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ABSTRACT 

To advance the nomological net and theory, this dissertation proposed a comprehensive 

pair programming research model where the relationships among system complexity, 

programming methods, pair composition, effort, duration, defect rate, knowledge transfer, and 

various cost constructs were investigated.  A multi-method, multi-study empirical approach was 

adopted.  The survey method was employed for Study 1, and the bootstrap simulation method for 

Study 2. The reponses from 191 industry software developers and the simulation results suggest 

the previous conclusions regarding pair programming are limited in nature and the pair 

programming approach may not be as desirable in all situations as was previously assumed. The 

pair programming approach clearly adds value in situations where it is appropriate but certain 

conditions must be met for this goal to be achieved.  Pair composition must be taken into account, 

and it is important to examine the interactions of multiple cost factors such as defect, effort, 

duration, and knowledge transfer and consider their combined effect on the ultimate goal of the 

project. 
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1.INTRODUCTION   

Software is used in virtually every part of human life.  From embedded systems in our 

kitchen appliances to control systems for space exploration, from book keeping systems to 

monitoring systems for surgical operations, humans rely heavily on software for processing 

information and providing recommendations for actions and interactions.   

Given the ubiquitous nature of software, it should not be surprising that the software 

industry has seen tremendous growth in the past decade and is expected to continue to grow in 

the future.  According to reports by Data Monitor, a leading business information company 

specializing in industry analysis, the United States software market generated total revenues of 

$85.9 billion in 2007 and is forecast to have a value of $116.6 billion by 2012 (Datamonitor, 

2008a); the global software market was valued at $251.5 billion in 2007 and is expected to reach 

$347.3 billion in 2012 (Datamonitor, 2008b).  Industry estimates point to as many as 17 million 

professional software developers in the world including three million developers in the US 

(Woyke, 2008; Mahalo, 2009). 

Despite its growth and rapid maturity, software development remains challenging.  

Yourdon (2004) classified many software development projects as “Death March” projects 

where participants helplessly watch the projects sink into the sea of failure.  While there are 

conceivably an infinite number of issues that must be addressed across the wide spectrum of 

software development, arguably the two most important issues are the quality of the software and 

the cost of developing it.   

The quality of software is of paramount importance.  National Institute of Standards and 

Technology reports (Tassey, 2002) software errors cost the U.S. economy $59.5 billion annually.  

This represents over half of the 2007 software industry revenues generated by selling the 

products. Serious problems and significant losses may result when a system fails to deliver its 
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services as expected (Sommerville, 2007). For instance, the wrong dosage suggested by a 

medical expert system intended to be used in support of treatment could result in patient deaths 

(Kirby, 2007; Computing Cases, 2009); a defect in the computer controlling the space shuttle 

could cause catastrophic losses (Sommerville, 2009); a failure in the traffic control system could 

shut down traffic lights and cause chaotic traffic jams or potentially disasterous results 

(Geoghegan, 2005); a fault in the electronic switching systems of a telecommunications 

company could cause an outage, blocking millions of phone calls (Washington Technology, 

1999); an error in calculating classroom exam results could misinform educators, students, and 

their parents, and a mistake in tax software could distort tax assessments and result in many 

taxpayers experiencing unnecessary audits and penalties (BBC News, 1998; 2009). 

Regardless of the degree of criticality, software quality is essential.  Even when liability 

is not a major concern, users are not likely to stay with software products full of inconvenience 

as a result of development deficiencies and errors.  Companies producing poor quality software 

will likely not stay in the marketplace for too long.   

The cost of developing software is high due to its increased size and complexity (Tassey, 

2002).  Brooks (1995) reported the IBM OS/360 project he managed required 5000 man-years in 

its design, construction, and documentation during a three-year period, and at peak time, had 

over 1000 people working on it.  Microsoft NT operating systems was reported to have more 

than 35 million lines of code (Markoff, 1998).  A commercial video game typically calls for over 

three million lines of code with budgets ranging from $5 million to $50 million (Hurt, 2009).  

The cost of developing software is comprised of several elements: labor costs, training 

costs, and hardware and software costs, with labor as the largest cost component (Sommerville, 

2007).  According to the May 2010 labor statistics (Bureau of Labor Statistics, 2011), the 
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average hourly wage of a software developer in the US is $36.01, and the average annual wage is 

$74,900.  Statistics based on 1,238 software projects from International Software Benchmarking 

Standards Group (ISBSG)  report the average software effort among the projects is 8,414.80 

man-hours and the maximum is 645,694 man-hours (Pendharkar and Rodger, 2009), which 

suggests the average direct labor cost for these projects is $303,000, and $23 million for the 

largest project.   

Developing quality software within budget constraints is a universal challenge faced by 

all software projects.  Quality comes at a cost.  In programming, the bulk of cost is not simply 

labor associated with writing codes, but labor associated with writing quality codes.  As Figure 1 

illustrates, quality sits in the center of the triangle of money, scope, and time, and is affected by 

any changes made to any side of the triangle (Microsoft, 2009). When time and scope are fixed, 

money necessarily increases as quality goes up.   

 

Figure 1.1 Quality and the Triangle (Microsoft, 2009) 

 

Furthermore, Juran (1974) depicts a concave upward curve in Figure 1.2 as the 

relationship between cost and quality where he defines the “zone of improvement” and the “zone 

of perfectionism”.  The “zone of improvement” lies to the left of the optimum quality level, 

while the “zone of perfectionism” lies to the right.  The graphs suggest quality in the 

improvement zone can be improved without incurring additional cost; as a matter of fact, it 

reduces cost per unit of product, but in the perfectionism zone, every little improvement in 
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quality comes with a high price.  This can be metaphorically thought of in terms of the 

commonly used heuristic known as the “Pareto principle”. The Pareto 80/20 principle states 80% 

of the effects come from 20% of the causes.  When applied to quality and cost in software 

development, one can argue that generally 80 percent of the project quality is achieved by only 

20 percent of the resources.  This suggests, to achieve the remaining 20 percent of the total 

quality, up to 80 percent of the resources will be required.   

 

 

Figure 1.2 Quality and Cost (Juan, 1974) 

 

Given the importance of this issue, numerous approaches have been developed to 

improve software quality while staying within cost constraints.  Waterfall software development, 

rapid application development (RAD), object-oriented analysis and design (OOAD), and the 
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most recent agile software development (Pressman, 2005; Sommerville, 2007) all have the same 

goal: developing high quality software within budget.  Although sharing the same goal, these 

approaches adopt different, sometimes even contradictory, techniques to achieve it (Dennis, 

Wixom, and Tegarden, 2005; Schach, 2006; Pfleeger and Atlee, 2008).  For example, waterfall 

development endorses rigorous document “sign-off” processes thus minimizing changes as the 

project proceeds, while agile software development welcomes changing requirements even late 

in the project (Agile Manifesto, 2011).    Waterfall does not deliver working software until the 

very end of the project while RAD develops some part of the system quickly and puts it into the 

hands of the users for suggestions to bring the system closer to what is needed.  OOAD takes 

advantage of basic object-oriented characteristics such as classes, methods, inheritance, 

encapsulation, and polymorphism and focuses on reusability, which introduces concepts vastly 

different from the procedure-oriented analysis and design associated with Waterfall. 

One of the most recent, and seemingly attractive, approaches is pair programming.  Solo 

programming is the traditional programming method while pair programming has recently 

emerged as an attractive alternative to address the challenges solo programming faces such as 

quality and speed.   

Pair programming is a programming method where two programmers work on the same 

programming task side by side in front of one computer (Beck, 2000; Williams, Kessler, 

Cunningham, and Jeffries, 2000; Arisholm, Gallis, Dybå, and Sjøberg, 2007).  In pair 

programming, one programmer is the driver, and the other is the navigator.  The driver sits in 

front of the computer screen, types the code, and pays close attention to the coding details.  The 

navigator sits beside the driver, reviews the code, and takes the lead in developing alternative 
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strategies in the event of a problem.  The programmers change roles periodically during the 

project to avoid role fatigue.   

Pair programming is one of the twelve principles Extreme Programming (XP) follows 

(Sommerville, 2007).  XP, the brainchild of Kent Beck and colleagues Ron Jeffries and Ward 

Cunningham (Beck, 2000), has emerged as the most successful and best-known of the agile 

software development method (Sommerville, 2007).  Beck credits much of its success to the use 

of pair programming (Williams et al., 2000).   

Despite the worldwide prevalence - used in 58.3% of the projects in India, 22.2% in 

Japan, 35.5% in US, and 27.2% in Europe and other countries (Cusumano, MacCormack, 

Kemerer, and Crandall, 2003) and the increased adoption – seven percent increase from 2007 to 

2008 (VersionOne, 2008), our literature review suggests the adoption of pair programming 

seems to be based on limited and sometimes questionable studies reporting its effectiveness.  The 

appeal of the pair programming method appears to come from the reported improvement in 

quality and shortened software development cycle.  However, a close review of the literature 

reveals several problems with these conclusions.   

First, with a few exceptions (Arisholm et al., 2007; Balijepally, Mahapatra, Nerur, and 

Price, 2009), the majority of the empirical studies were conducted using neither theory nor 

research framework.  The comprehensive pair programming research framework suggested by 

Gallis, Arisholm, and Dybå (2003) and extended by Ally, Darroch, and Toleman (2005) has been 

largely ignored.  Gallis et al. (2003) suggest individual factors and human interactions, as well as 

task characteristics are crucial elements in determining its effectiveness.  Yet, few studies 

consider personal factors such as programmer expertise, prior pair programming experience, 

interpersonal factors such as pair composition, and external factors such as the complexity of the 
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programming task,  as contributing forces and components in their research.   Lack of theoretical 

guidance arguably puts the studies’ conclusions in doubt.   

Second, across the studies, there is no consensus on the measurement of software quality.  

For example, quality was measured by such varietal and opposing metrics as error rate (Jensen, 

2003), readability and functionability (Nosek, 1998), correctness (Lui and Chan, 2003), 

percentage of test cases passed (Williams et al., 2000), and scores on classroom programming 

assignments (McDowell, Werner, Bullock, and Fernald, 2003; 2006).  Consequently, findings 

from individual studies cannot be readily generalized beyond the measurement method the 

authors adopted.      

Third, findings on how much more time is required by the pair programming method 

varied from a decrease in time (Lui and Chan, 2003), a 15 percent increase (Williams et al., 

2000), a 41 percent increase (Nosek, 1998), to a 100 percent increase (Nawrocki and 

Wojciechowski, 2001), thus failing to provide a definitive answer to whether pair programming 

requires more programming hours than solo programming, and if so, by how much.   

Finally, there has been very little empirical work, to date, on the issue of cost in the pair 

programming arena.  In fact, only two major studies emerge from a comprehensive review of the 

literature.  These two studies aimed to address the economics of pair programming but yielded 

different conclusions: in one study, pair programming was more cost effective than solo 

programming in all situations (Erdogmus and Williams, 2003), while in the other the economic 

benefit of pair programming depended on factors such as market pressure (Padberg and Müller, 

2003).  Moreover, both study results were hampered by the lack of reliable parameter values 

used in the simulation models.  Erdogmus and Williams (2003) relied on data on programmer 

productivity, defect rate, and rework speed.  Padberg and Müller (2003) depended on data about 
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pair speed advantage and pair defect advantage.   However, in both cases, empirical evidence of 

the parameter values was very limited.  As Erdogmus and Williams stated (p. 315-316) in the 

limitation section of their research, they derived the parameter data from different sources, but 

did not verify the data consistency among the sources.  In addition, they did not have information 

on the software development methods of the companies involved in those statistics. 

Given what we have learned from the present, albeit limited, body of research on pair 

programming, no empirical study has truly addressed all the issues associated with cost.  From 

previous research, one cannot confidently answer the question: is pair programming a cost 

effective method for software development? While it might be true that pair programming can 

produce higher quality code with shortened development cycle, it may not come without a cost in 

other areas, such as increased programming hours.  Since no study has addressed the entire 

complexity of cost as it relates to pair programming, an empirical study that thoroughly 

considers its many different contributing factors is warranted.  

The purpose of this research is to propose and empirically validate a comprehensive 

theoretical model of pair programming as it relates to project cost.  The outcome of the research 

aims to answer the following research questions: 

1) Is pair programming a cost effective method compared to solo programming when 

overall project costs and quality are considered?   

2) What are the conditions that determine the cost effectiveness, or lack thereof, of the 

pair programming method over solo programming?   

Answers to these research questions will be derived via a multi-method empirical 

approach.    The first method is a survey study with two primary objectives: 
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 a). Gather information on practitioners’ perceptions regarding the cost of pair 

programming and provide an initial validation of the research model;  

b). Acquire data on project and developer characteristics to provide the necessary 

foundation for a simulation study.   

The second method is a series of bootstrapping simulations.  Using responses from the 

survey as input parameters, its objective is to determine in what situations pair programming is 

expected to be more cost effective than solo programming.  We examine both the project and 

developer characteristics and vary parameter values to investigate the effects of the pair 

programming method on the overall cost of a project under a variety of conditions. 

It is important to note that programming is only one phase of software development.  We 

fully recognize activities both preceeding and after can have impacts on the total cost of the 

project.  For the purpose of this research, however, we are interested in two different 

programming approaches and their associated effects on cost. 

We believe this research has several theoretical and practical implications for researchers 

as well as practitioners. From a theoretical perspective, this research is expected to be one of the 

first few to examine several under-studied constructs and relationships: prior pair programming 

experience, knowledge transfer, the moderating effects of pair programming method on the 

relationship between system complexity and constructs such as effort, defect rate, and knowledge 

transfer, and all the cost-related constructs are new.  We hope the mechanism we develop to 

acquire parameter values will provide a basis for future research in this area.   

From the practical perspective, the study will likely provide foundational guidelines to 

the industry when one needs to decide which programming method to adopt in different project 

environments. Specifically, three situations and their associated project and developer 
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characteristics will be determined: situation 1 - pair programming is more cost effective than solo 

programming, situation 2 – the two methods are pretty much the same, and situation 3 – solo 

programming is more suitable than pair programming.  Such findings are expected to provide 

suggestions to organizations in regards to which programming method to use given their unique 

project and developer characteristics. 

The remainder of the research is organized into five chapters, a bibliography, and 

appendixes in the following manner.  Chapter Two presents a review of the related literature on 

pair programming.  Chapter Three presents the research model and hypotheses. Chapter Four 

delineates the research design and methodology of the study. An analysis of the data and a 

discussion of the findings are presented in Chapter Five.  Chapter Six contains the identifiable 

limitations, summary, conclusions, and recommendations of the research.  The research 

concludes with a bibliography and appendixes. 

 

2. LITERATURE REVIEW 

 

Practitioners and academia have both contributed to the body of pair programming 

knowledge and research. Despite occasional overlap, practitioners tend toward sharing their 

personal experiences and observations while academia typically contribute by collecting and 

analyzing data based on grounded theories and standard research methods.  

It is important to note that the literature presented here represents a totality of both 

practitioner and academic work on pair programming.  Suffice to say, the extant literature in pair 

programming is both immature and lacking strong empirical focus.  Appended to the end of this 

chapter is Table 2.1 which contains a summary of the extant literature in pair programming. 

Despite the volume of the table, most of the studies are either practitioner-oriented anecdote (17 

out of 85 = 20%) or published in conference proceedings (37 out of 85 = 43.5%).  Among 
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refereed academic journal publications (29 out of 85 = 34%), nearly half of the studies focused 

on university computer science education rather than real world industrial practice.  We can 

conclude from these descriptions that, in one sense, all studies become important when the extant 

literature is so young.  In another sense, the academic and empirically focused portion of the 

literature is weak with respect to theory and foundation.  It is our hope that this research effort 

will improve on this condition. 

Practitioners have utilized several outlets to share their opinions and experiences. One 

major outlet is Internet websites such as Agile Alliance, Agile Software Development, Agile 

Manifesto, Extreme Programming, and Wikipedia on pair programming. The other outlet is 

practitioner’s journals such as Computer World, Information Week, and Dr. Dobb’s. In addition 

to the above, several popular news media have opinion pieces on pair programming. For 

example, a September 2009 New York Times article Olsen (2009), argued pair programming 

was the only way to work from the stand point of a programmer at a web development firm in 

Florida. A September 2009 Wall Street Journal article Price (2009), called pair programming a 

“trendy practice”. The annual agile conference, which attracts over 1000 attendees, is another 

outlet for practitioners to share their industrial experience alongside academic colleagues. 

The major outlets for academic publications are the Institute of Electrical and Electronics 

Engineers (IEEE), the Association for Computing Machinery (ACM), and premiere IS 

conference proceedings and journals. There has been substantial academic literature on pair 

programming research with most conducted by researchers trained in computer science and 

software engineering. The focus and the quality of the research varies greatly, ranging from 

opinion pieces based on observations, to studies that present descriptive statistics without 

conducting any significance test, to studies that rigorously adopt scientific research methods. We 
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include all the extant literature in this chapter for comprehensiveness, but we caution readers 

regarding the generalizability of the conclusions from some of the studies due to their lack of 

sound empiricism. 

Among the studies we reviewed, two stand out as exemplars of important contributions: 

Gallis et al. (2003) and Dybå, Arisholm, Sjøberg, Hannay, and Shull (2007). These two studies 

present a comprehensive list of constructs that have been the focus of interest by most academic 

researchers in the pair programming arena.  

Gallis et al. (2003) proposed a comprehensive research framework for pair programming. 

To address the problem of no available theoretical framework to support pair programming 

research, the authors developed such a  framework based on existing studies and theories from 

group dynamics such as egoless programming (Weinberg, 1971), surgical team (Brooks, 1975), 

and dynamic duos (Constantine, 1995). Figure 2.1 illustrates this proposed research framework.  

 

 

 
 

Figure 2.1 Research Framework for Pair Programming (Gallis et al., 2003) 

 

This framework suggests that time, cost, quality, knowledge transfer, morale, and risk are 
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salient dependent variables with context variables such as subject, task, and environmental 

characteristics moderating the relationship between programmer collaboration methods and 

outcomes. This framework was later extended by adding organizational factors such as team 

building, pair management, human resource management, accountability, customer resistance, 

organizational culture, and collective code ownership to the moderating context variables (Ally, 

Darroch, and Toleman, 2005).  

The second exemplar, Dybå et al. (2007), conducted a meta-analysis which represents the 

most current research aimed at synthesizing results from multiple empirical studies. The meta-

analysis focused on the effect of programming method (solo vs. pair) on quality, duration, and 

effort. Figure 2.2 contains their findings. 

 

Figure 2.2 Findings from Meta-analysis (Dybå et al., 2007) 
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This meta-analysis, consisting of 15 studies, suggests pair programming leads to a 

medium-sized increase in quality (effect size = 0.38), a medium-sized overall reduction in 

duration (effect size = 0.40), and a medium-sized negative effect on effort (effect size = -0.57).
1
 

In building upon the presentation of the two previous exemplars, the remainder of this 

literature review presents the findings from studies in pair programming using an organizing 

approach that separates the constructs identified in the two previous exemplars. We believe this 

approach presents the clearest understanding of the variables of interest in pair programming 

research in general, and this research effort in particular. Variables such as trust and risk were 

not included since few studies were identified to focus on those constructs. In addition, since the 

focus of this research effort is to compare pair programming to solo programming, literature that 

compares pair programming to other team development methods such as traditional team 

development, peer review, and inspection are also not presented or discussed.
2
  

2.1. Quality 

 

Numerous stories from the industry attest to the relationship between the use of pair 

programming and improved software quality. Tom Ayerst, an architectural consultant at a 

London-based investment bank, suggested that pair programmers made fewer coding mistakes 

and stupid choices because it was like having a pilot to focus on flying, while the navigator made 

strategic decisions about where to go next (Copeland, 2001a).  At Royal & Sun Alliance 

Insurance Group, a $16 billion London-based insurer, pairing two developers on each assignment 

helped produce more stable code (Copeland, 2001a). Haungs (2001) noted the combined efforts 

                                                 
1
 For studies in software engineering, 0-0.37, 0.38-1.00, 1.01-3.40 represent small, medium, and large effects 

respectively (Kampenes, Dybå, Hannay, and Sjøberg, 2007). 

2
 Interested readers are referred to Ciolkowski and Schlemmer (2002), Tomayko (2002), Heiberg, Puus, Salumaa, 

and Seeba (2003), Müller (2004; 2005), Chong (2005), Phongpaibul and Boehm (2006), and Xu and Rajlich (2006) 

for these areas of interest.  Readers who are interested in research on distributed vs. co-located pair programming are 

referred to Baheti, Gehringer, and Stotts (2002), Prashant, Edward, and Stotts (2002), Natsu, Favela, Moran, 

Decouchant, and Martinez-Enriquez (2003), Canfora, Cimitile, Lucca, and Visaggio (2006), and Flor (2006). 

http://main.dresdnerkb.com/
http://www.royalsunalliance.com/
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in pair programming on the Chrysler 3 project produced a tool that was much better than the sum 

of its parts. At Iona Technologies and Wotif, the adoption of pair programming improved the 

quality of the final product (Poole and Huisman, 2001; Luck, 2004). The Quality Assurance 

teams at Symantec produced cleaner test classes and better coverage tests through the pair-

programming process (Morales, 2002). Jensen, a consultant for the Software Technology 

Support Center, Hill Air Force Base, reported an error rate of 0.001 in a pair programming 

experience compared to the normal error rate experienced without using the pair approach. He 

further revealed integration of the first two components (approximately 10,000 source lines) was 

completed with only two coding errors and one design error; the third component was integrated 

with no errors; and the remaining three components had more errors, but the number of errors 

was significantly less than normal (Jensen, 2003). At Sabre Airline Solutions, actual coding was 

done in pairs by teams in open labs. Reports from Sabre suggest that the use of the pair approach 

cut defects dramatically: 100 defects for their Profit Manager project (500 KLOC),
3
 zero defects 

for their Host Access project (15 KLOC), and four defects for their Peripheral Manager project 

(28 KLOC) (Anthes, 2004). At Intel pair-programmed components had the lowest defect density 

in the IXP2xx project and one of the paired teams achieved zero defect quality (Fitzgerald and 

Hartnett, 2005). Finally, Marchenko (2008a; 2008b; 2008c) stated his personal observations 

supported the notion of better quality when using the pair programming method. 

The anecdotal claim about quality improvement through pair programming has been 

supported by academic-based empirical studies involving college students as well as 

practitioners. Nosek (1998) examined the effectiveness of pair programming with 15 full-time 

system programmers: five individuals and five pairs. The study results revealed pairs produced 

                                                 
3
 KLOC refers to thousand of lines of code. 
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more readable and functional solutions than solos. Lui and Chan (2003) used 15 full-time 

industrial programmers from different companies as subjects in their experiment, five pairs and 

five individuals, to solve two problems: a deduction problem and a procedural algorithm. Study 

results revealed that pairs outperformed individuals in terms of correctness. Nilsson (2003) 

conducted a pair programming survey that involved both students and practitioners and noted 

that most of the 67 survey respondents believed pair programming would reduce defect rate. 

Tessem (2003) conducted a field study with six students and researchers at the University of 

Bergen, Norway. The project lasted three weeks. All six programmers reported that they found 

pair programming led to higher quality. Canfora, Cimitile, Garcia, Piattini, and Visaggio (2007) 

conducted an experiment involving 18 developers in a software company in Spain. The authors 

reported that pairs consistently produced higher quality products than solos.  Vanhanen and 

Lassenius (2007) surveyed 28 developers in a medium-sized Finnish software product company. 

Findings suggested a clearly positive effect for quality aspects such as understandability and 

maintainability of code, defect count, and customer satisfaction.  

A series of experiments involving hundreds of college students in various programming 

classes were conducted by McDowell, Williams, and colleagues at the University of Utah, North 

Carolina State University, and the University of California Santa Cruz. Study results suggest, 

when compared to programs created by solos, those produced by paired students were 

significantly higher quality (Cockburn and Williams, 2001; McDowell, Werner, Bullock, and 

Fernald, 2002; McDowell, Hanks, and Werner, 2003; McDowell et al., 2003; 2006; Williams et 

al., 2003), passed more test cases (Williams et al., 2000), and had higher scores (Nagappan, 

Williams, Wiebe, Miller, Balik, Ferzli, Petlick, 2003; Nagappan, Williams, Ferzli, Wiebe, Yang, 

Miller, Balik, 2003).  These same results were confirmed by several other student subject 
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experiments and surveys. Sanders (2001) conducted a student survey and reported based on 60 

responses that the students believed pair programming would lead to higher quality of the 

program. Declue (2003) collected a survey in a CS2 course at Southwest Baptist University. 

Responses were highly skewed in favor of increased quality with pair programming. Mendes, 

Al-Fakhri, and Luxton_Reilly (2005) reported pairing improved the quality of assignments, 

examination scores, and percentage passing rate. Müller (2006) noticed the programs produced 

by solo students showed 14 percent more failures than the paired programs, and the failures of 

the solo programs were more severe than the failures of the paired programs.  Wray (2010) 

applied theories such as expert programmer theory and change blindness to explain why pair 

programming was a superior approach over solo. He stated when two programmers are working 

together, one was more likely to ask a deep question that would prompt a novel inference from 

the stuck programmer.  In addition, two people programming together wouldn’t have the same 

prior categorization so one would spot some things faster and the other different things faster.   

Despite the overwhelming support for the relationship between pair programming use 

and software quality, several studies yielded mixed results for the improved quality assertion.   

Madeyski (2006) conducted an experiment on 188 students who developed a finance-

accounting system using four different programming approaches: classic solo, test-driven 

development solo, classic pair, test-driven development pair. Quality, which was measured by 

relationships among the system’s packages: coupling, stability, abstractness, and distance from 

main sequence, was not significantly affected by development methods. Hulkko and 

Abrahamsson (2005) revealed comment ratios were higher for pair programming than for solo, 

and pair programmed code was more readable, but there was no significant difference in defect 

density. Vanhanen and Lassenius (2005) found paired student programming teams wrote code 
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with fewer initial defects but delivered the final systems with more defects because they were 

less careful in system testing. Balijepally et al. (2009) concluded a pair was not necessarily better 

than a solo. They compared the performance of pairs with those of the best performers and the 

second best performers and found that pairs performed at the level above the second best 

performers but no better than the best performers.  

Additionally, some studies found quality improvement was not consistent across tasks or 

projects. Gehringer (2003) required students to implement three projects simulating various 

aspects of a mciroarchitecture (cache, branch predictor, dynamic instruction scheduler) and 

revealed paired students obtained significantly higher grades on the first project but not in the 

subsequent projects. Hanks et al. (2004) asked students to work on three programming 

assignments – writing programs to play the card game blackjack, to implement a simple dice 

game, and to implement a text-based version of the Mine-sweeper game.  The study found that 

paired students successfully implemented more features than solos in two of three assignments 

but no significant difference between the two groups on the second assignment. Vanhanen and 

Korpi (2007) reported a project carried out in a large telecommunications company in Finland 

where four developers were involved and pair programming was adopted from the beginning. All 

developers reported that pair programming lowered the number of defects, but in a team 

interview, the developers were somewhat uncertain because the navigators did not spot many 

defects during the programming.  

Several studies noted quality improvement to be dependent on the complexity of the task. 

Al-Kilidar, Parkin, Aurum, and Jeffery (2005) indicated when requirements were simple, pairs 

produced a better quality product, but when requirements were complex, there was no significant 

difference in quality between pairs and solos. In direct contrast to Al-Kilidar, et al., (2005), 
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Arisholm et al. (2007) conducted a one day experiment using 295 professional java consultants 

with 99 individuals and 98 pairs. They reported that on more complex tasks, the pair 

programmers had a 48 percent increase in the proportion of correct solutions but for simpler 

systems there was no significant difference between pairs and solos. 

In software development, quality is a complex concept with many different dimensions. 

Our review of the extant literature suggests little consensus on the measurement of software 

quality across studies. Quality was measured by defect rate (Vanhanen and Lassenius, 2005), 

readability and functionability (Nosek, 1998), correctness (Lui and Chan, 2003), percentage of 

test cases passed (Williams et al., 2000), and scores on classroom programming assignments 

(McDowell et al., 2003; McDowell et al., 2003; 2006). The lack of cumulative research on 

standard measures of quality makes it challenging to generalize conclusions across such studies 

and serves as a challenge for researchers focusing on this area. 

2.2. Cost 

As with quality in the previous section, studies are split in their conclusions regarding 

whether pair programming reduces the overall cost of a software development project compared 

to solo.  

Some anecdotal stories suggest pair programming will reduce the overall cost of a project 

while others believe the benefits of pair programming do not justify the increased expense of the 

second programmer. Stephen Hutchinson, senior technical architect at Royal & Sun Alliance 

Insurance Group, claims pairing two developers on each assignment helped the company come 

in 15% lower than the projected budget (Copeland, April 2001).  An application development 

manager at a major U.S. bank commented the cost issue was moot because through pair 
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programming there would be fewer defects and less time would be spent on bug fixing (Radding, 

2002).  

In contrast, Larry Zucker, executive director of application development at Dollar Rent-a-

Car Systems in Tulsa, Oklahoma, said that while he appreciated the benefits of having two 

programmers on one task, the gains didn’t justify the doubled expense.  He also expressed the 

fear that the programming process could turn into a social event (Copeland, 2001a). This same 

view was echoed by the concern brought about several times by the programmers in Nilsson’s 

survey (Nilsson, 2003): the benefits of pair programming did not cover the very expensive costs. 

Stephens and Rosenberg (2003) identified cost as the major issue facing a decision to employ 

pair programming (p. 150-151). Aiken’s (2004) interview of three developers identified the same 

view: there are surely additional development costs, especially because productivity might suffer 

at first while people are adjusting. Luck (2004) reported a 15% extra cost from an industrial 

experience.  

 As with the practitioner community, conclusions drawn from the empirical studies are 

equally far from reaching consensus with regard to the relationship between pair programming 

and project cost. Müller (2006) found no difference in terms of development cost between a pair 

and a solo implementation if the cost for developing programs of a similar level of correctness 

was concerned, while Rostaher and Hericko (2002) revealed the average time spent to complete 

all three tasks by solo and pair programmers was very similar, which means pairs needed almost 

twice as much time and basically doubled the cost to complete the same amount of work 

compared to individuals.  

Two major simulation studies attempted to address the economics of pair programming 

and yielded markedly different conclusions: in one study pair programming was more cost 
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effective than solo programming in all situations (Erdogmus and Williams, 2003), while in the 

other the realized economic benefit of pair programming depended on factors such as market 

pressure (Padberg and Müller, 2003). 

Given that these two studies represent major efforts in addressing the cost benefits of pair 

programming vs. solo, we present a summary of the studies below. It should be noted that Müller 

and Padberg (2002) and Müller and Padberg (2003) appear to be earlier reports of studies similar 

to Padberg and Müller (2003). Since Padberg and Müller (2003) provided more comprehensive 

discussions of the study, only Padberg and Müller (2003) is presented here.  

Erdogmus and Williams (2003) conducted a major research effort on the economics of 

pair programming. Three empirical parameters were crucial to their model: productivity 

(LOC/hour), defect rate (defects/LOC), and rework speed (defects fixed/hours). The abstract 

models for solo and pair used by the researchers is shown below: 

 where π is productivity, β is defect rate, and p is rework speed. 

Solo = {N=1, π=25.0, β=0.00585, p=0.0303} 

Pair = {N=2, π=43.478, β=0.00351, p=0.0527} 

Based on these parameters, the authors compared solo and pair on three measures: 

efficiency, unit effort, and unit time and revealed that pair was better in all of the three metrics: 

nearly 100% improvement in efficiency, over 40% reduction in unit effort, and over 70% 

reduction in unit time.  

The authors then considered two value realization models: single-point delivery (value 

realized at the end) and incremental delivery (value realized incrementally on a continuous 

basis). The comparison of solo and pair based on breakeven unit value ratio (solo breakeven unit 

value/pair breakeven unit value) suggested that pair was better in both situations.  
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Padberg and Müller (2003) constructed a mathematical model and applied the model in 

two different scenarios: conventional development and development using pair programming.  

To realize the models, the authors adopted some values from previous studies. 

Productivity was defined as 250-550 LOC/month (Sommerville, 1996), pair speed advantage 

ranged from 1.3 to 1.8 (Nosek, 1998; Williams et al., 2000), defect density was assumed to be 

0.03/LOC (Humphrey, 1995), pair defect advantage was set to 15% (Williams et al., 2000), and 

defect removal time was 5-20 hours/defect (Humphrey, 1989; 1995). In addition, several other 

values were assumed: discount rate was set to 25% to 100% per year, developer salary was set at 

$50,000 per year, leader salary at $60,000 per year, and work time was assumed to be 135 hours 

per month. 

Based on the model analysis, several conclusions were drawn. First, the pair speed 

advantage, pair defect advantage, discount rate, and number of pairs each have a strong impact 

on the value of a pair programming project. Second, pair programming appears beneficial when 

the market pressure is really strong and programmers are much faster when working in pairs as 

compared to working alone. Third, if the workforce is limited, it will take a pair programming 

project a very strong market pressure, a large pair speed advantage, and a significant pair defect 

advantage to break even with the conventional project.  

To summarize, these two economic models yielded different conclusions: Erdogmus and 

Williams (2003) suggested a positive economic picture for pair programming while Padberg and 

Müller (2003) concluded the benefit of pair programming depended on a variety of factors. Both 

models are severely restricted by one major limitation: the lack of reliable parameter values for 

the models.  For example, Erdogmus and Williams (2003) heavily relied on productivity, defect 

rate, and rework speed, and Padberg and Müller (2003) depended on the data of pair speed 
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advantage and pair defect advantage. However, empirical evidence of these data items was very 

limited (Erdogmus and Williams, 2003; Padberg and Müller, 2003). The research study 

contained herein will attempt to mitigate this lack of reliable parameter values through the 

collection of data from a large sample of subjects experienced in pair and solo programming. 

2.3. Effort 

 

The majority of the extant literature focusing on effort in a pair environment concluded 

pair programming required more total development hours than solo programming. Nosek (1998) 

reported from an industrial experiment the average completion time for pairs was 40% more than 

solos. Williams et al. (2000) and Cockburn and Williams (2001) reported on average, pairs took 

60% more programmer hours to complete the assignment, but after the adjustment period, this 

60% decreased dramatically to a minimum of 15%.  Rostaher and Hericko (2002) had 16 

programmers, four solos and six pairs, to implement three tasks in a specified order. The 

experiment was limited to one day. The results suggested the average time spent to complete all 

three tasks by solo and pair programmers was very similar, which means pairs needed almost 

twice as much time to complete the same amount of work compared to individuals. This result 

was confirmed by student experiments conducted by Nawrocki and Wojciechowski (2001) and 

McDowell et al. (2003). 

A few other studies shared similar findings. Arisholm et al. (2007) reported study results 

did not support the hypothesis that pair programming, in general, reduced the time required to 

solve the tasks correctly. Vanhanen and Lassenius (2007) surveyed 28 developers and found the 

development effort for individual features was higher for pair programming.  

However, this finding was contradicted by several studies. Lui and Chan (2003) found 

even though pairs spent 20.9% more time, but in consideration of the same quality, pairs spent 
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4.2% less time than did solos on the same task. Canfora et al. (2007) reported despite 

cumulatively pairs using more effort, the finding was not consistent across the tasks. On the first 

round of tasks, the authors reported the average effort for pairs was half an hour less than that for 

solos (6.58 vs.  7.08 hours), but on the second round, they found the average for pairs was 2.7 

hours more than that for solos (8.5 vs. 5.2 hours). 

Once again, we find equivocality in the current empirical findings relating pair 

programming to effort. 

2.4. Duration 

When looking at overall project duration, most studies report pair programming served to 

shorten the project. Williams et al. (2000), Cockburn and Williams (2001), Williams and Kessler 

(2001), and Lui and Chan (2003) report findings from experiments suggesting pairs solved 

problems faster than solos. Rumpe and Schroer (2002) reported from a survey study that 

developers believed coding was completed much faster with pair programming. Vanhanen and 

Lassenius (2007) reported from another survey study that the opinions on the effect of pair 

programming on the probability of finishing a task on schedule were very positive, with the 

median being 6.0 using a 7 point Likert scale. Marchenko (2008c) stated his personal 

observations supported the claim of faster development when using the pair programming 

method.  

In contrast, three studies suggest contradictory results. Rostaher and Hericko (2002) 

involved 16 developers who could choose six small tasks to form a simple insurance contract 

administration system. Each pair or individual had to implement as many of the tasks as possible 

in the exact order specified. Study results revealed that most of the developers finished four tasks 

and did not start the fifth one, suggesting pairs did not program faster than solos.  Arisholm et al. 
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(2007) reported whether pair programming reduced duration depending on the task. The authors 

found that on more complex tasks the pair programmers had no significant differences in the 

time taken to solve the tasks correctly but for the simpler system, there was a 20 percent decrease 

in time taken.  Dawande, Johar, Kumar, and Mookerjee (2008) developed analytical models to 

compare the performance of pair development, solo development, and mixed development under 

two separate objectives: effort minimization and time minimization.  Their study results 

suggested solo programming was more appropriate for projects with a tight deadline than pair 

programming. 

It appears from the literature that, while there is a level of equivocality with regard to the 

relationship between the use of pair programming and project duration, there is also material 

evidence to suggest the presence of an effect and the nature of that effect to be positive. 

2.5. Knowledge Transfer and Learning 

 

All industrial experience reports suggest that pair programming had a positive effect on 

both learning and knowledge transfer. Haungs (2001) noted pair programming on the Chrysler 3 

project was very successful since it allowed him and his pair mate to synthesize unique 

individual expertise into an effective combination. At Iona Technologies, a great amount of 

knowledge transfer was witnessed through pair programming (Poole and Huisman, 2001). At 

Sabre Airline Solutions, the weaker people were paired with the stronger people and business 

knowledge and coding knowledge were transferred quickly (Anthes, 2004). At Wotif, the sharing 

of knowledge about the code has been perceived to be greatly improved through pair 

programming. (Luck, 2004). At Silver Platter Software, a startup company in California, a field 

experiment was conducted and pairing was found to be an effective means of knowledge transfer 

(Belshee, 2005). The authors stated when two people were paired, they shared knowledge. When 
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the pair split for a pair swap, the knowledge spread to all four participants. At Intel, two projects 

reported higher knowledge transfer through the pair programming method: in the IXP2xx 

project, developers believed they learned quite a lot from each other (Fitzgerald and Hartnett, 

2005); in another project that developed firmware for processors, cross-training happened when 

pair programming was practiced even though it was not to the extent as the developers had hoped 

(Greene, 2004). Ambler (2007) reported pair programming allowed knowledge and skills to 

spread widely throughout the team and helped new employees learn the environment and build 

bonds with other team members quickly. Siobhan (2007) revealed pair programming offered 

learning opportunities for all team members and had a positive impact on team development due 

to effective communication through an open and transparent environment. At IBM, pair 

programming was a tool to mitigate the risk of relying on highly skilled individuals to produce 

results (Ambler, 2008). Marchenko (2008a) found pair programming was a very efficient tool for 

learning and competence transfer. Marchenko (2008c) stated, compared to pair programming, 

one major risk of solo programming was slow learning - especially for just graduated rookies. 

These anecdotal findings were confirmed by some studies conducted by academics. 

Williams (1999) had 20 students in an experiment and most of the students (84%) stated they 

learned the materials faster and better when working with a partner. Müller and Tichy (2001) had 

11 graduate students in an experiment and 43% of the participants stated that they learned 

something from pair programming even though this effect declined with the duration of the 

course. Sanders (2001) found the students believed pair programming led to higher knowledge 

transfer. Rumpe and Schroer (2002) stated there was immense knowledge transfer between the 

developers during pair programming. Janes et al. (2003) revealed pair programming was 

effective in sharing knowledge among 15 students who met occasionally in a three-month 
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summer internship. Tessem (2003) conducted a field study involving both students and 

practitioners and reported that all programmers found pair programming enhanced learning. 

Aiken (2004) found from his interviews of three industrial developers pair programming helped 

new people develop the knowledge of the system. VanDeGrift (2004) collected 293 responses 

from students and most students stated they learned about concepts covered in the course by 

working with a partner on the projects. Vanhanen and Lassenius (2005) conducted an experiment 

involving 20 college students in a programming class and found a better knowledge transfer 

among the pair programming teams than the solos.  Vanhanen and Korpi (2007) reported from a 

case study that all four developers considered pair programming increased their knowledge of 

the system.  Vanhanen and Lassenius (2007) surveyed 28 developers regarding the effects of pair 

programming and noted that the positive effect of pair programming was largest for learning. 

Dewande et al. (2008) concluded the pair programming approach was preferable for efficient 

knowledge sharing between developers. 

There are a couple of exceptions, however. Cliburn (2003) found from a survey study that 

most of the students stated they learned more when they worked by themselves. In Hanks et al. 

(2004), the hypothesis of paired students showing a better understanding of the programming 

concepts were not supported. 

Despite these two contrasting studies, it appears from practitioner and academic literature 

that pair programming is positively associated with the transfer of knowledge when compared to 

rival methods. 

2.6. Confidence, Enjoyment, and Retention 

 

Studies in this category were largely conducted by Williams, McDowell, and colleagues 

in programming classes at university settings. Virtually all of their findings suggest students 
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pairs were more confident in their solutions (Williams, 1999; William et al., 2000; Williams and 

Kessler, 2000; 2001; McDowell et al., 2003; 2006; Hanks, McDowell, Draper, and Krnjajic, 

2004), enjoyed completing the assignments more (Williams, 1999; Williams et al., 2000; 

Williams and Kessler, 2000; 2001; Cockburn and Williams, 2001; Nagappan, Williams, Wiebe, 

Miller, Balik, Ferzli, Petlick, 2003; Nagappan, Williams, Ferzli, Wiebe, Yang, Miller, Balik, 

2003; Williams, McDowell, Nagappan, Fernald, and Werner, 2003; McDowell et al., 2003; 

2006; Hanks et al., 2004), and one year later were more likely to pursue computer science-related 

majors than students who programmed alone (McDowell et al., 2002; Nagappan, Williams, 

Wiebe, Miller, Balik, Ferzli, Petlick, 2003; Nagappan, Williams, Ferzli, Wiebe, Yang, Miller, 

Balik, 2003; Williams et al., 2003; McDowell et al., 2003; 2006). 

Their results were supported by several other studies. Nosek (1998) reported paired 

developers expressed higher confidence about their work and enjoyment of the process. Poole 

and Huisman (2001) reported from an industry experience that developers enjoyed the pair 

programming process. Luck (2004) echoed these same findings from a different industrial 

experience. Succi, Pedrycz, Marchesi, and Williams (2002) reported from 108 survey responses 

collected from around the world that there was a very positive effect of pair programming on job 

satisfaction; Declue (2003) suggested pair programming increased confidence. Fitzgerald and 

Hartnett (2005) stated the paired developers in the project reported they had more fun, found the 

work more interesting and were more enthusiastic about their work. Müller & Tichy (2001), 

Sanders (2001), Cliburn (2003), Gehringer (2003), VanDeGrift (2004), and Mendes et al. (2005) 

all found the majority of the students enjoyed the pair programming experience.  

As with much of the pair programming research, a few studies reported mixed results. 

Tessem (2003) stated although all programmers reported that pair programming was a positive 
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experience, it was contradicted by three of the six programmers who also used negative phrases 

such as “very exhausting”, “tiresome”. Vanhanen and Lassenius (2005) found half of the 12 

student participants in the pair programming teams actually enjoyed solo programming more 

than pair programming. Vanhanen and Korpi (2007) revealed from a four-developer pair 

programming project that even though all of the four developers agreed pair programming 

promoted the formation of good team spirit in the beginning, only two developers liked pair 

programming more than solo programming and the other two found no difference.  Finally, 

Balijepally et al. (2009) found programming pairs reported higher levels of satisfaction than 

those of the best and second-best performing members in nominal pairs. Regarding confidence, 

however, the confidence levels of pairs were no different from those of the best performing 

members in nominal pairs. 

Such variables have clearly not been researched in either large samples or with consistent 

measurements. This remains an unanswered question with regard to pair programming. 

2.7. Subject Variables 

 

Several industrial comments and stories suggest it would take people with unique 

characteristics for successful pair programming. James Gosling, a former vice president and 

fellow at Sun Microsystems Inc., commented the company used some extreme programming 

(XP) techniques but passed on pair programming because he didn’t think people would do it. “[It 

gives] most of the people I know the creeps." (Copeland, 2001b).  As an editor, in the Loyal 

Opposition section of IEEE Software, Glass (2001) disaggregated XP and examined its 

constituent elements in isolation. He listed pair programming as the number one Bad News. He 

stated he could not imagine holding ongoing conversations with a pair mate when he was 

operating in creative mode and did not believe that many programmers he knew would want to 
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operate that way. This view was echoed by Fitzgerald and Hartnett (2005) which noted the 

difficulty for one partner to reflect and concentrate with someone by his/her side. Taking this 

further, Greene (2004) reported that even though pair programming worked well, in general, at 

Intel, hard deadlines created problems for pair programming when one developer had more 

domain knowledge. He suggested at crunch time it was more expeditious for the expert to work 

on the implementation alone; pairing with another developer would reduce productivity.  

Several studies identified pair composition as an important factor. Sanders (2001) found 

from a student survey that pair compatibility was considered a crucial attribute to pair 

programming success. In an opinion paper that provided guidelines on how to successfully 

implement pair programming in college programming courses, Bevan, Werner, and McDowell 

(2002) suggested it was important to pair students by skill level to avoid compatibility issues.  

Even though studies agreed on the importance of pair composition, results differed in 

terms of how to achieve the best pair.  Thomas, Ratcliffe, and Robertson (2003) paired student 

subjects based on their self perception of programming abilities. Study results revealed that 

students produced their best work when placed in pairs with students of similar self-confidence 

levels. In contrast, however, Jensen (2003) reported pairing programmers of the same experience 

and capability level was often counter-productive. The most troublesome pairs they dealt with 

during the experiment were two teams in which both members were near the same capability 

level. The worst-case team consisted of two prima donna programmers. They found teams 

functioned more smoothly, if one member was slightly more capable than the other.  Katira, 

Williams, Wiebe, Miller, Balik, and Gehringer (2004) conducted experiments with 564 students. 

They examined compatibility among freshman, advanced undergraduate, and graduate students 

and found that the students’ perception of their partner’s skill level had a significant influence on 
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their compatibility. Bryant (2004) conducted a case study in a large internet banking company. 

Study results suggested novice pairs and more experienced pair programmers displayed different 

interaction patterns. For instance, novice pairs suggested and counter-suggested much more 

frequently. Also, where more experienced pair programmers worked together, there seemed to be 

a defined set of behaviors which remained common whoever was driving. By contrast, less 

experienced pair programmers seemed to behave quite differently from one another, even when 

filling the same role. The study revealed the effect of programmer experience on pair 

programming effectiveness.  Cao and Xu (2005) conducted an experiment involving 23 college 

students. They compared activity patterns between different pair combinations and found 

differences in the activity patterns amongst different pair combinations. The High-High (ability) 

pairs enjoyed the pair programming process, passed most of the test cases, were confident on 

their programs, and believed there was higher knowledge transfer. Medium-Medium and High-

Low pairs reported conflicting results on all aspects. Nedland (2005) suggested pairing with less 

motivated coworkers made it hard to maintain enthusiasm when every part of the practice was 

questioned and there was a general attitude of hostility.  Lui and Chan (2006) noted novice-

novice pairs against novice solos were much more productive in terms of completion time and 

software quality than expert-expert pairs against expert solos. In addition, a pair was much more 

productive when the pair was new to a programming problem and the problem was challenging. 

This suggests that pair programming may reduce costs when utilized in a more novice 

environment.  Van Toll III, Lee, and Ahlswede (2007) confirmed Jensen’s theory — pair 

programming worked best when the pairs were composed of slightly different skill levels. 

Programming with significantly less experience seemed to create problems: the programmer with 

more experience must be patient since he found himself constantly having to answer the same 
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questions over and over again. If there was a deadline set, he probably would have ended by 

doing the entire project himself.  Dewande et al. (2008) reported the same finding: pair approach 

was better at leveraging expertise by pairing experts with less skilled partners.  

A couple of studies noted the importance of pair rotation which suggests pair partners 

need to be changed on a regular basis. Tessem (2003) found from a field study that frequent 

partner changes were necessary to achieve optimal learning and also to increase the sense of 

collective ownership amongst the programmers.  Srikanth et al. (2004) collected 287 survey 

responses and found the majority of students perceived pair rotation to be a desirable approach. 

Several studies addressed other issues such as expertise, personal traits, and other 

developer characteristics. Dick and Zarnett (2002) opined that not all developers were suited for 

paired development. The team members should be selected with personality traits that were 

beneficial to paired programming, which could be determined through various interview 

techniques and the corresponding behavioral responses of the candidates. Nilsson (2003) found 

from a survey study that developers believed the “personal chemistry” was very important for 

pairs to work efficiently.  Aiken (2004) interviewed three software engineers. The engineers did 

not think pair programming would work for everybody. Many software engineers were 

accustomed to working alone. Some people were uncomfortable to make a mistake in front of 

someone else. From a scheduling perspective, pairing up different capability levels slowed down 

the more productive leaders. However, the engineers believed pair programming would be a 

great way to get people up to speed on something, especially when somebody was new. Müller 

and Padberg (2004) had 38 student subjects in two controlled experiments and found a 

significant correlation between pair performance and how comfortably the developers feel with 

pair programming during the session (the “feelgood” factor). Langr (2005) listed several reasons 
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for resisting pair programming. He stated pair programming was not for everybody. Some people 

had fear of exposing personal weakness, while others might have personality issues such as 

introversion.  Arisholm et al. (2007) reported from their one-day experiment that the moderating 

effect of system complexity depended on the programmer expertise: the observed benefits of pair 

programming in terms of correctness on the complex system applied mainly to juniors, whereas 

the reductions in duration to perform the tasks correctly on the simple systems applied mainly to 

intermediates and seniors. Chong and Hurlbutt (2007) conducted a four month ethnographic 

study of professional pair programmers from two software development teams. They found the 

programmers with more expertise dominated the interactions and had the final authority in 

decision making. 

It can be seen from a review of the literature in this area that pair composition generates a 

wide variety of opinions and findings with no consensus forthcoming. This research effort 

intends to shed significant light in this area of investigation. 

2.8. Task Variables 

Several studies noted that pair programming was better suited for complex tasks. Nilsson 

(2003) reported from survey responses pair programming was ill suited for simple and routine 

tasks. Through experiments Lui and Chan (2003) found that pairs outperformed individuals in 

terms of effort and quality when there was a new and challenging problem.  Fitzgerald and 

Hartnett (2005) found out pair programming helped solve difficult coding problems and was 

better suited for complex tasks.  Hulkko and Abrahamsson (2005) revealed developers did not 

consider pair programming to be efficient for simple and routine-like tasks and many developers 

preferred to do simple tasks on their own.  Arisholm et al. (2007) examined the moderating effect 

of task complexity in an one-day experiment and reported that on the more complex tasks, pair 

programmers had a 48 percent increase in the proportion of correct solutions but for simpler 
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systems there was no significant differences in the time taken to solve the tasks correctly. 

Vanhanen and Korpi (2007) discovered effort depended on the type of task. For complex tasks, 

the use of pair programming lowered the total effort, but the effort was considered higher for 

simple tasks than when using solo programming. 

There are a couple of exceptions, however. While other studies suggested pair 

programming led to better quality when the task was complex, Al-Kilidar, Parkin, Aurum, and 

Jeffery (2005) found pairs produced better quality product when requirements were simple with 

no significant difference in quality between pairs and solos when requirements were complex. 

The authors attributed this result partly to the solos in the more complex module having 

developed and enhanced their skills through their earlier work experience. Vanhanen and 

Lassenius (2005) did not support the claim that pair programming was most useful for complex 

tasks. In their study, task complexity did not affect the effort differences between solo and pair 

programming. 

Again we find equivocality and confound. 

2.9. Environment and Organizational Variables 

 

Several industrial reports and studies suggested the importance of work space facilities 

and management support for pair programming to work. Connextra Ltd., a London start-up and 

maker of Web browser software, reorganized its offices to accommodate XP, installing curved 

desks that let two developers sit side by side and share a computer (Copeland, 2001a) thus 

allowing for a pair programming environment. Jensen (2003) posited that coordination among 

the developers in a particular development setting he studied would have improved if the teams 

had been working in a common area. He used the term war room (or skunk works) to describe 

the ideal open environment, which would be a large area with worktables in the center and 
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cubicles around the outside. Software engineers in Aiken’s interviews (2004) argued for getting a 

common work environment to remove distractions and to provide feelings of a team.  Vanhanen, 

Lassenius, and Mäntylä (2007) presented experiences from a two-year study focused on the 

adoption of pair programming and noted that issues identified in the infrastructure of pair 

programming were solved through the adoption of the pair programming rooms. 

The importance of management support was echoed by some studies.  Jensen (2003) 

noted that managers must be supportive of the pair programming process. In a particular 

anecdote, a classic manager observed a programming pair working on a task over a period of 

time and suggested to the supervisor that one of the two programmers be laid off because only 

one was doing anything constructive (the driver always gets the credit). When the supervisor 

heard the suggestion, he replied that these programmers were the most productive people in the 

organization. The manager then asked that the programmers keep their office door closed so 

others would not reach the same wrong conclusion.  Williams and Kessler (2003) noted it was 

crucial to overcome management resistance (chapter 4, pp.33-44): pair programmers create noise 

and resolving this problem may require a commitment from the organization in terms of a 

facility change or equipment purchase; pairing can also be difficult if cubicles or desks are 

arranged improperly.  At Intel, managers tore down cubicle walls to lower the physical barriers 

to communication and introduced a new individual evaluation criterion: teamwork that 

reinforced the value of collaborative work (Greene, 2004). 

2.10. Summary of Literature Review 

To summarize this arguably small and disparate body of literature focusing on pair 

programming suggests both contributions to the body of knowledge and little consensus.  



36 

 

Possibly the greatest single accomplishment is the realization that pair programming has 

become one of the most studied principles in XP (Erickson, Lyytinen, and Siau 2005). A 

substantial number of studies have been conducted to study the variety of effects of pair 

programming in different contexts: industrial setting, classroom setting, comparing pair to solo, 

comparing pair to other group development methods, distributed pair programming, pair 

composition, and the economic aspects of pair programming. The results of these studies 

undoubtedly provide valuable information to the overall picture of the efficacy of pair 

programming but many disagreements and questions remain. 

There are several caveats that must be noted when reviewing this body of literature. First, 

the majority of the studies were conducted using neither theory nor any recognizable or 

identified research framework. The one extant and comprehensive pair programming research 

framework suggested by Gallis et al. (2003) and extended by Ally et al. (2005) has been largely 

ignored. Few empirical studies have been conducted to test and refine the model. Actually, 

among the studies reviewed above, the only empirical studies that explicitly presented a research 

model are Arisholm et al. (2007) and Balijepally et al. (2009).  

Second, most of the results were obtained from experimental studies in university 

settings. Only a few empirical studies involved industrial practitioners. And even with those 

studies, since professional programmers worked on short tasks, the complexity of real world 

software development was not reflected.  

Third, most survey studies were conducted without academic rigor. None of the survey 

studies went through the standard cycle of reliability and validity checks, which brings the 

subsequent results further under question. 
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Finally, studies on the economic aspect of pair programming, upon which the study 

herein is focused, are limited. Only two major studies were identified. The two studies looked 

into different factors, used unsure parameters, and drew different conclusions. No other study, 

thus far, has attempted to reconcile the different conclusions from the two studies.  

In conclusion, our literature review echoes the comments several authors made in their 

studies. Gallis et al. (2003) noted that results from existing empirical work contradicted each 

other due to the lack of a theoretical framework to support the pair programming research. 

Hulkko and Abrahamsson (2005) stated that the current body of knowledge in pair programming 

is scattered and unorganized. Parrish, Smith, Hale, and Hale (2004) suggested more empirical 

evidence from real industry projects is needed. 

Table 2.1 is presented as a tabular summary of the extant literature on pair programming. 

Table 2.1 Summary of Pair Programming Studies  
 

LEGEND 

Publication Outlet:        A=Refereed Academic Journal   P=Practitioner Journal or Practitioner-Oriented websites 

           B=Book or Book Chapters   T=Student Thesis   C=Conference Proceeding    

Research Method:         C=Case Study   MA=Meta Analysis    I=Industrial Report   S=Survey 

           E=Experiment  O=Opinion Paper   IV=Interview   SM=Simulation 

Subject Type:           I=Industrial Practitioner   S=Student  M=Mixed of Students and Practitioners 

Statistical Analysis:       DC=Descriptive Statistics Only Y=Performed Statistical Analysis N=No Statistical Analysis   

Constructs of Interest:  Y=Supported N=Not Supported  M=Mixed Results 
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Cockburn and Williams 
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Müller and Padberg (2002) C SM   Y M M  M      Y Y  
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Lui and Chan (2003) A E 15 I D Y   M Y      Y  

McDowell, Hanks, and 

Werner (2003) 
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McDowell, Werner, Bullock, 

and Fernald (2003, 2006)  
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Müller and Padberg (2003) 
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Luck (2004) C I    Y   Y  Y  Y     

Müller and Padberg (2004) C E 38 S Y          Y   

Parrish et al. (2004) A E 48 Mod I Y   N          

Srikanth et al. (2004) C S 287 S Y          Y   

VanDeGrift (2004) A S 293 S D   Y   Y Y Y     

Williams, Shukla, and Anton 

(2004) 

C S 30 I Y   Y          

Al-Kilidar et al. (2005) C E 150 S Y M          Y  

Belshee (2005) C E  I N      Y       

Canfora et al. (2005) C E  S Y    N         

Cao and Xu (2005) C E 23 S N M     M M M  Y   

Fitzgerald and Hartnett 

(2005) 

A C 1 I N Y    Y Y  Y   Y  

Hulkko and Abrahamson 

(2005) 

C C 4 M D M  N        Y  

Langr (2005) P O             Y   

Mendes et al. (2005) C E 300 S Y Y       Y     

Nedland (2005) P I      Y       Y  Y 

Preston (2005) A O         Y       

Vanhanen and Lassenius 

(2005) 

C E 20 S Y  N  N   Y  M   N  

Lui and Chan (2006) A E 40 S D   M       Y Y  

Madeyski (2006) C E 188 S Y N            

Müller (2006) A E 18 S Y Y M           

Ambler (2007) P I         Y       

Arisholm et al. (2007) A E 298 I Y M   M M     Y  Y 

Canfora et al. (2007) A E 18 I Y Y   M         

Chong and Hurlbutt (2007) C C 2 I N          Y   

Dybå et al. (2007) A MA 15 M Y Y   Y Y        

Siobhan (2007) P O         Y       

Van Toll III, Lee, and 

Ahlswede (2007) 

C E NR S N          Y   

Vanhanen and Korpi (2007) C C 4  I Y M   M  Y  M   Y  
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Vanhanen and Lassenius 

(2007) 

C S 28 I Y Y   Y  Y  Y     

Vanhanen, Lassenius, and  

Mäntylä (2007) 

C C 1 I Y            Y 

Ambler (2008) P I         Y       

Dawande, Johar, Kumar, 

and Mookerjee (2008) 

A SM         Y    Y Y  

Marchenko (2008a) P O    Y     Y       

Marchenko (2008b) P O    Y     Y       

Marchenko (2008c) P O    Y    Y        

Balijepally et al. (2009) A E 120 S Y M      M Y     

Wray (2010) A O    Y     Y       

 

 

 

3. RESEARCH MODEL AND HYPOTHESES 

When considering a synthesis of the reviewed literature, findings from pair programming 

research suggest the research model shown in Figure 3.1. In this model, the programming 

method solo vs. pair is the independent variable while the project characteristics such as 

complexity and the developer characteristics such as expertise moderate the relationships 

between programming method and the dependent variables. All previous pair programming 

studies that presented an explicit research model (Gallis et al., 2003; Arisholm et al., 2007; 

Balijepally et al., 2009) followed this approach, even though none of the studies empirically 

tested the knowledge transfer construct.  
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Figure 3.1 Research Model based on Previous Pair Programming Studies 

Building upon the known relationships shown in Figure 3.1, we extend these findings in 

an effort to advance the nomological net and propose the research model for this study in Figure 

3.2. As shown in the figure, we argue the nature of the project (system complexity) has a direct 

impact on the project outcome, and programming method can be used to mitigate the strength of 

the relationship between the project and dependent variables such as effort, defect rate, and 

knowledge transfer. Therefore, we propose system complexity as the independent variable and 

programming method as a moderator.  

We also argue pair composition affects the effectiveness of pair programming method. 

While this argument is in line with suggestions from previous pair programming studies, in our 

model, pair composition is presented as a moderator to the effect of programming method. 

Additionally, as discussed later in this chapter, we believe our operationalization of the salient 

constructs to be more comprehensive than previously accomplished.  

We further argue project duration can be derived from effort and, therefore, does not need 

to be viewed as a stand-alone dependent variable. Another extension in this model, as we are 

interested in the cost of the project as it relates to programming method, is the inclusion of 
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several cost-related constructs. Note that the constructs within the dashed box are derived from 

logic rather than effect. As such, they require no specific hypothesis testing. They are included to 

demonstrate how cost is considered in this research.  These variables are more important in 

Study 2 than Study 1 (as illustrated in chapter 4).  

 

Figure 3.2 Research Model for this Study 

3.1. System Complexity, Effort, Defect Rate, and Knowledge Transfer 

Some software projects are simple in nature while others can be highly complex. Writing 

a program to display the message “Hello World!” is a simple task that requires a few lines of 

code and can be accomplished in minutes. Developing a web-based business application for 

retail sales represents a medium-level complexity requiring thousands of lines of code and 

project durations measured in months. Constructing an operating system such as Windows 7 is 

an extremely complex task as it constitutes millions of lines of code and demands years of hard 

work. 

According to March and Simon (1958), complexity can be generally characterized by 

unknown or uncertain alternatives, unknown means-ends connections, and existence of a number 

of subtasks that may not be easily factored into independent parts. As system complexity 
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increases, the number of alternatives, the number of unknown connections, and the number of 

interrelated tasks all increase. In order to identify the best or optimal solution among the many 

possibilities, developers have to weigh different alternatives, clarify various connections, and 

sort out the variety of tasks involved. This process becomes more time consuming and error 

prone as complexity increases.  

However, despite the challenges of system complexity, a positive note is that a complex 

system requires more diverse knowledge in order to identify a good solution. Compared to a 

simple system where a solution is obvious and does not warrant much discussion, a complex 

system forces developers to share, process, and synthesize a variety of information, therefore 

increasing knowledge transfer among the team members. 

In keeping with the above, we hypothesize: 

H1a. Regardless of programming approach, as system complexity increases, the 

programming effort increases. 

H1b. Regardless of programming approach, as system complexity increases, defect rate 

increases. 

H1c. Regardless of programming approach, as system complexity increases, there is 

higher knowledge transfer rate amongst the project team members. 

 

In this study, system complexity is operationalized as the number of modules in a given 

project, and then classified into low, medium, and high. A module is a self-contained program 

that carries out a clearly defined task. As the number of modules grows, more communications 

amongst the modules are required, thus increasing system complexity. This argument is in line 

with what is suggested by several studies in project complexity (Banker, Davis, and Slaughter, 

1998; Kemerer, 1995; Espinosa, Slaughter, Kraut, and Herbsleb, 2007).  
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Previous pair programming studies have adopted a variety of measures for complexity: 

application control style-delegated vs. centralized (Arisholm et al., 2007), deduction vs. 

procedural problem (Lui and Chan, 2003), modification of five methods in two classes vs. seven 

methods in five classes (Balijepally et al., 2009). Although these measures were reasonable for 

their respective experimental studies, they could not be readily generalized to other studies: 

control style is only applicable for projects that adopt different control styles, whether developers 

solve a deduction or procedural problem depends on the project domain, and the concepts of 

methods and classes pertain only to object-oriented development. In this study, we adopt a 

measure that can be generalized across the projects.  

Effort is defined as the total number of hours spent by a developer or developers on the 

programming aspect of a project. In solo programming, for a particular programming task, the 

effort is the number of hours one developer spends on the task. In pair programming, since two 

developers work on the same task at the same time, the effort is two times the number of hours 

one developer spends on the task.  

This definition of effort is widely used for software project effort measurement 

(Pressman, 2005; Sommerville, 2007), and was adopted by many previous pair programming 

studies (Nosek, 1998; Williams et al., 2000; Nawrocki and Wojciechowski, 2001; Rostaher and 

Hericko, 2002; McDowell et al., 2003; Dybå et al., 2007). 

A defect is a quality problem in the source code that is found after the software has been 

released to the end-users, and defect rate is the number of defects per thousand lines of codes 

(defects/KLOC). This definition represents a commonly used software engineering metric 

developed to measure the correctness aspect of software quality (Pressman, 2005; Sommerville 

2007). It has been adopted by the industry and several empirical studies on software 
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development (Abdel-Hamid, Sengupta, and Swett, 1999; Ji, Mookerjee, and Sethi, 2005; Kandt, 

2009).  

The previous pair programming studies reported results on defects, error rate, and defect 

density without providing explicit definitions of the constructs. In this study, we intend to 

enhance the nomological net of pair programming research by adopting a commonly agreed-

upon metric for software defects.  

Knowledge transfer is the communication of knowledge from a source so that it is 

learned and applied by a recipient (Ko, Kirsch, and King, 2005). In this research effort, three 

aspects of knowledge transfer are measured: knowledge transfer with regard to programming 

syntax and logic, understanding of the program itself and its relationship to the overall system, 

and the approaches to solve problems in general.  

None of the previous pair programming studies, to the best of our knowledge, developed 

explicit measures for knowledge transfer. In this study, we develop measures for knowledge 

transfer through tailoring concepts introduced in information systems.  

3.2. Programming Method as a Moderator 

Pair programming studies generally found pair programming incurred more programming 

effort than solo. Nosek (1997) reported 41% more effort compared to solo. Williams et al. (2000) 

and Cockburn and Williams (2001) noted 15% more effort compared to solo. Nawrocki and 

Wojciechowski (2001), Rostaher and Hericko (2002), and McDowell et al. (2003) found 100% 

more effort compared to solo. The meta analysis study conducted by Dybå, et al. in 2007 

reported a medium-sized negative effect due to pair programming (effect-size=-0.57).  

We argue the magnitude of effort increase by pair programming is associated with system 

complexity. With a low complexity system, a solution is obvious regardless of whether one 
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programmer or two programmers work on the task, therefore pairing up two programmers on 

such a task is likely to waste one of the programmers’ time, thus doubling the programming 

effort. As complexity increases, however, the amount and diversity of information needed to 

solve the problem increases — possibly exponentially. In pair programming, two programmers 

can share the information processing load and therefore have the potential to reach a workable 

solution more efficiently. With an extremely complex system, it is possible the information is so 

overwhelming that it takes a solo programmer a long time to figure out the solution. Conversely, 

in a pair programming environment, the programmers share the information processing load and 

have the chance to create synergy thus solving the problem more quickly. Following this logic, it 

is feasible to assume the possibility of pair programming resulting in a decrease in programming 

effort when compared to solo. 

The above argument is in line with findings from Vanhanen and Korpi (2007) which 

suggest pair programming reduced the total effort for complex tasks but increased effort for 

simple tasks.  

Thus, we hypothesize: 

H2a. When compared to solo programming, as system complexity increases, pair 

programming will moderate the effect of system complexity on programming effort thus 

reducing effort. 

In a low complexity system, defect rate is generally low regardless of the programming 

method adopted. Assuming pair programming has the potential to reduce the defect rate when 

compared to solo programming, in low complexity systems there isn’t much room to 

demonstrate improvement. For example, any programmer with a bit of training can write the 

“Hello World” program with zero defects, so pairing two programmers to work on such a 

program does not help with defect rate since the best they can do is to produce a program with 
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zero defects. Though admittedly contrived and simplistic when compared to actual programming 

efforts, this example nonetheless illustrates the small effect pair programming can have to reduce 

defect rate when the baseline is already very low. 

However, in the case of a complex system where a good solution hides among many 

possible alternatives, pair programming enables the programmers to bring a variety of skills to 

the table, to more thoroughly weigh different alternatives, and to have a better chance to identify 

the best solution. This argument is in line with the theories of distributed cognition (Flor and 

Hutchins, 1991; Williams and Kessler, 2001; Williams and Upchurch, 2001) and co-discovery 

(Papert, 1980; Lim, Ward, and Benbasat, 1997). The theories state by engaging in deeper level 

thinking and searching through larger spaces of alternatives, working as a pair helps improve 

one’s mental model and reduces the chances of selecting a bad plan. It is also in line with 

findings from group/team research in organizational behavior which suggests complex tasks 

benefit more from discussions amongst the group members on alternative solutions (Robbins, 

2000). This argument is further supported by several pair programming studies (Lui and Chan, 

2003; Nilsson, 2003; Fitzgerald and Hartnett, 2005; Hulkko and Abrahamsson, 2005). 

We hypothesize: 

H2b. When compared to solo programming, as system complexity increases, pair 

programming will reduce the effect of complexity on defect rate thus reducing the overall 

defect rate. 

 

To our knowledge, no empirical studies in pair programming have examined the 

relationship between project complexity and knowledge transfer. We argue a complex task 

requires more diverse knowledge and heavier load of information processing in order to identify 

a good solution. Compared to a simple task, where a solution is obvious and does not warrant 
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much discussion, a complex task will force developers to share, process, and synthesize a variety 

of information, therefore transferring more knowledge amongst themselves. This argument is in 

line with the cognitive load theory in a group setting which states the cognitive load can be 

shared amongst group members enabling them to deal with more complex problems than 

individuals (Kirschner, Paas, and Kirschner, 2008). Therefore, we hypothesize: 

H2c. When compared to solo programming, as system complexity increases, pair 

programming will increase the effect of system complexity on knowledge transfer thus 

enhancing knowledge transfer. 

3.3. Pair Composition 

Studies generally suggested pair composition as an important factor affecting the overall 

success of a pair programming effort (Sanders, 2001; Bevan et al., 2002; Gallis et al., 2003; 

Arisholm et al., 2007; Dybå et al., 2007). In this study, we consider programmer expertise and 

prior pair programming experience as two salient characteristics of pair composition. No prior 

research, to our knowledge, has empirically tested the effect of prior pair programming 

experience on pair effectiveness.  

Several studies report the effectiveness of pair programming depends on the programmer 

expertise. Nosek (1998) found programmers with more years of experience performed better 

than programmers with fewer years of experience in a pair environment. Jensen (2003) and Van 

Toll III et al. (2007) suggested pair programming worked best when the pairs were of a slightly 

different skill level.  Lui and Chan (2006) concluded novice-novice pairs against novice solos 

were more productive than expert-expert pairs against expert solos. Chong and Hurlbutt (2007) 

noted pairing a less knowledgeable programmer with a more knowledgeable programmer was 

effective when the less knowledgeable one was new to both the team and the code base.  Finally, 
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Arisholm et al. (2007) tested programmer expertise as a moderator in their study and found the 

effect of pair programming on duration and defects dependent upon expertise. 

We argue the effectiveness of pair programming varies when pairs of different 

compositions - junior-junior, senior-senior, and junior-senior are compared to junior/senior solos.  

As such, we hypothesize: 

H3a: Programmer expertise moderates the effectiveness of the pair programming 

method. 

 

In this study, we adopt the terms of junior and senior to create a binary representation for 

levels of programmer expertise in a project. A senior programmer is defined as one who has at 

least six years of experience within the project domain. A junior programmer is defined as one 

who has less than two years of experience within the project domain. The area occupied by these 

two experience anchors can be considered to be a mid-level programmer. For this study, we are 

focusing on the extremes of the continuum and, as such, a mid-level programmer will not be 

specifically considered. 

Among the pair programming studies that reported on the effect of programmer expertise, 

only a few reported explicit measures for this construct. Arisholm et al. (2007) measured 

programmer expertise by two indicators: programmer skill category as reported by the project 

managers and skill levels based on the results of a pretest programming task. Balijepally et al. 

(2009) treated programming ability as a control variable and determined it by computing the 

subject’s weighted average GPA in information systems courses taken at the university. In our 

study, since we adopt different research methods than have been previously employed (described 

in detail in chapter 4), it is not possible to adopt either of these measures. However, our method 

of using the number of years of experience to differentiate expertise is in keeping with common 
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practice in information systems research in general and in line with the recommendations made 

by studies such as Harel and McLean (1985) in software development literature. 

Regarding prior pair programming experience, despite no study empirically testing this 

construct, two studies suggest its importance on programmer interaction patterns and project 

outcomes. Bryant (2004) found there were different interaction frequencies and interaction types 

between novice and expert pair programmers: expert pair programmers averaged 27% fewer 

interactions per hour and novice pair programmers suggested and counter-suggested more 

frequently (82.5 times per session) than experts (42.5 times per session).  

The concept of pair jelling was discussed in Williams et al. (2000). The authors suggested 

that programmers went through an initial adjustment period in the transition from solitary to 

collaborative programming. This adjustment period varied from hours to days. The authors 

reported that in their student experiments, after the adjustment in the first assignment, the paired 

students performed much better in the subsequent tasks. For example, on average, pairs took 

60% more programmer hours than their solo counterparts to complete the assignment, but after 

the adjustment period, this 60% decreased to 15%.  

We argue prior pair programming experience allows the programmers to get adjusted to 

each other and become productive quickly. As such, we hypothesize:  

H3b: Prior pair programming experience moderates the effectiveness of the pair 

programming method. 

 

Prior pair programming experience is measured by whether a programmer has 

programmed in pairs before. Since none of the prior studies provided an explicit definition on 

this construct, one of the contributions of this study is to define this construct explicitly.  
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3.7. Duration 

Numerous anecdotes and several empirical studies support the notion that pair 

programming allows the faster delivery of a project when compared to solo. Lui and Chan (2003) 

suggested pairs were faster than solos.  Williams et al. (2000) and Williams and Kessler (2001) 

both found that pairs produced programs with shorter cycle time. Rumpe and Schroer (2002) and 

Vanhanen and Lassenius (2007) reported from survey studies that developers believed coding 

was completed much faster with pair programming. Dybå et al. (2007) noted a medium-sized 

overall reduction of the project duration (effect-size = 0.40) in their meta-analysis.  

Project duration is defined as time elapsed from the start to the delivery of a project. 

While previous studies usually develop hypotheses to test the effects of programming method on 

duration, we argue duration, ceteris paribus, can be derived from a measure of effort. For 

instance, if the measured efforts in solo and pair programming are 140 and 210 hours 

respectively, then assuming a seven hours workday, solo programming will finish the project in 

20 days (140/7) while pair will finish it in 15 days (210/2/7). While we freely acknowledge there 

are other aspects to a project besides the level of programming effort, we believe the choice of 

programming method will not dramatically alter those aspects of the project and, therefore, we 

believe there is no need of additional data collection for explicit hypothesis testing.  

3.8. Cost  

Study results are mixed regarding whether pair programming increases overall project 

cost. Several studies suggest pair programming increases cost (Cockburn and Williams, 2001; 

Rostaher and Hericko, 2002; Nilsson, 2003: Aiken, 2004; Luck, 2004) while others argue pair 

programming to be a cost saving mechanism (Copeland, 2001a; Radding, 2002; Erdogmus and 

Williams, 2003). A few studies found the project cost depends upon other factors such as market 
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pressure and the nature of the task (Müller and Padberg, 2002; Müller and Padberg, 2003; 

Padberg and Müller, 2003).  

In this study, we follow the cost definition provided by Sommerville (2007). According 

to Sommerville, project cost is primarily the costs of the labors involved. These direct labor costs 

are the costs of paying software developers for the hours spent on a project.  

Therefore, for each task, the direct labor cost is the number of hours developers spend on 

the task times their corresponding pay rate. For the overall project, the direct labor cost is the 

sum of the costs for all tasks involved. Since the direct labor cost is a function of hours and pay 

rate, assuming constant pay rates, the more hours developers spend on the project, the higher the 

direct labor cost will be.  

One direct labor cost is the labor spent on programming and defect fixes. As developers 

spend more time on programming, the labor cost increases. As defects are uncovered, developers 

will incur rework time to fix the problems.  Therefore, labor cost increases as developers spend 

more programming hours on the project, and labor cost decreases as there are fewer defects in 

the system. 

The other category of cost is training cost. Trainings are mechanisms to educate the 

developers so they have the skills and information to successfully complete the project. Trainings 

are essential when developers do not have the technical skills to implement the project, do not 

have a good understanding of the system, and/ or do not have good problem solving skills. We 

do not expect knowledge transfer between the pairs to replace all trainings. However, we argue 

that knowledge transfer between the pairs helps developers acquire a better understanding of the 

modules and the overall system, improve technical and general problem solving skills, and, thus, 

reduces training cost.  
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Opportunity cost is defined as costs associated with opportunities an organization loses 

for undertaking a given project. An example of opportunity cost is the profit the organization 

could have made by working on a different project. With a short-term project, organizations can 

jump into other business opportunities rather quickly, thus minimizing opportunity cost. When a 

project goes on forever, an organization’s resources are tied up in the project, and therefore 

cannot be made available to undertake other projects. As a result, opportunity cost increases.  

Labor slack occurs when a project is finished ahead of schedule.  When an organization 

has labor slack, more work, presumably, can be brought to the work force, so more projects can 

be started and finished.  Alternatively, if labor slack is consistent, head count can be reduced thus 

creating a cost savings to the organization.  This argument suggests labor slack contributes 

positively to the project cost by representing a deduction from total project cost as a result of 

shortened duration.   

Other costs include costs of hardware, software and computer networks needed to support 

the project, costs of office space, utilities, central facilities, and employee benefits like pensions 

and health insurance (Sommerville, 2007). These overhead costs tend to be fixed. In this study, 

we consider the total cost of a software development project as a function of labor cost, training 

cost, opportunity cost, and labor slack. The total cost changes as any of the four costs changes. 

Because these costs can be either calculated or derived, we offer no specific hypotheses with 

regard to them. 

4. METHODOLOGY 

To facilitate the testing of our hypotheses and draw sufficient conclusions to answer the 

research questions at hand, we adopted a multi-method, multi-study empirical approach. The 

survey method was employed for Study 1 (S1) and the bootstrap simulation method for Study 2 
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(S2). For S1, we developed and administered a survey instrument to a targeted subject population 

of industrial software developers. This survey instrument had two objectives: (1) to gather data 

on practitioner perceptions with regard to the cost and effectiveness of the pair programming 

when compared to the more traditional solo approach and to provide sufficient data for testing 

our hypotheses and provide an initial validation of the research model (2) to acquire parameter 

data on a variety of project and developer characteristics to provide the necessary foundation for 

a simulation study.  

Study 2 is a series of bootstrapping simulations. Using responses from the survey as input 

parameters, this study had two objectives: (1) to provide additional validation of the research 

hypotheses presented in the research model and (2) to determine in what situation pair 

programming is more cost effective than solo programming.  

4.1. Survey  

 

4.1.1. Survey Instrument 

 

Because the level of complexity and focus contained herein had not been conducted in 

prior pair programming studies, our instrument for S1 required both generation and validation of 

the majority of survey items. With the exception of the knowledge transfer related questions 

adapted from Ko, Kirsch, and King (2005), the remaining questions were generated by the 

researchers. Table 4.1 provides a side-by-side match between the survey items intended to 

collect data for hypothesis testing and their associated hypothesis. Additionally, the complete 

survey instrument is attached in Appendix A.  

Table 4.1 Instrument Items and Associated Hypothesis 

H Q# Instrument Items 

H1a Q1a 
Estimate effort in programming hours assuming a 

 Low, Medium, and High-complexity project. 
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H1b Q1b 
Estimate defect rate (# of defects / 1000 LOC) assuming a 

 Low, Medium, and High-complexity project. 

H1c 

 

Q1c 

 

As system complexity increases 

 more communication will occur regarding the understanding of a module and how this 

module integrates with other modules 

 it improves a programmer’s knowledge of the programming language in use. 

 it improves a programmer’s general problem solving skills 

H2a 

 

Q2a 

 

Estimate the percentage difference in effort between solo programming and pair 

programming, assuming a 

 Low, Medium, and High-complexity project. 

H2b 

 

Q2b 

 

Estimate the percentage difference in defect rate between solo programming and pair 

programming assuming 

 Low, Medium, and High-complexity project. 

H2c 

 

Q2c 

 

Estimate the percentage difference in knowledge transfer between solo programming and 

pair programming assuming a 

 Low, Medium, and High-complexity project. 

 

Note: The following questions are repeated for low, medium, and high complexity projects. 

H3a 

Q3a_1 

 

Estimate the percentage difference in effort between a JUNIOR SOLO programmer and a 

pair if a pair is comprised of: 

 Two SENIOR programmers 

 A JUNIOR programmer and a SENIOR programmer 

 Two JUNIOR programmers 

Q3a_2 

Estimate the percentage difference in effort between a SENIOR SOLO programmer and a 

pair if a pair is comprised of: 

 Two SENIOR programmers 

 A JUNIOR programmer and a SENIOR programmer 

 Two JUNIOR programmers 

Q3a_3 

 

Estimate the percentage difference in defect rate between a JUNIOR SOLO programmer 

and a pair if a pair is comprised of: 

 Two SENIOR programmers 

 A JUNIOR programmer and a SENIOR programmer 

 Two JUNIOR programmers 

Q3a_4 

Estimate the percentage difference in defect rate between a SENIOR SOLO programmer 

and a pair if a pair is comprised of: 

 Two SENIOR programmers 

 A JUNIOR programmer and a SENIOR programmer 

 Two JUNIOR programmers. 

Q3a_5 

 

Estimate the percentage difference in knowledge transfer between a SOLO programmer 

and a pair if a pair is comprised of  

 Two SENIOR programmers 

 A JUNIOR programmer and a SENIOR programmer 

 Two JUNIOR programmers. 

H3b 

Q3b_1 

 

Estimate the percentage difference in effort between solo programming and pair 

programming, assuming a pair is comprised of two  

 BOTH have prior pair programming experience 

 ONE of whom has prior pair programming experience 

  NEITHER of whom has prior pair programming experience 

Q3b_2 

 

Estimate the percentage difference in defect rate between solo programming and pair 

programming, assuming a pair is comprised of two 

 BOTH have prior pair programming experience 

 ONE of whom has prior pair programming experience 

  NEITHER of whom has prior pair programming experience 
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4.1.2. Construct Validity and Reliability  

To ensure the content validity of the survey instrument, an extensive review of prior 

literature was conducted and, whenever possible, pre-existing questionnaire items were 

considered and incorporated. Due to lack of literature in pair programming surveys, the adoption 

of existing questionnaires was found to be rather limited. However, commonly accepted 

measures by the computer science, software engineering, and information systems were available 

for review and appropriate items were adapted for use herein. Furthermore, following initial 

creation of the instrument, an informed pilot involving appropriate faculty and PhD students was 

conducted.  

Most of the constructs in the instrument are best represented as single-item constructs, 

therefore, the traditional construct validity technique was not applicable.  Knowledge transfer is 

a reflective construct with three measurement items.  Confirmatory factor analysis utilizing 

varimax rotation (Johnson and Wichern 1992; Banker, Davis, and Slaughter 1998) was employed 

to verify the validity of this construct.  The factor loadings from the three measurement items 

were 0.747, 0.868, and 0.862 respectively, which provides satisfactory evidence of convergent 

validity and internal consistency.  Since knowledge transfer is the only reflective construct in this 

study, discriminant validity is not applicable.  The Cronbach Alpha for the knowledge transfer 

construct is 0.764 which exceeded the 0.70 criterion (Nunnally 1978), suggesting the construct is 

reliable.   

Q3b_3 

 

Estimate the percentage difference in knowledge transfer between solo programming and 

pair programming, assuming a pair is comprised of two 

 BOTH programmers have prior pair programming experience. 

 ONE of the two programmers has prior pair programming experience. 

 NEITHER of the two programmers has prior pair programming experience. 
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To improve survey reliability, only complete surveys were used for the data analysis.  

During data collection, the authors received numerous comments from respondents stating 

reasons why they didn’t complete the survey.  Not having sufficient knowledge of the measures 

was the primary reason.  Therefore, it is reasonable to believe respondents who didn’t know the 

measures or didn’t feel comfortable reporting the measures abandoned the survey and, therefore, 

were not appropriate respondents.  The respondent profile presented in Chapter 5 suggests the 

responses came from well-educated and highly experienced practitioners (91.4 percent have 

college or graduate degrees, 77.8 percent have over 10 years of industrial experience). Hence, it 

is fair to assume what was reported in the survey reflected the projects that went on in the 

industry. 

4.2 Bootstrap Simulation 

 

4.2.1 Bootstrap 

The bootstrap, introduced by Efron (1979), is a statistical technique which allows a 

description of the variability of a statistic based on a unique finite sample.  The bootstrap 

estimates standard errors by resampling with replacement of the original finite sample.  The 

samples obtained are “pseudo sample” or “bootstrap sample” which are used to estimate the 

statistics of interest.  The bootstrap samples are expected to behave similarly to the underlying 

distribution of the data and serve to control and check the stability of the results.  Bootstrap is 

recommended in situations where the distribution of a statistic of interest is unknown, or when 

the sample size is insufficient for statistical inference (Adèr et al. 2008).  It is a suitable 

technique for this research because the distributions of many of the parameters we gather from 

the survey and need to use for analysis (e.g. project hours, project defects, team size) are 
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unknown.  For a more detailed description of the bootstrap technique see Efron (1979, 1982), 

Freedman and Peters (1984), and Efron and Tibshirani (1993), among others. 

The number of bootstrap samples recommended in the literature has increased as 

available computing power has increased.  To reduce the effects of random sampling errors from 

the bootstrap procedure, we have chosen to do 5,000 bootstrap samples.  The original data set 

contained 191 records.  We took 5,000 bootstrap samples of size 191 each with replacement 

from the original dataset and computed the means on pertinent data variables for each of these 

5,000 bootstrap samples.  The bootstrap estimates then became a sample of size 5,000 from 

which further analyses were conducted. The program that extracted the bootstrap samples and 

calculated the mean estimates is attached in Appendix B. 

4.2.2. Cost Calculation  

Since one primary goal is to investigate the cost constructs, columns were added to the 

original survey data to capture the cost information before the bootstrap process started.  As 

specified in the research model in chapter 3, the cost constructs are labor cost, training cost, 

opportunity cost, labor slack, and total cost.  Labor cost has two components: one is effort cost 

that resulted from initial system development and the other is defect cost which is cost associated 

with fixing defects.  Since opportunity cost and labor slack are direct derivations of the project 

duration, we include duration in our calculation as well. 

As stated in chapter 3, the measures of the cost constructs were calculated from their 

precedents.  Therefore, one primary step in file preparation is to follow the formulas to calculate 

the costs.  Table 4.2 below describes the formulas used for the cost calculation.  Hours, defects, 

defect fixing speed, team size are supplied by the survey respondents.  Hourly pay rates are from 
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the Bureau of Labor Statistics (2011).  Team size was rounded to an even number so both solo 

and pair programming methods have the same number of developers on the team. 

Table 4.2 Formulas for Cost Calculation 

 

Construct Formula 

Effort cost Hours spent * hourly pay rate 

Defect cost (Defects * defect fixing speed) * hourly pay rate 

Duration  Total hours / (team size * working hours per day) 

Opportunity cost/ 

Labor slack cost 

(Difference between actual duration and ideal duration) * Team size * 

Pay rate. The ideal duration is the average duration calculated through 

5000 bootstraps on the duration data. 

Training cost Original training cost – savings on training cost due to knowledge 

transfer.   

Total cost Effort cost + Defect cost + Training cost + Opportunity cost - Labor 

slack cost  

 

A random generating function was used to return a random value given a range as we 

calculate the cost on several variables: hourly pay rates, survey choices, and knowledge transfer 

coefficients.  For example, the hourly pay rate for a senior software developer was randomly 

assigned by the following function (rand (lowerLimit, upperLimit)).  The lowerLimit and 

upperLimit are the range of hourly pay rates for a senior software developer obtained from Labor 

Statistics.  Following the same logic, the questions that ask the percentage difference between 

programming methods are randomly assigned values between 1 and 20 given 1 as the survey 

choice, 21 and 40 given 2 as the choice, etc. The Rand() function returns a random value from 

the specified range.  The random function is well suited since it introduces randomness while 

keeping the value within the range of interest.   

The program that performs all the file preparation steps is attached in Appendix C. 

5. RESULTS 

This chapter presents the sample characteristics, results from the hypotheses testing, and 

results on the cost constructs. 
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5.1 Survey Sample 

The sample for the survey consisted of software practitioners who have professional 

programming experience in the industry.  Over 2,500 email addresses were collected through 

conference attendance, association memberships, paper authorships, and referrals.  Each 

participant was contacted by the authors through a personalized email requesting participation in 

the survey.  One reminder, 10 days after the initial message, was sent to the non-respondents.  

Data collection lasted for approximately one month.  191 surveys were returned complete, 

yielding a net response rate of approximately seven percent.   

To the best of our knowledge, this is the first industry-wide survey focused on pair 

programming.  Due to the lack of baseline data, it is hard to judge whether the response rate was 

high, low, or comparable.  The fact that past literature only published a handful of survey studies 

which either used students as respondents or collected responses from specific organizations 

seems to imply that conducting an industry wide survey on this topic is a challenging task.  We, 

therefore, consider the seven percent response rate reasonable.   

We tested for the possibility of response bias by comparing the responses from the first 

20 percent of the responses received to those from the last 20 percent received.  Statistical tests 

revealed that all relevant measurement items shared the same results (p < 0.05).  We thus 

conclude there is little evidence of a difference in responses between early and late responders.  

This suggests that nonresponse bias is unlikely to be an issue in this study (Chatterjee, Grewal, 

and Sambamurthy 2002). 

The profile of the respondents and their associated organizations is shown in Table 5.0.  

The profile indicates the respondents worked in various industries with projects of different 

sizes. The profile also suggests the responses came from well-educated and experienced 
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practitioners.  91.5 percent of the respondents have baccalaureate or advanced degrees.  75.9 

percent have over 10 years of working experience in the information technology field. 128 

respondents have pair programming experience, and 63 respondents indicated no pair 

programming experience.  Only 10.0% of the responses were female.  This is most likely a 

reflection of the gender imbalance in the software development industry.   

Table 5.0 Respondents Profile 
 N %  N % 

Pair programming experience 

Never 

<1 year 

1-2 years 

3-4 years 

5-6 years 

7-8 years 

9-10 years 

>10 years 

 

63 

27 

34 

28 

22 

6 

4 

7 

 

32.9% 

14.1% 

17.8% 

14.6% 

11.5% 

3.1% 

2.1% 

3.6% 

Experience in IS/IT field 

< 2 years 

2-5 years 

6-10 years 

11-20 years 

20+ years 

 

4 

8 

34 

88 

57 

 

2.1% 

4.1% 

17.8% 

46.1% 

29.8% 

Current Position 

Developer 

Project manager 

Team Leader 

VP/Director of Development 

Development Manager 

Consultant/Trainer 

Architect 

QA/Tester 

Product Manager 

IT Staff 

CIO/CTO/CEO/President 

Other 

 

22 

41 

19 

25 

18 

19 

13 

16 

3 

4 

1 

9 

 

11.5% 

21.4% 

9.9% 

13.0% 

9.4% 

9.7% 

6.8% 

8.3% 

1.6% 

2.0% 

0.5% 

4.7% 

Highest education 

High school or equivalent 

Some college 

College degree 

Graduate degree 

 

 

Location 

North America 

Europe 

Asia 

Australia/NZ 

 

1 

15 

74 

101 

 

 

 

160 

13 

15 

3 

 

 

0.5% 

7.8% 

38.7% 

52.8% 

 

 

 

83.7% 

6.8% 

7.8% 

1.6% 

 

Age 

<30 

30-39 

40-49 

50-59 

60-69 

>69 

 

19 

70 

64 

30 

7 

1 

 

9.9% 

36.6% 

33.5% 

15.7% 

3.6% 

0.5% 

Gender 

Male 

Female 

 

172 

19 

 

90.0% 

10.0% 

Industry 

e-Commerce 

Financial 

Government 

IT Consulting 

Manufacturing 

Retail 

Technology 

Other 

 

13 

19 

13 

33 

8 

2 

69 

34 

 

6.8% 

10.0% 

6.8% 

17.2% 

4.1% 

1.0% 

36.1% 

17.8% 

Total Software Organization 

(# of employees in software 

development and delivery) 

<5 

5-20 

21-50 

51-100 

101-250 

     >250 

 

 

 

13 

34 

56 

26 

22 

40 

 

 

 

6.8% 

17.8% 

29.3% 

13.6% 

11.5% 

20.9% 

Average Project Budget 

<$10K 

$10K-$49K 

$50K-99K 

100K-499K 

500K-999K 

1,000K-$2,000K 

       >2,000K 

 

9 

22 

51 

59 

22 

18 

10 

 

4.7% 

11.5% 

26.7% 

30.8% 

11.5% 

9.4% 

5.2% 

   



63 

 

5.2. Hypothesis Testing 

Hypothesis testing was conducted on both the original survey data and the simulation 

data.  In this section, we present the hypotheses, results, and a brief explanation of the results. 

H1a. Regardless of programming approach, as system complexity increases, the programming 

effort increases. 

H1b. Regardless of programming approach, as system complexity increases, defect rate 

increases. 

H1c. Regardless of programming approach, as system complexity increases, there is higher 

knowledge transfer rate amongst the project team members. 

 

To test for support of H1a and H1b based on the original survey responses, non-

parametric related sampled tests were applied.  This approach is the most appropriate for several 

reasons.  First, respondents have experience on projects of different sizes in different 

organizations.  As they estimate the number of modules and the defect rate for projects at three 

levels of complexity (low, medium, high), there is inevitably a large dispersion of entries where 

distribution cannot be assumed and outliers are common.  Rank-based nonparametric tests do not 

make distribution assumptions and are not affected by outliers (Hollander and Wolfe 1999).  

Second, the survey was designed such that the same subject is asked to provide responses for 

low, medium and high complexity projects, thus, the data points are not independent of each 

other and related sample tests are suitable.   

To test for support of H1a and H1b based on the simulation data, multivariate tests on 

repeated measures were employed.  Data examination on the simulation data suggests through 

the bootstrapping process data on effort and defect approximate normal (skewness -0.12 to 0.92, 

Kurtosis -0.03 to 1.11), therefore, there is no need to conduct non-parametric testing. 

To test for support of H1c, a one sample t-test was adopted on both the survey and 

simulation data.  T-test is appropriate in this case because we intend to test the difference 

between the sample mean and the population mean. All the measurement items, as well as the 
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grand mean which is calculated from the three measurement items, meet the assumptions for t-

test: independence and normal distribution (Warner 2007).   

Table 5.1 is a summary of the results for H1a, H1b, and H1c.  Each variable’s basic 

statistics are reported as well.  For variables where no distribution can be assumed, their mean 

ranks are reported.  The three items to measure knowledge transfer approximate normal 

distributions, therefore, their means and standard deviations are reported.   

Table 5.1 Results for H1a, H1b, and H1c 

 

  From Survey 

 (N=191) 

From Simulation 

 (N=5000) 

Overall 

H Item 
Mean 

Rank 
SD 

 p-value  

=< 

H  

Support 
Mean SD 

P-value 

=< 

H  

Support 

H 

Support 

H1a Q1a  Effort in   

NA 0.001 Yes 

    

0.001 Yes Yes 
LCP   1.05 459 70 

MCP 1.99 1699 196 

HCP 2.95 25011 6303 

H1b Q1b Defect rate in 
  

NA 0.001 Yes 

    

0.001 Yes Yes 
LCP 1.21 9 1.38 

MCP 2.01 25 4.07 

HCP 2.78 55 7.63 

H1c Q1c Mean    

0.001 Yes 

    

0.001 Yes Yes 

Module understanding 5.24 1.73 5.25 0.12 

Programming language 4.46 1.61 4.43 0.11 

Problem solving 4.51 1.59 4.51 0.11 

Grand mean 4.74 1.35 4.74 0.10 

LCP=Low complexity project  MCP=Medium complexity project  HCP=High complexity project 

 

These results are further illustrated in Figure 5.1.  Figure 5.1-a1 shows the mean ranks of 

effort at three system complexity levels: low, medium, and high.  The upward trend suggests 

effort increases as system complexity increases.  Wilcoxon Signed Ranks Tests on related 

samples suggest the ranks between different complexity levels (medium vs. low, high vs. 

medium) are statistically significant (p-value < 0.001), thus, supporting H1a.   Figure 5.1-b1 

depicts the mean ranks of defect rate at three complexity levels and suggests as system 

complexity increases defect rate increases.   Wilcoxon Signed Ranks Tests on related samples 
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suggest the differences in ranks between complexity levels (medium vs. low, high vs. medium) 

are statistically significant (p-value < 0.001), supporting H1b.  Figure 5.1-c1 plots the mean from 

each of the three measurement items for knowledge transfer as well as the grand mean from the 

three items.  The sample mean was compared to the population mean (4-Neutral).  Results 

indicate each of the sample means is significantly different from the population mean (p-value < 

0.001), suggesting the respondents generally agree that as the system complexity increases, there 

is a higher knowledge transfer.  Therefore, H1c is supported.  As demonstrated in Figure 5.1-a2, 

5.1-b2, and 5.1-c2 which present the means on effort, defect rate, and knowledge transfer, and 

statistics  in Table 5.1 (p-value < 0.001), results based on the simulation data suggest the same 

conclusions. 

Figure 5.1 Results for H1a, H1b, and H1c 
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H1c 

  

 

H2a. When compared to solo programming, as system complexity increases, pair programming 

will moderate the effect of system complexity on programming effort thus reducing effort. 

H2b. When compared to solo programming, as system complexity increases, pair programming 

will reduce the effect of complexity on defect rate thus reducing the overall defect rate. 

H2c. When compared to solo programming, as system complexity increases, pair programming 

will increase the effect of system complexity on knowledge transfer thus enhancing knowledge 

transfer. 

 

To test for support of H2a, H2b, and H2c, multivariate tests on repeated measures were 

employed.  These tests are appropriate for several reasons.  First, each survey respondent was 

asked to provide answers at multiple specified conditions.  Second, data screening suggests the 

variables meet the assumption of multivariate repeated measures: the variables are quantitative 

and approximately normally distributed, scores on the repeated measure variables have a 

multivariate normal distribution, and relationships among repeated measures are linear (Warner 

2007).   

As discussed in Chapter 4, a significant concern was that perceptions on the effectiveness 

of pair programming could differ between practitioners who have and do not have pair 

programming experience. Thus, each respondent was coded based on whether he/she had pair 

programming experience and the coded variable was used as the between-subject factor in the 

multivariate test to examine any possible differences between the two subject groups.  Table 5.2 

is a summary of the hypothesis testing results along with each variable’s basic statistics.   
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Table 5.2 Results for H2a, H2b, and H2c 

Survey Simulation Overall 

H Item 
With PPE 

(N=128) 

Without PPE 

(N=63) 

WSE 

p-

value 

=< 

H 

Supp 

BSE 

p -

value 

=< 

With PPE 

(N=5000) 

Without PPE 

(N=5000) 
WSE 

H 

Supp 

BSE 

p-

value 

=< 

 

  % diff. 

b/t  

SP and 

PP in … 

* µ SE µ SE   

    

µ SE µ SE         

H2a 

Q2a  

Effort  
        

0.001 Yes 0.012 

        

0.001 Yes 0.001 Yes 
LCP 0.85 0.22 1.4 0.32 0.92 0.01 1.39 0.006 

MCP -0.28 0.18 0.59 0.25 -0.13 0.01 0.62 0.006 

HCP -1.09 0.2 -0.19 0.28 -1.01 0.004 -0.14 0.004 

H2b 

Q2b  

Defect 

rate  

        

0.001 Yes 0.001 

        

0.001 Yes 0.001 Yes LCP -1.61 0.14 -0.66 0.2 -1.72 0.01 -0.86 0.006 

MCP -2.22 0.13 -1.19 0.19 -2 0 -1.04 0.002 

HCP -2.61 0.16 -1.77 0.23 -2.62 0.01 -1.86 0.006 

H2c 

Q2 

Knowle

dge 

transfer 

        

0.001 Yes 0.088 

        

0.001 Yes 0.001 Yes LCP 1.35 0.2 0.5 0.29 1.13 0.01 0.48 0.006 

MCP 1.81 0.21 1.21 0.3 1.79 0.01 1.1 0.005 

HCP 2.23 0.25 1.77 0.35 2.04 0.01 1.84 0.005 

WSE=within subject effect  BSE=between subject effect 

PPE=pair programming experience 

SP=solo programming  PP=pair programming 

LCP=low complexity project  MCP=medium complexity project  HCP=high complexity project 

* Measurement scales:      

0=No difference 

Pair increases: 1=1-20% 2-21-40% 3+41-60% 4=61-80% 5=81-100% 6=>100% 

Pair decreases: -1=1-20% -2=21-40% -3=41-60% -4=61-80% -5=81-99% 

 

The results are further illustrated in Figure 5.2.  Figure 5.2-a1 and a2 show a downward 

trend, which suggests both respondent groups agree as system complexity increases, compared to 

the solo programming method, pair programming will result in a decrease in programming effort 

(p-value < 0.001), supporting H2a.  However, despite sharing the same trend, the two groups 

disagree significantly on the magnitude of change on effort at all complexity levels (p-value = 

0.012 from the original responses, p-value < 0.001 from simulation).  Specifically, in all three 

complexity levels, practitioners with pair programming experience viewed pair programming 

more positively than practitioners without pair programming experience.  Figure 5.2-b1 and b2 

demonstrate a downward trend regarding defect rate, suggesting as system complexity increases, 
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pair programming method will decrease the defect rate (p-value < 0.001), supporting H2b.  Once 

again the two respondent groups disagree on the magnitude of decrease (p-value < 0.001).  

Figure 5.2-c1 and c2 show an upward trend, implying as the system complexity increases, 

compared to solo programming, pair programming method will result in higher knowledge 

transfer (p-value < 0.001), supporting H2c.  The two respondent groups differ on the magnitude 

of increase on knowledge transfer.  While this difference based on simulation is statistically 

significant (p-value < 0.001), the difference based on the original survey responses is not (p-

value = 0.088).  

 

Figure 5.2 Results for H2a, H2b, and H2c 
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H2c 

  

 Mean responses from practitioners without pair programming experience 

  Mean responses from practitioners with pair programming experience 

Y-Axis:   0=No difference 
 Pair increases: 1=1-20% 2=21-40% 3=41-60% 4=61-80% 5=81-100% >100% 

 Pair decreases: -1=1-20% -2=21-40% -3=41-60% -4=61-80% -5=81-99% 

 

H3a: Programmer expertise moderates the effectiveness of the pair programming method. 

H3b: Prior pair programming experience moderates the effectiveness of the pair programming 

method. 

 

To test for support of H3a and H3b, multivariate repeated measures were employed for 

the same reasons as stated previously.  Table 5.3 provides a summary of the hypothesis testing 

results and each variable’s basic statistics.   

Table 5.3 Results for H3a and H3b 

Survey Simulation Overall 

H Item With PPE 

(N=128) 

Without PPE  

(N=63) 

WSE 

p-

value 

=< 

H  

Supp 

BSE 

p-

value 

=< 

With PPE 

(N=5000) 

Without PPE 

(N=5000) 

WSE 

p-

value 

=< 

H 

Supp 

BSE 

p-

value 

=< 

  

  % diff. b/t 

SP and PP 

in… µ SE µ SE 

   

µ SE µ SE 

        

H3a 

Q3a  Effort               
                

Jr-Jr 1.02 0.22 1.8 0.3 

0.001 Yes 0.006 

1.00 0.004 1.86 0.00 

0.001 Yes 0.001 Yes Jr-Sr -0.43 0.21 0.64 0.3 -0.43 0.007 0.70 0.01 

Sr-Sr -0.92 0.21 -0.06 0.3 -0.98 0.003 -0.06 0.00 

Defect rate                
                

Jr-Jr -1.1 0.14 -0.38 0.2 

0.001 Yes 0.001 

-1.00 0.004 -0.19 0.004 

0.001 Yes 0.001 Yes Jr-Sr -2.19 0.13 -1.41 0.19 -2.01 0.005 -1.26 0.005 

Sr-Sr -2.79 0.15 -1.83 0.21 -2.96 0.003 -1.94 0.003 

Knowledge 

transfer  

              

                

Jr-Jr 
1.32 0.19 0.83 0.27 

0.001 Yes 0.28 

1.08 0.004 0.94 0.004 

0.001 Yes 0.001 Yes Jr-Sr 
2.24 0.24 1.85 0.34 2.06 0.004 1.9 0.004 

Sr-Sr 
1.89 0.22 1.61 0.31 1.87 0.006 1.65 0.006 

w/o Pair 
Experience, 
Low, .500 

w/o Pair 
Experience, 

Medium, 
1.210 

w/o Pair 
Experience, 
High, 1.774 

With Pair 
Experience, 
Low, 1.358 

With Pair 
Experience, 

Medium,  
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With Pair 
Experience,  
High, 2.236 

% Difference 
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Knowledge 
Transfer 

Complexity 

c1 

w/o Pair 
Experience, 
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w/o Pair 
Experience, 

Medium, 
1.101 

w/o Pair 
Experience, 
High, 1.840 

with Pair 
Experience, 
Low, 1.132 

with Pair 
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Medium, 
1.792 

with Pair 
Experience, 
High, 2.042 

% 
Difference 

in 
Knowledge 

Transfer 

Complexity 

c2 



70 

 

H3b 

Q3b  Effort               
                

Prior PP0 1.34 0.21 2.03 0.3 

0.001 Yes 0.006 

1.25 0.006 2.03 0.006 

0.001 Yes 0.001 Yes Prior PP1 0.016 0.19 0.82 0.27 -0.01 0.004 0.89 0.004 

Prior PP2 -1.24 0.21 -0.8 0.29 -1.17 0.005 -0.06 0.005 

Defect rate                
                

Prior PP0 -0.92 0.15 -0.4 0.21 

0.001 Yes 0.003 

-0.99 0.004 -0.24 0.004 

0.001 Yes 0.001 Yes Prior PP1 -1.9 0.14 -1.12 0.2 -1.99 0.002 -1.01 0.002 

Prior PP2 -2.65 0.15 -1.82 0.22 -2.82 0.005 -1.86 0.005 

Knowledge 

transfer  

              

                

Prior PP0 1.24 0.25 0.79 0.25 

0.001 Yes 0.162 

1.05 0.003 0.93 0.003 

0.001 Yes 0.001 Yes Prior PP1 1.98 0.21 1.37 0.29 1.93 0.005 1.28 0.005 

Prior PP2 2.08 0.24 1.69 0.33 1.95 0.005 1.79 0.005 

Jr-Jr=junior-junior pair   Jr-Sr=junior-senior pair   Sr-Sr=senior-senior pair 

Prior PP0 =pair neither has prior pair programming experience 

Prior PP1 = pair one has prior pair programming experience 

Prior PP2 = pair both have prior pair programming experience 

 

Figure 5.3 depicts the impact of one aspect of pair composition - the expertise of the 

developers, on the effectiveness of pair programming method.  Figure 5.3-a1 and a2 show the 

junior-junior composition will result in an increase in effort when applying the pair programming 

method compared to the solo programming method, the junior-senior composition will result in 

an increase in effort according to practitioners who do not have pair programming experience, 

but will result in a decrease in effort according to practitioners who have pair programming 

experience, and the senior-senior composition will lead to a decrease in effort from the 

perspectives of both respondent groups.  Figure 5.3-b1 and b2 suggest a junior-junior 

composition will result in the least decrease in defect rate while a senior-senior composition will 

result in the largest decrease.  Figure 5.3-c1 and c2 demonstrates the junior-senior composition 

leads to the highest amount of knowledge transfer, while the junior-junior composition generates 

the least amount of knowledge transfer.  

The results further indicate the effectiveness of pair programming varies when pairs of 

different compositions - junior-junior, senior-senior, and junior-senior are compared to solos (p-

value < 0.001).  Therefore, H3a is supported.  Again, even though the respondent groups agree 
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on the general trend (p-value < 0.001), they disagree on the magnitude of the changes.  Results 

from simulation suggest all disagreements are statistically significant (p-value < 0.001). Results 

based on the original survey data indicate the disagreements on effort and defect rate are 

statistically significant (p-value = 0.006 for effort, < 0.001 for defect rate) but the disagreement 

on knowledge transfer is not (p-value =0.28). 

Figure 5.3 Results for H3a 
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Figure 5.4 depicts the impact of another aspect of pair composition - prior pair 

programming experience, on the effectiveness of pair programming.  Figure 5.4-a1 and a2 

suggest a pair without prior pair programming experience will lead to the highest amount of 

effort increase, a pair with one having prior pair programming experience will lead to a slight 

effort increase, while a pair with prior pair programming experience will result in a decrease in 

effort.  

Figure 5.4-b1 and b2 reveal a pair with prior pair programming experience will lead to 

the highest decrease in defect rate, a pair with one having prior pair programming experience 

will result in the second highest decrease, and a pair without prior pair programming experience 

will have the least decrease in defect rate.  

Figure 5.4-c1 and c2 suggests a pair with prior pair programming experience will have 

the highest amount of knowledge transfer, and a pair without pair programming experience will 

generate the least amount of knowledge transfer.  Results indicate the effectiveness of pair 

programming varies when pairs of different compositions based on whether they have prior pair 

programming experience – neither has, one has, and both have are compared to solos (p-value < 

0.001).  Therefore, H3b is supported.  Results based on the original survey data suggest the 

difference between the two respondents groups is significant in effort (p-value = 0.006) and 

defect rate (p-value=0.003), but the group difference is not significant on knowledge transfer (p-

value=0.162).  Results from simulation indicate all differences are significant (p-value < 0.001). 
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Figure 5.4 Results for H3b 
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Table 5.4 is a summary of all the statistical tests and their outcomes.  As one can see from 

the results, all hypotheses stated in the Research Model and Hypotheses section are supported by 

both the original survey responses and simulation data.     

Table 5.4 Summary of the Hypotheses Testing Results  

 

    From Survey From Simulation Overall 

H Path Test 

Within 

Subject 
p-value 

=< 

Between 
Subject 

Effect  

p-value  
=< 

H 
Supp 

Test 

Within 

Subject 
p-value 

=< 

Between 
Subject 

Effect  

p-value  
=< 

H 
Supp  

H1a Complexity  Effort NP 0.001 NA Yes 
GLM-
RM 

0.001 NA Yes Yes 

H1b 
Complexity  Defect 

Rate 
NP 0.001 NA Yes 

GLM-

RM 
0.001 NA Yes Yes 

H1c 
Complexity  
Knowledge Transfer 

t-test 0.001 NA Yes t-test 0.001 NA Yes Yes 

H2a 
Pair Programming 

moderates Complexity and 
Effort  

GLM-

RM 
0.001 0.012 Yes 

GLM-

RM 
0.001 0.001 Yes Yes 

H2b 
Pair Programming 
moderates Complexity and 

Defect Rate 

GLM-

RM 
0.001 0.001 Yes 

GLM-

RM 
0.001 0.001 Yes Yes 

H2c 

Pair Programming 

moderates Complexity and 

Knowledge Transfer 

GLM-
RM 

0.001 0.088 Yes 
GLM-
RM 

0.001 0.001 Yes Yes 

  
Programmer Expertise 
affects the effectiveness of 

pair programming in 

              

H3a1      Effort 
GLM-

RM 
0.001 0.006 Yes 

GLM-

RM 
0.001 0.001 Yes Yes 

H3a2      Defect Rate 
GLM-

RM 
0.001 0.001 Yes 

GLM-

RM 
0.001 0.001 Yes Yes 

H3a3      Knowledge Transfer 
GLM-

RM 
0.001 0.28 Yes 

GLM-

RM 
0.001 0.001 Yes Yes 

  

Prior Pair Programming 

Experience affects the 
effectiveness of pair 

programming in 

              

H3b1      Effort 
GLM-

RM 
0.001 0.006 Yes 

GLM-

RM 
0.001 0.001 Yes Yes 

H3b2      Defect Rate 
GLM-

RM 
0.001 0.003 Yes 

GLM-

RM 
0.001 0.001 Yes Yes 

H3b3      Knowledge Transfer 
GLM-

RM 
0.001 0.162 Yes 

GLM-

RM 
0.001 0.001 Yes Yes 

NP = nonparametric related sample tests – Wilcoxon Signed Ranks Test 

GLM_RM=general linear model on repeated measures 
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5.3 Cost 

Figure 5.5 is the cost aspect of the research model presented in Chapter 3.  As illustrated 

in the figure, in this project, the overall project cost consists of opportunity cost, labor slack, 

labor cost, and training cost.  Opportunity cost and labor slacks are derived from duration, labor 

cost consists of effort cost and defect cost, and training cost is calculated as a result of 

knowledge transfer.  In this section, we discuss results on these cost constructs from the 

bootstrap simulation.   

Figure 5.5 Research Model – Cost Constructs 

 

As described in Chapter 4, in the survey we asked responses regarding eight groups: 

generic solo, generic pair, junior-junior pair, junior-senior pair, senior-senior pair, pair without 

prior programming experience, pair with one having prior pair programming experience, and 

pair with prior pair programming. Generic solo refers to solos with no predefined skill levels.  

Generic pair refers to pairs without consideration of their compositions.  As such, our analysis 

and discussions in this study are limited to these eight groups.  We recognize the importance of 

other plausible groups, e.g. junior solo, senior solo, and other variations of pair compositions.  
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However, they are beyond the scope of this research and are left for future research as discussed 

in the Future Research section in the next chapter. 

To enable group comparisons, z-scores were computed ((x - μ) / σ).  It is important to 

note, despite dollar amounts presented along with the z-scores, the emphasis of the study is not 

on specific dollar amounts, but rather on the relative contributions to cost associated with the 

different programming methods represented by the eight groups described above.  Bonferroni 

pair-wise comparisons were conducted on all groups at each project complexity level on all 

constructs to ensure against alpha build-up.  Results suggest most of the group differences are 

statistically significant (p-value < 0.05).  The ones that are not statistically significant are marked 

with an ampersand (&), and the ones that are not significantly different from the means are 

marked with the pound sign (#). 

 

5.3.1 Labor Cost 

Labor cost has two components: effort cost which is the labor cost incurred during initial 

development, and defect cost which are labor costs associated with fixing defects.  We first 

present results on effort cost, then defect cost, and finally overall labor cost. 

Effort Cost 

Table 5.5 presents the standardized scores on effort cost as well as the dollar amounts 

from the means.  Dollar amounts below the mean (meaning the cost is lower than an average 

project) are in parentheses.  Means and standard deviations for low, medium, and high 

complexity projects are presented at the end of the table. Those represent the μ and σ used in the 

z-score calculation. 
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Table 5.5 Effort Cost 

 

Z-Score $ Amount from the Mean 

 

Low Medium High Low Medium High 

Solo -.208 -.005# -.098& (2,809) (385) (111,237) 

Pair .032& -.125 -.102& 437 (8,864) (116,158) 

Jr-Jr -.154 -.073 -.404 (2,083) (5,191) (458,503) 

Jr-Sr .029&# -.177 -.194 396 (12,627) (219,519) 

Sr-Sr .091 .116 .097 1,230 8,252 109,656 

Prior PP0 .214 .430 .653 2,887 30,624 740,291 

Prior PP1 .126 .169 .202 1,699 12,053 228,676 

Prior PP2 -.130 -.335 -.153 (1,756) (23,862) (173,205) 

Mean 30,742 183,340 2,688,511 

   SD 13,330 69,702 1,138,701 

   Jr-Jr=junior-junior pair  Jr-Sr=junior-senior pair  Sr-Sr=senior-senior pair 

Prior PP0=pair neither having prior pair programming experience 

Prior PP1=pair one having prior pair programming experience 

Prior PP2=pair both having prior pair programming experience 

 

Results suggest project complexity matters.  As complexity increases, effort cost 

increases (p-value < 0001).  In low complexity projects, solo is the most cost effective.   

However, in medium and high complexity projects, junior-junior, junior-senior, and pair both 

with prior pair programming experience are more cost effective than solo. 

Results further suggest pair composition matters.  For example, considering expertise in 

pair composition, junior-senior is the most cost effective in medium complexity projects, junior-

junior is the most cost effective in low and high complexity projects, and senior-senior is the 

most expensive in all cases.  Considering prior pair programming experience in pair 

composition, pairs with prior pair programming experience are consistently the most cost 

effective while pairs without prior pair programming experience are consistently the most 

expensive across all project complexity levels.   

This finding is further illustrated in Figure 5.5.  Figure 5.5 indicates, considering all the 

groups, solo incurs the least effort cost in low complexity projects, pairs with prior pair 

programming experience are the least expensive in medium complexity projects, and the junior-
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junior pair is the most cost effective in high complexity projects.  In addition, the generic pair 

appears to behave just like a generic pair.  Its performance presents neither the best pair nor the 

worst pair.  It is between the best and the worst.  For example, generic pair does not perform as 

well as pairs with prior pair programming experience, but it consistently outperforms pairs 

without prior pair programming experience.  The same trend is identified as the generic pair is 

compared to pairs comprised of different levels of expertise.   

Figure 5.5 Effort Cost 

   

Defect Cost 

Table 5.6 presents the standardized scores on defect cost as well as the dollar amounts 

from the means.   

Table 5.6 Defect Cost 

 

Z-Score $ Amount from the Mean 

 

Low Medium High Low Medium High 

Solo .594 .410& 1.143 15,924 153,391 2,448,516 

Pair -.217 .094 .006# (5,809) 35,251 12,284 

Jr-Jr .411 .413& .341 11,007 154,406 730,037 

Jr-Sr -.135 -.050 -.379 (3,607) (18,693) (812,628) 

Sr-Sr -.612 -.554 -.569 (16,389) (207,170) (1,219,902) 

Prior PP0 .528 .464 .406 14,139 173,512 870,407 

Prior PP1 -.020# -.139 -.271 (524) (52,170) (580,955) 

Prior PP2 -.550 -.637 -.676 (14,740) (238,526) (1,447,756) 

Mean 56,302 628,166 4,905,760 

   SD 26,791 374,236 2,142,952 
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Results suggest in low complexity projects, solo, junior-junior pairs, and pairs without 

prior pair programming experience incur a relatively high defect cost. In medium complexity 

projects, junior-junior pairs and pairs without  prior pair programming experience incur higher 

defect costs than solo but all the other pairs incur less defect costs than solo.  In high complexity 

projects, all pairs incur less defect costs than solo.  Considering expertise in pair composition, 

senior-senior is the most cost effective and junior-junior is the most expensive.   Considering 

prior pair programming experience in pair composition, pairs with prior pair programming 

experience are the most cost effective while pairs without  prior pair programming experience 

are the most expensive.   

This finding is further illustrated in Figure 5.6.  Figure 5.6 demonstrates considering all 

the groups, senior-senior incurs the least defect cost in low complexity projects, and pairs with 

prior pair programming experience incur the least cost in medium and high complexity projects.  

The defect cost is high for solo, junior-junior pair, and pair without prior pair programming 

experience in all situations.  The generic pair incurs less defect cost than solo in all 

circumstances. 

 

Figure 5.6 Defect Cost 
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Labor Cost 

Table 5.7 presents the standardized scores on overall labor cost as well as the dollar 

amounts from the means.   

Table 5.7 Labor Cost 

 

Z-Score $ Amount from the Mean 

 

Low Medium High Low Medium High 

Solo .406 .389& .878 10,870 145,727 1,882,040 

Pair -.166 .068 -.039 (4,446) 25,306 (84,053) 

Jr-Jr .276 .380& .101 7,398 142,213 217,130 

Jr-Sr -.099 -.079 -.388 (2,659) (29,578) (832,030) 

Sr-Sr -.468 -.507 -.417 (12,546) (189,609) (893,804) 

Prior PP0 .524 .518 .607 14,051 193,806 1,299,759 

Prior PP1 .036 -.103 -.132 956 (38,446) (282,943) 

Prior PP2 -.509 -.666 -.609 (13,624) (249,418) (1,306,094) 

Mean 87,045 811,507 7,594,271 

   SD 26,791 374,236 2,142,952 

    

In low and medium complexity projects, solo does not incur the highest labor cost.  In 

low complexity projects, pairs without prior pair programming experience are more expensive 

than solo.  In medium complexity projects, besides pair without prior pair programming 

experience, junior-junior pairs also incur higher labor costs than solo.  In high complexity 

projects, however, all pairs regardless of their pair composition incur less labor cost than solo. 

Considering expertise in pair composition, senior-senior pairs are the best in low and 

medium complexity projects.  In high complexity projects, junior-senior pairs are the most cost 

effective.  Considering prior pair programming experience in pair composition, pairs with prior 

pair programming experience appear to be the most cost effective.   

This finding is further illustrated in Figure 5.7.  Figure 5.7 indicates considering all 

groups, pairs with prior pair programming experience are the most cost effective.  In low and 

medium complexity projects, pairs without prior pair programming experience are the most 
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expensive.  In high complexity projects, solo is the most expensive.  The generic pair is more 

cost effective than solo in all situations. 

Figure 5.7 Labor Cost 

   

 

5.3.2. Training Cost  
 

No data is available to suggest how much impact knowledge transfer through different 

programming methods has on overall training cost.  Therefore, to provide the widest possible 
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The z-score data from appendix D suggests regardless of percent of impact, the relative 
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demonstrates the same trend.  This is illustrated in Figure 5.8.  To be specific, in low complexity 
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prior pair programming experience, pairs one with prior pair programming experience, and 

senior-senior pairs.  In medium complexity projects, the same trend continues except the generic 
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programming experience results in the lowest training cost.  Solo incurs the highest training cost 

in all situations. 

Figure 5.8 Training Cost – General Trend 

 

   

 

To illustrate the findings further, a single point in our testing range 40% impact on 

training cost - is chosen to present the detailed findings.  Table 5.8 diplays the standardized 

scores on training cost for the 40% impact range as well as the dollar amounts from the means.  

The results are demonstrated in Figure 5.9 as well. 

Table 5.8 Training Cost – 40% Impact 

 

Z-Score - 40% Impact $ Amount from the Mean 

 

Low Medium High Low Medium High 

Solo .412 1.317 .947 53 911 983 

Pair .116 -.103 -.099 15 (71) (103) 

JJ .060 .395 .351 8 273 364 

JS -.300 -.706 -.511 (39) (488) (530) 

SS -.145 -.460 -.314 (19) (318) (326) 

None .157 .423 .119 20 293 124 

One -.077 -.371 -.402 (10) (257) (417) 

Both -.223 -.496 -.591 (29) (343) (613) 

Mean 3,384 16,962 45,978 
   

SD 129 692 1,037 
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Figure 5.9 Training Cost – 40% Impact 

 

   

 

Even though Bonferroni pair-wise comparisons on the z-scores suggest all pair 
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hundred dollars carries any practical significance to the entire project cost will be highly 
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given situation could easily be material and, as such, we must consider it in this research. 
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The data suggests in both low and medium complexity projects, solo is the fastest 

programming method.  In high complexity projects, however, pairs with prior pair programming 

experience are the fastest, followed by solo and generic pairs (the difference between solo and 

generic pairs is not statistically significant, p-value = 1.0).  Among all programming methods 

and pair compositions, the junior-junior pairs are the slowest, followed by pairs without prior 

pair programming experience.  These finding are further illustrated in Figure 5.10. 

Table 5.9 Duration 

 

 

Z-Score Days from the Mean 

 

Low Medium High Low Medium High 

Solo -.305 -.342 -.339& (3) (15) (129) 

Pair -.070 -.163 -.336& (1) (7) (128) 

Jr-Jr .669 .907 .924 7 40 350 

Jr-Sr .079 -.055 -.072 1 (2) (27) 

Sr-Sr -.250 -.147 -.296 (3) (7) (112) 

Prior PP0 .008# .096 .611 0 4 232 

Prior PP1 .022# .007# -.020# 0 0 (8) 

Prior PP2 -.152 -.303 -.470 (2) (13) (178) 

Mean 20 93 1,010 

   SD 10 44 379 

    

 

Figure 5.10 Duration 
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Opportunity cost is cost associated with those opportunities an organization potentially 

loses for committing to, and therefore undertaking a given project. When a project falls behind 

schedule (in this case, the duration mean), an organization’s resources are tied up in the project, 

and therefore cannot be made available to undertake other projects. As a result, opportunity costs 

are incurred. Results suggest in low complexity projects, solo incurs the lowest opportunity cost, 

however in medium and high complexity projects, pairs with prior pair programming experience 

incur the least opportunity cost.  Furthermore, junior-junior pairs incur the highest opportunity 

cost in all situations, followed by solo.  Table 5.10 presents the z-scores on opportunity cost as 

well as the dollar amounts from the means.  The finding is further illustrated in Figure 5.11. 

 

Table 5.10 Opportunity Cost 

 

Z-Score Opportunity Cost 

 

Low Medium High Low Medium High 

Solo -.299 -.152& -.141 (4,462) (10,615) (163,955) 

Pair -.032& -.148& -.100 (479) (10,332) (116,082) 

Jr-Jr .143 .327 .637 2,141 22,790 740,834 

Jr-Sr .048 .019# .059 710 1,325 68,467 

Sr-Sr .042&& -.071 -.150 628 (4,934) (174,496) 

Prior PP0 .039&& .212 .296 583 14,734 344,411 

Prior PP1 .098 .125 .178 1,464 8,725 207,324 

Prior PP2 -.037& -.311 -.188 (556) (21,624) (218,500) 

Mean 22,279 127,663 2,384,615 

   SD 14,928 69,636 1,163,733 
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Figure 5.11 Opportunity Cost  
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deduction from total project cost as a result of shortened duration.   
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complexity levels, followed by pairs with prior pair programming experience, pairs with one 

having prior pair programming experience, and generic pairs.  Despite the z-scores 

demonstrating the same trend across three project complexity levels, the magnitude of increase in 

dollar amount is significant as the project complexity increases.  The finding is illustrated in 

Figure 5.12. 
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Table 5.11 Labor Slack 

 

Z-Score Labor Slack 

 

Low Medium High Low Medium High 

Solo -.117 -.217 -.162 (1,244) (9,977) (80,684) 

Pair .127 .228 .270 1,347 10,479 134,669 

Jr-Jr -1.130 -1.085 -1.157 (11,980) (49,903) (576,340) 

Jr-Sr -.193 -.179 -.222 (2,047) (8,216) (110,431) 

Sr-Sr .819 .786 .839 8,683 36,166 417,981 

Prior PP0 -.034 -.014# .016# (363) (638) 8,047 

Prior PP1 .176 .133 .125 1,861 6,127 62,415 

Prior PP2 .353 .347 .290 3,743 15,962 144,343 

Mean 41,404 173,148 2,063,020 

   SD 10,602 46,005 498,345 

    

Figure 5.12 Labor Slack 
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Solo .220 .355 .622 9,982 153,288 2,207,970 
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Prior PP0 .396 .526 .661 17,960 227,170 2,345,984 

Prior PP1 .017&# -.088 -.058 749 (38,027) (206,822) 

Prior PP2 -.459 -.694 -.546 (20,805) (299,821) (1,938,083) 

Mean 71,304 782,984 7,961,844 

   SD 45,361 432,003 3,550,279 

    

Results suggest project complexity clearly matters.  As project complexity increases, the 

project cost goes up.  The cost differences at three complexity levels are statistically significant 

(p-value < 0.001).  Results also suggest the savings associated with pair programming become 

substantially significant as project complexity increases.  The savings range from thousands of 

dollars in low complexity projects to over one million dollars in high complexity projects.  

Results indicate, despite the pair programming method’s effectiveness in mitigating the 

increased project costs, as complexity increases, pair composition matters. Considering expertise 

in pair composition, even though junior-senior and senior-senior pairs consistently perform better 

than solos, the junior-junior pairs do not perform as well unless it is a high complexity project. In 

addition, projects done by junior-senior pairs cost approximately the same as an average project 

in the low complexity situation, but incur measurable savings in both medium and high 

complexity projects. 

Considering prior pair programming experience in pair composition, projects finished by 

pairs without pair programming experience are more costly than those finished by solos.  Also, 

pairs with prior pair programming experience are consistently the most cost effective group 

across the three project complexity levels, while pairs with one having prior pair programming 

experience only result in savings in medium and high complexity projects.  The generic pair is 

more cost effective than solo and its performance lies between the best and the worst pair 

combinations.   
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The findings are illustrated in Figure 5.11.  Considering all programming methods and 

pair compositions, the method that results in highest project cost is, surprisingly enough not solo, 

but rather the junior-junior pairs for low complexity projects, and pairs without prior pair 

programming experience for medium and high complexity projects.  It seems apparent that the 

junior-junior pair does not seem to be a good cost saving mechanism unless the situation is a 

high complexity project.  Senior-senior pairs result in the highest savings in low complexity 

projects while pairs with prior pair programming experience result in highest savings in medium 

and high complexity projects. Nonetheless, it seems reasonable to conclude that pair 

programming represents a cost saving mechanism but system complexity and pair composition 

must be considered if such cost savings are to be realized.  

Figure 5.11 Total Project Cost 
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6.1.Discussion 
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desired insights.  The following discussion is organized around hypotheses and the implications 

of the results. 

H1 argued as system complexity increases, effort increases, defect rate increases, 

knowledge transfer increases.  While the arguments appeared intuitive, there have been very few 

empirical studies providing support of these arguments.  The studies we identified to be 

somewhat close to our approach did not consider knowledge transfer, and instead of system 

complexity, primarily focused on program size and its relationship between program effort and 

defect (e.g. Kemerer 1987; Banker and Kermerer 1989; Mukhopadhyay et al. 1992; Krishnan et 

al. 2000; Matson et al. 2002).    Furthermore, in pair programming research, the handful of 

studies that considered system complexity in their research models (Arisholm et al. 2007; 

Balijepally et al. 2009) treated system complexity as a moderator instead of an independent 

variable as in this research.  Therefore, our study is one of the few that provides strong empirical 

evidence to support the claim that system complexity is the salient driver with regard to the 

outcome of a software development project. 

H2a proposed when compared to solo programming, as system complexity increases, pair 

programming will moderate the effect of system complexity on programming effort, thus 

reducing effort.  Results suggest pair programming will incur less programming effort than solo 

programming in high complexity projects but more effort in low complexity projects; in terms of 

medium complexity projects, the perceptions were split: practitioners who had pair programming 

experience believed pair programming would reduce effort while practitioners who did not have 

pair programming experience thought pair programming would increase effort.  Despite the 

different views in medium complexity projects, it is clear that practitioners agree pair 

programming can be an effort-reduction mechanism in high complexity projects.  The 
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implication of this result is the pair programming method is best suited for a high complexity 

project and ill suited for a low complexity project given the goal to reduce overall programming 

effort.  This also serves to explain the equivocality in findings reported by prior pair 

programming studies: some noted effort increase (Nosek 1998; Williams et al. 2000; Rostaher 

and Hericko 2002), others revealed effort decrease (Lui and Chan 2003; Canfora et al. 2005), and 

one presented inconsistent findings across the tasks (Canfora et al. 2007).  Our study suggests 

pair programming studies must consider the complexity of the programming tasks in order to 

draw a sensible conclusion.   

H2b states when compared to solo programming, as system complexity increases, pair 

programming will reduce the effect of complexity on defect rate, thus reducing the overall defect 

rate.  Results suggest pair programming helps reduce defect rate in projects at all complexity 

levels, but as complexity increases, there is a higher reduction in defect rate.  The implication of 

this result is pair programming is an effective mechanism to reduce defects, which is particularly 

true in high complexity projects.  This result supports the finding shared by the majority of the 

previous pair programming research, although, in prior studies, the effect of complexity was 

largely ignored. 

H2c argued when compared to solo programming, as system complexity increases, pair 

programming will increase the effect of system complexity on knowledge transfer thus 

enhancing knowledge transfer.  Results suggest pair programming increases knowledge transfer 

in projects at all complexity levels and the effect is higher as complexity increases.  The 

implication of this result is pair programming is an effective mechanism to transfer knowledge 

among the team members, and this is particularly true in high complexity projects.  This study 

represents the first pair programming study that operationalized knowledge transfer, validated its 
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validity, and provided strong empirical evidence on the effect of pair programming on 

knowledge transfer.   

H3a proposed programmer expertise would affect the effectiveness of the pair 

programming method.  The study examined three pair expertise compositions: junior-junior, 

junior-senior, and senior-senior.  Results suggest senior-senior pairs will incur the least amount 

of programming effort and produce programs with the lowest defect rate, junior-senior pairs fall 

second, and junior-junior pairs will achieve the worst results.  In terms of knowledge transfer, 

junior-senior pairs work the best, senior-senior pairs the second, and junior-junior pairs the last. 

The implication of these results is to assist in determining what optimal pair composition to 

adopt depending on the goals/constraints of the project: if the goal is to complete the project with 

the least effort or the least defect, then senior-senior pairs should be the choice; if the goal is to 

share knowledge, then junior-senior pairs will be the best.  Our results suggest junior-junior pairs 

do not seem to be a good option in any of the three circumstances.  Although several studies 

examined pair compatibility, the majority of them did not operationalize pair composition, and 

none examined its effect on knowledge transfer.  Therefore, this study is the first that took a 

comprehensive and systematic approach to the study of pair composition in relation to the 

outcome of the project. 

H3b stated prior pair programming experience would affect the effectiveness of the pair 

programming method.  Results indicate pairs with prior pair programming experience achieved 

the best results in all three aspects (least effort, lowest defect rate, and highest knowledge 

transfer) while pairs without prior pair programming experience work the worst (highest effort, 

highest defect rate, and lowest knowledge transfer). While the results appeared to be intuitive, 

this study is the first one to provide empirical evidence to support the claim prior pair 
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programming experience is an important factor: it directly contributes to how effectively a pair 

performs.   

Furthermore, based on whether they have or do not have pair programming experience, 

perceptions are different.  In general, practitioners who had pair programming experience tended 

to favor the pair programming method over the solo.  For instance, in the case of medium 

complexity projects, practitioners with pair programming experience thought pair programming 

would reduce effort while practitioners without pair programming experience believed pair 

programming would increase effort.  The same was true when considering junior-senior 

composition: practitioners with pair programming experience thought junior-senior pairs would 

reduce effort while practitioners without pair programming experience believed junior-senior 

pairs would increase effort.    

Another principal objective of the study is to investigate the cost constructs to determine 

in what situations pair programming is more cost effective than solo programming.   Simulation 

results suggests the selection of the most cost effective approach depends on the complexity of 

the project and pair composition.  In particular, several findings are suggested.  First, our results 

make clear that project complexity is the driving force of project cost.  As project complexity 

increases, all costs go up: labor cost, training cost, opportunity cost, labor slack, and overall 

project cost.  In addition, even though there are cost variations among the programming methods, 

no method is likely to reduce the cost of a medium or high complexity project to the cost range 

of a low complexity project, as suggested by the dollar ranges of projects at different complexity 

levels: a low complexity project ranges from $48,000 to $92,000, a medium complexity project 

runs from $400,000 to a million, and a high complexity project is from five million to ten 

million.  While this finding is not surprising, this study is, as above, the first in pair programming 
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research to treat complexity as the independent variable and derive dollar ranges on projects at 

different complexity levels.  

Second, results suggest pairs with prior pair programming experience incur the lowest 

labor cost in all situations while pairs without prior pair programming experience incur the 

highest labor cost in low and medium complexity projects and solos incur the highest labor cost 

in high complexity projects.  This finding illustrates the importance of prior pair programming 

experience in pair composition and suggests pairs with prior pair programming experience can 

achieve the best results yet pairs without prior pair programming experience will achieve the 

worst outcome.  Also, the impact of hourly pay rate and defect cost are important factors to 

consider: for example, junior-junior pairs have the lowest effort cost because of the low hourly 

pay rate, but senior-senior pairs have the lowest overall labor cost despite their high hourly pay 

rate due to savings in defect cost, and solos are the least cost effective in overall labor cost in 

high complexity projects due to high defect cost despite its low effort cost.  Previous studies 

usually investigated effort and defect separately and the typical conclusion was pairs incurred 

more effort but lowered defects.  Our study suggests it is important to examine the combined 

effect of effort cost and defect cost on the overall labor cost.   

Third, most previous studies concluded, when compared to solo programming, pair 

programming serves to shorten the project duration (e.g. Williams et al. 2000; Cockburn and 

Williams 2001; Rumpe and Schroer 2002; Williams and Kessler 2003).  Our study yielded 

contradictory results.  Our findings suggest solos are faster than pairs except in one situation: 

pairs with prior pair programming experience are found to be faster than solos in high 

complexity projects.  A closer examination of the previous studies revealed that previous studies 

tended to compare pair (two developers) to solo (one developer) and their conclusions, 
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intuitively enough, suggested two developers worked faster than one developer.  However, 

comparing two developers to one developer is not a fair comparison.  A fair comparison should 

be a pair (two developers) to two solos (two developers), which is the approach we followed in 

this study.  In pair programming, each pair works together on one particular task, while in solo 

programming, the same task is divided into two, and each solo works on a different subtask 

concurrently.  Consider the following:  a given project is divided into 12 programming tasks with 

a team size of four (two pairs vs. four solo developers). In pair programming, since there are two 

pairs, two tasks are being worked on simultaneously whereas in solo programming, since there 

are four developers, four tasks are being worked on simultaneously.  Using the same team size 

for both pair and solo programming, it is not surprising that solos will usually finish the project 

sooner than pairs given the fact that in solo programming more tasks are being worked on 

simultaneously.  Our finding concurs with the conclusion drawn by Parrish et al. (2004).    Their 

study showed, as developers divided the tasks into subtasks and worked on subtasks 

independently, they were several times faster than developers working together on the same 

tasks.  Our study did, however, discover one circumstance where pairs are faster than solos.  

Results suggest project complexity and pair composition are influential factors: when the 

complexity of the project is high and pairs are comprised of developers with prior pair 

programming experience, pairs are faster than solos. Besides considering duration, we also 

investigated the impact of shortened or prolonged duration on the project cost: opportunity cost 

and labor slack.  As far as we know, this is, again, the first study to include opportunity cost and 

labor slack in the total cost calculation. 

Fourth, this study is the first to quantify knowledge transfer and to relate knowledge 

transfer to training cost.  Since no data is available to suggest how knowledge transfer influences 
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training cost, we conducted a series of sensitivity analyses assuming knowledge transfer ranges 

from 10% to 100% impact on training cost.  Results suggest solos incur the highest training cost 

in all situations, junior-senior pairs result in highest savings in training cost in low and medium 

complexity projects and pairs with prior pair programming experience result in highest savings 

in training cost in high complexity projects.  A close examination of all of the impact scenarios 

suggests the dollar savings range from $500 to $2500.  Therefore, based on our calculation, the 

impact of knowledge transfer on training cost may not carry practical significance. Nonetheless, 

it is important to consider as a means to reduce overall training costs in a particular project. As 

we learn more about this effect, we may find it to be a more significant variable in the equation. 

Finally, regarding the overall project cost, two prior studies research the total project cost 

and drew different conclusions: one concluded pairs are more cost effective than solos in all 

situations (Erdogmus and Williams 2003), and the other suggested pairs are more cost effective 

when market pressure is high (Padberg and Müller 2003).  Our results indicate pair 

programming is not more cost effective than solo programming in all situations.  Whether pairs 

are more cost effective than solos depends on pair composition and project complexity.  

Considering expertise in pair composition, junior-junior pairs are not cost effective compared to 

solos unless the project is a high complexity project; considering prior pair programming 

experience in pair composition, pairs without prior pair programming experience are consistently 

more expensive than solos. In low complexity projects, junior-senior pairs, senior-senior pairs, 

pairs with one having prior pair programming experience, pairs with prior pair programming 

experience are more cost effective than solos while junior-junior pairs and pairs without prior 

pair programming experience are more costly than solos; in medium complexity projects, the 

same trend continues; in high complexity projects, however, all pairs except pairs without prior 
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programming experience are more cost effective than solos.  Furthermore, as discussed along 

with duration earlier, our study suggests, with the same team size, when market pressure is high, 

the best choice is solo programming over pair programming since in solo programming more 

tasks can be worked on simultaneously by different developers.  Our finding concludes more 

dimensions need to be added to the cost consideration: the complexity of the project and pair 

composition.  Our findings also illustrate the importance of prior pair programming experience 

which is a construct not previously studied empirically.   

6.2.Limitations 

While the results appear encouraging with regard to furthering our understanding of the 

role of pair programming in software development, as with any empirical endeavor, several 

limitations must be taken into consideration when interpreting them. 

The first area of limitation lies with the exploratory nature of the questionnaire.  In an 

ideal situation, one would adopt questionnaires that have been proven to reach the desired levels 

of validity and reliability.  Unfortunately, this was not possible in this case because no such 

instrument existed.  A potential threat to validity and reliability of the newly developed measures 

in this study is inaccurate reporting from the respondents.  However, we believe this threat is 

minimized by the following mechanisms.  First, most of the measures are widely adopted 

industrial standards software developers are familiar with. In addition, in the survey tool, the 

definition of each measure was explicitly presented to the respondents before they answered 

associated questions.  Given the above reasons, it is unlikely that the respondents would 

misunderstand the questions and unintentionally report wrong information. 

Second, only complete surveys were used for analysis.  During data collection, the 

authors received numerous comments from respondents stating reasons why they didn’t 
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complete the survey.  Not knowing the answers to the questions was the primary reason.  

Therefore, it is reasonable to believe respondents who didn’t know or didn’t feel comfortable 

reporting the answers abandoned the survey and, therefore, were not suitable or appropriate 

respondents.  Despite all the preventive effort, it is still important to bear in mind that future 

studies are needed to perfect the instrument and confirm its validity and reliability.   

As is true with any other survey study, another limitation regarding this research effort is 

the possibility of sampling bias.  Since there is no centralized file that would allow us to draw a 

random sample of software developers in the industry, we had to solicit participants based on the 

resources available.  Furthermore, there is always the possibility of self-selection bias.  However, 

the respondents’ profile presented in the results section suggests the respondents were quite 

diverse in terms of age, experience, and industry.  In addition, we checked non-response bias by 

comparing the responses from the first 20 percent of the responses received to those from the last 

20 percent received and results indicated non-response bias didn’t seem to be a problem.  

Finally, assuming effect size 0.35, alpha 0.05, and levels of 3, the power table for one-way 

repeated measures suggests a power value of 0.99 with sample size of 21 (Jaccard and Becker 

2002 pp.588; Warner 2008 pp.917).  Thus, we consider 191 to be a sample size more than large 

enough to address some of the potential biases. 

The other limitation lies with the nature of survey data.  The participants were asked to 

provide responses based on experience and/or perception.  Nevertheless, the source of the 

analysis results is perception data.  Since there is always a possibility that perception may not 

align with reality seamlessly, cautions need to be given as we interpret the data. 

One area to be clarified is the survey items that were single-item constructs. In general, 

this approach is not deemed to be appropriate and multiple item constructs are preferred. In this 
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case, however, many of the constructs used were, in fact, best described using a single-item 

approach. For example, while it is easy to conceive a variety of methods to describe the construct 

effort, the common industry-accepted approach is to describe the construct in terms of 

programmer hours – a single-item approach. In addition, it must be noted that the survey 

instrument combined two different data collection efforts: 1) to collect data related to the 

constructs in the research model and 2) to collect parameter data for use in the development of 

the simulation conducted in Study 2. Given this, we believe the single-item constructs we 

employed were appropriate in their use and do not detract from either the validity or the results 

or their associated conclusions.   

A final area warranting discussion is we used linear functions (e.g. labor cost = effort cost 

+ defect cost; effort cost = hours * hourly pay rate) in all of the cost calculations.  It is possible 

that some of the functions are more sophisticated and may be curvilinear or in some other higher 

order forms.   A series of future studies should be conducted and focus on the relationships of the 

various cost constructs in the software development cost model.  For that purpose industrial data 

from actual software development projects through computer logs and other automatic data 

capturing methods is desirable. 

 6.3 Conclusions 

As noted above, this study makes several contributions.  First, it documents the most 

comprehensive literature review on pair programming contained in the extant literature, which 

lays the foundation for future research in the field.  Second, it developed a survey instrument and 

conducted one of the first industrial-wide surveys on pair programming.  Third, it proposed and 

empirically tested a unique and comprehensive pair programming research model during which 

several under-studied constructs and relationships (e.g. system complexity, pair composition, 
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knowledge transfer) were thoroughly examined.    Finally, the bootstrap simulation yielded 

several findings regarding when and where pairs are more cost effective than solos, which, 

hopefully answers some of the fundamental questions a business organization will raise when 

considering the adoption of the pair programming method. 

As the ultimate goal of all academic research is to move from description to prescription, 

we believe our findings allow for such an event. Several guidelines, albeit preliminary in nature, 

can be offered to the industry based on the results of this study.   

First, pair programming is a good choice when system complexity is high.  In high 

complexity projects, pair programming reduces programming effort, improves quality, and 

reduces overall labor cost compared to solo.  

Second, pair composition must be taken into account.  In most situations, whether pairs 

are more effective than solos depends on how the pairs are comprised.     

Third, prior pair programming experience is an important factor to consider.  Pairs with 

prior pair programming experience perform well and pairs without prior pair programming 

experience perform poorly, which suggests, to achieve optimal outcome, organizations should 

invest money and time for developers to gain pair programming experience on small tasks before 

assigning them to projects.  

Fourth, solo is a good choice when the market pressure is high.  Solos are faster than all 

pairs except in one situation: pairs with prior pair programming experience in a high complexity 

project. 

Finally, while every project has its primary goal, it is important to examine the 

interactions of multiple cost factors such as defect, effort, duration, and knowledge transfer and 

consider their combined effect on the ultimate goal of the project. For example, junior-junior 
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pairs result in the lowest effort cost, junior-senior pairs have the highest knowledge transfer, 

while senior-senior pairs produce the highest quality project hence have the lowest defect cost. 

As we combine all the factors and consider the overall project cost, the senior-senior pair was 

found to be the most cost effective among the three. 

6.4 Future Research  

Through the results obtained from the two studies contained herein, several areas of 

future research are identified.  To begin, since the results of this study are based on perceptual 

data, it is desirable to acquire data from specific software projects through log files and other 

automatic data capturing mechanisms to further validate the research model.  Next, following the 

findings in the group interaction literature, other pair compositions variables, such as personality, 

gender, and age should be examined.  Considerations should also be given to solos at different 

experience levels when comparing pairs to solos.  Furthermore, mixed programming methods in 

one team – a mix of solos and pairs, as well as mixed compositions in the pairs in one team 

should be investigated. 

Additionally, a focused investigation of the relationships of cost constructs regarding the 

software development cost model is desirable.  In our study, the relationships were assumed to 

be linear.  However, there might exist more sophisticated higher order relationships.  Continuing 

with this approach, other variables, e.g. environmental factors, could shed additional light on the 

relative effectiveness of the two programming methods.  Finally, it is desirable to consider 

programming as part of the overall software development and examine the relationship between 

the choice of programming method and changes in other project phases such as planning, 

analysis, design, and maintenance. 
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In closing, our study makes clear that the previous conclusions regarding pair 

programming are limited in nature and the development approach may not be as clearly desirable 

in all situations as was previously assumed. The pair programming approach clearly adds value 

in situations where it is appropriate but certain conditions must be met for this goal to be 

achieved. It is our hope that this research will serve to inform for research and practice with 

regard to the pair programming approach and will, additionally, serve to generate future research 

efforts based upon this work that serve to further our understanding of the various salient 

constructs.  

7. APPENDIXES 

 

A. Survey Instrument 
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B. Bootstrap Sampling Program 

 
* Purpose - This program bootstraps (sample with replacements) the survey data along with calculated cost columns 

5,000 times.   From each bootstrap, it calculates the average information from the data variables and saves the 

information in the cost file.  Three files are used: 1) costdata.dbf contains the raw data with calculated cost columns 

and has 191 records:  2) cost1.dbf holds data from each bootstrap. It has 5,000 records from each bootstrap and its 

content is emptied and the file is ready to hold data from next  bootstrap once the calculation is done  and the results 

are saved;  3) cost.dbf contains the calculated average information from each bootstrap and has 5,000 records at the 

end of the processing.  It takes about 25 minutes to run this program. 

* Software the program is written in: Microsoft Visual FoxPro 9.0 

* Author - Sun 

* Date - 3/28/2011 

 

* Prepare the files 

SET DEFAULT TO f:\dbf 

CLOSE ALL  

USE cost EXCLUSIVE 

ZAP  

USE cost1EXCLUSIVE 

ZAP 

 

* Set the seed for the random number generator and specify the range the random number needs to fall  

* between. 

?RAND(20110101) 

Upper = 191 

Lower = 1 

 

* Bootstrap, calculate and save the average information.  This process is repeated 5000 times. 

pickNo = 1 

USE costdata 

FOR loopNo = 1 TO 5000 

  

* Bootstrap on costdata.dbf and save the sampling records in cost1.dbf 

 FOR Count = 1 TO 191 

  pickNo = INT((Upper - Lower + 1) * RAND() + Lower) 

  INSERT INTO cost1 SELECT * FROM costdata WHERE RECNO()  = pickNo 

 ENDFOR 

 

 * Calculate the average information from cost1.dbf and save the information in cost.dbf 

INSERT INTO cost SELECT AVG(team), AVG(fixingS),  AVG(lcx_hrs), AVG(mcx_hrs), 

AVG(hcx_hrs), AVG(lcx_defect), AVG(mcx_defect), AVG(hcx_defect), AVG(kt1), AVG(kt2), 

AVG(kt3), AVG(sl_cost), AVG(sm_cost), AVG(sh_cost), AVG(pl_cost), AVG(pm_cost), AVG(ph_cost), 

AVG(pl_jjcost), AVG(pm_jjcost), AVG(ph_jjcost), AVG(pl_jscost), AVG(pm_jscost), AVG(ph_jscost), 

AVG(pl_sscost), AVG(pm_sscost), AVG(ph_sscost), AVG(pl_p0cost), AVG(pm_p0cost), 

AVG(ph_p0cost), AVG(pl_p1cost), AVG(pm_p1cost), AVG(ph_p1cost), AVG(pl_p2cost), 

AVG(pm_p2cost), AVG(ph_p2cost), AVG(sl_cost2), AVG(sm_cost2), AVG(sh_cost2), AVG(pl_cost2), 

AVG(pm_cost2), AVG(ph_cost2), AVG(pl_jjcost2), AVG(pm_jjcost2), AVG(ph_jjcost2), 

AVG(pl_jscost2), AVG(pm_jscost2), AVG(ph_jscost2), AVG(pl_sscost2), AVG(pm_sscost2), 

AVG(ph_sscost2), AVG(pl_p0cost2), AVG(pm_p0cost2), AVG(ph_p0cost2), AVG(pl_p1cost2), 

AVG(pm_p1cost2), AVG(ph_p1cost2), AVG(pl_p2cost2), AVG(pm_p2cost2), AVG(ph_p2cost2), 

AVG(sl_edcost), AVG(sm_edcost), AVG(sh_edcost), AVG(pl_edcost), AVG(pm_edcost), 

AVG(ph_edcost), AVG(pl_jjedco), AVG(pm_jjedco), AVG(ph_jjedco), AVG(pl_jsedco), 

AVG(pm_jsedco), AVG(ph_jsedco), AVG(pl_ssedco), AVG(pm_ssedco), AVG(ph_ssedco), 

AVG(pl_p0edco), AVG(pm_p0edco), AVG(ph_p0edco), AVG(pl_p1edco), AVG(pm_p1edco), 

AVG(ph_p1edco), AVG(pl_p2edco), AVG(pm_p2edco), AVG(ph_p2edco), AVG(sl_ecost), 
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AVG(sl_dcost), AVG(sl_dr), AVG(sl_ocost), AVG(sl_scost), AVG(sl_TC),  AVG(sm_ecost), 

AVG(sm_dcost), AVG(sm_dr), AVG(sm_ocost), AVG(sm_scost), AVG(sm_TC),  AVG(sh_ecost), 

AVG(sh_dcost), AVG(sh_dr), AVG(sh_ocost), AVG(sh_scost), AVG(sh_TC),  AVG(pl_ecost), 

AVG(pl_dcost), AVG(pl_dr), AVG(pl_ocost), AVG(pl_scost), AVG(pl_TC),  AVG(pm_ecost), 

AVG(pm_dcost), AVG(pm_dr), AVG(pm_ocost), AVG(pm_scost), AVG(pm_TC),  AVG(ph_ecost), 

AVG(ph_dcost), AVG(ph_dr), AVG(ph_ocost), AVG(ph_scost), AVG(ph_TC),  AVG(pl_jjeco), 

AVG(pl_jjdco), AVG(pl_jjdr), AVG(pl_jjoco), AVG(pl_jjsco), AVG(pl_jjTC),  AVG(pm_jjeco), 

AVG(pm_jjdco), AVG(pm_jjdr), AVG(pm_jjoco), AVG(pm_jjsco),  AVG(pm_jjTC),  AVG(ph_jjeco), 

AVG(ph_jjdco), AVG(ph_jjdr), AVG(ph_jjoco), AVG(ph_jjsco), AVG(ph_jjTC), AVG(pl_jseco), 

AVG(pl_jsdco), AVG(pl_jsdr), AVG(pl_jsoco), AVG(pl_jssco), AVG(pl_jsTC), AVG(pm_jseco), 

AVG(pm_jsdco), AVG(pm_jsdr), AVG(pm_jsoco), AVG(pm_jssco), AVG(pm_jsTC), AVG(ph_jseco), 

AVG(ph_jsdco), AVG(ph_jsdr), AVG(ph_jsoco), AVG(ph_jssco), AVG(ph_jsTC), AVG(pl_sseco), 

AVG(pl_ssdco), AVG(pl_ssdr), AVG(pl_ssoco), AVG(pl_sssco),  AVG(pl_ssTC), AVG(pm_sseco), 

AVG(pm_ssdco), AVG(pm_ssdr), AVG(pm_ssoco), AVG(pm_sssco), AVG(pm_ssTC), AVG(ph_sseco), 

AVG(ph_ssdco), AVG(ph_ssdr), AVG(ph_ssoco), AVG(ph_sssco), AVG(ph_ssTC), AVG(pl_p0eco), 

AVG(pl_p0dco), AVG(pl_p0dr), AVG(pl_p0oco), AVG(pl_p0sco), AVG(pl_p0TC), AVG(pm_p0eco), 

AVG(pm_p0dco), AVG(pm_p0dr), AVG(pm_p0oco), AVG(pm_p0sco), AVG(pm_p0TC), 

AVG(ph_p0eco), AVG(ph_p0dco), AVG(ph_p0dr), AVG(ph_p0oco), AVG(ph_p0sco), AVG(ph_p0TC), 

AVG(pl_p1eco), AVG(pl_p1dco), AVG(pl_p1dr), AVG(pl_p1oco), AVG(pl_p1sco), AVG(pl_p1TC),  

AVG(pm_p1eco), AVG(pm_p1dco), AVG(pm_p1dr), AVG(pm_p1oco), AVG(pm_p1sco), 

AVG(pm_p1TC),  AVG(ph_p1eco), AVG(ph_p1dco), AVG(ph_p1dr), AVG(ph_p1oco), AVG(ph_p1sco), 

AVG(ph_p1TC),  AVG(pl_p2eco), AVG(pl_p2dco), AVG(pl_p2dr), AVG(pl_p2oco), AVG(pl_p2sco), 

AVG(pl_p2TC),  AVG(pm_p2eco), AVG(pm_p2dco), AVG(pm_p2dr), AVG(pm_p2oco), 

AVG(pm_p2sco), AVG(pm_p2TC), AVG(ph_p2eco), AVG(ph_p2dco), AVG(ph_p2dr), AVG(ph_p2oco), 

AVG(ph_p2sco), AVG(ph_p2TC)   

 FROM cost1 

  

* Empty the records in cost1.dbf so cost1.dbf is ready for the next bootstrap 

 SELECT cost1 

 ZAP  

ENDFOR  

 

C. Cost Calculation Program 

 
* Purpose - This program creates the columns needed to store the cost-related information and calculates the cost 

information.  The calculations are done for each of the following programming methods: solo, pair, junior-junior 

pair, junior-senior pair, senior-senior pair, pair with prior pair programming experience, pair one having prior pair 

programming experience, and pair without prior pair programming experience. 

* Software the program is written in: Microsoft Visual FoxPro 9.0 

* Author - Sun 

* Date - 3/3/2011 

 
* Clear the environment and set the seed for the random number generator. 

CLEAR ALL 

CLOSE ALL 

SET DEFAULT TO f:\dbf 

?RAND(20110101)  

 

*************************************************************************************** 

Variables needed later.  They specify the ranges the randomomly generated number needs to fall between.   

*************************************************************************************** Pay 

rate range for a typical programmer, a junior programmer, and a senior programmer 

PayRateL = 19.54 

PayRateH = 54.51 

PayRateJL= 19.54 
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PayRateJH = 29.93 

PayRateSL = 29.94 

PayRateSH = 54.51 

 

* Range of percentages assigned to the budget choices 

Budget1L = 1000 

Budget1H = 9000 

Budget2L = 10000 

Budget2H = 49000 

Budget3L = 50000 

Budget3H = 99000 

Budget4L = 100000 

Budget4H = 499000 

Budget5L = 500000 

Budget5H = 999000 

Budget6L = 1000000 

Budget6H = 2000000 

Budget7L = 2100000 

Budget7H = 4000000 

 

* Range of percentages assigned to the survey question choices 

DIF1L = 0.01 

DIF1H = 0.20 

DIF2L = 0.21 

DIF2H = 0.40 

DIF3L = 0.41 

DIF3H = 0.60 

DIF4L = 0.61 

DIF4H = 0.80 

DIF5L = 0.81 

DIF5H = 1.00 

DIF6L = 1.01 

DIF6H = 2.00 

DIF5L2 = 0.81 

DIF5H2 = 0.99 

 

* KT coefficients based on complexity 

L_KTL = 0.01 

L_KTH = 0.33 

M_KTL = 0.34 

M_KTH = 0.66 

H_KTL = 0.67 

H_KTH = 1.00 

 

* Assume KT impacts 10 - 100% of the training cost 

Pct10 = 0.10 

Pct20 = 0.20 

Pct30 = 0.30 

Pct40 = 0.40 

Pct50 = 0.50 

Pct60 = 0.60 

Pct70 = 0.70 

Pct80 = 0.80 

Pct90 = 0.90 

Pct100 = 1.00 
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************************************************************************************* 

* Retrieve data from the survey file and prepare the columns 

************************************************************************************** 

* Retrieve complete records from the original survey data 

SELECT Respondent, Pair_Exp, Lcx_Hrs, Mcx_Hrs, Hcx_Hrs, Lcx_Defect, Mcx_Defect, Hcx_Defect, kt1, kt2, 

kt3, Lcx_ef, Mcx_ef, Hcx_ef, Jr2_ef, Jrsr_ef, Sr2_ef, Prior0_ef, Prior1_ef, Prior2_ef,  

Lcx_df, Mcx_df, Hcx_df, Jr2_df, Jrsr_df, Sr2_df, Prior0_df, Prior1_df, Prior2_df,  

Lcx_kt, Mcx_kt, Hcx_kt, Jr2_kt, Jrsr_kt, Sr2_kt, Prior0_kt, Prior1_kt, Prior2_kt,  

Teamsize, Solo_fixSp, Pair_fixSp, solo_prod, Budget, Training, prjcomp1yr, prjconcurr, lcx_prj, mcx_prj, hcx_prj 

FROM data 

WHERE Budget <> 0 

INTO table simuC 

 

* Create C1.dbf.  C1 has the columns needed for cost calculation for solo and pair 

SELECT *, 0 as PairYes, 00.00 as payRate, 00.00 as payRate2, 00.00 as payRateJ, 00.00 as payRateJ2, 00.00 as 

payRateS, 00.00 as payRateS2, 00.000 as FixingS, 0000000000.00 as BudgetC,  

000000.00 as TrainingC, 000 as team, 00000000.000 as l_size, 0000000.000 as m_size,  

0000000.000 as h_size, 000.00 as l_Ideal, 000.00 as m_Ideal, 000.00 as h_Ideal, 

000000.00 as SL_Effort, 000000.00 as SL_ECost, 000000.00 as SL_Defect, 0000000000.00 as SL_DCost,  

000000.00 as SL_DR, 000000.00 as SL_OCost, 000000.00 as SL_Slack, 000000.00 as SL_SCost,  

00.00 as SL_KT, 000000.00 as SL_TC10, 000000.00 as SL_TC20, 000000.00 as SL_TC30, 000000.00 as 

SL_TC40, 000000.00 as SL_TC50, 000000.00 as SL_TC60, 000000.00 as SL_TC70, 000000.00 as SL_TC80, 

000000.00 as SL_TC90, 000000.00 as SL_TC100,  000000.00 as SM_Effort, 000000.00 as SM_ECost, 000000.00 

as SM_Defect, 0000000000.00 as SM_DCost, 000000.00 as SM_DR, 000000.00 as SM_OCost, 000000.00 as 

SM_Slack, 000000.00 as SM_SCost, 00.00 as SM_KT, 000000.00 as SM_TC10, 000000.00 as SM_TC20, 

000000.00 as SM_TC30, 000000.00 as SM_TC40, 000000.00 as SM_TC50, 000000.00 as SM_TC60, 000000.00 as 

SM_TC70, 000000.00 as SM_TC80, 000000.00 as SM_TC90, 000000.00 as SM_TC100,  000000.00 as SH_Effort, 

000000.00 as SH_ECost, 000000.00 as SH_Defect, 0000000000.00 as SH_DCost, 000000.00 as SH_DR, 000000.00 

as SH_OCost, 000000.00 as SH_Slack, 000000.00 as SH_SCost, 00.00 as SH_KT, 000000.00 as SH_TC10, 

000000.00 as SH_TC20, 000000.00 as SH_TC30, 000000.00 as SH_TC40, 000000.00 as SH_TC50, 000000.00 as 

SH_TC60, 000000.00 as SH_TC70, 000000.00 as SH_TC80, 000000.00 as SH_TC90, 000000.00 as SH_TC100,  

000000.00 as PL_Effort, 000000.00 as PL_ECost, 000000.00 as PL_Defect, 0000000000.00 as PL_DCost, 

000000.00 as PL_DR, 000000.00 as PL_OCost, 000000.00 as PL_Slack, 000000.00 as PL_SCost, 00.00 as PL_KT, 

000000.00 as PL_TC10, 000000.00 as PL_TC20, 000000.00 as PL_TC30, 000000.00 as PL_TC40, 000000.00 as 

PL_TC50, 000000.00 as PL_TC60, 000000.00 as PL_TC70, 000000.00 as PL_TC80, 000000.00 as PL_TC90, 

000000.00 as PL_TC100,  000000.00 as PM_Effort, 000000.00 as PM_ECost, 000000.00 as PM_Defect, 

0000000000.00 as PM_DCost, 000000.00 as PM_DR, 000000.00 as PM_OCost, 000000.00 as PM_Slack, 

000000.00 as PM_SCost, 00.00 as PM_KT, 000000.00 as PM_TC10, 000000.00 as PM_TC20, 000000.00 as 

PM_TC30, 000000.00 as PM_TC40, 000000.00 as PM_TC50, 000000.00 as PM_TC60, 000000.00 as PM_TC70, 

000000.00 as PM_TC80, 000000.00 as PM_TC90, 000000.00 as PM_TC100,  000000.00 as PH_Effort, 000000.00 

as PH_ECost, 000000.00 as PH_Defect, 0000000000.00 as PH_DCost, 000000.00 as PH_DR, 000000.00 as 

PH_OCost, 000000.00 as PH_Slack, 000000.00 as PH_SCost, 00.00 as PH_KT, 000000.00 as PH_TC10, 000000.00 

as PH_TC20, 000000.00 as PH_TC30, 000000.00 as PH_TC40, 000000.00 as PH_TC50, 000000.00 as PH_TC60, 

000000.00 as PH_TC70, 000000.00 as PH_TC80, 000000.00 as PH_TC90, 000000.00 as PH_TC100  

FROM simuC; 

into TABLE c1 

 

SELECT c1 

 

* Code soloPair with 0=No pair experience, 1=Has pair experience based on survey responses 

Replace ALL PairYes WITH 1 FOR pair_exp <> 1 

 

* Calculate the size of the projects in KLOC based on survey responses 

Replace ALL l_size WITH ROUND((lcx_hrs * solo_prod) / 1000, 3)  

Replace ALL m_size WITH ROUND((mcx_hrs * solo_prod) / 1000, 3)  

Replace ALL h_size WITH ROUND((hcx_hrs * solo_prod) / 1000, 3)  
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* Randomly return a number from the range of pay rates 

Replace ALL payRate WITH ROUND((PayRateH - PayRateL + 0.01) * RAND() + PayRateL,2) 

Replace ALL payRate2 WITH ROUND((PayRateH - PayRateL + 0.01) * RAND() + PayRateL,2) 

Replace ALL payRateJ WITH ROUND((PayRateJH - PayRateJL + 0.01) * RAND() + PayRateJL,2) 

Replace ALL payRateJ2 WITH ROUND((PayRateJH - PayRateJL + 0.01) * RAND() + PayRateJL,2) 

Replace ALL payRateS WITH ROUND((PayRateSH - PayRateSL + 0.01) * RAND() + PayRateSL,2) 

Replace ALL payRateS2 WITH ROUND((PayRateSH - PayRateSL + 0.01) * RAND() + PayRateSL,2) 

 

* Calculate the training cost for the project based on survey responses 

Replace ALL BudgetC WITH INT((Budget1H - Budget1L + 1) * RAND() + Budget1L) FOR budget = 1 

Replace ALL BudgetC WITH INT((Budget2H - Budget2L + 1) * RAND() + Budget2L)  FOR budget = 2 

Replace ALL BudgetC WITH INT((Budget3H - Budget3L + 1) * RAND() + Budget3L)  FOR budget = 3 

Replace ALL BudgetC WITH INT((Budget4H - Budget4L + 1) * RAND() + Budget4L)  FOR budget = 4 

Replace ALL BudgetC WITH INT((Budget5H - Budget5L + 1) * RAND() + Budget5L)  FOR budget = 5 

Replace ALL BudgetC WITH INT((Budget6H - Budget6L + 1) * RAND() + Budget6L)  FOR budget = 6 

Replace ALL BudgetC WITH INT((Budget7H - Budget7L + 1) * RAND() + Budget7L)  FOR budget = 7 

Replace ALL TrainingC WITH (Training/100) * BudgetC 

 

* Ensure team size is an even number 

Replace ALL Team WITH teamsize FOR MOD(teamsize, 2) = 0 

Replace ALL Team WITH teamsize + 1 FOR MOD(teamsize, 2) <> 0 

 

* Calculate KT coefficients based on complexity 

Replace ALL SL_KT WITH ROUND((L_KTH - L_KTL + 0.01) * RAND() + L_KTL,2) 

Replace ALL SM_KT WITH ROUND((M_KTH - M_KTL + 0.01) * RAND() + M_KTL,2) 

Replace ALL SH_KT WITH ROUND((H_KTH - H_KTL + 0.01) * RAND() + H_KTL,2) 

 

* Average duration for low, medium, and high complexity projects calculated from 5000 bootstraps on the duration 

columns. 

Replace ALL L_Ideal WITH 20 

Replace ALL M_Ideal WITH 93 

Replace ALL H_Ideal WITH 1010 

 

************************************************************************************** 

*   Generic solo and generic pair in low, medium, and high complexity projects  

************************************************************************************** 

 

********************************************************************************* 

** SOLO LOW complexity projects 

********************************************************************************* 

* Effort based on survey responses 

Replace ALL SL_Effort WITH lcx_hrs 

Replace ALL SL_ECost WITH SL_Effort * payRate 

 

* Defect based on survey responses 

Replace ALL SL_Defect WITH lcx_Defect 

Replace ALL SL_DCost WITH SL_Defect * l_size * FixingS * payRate 

Replace ALL lcx_defect WITH sl_defect 

 

* Duration 

Replace ALL SL_DR WITH SL_Effort/(Team * HrsPerDay7) 

 

*LABOR SLACK & Opportunity Cost 

Replace ALL SL_Slack WITH SL_DR - L_Ideal 

Replace ALL SL_SCost WITH -1 * SL_Slack * HrsPerDay8 * payRate * Team FOR SL_Slack <=0 
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Replace ALL SL_OCost WITH SL_Slack * HrsPerDay8 * payRate * Team FOR SL_Slack > 0 

 

* Knowledge Transfer 

* Assume knowledge transfer impacts different percentage of training cost: 10%, 20%, -, 100% 

Replace ALL SL_TC10 WITH (TrainingCL - Pct10 * TrainingCL * SL_KT) 

Replace ALL SL_TC20 WITH (TrainingCL - Pct20 * TrainingCL * SL_KT) 

Replace ALL SL_TC30 WITH (TrainingCL - Pct30 * TrainingCL * SL_KT) 

Replace ALL SL_TC40 WITH (TrainingCL - Pct40 * TrainingCL * SL_KT) 

Replace ALL SL_TC50 WITH (TrainingCL - Pct50 * TrainingCL * SL_KT) 

Replace ALL SL_TC60 WITH (TrainingCL - Pct60 * TrainingCL * SL_KT) 

Replace ALL SL_TC70 WITH (TrainingCL - Pct70 * TrainingCL * SL_KT) 

Replace ALL SL_TC80 WITH (TrainingCL - Pct80 * TrainingCL * SL_KT) 

Replace ALL SL_TC90 WITH (TrainingCL - Pct90 * TrainingCL * SL_KT) 

Replace ALL SL_TC100 WITH (TrainingCL - Pct100 * TrainingCL * SL_KT) 

 

 

********************************************************************************* 

** SOLO MEDIUM complexity projects 

********************************************************************************* 

* Effort based on survey responses 

Replace ALL SM_Effort WITH mcx_hrs 

Replace ALL SM_ECost WITH SM_Effort * payRate 

 

* Defect based on survey responses 

Replace ALL SM_Defect WITH mcx_Defect 

Replace ALL SM_DCost WITH SM_Defect * m_size  * FixingS * payRate 

Replace ALL mcx_defect WITH sm_defect  

 

* Duration 

Replace ALL SM_DR WITH SM_Effort/(Team * HrsPerDay7) 

 

*LABOR SLACK & Opportunity Cost 

Replace ALL SM_Slack WITH SM_DR - M_Ideal 

Replace ALL SM_SCost WITH -1 * SM_Slack * HrsPerDay8 * payRate * Team FOR SM_Slack <=0 

Replace ALL SM_OCost WITH SM_Slack * HrsPerDay8 * payRate * Team FOR SM_Slack > 0 

 

* Knowledge Transfer 

Replace ALL SM_TC10 WITH (TrainingCM - Pct10 * TrainingCM * SM_KT) 

Replace ALL SM_TC20 WITH (TrainingCM - Pct20 * TrainingCM * SM_KT) 

Replace ALL SM_TC30 WITH (TrainingCM - Pct30 * TrainingCM * SM_KT) 

Replace ALL SM_TC40 WITH (TrainingCM - Pct40 * TrainingCM * SM_KT) 

Replace ALL SM_TC50 WITH (TrainingCM - Pct50 * TrainingCM * SM_KT) 

Replace ALL SM_TC60 WITH (TrainingCM - Pct60 * TrainingCM * SM_KT) 

Replace ALL SM_TC70 WITH (TrainingCM - Pct70 * TrainingCM * SM_KT) 

Replace ALL SM_TC80 WITH (TrainingCM - Pct80 * TrainingCM * SM_KT) 

Replace ALL SM_TC90 WITH (TrainingCM - Pct90 * TrainingCM * SM_KT) 

Replace ALL SM_TC100 WITH (TrainingCM - Pct100 * TrainingCM * SM_KT) 

 

 

********************************************************************************* 

** SOLO HIGH complexity projects 

********************************************************************************* 

* Effort based on survey responses 

Replace ALL SH_Effort WITH hcx_hrs 

Replace ALL SH_ECost WITH SH_Effort * payRate 
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* Defect based on survey responses 

Replace ALL SH_Defect WITH hcx_Defect 

Replace ALL SH_DCost WITH SH_Defect * h_size  * FixingS * payRate 

Replace ALL hcx_defect WITH sh_defect  

 

* Duration 

Replace ALL SH_DR WITH SH_Effort/(Team * HrsPerDay7) 

 

*LABOR SLACK & Opportunity Cost 

Replace ALL SH_Slack WITH SH_DR - H_Ideal 

Replace ALL SH_SCost WITH -1 * SH_Slack * HrsPerDay8 * payRate * Team FOR SH_Slack <=0 

Replace ALL SH_OCost WITH SH_Slack * HrsPerDay8 * payRate * Team FOR SH_Slack > 0 

 

* Knowledge Transfer 

Replace ALL SH_TC10 WITH (TrainingCH - Pct10 * TrainingCH * SH_KT) 

Replace ALL SH_TC20 WITH (TrainingCH - Pct20 * TrainingCH * SH_KT) 

Replace ALL SH_TC30 WITH (TrainingCH - Pct30 * TrainingCH * SH_KT) 

Replace ALL SH_TC40 WITH (TrainingCH - Pct40 * TrainingCH * SH_KT) 

Replace ALL SH_TC50 WITH (TrainingCH - Pct50 * TrainingCH * SH_KT) 

Replace ALL SH_TC60 WITH (TrainingCH - Pct60 * TrainingCH * SH_KT) 

Replace ALL SH_TC70 WITH (TrainingCH - Pct70 * TrainingCH * SH_KT) 

Replace ALL SH_TC80 WITH (TrainingCH - Pct80 * TrainingCH * SH_KT) 

Replace ALL SH_TC90 WITH (TrainingCH - Pct90 * TrainingCH * SH_KT) 

Replace ALL SH_TC100 WITH (TrainingCH - Pct100 * TrainingCH * SH_KT) 

 

********************************************************************************* 

** PAIR LOW complexity projects 

********************************************************************************* 

* Effort based on survey responses 

Replace all PL_Effort WITH lcx_hrs for lcx_ef = 0 

Replace ALL PL_Effort WITH lcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  for lcx_ef 

= 1 

Replace ALL PL_Effort WITH lcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2))   for 

lcx_ef = 2 

Replace ALL PL_Effort WITH lcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2))   for 

lcx_ef = 3 

Replace ALL PL_Effort WITH lcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2))  for lcx_ef 

= 4 

Replace ALL PL_Effort WITH lcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2))   for 

lcx_ef = 5 

Replace ALL PL_Effort WITH lcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2))   for 

lcx_ef = 6 

Replace ALL PL_Effort WITH lcx_hrs * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  for 

lcx_ef = -1 

Replace ALL PL_Effort WITH lcx_hrs * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for lcx_ef 

= -2 

Replace ALL PL_Effort WITH lcx_hrs * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2))  for 

lcx_ef = -3 

Replace ALL PL_Effort WITH lcx_hrs * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2))  for 

lcx_ef = -4 

Replace ALL PL_Effort WITH lcx_hrs * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))  for 

lcx_ef = -5 

 

Replace ALL PL_ECost WITH PL_Effort * ROUND((payRate + payRate2)/2, 2) 

 

* Defect based on survey responses 
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Replace ALL PL_Defect WITH lcx_Defect FOR lcx_df = 0 

Replace ALL PL_Defect WITH lcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  FOR 

lcx_df = 1 

Replace ALL PL_Defect WITH lcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2))  FOR 

lcx_df = 2 

Replace ALL PL_Defect WITH lcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2))  FOR 

lcx_df = 3 

Replace ALL PL_Defect WITH lcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2))  FOR 

lcx_df = 4 

Replace ALL PL_Defect WITH lcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2))  FOR 

lcx_df = 5 

Replace ALL PL_Defect WITH lcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2))  FOR 

lcx_df = 6 

Replace ALL PL_Defect WITH lcx_Defect * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  FOR 

lcx_df = -1 

Replace ALL PL_Defect WITH lcx_Defect * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

lcx_df = -2 

Replace ALL PL_Defect WITH lcx_Defect * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

lcx_df = -3 

Replace ALL PL_Defect WITH lcx_Defect * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

lcx_df = -4 

Replace ALL PL_Defect WITH lcx_Defect * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) 

FOR lcx_df = -5 

 

* Defect cost 

Replace ALL PL_DCost WITH PL_Defect *  l_size  * FixingS * payRate 

 

* Duration 

Replace ALL PL_DR WITH PL_Effort/(Team * HrsPerDay7) 

 

*LABOR SLACK & Opportunity Cost 

Replace ALL PL_Slack WITH PL_DR - L_Ideal 

Replace ALL PL_SCost WITH -1 * PL_Slack *  HrsPerDay8 * Team * ROUND((payRate + payRate2)/2, 2) FOR 

PL_Slack <=0 

Replace ALL PL_OCost WITH PL_Slack * HrsPerDay8 * Team * ROUND((payRate + payRate2)/2, 2) FOR 

PL_Slack > 0 

 

* Knowledge Transfer based on survey responses 

Replace ALL PL_KT WITH SL_KT  FOR lcx_kt = 0 

Replace ALL PL_KT WITH SL_KT * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR lcx_kt 

= 1 

Replace ALL PL_KT WITH SL_KT * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2))  FOR lcx_kt 

= 2 

Replace ALL PL_KT WITH SL_KT * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR lcx_kt 

= 3 

Replace ALL PL_KT WITH SL_KT * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR lcx_kt 

= 4 

Replace ALL PL_KT WITH SL_KT * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR lcx_kt 

= 5 

Replace ALL PL_KT WITH SL_KT * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR lcx_kt 

= 6 

Replace ALL PL_KT WITH  SL_KT * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR lcx_kt 

= -1 

Replace ALL PL_KT WITH SL_KT * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR lcx_kt 

= -2 
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Replace ALL PL_KT WITH SL_KT * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR lcx_kt 

= -3 

Replace ALL PL_KT WITH SL_KT * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR lcx_kt 

= -4 

Replace ALL PL_KT WITH SL_KT * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))  FOR 

lcx_kt = -5 

 

* Convert KT into training cost  

Replace ALL PL_TC10 WITH (TrainingCL - Pct10 * TrainingCL * PL_KT) 

Replace ALL PL_TC20 WITH (TrainingCL - Pct20 * TrainingCL * PL_KT) 

Replace ALL PL_TC30 WITH (TrainingCL - Pct30 * TrainingCL * PL_KT) 

Replace ALL PL_TC40 WITH (TrainingCL - Pct40 * TrainingCL * PL_KT) 

Replace ALL PL_TC50 WITH (TrainingCL - Pct50 * TrainingCL * PL_KT) 

Replace ALL PL_TC60 WITH (TrainingCL - Pct60 * TrainingCL * PL_KT) 

Replace ALL PL_TC70 WITH (TrainingCL - Pct70 * TrainingCL * PL_KT) 

Replace ALL PL_TC80 WITH (TrainingCL - Pct80 * TrainingCL * PL_KT) 

Replace ALL PL_TC90 WITH (TrainingCL - Pct90 * TrainingCL * PL_KT) 

Replace ALL PL_TC100 WITH (TrainingCL - Pct100 * TrainingCL * PL_KT) 

 

********************************************************************************* 

** PAIR MEDIUM complexity projects 

********************************************************************************* 

* Effort based on survey responses 

Replace ALL PM_Effort WITH mcx_hrs for mcx_ef = 0 

Replace ALL PM_Effort WITH mcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  for 

mcx_ef = 1 

Replace ALL PM_Effort WITH mcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2))  for 

mcx_ef = 2 

Replace ALL PM_Effort WITH mcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for 

mcx_ef = 3 

Replace ALL PM_Effort WITH mcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for 

mcx_ef = 4 

Replace ALL PM_Effort WITH mcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2))  for 

mcx_ef = 5 

Replace ALL PM_Effort WITH mcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for 

mcx_ef = 6 

Replace ALL PM_Effort WITH mcx_hrs * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for 

mcx_ef = -1 

Replace ALL PM_Effort WITH mcx_hrs * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for 

mcx_ef = -2 

Replace ALL PM_Effort WITH mcx_hrs * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2))  for 

mcx_ef = -3 

Replace ALL PM_Effort WITH mcx_hrs * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2))  for 

mcx_ef = -4 

Replace ALL PM_Effort WITH mcx_hrs * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for 

mcx_ef = -5 

 

Replace ALL PM_ECost WITH PM_Effort * ROUND((payRate + payRate2)/2, 2) 

 

* Defect based on survey responses 

Replace ALL PM_Defect WITH mcx_Defect FOR mcx_df = 0 

Replace ALL PM_Defect WITH mcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) 

FOR mcx_df = 1 

Replace ALL PM_Defect WITH mcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2))  

FOR mcx_df = 2 
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Replace ALL PM_Defect WITH mcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2))  

FOR mcx_df = 3 

Replace ALL PM_Defect WITH mcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) 

FOR mcx_df = 4 

Replace ALL PM_Defect WITH mcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) 

FOR mcx_df = 5 

Replace ALL PM_Defect WITH mcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) 

FOR mcx_df = 6 

Replace ALL PM_Defect WITH mcx_Defect * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) 

FOR mcx_df = -1 

Replace ALL PM_Defect WITH mcx_Defect * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) 

FOR mcx_df = -2 

Replace ALL PM_Defect WITH mcx_Defect * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) 

FOR mcx_df = -3 

Replace ALL PM_Defect WITH mcx_Defect * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) 

FOR mcx_df = -4 

Replace ALL PM_Defect WITH mcx_Defect * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) 

FOR mcx_df = -5 

 

* Defect cost 

Replace ALL PM_DCost WITH PM_Defect * m_size * FixingS* payRate 

 

* Duration 

Replace ALL PM_DR WITH PM_Effort/(Team * HrsPerDay7) 

 

*LABOR SLACK & Opportunity Cost 

Replace ALL PM_Slack WITH PM_DR - M_Ideal 

Replace ALL PM_SCost WITH -1 * PM_Slack * HrsPerDay8 *Team * ROUND((payRate + payRate2)/2, 2) FOR 

PM_Slack <=0 

Replace ALL PM_OCost WITH PM_Slack * HrsPerDay8 * Team * ROUND((payRate + payRate2)/2, 2) FOR 

PM_Slack > 0 

 

* Knowledge Transfer based on survey responses 

Replace ALL PM_KT WITH SM_KT  FOR mcx_kt = 0 

Replace ALL PM_KT WITH SM_KT * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  FOR 

mcx_kt = 1 

Replace ALL PM_KT WITH SM_KT * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2))  FOR 

mcx_kt = 2 

Replace ALL PM_KT WITH SM_KT * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

mcx_kt = 3 

Replace ALL PM_KT WITH SM_KT * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

mcx_kt = 4 

Replace ALL PM_KT WITH SM_KT * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

mcx_kt = 5 

Replace ALL PM_KT WITH SM_KT * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

mcx_kt = 6 

Replace ALL PM_KT WITH SM_KT * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  FOR 

mcx_kt = -1 

Replace ALL PM_KT WITH SM_KT * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

mcx_kt = -2 

Replace ALL PM_KT WITH SM_KT * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

mcx_kt = -3 

Replace ALL PM_KT WITH SM_KT * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

mcx_kt = -4 

Replace ALL PM_KT WITH SM_KT * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) FOR 

mcx_kt = -5 
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* Convert KT into training cost  

Replace ALL PM_TC10 WITH (TrainingCM - Pct10 * TrainingCM * PM_KT) 

Replace ALL PM_TC20 WITH (TrainingCM - Pct20 * TrainingCM * PM_KT) 

Replace ALL PM_TC30 WITH (TrainingCM - Pct30 * TrainingCM * PM_KT) 

Replace ALL PM_TC40 WITH (TrainingCM - Pct40 * TrainingCM * PM_KT) 

Replace ALL PM_TC50 WITH (TrainingCM - Pct50 * TrainingCM * PM_KT) 

Replace ALL PM_TC60 WITH (TrainingCM - Pct60 * TrainingCM * PM_KT) 

Replace ALL PM_TC70 WITH (TrainingCM - Pct70 * TrainingCM * PM_KT) 

Replace ALL PM_TC80 WITH (TrainingCM - Pct80 * TrainingCM * PM_KT) 

Replace ALL PM_TC90 WITH (TrainingCM - Pct90 * TrainingCM * PM_KT) 

Replace ALL PM_TC100 WITH (TrainingCM - Pct100 * TrainingCM * PM_KT) 

 

********************************************************************************* 

** PAIR HIGH complexity projects 

********************************************************************************* 

* Effort based on survey responses 

Replace ALL PH_Effort WITH hcx_hrs for hcx_ef = 0 

Replace ALL PH_Effort WITH hcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  for 

hcx_ef = 1 

Replace ALL PH_Effort WITH hcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for 

hcx_ef = 2 

Replace ALL PH_Effort WITH hcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for 

hcx_ef = 3 

Replace ALL PH_Effort WITH hcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2))  for 

hcx_ef = 4 

Replace ALL PH_Effort WITH hcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for 

hcx_ef = 5 

Replace ALL PH_Effort WITH hcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2))  for 

hcx_ef = 6 

Replace ALL PH_Effort WITH hcx_hrs * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  for 

hcx_ef = -1 

Replace ALL PH_Effort WITH hcx_hrs * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for 

hcx_ef = -2 

Replace ALL PH_Effort WITH hcx_hrs * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2))  for 

hcx_ef = -3 

Replace ALL PH_Effort WITH hcx_hrs * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for 

hcx_ef = -4 

Replace ALL PH_Effort WITH hcx_hrs * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for 

hcx_ef = -5 

 

Replace ALL PH_ECost WITH PH_Effort * ROUND((payRate + payRate2)/2, 2) 

 

* Defect based on survey responses 

Replace ALL PH_Defect WITH hcx_Defect FOR hcx_df = 0 

Replace ALL PH_Defect WITH hcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

hcx_df = 1 

Replace ALL PH_Defect WITH hcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

hcx_df = 2 

Replace ALL PH_Defect WITH hcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

hcx_df = 3 

Replace ALL PH_Defect WITH hcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

hcx_df = 4 

Replace ALL PH_Defect WITH hcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

hcx_df = 5 
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Replace ALL PH_Defect WITH hcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

hcx_df = 6 

Replace ALL PH_Defect WITH hcx_Defect * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

hcx_df = -1 

Replace ALL PH_Defect WITH hcx_Defect * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

hcx_df = -2 

Replace ALL PH_Defect WITH hcx_Defect * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

hcx_df = -3 

Replace ALL PH_Defect WITH hcx_Defect * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

hcx_df = -4 

Replace ALL PH_Defect WITH hcx_Defect * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) 

FOR hcx_df = -5 

* Defect cost 

Replace ALL PH_DCost WITH PH_Defect * h_size * FixingS * payRate 

 

* Duration 

Replace ALL PH_DR WITH PH_Effort/(Team * HrsPerDay7) 

 

*LABOR SLACK & Opportunity Cost 

Replace ALL PH_Slack WITH PH_DR - H_Ideal 

Replace ALL PH_SCost WITH -1 * PH_Slack *  HrsPerDay8 * Team * ROUND((payRate + payRate2)/2, 2) FOR 

PH_Slack <=0 

Replace ALL PH_OCost WITH PH_Slack * HrsPerDay8 * Team * ROUND((payRate + payRate2)/2, 2) FOR 

PH_Slack > 0 

 

* Knowledge Transfer based on survey responses 

Replace ALL PH_KT WITH SH_KT  FOR hcx_kt = 0 

Replace ALL PH_KT WITH SH_KT * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR hcx_kt 

= 1 

Replace ALL PH_KT WITH SH_KT * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR hcx_kt 

= 2 

Replace ALL PH_KT WITH SH_KT * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR hcx_kt 

= 3 

Replace ALL PH_KT WITH SH_KT * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR hcx_kt 

= 4 

Replace ALL PH_KT WITH SH_KT * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR hcx_kt 

= 5 

Replace ALL PH_KT WITH SH_KT * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR hcx_kt 

= 6 

Replace ALL PH_KT WITH SH_KT * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR hcx_kt 

= -1 

Replace ALL PH_KT WITH SH_KT * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR hcx_kt 

= -2 

Replace ALL PH_KT WITH SH_KT * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR hcx_kt 

= -3 

Replace ALL PH_KT WITH SH_KT * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR hcx_kt 

= -4 

Replace ALL PH_KT WITH SH_KT * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) FOR 

hcx_kt = -5 

 

* Convert KT into training cost  

Replace ALL PH_TC10 WITH (TrainingCH - Pct10 * TrainingCH * PH_KT) 

Replace ALL PH_TC20 WITH (TrainingCH - Pct20 * TrainingCH * PH_KT) 

Replace ALL PH_TC30 WITH (TrainingCH - Pct30 * TrainingCH * PH_KT) 

Replace ALL PH_TC40 WITH (TrainingCH - Pct40 * TrainingCH * PH_KT) 

Replace ALL PH_TC50 WITH (TrainingCH - Pct50 * TrainingCH * PH_KT) 
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Replace ALL PH_TC60 WITH (TrainingCH - Pct60 * TrainingCH * PH_KT) 

Replace ALL PH_TC70 WITH (TrainingCH - Pct70 * TrainingCH * PH_KT) 

Replace ALL PH_TC80 WITH (TrainingCH - Pct80 * TrainingCH * PH_KT) 

Replace ALL PH_TC90 WITH (TrainingCH - Pct90 * TrainingCH * PH_KT) 

Replace ALL PH_TC100 WITH (TrainingCH - Pct100 * TrainingCH * PH_KT) 

 

*************************************************************************************** PAIR 

COMPOSITION - JUNIOR-JUNIOR, JUNIOR-SENIOR, SENIOR-SENIOR 

************************************************************************************** 

* Create C2 since the maximum number of columns a table can have is 256.  C2 has the columns needed for cost 

calculation for junior-junior, junior-senior, and senior-senior 

 

SELECT respondent, trainingC, trainingCL, trainingCM, trainingCH, team, l_team, m_team, h_team, comp1yr, 

lcx_hrs, mcx_hrs, hcx_hrs, jr2_ef, jr2_df, jr2_kt, jrsr_ef, jrsr_df, jrsr_kt, sr2_ef, sr2_df, sr2_kt, lcx_defect, 

mcx_defect, hcx_defect, payRate, payRate2, payRateJ, payRateJ2, payRateS, payRateS2, FixingS, l_size, m_size, 

h_size, L_Ideal, M_Ideal, H_Ideal, sl_kt, sm_kt, sh_kt, 000000.00 as PL_JJEf, 000000.00 as PL_JJECo, 000000.00 

as PL_JJDef, 0000000000.00 as PL_JJDCo, 000000.00 as PL_JJDR, 000000.00 as PL_JJOCo, 000000.00 as 

PL_JJSlack, 000000.00 as PL_JJSCo, 00.00 as PL_JJKT, 000000.00 as PL_JJTC10, 000000.00 as PL_JJTC20, 

000000.00 as PL_JJTC30, 000000.00 as PL_JJTC40, 000000.00 as PL_JJTC50, 000000.00 as PL_JJTC60, 

000000.00 as PL_JJTC70, 000000.00 as PL_JJTC80, 000000.00 as PL_JJTC90, 000000.00 as PL_JJTC100,  

000000.00 as PM_JJEf, 000000.00 as PM_JJECo, ; 

000000.00 as PM_JJDef, 0000000000.00 as PM_JJDCo, 000000.00 as PM_JJDR, 000000.00 as PM_JJOCo, 

000000.00 as PM_JJSlack, 000000.00 as PM_JJSCo, 00.00 as PM_JJKT, 000000.00 as PM_JJTC10, 000000.00 as 

PM_JJTC20, 000000.00 as PM_JJTC30, 000000.00 as PM_JJTC40, 000000.00 as PM_JJTC50, 000000.00 as 

PM_JJTC60, 000000.00 as PM_JJTC70, 000000.00 as PM_JJTC80, 000000.00 as PM_JJTC90, 000000.00 as 

PM_JJTC100, 000000.00 as PH_JJEf, 000000.00 as PH_JJECo, ; 

000000.00 as PH_JJDef, 0000000000.00 as PH_JJDCo, 000000.00 as PH_JJDR, 000000.00 as PH_JJOCo, 

000000.00 as PH_JJSlack, 000000.00 as PH_JJSCo, 00.00 as PH_JJKT, 000000.00 as PH_JJTC10, 000000.00 as 

PH_JJTC20, 000000.00 as PH_JJTC30, 000000.00 as PH_JJTC40, 000000.00 as PH_JJTC50, 000000.00 as 

PH_JJTC60, 000000.00 as PH_JJTC70, 000000.00 as PH_JJTC80, 000000.00 as PH_JJTC90, 000000.00 as 

PH_JJTC100,  000000.00 as PL_JSEf, 000000.00 as PL_JSECo, 000000.00 as PL_JSDef, 0000000000.00 as 

PL_JSDCo, 000000.00 as PL_JSDR, 000000.00 as PL_JSOCo, 000000.00 as PL_JSSlack, 000000.00 as PL_JSSCo, 

00.00 as PL_JSKT,  000000.00 as PL_JSTC10, 000000.00 as PL_JSTC20, 000000.00 as PL_JSTC30, 000000.00 as 

PL_JSTC40, 000000.00 as PL_JSTC50, 000000.00 as PL_JSTC60, 000000.00 as PL_JSTC70, 000000.00 as 

PL_JSTC80, 000000.00 as PL_JSTC90, 000000.00 as PL_JSTC100, 000000.00 as PM_JSEf, 000000.00 as 

PM_JSECo, 000000.00 as PM_JSDef, 0000000000.00 as PM_JSDCo, 000000.00 as PM_JSDR, 000000.00 as 

PM_JSOCo, 000000.00 as PM_JSSlack, 000000.00 as PM_JSSCo, 00.00 as PM_JSKT, 000000.00 as PM_JSTC10, 

000000.00 as PM_JSTC20, 000000.00 as PM_JSTC30, 000000.00 as PM_JSTC40, 000000.00 as PM_JSTC50, 

000000.00 as PM_JSTC60, 000000.00 as PM_JSTC70, 000000.00 as PM_JSTC80, 000000.00 as PM_JSTC90, 

000000.00 as PM_JSTC100,  000000.00 as PH_JSEf, 000000.00 as PH_JSECo,  

000000.00 as PH_JSDef, 0000000000.00 as PH_JSDCo, 000000.00 as PH_JSDR, 000000.00 as PH_JSOCo, 

000000.00 as PH_JSSlack, 000000.00 as PH_JSSCo, 00.00 as PH_JSKT, 000000.00 as PH_JSTC10, 000000.00 as 

PH_JSTC20, 000000.00 as PH_JSTC30, 000000.00 as PH_JSTC40, 000000.00 as PH_JSTC50, 000000.00 as 

PH_JSTC60, 000000.00 as PH_JSTC70, 000000.00 as PH_JSTC80, 000000.00 as PH_JSTC90, 000000.00 as 

PH_JSTC100,  000000.00 as PL_SSEf, 000000.00 as PL_SSECo, 000000.00 as PL_SSDef, 0000000000.00 as 

PL_SSDCo, 000000.00 as PL_SSDR, 000000.00 as PL_SSOCo, 000000.00 as PL_SSSlack, 000000.00 as 

PL_SSSCo, 00.00 as PL_SSKT, 000000.00 as PL_SSTC10, 000000.00 as PL_SSTC20, 000000.00 as PL_SSTC30, 

000000.00 as PL_SSTC40, 000000.00 as PL_SSTC50, 000000.00 as PL_SSTC60, 000000.00 as PL_SSTC70, 

000000.00 as PL_SSTC80, 000000.00 as PL_SSTC90, 000000.00 as PL_SSTC100,  000000.00 as PM_SSEf, 

000000.00 as PM_SSECo, 000000.00 as PM_SSDef, 0000000000.00 as PM_SSDCo, 000000.00 as PM_SSDR, 

000000.00 as PM_SSOCo, 000000.00 as PM_SSSlack,000000.00 as PM_SSSCo, 00.00 as PM_SSKT, 000000.00 

as PM_SSTC10, 000000.00 as PM_SSTC20, 000000.00 as PM_SSTC30, 000000.00 as PM_SSTC40, 000000.00 as 

PM_SSTC50, 000000.00 as PM_SSTC60, 000000.00 as PM_SSTC70, 000000.00 as PM_SSTC80, 000000.00 as 

PM_SSTC90, 000000.00 as PM_SSTC100,  000000.00 as PH_SSEf, 000000.00 as PH_SSECo, 000000.00 as 

PH_SSDef, 0000000000.00 as PH_SSDCo, ; 

000000.00 as PH_SSDR, 000000.00 as PH_SSOCo, 000000.00 as PH_SSSlack,000000.00 as PH_SSSCo, ; 
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00.00 as PH_SSKT, 000000.00 as PH_SSTC10, 000000.00 as PH_SSTC20, 000000.00 as PH_SSTC30, 000000.00 

as PH_SSTC40, 000000.00 as PH_SSTC50, 000000.00 as PH_SSTC60, 000000.00 as PH_SSTC70, 000000.00 as 

PH_SSTC80, 000000.00 as PH_SSTC90, 000000.00 as PH_SSTC100   

FROM c1 

into TABLE c2 

 

SELECT c2 

 

************************************************************************************** 

** PAIR LOW complexity projects and EXPERTISE COMPOSITION (JUNIOR-JUNIOR) 

************************************************************************************** 

* Effort based on survey responses 

Replace ALL PL_JJEf WITH lcx_hrs for Jr2_ef = 0 

Replace ALL PL_JJEf WITH lcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for Jr2_ef = 

1 

Replace ALL PL_JJEf WITH lcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for Jr2_ef = 

2 

Replace ALL PL_JJEf WITH lcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for Jr2_ef = 

3 

Replace ALL PL_JJEf WITH lcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for Jr2_ef = 

4 

Replace ALL PL_JJEf WITH lcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for Jr2_ef = 

5 

Replace ALL PL_JJEf WITH lcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for Jr2_ef = 

6 

Replace ALL PL_JJEf WITH lcx_hrs * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for Jr2_ef = 

-1 

Replace ALL PL_JJEf WITH lcx_hrs * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for Jr2_ef = 

-2 

Replace ALL PL_JJEf WITH lcx_hrs * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for Jr2_ef = 

-3 

Replace ALL PL_JJEf WITH lcx_hrs * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for Jr2_ef = 

-4 

Replace ALL PL_JJEf WITH lcx_hrs * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for 

Jr2_ef = -5 

 

Replace ALL PL_JJECo WITH PL_JJEf * ROUND((payRateJ + payRateJ2)/2, 2) 

 

* Defect based on survey responses 

Replace ALL PL_JJDef WITH lcx_Defect FOR Jr2_df = 0 

Replace ALL PL_JJDef WITH lcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Jr2_df = 1 

Replace ALL PL_JJDef WITH lcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Jr2_df = 2 

Replace ALL PL_JJDef WITH lcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Jr2_df = 3 

Replace ALL PL_JJDef WITH lcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Jr2_df = 4 

Replace ALL PL_JJDef WITH lcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

Jr2_df = 5 

Replace ALL PL_JJDef WITH lcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

Jr2_df = 6 

Replace ALL PL_JJDef WITH lcx_Defect * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Jr2_df = -1 

Replace ALL PL_JJDef WITH lcx_Defect * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Jr2_df = -2 
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Replace ALL PL_JJDef WITH lcx_Defect * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Jr2_df = -3 

Replace ALL PL_JJDef WITH lcx_Defect * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Jr2_df = -4 

Replace ALL PL_JJDef WITH lcx_Defect * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) 

FOR Jr2_df = -5 

 

Replace ALL PL_JJDCo WITH (PL_JJDef * l_size * FixingS) * payRate 

 

* Duration 

Replace ALL PL_JJDR WITH PL_JJEf/(Team * HrsPerDay7) 

 

*LABOR SLACK & Opportunity Cost 

Replace ALL PL_JJSlack WITH PL_JJDR - L_Ideal 

Replace ALL PL_JJSCo WITH -1 * PL_JJSlack * HrsPerDay8 * Team * ROUND((payRateJ + payRateJ2)/2, 2) 

FOR PL_JJSlack <=0 

Replace ALL PL_JJOCo WITH PL_JJSlack * HrsPerDay8 * Team * ROUND((payRateJ + payRateJ2)/2, 2) FOR 

PL_JJSlack > 0 

 

* Knowledge Transfer based on survey responses 

Replace ALL PL_JJKT WITH SL_KT FOR Jr2_kt = 0 

Replace ALL PL_JJKT WITH SL_KT * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Jr2_kt = 1 

Replace ALL PL_JJKT WITH SL_KT * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Jr2_kt = 2 

Replace ALL PL_JJKT WITH SL_KT * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Jr2_kt = 3 

Replace ALL PL_JJKT WITH SL_KT * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Jr2_kt = 4 

Replace ALL PL_JJKT WITH SL_KT * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

Jr2_kt = 5 

Replace ALL PL_JJKT WITH  SL_KT * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

Jr2_kt = 6 

Replace ALL PL_JJKT WITH SL_KT * (1  - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Jr2_kt = -1 

Replace ALL PL_JJKT WITH SL_KT * (1  - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Jr2_kt = -2 

Replace ALL PL_JJKT WITH SL_KT * (1  - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Jr2_kt = -3 

Replace ALL PL_JJKT WITH SL_KT * (1  - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Jr2_kt = -4 

Replace ALL PL_JJKT WITH SL_KT * (1  - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) FOR 

Jr2_kt = -5 

 

* Convert KT into training cost  

Replace ALL PL_JJTC10 WITH (TrainingCL - Pct10 * TrainingCL * PL_JJKT) 

Replace ALL PL_JJTC20 WITH (TrainingCL - Pct20 * TrainingCL * PL_JJKT) 

Replace ALL PL_JJTC30 WITH (TrainingCL - Pct30 * TrainingCL * PL_JJKT) 

Replace ALL PL_JJTC40 WITH (TrainingCL - Pct40 * TrainingCL * PL_JJKT) 

Replace ALL PL_JJTC50 WITH (TrainingCL - Pct50 * TrainingCL * PL_JJKT) 

Replace ALL PL_JJTC60 WITH (TrainingCL - Pct60 * TrainingCL * PL_JJKT) 

Replace ALL PL_JJTC70 WITH (TrainingCL - Pct70 * TrainingCL * PL_JJKT) 

Replace ALL PL_JJTC80 WITH (TrainingCL - Pct80 * TrainingCL * PL_JJKT) 

Replace ALL PL_JJTC90 WITH (TrainingCL - Pct90 * TrainingCL * PL_JJKT) 

Replace ALL PL_JJTC100 WITH (TrainingCL - Pct100 * TrainingCL * PL_JJKT) 
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**************************************************************************************** PAIR 

MEDIUM complexity projects and EXPERTISE COMPOSITION (JUNIOR-JUNIOR) 

*************************************************************************************** Effort 

based on survey responses 

Replace ALL PM_JJEf WITH mcx_hrs for Jr2_ef = 0 

Replace ALL PM_JJEf WITH mcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for Jr2_ef 

= 1 

Replace ALL PM_JJEf WITH mcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for Jr2_ef 

= 2 

Replace ALL PM_JJEf WITH mcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for Jr2_ef 

= 3 

Replace ALL PM_JJEf WITH mcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for Jr2_ef 

= 4 

Replace ALL PM_JJEf WITH mcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for Jr2_ef 

= 5 

Replace ALL PM_JJEf WITH mcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for Jr2_ef 

= 6 

Replace ALL PM_JJEf WITH mcx_hrs * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for Jr2_ef 

= -1 

Replace ALL PM_JJEf WITH mcx_hrs * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for Jr2_ef 

= -2 

Replace ALL PM_JJEf WITH mcx_hrs * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for Jr2_ef 

= -3 

Replace ALL PM_JJEf WITH mcx_hrs * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for Jr2_ef 

= -4 

Replace ALL PM_JJEf WITH mcx_hrs * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for 

Jr2_ef = -5 

 

Replace ALL PM_JJECo WITH PM_JJEf * ROUND((payRateJ + payRateJ2)/2, 2) 

 

* Defect based on survey responses 

Replace ALL PM_JJDef WITH mcx_Defect FOR Jr2_df = 0 

Replace ALL PM_JJDef WITH mcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Jr2_df = 1 

Replace ALL PM_JJDef WITH mcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Jr2_df = 2 

Replace ALL PM_JJDef WITH mcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Jr2_df = 3 

Replace ALL PM_JJDef WITH mcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Jr2_df = 4 

Replace ALL PM_JJDef WITH mcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

Jr2_df = 5 

Replace ALL PM_JJDef WITH mcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

Jr2_df = 6 

Replace ALL PM_JJDef WITH mcx_Defect * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Jr2_df = -1 

Replace ALL PM_JJDef WITH mcx_Defect * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Jr2_df = -2 

Replace ALL PM_JJDef WITH mcx_Defect * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Jr2_df = -3 

Replace ALL PM_JJDef WITH mcx_Defect * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Jr2_df = -4 

Replace ALL PM_JJDef WITH mcx_Defect * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) 

FOR Jr2_df = -5 

 

Replace ALL PM_JJDCo WITH (PM_JJDef * m_size * FixingS) * payRate 
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* Duration 

Replace ALL PM_JJDR WITH PM_JJEf / (Team * HrsPerDay7) 

 

*LABOR SLACK & Opportunity Cost 

Replace ALL PM_JJSlack WITH PM_JJDR - M_Ideal 

Replace ALL PM_JJSCo WITH -1 * PM_JJSlack * HrsPerDay8 * Team * ROUND((payRateJ + payRateJ2)/2, 2) 

FOR PM_JJSlack <=0 

Replace ALL PM_JJOCo WITH PM_JJSlack * HrsPerDay8 * Team * ROUND((payRateJ + payRateJ2)/2, 2) FOR 

PM_JJSlack > 0 

 

* Knowledge Transfer based on survey responses 

Replace ALL PM_JJKT WITH SM_KT FOR Jr2_kt = 0 

Replace ALL PM_JJKT WITH SM_KT * (1  + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Jr2_kt = 1 

Replace ALL PM_JJKT WITH SM_KT * (1  + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Jr2_kt = 2 

Replace ALL PM_JJKT WITH SM_KT * (1  + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Jr2_kt = 3 

Replace ALL PM_JJKT WITH SM_KT * (1  + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Jr2_kt = 4 

Replace ALL PM_JJKT WITH SM_KT * (1  + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

Jr2_kt = 5 

Replace ALL PM_JJKT WITH SM_KT * (1  + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

Jr2_kt = 6 

Replace ALL PM_JJKT WITH SM_KT * (1  - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Jr2_kt = -1 

Replace ALL PM_JJKT WITH SM_KT * (1  - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Jr2_kt = -2 

Replace ALL PM_JJKT WITH SM_KT * (1  - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Jr2_kt = -3 

Replace ALL PM_JJKT WITH SM_KT * (1  - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Jr2_kt = -4 

Replace ALL PM_JJKT WITH SM_KT * (1  - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) FOR 

Jr2_kt = -5 

 

* Convert KT into training cost  

Replace ALL PM_JJTC10 WITH (TrainingCM - Pct10 * TrainingCM * PM_JJKT) 

Replace ALL PM_JJTC20 WITH (TrainingCM - Pct20 * TrainingCM * PM_JJKT) 

Replace ALL PM_JJTC30 WITH (TrainingCM - Pct30 * TrainingCM * PM_JJKT) 

Replace ALL PM_JJTC40 WITH (TrainingCM - Pct40 * TrainingCM * PM_JJKT) 

Replace ALL PM_JJTC50 WITH (TrainingCM - Pct50 * TrainingCM * PM_JJKT) 

Replace ALL PM_JJTC60 WITH (TrainingCM - Pct60 * TrainingCM * PM_JJKT) 

Replace ALL PM_JJTC70 WITH (TrainingCM - Pct70 * TrainingCM * PM_JJKT) 

Replace ALL PM_JJTC80 WITH (TrainingCM - Pct80 * TrainingCM * PM_JJKT) 

Replace ALL PM_JJTC90 WITH (TrainingCM - Pct90 * TrainingCM * PM_JJKT) 

Replace ALL PM_JJTC100 WITH (TrainingCM - Pct100 * TrainingCM * PM_JJKT) 

 

************************************************************************************** 

** PAIR HIGH complexity projects and EXPERTISE COMPOSITION (JUNIOR-JUNIOR) 

************************************************************************************** 

* Effort based on survey responses 

Replace ALL PH_JJEf WITH hcx_hrs for Jr2_ef = 0 

Replace ALL PH_JJEf WITH hcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for Jr2_ef 

= 1 
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Replace ALL PH_JJEf WITH hcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for Jr2_ef 

= 2 

Replace ALL PH_JJEf WITH hcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for Jr2_ef 

= 3 

Replace ALL PH_JJEf WITH hcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for Jr2_ef 

= 4 

Replace ALL PH_JJEf WITH hcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for Jr2_ef 

= 5 

Replace ALL PH_JJEf WITH hcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for Jr2_ef 

= 6 

Replace ALL PH_JJEf WITH hcx_hrs * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for Jr2_ef 

= -1 

Replace ALL PH_JJEf WITH hcx_hrs * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for Jr2_ef 

= -2 

Replace ALL PH_JJEf WITH hcx_hrs * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for Jr2_ef 

= -3 

Replace ALL PH_JJEf WITH hcx_hrs * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for Jr2_ef 

= -4 

Replace ALL PH_JJEf WITH hcx_hrs * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for 

Jr2_ef = -5 

 

Replace ALL PH_JJECo WITH PH_JJEf * ROUND((payRateJ + payRateJ2)/2, 2) 

 

* Defect based on survey responses 

Replace ALL PH_JJDef WITH hcx_Defect FOR Jr2_df = 0 

Replace ALL PH_JJDef WITH hcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Jr2_df = 1 

Replace ALL PH_JJDef WITH hcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Jr2_df = 2 

Replace ALL PH_JJDef WITH hcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Jr2_df = 3 

Replace ALL PH_JJDef WITH hcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Jr2_df = 4 

Replace ALL PH_JJDef WITH hcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

Jr2_df = 5 

Replace ALL PH_JJDef WITH hcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

Jr2_df = 6 

Replace ALL PH_JJDef WITH hcx_Defect * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Jr2_df = -1 

Replace ALL PH_JJDef WITH hcx_Defect * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Jr2_df = -2 

Replace ALL PH_JJDef WITH hcx_Defect * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Jr2_df = -3 

Replace ALL PH_JJDef WITH hcx_Defect * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Jr2_df = -4 

Replace ALL PH_JJDef WITH hcx_Defect * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) 

FOR Jr2_df = -5 

 

Replace ALL PH_JJDCo WITH (PH_JJDef * h_size * FixingS) * payRate 

 

* Duration 

Replace ALL PH_JJDR WITH PH_JJEf/(Team * HrsPerDay7) 

 

*LABOR SLACK & Opportunity Cost 

Replace ALL PH_JJSlack WITH PH_JJDR - H_Ideal 
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Replace ALL PH_JJSCo WITH -1 * PH_JJSlack * HrsPerDay8 * Team * ROUND((payRateJ + payRateJ2)/2, 2) 

FOR PH_JJSlack <=0 

Replace ALL PH_JJOCo WITH PH_JJSlack * HrsPerDay8 * Team * ROUND((payRateJ + payRateJ2)/2, 2) FOR 

PH_JJSlack > 0 

 

* Knowledge Transfer based on survey responses 

Replace ALL PH_JJKT WITH SH_KT FOR Jr2_kt = 0 

Replace ALL PH_JJKT WITH SH_KT * (1  + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Jr2_kt = 1 

Replace ALL PH_JJKT WITH SH_KT * (1  + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Jr2_kt = 2 

Replace ALL PH_JJKT WITH SH_KT * (1  + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Jr2_kt = 3 

Replace ALL PH_JJKT WITH SH_KT * (1  + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Jr2_kt = 4 

Replace ALL PH_JJKT WITH SH_KT * (1  + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

Jr2_kt = 5 

Replace ALL PH_JJKT WITH SH_KT * (1  + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

Jr2_kt = 6 

Replace ALL PH_JJKT WITH SH_KT * (1  -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Jr2_kt = -1 

Replace ALL PH_JJKT WITH SH_KT * (1  -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Jr2_kt = -2 

Replace ALL PH_JJKT WITH SH_KT * (1  -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Jr2_kt = -3 

Replace ALL PH_JJKT WITH SH_KT * (1  -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Jr2_kt = -4 

Replace ALL PH_JJKT WITH SH_KT * (1  -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) FOR 

Jr2_kt = -5 

 

* Convert KT into training cost  

Replace ALL PH_JJTC10 WITH (TrainingCH - Pct10 * TrainingCH * PH_JJKT) 

Replace ALL PH_JJTC20 WITH (TrainingCH - Pct20 * TrainingCH * PH_JJKT) 

Replace ALL PH_JJTC30 WITH (TrainingCH - Pct30 * TrainingCH * PH_JJKT) 

Replace ALL PH_JJTC40 WITH (TrainingCH - Pct40 * TrainingCH * PH_JJKT) 

Replace ALL PH_JJTC50 WITH (TrainingCH - Pct50 * TrainingCH * PH_JJKT) 

Replace ALL PH_JJTC60 WITH (TrainingCH - Pct60 * TrainingCH * PH_JJKT) 

Replace ALL PH_JJTC70 WITH (TrainingCH - Pct70 * TrainingCH * PH_JJKT) 

Replace ALL PH_JJTC80 WITH (TrainingCH - Pct80 * TrainingCH * PH_JJKT) 

Replace ALL PH_JJTC90 WITH (TrainingCH - Pct90 * TrainingCH * PH_JJKT) 

Replace ALL PH_JJTC100 WITH (TrainingCH - Pct100 * TrainingCH * PH_JJKT) 

 

 

**************************************************************************************** PAIR 

LOW complexity projects and EXPERTISE COMPOSITION (JUNIOR-SENIOR) 

************************************************************************************** 

* Effort based on survey responses 

Replace ALL PL_JSEf WITH lcx_hrs for Jrsr_ef = 0 

Replace ALL PL_JSEf WITH lcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for Jrsr_ef 

= 1 

Replace ALL PL_JSEf WITH lcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for Jrsr_ef 

= 2 

Replace ALL PL_JSEf WITH lcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for Jrsr_ef 

= 3 

Replace ALL PL_JSEf WITH lcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for Jrsr_ef 

= 4 
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Replace ALL PL_JSEf WITH lcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for Jrsr_ef 

= 5 

Replace ALL PL_JSEf WITH lcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for Jrsr_ef 

= 6 

Replace ALL PL_JSEf WITH lcx_hrs * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for Jrsr_ef 

= -1 

Replace ALL PL_JSEf WITH lcx_hrs * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for Jrsr_ef 

= -2 

Replace ALL PL_JSEf WITH lcx_hrs * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for Jrsr_ef 

= -3 

Replace ALL PL_JSEf WITH lcx_hrs * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for Jrsr_ef 

= -4 

Replace ALL PL_JSEf WITH lcx_hrs * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for 

Jrsr_ef = -5 

 

Replace ALL PL_JSECo WITH PL_JSEf * ROUND((payRateJ + payRateS)/2, 2) 

 

* Defect based on survey responses 

Replace ALL PL_JSDef WITH lcx_Defect FOR Jrsr_df = 0 

Replace ALL PL_JSDef WITH lcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Jrsr_df = 1 

Replace ALL PL_JSDef WITH lcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Jrsr_df = 2 

Replace ALL PL_JSDef WITH lcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Jrsr_df = 3 

Replace ALL PL_JSDef WITH lcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Jrsr_df = 4 

Replace ALL PL_JSDef WITH lcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

Jrsr_df = 5 

Replace ALL PL_JSDef WITH lcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

Jrsr_df = 6 

Replace ALL PL_JSDef WITH lcx_Defect * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Jrsr_df = -1 

Replace ALL PL_JSDef WITH lcx_Defect * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Jrsr_df = -2 

Replace ALL PL_JSDef WITH lcx_Defect * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Jrsr_df = -3 

Replace ALL PL_JSDef WITH lcx_Defect * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Jrsr_df = -4 

Replace ALL PL_JSDef WITH lcx_Defect * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) 

FOR Jrsr_df = -5 

 

Replace ALL PL_JSDCo WITH (PL_JSDef * l_Size * FixingS) * payRate 

 

* Duration 

Replace ALL PL_JSDR WITH PL_JSEf/(Team * HrsPerDay7) 

 

*LABOR SLACK & Opportunity Cost 

Replace ALL PL_JSSlack WITH PL_JSDR - L_Ideal 

Replace ALL PL_JSSCo WITH -1 * PL_JSSlack * HrsPerDay8 * Team * ROUND((payRateJ + payRateS)/2, 2) 

FOR PL_JSSlack <=0 

Replace ALL PL_JSOCo WITH PL_JSSlack * HrsPerDay8 * Team * ROUND((payRateJ + payRateS)/2, 2) FOR 

PL_JSSlack > 0 

 

* Knowledge Transfer based on survey responses 

Replace ALL PL_JSKT WITH SL_KT FOR Jrsr_kt = 0 
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Replace ALL PL_JSKT WITH SL_KT * (1  +  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Jrsr_kt = 1 

Replace ALL PL_JSKT WITH SL_KT * (1  +  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Jrsr_kt = 2 

Replace ALL PL_JSKT WITH SL_KT * (1  +  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Jrsr_kt = 3 

Replace ALL PL_JSKT WITH SL_KT * (1  +  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Jrsr_kt = 4 

Replace ALL PL_JSKT WITH SL_KT * (1  +  ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

Jrsr_kt = 5 

Replace ALL PL_JSKT WITH SL_KT * (1  +  ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

Jrsr_kt = 6 

Replace ALL PL_JSKT WITH SL_KT * (1  -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Jrsr_kt = -1 

Replace ALL PL_JSKT WITH SL_KT * (1  -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Jrsr_kt = -2 

Replace ALL PL_JSKT WITH SL_KT * (1  -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Jrsr_kt = -3 

Replace ALL PL_JSKT WITH SL_KT * (1  -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Jrsr_kt = -4 

Replace ALL PL_JSKT WITH SL_KT * (1  -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) FOR 

Jrsr_kt = -5 

 

* Convert KT into training cost  

Replace ALL PL_JSTC10 WITH (TrainingCL - Pct10 * TrainingCL * PL_JSKT) 

Replace ALL PL_JSTC20 WITH (TrainingCL - Pct20 * TrainingCL * PL_JSKT) 

Replace ALL PL_JSTC30 WITH (TrainingCL - Pct30 * TrainingCL * PL_JSKT) 

Replace ALL PL_JSTC40 WITH (TrainingCL - Pct40 * TrainingCL * PL_JSKT) 

Replace ALL PL_JSTC50 WITH (TrainingCL - Pct50 * TrainingCL * PL_JSKT) 

Replace ALL PL_JSTC60 WITH (TrainingCL - Pct60 * TrainingCL * PL_JSKT) 

Replace ALL PL_JSTC70 WITH (TrainingCL - Pct70 * TrainingCL * PL_JSKT) 

Replace ALL PL_JSTC80 WITH (TrainingCL - Pct80 * TrainingCL * PL_JSKT) 

Replace ALL PL_JSTC90 WITH (TrainingCL - Pct90 * TrainingCL * PL_JSKT) 

Replace ALL PL_JSTC100 WITH (TrainingCL - Pct100 * TrainingCL * PL_JSKT) 

 

************************************************************************************** 

** PAIR MEDIUM complexity projects and EXPERTISE COMPOSITION (JUNIOR-SENIOR) 

*************************************************************************************** Effort 

based on survey responses 

Replace ALL PM_JSEf WITH mcx_hrs for Jrsr_ef = 0 

Replace ALL PM_JSEf WITH mcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for 

Jrsr_ef = 1 

Replace ALL PM_JSEf WITH mcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for 

Jrsr_ef = 2 

Replace ALL PM_JSEf WITH mcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for 

Jrsr_ef = 3 

Replace ALL PM_JSEf WITH mcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for 

Jrsr_ef = 4 

Replace ALL PM_JSEf WITH mcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for 

Jrsr_ef = 5 

Replace ALL PM_JSEf WITH mcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for 

Jrsr_ef = 6 

Replace ALL PM_JSEf WITH mcx_hrs * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for 

Jrsr_ef = -1 

Replace ALL PM_JSEf WITH mcx_hrs * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for 

Jrsr_ef = -2 
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Replace ALL PM_JSEf WITH mcx_hrs * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for 

Jrsr_ef = -3 

Replace ALL PM_JSEf WITH mcx_hrs * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for 

Jrsr_ef= -4 

Replace ALL PM_JSEf WITH mcx_hrs * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for 

Jrsr_ef = -5 

 

Replace ALL PM_JSECo WITH PM_JSEf * ROUND((payRateJ + payRateS)/2, 2) 

 

* Defect based on survey responses 

Replace ALL PM_JSDef WITH mcx_Defect FOR Jrsr_df = 0 

Replace ALL PM_JSDef WITH mcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) 

FOR Jrsr_df = 1 

Replace ALL PM_JSDef WITH mcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) 

FOR Jrsr_df = 2 

Replace ALL PM_JSDef WITH mcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) 

FOR Jrsr_df = 3 

Replace ALL PM_JSDef WITH mcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) 

FOR Jrsr_df = 4 

Replace ALL PM_JSDef WITH mcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) 

FOR Jrsr_df = 5 

Replace ALL PM_JSDef WITH mcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) 

FOR Jrsr_df = 6 

Replace ALL PM_JSDef WITH mcx_Defect * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) 

FOR Jrsr_df = -1 

Replace ALL PM_JSDef WITH mcx_Defect * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) 

FOR Jrsr_df = -2 

Replace ALL PM_JSDef WITH mcx_Defect * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) 

FOR Jrsr_df = -3 

Replace ALL PM_JSDef WITH mcx_Defect * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) 

FOR Jrsr_df = -4 

Replace ALL PM_JSDef WITH mcx_Defect * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) 

FOR Jrsr_df = -5 

 

Replace ALL PM_JSDCo WITH (PM_JSDef * m_Size * FixingS) * payRate 

 

* Duration 

Replace ALL PM_JSDR WITH PM_JSEf/(Team * HrsPerDay7) 

 

*LABOR SLACK & Opportunity Cost 

Replace ALL PM_JSSlack WITH PM_JSDR - M_Ideal 

Replace ALL PM_JSSCo WITH -1 * PM_JSSlack * HrsPerDay8 * Team * ROUND((payRateJ + payRateS)/2, 2) 

FOR PM_JSSlack <=0 

Replace ALL PM_JSOCo WITH PM_JSSlack * HrsPerDay8 * Team * ROUND((payRateJ + payRateS)/2, 2) FOR 

PM_JSSlack > 0 

 

* Knowledge Transfer based on survey responses 

Replace ALL PM_JSKT WITH SM_KT FOR Jrsr_kt = 0 

Replace ALL PM_JSKT WITH SM_KT * (1  +  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Jrsr_kt = 1 

Replace ALL PM_JSKT WITH SM_KT * (1  +  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Jrsr_kt = 2 

Replace ALL PM_JSKT WITH SM_KT * (1  +  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Jrsr_kt = 3 

Replace ALL PM_JSKT WITH SM_KT * (1  +  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Jrsr_kt = 4 
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Replace ALL PM_JSKT WITH SM_KT * (1  +  ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

Jrsr_kt = 5 

Replace ALL PM_JSKT WITH SM_KT * (1  +  ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

Jrsr_kt = 6 

Replace ALL PM_JSKT WITH SM_KT * (1  -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Jrsr_kt = -1 

Replace ALL PM_JSKT WITH SM_KT * (1  -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Jrsr_kt = -2 

Replace ALL PM_JSKT WITH SM_KT * (1  -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Jrsr_kt = -3 

Replace ALL PM_JSKT WITH SM_KT * (1  -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Jrsr_kt = -4 

Replace ALL PM_JSKT WITH SM_KT * (1  -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) 

FOR Jrsr_kt = -5 

 

* Convert KT into training cost  

Replace ALL PM_JSTC10 WITH (TrainingCM - Pct10 * TrainingCM * PM_JSKT) 

Replace ALL PM_JSTC20 WITH (TrainingCM - Pct20 * TrainingCM * PM_JSKT) 

Replace ALL PM_JSTC30 WITH (TrainingCM - Pct30 * TrainingCM * PM_JSKT) 

Replace ALL PM_JSTC40 WITH (TrainingCM - Pct40 * TrainingCM * PM_JSKT) 

Replace ALL PM_JSTC50 WITH (TrainingCM - Pct50 * TrainingCM * PM_JSKT) 

Replace ALL PM_JSTC60 WITH (TrainingCM - Pct60 * TrainingCM * PM_JSKT) 

Replace ALL PM_JSTC70 WITH (TrainingCM - Pct70 * TrainingCM * PM_JSKT) 

Replace ALL PM_JSTC80 WITH (TrainingCM - Pct80 * TrainingCM * PM_JSKT) 

Replace ALL PM_JSTC90 WITH (TrainingCM - Pct90 * TrainingCM * PM_JSKT) 

Replace ALL PM_JSTC100 WITH (TrainingCM - Pct100 * TrainingCM * PM_JSKT) 

 

 

************************************************************************************** 

** PAIR HIGH complexity projects and EXPERTISE COMPOSITION (JUNIOR-SENIOR) 

************************************************************************************** 

* Effort based on survey responses 

Replace ALL PH_JSEf WITH hcx_hrs for Jrsr_ef = 0 

Replace ALL PH_JSEf WITH hcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for Jrsr_ef 

= 1 

Replace ALL PH_JSEf WITH hcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for Jrsr_ef 

= 2 

Replace ALL PH_JSEf WITH hcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for Jrsr_ef 

= 3 

Replace ALL PH_JSEf WITH hcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for Jrsr_ef 

= 4 

Replace ALL PH_JSEf WITH hcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for Jrsr_ef 

= 5 

Replace ALL PH_JSEf WITH hcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for Jrsr_ef 

= 6 

Replace ALL PH_JSEf WITH hcx_hrs * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for Jrsr_ef 

= -1 

Replace ALL PH_JSEf WITH hcx_hrs * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for Jrsr_ef 

= -2 

Replace ALL PH_JSEf WITH hcx_hrs * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for Jrsr_ef 

= -3 

Replace ALL PH_JSEf WITH hcx_hrs * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for Jrsr_ef 

= -4 

Replace ALL PH_JSEf WITH hcx_hrs * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for 

Jrsr_ef= -5 
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Replace ALL PH_JSECo WITH PH_JSEf * ROUND((payRateJ + payRateS)/2, 2) 

 

* Defect based on survey responses 

Replace ALL PH_JSDef WITH hcx_Defect FOR Jrsr_df = 0 

Replace ALL PH_JSDef WITH hcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Jrsr_df = 1 

Replace ALL PH_JSDef WITH hcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Jrsr_df = 2 

Replace ALL PH_JSDef WITH hcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Jrsr_df = 3 

Replace ALL PH_JSDef WITH hcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Jrsr_df = 4 

Replace ALL PH_JSDef WITH hcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

Jrsr_df = 5 

Replace ALL PH_JSDef WITH hcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

Jrsr_df = 6 

Replace ALL PH_JSDef WITH hcx_Defect * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Jrsr_df = -1 

Replace ALL PH_JSDef WITH hcx_Defect * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Jrsr_df = -2 

Replace ALL PH_JSDef WITH hcx_Defect * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Jrsr_df = -3 

Replace ALL PH_JSDef WITH hcx_Defect * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Jrsr_df = -4 

Replace ALL PH_JSDef WITH hcx_Defect * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) 

FOR Jrsr_df= -5 

 

Replace ALL PH_JSDCo WITH (PH_JSDef * h_Size * FixingS) * payRate 

 

* Duration 

Replace ALL PH_JSDR WITH PH_JSEf/(Team * HrsPerDay7) 

 

*LABOR SLACK & Opportunity Cost 

Replace ALL PH_JSSlack WITH PH_JSDR - H_Ideal 

Replace ALL PH_JSSCo WITH -1 * PH_JSSlack * HrsPerDay8 * Team * ROUND((payRateJ + payRateS)/2, 2) 

FOR PH_JSSlack <=0 

Replace ALL PH_JSOCo WITH PH_JSSlack * HrsPerDay8 * Team * ROUND((payRateJ + payRateS)/2, 2) FOR 

PH_JSSlack > 0 

 

* Knowledge Transfer based on survey responses 

Replace ALL PH_JSKT WITH SH_KT FOR Jrsr_kt = 0 

Replace ALL PH_JSKT WITH SH_KT * (1  +  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Jrsr_kt = 1 

Replace ALL PH_JSKT WITH SH_KT * (1  +  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Jrsr_kt  = 2 

Replace ALL PH_JSKT WITH SH_KT * (1  +  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Jrsr_kt  = 3 

Replace ALL PH_JSKT WITH SH_KT * (1  +  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Jrsr_kt = 4 

Replace ALL PH_JSKT WITH SH_KT * (1  +  ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

Jrsr_kt  = 5 

Replace ALL PH_JSKT WITH SH_KT * (1  +  ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

Jrsr_kt  = 6 

Replace ALL PH_JSKT WITH SH_KT * (1  -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Jrsr_kt  = -1 
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Replace ALL PH_JSKT WITH SH_KT * (1  -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Jrsr_kt  = -2 

Replace ALL PH_JSKT WITH SH_KT * (1  -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Jrsr_kt  = -3 

Replace ALL PH_JSKT WITH SH_KT * (1  -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Jrsr_kt  = -4 

Replace ALL PH_JSKT WITH SH_KT * (1  -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) FOR 

Jrsr_kt = -5 

 

* Convert KT into training cost  

Replace ALL PH_JSTC10 WITH (TrainingCH - Pct10 * TrainingCH * PH_JSKT) 

Replace ALL PH_JSTC20 WITH (TrainingCH - Pct20 * TrainingCH * PH_JSKT) 

Replace ALL PH_JSTC30 WITH (TrainingCH - Pct30 * TrainingCH * PH_JSKT) 

Replace ALL PH_JSTC40 WITH (TrainingCH - Pct40 * TrainingCH * PH_JSKT) 

Replace ALL PH_JSTC50 WITH (TrainingCH - Pct50 * TrainingCH * PH_JSKT) 

Replace ALL PH_JSTC60 WITH (TrainingCH - Pct60 * TrainingCH * PH_JSKT) 

Replace ALL PH_JSTC70 WITH (TrainingCH - Pct70 * TrainingCH * PH_JSKT) 

Replace ALL PH_JSTC80 WITH (TrainingCH - Pct80 * TrainingCH * PH_JSKT) 

Replace ALL PH_JSTC90 WITH (TrainingCH - Pct90 * TrainingCH * PH_JSKT) 

Replace ALL PH_JSTC100 WITH (TrainingCH - Pct100 * TrainingCH * PH_JSKT) 

 

 

************************************************************************************** 

** PAIR LOW complexity projects and EXPERTISE COMPOSITION (SENIOR-SENIOR) 

************************************************************************************** 

* Effort based on survey responses 

Replace ALL PL_SSEf WITH lcx_hrs for Sr2_ef = 0 

Replace ALL PL_SSEf WITH lcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for Sr2_ef 

= 1 

Replace ALL PL_SSEf WITH lcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for Sr2_ef 

= 2 

Replace ALL PL_SSEf WITH lcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for Sr2_ef 

= 3 

Replace ALL PL_SSEf WITH lcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for Sr2_ef 

= 4 

Replace ALL PL_SSEf WITH lcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for Sr2_ef 

= 5 

Replace ALL PL_SSEf WITH lcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for Sr2_ef 

= 6 

Replace ALL PL_SSEf WITH lcx_hrs * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for Sr2_ef 

= -1 

Replace ALL PL_SSEf WITH lcx_hrs * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for Sr2_ef 

= -2 

Replace ALL PL_SSEf WITH lcx_hrs * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for Sr2_ef 

= -3 

Replace ALL PL_SSEf WITH lcx_hrs * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for Sr2_ef 

= -4 

Replace ALL PL_SSEf WITH lcx_hrs * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for 

Sr2_ef = -5 

 

Replace ALL PL_SSECo WITH PL_SSEf * ROUND((payRateS + payRateS2)/2, 2) 

 

* Defect based on survey responses 

Replace ALL PL_SSDef WITH lcx_Defect FOR Sr2_df = 0 

Replace ALL PL_SSDef WITH lcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Sr2_df = 1 
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Replace ALL PL_SSDef WITH lcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Sr2_df = 2 

Replace ALL PL_SSDef WITH lcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Sr2_df = 3 

Replace ALL PL_SSDef WITH lcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Sr2_df = 4 

Replace ALL PL_SSDef WITH lcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

Sr2_df = 5 

Replace ALL PL_SSDef WITH lcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

Sr2_df = 6 

Replace ALL PL_SSDef WITH lcx_Defect * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Sr2_df = -1 

Replace ALL PL_SSDef WITH lcx_Defect * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Sr2_df = -2 

Replace ALL PL_SSDef WITH lcx_Defect * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Sr2_df = -3 

Replace ALL PL_SSDef WITH lcx_Defect * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Sr2_df = -4 

Replace ALL PL_SSDef WITH lcx_Defect * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) 

FOR Sr2_df = -5 

 

Replace ALL PL_SSDCo WITH (PL_SSDef * l_Size * FixingS) * payRate 

 

* Duration 

Replace ALL PL_SSDR WITH PL_SSEf/(Team * HrsPerDay7) 

 

*LABOR SLACK & Opportunity Cost 

Replace ALL PL_SSSlack WITH PL_SSDR - L_Ideal 

Replace ALL PL_SSSCo WITH -1 * PL_SSSlack * HrsPerDay8 * Team * ROUND((payRateS + payRateS2)/2, 2) 

FOR PL_SSSlack <=0 

Replace ALL PL_SSOCo WITH PL_SSSlack * HrsPerDay8 * Team * ROUND((payRateS + payRateS2)/2, 2) FOR 

PL_SSSlack > 0 

 

* Knowledge Transfer based on survey responses 

Replace ALL PL_SSKT WITH SL_KT FOR Sr2_kt = 0 

Replace ALL PL_SSKT WITH SL_KT * (1  +  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Sr2_kt = 1 

Replace ALL PL_SSKT WITH SL_KT * (1  +  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Sr2_kt = 2 

Replace ALL PL_SSKT WITH SL_KT * (1  +  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Sr2_kt = 3 

Replace ALL PL_SSKT WITH SL_KT * (1  +  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Sr2_kt = 4 

Replace ALL PL_SSKT WITH SL_KT * (1  +  ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

Sr2_kt = 5 

Replace ALL PL_SSKT WITH SL_KT * (1  +  ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

Sr2_kt = 6 

Replace ALL PL_SSKT WITH SL_KT * (1  -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Sr2_kt = -1 

Replace ALL PL_SSKT WITH SL_KT * (1  -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Sr2_kt = -2 

Replace ALL PL_SSKT WITH SL_KT * (1  -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Sr2_kt = -3 

Replace ALL PL_SSKT WITH SL_KT * (1  -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Sr2_kt = -4 
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Replace ALL PL_SSKT WITH SL_KT * (1  -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) FOR 

Sr2_kt = -5 

 

* Convert KT into training cost  

Replace ALL PL_SSTC10 WITH (TrainingCL - Pct10 * TrainingCL * PL_SSKT) 

Replace ALL PL_SSTC20 WITH (TrainingCL - Pct20 * TrainingCL * PL_SSKT) 

Replace ALL PL_SSTC30 WITH (TrainingCL - Pct30 * TrainingCL * PL_SSKT) 

Replace ALL PL_SSTC40 WITH (TrainingCL - Pct40 * TrainingCL * PL_SSKT) 

Replace ALL PL_SSTC50 WITH (TrainingCL - Pct50 * TrainingCL * PL_SSKT) 

Replace ALL PL_SSTC60 WITH (TrainingCL - Pct60 * TrainingCL * PL_SSKT) 

Replace ALL PL_SSTC70 WITH (TrainingCL - Pct70 * TrainingCL * PL_SSKT) 

Replace ALL PL_SSTC80 WITH (TrainingCL - Pct80 * TrainingCL * PL_SSKT) 

Replace ALL PL_SSTC90 WITH (TrainingCL - Pct90 * TrainingCL * PL_SSKT) 

Replace ALL PL_SSTC100 WITH (TrainingCL - Pct100 * TrainingCL * PL_SSKT) 

 

**************************************************************************************** PAIR 

MEDIUM complexity projects and EXPERTISE COMPOSITION (SENIOR-SENIOR) 

************************************************************************************** 

* Effort based on survey responses 

Replace ALL PM_SSEf WITH mcx_hrs for Sr2_ef = 0 

Replace ALL PM_SSEf WITH mcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for 

Sr2_ef = 1 

Replace ALL PM_SSEf WITH mcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for 

Sr2_ef = 2 

Replace ALL PM_SSEf WITH mcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for 

Sr2_ef = 3 

Replace ALL PM_SSEf WITH mcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for 

Sr2_ef = 4 

Replace ALL PM_SSEf WITH mcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for 

Sr2_ef = 5 

Replace ALL PM_SSEf WITH mcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for 

Sr2_ef = 6 

Replace ALL PM_SSEf WITH mcx_hrs * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for 

Sr2_ef = -1 

Replace ALL PM_SSEf WITH mcx_hrs * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for 

Sr2_ef = -2 

Replace ALL PM_SSEf WITH mcx_hrs * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for 

Sr2_ef = -3 

Replace ALL PM_SSEf WITH mcx_hrs * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for 

Sr2_ef= -4 

Replace ALL PM_SSEf WITH mcx_hrs * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for 

Sr2_ef = -5 

 

Replace ALL PM_SSECo WITH PM_SSEf * ROUND((payRateS + payRateS2)/2, 2) 

 

* Defect based on survey responses 

Replace ALL PM_SSDef WITH mcx_Defect FOR Sr2_df = 0 

Replace ALL PM_SSDef WITH mcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) 

FOR Sr2_df = 1 

Replace ALL PM_SSDef WITH mcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) 

FOR Sr2_df = 2 

Replace ALL PM_SSDef WITH mcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) 

FOR Sr2_df = 3 

Replace ALL PM_SSDef WITH mcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) 

FOR Sr2_df = 4 
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Replace ALL PM_SSDef WITH mcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) 

FOR Sr2_df = 5 

Replace ALL PM_SSDef WITH mcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) 

FOR Sr2_df = 6 

Replace ALL PM_SSDef WITH mcx_Defect * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) 

FOR Sr2_df = -1 

Replace ALL PM_SSDef WITH mcx_Defect * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) 

FOR Sr2_df = -2 

Replace ALL PM_SSDef WITH mcx_Defect * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) 

FOR Sr2_df = -3 

Replace ALL PM_SSDef WITH mcx_Defect * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) 

FOR Sr2_df = -4 

Replace ALL PM_SSDef WITH mcx_Defect * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) 

FOR Sr2_df = -5 

 

Replace ALL PM_SSDCo WITH (PM_SSDef * m_Size * FixingS) * payRate 

 

* Duration 

Replace ALL PM_SSDR WITH PM_SSEf/(Team * HrsPerDay7) 

 

*LABOR SLACK & Opportunity Cost 

Replace ALL PM_SSSlack WITH PM_SSDR - M_Ideal 

Replace ALL PM_SSSCo WITH -1 * PM_SSSlack * HrsPerDay8 * Team * ROUND((payRateS + payRateS2)/2, 2) 

FOR PM_SSSlack <=0 

Replace ALL PM_SSOCo WITH PM_SSSlack * HrsPerDay8 * Team * ROUND((payRateS + payRateS2)/2, 2) 

FOR PM_SSSlack > 0 

 

* Knowledge Transfer based on survey responses 

Replace ALL PM_SSKT WITH SM_KT FOR Sr2_kt = 0 

Replace ALL PM_SSKT WITH SM_KT * (1 +  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Sr2_kt = 1 

Replace ALL PM_SSKT WITH SM_KT * (1 +  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Sr2_kt = 2 

Replace ALL PM_SSKT WITH SM_KT * (1 +  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Sr2_kt = 3 

Replace ALL PM_SSKT WITH SM_KT * (1 +  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Sr2_kt = 4 

Replace ALL PM_SSKT WITH SM_KT * (1 +  ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

Sr2_kt = 5 

Replace ALL PM_SSKT WITH SM_KT * (1 +  ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

Sr2_kt = 6 

Replace ALL PM_SSKT WITH SM_KT * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Sr2_kt = -1 

Replace ALL PM_SSKT WITH SM_KT * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Sr2_kt = -2 

Replace ALL PM_SSKT WITH SM_KT * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Sr2_kt = -3 

Replace ALL PM_SSKT WITH SM_KT * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Sr2_kt = -4 

Replace ALL PM_SSKT WITH SM_KT * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) FOR 

Sr2_kt = -5 

 

* Convert KT into training cost  

Replace ALL PM_SSTC10 WITH (TrainingCM - Pct10 * TrainingCM * PM_SSKT) 

Replace ALL PM_SSTC20 WITH (TrainingCM - Pct20 * TrainingCM * PM_SSKT) 

Replace ALL PM_SSTC30 WITH (TrainingCM - Pct30 * TrainingCM * PM_SSKT) 
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Replace ALL PM_SSTC40 WITH (TrainingCM - Pct40 * TrainingCM * PM_SSKT) 

Replace ALL PM_SSTC50 WITH (TrainingCM - Pct50 * TrainingCM * PM_SSKT) 

Replace ALL PM_SSTC60 WITH (TrainingCM - Pct60 * TrainingCM * PM_SSKT) 

Replace ALL PM_SSTC70 WITH (TrainingCM - Pct70 * TrainingCM * PM_SSKT) 

Replace ALL PM_SSTC80 WITH (TrainingCM - Pct80 * TrainingCM * PM_SSKT) 

Replace ALL PM_SSTC90 WITH (TrainingCM - Pct90 * TrainingCM * PM_SSKT) 

Replace ALL PM_SSTC100 WITH (TrainingCM - Pct100 * TrainingCM * PM_SSKT) 

 

**************************************************************************************** PAIR 

HIGH complexity projects and EXPERTISE COMPOSITION (SENIOR-SENIOR) 

************************************************************************************** 

* Effort based on survey responses 

Replace ALL PH_SSEf WITH hcx_hrs for Sr2_ef = 0 

Replace ALL PH_SSEf WITH hcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for Sr2_ef 

= 1 

Replace ALL PH_SSEf WITH hcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for Sr2_ef 

= 2 

Replace ALL PH_SSEf WITH hcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for Sr2_ef 

= 3 

Replace ALL PH_SSEf WITH hcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for Sr2_ef 

= 4 

Replace ALL PH_SSEf WITH hcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for Sr2_ef 

= 5 

Replace ALL PH_SSEf WITH hcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for Sr2_ef 

= 6 

Replace ALL PH_SSEf WITH hcx_hrs * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for Sr2_ef 

= -1 

Replace ALL PH_SSEf WITH hcx_hrs * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for Sr2_ef 

= -2 

Replace ALL PH_SSEf WITH hcx_hrs * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for Sr2_ef 

= -3 

Replace ALL PH_SSEf WITH hcx_hrs * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for Sr2_ef 

= -4 

Replace ALL PH_SSEf WITH hcx_hrs * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for 

Sr2_ef= -5 

 

Replace ALL PH_SSECo WITH PH_SSEf * ROUND((payRateS + payRateS2)/2, 2) 

 

* Defect based on survey responses 

Replace ALL PH_SSDef WITH hcx_Defect FOR Sr2_df = 0 

Replace ALL PH_SSDef WITH hcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Sr2_df = 1 

Replace ALL PH_SSDef WITH hcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Sr2_df = 2 

Replace ALL PH_SSDef WITH hcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Sr2_df = 3 

Replace ALL PH_SSDef WITH hcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Sr2_df = 4 

Replace ALL PH_SSDef WITH hcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

Sr2_df = 5 

Replace ALL PH_SSDef WITH hcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

Sr2_df= 6 

Replace ALL PH_SSDef WITH hcx_Defect * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Sr2_df = -1 

Replace ALL PH_SSDef WITH hcx_Defect * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Sr2_df = -2 
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Replace ALL PH_SSDef WITH hcx_Defect * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Sr2_df = -3 

Replace ALL PH_SSDef WITH hcx_Defect * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Sr2_df = -4 

Replace ALL PH_SSDef WITH hcx_Defect * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) 

FOR Sr2_df= -5 

 

Replace ALL PH_SSDCo WITH (PH_SSDef * h_Size * FixingS) * payRate 

 

* Duration 

Replace ALL PH_SSDR WITH PH_SSEf/(Team * HrsPerDay7) 

 

*LABOR SLACK & Opportunity Cost 

Replace ALL PH_SSSlack WITH PH_SSDR - H_Ideal 

Replace ALL PH_SSSCo WITH -1 * PH_SSSlack * HrsPerDay8 * Team * ROUND((payRateS + payRateS2)/2, 2) 

FOR PH_SSSlack <=0 

Replace ALL PH_SSOCo WITH PH_SSSlack * HrsPerDay8 * Team * ROUND((payRateS + payRateS2)/2, 2) 

FOR PH_SSSlack > 0 

 

* Knowledge Transfer based on survey responses 

Replace ALL PH_SSKT WITH SH_KT FOR Sr2_kt = 0 

Replace ALL PH_SSKT WITH SH_KT * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Sr2_kt = 1 

Replace ALL PH_SSKT WITH SH_KT * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Sr2_kt  = 2 

Replace ALL PH_SSKT WITH SH_KT * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Sr2_kt  = 3 

Replace ALL PH_SSKT WITH SH_KT * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Sr2_kt = 4 

Replace ALL PH_SSKT WITH SH_KT * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

Sr2_kt  = 5 

Replace ALL PH_SSKT WITH SH_KT * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

Sr2_kt  = 6 

Replace ALL PH_SSKT WITH SH_KT * (1 - ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Sr2_kt  = -1 

Replace ALL PH_SSKT WITH SH_KT * (1 - ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Sr2_kt  = -2 

Replace ALL PH_SSKT WITH SH_KT * (1 - ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Sr2_kt  = -3 

Replace ALL PH_SSKT WITH SH_KT * (1 - ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Sr2_kt  = -4 

Replace ALL PH_SSKT WITH SH_KT * (1 - ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) FOR 

Sr2_kt = -5 

 

* Convert KT into training cost  

Replace ALL PH_SSTC10 WITH (TrainingCH - Pct10 * TrainingCH * PH_SSKT) 

Replace ALL PH_SSTC20 WITH (TrainingCH - Pct20 * TrainingCH * PH_SSKT) 

Replace ALL PH_SSTC30 WITH (TrainingCH - Pct30 * TrainingCH * PH_SSKT) 

Replace ALL PH_SSTC40 WITH (TrainingCH - Pct40 * TrainingCH * PH_SSKT) 

Replace ALL PH_SSTC50 WITH (TrainingCH - Pct50 * TrainingCH * PH_SSKT) 

Replace ALL PH_SSTC60 WITH (TrainingCH - Pct60 * TrainingCH * PH_SSKT) 

Replace ALL PH_SSTC70 WITH (TrainingCH - Pct70 * TrainingCH * PH_SSKT) 

Replace ALL PH_SSTC80 WITH (TrainingCH - Pct80 * TrainingCH * PH_SSKT) 

Replace ALL PH_SSTC90 WITH (TrainingCH - Pct90 * TrainingCH * PH_SSKT) 

Replace ALL PH_SSTC100 WITH (TrainingCH - Pct100 * TrainingCH * PH_SSKT) 
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************************************************************************************** 

* PAIR COMPOSTION - NEITHER in the pair has prior pair programming experience (PRIOR0), ONE has 

(PRIOR1), BOTH have (PRIOR2) 

************************************************************************************** 

* Create C3 since the maximum number of columns a table can have is 256. C3 has the cost columns needed for 

prior0, prior1, and prior2 

 

SELECT respondent, trainingC, trainingCL, trainingCM, trainingCH, team, l_team, m_team, h_team, comp1yr, 

lcx_hrs, mcx_hrs, hcx_hrs, prior0_ef, prior1_ef, prior2_ef,  lcx_defect, mcx_defect, hcx_defect, prior0_df, 

prior1_df, prior2_df, sl_kt, sm_kt, sh_kt, prior0_kt, prior1_kt, prior2_kt,  

payRate, payRate2, payRateJ, payRateJ2, payRateS, payRateS2, L_Size, M_Size, H_Size, FixingS, L_Ideal, 

M_Ideal, H_Ideal, 000000.00 as PL_P0Ef, 000000.00 as PL_P0ECo, 000000.00 as PL_P0Def, 0000000000.00 as 

PL_P0DCo, 000000.00 as PL_P0DR, 000000.00 as PL_P0OCo, 000000.00 as PL_P0Slack, 000000.00 as 

PL_P0SCo,  00.00 as PL_P0KT,  000000.00 as PL_P0TC10, 000000.00 as PL_P0TC20, 000000.00 as PL_P0TC30, 

000000.00 as PL_P0TC40, 000000.00 as PL_P0TC50, 000000.00 as PL_P0TC60, 000000.00 as PL_P0TC70, 

000000.00 as PL_P0TC80, 000000.00 as PL_P0TC90, 000000.00 as PL_P0TC100,  000000.00 as PM_P0Ef, 

000000.00 as PM_P0ECo, 000000.00 as PM_P0Def, 0000000000.00 as PM_P0DCo, 000000.00 as PM_P0DR, 

000000.00 as PM_P0OCo, 000000.00 as PM_P0Slack, 000000.00 as PM_P0SCo, 00.00 as PM_P0KT, 000000.00 

as PM_P0TC10, 000000.00 as PM_P0TC20, 000000.00 as PM_P0TC30, 000000.00 as PM_P0TC40, 000000.00 as 

PM_P0TC50, 000000.00 as PM_P0TC60, 000000.00 as PM_P0TC70, 000000.00 as PM_P0TC80, 000000.00 as 

PM_P0TC90, 000000.00 as PM_P0TC100,  000000.00 as PH_P0Ef, 000000.00 as PH_P0ECo, ; 

000000.00 as PH_P0Def, 0000000000.00 as PH_P0DCo, 000000.00 as PH_P0DR, 000000.00 as PH_P0OCo, 

000000.00 as PH_P0Slack, 000000.00 as PH_P0SCo,  00.00 as PH_P0KT, 000000.00 as PH_P0TC10, 000000.00 

as PH_P0TC20, 000000.00 as PH_P0TC30, 000000.00 as PH_P0TC40, 000000.00 as PH_P0TC50, 000000.00 as 

PH_P0TC60, 000000.00 as PH_P0TC70, 000000.00 as PH_P0TC80, 000000.00 as PH_P0TC90, 000000.00 as 

PH_P0TC100,  000000.00 as PL_P1Ef, 000000.00 as PL_P1ECo, 000000.00 as PL_P1Def, 0000000000.00 as 

PL_P1DCo, 000000.00 as PL_P1DR, 000000.00 as PL_P1OCo, 000000.00 as PL_P1Slack, 000000.00 as 

PL_P1SCo, 00.00 as PL_P1KT, 000000.00 as PL_P1TC10, 000000.00 as PL_P1TC20, 000000.00 as PL_P1TC30, 

000000.00 as PL_P1TC40, 000000.00 as PL_P1TC50, 000000.00 as PL_P1TC60, 000000.00 as PL_P1TC70, 

000000.00 as PL_P1TC80, 000000.00 as PL_P1TC90, 000000.00 as PL_P1TC100,  000000.00 as PM_P1Ef, 

000000.00 as PM_P1ECo, 000000.00 as PM_P1Def, 0000000000.00 as PM_P1DCo, 000000.00 as PM_P1DR, 

000000.00 as PM_P1OCo, 000000.00 as PM_P1Slack, 000000.00 as PM_P1SCo, 

00.00 as PM_P1KT, 000000.00 as PM_P1TC10, 000000.00 as PM_P1TC20, 000000.00 as PM_P1TC30, 000000.00 

as PM_P1TC40, 000000.00 as PM_P1TC50, 000000.00 as PM_P1TC60, 000000.00 as PM_P1TC70, 000000.00 as 

PM_P1TC80, 000000.00 as PM_P1TC90, 000000.00 as PM_P1TC100,   

000000.00 as PH_P1Ef, 000000.00 as PH_P1ECo, 000000.00 as PH_P1Def, 0000000000.00 as PH_P1DCo, 

000000.00 as PH_P1DR, 000000.00 as PH_P1OCo, 000000.00 as PH_P1Slack, 000000.00 as PH_P1SCo, 00.00 as 

PH_P1KT, 000000.00 as PH_P1TC10, 000000.00 as PH_P1TC20, 000000.00 as PH_P1TC30, 000000.00 as 

PH_P1TC40, 000000.00 as PH_P1TC50, 000000.00 as PH_P1TC60, 

000000.00 as PH_P1TC70, 000000.00 as PH_P1TC80, 000000.00 as PH_P1TC90, 000000.00 as PH_P1TC100,  

000000.00 as PL_P2Ef, 000000.00 as PL_P2ECo, 000000.00 as PL_P2Def, 0000000000.00 as PL_P2DCo, 

000000.00 as PL_P2DR, 000000.00 as PL_P2OCo, 000000.00 as PL_P2Slack, 000000.00 as PL_P2SCo, 00.00 as 

PL_P2KT, 000000.00 as PL_P2TC10, 000000.00 as PL_P2TC20, 000000.00 as PL_P2TC30, 000000.00 as 

PL_P2TC40, 000000.00 as PL_P2TC50, 000000.00 as PL_P2TC60, 000000.00 as PL_P2TC70, 000000.00 as 

PL_P2TC80, 000000.00 as PL_P2TC90, 000000.00 as PL_P2TC100,  000000.00 as PM_P2Ef, 000000.00 as 

PM_P2ECo, 000000.00 as PM_P2Def, 0000000000.00 as PM_P2DCo, 000000.00 as PM_P2DR, 000000.00 as 

PM_P2OCo, 000000.00 as PM_P2Slack, 000000.00 as PM_P2SCo, 00.00 as PM_P2KT, 000000.00 as 

PM_P2TC10, 000000.00 as PM_P2TC20, 000000.00 as PM_P2TC30, 000000.00 as PM_P2TC40, 000000.00 as 

PM_P2TC50, 000000.00 as PM_P2TC60, 000000.00 as PM_P2TC70, 000000.00 as PM_P2TC80, 000000.00 as 

PM_P2TC90, 000000.00 as PM_P2TC100,  000000.00 as PH_P2Ef, 000000.00 as PH_P2ECo, ; 

000000.00 as PH_P2Def, 0000000000.00 as PH_P2DCo, 000000.00 as PH_P2DR, 000000.00 as PH_P2OCo, 

000000.00 as PH_P2Slack, 000000.00 as PH_P2SCo, 00.00 as PH_P2KT, 000000.00 as PH_P2TC10, 000000.00 as 

PH_P2TC20, 000000.00 as PH_P2TC30, 000000.00 as PH_P2TC40, 000000.00 as PH_P2TC50, 000000.00 as 

PH_P2TC60, 000000.00 as PH_P2TC70, 000000.00 as PH_P2TC80, 000000.00 as PH_P2TC90, 000000.00 as 

PH_P2TC100   
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FROM c1 

into TABLE c3 

 

SELECT c3 

 

************************************************************************************** 

** PAIR LOW complexity projects and PRIOR PAIR EXPERIENCE (NEITHER HAS EXPERIENCE) 

************************************************************************************** 

* based on survey responses 

Replace ALL PL_P0Ef WITH lcx_hrs for Prior0_ef = 0 

Replace ALL PL_P0Ef WITH lcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for 

Prior0_ef = 1 

Replace ALL PL_P0Ef WITH lcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for 

Prior0_ef = 2 

Replace ALL PL_P0Ef WITH lcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for 

Prior0_ef = 3 

Replace ALL PL_P0Ef WITH lcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for 

Prior0_ef = 4 

Replace ALL PL_P0Ef WITH lcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for 

Prior0_ef = 5 

Replace ALL PL_P0Ef WITH lcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for 

Prior0_ef = 6 

Replace ALL PL_P0Ef WITH lcx_hrs * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for 

Prior0_ef = -1 

Replace ALL PL_P0Ef WITH lcx_hrs * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for 

Prior0_ef = -2 

Replace ALL PL_P0Ef WITH lcx_hrs * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for 

Prior0_ef = -3 

Replace ALL PL_P0Ef WITH lcx_hrs * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for 

Prior0_ef = -4 

Replace ALL PL_P0Ef WITH lcx_hrs * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))  for 

Prior0_ef = -5 

 

Replace ALL PL_P0ECo WITH PL_P0Ef * ROUND((payRate + payRate2)/2, 2) 

 

* Defect based on survey responses 

Replace ALL PL_P0Def WITH lcx_Defect FOR Prior0_df = 0 

Replace ALL PL_P0Def WITH lcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  FOR 

Prior0_df = 1 

Replace ALL PL_P0Def WITH lcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Prior0_df = 2 

Replace ALL PL_P0Def WITH lcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Prior0_df = 3 

Replace ALL PL_P0Def WITH lcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Prior0_df = 4 

Replace ALL PL_P0Def WITH lcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

Prior0_df = 5 

Replace ALL PL_P0Def WITH lcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

Prior0_df = 6 

Replace ALL PL_P0Def WITH lcx_Defect * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Prior0_df = -1 

Replace ALL PL_P0Def WITH lcx_Defect * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Prior0_df = -2 

Replace ALL PL_P0Def WITH lcx_Defect * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Prior0_df = -3 
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Replace ALL PL_P0Def WITH lcx_Defect * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Prior0_df = -4 

Replace ALL PL_P0Def WITH lcx_Defect * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))  

FOR Prior0_df = -5 

 

Replace ALL PL_P0DCo WITH (PL_P0Def * l_Size * FixingS) * payRate 

 

* Duration 

Replace ALL PL_P0DR WITH PL_P0Ef/(Team * HrsPerDay7) 

 

*LABOR SLACK & Opportunity Cost 

Replace ALL PL_P0Slack WITH PL_P0DR - L_Ideal 

Replace ALL pl_p0Sco WITH  -1 * pl_p0slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR pl_p0Slack 

<= 0 

Replace ALL pl_p0Oco WITH  pl_p0slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR pl_p0Slack > 0 

 

* Knowledge Transfer based on survey responses 

Replace ALL PL_P0KT WITH SL_KT FOR Prior0_kt = 0 

Replace ALL PL_P0KT WITH SL_KT * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  FOR 

Prior0_kt = 1 

Replace ALL PL_P0KT WITH SL_KT * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Prior0_kt = 2 

Replace ALL PL_P0KT WITH SL_KT * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Prior0_kt = 3 

Replace ALL PL_P0KT WITH SL_KT * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Prior0_kt = 4 

Replace ALL PL_P0KT WITH SL_KT * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

Prior0_kt = 5 

Replace ALL PL_P0KT WITH SL_KT * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

Prior0_kt = 6 

Replace ALL PL_P0KT WITH SL_KT * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Prior0_kt = -1 

Replace ALL PL_P0KT WITH SL_KT * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Prior0_kt = -2 

Replace ALL PL_P0KT WITH SL_KT * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Prior0_kt = -3 

Replace ALL PL_P0KT WITH SL_KT * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Prior0_kt = -4 

Replace ALL PL_P0KT WITH SL_KT * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))  FOR 

Prior0_kt = -5 

Replace ALL PL_P0KT WITH 0 FOR PL_P0KT < 0 

Replace ALL PL_P0KT WITH 1 FOR PL_P0KT > 1 

 

* Convert KT into training cost  

Replace ALL PL_P0TC10 WITH (TrainingCL - Pct10 * TrainingCL * PL_P0KT) 

Replace ALL PL_P0TC20 WITH (TrainingCL - Pct20 * TrainingCL * PL_P0KT) 

Replace ALL PL_P0TC30 WITH (TrainingCL - Pct30 * TrainingCL * PL_P0KT) 

Replace ALL PL_P0TC40 WITH (TrainingCL - Pct40 * TrainingCL * PL_P0KT) 

Replace ALL PL_P0TC50 WITH (TrainingCL - Pct50 * TrainingCL * PL_P0KT) 

Replace ALL PL_P0TC60 WITH (TrainingCL - Pct60 * TrainingCL * PL_P0KT) 

Replace ALL PL_P0TC70 WITH (TrainingCL - Pct70 * TrainingCL * PL_P0KT) 

Replace ALL PL_P0TC80 WITH (TrainingCL - Pct80 * TrainingCL * PL_P0KT) 

Replace ALL PL_P0TC90 WITH (TrainingCL - Pct90 * TrainingCL * PL_P0KT) 

Replace ALL PL_P0TC100 WITH (TrainingCL - Pct100 * TrainingCL * PL_P0KT) 

 

************************************************************************************** 
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** PAIR MEDIUM complexity projects and PRIOR PAIR EXPERIENCE (NEITHER HAS EXPERIENCE) 

************************************************************************************** 

* Effort based on survey responses 

Replace ALL PM_P0Ef WITH mcx_hrs for Prior0_ef = 0 

Replace ALL PM_P0Ef WITH mcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  for 

Prior0_ef = 1 

Replace ALL PM_P0Ef WITH mcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for 

Prior0_ef = 2 

Replace ALL PM_P0Ef WITH mcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for 

Prior0_ef = 3 

Replace ALL PM_P0Ef WITH mcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for 

Prior0_ef = 4 

Replace ALL PM_P0Ef WITH mcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for 

Prior0_ef = 5 

Replace ALL PM_P0Ef WITH mcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for 

Prior0_ef = 6 

Replace ALL PM_P0Ef WITH mcx_hrs * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for 

Prior0_ef = -1 

Replace ALL PM_P0Ef WITH mcx_hrs * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for 

Prior0_ef = -2 

Replace ALL PM_P0Ef WITH mcx_hrs * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for 

Prior0_ef = -3 

Replace ALL PM_P0Ef WITH mcx_hrs * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for 

Prior0_ef= -4 

Replace ALL PM_P0Ef WITH mcx_hrs * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2)) for 

Prior0_ef = -5 

 

Replace ALL PM_P0ECo WITH PM_P0Ef * ROUND((payRate + payRate2)/2, 2) 

 

* Defect based on survey responses 

Replace ALL PM_P0Def WITH mcx_Defect FOR Prior0_df = 0 

Replace ALL PM_P0Def WITH mcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  

FOR Prior0_df = 1 

Replace ALL PM_P0Def WITH mcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) 

FOR Prior0_df = 2 

Replace ALL PM_P0Def WITH mcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) 

FOR Prior0_df = 3 

Replace ALL PM_P0Def WITH mcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) 

FOR Prior0_df = 4 

Replace ALL PM_P0Def WITH mcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) 

FOR Prior0_df = 5 

Replace ALL PM_P0Def WITH mcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) 

FOR Prior0_df = 6 

Replace ALL PM_P0Def WITH mcx_Defect * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) 

FOR Prior0_df = -1 

Replace ALL PM_P0Def WITH mcx_Defect * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) 

FOR Prior0_df = -2 

Replace ALL PM_P0Def WITH mcx_Defect * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) 

FOR Prior0_df = -3 

Replace ALL PM_P0Def WITH mcx_Defect * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) 

FOR Prior0_df = -4 

Replace ALL PM_P0Def WITH mcx_Defect * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))  

FOR Prior0_df = -5 

 

Replace ALL PM_P0DCo WITH (PM_P0Def * m_Size * FixingS) * payRate 
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* Duration 

Replace ALL PM_P0DR WITH PM_P0Ef/(Team * HrsPerDay7) 

 

*LABOR SLACK & Opportunity Cost 

Replace ALL PM_P0Slack WITH PM_P0DR - M_Ideal 

Replace ALL pm_p0Sco WITH  -1 * pm_p0slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR 

pm_p0Slack <= 0 

Replace ALL pm_p0Oco WITH  pm_p0slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR pm_p0Slack > 

0 

 

* Knowledge Transfer based on survey responses 

Replace ALL PM_P0KT WITH SM_KT FOR Prior0_kt = 0 

Replace ALL PM_P0KT WITH SM_KT * (1 +  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  FOR 

Prior0_kt = 1 

Replace ALL PM_P0KT WITH SM_KT * (1 +  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Prior0_kt = 2 

Replace ALL PM_P0KT WITH SM_KT * (1 +  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Prior0_kt = 3 

Replace ALL PM_P0KT WITH SM_KT * (1 +  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Prior0_kt = 4 

Replace ALL PM_P0KT WITH SM_KT * (1 +  ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

Prior0_kt = 5 

Replace ALL PM_P0KT WITH SM_KT * (1 +  ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

Prior0_kt = 6 

Replace ALL PM_P0KT WITH SM_KT * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Prior0_kt = -1 

Replace ALL PM_P0KT WITH SM_KT * (1  -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Prior0_kt = -2 

Replace ALL PM_P0KT WITH SM_KT * (1  -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Prior0_kt = -3 

Replace ALL PM_P0KT WITH SM_KT * (1  -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Prior0_kt = -4 

Replace ALL PM_P0KT WITH SM_KT * (1  -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))  

FOR Prior0_kt = -5 

 

* Convert KT into training cost  

Replace ALL PM_P0TC10 WITH (TrainingCM - Pct10 * TrainingCM * PM_P0KT) 

Replace ALL PM_P0TC20 WITH (TrainingCM - Pct20 * TrainingCM * PM_P0KT) 

Replace ALL PM_P0TC30 WITH (TrainingCM - Pct30 * TrainingCM * PM_P0KT) 

Replace ALL PM_P0TC40 WITH (TrainingCM - Pct40 * TrainingCM * PM_P0KT) 

Replace ALL PM_P0TC50 WITH (TrainingCM - Pct50 * TrainingCM * PM_P0KT) 

Replace ALL PM_P0TC60 WITH (TrainingCM - Pct60 * TrainingCM * PM_P0KT) 

Replace ALL PM_P0TC70 WITH (TrainingCM - Pct70 * TrainingCM * PM_P0KT) 

Replace ALL PM_P0TC80 WITH (TrainingCM - Pct80 * TrainingCM * PM_P0KT) 

Replace ALL PM_P0TC90 WITH (TrainingCM - Pct90 * TrainingCM * PM_P0KT) 

Replace ALL PM_P0TC100 WITH (TrainingCM - Pct100 * TrainingCM * PM_P0KT) 

 

 

************************************************************************************** 

** PAIR HIGH complexity projects and PRIOR PAIR EXPERIENCE (NEITHER HAS EXPERIENCE) 

*************************************************************************************** Effort 

based on survey responses 

Replace ALL PH_P0Ef WITH hcx_hrs for Prior0_ef = 0 

Replace ALL PH_P0Ef WITH hcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  for 

Prior0_ef = 1 
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Replace ALL PH_P0Ef WITH hcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for 

Prior0_ef = 2 

Replace ALL PH_P0Ef WITH hcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for 

Prior0_ef = 3 

Replace ALL PH_P0Ef WITH hcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for 

Prior0_ef = 4 

Replace ALL PH_P0Ef WITH hcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for 

Prior0_ef = 5 

Replace ALL PH_P0Ef WITH hcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for 

Prior0_ef = 6 

Replace ALL PH_P0Ef WITH hcx_hrs * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for 

Prior0_ef = -1 

Replace ALL PH_P0Ef WITH hcx_hrs * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for 

Prior0_ef = -2 

Replace ALL PH_P0Ef WITH hcx_hrs * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for 

Prior0_ef = -3 

Replace ALL PH_P0Ef WITH hcx_hrs * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for 

Prior0_ef = -4 

Replace ALL PH_P0Ef WITH hcx_hrs * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))  for 

Prior0_ef= -5 

 

Replace ALL PH_P0ECo WITH PH_P0Ef * ROUND((payRate + payRate2)/2, 2) 

 

* Defect based on survey responses 

Replace ALL PH_P0Def WITH hcx_Defect FOR Prior0_df = 0 

Replace ALL PH_P0Def WITH hcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  FOR 

Prior0_df = 1 

Replace ALL PH_P0Def WITH hcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Prior0_df = 2 

Replace ALL PH_P0Def WITH hcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Prior0_df = 3 

Replace ALL PH_P0Def WITH hcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Prior0_df = 4 

Replace ALL PH_P0Def WITH hcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

Prior0_df = 5 

Replace ALL PH_P0Def WITH hcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

Prior0_df= 6 

Replace ALL PH_P0Def WITH hcx_Defect * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Prior0_df = -1 

Replace ALL PH_P0Def WITH hcx_Defect * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Prior0_df = -2 

Replace ALL PH_P0Def WITH hcx_Defect * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Prior0_df = -3 

Replace ALL PH_P0Def WITH hcx_Defect * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Prior0_df = -4 

Replace ALL PH_P0Def WITH hcx_Defect * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))  

FOR Prior0_df= -5 

 

Replace ALL PH_P0DCo WITH (PH_P0Def * h_Size * FixingS) * payRate 

 

* Duration 

Replace ALL PH_P0DR WITH PH_P0Ef/(Team * HrsPerDay7) 

 

*LABOR SLACK & Opportunity Cost 

Replace ALL PH_P0Slack WITH PH_P0DR - H_Ideal 
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Replace ALL ph_p0Sco WITH  -1 * ph_p0slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR ph_p0Slack 

<= 0 

Replace ALL ph_p0Oco WITH  ph_p0slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR ph_p0Slack > 0 

 

* Knowledge Transfer based on survey responses 

Replace ALL PH_P0KT WITH SH_KT FOR Prior0_kt = 0 

Replace ALL PH_P0KT WITH SH_KT * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  FOR 

Prior0_kt = 1 

Replace ALL PH_P0KT WITH SH_KT * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Prior0_kt  = 2 

Replace ALL PH_P0KT WITH SH_KT * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Prior0_kt  = 3 

Replace ALL PH_P0KT WITH SH_KT * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Prior0_kt = 4 

Replace ALL PH_P0KT WITH SH_KT * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

Prior0_kt  = 5 

Replace ALL PH_P0KT WITH SH_KT * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

Prior0_kt  = 6 

Replace ALL PH_P0KT WITH SH_KT * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Prior0_kt  = -1 

Replace ALL PH_P0KT WITH SH_KT * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Prior0_kt  = -2 

Replace ALL PH_P0KT WITH SH_KT * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Prior0_kt  = -3 

Replace ALL PH_P0KT WITH SH_KT * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Prior0_kt  = -4 

Replace ALL PH_P0KT WITH SH_KT * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))  FOR 

Prior0_kt = -5 

 

* Convert KT into training cost  

Replace ALL PH_P0TC10 WITH (TrainingCH - Pct10 * TrainingCH * PH_P0KT) 

Replace ALL PH_P0TC20 WITH (TrainingCH - Pct20 * TrainingCH * PH_P0KT) 

Replace ALL PH_P0TC30 WITH (TrainingCH - Pct30 * TrainingCH * PH_P0KT) 

Replace ALL PH_P0TC40 WITH (TrainingCH - Pct40 * TrainingCH * PH_P0KT) 

Replace ALL PH_P0TC50 WITH (TrainingCH - Pct50 * TrainingCH * PH_P0KT) 

Replace ALL PH_P0TC60 WITH (TrainingCH - Pct60 * TrainingCH * PH_P0KT) 

Replace ALL PH_P0TC70 WITH (TrainingCH - Pct70 * TrainingCH * PH_P0KT) 

Replace ALL PH_P0TC80 WITH (TrainingCH - Pct80 * TrainingCH * PH_P0KT) 

Replace ALL PH_P0TC90 WITH (TrainingCH - Pct90 * TrainingCH * PH_P0KT) 

Replace ALL PH_P0TC100 WITH (TrainingCH - Pct100 * TrainingCH * PH_P0KT) 

 

 

**************************************************************************************** PAIR 

LOW complexity projects and PRIOR PAIR EXPERIENCE (ONE HAS EXPERIENCE) 

************************************************************************************** 

* Effort based on survey responses 

Replace ALL PL_P1Ef WITH lcx_hrs for Prior1_ef = 0 

Replace ALL PL_P1Ef WITH lcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  for 

Prior1_ef = 1 

Replace ALL PL_P1Ef WITH lcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for 

Prior1_ef = 2 

Replace ALL PL_P1Ef WITH lcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for 

Prior1_ef = 3 

Replace ALL PL_P1Ef WITH lcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for 

Prior1_ef = 4 



146 

 

Replace ALL PL_P1Ef WITH lcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for 

Prior1_ef = 5 

Replace ALL PL_P1Ef WITH lcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for 

Prior1_ef = 6 

Replace ALL PL_P1Ef WITH lcx_hrs * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for 

Prior1_ef = -1 

Replace ALL PL_P1Ef WITH lcx_hrs * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for 

Prior1_ef = -2 

Replace ALL PL_P1Ef WITH lcx_hrs * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for 

Prior1_ef = -3 

Replace ALL PL_P1Ef WITH lcx_hrs * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for 

Prior1_ef = -4 

Replace ALL PL_P1Ef WITH lcx_hrs * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))  for 

Prior1_ef = -5 

 

Replace ALL PL_P1ECo WITH PL_P1Ef * ROUND((payRate + payRate2)/2, 2) 

 

* Defect based on survey responses 

Replace ALL PL_P1Def WITH lcx_Defect FOR Prior1_df = 0 

Replace ALL PL_P1Def WITH lcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  FOR 

Prior1_df = 1 

Replace ALL PL_P1Def WITH lcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Prior1_df = 2 

Replace ALL PL_P1Def WITH lcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Prior1_df = 3 

Replace ALL PL_P1Def WITH lcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Prior1_df = 4 

Replace ALL PL_P1Def WITH lcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

Prior1_df = 5 

Replace ALL PL_P1Def WITH lcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

Prior1_df = 6 

Replace ALL PL_P1Def WITH lcx_Defect * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Prior1_df = -1 

Replace ALL PL_P1Def WITH lcx_Defect * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Prior1_df = -2 

Replace ALL PL_P1Def WITH lcx_Defect * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Prior1_df = -3 

Replace ALL PL_P1Def WITH lcx_Defect * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Prior1_df = -4 

Replace ALL PL_P1Def WITH lcx_Defect * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))  

FOR Prior1_df = -5 

 

Replace ALL PL_P1DCo WITH (PL_P1Def * l_Size * FixingS) * payRate 

 

* Duration 

Replace ALL PL_P1DR WITH PL_P1Ef/(Team * HrsPerDay7) 

 

*LABOR SLACK & Opportunity Cost 

Replace ALL PL_P1Slack WITH PL_P1DR - L_Ideal 

Replace ALL pl_p1Sco WITH  -1 * pl_p1slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR pl_p1Slack 

<= 0 

Replace ALL pl_p1Oco WITH  pl_p1slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR pl_p1Slack > 0 

 

* Knowledge Transfer based on survey responses 

Replace ALL PL_P1KT WITH SL_KT FOR Prior1_kt = 0 
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Replace ALL PL_P1KT WITH SL_KT * (1 +  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  FOR 

Prior1_kt = 1 

Replace ALL PL_P1KT WITH SL_KT * (1 +  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Prior1_kt = 2 

Replace ALL PL_P1KT WITH SL_KT * (1 +  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Prior1_kt = 3 

Replace ALL PL_P1KT WITH SL_KT * (1 +  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Prior1_kt = 4 

Replace ALL PL_P1KT WITH SL_KT * (1 +  ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

Prior1_kt = 5 

Replace ALL PL_P1KT WITH SL_KT * (1 +  ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

Prior1_kt = 6 

Replace ALL PL_P1KT WITH SL_KT * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Prior1_kt = -1 

Replace ALL PL_P1KT WITH SL_KT * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Prior1_kt = -2 

Replace ALL PL_P1KT WITH SL_KT * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Prior1_kt = -3 

Replace ALL PL_P1KT WITH SL_KT * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Prior1_kt = -4 

Replace ALL PL_P1KT WITH SL_KT * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))  FOR 

Prior1_kt = -5 

 

* Convert KT into training cost  

Replace ALL PL_P1TC10 WITH (TrainingCL - Pct10 * TrainingCL * PL_P1KT) 

Replace ALL PL_P1TC20 WITH (TrainingCL - Pct20 * TrainingCL * PL_P1KT) 

Replace ALL PL_P1TC30 WITH (TrainingCL - Pct30 * TrainingCL * PL_P1KT) 

Replace ALL PL_P1TC40 WITH (TrainingCL - Pct40 * TrainingCL * PL_P1KT) 

Replace ALL PL_P1TC50 WITH (TrainingCL - Pct50 * TrainingCL * PL_P1KT) 

Replace ALL PL_P1TC60 WITH (TrainingCL - Pct60 * TrainingCL * PL_P1KT) 

Replace ALL PL_P1TC70 WITH (TrainingCL - Pct70 * TrainingCL * PL_P1KT) 

Replace ALL PL_P1TC80 WITH (TrainingCL - Pct80 * TrainingCL * PL_P1KT) 

Replace ALL PL_P1TC90 WITH (TrainingCL - Pct90 * TrainingCL * PL_P1KT) 

Replace ALL PL_P1TC100 WITH (TrainingCL - Pct100 * TrainingCL * PL_P1KT) 

 

**************************************************************************************** PAIR 

MEDIUM complexity projects and PRIOR PAIR EXPERIENCE (ONE HAS EXPERIENCE) 

************************************************************************************** 

* Effort based on survey responses 

Replace ALL PM_P1Ef WITH mcx_hrs for Prior1_ef = 0 

Replace ALL PM_P1Ef WITH mcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  for 

Prior1_ef = 1 

Replace ALL PM_P1Ef WITH mcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for 

Prior1_ef = 2 

Replace ALL PM_P1Ef WITH mcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for 

Prior1_ef = 3 

Replace ALL PM_P1Ef WITH mcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for 

Prior1_ef = 4 

Replace ALL PM_P1Ef WITH mcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for 

Prior1_ef = 5 

Replace ALL PM_P1Ef WITH mcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for 

Prior1_ef = 6 

Replace ALL PM_P1Ef WITH mcx_hrs * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for 

Prior1_ef = -1 

Replace ALL PM_P1Ef WITH mcx_hrs * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for 

Prior1_ef = -2 
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Replace ALL PM_P1Ef WITH mcx_hrs * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for 

Prior1_ef = -3 

Replace ALL PM_P1Ef WITH mcx_hrs * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for 

Prior1_ef= -4 

Replace ALL PM_P1Ef WITH mcx_hrs * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))  for 

Prior1_ef = -5 

 

Replace ALL PM_P1ECo WITH PM_P1Ef * ROUND((payRate + payRate2)/2, 2) 

 

* Defect based on survey responses 

Replace ALL PM_P1Def WITH mcx_Defect FOR Prior1_df = 0 

Replace ALL PM_P1Def WITH mcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  

FOR Prior1_df = 1 

Replace ALL PM_P1Def WITH mcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) 

FOR Prior1_df = 2 

Replace ALL PM_P1Def WITH mcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) 

FOR Prior1_df = 3 

Replace ALL PM_P1Def WITH mcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) 

FOR Prior1_df = 4 

Replace ALL PM_P1Def WITH mcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) 

FOR Prior1_df = 5 

Replace ALL PM_P1Def WITH mcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) 

FOR Prior1_df = 6 

Replace ALL PM_P1Def WITH mcx_Defect * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) 

FOR Prior1_df = -1 

Replace ALL PM_P1Def WITH mcx_Defect * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) 

FOR Prior1_df = -2 

Replace ALL PM_P1Def WITH mcx_Defect * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) 

FOR Prior1_df = -3 

Replace ALL PM_P1Def WITH mcx_Defect * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) 

FOR Prior1_df = -4 

Replace ALL PM_P1Def WITH mcx_Defect * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))  

FOR Prior1_df = -5 

 

Replace ALL PM_P1DCo WITH (PM_P1Def * m_Size * FixingS) * payRate 

 

* Duration 

Replace ALL PM_P1DR WITH PM_P1Ef/(Team * HrsPerDay7) 

 

*LABOR SLACK & Opportunity Cost 

Replace ALL PM_P1Slack WITH PM_P1DR - M_Ideal 

Replace ALL pm_p1Sco WITH  -1 * pm_p1slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR 

pm_p1Slack <= 0 

Replace ALL pm_p1Oco WITH  pm_p1slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR pm_p1Slack > 

0 

 

* Knowledge Transfer based on survey responses 

Replace ALL PM_P1KT WITH SM_KT FOR Prior1_kt = 0 

Replace ALL PM_P1KT WITH SM_KT * (1 +  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  FOR 

Prior1_kt = 1 

Replace ALL PM_P1KT WITH SM_KT * (1 +  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Prior1_kt = 2 

Replace ALL PM_P1KT WITH SM_KT * (1 +  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Prior1_kt = 3 

Replace ALL PM_P1KT WITH SM_KT * (1 +  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Prior1_kt = 4 
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Replace ALL PM_P1KT WITH SM_KT * (1 +  ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

Prior1_kt = 5 

Replace ALL PM_P1KT WITH SM_KT * (1 +  ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

Prior1_kt = 6 

Replace ALL PM_P1KT WITH SM_KT * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Prior1_kt = -1 

Replace ALL PM_P1KT WITH SM_KT * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Prior1_kt = -2 

Replace ALL PM_P1KT WITH SM_KT * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Prior1_kt = -3 

Replace ALL PM_P1KT WITH SM_KT * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Prior1_kt = -4 

Replace ALL PM_P1KT WITH SM_KT * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))  

FOR Prior1_kt = -5 

 

* Convert KT into training cost  

Replace ALL PM_P1TC10 WITH (TrainingCM - Pct10 * TrainingCM * PM_P1KT) 

Replace ALL PM_P1TC20 WITH (TrainingCM - Pct20 * TrainingCM * PM_P1KT) 

Replace ALL PM_P1TC30 WITH (TrainingCM - Pct30 * TrainingCM * PM_P1KT) 

Replace ALL PM_P1TC40 WITH (TrainingCM - Pct40 * TrainingCM * PM_P1KT) 

Replace ALL PM_P1TC50 WITH (TrainingCM - Pct50 * TrainingCM * PM_P1KT) 

Replace ALL PM_P1TC60 WITH (TrainingCM - Pct60 * TrainingCM * PM_P1KT) 

Replace ALL PM_P1TC70 WITH (TrainingCM - Pct70 * TrainingCM * PM_P1KT) 

Replace ALL PM_P1TC80 WITH (TrainingCM - Pct80 * TrainingCM * PM_P1KT) 

Replace ALL PM_P1TC90 WITH (TrainingCM - Pct90 * TrainingCM * PM_P1KT) 

Replace ALL PM_P1TC100 WITH (TrainingCM - Pct100 * TrainingCM * PM_P1KT) 

 

 

**************************************************************************************** PAIR 

HIGH complexity projects and PRIOR PAIR EXPERIENCE (ONE HAS EXPERIENCE) 

************************************************************************************** 

* Effort based on survey responses 

Replace ALL PH_P1Ef WITH hcx_hrs for Prior1_ef = 0 

Replace ALL PH_P1Ef WITH hcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  for 

Prior1_ef = 1 

Replace ALL PH_P1Ef WITH hcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for 

Prior1_ef = 2 

Replace ALL PH_P1Ef WITH hcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for 

Prior1_ef = 3 

Replace ALL PH_P1Ef WITH hcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for 

Prior1_ef = 4 

Replace ALL PH_P1Ef WITH hcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for 

Prior1_ef = 5 

Replace ALL PH_P1Ef WITH hcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for 

Prior1_ef = 6 

Replace ALL PH_P1Ef WITH hcx_hrs * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for 

Prior1_ef = -1 

Replace ALL PH_P1Ef WITH hcx_hrs * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for 

Prior1_ef = -2 

Replace ALL PH_P1Ef WITH hcx_hrs * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for 

Prior1_ef = -3 

Replace ALL PH_P1Ef WITH hcx_hrs * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for 

Prior1_ef = -4 

Replace ALL PH_P1Ef WITH hcx_hrs * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))  for 

Prior1_ef= -5 
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Replace ALL PH_P1ECo WITH PH_P1Ef * ROUND((payRate + payRate2)/2, 2) 

 

* Defect based on survey responses 

Replace ALL PH_P1Def WITH hcx_Defect FOR Prior1_df = 0 

Replace ALL PH_P1Def WITH hcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  FOR 

Prior1_df = 1 

Replace ALL PH_P1Def WITH hcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Prior1_df = 2 

Replace ALL PH_P1Def WITH hcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Prior1_df = 3 

Replace ALL PH_P1Def WITH hcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Prior1_df = 4 

Replace ALL PH_P1Def WITH hcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

Prior1_df = 5 

Replace ALL PH_P1Def WITH hcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

Prior1_df= 6 

Replace ALL PH_P1Def WITH hcx_Defect * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Prior1_df = -1 

Replace ALL PH_P1Def WITH hcx_Defect * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Prior1_df = -2 

Replace ALL PH_P1Def WITH hcx_Defect * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Prior1_df = -3 

Replace ALL PH_P1Def WITH hcx_Defect * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Prior1_df = -4 

Replace ALL PH_P1Def WITH hcx_Defect * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))  

FOR Prior1_df= -5 

 

Replace ALL PH_P1DCo WITH (PH_P1Def * h_Size * FixingS) * payRate 

 

* Duration 

Replace ALL PH_P1DR WITH PH_P1Ef/(Team * HrsPerDay7) 

 

*LABOR SLACK & Opportunity Cost 

Replace ALL PH_P1Slack WITH PH_P1DR - H_Ideal 

Replace ALL ph_p1Sco WITH  -1 * ph_p1slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR ph_p1Slack 

<= 0 

Replace ALL ph_p1Oco WITH  ph_p1slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR ph_p1Slack > 0 

 

* Knowledge Transfer based on survey responses 

Replace ALL PH_P1KT WITH SH_KT FOR Prior1_kt = 0 

Replace ALL PH_P1KT WITH SH_KT * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  FOR 

Prior1_kt = 1 

Replace ALL PH_P1KT WITH SH_KT * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Prior1_kt  = 2 

Replace ALL PH_P1KT WITH SH_KT * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Prior1_kt  = 3 

Replace ALL PH_P1KT WITH SH_KT * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Prior1_kt = 4 

Replace ALL PH_P1KT WITH SH_KT * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

Prior1_kt  = 5 

Replace ALL PH_P1KT WITH SH_KT * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

Prior1_kt  = 6 

Replace ALL PH_P1KT WITH SH_KT * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Prior1_kt  = -1 

Replace ALL PH_P1KT WITH SH_KT * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Prior1_kt  = -2 
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Replace ALL PH_P1KT WITH SH_KT * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Prior1_kt  = -3 

Replace ALL PH_P1KT WITH SH_KT * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Prior1_kt  = -4 

Replace ALL PH_P1KT WITH SH_KT * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))  FOR 

Prior1_kt = -5 

 

* Convert KT into training cost  

Replace ALL PH_P1TC10 WITH (TrainingCH - Pct10 * TrainingCH * PH_P1KT) 

Replace ALL PH_P1TC20 WITH (TrainingCH - Pct20 * TrainingCH * PH_P1KT) 

Replace ALL PH_P1TC30 WITH (TrainingCH - Pct30 * TrainingCH * PH_P1KT) 

Replace ALL PH_P1TC40 WITH (TrainingCH - Pct40 * TrainingCH * PH_P1KT) 

Replace ALL PH_P1TC50 WITH (TrainingCH - Pct50 * TrainingCH * PH_P1KT) 

Replace ALL PH_P1TC60 WITH (TrainingCH - Pct60 * TrainingCH * PH_P1KT) 

Replace ALL PH_P1TC70 WITH (TrainingCH - Pct70 * TrainingCH * PH_P1KT) 

Replace ALL PH_P1TC80 WITH (TrainingCH - Pct80 * TrainingCH * PH_P1KT) 

Replace ALL PH_P1TC90 WITH (TrainingCH - Pct90 * TrainingCH * PH_P1KT) 

Replace ALL PH_P1TC100 WITH (TrainingCH - Pct100 * TrainingCH * PH_P1KT) 

 

 

**************************************************************************************** PAIR 

LOW complexity projects and PRIOR PAIR EXPERIENCE (BOTH HAVE EXPERIENCE) 

************************************************************************************** 

* Effort based on survey responses 

Replace ALL PL_P2Ef WITH lcx_hrs for Prior2_ef = 0 

Replace ALL PL_P2Ef WITH lcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  for 

Prior2_ef = 1 

Replace ALL PL_P2Ef WITH lcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for 

Prior2_ef = 2 

Replace ALL PL_P2Ef WITH lcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for 

Prior2_ef = 3 

Replace ALL PL_P2Ef WITH lcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for 

Prior2_ef = 4 

Replace ALL PL_P2Ef WITH lcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for 

Prior2_ef = 5 

Replace ALL PL_P2Ef WITH lcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for 

Prior2_ef = 6 

Replace ALL PL_P2Ef WITH lcx_hrs * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for 

Prior2_ef = -1 

Replace ALL PL_P2Ef WITH lcx_hrs * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for 

Prior2_ef = -2 

Replace ALL PL_P2Ef WITH lcx_hrs * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for 

Prior2_ef = -3 

Replace ALL PL_P2Ef WITH lcx_hrs * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for 

Prior2_ef = -4 

Replace ALL PL_P2Ef WITH lcx_hrs * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))  for 

Prior2_ef = -5 

 

Replace ALL PL_P2ECo WITH PL_P2Ef * ROUND((payRate + payRate2)/2, 2) 

 

* Defect based on survey responses 

Replace ALL PL_P2Def WITH lcx_Defect FOR Prior2_df = 0 

Replace ALL PL_P2Def WITH lcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  FOR 

Prior2_df = 1 

Replace ALL PL_P2Def WITH lcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Prior2_df = 2 
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Replace ALL PL_P2Def WITH lcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Prior2_df = 3 

Replace ALL PL_P2Def WITH lcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Prior2_df = 4 

Replace ALL PL_P2Def WITH lcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

Prior2_df = 5 

Replace ALL PL_P2Def WITH lcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

Prior2_df = 6 

Replace ALL PL_P2Def WITH lcx_Defect * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Prior2_df = -1 

Replace ALL PL_P2Def WITH lcx_Defect * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Prior2_df = -2 

Replace ALL PL_P2Def WITH lcx_Defect * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Prior2_df = -3 

Replace ALL PL_P2Def WITH lcx_Defect * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Prior2_df = -4 

Replace ALL PL_P2Def WITH lcx_Defect * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))  

FOR Prior2_df = -5 

 

Replace ALL PL_P2DCo WITH (PL_P2Def * l_Size * FixingS) * payRate 

 

* Duration 

Replace ALL PL_P2DR WITH PL_P2Ef/(Team * HrsPerDay7) 

 

*LABOR SLACK & Opportunity Cost 

Replace ALL PL_P2Slack WITH PL_P2DR - L_Ideal 

Replace ALL pl_p2Sco WITH  -1 * pl_p2slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR pl_p2Slack 

<= 0 

Replace ALL pl_p2Oco WITH  pl_p2slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR pl_p2Slack > 0 

 

* Knowledge Transfer based on survey responses 

Replace ALL PL_P2KT WITH SL_KT FOR Prior2_kt = 0 

Replace ALL PL_P2KT WITH SL_KT * (1 +  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  FOR 

Prior2_kt = 1 

Replace ALL PL_P2KT WITH SL_KT * (1 +  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Prior2_kt = 2 

Replace ALL PL_P2KT WITH SL_KT * (1 +  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Prior2_kt = 3 

Replace ALL PL_P2KT WITH SL_KT * (1 +  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Prior2_kt = 4 

Replace ALL PL_P2KT WITH SL_KT * (1 +  ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

Prior2_kt = 5 

Replace ALL PL_P2KT WITH SL_KT * (1 +  ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

Prior2_kt = 6 

Replace ALL PL_P2KT WITH SL_KT * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Prior2_kt = -1 

Replace ALL PL_P2KT WITH SL_KT * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Prior2_kt = -2 

Replace ALL PL_P2KT WITH SL_KT * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Prior2_kt = -3 

Replace ALL PL_P2KT WITH SL_KT * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Prior2_kt = -4 

Replace ALL PL_P2KT WITH SL_KT * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))  FOR 

Prior2_kt = -5 

 

* Convert KT into training cost  



153 

 

Replace ALL PL_P2TC10 WITH (TrainingCL - Pct10 * TrainingCL * PL_P2KT) 

Replace ALL PL_P2TC20 WITH (TrainingCL - Pct20 * TrainingCL * PL_P2KT) 

Replace ALL PL_P2TC30 WITH (TrainingCL - Pct30 * TrainingCL * PL_P2KT) 

Replace ALL PL_P2TC40 WITH (TrainingCL - Pct40 * TrainingCL * PL_P2KT) 

Replace ALL PL_P2TC50 WITH (TrainingCL - Pct50 * TrainingCL * PL_P2KT) 

Replace ALL PL_P2TC60 WITH (TrainingCL - Pct60 * TrainingCL * PL_P2KT) 

Replace ALL PL_P2TC70 WITH (TrainingCL - Pct70 * TrainingCL * PL_P2KT) 

Replace ALL PL_P2TC80 WITH (TrainingCL - Pct80 * TrainingCL * PL_P2KT) 

Replace ALL PL_P2TC90 WITH (TrainingCL - Pct90 * TrainingCL * PL_P2KT) 

Replace ALL PL_P2TC100 WITH (TrainingCL - Pct100 * TrainingCL * PL_P2KT) 

 

 

************************************************************************************** 

** PAIR MEDIUM complexity projects and PRIOR PAIR EXPERIENCE (BOTH HAVE EXPERIENCE) 

************************************************************************************** 

* Effort based on survey responses 

Replace ALL PM_P2Ef WITH mcx_hrs for Prior2_ef = 0 

Replace ALL PM_P2Ef WITH mcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  for 

Prior2_ef = 1 

Replace ALL PM_P2Ef WITH mcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for 

Prior2_ef = 2 

Replace ALL PM_P2Ef WITH mcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for 

Prior2_ef = 3 

Replace ALL PM_P2Ef WITH mcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for 

Prior2_ef = 4 

Replace ALL PM_P2Ef WITH mcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for 

Prior2_ef = 5 

Replace ALL PM_P2Ef WITH mcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for 

Prior2_ef = 6 

Replace ALL PM_P2Ef WITH mcx_hrs * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for 

Prior2_ef = -1 

Replace ALL PM_P2Ef WITH mcx_hrs * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for 

Prior2_ef = -2 

Replace ALL PM_P2Ef WITH mcx_hrs * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for 

Prior2_ef = -3 

Replace ALL PM_P2Ef WITH mcx_hrs * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for 

Prior2_ef= -4 

Replace ALL PM_P2Ef WITH mcx_hrs * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))  for 

Prior2_ef = -5 

 

Replace ALL PM_P2ECo WITH PM_P2Ef * ROUND((payRate + payRate2)/2, 2) 

 

* Defect based on survey responses 

Replace ALL PM_P2Def WITH mcx_Defect FOR Prior2_df = 0 

Replace ALL PM_P2Def WITH mcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  

FOR Prior2_df = 1 

Replace ALL PM_P2Def WITH mcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) 

FOR Prior2_df = 2 

Replace ALL PM_P2Def WITH mcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) 

FOR Prior2_df = 3 

Replace ALL PM_P2Def WITH mcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) 

FOR Prior2_df = 4 

Replace ALL PM_P2Def WITH mcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) 

FOR Prior2_df = 5 

Replace ALL PM_P2Def WITH mcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) 

FOR Prior2_df = 6 
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Replace ALL PM_P2Def WITH mcx_Defect * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) 

FOR Prior2_df = -1 

Replace ALL PM_P2Def WITH mcx_Defect * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) 

FOR Prior2_df = -2 

Replace ALL PM_P2Def WITH mcx_Defect * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) 

FOR Prior2_df = -3 

Replace ALL PM_P2Def WITH mcx_Defect * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) 

FOR Prior2_df = -4 

Replace ALL PM_P2Def WITH mcx_Defect * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))  

FOR Prior2_df = -5 

 

Replace ALL PM_P2DCo WITH (PM_P2Def * m_Size * FixingS) * payRate 

 

* Duration 

Replace ALL PM_P2DR WITH PM_P2Ef/(Team * HrsPerDay7) 

 

*LABOR SLACK & Opportunity Cost 

Replace ALL PM_P2Slack WITH PM_P2DR - M_Ideal 

Replace ALL pm_p2Sco WITH  -1 * pm_p2slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR 

pm_p2Slack <= 0 

Replace ALL pm_p2Oco WITH  pm_p2slack * HrsPerday8 *  team * ((payrate + payrate2) / 2) FOR pm_p2Slack > 

0 

 

* Knowledge Transfer based on survey responses 

Replace ALL PM_P2KT WITH SM_KT FOR Prior2_kt = 0 

Replace ALL PM_P2KT WITH SM_KT * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  FOR 

Prior2_kt = 1 

Replace ALL PM_P2KT WITH SM_KT * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Prior2_kt = 2 

Replace ALL PM_P2KT WITH SM_KT * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Prior2_kt = 3 

Replace ALL PM_P2KT WITH SM_KT * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Prior2_kt = 4 

Replace ALL PM_P2KT WITH SM_KT * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

Prior2_kt = 5 

Replace ALL PM_P2KT WITH SM_KT * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

Prior2_kt = 6 

Replace ALL PM_P2KT WITH SM_KT * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Prior2_kt = -1 

Replace ALL PM_P2KT WITH SM_KT * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Prior2_kt = -2 

Replace ALL PM_P2KT WITH SM_KT * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Prior2_kt = -3 

Replace ALL PM_P2KT WITH SM_KT * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Prior2_kt = -4 

Replace ALL PM_P2KT WITH SM_KT * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))  

FOR Prior2_kt = -5 

 

* Convert KT into training cost  

Replace ALL PM_P2TC10 WITH (TrainingCM - Pct10 * TrainingCM * PM_P2KT) 

Replace ALL PM_P2TC20 WITH (TrainingCM - Pct20 * TrainingCM * PM_P2KT) 

Replace ALL PM_P2TC30 WITH (TrainingCM - Pct30 * TrainingCM * PM_P2KT) 

Replace ALL PM_P2TC40 WITH (TrainingCM - Pct40 * TrainingCM * PM_P2KT) 

Replace ALL PM_P2TC50 WITH (TrainingCM - Pct50 * TrainingCM * PM_P2KT) 

Replace ALL PM_P2TC60 WITH (TrainingCM - Pct60 * TrainingCM * PM_P2KT) 

Replace ALL PM_P2TC70 WITH (TrainingCM - Pct70 * TrainingCM * PM_P2KT) 
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Replace ALL PM_P2TC80 WITH (TrainingCM - Pct80 * TrainingCM * PM_P2KT) 

Replace ALL PM_P2TC90 WITH (TrainingCM - Pct90 * TrainingCM * PM_P2KT) 

Replace ALL PM_P2TC100 WITH (TrainingCM - Pct100 * TrainingCM * PM_P2KT) 

 

**************************************************************************************** PAIR 

HIGH complexity projects and PRIOR PAIR EXPERIENCE (BOTH HAVE EXPERIENCE) 

************************************************************************************** 

* Effort based on survey responses 

Replace ALL PH_P2Ef WITH hcx_hrs for Prior2_ef = 0 

Replace ALL PH_P2Ef WITH hcx_hrs * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  for 

Prior2_ef = 1 

Replace ALL PH_P2Ef WITH hcx_hrs * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for 

Prior2_ef = 2 

Replace ALL PH_P2Ef WITH hcx_hrs * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for 

Prior2_ef = 3 

Replace ALL PH_P2Ef WITH hcx_hrs * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for 

Prior2_ef = 4 

Replace ALL PH_P2Ef WITH hcx_hrs * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) for 

Prior2_ef = 5 

Replace ALL PH_P2Ef WITH hcx_hrs * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) for 

Prior2_ef = 6 

Replace ALL PH_P2Ef WITH hcx_hrs * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) for 

Prior2_ef = -1 

Replace ALL PH_P2Ef WITH hcx_hrs * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) for 

Prior2_ef = -2 

Replace ALL PH_P2Ef WITH hcx_hrs * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) for 

Prior2_ef = -3 

Replace ALL PH_P2Ef WITH hcx_hrs * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) for 

Prior2_ef = -4 

Replace ALL PH_P2Ef WITH hcx_hrs * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))  for 

Prior2_ef= -5 

 

Replace ALL PH_P2ECo WITH PH_P2Ef * ROUND((payRate + payRate2)/2, 2) 

 

* Defect based on survey responses 

Replace ALL PH_P2Def WITH hcx_Defect FOR Prior2_df = 0 

Replace ALL PH_P2Def WITH hcx_Defect * (1 + ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  FOR 

Prior2_df = 1 

Replace ALL PH_P2Def WITH hcx_Defect * (1 + ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Prior2_df = 2 

Replace ALL PH_P2Def WITH hcx_Defect * (1 + ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Prior2_df = 3 

Replace ALL PH_P2Def WITH hcx_Defect * (1 + ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Prior2_df = 4 

Replace ALL PH_P2Def WITH hcx_Defect * (1 + ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

Prior2_df = 5 

Replace ALL PH_P2Def WITH hcx_Defect * (1 + ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

Prior2_df= 6 

Replace ALL PH_P2Def WITH hcx_Defect * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Prior2_df = -1 

Replace ALL PH_P2Def WITH hcx_Defect * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Prior2_df = -2 

Replace ALL PH_P2Def WITH hcx_Defect * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Prior2_df = -3 

Replace ALL PH_P2Def WITH hcx_Defect * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Prior2_df = -4 
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Replace ALL PH_P2Def WITH hcx_Defect * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))  

FOR Prior2_df= -5 

 

Replace ALL PH_P2DCo WITH (PH_P2Def * h_Size * FixingS) * payRate 

 

* Duration 

Replace ALL PH_P2DR WITH PH_P2Ef/(Team * HrsPerDay7) 

 

*LABOR SLACK & Opportunity Cost 

Replace ALL PH_P2Slack WITH PH_P2DR - H_Ideal 

Replace ALL ph_p2Sco WITH  -1 * ph_p2slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR ph_p2Slack 

<= 0 

Replace ALL ph_p2Oco WITH  ph_p2slack * HrsPerDay8 * team * ((payrate + payrate2) / 2) FOR ph_p2Slack > 0 

 

* Knowledge Transfer based on survey responses 

Replace ALL PH_P2KT WITH SH_KT FOR Prior2_kt = 0 

Replace ALL PH_P2KT WITH SH_KT * (1 +  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2))  FOR 

Prior2_kt = 1 

Replace ALL PH_P2KT WITH SH_KT * (1 +  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Prior2_kt  = 2 

Replace ALL PH_P2KT WITH SH_KT * (1 +  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Prior2_kt  = 3 

Replace ALL PH_P2KT WITH SH_KT * (1 +  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Prior2_kt = 4 

Replace ALL PH_P2KT WITH SH_KT * (1 +  ROUND((DIF5H - DIF5L + 0.01) * RAND() + DIF5L, 2)) FOR 

Prior2_kt  = 5 

Replace ALL PH_P2KT WITH SH_KT * (1 +  ROUND((DIF6H - DIF6L + 0.01) * RAND() + DIF6L, 2)) FOR 

Prior2_kt  = 6 

Replace ALL PH_P2KT WITH SH_KT * (1 -  ROUND((DIF1H - DIF1L + 0.01) * RAND() + DIF1L, 2)) FOR 

Prior2_kt  = -1 

Replace ALL PH_P2KT WITH SH_KT * (1 -  ROUND((DIF2H - DIF2L + 0.01) * RAND() + DIF2L, 2)) FOR 

Prior2_kt  = -2 

Replace ALL PH_P2KT WITH SH_KT * (1 -  ROUND((DIF3H - DIF3L + 0.01) * RAND() + DIF3L, 2)) FOR 

Prior2_kt  = -3 

Replace ALL PH_P2KT WITH SH_KT * (1 -  ROUND((DIF4H - DIF4L + 0.01) * RAND() + DIF4L, 2)) FOR 

Prior2_kt  = -4 

Replace ALL PH_P2KT WITH SH_KT * (1 -  ROUND((DIF5H2 - DIF5L2 + 0.01) * RAND() + DIF5L2, 2))  FOR 

Prior2_kt = -5 

 

* Convert KT into training cost  

Replace ALL PH_P2TC10 WITH (TrainingCH - Pct10 * TrainingCH * PH_P2KT) 

Replace ALL PH_P2TC20 WITH (TrainingCH - Pct20 * TrainingCH * PH_P2KT) 

Replace ALL PH_P2TC30 WITH (TrainingCH - Pct30 * TrainingCH * PH_P2KT) 

Replace ALL PH_P2TC40 WITH (TrainingCH - Pct40 * TrainingCH * PH_P2KT) 

Replace ALL PH_P2TC50 WITH (TrainingCH - Pct50 * TrainingCH * PH_P2KT) 

Replace ALL PH_P2TC60 WITH (TrainingCH - Pct60 * TrainingCH * PH_P2KT) 

Replace ALL PH_P2TC70 WITH (TrainingCH - Pct70 * TrainingCH * PH_P2KT) 

Replace ALL PH_P2TC80 WITH (TrainingCH - Pct80 * TrainingCH * PH_P2KT) 

Replace ALL PH_P2TC90 WITH (TrainingCH - Pct90 * TrainingCH * PH_P2KT) 

Replace ALL PH_P2TC100 WITH (TrainingCH - Pct100 * TrainingCH * PH_P2KT) 

 

************************************************************************************** 

* Create datasets for bootstrap and analysis 

************************************************************************************** 

* Data for hypothesis testing 
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SELECT Respondent, PairYes, Lcx_Hrs, Mcx_Hrs, Hcx_Hrs, Lcx_Defect, Mcx_Defect, Hcx_Defect, kt1, kt2, kt3, 

Lcx_ef, Mcx_ef, Hcx_ef, Jr2_ef, Jrsr_ef, Sr2_ef, Prior0_ef, Prior1_ef, Prior2_ef,  

Lcx_df, Mcx_df, Hcx_df, Jr2_df, Jrsr_df, Sr2_df, Prior0_df, Prior1_df, Prior2_df,  

Lcx_kt, Mcx_kt, Hcx_kt, Jr2_kt, Jrsr_kt, Sr2_kt, Prior0_kt, Prior1_kt, Prior2_kt  

FROM c1 

into CURSOR cCursor1 

 

COPY TO hypoData.dbf TYPE foxplus 

 

* Data for Cost information 

 

SELECT c1.respondent, PairYes, c1.team, c1.fixingS, c1.lcx_hrs, c1.mcx_hrs, c1.hcx_hrs,  c1.lcx_defect, 

c1.mcx_defect, c1.hcx_defect, c1.kt1, c1.kt2, c1.kt3, ; 

000000000.00 as SL_Cost, 000000000.00 as SM_Cost, 000000000.00 as SH_Cost, ; 

000000000.00 as PL_Cost, 000000000.00 as PM_Cost, 000000000.00 as PH_Cost, ; 

000000000.00 as PL_JJCost, 000000000.00 as PM_JJCost, 000000000.00 as PH_JJCost, ; 

000000000.00 as PL_JSCost, 000000000.00 as PM_JSCost, 000000000.00 as PH_JSCost, ; 

000000000.00 as PL_SSCost, 000000000.00 as PM_SSCost, 000000000.00 as PH_SSCost, ; 

000000000.00 as PL_P0Cost, 000000000.00 as PM_P0Cost, 000000000.00 as PH_P0Cost, ; 

000000000.00 as PL_P1Cost, 000000000.00 as PM_P1Cost, 000000000.00 as PH_P1Cost, ; 

000000000.00 as PL_P2Cost, 000000000.00 as PM_P2Cost, 000000000.00 as PH_P2Cost, ; 

000000000.00 as SL_Cost2, 000000000.00 as SM_Cost2, 000000000.00 as SH_Cost2, ; 

000000000.00 as PL_Cost2, 000000000.00 as PM_Cost2, 000000000.00 as PH_Cost2, ; 

000000000.00 as PL_JJCost2, 000000000.00 as PM_JJCost2, 000000000.00 as PH_JJCost2, ; 

000000000.00 as PL_JSCost2, 000000000.00 as PM_JSCost2, 000000000.00 as PH_JSCost2, ; 

000000000.00 as PL_SSCost2, 000000000.00 as PM_SSCost2, 000000000.00 as PH_SSCost2, ; 

000000000.00 as PL_P0Cost2, 000000000.00 as PM_P0Cost2, 000000000.00 as PH_P0Cost2, ; 

000000000.00 as PL_P1Cost2, 000000000.00 as PM_P1Cost2, 000000000.00 as PH_P1Cost2, ; 

000000000.00 as PL_P2Cost2, 000000000.00 as PM_P2Cost2, 000000000.00 as PH_P2Cost2, ; 

000000000.00 as SL_EDCost, 000000000.00 as SM_EDCost, 000000000.00 as SH_EDCost, ; 

000000000.00 as PL_EDCost, 000000000.00 as PM_EDCost, 000000000.00 as PH_EDCost, ; 

000000000.00 as PL_JJEDCo, 000000000.00 as PM_JJEDCo, 000000000.00 as PH_JJEDCo, ; 

000000000.00 as PL_JSEDCo, 000000000.00 as PM_JSEDCo, 000000000.00 as PH_JSEDCo, ; 

000000000.00 as PL_SSEDCo, 000000000.00 as PM_SSEDCo, 000000000.00 as PH_SSEDCo, ; 

000000000.00 as PL_P0EDCo, 000000000.00 as PM_P0EDCo, 000000000.00 as PH_P0EDCo, ; 

000000000.00 as PL_P1EDCo, 000000000.00 as PM_P1EDCo, 000000000.00 as PH_P1EDCo, ; 

000000000.00 as PL_P2EDCo, 000000000.00 as PM_P2EDCo, 000000000.00 as PH_P2EDCo, ; 

SL_ECost, SL_DCost, SL_DR, SL_OCost, SL_SCost, SL_TC40 as SL_TC,  ; 

SM_ECost, SM_DCost, SM_DR, SM_OCost, SM_SCost, SM_TC40 as SM_TC,    ; 

SH_ECost, SH_DCost, SH_DR, SH_OCost, SH_SCost, SH_TC40 as SH_TC,  ; 

PL_ECost, PL_DCost, PL_DR, PL_OCost, PL_SCost, PL_TC40 as PL_TC,   ; 

PM_ECost, PM_DCost, PM_DR, PM_OCost, PM_SCost, PM_TC40 as PM_TC,  ; 

PH_ECost, PH_DCost, PH_DR, PH_OCost, PH_SCost, PH_TC40 as PH_TC,  ; 

PL_JJECo, PL_JJDCo, PL_JJDR, PL_JJOCo, PL_JJSCo, PL_JJTC40 as PL_JJTC, ; 

PM_JJECo, PM_JJDCo, PM_JJDR, PM_JJOCo, PM_JJSCo, PM_JJTC40 as PM_JJTC,  ; 

PH_JJECo, PH_JJDCo, PH_JJDR, PH_JJOCo, PH_JJSCo, PH_JJTC40 as PH_JJTC,  ; 

PL_JSECo, PL_JSDCo, PL_JSDR, PL_JSOCo, PL_JSSCo, PL_JSTC40 as PL_JSTC,  ; 

PM_JSECo, PM_JSDCo, PM_JSDR, PM_JSOCo, PM_JSSCo, PM_JSTC40 as PM_JSTC, ; 

PH_JSECo, PH_JSDCo, PH_JSDR, PH_JSOCo, PH_JSSCo, PH_JSTC40 as PH_JSTC, ; 

PL_SSECo, PL_SSDCo, PL_SSDR, PL_SSOCo, PL_SSSCo, PL_SSTC40 as PL_SSTC, ; 

PM_SSECo, PM_SSDCo, PM_SSDR, PM_SSOCo, PM_SSSCo, PM_SSTC40 as PM_SSTC, ; 

PH_SSECo, PH_SSDCo, PH_SSDR, PH_SSOCo, PH_SSSCo, PH_SSTC40 as PH_SSTC, ; 

PL_P0ECo, PL_P0DCo, PL_P0DR, PL_P0OCo, PL_P0SCo, PL_P0TC40 as PL_P0TC, ; 

PM_P0ECo, PM_P0DCo, PM_P0DR, PM_P0OCo, PM_P0SCo, PM_P0TC40 as PM_P0TC, ; 

PH_P0ECo, PH_P0DCo, PH_P0DR, PH_P0OCo, PH_P0SCo, PH_P0TC40 as PH_P0TC, ; 

PL_P1ECo, PL_P1DCo, PL_P1DR, PL_P1OCo, PL_P1SCo, PL_P1TC40 as PL_P1TC, ; 
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PM_P1ECo, PM_P1DCo, PM_P1DR, PM_P1OCo, PM_P1SCo, PM_P1TC40 as PM_P1TC, ; 

PH_P1ECo, PH_P1DCo, PH_P1DR, PH_P1OCo, PH_P1SCo, PH_P1TC40 as PH_P1TC, ; 

PL_P2ECo, PL_P2DCo, PL_P2DR, PL_P2OCo, PL_P2SCo, PL_P2TC40 as PL_P2TC, ; 

PM_P2ECo, PM_P2DCo, PM_P2DR, PM_P2OCo, PM_P2SCo, PM_P2TC40 as PM_P2TC, ; 

PH_P2ECo, PH_P2DCo, PH_P2DR, PH_P2OCo, PH_P2SCo, PH_P2TC40 as PH_P2TC; 

FROM C1, C2, C3; 

WHERE c1.respondent = c2.respondent  AND c1.respondent = c3.respondent ; 

INTO table costData 

 

SELECT costData 

 

* Labor Cost 

Replace  ALL SL_EDCost WITH  SL_ECost + SL_DCost   

Replace  ALL SM_EDCost WITH  SM_ECost + SM_DCost  

Replace  ALL SH_EDCost WITH  SH_ECost + SH_DCost  

 

Replace  ALL PL_EDCost WITH  PL_ECost + PL_DCost  

Replace  ALL PM_EDCost WITH  PM_ECost + PM_DCost  

Replace  ALL PH_EDCost WITH  PH_ECost + PH_DCost  

 

Replace  ALL PL_JJEDCo WITH  PL_JJECo + PL_JJDCo  

Replace  ALL PM_JJEDCo WITH  PM_JJECo + PM_JJDCo 

Replace  ALL PH_JJEDCo WITH  PH_JJECo + PH_JJDCo  

 

Replace  ALL PL_JSEDCo WITH  PL_JSECo + PL_JSDCo  

Replace  ALL PM_JSEDCo WITH  PM_JSECo + PM_JSDCo 

Replace  ALL PH_JSEDCo WITH  PH_JSECo + PH_JSDCo  

 

Replace  ALL PL_SSEDCo WITH  PL_SSECo + PL_SSDCo 

Replace  ALL PM_SSEDCo WITH  PM_SSECo + PM_SSDCo 

Replace  ALL PH_SSEDCo WITH  PH_SSECo + PH_SSDCo 

 

Replace  ALL PL_P0EDCo WITH  PL_P0ECo + PL_P0DCo 

Replace  ALL PM_P0EDCo WITH  PM_P0ECo + PM_P0DCo 

Replace  ALL PH_P0EDCo WITH  PH_P0ECo + PH_P0DCo 

 

Replace  ALL PL_P1EDCo WITH  PL_P1ECo + PL_P1DCo  

Replace  ALL PM_P1EDCo WITH  PM_P1ECo + PM_P1DCo 

Replace  ALL PH_P1EDCo WITH  PH_P1ECo + PH_P1DCo  

 

Replace  ALL PL_P2EDCo WITH  PL_P2ECo + PL_P2DCo  

Replace  ALL PM_P2EDCo WITH  PM_P2ECo + PM_P2DCo  

Replace  ALL PH_P2EDCo WITH  PH_P2ECo + PH_P2DCo 

 

* All Cost 

Replace  ALL SL_Cost WITH  SL_ECost + SL_DCost + SL_TC + SL_OCost  - SL_SCost 

Replace  ALL SM_Cost WITH  SM_ECost + SM_DCost + SM_TC + SM_OCost - SM_SCost 

Replace  ALL SH_Cost WITH  SH_ECost + SH_DCost + SH_TC + SH_OCost - SH_SCost 

 

Replace  ALL PL_Cost WITH  PL_ECost + PL_DCost + PL_TC + PL_OCost - PL_SCost 

Replace  ALL PM_Cost WITH  PM_ECost + PM_DCost + PM_TC + PM_OCost - PM_SCost 

Replace  ALL PH_Cost WITH  PH_ECost + PH_DCost + PH_TC + PH_OCost - PH_SCost 

 

Replace  ALL PL_JJCost WITH  PL_JJECo + PL_JJDCo + PL_JJTC + PL_JJOCo - PL_JJSCo 

Replace  ALL PM_JJCost WITH  PM_JJECo + PM_JJDCo + PM_JJTC + PM_JJOCo - PM_JJSCo 

Replace  ALL PH_JJCost WITH  PH_JJECo + PH_JJDCo + PH_JJTC + PH_JJOCo - PH_JJSCo 
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Replace  ALL PL_JSCost WITH  PL_JSECo + PL_JSDCo + PL_JSTC + PL_JSOCo - PL_JSSCo 

Replace  ALL PM_JSCost WITH  PM_JSECo + PM_JSDCo + PM_JSTC + PM_JSOCo - PM_JSSCo 

Replace  ALL PH_JSCost WITH  PH_JSECo + PH_JSDCo + PH_JSTC + PH_JSOCo - PH_JSSCo 

 

Replace  ALL PL_SSCost WITH  PL_SSECo + PL_SSDCo + PL_SSTC + PL_SSOCo - PL_SSSCo 

Replace  ALL PM_SSCost WITH  PM_SSECo + PM_SSDCo + PM_SSTC + PM_SSOCo - PM_SSSCo 

Replace  ALL PH_SSCost WITH  PH_SSECo + PH_SSDCo + PH_SSTC + PH_SSOCo - PH_SSSCo 

 

Replace  ALL PL_P0Cost WITH  PL_P0ECo + PL_P0DCo + PL_P0TC + PL_P0OCo - PL_P0SCo 

Replace  ALL PM_P0Cost WITH  PM_P0ECo + PM_P0DCo + PM_P0TC + PM_P0OCo - PM_P0SCo 

Replace  ALL PH_P0Cost WITH  PH_P0ECo + PH_P0DCo + PH_P0TC + PH_P0OCo - PH_P0SCo 

 

Replace  ALL PL_P1Cost WITH  PL_P1ECo + PL_P1DCo + PL_P1TC + PL_P1OCo - PL_P1SCo 

Replace  ALL PM_P1Cost WITH  PM_P1ECo + PM_P1DCo + PM_P1TC + PM_P1OCo - PM_P1SCo 

Replace  ALL PH_P1Cost WITH  PH_P1ECo + PH_P1DCo + PH_P1TC + PH_P1OCo - PH_P1SCo 

 

Replace  ALL PL_P2Cost WITH  PL_P2ECo + PL_P2DCo + PL_P2TC + PL_P2OCo - PL_P2SCo 

Replace  ALL PM_P2Cost WITH  PM_P2ECo + PM_P2DCo + PM_P2TC + PM_P2OCo - PM_P2SCo 

Replace  ALL PH_P2Cost WITH  PH_P2ECo + PH_P2DCo + PH_P2TC + PH_P2OCo - PH_P2SCo 

 

* Data for training part of the cost given the scenarios of 10% impact to 100% impact 

SELECT c1.respondent, PairYes,  c1.TrainingCL, c1.TrainingCM, c1.TrainingCH, ; 

SL_TC10, SL_TC20, SL_TC30, SL_TC40, SL_TC50,  SL_TC60, SL_TC70, SL_TC80, SL_TC90, SL_TC100,  

SM_TC10, SM_TC20, SM_TC30, SM_TC40, SM_TC50,  SM_TC60, SM_TC70, SM_TC80, SM_TC90, 

SM_TC100,  SH_TC10, SH_TC20, SH_TC30, SH_TC40, SH_TC50,  SH_TC60, SH_TC70, SH_TC80, SH_TC90, 

SH_TC100,  PL_TC10, PL_TC20, PL_TC30, PL_TC40, PL_TC50,  PL_TC60, PL_TC70, PL_TC80, PL_TC90, 

PL_TC100,  PM_TC10, PM_TC20, PM_TC30, PM_TC40, PM_TC50,  PM_TC60, PM_TC70, PM_TC80, 

PM_TC90, PM_TC100,  PH_TC10, PH_TC20, PH_TC30, PH_TC40, PH_TC50,  PH_TC60, PH_TC70, PH_TC80, 

PH_TC90, PH_TC100,  PL_JJTC10, PL_JJTC20, PL_JJTC30, PL_JJTC40, PL_JJTC50,  PL_JJTC60, PL_JJTC70, 

PL_JJTC80, PL_JJTC90, PL_JJTC100,   

PM_JJTC10, PM_JJTC20, PM_JJTC30, PM_JJTC40, PM_JJTC50,  PM_JJTC60, PM_JJTC70, PM_JJTC80, 

PM_JJTC90, PM_JJTC100,  PH_JJTC10, PH_JJTC20, PH_JJTC30, PH_JJTC40, PH_JJTC50,  PH_JJTC60, 

PH_JJTC70, PH_JJTC80, PH_JJTC90, PH_JJTC100,  PL_JSTC10, PL_JSTC20, PL_JSTC30, PL_JSTC40, 

PL_JSTC50,  PL_JSTC60, PL_JSTC70, PL_JSTC80, PL_JSTC90, PL_JSTC100,  PM_JSTC10, PM_JSTC20, 

PM_JSTC30, PM_JSTC40, PM_JSTC50,  PM_JSTC60, PM_JSTC70, PM_JSTC80, PM_JSTC90, PM_JSTC100,  

PH_JSTC10, PH_JSTC20, PH_JSTC30, PH_JSTC40, PH_JSTC50,  PH_JSTC60, PH_JSTC70, PH_JSTC80, 

PH_JSTC90, PH_JSTC100,   

PL_SSTC10, PL_SSTC20, PL_SSTC30, PL_SSTC40, PL_SSTC50,  PL_SSTC60, PL_SSTC70, PL_SSTC80, 

PL_SSTC90, PL_SSTC100,  PM_SSTC10, PM_SSTC20, PM_SSTC30, PM_SSTC40, PM_SSTC50,  

PM_SSTC60, PM_SSTC70, PM_SSTC80, PM_SSTC90, PM_SSTC100,   

PH_SSTC10, PH_SSTC20, PH_SSTC30, PH_SSTC40, PH_SSTC50,  PH_SSTC60, PH_SSTC70, PH_SSTC80, 

PH_SSTC90, PH_SSTC100,  PL_P0TC10, PL_P0TC20, PL_P0TC30, PL_P0TC40, PL_P0TC50,  PL_P0TC60, 

PL_P0TC70, PL_P0TC80, PL_P0TC90, PL_P0TC100,  PM_P0TC10, PM_P0TC20, PM_P0TC30, PM_P0TC40, 

PM_P0TC50,  PM_P0TC60, PM_P0TC70, PM_P0TC80, PM_P0TC90, PM_P0TC100,  PH_P0TC10, PH_P0TC20, 

PH_P0TC30, PH_P0TC40, PH_P0TC50,  PH_P0TC60, PH_P0TC70, PH_P0TC80, PH_P0TC90, PH_P0TC100,  

PL_P1TC10, PL_P1TC20, PL_P1TC30, PL_P1TC40, PL_P1TC50,  PL_P1TC60, PL_P1TC70, PL_P1TC80, 

PL_P1TC90, PL_P1TC100,  PM_P1TC10, PM_P1TC20, PM_P1TC30, PM_P1TC40, PM_P1TC50,  PM_P1TC60, 

PM_P1TC70, PM_P1TC80, PM_P1TC90, PM_P1TC100,  PH_P1TC10, PH_P1TC20, PH_P1TC30, PH_P1TC40, 

PH_P1TC50,  PH_P1TC60, PH_P1TC70, PH_P1TC80, PH_P1TC90, PH_P1TC100,  

PL_P2TC10, PL_P2TC20, PL_P2TC30, PL_P2TC40, PL_P2TC50,  PL_P2TC60, PL_P2TC70, PL_P2TC80, 

PL_P2TC90, PL_P2TC100,  PM_P2TC10, PM_P2TC20, PM_P2TC30, PM_P2TC40, PM_P2TC50,  PM_P2TC60, 

PM_P2TC70, PM_P2TC80, PM_P2TC90, PM_P2TC100,   

PH_P2TC10, PH_P2TC20, PH_P2TC30, PH_P2TC40, PH_P2TC50,  PH_P2TC60, PH_P2TC70, PH_P2TC80, 

PH_P2TC90, PH_P2TC100   

FROM C1, C2, C3 



160 

 

WHERE c1.respondent = c2.respondent  AND c1.respondent = c3.respondent  

INTO table costdataT 

 

D. Training Cost 

Training cost assuming 10% to 100% impact of knowledge transfer.  

 

10% Z-Score $ Amount from the Mean 

 

Low Medium High Low Medium High 

Solo .0493 .1883 .0994 7 123 126 

Pair .0128 -.0195 -.0080 2 (13) (10) 

JJ .0015 .0441 .0194 0 29 25 

JS -.0288 -.0926 -.0439 (4) (61) (56) 

SS -.0107 -.0556 -.0351 (1) (36) (44) 

None .0134 .0482 .0169 2 32 21 

One -.0146 -.0385 -.0399 (2) (25) (50) 

Both -.0230 -.0744 -.0088 (3) (49) (11) 

Mean 3,320 22,679 64,763 

   SD 134 654 1,266 

    

20% Z-Score $ Amount from the Mean 

 

Low Medium High Low Medium High 

Solo .202 .775 .445 26 493 504 

Pair .052 -.080 -.036 7 (51) (41) 

JJ .006 .181 .087 1 115 98 

JS -.118 -.381 -.196 (15) (243) (222) 

SS -.044 -.229 -.157 (6) (145) (178) 

None -.060 .198 .075 (8) 126 85 

One -.060 -.159 -.178 (8) (101) (202) 

Both -.094 -.306 -.039 (12) (195) (44) 

Mean 3,216 20,513 55,912 

   SD 131 636 1,132 

    

30% Z-Score $ Amount from the Mean 

 

Low Medium High Low Medium High 

Solo .311 1.324 .746 40 739 755 

Pair .081 -.137 -.060 10 (77) (61) 

JJ .010 .310 .145 1 173 147 

JS -.181 -.651 -.330 (23) (364) (334) 

SS -.067 -.391 -.263 (9) (218) (266) 

None .084 .339 .126 11 189 128 

One -.092 -.271 -.299 (12) (151) (303) 

Both -.145 -.523 -.066 (19) (292) (67) 

Mean 3,147 19,069 50,011 

   SD 128 558 1,012 

    

40% Z-Score - 40% Impact $ Amount from the Mean 

 

Low Medium High Low Medium High 
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Solo .422 1.875 1.081 53 986 1,007 

Pair .109 -.194 -.087 14 (102) (81) 

JJ .013 .439 .211 2 231 196 

JS -.246 -.923 -.477 (31) (485) (445) 

SS -.091 -.553 -.381 (11) (291) (355) 

None .115 .480 .183 14 252 171 

One -.125 -.384 -.433 (16) (202) (404) 

Both -.197 -.740 -.495 (25) (389) (462) 

Mean 3,078 17,625 44,110 
   

SD 126 526 932 
   

 

50% Z-Score $ Amount from the Mean 

 

Low Medium High Low Medium High 

Solo .537 2.480 1.450 66 1,232 1,259 

Pair .139 -.257 -.117 17 (128) (102) 

JJ .017 .581 .282 2 289 245 

JS -.313 -1.220 -.640 (39) (606) (556) 

SS -.116 -.732 -.511 (14) (364) (444) 

None .146 .635 .246 18 316 213 

One -.158 -.508 -.581 (20) (252) (505) 

Both -.250 -.980 -.128 (31) (487) (111) 

Mean 3,009 16,182 38,210 

   SD 123 497 869 

    

 

60% Z-Score $ Amount from the Mean 

 

Low Medium High Low Medium High 

Solo .655 3.132 1.829 79 1,478 1,511 

Pair .170 -.324 -.148 21 (153) (122) 

JJ .020 .734 .356 2 346 294 

JS -.382 -1.541 -.808 (46) (728) (667) 

SS -.142 -.924 -.645 (17) (436) (533) 

None .178 .802 .310 22 379 256 

One -.193 -.641 -.733 (23) (303) (606) 

Both -.306 -1.237 -.161 (37) (584) (133) 

Mean 2,940 14,738 32,309 

   SD 121 472 826 

    

70% Z-Score $ Amount from the Mean 

 

Low Medium High Low Medium High 

Solo .776 3.815 2.182 351 3,081 1,763 

Pair .201 -.395 -.176 91 (319) (143) 

JJ .024 .894 .425 11 722 343 

JS -.453 -1.877 -.964 (205) (1,516) (779) 

SS -.168 -1.126 -.769 (76) (909) (621) 

None .211 .977 .370 95 789 299 

One -.229 -.781 -.875 (104) (630) (707) 

Both -.362 -1.507 -.193 (164) (1,217) (156) 
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Mean 2,871 13,294 26,408 

   SD 120 452 808 

    

80% Z-Score $ Amount from the Mean 

 

Low Medium High Low Medium High 

Solo .900 4.501 2.471 106 1,971 2,014 

Pair .233 -.466 -.200 27 (204) (163) 

JJ .028 1.054 .482 3 462 393 

JS -.525 -2.215 -1.092 (62) (970) (890) 

SS -.195 -1.328 -.871 (23) (582) (710) 

None .244 1.153 .419 29 505 341 

One -.266 -.921 -.991 (31) (403) (807) 

Both -.420 -1.778 -.218 (49) (779) (178) 

Mean 2,802 11,850 20,508 

   SD 118 438 815 

    

90% Z-Score $ Amount from the Mean 

 

Low Medium High Low Medium High 

Solo 1.025 5.157 2.673 119 2,218 2,266 

Pair .266 -.534 -.216 31 (230) (183) 

JJ .032 1.208 .521 4 520 442 

JS -.598 -2.538 -1.181 (70) (1,091) (1,001) 

SS -.222 -1.522 -.943 (26) (654) (799) 

None .278 1.321 .453 32 568 384 

One -.303 -1.055 -1.072 (35) (454) (908) 

Both -.478 -2.037 -.236 (56) (876) (200) 

Mean 2,733 10,406 14,607 

   SD 116 430 848 

    

100% Z-Score $ Amount from the Mean 

 

Low Medium High Low Medium High 

Solo 1.152 5.750 2.789 132 2,464 2,518 

Pair .299 -.595 -.226 34 (255) (204) 

JJ .035 1.347 .544 4 577 491 

JS -.672 -2.829 -1.232 (77) (1,213) (1,112) 

SS -.249 -1.697 -.984 (29) (727) (888) 

None .313 1.472 .473 36 631 427 

One -.340 -1.177 -1.118 (39) (504) (1,009) 

Both -.538 -2.271 -1.246 (62) (973) (1,125) 

Mean 2,664 8,963 8,706 

   SD 115 429 903 
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