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Abstract 

A computer vision-based algorithm for Unmanned Aerial Vehicle state estimation during 

vehicle recovery is presented. The algorithm is intended to be used to augment or back up Global 

Positioning System as the primary means of navigation during vehicle recovery for UAVs. The 

method requires a clearly visible recovery target with markers placed on the corners in addition 

to known target geometry. The algorithm uses clustering techniques to identify the markers, a 

Canny Edge detector and a Hough Transform to verify these markers actually lie on the recovery 

target, an optimizer to match the detected markers with coordinates in three-space, a non-linear 

transformation and projection solver to observe the position and orientation of the camera, and 

an Extended Kalman Filter (EKF) to improve the tracking of the state estimate. While it must be 

acknowledged that the resolution of the test images used is much higher than the resolution of 

images used in previous algorithms and that the images used to test this algorithm are either 

synthetic or taken in static conditions, the algorithm presented does give much better state 

estimates than previously-developed vision systems. 
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1 Introduction 

1.1  Overview and Motivation 

This work is a further development of a project started in November of 2010 for EECS 741 at 

the University of Kansas to develop a vision-based state estimation algorithm for UAV 

autolanding and other autorecovery systems. Current state estimation methods for 6DOF mobile 

robots typically require the use of GPS. A recent government report [1] identified GPS as a 

national security threat due to its susceptibility to jamming. Devices capable of such denial-of-

service jamming attacks are available for as little as 30 2011 US Dollars [2]. Alternative methods 

for UAV navigation must therefore be developed, particularly for military UAVs operating in 

hostile environments. In addition to the denial-of-service problem, most commonly-used GPS 

units do not meet performance requirements for fine-grained navigation tasks such as UAV 

landing on runways, on helipads, or in nets. This Thesis demonstrates a proof-of-concept of a 

method that can be modified to meet these requirements in VFR conditions and is more difficult 

to jam than GPS. 

Some sources of GPS service unavailability are dense cloud cover, solar flares, and 

permanent obstructions such as trees and buildings. While any of these could certainly pose a 

problem to robot navigation, a more serious threat is presented by hostile action. GPS is now a 

staple of modern life: it is used in everything from navigation of automobiles to timestamping 

financial transactions to controlling ships in harbor. It is possible that terrorists or rogue states 

could identify the United States’ or its allies’ GPS infrastructure as the lynchpin in 

transportation, military, and even financial infrastructures. A recent report from the National 
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Space-Based Positioning, Navigation, and Timing Advisory Board identified GPS as a national 

security threat for these reasons, stating [1]: 

The United States is now critically dependent on GPS.  For 

example, cell phone towers, power grid synchronization, new 

aircraft landing systems, and the future FAA Air Traffic Control 

System (NEXGEN) cannot function without it. Yet we find 

increasing incidents of deliberate or inadvertent interference that 

render GPS inoperable for critical infrastructure operations. 

Another recent report in New Scientist [2] described a several-hour disruption in air-traffic 

control, emergency pagers for doctors, sea-traffic control, cell phones, and ATMs in San Diego 

due to a GPS-jamming exercise performed by the Navy. As dangerous as such attacks are, a 

potentially more damaging scenario could be caused by GPS-spoofing devices: signals that 

would drown-out real GPS signals and fool receivers into thinking they were only slightly offset 

from their true position. Such devices would have catastrophic effects on UAV autolanders, and 

could be extremely difficult to detect since GPS receivers would have no indication of a failure.  

GPS is very good for medium-resolution navigation requirements with position accuracy to 

better than a 30 foot radius with 95% probability [3], [4]. More advanced units with RTK 

functionality provide accuracy on the order of several inches and even better precision in perfect 

conditions. However, the performance of such units is subject to the availability of satellites, 

dynamic conditions, and even geographical features. The accuracy provided by standard GPS 

receivers is not sufficient for fine-grain navigation tasks. RTK-enabled GPS units certainly do 

provide the required performance for fine-grained navigation; however, all units suffer equally 

from problems introduced by environmental conditions.  
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Vision-based state estimation for robotic mobile platforms is an appealing method due to its 

passive nature and its inherent ability to produce results based on the physical surroundings of 

the platform. The radiant intensity of common lighting scenarios is also much higher than the 

intensity of electromagnetic waves used in other positioning devices (radar, lidar, 

magnetometers, etc.), making optical sensing much more robust against jamming techniques. 

Cameras also generally reject radiation from outside their field of view, unlike ommidirectional 

GPS antennas that can be jammed from any aspect. Digital cameras are ubiquitous, inexpensive, 

lightweight, low power, and not nearly as susceptible to electromagnetic interference as the 

previously-mentioned methods. With powerful embedded processors needed to drive 

computationally-intensive vision algorithms becoming available in ever-smaller and lower-

power packages, vision-based navigation methods are now viable on all but the smallest class of 

robotic platforms.  

1.2 Previous Work 

The method developed in this Thesis for robot state estimation is tailored for autonomous 

landing of unmanned aerial vehicles (UAVs), but is directly applicable to any class of robot 

when landmarks of known geometry are available in the operational environment. Several 

successful attempts have been made to develop very specific algorithms, primarily for rotorcraft 

[5], [6], [7], [8]. However, these algorithms all rely on a coplanar assumption and a customized 

landing pad, and are not necessarily suitable for use with a fixed-wing vehicle. An effort was 

made to develop an autoland system for a fixed-wing UAV [9], but not all state variables were 

estimated. There are some other related localization systems that have been developed [10], but 

none as general as the system presented in this Thesis.  
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The approach used draws heavily from the overall method from Sharp et al [5]. This team 

designed a highly-tailored landing pad to enable full state estimation for a helicopter, shown in 

Figure 1.1. While they did achieve RMS accuracy to within 2 inches in all axes, the RMS error 

in Euler angles was 4.5 degrees in the worst axis to 1 degree in the best axis. It should be noted 

that their system was successfully developed, tested, and used in an autonomous  helicopter 

landing. 

 

Figure 1.1: Landing Target Design from Sharp et al [5] 
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Saripalli et al took a similar approach, and were able to achieve a mean error in orientation of 

six degrees and a mean error in position of just over a foot using a 4 foot by 4 foot helipad. 

Figure 1.2 shows their landing pad design. 

 

Figure 1.2: Landing Pad Design from Saripalli et al [6] 

Cesetti et al took a different approach and developed a system that uses natural landmarks 

and SIFT (Scale-Invariant Feature Transform) features in combination with satellite imagery to 

estimate position in all three axes as well as heading [11]. However, this approach only works if 

the image is taken normal to the ground plane (i.e., pitch and roll are both constant), which 

certainly cannot be guaranteed on an airplane during landing. It could be used, however, to 

provide a navigation solution during steady level flight if GPS is unavailable. 

Frew et al employed SLAM (Simultaneous Localization and Mapping) in conjunction with 

an unscented Kalman Filter and adaptive receding horizon control to solve the problem of UAV 
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navigation in forests and urban environments. While useful for these scenarios, this method is 

not suitable for the problem of fine-grained navigation and guidance all the way through 

recovery. 

1.3 Proposed Solution 

The objective of this research is to develop a vision-based full state-estimation algorithm 

suitable for use not only on UAVs, but any robotic or manned platform that is within line-of-

sight of landmarks of known geometry. The algorithm developed could be used as a landing 

navigation solution for UAVs, optionally-piloted vehicles, or even for pilot training. The 

algorithm in this Thesis can be readily adapted for use with: an arbitrary number of landmarks in 

arbitrary locations, photometric stereo vision to augment the state estimates with direct 

measurements of depth, or even multiple cameras if one camera is insufficient to capture every 

necessary landmark. 

The algorithm is designed to be used on existing recovery targets (runways, helipads, and 

nets) that have clearly visible edges. Unicolor circular markers are placed on each corner of the 

recovery target to clearly denote their centroids on the image. The algorithm requires the color of 

the edges, the color of the markers, the 3D position of each corner of the recovery target, and at 

least a very rough initial state estimate that would be obtained from another higher-level vision-

based navigation system or some other positioning system. The algorithm presented in this work 

makes the following assumptions: 

• The corners of the runway are always in view of the camera. This would be accomplished 

by the flight control system in conjunction with proper placement of the camera. 

• The markers used to denote the corners of the runway are of relatively constant, known 

color. Ground crews would ensure that these markings are clearly visible. 
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• The lines used to denote the perimeter of the runway are of relatively constant, known 

color. 

• There is negligible barrel distortion in the camera lens. Most modern digital corrections 

remove such distortion, and if not, simple mathematical techniques can be employed to 

remove them. 

• There is no dust or debris in the camera lens. 

• Lighting conditions are such that the runway is clearly illuminated. Strategically placed 

lights could easily be employed that would enable the use of this algorithm at dawn, 

dusk, or night, in cloudy conditions, and other unfavorable lighting conditions. 

• The vehicle is already close enough to the runway to clearly identify the corners of the 

runway. 

This algorithm is intended for use during the final approach leg of vehicle recovery. It is 

intended that the vehicle control system would switch from either a course-grain or medium-

grain navigation solution to this system when the vehicle is roughly lined up with the runway, 

helipad, or net. The course-grain navigation solution would provide the initial state estimate. The 

navigation solution provided by this algorithm would be valid until the threshold of the runway 

leaves the field of view of the camera. Modifications are proposed in the Conclusions that would 

enable the algorithm to handle this case as well. 
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2 Theoretical Development of the Method 

2.1 Overview 

An overview of the algorithm is given in Figure 2.1. The focus of this Thesis is on the core 

algorithm, which consists of the following three stages: 

1. Runway Identification: the algorithm for picking the optimal two-dimensional 

quadrilateral in a given image and correlating the four resulting 2D points in the target 

image to four 3D points in the world coordinate system. 

2. State Observation: the algorithm for estimating Euler angles and local position from the 

2D quadrilateral and corresponding 3D geometry. 

3. Extended Kalman Filter (EKF): the algorithm for obtaining a near-optimal estimate of 

the true state of the vehicle using the current state observation in conjunction with prior 

knowledge of the vehicle’s state and dynamics. 

In order to implement this algorithm onboard a real aircraft, it would be desirable to at least 

control the field-of-view angle, or the zoom, of the camera. In a more advanced system, the 

camera could also be mounted on a gimbal which could orient the camera in the direction of the 

runway regardless of the orientation or position of the aircraft. 

The algorithm has as its inputs the image of the recovery target, the corner marker color, the 

edge color, and the runway target geometry. The onboard camera would provide the image, and 

the runway selector would provide the other information. The state estimation would be passed 

to both the camera controller to adjust field-of-view angle as well as the autoland controller. 
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Figure 2.1: Algorithm Overview and Integration with Autoland System 

2.2 Coordinate Systems and Image Geometry 

Figure 2.2 shows the conventions used for the runway coordinate system. 

 

Figure 2.2: Local Coordinate System 
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Figure 2.3 shows the conventions used for the image geometry. The figure illustrates the 

conventions for the field-of-view angles in both directions, as well as so-called “normalized 

device coordinates” (NDCs) used to normalize each image on the interval [-1,1] in both the 

vertical and horizontal directions. The equations used for this normalization are Eq. 2.1 and 2.2. 

 

Figure 2.3: Image Geometry and Coordinate Systems 

( ) ( )2 2ndc img
w wx x= −

 

[2.1]

 

( ) ( )2 2ndc img
h hy y= − −

 

[2.2] 

If d is the distance separating the near plane and the far plane, then the field of view angles in 

the x- and y-directions are related as shown in Eqs. 2.3 and 2.4. 

12tan
2x

w
fov

d
−  =  
 

 [2.3] 

12 tan
2y

h
fov

d
−  =  
 

 [2.4] 
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Thus, the field-of-view in the y-direction can be solved for in terms of the field-of-view in 

the x-direction and the image aspect ratio as shown in Eq. 2.5. This is helpful for converting 

between the convention used in this Thesis and the convention used in FlightGear. 

1 1

tan tan
2 2

2 tan 2 tan

x x

y

fov fov

fov
w AR
h

− −

      
      
      = =
    
    
    

 [2.5] 

2.3 Runway Identification 

2.3.1 Image Contrasting Algorithm 

The first stage of the algorithm calculates a high-contrast image from the target image based 

on a color of interest. Two SSE images are generated: one SSE from the target marker color and 

one SSE from the target edge color.  

This is a simple technique that generally greatly reduces the subspace of problems that must 

be solved by later stages of the algorithm. The algorithm simply computes the sum-square error 

in image I from a target color defined by <r, g, b> as shown in Eq. 2.6. 

( ) ( ) ( )222

,,,,
bIgIrII

jijijiji BGRSSE −+−+−=
 [2.6] 

Figure 2.1 shows the square-root (for visualization purposes) of the Sum-Square Error from 

the target color in a sample image. 
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Figure 2.4: √(SSE) from Marker Color 

2.3.2 Clustering Algorithm 

The purpose of the clustering algorithm is to determine which pixels in a target image belong 

to contiguous marker candidates and return the center coordinates of each resulting cluster. A 

subset of these clusters will ultimately constitute the 2D screen coordinates that are mapped to 

3D world coordinates and passed to the state estimator. The clustering algorithm has the 

following inputs: SSE from the target marker color; threshold value; search radius for clustering. 

It outputs a set of clusters with x and y image-space coordinates.  

The clustering algorithm first thresholds the SSE image. It then iterates through each pixel 

that passes the threshold value. If the pixel is within proximity of a cluster (i.e., within the search 

radius of any other pixel in the cluster), it is added to the cluster. If it does not belong to an 

existing cluster, a new cluster is created with the pixel as the only member. In both cases, the 



pixel is removed from the thresholded set

thresholded set. Each cluster’s mean is calculated during this process.

Figure 2.5 shows an image with 7 pixel clusters (dilated for emphasis). 

the algorithm with Figure 2.4 

Figure 

   The tabulated output of the algorithm is shown in 

Table 

Cluster #
1
2
3
4
5
6
7

 

2.3.3 Canny Edge Detector 

The second stage of the algorithm uses a Cann

image. The Canny Edge detector is a commonly

relies on the gradient magnitude and the gradient direction of an image to locate edges.
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pixel is removed from the thresholded set. This process is repeated until no pixels remain in the 

. Each cluster’s mean is calculated during this process. 

shows an image with 7 pixel clusters (dilated for emphasis). 

 as the input image.  

Figure 2.5: An Example Image with 7 Clusters 

The tabulated output of the algorithm is shown in Table 2.1. 

able 2.1: Clustering Algorithm Output 

Cluster # x y 
1 94 174 
2 144 186 
3 147.5 185 
4 250.46 327.82 
5 368 226 
6 389 239 
7 408.75 411.58 

 

The second stage of the algorithm uses a Canny Edge Detector [13] to locate the edges in the 

etector is a commonly-used digital image processing algorithm that 

relies on the gradient magnitude and the gradient direction of an image to locate edges.

is process is repeated until no pixels remain in the 

shows an image with 7 pixel clusters (dilated for emphasis). This is the output of 

 

 

to locate the edges in the 

used digital image processing algorithm that 

relies on the gradient magnitude and the gradient direction of an image to locate edges. A 
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Gaussian is used in combination with the discrete derivative to reduce noise in the resulting edge 

map. The inputs to the detector are the standard deviation value to use for the Gaussian operator, 

the minimum threshold value to use for line strength, and the image itself. The 2D Gaussian is 

given by Eq. 2.7. 
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 [2.7] 

Taking the partial derivatives with respect to x and y gives Eqs. 2.8 and 2.9. 
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[2.9] 

It is desired to convolve the image I with the images generated by the two partial derivatives 

of G to generate the image gradient in the x-direction and the y-direction. Rather than performing 

the convolution directly, the Convolution Theorem is used. Direct computation is feasible when 

σ is small; but it is generally much faster to compute the convolution using Fast Fourier 

Transforms. The convolutions are given by Eqs. 2.10 and 2.11. 

( ) [ ]1( , ) [ ( , )]( , ) [ ( , )]( , )] ( , )x xI G x y I x y G x y x yω υ ω υ−∗ = ⋅F F F  [2.10] 

( ) 1( , ) [ ( , )]( , ) [ ( , )]( , )] ( , )y yI G x y I x y G x y x yω υ ω υ−  ∗ = ⋅ F F F
 [2.11] 

 Taking the Fourier Transform of the 2D Gaussian derivatives in the x- and y- directions give 

Eqs. 2.12 and 2.13. 
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[2.12] 
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[2.13] 

By symmetry, the same process gives Eq. 2.14 for the y-direction. 
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υ ω σ σ υ
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 ∂ = − ∂ 
F

 
[2.14] 

The gradient operators from Eqs. 2.13 and 2.14 are shown in Fourier space in Figure 2.6. 

 

Figure 2.6: imag(Gx) (Left) and imag(Gy) (Right) with σ = 1 px 

The overall gradient magnitude and gradient direction are given by Eqs. 2.15 and 2.16. The 

results of the operations are shown in Figure 2.7 for a sample case. 

( ) ( )( )( ) ( ) ( )( )22
, , ,GM x yI x y I G x y I G x y= ∗ + ∗  [2.15] 

( ) ( )( ) ( )( )( ), atan2 , , ,GD y xI x y I G x y I G x y= ∗ ∗  [2.16] 
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Figure 2.7: Gradient Magnitude and Direction with σ = 1 of a Sample Image 

Having finally computed the Gradient Magnitude and Direction, the Canny Edge detector 

performs the following steps: 

1. Threshold the Gradient Magnitude to generate a binary image of sufficiently strong 

edge candidates. A constant value of 10% overall strength is used in the algorithm. 

2. Discretize the edge directions into 45 degree bins. 

3. For each pixel in the image from step 1, if the pixel lies in a region with a consistent 

direction, then it is considered to be an edge.  

The results of the Canny operator on a sample image are shown in Figure 2.8. 

 

Figure 2.8: Results of Canny Edge Detector with σ = 1 and t = 10% on a Sample Image 
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2.3.4 Hough Transform 

A Hough transformation [14] is then performed on the output of the Canny Edge detector. 

This variant of the Hough transform takes in a binary image and returns an image that indicates 

where the strongest (or alternatively, most highly-correlated) lines in the image lie. This process 

works by considering every point in image space to be a sinusoid in Hough space. Regions with 

many intersections of sinusoids in Hough space correspond to strongly-correlated lines in image 

space. The mapping of points in image space to sinusoids in Hough space is given by Eq. 2.17. 

cos sinx yρ φ φ= +  [2.17]  

The algorithm works in two steps: 

1. Initialize the Hough map to all zeros 

2. Whenever a non-zero element is encountered in Image space, increment the values along 

the corresponding sinusoid in the Hough map. 

The Hough Transform of Figure 2.8 is shown in Figure 2.9. The most strongly-correlated 

lines are located at the peaks of the Hough transform. 

 

Figure 2.9: Hough Transform of a Test Image 
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2.3.5 Cluster-Line Proximity Filter 

To reduce the number of marker candidates in an image, a filter is employed which checks 

the proximity of a marker to a strong edge. Given marker candidate A, in order to pass the filter 

there must exist a marker B such that the line formed by AB is essentially collinear with a 

runway edge. The proximity filter has the following inputs: a set of input candidate markers, a 

Hough transform, the range of �and �values in the Hough transform, minimum line strength on 

the normalized interval [0,1], and the search radius in pixels. 

The line formed by the two candidate markers in image-space can be found in Hough-space 

by finding the solution to the following system of equations: 

ρφφ
ρφφ

=+
=+
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)sin()cos(
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And then the solution is given as: 
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=
=
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−

−

 

Table 2.2 shows an example input set of clusters for the Cluster-Line proximity filter. Figure 

2.10 shows the thresholded Hough transform with an intensity of 40% on the left and the Hough 

transform with all ���� = ( �!

�!(���
!

 = 28 possible line searches within a search radius of 5 pixels 

on the right. Note that some of the search spaces are quite close and so may not be clearly 

distinguishable. 
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Table 2.2: Cluster-Line Proximity Filter Input 

Cluster (#) x (pixels) y (pixels) 
1 58 417 
2 63 418 
3 144 396 
4 149.2 390.6 
5 297.79 594.29 
6 513 314 
7 538 314 
8 782.84 596.15 

 

 

Figure 2.10: Threshold Mask (Left) and Searched (Right) Hough Space Images 

Table 2.3 shows the resulting filtered clusters using a threshold value of 40% intensity. 
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Table 2.3: Filtered Clusters 

Cluster (#) x (pixels) y (pixels) 
5 297.79 594.29 
6 513 314 
7 538 314 
8 782.84 596.15 

 

2.3.6 2D Image Coordinate to 3D World Coordinate Optimization 

The final step in the algorithm before state observation is performed is to match the clusters 

from the previous step with real 3D world coordinates. This step relies on prior knowledge to 

perform the optimization. Given the previous map �������� → ��������, the new optimal map 

minimizes the sum-square distance between the previous set of 2D points and the new set of 2D 

points while maintaining the same ordering as shown in Eq. 2.18. 

{ } ( )( )1
2

2

2 3 2 2 3
1

arg min
k k ki i

Dk

N

D D D D D
p i

p p p p p
−

=

 
→ = − → 

 
∑�

� � �
 [2.18] 

Therefore if n is the number of candidate clusters and k is the number of desired clusters, 

then the number of permutations necessary to find the optimal result is ����. Since this 

optimization runs in O(n!) time, it is clear that the previous steps vastly diminish the subspace of 

problems that must be solved by this stage of the algorithm. 

2.4 State Observation Algorithm 

The state observation algorithm is responsible for taking an initial estimate of the state, the 

camera’s aspect ratio and field-of-view angle, and a list of normalized device coordinates along 

with these points’ corresponding physical coordinates and obtaining an optimal estimate of the 

observer’s state. In summary, the constants in the algorithm are: 

• AR, the aspect ratio of the camera 
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• fovy, the field-of-view angle of the camera 

The dynamic inputs are: 

• A mapping of 2D normalized device coordinates to their corresponding global real-world 

3D coordinates. 

• An initial estimate of the observer’s state (or in the case of a moving observer, an a priori 

estimate of the new observer state). 

The outputs of the algorithm are then as follows: 

• Three Euler angles defining the observer’s orientation. 

• A 3D displacement vector from the origin in the image. 

It should here be noted that a few things are ignored in this algorithm, including primarily 

spherical distortion and asymmetry in the lens. However, many modern digital cameras are pre-

calibrated to remove the effects of spherical distortion and this has so far not proven to be an 

issue. 

The first step in developing this algorithm is to formulate a set of equations that will project a 

3D point onto a 2D image using Euler angles and a translation vector. The method used for this 

is based on a combination of conventions in aerospace engineering [15] and the method of 

projection used in OpenGL [16]. In order to allow projections and translations, Affine 

Transforms are used throughout the algorithm.  

The camera is assumed to be mounted at the C.G. of the aircraft, orthogonally situated with the 

z-axis pointing ahead of the aircraft and the x-axis pointing in the starboard spanwise direction. 

While this is not realistic in a typical installation, additional rotation or translation matrices could 

easily be used to account for the differences between the aircraft C.G. and the camera location. 

Since the transformation matrices used assume that the x-direction is initially pointed right and 
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the y-direction is pointed up, the transformation matrix must be initialized to account for the 

necessary rotation. The necessary rotation is performed with 90 degree rotations about the y- and 

x-axes as shown in Eqs. 2.19 and 2.20. 

cos 0 sin 0
0 0 1 02 2

0 1 0 0 0 1 0 0

1 0 0 0
sin 0 cos 0

2 2 0 0 0 1

0 0 0 1

yR

π π

π π

    
               = =   −    −           

 
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 [2.19] 
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 
       −       −     = =                  
 
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 [2.20] 

The Euler rotation matrices are standard for aerospace coordinate systems, and are shown in 

Eqs. 2.21, 2.22, and 2.23. 

( ) ( )
( ) ( )
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 
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( ) ( )
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The translation matrix moves the camera to the origin, and is given in Eq. 2.24. 
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 Finally, the projection matrix is given in Eq. 2.25. Note that the znear and zfar parameters 

essentially drop out of the equation since normalized z-coordinates are not available, but are 

nonetheless shown for the sake of completeness. Normalized z-coordinates on the interval [-1, 1] 

represent geometry inside the viewing volume. Since no depth information is available and the z-

coordinates are not used, this information is not strictly necessary for the projection. 

1
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 [2.25] 

Combining all of these matrices in the proper order yields Eq. 2.26.  

y xM P R R R R R TΦ Θ Ψ= × × × × × ×  [2.26] 

With this transformation matrix available, it is then possible to transform object coordinates – 

that is, 3D runway coordinates in the world coordinate system – into clipping coordinates as 

shown in Eq. 2.27. 
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Finally, Eq. 2.28 shows the transformation of the clipping coordinates into normalized device 

coordinates by a projection operation. This is the final step in the forward-projection of object 

coordinates onto the viewing plane.  
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 [2.28] 

This method is well-known and used in many modern rendering systems, with some slight 

variations. However, the challenge in this algorithm is to invert this process, and solve for the 

state variables given normalized device coordinates and object coordinates. 

The resulting system of non-linear equations may be solved using Newton’s Method with an 

adaptive step size. While the resulting equations are certainly extremely non-linear, they are 

locally quite linear in general, making this method a reasonable choice. In order to use Newton’s 

Method, the Jacobian matrix must first be calculated as shown in Eq. 2.29. 
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 [2.29] 

Each of the 12 unique terms in the Jacobian matrix was analytically calculated using 

GNU/Maxima and imported directly in closed-form into MATLAB. With the Jacobian 

calculated, it is then possible to apply Eq. 2.30 to converge to a solution. Here, ( )
kndcndc pp

��
ˆ~ −  is the 

difference between the observed normalized device coordinates in the measured image and the 

estimate of the projection of those coordinates based on the current transformation matrix Mk and 



 

25 

 

the corresponding world coordinates of the point. This equation is iterated until convergence is 

reached to a reasonable tolerance – typically in 5 to 10 iterations for the first observation and 

within 2-3 iterations for subsequent observations with better initial conditions. 

( )1

1

ˆ
kndc ndc

x x

y y

z zk k

J p p
b b

b b

b b

κ −

+

Φ Φ   
   Θ Θ   
   Ψ Ψ

= + −   
   
   
      
   

��
ɶ  [2.30] 

The choice for κ – the adaptive step constant – is based on an assumption of the approximate 

local linearity of the system of equations. It is assumed that the transformation equation is 

roughly linear within π/6 radians of change in any Euler angle and within any change in distance. 

This encourages the solver to look for solutions that are close to the initial condition and 

improves the stability of the solver overall. The expression for κ is given in Eq. 2.31. 

{ }( )
{ }( )

1  max , , / 6

1/ max , ,

if abs

abs otherwise

π
κ

 Φ Θ Ψ <= 
Φ Θ Ψ



 [2.31] 

It is clear from this process that exactly three two-dimensional points are required to solve the 

system. However, Newton’s Method may be generalized to overconstrained systems if the 

Moore-Penrose Matrix Pseudoinverse is utilized. Such a technique will yield a solution that is 

optimal in the Least-Squares sense, thus improving both the accuracy of the solution as well as 

convergence characteristics of the algorithm’s implementation. The pseudoinverse can be 

calculated using the Singular Value Decomposition of the Jacobian matrix [17]. If the SVD of J 

is given by Eq. 2.32, then the pseudoinverse of J is Eq. 2.33. 

*VUJ Σ=  [2.32] 
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*UVJ ++ Σ=  [2.33] 

Since Σ is a diagonal matrix, Σ+ is given by taking the scalar reciprocal of each diagonal 

element of the matrix. This is the computational method used by MATLAB’s pinv function, 

which is utilized in this algorithm. Using this technique, the number of two-dimensional points 

that may be used for solving the system is on the interval [3,∞). If depth information were 

available, the number of permissible points would become [2,∞).  

2.5 Extended Kalman Filter 

2.5.1 System Dynamics 

A very simplified set of vehicle dynamics (Eq. 2.34) has been contrived for simulating 

motion. The objective of this set of dynamics is to provide a simulation platform for mimicking 

the trajectory of an aircraft without becoming encumbered in the details of real aircraft 

dynamics. The added benefit of using a simplified set of dynamics is that it becomes easier to 

tune the Extended Kalman Filter (EKF). 

The set of dynamics in question was developed using the following assumptions: 

1. The vehicle always flies in the direction of the nose of the aircraft: i.e. no angle-of-attack 

or angle-of-sideslip. 

2. The total forward velocity of the aircraft is constant. 

3. Three control inputs directly and instantaneously affect the Euler angles. 

In no way is this set of dynamics intended to be a substitute for real aircraft dynamics. 

However, the trajectory of an aircraft on approach can be mimicked with this set of dynamics 

and it is sufficient for demonstrating that this algorithm can track the trajectory of a moving body 

in flight. 
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Recalling that xb, yb, and zb are the local coordinates of the vehicle with respect to p0 of the 

runway, the system dynamics are given as shown in Eq. 2.34. 
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 In non-linear state-space form, this can be written as shown in Eq. 2.35. 
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 [2.35] 

For the purposes of simulation this model can be discretized into the form of Eq. 2.36 with a 

specified sampling time. 

1k k k k kx x u+ = Φ + Γ� � �

 [2.36] 

The discretized version of the system dynamics is shown in Eq. 2.37. 
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2.5.2 Filter Design 

A conventional linear Kalman Filter [18] consists of two steps: a prediction step and a 

correction step. The prediction step is performed using Eqs. 2.38 and 2.39 [19]. 

1ˆ ˆ( )k k k k kx x u+ − = Φ + Γ �

 
[2.38]

 

1( ) T
k k k k kP P Q+ − = Φ Φ +

 
[2.39]

 
The optimal Kalman gain K is calculated using Eq. 2.40. The correction step is then 

performed using Eqs. 2.40, 2.41, and 2.42 [19]. 
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The linear Kalman Filter may be extended to the non-linear case by linearizing about the 

current state and covariance. The non-linear multivariable state transition function and 

measurement equation are given by Eqs. 2.43 and 2.44. 

( )1 ,k k k kx f x u w+ = +� � � �

 
[2.43] 
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[2.44] 

Eqs. 2.43 may be discretized by first forming the state-transition matrix as shown in Eq. 2.45. 

ˆ ,k k

k
x u

f

x

∂Φ =
∂ � �
�

 

[2.45] 

Similarly, the measurement matrix is formed as shown in Eq. 2.46. 
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Since the outputs of the Stage 2 algorithm are simply Euler angles and Cartesian coordinates, 

there is no direct observation for U. Therefore the discrete measurement equation becomes Eq. 

2.47. 
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[2.47] 

Since this is a very non-linear system, it is difficult to analytically solve for Q (the process 

noise covariance) and R (the measurement noise covariance). For the purposes of this Thesis, Q 

and R are assumed to be the constant matrices shown in Eqs. 2.48 and 2.49. This says that the 

variance of the process noise is 1/10th of the measurement noise over an infinite period of time 

and that all noise is completely uncorrelated. This is perhaps not the optimal solution for the 

matrices, but it still yields good results that are shown in the next section. 
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3 Algorithm Implementation 

3.1 System Structure 

3.1.1 Configuration Options 

The system’s configuration options are shown in Table 3.1. These options are intended to be 

static options that would be set prior to usage in a real-world scenario.  

Table 3.1: Algorithm Configuration Options 

Parameter Name Parameter Description 
line_thresh Allowable SSE deviation from RGB line color. 
mrkr_thresh Allowable SSE deviation from RGB marker color. 
line_color Target RGB line color for runway edges. 
mrkr_color Target RGB marker color for runway markers. 
line_sigma Standard deviation for edge gradient Gaussian in pixels. 

mrkr_search_r Proximity search radius for marker in pixels. 
hough_rho_res ρ resolution for the Hough transform in pixels. 
hough_phi_range φ range for the Hough transform in degrees. 
hough_thresh Minimum line intensity for cluster proximity search. 
hough_search_r Maximum search radius for cluster proximity. 

AR Image aspect ratio. 
fovy Field-of-view angle in radians. 
znear Near z-coordinate (unused). 
zfar Far z-coordinate (unused). 

im_size Image size, [h w], in pixels 
 

3.1.2 Algorithm Inputs 

Table 3.2 shows the inputs to the algorithm. These are intended to be variables that could 

change from one iteration to another. Note that α is not intended to be a permanent part of the 

algorithm, but was introduced to quickly but crudely compensate for difficulties created by a 

natural image test. 
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Table 3.2: Algorithm Inputs 

Input Name Format Description 
img_raw h x w x 3 RGB image Raw RGB image 

vision_cfg_props Structured config data Configuration properties 
coord_map 4x4 matrix Previous 2D Image to 3D world coordinate map 

x_post 7x1 matrix Previous optimal state estimate 
P_post 7x7 matrix Previous optimal covariance estimate 

u_k 3x1 matrix Current control input 
alpha Constant Angle-of-attack estimate 

dt Constant Sampling time interval 
 

3.1.3 Algorithm Outputs 

Table 3.3 shows the outputs of the algorithm. The optimal state estimate, optimal covariance 

estimate, and coordinate map should simply be passed into the algorithm on the next iteration, 

comprising a feedback loop. 

Table 3.3: Algorithm Outputs 

Output Name Format Description 
x_post 7x1 matrix New optimal state estimate 
P_post 7x7 matrix New optimal covariance estimate 

z 6x1 matrix Raw observation from the core algorithm 
coord_map 4x4 matrix New 2D Image to 3D world coordinate map 
vision_perf Structure CPU load data for each stage in the algorithm 
delta_ndc 4x12 matrix Sensitivity to each <xndc,yndc> pair 
delta_fovy 1x6 matrix Sensitivity to fovy 

3.2 Complexity Analysis 

Table 3.4 shows an algorithmic complexity analysis of each major sub-stage in the overall 

algorithm. This complexity analysis can be used with empirical data to project the effect of 

changes in the data size on the overall computational load on the target system. Most operations 

scale linearly, but there are a few exceptions: 

• The Edge Detection algorithm is dominated by the Fast Fourier Transform used to apply 

the Gaussian smoothing operation, and this runs in linearithmic time. 
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• The Hough Transform runs in O(n*m), although for practical purposes this can be 

approximated as O(n2). 

• The Cluster proximity algorithm is defined recursively and is quadratic in complexity. 

• The mapping algorithm runs in factorial time, although the proximity algorithm is 

designed to keep the number of inputs to this algorithm very low. 

Table 3.4: Algorithmic Complexity 

Subsystem Complexity Meaning of n Meaning of m 

Image Acquisition O(n) 
Number of pixels in the 

image 
- 

Line SSE O(n) 
Number of pixels in the 

image 
- 

Marker SSE O(n) 
Number of pixels in the 

image 
- 

Edge Detect O(n log n) 
Number of pixels in the 

image 
- 

Hough Transform O(n*m) 
Number of pixels in the 
Hough Transform image 

Number of detected edge 
pixels 

Cluster O(n+m) 
Number of pixels in the 

image 
Number of detected marker 

pixels 

Cluster Proximity O(n2) 
Number of total clusters 

detected 
- 

Cluster 2D to 3D 
Mapping 

O(n!) 
Number of candidate 

clusters 
- 

State Observation O(1) - - 
Kalman Filtering O(1) - - 
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4 Results 

4.1 Synthetic Tests with FlightGear 

4.1.1 Simulation Setup 

Several trajectories were set up using FlightGear v. 2.0.0 [20]. KSFO runway 19R was 

chosen as the target airport for performing tests on the algorithm since it provided an opportunity 

to demonstrate robustness in the presence of a cluttered scene with multiple runways.  

Since FlightGear does not natively support the addition of items like markers, corner markers 

were artificially superimposed on each of the images. While this practice calls into question the 

results of the clustering algorithm, it enables simpler and more flexible testing of the state 

observation algorithm and Kalman filter in the presence of motion. Natural image tests are later 

performed to validate the clustering algorithm. 

All sample images were rendered in FlightGear 2.0.0 on an Nvidia GeForce 9600GSO video 

card with the following rendering options: 

• 1024x768 image resolution 

• 55° field-of-view in the x-direction 

• 8X Full-Screen Anti-Aliasing  

• 16X Anisotropic Filtering 

Table 4.1 shows the configuration options used for all of the synthetic tests. 
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Table 4.1: Configuration Options for Synthetic Tests with FlightGear 

Name Value 
line_thresh 502 

mrkr_thresh 502 

line_color [230 230 230] 
mrkr_color [255 0 0] 
line_sigma 1 

mrkr_search_r 10 
hough_rho_res 2 
hough_phi_range [-90:0.25:89.75]  
hough_thresh 0.4 

hough_search_r 7 
AR 4/3 

fovy 42.65 deg. 
znear 0.1 
zfar 10 

im_size [768 1024] 
 

The test images were generated by the following process: 

1. Generate the desired trajectory in MATLAB using the vehicle dynamics, a set of control 

inputs, and a set of initial conditions. 

2. Output one element at a time from the resulting sequence of state vectors to FlightGear 

over a UDP interface using a custom-developed C++ program. 

3. For each frame, capture the render window and save it to a PNG file. 

Eq. 4.1 shows the formula used for computing the runway’s world coordinates in terms of the 

runway length, l, width, w, true (not magnetic) heading angle, Ψ, and altitude, h.  

3
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2 2

cos cos , sin sin , ,
2 2
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w w h
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l w l w h

l l h
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 

    ⋅ Ψ + ⋅ Ψ +        =  
    ⋅ Ψ + ⋅ Ψ + ⋅ Ψ + ⋅ Ψ +       

 
⋅ Ψ ⋅ Ψ  

�
 [4.1] 

The specific values used for the runway geometry are given in Table 4.2.  
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Table 4.2: KSFO 19R Runway Properties 

Parameter Value 
l (ft.) 7500 
w (ft.) 200 
Ψ (deg.) 207 

h (ft. MSL) 0 
 

4.1.2 Synthetic Test 1: Straight Approach 

The first test consists of a straight-in approach with a 5 degree descent at 100 ft./sec. The 

initial conditions for this test are shown in Table 4.3 for both the true trajectory and the initial 

estimate for the solver. The rest of the trajectory was simulated at a sampling time of 0.5 sec. 

until 9.5 secs.  

Table 4.3: Initial Conditions for Synthetic Test 1 

 True Value Initial Guess 
Φ (deg.) 0 0 
Θ (deg.) -5 -10 
Ψ (deg.) 207 210 
bx (ft.) 1203.7 0 
by (ft.) 501.1 0 
bz (ft.) -200 -100 

U (ft./sec.) 100 80 
 

Figure 4.1 shows the set of images that was generated in FlightGear. 
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Figure 4.1: Straight Approach Image Set (Synthetic Test 1) 

Figure 4.2 shows the results from the Euler angle estimates at each time interval.  

 

Figure 4.2: Euler Angles from Synthetic Test 1 
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The trajectory from the simulation is shown in Figure 4.3. Note that the observations and 

near-optimal estimates are very nearly co-linear, and as such are difficult to distinguish. 

 

Figure 4.3: X-Y Plane Trajectory from Synthetic Test 1 

The estimates for bz and U are shown in Figure 4.3. 
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Figure 4.4: Z-Coordinate and Total Velocity from Synthetic Test 1 

The trace of the estimate covariance matrix is shown in Figure 4.5. This demonstrates that 

the Kalman Filter is converging as measurements are accumulated. 

 

Figure 4.5: EKF Covariance Matrix Trace 
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Figure 4.6 shows in better detail the error in each of the Euler angle estimates. These errors 

are defined as the difference between the observations or near-optimal estimates and the ground 

truth – i.e., 0 corresponds to no error. The estimates for roll angle are never worse than 0.15 

degrees and the error in pitch is never worse than 0.13 degrees. The error in heading, however, 

has a fairly constant bias of almost 0.8 degrees. This is likely due to an incorrect assumption 

about how the runway is rendered in FlightGear. 

 

Figure 4.6: Euler Angle Accuracy in Synthetic Test 1 

The position accuracy is shown in Figure 4.7. The results indicate that there is in fact an 

incorrect assumption regarding either the field-of-view angle or the rendering of the runway, 

most probably the latter. Despite these defects, the accuracy of the algorithm still beats the 

accuracy of GPS and succeeds in measuring altitude to within 2 feet toward the end of the 

simulation. 
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Figure 4.7: Position Accuracy in Synthetic Test 1 

4.1.3 Synthetic Test 2: Pull-Up Maneuver on Approach 

The second test consists of a gentle pull-up maneuver during an approach. Table 4.4 shows 

the initial conditions used for the test. 

Table 4.4: Initial Conditions for Synthetic Test 2 

 True Value Initial Guess 
Φ (deg.) 0 0 
Θ (deg.) -20 -10 
Ψ (deg.) 207 210 
bx (ft.) 1203.7 0 
by (ft.) 501.1 0 
bz (ft.) -200 -100 

U (ft./sec.) 100 80 
 

The control inputs used to simulate the pull-up maneuver are shown in Eq. 4.2. 



 

41 

 

3 / sec  6 sec

0

if t
u

otherwiseΘ

° ≤
= 


 [4.2] 

Figure 4.8 shows the test image set that was generated using FlightGear. 

 

Figure 4.8 Pull-Up Maneuver Image Set (Synthetic Test 2) 

Figure 4.9 shows the Euler angle estimates from this image set.  
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Figure 4.9: Euler Angles from Synthetic Test 2 

Figure 4.10 shows the estimated X-Y plane trajectory from this test.  
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Figure 4.10: X-Y Plane Trajectory from Synthetic Test 2 

Figure 4.11 shows the bz and U estimates from this test.  

 

Figure 4.11: Z-Coordinate and Total Velocity from Synthetic Test 2 
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Figure 4.12 shows the state estimate covariance matrix trace. Again, the filter converges. 

 

Figure 4.12: EKF Covariance Matrix Trace from Synthetic Test 2 

Figure 4.13 shows the Euler angle accuracy from this test. Once again very good accuracy is 

observed, even with a changing pitch angle. However the heading angle bias is again observed, 

further pointing to an error in the assumption of how the runway is rendered. 

 

Figure 4.13: Euler Angle Accuracy in Synthetic Test 2 
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Figure 4.14 shows the accuracy in the position estimate in this test. Similar trends are 

observed in this test as in the previous test, but altitude accuracy is nearly “dead-on” by the end 

of the simulation. 

 

Figure 4.14: Position Accuracy in Synthetic Test 2 

 

4.1.4 Synthetic Test 3: Turn from Base to Final 

The final synthetic test consists of a simulation of the latter part of a tight turn from a base 

leg to final. Table 4.5 shows the initial conditions for this test.  
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Table 4.5: Initial Conditions for Synthetic Test 3 

 True Value Initial Guess 
Φ (deg.) -30 0 
Θ (deg.) -5 -10 
Ψ (deg.) 227 210 
bx (ft.) 1158.3 0 
by (ft.) 590.2 0 
bz (ft.) -200 -100 

U (ft./sec.) 100 80 
 

Eqs. 4.3 and 4.4 show the control inputs used to generate the desired trajectory. 

12 / sec  4 sec 6.5 sec

0

if t
u

otherwiseΦ

° ≤ ≤
= 


 [4.3] 

4 / sec  5 sec

0

if t
u

otherwiseΨ

− ° ≤
= 


 [4.4] 

Figure 4.15 shows the image set generated. 

 

Figure 4.15: Base to Final Image Set (Synthetic Test 3) 
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Figure 4.16 shows the estimates for the Euler angles for this test. The tracking was very good 

in this test for all angles except heading, which exhibited a small bias. The EKF performed very 

well in tracking roll angle, showing very small estimation errors are no obvious phase delay in 

tracking the time-varying part of the roll angle history from t = 4 sec to t = 6.5 sec. 

 

Figure 4.16: Euler Angles from Synthetic Test 3 

Figure 4.17 shows the X-Y plane trajectory from the third synthetic test. Tracking was good, 

but there is clearly some substantial error between the ground truth and the estimates. 
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Figure 4.17: X-Y Plane Trajectory from Synthetic Test 3 

Figure 4.18 shows the estimates for bz and U. 
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Figure 4.18: Z-Coordinate and Total Velocity for Synthetic Test 3 

Figure 4.19 shows the convergence of the Kalman filter. 

 

Figure 4.19: EKF Covariance Matrix Trace for Synthetic Test 3 
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The accuracy for the Euler angle estimations is shown in Figure 4.20. Once again, very good 

accuracy is observed except for the heading angle estimation, which is systematically off by -0.7 

to -0.8 degrees. 

 

Figure 4.20: Euler Angle Accuracy in Synthetic Test 3 

Similar trends in position accuracy are observed in Figure 4.21. Altitude estimation – the 

most critical parameter for a UAV autolanding system – remains very good. 
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Figure 4.21: Position Accuracy in Synthetic Test 3 

4.2 Natural Image Test 

4.2.1 Test Setup 

This test was performed on a model runway by sliding a camera along a fixed rail and taking 

images at regular intervals to simulate motion. Due to the difficulty of using such a rail system 

without obstructing the view of the camera, a 15.1 degree wedge was used to elevate the camera 

out of the view of the rail and a compensating “angle-of-attack” term was added to the system 

dynamics to allow for an angle between the glidepath angle and the true pitch angle.  

The rail system allows for a constant roll angle, pitch angle, heading angle, and lateral 

runway offset, and a linearly changing trajectory for altitude and distance to runway. Table 4.6 
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shows the initial conditions for the natural image test. The full trajectory was generated by taking 

a snapshot every 2 inches along the rail.  

Table 4.6: Initial Conditions for Natural Image Test 

 True Value Initial Guess 
Φ (deg.) 4.4 0 
Θ (deg.) -6.2 -10 
Ψ (deg.) 0 0 
bx (in.) -72 0 
by (in.) 10 -100 
bz (in.) -25.5 -10 

U (in./sec.) 4 80 
 

Table 4.7 shows the configuration properties for the natural image test. These are similar to 

the properties selected for the synthetic tests, but are modified due to slight differences in the 

marker and line colors. 

Table 4.7: Configuration Parameters in Natural Image Test 

Name Value 
line_thresh 502 

mrkr_thresh 502 

line_color [220 230 240] 
mrkr_color [200 50 100] 
line_sigma 1 

mrkr_search_r 20 
hough_rho_res 2 
hough_phi_range [-90:0.25:89.75]  
hough_thresh 0.3 

hough_search_r 7 
AR 4/3 

fovy 39.37 deg. 
znear 0.1 
zfar 10 

im_size [768 1024] 
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4.2.2 Test Results 

Figure 4.22 shows the image set used for this test. As reflected from the tables in the 

previous section, there is a slight constant roll and pitch angle. The most significant difference is 

that the markers used for this test are much larger than those used in the synthetic tests. The 

markers were required to be larger in order the markers located on the far side of the runway be 

properly detected by the algorithm. 

 

Figure 4.22: Natural Image Data Set 

Figure 4.23 shows the Euler angle estimations in the natural image test. Aside from a few 

poor estimates early in the trajectory, the algorithm performs nearly equally well in Euler angle 

estimation using natural images as it does in the synthetic case.  
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Figure 4.23: Euler Angles from Natural Image Test 

The ground plane trajectory is shown in Figure 4.24. 

 

Figure 4.24: Trajectory from Natural Image Test 

The estimates for bz and U are shown in Figure 4.25. 
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Figure 4.25: Altitude and Total Velocity from Natural Image Test 

Figure 4.26 shows that once again the EKF has properly converged by the end of the 

simulation. 

 

Figure 4.26: Covariance Matrix Trace from Natural Image Test 

Figure 4.27 shows the accuracy of the Euler angle estimations. The early inaccuracy in the 

first few observations can be attributed to initial inexperience of the data gatherers in taking 

images without affecting the camera’s position and orientation. The test apparatus used is of a 

very low-grade, and it would have been easy to accidentally take images that were not oriented 
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correctly. However, this problem clearly diminishes in later observations. That being said, the -

0.8 degree bias in the heading angle estimate appears to be present once again. This likely points 

to a systematic problem with the implementation of the algorithm. 

 

Figure 4.27: Euler Angle Accuracy in Natural Image Test 

Figure 4.28 shows the position accuracy in the natural image test. Very good results are 

obtained across-the-board in each axis with accuracy to within ¼” except for the first few 

altitude measurements. 

It should be noted that the accuracy of the algorithm is probably much higher than the 

accuracy of the ground truth. Since these measurements were performed by hand using a crude 

rail system, it is entirely possible that much more accurate results would be seen using a more 

robust apparatus. 
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Figure 4.28: Position Accuracy in Natural Image Test 

4.3 Sensitivity Analysis 

4.3.1 Overview 

A sensitivity analysis is performed on a set of synthetic and natural images to determine the 

effect of the accuracy of the primary inputs to the state observer on the overall state observation. 

For the case which is of primary interest in this Thesis, the most important measurements are: 

• The 4 <xim,yim> pairs which define the outline of the runway, in pixels. 

• The field-of-view angle in the y-direction, fovy, in degrees. 

Other parameters such as the width of the runway, length of the runway, runway orientation, 

elevation, etc. are assumed to be known well enough that any estimate errors resulting from a 
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normal range of measurement errors in these parameters are much less than those that would 

result from comparable errors in the corner detection and field-of-view angle measurement. 

The sensitivities are numerically calculated by computing the effect of a small perturbation 

about the estimated state. This method assumes that the projection equations are locally linear in 

the range of the perturbation, which is reasonable to assume given the rapidity of the 

convergence of the solver.  

In order to condense the amount of data that must be sifted through to understand the overall 

sensitivity, the root-mean-square (RMS) sensitivity of the corner measurement is computed 

rather than the individual sensitivity.  

4.3.2 Synthetic Tests 

The sensitivity of Euler Angles to corner measurement is shown in Figure 4.29. It is clear 

from this figure that the algorithm was not especially sensitive to corner measurement for angle 

estimation.  

 

Figure 4.29: Sensitivity of Euler Angle Estimates to RMS Corner Measurement Error in 

Synthetic Test 3 
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The sensitivity of position estimates to RMS corner measurement is shown in Figure 4.30. 

The position errors are much more sensitive to corner measurement than are the angle estimates. 

A 5 pixel error in measurement would lead to 25 feet of X-Y plane position error at the start of 

the trajectory. However, this error diminishes as the runway comes into larger view in the image. 

Altitude sensitivity is much more important than X-Y plane position, and this sensitivity is much 

lower. It must be recognized that the error in any plane will be a function of the approach angle. 

It can be observed from this graph that altitude estimation is favorable to a shallow approach 

angle. 

 

Figure 4.30: Sensitivity of Position Estimates to RMS Corner Measurement Error in 

Synthetic Test 3 
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Figure 4.31 shows the sensitivity of the state estimate to field-of-view angle. While the effect 

of the field-of-view angle on Euler angle estimates is negligible, it has a profound effect on the 

estimates for position, especially in the X-Y plane. In all cases, the sensitivity to measurement 

errors diminishes as the runway becomes closer. 

 

Figure 4.31: Sensitivity of State Estimate to Field-of-View Measurement Error in Synthetic 

Test 3 

4.3.3 Natural Image Tests 

Figure 4.32 shows the sensitivity of the Euler angle measurements to RMS corner 

measurement error in the natural image test. The most significant state estimate error results 

from measurement errors in the corners’ y-coordinates; however, overall the estimates appear to 

be fairly robust. 
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Figure 4.32: Sensitivity of Euler Angle Estimate to RMS Corner Measurement Error in 

Natural Image Test 

Figure 4.33 shows the sensitivity of the position estimates to RMS corner measurement error. 

Again the algorithm is fairly robust overall, but very significant error in the camera’s x-

coordinate would result from small measurement errors in the corners’ image x-coordinates. 
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Figure 4.33: Sensitivity of Position Estimate to RMS Corner Measurement Error in 

Natural Image Test 

Figure 4.34 shows the sensitivity of the state estimate to field-of-view measurement error. As 

is to be expected, Euler angles are relatively insensitive to the field-of-view angle but the 

distance-to-runway estimation is profoundly affected by the field-of-view angle. This angle also 

has an impact on the altitude estimate, but its effect diminishes rapidly as the runway comes into 

larger view. 
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Figure 4.34: Sensitivity of State Estimate to Field-of-View Measurement Error in Natural 

Image Test 

4.4 CPU Load Analysis 

4.4.1 Overview 

A CPU load analysis is performed for the purposes of identifying bottlenecks and areas for 

code optimization, should it be desired that this algorithm is implemented in a real-time system. 

The numbers obtained in this section are combined with the algorithmic complexity analysis 

from Section 3.2 to project the effect of certain modifications. These results were obtained using 

an Intel Core i5-2310m at 2.3GHz with 4GB of RAM running Windows 7 64-bit. 

4.4.2 Synthetic Image Load Analysis 

Figure 4.35 shows the CPU load breakdown for each major sub-algorithm in the system. The 

Canny Edge detection algorithm dominates overall load on the CPU, making this sub-algorithm 
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the critical bottleneck. Image Acquisition is the second-most-intensive operation, although this 

number is driven by hard drive access times and would probably not be nearly as significant in a 

real-time system. SSE and Hough Transform operations are next on the list, although these are 

both highly parallelizable and could easily be implemented on dedicated hardware. 

 

Figure 4.35: CPU Usage Breakdown for Synthetic Test 3 

A more detailed breakdown of the CPU load is shown in Figure 4.36. It is worth noting that 

the Hough transform takes longer to execute as the runway comes into larger and more edge 

pixels appear in the screen, demonstrating the O(m*n) behavior mentioned in Section 3.2. 
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Figure 4.36: CPU Usage History for Synthetic Test 3 

4.4.3 Natural Image Load Analysis 

The natural image test performance shown in Figure 4.37 has similar characteristics to the 

synthetic tests, with the exception that the clustering algorithm takes much longer to execute. 

This is due to the fact that the clustering algorithm is recursively defined, and there are many 

more marker pixels to process in the natural images than in the synthetic images.  
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Figure 4.37: CPU Usage Breakdown for Natural Image Data Set 

A more detailed view of the CPU load history is shown in Figure 4.38. 
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Figure 4.38: CPU Usage History for Natural Image Data Set 

4.5 Impact of Using Other Resolutions on CPU Load 

The impact on CPU usage time from change in image resolution was estimated using the 

algorithmic complexity analysis summarized in Table 3.4 and cherrypicked load data from a 

typical iteration in the natural image test (typically iteration #3). Figure 4.39 shows the effect on 

CPU load time of varying the image resolution. The algorithm in general scales only slightly 

worse than linearly with the number of pixels in the image. The following summarizes the 

results: 

• 20 Hz is achievable at 256x192 
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• 5 Hz is achievable at 512x384 

• 1 Hz is achievable at 1024x768 

• 0.25 Hz is achievable at 2048x768  

 

Figure 4.39: CPU Load Scaling from Variation in Camera Resolution 

Using lower resolutions would introduce the following problems: 

• Markers may not be detected properly 

• Runway edges may not be detected properly 

• In the worst case, accuracy of the solution would degrade by at least 1 pixel for each 

halving of image resolution, as per the sensitivity analysis shown in Section 4.3. In the 

best case, the centroid of each marker would be identical for each image resolution and 

the accuracy would be unaffected. 
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A better approach to solving the performance problem than lowering the resolution would be 

to use more sophisticated hardware. The Canny edge detector alone accounts for approximately 

2/3’s of overall CPU usage. Recently, a Xilinx Spartan-6 FPGA implementation of this 

algorithm was developed that can perform this algorithm on a 1280x960 image in 3.09 

milliseconds [20]  – a 160-fold improvement over the microprocessor-based implementation in 

this algorithm. The SSE operations could also easily be offloaded to an FPGA since they are 

highly separable and do not require floating point arithmetic. The other major performance 

bottleneck is the clustering algorithm. Since this algorithm is recursive and it is implemented in 

MATLAB, it is likely that MATLAB’s interpreter is the source of the inefficiency. It is 

reasonable to assume that if the algorithm were rewritten in C++, it would execute much more 

quickly. If all of these steps were taken, it is certain that this algorithm could be implemented in 

real-time using fast microprocessors and FPGAs.    
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5 Conclusions and Recommendations 

5.1 Conclusions 

A vision-based method of UAV state estimation for the purposes of augmenting and backing 

up GPS-based systems has been developed and presented in this Thesis. This method can be used 

for fixed-wing conventional landing, rotary wing helipad landing, or fixed-wing net recovery. 

Additionally, it could be adapted for optionally-piloted vehicles, pilot training devices, or even 

other robotic platforms. The requirements for the usage of this system are good lighting 

conditions, clear edges of the recovery target, unicolor markers on the recovery target’s corners, 

and knowledge of the recovery target’s physical dimensions and location.  

Accuracy of this method has been demonstrated in synthetic images on a 7500 foot runway 

to within 20 feet laterally and 4 feet vertically initially, diminishing to nearly 0 as the runway 

comes into larger view. This level of accuracy is certainly on par with GPS. However, a large 

portion of the error is very likely due to incorrect assumptions about how the runway is rendered 

in FlightGear. It is possible that FlightGear uses a different definition for the perimeter of the 

runway (perhaps in the middle of the white line instead of the far edge) – causing significant 

position error. It must be noted that this sort of error would not be present in a real system if care 

is taken to use consistent conventions. Accuracy of pitch and roll was consistent to within 0.1 

degrees – far better than what any other method achieved in the literature review. Heading had a 

consistent bias of approximately -0.75 degrees, which is likely caused by an “off-by-1” indexing 

error somewhere in the implementation code. This could be occurring in 

“convert_pixels_to_ndc.m” or its related inverse operations, which convert image coordinates to 
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and from normalized device coordinates. A constant error in this conversion would certainly 

cause a consistent bias in heading angle. 

Accuracy of the algorithm has been demonstrated on a set of natural images on a 90 inch 

runway to within 0.5 inches laterally and 0.4 inches vertically. Again, the error in altitude 

exhibits the favorable behavior of approaching 0 as the runway comes into larger view. 

Additionally, with small glideslope angles the altitude sensitivity is much lower than the lateral 

position sensitivity. This is a favorable property for traditional fixed-wing recovery and is a 

natural result of the projection process. The errors that do exist in the position estimate, though 

quite small, can be attributed to systematic error involved with exhibiting asymmetric forces on 

the camera while taking pictures using the track apparatus. Error in Euler angles is somewhat 

larger than in the synthetic tests, reaching up to 1.2 degrees in roll and up to 0.6 degrees in pitch. 

Again, heading angle exhibits a slightly negative bias. 

If position accuracy is normalized to runway length, then it is possible to get a feel for the 

scaling effects of the algorithm. The results are summarized in Table 5.1. Note well that these 

numbers are for the very worst individual observation (note optimal estimate) in each test run. 

Despite this, even the worst observations yield very good relative results. The way to interpret 

this is as follows: in each test, the algorithm never gave an observation worse than 0.48% of the 

total length of the runway in lateral position or 0.44% of the total length of the runway in vertical 

position. In fact, as the camera approached the runway, observations typically got much better 

and the Kalman Filter greatly improved tracking of the system. 
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Table 5.1: Summary of Worst-Case Position Observation Accuracy Normalized With 

Runway Length 

 Synthetic 1 Synthetic 2 Synthetic 3 Natural 
δbx-max/l (-): 0.2% 0.2% 0.24% 0.39% 
δby-max/l (-): 0.12% 0.14% 0.13% 0.28% 
δbz-max/l (-): 0.05% 0.03% 0.05% 0.44% 

 

If the natural image accuracy numbers were applied to a more typical UAV runway length of 

about 1000 feet and with all other things being equal, then position accuracy could be expected 

to be within 5 feet in the worst case and within a few inches as the vehicle approaches the 

threshold. With more precise markers, slight modifications to marker centroid detection, and 

better knowledge of the true field-of-view angle even better position estimation could be 

realized. This level of position knowledge is certainly sufficient for UAV autolanding. 

The algorithm in its current implementation suffers from two major deficiencies: 

1. Color information is relied upon to detect recovery target edges and markers. Lighting 

conditions and camera calibration will significantly impact the algorithm’s ability to 

detect both of these key features. This could be solved by categorizing pixels according 

to their hue as opposed to sum-square error from a specific color, putting these values 

into a histogram, and then thresholding the image such that at least a certain number of 

pixels are always flagged. These pixels could then be searched for neighbors with similar 

color, thus allowing for some tolerance for shading and sensor noise. These clusters 

would then passed into the clustering algorithm and the rest of the system would iterate 

as normal. 

2. The algorithm will fail once the recovery target moves offscreen of the image. This could 

be solved by placing intermediate markers inside the recovery target: 
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o For a runway, two new markers could be placed halfway between the opposing 

thresholds. Since aircraft typically land in the first 10-30% of the runway, this 

should allow the system sufficient margin to always have at least 4 markers in 

view. 

o For a helipad, an additional rectangle could be placed near the center of the pad 

that would be sufficiently small to never completely leave the view of the camera 

on landing. 

o For a net, this is likely not a problem since the vehicle will be essentially within 

the capture zone of the net once the corners leave the view of the camera. 

An additional layer of intelligence would need to be added to the algorithm to allow for 

markers to leave the view of the camera. This would most easily be accomplished by modifying 

the 2D point to 3D point optimizer as follows: 

1. First find the optimal mapping for the furthest 4 points (the inner rectangle in the case of 

the helipad, or the far four points in the case of the runway). 

2. Holding this mapping constant, run the optimizer for each combination of N-4 points 

needed to complete the rest of the mapping. If there are insufficient detected clusters to 

do this, then stop the algorithm and proceed with the results from the previous step. 

3. If the average resulting cost per point (i.e., average sum-square distance error per point) 

for the optimal map rises significantly from the value obtained in the first step, then the 

mapping can be considered invalid and the results from step 1 should be used. 

Finally, the choice of marker geometry was suboptimal. The cross-section of a flat ellipse 

obviously diminishes to 0 as the aspect angle goes to 0, which is precisely what happens during a 
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shallow landing. It is desirable to choose a geometry that has a 2D centroid that coincides with a 

3D center of mass – spheres would be much better choices. 

5.2 Recommendations 

It is recommended as a first step that this system be further tested due to its necessity for 

providing additional navigation robustness to the next generation of civil and military aircraft 

and its exceptionally good performance relative to previously-developed systems. It is 

recommended to implement a spherical marker system on an available runway, mount a high-

definition camera onto a GA aircraft, calibrate it, and perform a flight test of the system. The 

flight test should include flyovers as well as ghost landings. The merit of placing markers on 

locations other than the far threshold of the runway should also be investigated. On some very 

long runways, it may be difficult for the vision system to detect the markers due to haze or heat 

distortion. The far-side markers could be placed much closer, and this could improve not just 

marker detection but estimation accuracy. 

If reasonable state estimates are obtained from the flight test video, then it is recommended to 

use this algorithm as a means of performing system identification. The Euler angle estimates and 

position estimates are far better than what would be expected of typical Inertial Navigation 

Systems. If integrated with vehicle control inputs, it is anticipated that very high-fidelity linear 

models could be created using the data from this system. 

If this program is successful, it is recommended to add the intelligence necessary to provide 

additional robustness against color perception error as well as markers leaving the camera’s field 

of view. These updates to the algorithm should also be thoroughly flight tested. 

If this step is successful, then the algorithm could be implemented in a real-time system. The 

core algorithm would need to be converted from MATLAB code to faster C++ code, probably 
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using the OpenCV library. A fast multicore embedded processor would need to be selected for 

use, and separable algorithms such as the Hough Transform be split amongst the various cores. 

The Canny Edge Detector and SSE calculations should be offloaded to an FPGA, since these 

operations can be done much faster in highly-parallel devices than on a microprocessor. In 

addition to the required work on the core state estimator, an actual autoland controller designed 

for use with this system would also need to be developed.  

While such an undertaking would require a very significant amount of engineering, it is 

worthwhile if its performance lives up to its promise. A unified vision-based method for 

recovering a UAV of any type or size regardless of whether the target is a runway, helipad, or net 

would present a massive leap forward in the state-of-the-art for computer vision and navigation 

technology, and vastly improve the robustness of next-generation aerial autonomous platforms. 
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