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Abstract

A computer vision-based algorithm for Unmanned &lelehicle state estimation during
vehicle recovery is presented. The algorithm isnded to be used to augment or back up Global
Positioning System as the primary means of nawgatiuring vehicle recovery for UAVs. The
method requires a clearly visible recovery targihwwinarkers placed on the corners in addition
to known target geometry. The algorithm uses ctirgjetechniques to identify the markers, a
Canny Edge detector and a Hough Transform to vérgge markers actually lie on the recovery
target, an optimizer to match the detected mankets coordinates in three-space, a non-linear
transformation and projection solver to observegbsition and orientation of the camera, and
an Extended Kalman Filter (EKF) to improve the kiag of the state estimate. While it must be
acknowledged that the resolution of the test imagesl is much higher than the resolution of
images used in previous algorithms and that theg@maused to test this algorithm are either
synthetic or taken in static conditions, the altjon presented does give much better state

estimates than previously-developed vision systems.
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1 Introduction

1.1 Overview and Motivation

This work is a further development of a projecttstin November of 2010 for EECS 741 at
the University of Kansas to develop a vision-bastate estimation algorithm for UAV
autolanding and other autorecovery systems. Custatg estimation methods for 6DOF mobile
robots typically require the use of GPS. A receowegnment report [1] identified GPS as a
national security threat due to its susceptibil@yjamming. Devices capable of such denial-of-
service jamming attacks are available for as l@8e80 2011 US Dollars [2]. Alternative methods
for UAV navigation must therefore be developed tipatarly for military UAVs operating in
hostile environments. In addition to the deniakefvice problem, most commonly-used GPS
units do not meet performance requirements for-graened navigation tasks such as UAV
landing on runways, on helipads, or in nets. Thiesis demonstrates a proof-of-concept of a
method that can be modified to meet these requimésrie VFR conditions and is more difficult
to jam than GPS.

Some sources of GPS service unavailability are eletleud cover, solar flares, and
permanent obstructions such as trees and buildiMpsle any of these could certainly pose a
problem to robot navigation, a more serious thiggresented by hostile action. GPS is now a
staple of modern life: it is used in everythingrfranavigation of automobiles to timestamping
financial transactions to controlling ships in harblt is possible that terrorists or rogue states
could identify the United States’ or its allies’ SPinfrastructure as the lynchpin in

transportation, military, and even financial intrastures. A recent report from the National



Space-Based Positioning, Navigation, and Timingigaky Board identified GPS as a national
security threat for these reasons, stating [1]:

The United States is now critically dependent onSGP For

example, cell phone towers, power grid synchroiopnatnew

aircraft landing systems, and the future FAA Aimiffic Control

System (NEXGEN) cannot function without it. Yet wand

increasing incidents of deliberate or inadvertenerference that

render GPS inoperable for critical infrastructuperations.

Another recent report iNew cientist [2] described a several-hour disruption in airftcaf
control, emergency pagers for doctors, sea-traffiatrol, cell phones, and ATMs in San Diego
due to a GPS-jamming exercise performed by the NAgydangerous as such attacks are, a
potentially more damaging scenario could be causedsPS-spoofing devices: signals that
would drown-out real GPS signals and fool receiwets thinking they were only slightly offset
from their true position. Such devices would hastastrophic effects on UAV autolanders, and
could be extremely difficult to detect since GP&eireers would have no indication of a failure.

GPS is very good for medium-resolution navigatiequirements with position accuracy to
better than a 30 foot radius with 95% probabili8}, [[4]. More advanced units with RTK
functionality provide accuracy on the order of saléches and even better precision in perfect
conditions. However, the performance of such uisitsubject to the availability of satellites,
dynamic conditions, and even geographical featurbs. accuracy provided by standard GPS
receivers is not sufficient for fine-grain navigatitasks. RTK-enabled GPS units certainly do
provide the required performance for fine-grainegigation; however, all units suffer equally

from problems introduced by environmental condiion



Vision-based state estimation for robotic mobilatjgrms is an appealing method due to its
passive nature and its inherent ability to prodieseilts based on the physical surroundings of
the platform. The radiant intensity of common liglgt scenarios is also much higher than the
intensity of electromagnetic waves used in othersitmming devices (radar, lidar,
magnetometers, etc.), making optical sensing muole mobust against jamming techniques.
Cameras also generally reject radiation from oatsiebir field of view, unlike ommidirectional
GPS antennas that can be jammed from any aspegtalDiameras are ubiquitous, inexpensive,
lightweight, low power, and not nearly as suscéetifo electromagnetic interference as the
previously-mentioned methods. With powerful embeddprocessors needed to drive
computationally-intensive vision algorithms becogiavailable in ever-smaller and lower-
power packages, vision-based navigation methoda@seviable on all but the smallest class of

robotic platforms.

1.2 Previous Work

The method developed in this Thesis for robot sésttmation is tailored for autonomous
landing of unmanned aerial vehicles (UAVS), butdigectly applicable to any class of robot
when landmarks of known geometry are availableha operational environment. Several
successful attempts have been made to developspewific algorithms, primarily for rotorcraft
[5], [6], [7], [8]. However, these algorithms a#ly on a coplanar assumption and a customized
landing pad, and are not necessarily suitable ger with a fixed-wing vehicle. An effort was
made to develop an autoland system for a fixed-WdAy [9], but not all state variables were
estimated. There are some other related localizatystems that have been developed [10], but

none as general as the system presented in th&ssThe



The approach used draws heavily from the overathatefrom Sharp et al [5]. This team
designed a highly-tailored landing pad to enableshate estimation for a helicopter, shown in
Figure 1.1. While they did achieve RMS accuracwithin 2 inches in all axes, the RMS error
in Euler angles was 4.5 degrees in the worst axisdegree in the best axis. It should be noted
that their system was successfully developed, dested used in an autonomous helicopter

landing.

&

(d) camera view

| |
|
(a) landing target design 1
|
B . I
. B A
.f -8 : i oy
- w : : (e) histogram
10 .9 i !
A i 3 4
B ' W= e e -
JA1..12
s _.13 8 _'1? r2_:2__.21
. D = v

15,16 ;19 120 ;23 (24

(b} feature point labels (f) thresholded image

{c) detected corners (q) foreground regions

Figure1.1: Landing Target Design from Sharp et al [5]



Saripalli et al took a similar approach, and weske &0 achieve a mean error in orientation of
six degrees and a mean error in position of juglr @/foot using a 4 foot by 4 foot helipad.

Figure 1.2 shows their landing pad design.

(a) Image from on-board (b) Thresholded and Fil-
camera tered Iimage

(c) Segmented Image (d) Final Image

Figure 1.2: Landing Pad Design from Saripalli et al [6]

Cesetti et al took a different approach and deweslop system that uses natural landmarks
and SIFT (Scale-Invariant Feature Transform) festun combination with satellite imagery to
estimate position in all three axes as well as imggld 1]. However, this approach only works if
the image is taken normal to the ground plane, (pich and roll are both constant), which
certainly cannot be guaranteed on an airplane guanding. It could be used, however, to
provide a navigation solution during steady leVight if GPS is unavailable.

Frew et al employed SLAM (Simultaneous Localizataord Mapping) in conjunction with

an unscented Kalman Filter and adaptive recedimgdro control to solve the problem of UAV

5



navigation in forests and urban environments. Whseful for these scenarios, this method is
not suitable for the problem of fine-grained naviga and guidance all the way through

recovery.

1.3 Proposed Solution

The objective of this research is to develop aovidlased full state-estimation algorithm
suitable for use not only on UAVSs, but any robaiicmanned platform that is within line-of-
sight of landmarks of known geometry. The algoritdeveloped could be used as a landing
navigation solution for UAVs, optionally-piloted heles, or even for pilot training. The
algorithm in this Thesis can be readily adaptedufse with: an arbitrary number of landmarks in
arbitrary locations, photometric stereo vision togment the state estimates with direct
measurements of depth, or even multiple camerasdfcamera is insufficient to capture every
necessary landmark.

The algorithm is designed to be used on existimgwvery targets (runways, helipads, and
nets) that have clearly visible edges. Unicolocuiar markers are placed on each corner of the
recovery target to clearly denote their centroidghe image. The algorithm requires the color of
the edges, the color of the markers, the 3D positioeach corner of the recovery target, and at
least a very rough initial state estimate that \@dag obtained from another higher-level vision-
based navigation system or some other positiorystes. The algorithm presented in this work
makes the following assumptions:

» The corners of the runway are always in view ofdamera. This would be accomplished

by the flight control system in conjunction withoper placement of the camera.

* The markers used to denote the corners of the num@ane of relatively constant, known

color. Ground crews would ensure that these maskang clearly visible.
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» The lines used to denote the perimeter of the ryrava of relatively constant, known
color.

» There is negligible barrel distortion in the camkmas. Most modern digital corrections
remove such distortion, and if not, simple mathéraatechniques can be employed to
remove them.

* There is no dust or debris in the camera lens.

» Lighting conditions are such that the runway isadle illuminated. Strategically placed
lights could easily be employed that would enabie tise of this algorithm at dawn,
dusk, or night, in cloudy conditions, and otherawarable lighting conditions.

* The vehicle is already close enough to the runwagie¢arly identify the corners of the
runway.

This algorithm is intended for use during the fia@proach leg of vehicle recovery. It is
intended that the vehicle control system would clwitrom either a course-grain or medium-
grain navigation solution to this system when tledigle is roughly lined up with the runway,
helipad, or net. The course-grain navigation sotutvould provide the initial state estimate. The
navigation solution provided by this algorithm waddde valid until the threshold of the runway
leaves the field of view of the camera. Modificagaare proposed in the Conclusions that would

enable the algorithm to handle this case as well.



2 Theoretical Development of the M ethod

2.1 Overview

An overview of the algorithm is given in Figure 2Tlhe focus of this Thesis is on the core
algorithm, which consists of the following threages:

1. Runway Identification: the algorithm for picking the optimal two-dimeosal
guadrilateral in a given image and correlating fing resulting 2D points in the target
image to four 3D points in the world coordinatetsys.

2. State Observation: the algorithm for estimating Euler angles andalgmsition from the
2D quadrilateral and corresponding 3D geometry.

3. Extended Kalman Filter (EKF): the algorithm for obtaining a near-optimal estienaf
the true state of the vehicle using the currertesthservation in conjunction with prior
knowledge of the vehicle’s state and dynamics.

In order to implement this algorithm onboard a m@atraft, it would be desirable to at least
control the field-of-view angle, or the zoom, oktbamera. In a more advanced system, the
camera could also be mounted on a gimbal whichdcotént the camera in the direction of the
runway regardless of the orientation or positiothef aircraft.

The algorithm has as its inputs the image of titevery target, the corner marker color, the
edge color, and the runway target geometry. Th@armbcamera would provide the image, and
the runway selector would provide the other infaiora The state estimation would be passed

to both the camera controller to adjust field-afwiangle as well as the autoland controller.



Onboard Camera Runway Selector

Runway Image Runway Position/Geometry

Core Algorithm

Stage 1 Image Coords Stage 2 Stage 3

Runway Object Coords State
Identification Observation

State Observation

: Extended

Kalman
Filter

State Estimate

Autoland Controller

Camera Controller

Figure 2.1: Algorithm Overview and I ntegration with Autoland System

2.2 Coordinate Systems and Image Geometry

Figure 2.2 shows the conventions used for the ryrogardinate system.

X, (®

|| True North

Xobj

Figure2.2: Local Coordinate System



Figure 2.3 shows the conventions used for the ingagametry. The figure illustrates the
conventions for the field-of-view angles in bothreditions, as well as so-called “normalized
device coordinates” (NDCs) used to normalize eachge on the interval [-1,1] in both the

vertical and horizontal directions. The equatiosedifor this normalization are Eq. 2.1 and 2.2.

"Far Planc" - Abstract "Base" of the Frustum

/ w (pixels)

/ | > o) A

X. 1XEI1S.

/ﬁ )_ /A o Ynde ©)
/32 fovy Y 7 \ /i AL
/ 2, X 40©) h (pixels)
l/ l/
/ y / ~ 7 Znde®)
/ s
Ya4 s /
Y / _ 7 "Near Plane" - A 2D Image

Figure 2.3: Image Geometry and Coor dinate Systems

= (10 ~2) /(%) 2.1
Yoo =Yoo =12 /(7 2.2

If dis the distance separating the near plane anfhthpane, then the field of view angles in

the x- and y-directions are related as shown in E¢gsand 2.4.

fov, =2tan* (ﬂj [2.3]
2d

ot N
fov, = 2tan (Zd j [2.4]
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Thus, the field-of-view in thg-direction can be solved for in terms of the fieldview in
the x-direction and the image aspect ratio as showngnZs. This is helpful for converting

between the convention used in this Thesis anddheention used in FlightGear.

fov, fov.
tan 2* ta 2*
— = /= 2tan*| ———= < [2.5]
AR

(+)

2.3 Runway | dentification

fov, =2 tan™

2.3.1 Image Contrasting Algorithm

The first stage of the algorithm calculates a heghtrast image from the target image based
on a color of interest. Two SSE images are gengtratee SSE from the target marker color and
one SSE from the target edge color.

This is a simple technique that generally greatijuces the subspace of problems that must
be solved by later stages of the algorithm. Therélgm simply computes the sum-square error

in imagel from a target color defined byr, g, b> as shown in Eq. 2.6.
B Y S 26l
Figure 2.1 shows the square-root (for visualizaponposes) of the Sum-Square Error from

the target color in a sample image.
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Figure 2.4: V(SSE) from Marker Color

2.3.2 Clustering Algorithm

The purpose of the clustering algorithm is to datee which pixels in a target image belong
to contiguous marker candidates and return theecaordinates of each resulting cluster. A
subset of these clusters will ultimately constittite 2D screen coordinates that are mapped to
3D world coordinates and passed to the state d@stim@ihe clustering algorithm has the
following inputs: SSE from the target marker colihreshold value; search radius for clustering.
It outputs a set of clusters with x and y imageespaoordinates.

The clustering algorithm first thresholds the S8&tage. It then iterates through each pixel
that passes the threshold value. If the pixel thiwiproximity of a cluster (i.e., within the selarc
radius of any other pixel in the cluster), it isdad to the cluster. If it does not belong to an

existing cluster, a new cluster is created with phesl as the only member. In both cases, the
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pixel is removed from the thresholded. This process is repeated until no pixels remain &
thresholded seEach cluster’s mean is calculated during thicess
Figure 2.5shows an image with 7 pixel clusters (dilated fioypéasis) This is the output of

the algorithm with Figure 2.4s the input image.

Figure 2.5: An Example Image with 7 Clusters

The tabulated output of the algorithm is showTable 2.1.

Table 2.1: Clustering Algorithm Output

Cluster # X y
1 94 174
2 144 186
3 147.5 185
4 250.46 327.82
5 368 226
6 389 239
7 408.75 411.58

2.3.3 Canny Edge Detector
The second stage of the algorithm uses a y Edge Detector [13 locate the edges in tl
image. The Canny Edgestéctor is a common-used digital image processing algorithm 1

relies on the gradient magnitude and the gradiéngictibn of an image to locate ed¢ A
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Gaussian is used in combination with the discretévdtive to reduce noise in the resulting edge
map. The inputs to the detector are the standanatien value to use for the Gaussian operator,
the minimum threshold value to use for line strépgind the image itself. The 2D Gaussian is

given by Eq. 2.7.

+
207 20}

G(x,y):e—[xx y ] [2.7]

Taking the partial derivatives with respecixtandy gives Eqgs. 2.8 and 2.9.

06(x ) __ x 155
ax - 0.2 [2 8]

X

42Xy
26(xy) __y Jari]

oy pe [2.9]

y
It is desired to convolve the image&vith the images generated by the two partial déxiea

of G to generate the image gradient in xhdirection and thg-direction. Rather than performing

the convolution directly, the Convolution Theoresnuised. Direct computation is feasible when

o is small; but it is generally much faster to comepthe convolution using Fast Fourier

Transforms. The convolutions are given by Egs. 2rid2.11.
(106,) (% y) = [0 (x Y)(@0) FGx V)@ 0)l](% V) 2.10]
(106, ) (x y) = F [ #[1 (% y))(@,0) FG,(x ()] [(% Y) 2.11]

Taking the Fourier Transform of the 2D Gaussiarnvdéves in thex- andy- directions give

Egs. 2.12 and 2.13.

oGy, y_ ‘f%é
J{T}(w)—-mxae[ ] [2.12]
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[P )i T e

_><<§:\

By symmetry, the same process gives Eq. 2.14 &oy-thirection.

_a,zﬁ_uzﬁ]
2

%, [M}(U@) = ‘iUnyue[ i [2.14]

oy

The gradient operators from Eqgs. 2.13 and 2.14lawe/n in Fourier space in Figure 2.6.

Figure2.6: imag(Gy) (L eft) and imag(Gy) (Right) with ¢ = 1 px

The overall gradient magnitude and gradient dioectre given by Eqs. 2.15 and 2.16. The

results of the operations are shown in Figure @ Afsample case.

lam (X, y)=\/((l 0G, ) (x, y))2+((l E(—I-y)(x,y))2 [2.15]

leo (X, Y) = atanz((l IZIGy)(x y) (1 0G,)(x y)) [2.16]
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Figure2.7: Gradient M agnitude and Direction with ¢ = 1 of a Sample Image
Having finally computed the Gradient Magnitude dbidection, the Canny Edge detector
performs the following steps:

1. Threshold the Gradient Magnitude to generate arpiimage of sufficiently strong
edge candidates. A constant value of 10% overalhgth is used in the algorithm.

2. Discretize the edge directions into 45 degree bins.

3. For each pixel in the image from step 1, if theepibes in a region with a consistent
direction, then it is considered to be an edge.

The results of the Canny operator on a sample imegjshown in Figure 2.8.

Figure 2.8: Results of Canny Edge Detector with ¢ =1 and t = 10% on a Sample I mage
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234 Hough Transform

A Hough transformation [14] is then performed oe thutput of the Canny Edge detector.
This variant of the Hough transform takes in a biienage and returns an image that indicates
where the strongest (or alternatively, most higtdyrelated) lines in the image lie. This process
works by considering every point in image spacbda@ sinusoid in Hough space. Regions with
many intersections of sinusoids in Hough spaceespond to strongly-correlated lines in image

space. The mapping of points in image space tessids in Hough space is given by Eq. 2.17.

0 = XCOs@+ Yy sinp [2.17]

The algorithm works in two steps:

1. Initialize the Hough map to all zeros

2. Whenever a non-zero element is encountered in Irspgee, increment the values along
the corresponding sinusoid in the Hough map.

The Hough Transform of Figure 2.8 is shown in Fgg@r9. The most strongly-correlated

lines are located at the peaks of the Hough tramsfo

Figure 2.9: Hough Transform of a Test I mage
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2.3.5 Cluster-Line Proximity Filter

To reduce the number of marker candidates in ageama filter is employed which checks
the proximity of a marker to a strong edge. Givaarkar candidate A, in order to pass the filter
there must exist a marker B such that the line &trby AB is essentially collinear with a
runway edge. The proximity filter has the followiimgputs: a set of input candidate markers, a
Hough transform, the range ¢findpvalues in the Hough transform, minimum line strénom
the normalized interval [0,1], and the search radpixels.

The line formed by the two candidate markers ingeiapace can be found in Hough-space

by finding the solution to the following systemexjuations:
X, cos@) +y,sin(@) = p
X, Cos@) +y,sin(@) = p
This can be rewritten as:

_ 17 cotg _
A

And then the solution is given as:

B=AC

@=cot™(B,,)

pP= Bz,lsin@)

Table 2.2 shows an example input set of clustergh Cluster-Line proximity filter. Figure

2.10 shows the thresholded Hough transform witntamsity of 40% on the left and the Hough

8!
21(8—-2)!

transform with all(g) = ( ) = 28 possible line searches within a search radius pkéls

on the right. Note that some of the search spasegjaite close and so may not be clearly

distinguishable.
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Table2.2:

Cluster-Line Proximity Filter Input

Cluster (#) X (pixels) y (pixels)
1 58 417
2 63 418
3 144 396
4 149.2 390.6
5 297.79 594.29
6 513 314
7 538 314
8 782.84 596.15

Figure 2.10: Threshold Mask (L eft) and Searched (Right) Hough Space | mages

Table 2.3 shows the resulting filtered clustersgisi threshold value of 40% intensity.
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Table 2.3: Filtered Clusters

Cluster (#) X (pixels) y (pixels)
5 297.79 594.29
6 513 314
7 538 314
8 782.84 596.15

2.3.6 2D Image Coordinate to 3D World Coordinate Optimization

The final step in the algorithm before state obatow is performed is to match the clusters
from the previous step with real 3D world coordesatThis step relies on prior knowledge to
perform the optimization. Given the previous rr{aﬁgpk_1 - ﬁwk_l}, the new optimal map
minimizes the sum-square distance between thequeset of 2D points and the new set of 2D

points while maintaining the same ordering as showiqg. 2.18.

N 2
{ Pap, — I%} = {arg minZ( Pao, = Py, ) - I%} [2.18]

P2py i=1
Therefore ifn is the number of candidate clusters &id the number of desired clusters,
then the number of permutations necessary to fimal dptimal result IS(:) Since this

optimization runs irO(n!) time, it is clear that the previous steps vasihgidish the subspace of

problems that must be solved by this stage of lip@righm.

2.4 State Observation Algorithm

The state observation algorithm is responsibleté&img an initial estimate of the state, the
camera’s aspect ratio and field-of-view angle, arlt of normalized device coordinates along
with these points’ corresponding physical coorddsaand obtaining an optimal estimate of the
observer’s state. In summary, the constants iald@ithm are:

* AR, the aspect ratio of the camera
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fovy, the field-of-view angle of the camera
The dynamic inputs are:
* A mapping of 2D normalized device coordinates tirthorresponding global real-world
3D coordinates.
* Aninitial estimate of the observer’s state (othe case of a moving observer,apriori
estimate of the new observer state).

The outputs of the algorithm are then as follows:

Three Euler angles defining the observer’s oriémat

A 3D displacement vector from the origin in the gea

It should here be noted that a few things are igghan this algorithm, including primarily
spherical distortion and asymmetry in the lens. El@v, many modern digital cameras are pre-
calibrated to remove the effects of spherical digio and this has so far not proven to be an
issue.

The first step in developing this algorithm is torhulate a set of equations that will project a
3D point onto a 2D image using Euler angles an@istation vector. The method used for this
is based on a combination of conventions in aewesgangineering [15] and the method of
projection used in OpenGL [16]. In order to allowojections and translations, Affine
Transforms are used throughout the algorithm.

The camera is assumed to be mounted at the C1e @ircraft, orthogonally situated with the
z-axis pointing ahead of the aircraft and #axis pointing in the starboard spanwise direction.
While this is not realistic in a typical installati, additional rotation or translation matricesldou
easily be used to account for the differences betvibe aircraft C.G. and the camera location.

Since the transformation matrices used assumehbatdirection is initially pointed right and
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the y-direction is pointed up, the transformation matmxst be initialized to account for the
necessary rotation. The necessary rotation is pee with 90 degree rotations about yhand

x-axes as shown in Egs. 2.19 and 2.20.

co E 0 si E (0
2 2 O 010
0 1 0 0 0O 1 0
R = = [2.19]
. (ﬂj ﬂj -1 000
-sinj—| O co%$— g
2 2 0O 0 01
i 0 0 0 1]
1 0 0 0]
1 0 0 O
0 Co{gj - s 7_9 %10 0 -1 0
R = = [2.20]
(ﬂj ITJ 01 0 O
0 sin — CO$ — g
2 2 0 0 0 1
0 0 0 1

The Euler rotation matrices are standard for ae@sgoordinate systems, and are shown in

Egs. 2.21, 2.22, and 2.23.

1 0 0 0]
|0 cof®) -sif{®) 0
R = 0 sin(®) cof{®) 0 [2.21]
0 0 0o 1
[cog(®) 0 sif®) d
| o 1 0o o0
o= -sin(@) 0 cog®) O [2.22]
0 0 o0 1
cofW) -sif¥) 0
_|sin(W) cod¥) O
R, = : : 10 [2.23]
0 0 01
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The translation matrix moves the camera to thermgrand is given in Eq. 2.24.

jop

<

O

N

o o o r
o o r O
o r oo
- o

[2.24]

Finally, the projection matrix is given in Eq. 8.2Note that thenear andzfar parameters
essentially drop out of the equation since norredliz-coordinates are not available, but are
nonetheless shown for the sake of completenessndized z-coordinates on the interval [-1, 1]
represent geometry inside the viewing volume. Smeepth information is available and the z-

coordinates are not used, this information is tattly necessary for the projection.

[ (fov.) 1
cot Y 13— 0 0 0
2 ) AR
0 fov, 0 0
p= ol —~ [2.25]
0 0 near + Afar 2znear [Hfar
mear —ZAar znear — Zfar
| 0 0 -1 0 |

Combining all of these matrices in the proper ordelds Eq. 2.26.
M =PxR xR xR, xRy xR, xT [2.26]
With this transformation matrix available, it iseth possible to transform object coordinates —

that is, 3D runway coordinates in the world cooatknsystem — into clipping coordinates as

shown in Eq. 2.27.

Xclip Xobj
Yaiip -M Yobi
chip Zobj
Wotp ! [2.27]
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Finally, Eq. 2.28 shows the transformation of thpping coordinates into normalized device
coordinates by a projection operation. This isfihal step in the forward-projection of object

coordinates onto the viewing plane.

X X

ndc clip
yndc = ycl ip Wcl ip
anc chip [2 . 28]

This method is well-known and used in many modeimdering systems, with some slight
variations. However, the challenge in this alganitls to invert this process, and solve for the
state variables given normalized device coordinatesobject coordinates.

The resulting system of non-linear equations magdieed using Newton’s Method with an
adaptive step size. While the resulting equatiomes cartainly extremely non-linear, they are
locally quite linear in general, making this metreodeasonable choice. In order to use Newton'’s

Method, the Jacobian matrix must first be calcdate shown in Eq. 2.29.

0%, 0%, ox,, |
o> 90 ob,
J=| a® 90 ob, [2.29]
Y., OV, oy,
o @ " ob,

Each of the 12 unique terms in the Jacobian matras analytically calculated using
GNU/Maxima and imported directly in closed-form antMATLAB. With the Jacobian

calculated, it is then possible to apply Eq. 2@8@anverge to a solution. Her(%%dc_ B ) is the

difference between the observed normalized dewcgdinates in the measured image and the

estimate of the projection of those coordinategthas the current transformation matk and
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the corresponding world coordinates of the poiftisTequation is iterated until convergence is
reached to a reasonable tolerance — typically ino B0 iterations for the first observation and

within 2-3 iterations for subsequent observatioith Wetter initial conditions.

) )

o o

LIJ _ LIJ -1 = =

bx - bx +KJ ( pndc - pndck ) [230]
by by

bZ k+1 bZ k

The choice fow — the adaptive step constant — is based on amasism of the approximate
local linearity of the system of equations. It ssamed that the transformation equation is
roughly linear withint/6 radians of change in any Euler angle and widmy change in distance.
This encourages the solver to look for solutionat tare close to the initial condition and

improves the stability of the solver overall. Thgpeession fork is given in Eq. 2.31.

. 1 it |max(absf{® © W) <7 /€ -
1/ max(absf{® © W}) otherwise

It is clear from this process that exactly three-fimensional points are required to solve the
system. However, Newton’'s Method may be generalimesdverconstrained systems if the
Moore-Penrose Matrix Pseudoinverse is utilized.hSaidechnique will yield a solution that is
optimal in the Least-Squares sense, thus improbatl the accuracy of the solution as well as
convergence characteristics of the algorithm’s enm@ntation. The pseudoinverse can be
calculated using the Singular Value Decompositibthe Jacobian matrix [17]. If the SVD af

is given by Eq. 2.32, then the pseudoinversgisfEq. 2.33.

J=uUzVv’ [2.32]
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J'=Vvz'U’ [2.33]

SinceX is a diagonal matrixz” is given by taking the scalar reciprocal of eaéhgdnal
element of the matrix. This is the computationalthnd used by MATLAB'’spi nv function,
which is utilized in this algorithm. Using this tedque, the number of two-dimensional points
that may be used for solving the system is on tierval [3). If depth information were

available, the number of permissible points wowdddme [2yp).

2.5 Extended Kalman Filter

251 System Dynamics

A very simplified set of vehicle dynamics (Eq. 2.34as been contrived for simulating
motion. The objective of this set of dynamics itovide a simulation platform for mimicking
the trajectory of an aircraft without becoming emtwered in the details of real aircraft
dynamics. The added benefit of using a simplifietlf dynamics is that it becomes easier to
tune the Extended Kalman Filter (EKF).

The set of dynamics in question was developed ubmdollowing assumptions:

1. The vehicle always flies in the direction of thesa®f the aircraft: i.e. no angle-of-attack

or angle-of-sideslip.

2. The total forward velocity of the aircraft is comst.

3. Three control inputs directly and instantaneouffigch the Euler angles.

In no way is this set of dynamics intended to bsubstitute for real aircraft dynamics.
However, the trajectory of an aircraft on approaah be mimicked with this set of dynamics
and it is sufficient for demonstrating that thig@ithm can track the trajectory of a moving body

in flight.
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Recalling thatx,, y», andz, are the local coordinates of the vehicle with eesggop, of the

runway, the system dynamics are given as showjir2 4.

b, =U cos® cosV

b, =U cos® sin¥

b, =-U sin®

b=, [2.34]
O=u,

Y=y,

In non-linear state-space form, this can be writte shown in Eq. 2.35.

[&] [0 0 00 0O 0 ] [1 0

®/ |[0000O0O 0 e 0 1 (

Y| |0 00O0O0O 0 W 0 0 1fu,

b [=|0 0 0 0 0 O co® co¥||b [+| O O [Pu, [2.35]
b,[ [0 0 0 0 0 O co® sit | b, 0 0 Qu,

bl [0 00 00O =-si® |[b||0O00

U] |0 00 0O0O 0 |Jlu] |0 o0 (

For the purposes of simulation this model can Berdtized into the form of Eq. 2.36 with a
specified sampling time.
X = P X+ 0 [2.36]

The discretized version of the system dynamiciasve in Eq. 2.37.

) 1 00 O0O0O 0 ) (AT 0 0]

© 01 0O0O00O0 0 C] 0 AT 0

Y 001 0O00O0 0 W 0 0 AT ||u,

b ={0 0 01 0 0 co® coa¥AT ||b | +| O 0 Qug [2.37]
b, 0 0001 0 co® siAT ||b, 0 0 Ol Uy |,

b, 00000 1 -si®AT ||b, 0 0 O

Uj, |[00000O0O 1 Jul, L o o o
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25.2 Filter Design

A conventional linear Kalman Filter [18] consisté twvo steps: a prediction step and a
correction step. The prediction step is performa&dg Eqs. 2.38 and 2.39 [19].

Xesg (7) =D X, +T, 0, [2.38]

Rea(7) = O R +Q, [2.39]

The optimal Kalman gairK is calculated using Eqg. 2.40. The correction dteghen

performed using Egs. 2.40, 2.41, and 2.42 [19].

Ko =ROH[HREOH +R ] [2.40]
)2k+1(+) = )2k+1(_) + Kk [Zk - Hk)’zk+1(_)] [241]
R =[R () +HIRM, ] [2.42]

The linear Kalman Filter may be extended to the-livwear case by linearizing about the

current state and covariance. The non-linear nauitble state transition function and

measurement equation are given by Eqs. 2.43 add 2.4

e = F (R, Gy ) + W [2.43]

Zew =h(X ) +Y, [2.44]

Egs. 2.43 may be discretized by first forming ttegestransition matrix as shown in Eq. 2.45.

D>, =i [2.45]
oX R

Similarly, the measurement matrix is formed as showEq. 2.46.

H, :6_[1 [2.46]
oX %
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Since the outputs of the Stage 2 algorithm are lgifGpler angles and Cartesian coordinates,
there is no direct observation for U. Therefore diserete measurement equation becomes Eq.

2.47.

[2.47]

o O r O O O
O r O O O O
O O O O O

© oo oo
© 0o or o
©O o or oo
O 0O 0O 0 o o

2

+

<

Since this is a very non-linear system, it is difft to analytically solve fof) (the process
noise covariance) arid (the measurement noise covariance). For the paspoisthis ThesiQ
andR are assumed to be the constant matrices showqsnZ48 and 2.49. This says that the
variance of the process noise is 111 the measurement noise over an infinite peribtinoe
and that all noise is completely uncorrelated. Tikiperhaps not the optimal solution for the

matrices, but it still yields good results that she®wn in the next section.

01 0 0 0 0 0 0

0 00 0 0 0 0 O

0O 0 01 0 0 0 O
Q=0 0 0 01 0 0 O [2.48]
O 0 0 0 .00 0 O

O 0 0 0 0 .01 0

0 0 0 O 0 .01

10 00 0 (

010000
Ro|00 1000 (2.49]
000100

000010

0000 0 1
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3 Algorithm Implementation

3.1 System Structure

3.1.1 Configuration Options
The system'’s configuration options are shown inl@&@bl. These options are intended to be
static options that would be set prior to usage ieal-world scenario.

Table 3.1: Algorithm Configuration Options

Parameter Name Parameter Description
line_thresh Allowable SSE deviation from RGB line color.
nTkr _thresh Allowable SSE deviation from RGB marker color.
i ne_col or Target RGB line color for runway edges.
nt kr _col or Target RGB marker color for runway markers.
i ne_signma Standard deviation for edge gradient Gaussianxelgi

nr kr _search_r Proximity search radius for marker in pixels.

hough_rho_res p resolution for the Hough transform in pixels.
hough_phi _range ¢ range for the Hough transform in degrees.
hough_t hresh Minimum line intensity for cluster proximity search
hough_search_r Maximum search radius for cluster proximity.
AR Image aspect ratio.
fovy Field-of-view angle in radians.
Znear Near z-coordinate (unused).
zf ar Far z-coordinate (unused).
i msize Image size, [h w], in pixels

3.1.2 Algorithm Inputs

Table 3.2 shows the inputs to the algorithm. Thegeintended to be variables that could
change from one iteration to another. Note th&t not intended to be a permanent part of the
algorithm, but was introduced to quickly but crydebmpensate for difficulties created by a

natural image test.
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Table 3.2: Algorithm Inputs

Input Name Format Description
img_raw hxwx 3 RGB image Raw RGB image
vision_cfg_props| Structured config data Configunagproperties
coord_map 4x4 matrix Previous 2D Image to 3D woddrdinate map
X_post 7x1 matrix Previous optimal state estimate
P_post 7X7 matrix Previous optimal covariance estigm
u k 3x1 matrix Current control input
alpha Constant Angle-of-attack estimate
dt Constant Sampling time interval

3.1.3 Algorithm Outputs

Table 3.3 shows the outputs of the algorithm. Tpintal state estimate, optimal covariance
estimate, and coordinate map should simply be gdasse the algorithm on the next iteration,
comprising a feedback loop.

Table 3.3: Algorithm Outputs

Output Name Format Description
X_post 7x1 matrix New optimal state estimate
P_post 7X7 matrix New optimal covariance estimate
z 6Xx1 matrix Raw observation from the core alganith

coord_map 4x4 matrix New 2D Image to 3D world caoate map
vision_perf Structure CPU load data for each staglee algorithm
delta_ndc 4x12 matrix Sensitivity to eackngc,Ynac> pair
delta_fovy 1x6 matrix Sensitivity to fov

3.2 Complexity Analysis

Table 3.4 shows an algorithmic complexity analysfi®ach major sub-stage in the overall
algorithm. This complexity analysis can be usedhvétnpirical data to project the effect of
changes in the data size on the overall computatioad on the target system. Most operations
scale linearly, but there are a few exceptions:

» The Edge Detection algorithm is dominated by thst Faurier Transform used to apply

the Gaussian smoothing operation, and this rutiee@arithmic time.
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« The Hough Transform runs i®(n*m), although for practical purposes this can be
approximated a®(n?).

* The Cluster proximity algorithm is defined recusdivand is quadratic in complexity.

* The mapping algorithm runs in factorial time, aligh the proximity algorithm is
designed to keep the number of inputs to this d@lgorvery low.

Table 3.4: Algorithmic Complexity

Subsystem Complexity Meaning of n M eaning of m
Image Acquisition Oo(n) Numberir(:]fapgéels in the -
Line SSE o(n) Numberir(:]fapgéels in the i
Marker SSE o) Numberigapgzels in the )
Edge Detect O(nlogn) Numberigapgzels in the -
Hough Transform o(n*m) Number of pixels in the |  Number of detected edge
Hough Transform image pixels
Cluster o(n+m) Number_ of pixels in the | Number of _detected marker
image pixels
Cluster Proximity o(n?) Numbeaggetstfé clusters -
Cluster 2D to 3D o Number of candidate
. (n!) -
Mapping clusters
State Observation o1 - -
Kalman Filtering o1 - -
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4 Reaults

4.1 Synthetic Testswith FlightGear

4.1.1 Simulation Setup

Several trajectories were set up using FlightGeaR.0.0 [20]. KSFO runway 19R was
chosen as the target airport for performing testthe algorithm since it provided an opportunity
to demonstrate robustness in the presence ofterddtscene with multiple runways.

Since FlightGear does not natively support thetamidbf items like markers, corner markers
were artificially superimposed on each of the insad#hile this practice calls into question the
results of the clustering algorithm, it enables @en and more flexible testing of the state
observation algorithm and Kalman filter in the gmese of motion. Natural image tests are later
performed to validate the clustering algorithm.

All sample images were rendered in FlightGear 2db.@n Nvidia GeForce 9600GSO video
card with the following rendering options:

» 1024x768 image resolution

55° field-of-view in thex-direction

8X Full-Screen Anti-Aliasing
» 16X Anisotropic Filtering

Table 4.1 shows the configuration options usedfioof the synthetic tests.
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Name Value
line_thresh 50°
nrkr_thresh 50°
line_color [230 230 230]
nrt kr _col or [255 0 0]

[ ine_signa 1
nr kr _search_r 10
hough_rho_res 2
hough_phi _range [-90:0.25:89.75]
hough_t hresh 0.4
hough_search_r 7
AR 4/3

f ovy 42.65 deg.

znear 0.1

zf ar 10

imsize [768 1024]

The test images were generated by the followinggss:

Table4.1: Configuration Optionsfor Synthetic Testswith FlightGear

1. Generate the desired trajectory in MATLAB using Hehicle dynamics, a set of control

inputs, and a set of initial conditions.

2. Output one element at a time from the resultingisage of state vectors to FlightGear

over a UDP interface using a custom-developed Gogram.

3. For each frame, capture the render window and isavea PNG file.

Eq. 4.1 shows the formula used for computing tlmevay’s world coordinates in terms of the

runway lengthl|, width,w, true (not magnetic) heading anglé,and altitudeh.

Psp =

(0,0,h),

(g ) wes ] ).

[4.1]

<I [¢osW +wDr;o%l1J +7—sz [, CIsifP +w(] siEMJ +7_sz h>

(I EosW | Csirl h)

The specific values used for the runway geometeygaren in Table 4.2.
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Table 4.2: KSFO 19R Runway Properties

Parameter Value
| (ft.) 7500
w (ft.) 200
¥ (deg.) 207
h (ft. MSL) 0

4.1.2 Synthetic Test 1: Straight Approach

The first test consists of a straight-in approadth e 5 degree descent at 100 ft./sec. The
initial conditions for this test are shown in Taldl8& for both the true trajectory and the initial
estimate for the solver. The rest of the trajectoas simulated at a sampling time of 0.5 sec.

until 9.5 secs.

Table 4.3: Initial Conditionsfor Synthetic Test 1

TrueValue Initial Guess
@ (deg.) 0 0
O (deg.) -5 -10
¥ (deg.) 207 210
by (ft.) 1203.7 0
by (ft.) 501.1 0
b, (ft.) -200 -100
U (ft./sec.) 100 80
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Figure 4.1 shows the set of images that was gextenat-lightGear.
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Figure4.1: Straight Approach Image Set (Synthetic Test 1)

Figure 4.2 shows the results from the Euler anglenates at each time interval.
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Figure4.2: Euler Anglesfrom Synthetic Test 1
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The trajectory from the simulation is shown in Fgul.3. Note that the observations and
near-optimal estimates are very nearly co-linead, @ such are difficult to distinguish.
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Figure4.3: X-Y Plane Trajectory from Synthetic Test 1

The estimates fds, andU are shown in Figure 4.3.
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Figure4.4: Z-Coordinate and Total Ve ocity from Synthetic Test 1
The trace of the estimate covariance matrix is showFigure 4.5. This demonstrates that

the Kalman Filter is converging as measurementae@emulated.
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Figure4.5: EKF Covariance Matrix Trace
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Figure 4.6 shows in better detail the error in eaicthe Euler angle estimates. These errors
are defined as the difference between the obsenstr near-optimal estimates and the ground
truth — i.e., 0 corresponds to no error. The edBmdor roll angle are never worse than 0.15
degrees and the error in pitch is never worse tha8 degrees. The error in heading, however,
has a fairly constant bias of almost 0.8 degreéss & likely due to an incorrect assumption

about how the runway is rendered in FlightGear.

0.6

T T
! ! ! ! ! ! —+— Observations
04 - oy o o ‘| —&— Near-Optimal Estimate [

3D (deg.)

t (sec)

Figure 4.6: Euler Angle Accuracy in Synthetic Test 1
The position accuracy is shown in Figure 4.7. Tésults indicate that there is in fact an
incorrect assumption regarding either the field4def~y angle or the rendering of the runway,
most probably the latter. Despite these defects,atcuracy of the algorithm still beats the

accuracy of GPS and succeeds in measuring alttimdeithin 2 feet toward the end of the

simulation.
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Figure 4.7: Position Accuracy in Synthetic Test 1

10

4.1.3 Synthetic Test 2: Pull-Up Maneuver on Approach
The second test consists of a gentle pull-up masreduring an approach. Table 4.4 shows

the initial conditions used for the test.

Table 4.4: Initial Conditionsfor Synthetic Test 2

TrueValue Initial Guess
& (deg.) 0 0
O (deg.) -20 -10
¥ (deg.) 207 210
by (ft.) 1203.7 0
by (ft.) 501.1 0
b, (ft.) -200 -100
U (ft./sec.) 100 80

The control inputs used to simulate the pull-up ewser are shown in Eq. 4.2.
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[4.2]

u = 3°/sec if t< 6 se
° 0  otherwise

Figure 4.8 shows the test image set that was gexgenaing FlightGear.

Figure 4.8 Pull-Up Maneuver I mage Set (Synthetic Test 2)

Figure 4.9 shows the Euler angle estimates fromithage set.
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Figure4.9: Euler Anglesfrom Synthetic Test 2

Figure 4.10 shows the estimated X-Y plane trajgcham this test.
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Figure4.10: X-Y Plane Trajectory from Synthetic Test 2

Figure 4.11 shows thg andU estimates from this test.
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Figure4.11: Z-Coordinate and Total Velocity from Synthetic Test 2
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Figure 4.12 shows the state estimate covariancexni@ce. Again, the filter converges.

trace(P) (1)

Figure4.12: EKF Covariance Matrix Trace from Synthetic Test 2
Figure 4.13 shows the Euler angle accuracy frostést. Once again very good accuracy is

observed, even with a changing pitch angle. Howéwerheading angle bias is again observed,

further pointing to an error in the assumption oithe runway is rendered.
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0 1 2 3 4 5 6 7 8 9 10

Figure 4.13: Euler Angle Accuracy in Synthetic Test 2
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Figure 4.14 shows the accuracy in the positionmegs in this test. Similar trends are
observed in this test as in the previous testaliiittde accuracy is nearly “dead-on” by the end

of the simulation.

I I I
—+— Observations
| —©— Near-Optimal Estimate

t (sec)

Figure 4.14: Position Accuracy in Synthetic Test 2

4.1.4 Synthetic Test 3: Turn from Baseto Final

The final synthetic test consists of a simulatidrihe latter part of a tight turn from a base

leg to final. Table 4.5 shows the initial conditsofor this test.
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Table4.5: Initial Conditionsfor Synthetic Test 3

TrueValue Initial Guess
& (deg.) -30 0
O (deg.) -5 -10
¥ (deg.) 227 210
by (ft.) 1158.3 0
by (ft.) 590.2 0
b, (ft.) -200 -100
U (ft./sec.) 100 80

Egs. 4.3 and 4.4 show the control inputs used tergee the desired trajectory.

! _{12°/sec if 4sest< 65s
o =

0

otherwise

{—4°/sec if t< 5 se
Uy =

0

otherwise

Figure 4.15 shows the image set generated.
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Figure 4.15: Baseto Final I mage Set (Synthetic Test 3)
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Figure 4.16 shows the estimates for the Euler arfglethis test. The tracking was very good
in this test for all angles except heading, whighileited a small bias. The EKF performed very
well in tracking roll angle, showing very small iesation errors are no obvious phase delay in

tracking the time-varying part of the roll anglstory fromt = 4 sectot = 6.5 sec.
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Figure4.16: Euler Anglesfrom Synthetic Test 3
Figure 4.17 shows the X-Y plane trajectory from tiied synthetic test. Tracking was good,

but there is clearly some substantial error betwkerground truth and the estimates.
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Figure4.17: X-Y Plane Trajectory from Synthetic Test 3

Figure 4.18 shows the estimatesiipandU.
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Figure 4.18: Z-Coordinate and Total Velocity for Synthetic Test 3

Figure 4.19 shows the convergence of the Kalméer fil

4

10" &=

trace(P) ()
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Figure4.19: EKF Covariance Matrix Tracefor Synthetic Test 3
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The accuracy for the Euler angle estimations isvshim Figure 4.20. Once again, very good
accuracy is observed except for the heading arggimation, which is systematically off by -0.7

to -0.8 degrees.
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Figure 4.20: Euler Angle Accuracy in Synthetic Test 3

Similar trends in position accuracy are observedrigure 4.21. Altitude estimation — the

most critical parameter for a UAV autolanding syste remains very good.
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Figure4.21: Position Accuracy in Synthetic Test 3

4.2 Natural Image Test

421 Test Setup

This test was performed on a model runway by didircamera along a fixed rail and taking
images at regular intervals to simulate motion. Buéhe difficulty of using such a rail system
without obstructing the view of the camera, a Idefjree wedge was used to elevate the camera
out of the view of the rail and a compensating faraf-attack” term was added to the system
dynamics to allow for an angle between the glidejaaigle and the true pitch angle.

The rail system allows for a constant roll angléctp angle, heading angle, and lateral

runway offset, and a linearly changing trajectamy dltitude and distance to runway. Table 4.6
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shows the initial conditions for the natural imagst. The full trajectory was generated by taking
a snapshot every 2 inches along the rail.

Table 4.6: Initial Conditionsfor Natural I mage Test

TrueValue Initial Guess
& (deg.) 4.4 0
O (deg.) -6.2 -10
¥ (deg.) 0 0
by (in.) -72 0
by (in.) 10 -100
b, (in.) -25.5 -10
U (in./sec.) 4 80

Table 4.7 shows the configuration properties far tlatural image test. These are similar to
the properties selected for the synthetic tests,abel modified due to slight differences in the
marker and line colors.

Table4.7: Configuration Parametersin Natural | mage Test

Name Value
line_thresh 507
nrkr_thresh 50°
i ne_col or [220 230 240]
nrt kr _col or [200 50 100]
[ ine_signa 1

nrkr_search_r 20
hough_rho_res 2
hough_phi _range [-90:0.25:89.75]
hough_t hresh 0.3
hough_search_r 7
AR 4/3

fovy 39.37 deg.

znear 0.1

zf ar 10

i msize [768 1024]
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4.2.2 Test Results

Figure 4.22 shows the image set used for this #streflected from the tables in the
previous section, there is a slight constant notl pitch angle. The most significant difference is
that the markers used for this test are much lattggm those used in the synthetic tests. The

markers were required to be larger in order thekerarlocated on the far side of the runway be

properly detected by the algorithm.

Figure 4.22: Natural Image Data Set
Figure 4.23 shows the Euler angle estimations enrtitural image test. Aside from a few
poor estimates early in the trajectory, the algonitperforms nearly equally well in Euler angle

estimation using natural images as it does in yn¢ghetic case.
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Figure4.23: Euler Anglesfrom Natural Image Test

The ground plane trajectory is shown in Figure 4.24
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Figure4.24: Trajectory from Natural Image Test

The estimates fds, andU are shown in Figure 4.25.
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Figure4.25: Altitude and Total Velocity from Natural Image Test
Figure 4.26 shows that once again the EKF has pgsopenverged by the end of the

simulation.

trace(P) (-)

t (sec)
Figure4.26: Covariance Matrix Trace from Natural I mage Test
Figure 4.27 shows the accuracy of the Euler angfienations. The early inaccuracy in the
first few observations can be attributed to initiaéxperience of the data gatherers in taking
images without affecting the camera’s position andntation. The test apparatus used is of a

very low-grade, and it would have been easy todeetally take images that were not oriented
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correctly. However, this problem clearly diminishiedater observations. That being said, the -
0.8 degree bias in the heading angle estimate eppeae present once again. This likely points

to a systematic problem with the implementatiothefalgorithm.
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Figure4.27: Euler Angle Accuracy in Natural Image Test
Figure 4.28 shows the position accuracy in the rahtimage test. Very good results are
obtained across-the-board in each axis with acgutacwithin ¥4” except for the first few
altitude measurements.
It should be noted that the accuracy of the algoriis probably much higher than the
accuracy of the ground truth. Since these measuntsmeere performed by hand using a crude

rail system, it is entirely possible that much maoeurate results would be seen using a more

robust apparatus.
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Figure 4.28: Position Accuracy in Natural Image Test

4.3 Sendgtivity Analysis

431 Overview

A sensitivity analysis is performed on a set ofthgtic and natural images to determine the
effect of the accuracy of the primary inputs to skete observer on the overall state observation.
For the case which is of primary interest in thiee3is, the most important measurements are:

* The 4<xm,Yim> pairs which define the outline of the runway, irgts.

* The field-of-view angle in thg-direction,fov, in degrees.

Other parameters such as the width of the runvesagth of the runway, runway orientation,

elevation, etc. are assumed to be known well endboghany estimate errors resulting from a
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normal range of measurement errors in these paeasnate much less than those that would
result from comparable errors in the corner dedeciind field-of-view angle measurement.

The sensitivities are numerically calculated by patmg the effect of a small perturbation
about the estimated state. This method assumeththatojection equations are locally linear in
the range of the perturbation, which is reasondbleassume given the rapidity of the
convergence of the solver.

In order to condense the amount of data that maisifted through to understand the overall
sensitivity, the root-mean-square (RMS) sensitivafythe corner measurement is computed
rather than the individual sensitivity.

4.3.2 Synthetic Tests

The sensitivity of Euler Angles to corner measuneims shown in Figure 4.29. It is clear

from this figure that the algorithm was not espkygisensitive to corner measurement for angle

estimation.

(00/dx, ), (deg/pix)

6D/ i r") ms (deg./pix.)

deg./pix.)

(ae/axi r“) ms (deg./pix.)

(a‘{»'laxi r“) s (deg./pix.)

t (sec) 1 (sec)

Figure 4.29: Sensitivity of Euler Angle Estimatesto RM S Corner Measurement Error in

Synthetic Test 3
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The sensitivity of position estimates to RMS cornerasurement is shown in Figure 4.30.
The position errors are much more sensitive to@ommeasurement than are the angle estimates.
A 5 pixel error in measurement would lead to 23 f#eX-Y plane position error at the start of
the trajectory. However, this error diminishestas tunway comes into larger view in the image.
Altitude sensitivity is much more important thanYXplane position, and this sensitivity is much
lower. It must be recognized that the error in pfane will be a function of the approach angle.

It can be observed from this graph that altitud&negion is favorable to a shallow approach

angle.

(0b foy, ) . (ft/pix.)

(@b foy, ). o (Flpix)

(@ Jy, ). (ft/pix)

t (sec) t (sec)

Figure 4.30: Sensitivity of Position Estimatesto RM S Corner M easurement Error in

Synthetic Test 3
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Figure 4.31 shows the sensitivity of the stateneste to field-of-view angle. While the effect
of the field-of-view angle on Euler angle estimatesegligible, it has a profound effect on the

estimates for position, especially in the X-Y plaieall cases, the sensitivity to measurement

errors diminishes as the runway becomes closer.
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Figure 4.31: Sensitivity of State Estimate to Field-of-View Measurement Error in Synthetic
Test 3
4.3.3 Natural Image Tests
Figure 4.32 shows the sensitivity of the Euler angheasurements to RMS corner
measurement error in the natural image test. Thst mignificant state estimate error results

from measurement errors in the corngrgoordinates; however, overall the estimates apjeear

be fairly robust.
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Figure 4.32: Sensitivity of Euler Angle Estimateto RM S Corner M easurement Error in
Natural Image Test
Figure 4.33 shows the sensitivity of the positistireates to RMS corner measurement error.
Again the algorithm is fairly robust overall, buery significant error in the camera’s

coordinate would result from small measurementrsiirothe corners’ imagecoordinates.
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Figure 4.33: Sensitivity of Position Estimateto RM S Corner Measurement Error in
Natural Image Test
Figure 4.34 shows the sensitivity of the statenestie to field-of-view measurement error. As
is to be expected, Euler angles are relativelynside to the field-of-view angle but the
distance-to-runway estimation is profoundly affeicby the field-of-view angle. This angle also
has an impact on the altitude estimate, but itscefliminishes rapidly as the runway comes into

larger view.
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Figure 4.34: Sensitivity of State Estimate to Field-of-View Measurement Error in Natural

Image Test

4.4 CPU Load Analysis

441 Overview

A CPU load analysis is performed for the purpodesientifying bottlenecks and areas for
code optimization, should it be desired that thg@athm is implemented in a real-time system.
The numbers obtained in this section are combinghl thie algorithmic complexity analysis
from Section 3.2 to project the effect of certaiadifications. These results were obtained using
an Intel Core i5-2310m at 2.3GHz with 4GB of RAMining Windows 7 64-bit.

4.4.2 SyntheticImage Load Analysis
Figure 4.35 shows the CPU load breakdown for eaajomsub-algorithm in the system. The

Canny Edge detection algorithm dominates overaldl lon the CPU, making this sub-algorithm

63



the critical bottleneck. Image Acquisition is thecand-most-intensive operation, although this
number is driven by hard drive access times anddvarobably not be nearly as significant in a
real-time system. SSE and Hough Transform opemt@oa next on the list, although these are

both highly parallelizable and could easily be ieménted on dedicated hardware.
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Figure 4.35: CPU Usage Breakdown for Synthetic Test 3
A more detailed breakdown of the CPU load is shawhigure 4.36. It is worth noting that
the Hough transform takes longer to execute aguheay comes into larger and more edge

pixels appear in the screen, demonstratingXfms* n) behavior mentioned in Section 3.2.
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Figure 4.36: CPU Usage History for Synthetic Test 3

4.4.3 Natural Image Load Analysis

The natural image test performance shown in FiguB& has similar characteristics to the
synthetic tests, with the exception that the chisgealgorithm takes much longer to execute.
This is due to the fact that the clustering aldntis recursively defined, and there are many

more marker pixels to process in the natural imaiges in the synthetic images.
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Figure 4.37: CPU Usage Breakdown for Natural I mage Data Set

A more detailed view of the CPU load history iswhan Figure 4.38.
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Figure 4.38: CPU Usage History for Natural Image Data Set

4.5 Impact of Using Other Resolutionson CPU Load

The impact on CPU usage time from change in ima&gelution was estimated using the
algorithmic complexity analysis summarized in TaBld and cherrypicked load data from a
typical iteration in the natural image test (typligaeration #3). Figure 4.39 shows the effect on
CPU load time of varying the image resolution. H#igorithm in general scales only slightly
worse than linearly with the number of pixels ire timage. The following summarizes the
results:

* 20 Hzis achievable at 256x192
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« 5 Hzis achievable at 512x384

e 1 Hzis achievable at 1024x768

e 0.25 Hz is achievable at 2048x768
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Figure4.39: CPU Load Scaling from Variation in Camera Resolution

Using lower resolutions would introduce the follogyiproblems:
» Markers may not be detected properly

* Runway edges may not be detected properly

* In the worst case, accuracy of the solution wowddrdde by at least 1 pixel for each
halving of image resolution, as per the sensitiaitalysis shown in Section 4.3. In the

best case, the centroid of each marker would betick for each image resolution and

the accuracy would be unaffected.
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A better approach to solving the performance proltiean lowering the resolution would be
to use more sophisticated hardware. The Canny éeigetor alone accounts for approximately
2/3's of overall CPU usage. Recently, a Xilinx Spar6 FPGA implementation of this
algorithm was developed that can perform this étigor on a 1280x960 image in 3.09
milliseconds [20] — a 160-fold improvement ovee tmicroprocessor-based implementation in
this algorithm. The SSE operations could also gds# offloaded to an FPGA since they are
highly separable and do not require floating panthmetic. The other major performance
bottleneck is the clustering algorithm. Since thligorithm is recursive and it is implemented in
MATLAB, it is likely that MATLAB’s interpreter is he source of the inefficiency. It is
reasonable to assume that if the algorithm wereittew in C++, it would execute much more
quickly. If all of these steps were taken, it istam that this algorithm could be implemented in

real-time using fast microprocessors and FPGAs.
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5 Conclusons and Recommendations

5.1 Conclusions

A vision-based method of UAV state estimation fog purposes of augmenting and backing
up GPS-based systems has been developed and presetitis Thesis. This method can be used
for fixed-wing conventional landing, rotary winglipad landing, or fixed-wing net recovery.
Additionally, it could be adapted for optionallylgtied vehicles, pilot training devices, or even
other robotic platforms. The requirements for theage of this system are good lighting
conditions, clear edges of the recovery targetcalar markers on the recovery target’'s corners,
and knowledge of the recovery target’s physicalatisions and location.

Accuracy of this method has been demonstratednthstic images on a 7500 foot runway
to within 20 feet laterally and 4 feet verticallyitially, diminishing to nearly O as the runway
comes into larger view. This level of accuracy estainly on par with GPS. However, a large
portion of the error is very likely due to incortexsssumptions about how the runway is rendered
in FlightGear. It is possible that FlightGear usedifferent definition for the perimeter of the
runway (perhaps in the middle of the white linetéasl of the far edge) — causing significant
position error. It must be noted that this soreobr would not be present in a real system if care
is taken to use consistent conventions. Accuracpitch and roll was consistent to within 0.1
degrees — far better than what any other methoigesth in the literature review. Heading had a
consistent bias of approximately -0.75 degreeschvts likely caused by an “off-by-1” indexing
error somewhere in the implementation code. Thisuldco be occurring in

“convert_pixels_to_ndc.m” or its related inversee@ions, which convert image coordinates to
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and from normalized device coordinates. A cons&nbr in this conversion would certainly
cause a consistent bias in heading angle.

Accuracy of the algorithm has been demonstrate@ spt of natural images on a 90 inch
runway to within 0.5 inches laterally and 0.4 ingheertically. Again, the error in altitude
exhibits the favorable behavior of approaching Otles runway comes into larger view.
Additionally, with small glideslope angles the tltle sensitivity is much lower than the lateral
position sensitivity. This is a favorable propefty traditional fixed-wing recovery and is a
natural result of the projection process. The ertbat do exist in the position estimate, though
quite small, can be attributed to systematic emeolved with exhibiting asymmetric forces on
the camera while taking pictures using the traggaagtus. Error in Euler angles is somewhat
larger than in the synthetic tests, reaching up.2odegrees in roll and up to 0.6 degrees in pitch.
Again, heading angle exhibits a slightly negatiiasb

If position accuracy is normalized to runway lengtien it is possible to get a feel for the
scaling effects of the algorithm. The results armarized in Table 5.1. Note well that these
numbers are for the very worst individual obsensatinote optimal estimate) in each test run.
Despite this, even the worst observations yield/ \ygod relative results. The way to interpret
this is as follows: in each test, the algorithmeregave an observation worse than 0.48% of the
total length of the runway in lateral position o44% of the total length of the runway in vertical
position. In fact, as the camera approached thezaynobservations typically got much better

and the Kalman Filter greatly improved trackinglod system.
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Table5.1: Summary of Worst-Case Position Observation Accuracy Normalized With

Runway L ength

Synthetic 1 Synthetic 2 Synthetic3 | Natural
by max/l (-): 0.2% 0.2% 0.24% 0.39%
0Dy max/l (-): 0.12% 0.14% 0.13% 0.28%
00z max/l (-): 0.05% 0.03% 0.05% 0.44%

If the natural image accuracy numbers were appbeadmore typical UAV runway length of
about 1000 feet and with all other things beingatgtinen position accuracy could be expected
to be within 5 feet in the worst case and withifieav inches as the vehicle approaches the
threshold. With more precise markers, slight mediions to marker centroid detection, and
better knowledge of the true field-of-view angleervbetter position estimation could be
realized. This level of position knowledge is canasufficient for UAV autolanding.

The algorithm in its current implementation suffésm two major deficiencies:

1. Color information is relied upon to detect recovéayget edges and markers. Lighting
conditions and camera calibration will significantmpact the algorithm’s ability to
detect both of these key features. This could Iheeddoy categorizing pixels according
to their hue as opposed to sum-square error frapeaific color, putting these values
into a histogram, and then thresholding the imagdh shat at least a certain number of
pixels are always flagged. These pixels could thesearched for neighbors with similar
color, thus allowing for some tolerance for shadamgl sensor noise. These clusters
would then passed into the clustering algorithm #edrest of the system would iterate
as normal.

2. The algorithm will fail once the recovery targetwes offscreen of the image. This could

be solved by placing intermediate markers insigerétovery target:
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o For a runway, two new markers could be placed fmfflvetween the opposing
thresholds. Since aircraft typically land in thestfi10-30% of the runway, this
should allow the system sufficient margin to alwése at least 4 markers in
view.

o For a helipad, an additional rectangle could begidanear the center of the pad
that would be sufficiently small to never complgtidave the view of the camera
on landing.

o For a net, this is likely not a problem since thahicle will be essentially within
the capture zone of the net once the corners lk@veiew of the camera.

An additional layer of intelligence would need te hdded to the algorithm to allow for
markers to leave the view of the camera. This woubst easily be accomplished by modifying
the 2D point to 3D point optimizer as follows:

1. First find the optimal mapping for the furthestdings (the inner rectangle in the case of

the helipad, or the far four points in the cas¢hefrunway).

2. Holding this mapping constant, run the optimizer é&ach combination of N-4 points
needed to complete the rest of the mapping. lfetlaee insufficient detected clusters to
do this, then stop the algorithm and proceed wighresults from the previous step.

3. If the average resulting cost per point (i.e., agersum-square distance error per point)
for the optimal map rises significantly from thduaobtained in the first step, then the
mapping can be considered invalid and the resudta tep 1 should be used.

Finally, the choice of marker geometry was subogkinthe cross-section of a flat ellipse

obviously diminishes to 0 as the aspect angle gm8swhich is precisely what happens during a
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shallow landing. It is desirable to choose a geoyrtéiat has a 2D centroid that coincides with a

3D center of mass — spheres would be much betteceh

5.2 Recommendations

It is recommended as a first step that this sydtenfurther tested due to its necessity for
providing additional navigation robustness to tlextngeneration of civil and military aircraft
and its exceptionally good performance relative pieviously-developed systems. It is
recommended to implement a spherical marker systeran available runway, mount a high-
definition camera onto a GA aircraft, calibrateanhd perform a flight test of the system. The
flight test should include flyovers as well as ghlasmdings. The merit of placing markers on
locations other than the far threshold of the rupsfould also be investigated. On some very
long runways, it may be difficult for the visionstgm to detect the markers due to haze or heat
distortion. The far-side markers could be placecthncdloser, and this could improve not just
marker detection but estimation accuracy.

If reasonable state estimates are obtained frorfligie test video, then it is recommended to
use this algorithm as a means of performing systiemtification. The Euler angle estimates and
position estimates are far better than what wowddekpected of typical Inertial Navigation
Systems. If integrated with vehicle control inputds anticipated that very high-fidelity linear
models could be created using the data from tlstesy.

If this program is successful, it is recommendeddd the intelligence necessary to provide
additional robustness against color perceptionr esavell as markers leaving the camera’s field
of view. These updates to the algorithm should besthoroughly flight tested.

If this step is successful, then the algorithm ddag implemented in a real-time system. The

core algorithm would need to be converted from MABLcode to faster C++ code, probably
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using the OpenCYV library. A fast multicore embedgedcessor would need to be selected for
use, and separable algorithms such as the Hougtsforan be split amongst the various cores.
The Canny Edge Detector and SSE calculations shmeildffloaded to an FPGA, since these
operations can be done much faster in highly-pelralevices than on a microprocessor. In
addition to the required work on the core stat@redbr, an actual autoland controller designed
for use with this system would also need to be lipesl.

While such an undertaking would require a very ificgmt amount of engineering, it is
worthwhile if its performance lives up to its pr@ai A unified vision-based method for
recovering a UAV of any type or size regardleswbéther the target is a runway, helipad, or net
would present a massive leap forward in the sthtBesart for computer vision and navigation

technology, and vastly improve the robustness af-generation aerial autonomous platforms.
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