programming more

tasks can be worked on simultaneously by different developers. Our finding concludes more

dimensions need to be added to the cost consideration: the complexity of the project and pair

composition. Our findings also illustrate the importance of prior pair programming experience

which is a construct not previously studied empirically.

6.2.Limitations

While the results appear encouraging with regard to furthering our understanding of the

role of pair programming in software development, as with any empirical endeavor, several

limitations must be taken into consideration when interpreting them.

The first area of limitation lies with the exploratory nature of the questionnaire. In an

ideal situation, one would adopt questionnaires that have been proven to reach the desired levels

of validity and reliability. Unfortunately, this was not possible in this case because no such

instrument existed. A potential threat to validity and reliability of the newly developed measures

in this study is inaccurate reporting from the respondents. However, we believe this threat is

minimized by the following mechanisms. First, most of the measures are widely adopted

industrial standards software developers are familiar with. In addition, in the survey tool, the

definition of each measure was explicitly presented to the respondents before they answered

associated questions. Given the above reasons, it is unlikely that the respondents would

misunderstand the questions and unintentionally report wrong information.

Second, only complete surveys were used for analysis. During data collection, the

authors received numerous comments from respondents stating reasons why they didn’t

98

complete the survey. Not knowing the answers to the questions was the primary reason.

Therefore, it is reasonable to believe respondents who didn’t know or didn’t feel comfortable

reporting the answers abandoned the survey and, therefore, were not suitable or appropriate

respondents. Despite all the preventive effort, it is still important to bear in mind that future

studies are needed to perfect the instrument and confirm its validity and reliability.

As is true with any other survey study, another limitation regarding this research effort is

the possibility of sampling bias. Since there is no centralized file that would allow us to draw a

random sample of software developers in the industry, we had to solicit participants based on the

resources available. Furthermore, there is always the possibility of self-selection bias. However,

the respondents’ profile presented in the results section suggests the respondents were quite

diverse in terms of age, experience, and industry. In addition, we checked non-response bias by

comparing the responses from the first 20 percent of the responses received to those from the last

20 percent received and results indicated non-response bias didn’t seem to be a problem.

Finally, assuming effect size 0.35, alpha 0.05, and levels of 3, the power table for one-way

repeated measures suggests a power value of 0.99 with sample size of 21 (Jaccard and Becker

2002 pp.588; Warner 2008 pp.917). Thus, we consider 191 to be a sample size more than large

enough to address some of the potential biases.

The other limitation lies with the nature of survey data. The participants were asked to

provide responses based on experience and/or perception. Nevertheless, the source of the

analysis results is perception data. Since there is always a possibility that perception may not

align with reality seamlessly, cautions need to be given as we interpret the data.

One area to be clarified is the survey items that were single-item constructs. In general,

this approach is not deemed to be appropriate and multiple item constructs are preferred. In this

99

case, however, many of the constructs used were, in fact, best described using a single-item

approach. For example, while it is easy to conceive a variety of methods to describe the construct

effort, the common industry-accepted approach is to describe the construct in terms of

programmer hours – a single-item approach. In addition, it must be noted that the survey

instrument combined two different data collection efforts: 1) to collect data related to the

constructs in the research model and 2) to collect parameter data for use in the development of

the simulation conducted in Study 2. Given this, we believe the single-item constructs we

employed were appropriate in their use and do not detract from either the validity or the results

or their associated conclusions.

A final area warranting discussion is we used linear functions (e.g. labor cost = effort cost

+ defect cost; effort cost = hours * hourly pay rate) in all of the cost calculations. It is possible

that some of the functions are more sophisticated and may be curvilinear or in some other higher

order forms. A series of future studies should be conducted and focus on the relationships of the

various cost constructs in the software development cost model. For that purpose industrial data

from actual software development projects through computer logs and other automatic data

capturing methods is desirable.

 6.3 Conclusions

As noted above, this study makes several contributions. First, it documents the most

comprehensive literature review on pair programming contained in the extant literature, which

lays the foundation for future research in the field. Second, it developed a survey instrument and

conducted one of the first industrial-wide surveys on pair programming. Third, it proposed and

empirically tested a unique and comprehensive pair programming research model during which

several under-studied constructs and relationships (e.g. system complexity, pair composition,

100

knowledge transfer) were thoroughly examined. Finally, the bootstrap simulation yielded

several findings regarding when and where pairs are more cost effective than solos, which,

hopefully answers some of the fundamental questions a business organization will raise when

considering the adoption of the pair programming method.

As the ultimate goal of all academic research is to move from description to prescription,

we believe our findings allow for such an event. Several guidelines, albeit preliminary in nature,

can be offered to the industry based on the results of this study.

First, pair programming is a good choice when system complexity is high. In high

complexity projects, pair programming reduces programming effort, improves quality, and

reduces overall labor cost compared to solo.

Second, pair composition must be taken into account. In most situations, whether pairs

are more effective than solos depends on how the pairs are comprised.

Third, prior pair programming experience is an important factor to consider. Pairs with

prior pair programming experience perform well and pairs without prior pair programming

experience perform poorly, which suggests, to achieve optimal outcome, organizations should

invest money and time for developers to gain pair programming experience on small tasks before

assigning them to projects.

Fourth, solo is a good choice when the market pressure is high. Solos are faster than all

pairs except in one situation: pairs with prior pair programming experience in a high complexity

project.

Finally, while every project has its primary goal, it is important to examine the

interactions of multiple cost factors such as defect, effort, duration, and knowledge transfer and

consider their combined effect on the ultimate goal of the project. For example, junior-junior

101

pairs result in the lowest effort cost, junior-senior pairs have the highest knowledge transfer,

while senior-senior pairs produce the highest quality project hence have the lowest defect cost.

As we combine all the factors and consider the overall project cost, the senior-senior pair was

found to be the most cost effective among the three.

6.4 Future Research

Through the results obtained from the two studies contained herein, several areas of

future research are identified. To begin, since the results of this study are based on perceptual

data, it is desirable to acquire data from specific software projects through log files and other

automatic data capturing mechanisms to further validate the research model. Next, following the

findings in the group interaction literature, other pair compositions variables, such as personality,

gender, and age should be examined. Considerations should also be given to solos at different

experience levels when comparing pairs to solos. Furthermore, mixed programming methods in

one team – a mix of solos and pairs, as well as mixed compositions in the pairs in one team

should be investigated.

Additionally, a focused investigation of the relationships of cost constructs regarding the

software development cost model is desirable. In our study, the relationships were assumed to

be linear. However, there might exist more sophisticated higher order relationships. Continuing

with this approach, other variables, e.g. environmental factors, could shed additional light on the

relative effectiveness of the two programming methods. Finally, it is desirable to consider

programming as part of the overall software development and examine the relationship between

the choice of programming method and changes in other project phases such as planning,

analysis, design, and maintenance.

102

In closing, our study makes clear that the previous conclusions regarding pair

programming are limited in nature and the development approach may not be as clearly desirable

in all situations as was previously assumed. The pair programming approach clearly adds value

in situations where it is appropriate but certain conditions must be met for this goal to be

achieved. It is our hope that this research will serve to inform for research and practice with

regard to the pair programming approach and will, additionally, serve to generate future research

efforts based upon this work that serve to further our understanding of the various salient

constructs.

7. APPENDIXES

A. Survey Instrument

103

104

105

106

107

108

109

B. Bootstrap Sampling Program

* Purpose - This program bootstraps (sample with replacements) the survey data along with calculated cost columns

5,000 times. From each bootstrap, it calculates the average information from the data variables and saves the

information in the cost file. Three files are used: 1) costdata.dbf contains the raw data with calculated cost columns

and has 191 records: 2) cost1.dbf holds data from each bootstrap. It has 5,000 records from each bootstrap and its

content is emptied and the file is ready to hold data from next bootstrap once the calculation is done and the results

are saved; 3) cost.dbf contains the calculated average information from each bootstrap and has 5,000 records at the

end of the processing. It takes about 25 minutes to run this program.

* Software the program is written in: Microsoft Visual FoxPro 9.0

* Author - Sun

* Date - 3/28/2011

* Prepare the files

SET DEFAULT TO f:\dbf

CLOSE ALL

USE cost EXCLUSIVE

ZAP

USE cost1EXCLUSIVE

ZAP

* Set the seed for the random number generator and specify the range the random number needs to fall

* between.

?RAND(20110101)

Upper = 191

Lower = 1

* Bootstrap, calculate and save the average information. This process is repeated 5000 times.

pickNo = 1

USE costdata

FOR loopNo = 1 TO 5000

* Bootstrap on costdata.dbf and save the sampling records in cost1.dbf

 FOR Count = 1 TO 191

 pickNo = INT((Upper - Lower + 1) * RAND() + Lower)

 INSERT INTO cost1 SELECT * FROM costdata WHERE RECNO() = pickNo

 ENDFOR

 * Calculate the average information from cost1.dbf and save the information in cost.dbf

INSERT INTO cost SELECT AVG(team), AVG(fixingS), AVG(lcx_hrs), AVG(mcx_hrs),

AVG(hcx_hrs), AVG(lcx_defect), AVG(mcx_defect), AVG(hcx_defect), AVG(kt1), AVG(kt2),

AVG(kt3), AVG(sl_cost), AVG(sm_cost), AVG(sh_cost), AVG(pl_cost), AVG(pm_cost), AVG(ph_cost),

AVG(pl_jjcost), AVG(pm_jjcost), AVG(ph_jjcost), AVG(pl_jscost), AVG(pm_jscost), AVG(ph_jscost),

AVG(pl_sscost), AVG(pm_sscost), AVG(ph_sscost), AVG(pl_p0cost), AVG(pm_p0cost),

AVG(ph_p0cost), AVG(pl_p1cost), AVG(pm_p1cost), AVG(ph_p1cost), AVG(pl_p2cost),

AVG(pm_p2cost), AVG(ph_p2cost), AVG(sl_cost2), AVG(sm_cost2), AVG(sh_cost2), AVG(pl_cost2),

AVG(pm_cost2), AVG(ph_cost2), AVG(pl_jjcost2), AVG(pm_jjcost2), AVG(ph_jjcost2),

AVG(pl_jscost2), AVG(pm_jscost2), AVG(ph_jscost2), AVG(pl_sscost2), AVG(pm_sscost2),

AVG(ph_sscost2), AVG(pl_p0cost2), AVG(pm_p0cost2), AVG(ph_p0cost2), AVG(pl_p1cost2),

AVG(pm_p1cost2), AVG(ph_p1cost2), AVG(pl_p2cost2), AVG(pm_p2cost2), AVG(ph_p2cost2),

AVG(sl_edcost), AVG(sm_edcost), AVG(sh_edcost), AVG(pl_edcost), AVG(pm_edcost),

AVG(ph_edcost), AVG(pl_jjedco), AVG(pm_jjedco), AVG(ph_jjedco), AVG(pl_jsedco),

AVG(pm_jsedco), AVG(ph_jsedco), AVG(pl_ssedco), AVG(pm_ssedco), AVG(ph_ssedco),

AVG(pl_p0edco), AVG(pm_p0edco), AVG(ph_p0edco), AVG(pl_p1edco), AVG(pm_p1edco),

AVG(ph_p1edco), AVG(pl_p2edco), AVG(pm_p2edco), AVG(ph_p2edco), AVG(sl_ecost),

110

AVG(sl_dcost), AVG(sl_dr), AVG(sl_ocost), AVG(sl_scost), AVG(sl_TC), AVG(sm_ecost),

AVG(sm_dcost), AVG(sm_dr), AVG(sm_ocost), AVG(sm_scost), AVG(sm_TC), AVG(sh_ecost),

AVG(sh_dcost), AVG(sh_dr), AVG(sh_ocost), AVG(sh_scost), AVG(sh_TC), AVG(pl_ecost),

AVG(pl_dcost), AVG(pl_dr), AVG(pl_ocost), AVG(pl_scost), AVG(pl_TC), AVG(pm_ecost),

AVG(pm_dcost), AVG(pm_dr), AVG(pm_ocost), AVG(pm_scost), AVG(pm_TC), AVG(ph_ecost),

AVG(ph_dcost), AVG(ph_dr), AVG(ph_ocost), AVG(ph_scost), AVG(ph_TC), AVG(pl_jjeco),

AVG(pl_jjdco), AVG(pl_jjdr), AVG(pl_jjoco), AVG(pl_jjsco), AVG(pl_jjTC), AVG(pm_jjeco),

AVG(pm_jjdco), AVG(pm_jjdr), AVG(pm_jjoco), AVG(pm_jjsco), AVG(pm_jjTC), AVG(ph_jjeco),

AVG(ph_jjdco), AVG(ph_jjdr), AVG(ph_jjoco), AVG(ph_jjsco), AVG(ph_jjTC), AVG(pl_jseco),

AVG(pl_jsdco), AVG(pl_jsdr), AVG(pl_jsoco), AVG(pl_jssco), AVG(pl_jsTC), AVG(pm_jseco),

AVG(pm_jsdco), AVG(pm_jsdr), AVG(pm_jsoco), AVG(pm_jssco), AVG(pm_jsTC), AVG(ph_jseco),

AVG(ph_jsdco), AVG(ph_jsdr), AVG(ph_jsoco), AVG(ph_jssco), AVG(ph_jsTC), AVG(pl_sseco),

AVG(pl_ssdco), AVG(pl_ssdr), AVG(pl_ssoco), AVG(pl_sssco), AVG(pl_ssTC), AVG(pm_sseco),

AVG(pm_ssdco), AVG(pm_ssdr), AVG(pm_ssoco), AVG(pm_sssco), AVG(pm_ssTC), AVG(ph_sseco),

AVG(ph_ssdco), AVG(ph_ssdr), AVG(ph_ssoco), AVG(ph_sssco), AVG(ph_ssTC), AVG(pl_p0eco),

AVG(pl_p0dco), AVG(pl_p0dr), AVG(pl_p0oco), AVG(pl_p0sco), AVG(pl_p0TC), AVG(pm_p0eco),

AVG(pm_p0dco), AVG(pm_p0dr), AVG(pm_p0oco), AVG(pm_p0sco), AVG(pm_p0TC),

AVG(ph_p0eco), AVG(ph_p0dco), AVG(ph_p0dr), AVG(ph_p0oco), AVG(ph_p0sco), AVG(ph_p0TC),

AVG(pl_p1eco), AVG(pl_p1dco), AVG(pl_p1dr), AVG(pl_p1oco), AVG(pl_p1sco), AVG(pl_p1TC),

AVG(pm_p1eco), AVG(pm_p1dco), AVG(pm_p1dr), AVG(pm_p1oco), AVG(pm_p1sco),

AVG(pm_p1TC), AVG(ph_p1eco), AVG(ph_p1dco), AVG(ph_p1dr), AVG(ph_p1oco), AVG(ph_p1sco),

AVG(ph_p1TC), AVG(pl_p2eco), AVG(pl_p2dco), AVG(pl_p2dr), AVG(pl_p2oco), AVG(pl_p2sco),

AVG(pl_p2TC), AVG(pm_p2eco), AVG(pm_p2dco), AVG(pm_p2dr), AVG(pm_p2oco),

AVG(pm_p2sco), AVG(pm_p2TC), AVG(ph_p2eco), AVG(ph_p2dco), AVG(ph_p2dr), AVG(ph_p2oco),

AVG(ph_p2sco), AVG(ph_p2TC)

 FROM cost1

* Empty the records in cost1.dbf so cost1.dbf is ready for the next bootstrap

 SELECT cost1

 ZAP

ENDFOR

C. Cost Calculation Program

* Purpose - This program creates the columns needed to store the cost-related information and calculates the cost

information. The calculations are done for each of the following programming methods: solo, pair, junior-junior

pair, junior-senior pair, senior-senior pair, pair with prior pair programming experience, pair one having prior pair

programming experience, and pair without prior pair programming experience.

* Software the program is written in: Microsoft Visual FoxPro 9.0

* Author - Sun

* Date - 3/3/2011

* Clear the environment and set the seed for the random number generator.

CLEAR ALL

CLOSE ALL

SET DEFAULT TO f:\dbf

?RAND(20110101)

Variables needed later. They specify the ranges the randomomly generated number needs to fall between.

*** Pay

rate range for a typical programmer, a junior programmer, and a senior programmer

PayRateL = 19.54

PayRateH = 54.51

PayRateJL= 19.54

111

PayRateJH = 29.93

PayRateSL = 29.94

PayRateSH = 54.51

* Range of percentages assigned to the budget choices

Budget1L = 1000

Budget1H = 9000

Budget2L = 10000

Budget2H = 49000

Budget3L = 50000

Budget3H = 99000

Budget4L = 100000

Budget4H = 499000

Budget5L = 500000

Budget5H = 999000

Budget6L = 1000000

Budget6H = 2000000

Budget7L = 2100000

Budget7H = 4000000

* Range of percentages assigned to the survey question choices

DIF1L = 0.01

DIF1H = 0.20

DIF2L = 0.21

DIF2H = 0.40

DIF3L = 0.41

DIF3H = 0.60

DIF4L = 0.61

DIF4H = 0.80

DIF5L = 0.81

DIF5H = 1.00

DIF6L = 1.01

DIF6H = 2.00

DIF5L2 = 0.81

DIF5H2 = 0.99

* KT coefficients based on complexity

L_KTL = 0.01

L_KTH = 0.33

M_KTL = 0.34

M_KTH = 0.66

H_KTL = 0.67

H_KTH = 1.00

* Assume KT impacts 10 - 100% of the training cost

Pct10 = 0.10

Pct20 = 0.20

Pct30 = 0.30

Pct40 = 0.40

Pct50 = 0.50

Pct60 = 0.60

Pct70 = 0.70

Pct80 = 0.80

Pct90 = 0.90

Pct100 = 1.00

112

* Retrieve data from the survey file and prepare the columns

**

* Retrieve complete records from the original survey data

SELECT Respondent, Pair_Exp, Lcx_Hrs, Mcx_Hrs, Hcx_Hrs, Lcx_Defect, Mcx_Defect, Hcx_Defect, kt1, kt2,

kt3, Lcx_ef, Mcx_ef, Hcx_ef, Jr2_ef, Jrsr_ef, Sr2_ef, Prior0_ef, Prior1_ef, Prior2_ef,

Lcx_df, Mcx_df, Hcx_df, Jr2_df, Jrsr_df, Sr2_df, Prior0_df, Prior1_df, Prior2_df,

Lcx_kt, Mcx_kt, Hcx_kt, Jr2_kt, Jrsr_kt, Sr2_kt, Prior0_kt, Prior1_kt, Prior2_kt,

Teamsize, Solo_fixSp, Pair_fixSp, solo_prod, Budget, Training, prjcomp1yr, prjconcurr, lcx_prj, mcx_prj, hcx_prj

FROM data

WHERE Budget <> 0

INTO table simuC

* Create C1.dbf. C1 has the columns needed for cost calculation for solo and pair

SELECT *, 0 as PairYes, 00.00 as payRate, 00.00 as payRate2, 00.00 as payRateJ, 00.00 as payRateJ2, 00.00 as

payRateS, 00.00 as payRateS2, 00.000 as FixingS, 0000000000.00 as BudgetC,

000000.00 as TrainingC, 000 as team, 00000000.000 as l_size, 0000000.000 as m_size,

0000000.000 as h_size, 000.00 as l_Ideal, 000.00 as m_Ideal, 000.00 as h_Ideal,

000000.00 as SL_Effort, 000000.00 as SL_ECost, 000000.00 as SL_Defect, 0000000000.00 as SL_DCost,

000000.00 as SL_DR, 000000.00 as SL_OCost, 000000.00 as SL_Slack, 000000.00 as SL_SCost,

00.00 as SL_KT, 000000.00 as SL_TC10, 000000.00 as SL_TC20, 000000.00 as SL_TC30, 000000.00 as

SL_TC40, 000000.00 as SL_TC50, 000000.00 as SL_TC60, 000000.00 as SL_TC70, 000000.00 as SL_TC80,

000000.00 as SL_TC90, 000000.00 as SL_TC100, 000000.00 as SM_Effort, 000000.00 as SM_ECost, 000000.00

as SM_Defect, 0000000000.00 as SM_DCost, 000000.00 as SM_DR, 000000.00 as SM_OCost, 000000.00 as

SM_Slack, 000000.00 as SM_SCost, 00.00 as SM_KT, 000000.00 as SM_TC10, 000000.00 as SM_TC20,

000000.00 as SM_TC30, 000000.00 as SM_TC40, 000000.00 as SM_TC50, 000000.00 as SM_TC60, 000000.00 as

SM_TC70, 000000.00 as SM_TC80, 000000.00 as SM_TC90, 000000.00 as SM_TC100, 000000.00 as SH_Effort,

000000.00 as SH_ECost, 000000.00 as SH_Defect, 0000000000.00 as SH_DCost, 000000.00 as SH_DR, 000000.00

as SH_OCost, 000000.00 as SH_Slack, 000000.00 as SH_SCost, 00.00 as SH_KT, 000000.00 as SH_TC10,

000000.00 as SH_TC20, 000000.00 as SH_TC30, 000000.00 as SH_TC40, 000000.00 as SH_TC50, 000000.00 as

SH_TC60, 000000.00 as SH_TC70, 000000.00 as SH_TC80, 000000.00 as SH_TC90, 000000.00 as SH_TC100,

000000.00 as PL_Effort, 000000.00 as PL_ECost, 000000.00 as PL_Defect, 0000000000.00 as PL_DCost,

000000.00 as PL_DR, 000000.00 as PL_OCost, 000000.00 as PL_Slack, 000000.00 as PL_SCost, 00.00 as PL_KT,

000000.00 as PL_TC10, 000000.00 as PL_TC20, 000000.00 as PL_TC30, 000000.00 as PL_TC40, 000000.00 as

PL_TC50, 000000.00 as PL_TC60, 000000.00 as PL_TC70, 000000.00 as PL_TC80, 000000.00 as PL_TC90,

000000.00 as PL_TC100, 000000.00 as PM_Effort, 000000.00 as PM_ECost, 000000.00 as PM_Defect,

0000000000.00 as PM_DCost, 000000.00 as PM_DR, 000000.00 as PM_OCost, 000000.00 as PM_Slack,

000000.00 as PM_SCost, 00.00 as PM_KT, 000000.00 as PM_TC10, 000000.00 as PM_TC20, 000000.00 as

PM_TC30, 000000.00 as PM_TC40, 000000.00 as PM_TC50, 000000.00 as PM_TC60, 000000.00 as PM_TC70,

000000.00 as PM_TC80, 000000.00 as PM_TC90, 000000.00 as PM_TC100, 000000.00 as PH_Effort, 000000.00

as PH_ECost, 000000.00 as PH_Defect, 0000000000.00 as PH_DCost, 000000.00 as PH_DR, 000000.00 as

PH_OCost, 000000.00 as PH_Slack, 000000.00 as PH_SCost, 00.00 as PH_KT, 000000.00 as PH_TC10, 000000.00

as PH_TC20, 000000.00 as PH_TC30, 000000.00 as PH_TC40, 000000.00 as PH_TC50, 000000.00 as PH_TC60,

000000.00 as PH_TC70, 000000.00 as PH_TC80, 000000.00 as PH_TC90, 000000.00 as PH_TC100

FROM simuC;

into TABLE c1

SELECT c1

* Code soloPair with 0=No pair experience, 1=Has pair experience based on survey responses

Replace ALL PairYes WITH 1 FOR pair_exp <> 1

* Calculate the size of the projects in KLOC based on survey responses

Replace ALL l_size WITH ROUND((lcx_hrs * solo_prod) / 1000, 3)

Replace ALL m_size WITH ROUND((mcx_hrs * solo_prod) / 1000, 3)

Replace ALL h_size WITH ROUND((hcx_hrs * solo_prod) / 1000, 3)

113

* Randomly return a number from the range of pay rates

Replace ALL payRate WITH ROUND((PayRateH - PayRateL + 0.01) * RAND() + PayRateL,2)

Replace ALL payRate2 WITH ROUND((PayRateH - PayRateL + 0.01) * RAND() + PayRateL,2)

Replace ALL payRateJ WITH ROUND((PayRateJH - PayRateJL + 0.01) * RAND() + PayRateJL,2)

Replace ALL payRateJ2 WITH ROUND((PayRateJH - PayRateJL + 0.01) * RAND() + PayRateJL,2)

Replace ALL payRateS WITH ROUND((PayRateSH - PayRateSL + 0.01) * RAND() + PayRateSL,2)

Replace ALL payRateS2 WITH ROUND((PayRateSH - PayRateSL + 0.01) * RAND() + PayRateSL,2)

* Calculate the training cost for the project based on survey responses

Replace ALL BudgetC WITH INT((Budget1H - Budget1L + 1) * RAND() + Budget1L) FOR budget = 1

Replace ALL BudgetC WITH INT((Budget2H - Budget2L + 1) * RAND() + Budget2L) FOR budget = 2

Replace ALL BudgetC WITH INT((Budget3H - Budget3L + 1) * RAND() + Budget3L) FOR budget = 3

Replace ALL BudgetC WITH INT((Budget4H - Budget4L + 1) * RAND() + Budget4L) FOR budget = 4

Replace ALL BudgetC WITH INT((Budget5H - Budget5L + 1) * RAND() + Budget5L) FOR budget = 5

Replace ALL BudgetC WITH INT((Budget6H - Budget6L + 1) * RAND() + Budget6L) FOR budget = 6

Replace ALL BudgetC WITH INT((Budget7H - Budget7L + 1) * RAND() + Budget7L) FOR budget = 7

Replace ALL TrainingC WITH (Training/100) * BudgetC

* Ensure team size is an even number

Replace ALL Team WITH teamsize FOR MOD(teamsize, 2) = 0

Replace ALL Team WITH teamsize + 1 FOR MOD(teamsize, 2) <> 0

* Calculate KT coefficients based on complexity

Replace ALL SL_KT WITH ROUND((L_KTH - L_KTL + 0.01) * RAND() + L_KTL,2)

Replace ALL SM_KT WITH ROUND((M_KTH - M_KTL + 0.01) * RAND() + M_KTL,2)

Replace ALL SH_KT WITH ROUND((H_KTH - H_KTL + 0.01) * RAND() + H_KTL,2)

* Average duration for low, medium, and high complexity projects calculated from 5000 bootstraps on the duration

columns.

Replace ALL L_Ideal WITH 20

Replace ALL M_Ideal WITH 93

Replace ALL H_Ideal WITH 1010

**

* Generic solo and generic pair in low, medium, and high complexity projects

**

** SOLO LOW complexity projects

* Effort based on survey responses

Replace ALL SL_Effort WITH lcx_hrs

Replace ALL SL_ECost WITH SL_Effort * payRate

* Defect based on survey responses

Replace ALL SL_Defect WITH lcx_Defect

Replace ALL SL_DCost WITH SL_Defect * l_size * FixingS * payRate

Replace ALL lcx_defect WITH sl_defect

* Duration

Replace ALL SL_DR WITH SL_Effort/(Team * HrsPerDay7)

*LABOR SLACK & Opportunity Cost

Replace ALL SL_Slack WITH SL_DR - L_Ideal

Replace ALL SL_SCost WITH -1 * SL_Slack * HrsPerDay8 * payRate * Team FOR SL_Slack <=0

114

Replace ALL SL_OCost WITH SL_Slack * HrsPerDay8 * payRate * Team FOR SL_Slack > 0

* Knowledge Transfer

* Assume knowledge transfer impacts different percentage of training cost: 10%, 20%, -, 100%

Replace ALL SL_TC10 WITH (TrainingCL - Pct10 * TrainingCL * SL_KT)

Replace ALL SL_TC20 WITH (TrainingCL - Pct20 * TrainingCL * SL_KT)

Replace ALL SL_TC30 WITH (TrainingCL - Pct30 * TrainingCL * SL_KT)

Replace ALL SL_TC40 WITH (TrainingCL - Pct40 * TrainingCL * SL_KT)

Replace ALL SL_TC50 WITH (TrainingCL - Pct50 * TrainingCL * SL_KT)

Replace ALL SL_TC60 WITH (TrainingCL - Pct60 * TrainingCL * SL_KT)

Replace ALL SL_TC70 WITH (TrainingCL - Pct70 * TrainingCL * SL_KT)

Replace ALL SL_TC80 WITH (TrainingCL - Pct80 * TrainingCL * SL_KT)

Replace ALL SL_TC90 WITH (TrainingCL - Pct90 * TrainingCL * SL_KT)

Replace ALL SL_TC100 WITH (TrainingCL - Pct100 * TrainingCL * SL_KT)

** SOLO MEDIUM complexity projects

* Effort based on survey responses

Replace ALL SM_Effort WITH mcx_hrs

Replace ALL SM_ECost WITH SM_Effort * payRate

* Defect based on survey responses

Replace ALL SM_Defect WITH mcx_Defect

Replace ALL SM_DCost WITH SM_Defect * m_size * FixingS * payRate

Replace ALL mcx_defect WITH sm_defect

* Duration

Replace ALL SM_DR WITH SM_Effort/(Team * HrsPerDay7)

*LABOR SLACK & Opportunity Cost

Replace ALL SM_Slack WITH SM_DR - M_Ideal

Replace ALL SM_SCost WITH -1 * SM_Slack * HrsPerDay8 * payRate * Team FOR SM_Slack <=0

Replace ALL SM_OCost WITH SM_Slack * HrsPerDay8 * payRate * Team FOR SM_Slack > 0

* Knowledge Transfer

Replace ALL SM_TC10 WITH (TrainingCM - Pct10 * TrainingCM * SM_KT)

Replace ALL SM_TC20 WITH (TrainingCM - Pct20 * TrainingCM * SM_KT)

Replace ALL SM_TC30 WITH (TrainingCM - Pct30 * TrainingCM * SM_KT)

Replace ALL SM_TC40 WITH (TrainingCM - Pct40 * TrainingCM * SM_KT)

Replace ALL SM_TC50 WITH (TrainingCM - Pct50 * TrainingCM * SM_KT)

Replace ALL SM_TC60 WITH (TrainingCM - Pct60 * TrainingCM * SM_KT)

Replace ALL SM_TC70 WITH (TrainingCM - Pct70 * TrainingCM * SM_KT)

Replace ALL SM_TC80 WITH (TrainingCM - Pct80 * TrainingCM * SM_KT)

Replace ALL SM_TC90 WITH (TrainingCM - Pct90 * TrainingCM * SM_KT)

Replace ALL SM_TC100 WITH (TrainingCM - Pct100 * TrainingCM * SM_KT)

** SOLO HIGH complexity projects

* Effort based on survey responses

Replace ALL SH_Effort WITH hcx_hrs

Replace ALL SH_ECost WITH SH_Effort * payRate

115

* Defect based on survey responses

Replace ALL SH_Defect WITH hcx_Defect

Replace ALL SH_DCost WITH SH_Defect * h_size * FixingS * payRate

Replace ALL hcx_defect WITH sh_defect

* Duration

Replace ALL SH_DR WITH SH_Effort/(Team * HrsPerDay7)

*LABOR SLACK & Opportunity Cost

Replace ALL SH_Slack WITH SH_DR - H_Ideal

Replace ALL SH_SCost WITH -1 * SH_Slack * HrsPerDay8 * payRate * Team FOR SH_Slack <=0

Replace ALL SH_OCost WITH SH_Slack * HrsPerDay8 * payRate * Team FOR SH_Slack > 0

* Knowledge Transfer

Replace ALL SH_TC10 WITH (TrainingCH - Pct10 * TrainingCH * SH_KT)

Replace ALL SH_TC20 WITH (TrainingCH - Pct20 * TrainingCH * SH_KT)

Replace ALL SH_TC30 WITH (TrainingCH - Pct30 * TrainingCH * SH_KT)

Replace ALL SH_TC40 WITH (TrainingCH - Pct40 * TrainingCH * SH_KT)

Replace ALL SH_TC50 WITH (TrainingCH - Pct50 * TrainingCH * SH_KT)

Replace ALL SH_TC60 WITH (TrainingCH - Pct60 * TrainingCH * SH_KT)

Replace ALL SH_TC70 WITH (TrainingCH - Pct70 * TrainingCH * SH_KT)

Replace ALL SH_TC80 WITH (TrainingCH - Pct80 * TrainingCH * SH_KT)

Replace ALL SH_TC90 WITH (TrainingCH - Pct90 * TrainingCH * SH_KT)

Replace ALL SH_TC100 WITH (TrainingCH - Pct100 * TrainingCH * SH_KT)

** PAIR LOW complexity projects

* Effort based on survey responses

Replace all PL_Effort WITH lcx_hrs for lcx_ef = 0

Replace ALL PL_Effort WITH lcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for lcx_ef

= 1

Replace ALL PL_Effort WITH lcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for

lcx_ef = 2

Replace ALL PL_Effort WITH lcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for

lcx_ef = 3

Replace ALL PL_Effort WITH lcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for lcx_ef

= 4

Replace ALL PL_Effort WITH lcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for

lcx_ef = 5

Replace ALL PL_Effort WITH lcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for

lcx_ef = 6

Replace ALL PL_Effort WITH lcx_hrs * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for

lcx_ef = -1

Replace ALL PL_Effort WITH lcx_hrs * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for lcx_ef

= -2

Replace ALL PL_Effort WITH lcx_hrs * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for

lcx_ef = -3

Replace ALL PL_Effort WITH lcx_hrs * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for

lcx_ef = -4

Replace ALL PL_Effort WITH lcx_hrs * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for

lcx_ef = -5

Replace ALL PL_ECost WITH PL_Effort * ROUND((payRate + payRate2)/2, 2)

* Defect based on survey responses

116

Replace ALL PL_Defect WITH lcx_Defect FOR lcx_df = 0

Replace ALL PL_Defect WITH lcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

lcx_df = 1

Replace ALL PL_Defect WITH lcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

lcx_df = 2

Replace ALL PL_Defect WITH lcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

lcx_df = 3

Replace ALL PL_Defect WITH lcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

lcx_df = 4

Replace ALL PL_Defect WITH lcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

lcx_df = 5

Replace ALL PL_Defect WITH lcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

lcx_df = 6

Replace ALL PL_Defect WITH lcx_Defect * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

lcx_df = -1

Replace ALL PL_Defect WITH lcx_Defect * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

lcx_df = -2

Replace ALL PL_Defect WITH lcx_Defect * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

lcx_df = -3

Replace ALL PL_Defect WITH lcx_Defect * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

lcx_df = -4

Replace ALL PL_Defect WITH lcx_Defect * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))

FOR lcx_df = -5

* Defect cost

Replace ALL PL_DCost WITH PL_Defect * l_size * FixingS * payRate

* Duration

Replace ALL PL_DR WITH PL_Effort/(Team * HrsPerDay7)

*LABOR SLACK & Opportunity Cost

Replace ALL PL_Slack WITH PL_DR - L_Ideal

Replace ALL PL_SCost WITH -1 * PL_Slack * HrsPerDay8 * Team * ROUND((payRate + payRate2)/2, 2) FOR

PL_Slack <=0

Replace ALL PL_OCost WITH PL_Slack * HrsPerDay8 * Team * ROUND((payRate + payRate2)/2, 2) FOR

PL_Slack > 0

* Knowledge Transfer based on survey responses

Replace ALL PL_KT WITH SL_KT FOR lcx_kt = 0

Replace ALL PL_KT WITH SL_KT * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR lcx_kt

= 1

Replace ALL PL_KT WITH SL_KT * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR lcx_kt

= 2

Replace ALL PL_KT WITH SL_KT * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR lcx_kt

= 3

Replace ALL PL_KT WITH SL_KT * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR lcx_kt

= 4

Replace ALL PL_KT WITH SL_KT * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR lcx_kt

= 5

Replace ALL PL_KT WITH SL_KT * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR lcx_kt

= 6

Replace ALL PL_KT WITH SL_KT * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR lcx_kt

= -1

Replace ALL PL_KT WITH SL_KT * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR lcx_kt

= -2

117

Replace ALL PL_KT WITH SL_KT * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR lcx_kt

= -3

Replace ALL PL_KT WITH SL_KT * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR lcx_kt

= -4

Replace ALL PL_KT WITH SL_KT * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) FOR

lcx_kt = -5

* Convert KT into training cost

Replace ALL PL_TC10 WITH (TrainingCL - Pct10 * TrainingCL * PL_KT)

Replace ALL PL_TC20 WITH (TrainingCL - Pct20 * TrainingCL * PL_KT)

Replace ALL PL_TC30 WITH (TrainingCL - Pct30 * TrainingCL * PL_KT)

Replace ALL PL_TC40 WITH (TrainingCL - Pct40 * TrainingCL * PL_KT)

Replace ALL PL_TC50 WITH (TrainingCL - Pct50 * TrainingCL * PL_KT)

Replace ALL PL_TC60 WITH (TrainingCL - Pct60 * TrainingCL * PL_KT)

Replace ALL PL_TC70 WITH (TrainingCL - Pct70 * TrainingCL * PL_KT)

Replace ALL PL_TC80 WITH (TrainingCL - Pct80 * TrainingCL * PL_KT)

Replace ALL PL_TC90 WITH (TrainingCL - Pct90 * TrainingCL * PL_KT)

Replace ALL PL_TC100 WITH (TrainingCL - Pct100 * TrainingCL * PL_KT)

** PAIR MEDIUM complexity projects

* Effort based on survey responses

Replace ALL PM_Effort WITH mcx_hrs for mcx_ef = 0

Replace ALL PM_Effort WITH mcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for

mcx_ef = 1

Replace ALL PM_Effort WITH mcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for

mcx_ef = 2

Replace ALL PM_Effort WITH mcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for

mcx_ef = 3

Replace ALL PM_Effort WITH mcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for

mcx_ef = 4

Replace ALL PM_Effort WITH mcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for

mcx_ef = 5

Replace ALL PM_Effort WITH mcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for

mcx_ef = 6

Replace ALL PM_Effort WITH mcx_hrs * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for

mcx_ef = -1

Replace ALL PM_Effort WITH mcx_hrs * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for

mcx_ef = -2

Replace ALL PM_Effort WITH mcx_hrs * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for

mcx_ef = -3

Replace ALL PM_Effort WITH mcx_hrs * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for

mcx_ef = -4

Replace ALL PM_Effort WITH mcx_hrs * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for

mcx_ef = -5

Replace ALL PM_ECost WITH PM_Effort * ROUND((payRate + payRate2)/2, 2)

* Defect based on survey responses

Replace ALL PM_Defect WITH mcx_Defect FOR mcx_df = 0

Replace ALL PM_Defect WITH mcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))

FOR mcx_df = 1

Replace ALL PM_Defect WITH mcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2))

FOR mcx_df = 2

118

Replace ALL PM_Defect WITH mcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2))

FOR mcx_df = 3

Replace ALL PM_Defect WITH mcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2))

FOR mcx_df = 4

Replace ALL PM_Defect WITH mcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2))

FOR mcx_df = 5

Replace ALL PM_Defect WITH mcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2))

FOR mcx_df = 6

Replace ALL PM_Defect WITH mcx_Defect * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))

FOR mcx_df = -1

Replace ALL PM_Defect WITH mcx_Defect * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2))

FOR mcx_df = -2

Replace ALL PM_Defect WITH mcx_Defect * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2))

FOR mcx_df = -3

Replace ALL PM_Defect WITH mcx_Defect * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2))

FOR mcx_df = -4

Replace ALL PM_Defect WITH mcx_Defect * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))

FOR mcx_df = -5

* Defect cost

Replace ALL PM_DCost WITH PM_Defect * m_size * FixingS* payRate

* Duration

Replace ALL PM_DR WITH PM_Effort/(Team * HrsPerDay7)

*LABOR SLACK & Opportunity Cost

Replace ALL PM_Slack WITH PM_DR - M_Ideal

Replace ALL PM_SCost WITH -1 * PM_Slack * HrsPerDay8 *Team * ROUND((payRate + payRate2)/2, 2) FOR

PM_Slack <=0

Replace ALL PM_OCost WITH PM_Slack * HrsPerDay8 * Team * ROUND((payRate + payRate2)/2, 2) FOR

PM_Slack > 0

* Knowledge Transfer based on survey responses

Replace ALL PM_KT WITH SM_KT FOR mcx_kt = 0

Replace ALL PM_KT WITH SM_KT * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

mcx_kt = 1

Replace ALL PM_KT WITH SM_KT * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

mcx_kt = 2

Replace ALL PM_KT WITH SM_KT * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

mcx_kt = 3

Replace ALL PM_KT WITH SM_KT * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

mcx_kt = 4

Replace ALL PM_KT WITH SM_KT * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

mcx_kt = 5

Replace ALL PM_KT WITH SM_KT * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

mcx_kt = 6

Replace ALL PM_KT WITH SM_KT * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

mcx_kt = -1

Replace ALL PM_KT WITH SM_KT * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

mcx_kt = -2

Replace ALL PM_KT WITH SM_KT * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

mcx_kt = -3

Replace ALL PM_KT WITH SM_KT * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

mcx_kt = -4

Replace ALL PM_KT WITH SM_KT * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) FOR

mcx_kt = -5

119

* Convert KT into training cost

Replace ALL PM_TC10 WITH (TrainingCM - Pct10 * TrainingCM * PM_KT)

Replace ALL PM_TC20 WITH (TrainingCM - Pct20 * TrainingCM * PM_KT)

Replace ALL PM_TC30 WITH (TrainingCM - Pct30 * TrainingCM * PM_KT)

Replace ALL PM_TC40 WITH (TrainingCM - Pct40 * TrainingCM * PM_KT)

Replace ALL PM_TC50 WITH (TrainingCM - Pct50 * TrainingCM * PM_KT)

Replace ALL PM_TC60 WITH (TrainingCM - Pct60 * TrainingCM * PM_KT)

Replace ALL PM_TC70 WITH (TrainingCM - Pct70 * TrainingCM * PM_KT)

Replace ALL PM_TC80 WITH (TrainingCM - Pct80 * TrainingCM * PM_KT)

Replace ALL PM_TC90 WITH (TrainingCM - Pct90 * TrainingCM * PM_KT)

Replace ALL PM_TC100 WITH (TrainingCM - Pct100 * TrainingCM * PM_KT)

** PAIR HIGH complexity projects

* Effort based on survey responses

Replace ALL PH_Effort WITH hcx_hrs for hcx_ef = 0

Replace ALL PH_Effort WITH hcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for

hcx_ef = 1

Replace ALL PH_Effort WITH hcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for

hcx_ef = 2

Replace ALL PH_Effort WITH hcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for

hcx_ef = 3

Replace ALL PH_Effort WITH hcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for

hcx_ef = 4

Replace ALL PH_Effort WITH hcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for

hcx_ef = 5

Replace ALL PH_Effort WITH hcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for

hcx_ef = 6

Replace ALL PH_Effort WITH hcx_hrs * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for

hcx_ef = -1

Replace ALL PH_Effort WITH hcx_hrs * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for

hcx_ef = -2

Replace ALL PH_Effort WITH hcx_hrs * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for

hcx_ef = -3

Replace ALL PH_Effort WITH hcx_hrs * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for

hcx_ef = -4

Replace ALL PH_Effort WITH hcx_hrs * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for

hcx_ef = -5

Replace ALL PH_ECost WITH PH_Effort * ROUND((payRate + payRate2)/2, 2)

* Defect based on survey responses

Replace ALL PH_Defect WITH hcx_Defect FOR hcx_df = 0

Replace ALL PH_Defect WITH hcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

hcx_df = 1

Replace ALL PH_Defect WITH hcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

hcx_df = 2

Replace ALL PH_Defect WITH hcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

hcx_df = 3

Replace ALL PH_Defect WITH hcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

hcx_df = 4

Replace ALL PH_Defect WITH hcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

hcx_df = 5

120

Replace ALL PH_Defect WITH hcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

hcx_df = 6

Replace ALL PH_Defect WITH hcx_Defect * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

hcx_df = -1

Replace ALL PH_Defect WITH hcx_Defect * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

hcx_df = -2

Replace ALL PH_Defect WITH hcx_Defect * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

hcx_df = -3

Replace ALL PH_Defect WITH hcx_Defect * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

hcx_df = -4

Replace ALL PH_Defect WITH hcx_Defect * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))

FOR hcx_df = -5

* Defect cost

Replace ALL PH_DCost WITH PH_Defect * h_size * FixingS * payRate

* Duration

Replace ALL PH_DR WITH PH_Effort/(Team * HrsPerDay7)

*LABOR SLACK & Opportunity Cost

Replace ALL PH_Slack WITH PH_DR - H_Ideal

Replace ALL PH_SCost WITH -1 * PH_Slack * HrsPerDay8 * Team * ROUND((payRate + payRate2)/2, 2) FOR

PH_Slack <=0

Replace ALL PH_OCost WITH PH_Slack * HrsPerDay8 * Team * ROUND((payRate + payRate2)/2, 2) FOR

PH_Slack > 0

* Knowledge Transfer based on survey responses

Replace ALL PH_KT WITH SH_KT FOR hcx_kt = 0

Replace ALL PH_KT WITH SH_KT * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR hcx_kt

= 1

Replace ALL PH_KT WITH SH_KT * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR hcx_kt

= 2

Replace ALL PH_KT WITH SH_KT * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR hcx_kt

= 3

Replace ALL PH_KT WITH SH_KT * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR hcx_kt

= 4

Replace ALL PH_KT WITH SH_KT * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR hcx_kt

= 5

Replace ALL PH_KT WITH SH_KT * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR hcx_kt

= 6

Replace ALL PH_KT WITH SH_KT * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR hcx_kt

= -1

Replace ALL PH_KT WITH SH_KT * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR hcx_kt

= -2

Replace ALL PH_KT WITH SH_KT * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR hcx_kt

= -3

Replace ALL PH_KT WITH SH_KT * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR hcx_kt

= -4

Replace ALL PH_KT WITH SH_KT * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) FOR

hcx_kt = -5

* Convert KT into training cost

Replace ALL PH_TC10 WITH (TrainingCH - Pct10 * TrainingCH * PH_KT)

Replace ALL PH_TC20 WITH (TrainingCH - Pct20 * TrainingCH * PH_KT)

Replace ALL PH_TC30 WITH (TrainingCH - Pct30 * TrainingCH * PH_KT)

Replace ALL PH_TC40 WITH (TrainingCH - Pct40 * TrainingCH * PH_KT)

Replace ALL PH_TC50 WITH (TrainingCH - Pct50 * TrainingCH * PH_KT)

121

Replace ALL PH_TC60 WITH (TrainingCH - Pct60 * TrainingCH * PH_KT)

Replace ALL PH_TC70 WITH (TrainingCH - Pct70 * TrainingCH * PH_KT)

Replace ALL PH_TC80 WITH (TrainingCH - Pct80 * TrainingCH * PH_KT)

Replace ALL PH_TC90 WITH (TrainingCH - Pct90 * TrainingCH * PH_KT)

Replace ALL PH_TC100 WITH (TrainingCH - Pct100 * TrainingCH * PH_KT)

*** PAIR

COMPOSITION - JUNIOR-JUNIOR, JUNIOR-SENIOR, SENIOR-SENIOR

**

* Create C2 since the maximum number of columns a table can have is 256. C2 has the columns needed for cost

calculation for junior-junior, junior-senior, and senior-senior

SELECT respondent, trainingC, trainingCL, trainingCM, trainingCH, team, l_team, m_team, h_team, comp1yr,

lcx_hrs, mcx_hrs, hcx_hrs, jr2_ef, jr2_df, jr2_kt, jrsr_ef, jrsr_df, jrsr_kt, sr2_ef, sr2_df, sr2_kt, lcx_defect,

mcx_defect, hcx_defect, payRate, payRate2, payRateJ, payRateJ2, payRateS, payRateS2, FixingS, l_size, m_size,

h_size, L_Ideal, M_Ideal, H_Ideal, sl_kt, sm_kt, sh_kt, 000000.00 as PL_JJEf, 000000.00 as PL_JJECo, 000000.00

as PL_JJDef, 0000000000.00 as PL_JJDCo, 000000.00 as PL_JJDR, 000000.00 as PL_JJOCo, 000000.00 as

PL_JJSlack, 000000.00 as PL_JJSCo, 00.00 as PL_JJKT, 000000.00 as PL_JJTC10, 000000.00 as PL_JJTC20,

000000.00 as PL_JJTC30, 000000.00 as PL_JJTC40, 000000.00 as PL_JJTC50, 000000.00 as PL_JJTC60,

000000.00 as PL_JJTC70, 000000.00 as PL_JJTC80, 000000.00 as PL_JJTC90, 000000.00 as PL_JJTC100,

000000.00 as PM_JJEf, 000000.00 as PM_JJECo, ;

000000.00 as PM_JJDef, 0000000000.00 as PM_JJDCo, 000000.00 as PM_JJDR, 000000.00 as PM_JJOCo,

000000.00 as PM_JJSlack, 000000.00 as PM_JJSCo, 00.00 as PM_JJKT, 000000.00 as PM_JJTC10, 000000.00 as

PM_JJTC20, 000000.00 as PM_JJTC30, 000000.00 as PM_JJTC40, 000000.00 as PM_JJTC50, 000000.00 as

PM_JJTC60, 000000.00 as PM_JJTC70, 000000.00 as PM_JJTC80, 000000.00 as PM_JJTC90, 000000.00 as

PM_JJTC100, 000000.00 as PH_JJEf, 000000.00 as PH_JJECo, ;

000000.00 as PH_JJDef, 0000000000.00 as PH_JJDCo, 000000.00 as PH_JJDR, 000000.00 as PH_JJOCo,

000000.00 as PH_JJSlack, 000000.00 as PH_JJSCo, 00.00 as PH_JJKT, 000000.00 as PH_JJTC10, 000000.00 as

PH_JJTC20, 000000.00 as PH_JJTC30, 000000.00 as PH_JJTC40, 000000.00 as PH_JJTC50, 000000.00 as

PH_JJTC60, 000000.00 as PH_JJTC70, 000000.00 as PH_JJTC80, 000000.00 as PH_JJTC90, 000000.00 as

PH_JJTC100, 000000.00 as PL_JSEf, 000000.00 as PL_JSECo, 000000.00 as PL_JSDef, 0000000000.00 as

PL_JSDCo, 000000.00 as PL_JSDR, 000000.00 as PL_JSOCo, 000000.00 as PL_JSSlack, 000000.00 as PL_JSSCo,

00.00 as PL_JSKT, 000000.00 as PL_JSTC10, 000000.00 as PL_JSTC20, 000000.00 as PL_JSTC30, 000000.00 as

PL_JSTC40, 000000.00 as PL_JSTC50, 000000.00 as PL_JSTC60, 000000.00 as PL_JSTC70, 000000.00 as

PL_JSTC80, 000000.00 as PL_JSTC90, 000000.00 as PL_JSTC100, 000000.00 as PM_JSEf, 000000.00 as

PM_JSECo, 000000.00 as PM_JSDef, 0000000000.00 as PM_JSDCo, 000000.00 as PM_JSDR, 000000.00 as

PM_JSOCo, 000000.00 as PM_JSSlack, 000000.00 as PM_JSSCo, 00.00 as PM_JSKT, 000000.00 as PM_JSTC10,

000000.00 as PM_JSTC20, 000000.00 as PM_JSTC30, 000000.00 as PM_JSTC40, 000000.00 as PM_JSTC50,

000000.00 as PM_JSTC60, 000000.00 as PM_JSTC70, 000000.00 as PM_JSTC80, 000000.00 as PM_JSTC90,

000000.00 as PM_JSTC100, 000000.00 as PH_JSEf, 000000.00 as PH_JSECo,

000000.00 as PH_JSDef, 0000000000.00 as PH_JSDCo, 000000.00 as PH_JSDR, 000000.00 as PH_JSOCo,

000000.00 as PH_JSSlack, 000000.00 as PH_JSSCo, 00.00 as PH_JSKT, 000000.00 as PH_JSTC10, 000000.00 as

PH_JSTC20, 000000.00 as PH_JSTC30, 000000.00 as PH_JSTC40, 000000.00 as PH_JSTC50, 000000.00 as

PH_JSTC60, 000000.00 as PH_JSTC70, 000000.00 as PH_JSTC80, 000000.00 as PH_JSTC90, 000000.00 as

PH_JSTC100, 000000.00 as PL_SSEf, 000000.00 as PL_SSECo, 000000.00 as PL_SSDef, 0000000000.00 as

PL_SSDCo, 000000.00 as PL_SSDR, 000000.00 as PL_SSOCo, 000000.00 as PL_SSSlack, 000000.00 as

PL_SSSCo, 00.00 as PL_SSKT, 000000.00 as PL_SSTC10, 000000.00 as PL_SSTC20, 000000.00 as PL_SSTC30,

000000.00 as PL_SSTC40, 000000.00 as PL_SSTC50, 000000.00 as PL_SSTC60, 000000.00 as PL_SSTC70,

000000.00 as PL_SSTC80, 000000.00 as PL_SSTC90, 000000.00 as PL_SSTC100, 000000.00 as PM_SSEf,

000000.00 as PM_SSECo, 000000.00 as PM_SSDef, 0000000000.00 as PM_SSDCo, 000000.00 as PM_SSDR,

000000.00 as PM_SSOCo, 000000.00 as PM_SSSlack,000000.00 as PM_SSSCo, 00.00 as PM_SSKT, 000000.00

as PM_SSTC10, 000000.00 as PM_SSTC20, 000000.00 as PM_SSTC30, 000000.00 as PM_SSTC40, 000000.00 as

PM_SSTC50, 000000.00 as PM_SSTC60, 000000.00 as PM_SSTC70, 000000.00 as PM_SSTC80, 000000.00 as

PM_SSTC90, 000000.00 as PM_SSTC100, 000000.00 as PH_SSEf, 000000.00 as PH_SSECo, 000000.00 as

PH_SSDef, 0000000000.00 as PH_SSDCo, ;

000000.00 as PH_SSDR, 000000.00 as PH_SSOCo, 000000.00 as PH_SSSlack,000000.00 as PH_SSSCo, ;

122

00.00 as PH_SSKT, 000000.00 as PH_SSTC10, 000000.00 as PH_SSTC20, 000000.00 as PH_SSTC30, 000000.00

as PH_SSTC40, 000000.00 as PH_SSTC50, 000000.00 as PH_SSTC60, 000000.00 as PH_SSTC70, 000000.00 as

PH_SSTC80, 000000.00 as PH_SSTC90, 000000.00 as PH_SSTC100

FROM c1

into TABLE c2

SELECT c2

**

** PAIR LOW complexity projects and EXPERTISE COMPOSITION (JUNIOR-JUNIOR)

**

* Effort based on survey responses

Replace ALL PL_JJEf WITH lcx_hrs for Jr2_ef = 0

Replace ALL PL_JJEf WITH lcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for Jr2_ef =

1

Replace ALL PL_JJEf WITH lcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for Jr2_ef =

2

Replace ALL PL_JJEf WITH lcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for Jr2_ef =

3

Replace ALL PL_JJEf WITH lcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for Jr2_ef =

4

Replace ALL PL_JJEf WITH lcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for Jr2_ef =

5

Replace ALL PL_JJEf WITH lcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for Jr2_ef =

6

Replace ALL PL_JJEf WITH lcx_hrs * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for Jr2_ef =

-1

Replace ALL PL_JJEf WITH lcx_hrs * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for Jr2_ef =

-2

Replace ALL PL_JJEf WITH lcx_hrs * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for Jr2_ef =

-3

Replace ALL PL_JJEf WITH lcx_hrs * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for Jr2_ef =

-4

Replace ALL PL_JJEf WITH lcx_hrs * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for

Jr2_ef = -5

Replace ALL PL_JJECo WITH PL_JJEf * ROUND((payRateJ + payRateJ2)/2, 2)

* Defect based on survey responses

Replace ALL PL_JJDef WITH lcx_Defect FOR Jr2_df = 0

Replace ALL PL_JJDef WITH lcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Jr2_df = 1

Replace ALL PL_JJDef WITH lcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Jr2_df = 2

Replace ALL PL_JJDef WITH lcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Jr2_df = 3

Replace ALL PL_JJDef WITH lcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Jr2_df = 4

Replace ALL PL_JJDef WITH lcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

Jr2_df = 5

Replace ALL PL_JJDef WITH lcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

Jr2_df = 6

Replace ALL PL_JJDef WITH lcx_Defect * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Jr2_df = -1

Replace ALL PL_JJDef WITH lcx_Defect * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Jr2_df = -2

123

Replace ALL PL_JJDef WITH lcx_Defect * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Jr2_df = -3

Replace ALL PL_JJDef WITH lcx_Defect * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Jr2_df = -4

Replace ALL PL_JJDef WITH lcx_Defect * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))

FOR Jr2_df = -5

Replace ALL PL_JJDCo WITH (PL_JJDef * l_size * FixingS) * payRate

* Duration

Replace ALL PL_JJDR WITH PL_JJEf/(Team * HrsPerDay7)

*LABOR SLACK & Opportunity Cost

Replace ALL PL_JJSlack WITH PL_JJDR - L_Ideal

Replace ALL PL_JJSCo WITH -1 * PL_JJSlack * HrsPerDay8 * Team * ROUND((payRateJ + payRateJ2)/2, 2)

FOR PL_JJSlack <=0

Replace ALL PL_JJOCo WITH PL_JJSlack * HrsPerDay8 * Team * ROUND((payRateJ + payRateJ2)/2, 2) FOR

PL_JJSlack > 0

* Knowledge Transfer based on survey responses

Replace ALL PL_JJKT WITH SL_KT FOR Jr2_kt = 0

Replace ALL PL_JJKT WITH SL_KT * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Jr2_kt = 1

Replace ALL PL_JJKT WITH SL_KT * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Jr2_kt = 2

Replace ALL PL_JJKT WITH SL_KT * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Jr2_kt = 3

Replace ALL PL_JJKT WITH SL_KT * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Jr2_kt = 4

Replace ALL PL_JJKT WITH SL_KT * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

Jr2_kt = 5

Replace ALL PL_JJKT WITH SL_KT * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

Jr2_kt = 6

Replace ALL PL_JJKT WITH SL_KT * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Jr2_kt = -1

Replace ALL PL_JJKT WITH SL_KT * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Jr2_kt = -2

Replace ALL PL_JJKT WITH SL_KT * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Jr2_kt = -3

Replace ALL PL_JJKT WITH SL_KT * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Jr2_kt = -4

Replace ALL PL_JJKT WITH SL_KT * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) FOR

Jr2_kt = -5

* Convert KT into training cost

Replace ALL PL_JJTC10 WITH (TrainingCL - Pct10 * TrainingCL * PL_JJKT)

Replace ALL PL_JJTC20 WITH (TrainingCL - Pct20 * TrainingCL * PL_JJKT)

Replace ALL PL_JJTC30 WITH (TrainingCL - Pct30 * TrainingCL * PL_JJKT)

Replace ALL PL_JJTC40 WITH (TrainingCL - Pct40 * TrainingCL * PL_JJKT)

Replace ALL PL_JJTC50 WITH (TrainingCL - Pct50 * TrainingCL * PL_JJKT)

Replace ALL PL_JJTC60 WITH (TrainingCL - Pct60 * TrainingCL * PL_JJKT)

Replace ALL PL_JJTC70 WITH (TrainingCL - Pct70 * TrainingCL * PL_JJKT)

Replace ALL PL_JJTC80 WITH (TrainingCL - Pct80 * TrainingCL * PL_JJKT)

Replace ALL PL_JJTC90 WITH (TrainingCL - Pct90 * TrainingCL * PL_JJKT)

Replace ALL PL_JJTC100 WITH (TrainingCL - Pct100 * TrainingCL * PL_JJKT)

124

** PAIR

MEDIUM complexity projects and EXPERTISE COMPOSITION (JUNIOR-JUNIOR)

*** Effort

based on survey responses

Replace ALL PM_JJEf WITH mcx_hrs for Jr2_ef = 0

Replace ALL PM_JJEf WITH mcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for Jr2_ef

= 1

Replace ALL PM_JJEf WITH mcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for Jr2_ef

= 2

Replace ALL PM_JJEf WITH mcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for Jr2_ef

= 3

Replace ALL PM_JJEf WITH mcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for Jr2_ef

= 4

Replace ALL PM_JJEf WITH mcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for Jr2_ef

= 5

Replace ALL PM_JJEf WITH mcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for Jr2_ef

= 6

Replace ALL PM_JJEf WITH mcx_hrs * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for Jr2_ef

= -1

Replace ALL PM_JJEf WITH mcx_hrs * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for Jr2_ef

= -2

Replace ALL PM_JJEf WITH mcx_hrs * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for Jr2_ef

= -3

Replace ALL PM_JJEf WITH mcx_hrs * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for Jr2_ef

= -4

Replace ALL PM_JJEf WITH mcx_hrs * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for

Jr2_ef = -5

Replace ALL PM_JJECo WITH PM_JJEf * ROUND((payRateJ + payRateJ2)/2, 2)

* Defect based on survey responses

Replace ALL PM_JJDef WITH mcx_Defect FOR Jr2_df = 0

Replace ALL PM_JJDef WITH mcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Jr2_df = 1

Replace ALL PM_JJDef WITH mcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Jr2_df = 2

Replace ALL PM_JJDef WITH mcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Jr2_df = 3

Replace ALL PM_JJDef WITH mcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Jr2_df = 4

Replace ALL PM_JJDef WITH mcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

Jr2_df = 5

Replace ALL PM_JJDef WITH mcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

Jr2_df = 6

Replace ALL PM_JJDef WITH mcx_Defect * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Jr2_df = -1

Replace ALL PM_JJDef WITH mcx_Defect * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Jr2_df = -2

Replace ALL PM_JJDef WITH mcx_Defect * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Jr2_df = -3

Replace ALL PM_JJDef WITH mcx_Defect * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Jr2_df = -4

Replace ALL PM_JJDef WITH mcx_Defect * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))

FOR Jr2_df = -5

Replace ALL PM_JJDCo WITH (PM_JJDef * m_size * FixingS) * payRate

125

* Duration

Replace ALL PM_JJDR WITH PM_JJEf / (Team * HrsPerDay7)

*LABOR SLACK & Opportunity Cost

Replace ALL PM_JJSlack WITH PM_JJDR - M_Ideal

Replace ALL PM_JJSCo WITH -1 * PM_JJSlack * HrsPerDay8 * Team * ROUND((payRateJ + payRateJ2)/2, 2)

FOR PM_JJSlack <=0

Replace ALL PM_JJOCo WITH PM_JJSlack * HrsPerDay8 * Team * ROUND((payRateJ + payRateJ2)/2, 2) FOR

PM_JJSlack > 0

* Knowledge Transfer based on survey responses

Replace ALL PM_JJKT WITH SM_KT FOR Jr2_kt = 0

Replace ALL PM_JJKT WITH SM_KT * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Jr2_kt = 1

Replace ALL PM_JJKT WITH SM_KT * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Jr2_kt = 2

Replace ALL PM_JJKT WITH SM_KT * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Jr2_kt = 3

Replace ALL PM_JJKT WITH SM_KT * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Jr2_kt = 4

Replace ALL PM_JJKT WITH SM_KT * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

Jr2_kt = 5

Replace ALL PM_JJKT WITH SM_KT * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

Jr2_kt = 6

Replace ALL PM_JJKT WITH SM_KT * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Jr2_kt = -1

Replace ALL PM_JJKT WITH SM_KT * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Jr2_kt = -2

Replace ALL PM_JJKT WITH SM_KT * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Jr2_kt = -3

Replace ALL PM_JJKT WITH SM_KT * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Jr2_kt = -4

Replace ALL PM_JJKT WITH SM_KT * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) FOR

Jr2_kt = -5

* Convert KT into training cost

Replace ALL PM_JJTC10 WITH (TrainingCM - Pct10 * TrainingCM * PM_JJKT)

Replace ALL PM_JJTC20 WITH (TrainingCM - Pct20 * TrainingCM * PM_JJKT)

Replace ALL PM_JJTC30 WITH (TrainingCM - Pct30 * TrainingCM * PM_JJKT)

Replace ALL PM_JJTC40 WITH (TrainingCM - Pct40 * TrainingCM * PM_JJKT)

Replace ALL PM_JJTC50 WITH (TrainingCM - Pct50 * TrainingCM * PM_JJKT)

Replace ALL PM_JJTC60 WITH (TrainingCM - Pct60 * TrainingCM * PM_JJKT)

Replace ALL PM_JJTC70 WITH (TrainingCM - Pct70 * TrainingCM * PM_JJKT)

Replace ALL PM_JJTC80 WITH (TrainingCM - Pct80 * TrainingCM * PM_JJKT)

Replace ALL PM_JJTC90 WITH (TrainingCM - Pct90 * TrainingCM * PM_JJKT)

Replace ALL PM_JJTC100 WITH (TrainingCM - Pct100 * TrainingCM * PM_JJKT)

**

** PAIR HIGH complexity projects and EXPERTISE COMPOSITION (JUNIOR-JUNIOR)

**

* Effort based on survey responses

Replace ALL PH_JJEf WITH hcx_hrs for Jr2_ef = 0

Replace ALL PH_JJEf WITH hcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for Jr2_ef

= 1

126

Replace ALL PH_JJEf WITH hcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for Jr2_ef

= 2

Replace ALL PH_JJEf WITH hcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for Jr2_ef

= 3

Replace ALL PH_JJEf WITH hcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for Jr2_ef

= 4

Replace ALL PH_JJEf WITH hcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for Jr2_ef

= 5

Replace ALL PH_JJEf WITH hcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for Jr2_ef

= 6

Replace ALL PH_JJEf WITH hcx_hrs * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for Jr2_ef

= -1

Replace ALL PH_JJEf WITH hcx_hrs * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for Jr2_ef

= -2

Replace ALL PH_JJEf WITH hcx_hrs * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for Jr2_ef

= -3

Replace ALL PH_JJEf WITH hcx_hrs * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for Jr2_ef

= -4

Replace ALL PH_JJEf WITH hcx_hrs * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for

Jr2_ef = -5

Replace ALL PH_JJECo WITH PH_JJEf * ROUND((payRateJ + payRateJ2)/2, 2)

* Defect based on survey responses

Replace ALL PH_JJDef WITH hcx_Defect FOR Jr2_df = 0

Replace ALL PH_JJDef WITH hcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Jr2_df = 1

Replace ALL PH_JJDef WITH hcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Jr2_df = 2

Replace ALL PH_JJDef WITH hcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Jr2_df = 3

Replace ALL PH_JJDef WITH hcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Jr2_df = 4

Replace ALL PH_JJDef WITH hcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

Jr2_df = 5

Replace ALL PH_JJDef WITH hcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

Jr2_df = 6

Replace ALL PH_JJDef WITH hcx_Defect * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Jr2_df = -1

Replace ALL PH_JJDef WITH hcx_Defect * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Jr2_df = -2

Replace ALL PH_JJDef WITH hcx_Defect * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Jr2_df = -3

Replace ALL PH_JJDef WITH hcx_Defect * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Jr2_df = -4

Replace ALL PH_JJDef WITH hcx_Defect * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))

FOR Jr2_df = -5

Replace ALL PH_JJDCo WITH (PH_JJDef * h_size * FixingS) * payRate

* Duration

Replace ALL PH_JJDR WITH PH_JJEf/(Team * HrsPerDay7)

*LABOR SLACK & Opportunity Cost

Replace ALL PH_JJSlack WITH PH_JJDR - H_Ideal

127

Replace ALL PH_JJSCo WITH -1 * PH_JJSlack * HrsPerDay8 * Team * ROUND((payRateJ + payRateJ2)/2, 2)

FOR PH_JJSlack <=0

Replace ALL PH_JJOCo WITH PH_JJSlack * HrsPerDay8 * Team * ROUND((payRateJ + payRateJ2)/2, 2) FOR

PH_JJSlack > 0

* Knowledge Transfer based on survey responses

Replace ALL PH_JJKT WITH SH_KT FOR Jr2_kt = 0

Replace ALL PH_JJKT WITH SH_KT * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Jr2_kt = 1

Replace ALL PH_JJKT WITH SH_KT * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Jr2_kt = 2

Replace ALL PH_JJKT WITH SH_KT * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Jr2_kt = 3

Replace ALL PH_JJKT WITH SH_KT * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Jr2_kt = 4

Replace ALL PH_JJKT WITH SH_KT * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

Jr2_kt = 5

Replace ALL PH_JJKT WITH SH_KT * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

Jr2_kt = 6

Replace ALL PH_JJKT WITH SH_KT * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Jr2_kt = -1

Replace ALL PH_JJKT WITH SH_KT * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Jr2_kt = -2

Replace ALL PH_JJKT WITH SH_KT * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Jr2_kt = -3

Replace ALL PH_JJKT WITH SH_KT * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Jr2_kt = -4

Replace ALL PH_JJKT WITH SH_KT * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) FOR

Jr2_kt = -5

* Convert KT into training cost

Replace ALL PH_JJTC10 WITH (TrainingCH - Pct10 * TrainingCH * PH_JJKT)

Replace ALL PH_JJTC20 WITH (TrainingCH - Pct20 * TrainingCH * PH_JJKT)

Replace ALL PH_JJTC30 WITH (TrainingCH - Pct30 * TrainingCH * PH_JJKT)

Replace ALL PH_JJTC40 WITH (TrainingCH - Pct40 * TrainingCH * PH_JJKT)

Replace ALL PH_JJTC50 WITH (TrainingCH - Pct50 * TrainingCH * PH_JJKT)

Replace ALL PH_JJTC60 WITH (TrainingCH - Pct60 * TrainingCH * PH_JJKT)

Replace ALL PH_JJTC70 WITH (TrainingCH - Pct70 * TrainingCH * PH_JJKT)

Replace ALL PH_JJTC80 WITH (TrainingCH - Pct80 * TrainingCH * PH_JJKT)

Replace ALL PH_JJTC90 WITH (TrainingCH - Pct90 * TrainingCH * PH_JJKT)

Replace ALL PH_JJTC100 WITH (TrainingCH - Pct100 * TrainingCH * PH_JJKT)

** PAIR

LOW complexity projects and EXPERTISE COMPOSITION (JUNIOR-SENIOR)

**

* Effort based on survey responses

Replace ALL PL_JSEf WITH lcx_hrs for Jrsr_ef = 0

Replace ALL PL_JSEf WITH lcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for Jrsr_ef

= 1

Replace ALL PL_JSEf WITH lcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for Jrsr_ef

= 2

Replace ALL PL_JSEf WITH lcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for Jrsr_ef

= 3

Replace ALL PL_JSEf WITH lcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for Jrsr_ef

= 4

128

Replace ALL PL_JSEf WITH lcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for Jrsr_ef

= 5

Replace ALL PL_JSEf WITH lcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for Jrsr_ef

= 6

Replace ALL PL_JSEf WITH lcx_hrs * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for Jrsr_ef

= -1

Replace ALL PL_JSEf WITH lcx_hrs * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for Jrsr_ef

= -2

Replace ALL PL_JSEf WITH lcx_hrs * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for Jrsr_ef

= -3

Replace ALL PL_JSEf WITH lcx_hrs * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for Jrsr_ef

= -4

Replace ALL PL_JSEf WITH lcx_hrs * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for

Jrsr_ef = -5

Replace ALL PL_JSECo WITH PL_JSEf * ROUND((payRateJ + payRateS)/2, 2)

* Defect based on survey responses

Replace ALL PL_JSDef WITH lcx_Defect FOR Jrsr_df = 0

Replace ALL PL_JSDef WITH lcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Jrsr_df = 1

Replace ALL PL_JSDef WITH lcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Jrsr_df = 2

Replace ALL PL_JSDef WITH lcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Jrsr_df = 3

Replace ALL PL_JSDef WITH lcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Jrsr_df = 4

Replace ALL PL_JSDef WITH lcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

Jrsr_df = 5

Replace ALL PL_JSDef WITH lcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

Jrsr_df = 6

Replace ALL PL_JSDef WITH lcx_Defect * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Jrsr_df = -1

Replace ALL PL_JSDef WITH lcx_Defect * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Jrsr_df = -2

Replace ALL PL_JSDef WITH lcx_Defect * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Jrsr_df = -3

Replace ALL PL_JSDef WITH lcx_Defect * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Jrsr_df = -4

Replace ALL PL_JSDef WITH lcx_Defect * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))

FOR Jrsr_df = -5

Replace ALL PL_JSDCo WITH (PL_JSDef * l_Size * FixingS) * payRate

* Duration

Replace ALL PL_JSDR WITH PL_JSEf/(Team * HrsPerDay7)

*LABOR SLACK & Opportunity Cost

Replace ALL PL_JSSlack WITH PL_JSDR - L_Ideal

Replace ALL PL_JSSCo WITH -1 * PL_JSSlack * HrsPerDay8 * Team * ROUND((payRateJ + payRateS)/2, 2)

FOR PL_JSSlack <=0

Replace ALL PL_JSOCo WITH PL_JSSlack * HrsPerDay8 * Team * ROUND((payRateJ + payRateS)/2, 2) FOR

PL_JSSlack > 0

* Knowledge Transfer based on survey responses

Replace ALL PL_JSKT WITH SL_KT FOR Jrsr_kt = 0

129

Replace ALL PL_JSKT WITH SL_KT * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Jrsr_kt = 1

Replace ALL PL_JSKT WITH SL_KT * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Jrsr_kt = 2

Replace ALL PL_JSKT WITH SL_KT * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Jrsr_kt = 3

Replace ALL PL_JSKT WITH SL_KT * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Jrsr_kt = 4

Replace ALL PL_JSKT WITH SL_KT * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

Jrsr_kt = 5

Replace ALL PL_JSKT WITH SL_KT * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

Jrsr_kt = 6

Replace ALL PL_JSKT WITH SL_KT * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Jrsr_kt = -1

Replace ALL PL_JSKT WITH SL_KT * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Jrsr_kt = -2

Replace ALL PL_JSKT WITH SL_KT * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Jrsr_kt = -3

Replace ALL PL_JSKT WITH SL_KT * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Jrsr_kt = -4

Replace ALL PL_JSKT WITH SL_KT * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) FOR

Jrsr_kt = -5

* Convert KT into training cost

Replace ALL PL_JSTC10 WITH (TrainingCL - Pct10 * TrainingCL * PL_JSKT)

Replace ALL PL_JSTC20 WITH (TrainingCL - Pct20 * TrainingCL * PL_JSKT)

Replace ALL PL_JSTC30 WITH (TrainingCL - Pct30 * TrainingCL * PL_JSKT)

Replace ALL PL_JSTC40 WITH (TrainingCL - Pct40 * TrainingCL * PL_JSKT)

Replace ALL PL_JSTC50 WITH (TrainingCL - Pct50 * TrainingCL * PL_JSKT)

Replace ALL PL_JSTC60 WITH (TrainingCL - Pct60 * TrainingCL * PL_JSKT)

Replace ALL PL_JSTC70 WITH (TrainingCL - Pct70 * TrainingCL * PL_JSKT)

Replace ALL PL_JSTC80 WITH (TrainingCL - Pct80 * TrainingCL * PL_JSKT)

Replace ALL PL_JSTC90 WITH (TrainingCL - Pct90 * TrainingCL * PL_JSKT)

Replace ALL PL_JSTC100 WITH (TrainingCL - Pct100 * TrainingCL * PL_JSKT)

**

** PAIR MEDIUM complexity projects and EXPERTISE COMPOSITION (JUNIOR-SENIOR)

*** Effort

based on survey responses

Replace ALL PM_JSEf WITH mcx_hrs for Jrsr_ef = 0

Replace ALL PM_JSEf WITH mcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for

Jrsr_ef = 1

Replace ALL PM_JSEf WITH mcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for

Jrsr_ef = 2

Replace ALL PM_JSEf WITH mcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for

Jrsr_ef = 3

Replace ALL PM_JSEf WITH mcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for

Jrsr_ef = 4

Replace ALL PM_JSEf WITH mcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for

Jrsr_ef = 5

Replace ALL PM_JSEf WITH mcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for

Jrsr_ef = 6

Replace ALL PM_JSEf WITH mcx_hrs * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for

Jrsr_ef = -1

Replace ALL PM_JSEf WITH mcx_hrs * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for

Jrsr_ef = -2

130

Replace ALL PM_JSEf WITH mcx_hrs * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for

Jrsr_ef = -3

Replace ALL PM_JSEf WITH mcx_hrs * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for

Jrsr_ef= -4

Replace ALL PM_JSEf WITH mcx_hrs * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for

Jrsr_ef = -5

Replace ALL PM_JSECo WITH PM_JSEf * ROUND((payRateJ + payRateS)/2, 2)

* Defect based on survey responses

Replace ALL PM_JSDef WITH mcx_Defect FOR Jrsr_df = 0

Replace ALL PM_JSDef WITH mcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))

FOR Jrsr_df = 1

Replace ALL PM_JSDef WITH mcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2))

FOR Jrsr_df = 2

Replace ALL PM_JSDef WITH mcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2))

FOR Jrsr_df = 3

Replace ALL PM_JSDef WITH mcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2))

FOR Jrsr_df = 4

Replace ALL PM_JSDef WITH mcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2))

FOR Jrsr_df = 5

Replace ALL PM_JSDef WITH mcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2))

FOR Jrsr_df = 6

Replace ALL PM_JSDef WITH mcx_Defect * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))

FOR Jrsr_df = -1

Replace ALL PM_JSDef WITH mcx_Defect * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2))

FOR Jrsr_df = -2

Replace ALL PM_JSDef WITH mcx_Defect * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2))

FOR Jrsr_df = -3

Replace ALL PM_JSDef WITH mcx_Defect * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2))

FOR Jrsr_df = -4

Replace ALL PM_JSDef WITH mcx_Defect * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))

FOR Jrsr_df = -5

Replace ALL PM_JSDCo WITH (PM_JSDef * m_Size * FixingS) * payRate

* Duration

Replace ALL PM_JSDR WITH PM_JSEf/(Team * HrsPerDay7)

*LABOR SLACK & Opportunity Cost

Replace ALL PM_JSSlack WITH PM_JSDR - M_Ideal

Replace ALL PM_JSSCo WITH -1 * PM_JSSlack * HrsPerDay8 * Team * ROUND((payRateJ + payRateS)/2, 2)

FOR PM_JSSlack <=0

Replace ALL PM_JSOCo WITH PM_JSSlack * HrsPerDay8 * Team * ROUND((payRateJ + payRateS)/2, 2) FOR

PM_JSSlack > 0

* Knowledge Transfer based on survey responses

Replace ALL PM_JSKT WITH SM_KT FOR Jrsr_kt = 0

Replace ALL PM_JSKT WITH SM_KT * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Jrsr_kt = 1

Replace ALL PM_JSKT WITH SM_KT * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Jrsr_kt = 2

Replace ALL PM_JSKT WITH SM_KT * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Jrsr_kt = 3

Replace ALL PM_JSKT WITH SM_KT * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Jrsr_kt = 4

131

Replace ALL PM_JSKT WITH SM_KT * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

Jrsr_kt = 5

Replace ALL PM_JSKT WITH SM_KT * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

Jrsr_kt = 6

Replace ALL PM_JSKT WITH SM_KT * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Jrsr_kt = -1

Replace ALL PM_JSKT WITH SM_KT * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Jrsr_kt = -2

Replace ALL PM_JSKT WITH SM_KT * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Jrsr_kt = -3

Replace ALL PM_JSKT WITH SM_KT * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Jrsr_kt = -4

Replace ALL PM_JSKT WITH SM_KT * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))

FOR Jrsr_kt = -5

* Convert KT into training cost

Replace ALL PM_JSTC10 WITH (TrainingCM - Pct10 * TrainingCM * PM_JSKT)

Replace ALL PM_JSTC20 WITH (TrainingCM - Pct20 * TrainingCM * PM_JSKT)

Replace ALL PM_JSTC30 WITH (TrainingCM - Pct30 * TrainingCM * PM_JSKT)

Replace ALL PM_JSTC40 WITH (TrainingCM - Pct40 * TrainingCM * PM_JSKT)

Replace ALL PM_JSTC50 WITH (TrainingCM - Pct50 * TrainingCM * PM_JSKT)

Replace ALL PM_JSTC60 WITH (TrainingCM - Pct60 * TrainingCM * PM_JSKT)

Replace ALL PM_JSTC70 WITH (TrainingCM - Pct70 * TrainingCM * PM_JSKT)

Replace ALL PM_JSTC80 WITH (TrainingCM - Pct80 * TrainingCM * PM_JSKT)

Replace ALL PM_JSTC90 WITH (TrainingCM - Pct90 * TrainingCM * PM_JSKT)

Replace ALL PM_JSTC100 WITH (TrainingCM - Pct100 * TrainingCM * PM_JSKT)

**

** PAIR HIGH complexity projects and EXPERTISE COMPOSITION (JUNIOR-SENIOR)

**

* Effort based on survey responses

Replace ALL PH_JSEf WITH hcx_hrs for Jrsr_ef = 0

Replace ALL PH_JSEf WITH hcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for Jrsr_ef

= 1

Replace ALL PH_JSEf WITH hcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for Jrsr_ef

= 2

Replace ALL PH_JSEf WITH hcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for Jrsr_ef

= 3

Replace ALL PH_JSEf WITH hcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for Jrsr_ef

= 4

Replace ALL PH_JSEf WITH hcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for Jrsr_ef

= 5

Replace ALL PH_JSEf WITH hcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for Jrsr_ef

= 6

Replace ALL PH_JSEf WITH hcx_hrs * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for Jrsr_ef

= -1

Replace ALL PH_JSEf WITH hcx_hrs * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for Jrsr_ef

= -2

Replace ALL PH_JSEf WITH hcx_hrs * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for Jrsr_ef

= -3

Replace ALL PH_JSEf WITH hcx_hrs * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for Jrsr_ef

= -4

Replace ALL PH_JSEf WITH hcx_hrs * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for

Jrsr_ef= -5

132

Replace ALL PH_JSECo WITH PH_JSEf * ROUND((payRateJ + payRateS)/2, 2)

* Defect based on survey responses

Replace ALL PH_JSDef WITH hcx_Defect FOR Jrsr_df = 0

Replace ALL PH_JSDef WITH hcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Jrsr_df = 1

Replace ALL PH_JSDef WITH hcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Jrsr_df = 2

Replace ALL PH_JSDef WITH hcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Jrsr_df = 3

Replace ALL PH_JSDef WITH hcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Jrsr_df = 4

Replace ALL PH_JSDef WITH hcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

Jrsr_df = 5

Replace ALL PH_JSDef WITH hcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

Jrsr_df = 6

Replace ALL PH_JSDef WITH hcx_Defect * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Jrsr_df = -1

Replace ALL PH_JSDef WITH hcx_Defect * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Jrsr_df = -2

Replace ALL PH_JSDef WITH hcx_Defect * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Jrsr_df = -3

Replace ALL PH_JSDef WITH hcx_Defect * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Jrsr_df = -4

Replace ALL PH_JSDef WITH hcx_Defect * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))

FOR Jrsr_df= -5

Replace ALL PH_JSDCo WITH (PH_JSDef * h_Size * FixingS) * payRate

* Duration

Replace ALL PH_JSDR WITH PH_JSEf/(Team * HrsPerDay7)

*LABOR SLACK & Opportunity Cost

Replace ALL PH_JSSlack WITH PH_JSDR - H_Ideal

Replace ALL PH_JSSCo WITH -1 * PH_JSSlack * HrsPerDay8 * Team * ROUND((payRateJ + payRateS)/2, 2)

FOR PH_JSSlack <=0

Replace ALL PH_JSOCo WITH PH_JSSlack * HrsPerDay8 * Team * ROUND((payRateJ + payRateS)/2, 2) FOR

PH_JSSlack > 0

* Knowledge Transfer based on survey responses

Replace ALL PH_JSKT WITH SH_KT FOR Jrsr_kt = 0

Replace ALL PH_JSKT WITH SH_KT * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Jrsr_kt = 1

Replace ALL PH_JSKT WITH SH_KT * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Jrsr_kt = 2

Replace ALL PH_JSKT WITH SH_KT * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Jrsr_kt = 3

Replace ALL PH_JSKT WITH SH_KT * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Jrsr_kt = 4

Replace ALL PH_JSKT WITH SH_KT * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

Jrsr_kt = 5

Replace ALL PH_JSKT WITH SH_KT * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

Jrsr_kt = 6

Replace ALL PH_JSKT WITH SH_KT * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Jrsr_kt = -1

133

Replace ALL PH_JSKT WITH SH_KT * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Jrsr_kt = -2

Replace ALL PH_JSKT WITH SH_KT * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Jrsr_kt = -3

Replace ALL PH_JSKT WITH SH_KT * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Jrsr_kt = -4

Replace ALL PH_JSKT WITH SH_KT * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) FOR

Jrsr_kt = -5

* Convert KT into training cost

Replace ALL PH_JSTC10 WITH (TrainingCH - Pct10 * TrainingCH * PH_JSKT)

Replace ALL PH_JSTC20 WITH (TrainingCH - Pct20 * TrainingCH * PH_JSKT)

Replace ALL PH_JSTC30 WITH (TrainingCH - Pct30 * TrainingCH * PH_JSKT)

Replace ALL PH_JSTC40 WITH (TrainingCH - Pct40 * TrainingCH * PH_JSKT)

Replace ALL PH_JSTC50 WITH (TrainingCH - Pct50 * TrainingCH * PH_JSKT)

Replace ALL PH_JSTC60 WITH (TrainingCH - Pct60 * TrainingCH * PH_JSKT)

Replace ALL PH_JSTC70 WITH (TrainingCH - Pct70 * TrainingCH * PH_JSKT)

Replace ALL PH_JSTC80 WITH (TrainingCH - Pct80 * TrainingCH * PH_JSKT)

Replace ALL PH_JSTC90 WITH (TrainingCH - Pct90 * TrainingCH * PH_JSKT)

Replace ALL PH_JSTC100 WITH (TrainingCH - Pct100 * TrainingCH * PH_JSKT)

**

** PAIR LOW complexity projects and EXPERTISE COMPOSITION (SENIOR-SENIOR)

**

* Effort based on survey responses

Replace ALL PL_SSEf WITH lcx_hrs for Sr2_ef = 0

Replace ALL PL_SSEf WITH lcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for Sr2_ef

= 1

Replace ALL PL_SSEf WITH lcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for Sr2_ef

= 2

Replace ALL PL_SSEf WITH lcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for Sr2_ef

= 3

Replace ALL PL_SSEf WITH lcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for Sr2_ef

= 4

Replace ALL PL_SSEf WITH lcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for Sr2_ef

= 5

Replace ALL PL_SSEf WITH lcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for Sr2_ef

= 6

Replace ALL PL_SSEf WITH lcx_hrs * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for Sr2_ef

= -1

Replace ALL PL_SSEf WITH lcx_hrs * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for Sr2_ef

= -2

Replace ALL PL_SSEf WITH lcx_hrs * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for Sr2_ef

= -3

Replace ALL PL_SSEf WITH lcx_hrs * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for Sr2_ef

= -4

Replace ALL PL_SSEf WITH lcx_hrs * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for

Sr2_ef = -5

Replace ALL PL_SSECo WITH PL_SSEf * ROUND((payRateS + payRateS2)/2, 2)

* Defect based on survey responses

Replace ALL PL_SSDef WITH lcx_Defect FOR Sr2_df = 0

Replace ALL PL_SSDef WITH lcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Sr2_df = 1

134

Replace ALL PL_SSDef WITH lcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Sr2_df = 2

Replace ALL PL_SSDef WITH lcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Sr2_df = 3

Replace ALL PL_SSDef WITH lcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Sr2_df = 4

Replace ALL PL_SSDef WITH lcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

Sr2_df = 5

Replace ALL PL_SSDef WITH lcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

Sr2_df = 6

Replace ALL PL_SSDef WITH lcx_Defect * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Sr2_df = -1

Replace ALL PL_SSDef WITH lcx_Defect * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Sr2_df = -2

Replace ALL PL_SSDef WITH lcx_Defect * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Sr2_df = -3

Replace ALL PL_SSDef WITH lcx_Defect * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Sr2_df = -4

Replace ALL PL_SSDef WITH lcx_Defect * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))

FOR Sr2_df = -5

Replace ALL PL_SSDCo WITH (PL_SSDef * l_Size * FixingS) * payRate

* Duration

Replace ALL PL_SSDR WITH PL_SSEf/(Team * HrsPerDay7)

*LABOR SLACK & Opportunity Cost

Replace ALL PL_SSSlack WITH PL_SSDR - L_Ideal

Replace ALL PL_SSSCo WITH -1 * PL_SSSlack * HrsPerDay8 * Team * ROUND((payRateS + payRateS2)/2, 2)

FOR PL_SSSlack <=0

Replace ALL PL_SSOCo WITH PL_SSSlack * HrsPerDay8 * Team * ROUND((payRateS + payRateS2)/2, 2) FOR

PL_SSSlack > 0

* Knowledge Transfer based on survey responses

Replace ALL PL_SSKT WITH SL_KT FOR Sr2_kt = 0

Replace ALL PL_SSKT WITH SL_KT * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Sr2_kt = 1

Replace ALL PL_SSKT WITH SL_KT * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Sr2_kt = 2

Replace ALL PL_SSKT WITH SL_KT * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Sr2_kt = 3

Replace ALL PL_SSKT WITH SL_KT * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Sr2_kt = 4

Replace ALL PL_SSKT WITH SL_KT * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

Sr2_kt = 5

Replace ALL PL_SSKT WITH SL_KT * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

Sr2_kt = 6

Replace ALL PL_SSKT WITH SL_KT * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Sr2_kt = -1

Replace ALL PL_SSKT WITH SL_KT * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Sr2_kt = -2

Replace ALL PL_SSKT WITH SL_KT * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Sr2_kt = -3

Replace ALL PL_SSKT WITH SL_KT * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Sr2_kt = -4

135

Replace ALL PL_SSKT WITH SL_KT * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) FOR

Sr2_kt = -5

* Convert KT into training cost

Replace ALL PL_SSTC10 WITH (TrainingCL - Pct10 * TrainingCL * PL_SSKT)

Replace ALL PL_SSTC20 WITH (TrainingCL - Pct20 * TrainingCL * PL_SSKT)

Replace ALL PL_SSTC30 WITH (TrainingCL - Pct30 * TrainingCL * PL_SSKT)

Replace ALL PL_SSTC40 WITH (TrainingCL - Pct40 * TrainingCL * PL_SSKT)

Replace ALL PL_SSTC50 WITH (TrainingCL - Pct50 * TrainingCL * PL_SSKT)

Replace ALL PL_SSTC60 WITH (TrainingCL - Pct60 * TrainingCL * PL_SSKT)

Replace ALL PL_SSTC70 WITH (TrainingCL - Pct70 * TrainingCL * PL_SSKT)

Replace ALL PL_SSTC80 WITH (TrainingCL - Pct80 * TrainingCL * PL_SSKT)

Replace ALL PL_SSTC90 WITH (TrainingCL - Pct90 * TrainingCL * PL_SSKT)

Replace ALL PL_SSTC100 WITH (TrainingCL - Pct100 * TrainingCL * PL_SSKT)

** PAIR

MEDIUM complexity projects and EXPERTISE COMPOSITION (SENIOR-SENIOR)

**

* Effort based on survey responses

Replace ALL PM_SSEf WITH mcx_hrs for Sr2_ef = 0

Replace ALL PM_SSEf WITH mcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for

Sr2_ef = 1

Replace ALL PM_SSEf WITH mcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for

Sr2_ef = 2

Replace ALL PM_SSEf WITH mcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for

Sr2_ef = 3

Replace ALL PM_SSEf WITH mcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for

Sr2_ef = 4

Replace ALL PM_SSEf WITH mcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for

Sr2_ef = 5

Replace ALL PM_SSEf WITH mcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for

Sr2_ef = 6

Replace ALL PM_SSEf WITH mcx_hrs * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for

Sr2_ef = -1

Replace ALL PM_SSEf WITH mcx_hrs * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for

Sr2_ef = -2

Replace ALL PM_SSEf WITH mcx_hrs * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for

Sr2_ef = -3

Replace ALL PM_SSEf WITH mcx_hrs * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for

Sr2_ef= -4

Replace ALL PM_SSEf WITH mcx_hrs * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for

Sr2_ef = -5

Replace ALL PM_SSECo WITH PM_SSEf * ROUND((payRateS + payRateS2)/2, 2)

* Defect based on survey responses

Replace ALL PM_SSDef WITH mcx_Defect FOR Sr2_df = 0

Replace ALL PM_SSDef WITH mcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))

FOR Sr2_df = 1

Replace ALL PM_SSDef WITH mcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2))

FOR Sr2_df = 2

Replace ALL PM_SSDef WITH mcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2))

FOR Sr2_df = 3

Replace ALL PM_SSDef WITH mcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2))

FOR Sr2_df = 4

136

Replace ALL PM_SSDef WITH mcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2))

FOR Sr2_df = 5

Replace ALL PM_SSDef WITH mcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2))

FOR Sr2_df = 6

Replace ALL PM_SSDef WITH mcx_Defect * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))

FOR Sr2_df = -1

Replace ALL PM_SSDef WITH mcx_Defect * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2))

FOR Sr2_df = -2

Replace ALL PM_SSDef WITH mcx_Defect * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2))

FOR Sr2_df = -3

Replace ALL PM_SSDef WITH mcx_Defect * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2))

FOR Sr2_df = -4

Replace ALL PM_SSDef WITH mcx_Defect * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))

FOR Sr2_df = -5

Replace ALL PM_SSDCo WITH (PM_SSDef * m_Size * FixingS) * payRate

* Duration

Replace ALL PM_SSDR WITH PM_SSEf/(Team * HrsPerDay7)

*LABOR SLACK & Opportunity Cost

Replace ALL PM_SSSlack WITH PM_SSDR - M_Ideal

Replace ALL PM_SSSCo WITH -1 * PM_SSSlack * HrsPerDay8 * Team * ROUND((payRateS + payRateS2)/2, 2)

FOR PM_SSSlack <=0

Replace ALL PM_SSOCo WITH PM_SSSlack * HrsPerDay8 * Team * ROUND((payRateS + payRateS2)/2, 2)

FOR PM_SSSlack > 0

* Knowledge Transfer based on survey responses

Replace ALL PM_SSKT WITH SM_KT FOR Sr2_kt = 0

Replace ALL PM_SSKT WITH SM_KT * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Sr2_kt = 1

Replace ALL PM_SSKT WITH SM_KT * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Sr2_kt = 2

Replace ALL PM_SSKT WITH SM_KT * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Sr2_kt = 3

Replace ALL PM_SSKT WITH SM_KT * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Sr2_kt = 4

Replace ALL PM_SSKT WITH SM_KT * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

Sr2_kt = 5

Replace ALL PM_SSKT WITH SM_KT * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

Sr2_kt = 6

Replace ALL PM_SSKT WITH SM_KT * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Sr2_kt = -1

Replace ALL PM_SSKT WITH SM_KT * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Sr2_kt = -2

Replace ALL PM_SSKT WITH SM_KT * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Sr2_kt = -3

Replace ALL PM_SSKT WITH SM_KT * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Sr2_kt = -4

Replace ALL PM_SSKT WITH SM_KT * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) FOR

Sr2_kt = -5

* Convert KT into training cost

Replace ALL PM_SSTC10 WITH (TrainingCM - Pct10 * TrainingCM * PM_SSKT)

Replace ALL PM_SSTC20 WITH (TrainingCM - Pct20 * TrainingCM * PM_SSKT)

Replace ALL PM_SSTC30 WITH (TrainingCM - Pct30 * TrainingCM * PM_SSKT)

137

Replace ALL PM_SSTC40 WITH (TrainingCM - Pct40 * TrainingCM * PM_SSKT)

Replace ALL PM_SSTC50 WITH (TrainingCM - Pct50 * TrainingCM * PM_SSKT)

Replace ALL PM_SSTC60 WITH (TrainingCM - Pct60 * TrainingCM * PM_SSKT)

Replace ALL PM_SSTC70 WITH (TrainingCM - Pct70 * TrainingCM * PM_SSKT)

Replace ALL PM_SSTC80 WITH (TrainingCM - Pct80 * TrainingCM * PM_SSKT)

Replace ALL PM_SSTC90 WITH (TrainingCM - Pct90 * TrainingCM * PM_SSKT)

Replace ALL PM_SSTC100 WITH (TrainingCM - Pct100 * TrainingCM * PM_SSKT)

** PAIR

HIGH complexity projects and EXPERTISE COMPOSITION (SENIOR-SENIOR)

**

* Effort based on survey responses

Replace ALL PH_SSEf WITH hcx_hrs for Sr2_ef = 0

Replace ALL PH_SSEf WITH hcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for Sr2_ef

= 1

Replace ALL PH_SSEf WITH hcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for Sr2_ef

= 2

Replace ALL PH_SSEf WITH hcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for Sr2_ef

= 3

Replace ALL PH_SSEf WITH hcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for Sr2_ef

= 4

Replace ALL PH_SSEf WITH hcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for Sr2_ef

= 5

Replace ALL PH_SSEf WITH hcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for Sr2_ef

= 6

Replace ALL PH_SSEf WITH hcx_hrs * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for Sr2_ef

= -1

Replace ALL PH_SSEf WITH hcx_hrs * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for Sr2_ef

= -2

Replace ALL PH_SSEf WITH hcx_hrs * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for Sr2_ef

= -3

Replace ALL PH_SSEf WITH hcx_hrs * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for Sr2_ef

= -4

Replace ALL PH_SSEf WITH hcx_hrs * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for

Sr2_ef= -5

Replace ALL PH_SSECo WITH PH_SSEf * ROUND((payRateS + payRateS2)/2, 2)

* Defect based on survey responses

Replace ALL PH_SSDef WITH hcx_Defect FOR Sr2_df = 0

Replace ALL PH_SSDef WITH hcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Sr2_df = 1

Replace ALL PH_SSDef WITH hcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Sr2_df = 2

Replace ALL PH_SSDef WITH hcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Sr2_df = 3

Replace ALL PH_SSDef WITH hcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Sr2_df = 4

Replace ALL PH_SSDef WITH hcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

Sr2_df = 5

Replace ALL PH_SSDef WITH hcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

Sr2_df= 6

Replace ALL PH_SSDef WITH hcx_Defect * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Sr2_df = -1

Replace ALL PH_SSDef WITH hcx_Defect * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Sr2_df = -2

138

Replace ALL PH_SSDef WITH hcx_Defect * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Sr2_df = -3

Replace ALL PH_SSDef WITH hcx_Defect * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Sr2_df = -4

Replace ALL PH_SSDef WITH hcx_Defect * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))

FOR Sr2_df= -5

Replace ALL PH_SSDCo WITH (PH_SSDef * h_Size * FixingS) * payRate

* Duration

Replace ALL PH_SSDR WITH PH_SSEf/(Team * HrsPerDay7)

*LABOR SLACK & Opportunity Cost

Replace ALL PH_SSSlack WITH PH_SSDR - H_Ideal

Replace ALL PH_SSSCo WITH -1 * PH_SSSlack * HrsPerDay8 * Team * ROUND((payRateS + payRateS2)/2, 2)

FOR PH_SSSlack <=0

Replace ALL PH_SSOCo WITH PH_SSSlack * HrsPerDay8 * Team * ROUND((payRateS + payRateS2)/2, 2)

FOR PH_SSSlack > 0

* Knowledge Transfer based on survey responses

Replace ALL PH_SSKT WITH SH_KT FOR Sr2_kt = 0

Replace ALL PH_SSKT WITH SH_KT * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Sr2_kt = 1

Replace ALL PH_SSKT WITH SH_KT * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Sr2_kt = 2

Replace ALL PH_SSKT WITH SH_KT * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Sr2_kt = 3

Replace ALL PH_SSKT WITH SH_KT * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Sr2_kt = 4

Replace ALL PH_SSKT WITH SH_KT * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

Sr2_kt = 5

Replace ALL PH_SSKT WITH SH_KT * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

Sr2_kt = 6

Replace ALL PH_SSKT WITH SH_KT * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Sr2_kt = -1

Replace ALL PH_SSKT WITH SH_KT * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Sr2_kt = -2

Replace ALL PH_SSKT WITH SH_KT * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Sr2_kt = -3

Replace ALL PH_SSKT WITH SH_KT * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Sr2_kt = -4

Replace ALL PH_SSKT WITH SH_KT * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) FOR

Sr2_kt = -5

* Convert KT into training cost

Replace ALL PH_SSTC10 WITH (TrainingCH - Pct10 * TrainingCH * PH_SSKT)

Replace ALL PH_SSTC20 WITH (TrainingCH - Pct20 * TrainingCH * PH_SSKT)

Replace ALL PH_SSTC30 WITH (TrainingCH - Pct30 * TrainingCH * PH_SSKT)

Replace ALL PH_SSTC40 WITH (TrainingCH - Pct40 * TrainingCH * PH_SSKT)

Replace ALL PH_SSTC50 WITH (TrainingCH - Pct50 * TrainingCH * PH_SSKT)

Replace ALL PH_SSTC60 WITH (TrainingCH - Pct60 * TrainingCH * PH_SSKT)

Replace ALL PH_SSTC70 WITH (TrainingCH - Pct70 * TrainingCH * PH_SSKT)

Replace ALL PH_SSTC80 WITH (TrainingCH - Pct80 * TrainingCH * PH_SSKT)

Replace ALL PH_SSTC90 WITH (TrainingCH - Pct90 * TrainingCH * PH_SSKT)

Replace ALL PH_SSTC100 WITH (TrainingCH - Pct100 * TrainingCH * PH_SSKT)

139

**

* PAIR COMPOSTION - NEITHER in the pair has prior pair programming experience (PRIOR0), ONE has

(PRIOR1), BOTH have (PRIOR2)

**

* Create C3 since the maximum number of columns a table can have is 256. C3 has the cost columns needed for

prior0, prior1, and prior2

SELECT respondent, trainingC, trainingCL, trainingCM, trainingCH, team, l_team, m_team, h_team, comp1yr,

lcx_hrs, mcx_hrs, hcx_hrs, prior0_ef, prior1_ef, prior2_ef, lcx_defect, mcx_defect, hcx_defect, prior0_df,

prior1_df, prior2_df, sl_kt, sm_kt, sh_kt, prior0_kt, prior1_kt, prior2_kt,

payRate, payRate2, payRateJ, payRateJ2, payRateS, payRateS2, L_Size, M_Size, H_Size, FixingS, L_Ideal,

M_Ideal, H_Ideal, 000000.00 as PL_P0Ef, 000000.00 as PL_P0ECo, 000000.00 as PL_P0Def, 0000000000.00 as

PL_P0DCo, 000000.00 as PL_P0DR, 000000.00 as PL_P0OCo, 000000.00 as PL_P0Slack, 000000.00 as

PL_P0SCo, 00.00 as PL_P0KT, 000000.00 as PL_P0TC10, 000000.00 as PL_P0TC20, 000000.00 as PL_P0TC30,

000000.00 as PL_P0TC40, 000000.00 as PL_P0TC50, 000000.00 as PL_P0TC60, 000000.00 as PL_P0TC70,

000000.00 as PL_P0TC80, 000000.00 as PL_P0TC90, 000000.00 as PL_P0TC100, 000000.00 as PM_P0Ef,

000000.00 as PM_P0ECo, 000000.00 as PM_P0Def, 0000000000.00 as PM_P0DCo, 000000.00 as PM_P0DR,

000000.00 as PM_P0OCo, 000000.00 as PM_P0Slack, 000000.00 as PM_P0SCo, 00.00 as PM_P0KT, 000000.00

as PM_P0TC10, 000000.00 as PM_P0TC20, 000000.00 as PM_P0TC30, 000000.00 as PM_P0TC40, 000000.00 as

PM_P0TC50, 000000.00 as PM_P0TC60, 000000.00 as PM_P0TC70, 000000.00 as PM_P0TC80, 000000.00 as

PM_P0TC90, 000000.00 as PM_P0TC100, 000000.00 as PH_P0Ef, 000000.00 as PH_P0ECo, ;

000000.00 as PH_P0Def, 0000000000.00 as PH_P0DCo, 000000.00 as PH_P0DR, 000000.00 as PH_P0OCo,

000000.00 as PH_P0Slack, 000000.00 as PH_P0SCo, 00.00 as PH_P0KT, 000000.00 as PH_P0TC10, 000000.00

as PH_P0TC20, 000000.00 as PH_P0TC30, 000000.00 as PH_P0TC40, 000000.00 as PH_P0TC50, 000000.00 as

PH_P0TC60, 000000.00 as PH_P0TC70, 000000.00 as PH_P0TC80, 000000.00 as PH_P0TC90, 000000.00 as

PH_P0TC100, 000000.00 as PL_P1Ef, 000000.00 as PL_P1ECo, 000000.00 as PL_P1Def, 0000000000.00 as

PL_P1DCo, 000000.00 as PL_P1DR, 000000.00 as PL_P1OCo, 000000.00 as PL_P1Slack, 000000.00 as

PL_P1SCo, 00.00 as PL_P1KT, 000000.00 as PL_P1TC10, 000000.00 as PL_P1TC20, 000000.00 as PL_P1TC30,

000000.00 as PL_P1TC40, 000000.00 as PL_P1TC50, 000000.00 as PL_P1TC60, 000000.00 as PL_P1TC70,

000000.00 as PL_P1TC80, 000000.00 as PL_P1TC90, 000000.00 as PL_P1TC100, 000000.00 as PM_P1Ef,

000000.00 as PM_P1ECo, 000000.00 as PM_P1Def, 0000000000.00 as PM_P1DCo, 000000.00 as PM_P1DR,

000000.00 as PM_P1OCo, 000000.00 as PM_P1Slack, 000000.00 as PM_P1SCo,

00.00 as PM_P1KT, 000000.00 as PM_P1TC10, 000000.00 as PM_P1TC20, 000000.00 as PM_P1TC30, 000000.00

as PM_P1TC40, 000000.00 as PM_P1TC50, 000000.00 as PM_P1TC60, 000000.00 as PM_P1TC70, 000000.00 as

PM_P1TC80, 000000.00 as PM_P1TC90, 000000.00 as PM_P1TC100,

000000.00 as PH_P1Ef, 000000.00 as PH_P1ECo, 000000.00 as PH_P1Def, 0000000000.00 as PH_P1DCo,

000000.00 as PH_P1DR, 000000.00 as PH_P1OCo, 000000.00 as PH_P1Slack, 000000.00 as PH_P1SCo, 00.00 as

PH_P1KT, 000000.00 as PH_P1TC10, 000000.00 as PH_P1TC20, 000000.00 as PH_P1TC30, 000000.00 as

PH_P1TC40, 000000.00 as PH_P1TC50, 000000.00 as PH_P1TC60,

000000.00 as PH_P1TC70, 000000.00 as PH_P1TC80, 000000.00 as PH_P1TC90, 000000.00 as PH_P1TC100,

000000.00 as PL_P2Ef, 000000.00 as PL_P2ECo, 000000.00 as PL_P2Def, 0000000000.00 as PL_P2DCo,

000000.00 as PL_P2DR, 000000.00 as PL_P2OCo, 000000.00 as PL_P2Slack, 000000.00 as PL_P2SCo, 00.00 as

PL_P2KT, 000000.00 as PL_P2TC10, 000000.00 as PL_P2TC20, 000000.00 as PL_P2TC30, 000000.00 as

PL_P2TC40, 000000.00 as PL_P2TC50, 000000.00 as PL_P2TC60, 000000.00 as PL_P2TC70, 000000.00 as

PL_P2TC80, 000000.00 as PL_P2TC90, 000000.00 as PL_P2TC100, 000000.00 as PM_P2Ef, 000000.00 as

PM_P2ECo, 000000.00 as PM_P2Def, 0000000000.00 as PM_P2DCo, 000000.00 as PM_P2DR, 000000.00 as

PM_P2OCo, 000000.00 as PM_P2Slack, 000000.00 as PM_P2SCo, 00.00 as PM_P2KT, 000000.00 as

PM_P2TC10, 000000.00 as PM_P2TC20, 000000.00 as PM_P2TC30, 000000.00 as PM_P2TC40, 000000.00 as

PM_P2TC50, 000000.00 as PM_P2TC60, 000000.00 as PM_P2TC70, 000000.00 as PM_P2TC80, 000000.00 as

PM_P2TC90, 000000.00 as PM_P2TC100, 000000.00 as PH_P2Ef, 000000.00 as PH_P2ECo, ;

000000.00 as PH_P2Def, 0000000000.00 as PH_P2DCo, 000000.00 as PH_P2DR, 000000.00 as PH_P2OCo,

000000.00 as PH_P2Slack, 000000.00 as PH_P2SCo, 00.00 as PH_P2KT, 000000.00 as PH_P2TC10, 000000.00 as

PH_P2TC20, 000000.00 as PH_P2TC30, 000000.00 as PH_P2TC40, 000000.00 as PH_P2TC50, 000000.00 as

PH_P2TC60, 000000.00 as PH_P2TC70, 000000.00 as PH_P2TC80, 000000.00 as PH_P2TC90, 000000.00 as

PH_P2TC100

140

FROM c1

into TABLE c3

SELECT c3

**

** PAIR LOW complexity projects and PRIOR PAIR EXPERIENCE (NEITHER HAS EXPERIENCE)

**

* based on survey responses

Replace ALL PL_P0Ef WITH lcx_hrs for Prior0_ef = 0

Replace ALL PL_P0Ef WITH lcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for

Prior0_ef = 1

Replace ALL PL_P0Ef WITH lcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for

Prior0_ef = 2

Replace ALL PL_P0Ef WITH lcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for

Prior0_ef = 3

Replace ALL PL_P0Ef WITH lcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for

Prior0_ef = 4

Replace ALL PL_P0Ef WITH lcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for

Prior0_ef = 5

Replace ALL PL_P0Ef WITH lcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for

Prior0_ef = 6

Replace ALL PL_P0Ef WITH lcx_hrs * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for

Prior0_ef = -1

Replace ALL PL_P0Ef WITH lcx_hrs * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for

Prior0_ef = -2

Replace ALL PL_P0Ef WITH lcx_hrs * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for

Prior0_ef = -3

Replace ALL PL_P0Ef WITH lcx_hrs * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for

Prior0_ef = -4

Replace ALL PL_P0Ef WITH lcx_hrs * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for

Prior0_ef = -5

Replace ALL PL_P0ECo WITH PL_P0Ef * ROUND((payRate + payRate2)/2, 2)

* Defect based on survey responses

Replace ALL PL_P0Def WITH lcx_Defect FOR Prior0_df = 0

Replace ALL PL_P0Def WITH lcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Prior0_df = 1

Replace ALL PL_P0Def WITH lcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Prior0_df = 2

Replace ALL PL_P0Def WITH lcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Prior0_df = 3

Replace ALL PL_P0Def WITH lcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Prior0_df = 4

Replace ALL PL_P0Def WITH lcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

Prior0_df = 5

Replace ALL PL_P0Def WITH lcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

Prior0_df = 6

Replace ALL PL_P0Def WITH lcx_Defect * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Prior0_df = -1

Replace ALL PL_P0Def WITH lcx_Defect * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Prior0_df = -2

Replace ALL PL_P0Def WITH lcx_Defect * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Prior0_df = -3

141

Replace ALL PL_P0Def WITH lcx_Defect * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Prior0_df = -4

Replace ALL PL_P0Def WITH lcx_Defect * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))

FOR Prior0_df = -5

Replace ALL PL_P0DCo WITH (PL_P0Def * l_Size * FixingS) * payRate

* Duration

Replace ALL PL_P0DR WITH PL_P0Ef/(Team * HrsPerDay7)

*LABOR SLACK & Opportunity Cost

Replace ALL PL_P0Slack WITH PL_P0DR - L_Ideal

Replace ALL pl_p0Sco WITH -1 * pl_p0slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR pl_p0Slack

<= 0

Replace ALL pl_p0Oco WITH pl_p0slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR pl_p0Slack > 0

* Knowledge Transfer based on survey responses

Replace ALL PL_P0KT WITH SL_KT FOR Prior0_kt = 0

Replace ALL PL_P0KT WITH SL_KT * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Prior0_kt = 1

Replace ALL PL_P0KT WITH SL_KT * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Prior0_kt = 2

Replace ALL PL_P0KT WITH SL_KT * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Prior0_kt = 3

Replace ALL PL_P0KT WITH SL_KT * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Prior0_kt = 4

Replace ALL PL_P0KT WITH SL_KT * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

Prior0_kt = 5

Replace ALL PL_P0KT WITH SL_KT * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

Prior0_kt = 6

Replace ALL PL_P0KT WITH SL_KT * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Prior0_kt = -1

Replace ALL PL_P0KT WITH SL_KT * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Prior0_kt = -2

Replace ALL PL_P0KT WITH SL_KT * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Prior0_kt = -3

Replace ALL PL_P0KT WITH SL_KT * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Prior0_kt = -4

Replace ALL PL_P0KT WITH SL_KT * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) FOR

Prior0_kt = -5

Replace ALL PL_P0KT WITH 0 FOR PL_P0KT < 0

Replace ALL PL_P0KT WITH 1 FOR PL_P0KT > 1

* Convert KT into training cost

Replace ALL PL_P0TC10 WITH (TrainingCL - Pct10 * TrainingCL * PL_P0KT)

Replace ALL PL_P0TC20 WITH (TrainingCL - Pct20 * TrainingCL * PL_P0KT)

Replace ALL PL_P0TC30 WITH (TrainingCL - Pct30 * TrainingCL * PL_P0KT)

Replace ALL PL_P0TC40 WITH (TrainingCL - Pct40 * TrainingCL * PL_P0KT)

Replace ALL PL_P0TC50 WITH (TrainingCL - Pct50 * TrainingCL * PL_P0KT)

Replace ALL PL_P0TC60 WITH (TrainingCL - Pct60 * TrainingCL * PL_P0KT)

Replace ALL PL_P0TC70 WITH (TrainingCL - Pct70 * TrainingCL * PL_P0KT)

Replace ALL PL_P0TC80 WITH (TrainingCL - Pct80 * TrainingCL * PL_P0KT)

Replace ALL PL_P0TC90 WITH (TrainingCL - Pct90 * TrainingCL * PL_P0KT)

Replace ALL PL_P0TC100 WITH (TrainingCL - Pct100 * TrainingCL * PL_P0KT)

**

142

** PAIR MEDIUM complexity projects and PRIOR PAIR EXPERIENCE (NEITHER HAS EXPERIENCE)

**

* Effort based on survey responses

Replace ALL PM_P0Ef WITH mcx_hrs for Prior0_ef = 0

Replace ALL PM_P0Ef WITH mcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for

Prior0_ef = 1

Replace ALL PM_P0Ef WITH mcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for

Prior0_ef = 2

Replace ALL PM_P0Ef WITH mcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for

Prior0_ef = 3

Replace ALL PM_P0Ef WITH mcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for

Prior0_ef = 4

Replace ALL PM_P0Ef WITH mcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for

Prior0_ef = 5

Replace ALL PM_P0Ef WITH mcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for

Prior0_ef = 6

Replace ALL PM_P0Ef WITH mcx_hrs * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for

Prior0_ef = -1

Replace ALL PM_P0Ef WITH mcx_hrs * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for

Prior0_ef = -2

Replace ALL PM_P0Ef WITH mcx_hrs * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for

Prior0_ef = -3

Replace ALL PM_P0Ef WITH mcx_hrs * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for

Prior0_ef= -4

Replace ALL PM_P0Ef WITH mcx_hrs * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for

Prior0_ef = -5

Replace ALL PM_P0ECo WITH PM_P0Ef * ROUND((payRate + payRate2)/2, 2)

* Defect based on survey responses

Replace ALL PM_P0Def WITH mcx_Defect FOR Prior0_df = 0

Replace ALL PM_P0Def WITH mcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))

FOR Prior0_df = 1

Replace ALL PM_P0Def WITH mcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2))

FOR Prior0_df = 2

Replace ALL PM_P0Def WITH mcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2))

FOR Prior0_df = 3

Replace ALL PM_P0Def WITH mcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2))

FOR Prior0_df = 4

Replace ALL PM_P0Def WITH mcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2))

FOR Prior0_df = 5

Replace ALL PM_P0Def WITH mcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2))

FOR Prior0_df = 6

Replace ALL PM_P0Def WITH mcx_Defect * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))

FOR Prior0_df = -1

Replace ALL PM_P0Def WITH mcx_Defect * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2))

FOR Prior0_df = -2

Replace ALL PM_P0Def WITH mcx_Defect * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2))

FOR Prior0_df = -3

Replace ALL PM_P0Def WITH mcx_Defect * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2))

FOR Prior0_df = -4

Replace ALL PM_P0Def WITH mcx_Defect * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))

FOR Prior0_df = -5

Replace ALL PM_P0DCo WITH (PM_P0Def * m_Size * FixingS) * payRate

143

* Duration

Replace ALL PM_P0DR WITH PM_P0Ef/(Team * HrsPerDay7)

*LABOR SLACK & Opportunity Cost

Replace ALL PM_P0Slack WITH PM_P0DR - M_Ideal

Replace ALL pm_p0Sco WITH -1 * pm_p0slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR

pm_p0Slack <= 0

Replace ALL pm_p0Oco WITH pm_p0slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR pm_p0Slack >

0

* Knowledge Transfer based on survey responses

Replace ALL PM_P0KT WITH SM_KT FOR Prior0_kt = 0

Replace ALL PM_P0KT WITH SM_KT * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Prior0_kt = 1

Replace ALL PM_P0KT WITH SM_KT * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Prior0_kt = 2

Replace ALL PM_P0KT WITH SM_KT * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Prior0_kt = 3

Replace ALL PM_P0KT WITH SM_KT * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Prior0_kt = 4

Replace ALL PM_P0KT WITH SM_KT * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

Prior0_kt = 5

Replace ALL PM_P0KT WITH SM_KT * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

Prior0_kt = 6

Replace ALL PM_P0KT WITH SM_KT * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Prior0_kt = -1

Replace ALL PM_P0KT WITH SM_KT * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Prior0_kt = -2

Replace ALL PM_P0KT WITH SM_KT * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Prior0_kt = -3

Replace ALL PM_P0KT WITH SM_KT * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Prior0_kt = -4

Replace ALL PM_P0KT WITH SM_KT * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))

FOR Prior0_kt = -5

* Convert KT into training cost

Replace ALL PM_P0TC10 WITH (TrainingCM - Pct10 * TrainingCM * PM_P0KT)

Replace ALL PM_P0TC20 WITH (TrainingCM - Pct20 * TrainingCM * PM_P0KT)

Replace ALL PM_P0TC30 WITH (TrainingCM - Pct30 * TrainingCM * PM_P0KT)

Replace ALL PM_P0TC40 WITH (TrainingCM - Pct40 * TrainingCM * PM_P0KT)

Replace ALL PM_P0TC50 WITH (TrainingCM - Pct50 * TrainingCM * PM_P0KT)

Replace ALL PM_P0TC60 WITH (TrainingCM - Pct60 * TrainingCM * PM_P0KT)

Replace ALL PM_P0TC70 WITH (TrainingCM - Pct70 * TrainingCM * PM_P0KT)

Replace ALL PM_P0TC80 WITH (TrainingCM - Pct80 * TrainingCM * PM_P0KT)

Replace ALL PM_P0TC90 WITH (TrainingCM - Pct90 * TrainingCM * PM_P0KT)

Replace ALL PM_P0TC100 WITH (TrainingCM - Pct100 * TrainingCM * PM_P0KT)

**

** PAIR HIGH complexity projects and PRIOR PAIR EXPERIENCE (NEITHER HAS EXPERIENCE)

*** Effort

based on survey responses

Replace ALL PH_P0Ef WITH hcx_hrs for Prior0_ef = 0

Replace ALL PH_P0Ef WITH hcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for

Prior0_ef = 1

144

Replace ALL PH_P0Ef WITH hcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for

Prior0_ef = 2

Replace ALL PH_P0Ef WITH hcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for

Prior0_ef = 3

Replace ALL PH_P0Ef WITH hcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for

Prior0_ef = 4

Replace ALL PH_P0Ef WITH hcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for

Prior0_ef = 5

Replace ALL PH_P0Ef WITH hcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for

Prior0_ef = 6

Replace ALL PH_P0Ef WITH hcx_hrs * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for

Prior0_ef = -1

Replace ALL PH_P0Ef WITH hcx_hrs * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for

Prior0_ef = -2

Replace ALL PH_P0Ef WITH hcx_hrs * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for

Prior0_ef = -3

Replace ALL PH_P0Ef WITH hcx_hrs * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for

Prior0_ef = -4

Replace ALL PH_P0Ef WITH hcx_hrs * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for

Prior0_ef= -5

Replace ALL PH_P0ECo WITH PH_P0Ef * ROUND((payRate + payRate2)/2, 2)

* Defect based on survey responses

Replace ALL PH_P0Def WITH hcx_Defect FOR Prior0_df = 0

Replace ALL PH_P0Def WITH hcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Prior0_df = 1

Replace ALL PH_P0Def WITH hcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Prior0_df = 2

Replace ALL PH_P0Def WITH hcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Prior0_df = 3

Replace ALL PH_P0Def WITH hcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Prior0_df = 4

Replace ALL PH_P0Def WITH hcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

Prior0_df = 5

Replace ALL PH_P0Def WITH hcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

Prior0_df= 6

Replace ALL PH_P0Def WITH hcx_Defect * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Prior0_df = -1

Replace ALL PH_P0Def WITH hcx_Defect * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Prior0_df = -2

Replace ALL PH_P0Def WITH hcx_Defect * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Prior0_df = -3

Replace ALL PH_P0Def WITH hcx_Defect * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Prior0_df = -4

Replace ALL PH_P0Def WITH hcx_Defect * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))

FOR Prior0_df= -5

Replace ALL PH_P0DCo WITH (PH_P0Def * h_Size * FixingS) * payRate

* Duration

Replace ALL PH_P0DR WITH PH_P0Ef/(Team * HrsPerDay7)

*LABOR SLACK & Opportunity Cost

Replace ALL PH_P0Slack WITH PH_P0DR - H_Ideal

145

Replace ALL ph_p0Sco WITH -1 * ph_p0slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR ph_p0Slack

<= 0

Replace ALL ph_p0Oco WITH ph_p0slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR ph_p0Slack > 0

* Knowledge Transfer based on survey responses

Replace ALL PH_P0KT WITH SH_KT FOR Prior0_kt = 0

Replace ALL PH_P0KT WITH SH_KT * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Prior0_kt = 1

Replace ALL PH_P0KT WITH SH_KT * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Prior0_kt = 2

Replace ALL PH_P0KT WITH SH_KT * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Prior0_kt = 3

Replace ALL PH_P0KT WITH SH_KT * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Prior0_kt = 4

Replace ALL PH_P0KT WITH SH_KT * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

Prior0_kt = 5

Replace ALL PH_P0KT WITH SH_KT * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

Prior0_kt = 6

Replace ALL PH_P0KT WITH SH_KT * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Prior0_kt = -1

Replace ALL PH_P0KT WITH SH_KT * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Prior0_kt = -2

Replace ALL PH_P0KT WITH SH_KT * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Prior0_kt = -3

Replace ALL PH_P0KT WITH SH_KT * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Prior0_kt = -4

Replace ALL PH_P0KT WITH SH_KT * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) FOR

Prior0_kt = -5

* Convert KT into training cost

Replace ALL PH_P0TC10 WITH (TrainingCH - Pct10 * TrainingCH * PH_P0KT)

Replace ALL PH_P0TC20 WITH (TrainingCH - Pct20 * TrainingCH * PH_P0KT)

Replace ALL PH_P0TC30 WITH (TrainingCH - Pct30 * TrainingCH * PH_P0KT)

Replace ALL PH_P0TC40 WITH (TrainingCH - Pct40 * TrainingCH * PH_P0KT)

Replace ALL PH_P0TC50 WITH (TrainingCH - Pct50 * TrainingCH * PH_P0KT)

Replace ALL PH_P0TC60 WITH (TrainingCH - Pct60 * TrainingCH * PH_P0KT)

Replace ALL PH_P0TC70 WITH (TrainingCH - Pct70 * TrainingCH * PH_P0KT)

Replace ALL PH_P0TC80 WITH (TrainingCH - Pct80 * TrainingCH * PH_P0KT)

Replace ALL PH_P0TC90 WITH (TrainingCH - Pct90 * TrainingCH * PH_P0KT)

Replace ALL PH_P0TC100 WITH (TrainingCH - Pct100 * TrainingCH * PH_P0KT)

** PAIR

LOW complexity projects and PRIOR PAIR EXPERIENCE (ONE HAS EXPERIENCE)

**

* Effort based on survey responses

Replace ALL PL_P1Ef WITH lcx_hrs for Prior1_ef = 0

Replace ALL PL_P1Ef WITH lcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for

Prior1_ef = 1

Replace ALL PL_P1Ef WITH lcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for

Prior1_ef = 2

Replace ALL PL_P1Ef WITH lcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for

Prior1_ef = 3

Replace ALL PL_P1Ef WITH lcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for

Prior1_ef = 4

146

Replace ALL PL_P1Ef WITH lcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for

Prior1_ef = 5

Replace ALL PL_P1Ef WITH lcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for

Prior1_ef = 6

Replace ALL PL_P1Ef WITH lcx_hrs * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for

Prior1_ef = -1

Replace ALL PL_P1Ef WITH lcx_hrs * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for

Prior1_ef = -2

Replace ALL PL_P1Ef WITH lcx_hrs * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for

Prior1_ef = -3

Replace ALL PL_P1Ef WITH lcx_hrs * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for

Prior1_ef = -4

Replace ALL PL_P1Ef WITH lcx_hrs * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for

Prior1_ef = -5

Replace ALL PL_P1ECo WITH PL_P1Ef * ROUND((payRate + payRate2)/2, 2)

* Defect based on survey responses

Replace ALL PL_P1Def WITH lcx_Defect FOR Prior1_df = 0

Replace ALL PL_P1Def WITH lcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Prior1_df = 1

Replace ALL PL_P1Def WITH lcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Prior1_df = 2

Replace ALL PL_P1Def WITH lcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Prior1_df = 3

Replace ALL PL_P1Def WITH lcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Prior1_df = 4

Replace ALL PL_P1Def WITH lcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

Prior1_df = 5

Replace ALL PL_P1Def WITH lcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

Prior1_df = 6

Replace ALL PL_P1Def WITH lcx_Defect * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Prior1_df = -1

Replace ALL PL_P1Def WITH lcx_Defect * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Prior1_df = -2

Replace ALL PL_P1Def WITH lcx_Defect * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Prior1_df = -3

Replace ALL PL_P1Def WITH lcx_Defect * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Prior1_df = -4

Replace ALL PL_P1Def WITH lcx_Defect * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))

FOR Prior1_df = -5

Replace ALL PL_P1DCo WITH (PL_P1Def * l_Size * FixingS) * payRate

* Duration

Replace ALL PL_P1DR WITH PL_P1Ef/(Team * HrsPerDay7)

*LABOR SLACK & Opportunity Cost

Replace ALL PL_P1Slack WITH PL_P1DR - L_Ideal

Replace ALL pl_p1Sco WITH -1 * pl_p1slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR pl_p1Slack

<= 0

Replace ALL pl_p1Oco WITH pl_p1slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR pl_p1Slack > 0

* Knowledge Transfer based on survey responses

Replace ALL PL_P1KT WITH SL_KT FOR Prior1_kt = 0

147

Replace ALL PL_P1KT WITH SL_KT * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Prior1_kt = 1

Replace ALL PL_P1KT WITH SL_KT * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Prior1_kt = 2

Replace ALL PL_P1KT WITH SL_KT * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Prior1_kt = 3

Replace ALL PL_P1KT WITH SL_KT * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Prior1_kt = 4

Replace ALL PL_P1KT WITH SL_KT * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

Prior1_kt = 5

Replace ALL PL_P1KT WITH SL_KT * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

Prior1_kt = 6

Replace ALL PL_P1KT WITH SL_KT * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Prior1_kt = -1

Replace ALL PL_P1KT WITH SL_KT * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Prior1_kt = -2

Replace ALL PL_P1KT WITH SL_KT * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Prior1_kt = -3

Replace ALL PL_P1KT WITH SL_KT * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Prior1_kt = -4

Replace ALL PL_P1KT WITH SL_KT * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) FOR

Prior1_kt = -5

* Convert KT into training cost

Replace ALL PL_P1TC10 WITH (TrainingCL - Pct10 * TrainingCL * PL_P1KT)

Replace ALL PL_P1TC20 WITH (TrainingCL - Pct20 * TrainingCL * PL_P1KT)

Replace ALL PL_P1TC30 WITH (TrainingCL - Pct30 * TrainingCL * PL_P1KT)

Replace ALL PL_P1TC40 WITH (TrainingCL - Pct40 * TrainingCL * PL_P1KT)

Replace ALL PL_P1TC50 WITH (TrainingCL - Pct50 * TrainingCL * PL_P1KT)

Replace ALL PL_P1TC60 WITH (TrainingCL - Pct60 * TrainingCL * PL_P1KT)

Replace ALL PL_P1TC70 WITH (TrainingCL - Pct70 * TrainingCL * PL_P1KT)

Replace ALL PL_P1TC80 WITH (TrainingCL - Pct80 * TrainingCL * PL_P1KT)

Replace ALL PL_P1TC90 WITH (TrainingCL - Pct90 * TrainingCL * PL_P1KT)

Replace ALL PL_P1TC100 WITH (TrainingCL - Pct100 * TrainingCL * PL_P1KT)

** PAIR

MEDIUM complexity projects and PRIOR PAIR EXPERIENCE (ONE HAS EXPERIENCE)

**

* Effort based on survey responses

Replace ALL PM_P1Ef WITH mcx_hrs for Prior1_ef = 0

Replace ALL PM_P1Ef WITH mcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for

Prior1_ef = 1

Replace ALL PM_P1Ef WITH mcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for

Prior1_ef = 2

Replace ALL PM_P1Ef WITH mcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for

Prior1_ef = 3

Replace ALL PM_P1Ef WITH mcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for

Prior1_ef = 4

Replace ALL PM_P1Ef WITH mcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for

Prior1_ef = 5

Replace ALL PM_P1Ef WITH mcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for

Prior1_ef = 6

Replace ALL PM_P1Ef WITH mcx_hrs * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for

Prior1_ef = -1

Replace ALL PM_P1Ef WITH mcx_hrs * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for

Prior1_ef = -2

148

Replace ALL PM_P1Ef WITH mcx_hrs * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for

Prior1_ef = -3

Replace ALL PM_P1Ef WITH mcx_hrs * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for

Prior1_ef= -4

Replace ALL PM_P1Ef WITH mcx_hrs * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for

Prior1_ef = -5

Replace ALL PM_P1ECo WITH PM_P1Ef * ROUND((payRate + payRate2)/2, 2)

* Defect based on survey responses

Replace ALL PM_P1Def WITH mcx_Defect FOR Prior1_df = 0

Replace ALL PM_P1Def WITH mcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))

FOR Prior1_df = 1

Replace ALL PM_P1Def WITH mcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2))

FOR Prior1_df = 2

Replace ALL PM_P1Def WITH mcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2))

FOR Prior1_df = 3

Replace ALL PM_P1Def WITH mcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2))

FOR Prior1_df = 4

Replace ALL PM_P1Def WITH mcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2))

FOR Prior1_df = 5

Replace ALL PM_P1Def WITH mcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2))

FOR Prior1_df = 6

Replace ALL PM_P1Def WITH mcx_Defect * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))

FOR Prior1_df = -1

Replace ALL PM_P1Def WITH mcx_Defect * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2))

FOR Prior1_df = -2

Replace ALL PM_P1Def WITH mcx_Defect * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2))

FOR Prior1_df = -3

Replace ALL PM_P1Def WITH mcx_Defect * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2))

FOR Prior1_df = -4

Replace ALL PM_P1Def WITH mcx_Defect * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))

FOR Prior1_df = -5

Replace ALL PM_P1DCo WITH (PM_P1Def * m_Size * FixingS) * payRate

* Duration

Replace ALL PM_P1DR WITH PM_P1Ef/(Team * HrsPerDay7)

*LABOR SLACK & Opportunity Cost

Replace ALL PM_P1Slack WITH PM_P1DR - M_Ideal

Replace ALL pm_p1Sco WITH -1 * pm_p1slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR

pm_p1Slack <= 0

Replace ALL pm_p1Oco WITH pm_p1slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR pm_p1Slack >

0

* Knowledge Transfer based on survey responses

Replace ALL PM_P1KT WITH SM_KT FOR Prior1_kt = 0

Replace ALL PM_P1KT WITH SM_KT * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Prior1_kt = 1

Replace ALL PM_P1KT WITH SM_KT * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Prior1_kt = 2

Replace ALL PM_P1KT WITH SM_KT * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Prior1_kt = 3

Replace ALL PM_P1KT WITH SM_KT * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Prior1_kt = 4

149

Replace ALL PM_P1KT WITH SM_KT * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

Prior1_kt = 5

Replace ALL PM_P1KT WITH SM_KT * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

Prior1_kt = 6

Replace ALL PM_P1KT WITH SM_KT * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Prior1_kt = -1

Replace ALL PM_P1KT WITH SM_KT * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Prior1_kt = -2

Replace ALL PM_P1KT WITH SM_KT * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Prior1_kt = -3

Replace ALL PM_P1KT WITH SM_KT * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Prior1_kt = -4

Replace ALL PM_P1KT WITH SM_KT * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))

FOR Prior1_kt = -5

* Convert KT into training cost

Replace ALL PM_P1TC10 WITH (TrainingCM - Pct10 * TrainingCM * PM_P1KT)

Replace ALL PM_P1TC20 WITH (TrainingCM - Pct20 * TrainingCM * PM_P1KT)

Replace ALL PM_P1TC30 WITH (TrainingCM - Pct30 * TrainingCM * PM_P1KT)

Replace ALL PM_P1TC40 WITH (TrainingCM - Pct40 * TrainingCM * PM_P1KT)

Replace ALL PM_P1TC50 WITH (TrainingCM - Pct50 * TrainingCM * PM_P1KT)

Replace ALL PM_P1TC60 WITH (TrainingCM - Pct60 * TrainingCM * PM_P1KT)

Replace ALL PM_P1TC70 WITH (TrainingCM - Pct70 * TrainingCM * PM_P1KT)

Replace ALL PM_P1TC80 WITH (TrainingCM - Pct80 * TrainingCM * PM_P1KT)

Replace ALL PM_P1TC90 WITH (TrainingCM - Pct90 * TrainingCM * PM_P1KT)

Replace ALL PM_P1TC100 WITH (TrainingCM - Pct100 * TrainingCM * PM_P1KT)

** PAIR

HIGH complexity projects and PRIOR PAIR EXPERIENCE (ONE HAS EXPERIENCE)

**

* Effort based on survey responses

Replace ALL PH_P1Ef WITH hcx_hrs for Prior1_ef = 0

Replace ALL PH_P1Ef WITH hcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for

Prior1_ef = 1

Replace ALL PH_P1Ef WITH hcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for

Prior1_ef = 2

Replace ALL PH_P1Ef WITH hcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for

Prior1_ef = 3

Replace ALL PH_P1Ef WITH hcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for

Prior1_ef = 4

Replace ALL PH_P1Ef WITH hcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for

Prior1_ef = 5

Replace ALL PH_P1Ef WITH hcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for

Prior1_ef = 6

Replace ALL PH_P1Ef WITH hcx_hrs * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for

Prior1_ef = -1

Replace ALL PH_P1Ef WITH hcx_hrs * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for

Prior1_ef = -2

Replace ALL PH_P1Ef WITH hcx_hrs * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for

Prior1_ef = -3

Replace ALL PH_P1Ef WITH hcx_hrs * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for

Prior1_ef = -4

Replace ALL PH_P1Ef WITH hcx_hrs * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for

Prior1_ef= -5

150

Replace ALL PH_P1ECo WITH PH_P1Ef * ROUND((payRate + payRate2)/2, 2)

* Defect based on survey responses

Replace ALL PH_P1Def WITH hcx_Defect FOR Prior1_df = 0

Replace ALL PH_P1Def WITH hcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Prior1_df = 1

Replace ALL PH_P1Def WITH hcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Prior1_df = 2

Replace ALL PH_P1Def WITH hcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Prior1_df = 3

Replace ALL PH_P1Def WITH hcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Prior1_df = 4

Replace ALL PH_P1Def WITH hcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

Prior1_df = 5

Replace ALL PH_P1Def WITH hcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

Prior1_df= 6

Replace ALL PH_P1Def WITH hcx_Defect * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Prior1_df = -1

Replace ALL PH_P1Def WITH hcx_Defect * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Prior1_df = -2

Replace ALL PH_P1Def WITH hcx_Defect * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Prior1_df = -3

Replace ALL PH_P1Def WITH hcx_Defect * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Prior1_df = -4

Replace ALL PH_P1Def WITH hcx_Defect * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))

FOR Prior1_df= -5

Replace ALL PH_P1DCo WITH (PH_P1Def * h_Size * FixingS) * payRate

* Duration

Replace ALL PH_P1DR WITH PH_P1Ef/(Team * HrsPerDay7)

*LABOR SLACK & Opportunity Cost

Replace ALL PH_P1Slack WITH PH_P1DR - H_Ideal

Replace ALL ph_p1Sco WITH -1 * ph_p1slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR ph_p1Slack

<= 0

Replace ALL ph_p1Oco WITH ph_p1slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR ph_p1Slack > 0

* Knowledge Transfer based on survey responses

Replace ALL PH_P1KT WITH SH_KT FOR Prior1_kt = 0

Replace ALL PH_P1KT WITH SH_KT * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Prior1_kt = 1

Replace ALL PH_P1KT WITH SH_KT * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Prior1_kt = 2

Replace ALL PH_P1KT WITH SH_KT * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Prior1_kt = 3

Replace ALL PH_P1KT WITH SH_KT * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Prior1_kt = 4

Replace ALL PH_P1KT WITH SH_KT * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

Prior1_kt = 5

Replace ALL PH_P1KT WITH SH_KT * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

Prior1_kt = 6

Replace ALL PH_P1KT WITH SH_KT * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Prior1_kt = -1

Replace ALL PH_P1KT WITH SH_KT * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Prior1_kt = -2

151

Replace ALL PH_P1KT WITH SH_KT * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Prior1_kt = -3

Replace ALL PH_P1KT WITH SH_KT * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Prior1_kt = -4

Replace ALL PH_P1KT WITH SH_KT * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) FOR

Prior1_kt = -5

* Convert KT into training cost

Replace ALL PH_P1TC10 WITH (TrainingCH - Pct10 * TrainingCH * PH_P1KT)

Replace ALL PH_P1TC20 WITH (TrainingCH - Pct20 * TrainingCH * PH_P1KT)

Replace ALL PH_P1TC30 WITH (TrainingCH - Pct30 * TrainingCH * PH_P1KT)

Replace ALL PH_P1TC40 WITH (TrainingCH - Pct40 * TrainingCH * PH_P1KT)

Replace ALL PH_P1TC50 WITH (TrainingCH - Pct50 * TrainingCH * PH_P1KT)

Replace ALL PH_P1TC60 WITH (TrainingCH - Pct60 * TrainingCH * PH_P1KT)

Replace ALL PH_P1TC70 WITH (TrainingCH - Pct70 * TrainingCH * PH_P1KT)

Replace ALL PH_P1TC80 WITH (TrainingCH - Pct80 * TrainingCH * PH_P1KT)

Replace ALL PH_P1TC90 WITH (TrainingCH - Pct90 * TrainingCH * PH_P1KT)

Replace ALL PH_P1TC100 WITH (TrainingCH - Pct100 * TrainingCH * PH_P1KT)

** PAIR

LOW complexity projects and PRIOR PAIR EXPERIENCE (BOTH HAVE EXPERIENCE)

**

* Effort based on survey responses

Replace ALL PL_P2Ef WITH lcx_hrs for Prior2_ef = 0

Replace ALL PL_P2Ef WITH lcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for

Prior2_ef = 1

Replace ALL PL_P2Ef WITH lcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for

Prior2_ef = 2

Replace ALL PL_P2Ef WITH lcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for

Prior2_ef = 3

Replace ALL PL_P2Ef WITH lcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for

Prior2_ef = 4

Replace ALL PL_P2Ef WITH lcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for

Prior2_ef = 5

Replace ALL PL_P2Ef WITH lcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for

Prior2_ef = 6

Replace ALL PL_P2Ef WITH lcx_hrs * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for

Prior2_ef = -1

Replace ALL PL_P2Ef WITH lcx_hrs * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for

Prior2_ef = -2

Replace ALL PL_P2Ef WITH lcx_hrs * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for

Prior2_ef = -3

Replace ALL PL_P2Ef WITH lcx_hrs * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for

Prior2_ef = -4

Replace ALL PL_P2Ef WITH lcx_hrs * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for

Prior2_ef = -5

Replace ALL PL_P2ECo WITH PL_P2Ef * ROUND((payRate + payRate2)/2, 2)

* Defect based on survey responses

Replace ALL PL_P2Def WITH lcx_Defect FOR Prior2_df = 0

Replace ALL PL_P2Def WITH lcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Prior2_df = 1

Replace ALL PL_P2Def WITH lcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Prior2_df = 2

152

Replace ALL PL_P2Def WITH lcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Prior2_df = 3

Replace ALL PL_P2Def WITH lcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Prior2_df = 4

Replace ALL PL_P2Def WITH lcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

Prior2_df = 5

Replace ALL PL_P2Def WITH lcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

Prior2_df = 6

Replace ALL PL_P2Def WITH lcx_Defect * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Prior2_df = -1

Replace ALL PL_P2Def WITH lcx_Defect * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Prior2_df = -2

Replace ALL PL_P2Def WITH lcx_Defect * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Prior2_df = -3

Replace ALL PL_P2Def WITH lcx_Defect * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Prior2_df = -4

Replace ALL PL_P2Def WITH lcx_Defect * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))

FOR Prior2_df = -5

Replace ALL PL_P2DCo WITH (PL_P2Def * l_Size * FixingS) * payRate

* Duration

Replace ALL PL_P2DR WITH PL_P2Ef/(Team * HrsPerDay7)

*LABOR SLACK & Opportunity Cost

Replace ALL PL_P2Slack WITH PL_P2DR - L_Ideal

Replace ALL pl_p2Sco WITH -1 * pl_p2slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR pl_p2Slack

<= 0

Replace ALL pl_p2Oco WITH pl_p2slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR pl_p2Slack > 0

* Knowledge Transfer based on survey responses

Replace ALL PL_P2KT WITH SL_KT FOR Prior2_kt = 0

Replace ALL PL_P2KT WITH SL_KT * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Prior2_kt = 1

Replace ALL PL_P2KT WITH SL_KT * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Prior2_kt = 2

Replace ALL PL_P2KT WITH SL_KT * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Prior2_kt = 3

Replace ALL PL_P2KT WITH SL_KT * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Prior2_kt = 4

Replace ALL PL_P2KT WITH SL_KT * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

Prior2_kt = 5

Replace ALL PL_P2KT WITH SL_KT * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

Prior2_kt = 6

Replace ALL PL_P2KT WITH SL_KT * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Prior2_kt = -1

Replace ALL PL_P2KT WITH SL_KT * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Prior2_kt = -2

Replace ALL PL_P2KT WITH SL_KT * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Prior2_kt = -3

Replace ALL PL_P2KT WITH SL_KT * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Prior2_kt = -4

Replace ALL PL_P2KT WITH SL_KT * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) FOR

Prior2_kt = -5

* Convert KT into training cost

153

Replace ALL PL_P2TC10 WITH (TrainingCL - Pct10 * TrainingCL * PL_P2KT)

Replace ALL PL_P2TC20 WITH (TrainingCL - Pct20 * TrainingCL * PL_P2KT)

Replace ALL PL_P2TC30 WITH (TrainingCL - Pct30 * TrainingCL * PL_P2KT)

Replace ALL PL_P2TC40 WITH (TrainingCL - Pct40 * TrainingCL * PL_P2KT)

Replace ALL PL_P2TC50 WITH (TrainingCL - Pct50 * TrainingCL * PL_P2KT)

Replace ALL PL_P2TC60 WITH (TrainingCL - Pct60 * TrainingCL * PL_P2KT)

Replace ALL PL_P2TC70 WITH (TrainingCL - Pct70 * TrainingCL * PL_P2KT)

Replace ALL PL_P2TC80 WITH (TrainingCL - Pct80 * TrainingCL * PL_P2KT)

Replace ALL PL_P2TC90 WITH (TrainingCL - Pct90 * TrainingCL * PL_P2KT)

Replace ALL PL_P2TC100 WITH (TrainingCL - Pct100 * TrainingCL * PL_P2KT)

**

** PAIR MEDIUM complexity projects and PRIOR PAIR EXPERIENCE (BOTH HAVE EXPERIENCE)

**

* Effort based on survey responses

Replace ALL PM_P2Ef WITH mcx_hrs for Prior2_ef = 0

Replace ALL PM_P2Ef WITH mcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for

Prior2_ef = 1

Replace ALL PM_P2Ef WITH mcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for

Prior2_ef = 2

Replace ALL PM_P2Ef WITH mcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for

Prior2_ef = 3

Replace ALL PM_P2Ef WITH mcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for

Prior2_ef = 4

Replace ALL PM_P2Ef WITH mcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for

Prior2_ef = 5

Replace ALL PM_P2Ef WITH mcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for

Prior2_ef = 6

Replace ALL PM_P2Ef WITH mcx_hrs * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for

Prior2_ef = -1

Replace ALL PM_P2Ef WITH mcx_hrs * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for

Prior2_ef = -2

Replace ALL PM_P2Ef WITH mcx_hrs * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for

Prior2_ef = -3

Replace ALL PM_P2Ef WITH mcx_hrs * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for

Prior2_ef= -4

Replace ALL PM_P2Ef WITH mcx_hrs * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for

Prior2_ef = -5

Replace ALL PM_P2ECo WITH PM_P2Ef * ROUND((payRate + payRate2)/2, 2)

* Defect based on survey responses

Replace ALL PM_P2Def WITH mcx_Defect FOR Prior2_df = 0

Replace ALL PM_P2Def WITH mcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))

FOR Prior2_df = 1

Replace ALL PM_P2Def WITH mcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2))

FOR Prior2_df = 2

Replace ALL PM_P2Def WITH mcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2))

FOR Prior2_df = 3

Replace ALL PM_P2Def WITH mcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2))

FOR Prior2_df = 4

Replace ALL PM_P2Def WITH mcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2))

FOR Prior2_df = 5

Replace ALL PM_P2Def WITH mcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2))

FOR Prior2_df = 6

154

Replace ALL PM_P2Def WITH mcx_Defect * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))

FOR Prior2_df = -1

Replace ALL PM_P2Def WITH mcx_Defect * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2))

FOR Prior2_df = -2

Replace ALL PM_P2Def WITH mcx_Defect * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2))

FOR Prior2_df = -3

Replace ALL PM_P2Def WITH mcx_Defect * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2))

FOR Prior2_df = -4

Replace ALL PM_P2Def WITH mcx_Defect * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))

FOR Prior2_df = -5

Replace ALL PM_P2DCo WITH (PM_P2Def * m_Size * FixingS) * payRate

* Duration

Replace ALL PM_P2DR WITH PM_P2Ef/(Team * HrsPerDay7)

*LABOR SLACK & Opportunity Cost

Replace ALL PM_P2Slack WITH PM_P2DR - M_Ideal

Replace ALL pm_p2Sco WITH -1 * pm_p2slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR

pm_p2Slack <= 0

Replace ALL pm_p2Oco WITH pm_p2slack * HrsPerday8 * team * ((payrate + payrate2) / 2) FOR pm_p2Slack >

0

* Knowledge Transfer based on survey responses

Replace ALL PM_P2KT WITH SM_KT FOR Prior2_kt = 0

Replace ALL PM_P2KT WITH SM_KT * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Prior2_kt = 1

Replace ALL PM_P2KT WITH SM_KT * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Prior2_kt = 2

Replace ALL PM_P2KT WITH SM_KT * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Prior2_kt = 3

Replace ALL PM_P2KT WITH SM_KT * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Prior2_kt = 4

Replace ALL PM_P2KT WITH SM_KT * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

Prior2_kt = 5

Replace ALL PM_P2KT WITH SM_KT * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

Prior2_kt = 6

Replace ALL PM_P2KT WITH SM_KT * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Prior2_kt = -1

Replace ALL PM_P2KT WITH SM_KT * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Prior2_kt = -2

Replace ALL PM_P2KT WITH SM_KT * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Prior2_kt = -3

Replace ALL PM_P2KT WITH SM_KT * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Prior2_kt = -4

Replace ALL PM_P2KT WITH SM_KT * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))

FOR Prior2_kt = -5

* Convert KT into training cost

Replace ALL PM_P2TC10 WITH (TrainingCM - Pct10 * TrainingCM * PM_P2KT)

Replace ALL PM_P2TC20 WITH (TrainingCM - Pct20 * TrainingCM * PM_P2KT)

Replace ALL PM_P2TC30 WITH (TrainingCM - Pct30 * TrainingCM * PM_P2KT)

Replace ALL PM_P2TC40 WITH (TrainingCM - Pct40 * TrainingCM * PM_P2KT)

Replace ALL PM_P2TC50 WITH (TrainingCM - Pct50 * TrainingCM * PM_P2KT)

Replace ALL PM_P2TC60 WITH (TrainingCM - Pct60 * TrainingCM * PM_P2KT)

Replace ALL PM_P2TC70 WITH (TrainingCM - Pct70 * TrainingCM * PM_P2KT)

155

Replace ALL PM_P2TC80 WITH (TrainingCM - Pct80 * TrainingCM * PM_P2KT)

Replace ALL PM_P2TC90 WITH (TrainingCM - Pct90 * TrainingCM * PM_P2KT)

Replace ALL PM_P2TC100 WITH (TrainingCM - Pct100 * TrainingCM * PM_P2KT)

** PAIR

HIGH complexity projects and PRIOR PAIR EXPERIENCE (BOTH HAVE EXPERIENCE)

**

* Effort based on survey responses

Replace ALL PH_P2Ef WITH hcx_hrs for Prior2_ef = 0

Replace ALL PH_P2Ef WITH hcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for

Prior2_ef = 1

Replace ALL PH_P2Ef WITH hcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for

Prior2_ef = 2

Replace ALL PH_P2Ef WITH hcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for

Prior2_ef = 3

Replace ALL PH_P2Ef WITH hcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for

Prior2_ef = 4

Replace ALL PH_P2Ef WITH hcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for

Prior2_ef = 5

Replace ALL PH_P2Ef WITH hcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for

Prior2_ef = 6

Replace ALL PH_P2Ef WITH hcx_hrs * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for

Prior2_ef = -1

Replace ALL PH_P2Ef WITH hcx_hrs * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for

Prior2_ef = -2

Replace ALL PH_P2Ef WITH hcx_hrs * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for

Prior2_ef = -3

Replace ALL PH_P2Ef WITH hcx_hrs * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for

Prior2_ef = -4

Replace ALL PH_P2Ef WITH hcx_hrs * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for

Prior2_ef= -5

Replace ALL PH_P2ECo WITH PH_P2Ef * ROUND((payRate + payRate2)/2, 2)

* Defect based on survey responses

Replace ALL PH_P2Def WITH hcx_Defect FOR Prior2_df = 0

Replace ALL PH_P2Def WITH hcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Prior2_df = 1

Replace ALL PH_P2Def WITH hcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Prior2_df = 2

Replace ALL PH_P2Def WITH hcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Prior2_df = 3

Replace ALL PH_P2Def WITH hcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Prior2_df = 4

Replace ALL PH_P2Def WITH hcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

Prior2_df = 5

Replace ALL PH_P2Def WITH hcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

Prior2_df= 6

Replace ALL PH_P2Def WITH hcx_Defect * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Prior2_df = -1

Replace ALL PH_P2Def WITH hcx_Defect * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Prior2_df = -2

Replace ALL PH_P2Def WITH hcx_Defect * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Prior2_df = -3

Replace ALL PH_P2Def WITH hcx_Defect * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Prior2_df = -4

156

Replace ALL PH_P2Def WITH hcx_Defect * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))

FOR Prior2_df= -5

Replace ALL PH_P2DCo WITH (PH_P2Def * h_Size * FixingS) * payRate

* Duration

Replace ALL PH_P2DR WITH PH_P2Ef/(Team * HrsPerDay7)

*LABOR SLACK & Opportunity Cost

Replace ALL PH_P2Slack WITH PH_P2DR - H_Ideal

Replace ALL ph_p2Sco WITH -1 * ph_p2slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR ph_p2Slack

<= 0

Replace ALL ph_p2Oco WITH ph_p2slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR ph_p2Slack > 0

* Knowledge Transfer based on survey responses

Replace ALL PH_P2KT WITH SH_KT FOR Prior2_kt = 0

Replace ALL PH_P2KT WITH SH_KT * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Prior2_kt = 1

Replace ALL PH_P2KT WITH SH_KT * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Prior2_kt = 2

Replace ALL PH_P2KT WITH SH_KT * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Prior2_kt = 3

Replace ALL PH_P2KT WITH SH_KT * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Prior2_kt = 4

Replace ALL PH_P2KT WITH SH_KT * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR

Prior2_kt = 5

Replace ALL PH_P2KT WITH SH_KT * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR

Prior2_kt = 6

Replace ALL PH_P2KT WITH SH_KT * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR

Prior2_kt = -1

Replace ALL PH_P2KT WITH SH_KT * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR

Prior2_kt = -2

Replace ALL PH_P2KT WITH SH_KT * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR

Prior2_kt = -3

Replace ALL PH_P2KT WITH SH_KT * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR

Prior2_kt = -4

Replace ALL PH_P2KT WITH SH_KT * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) FOR

Prior2_kt = -5

* Convert KT into training cost

Replace ALL PH_P2TC10 WITH (TrainingCH - Pct10 * TrainingCH * PH_P2KT)

Replace ALL PH_P2TC20 WITH (TrainingCH - Pct20 * TrainingCH * PH_P2KT)

Replace ALL PH_P2TC30 WITH (TrainingCH - Pct30 * TrainingCH * PH_P2KT)

Replace ALL PH_P2TC40 WITH (TrainingCH - Pct40 * TrainingCH * PH_P2KT)

Replace ALL PH_P2TC50 WITH (TrainingCH - Pct50 * TrainingCH * PH_P2KT)

Replace ALL PH_P2TC60 WITH (TrainingCH - Pct60 * TrainingCH * PH_P2KT)

Replace ALL PH_P2TC70 WITH (TrainingCH - Pct70 * TrainingCH * PH_P2KT)

Replace ALL PH_P2TC80 WITH (TrainingCH - Pct80 * TrainingCH * PH_P2KT)

Replace ALL PH_P2TC90 WITH (TrainingCH - Pct90 * TrainingCH * PH_P2KT)

Replace ALL PH_P2TC100 WITH (TrainingCH - Pct100 * TrainingCH * PH_P2KT)

**

* Create datasets for bootstrap and analysis

**

* Data for hypothesis testing

157

SELECT Respondent, PairYes, Lcx_Hrs, Mcx_Hrs, Hcx_Hrs, Lcx_Defect, Mcx_Defect, Hcx_Defect, kt1, kt2, kt3,

Lcx_ef, Mcx_ef, Hcx_ef, Jr2_ef, Jrsr_ef, Sr2_ef, Prior0_ef, Prior1_ef, Prior2_ef,

Lcx_df, Mcx_df, Hcx_df, Jr2_df, Jrsr_df, Sr2_df, Prior0_df, Prior1_df, Prior2_df,

Lcx_kt, Mcx_kt, Hcx_kt, Jr2_kt, Jrsr_kt, Sr2_kt, Prior0_kt, Prior1_kt, Prior2_kt

FROM c1

into CURSOR cCursor1

COPY TO hypoData.dbf TYPE foxplus

* Data for Cost information

SELECT c1.respondent, PairYes, c1.team, c1.fixingS, c1.lcx_hrs, c1.mcx_hrs, c1.hcx_hrs, c1.lcx_defect,

c1.mcx_defect, c1.hcx_defect, c1.kt1, c1.kt2, c1.kt3, ;

000000000.00 as SL_Cost, 000000000.00 as SM_Cost, 000000000.00 as SH_Cost, ;

000000000.00 as PL_Cost, 000000000.00 as PM_Cost, 000000000.00 as PH_Cost, ;

000000000.00 as PL_JJCost, 000000000.00 as PM_JJCost, 000000000.00 as PH_JJCost, ;

000000000.00 as PL_JSCost, 000000000.00 as PM_JSCost, 000000000.00 as PH_JSCost, ;

000000000.00 as PL_SSCost, 000000000.00 as PM_SSCost, 000000000.00 as PH_SSCost, ;

000000000.00 as PL_P0Cost, 000000000.00 as PM_P0Cost, 000000000.00 as PH_P0Cost, ;

000000000.00 as PL_P1Cost, 000000000.00 as PM_P1Cost, 000000000.00 as PH_P1Cost, ;

000000000.00 as PL_P2Cost, 000000000.00 as PM_P2Cost, 000000000.00 as PH_P2Cost, ;

000000000.00 as SL_Cost2, 000000000.00 as SM_Cost2, 000000000.00 as SH_Cost2, ;

000000000.00 as PL_Cost2, 000000000.00 as PM_Cost2, 000000000.00 as PH_Cost2, ;

000000000.00 as PL_JJCost2, 000000000.00 as PM_JJCost2, 000000000.00 as PH_JJCost2, ;

000000000.00 as PL_JSCost2, 000000000.00 as PM_JSCost2, 000000000.00 as PH_JSCost2, ;

000000000.00 as PL_SSCost2, 000000000.00 as PM_SSCost2, 000000000.00 as PH_SSCost2, ;

000000000.00 as PL_P0Cost2, 000000000.00 as PM_P0Cost2, 000000000.00 as PH_P0Cost2, ;

000000000.00 as PL_P1Cost2, 000000000.00 as PM_P1Cost2, 000000000.00 as PH_P1Cost2, ;

000000000.00 as PL_P2Cost2, 000000000.00 as PM_P2Cost2, 000000000.00 as PH_P2Cost2, ;

000000000.00 as SL_EDCost, 000000000.00 as SM_EDCost, 000000000.00 as SH_EDCost, ;

000000000.00 as PL_EDCost, 000000000.00 as PM_EDCost, 000000000.00 as PH_EDCost, ;

000000000.00 as PL_JJEDCo, 000000000.00 as PM_JJEDCo, 000000000.00 as PH_JJEDCo, ;

000000000.00 as PL_JSEDCo, 000000000.00 as PM_JSEDCo, 000000000.00 as PH_JSEDCo, ;

000000000.00 as PL_SSEDCo, 000000000.00 as PM_SSEDCo, 000000000.00 as PH_SSEDCo, ;

000000000.00 as PL_P0EDCo, 000000000.00 as PM_P0EDCo, 000000000.00 as PH_P0EDCo, ;

000000000.00 as PL_P1EDCo, 000000000.00 as PM_P1EDCo, 000000000.00 as PH_P1EDCo, ;

000000000.00 as PL_P2EDCo, 000000000.00 as PM_P2EDCo, 000000000.00 as PH_P2EDCo, ;

SL_ECost, SL_DCost, SL_DR, SL_OCost, SL_SCost, SL_TC40 as SL_TC, ;

SM_ECost, SM_DCost, SM_DR, SM_OCost, SM_SCost, SM_TC40 as SM_TC, ;

SH_ECost, SH_DCost, SH_DR, SH_OCost, SH_SCost, SH_TC40 as SH_TC, ;

PL_ECost, PL_DCost, PL_DR, PL_OCost, PL_SCost, PL_TC40 as PL_TC, ;

PM_ECost, PM_DCost, PM_DR, PM_OCost, PM_SCost, PM_TC40 as PM_TC, ;

PH_ECost, PH_DCost, PH_DR, PH_OCost, PH_SCost, PH_TC40 as PH_TC, ;

PL_JJECo, PL_JJDCo, PL_JJDR, PL_JJOCo, PL_JJSCo, PL_JJTC40 as PL_JJTC, ;

PM_JJECo, PM_JJDCo, PM_JJDR, PM_JJOCo, PM_JJSCo, PM_JJTC40 as PM_JJTC, ;

PH_JJECo, PH_JJDCo, PH_JJDR, PH_JJOCo, PH_JJSCo, PH_JJTC40 as PH_JJTC, ;

PL_JSECo, PL_JSDCo, PL_JSDR, PL_JSOCo, PL_JSSCo, PL_JSTC40 as PL_JSTC, ;

PM_JSECo, PM_JSDCo, PM_JSDR, PM_JSOCo, PM_JSSCo, PM_JSTC40 as PM_JSTC, ;

PH_JSECo, PH_JSDCo, PH_JSDR, PH_JSOCo, PH_JSSCo, PH_JSTC40 as PH_JSTC, ;

PL_SSECo, PL_SSDCo, PL_SSDR, PL_SSOCo, PL_SSSCo, PL_SSTC40 as PL_SSTC, ;

PM_SSECo, PM_SSDCo, PM_SSDR, PM_SSOCo, PM_SSSCo, PM_SSTC40 as PM_SSTC, ;

PH_SSECo, PH_SSDCo, PH_SSDR, PH_SSOCo, PH_SSSCo, PH_SSTC40 as PH_SSTC, ;

PL_P0ECo, PL_P0DCo, PL_P0DR, PL_P0OCo, PL_P0SCo, PL_P0TC40 as PL_P0TC, ;

PM_P0ECo, PM_P0DCo, PM_P0DR, PM_P0OCo, PM_P0SCo, PM_P0TC40 as PM_P0TC, ;

PH_P0ECo, PH_P0DCo, PH_P0DR, PH_P0OCo, PH_P0SCo, PH_P0TC40 as PH_P0TC, ;

PL_P1ECo, PL_P1DCo, PL_P1DR, PL_P1OCo, PL_P1SCo, PL_P1TC40 as PL_P1TC, ;

158

PM_P1ECo, PM_P1DCo, PM_P1DR, PM_P1OCo, PM_P1SCo, PM_P1TC40 as PM_P1TC, ;

PH_P1ECo, PH_P1DCo, PH_P1DR, PH_P1OCo, PH_P1SCo, PH_P1TC40 as PH_P1TC, ;

PL_P2ECo, PL_P2DCo, PL_P2DR, PL_P2OCo, PL_P2SCo, PL_P2TC40 as PL_P2TC, ;

PM_P2ECo, PM_P2DCo, PM_P2DR, PM_P2OCo, PM_P2SCo, PM_P2TC40 as PM_P2TC, ;

PH_P2ECo, PH_P2DCo, PH_P2DR, PH_P2OCo, PH_P2SCo, PH_P2TC40 as PH_P2TC;

FROM C1, C2, C3;

WHERE c1.respondent = c2.respondent AND c1.respondent = c3.respondent ;

INTO table costData

SELECT costData

* Labor Cost

Replace ALL SL_EDCost WITH SL_ECost + SL_DCost

Replace ALL SM_EDCost WITH SM_ECost + SM_DCost

Replace ALL SH_EDCost WITH SH_ECost + SH_DCost

Replace ALL PL_EDCost WITH PL_ECost + PL_DCost

Replace ALL PM_EDCost WITH PM_ECost + PM_DCost

Replace ALL PH_EDCost WITH PH_ECost + PH_DCost

Replace ALL PL_JJEDCo WITH PL_JJECo + PL_JJDCo

Replace ALL PM_JJEDCo WITH PM_JJECo + PM_JJDCo

Replace ALL PH_JJEDCo WITH PH_JJECo + PH_JJDCo

Replace ALL PL_JSEDCo WITH PL_JSECo + PL_JSDCo

Replace ALL PM_JSEDCo WITH PM_JSECo + PM_JSDCo

Replace ALL PH_JSEDCo WITH PH_JSECo + PH_JSDCo

Replace ALL PL_SSEDCo WITH PL_SSECo + PL_SSDCo

Replace ALL PM_SSEDCo WITH PM_SSECo + PM_SSDCo

Replace ALL PH_SSEDCo WITH PH_SSECo + PH_SSDCo

Replace ALL PL_P0EDCo WITH PL_P0ECo + PL_P0DCo

Replace ALL PM_P0EDCo WITH PM_P0ECo + PM_P0DCo

Replace ALL PH_P0EDCo WITH PH_P0ECo + PH_P0DCo

Replace ALL PL_P1EDCo WITH PL_P1ECo + PL_P1DCo

Replace ALL PM_P1EDCo WITH PM_P1ECo + PM_P1DCo

Replace ALL PH_P1EDCo WITH PH_P1ECo + PH_P1DCo

Replace ALL PL_P2EDCo WITH PL_P2ECo + PL_P2DCo

Replace ALL PM_P2EDCo WITH PM_P2ECo + PM_P2DCo

Replace ALL PH_P2EDCo WITH PH_P2ECo + PH_P2DCo

* All Cost

Replace ALL SL_Cost WITH SL_ECost + SL_DCost + SL_TC + SL_OCost - SL_SCost

Replace ALL SM_Cost WITH SM_ECost + SM_DCost + SM_TC + SM_OCost - SM_SCost

Replace ALL SH_Cost WITH SH_ECost + SH_DCost + SH_TC + SH_OCost - SH_SCost

Replace ALL PL_Cost WITH PL_ECost + PL_DCost + PL_TC + PL_OCost - PL_SCost

Replace ALL PM_Cost WITH PM_ECost + PM_DCost + PM_TC + PM_OCost - PM_SCost

Replace ALL PH_Cost WITH PH_ECost + PH_DCost + PH_TC + PH_OCost - PH_SCost

Replace ALL PL_JJCost WITH PL_JJECo + PL_JJDCo + PL_JJTC + PL_JJOCo - PL_JJSCo

Replace ALL PM_JJCost WITH PM_JJECo + PM_JJDCo + PM_JJTC + PM_JJOCo - PM_JJSCo

Replace ALL PH_JJCost WITH PH_JJECo + PH_JJDCo + PH_JJTC + PH_JJOCo - PH_JJSCo

159

Replace ALL PL_JSCost WITH PL_JSECo + PL_JSDCo + PL_JSTC + PL_JSOCo - PL_JSSCo

Replace ALL PM_JSCost WITH PM_JSECo + PM_JSDCo + PM_JSTC + PM_JSOCo - PM_JSSCo

Replace ALL PH_JSCost WITH PH_JSECo + PH_JSDCo + PH_JSTC + PH_JSOCo - PH_JSSCo

Replace ALL PL_SSCost WITH PL_SSECo + PL_SSDCo + PL_SSTC + PL_SSOCo - PL_SSSCo

Replace ALL PM_SSCost WITH PM_SSECo + PM_SSDCo + PM_SSTC + PM_SSOCo - PM_SSSCo

Replace ALL PH_SSCost WITH PH_SSECo + PH_SSDCo + PH_SSTC + PH_SSOCo - PH_SSSCo

Replace ALL PL_P0Cost WITH PL_P0ECo + PL_P0DCo + PL_P0TC + PL_P0OCo - PL_P0SCo

Replace ALL PM_P0Cost WITH PM_P0ECo + PM_P0DCo + PM_P0TC + PM_P0OCo - PM_P0SCo

Replace ALL PH_P0Cost WITH PH_P0ECo + PH_P0DCo + PH_P0TC + PH_P0OCo - PH_P0SCo

Replace ALL PL_P1Cost WITH PL_P1ECo + PL_P1DCo + PL_P1TC + PL_P1OCo - PL_P1SCo

Replace ALL PM_P1Cost WITH PM_P1ECo + PM_P1DCo + PM_P1TC + PM_P1OCo - PM_P1SCo

Replace ALL PH_P1Cost WITH PH_P1ECo + PH_P1DCo + PH_P1TC + PH_P1OCo - PH_P1SCo

Replace ALL PL_P2Cost WITH PL_P2ECo + PL_P2DCo + PL_P2TC + PL_P2OCo - PL_P2SCo

Replace ALL PM_P2Cost WITH PM_P2ECo + PM_P2DCo + PM_P2TC + PM_P2OCo - PM_P2SCo

Replace ALL PH_P2Cost WITH PH_P2ECo + PH_P2DCo + PH_P2TC + PH_P2OCo - PH_P2SCo

* Data for training part of the cost given the scenarios of 10% impact to 100% impact

SELECT c1.respondent, PairYes, c1.TrainingCL, c1.TrainingCM, c1.TrainingCH, ;

SL_TC10, SL_TC20, SL_TC30, SL_TC40, SL_TC50, SL_TC60, SL_TC70, SL_TC80, SL_TC90, SL_TC100,

SM_TC10, SM_TC20, SM_TC30, SM_TC40, SM_TC50, SM_TC60, SM_TC70, SM_TC80, SM_TC90,

SM_TC100, SH_TC10, SH_TC20, SH_TC30, SH_TC40, SH_TC50, SH_TC60, SH_TC70, SH_TC80, SH_TC90,

SH_TC100, PL_TC10, PL_TC20, PL_TC30, PL_TC40, PL_TC50, PL_TC60, PL_TC70, PL_TC80, PL_TC90,

PL_TC100, PM_TC10, PM_TC20, PM_TC30, PM_TC40, PM_TC50, PM_TC60, PM_TC70, PM_TC80,

PM_TC90, PM_TC100, PH_TC10, PH_TC20, PH_TC30, PH_TC40, PH_TC50, PH_TC60, PH_TC70, PH_TC80,

PH_TC90, PH_TC100, PL_JJTC10, PL_JJTC20, PL_JJTC30, PL_JJTC40, PL_JJTC50, PL_JJTC60, PL_JJTC70,

PL_JJTC80, PL_JJTC90, PL_JJTC100,

PM_JJTC10, PM_JJTC20, PM_JJTC30, PM_JJTC40, PM_JJTC50, PM_JJTC60, PM_JJTC70, PM_JJTC80,

PM_JJTC90, PM_JJTC100, PH_JJTC10, PH_JJTC20, PH_JJTC30, PH_JJTC40, PH_JJTC50, PH_JJTC60,

PH_JJTC70, PH_JJTC80, PH_JJTC90, PH_JJTC100, PL_JSTC10, PL_JSTC20, PL_JSTC30, PL_JSTC40,

PL_JSTC50, PL_JSTC60, PL_JSTC70, PL_JSTC80, PL_JSTC90, PL_JSTC100, PM_JSTC10, PM_JSTC20,

PM_JSTC30, PM_JSTC40, PM_JSTC50, PM_JSTC60, PM_JSTC70, PM_JSTC80, PM_JSTC90, PM_JSTC100,

PH_JSTC10, PH_JSTC20, PH_JSTC30, PH_JSTC40, PH_JSTC50, PH_JSTC60, PH_JSTC70, PH_JSTC80,

PH_JSTC90, PH_JSTC100,

PL_SSTC10, PL_SSTC20, PL_SSTC30, PL_SSTC40, PL_SSTC50, PL_SSTC60, PL_SSTC70, PL_SSTC80,

PL_SSTC90, PL_SSTC100, PM_SSTC10, PM_SSTC20, PM_SSTC30, PM_SSTC40, PM_SSTC50,

PM_SSTC60, PM_SSTC70, PM_SSTC80, PM_SSTC90, PM_SSTC100,

PH_SSTC10, PH_SSTC20, PH_SSTC30, PH_SSTC40, PH_SSTC50, PH_SSTC60, PH_SSTC70, PH_SSTC80,

PH_SSTC90, PH_SSTC100, PL_P0TC10, PL_P0TC20, PL_P0TC30, PL_P0TC40, PL_P0TC50, PL_P0TC60,

PL_P0TC70, PL_P0TC80, PL_P0TC90, PL_P0TC100, PM_P0TC10, PM_P0TC20, PM_P0TC30, PM_P0TC40,

PM_P0TC50, PM_P0TC60, PM_P0TC70, PM_P0TC80, PM_P0TC90, PM_P0TC100, PH_P0TC10, PH_P0TC20,

PH_P0TC30, PH_P0TC40, PH_P0TC50, PH_P0TC60, PH_P0TC70, PH_P0TC80, PH_P0TC90, PH_P0TC100,

PL_P1TC10, PL_P1TC20, PL_P1TC30, PL_P1TC40, PL_P1TC50, PL_P1TC60, PL_P1TC70, PL_P1TC80,

PL_P1TC90, PL_P1TC100, PM_P1TC10, PM_P1TC20, PM_P1TC30, PM_P1TC40, PM_P1TC50, PM_P1TC60,

PM_P1TC70, PM_P1TC80, PM_P1TC90, PM_P1TC100, PH_P1TC10, PH_P1TC20, PH_P1TC30, PH_P1TC40,

PH_P1TC50, PH_P1TC60, PH_P1TC70, PH_P1TC80, PH_P1TC90, PH_P1TC100,

PL_P2TC10, PL_P2TC20, PL_P2TC30, PL_P2TC40, PL_P2TC50, PL_P2TC60, PL_P2TC70, PL_P2TC80,

PL_P2TC90, PL_P2TC100, PM_P2TC10, PM_P2TC20, PM_P2TC30, PM_P2TC40, PM_P2TC50, PM_P2TC60,

PM_P2TC70, PM_P2TC80, PM_P2TC90, PM_P2TC100,

PH_P2TC10, PH_P2TC20, PH_P2TC30, PH_P2TC40, PH_P2TC50, PH_P2TC60, PH_P2TC70, PH_P2TC80,

PH_P2TC90, PH_P2TC100

FROM C1, C2, C3

160

WHERE c1.respondent = c2.respondent AND c1.respondent = c3.respondent

INTO table costdataT

D. Training Cost

Training cost assuming 10% to 100% impact of knowledge transfer.

10% Z-Score $ Amount from the Mean

Low Medium High Low Medium High

Solo .0493 .1883 .0994 7 123 126

Pair .0128 -.0195 -.0080 2 (13) (10)

JJ .0015 .0441 .0194 0 29 25

JS -.0288 -.0926 -.0439 (4) (61) (56)

SS -.0107 -.0556 -.0351 (1) (36) (44)

None .0134 .0482 .0169 2 32 21

One -.0146 -.0385 -.0399 (2) (25) (50)

Both -.0230 -.0744 -.0088 (3) (49) (11)

Mean 3,320 22,679 64,763

 SD 134 654 1,266

20% Z-Score $ Amount from the Mean

Low Medium High Low Medium High

Solo .202 .775 .445 26 493 504

Pair .052 -.080 -.036 7 (51) (41)

JJ .006 .181 .087 1 115 98

JS -.118 -.381 -.196 (15) (243) (222)

SS -.044 -.229 -.157 (6) (145) (178)

None -.060 .198 .075 (8) 126 85

One -.060 -.159 -.178 (8) (101) (202)

Both -.094 -.306 -.039 (12) (195) (44)

Mean 3,216 20,513 55,912

 SD 131 636 1,132

30% Z-Score $ Amount from the Mean

Low Medium High Low Medium High

Solo .311 1.324 .746 40 739 755

Pair .081 -.137 -.060 10 (77) (61)

JJ .010 .310 .145 1 173 147

JS -.181 -.651 -.330 (23) (364) (334)

SS -.067 -.391 -.263 (9) (218) (266)

None .084 .339 .126 11 189 128

One -.092 -.271 -.299 (12) (151) (303)

Both -.145 -.523 -.066 (19) (292) (67)

Mean 3,147 19,069 50,011

 SD 128 558 1,012

40% Z-Score - 40% Impact $ Amount from the Mean

Low Medium High Low Medium High

161

Solo .422 1.875 1.081 53 986 1,007

Pair .109 -.194 -.087 14 (102) (81)

JJ .013 .439 .211 2 231 196

JS -.246 -.923 -.477 (31) (485) (445)

SS -.091 -.553 -.381 (11) (291) (355)

None .115 .480 .183 14 252 171

One -.125 -.384 -.433 (16) (202) (404)

Both -.197 -.740 -.495 (25) (389) (462)

Mean 3,078 17,625 44,110

SD 126 526 932

50% Z-Score $ Amount from the Mean

Low Medium High Low Medium High

Solo .537 2.480 1.450 66 1,232 1,259

Pair .139 -.257 -.117 17 (128) (102)

JJ .017 .581 .282 2 289 245

JS -.313 -1.220 -.640 (39) (606) (556)

SS -.116 -.732 -.511 (14) (364) (444)

None .146 .635 .246 18 316 213

One -.158 -.508 -.581 (20) (252) (505)

Both -.250 -.980 -.128 (31) (487) (111)

Mean 3,009 16,182 38,210

 SD 123 497 869

60% Z-Score $ Amount from the Mean

Low Medium High Low Medium High

Solo .655 3.132 1.829 79 1,478 1,511

Pair .170 -.324 -.148 21 (153) (122)

JJ .020 .734 .356 2 346 294

JS -.382 -1.541 -.808 (46) (728) (667)

SS -.142 -.924 -.645 (17) (436) (533)

None .178 .802 .310 22 379 256

One -.193 -.641 -.733 (23) (303) (606)

Both -.306 -1.237 -.161 (37) (584) (133)

Mean 2,940 14,738 32,309

 SD 121 472 826

70% Z-Score $ Amount from the Mean

Low Medium High Low Medium High

Solo .776 3.815 2.182 351 3,081 1,763

Pair .201 -.395 -.176 91 (319) (143)

JJ .024 .894 .425 11 722 343

JS -.453 -1.877 -.964 (205) (1,516) (779)

SS -.168 -1.126 -.769 (76) (909) (621)

None .211 .977 .370 95 789 299

One -.229 -.781 -.875 (104) (630) (707)

Both -.362 -1.507 -.193 (164) (1,217) (156)

162

Mean 2,871 13,294 26,408

 SD 120 452 808

80% Z-Score $ Amount from the Mean

Low Medium High Low Medium High

Solo .900 4.501 2.471 106 1,971 2,014

Pair .233 -.466 -.200 27 (204) (163)

JJ .028 1.054 .482 3 462 393

JS -.525 -2.215 -1.092 (62) (970) (890)

SS -.195 -1.328 -.871 (23) (582) (710)

None .244 1.153 .419 29 505 341

One -.266 -.921 -.991 (31) (403) (807)

Both -.420 -1.778 -.218 (49) (779) (178)

Mean 2,802 11,850 20,508

 SD 118 438 815

90% Z-Score $ Amount from the Mean

Low Medium High Low Medium High

Solo 1.025 5.157 2.673 119 2,218 2,266

Pair .266 -.534 -.216 31 (230) (183)

JJ .032 1.208 .521 4 520 442

JS -.598 -2.538 -1.181 (70) (1,091) (1,001)

SS -.222 -1.522 -.943 (26) (654) (799)

None .278 1.321 .453 32 568 384

One -.303 -1.055 -1.072 (35) (454) (908)

Both -.478 -2.037 -.236 (56) (876) (200)

Mean 2,733 10,406 14,607

 SD 116 430 848

100% Z-Score $ Amount from the Mean

Low Medium High Low Medium High

Solo 1.152 5.750 2.789 132 2,464 2,518

Pair .299 -.595 -.226 34 (255) (204)

JJ .035 1.347 .544 4 577 491

JS -.672 -2.829 -1.232 (77) (1,213) (1,112)

SS -.249 -1.697 -.984 (29) (727) (888)

None .313 1.472 .473 36 631 427

One -.340 -1.177 -1.118 (39) (504) (1,009)

Both -.538 -2.271 -1.246 (62) (973) (1,125)

Mean 2,664 8,963 8,706

 SD 115 429 903

REFERENCES

Abdel-Hamid, T. K., Sengupta, K., & Swett, C. (1999). The Impact of Goals on Software Project

163

Management: An Experimental Investigation. MIS Quarterly, 23(4), 531-555.

Adèr, H.J., Mellenbergh, G.J., and Hand, D.J. (2008). Advising on research methods: A

consultant's companion: Johannes van Kessel Publishing, The Netherlands.

Agile Manifesto. (2011). Principles behind the Agile Manifesto. Retrieved August 23, 2011,

from http://agilemanifesto.org/principles.html

Aiken, J. (2004). Technical and Human Perspectives on Pair Programming. ACM SIGSOFT

Software Engineering Notes, 29(5), 1-14.

Al-Kilidar, H., Parkin, P., Aurum, A., & Jeffery, R. (2005). Evaluation of Effects of Pair Work

on Quality of Designs. Paper presented at the 2005 Australian conference on Software

Engineering.

Ally, M., Darroch, F., & Toleman, M. (2005). A Framework for Understanding the Factors

Influencing Pair Programming Success. Paper presented at the XP 2005 Conference.

Ambler, S. W. (2007). Dr. Dobb's Agile Newsletter 12/07. Retrieved October 1, 2009, from

http://www.ddj.com/architect/204804676

Ambler, S. W. (2008). Dr. Dobb's Agile Newsletter 04/08. Retrieved October 1, 2009, from

http://www.ddj.com/architect/207401013

Anthes, G. (2004). Sabre Takes Extreme Measures. Retrieved October 1, 2009, from

http://www.computerworld.com/s/article/print/91646/Sabre_takes_extreme_measures?tax

onomyName=Development&taxonomyId=11

Arisholm, E., Gallis, H., Dybå, T., & Sjøberg, D. I. K. (2007). Evaluating Pair Programming

with Respect to System Complexity and Programmer Expertise. IEEE Transactions on

Software Engineering, 33(2), 65-86.

Bagozzi, R. P. (1980). Causal Methods in Marketing. New York: John Wiley and Sons.

Baheti, P., Gehringer, E., & Stotts, D. (2002). Exploring the Efficacy of Distributed Pair

Programming. XP Universe, 2418, 208-220.

Balijepally, V., Mahapatra, R., Nerur, S., & Price, K. H. (2009). Are Two Heads Better than One

for Software Development? The Productivity Paradox of Pair Programming. MIS

Quarterly, 33(1), 91-118.

Banker, R. D., Davis, G. B., & Slaughter, S. A. (1998). Software Development Practices,

Software Complexity, and Software Maintenance Performance: A Field Study.

Management Science, 44(4), 433-450.

BBC News. (1998). Education GCSE Error Means Upgrade for Pupils. Retrieved September

27, 2009, from http://news.bbc.co.uk/2/hi/uk_news/education/167755.stm

BBC News. (2009). Software Error Affects Tax Forms. Retrieved September 27, 2009, from

http://news.bbc.co.uk/2/hi/europe/isle_of_man/7819150.stm

Beck, K. (2000). Extreme Programming Explained: Embrace Change: Adison-Wesley.

Belshee, A. (2005). Promiscuous Pairing and Beginner's Mind: Embrace Inexperience. Paper

presented at the Agile Development Conference (ADC'05).

Bevan, J., Werner, L., & McDowell, C. (2002). Guidelines for the use of pair programming in a

freshmanprogramming class. Software Engineering Education and Training, 100-107.

Boudreau, M., Gefen, D., & Straub, D. (2001). Validation in IS research: A state-of-the-art

assessment. MIS Quart, 25(1), 1-16.

Brooks, F. P. (1995). The Mythical Man Month: Essays on Software Engineering: Addison-

Wesley.

Bryant, S. (2004). Double Trouble: Mixing Qualitative and Quantitative Methods in the Study of

eXtreme Programmers. Paper presented at the IEEE Symposium on Visual Languages

164

and Human Centric Computing.

Bureau of Labor Statistics (2011). Occupational Employment Statistics. Retrieved Feb 27,

2011, from http://www.bls.gov/oes/current/oes151131.htm

Canfora, G., Cimitile, A., Garcia, F., Piattini, M., & Visaggio, C. A. (2007). Evaluating

performances of pair designing in industry. The Journal of Systems and Software, 80(8),

1317-1327.

Canfora, G., Cimitile, A., Lucca, G. A. D., & Visaggio, C. A. (2006). How Distribution Affects

the Success of Pair Programming. International Journal of Software Engineering and

Knowledge Engineering, 16(2), 293-313.

Canfora, G., Cimitile, A., & Visaggio, C. A. (2005). Empirical Study on the Productivity of the

Pair Programming. Paper presented at the 6th International Conference on Extreme

Programming And Agile Processes in Software Engineering.

Cao, L., & Xu, P. (2005). Activity Patterns of Pair Programming. Paper presented at the 38th

Annual Hawaii International Conference on System Sciences

Chong, J. (2005). Social Behaviors on XP and non-XP Teams: a Comparative Study. Paper

presented at the 2005 Agile Conference.

Chong, J., & Hurlbutt, T. (2007). The Social Dynamics of Pair Programming. Paper presented at

the 29th International Conference on Software Engineering.

Ciolkowski, M., & Schlemmer, M. (2002). Experiences with a Case Study on Pair

Programming. Paper presented at the First International Workshop on Empirical Studies

in Software Engineering.

Cliburn, D. C. (2003). Experiences with Pair Programming at a Small College. Journal of

Computing Sciences in Colleges, 19(1), 20-29.

Cockburn, A., & Williams, L. (2001). The Costs and Benefits of Pair Programming. In Addison-

Wesley (pp. 223-248).

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences, Hillsdale, NJ: L:

Erlbaum Associates.

Computing Cases. (2009). Therac-25 Case Materials. Retrieved September 27, 2009, from

http://computingcases.org/case_materials/case_materials.html

Constantine, L. L. (1995). Constantine on Peopleware: Yourdon Press.

Copeland, L. (2001a). Programming Gets Extreme, Development Method Takes Off, but Not in

U.S. Retrieved October 1, 2009, from

http://www.computerworld.com/s/article/59388/Programming_gets_extreme

Copeland, L. (2001b). Extreme Programming. Retrieved October 1, 2009, from

http://www.computerworld.com/s/article/66192/Extreme_Programming?taxonomyId=63

&pageNumber=1

Cronbach, L. J. (1971). Test validation. Washington D.C.: American Council on Education.

Cusumano, M., MacCormack, A., Kemerer, C. F., & Crandall, B. (2003). Software Development

Worldwide: The State of the Practice. IEEE Software, 20(6), 28-34.

Data Monitor. (2008a). Industry Profile: Software in the United States. Retrieved July 1, 2008,

from http://www.datamonitor.com

Data Monitor. (2008b). Industry Profile: Global Software. Retrieved July 1, 2008, from

http://www.datamonitor.com

Dawande, M., Johar, M., Kumar, S., & Mookerjee, V. S. (2008). A Comparison of Pair versus

Solo Programming under Different Objectives: An Analytical Approach. Information

Systems Research, 19(1), 71-92.

165

DeClue, T. H. (2003). Pair Programming and Pair Trading: Effects on Learning and Motivation

in a CS2 course. Journal of Computing Sciences in Colleges, 18(5), 49-56.

Dennis, A., Wixom, B. H., & Tegarden, D. (2005). Systems analysis and design with UML

version 2.0: Wiley.

Dick, A. J., & Zarnett, B. (2002). Paired Programming & Personality Traits. Paper presented at

the 3rd International Conference on Extreme Programming and Flexible Processes in

Software Engineering.

Dybå, T., Arisholm, E., Sjoerg, D. I. K., Hannay, J. E., & Shull, F. (2007). Are Two Heads

Better than One? On the Effectiveness of Pair Programming. IEEE Software, 24(6), 12-

15.

Efron, B. (1979). Bootstrap methods: another look at the jackknife. The annals of Statistics,

7(1), 1-26.

Efron, B. (1982). The jackknife, the bootstrap and other resampling plans. SIAM Monograph, 38.

Efron, B., and Tibshirani, R.(1993). An introduction to the bootstrap: Chapman & Hall, New

York.

Erdogmus, H., & Williams, L. (2003). The Economics of Software Development by Pair

Programmers. Engineering Economist, 48(4), 283-319

Erickson, J., Lyytinen, K., & Siau, K. (2005). Agile Modeling, Agile Software Development, and

Extreme Programming :

The State of Research. Journal of Database Management, 16(4), 88-100. ??????

Espinosa, J. A., Slaughter, S. A., Kraut, R. E., & Herbsleb, J. D. (2007). Familiarity, Complexity,

and Team Performance in Geographically Distributed Software Development.

Organization Science, 18(4), 613-630.

Fitzgerald, B., & Harnett, G. (2005). A Study of the Use of Agile Methods within Intel. Business

Agility and Information Technology Diffusion, 187-202.

Flor, N. V. (2006). Globally Distributed Software Development and Pair Programming.

Communications of the ACM, 49(10), 57-58.

Flor, N. V., & Hutchins, E. (1991). Analyzing Distributed Cognition in Software Teams: A Case

Study of Team Programming During Perfective Software Maintenance. Paper presented

at the Empirical Studies of Programmers: Fourth Workshop.

Freedman, D.A., and Peters, S.C. (1984). Bootstrapping a regression equation: Some empirical

results. Journal of the American Statistical Association , 79(385), 97-106.

Gallis, H., Arisholm, E., & Dyba, T. (2003). An Initial Framework for Research on Pair

Programming. Paper presented at the International Symposium on Empirical Software

Engineering.

Gehringer, E. F. (2003). A Pair-Programming Experiment in a Non-Programming Course. Paper

presented at the 18th annual ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications.

Geoghegan, T. (2005). Progress... pah! Retrieved September 27, 2009, from

http://news.bbc.co.uk/2/hi/uk_news/magazine/4606263.stm

Glass, R. L. (2001). Extreme Programming: The Good, the Bad, and the Bottom Line. IEEE

Software, 18(6), 112-111.

Greene, B. (2004). Agile Methods Applied to Embedded Firmware Development. Paper

presented at the Agile Development Conference.

Hanks, B., McDowell, C., Draper, D., & Krnjajic, M. (2004). Program Quality with Pair

Programming in CS1. ACM SIGCSE Bulletin 36(3), 176-180.

166

Harel, E. C., & McLean, E. R. (1985). The Effects of Using a Nonprocedural Computer

Language on Programmer Productivity. MIS Quarterly, 9(2), 109-120.

Haungs, J. (2001). Pair Programming on the C3 Project. Computer, 34(2), 118-119.

Heiberg, S., Puus, U., Salumaa, P., & Seeba, A. (2003). Pair-Programming Effect on Developers

Productivity. Lecture Notes in Computer Science, 2675, 215-224.

Hulkko, H., & Abrahamsson, P. (2005). A Multiple Case Study on the Impact of Pair

Programming on Product Quality. Paper presented at the 27th International Conference

on Software Engineering.

Humphrey, W. (1995). A Discipline for Software Engineering: Addison Wesley.

Humphrey, W. S. (1989). Managing the Software Process: Addison-Wesley.

Hurt, H. (2009). Turning Whimsy Into a Video Classic. Maybe. . Retrieved September 25,

2009, from

http://www.nytimes.com/2009/02/07/business/07pursuits.html?_r=1&sq="lines%20of%2

0code"&st=cse&adxnnl=1&scp=5&adxnnlx=1253930633-

DNWMTY2OELEn7n2lXHqQhQ

Janes, A., Russo, B., Zuliani, P., & Succi, G. (2003). An Empirical Analysis on the

Discontinuous Use of Pair Programming. Paper presented at the Extreme Programming

2003, Genova, Italy.

Jensen, R. W. (2003). A Pair Programming Experience. CrossTalk, 16(3), 22-24.

Ji, Y., Mookerjee, V. S., & Sethi, S. P. (2005). Optimal software development: a control

theoretic approach. Information Systems Research, 16(3), 292.

Juran, J. M. (1974). Quality Control Handbook (3rd ed.): McGraw-Hill New York.

Kampenes, V. B., Dybl, T., Hannay, J. E., & Sjrberg, D. I. K. (2007). A Systematic Review of

Effect Size in Software Engineering Experiments. Information and Software Technology,

49(11-12), 1073-1086.

Kandt, R. K. (2009). Experiences in Improving Flight Software Development Processes. IEEE

Software, 26(3), 58-64.

Katira, N., Williams, L., Wiebe, E., Miller, C., Balik, S., & Gehringer, E. (2004). On

Understanding Compatibility of Student Pair Programmers. ACM SIGCSE Bulletin,

36(1), 7-11.

Kemerer, C. F. (1995). Software complexity and software maintenance: A survey of empirical

research. Annals of Software Engineering, 1(1), 1-22.

Kirby, E. J. (2007). Cancer Patients' Battle for Justice. Retrieved September 27, 2009, from

http://news.bbc.co.uk/2/hi/programmes/from_our_own_correspondent/7049319.stm

Kirschner, F., Paas, F., & Kirschner, P. (2008). Individual versus Group Learning as a Function

of Task Complexity: An Exploration into the Measurement of Group Cognitive Load. In

Beyond Knowledge: The Legacy of Competence (pp. 21-28): Springer Netherlands.

Kline, R. B. (2005). Principles and Practice of Structural Equation Modeling: The Guilford

Press.

Ko, D. G., & Kirsch, L. (2005). Antecedents of Knowledge Transfer from Consultants to Clients

in Enterprise System Implementations. Management Information Systems Quarterly,

29(1), 59-85.

Langr, J. (2005). Pair Programming Observations. Retrieved October 1, 2009, from

http://langrsoft.com/articles/pairing.shtml

Lim, K. H., Ward, L. M., & Benbasat, I. (1997). An Empirical Study of Computer System

Learning: Comparison of Co-Discovery and Self-Discovery Methods. Information

167

Systems Research, 8(3), 254-272.

Luck, G., & ThoughtWorks, I. (2004). Subclassing XP: Breaking its Rules the Right Way. Paper

presented at the 2004 Agile Development Conference.

Lui, K., & Chan, K. C. C. (2003). When Does a Pair Outperform Two Individuals? Lecture

Notes in Computer Science, 2675, 225-233.

Lui, K. M., & Chan, K. C. C. (2006). Pair Programming Productivity: Novice-Novice vs. Expert-

Expert. International Journal of Human-Computer Studies, 64(9), 915-925.

Madeyski, L. (2006). The Impact of Pair Programming and Test-Driven Development on

Package Dependencies in Object-Oriented Design — An Experiment Lecture Notes in

Computer Science, 4034, 278-289.

Mahalo. (2009). Answered Question. Retrieved September 28, 2009, from

http://www.mahalo.com/answers/programming/how-many-software-developers-are-

there-in-the-world-and-how-many-in-the-us-india-and-china-respectively

March, J., & Simon, H. (1958). Organizations. New York: Wiley.

Marchenko, A. (2008a). XP Practice: Pair Programming. Retrieved October 1, 2009, from

http://agilesoftwaredevelopment.com/xp/practices/pair-programming

Marchenko, A. (2008b). Five Risks of Solo Programming. Retrieved October 1, 2009, from

http://agilesoftwaredevelopment.com/blog/artem/five-risks-of-solo-programming

Marchenko, A. (2008c). Pair Programming. What Researches Say on the Costs and Benefits of

the Practice. Retrieved October 1, 2009, from

http://agilesoftwaredevelopment.com/blog/artem/pair-programming-what-researches-say

Markoff, J. (1998). Sun Microsystems Introducing A New Version of Unix Today. Retrieved

September 25, 2009, 2009, from http://www.nytimes.com/1998/10/27/business/sun-

microsystems-introducing-a-new-version-of-unix-

today.html?scp=18&sq=%22software%20errors%22&st=cse

McDowell, C., Hanks, B., & Werner, L. (2003). Experimenting with Pair Programming in the

Classroom. ACM SIGCSE Bulletin, 35(3), 60-64.

McDowell, C., Werner, L., Bullock, H., & Fernald, J. (2002). The Effects of Pair-Programming

on Performance in an Introductory Programming Course. Paper presented at the 33rd

SIGCSE Technical Symposium on Computer Science Education.

McDowell, C., Werner, L., Bullock, H. E., & Fernald, J. (2003). The Impact of Pair

Programming on Student Performance, Perception and Persistence. Paper presented at

the 25th International Conference on Software Engineering, Portland, Oregon.

McDowell, C., Werner, L., Bullock, H. E., & Fernald, J. (2006). Pair Programming Improves

Student Retention, Confidence, and Program Quality. Communications of the ACM,

49(8), 90-95.

Mendes, E., Al-Fakhri, L. B., & Luxton-Reilly, A. (2005). Investigating Pair-Programming in a

2nd-year Software Development and Design Computer Science Course. Paper presented

at the 10th annual SIGCSE Conference on Innovation and Technology in Computer

Science Education.

Microsoft. (2009). Every Project Plan is a Triangle. Retrieved Septebmer 25, 2009, from

http://office.microsoft.com/en-us/project/HA010211801033.aspx#1

Morales, A. W. (2002). Going to Extremes. Retrieved October 1, 2009, from

http://www.informationweek.com/news/software/development/showArticle.jhtml?articleI

D=6500648

Müller, M. M. (2004). Are Reviews an Alternative to Pair Programming? Empirical Software

168

Engineering, 9(4), 335-351.

Müller, M. M. (2005). Two Controlled Experiments Concerning the Comparison of Pair

Programming to Peer Review. Journal of Systems and Software, 78(2), 166-179.

Müller, M. M. (2006). A Preliminary Study on the Impact of a Pair Design Phase on Pair

Programming and Solo Programming. Information and Software Technology, 48(5), 335-

344.

Müller, M. M., & Padberg, F. (2002). Extreme Programming from an Engineering Economics

Viewpoint. Paper presented at the Fourth International Workshop Economics-Driven

Software Engineering Research.

Müller, M. M., & Padberg, F. (2003). On the Economic Evaluation of XP Projects. SIGSOFT

Software Engineering Notes, 28(5), 168-177.

Müller, M. M., & Padberg, F. (2004). An Empirical Study about the Feelgood Factor in Pair

Programming. Paper presented at the 10th International Symposium on Software Metrics.

Müller, M. M., & Tichy, W. F. (2001). Case Study: Extreme Programming in a University

Environment. Paper presented at the 23rd International Conference on Software

Engineering.

Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, K., Miller, C., et al. (2003). Improving

the CS1 Experience with Pair Programming. ACM SIGCSE Bulletin, 35(1), 359-362.

Nagappan, N., Williams, L., Wiebe, E., Miller, C., Balik, S., Ferzli, M., et al. (2003). Pair

Learning: With an Eye Toward Future Success. Lecture Notes in Computer Science,

2753, 185-198.

Natsu, H., Favela, J., Moran, A. L., Decouchant, D., Martinez-Enriquez, A. M., de la

Computacion, C., et al. (2003). Distributed Pair Programming on the Web. Paper

presented at the Fourth Mexican International Conference on Computer Science.

Nawrocki, J., & Wojciechowski, A. (2001). Experimental Evaluation of Pair Programming.

European Software Control and Metrics.

Nedland, M. (2005). Two Heads, One Focus. Retrieved October 1, 2009, from

http://www.ddj.com/architect/184415309

Nilsson, K. (2003). A Summary from a Pair Programming Survey: Subpart from an

Undergraduate Master Thesis Paper. Blekinge Institute of Technology.

Nosek, J. T. (1998). The Case for Collaborative Programming. Communications of the ACM,

41(3), 105-108.

Olsen, P. R. (2009). For Writing Software, a Buddy System. Retrieved September 29, 2009,

from http://www.nytimes.com/2009/09/20/jobs/20pre.html?_r=1&emc=eta1

Padberg, F., & Müller, M. M. (2003). Analyzing the Cost and Benefit of Pair Programming.

Paper presented at the 9th International Symposium on Software Metrics

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic

Books.

Parrish, A., Smith, R., Hale, D., & Hale, J. (2004). A Field Study of Developer Pairs:

Productivity Impacts and Implications. IEEE Software, 21(5), 76-79.

Pendharkar, P. C., & Rodger, J. A. (2009). The Relationship between Software Development

Team Size and Software Development Cost. Communications of the ACM, 52(1), 141-

144.

Petter, S., Straub, D., & Rai, A. (2007). Specifying formative constructs in information systems

research. MIS Quarterly, 31(4), 623-656.

Pfleeger, S. L., & Atlee, J. M. (2008). Software Engineering: Theory and Practice: Prentice Hall

169

Phongpaibul, M., & Boehm, B. (2006). An Empirical Comparison between Pair Development

and Software Inspection in Thailand. Paper presented at the 2006 ACM/IEEE

international symposium on Empirical software engineering.

Poole, C., & Huisman, J. W. (2001). Using Extreme Programming in a Maintenance

Environment. IEEE Software 18(6), 42-50.

Prashant, B., Edward, F. G., & Stotts, P. D. (2002). Exploring the Efficacy of Distributed Pair

Programming. Paper presented at the Second XP Universe and First Agile Universe

Conference on Extreme Programming and Agile Methods.

Pressman, R. S. (2005). Software Engineering: a Practitioner's Approach: McGraw-Hill New

York.

Preston, D. (2005). Pair Programming as a Model of Collaborative Learning: a Review of the

Research. Journal of Computing Sciences in Colleges, 20(4), 39-45.

Price, D. A. (2009). Do as I Say And as I Do. Retrieved October 1, 2009, from

http://online.wsj.com/article/SB10001424052970204731804574385132694479464.html

Radding, A. (2002). Extremely Agile Programming. Retrieved October 1, 2009, from

http://www.computerworld.com/s/article/print/67950/Extremely_Agile_Programming

Robbins, S. P. (2000). Organizational Behavior: Prentice Hall.

Rogers, T. B. (1995). The Psychological Testing Enterprise: An Introduction: Brooks/Cole Pub.

Co.

Rostaher, M., & Hericko, M. (2002). Tracking Test First Pair Programming - An Experiment.

Paper presented at the Second XP Universe and First Agile Universe Conference on

Extreme Programming and Agile Methods.

Rumpe, B., & Schroer, A. (2002). Quantitative Survey on Extreme Programming Projects. Paper

presented at the 3rd International Conference on Extreme Programming and Flexible

Processes in Software Engineering, Sardinia, Italy.

Sanders, D. (2001). Student Perceptions of the Suitability of Extreme and Pair Programming.

Paper presented at the XP Universe.

Schach, S. R. (2006). Object-Oriented and Classical Software Engineering: McGraw-Hill

Siobhan. (2007). Paired Programming - Benefits for Individual and Team Development.

Retrieved October 1, 2009, from http://www.siobhan-optimise.blogspot.com/

Sommerville, I. (1996). Software Engineering: Addison-Wesley.

Sommerville, I. (2007). Software Engineering: Addison-Wesley.

Sommerville, I. (2009). Case Studies and Examples. Retrieved September 27, 2009, from

http://www.cs.st-andrews.ac.uk/~ifs/Resources/CaseStudies/index.html

Srikanth, H., Williams, L., Wiebe, E., Miller, C., & Balik, S. (2004). On Pair Rotation in the

Computer Science Course. Paper presented at the 17th Conference on Software

Engineering Education and Training.

Stephens, M., & Rosenberg, D. (2003). Extreme Programming Refactored: The Case Against

XP: Apress New York.

Straub, D. W. (1989). Validating instruments in MIS research. MIS Quarterly, 13(2), 147-169.

Succi, G., Pedrycz, W., Marchesi, M., & Williams, L. (2002). Preliminary Analysis of the Effects

of Pair Programming on Job Satisfaction. Paper presented at the Fourth International

Conference on eXtreme Programming and Agile Processes in Software Engineering

Tassey, G. (2002). The Economic Impacts of Inadequate Infrastructure for Software Testing.

National Institute of Standards and Technology RTI Project.

Tessem, B. (2003). Experiences in Learning XP Practices: A Qualitative Study. Paper presented

170

at the Extreme Programming Genova, Italy.

Thomas, L., Ratcliffe, M., & Robertson, A. (2003). Code Warriors and Code-a-Phobes: a Study

in Attitude and Pair Programming. Paper presented at the 34th SIGCSE Technical

Symposium on Computer Science Education.

Tomayko, J. E. (2002). A Comparison of Pair Programming to Inspections for Software Defect

Reduction. Computer Science Education, 12(3), 213-222.

VanDeGrift, T. (2004). Coupling Pair Programming and Writing: Learning about Students'

Perceptions and Processes. ACM SIGCSE Bulletin, 36(1), 2-6.

Vanhanen, J., & Korpi, H. (2007). Experiences of Using Pair Programming in an Agile Project.

Paper presented at the 40th Annual Hawaii International Conference on System Sciences.

Vanhanen, J., & Lassenius, C. (2005). Effects of Pair Programming at the Development Team

level: an Experiment. Paper presented at the 2005 International Symposium on Empirical

Software Engineering.

Vanhanen, J., & Lassenius, C. (2007). Perceived Effects of Pair Programming in an Industrial

Context. Paper presented at the 33rd EUROMICRO Conference on Software Engineering

and Advanced Applications.

Vanhanen, J., Lassenius, C., & Mantyla, M. V. (2007). Issues and Tactics when Adopting Pair

Programming: A Longitudinal Case Study. Paper presented at the International

Conference on Software Engineering Advances.

Washington Technology. (1999). Selected Security Events in the 1990s. Retrieved September

27, 2009, from http://washingtontechnology.com/Articles/1999/01/07/Selected-Security-

Events-in-the-1990s.aspx?sc_lang=en&Page=1

Weinberg, G. M. (1971). The Psychology of Computer Programming: Van Nostrand Reinhold

New York.

Williams, L. (1999). But, Isn't that Cheating? . Paper presented at the Frontiers in Education

Conference.

Williams, L., & Kessler, R. (2003). Pair Programming Illuminated: Addison-Wesley

Williams, L., Kessler, R. R., Cunningham, W., & Jeffries, R. (2000). Strengthening the Case for

Pair Programming. IEEE Software, 17(4), 19-25.

Williams, L., McDowell, C., Nagappan, N., Fernald, J., & Werner, L. (2003). Building Pair

Programming Knowledge through a Family of Experiments. Paper presented at the

International Symposium on Empirical Software Engineering.

Williams, L., Shukla, A., & Anton, A. I. (2004). An Initial Exploration of the Relationship

between Pair Programming and Brooks' Law. Paper presented at the 2004 Agile

Development Conference.

Williams, L., & Upchurch, R. L. (2001). In Support of Student Pair-Programming. Paper

presented at the 32nd SIGCSE Technical Symposium on Computer Science Education.

Williams, L. A., & Kessler, R. R. (2000). The Effects of" Pair-Pressure" and "Pair-Learning" on

Software Engineering Education. Paper presented at the 13th Conference on Software

Engineering Education and Training.

Williams, L. A., & Kessler, R. R. (2001). Experiments with Industry's" Pair-Programming"

Model in the Computer Science Classroom. Computer Science Education, 11(1), 7-20.

Woyke, E. (2008). The Next Killer Mobile App. Retrieved September 28, 2009, from

www.forbes.com/2008/04/03/ctia-mobile-developer-tech-wire-cx_ew_0403ctia.html

Wray, S. (2010). How Pair Programming Really Works. IEEE Software(January/February), 50-

55.

171

Xu, S., & Rajlich, V. (2006). Empirical Validation of Test-Driven Pair Programming in Game

Development. Paper presented at the 5th IEEE/ACIS International Conference on

Computer and Information Science and 1st IEEE/ACIS International Workshop on

Component-Based Software Engineering,Software Architecture and Reuse (ICIS-

COMSAR'06).

Yourdon, E. (2004). Death March: The Complete Software Developer's Guide to Surviving

Mission Impossible Projects: Prentice-Hall: Upper Saddle River, NJ.

