
 
 

 
 
 
 
 
 
 

FIT INDEX SENSITIVITY IN MULTILEVEL STRUCTURAL EQUATION MODELING 
 

BY 
 

Aaron Boulton 
 
 
 
 
 

Submitted to the graduate degree program in Psychology 
and the Graduate Faculty of the University of Kansas in partial fulfillment of the 

requirements for the degree of Master of Arts 
 
 
 
 
       

Chairperson Kristopher J. Preacher, Ph.D.
 

      
Todd D. Little, Ph.D.

      
Wei Wu, Ph.D.

      
Paul E. Johnson, Ph.D.

Date Defended:  July 20, 2011
   

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213394983?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ii 
 

 
 
 
 
 
 
 

The Thesis Committee for Aaron Boulton 
certifies that this is the approved version of the following thesis: 

 
 
 
 

FIT INDEX SENSITIVITY IN MULTILEVEL STRUCTURAL EQUATION MODELING 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           
 

Chairperson Kristopher J. Preacher, Ph.D. 
 
 
 
 
 

Date approved:  July 20, 2011 
 
 
 

 
 



iii 
 

Acknowledgements 

  I would like to thank the four members of my committee, Drs. Kristopher Preacher, Todd 

Little, Wei Wu, and Paul Johnson. Dr. Preacher initially fostered my interest in MSEM and has 

provided tremendous enthusiasm throughout all phases of this project. Without his support, this 

project would not have been possible. I am indebted to my co-advisor Dr. Little whose advice led 

to major structural changes in the methods employed. In my opinion, these changes both 

strengthened the study and demonstrated possible improvements to the Monte Carlo simulation 

paradigm that is currently used in quantitative pscyhology. Many thanks to Dr. Wu for her 

valuable feedback as well as her recent work on SEM model fit which inspired many aspects of 

this study. Finally, I am grateful to Dr. Johnson for his technical assistance on R programming as 

well as his eagerness to challenge commonly held assumptions which has led to an enriched 

understanding of my study. 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

Abstract 

  Multilevel Structural Equation Modeling (MSEM) is used to estimate latent variable 

models in the presence of multilevel data. A key feature of MSEM is its ability to quantify the 

extent to which a hypothesized model fits the observed data. Several test statistics and so-called 

fit indices can be calculated in MSEM as is done in single-level structural equation modeling. 

Accordingly, problems associated with these measures in the single-level case may apply to the 

multilevel case and new complications may arise. Few studies, however, have examined the 

performance of fit indices in MSEM. Furthermore, recent findings suggest that evaluating fit at 

each level separately is advantageous to evaluating fit for the overall model. Therefore, the 

purpose of the present study was to evaluate the sensitivity of several fit indices to 

misspecification in the cluster-level model under varying multilevel data conditions including the 

intraclass correlation coefficient, sample size configuration, and severity of model 

misspecification. Furthermore, two methods of level-specific fit evaluation were compared. 

Results from a Monte Carlo simulation study suggest that fit indices are affected by the ICC of 

model indicators and sample size configurations in MSEM. With the exception of the SRMR, all 

fit indices were less sensitive to cluster-level model misspecification at low indicator ICCs, large 

overall sample sizes, and smaller numbers of clusters. Discrepancies in fit information between 

the two methods of level-specific fit were observed at low ICC values. Finally, two fit indices 

rarely used in SEM applications revealed desirable properties in certain simulation conditions. 

Implications of the simulation results are discussed and a program for implementing level-

specific fit evaluation in the R statistical language is provided. 
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Sensitivity of Fit Indices in Multilevel Structural Equation Modeling 

Introduction 

  Nested data are pervasive in the social sciences. Nested data arise when the units of 

observation in a study are grouped in some way. For example, students are nested within 

classrooms, employees within departments, and patients within physicians. Another form of 

nesting occurs when repeated observations are made on the same unit over time. Nested data can 

arise naturally such as individuals nested within families or by design such as assigning 

individuals to record daily diary entries. Furthermore, a nested dataset can have an arbitrary 

number of levels. For example, repeated measures may be nested within students, who are nested 

within classrooms, which are further nested within schools, and so on. 

  There are some complications inherent in the analysis of nested data. Conceptually, one 

can make incorrect inferences if the analysis is restricted to a single level of the data. An 

ecological fallacy (Robinson, 1950) occurs when relationships among variables at the group-

level are assumed to hold at the individual-level. Conversely, an atomistic fallacy (Diez-Roux, 

1998) can be made by generalizing effects at the individual level to the group level. The 

direction of relationships also can change when collapsing groups from heterogeneous 

populations (Simpson’s paradox; Simpson, 1951). Statistically, nested data imply that units 

within groups will respond more similarly than units between groups. This residual correlation 

violates the assumption of independent observations that underlie most parametric statistical 

procedures. Such a violation often will result in underestimated standard errors and thus a larger 

Type I error rate (identifying effects not actually present in the population) as well as biased 

parameter estimates (Hox, 1998). 
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  Historically, researchers have analyzed nested data by either ignoring or controlling for 

group dependencies. If one ignores the nested structure then either aggregation or disaggregation 

is used. Aggregation refers to the analysis of units at the group level while ignoring information 

at the individual level by aggregating (i.e., averaging) scores within groups. Several problems are 

associated with this approach, such as committing an ecological fallacy, reduced statistical 

power, unreliable group-level information, and the incorrect weighting of groups during 

parameter estimation (Lüdtke et al., 2008; Preacher, Zyphur, & Zhang, 2010). Disaggregation 

involves analysis at the individual level while ignoring the nestedness and can result in biased 

test statistics, standard errors, and parameter estimates (Hox, 1998; Julian, 2001), confounding 

within and between-group relationships (Cronbach, 1976), and committing the atomistic fallacy. 

  To avoid these problems, others have attempted to control or correct for nestedness. 

Controlling for within-group dependence typically involves the inclusion of dummy-coded 

variables that represent group membership in the statistical model, often at the expense of 

parsimony. Corrections to standard errors have also been developed and implemented in several 

statistical software packages (Huber, 1967; White, 1982). Although such approaches can 

mitigate bias in parameter estimates and standard errors, information at other levels of the data is 

lost and generalizability is restricted only to the groups in a given sample. 

  A theme underlying each of these methods is that the dependence arising from nested 

data is superfluous to the intended analysis and must be either ignored or controlled for. More 

recently, however, investigators have begun to appreciate within-group dependence as a 

substantively interesting phenomenon that raises new and important questions (Hox, 1998). 

Multilevel modeling (MLM) is an extension of multiple regression analysis that provides a 

framework for such questions to be addressed (Raudenbush & Bryk, 2002; Snijders & Bosker, 
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1999). MLM, also known as hierarchical linear modeling, random coefficients modeling, or 

mixed modeling, allows for heterogeneity in regression parameters across groups. Different 

groups may have different mean levels (intercept) and conditional relationships (slopes) for a 

given outcome, and allowing these parameters to vary across groups addresses several of the 

aforementioned problems while providing new analytic insights. For example, MLM permits 

investigators to analyze cross-level interactions in order to determine whether within-group 

effects are conditional on group-level variables. 

The key to MLM is the specification of intercept and slope parameters as random 

variables. Instead of estimating separate intercepts and slopes for each group as would be done 

using a fixed-effects approach, only a few parameters describing the distributions of the random 

effects are estimated. Fewer estimated parameters imply more parsimonious models, while at the 

same time generalizability is maximized given the specification of regression coefficients as 

random variables. In summary, MLM provides a concise and efficacious method for analyzing 

data at multiple levels of a hierarchy. 

   As is the case with any statistical procedure, MLM has its disadvantages. First, MLM 

assumes that variables have been measured without error, an assumption often violated in 

practice that can result in attenuated regression coefficients. Second, complex hypotheses 

involving multiple dependent variables are either difficult or impossible to test. Finally, MLM 

generally does not provide information regarding global model fit (see Wu, West, & Taylor, 

2009, for an overview of model fit in MLM). As many have noted, however, the disadvantages 

of MLM are precisely the strengths of the structural equation modeling (SEM) framework 

(Bauer, 2003; Kline, 2011). SEM, also referred to as latent variable analysis, was developed out 

of the factor analytic tradition in psychology and involves modeling the relationships between 
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unobserved latent variables. SEM removes measurement error via explicit measurement models, 

complex theoretical models can be defined and tested, and several measures of global model fit 

are available. Likewise, the limitations of SEM are complemented by MLM. SEM assumes 

independent observations and therefore cannot account for or model group dependencies, a task 

that MLM was explicitly designed to do. 

   Clearly, these approaches have much to offer one another, and methodologists have 

worked to foster their synergy. The result is multilevel structural equation modeling (MSEM), a 

general analytic framework that combines the strengths of the SEM and MLM traditions (Kline, 

2011; Muthén & Asparouhov, 2011). MSEM was conceptualized over four decades ago 

(Goldstein & McDonald, 1988; Härnqvist, 1978; Muthén, 1989; 1990; Schmidt, 1969), but only 

recently have analytical and computational advances made MSEM accessible to the larger 

research community. For those familiar with the MLM tradition, MSEM permits random 

intercepts and slopes such that cross-level interactions involving contextual variables can be 

estimated and evaluated. In contrast to MLM, however, outcomes need not be restricted to the 

lowest level of the data. For those familiar with the SEM tradition, MSEM is a latent variable 

technique, and thus measurement error in both predictor and outcome variables is controlled for. 

Additionally, MSEM provides measures of model fit and allows complex theoretical models to 

be specified and tested at multiple data levels. 

MSEM is a fertile area for methodological inquiry. The extent to which findings from the 

MLM and SEM literatures hold in MSEM presents an interesting question that has largely been 

unexamined. In particular, the evaluation of model fit has been an active area of SEM research 

for the past 30 years. Little is known, however, about model fit assessment in MSEM. Popular 

measures of fit are able to be calculated for such models, yet it is unclear how the complexities 
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of multilevel data and new estimation methods influence their performance and sensitivity. The 

present study will employ a Monte Carlo simulation to address this general question. Before 

specific research questions are outlined, a review of the MSEM framework and model fit 

evaluation is warranted. 

This paper proceeds as follows. Section I provides an overview of MSEM, for which 

many approaches now exist. Recent methods address the limitations of earlier developments 

(Ansari, Jedidi, & Jagpal, 2000; Muthén & Asparouhov, 2008; Rabe-Hesketh, Skrondal, & 

Pickles, 2004) and are currently implemented in accessible software. Of these, the general model 

of Muthén & Asparouhov (2008) is described in detail. Following this presentation, the 

discussion will turn to the issue of model fit in SEM (Section II). A summary of fit indices is 

provided, followed by a review of the extensive literature evaluating their performance. Section 

II ends with a discussion of fit in MSEM and current research questions. Section III outlines the 

Monte Carlo simulation used in this study. Recent insights into Monte Carlo investigations of fit 

index sensitivity are incorporated and highlighted. Results of the simulation are reported in 

Section IV and discussed in Section V. 

PART I: Multilevel Structural Equation Modeling 

  The roots of MSEM can be traced to the dissertation of Schmidt (1969), in which a 

maximum likelihood (ML) estimator was developed for decomposing observed variables into 

latent sources of variation: between-cluster variation and within-cluster variation (Kaplan, Kim, 

& Kim, 2009). It follows then that a total population covariance matrix, ΣT, can also be 

decomposed into the sum of a between-group covariance matrix, ΣB, and a within-group 

covariance matrix, ΣW. That is,  

 = +T B WΣ Σ Σ
. (1) 
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The sample estimate of ΣW, referred to as the pooled within-group covariance matrix, SPW, is 

calculated by 

 
1 1
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where J is the total number of groups, nj is the within-group sample size for cluster j, N is the 

total sample size (i.e. 
1
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∑∑∑∑ ), y j  is a (p × 1) vector of means for cluster j on p variables, and 

yij  is a (p × 1) vector of observed scores for individual i in cluster j. Similarly, the sample 

estimate of ΣB, designated SB, is calculated by 
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where J, nj , and j
y are defined as before, and y is a (p × 1) vector of overall sample means.   

  Muthén (1990) demonstrated that, for the case of balanced data in which nj = n for all 

clusters j,  

 * =PW WS Σ  (4) 

 and 

 * cB B WS Σ Σ= += += += + . (5) 

In Equation 5, c is a scaling parameter equal to nj. Muthén (1989, 1990) also demonstrated that 

separate models could be estimated for S*PW and S*B using the multiple-group option of 

standard SEM software and treating the two input matrices as “groups”. However, in the 

unbalanced case, S*B is a biased estimator of the between-group covariance matrix as no single 

value of n applies to all clusters. In such a case, the following model holds for subsets of groups 
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where subset d consists of groups with an equal number of within-group units nj,

 * d dcB B WS Σ Σ= += += += + . (6) 

Each subset d has a different scaling parameter, cd. To estimate the model described in Equation 

6 using standard SEM software, a separate between-group model for each subset d is estimated. 

Equality constraints are placed on all parameters and a mean structure is included across all 

between-group models (Muthén, 1990, 1994). It is not hard to imagine that programming and 

estimation for such a model can quickly become intractable. 

 To address this issue, Muthén (1989, 1990) proposed calculating a single S*B using an ad 

hoc estimator for the c scaling parameter, which is very close to the average sample size within 

clusters,

 

2 2

*
( 1)

J

j
j

N n
c

N J

−−−− ∑∑∑∑
====

−−−− . (7)   

As a result of this formulation, Muthén (1989, 1990) developed a limited information maximum 

likelihood estimator, MUML, that approximates full-information ML estimates as the sample 

size at both levels becomes large (Hox, 1993; Hox & Maas, 2001; McDonald, 1994; Muthén, 

1994; Yuan & Hayashi, 2005). This estimator has also been referred to as a pseudobalanced 

approach (McDonald, 1994). Goldstein (1987, 1995) proposed a different method for calculating 

S*PW and S*B by “tricking” MLM software into estimating these quantities. Although this 

method addresses the issues of missing data and unbalanced clusters, the programming and data 

manipulation are cumbersome, and as S*PW and S*B are not directly calculated but estimated, 

they are prone to sampling error (Hox & Maas, 2004).    
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  The MUML approach has been used most frequently in the applied literature (Ryu, 

2008). However, several MSEM methods have been developed based on a similar two-level 

covariance structure formulation (Lee, 1990; Lee & Poon, 1998; Liang & Bentler, 2004; 

McDonald, 1993; McDonald & Goldstein, 1989; Raudenbush, 1995). Although each approach 

differs with regards to computation and the ability to handle missing data or unbalanced clusters, 

each has been limited by their inability to estimate random slopes (Preacher et al. 2010). One 

solution for incorporating random slopes is to estimate certain SEM models within the MLM 

framework (Raudenbush, Rowan, & Kang, 1991). This also provides the advantage of 

accounting for an arbitrary number of data levels, but such models imposed overly restrictive 

measurement models and generally do not provide global fit information. 

  Recent computational and analytic advances have paved the way for more general 

MSEM formulations that address the aforementioned issues (Ansari et al., 2000; Jedidi & Ansari, 

2001; Muthén & Asparouhov, 2008; Rabe-Hesketh et al., 2004). Anasari et al.’s (2000) 

framework, a Bayesian approach, has some theoretically interesting advantages as it does not 

rely on asymptotic theory, avoids high-dimensional integration, and can incorporate prior 

information into the estimation procedure. However, the method may be difficult for researchers 

to apply and their approach is not yet supported by generally available software. Conversely, the 

Muthén & Asparouhov (2008) approach is currently implemented in the SEM program Mplus 

(Muthén & Muthén, 1998-2010), and Rabe-Hesketh et al.’s (2004) method (called GLLAMM) is 

available via an add-on for the general statistical software package STATA. 

  Both methods can accommodate a variety of distributions for outcome variables (e.g., 

continuous, censored, binary, ordinal), adequately handle all forms of imbalance, including 

missing data, and accommodate random slopes. Rabe-Hesketh et al.’s (2004) GLLAMM 
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approach also allows for an arbitrary number of nested data levels, whereas the Muthén and 

Asparouhov’s (2008) approach is often limited to two levels1. However, the GLLAMM approach 

is less computationally efficient for many models (Bauer, 2003; Preacher et al., 2010) and does 

not permit random slopes with latent covariates. Given the flexibility and computational 

efficiency of the Muthén and Asparouhov (2008) MSEM formulation, as well as its increasing 

use in the applied literature (e.g. Dedrick & Greenbaum, 2010; Purdy, Laschinger, Finegan, Kerr, 

& Olivera, 2010; Walsh, Matthews, Tuller, Parks, & McDonald, 2010), the following section 

will provide an overview of their method. 

Muthén & Asparouhov’s (2008) MSEM framework 

 The general MSEM framework as described by Muthén & Asparouhov (2008) is an 

extension of single-level SEM2. The measurement portion of the single-level SEM is 

 i i i i= + + +Y ν Λη KX ε . (8) 

As before, i refers to an individual unit. In Equation 8, Yi is a (p × 1) vector of observed scores 

on p variables, ν is a (p × 1) vector of variable intercepts, Λ is a (p × m) matrix of factor loadings 

for m latent variables, ηi is a (m × 1) vector of the m latent variables, K is a (p × q) matrix of 

regression coefficients for the effects of q measured covariates on the p observed variables, Xi is 

a (q × 1) vector of observed scores on the q covariates, and εi is a (p × 1) vector of residual 

scores assumed to follow a multivariate normal distribution with zero means and a covariance 

matrix Θ. The measurement model shown here is also known as confirmatory factor analysis 

(CFA), and it is the part of an SEM model that expresses the observed variables as functions of 

underlying latent variables (the η’s), observed covariates (the Xi), and residuals (the εi’s). 

 The structural portion of the single-level SEM model specifies relationship patterns 

among the latent variables, which are allowed to covary in CFA models but not cause one 
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another. More formally, the latent variables are defined as functions of other latent variables, 

observed exogenous covariates, and residuals, as defined in Equation 9:  

 i i i iη α Bη ΓX ζ= + + += + + += + + += + + +  (9) 

where ηi is defined as before, α is an (m × 1) vector of intercepts, B is an (m × m) matrix of 

regression coefficients that specifies relationships among the latent variables, Γ is an (m × q) 

matrix of coefficients representing regressions onto covariates, Xi is defined as before, and ζi is 

an (m × 1) matrix of residual terms for the latent variables. The ζi’s are assume to follow a 

multivariate normal distribution with means of zero and a covariance matrix Ψ. Equations 8 and 

9 imply  

 
1 1( ) ( ) )Σ θ Λ I B Ψ((I B ) Λ Θ− − ′ ′= − − +  (10) 

 

 
-1( ) ( - )= +µ θ ν Λ I B α  (11) 

 
where Σ(θ) is the (p × p) covariance matrix of the p observed variables in Yi expressed as a 

function of the parameters in the vector θ, and µ(θ) is a (p × 1) vector of means also expressed as 

a function of the parameters in θ. The quantities in 10 and 11 form the basis of the normal theory 

ML estimator, which is used to identify parameters in θ that minimize the discrepancy between 

the model-implied moments in Σ(θ) and µ(θ) and the observed sample moments contained in the 

covariance matrix S and the mean vector µ. 

 Equations 8 through 11 form the basis for the MSEM formulation given in Muthén and 

Asparouhov (2008). The key difference is that the parameter matrices are allowed to vary over 

clusters so as to define random effects at the between-group level. As such, Equations 12 through 

14 represent the general MSEM model, 

 ij j j ij j ij ij= + + +Y ν Λ η K X ε  (12) 
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 ij j j ij j ij ij= + + +η α B η Γ X ζ  (13) 
 

 

j j j j= + + +η µ βη γX ζ  (14) 
 
where Equation 12 is a measurement model, Equation 13 is the within-group structural model, 

and Equation 14 is the between-group structural model. As is the case in the single-level 

formulation, the residual terms εij and ζij are assumed to be multivariate normally distributed with 

means of zero and covariance matrices Θ and Ψ. 

 Notice that Equations 12 and 13 are identical to the single-level SEM equations (8 and 9) 

with the addition of a j subscript on each term. Consequently, the terms in these equations are 

defined as before, with the exception that they are now allowed to vary at the between-group 

level. More precisely, the matrices containing the model parameters (νj, αj, Λj, Bj, Kj, and Γj) can 

vary at the between-group level, and the matrices containing the variable scores (both observed, 

Yij and Xij, and unobserved, Xij, εij, and ζij) can vary at both levels. Additionally, the elements 

within the latter matrices can be strictly within-group variables, strictly between-group variables, 

or variables with variance at both levels.

 Equation 14 is less obvious to decipher. The vector ηi is actually a stacked vector 

containing all r random effects from the parameter matrices νj, αj, Λj, Kj, Bj, and Γj. That is,  
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where vec{} is an operator that places the elements of its argument into a column vector. The 

vector ηi is then defined as a function of the following elements: µ, an (r × 1) vector of fixed 

effects (the means of the random effect distributions and structural intercepts); β, an (r × r) 

matrix of structural regression coefficients defining the relationships among the random effects; 

γ, an (r × s) matrix of regression coefficients for the random effects in ηi regressed onto s 

between-group exogenous covariates contained in the (s × 1) vector Xj (which itself is an 

element in the partitioned matrix Xij ); and finally, ζj, an (r × 1) vector of residual scores with 

means of zeros and covariance matrix ψ.    

  A notable characteristic of the model described in Equations 12, 13, and 14 is that 

standard analyses commonly used in the social and behavioral sciences are actually special cases 

of this model. That is, multiple regression analysis, path analysis, CFA, SEM, and two-level 

MLM are all estimable under this model. For example, consider a single-level CFA model in 

which neither the observed variables nor the latent variables are functions of exogenous 

predictors. Without any observed covariates, all equation terms containing the Xij  matrix are 

removed. Furthermore, as CFA models do not specify causal paths among latent variables, 

Equation 13 is ignored. Finally, as the model is only estimated at the within-group level, all j 

subscripts are removed from the elements in Equation 12. Thus, we have the following model: 

  i i i= + +Y ν Λη ε  (16) 

which implies 

 ( ) ′= +Σ θ ΛΨΛ Θ  (17) 
 

 ( ) = +µ θ ν Λα  (18) 
 
Equations 17 and 18 represent the standard CFA model-implied covariance matrix and mean 

vector (Brown, 2006). 
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 In Mplus, the general MSEM model described in Equations 12 through 14 is estimated 

using a full-information maximum likelihood estimator (FIML, cf. Mehta & Neale, 2005). By 

default, a robust χ² statistic is calculated (Yuan & Bentler, 1998) and standard errors are 

estimated using Huber-White sandwich estimators (Hox, Maas, & Brinkhuis, 2010). In tandem, 

these will provide unbiased estimates under moderate violations of distributional assumptions. 

Additionally, a diagonally-weighted least squares (DWLS) estimator is available for model 

estimation with categorical dependent variables (Asparouhov & Muthén, 2007). In such 

instances, ML solutions require high-dimensional numerical integration which can often result in 

convergence problems, imprecise estimates, and severe computational burden. Estimation with 

the DWLS estimator reduces the number of dimensions by dividing a full model into multiple 

simple models that require only one- or two-dimensional integration. The DWLS implies robust 

χ² values and standard errors (Hox et al., 2010).  

To summarize, early MSEM methods often require tenuous model and data assumptions 

(e.g., balanced clusters, no missing data), can be difficult to program, and cannot accommodate 

random slopes. Random slopes (and therefore cross-level interactions) are of key interest to users 

of MLM, and thus for a full synergy to exist between the SEM and MLM frameworks, an 

advantage of one approach should not be left out. With the development of FIML estimation for 

MSEM (Metha & Neale, 2005) as well as advances in specialized (Mplus) and general statistical 

software (STATA), the full potential of SEM and MLM integration is now available. For applied 

researchers, new tools inspire the refinement of existing theories and the creation of new ones, 

or, to put it simply, scientific progress. For methodologists, however, new tools imply questions 

concerning its use, utility, and generalizability. As such, the discussion will now turn to a 

relatively unexplored topic in relation to MSEM: model fit evaluation. The evaluation of model 
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fit is a strength of the SEM framework that permits researchers to somewhat quantify the 

adequacy of a theoretical model as applied to real data. The following section will briefly review 

model fit as conceptualized in SEM. This review will provide a foundation from which the 

literature concerning the performance fit measures in SEM, and to a lesser extent, MSEM, can be 

understood. 

PART II: Model fit assessment in SEM and MSEM 

Model Fit Statistics and Indices 

  The goal of SEM is to recreate the means, variances, and covariances of multivariate 

sample data with a theoretical model. Formally, given a sample covariance matrix S and mean 

vector y , one must specify and estimate a model (i.e., a system of linear equations) with 

parameter vector θ such that the covariance matrix, Σ(θ), and mean vector, µ(θ), implied by the 

model resemble S and y  as close as possible. Conceptually, SEM is similar to a simple 

regression analysis in which the goal is to minimize the distance between a set of observed 

scores (the sample data) and a set of predicted scores (the model-implied data). The only 

difference is that in the regression example we are trying to predict raw scores on a single 

dependent variable, whereas in SEM we are trying to predict elements in a matrix that represent 

the relationships between several variables, as well as the average level and spread of those 

variables. 

  It is well known in the SEM community that a statistical test of model fit is provided by 

transforming the discrepancy function value calculated during model estimation. Specifically, let 

MLF  represent a variable that is a function of the discrepancy between the sample data elements 

in S and y  and the model-implied elements in Σ(θ) and µ(θ). Further let ˆ
MLF  represent the 
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value obtaining by minimizing such a function. Given multivariate normality, a large sample 

size, and proper model specification, the quantity 

 TML = ˆ( -1) MLN F  (18) 

is distributed as χ2
d

 with degrees of freedom d given by: d = {[p(p +1)/2] + p} – t. As before, N is 

the total sample size and p is equal to the number of observed variables. The value t is the 

number of freely estimated parameters in θ. TML provides a statistical test for the null hypothesis 

that the model perfectly reproduces the sample means and variances/covariances, or rather, Σ(θ) 

= S and µ(θ) = y . If the value obtained in Equation 18 is greater than a χ2 variate corresponding 

to a pre-specified Type I error rate (usually .05), then the null hypothesis of perfect or exact fit is 

rejected. This test is actually a special case of the likelihood ratio (LR) test. The LR test obtains 

the difference in discrepancy values between two models—one of which is nested within the 

other (i.e. has a subset of that model’s parameters)—and refers this value to a χ2 distribution with 

degrees of freedom equal to the difference in degrees of freedom between models. In the SEM 

case, the reference model is a saturated model that simply estimates the elements in the sample 

covariance matrix and mean vector, and thus has a discrepancy value of zero and no degrees of 

freedom. 

  The χ2 test, although intuitively appealing, has two interrelated flaws. As with other 

statistical tests, the power of the χ2 test is influenced by sample size. Thus, at arbitrarily large 

sample sizes, every model will be rejected, even if the amount of misspecification is trivial and 

the model is of practical value (Bentler & Bonett, 1980). Conversely, at very small sample sizes, 

the test will not have enough power to detect even severe misspecifications. The second is 

perhaps more troubling as it encourages the use of small samples which yields imprecise 

parameter estimates and may violate assumptions underlying the test itself (Taylor, 2008).  
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  Several measures of model fit, known as approximate fit indices (AFI) or practical fit 

indices, have been developed to avoid the problems associated with the χ2 test. As West, Taylor, 

and Wu (in press) quip, “The decade of 1980s was the heyday of the development of new fit 

indices, and with apologies to songwriter Paul Simon--there must be 50 ways to index your model’s 

fit” (p. 7). Indeed, the number of AFIs is daunting, and methodologists have spent considerable effort 

to determine the performance and sensitivity of each under a variety of conditions. Before the results 

of these efforts are discussed, it is informative to classify AFIs according to certain characteristics. 

Formulas, sources, and other information for some AFIs are provided in Table 1. 

  Perhaps the most useful distinction between AFIs is that of absolute fit indices versus relative 

fit indices. Absolute fit indices quantify the overall fit of the model in terms of residuals, or the 

difference between S/ y  and Σ(θ)/µ(θ). Many of these indices, such as the χ2/df ratio (Jöreskog, 

1969), the root mean square error of approximation (RMSEA; Steiger, 1990; Steiger & Lind, 

1980), and gamma hat (Maiti & Mukherjee, 1991; Steiger, 1989) are defined through TML. These 

fit indices can also be thought of as a comparison between the target model and the saturated 

model, which, as previously mentioned, perfectly reproduces the sample data. Other absolute fit 

indices such as the root mean square residual (RMR; Jöreskog & Sörbom, 1981) and 

standardized root mean square residual (SRMR; Bentler, 1995) are directly calculated from the 

residuals and do not depend on TML. Relative fit indices, such as the comparative fit index (CFI; 

Bentler, 1990), the Tucker-Lewis index (TLI; Tucker & Lewis, 1973), the relative noncentrality 

index (RNI; McDonald & Marsh, 1990), and the incremental fit index (IFI; Bollen, 1989), are 

calculated based on the comparison of a target model’s χ² to that of a worse-fitting model, known 

as the independence or null model. Conceptually, these indices can be thought of as indicating 

how much information that is lost by fitting the null model is recovered by estimating the target 

model. 
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  Another distinction can be made between goodness of fit versus badness of fit indices 

(Taylor, 2008). Increases in goodness of fit indices reflect better model fit, whereas increases in 

badness of fit indices reflect worse fit. All comparative indices are goodness of fit indices, 

although not all absolute indices are badness of fit indices. Goodness of fit indices range between 

0 and 1, with values closer to 1 indicating better fit. Some of these indices can exceed 1 in 

certain instances (West, Taylor, & Wu, in press). Badness of fit indices typically range from 0 to 

∞, with 0 indicating perfect fit. It should be noted that the hypothesis of exact fit in the 

population is unrealistic—all models do not fit perfectly in the population—and thus other fit-

based hypothesis tests using more realistic values have been proposed (MacCallum, Browne, & 

Sugawara, 1996). 

  Other classifications for fit indices have been proposed, although these will not be 

discussed (Sun, 2005; Tanaka, 1993). One final point worth considering, however, is that AFIs 

are indexes of model fit, and not statistical tests of model fit3. As will be discussed in more detail 

in the next section, several cutoff values have been proposed that are intended to reflect the 

difference between acceptable and unacceptable model fit. However, these are not based on the 

distributional properties of the indices—many of which are unknown—and thus cannot be used 

to make probabilistic inferences regarding a model. In the next section, the literature pertaining 

to fit index sensitivity will be reviewed. Given that AFIs were designed to detect model 

misspecification without undue influence of sample size or other extraneous factors, 

methodologist have been keenly interested in how indices perform under a variety of data and 

analytic conditions.  

Fit Index Sensitivity 
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  Early efforts to evaluate the performance of fit indices were focused in both their 

substance and method. Given the problems previously mention with the χ² test, methodologists 

were most interested in whether any of the newly developed measures were sensitive to sample 

size or estimation method. To answer these questions, properly specified CFA or SEM models 

were fit to data at varying sample sizes and thus any observed variation in fit indices was 

attributed to the specific study manipulations (Anderson & Gerbing, 1984; Bearden, Subhash, & 

Teel, 1982; Ding, Velicer, & Harlow, 1995; Sugawara & MacCallum, 1993). Key findings from 

these early studies include: (1) Sample size still had non-trivial effects on some AFIs (notably, 

the NFI), and (2) Fit indices varied, some considerably, as a result of different estimation 

methods (maximum likelihood versus generalized least squares). 

  Eventually, researchers became interested not only in the performance of fit indices for 

correctly specified models, but also for misspecified models (Browne & Cudeck, 1993). 

Specifically, the question was whether variance in fit indices was attributable to model 

misspecification (a desirable outcome) or the specific data and modeling conditions under which 

estimation took place (an undesirable outcome; e.g. sample size, non-normality, number of 

variables). Although refined in various ways, this approach toward evaluating fit index 

sensitivity remains popular and has been implemented in a number of Monte Carlo simulations 

over the last 20 years (Fan & Sivo, 2005; 2007; Fan, Thompson, & Wang, 1999; Hu & Bentler, 

1998; 1999; La Du & Tanaka, 1989; Marsh, Balla, & Hau, 1996; Marsh, Balla, & McDonald, 

1988; Nevitt & Hancock, 2000; Olsson, Foss, Troye, & Howell, 2000; Olsson, Troye, & Howell, 

1999).  

  Of particular note in the literature on fit index sensitivity is the work of Hu & Bentler 

(1998; 1999). Two main outcomes resulted from these studies. First, the authors found that the 
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SRMR was more sensitive to structural misspecification compared to other absolute and 

comparative indices, which were more sensitive than the SRMR to measurement 

misspecification. This led the authors to recommend a two-index strategy for model fit 

evaluation in which the SRMR as well as another well-performing index are considered. Second, 

the authors investigated a variety of cutoff values for several AFIs and, based on minimizing 

Type I and Type II error rates, proposed new and more stringent cutoff values by which models 

could be considered to demonstrate acceptable fit. 

  Several criticisms of these new values—as well as the use of cutoff values in general—

have been raised by methodologists since their publication (Chen, Curran, Bollen, Kirby, & 

Paxton, 2008; Fan & Sivo, 2007; Marsh, Hau, & Wen, 2004; Yuan, 2005). The primary 

argument against the use of such values is that factors that should be unrelated to the fit of a 

hypothesized model still influence some indices, and thus appropriate cutoff values will differ 

according to the characteristics of the data and the model of interest. In simulation studies, 

factors such as sample size (Chen et al., 2008; Fan & Sivo, 2005; Taylor, 2008), the number of 

variables, (Breivik, & Olsson, 2001; Kenny & McCoach, 2003), the type of model (Fan & Sivo, 

2007), and indicator reliabilities (Beauducel & Wittmann, 2005) have all accounted for variance 

in fit indices examined above and beyond actual misspecification in the model. Interestingly, 

even Hu & Bentler (1999) cautioned against dogmatic use of such values without a careful 

consideration of other aspects of the model as well as its substantive implications.  

  While the debate over the use of statistical tests of fit or cutoff values continues, new 

avenues of fit index sensitivity are currently being explored. Some authors have emphasized that 

the severity of model misspecification should be more explicitly measured and included as a 

design factor in Monte Carlo simulations (Fan & Sivo, 2005; Taylor, 2008; Wu & West, 2010). 
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If included, methodologists could determine whether fit indices perform differentially over 

different levels of misspecification, and the interpretation of other design factors will not be 

confounded by the severity of misspecification. For example, Fan and Sivo (2005) found that Hu 

and Bentler (1998) confounded type of misspecification with severity of misspecification, and 

replications in which severity was controlled suggested that the two-index strategy was 

unsupported. Also, index sensitivity to misspecification in mean structures is currently being 

explored (Leite & Stapleton, 2006; Wu, Taylor, & West, 2009; Wu & West, 2010). 

  The present study builds on previous work in this area by examining fit index sensitivity 

in MSEM. Given the structure of nested data, assessing model fit in MSEM poses additional 

complications that have not been fully explored or discussed in the methodological literature. In 

the following section, model fit evaluation in MSEM will be reviewed. 

Model Fit in MSEM 

A few simulation studies have investigated model fit in MSEM. Julian (2001) considered 

the consequence of estimating a single-level CFA with nested data. A four-factor structure 

accounting for the variation among 16 variables was generated at the within-group level, while 

three different factor structures (2, 4, 5 factors) were generated at the between-group level, and 

subsequently ignored in the analysis. Only the χ² test statistic was examined. Results showed that 

the χ² statistic was positively biased for higher levels of the ICC. Furthermore, greater inflation 

was observed as the group/member ratio decreased. Finally, there was no effect of the different 

between-group model structures on the χ² test statistic. 

Hox and Maas (2001) examined the performance of the MUML estimator in estimating a 

multilevel CFA under differing levels of ICC, number of groups, group size, and group 

imbalance. Results suggested that small positive biases occurred with higher ICCs and greater 
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group imbalance for the χ² test statistic. However, in a later study the authors questioned these 

results, pointing out that the ICC condition was confounded with the amount of systematic 

variance specified in the between-group model (Hox et al., 2010). This latter study also 

investigated the performance of MUML, in addition to variations of the FIML and DWLS 

estimators, under similar conditions. It was found that the FIML estimator without robust 

χ²/standard errors and a DWLS estimator with mean- and variance- corrected χ²/standard errors 

produced the most accurate χ² values. The MUML-produced χ² values were most biased, and 

interestingly, the bias increased as the average within-group size increased. This is in contrast to 

the analytical findings of Yuan and Hayashi (2005) who demonstrated that small within-group 

sample sizes contribute to a higher coefficient of variation, which they suggest is the main 

determinant of the bias associated with MUML. 

There are a few points to consider here. First, only correctly specified models under 

varying sample sizes, estimators, and ICCs were estimated in these studies. This focus mirrors 

that of the early simulation studies on fit index sensitivity in correctly-specified SEM models. 

Not surprisingly, it will be important to investigate the effects of these various design factors in 

misspecified models in the future. Second, only the normal-theory χ² test statistic was examined. 

Other test-statistics based on discrepancy functions exist for MSEM (Yuan & Bentler, 2007), and 

furthermore, AFIs were not investigated. Finally, simultaneous estimation was used for the 

analysis models. Simultaneous estimation refers to the fact that parameters for both the within-

group and between-group models are estimated within a single discrepancy function. This 

approach can complicate the assessment of model fit in MSEM, as described in the next section. 

Level-Specific Fit in MSEM 
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In routine applications of MSEM, estimation occurs simultaneously at each level, and 

thus the likelihood discrepancy value is a combination of misfit at each level of the data. There 

are several disadvantages to model fit evaluation based on this combined discrepancy function 

value (Ryu & West, 2009; Yuan & Bentler, 2007). First, it is unclear at which level 

misspecification is occurring. Second, the discrepancy value is unequally weighted by the larger 

unit-level sample size, and thus fit indices may not be sensitive to cluster-level misfit. Third, 

power is reduced for model fit test statistics. Finally, misspecification at one level can affect 

parameter estimates at the other levels. Motivated by these issues, two methods have been 

proposed as alternatives to the evaluation of model fit under simultaneous estimation and are 

described next. 

Segregating Approach. Yuan and Bentler (2007) proposed estimating each level of the 

model separately and assessing fit for each model as in single-level SEM. This approach has 

been referred to elsewhere in the literature as the segregating approach (Ryu & West, 2009). In 

their study, the authors developed an estimator of the pooled within-group and between-group 

covariance matrices, as well as the asymptotic covariance matrices of these estimates. To use 

their approach, one first estimates the two covariance matrices and then uses the estimates as 

input data for single-level analyses in conventional SEM software. The authors provide a SAS 

macro (available for free download at www.nd.edu/~kyuan/multilevel) that calculates the 

estimates. Consequently, level-specific fit information is provided as well parameter estimates 

and standard errors. 

The authors contrasted their approach with simultaneous estimation in a real-data 

example and a Monte-Carlo simulation study. In the real data example misfit was greater for the 

between-groups model and the normal-theory χ² test statistic was severely affected by non-
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normality in the data. These conclusions, the authors argue, were not made obvious by test 

statistics obtained with the simultaneous estimation procedure. In the simulation study, the 

authors generated data for a two-factor CFA model and then fit three models to the data: (1) A 

correctly-specified model (2) A model in which the within-group model but not the between-

group model was misspecified, and (3) A model in which the between-group but not within-

group model, was misspecified. The segregating approach demonstrated greater statistical power 

for detecting the two misspecified models as compared to the simultaneous approach for five 

model fit test statistics. 

Yuan and Bentler (2007) note several advantages to this approach. First, the level at 

which misfit is occurring can be determined. Second, the calculation of commonly-used AFIs is 

straightforward. Third, other model diagnostics (e.g. modification indices) can be used to detect 

local misspecification. Fourth, misspecification at one level does not affect the evaluation of 

model fit at other levels. Finally, although not developed in their article, the authors suggest that 

the segregating approach is generalizable to an arbitrary number of data levels, given sufficient 

sample sizes at each. The primary disadvantage of their approach is its inability to accommodate 

models with random slopes. An implicit assumption of the procedure is that the variance 

components are orthogonal. With random slopes, this assumption is violated and the procedure 

may provide misleading results. Also, their procedure requires preprocessing via a SAS macro 

that may fail at large sample sizes (Ryu & West, 2009).  

Partially-Saturated Approach. Yuan and Bentler (2007) suggested that for a two-level 

model one could saturate one level of the model to evaluate fit at the other level, and vice versa. 

Ryu and West (2009) formally proposed this method and developed level-specific measures of 

the χ² statistic, RMSEA, and CFI. Their method requires the analyst to fully specify one level of 
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the model and saturated the other level. Model estimation then proceeds simultaneously at each 

level, but due to the saturation at the other level(s), any misspecification reflected by the 

discrepancy value is specific to the level of data for which a model was specified. It is important 

to note that this procedure was not designed to produce parameter estimates and their 

corresponding standard errors, although estimates obtained using the procedure can be checked 

against those from simultaneous estimation for agreement. 

Ryu and West (2009) also presented results from a simulation study. The study design 

was similar to that of Yuan and Bentler (2007) with small differences in data generating 

parameter values. Specifically, a two-factor CFA was generated at each level, and the three 

analysis models described earlier were estimated. The authors then compared mean values of the 

χ² statistic, RMSEA, and CFI over replications across the simultaneous, segregating, and 

partially-saturated approaches. Whereas the simultaneous procedure failed to detect misfit 

(underfactorization) at the between-group level, both the segregating and partially-saturated 

approaches successfully detected the between-group misfit. Further, parameter estimates and 

standard errors were comparable across methods. Values for the fit statistics were slightly higher 

for the segregating approach, which the authors attribute to the sample size used for estimation. 

In comparing the approaches, the partially-saturated approach can be estimated using a 

single software package and does not require pre-processing. Also, parameter estimates obtained 

in the partially-saturated models can be compared to those in the overall model, providing an 

easy check for violation of the independence assumptions. However, as Yuan and Bentler (2007) 

note, misfit at the fully-specified level may bias parameters estimated in the saturated level and 

consequently fit information. Also, the comparability of parameter estimates and standard errors 

in the segregating and partially-saturated approaches have not been studied (Ryu & West, 2009). 
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The simulation conditions used in these studies were quite limited. Yuan and Bentler 

(2007) fixed the intraclass correlation coefficient (ICC) at .50 and the cluster sample size at J = 

200. Also, commonly-used AFIs were not examined only in the real data example. Ryu and West 

(2009) also fixed the ICC at .50 and employed large overall sample sizes (the smallest overall N 

was 2500). Such sample sizes and ICCs are not commonly seen in applied research. Ryu (2008) 

notes the conditions were chosen in order to demonstrate the asymptotic utility of the level-

specific procedures as opposed to maximizing generality. As such, these promising approaches 

to fit evaluation in MSEM require further investigation. 

Research Questions 

  The present research study will address two interrelated research questions: (1) How do 

fit indices perform in MSEM? (2) How comparable are the three fit evaluation methods 

(simultaneous estimation, segregating approach, partially-saturated approach)? The first question 

recognizes the additional complications inherent in multilevel data. Specifically, it is unclear 

how measures of model fit perform under varying levels of the ICC or sample size. Further 

complicating matters, there are many ways to conceptualize sample size in multilevel data (e.g., 

number of clusters, average within-group cluster size, total sample size, cluster/member ratio) 

and little is known regarding the effects of each. The second question pertains to how the various 

fit measures are calculated. Overall model fit provides little information as to the source or 

magnitude of misspecification. Given the new methods to assess level-specific fit, it is important 

to understand how comparable each is regarding model fit sensitivity. Previous simulation work 

has not explored these outcomes in the context of realistic multilevel data and is thus the focus of 

the current study. 

Methods 
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  A Monte Carlo simulation study was conducted to answer the proposed research 

questions. Data were generated using Mplus version 6.0 (Muthén & Muthén, 1998-2010). Three 

general factors were manipulated: the intraclass correlation coefficient, sample size, and severity 

of model misspecification. Six levels of ICC were chosen to reflect ICCs commonly used in 

practice. Similarly, five sample size configurations were chosen to reflect sample sizes reported 

in MSEM applications. Furthermore, two types of sample size configurations were used in order 

to separately determine the effect of overall sample size (N) and the cluster to within-group 

sample size ratio (J/nj). These factors result in a simulation design with 6 (ICC) × 5 (sample size) 

× 2 (configuration type) = 60 unique cells. Severity of misspecification was defined as a random 

variable as opposed to a discrete factor level and is thus not included in these calculations. The 

values chosen for each factor as well as the definition of misspecification severity are defined 

later. For each cell of these 60 cells, 2000 replications were generated. Five different analysis 

models that correspond to different fit assessment approaches were used to analyze the 2000 

replications within each cell: A fully-specified multilevel model simultaneously (SIM) estimated 

at both levels; a partially-saturated (PS) between-group, fully-specified within-group model; a 

partially-saturated within-group, fully-specified between-group model; a within-group model 

using the segregating (SEG) approach; and a between-group model using the segregating 

approach. To calculate the estimated within-group and between-group covariance matrices for 

the SEG approach, a program was written in the R statistical language based on the SAS macro 

provided by Yuan and Bentler (2007).  

Data-Generation and Analysis Models 

  A two-level confirmatory factor analysis model was used for data generation. This model 

is shown in Figure 1 and is similar to those used in Yuan and Bentler (2007) and Ryu and West 
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(2009). The variables y1-y6 are observed variables that load onto two latent constructs at each 

level. In order to scale the latent variables and identify the model, latent factors at both levels 

were fixed at 1.0. This implies that this covariance between the two factors at each level is on a 

correlation metric. Population parameter values will differ according to the ICC and 

misspecification conditions as described later. 

  The analysis model that was used is shown in Figure 2. In this model, the six variables 

are accounted for by a single latent factor at each level. Therefore, the model is correctly 

specified when the generating model shown in Figure 1 has a population value of 1.0 for the 

latent factor correlation (ψ2,1) at each level. Conceptually, this implies that the two latent factors 

are identical and the relationships among the six indicators can be accounted for by a single 

latent factor. Furthermore, the model is misspecified if the population value for the factor 

correlation is less than 1.0 with more misspecification arising as the value becomes smaller. 

Study Conditions 

  ICC. Six levels of the ICC were used in this study: .05, .10, .15, .20, .25, and .30. because 

ICCs rarely exceed .30 in practice (Lüdtke et al., 2008) and recent Monte Carlo studies have 

sampled lower ICC values accordingly (Hox et al., 2010; Lüdtke et al., 2008). Also, as the ICC 

value chosen in Yuan and Bentler (2007) and Ryu and West (2009) is rather high, it is of interest 

to investigate both level-specific fit methods under more realistic data conditions. Consequently, 

these lower ICC were used. 

  Population parameter values that correspond to these ICC levels are presented in Table 2. 

For example, for an ICC of .30, the within-group factor loadings were set to .8367, the within-

group residual variances were set to .70, the between-group factor loadings were set to .5477, 

and the between-group residual variances were set to .30. The values for all ICC levels 
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correspond to item variances of 2.0 and communalities of .50. Because the latent factor variances 

are fixed to 1.0 for identification purposes, the latent variances and correlation do not contribute 

to the calculation of the various ICCs.  

  Sample size. Five levels of sample sizes within each of two types of sample size 

configurations were used in this study. As previously noted, there are several sample sizes to 

consider in MSEM. There is the total sample size, N, as well as the number of clusters, J, and the 

average number of units within each cluster, nj. When the data are balanced, nj also represents 

the number of units per cluster. For simplicity, only balanced data were generated for the present 

study. 

  For the first sample size configuration type, the overall sample size (N) varied. Five 

levels of N were chosen: 500, 1000, 1500, 2000, and 2500. For each of these levels, the number 

of units per cluster was fixed at 20, and thus the number of clusters will increase as the total 

sample sizes increase. These levels of N were chosen for two reasons. First, they were chosen to 

reflect lower total sample sizes than seen in previous simulation research. In the Ryu and West 

(2009) simulation, N ranged between 2500 and 10000, and for the Yuan and Bentler (2007) 

simulation an N of 21100 was used with uniformly distributed within-cluster sample sizes. Ryu 

(2008) notes that larger sample sizes were chosen to demonstrate the asymptotic properties of 

their method and generate stable non-normal data conditions but that the performance of the 

partially-saturated approach is unknown at smaller sample sizes. Second, applications of MSEM 

have reported sample sizes in line with the levels chosen here (cf. Dedrick & Greenbaum, 2010; 

Duncan, Duncan, & Strycker, 2002; Härnqvist, Gustafsson, Muthén, & Nelson, 1994) and it is of 

interest to determine fit index sensitivity for typical data conditions. 
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  The second type of sample size configuration was designed to assess the effect of varying 

numbers of clusters and within-group sample sizes on measures of fit at an fixed overall sample 

size. For N = 1500, five levels of sample sizes were included. Specifically, the number of 

clusters and within-cluster sample sizes were manipulated to achieve differing levels of the J/nj 

ratio. Julian (2001) found that decreasing this ratio at a fixed N leads to greater inflation in the χ² 

test statistic. As AFIs are based on this statistic, it is expected that the sensitivity of each will also 

depend on this ratio. Thus, the following five sample size configurations (J/nj) were used in the 

current study: 50/30, 75/20, 100/15, 125/12, and 150/10. The ratio values were 1.67, 3.75, 6.67, 

10.42, and 15. As a result of the simulation analyses, two separate simulations were conducted 

that were identical with the exception of the sample size configuration type used. Hereafter, 

Simulation 1 refers to the simulation in which the overall sample size N varied and Simulation 2 

refers to the simulation in which the cluster to within-cluster sample size ratio J/nj varied. 

  Severity of Misspecification. Quantifying the severity of model misspecification is a 

tricky issue (Fan & Sivo, 2005; Wu & West, 2010). Misspecification in different model 

parameters confounds type of misspecification with severity of misspecification (Fan & Sivo, 

2005). As a consequence, severity of misspecification should be quantified as its overall 

discrepancy from the population model. This implies that models with different types of 

misspecification in terms of the number and type of parameters misspecified (as well as their 

magnitude) still have the same overall degree of misspecification. Meaningful comparisons can 

then be made as the degree of misspecification is constant across the levels of other design 

factors. 

  The Satorra and Saris (1985) method of power estimation for the χ² test has been used to 

determine the severity of model misspecification in a few studies (Enders & Finney, 2003; Fan & 
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Sivo, 2005, 2007; Taylor, 2008; Wu & West, 2010). This test makes use of non-central χ² 

distributions, and in particular, the noncentrality parameter (λ). As previously noted, the test 

statistic value obtained in Equation 18 is distributed as χ² with degrees of freedom df under 

proper model misspecification. Under the condition of model misspecification, however, the 

value obtained in (18) is distributed as non-central χ² with degrees of freedom df and non-

centrality parameter λ, such that λ = (N-1) F̂ ML and represents the rightwards shift from a central 

χ2 distribution. Furthermore, under the assumption that true model misspecification in such 

circumstances is equal to or greater than misspecification due to sampling error (MacCallum et 

al., 1996), λ represents the lack of fit of a given model in the population. 

  In the context of power analysis, the Satorra and Saris (1985) method requires two steps 

and determines the power of the χ² test to detect misfit in a single or several model parameters. In 

the first step, the estimated “population” covariance matrix is calculated from a hypothesized 

model with pre-specified parameter values. In the second step, a similar model is fit to the 

estimated covariance matrix with some model parameters fixed at a designated value, usually 

zero. The TML value obtained in the second step is used as an estimate of λ, and power is 

calculated by comparing a non-central χ² distribution defined by λ and the misspecified model’s 

df to a central χ² distribution with the same degrees of freedom at a given sample size. 

Specifically, power is defined as the area under the non-central χ² distribution that is to the right 

of the central χ² distribution’s critical value at a given Type I error rate α (usually .05). 

  The same procedure can be used to quantify model misspecification in a Monte Carlo 

simulation study. A parameter (or set of parameters) is chosen that will be omitted or fixed in the 

analysis model, and a value for the parameter is set to obtain a given level of power for rejecting 

the model via the χ² test at a given sample size. However, bias resulting from fixing a parameter 
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at a value other than its population value may spread to other estimated parameters (Wu & West, 

2010). An alternative to this procedure is the true model fixed likelihood ratio test statistic 

(TMFLR). The TMFLR is calculated in a manner similar to the Satorra and Saris (1985) statistic 

except that in the second step the other model parameters are fixed to their population value and 

thus preventing bias “leakage” in those parameters. 

  Misspecification was introduced by fitting a one-factor model to a two-factor model with 

varying magnitudes of factor correlation (see Figures 1 and 2). This is somewhat unusual given 

that most researchers introduce misspecification by fixing a non-trivial model parameter to zero. 

However, Fan and Sivo (2005) noted that when paths are omitted in the structural portion of the 

model, the SRMR is difficult to interpret as several elements in the implied covariance matrix are 

forced to be zero. In line with Ryu and West’s (2009) simulation design, misspecification was 

defined in the structural portion of the model as any departure from a one-factor model via the 

latent factor correlation. This circumvents the problem of zeros and provides an appropriate 

parameterization from which the TMFLR is calculated. 

  In previous simulation studies, values for the TMFLR have been calculated for different 

levels of severity as defined by the power to reject the null hypothesis of exact model fit via the 

χ² test. For example in Wu and West (2010) the power levels chosen were .60, .80, 1.0 and with a 

difference of one degree of freedom between nested models correspond to TMFLR values of 

4.90, 7.85, and 38.00. In the present study, however, severity of misspecification was defined as 

a random variable. For each of 2000 datasets generated, a value of the between-group latent 

factor correlation (ψ2,1) was randomly sampled from a uniform distribution ranging from .54744 

to 1.0, which correspond to power values of 1.0 to 0.0, respectively, at a sample size of 75. That 

is, when the latent factor correlation is set to a value of .54744 for the model in Figure 1 and the 
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analysis model in Figure 2 is estimated, the resulting chi-square is 38.00 and the power to reject 

the test of exact fit is exactly 1.0. The sample size of 75 was used to calculate the TMFLR for 

two reasons. First, only misspecification in the between-group model was considered. As a result 

of the within-group model largely accounting for the discrepancy function value (cf. Ryu & 

West, 2010), we could reasonably estimate the performance of various fit measures based on 

previous research of single-level SEM. However, it is relatively unclear how the same measures 

will perform when the between-group model is misspecified. For simplicity, given the number of 

existing conditions in the present study, the case in which both levels of the data were 

misspecified was not included. Thus, only between-model misspecification was considered, and 

thus a reasonable level-2 sample size (J) was required. Second, 75 represents the average values 

of the study conditions for between-group sample sizes in Simulation 1, and it approximates 

sample sizes observed in the applied literature (Dedrick & Greenbaum, 2010; Purdy et al., 2010; 

Walsh et al., 2010). Interestingly, the factor correlation value chosen for the same model in Ryu 

and West (2009) corresponds to severe misspecification as defined by the power to reject the χ² 

test of exact fit. 

Dependent Variables & Analyses 

  Several fit indices were evaluated in the present study. Formulas for these indices are 

presented in Table 1. Specifically, the χ² statistic, RMSEA, SRMR, TLI, CFI, GFI*, and AGFI* 

were calculated for each fit evaluation method. Calculations for these indices using the SIM or 

SEG approaches are isomorphic to calculations in single-level SEM. Formulas for the partially-

saturated χ² statistic, RMSEA, and CFI are provided in Ryu and West (2009).. Notable changes 

in calculations include the RMSEA for which sample sizes (as reflected in the denominator of 

the equation) differ depending on which level is being evaluated. Specifically, N is used in the 
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denominator for the within-group model and J is used in the denominator of the between-group 

model. This is also true of the GFI*4. For the comparative fit indices TLI/CFI, an modified null 

model must be calculated separately. The AGFI* is based on the GFI* and thus does not require 

modification. The indices above were chosen because they reflect the most popular indices used 

by applied researchers (Wu & West, 2010) and they have shown good performance in simulation 

studies (Hu & Bentler, 1998, 1999; Taylor, 2008). Less well-known are the GFI* and AGFI* 

indices, which have been used sparingly in practice but have nevertheless shown consistently 

good performance in simulation studies (Hu & Bentler, 1998, 1999; Taylor, 2008). 

  Model convergence rates were calculated and reported. Several models resulted in 

inadmissible estimates (i.e., Heywood cases) and were not considered to have converged in 

convergence rate calculations. Furthermore, the fit index values resulting from these solutions 

were excluded from analyses. Two general methods were used to assess the sensitivity of fit 

indices. First, Loess curves based on regression smoothing procedures were generated using the 

R statistical package. Second, non-linear regressions were conducted using the study conditions 

as predictors. Details of these two methods are described in the Results section next. 

Results 
Model Convergence 

  Convergence rates for both simulations can be found in Tables 3 and 4. In Simulation 1, 

the SEG approach had the highest rates of convergence compared to the other methods. The SEG 

within-group model converged for all replications within each condition. The SEG between-

group model demonstrated low rates of convergence when the ICC was set at .05 (range = .08 - 

1.00). However, at other ICC levels the model converged for all replications at overall sample 

sizes greater than 1000. The SIM approach generally had poor convergence rates for ICC 

conditions less than .20 and sample sizes less than 1000. The rates for this approach were also 
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comparable to those of both PS models. All three models had similar rates across all sample sizes 

and ICCs, with the exception of the PS within-group model having slightly lower convergence 

rates as compared to the SIM and PS between-group models. 

  Convergence rates were larger for Simulation 2. Again, the SEG within-group model 

converged for each replication in every condition. The SEG between-group model had higher 

convergence rates as compared to Simulation 1. The model converged for all replications in ICC 

conditions of .10 and above. In the .05 ICC condition, the rates were relatively high (minimum = 

.73) and decreased as the number of clusters increased and the within-group sample size 

decreased. A similar pattern was found for the SIM and PS models in the .05 ICC condition. 

These two approaches again had comparable convergence rates across all levels of ICC and 

sample size. The PS within-group model had the lowest convergence rates across the study 

conditions, although rates were higher as compared to Simulation 1. The rates for this model 

increased with increasing numbers of clusters in the .05 ICC condition, which is in the opposite 

direction compared to the other methods. 

Fit Index Sensitivity 

   It was noted in the Methods section that two approaches were used to assess fit index 

sensitivity across the various study conditions: Loess curves and regression analyses. Results 

from these methods are provided next, with the Loess curves discussed first. For each method, 

analysis information will be presented followed by results that are broken down by specific fit 

measures. 

Loess Curves 

  The series of Loess curves used to assess fit index sensitivity can be found in Figures 3 

through 10. Local regression fitting via weighted least squares with a span of approximately 2/3 
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was used for smoothing. Each figure corresponds to a different fit statistic (χ²) or fit index (all 

others) with three different analysis models represented in separate windows. The SEG and PS 

within-group models were not included as they showed close fit for all indices and across all 

levels of misspecification. This was expected as the within-group model was properly specified. 

The scale changes between figures but remains constant within a given figure. Each measure of 

fit was plotted against model misspecification, as defined by the varying latent factor correlation 

ψ2,1. It is worth noting that as the latent factor correlation is the actual value plotted, the figures 

are inverted along the x-axes. That is, deviations from the origin along the x-axis in the positive 

direction are indicative of less model misspecification. Recall that as the factor correlation 

approaches 1.0, the population generating model approaches the analysis model in which a single 

factor predicts the six indicators at each level. Three lines were plotted on each graph 

corresponding to different levels of the ICC (.05, .15, and .30). The overall sample size was fixed 

at 1500 for every curve and consisted of 75 clusters and 20 within-cluster units. 

  χ². The Loess curves for the χ² test statistic are shown in Figure 3. The within-group 

model for both the SEG and PS methods resulted in a low and constant χ² value across varying 

degrees of between-group misspecification. This is not surprising as the within-group model was 

properly specified for every generated dataset. The SIM model also demonstrated relatively low 

values of the χ² test statistic although increases were observed at greater levels of between-gorup 

misspecification and higher ICC values. A similar pattern was observed for the PS between-

group model. Conversely, the SEG model demonstrated worse model fit at lower ICC levels. 

RMSEA. Loess curves for the RMSEA are found in Figure 4. Low values of the RMSEA 

that are constant across varying levels of between-group misspecification were found for the 

SEG and PS within-group models. The same pattern was found for the SIM model and is similar 
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to findings reported by Ryu and West (2009). That is, as long as the within-group model fits the 

data well, the RMSEA tends to be low regardless of the severity of between-group model 

misspecification as it is based on the χ² test statistic. The χ² test statistic is weighted by level-

specific sample sizes and thus is largely determined by the larger level-1 sample size. 

Furthermore, the RMSEA for the SIM approach is calculated with the overall sample size in the 

denominator, thus further attenuating the value of the index even at severe levels of between-

group misspecification. 

The SEG between-group model demonstrated higher values of the RMSEA as compared 

to the previously discussed approaches. Even when the misspecification was minimal, the SEG 

between-group RMSEA implied poor fit. Worse fit was observed at lower ICC levels. This is 

again in contrast to the PS between-group model, in which lower values of the RMSEA (i.e. 

better fit) were observed at low ICCs. Also, it is clear from Figure 4 that at low ICC levels, the 

RMSEA is not sensitive to model misspecification via the PS approach. RMSEA values across 

the range of misspecification were all below .10 and generally clustered around .05, which is 

often thought of as demonstrating acceptable model fit. At increasing levels of the ICC, however, 

the RMSEA became increasingly sensitive to model misspecification. 

 SRMR. The within-group SRMR loess curves are found in Figure 5. Note that there is no 

within-group SRMR for the SEG approach but there is for the PS approach. As expected, the 

value is low across all levels of model misspecification for the PS within-group and SIM models 

as the analysis model at level-1 is properly specified. Also, the within-group SRMR is 

approximately zero for the PS between-group model as the within-group model is saturated. 

 Loess curves for the SRMR between-group model are found in Figure 6. There is no 

between-group SRMR for the SEG within-group model. The between-group SRMR is 
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approximately zero for the PS within-group model as the between part of the model was 

saturated. For the remaining methods, the SRMR between-group value generally increased with 

increasing model misspecification. Additionally, at lower levels of the ICC the between-group 

SRMR was higher and thus reflected worse fit for the SIM, SEG, and PS between-group models. 

This is the only index for the SIM and PS methods for which such a pattern was observed. 

  CFI. The CFI Loess curves are reported in Figure 7. As expected, the CFI demonstrated 

close fit across all levels of between-group misspecification for the SEG and PS within-group 

models. This same pattern also emerged for the SIM approach, again replicating the findings of 

Ryu and West (2009). Although sample size is not included in the calculation of the CFI as it is 

for the RMSEA, the χ² test statistic is, and consequently the index will mask any between-group 

misspecification even if it is severe. For the SEG between-group model, the CFI did decrease as 

more misspecification was introduced into the between group model. However, the effect of 

misspecification was less pronounced in the .05 ICC condition for which the CFI was 

consistently low. Similar to previously discussed fit measures, the CFI appears to always suggest 

a poor fitting SEG between-group model when the ICC is low. The Loess curves for the PS 

between-group model show a slightly different pattern. The CFI appeared to be sensitive to 

increasing model misspecification though less so at lower levels of the ICC. As opposed to the 

SEG between-group model, however, the CFI values did not appear to approach convergence for 

different levels of the ICC as misspecification became increasingly severe. This suggests that at 

severe levels of misspecification, the CFI in the PS between-group model is more sensitive to 

between-group misspecification than the CFI calculated in the SEG between-group model. 

  TLI. In general, the TLI behaved in a similar manner to the CFI. Values for the TLI in the 

SEG and PS within-group models, as well as for the SIM model, were nearly identical. Loess 
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curves for the TLI are presented in Figure 8. The SEG between-group model was again sensitive 

to varying levels of between-group misspecification. The TLI for this model was below common 

threshold guidelines (.90 or .95) when the ICC was set at .05 even as between-group 

misspecification approached zero. As with the CFI, the TLI appears to be more sensitive to 

between-group model misspecification when the ICC is higher for the SEG and PS between-

group model. Furthermore, the PS between-group TLI did not converge to similar levels across 

ICCs at severe levels of misspecification as seen in the SEG between-group model. 

 GFI*. The Loess curves for the alternative GFI estimator (i.e., gamma hat) are presented 

in Figure 9. The GFI* values were near 1.0 across all levels of between-group misspecification 

for the SEG and PS within-group models. Interestingly, at higher levels of the ICC the GFI* was 

sensitive to increasing amounts of model misspecification for the SIM estimation approach. This 

is in contrast to the RMSEA and CFI as observed by Ryu and West (2009) which were not 

sensitive to severe levels of between-group misspecification. For the SEG between-group model, 

a similar pattern was observed for the GFI* as compared to the CFI and TLI. That is, the GFI* 

decreased monotonically when model misspecification increased, although less so for the .05 

ICC condition in which the GFI* was at consistently unacceptable levels. For the PS between-

group model, however, a different pattern emerged as compared to the CFI and TLI. At low ICC 

levels, the GFI* was not sensitive to increasing model misspecification and values suggested 

acceptable fit. Conversely, the CFI and TLI were somewhat sensitive to model misspecification 

at low ICC levels, and the values suggested poor fit across the entire range of model 

misspecification. 

 AGFI*. The AGFI* Loess curves can be found in Figure 10. The patterns for the AGFI* 

were identical to those of the GFI*, with the exception that AGFI* values were typically lower 
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than GFI* values across all models, severity of misspecification, and ICC. Once again, the 

AGFI* suggested excellent model fit for the SEG and PS within-group models which were 

properly specified and was sensitive to increasing between-group misspecification for the SIM 

model. The AGFI* for the SEG between-group model was sensitive to increasing 

misspecification at high ICC levels. However, even at high levels of ICC and low levels of 

misspecification, the observed AGFI* suggested poor model fit. Finally, the AGFI* was 

insensitive to increasing misspecification for the PS between-group model at low ICC levels, but 

appeared to be very sensitive at higher ICC levels. 

  Summary. There are several points worth reiterating that emerged from the Loess curves. 

First, the fit measures indicated close model fit for the SEG and PS within-group models across 

all-levels of between-group misspecification. This was expected as the model for level-1 was 

properly specified. Second, for the SIM approach only the χ² test statistic, between-group SRMR, 

GFI* and AGFI* were sensitive to misspecification in the between-group model. Third, worse 

model fit was observed at low ICC levels for the SEG between-group model regardless of the 

measure used. The opposite pattern occurred for the PS between-group model, with the 

exception of the between-group SRMR. Finally, it appears that the ICC level interacts with the 

severity of misspecification across several but not all of the fit measures and fit evaluation 

approaches. Furthermore, greater sensitivity to between-group misspecification was observed for 

higher levels of the ICC when this interaction was present. These findings will be discussed in 

greater detail later. Next, results from the regression analyses are reported. 

Regression Analyses 

  Non-linear regressions were conducted for both Simulations 1 and 2. These regressions 

served several purposes. First, as the sample size was fixed for each Loess curve that was 
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generated, the fit indices’ sensitivities to sample size were unclear. Second, the dependent 

variables and design factors were all on meaningful metrics and (for the most part) defined on an 

interval scale. As such, multiple regression was used instead of analysis of variance (ANOVA), 

the latter of which is commonly used in simulation research. Separate regressions were 

conducted for three of the five fit assessement methods. The SEG and PS within-group models 

did not have substantial variation for any of the fit indices and thus were not included in the 

regression analyses. Within each of the remaining three methods, a model was estimated for each 

fit index which was predicted by the three design factors (ICC, severity of misspecification, and 

sample size) as well as all possible interactions between the factors. The coefficient of 

determination (R2) and standardized regression coefficients were calculated for each model and 

are reported in Tables 5 (Simulation 1) and 6 (Simulation 2). The predictors in each model were 

uncorrelated with each other as a result of crossing the values of each level of ICC and sample 

size as well as the randomly drawn values for model misspecification. As such, the standardized 

coefficients were comparable. 

  χ2. The coefficient of determination (R2) for the χ2 test statistic ranged between .29 and 

.34 for the SIM and SEG between-group models in both simulations. For the partially-saturated 

between-group model, R2 was very low. This is due to the reduced amount of variance available 

at the between-group level that was predictable. As the ICC increased, the χ2 also increased for 

the SIM model (βs = .21 and .23) but decreased for the SEG between-group model (βs = -.40 and 

-.39). This matches the patterns found in the Loess curves for the χ2 earlier. For all models across 

both simulations, the χ2 increased as the amount of between-group model misspecification 

increased, as expected. For the SIM approach, total sample size N accounted for more variance in 

the χ2 as opposed to the J/nj ratio (βs = .23 versus .10), but the opposite was true for the SEG 
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between-group approach (βs = .14 versus .29). Finally, in Simulation 1 there appeared to be non-

trivial interaction effects between the ICC and misspecification for the SIM model (βs = -.14) as 

well as between misspecification and sample size for both the SIM and SEG between-group 

models (βs = -.20 and -.17). In Simulation 2, the largest interaction effect for the SIM model was 

between ICC and misspecification (βs = -.17) and for the SEG between-group model the largest 

interaction effect was between the ICC and J/nj ratio (βs = -.17). Overall, it appears all of the 

study design factors predicted non-trivial variation in the χ2 test statistic, with some interaction 

effects present. 

  RMSEA. The coefficient of determination (R2) for the RMSEA ranged between .18 and 

.32 for Simulation 1 and between .29 and .38 for Simulation 2. Interaction effects for all methods 

and in both simulations were of small magnitudes, the largest resulting between the ICC and 

misspecification (βs range = -.08 and -.16). For the SIM model and SEG between-group model, 

the effect of ICC was similar to those observed for the χ2 test statistic, with the RMSEA 

decreasing at lower ICC levels for the SIM approach and increasing at higher ICC levels for the 

SEG approach. For the PS between-group model, the RMSEA decreased at lower levels of ICC 

in both simulations (βs = .14 and .19). Across methods and both simulations, misspecification 

had considerable effects, ranging between -.34 and -.49. It is important to remember that the 

larger the effects are for misspecification, the more desirable a given fit measure is as fit 

measures should be sensitive only to model misspecification and not extraneous data or design 

factors. For sample size, the RMSEA decreased with increasing N for all methods (βs  range = -

.07 to -.30) but increased with an increasing J/nj ratio for all methods (βs  range =.03 to .10). This 

replicates the common observation of a positive small sample bias for the RMSEA (Chen et al., 
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2008) and also suggests that more clusters and less within-cluster units results in worse fit as 

indicated by the RMSEA. 

   SRMR. As noted in Tables 5 and 6, for the SEG between-group model, there was not a 

within-group SRMR. For both the SIM and PS between-group models in Simulation 1, exactly 

half of the variation in the within-group SRMR was accounted for by the set of predictors (R2 = 

.50). Furthermore, all effects on the SRMR within-group index were negligible with the 

exception of overall sample size which had very strong effects (βs = -.71). This finding supports 

those of Taylor (2008) and others who discouraged the use of the SRMR as the result of its 

sensitivity to sample size—as well as its lack of monotonicity—in certain instances. For 

Simulation 2, small effects were found for all predictors and interactions in the SIM model, 

including the J/nj ratio. However, for the PS between-group model, there were larger effects for 

several of the design factors. Specifically, the SRMR within-group index decreased as the ICC 

and misspecification increased (βs = -.39 and -.31), and increased as the J/nj ratio increased. 

Finally, there appeared to be a small interaction effect between misspecification and the J/nj ratio 

for the PS between-group model as well. 

  Results for the between-group SRMR were largely consistent across the three methods 

and both simulations. The R2 ranged between .38 and .47 across methods and simulations. 

Additionally, the SRMR between-group value decreased as the following factors increased: ICC 

(βs  range = -.21 to -.33), severity of misspecification (βs  range = -.47 to -.53), overall sample 

size (βs  range = -.31 to -.37), and the J/nj ratio (βs  range = -.03 to -.53). Interaction effects were 

negligible across methods and both simulations as well. Although the between-group SRMR 

appears to be relatively sensitive to misspecification in the between-group model, the other 

design factors also appear to account for sizable amounts of its variation. 
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  CFI and TLI. Results for the CFI and TLI are nearly identical and considered together 

here. In Simulation 1, R2 ranged between .15 and .33 for the CFI and between .06 and .26 for the 

TLI. Also for the SIM approach these indices increased (i.e. demonstrated better fit) as the ICC 

decreased (βs  = -.17 and -.22 for the CFI and TLI, respectively). For the SEG and PS between-

group models, the CFI and TLI increased as the ICC increased (βs  range = .10 to .30). For all 

three approaches, the CFI and TLI increased as misspecification in the between-group model 

decreased (βs  CFI range = .29 to .43; βs TLI range = .19 to .46) and as the overall sample size 

increased (βs  CFI range = .14 to .27; βs TLI range = .10 to .16). Interaction effects for the CFI 

and TLI in Simulation 1 were mostly negligible. 

  In Simulation 2, R2 ranged between .27 and .39 for both the CFI and TLI. The effects of 

the ICC and severity of misspecification were very similar to those observed in Simulation 1 for 

both the CFI and TLI. A slight negative effect of the J/nj ratio appeared for all three estimation 

methods, but the sizes of the standardized regression coefficents were smaller than for the overall 

sample size in Simulation 1. Additionally, a noticeable interaction effect is shown for ICC and 

misspecification. All other interaction effects had coefficients of .10 and below. In sum, the 

coefficients for misspecification are high for most of the conditions in the simulations for the 

CFI and TLI, which again is desirable. However, these indices also appear to be less sensitive to 

misspecification at lower ICCs and larger overall sample sizes.   

GFI* and AGFI*. Similar to the CFI and TLI, the results for the GFI* and AGFI* were 

very close and are thus discussed together. The R2 values across both simulations and all three 

models were similar in magnitude and direction, ranging from .35 to .49. In Simulation 1, the 

GFI* and AGFI* increased (i.e., showed better fit) when the ICC decreased (βs range = .17 to 

.27) in the SIM and PS between-group models. In the SEG between-group model, the GFI* and 
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AGFI* increased as the ICC simultaneously increased (βs = .40 and .17). For all three models, 

the indices showed improved fit as both misspecification (βs range = .35 to .49) and the overall 

sample size increased (βs range = -.17 to -.34). Also, there appeared to be non-negligible 

interactions present for all three methods between the ICC and severity of misspecification (βs 

range = .18 to .23) and, to a larger extent, between severity of misspecification and sample size 

(.08 to .16). In Simulation 2, the magnitude and direction for most of the coefficients were close 

to their Simulation 1 counterparts. Of note, however, is the effect of sample size on the GFI* and 

AGFI*. In Simulation 2, these indices suggested worse fit as the J/nj ratio increased, with the 

largest effects emerging for the SEG between-group model (βs = -.35 and -.27). Also, an 

interaction between the ICC and misspecification produced non-trivial effects across the three 

different models (βs range = .13 to .20). The other interaction effects were of small magnitude. 

Summary. In summary, the regression analyses replicated the findings of the Loess 

curves. The additional information provided by the regressions included the effects of sample 

size (both N and the J/nj ratio) and the comparative magnitudes of effects via standardized 

regression coefficients. Overall, the set of predictors accounted for less than half of the variation 

in each fit measure. As expected, all of the indices demonstrated improvement in model fit as the 

severity of misspecification decreased, and the magnitude of these standardized regression 

coefficients were the largest among all predictors in the model. The only exception to this 

finding was the within-group SRMR for which was determined largely by sample size. However, 

there was little variation observed in this index as a result of the within-group model being 

correctly specified, and thus other effects may be present when misspecification is introduced. 

The ICC and sample size configurations generally had non-trivial effects on all of the indices. 

For the SIM and PS between-group models, the χ2, RMSEA, CFI, TLI, GFI*, and AGFI* all 
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suggested better model fit as the ICC decreased. In other words, these indices were less sensitive 

to model misspecification as the between-group variance decreased. Conversely, the between-

group SRMR actually suggested better fit as the item ICCs increased. For the SEG between-

group model, all of the fit indices suggested better model fit as the ICC increased. With regards 

to the overall sample size N, the χ2, RMSEA, SRMR, CFI, and TLI suggested better model fit as 

N increased for the SIM, SEG between-group, and PS between-group models. However, the 

GFI* and AGFI* actually suggested worse fit as the sample size increased for the three methods. 

For the J/nj ratio, all of the fit indices suggested worse fit as the ratio increased, or rather, at a 

fixed level-1 sample size the number of clusters increased.   

Discussion 

The results of the present study suggest the ICC and sample size configuration affect 

measures of fit in MSEM. When the levels of a multilevel model are estimated simultaneously or 

via the partially-saturated approach, measures of fit appear less sensitive to detecting 

misspecification at lower levels of the ICC. The sole exception is the SRMR which suggests 

worse fit at lower levels of the ICC. Additionally, a larger overall sample size will result in 

improved measures of fit with the exception of the GFI* and AGFI* for which fit will be worse. 

Sample size also plays an important role in detecting misspecification at the between-group level 

as larger ratios of the cluster to within-cluster sample size results in worse fit for all measures 

considered here. 

Given the reduced sensitivity to ICC as well as the inconsistency of the SRMR, the 

utility of MSEM at low ICC levels is called into question. Practically speaking, estimating a 

model with small indicator ICCs is often intractable regardless (Muthén, 1994). This was 

certainly the case in the present study as ICC values of .05 and often .10 resulted in low 
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convergence rates. However even if model convergence is successful it may not be obvious 

whether the between-group model fits the data well as most measures of fit appear insensitive to 

model misspecification. 

A second and perhaps more troublesome observation is that less than half of the variation 

in each index was attributable to the simulation conditions which included model 

misspecification. Many fit indices were developed not only to measure model misspecification in 

a conceptually unique way, but also to reduce the effects of extraneous data and analytic factors 

that had confounded previously developed measures. The results presented here suggest that 

factors other than model misspecification may predict appreciable amounts of variation in 

measures of fit. This is by no means a new finding and is actually a central theme of most 

methodological work on fit evaluation (Chen et al., 2008; Yuan, 2005). However, the present 

study further explored this issue in the context of MSEM and it appears that assessing fit for 

multilevel data poses additional complications as compared to those previously observed for 

single-level SEM. 

Despite such cautions in the methodological literature regarding fit indices, it is not 

expected that the enterprise of fit assessment will be altogether abandoned, nor should it be 

(Yuan, 2005). In fact, recent work has explored several promising avenues for reforming current 

practices. New methods have been proposed for the detection of local misspecification in SEM 

models using Lagrange multipliers tests or instrumental variable estimators (Bollen, Kirby, 

Curran, Paxton, & Chen, 2007; Saris, Satorra, & Van der Veld, 2009). Some have sought to 

redefine notions of model fit in terms of model complexity and offer alternative fit measures not 

well known in the social science literatures (Preacher, 2006). Still others have developed 

resampling strategies that circumvent some problems with traditional cutoff values (Millsap & 
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Lee, 2009). Clearly there is momentum in the field to rework the model fit paradigm within 

SEM. Nevertheless, current practices of assessing fit are likely to continue. As such, some 

preliminary guidance can be proposed based on the results of this study. Foremost, level-specific 

methods of fit are encouraged in order to determine the extent of misspecification at each level of 

data. Although the values of level-specific measures of fit will be influenced by indicator ICCs 

and sample size, they may nevertheless provide important information that may be missed using 

simultaneous estimation. Additional steps are required to implement these methods but both the 

segregating and partially-saturated approaches are relatively easy to implement. The segregating 

approach may be slightly more challenging to execute as it requires additional software, but few 

changes are needed to the SAS macro as provided in Yuan and Bentler (2007) or the R program 

provided in Appendix A. 

  Before level-specific fit evaluation is conducted, however, one might calculate the GFI* 

and AGFI* as these indices appear more sensitive to between-group misspecification than other 

commonly used indices such as the RMSEA or CFI. Furthermore, these indices should continue 

to receive attention in simulation experiments as they have shown good performance in 

simulation work despite their rare use (Taylor, 2008; Wu, West, & Taylor, in press). Finally, it 

should be noted that in choosing a method of level-specific fit evaluation, one must be aware of 

the ICC value. At high levels of the ICC such as those used in the Ryu and West (2009) and 

Yuan and Bentler (2007) simulations, the SEG and PS methods appear to produce similar fit 

index values. However results of this simulation suggest that at low ICCs levels the partially-

saturated approach may underestimate misfit whereas the segregating approach is unlikely to 

ever suggest a well-fitting model. One possible explanation for this discrepancy relates to the 

observation that small unique variances can lead to inflated χ2 values (Browne, MacCallum, 
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Kim, Andersen, & Glaser, 2002). When the ICC is low, the between-group item variance 

components are also low and by implication the unique variance components. As the SEG 

approach uses single-level SEM estimation this phenomenon is expected to occur. In the 

simulation results presented here the SRMR was the only index that did not reflect poor fit for 

the between-group SEG model at low ICC levels. This is because the SRMR is based on 

residuals as opposed to the discrepancy function value. However, it is unclear why the same 

phenomenon does not occur for the partially-saturated approach. This presents an interesting 

question for future research to consider. 

Limitations and Strengths 

  The present study had the following limitations. First, the range of factors considered was 

limited. Over the past 30 years, methodologists have investigated several data and analytic 

conditions that influence fit statistics and indices. These include, but are not limited to: sample 

size, the number of variables, estimation method, the type of model, cluster balance, indicator 

reliability, and severity of misspecification (Anderson & Gerbing, 1984; Bearden, Subhash, & 

Teel, 1982; Beauducel & Wittmann, 2005; Breivik, & Olsson, 2001; Chen et al., 2008; Ding, 

Velicer, & Harlow, 1995; Fan & Sivo, 2005, 2007; Hox & Maas, 2001; Kenny & McCoach, 

2003; Sugawara & MacCallum, 1993; Taylor, 2008). A simulation investigation including all 

influential factors would become unwieldy, and thus the current study was restricted to a subset 

of these. Second, convergence rates were low for some of the study conditions, especially when 

the ICC or overall sample size was low. This likely reduces some precision with regard to the 

Loess plots, regression analyses, and parameter/standard error estimation. Third, due to the 

definition of misspecification severity, the ICC and sample size conditions could not be defined 

as random variables. Although the intervals between ICC values were equal, precision may have 
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nevertheless been lost in the regression analyses. Fourth, the within-group model was perfectly 

specified, and thus results are generalizable only to models in which negligible misspecification 

exists at level-1. Finally, in this simulation and nearly all others, the population (i.e., data 

generating) model was assumed to be correct. It has been noted that all statistical models, even 

those that provide a perfect fit in the population, are only useful approximations of complex 

phenomena (Wu & West, 2010). Therefore all models including population models used in 

Monte Carlo simulation experiments are wrong to some extent. There is not yet consensus on 

how to accommodate misspecification in the population model, although some methods have 

been suggested (Chun & Shapiro, 2010; Cudeck & Browne, 1992). This is an important issue 

that methodologists should continue to explore for applications to future simulation work. 

  Despite these limitations, several strengths of the study design can be noted. First, values 

of the conditions chosen are reflective of data to be found in applied social science areas. 

Previous studies of level-specific fit methods employed idealistic simulation conditions in order 

to validate the methods proposed (Ryu & West, 2009; Yuan & Bentler, 2007). Although 

important, such studies provide little practical guidance. The present study, however, offers 

further insight into analytic conditions that occur in practice. Second, model misspecification 

was included as a study condition. Including severity of misspecification in a study of fit 

measures allows one to determine other factors that account for variation in fit values beyond 

model misspecification (Browne & Cudeck, 1993). Failure to include or properly define model 

misspecification has limited previous findings in this area (Fan & Sivo, 2005; Taylor, 2008). 

However, in the present study the TFMLR was used to define severity of model misspecification 

and values corresponding to this definition were randomly sampled from a continuous statistical 

distribution. Consequently model misspecification was placed on an interpretable metric and 
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non-linear effects were observed via Loess plots and regression analyses. Finally, the indices 

chosen for investigation were both representative of applied research areas and favorable 

performance in previous simulation work. 

Future Directions 

  Model fit in single-level SEM has been an active area of research for several years. With 

MSEM’s increasing availability and tractability, it is expected that future work will also examine 

model fit index performance in MSEM. It will be important to determine whether findings from 

the single-level SEM literature replicate in MSEM. Extensions of the present study include 

examination of fit index sensitivity for different model types and under conditions in which both 

levels are misspecified. Also, the discrepancy between the segregating and partially-saturated 

approaches at low ICC levels poses an interesting question for future research to consider. More 

generally, however, it appears that momentum towards the reform of fit index and cutoff value 

usage will continue, and innovative methods of fit evaluation will continue to be sought and 

valued. 
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Footnotes 

  1 Some three-level models are currently estimable in Mplus. Multilevel latent growth 

curves are one example in which repeated measures are nested within an individual, who is 

further nested within a higher level unit (e.g., school). These models capitalize on the SEM 

specification of latent growth curves in which the random effects for the growth parameters are 

specified as latent variables. This specification allows information pertaining to repeated 

measures and individuals to be captured in a single-level SEM, or in the case of a multilevel 

latent growth curve, at the within-group level (Muthén & Asparouhov, 2011). Also, some 3-level 

mediation analyses are able to be specified using unconventional model specifications (Preacher, 

in press). 

  2 The notation used is this section follows that of Preacher et al. (2010). Muthén & 

Asparouhov (2008) describe their model within the context of latent growth curve analysis to 

draw parallels between parameters in the mixed linear model and their new general MSEM 

model. 

  3
 Exceptions to this notion are the tests based on the RMSEA proposed by MacCallum, 

Sugawara, & Browne (1996). Specifically, three tests of model fit were proposed based on 

differing null hypotheses. However, it has recently been argued that such tests are not suitable 

for all modeling situations as the RMSEA and its associated confidence interval are influenced 

not only by sample size but aspects of the model itself (Chen et al., 2008). 

  4 Algebraic derivations for the partially-saturated RMSEA and CFI are found in Ryu 

(2008). The derivation of the partially-saturated GFI* follows that of the RMSEA and is not 

shown here. 
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Table 1 
The Chi-square Test Statistic and Other Approximate Fit Indices 

                           
 

Source Name Formula 

             

   
Jöreskog (1969) χ2 (N – 1)FML 
 

Steiger &Lind (1980) RMSEA 
2max(χ ,0)

( 1)
df

df N
−
−  

 

Bentler (1995) SRMR 
1 21* ( )p se W e− ′    

 

Maiti & Mukherjee (1991) GFI* 2χ
2

1

p

df
p

N
 −

+  − 

   

 

Maiti & Mukherjee (1991) AGFI* 
*

1 (1 *)
p

GFI
df

− −  

 

Bentler (1990) CFI 
2 2
0 0

2
0 0

max(χ ,0) max(χ ,0)
max(χ ,0)

H Hdf df
df

− − −
−  

 

Tucker & Lewis (1973) TLI 
( ) ( )

( )
2 2
0 0

2
0 0

χ χ

χ
H Hdf df

df

−
 

             
Note. χ2 = chi-square; RMSEA = root mean square error of approximation; SRMR = 
standardized root mean square residual; GFI* = revised goodness of fit index; revised adjusted 
goodness of fit index; CFI = comparative fit index; TLI = Tucker-Lewis index; p* = number of 
non-duplicated elements in the covariance matrix; e = vector of residuals from comparing the 
sample and model-implied covariance matrices; Ws = diagonal weight matrix used to standardize 
elements in sample covariance matrix; p = number of variables; df = degrees of freedom; χ2

0 = 
chi-square value for null model; df0 = degrees of freedom for null model; χ2

H = chi-square value 
for hypothesized model; dfH = degrees of freedom for hypothesized model; 
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Table 2  
Population Parameter Values for Data Generation 

                           
 

ICC λW θW  λB θB 

                     

 
.05 .9745 .95 .2236 .05 
 
.10 .9487 .90 .3162 .10 
 
.15 .9220 .85 .3873 .15 
 
.20 .8944 .80 .4472 .20 
 
.25 .8660 .75 .5000 .25 
 
.30 .8367 .70 .5477 .30 
                    
 

a Power calculated based on a within-group sample size of 1500  
b Power calculated based on a within-group sample size of 75 
Note. ICC = Intraclass Correlation Coefficient; λW = Within-group factor loadings; θW = Within-
group residual variances; λB = Between-group factor loadings; θB = Between-group residual 
variances. All item total variances equal 2.0. Misspecification was introduced via random 
sampling of the latent factor correlation (ψ2,1) for values between .54744 and 1.0, which 
corresponds to power levels of 1.0 and 0.0, respectively, for rejecting the likelihood ration (χ²) 
test. 
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Table 3 
Proportion of Successfully Converged Models for Simulation 1 

                           
 

ICC N S.E. Seg_W Seg_B PS_W PS_B 

         

 
.05 500 .35 1.00 .08 .35 .33 
 1000 .61 1.00 .62 .57 .61 
 1500 .77 1.00 .91 .70 .77 
 2000 .87 1.00 .99 .79 .87 
 2500 .92 1.00 1.00 .86 .91  
 
.10 500 .59 1.00 .65 .53 .58 
 1000 .89 1.00 1.00 .75 .89  
 1500 .96 1.00 1.00 .89 .97 
 2000 .99 1.00 1.00 .94 .99 
 2500 .99 1.00 1.00 .97 1.00 
 
.15 500 .75 1.00 .92 .61 .75  
 1000 .96 1.00 1.00 .86 .96 
 1500 .99 1.00 1.00 .94 .99 
 2000 1.00 1.00 1.00 .98 1.00 
 2500 1.00 1.00 1.00 .99 1.00 
 
.20 500 .83 1.00 .99 .65 .82 
 1000 .99 1.00 1.00 .89 .98 
 1500 1.00 1.00 1.00 .95 1.00 
 2000 1.00 1.00 1.00 .98 1.00 
 2500 1.00 1.00 1.00 .99 1.00  
 
.25 500 .88 1.00 1.00 .70 .87   
 1000 .99 1.00 1.00 .91 .99 
 1500 1.00 1.00 1.00 .97 1.00 
 2000 1.00 1.00 1.00 .99 1.00 
 2500 1.00 1.00 1.00 1.00 1.00  
 
.30 500 .91 1.00 1.00 .71 .90  
 1000 .99 1.00 1.00 .92 .99  
 1500 1.00 1.00 1.00 .97 1.00  
 2000 1.00 1.00 1.00 .99 1.00 
 2500 1.00 1.00 1.00 1.00 1.00 
                           
Note. All clusters are of size nj = 20. N = Total sample size; SE = Simultaneous estimation; 
Seg_W = Segregating approach within-group model; Seg_B = Segregating approach between-
group model; PS_W = Partially-saturated within-group model; PS_B = Partially-saturated 
between-group model. 
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Table 4 
Proportion of Successfully Converged Models for Simulation 2 

                           
 

ICC J S.E. Seg_W Seg_B PS_W PS_B 

         

 
.05 30 .79 1.00 .95 .56 .80 
 60 .78 1.00 .90 .70 .77 
 90 .75 1.00 .90 .80 .76 
 120 .72 1.00 .83 .86 .72 
 150 .68 1.00 .73 .89 .69 
 
.10 30 .96 1.00 1.00 .76 .97 
 60 .96 1.00 1.00 .88 .95 
 90 .97 1.00 1.00 .95 .96 
 120 .96 1.00 1.00 .97 .97 
 150 .96 1.00 1.00 .98 .95 
 
.15 30 .99 1.00 1.00 .85 .99 
 60 .99 1.00 1.00 .94 .99 
 90 .99 1.00 1.00 .97 .99 
 120 .99 1.00 1.00 .99 .99 
 150 1.00 1.00 1.00 .99 .99 
 
.20 30 .99 1.00 1.00 .89 .99 
 60 1.00 1.00 1.00 .96 1.00 
 90 1.00 1.00 1.00 .99 1.00 
 120 1.00 1.00 1.00 .99 1.00 
 150 1.00 1.00 1.00 1.00 1.00 
 
.25 30 1.00 1.00 1.00 .90 1.00  
 60 1.00 1.00 1.00 .97 1.00 
 90 1.00 1.00 1.00 .99 1.00 
 120 1.00 1.00 1.00 1.00 1.00 
 150 1.00 1.00 1.00 1.00 1.00 
 
.30 30 1.00 1.00 1.00 .93 1.00 
 60 1.00 1.00 1.00 .98 1.00 
 90 1.00 1.00 1.00 .99 1.00 
 120 1.00 1.00 1.00 1.00 1.00 
 150 1.00 1.00 1.00 1.00 1.00 
                           
Note. The total sample size is 1500 for all conditions. J = Number of clusters; SE = Simultaneous 
estimation; Seg_W = Segregating approach within-group model; Seg_B = Segregating approach 
between-group model; PS_W = Partially-saturated within-group model; PS_B = Partially-
saturated between-group model. 
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Table 5 
Standardized Regression Coefficients for Simulation 1 

                           
 

 Predictors χ² RMSEA SRMRW SRMRB CFI TLI GFI* AGFI* 
            

 
Simultaneous 

 
 R² .33 .24 .50 .38 .15 .14 .38 .40  
 

 ICC .21 .22 -.00 -.29 -.18 -.17 -.22 -.27 
 MISS -.40 -.40 -.01 -.47 .29 .29 .44 .39 
 SS .23 -.07 -.71 -.32 .14 .14 -.25 -.30 
 ICC*MISS  -.14 -.11 .02 .03 .11 .11 .14  .16 
 ICC*SS  .05 -.03 -.03 .03 .05 .05 -.04  -.04 
 MISS*SS  -.20 -.10 -.01 -.07 .04 .04 .21  .23 
 ICC*MISS*SS  -.07 -.03 -.00 .01 .01 .01 .06  .07 
 

Segregating: Between-Group  
 
 R² .31 .32 -- .45 .33 .06 .40 .35 
    

 ICC -.40 -.37 -- -.21 .30 .14 .40 .17 
 MISS -.31 -.34 -- -.53 .43 .19 .40 .35 
 SS .14 -.30 -- -.37 .27  .10 -.17 -.34 
 ICC*MISS  -.03 -.08 -- -.05 .04 .02 .08  .13    
 ICC*SS  -.02 .08 -- -.01 -.05 -.03 -.01  .15 
 MISS*SS  -.17 -.09 -- -.09 .07 .04 .18  .20 
 ICC*MISS*SS  -.00 -.01 -- .00 -.00 -.00 .03  .04 

 
Partially-Saturated: Between-Group  

 
 R² .00 .18 .50 .38 .22 .26 .36 .36 
 

 ICC .01 .14 -.00 -.28 .10 .12 -.17 -.22 
 MISS -.04 -.36 .00 -.47 .43 .46 .49 .42 
 SS .01 -.13  -.71 -.31 .17 .16 -.16 -.23 
 ICC*MISS  -.01 -.08 -.00 .03 .02 .05 .12  .15 
 ICC*SS  .00 -.01 -.02 .04 -.01 -.01 -.05  -.04 
 MISS*SS  -.02 -.08 -.00 -.07 .07 .11 .21  .23 
ICC*MISS*SS   .00 -.01 .00 .02 -.02 -.03 .04  .06 
            
 

Note. ICC = Intraclass correlation coefficient; MISS = Misspecification; SS = Sample size (N) 
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Table 6 
Standardized Regression Coefficients for Simulation 2 

                           
 

 Predictors χ² RMSEA SRMRW SRMRB CFI TLI GFI* AGFI* 
            

 
Simultaneous 

 
 R² .29 .37 .02 .38 .27 .27 .39 .38  
 

 ICC .23 .26 -.04 -.33 -.22 -.22 -.27 -.27 
 MISS -.41 -.49 -.06 -.53 .39 .39 .49 .49 
 SS .10 .10 .10 -.13 -.11 -.11 -.11 -.11 
 ICC*MISS  -.17 -.16 .04 .04 .18 .18 .17  .17 
 ICC*SS  .08 .07 -.03 -.08 -.08 -.08 -.08  -.08 
 MISS*SS  -.09 -.08 -.04 -.06 .10 .10 .09  .09 
 ICC*MISS*SS  -.06 -.05 .02 .02 .07 .07 .05  .05 
 

Segregating: Between-Group  
 
 R² .34 .38 -- .47 .39 .39 .49 .34  
    

 ICC -.39 -.44 -- -.25 .35 .35 .40 .23 
 MISS -.26 -.41 -- -.62 .52 .52 .44 .42 
 SS .29 .03 -- -.12 -.00 -.01 -.35 -.27  
 ICC*MISS -.03 -.11 -- -.07 .05 .05 .13 .20  
 ICC*SS  -.17 -.03 -- -.03 .02 .02 .05  -.05 
 MISS*SS  -.10 -.01 -- -.02 .02 .01 .07  .00 
 ICC*MISS*SS  -.01 -.01 -- -.01 .00 .00 .04  .04 

 
Partially-Saturated: Between-Group  

 
 R² .01 .29 .46 .38 .28 .31 .41 .40   
 

 ICC .04 .19 -.39 -.32 .09 .11 -.24 -.31   
 MISS -.09 -.47 -.31 -.52 .51 .53 .55 .50    
 SS .02 .10 .42 -.03 -.06 -.06 -.10 -.08   
 ICC*MISS  -.03 -.13 .10 .04 .05 .08 .16  .18  
 ICC*SS  .02 .02 -.07 -.07 .01 .01 -.06  -.06  
 MISS*SS  -.03 .01 -.15 -.06 .06 .05 .09  .06  
 ICC*MISS*SS   -.02 -.02 .04 .03 .01 .02 .04  .03  
            
 

Note. ICC = Intraclass correlation coefficient; MISS = Misspecification; SS = Sample size (N) 
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Figure 1. Population model used for data generation. 
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Figure 2. Analysis model. 
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Figure 3. Loess Curves for χ². 

Note: Misspecification is defined on the x-axis by the value of the latent correlation ψ2,1. A 

higher correlation value corresponds to less model misspecification. 
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Figure 4. Loess Curves for RMSEA. 

Note: Misspecification is defined on the x-axis by the value of the latent correlation ψ2,1. A 

higher correlation value corresponds to less model misspecification. 
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Figure 5. Loess Curves for Within-group SRMR. 

Note: Misspecification is defined on the x-axis by the value of the latent correlation ψ2,1. A 

higher correlation value corresponds to less model misspecification. The Within-group SRMR is 

not calculated for the segregating Between-group model. 
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Figure 6. Loess Curves for Between-group SRMR. 

Note: Misspecification is defined on the x-axis by the value of the latent correlation ψ2,1. A 

higher correlation value corresponds to less model misspecification. The Between-group SRMR 

is not calculated for the segregating within-group model. 

 



79 
 

Figure 7. Loess Curves for CFI. 

Note: Misspecification is defined on the x-axis by the value of the latent correlation ψ2,1. A 

higher correlation value corresponds to less model misspecification. 
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Figure 8. Loess Curves for TLI. 

Note: Misspecification is defined on the x-axis by the value of the latent correlation ψ2,1. A 

higher correlation value corresponds to less model misspecification. 
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Figure 9. Loess Curves for GFI*. 

Note: Misspecification is defined on the x-axis by the value of the latent correlation ψ2,1. A 

higher correlation value corresponds to less model misspecification. 
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Figure 10. Loess Curves for AGFI*. 

Note: Misspecification is defined on the x-axis by the value of the latent correlation ψ2,1. A 

higher correlation value corresponds to less model misspecification. 
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APPENDIX A: R Program for Segregating Approach Implementation 
 

##############################################################################
## Define seg.vech() function: Vectorizes the lower triangle of a matrix 
############################################################################## 
seg.vech <- function(A=0) { 
 l <- 0; 
 p <- nrow(A); 
 pstar <- p*(p+1)/2; 
 Va <- matrix(0,nrow=pstar,ncol=1,byrow=T); 
 for (i in 1:p) { 
  for (j in i:p) { 
   l <- l+1 
   Va[l] <- A[j,i] 
  } 
 } 
 return(Va) 
} 
##############################################################################
## Define seg.DP() function: Creates a duplication matrix 
############################################################################## 
seg.DP <- function(p=0) { 
  mat <- diag(p) ##Creates diagonal matrix of dimension p 
  index <- seq(p*(p+1)/2) 
  mat[ lower.tri( mat , TRUE ) ] <- index 
  mat[ upper.tri( mat ) ] <- t( mat )[ upper.tri( mat ) ] 
  outer(c(mat), index , function( x , y ) ifelse(x==y, 1, 0 ) ) 
} 
##############################################################################
## Define seg.switch() function: Creates a permutation matrix 
############################################################################## 
seg.switch <- function(p=0) { 
 ps <- p*(p+1)/2 
 amat <- matrix(0,p,p) 
 bmat <- matrix(0,p,p) 
 na <- 0 
 for (j in 1:p) { 
  for (i in j:p) { 
   na <- na+1 
   amat[i,j] <- na; 
  } 
 } 
 va <- seg.vech(amat) 
 nb <- 0 
 for (i in 1:p) { 
  for (j in 1:i) { 
   nb <- nb+1 
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   bmat[i,j] <- nb 
  } 
 } 
 vb <- seg.vech(bmat) 
 Imat <- diag(ps) 
 permu <- Imat[va,vb] 
 return(permu) 
} 
##############################################################################
## Define seg.data() function: Processes the data 
############################################################################## 
seg.data <- function(p=0,nlevel1=0,ng=0,ymat=0) { 
 nt <- sum(nlevel1) 
 ps <- p*(p+1)/2 
 ymean <- matrix(0,nrow=ng,ncol=p) 
 vsmatL1 <- matrix(0,nrow=ng,ncol=ps) 
 smatw <- matrix(0,p,p) 
 nsum <- 0 
 for (jj in 1:ng) { 
  nj <- nlevel1[jj,] 
  ymatj <- ymat[(nsum+1):(nsum+nj),] 
  nsum <- nsum+nj 
  ymean[jj,] <- (matrix(1,1,nj)%*%ymatj)/nj 
  njsmatj <- t(ymatj)%*%(diag(nj)-(matrix(1,nj,nj)/nj))%*%ymatj 
  smatw <- smatw+njsmatj 
  vsmatj <- seg.vech(njsmatj) 
  vsmatL1[jj,] <- t(vsmatj) 
 } 
 smatw <- smatw/(nt-ng) 
 output <- list(smatw,ymean,vsmatL1) 
 return(output) 
} 
############################################################################## 
## Define seg.mdm1() function: Evaluates mu0 and sig for saturated L2 model 
############################################################################## 
seg.mdm1 <- function(p=0,beta=0) { 
 mu <- beta[1:p] 
 sigw <- matrix(0,p,p) 
 nc <- p 
 for (i in 1:p) { 
  for (j in i:p) { 
   nc <- nc+1 
   sigw[j,i] <- beta[nc] 
   sigw[i,j] <- beta[nc] 
  } 
 } 
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 vsigw <- seg.vech(sigw) 
 sigb <- matrix(0,p,p) 
 for (i in 1:p) { 
  for (j in i:p) { 
   nc <- nc+1 
   sigb[j,i] <- beta[nc] 
   sigb[i,j] <- beta[nc] 
  } 
 } 
 vsigb <- seg.vech(sigb) 
 output <- list(mu,sigb,vsigb,sigw,vsigw) 
 return(output) 
} 
############################################################################## 
## Define seg.minQ1() function: Maximizes the LL f() for L2 saturated model 
############################################################################## 
seg.minQ1 <- function(dup=0,nlevel1=0,ng=0,beta0=0,smatw=0,ymean=0,vsmatL1=0) { 
 nt <- sum(nlevel1) 
 p <- nrow(smatw) 
 ps <- p*(p+1)/2 
 ep <- .00001 
 vsmatw <- seg.vech(smatw) 
 err <- 0 
 ## Gauss-Newton begins here 
 iitera <- 0 
 for (i in 1:51) { 
  sigwb0 <- beta0[(p+1):(2*ps+p)] 
  if (iitera>50) { 
   err <- 1; 
   write(cat("iterations=",iitera)); 
   stop("Maximum number of iterations exceeded") 
  } 
  iitera <- iitera+1 
  output.mdm1 <- seg.mdm1(p,beta0) 
   ## De-list 
   mu <- output.mdm1[[1]] 
   sigb <- output.mdm1[[2]] 
   vsigb <- output.mdm1[[3]] 
   sigw <- output.mdm1[[4]] 
   vsigw <- output.mdm1[[5]] 
  siginw <- solve(sigw) 
 ## Weight given by normal theory 
  weightw <- 0.5*t(dup)%*%(siginw%x%siginw)%*%dup 
  ssiginj <- matrix(0,p,p) 
  ssymj <- matrix(0,p,1) 
  gt2 <- matrix(0,ps,1) 
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  gt3 <- matrix(0,ps,1) 
  ddljj <- matrix(0,ps,ps) 
  ddljw <- matrix(0,ps,ps) 
  ddlww <- matrix(0,ps,ps) 
  for (j in 1:ng) { 
   nj <- nlevel1[j] 
   sigj <- sigb+sigw/nj 
   vsigj <- seg.vech(sigj) 
   siginj <- solve(sigj) 
   weightj <- 0.5*t(dup)%*%(siginj%x%siginj)%*%dup 
   ssiginj <- ssiginj+siginj 
   ymj <- t(t(ymean[j,])) 
   ssymj <- ssymj+siginj%*%ymj 
   cymj <- ymj-mu 
   Rj <- cymj%*%t(cymj) 
   vrj <- seg.vech(Rj) 
   cvrj <- vrj-vsigj 
   wcvrj <- weightj%*%cvrj 
   gt2 <- gt2+wcvrj/nj 
   gt3 <- gt3+wcvrj 
   ddljj <- ddljj+weightj 
   ddlwj <- ddljw+weightj/nj 
   ddlww <- ddlww+weightj/(nj*nj) 
  } 
  mu1 <- solve(ssiginj)%*%ssymj 
  gt2 <- (nt-ng)*weightw%*%(vsmatw-vsigw)+gt2 
  gta <- rbind(gt2,gt3) 
  ddljw <- t(ddlwj) 
  ddlww <- (nt-ng)*weightw+ddlww 
  ddl <- rbind(cbind(ddlww,ddlwj),cbind(ddljw,ddljj)) 
  stdi <- solve(ddl) 
  delt <- stdi%*%gta 
  sigwb1 <- sigwb0+delt 
  beta0 <- rbind(mu1,sigwb1) 
  dt <- sum(delt^2)/sum(sigwb1^2) 
  if (dt<ep) { 
   output <- list(stdi,err); 
   return(output) 
   } 
  } 
  return("Maximum number of iterations exceeded")    
} 
############################################################################## 
## Define seg.Ascov() function: Maximizes the LL f() for L2 saturated model 
############################################################################## 
seg.Ascov <- function(beta0=0,p=0,dup=0,nlevel1=0,ng=0,smatw=0,ymean=0,vsmatL1=0) { 
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 p <- nrow(smatw) 
 ps <- p*(p+1)/2 
 nt <- sum(nlevel1) 
 output.mdm1 <- seg.mdm1(p,beta0) 
   ## De-list 
   mu <- output.mdm1[[1]] 
   sigb <- output.mdm1[[2]] 
   vsigb <- output.mdm1[[3]] 
   sigw <- output.mdm1[[4]] 
   vsigw <- output.mdm1[[5]] 
 siginw <- solve(sigw) 
 weightw <- 0.5*t(dup)%*%(siginw%x%siginw)%*%dup 
 ddluu <- matrix(0,p,p) 
 ddljj <- matrix(0,ps,ps) 
 ddljw <- matrix(0,ps,ps) 
 ddlww <- matrix(0,ps,ps) 
 Bmat <- matrix(0,(p+2*ps),(p+2*ps)) 
 for (jj in 1:ng) { 
  nj <- nlevel1[1] 
  sigj <- sigb+sigw/nj 
  siginj <- solve(sigj) 
  vsigj <- seg.vech(sigj) 
 ## Weight given by normal theory 
  weightj <- 0.5*t(dup)%*%(siginj%x%siginj)%*%dup 
  ddluu <- ddluu+siginj 
  ddljj <- ddljj+ddljj+weightj 
  ddljw <- ddljw+weightj/nj 
  ddlww <- ddlww+weightj/(nj*nj) 
  ymj <- t(ymean[1,]) 
  cymj <- ymj-mu 
  gj1 <- siginj%*%cymj 
  Rj <- cymj%*%t(cymj) 
  vrj <- seg.vech(Rj) 
  cvrj <- vrj-vsigj 
  wcvrj <- weightj%*%cvrj 
  gj3 <- wcvrj 
  wcvswj <- weightw%*%(vsmatL1[1,]-(nj-1)*vsigw) 
  gj2 <- wcvrj/nj+wcvswj 
  gj <- rbind(gj1,gj2,gj3) 
  Bmat <- Bmat+gj%*%t(gj) 
 } 
  ddlwj <- t(ddljw) 
 ddlww <- (nt-ng)*weightw+ddlww 
 Amat <- rbind(cbind(ddluu,matrix(0,p,ps),matrix(0,p,ps)), 
      cbind(matrix(0,ps,p),ddlww,ddlwj), 
      cbind(matrix(0,ps,p),ddljw,ddljj)) 
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 Amat <- Amat/ng 
 stdi <- solve(Amat) 
 Bmat <- Bmat/ng 
 Gamma <- stdi%*%Bmat%*%stdi 
} 
############################################################################## 
## Main Program 
############################################################################## 
 ## Read in data 
 setwd("D:/Users/aboulton/Desktop") 
 x <- read.table("rep1.dat") #### DATA FILE NAME HERE 
 ## Level-1 sample size 
 nt <- nrow(x) 
 ## Level-2 sample size 
 xcl <- x[,7] #### INSERT CLUSTER VARIABLE COLUMN HERE 
 ng <- 1 
 x1 <- xcl[1] 
 for (i in 2:nt) { 
  xi <- xcl[i] 
  if (xi==x1) {ng <- ng+0} 
   else {ng <- ng+1; x1 <- xi} 
 } 
 ## Generates the level-1 sample size variable 'nlev1' 
 x1 <- xcl[1] 
 nlev1 <- matrix(0,ng,1) 
 jj <- 1 
 for (i in 1:nt) { 
  if (xcl[i]==x1) {nlev1[jj] <- nlev1[jj]+1} 
   else {jj <- jj+1; nlev1[jj] <- nlev1[jj]+1; x1 <- xcl[i]} 
 } 
 ## Data preparation 
 x2 <- as.matrix(x)  
 ymat <- as.matrix(x[,1:6]) #### INSERT DEPENDENT VARIABLE COLUMNS HERE 
 p <- ncol(ymat) 
 write(cat("number of variables=",p,"\n")) 
 ps <- p*(p+1)/2 
 ybar <- matrix(1,1,nt)%*%ymat/nt 
 smat <- t(ymat)%*%(diag(nt)-matrix(1,nt,nt)/nt)%*%ymat/nt 
 vsmat <- seg.vech(smat) 
 beta00 <- rbind(t(ybar),(vsmat/2),(vsmat/2)) 
 nlevel1 <- nlev1 
 nt <- sum(nlevel1) 
 nbar <- nt/ng 
 dup <- seg.DP(p) 
  
 ## Prepares data and calculates the sample means and covariances 
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 output.data <- seg.data(p,nlevel1,ng,ymat) 
  ## De-list 
  smatw <- output.data[[1]] 
  ymean <- output.data[[2]] 
  vsmatL1 <- output.data[[3]] 
 beta0 <- beta00 
 output.minQ1 <- seg.minQ1(dup,nlevel1,ng,beta0,smatw,ymean,vsmatL1) 
  ## De-list 
  stdi <- output.minQ1[[1]] 
  err <- output.minQ1[[2]] 
 if (err==0) {output.Ascov <- seg.Ascov(beta0,p,dup,nlevel1, 
  ng,smatw,ymean,vsmatL1)} 
  ## De-list 
  Amat <- output.Ascov[[1]] 
  Gamma <- output.Ascov[[2]] 
 Gamma11 <- (nbar-1)*Gamma[(p+1):(ps+p),(p+1):(ps+p)] 
 Gamma22 <- Gamma[(ps+p+1):(2*ps+p),(ps+p+1):(2*ps+p)] 
 Gamma12 <- sqrt(nbar-1)*Gamma[(p+1):(ps+p),(ps+p+1):(2*ps+p)] 
 output.mdm1 <- seg.mdm1(p,beta0) 
  ## De-list 
   mu <- output.mdm1[[1]] 
   sigb <- output.mdm1[[2]] 
   vsigb <- output.mdm1[[3]] 
   sigw <- output.mdm1[[4]] 
   vsigw <- output.mdm1[[5]] 
 permu <- seg.switch(p) 
 print("------------------------------------------------------------- 
 --------------------------------") 
 Nw <- nt-ng 
 cat("the sample size equivalent number N-J for analyzing level-1 alone=", 
   Nw, sep = "") 
 sbigw <- sigw 
 vsw <- vsigw 
 print("hat\Sigma_1=") 
 print(sbigw) 
 print("------------------------------------------------------------- 
 --------------------------------") 
 Gamma11 <- permu%*%Gamma11%*%t(permu) # This line is not necessary if the 
                                     # weight matrix needs to be 
                                     # in the order of vech(\hat\Sigma); 
 print("\hat\Gamma11=") 
 print(Gamma11) 
 print("------------------------------------------------------------- 
 --------------------------------") 
 print("------------------------------------------------------------- 
 --------------------------------") 
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 sbigb <- ng*sigb/(ng-1) 
 vsb <- vsigb 
 print("\hat\Sigma_2=") 
 print(sbigb) 
 print("------------------------------------------------------------- 
 --------------------------------") 
 Gamma22 <- permu%*%Gamma22%*%permu 
 print("\hat\Gamma22=") 
 print(Gamma22) 
 print("------------------------------------------------------------- 
 --------------------------------") 
 


