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Abstract 

The stability of an implant in the bone, one factor in joint replacement 

survival, is usually tested using biaxial fatigue loading. These loading protocols do 

not replicate physiological loading conditions. The Dynamic Ball and Socket Joint 

Force Simulator (DBSJFS) was designed to apply physiological loads through an 

articular surface to study implant stability. 

The DBSJFS was custom built to integrate with a MTS 858 Mini Bionix 

machine. The design allows femoral components to be tested dynamically in three 

dimensions with four degrees of freedom. Two rotary actuators turn the distal end of 

the femur around perpendicular axes while the linear actuator applies a downward 

force through the centroid of the femoral component head. The rotations of the femur 

and the dynamic loading patterns are correlated together to replicate the resultant joint 

force in the hip. Procedures replicating the gait cycles of a person walking normally, 

going up and down stairs, and sitting down and standing up were developed using 

component hip force data taken from HIP98, a study performed in Berlin, Germany 

by Bergmann that recorded hip joint forces in vivo using instrumented femoral stems 

implanted into patients. 

The DBSJFS can operate at 1/3
rd

 physiological speed under loads representing 

a 900 N individual. At 1/5
th

 physiological speed and 700 N loads, the average and 

maximum absolute error produced in each channel for the normal walking gait are as 

follows: Y’ axis motor 0.63 deg, 1.49 deg; X’ axis motor 0.45, 1.39 deg; linear 

actuator 10.78, 27.04 N. 
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Chapter 1 INTRODUCTION 

 

1.1 Total Hip Arthroplasty 

The hip is a ball and socket joint composed of the acetabulum and femoral 

head. The configuration of the human hip joint allows a great range of motion along 

with excellent stability. Normal motion for a person is 110°-120° for flexion, 10°-15° 

for extension, 30°-50° for abduction, 25°-30° for adduction, 30°-40° for internal 

rotation, and 40°-60° for external rotation [1]. Even though the hip has great inherent 

strength and stability, individuals may often experience pain and reduced range of 

motion in the hip as they get older due to degenerative joint disease (DJD). The 

primary causes of DJD are osteoarthritis, rheumatoid arthritis, and osteonecrosis. One 

of the surgical options available to patients to treat this disease is a total hip 

arthroplasty (THA). 

THA is a surgical procedure in which the hip joint is replaced with an 

acetabulum cup and a femoral stem prosthetic. This requires several steps. First, the 

femoral head is removed by cutting through the neck of the femur with a saw. Next, a 

femoral stem is placed in the proximal end of the femur after the diaphysis has been 

reamed and/or rasped to the proper shape. Finally, an acetabular cup is secured into 

the coax after the acetabulum has been properly shaped. The purpose of this 

procedure is to restore the function and the normal range of motion to the hip. THAs 

began to have reproducible results in the 1960s when surgical treatment for end stage 

DJD of the hip was developed by Sir John Charnley [2]. Over the last half century, 
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THAs have become one of the most successful surgical endeavors. This success is 

due in part to the evolution of surgical technique and implant design. 

 

1.1.1 Growth Rate 

With improved geometrical design of current implants and use of enhanced 

materials and advanced surgical methods, conservative prosthetic hip implants can 

now be expected to last 10 to 20 years [3]. This success and an aging population in 

the United States means this area of orthopedics should grow rapidly over the next 25 

years. An estimated demand for primary THAs will grow from 208,600 in 2005 to 

570,000 by 2030, a 174% increase [4, 5]. Additionally, THA revisions should also 

increase substantially from 40,800 in 2005 to 96,700 by 2030, a 137% increase [4, 5]. 

This expected rise in the demand for THA revision will compound the economic 

burden that THA revisions have already imposed on Medicare. From 1997-2003, 

19% of Medicare expenditures for hip replacements was apportioned to THA revision 

surgery [4, 5]. 

 

1.1.2 Risk Factors 

Many long term studies have shown that a 90% success rate can be expected 

from a THA after ten years [3, 6, 7]; however, not all patients can expect to do this 

well. Aseptic loosening, joint instability, wear-related failure, painful 

hemiarthroplasty, and periprosthetic fractures all contribute to the need for revision 
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surgery after primary THA. Additionally, aseptic loosening is one of the most 

common causes at 30% of early (within the first five years) failures of the implant [8]. 

Other risk factors include infection, pulmonary embolism, stress shielding 

caused by the implant, and teratogenicity [9]. Additionally, hip replacements are 

becoming more common in younger patients (less than 60 years old) who are active; 

this increases the likelihood that the patient will outlive an implant. These risk factors 

and the expected growth in the need for revisions shows the need for continually 

improving hip implants. 

 

1.2 Hip Implants 

A variety of hip replacements are currently on the market. Aspects that vary 

from implant to implant include the geometrical stem design, fixation technique used 

to secure the stem, the surface coating, the material of which the stem is made, and 

the bearing surfaces used between the head of the implant and the acetabular cup. 

These all contribute to the survival rate of the femoral component and must be 

considered simultaneously when choosing which implant should be placed in a 

particular patient. 

 

1.2.1 Cemented Stems 

Cemented femoral components use polymethylmethacrylate (PMMA) to 

secure the femoral stem and provide initial and long term stability for the implant. 

Cemented femoral components were the first available stems on the market, and 
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cementing was the preferred technique for many years. The design of the hip stems 

and the surgical techniques have seen many advances since the initial THA dating 

back to Charnley’s designs [10]. Stiffer materials like cobalt-chrome with high 

fatigue strengths now prevent stems from breaking. Components’ edges are smoother 

to reduce stresses in bone cement, and many femoral stems today are also tapered to 

transmit the load through the PMMA in compression, which is the situation where the 

bone cement is strongest [2].  

 

1.2.2 Press Fit (Uncemented) Stems 

Press fit stems components are wedge shaped, a design that provides initial 

stability within the femur. Press fit stems get their long term stability from bone 

ingrowth which occurs in and on the surface of these stems over time. Proximal 

coatings were first introduced and used in the early 1970’s. These first generation 

press fit stems had many problems, ranging from implantation technique to actual 

geometrical design. The main causes of failure in these early designs were an under 

sized stem , inadequate coating, non-circumferential coating, and an inadequate 

acetabular design [11]. Many of these design features and surgical techniques have 

improved over the past few decades; however, techniques and designs are still not 

perfect. 

In press fit stems, aseptic loosening is currently a serious problem, one of the 

major causes of failures in THA, especially with active patients and patients younger 

than 60 years old [2]. In one study, aseptic loosening was the cause of approximately 
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30% of all the failures [12]. Aseptic stem loosening may be due to the design of the 

proximal part of the prosthesis. Rotational stability of an implant decreases in 

prosthetics with smaller radii because of the larger pressures, due to less surface area, 

produced at the bone-implant interface [13]. Additional research shows that using a 

collar decreases axial subsidence and that curved stems have significantly less motion 

at the bone-implant interface than straight stems [14]. 

The overall size of a stem also affects how the body interacts with it. 

Typically, titanium and cobalt-chrome are used in manufacturing femoral stems, and 

they have a much higher modulus of elasticity than cortical bone. This causes stress 

shielding to occur (the bone around the implant is reabsorbed because of decreased 

stress levels). Improving the geometrical design of the implant to reduce the cross-

sectional area and moments of inertia can partly solve this problem. However, 

materials with increased fatigue resistance and lower modulus of elasticity are still 

needed to better mimic cortical bone. 

 

1.2.3 Geometrical Stem Design 

Stem design has an enormous impact on the performance of a hip implant. A 

few attributes of the femoral stem design that affect its performance are the use of a 

collar, the amount of curvature of the distal stem, the width of the stem in the medio-

lateral and anterior-posterior directions, and the use of a taper. All of these features 

affect the performance of the hip replacement differently and must be considered 
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simultaneously in the overall design of the femoral stem to ensure optimal 

performance. 

 

1.2.4 Surface Coatings 

Many types of coating are used on cementless hip stems. Surface coatings are 

applied to the stems in different ways and have various physical properties that make 

them unique. Since the 1980’s, the focus has been to coat only the proximal portion 

of the stem with some type of surface coating because extensively coated stems 

appeared to cause proximal stress shielding when a distal pedestal formed around the 

stem. This pedestal transferred the loads through the distal end of the stem straight to 

the shaft of the femur instead of to the proximal portion of the femur and then through 

the shaft of the femur. Additionally, a stem with ingrowth only on the proximal 

portion is easier to remove if a revision is required later [11]. 

A few of these surface coatings include cobalt-chromium or titanium beads, 

hydroxyapatite, plasma sprayed titanium, titanium wire mesh (fiber mesh), and 

trabecular metal (TM) [15]. Each of these coating are applied to the substrate of the 

stem differently to create biocompatible surfaces that will elicit a positive biological 

response involving osteointegration. Examples of Co-Cr alloy, titanium wire mesh, 

plasma sprayed titanium, and hydroxyapatite coatings are shown in Figure A 1 in 

Appendix A. 
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Cobalt-chromium and titanium beads are typically applied to the surface of 

the femoral stem by sintering. These types of surfaces have pore sizes ranging from 

80-250 μm with 35-40% porosity that has interconnectivity. 

Hydroxyapatite (HA) is applied to a titanium surface with a process known as 

plasma spray. HA coating increases the rate at which the bonding strength between 

the bone and implant develops in animal tests; however, long term bonding strength 

with and without HA are similar [16]. 

Plasma sprayed titanium involves a heated titanium alloy powder sprayed onto 

the substrate surface creating a randomly roughened surface with a pore size 

distribution between 100 and 1,000 µm. 

Fiber mesh is made from titanium and looks like many thin wires bonded to 

the surface of the stem; it produces a porous surface where bone ingrowth can occur. 

Some implants with this type of surface also have a HA coating applied to the wire 

mesh to further increase osteointegration. 

TM is porous biomaterial made of tantalum with mechanical properties very 

similar to bone, which makes it well suited for bone and joint reconstruction. TM has 

excellent corrosion resistance and great biocompatibility due to TaO5 which is its 

natural passivating oxide layer. This material was originally developed for the 

aerospace industry and will continue to have a large impact in reconstructive surgery 

[17, 18]. 

 

1.3 Micromotion 
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Implant micromotion, the amount of movement that occurs at the bone-

implant interface, is one of many factors that influence the success of an implant [19]. 

Micromotion is affected by, among other factors, post-operative loading and stem 

surface coating [16, 20-22]. High post-surgical loads may cause excessive shearing 

motions at the bone-implant interface leading to fibrous tissue ingrowth instead of 

boney ingrowth [19]. The fibrous tissue ingrowth can lead to increased pain for the 

patient, resulting in a need for THA revision [23]. The various surface coatings 

applied to press fit stem all have different coefficients of friction, which affect how 

much the femoral stem moves under physiological loads. To prevent aseptic 

loosening caused by excessive motion, several studies suggest interface micromotion 

should be limited to a range of 30 to 150 µm [19, 24].  

 

1.4 History and Background of Hip Joint Simulators 

To study hip joint replacements, wear testing machines and joint force 

simulators have been developed and used for several years. One goal of these 

machines is to replicate the physiological loading conditions and motion patterns 

produced by the human body. Each machine has a different mechanism and is 

accordingly designed to accomplish different objective(s). Human gait is complex 

and difficult to replicate. For example, a machine theoretically needs six degrees of 

freedom to fully replicate the physiological conditions of the hip joint. Many 

simulators are simplified and only provide a few degrees of freedom, possibly 

because designing a simulator that can articulate more complex movements does not 
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guarantee that the simulation will be more accurate. In fact, errors committed by each 

individual actuator may very well create a larger inaccuracy than a simplified system. 

Moreover, designing and producing an extremely complex simulator is not always 

economically feasible [25]. 

 

1.4.1 Wear Hip Simulators 

Many wear testing joint simulators have been developed. Most of these 

machines are designed to test the wear of the acetabular cup by rotating the acetabular 

cup around the femoral head of the prosthesis while under a specified loading pattern. 

Examples of this type of machine are a ten-station, multi-axis hip joint simulator by 

Goldsmith and Dawson [26]; the Leeds hip joint simulator [27], a three axial, single-

station hip joint simulator by Saikko, shown in Figure A 2 in Appendix A [28]; a 12-

station anatomic hip joint simulator by Saikko [29]; a hip wear simulator with 100 

test stations by Saikko [30]; a 12-station hip simulator by Bragdon [31]; MATCO hip 

simulator [32]; an eight station hip simulator by Mejia, pictured in Figure A 3 and 

Figure A 4 in Appendix A [33]; and the Rocky Mountain Joint Simulator by Green 

[34]. 

Many wear testing machines were developed to study the effects on the 

acetabular cup of polyethylene wear. Polyethylene debris is associated with adverse 

tissue reactions that can cause osteolysis around the implant leading to component 

loosening [26, 28, 31, 33, 35]. This type of testing thus addresses the long term 

stability of the hip implant for this type of failure. 
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1.4.2 Joint Force Simulators 

Joint force simulators can be used to study the micromotion of an implant at 

the bone-implant interface while being loaded. For hip replacements, the bone-

implant interface lies between the femoral stem and the proximal end of the femur. 

Researchers have used three main experimental set ups for this type of study. The 

first two simulate a one legged stand, one by potting the distal end of the femur, 

rigidly fixing it to a table, and then applying axial and torsional loads through the 

head of the femur. Sugiyama [36], Gortz [37], and Naidu [38] used this protocol. 

Figure A 5, Figure A 6, and Figure A 7 in Appendix A show the schematic of each 

experimental set up. The second experiment is set up by creating a hinge mechanism 

with the distal end of the femur and then applying axial and torsional loading through 

the head of the femur as in the first protocol. This is a slight improvement because it 

eliminates the moments around the medial to lateral axis by mimicking the mechanics 

that occur at the knee. Engh [39], Monti [19], and Kligman [40] used this protocol. 

Figure A 8,Figure A 9, and Figure A 10 in Appendix A show the experimental set ups 

for these three projects. The third of the three experimental set ups fixes the shaft of 

the femur to a table or another solid object and then applies a torsional load through 

the center of the femoral head so that the femur is twisted. Thus, a researcher can see 

the effects on the femoral stem of raising and lowing oneself in and out of a chair and 

going up and down stairs. However, this represents only a small portion of each of 

these activities. Hua [23] and Baleani [24] have both used a version of this technique 
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in their studies, and Figure A 11 and Figure A 12 show these experimental set ups in 

Appendix A. Additionally, Schneider designed and used another experimental set up 

that applied axial and torsional loads through the stem with the distal end of the femur 

potted; however, the pot was attached to an x-y table, so the fixture would not create 

moments around either of the transverse axes. Figure A 13 in Appendix A shows this 

set up [41]. 

 

1.5 Purpose 

The DBSJFS was designed and built to measure the micromotion of an 

implanted prosthesis at the bone-implant interface while the prosthesis is loaded 

under three dimensional physiological conditions. The DBSJFS improves on the 

current experimental methodology of micromotion studies involving the hip joint. 

The DBSJFS allows researchers to better mimic what a hip prosthesis experiences in 

vivo. Previous hip joint force simulators used in micromotion studies have not 

simulated human hip joint loads physiologically; these earlier simulators typically 

load a static femur in one or two dimensions. 

The DBSJFS may be used for full scale experiments in testing the initial 

stability of several different types of femoral stems used for hip replacements that are 

currently on the market. The knowledge gained from these studies may help improve 

the design of future press fit hip stems, leading to fewer THA revisions and, therefore 

reducing the enormous health care costs of THA revisions incurred by Medicare. 
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Chapter 2 MACHINE DESIGN 

 

2.1 Design Objectives 

Requirements for the DBSJFS included the following:  

1) Integrated with an MTS 858 Mini Bionix machine so the linear actuator 

could be used for dynamic loading of specimens. To meet this 

requirement, the femur specimens were positioned inside a gimbal with 

one stationary axis, Y’, and one nonstationary axis, X’. The femoral heads 

were positioned at the center of its rotation, and the applied load passed 

directly through the center of the femoral head on the hip stem. 

2) Mimics physiological human hip joint loading conditions given that the 

linear actuator always moves along a fixed vertical axis. To accomplish 

this requirement, the DBSJFS functioned by correlating the rotations about 

the X’ and Y’ of the gimbal with the dynamic loading patterns applied 

through the femoral head to replicate the physiological loading conditions 

that occur during various daily activities. 

3) Uses two SS.2A hydraulic rotary actuators to properly orient specimens in 

three dimensions; purchasing new actuators was not possible. To meet this 

requirement, two SS.2A hydraulic servo motors were attached to the 

gimbal to rotate the femur around the perpendicular axes. 

Additionally, Figure 1 on the following page is an Autodesk rending of the 

DBSJFS that shows the orientation of the X’, Y’, and Z axes on the simulator.  
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Figure 1. Autodesk rendering of the DBSJFS mounted inside the 858 Mini Bionix Machine; 

the X’, Y’, and Z axes are labeled, as is the resultant forces vector, FR. 
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2.2 Description of the DBSJFS 

Figure B 1 and Figure B 2 in Appendix B are digital photographs of the 

DBSJFS; showing it assembled and mounted within the 858 Mini Bionix for testing. 

The hip simulator has many unique features integrated into the frame and gimbal that 

help meet the design objectives. 

The A-frame, made out of ten inch 6061 aluminum channel, provides 

adequate structural support to reduce global deflection under maximum loading 

conditions. The frame also provides the means by which every other part can be 

attached to the simulator. The base portion of the frame has a circular hole pattern, so 

the hip simulator can be mounted in the MTS machine without the rotary actuators or 

optical encoders interfering with the columns of the MTS (Appendix B; Figure B 3). 

The frame also extends vertically to provide space for the hydraulic rotary actuator 

and optical encoder, both attached along the X’ axis of the gimbal to rotate through a 

larger range of motion. 

The gimbal allows the distal end of a femur to rotate around two 

perpendicular axes while providing space for the linear actuator to apply loads 

directly to the femoral head. Key ways were used in conjunction with set screws to 

keep the shafts, which insert into the gimbal ring, locked in place after assembly 

(Appendix B; Figure B 4). Four windows were milled out of the gimbal ring to reduce 

its overall weight. The diameter of the ring was chosen to provide clearance for the 

greater trochanter on the proximal femur (Appendix B; Figure B 4). 
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The swing arms of the pendulum allow gross vertical adjustment to move the 

potted femur up and down for alignment. A slot in the horizontal member of the 

pendulum allows gross alignment adjustments along the X’ axis (Appendix B; Figure 

B 5). Fine vertical and horizontal adjustments along the X’ and Y’ axes are made by 

manually moving the position of the base of the femur and securing it with thumb 

screws that insert through the sides of the potting cup (Appendix B; Figure B 6).  

 

2.3 Structural Analysis 

The frame of the fixture is made out of 10 inch aluminum channel bolted 

together into three different sections. This aluminum channel was chosen because 

aluminum is light weight, machines easily, and provides sufficient strength for our 

experiment.  

The global deflection of the frame was calculated using the equations in 

Appendix C, section C.1. The global deflection of the frame itself will not affect the 

results obtained from the displacement of the femoral component between the bone 

and metal interface; however, the deflection must be minimized to prevent binding of 

the shafts during rotation. The total global deflection of the frame at point A (Figure 

C 1) with a 10 inch aluminum channel will be at most 0.0672 in. This deflection is 

small, so it does not affect the length of the femur used in the experiment because the 

constraints for medial to lateral adjustment and the pendulum motion needed to 

duplicate a person sitting down constrain the femur length to 13.5 in at most as 

measured from the distal cut to the center of the femoral head. 
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2.4 Input Loads and Profiles 
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The loading profiles used to control the DBSJFS were developed from data taken 

from HIP98, Bergmann’s study at the Free University of Berlin in Germany [42]. 

This study provided in vivo dynamic hip joint loads during various activities for 

which the hip simulator would be programmed. The raw data from HIP98 included 

dynamic hip joint loading patterns for the activities of walking normally, going up 

stairs, going down stairs, standing up, and sitting down. In addition to being used to 

develop loading profiles, this data was also used to graph the corresponding motion 

envelope of the pendulum attached to the gimbal. The motion envelope of each 

activity was graphed because of potential interference problems between the 

simulator and the MTS machine, such as the pendulum hitting the columns of the 

MTS machine. The in vivo hip joint loading patterns and derived motion envelopes 

for the activities of walking normally ( 
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Figure D 1 through Figure D 3), going up stairs ( Figure D 4 through Figure D 6), 

going down stairs (Figure D 7 through Figure D 9), standing up (Figure D 10 through 
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Figure D 12), and sitting down ( 
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Figure D 13 through  

Figure D 15) are listed in Appendix D. The three figures for each activity 

above include a graph of the in vivo average hip contact forces, the pendulum motion 

envelope for the left femur, and the pendulum motion envelope for the right femur. In 

the average hip contact force figures, the hip joint forces were plotted as a percentage 

of body weight against time. The forces graphed are resultant force (blue-green), 

force in the X direction (black), force in the Y direction (pink), and force in the Z 

direction (yellow). These X, Y, and Z axes correspond to the local coordinate system 

for the head of the femur used by Bergmann in HIP98. The figures of the pendulum 

motion envelopes depict a top down view of the DBSJFS. The dark blue circles 

define the columns of the MTS machine and each light blue shape details the path of 

one point on the pendulum. The positions of these points are shown in Figure C 6 and 

Figure C 7 in Appendix C. The solid red line indicates the Y axis of the MTS 

machine, the solid green line indicates the X axis of the MTS machine, the dashed red 

line is the Y’ axis of the gimbal, and the dashed green line is the X’ axis of the 

gimbal. 

 

2.4.1 Mathematical Development 

To develop the initial loading profiles, rotation matrices were used to derive the 

equations that give the desired rotations about the X’ and Y’ axes with the following 

known conditions. Please refer to Figure B 1, Figure B 2, and Figure B 4 for the 

location of these axes within the gimbal system. 
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1. The actuator can only push in the negative direction along the Z axis (Figure 

B 1). 

2. Right femurs are placed in the simulator so the +X axis of the femoral head 

(lateral to medial) is aligned with the +Y axis of the MTS machine, the +Y 

axis of the femoral head (posterior to anterior) aligned with the +X axis of the 

MTS machine, and the +Z axis of the femoral head (inferior to superior) 

aligned with the +Z axis of the MTS machine (Figure B 1 through Figure B 

3). 

3. Left femurs are placed in the simulator so the +X axis of the femoral head 

(lateral to medial) is aligned the –Y axis of the MTS, the +Y axes of the 

femoral head (posterior to anterior) aligned with the +X axes of the MTS 

machine, and the +Z axis of the femoral head aligned with the +Z axis of the 

MTS machine (Figure B 1 through Figure B 3). 

The derivation of the equations that give the rotations around the X’ and Y’ axes is in 

Appendix C, section C.4. 

The axes around which the gimbal rotates are not aligned with the coordinate 

system of the MTS machine. Therefore, to graph the motion envelope of the 

pendulum, the displacement values calculated in relationship to the X’ and Y’ axes 

had to be transformed using another rotational matrix to graph the path the pendulum 

would take through the various gait patterns with respect to the MTS coordinate 

system. The derivations of these equations are given in Appendix C, section C.5. 
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2.5 Controls 

The motion of the DBSJFS is produced by two hydraulic servo motors in 

displacement control. Optical encoders are secured to the opposite end of each shaft 

to which both motors are attached to give the computer feedback about the position of 

the each shaft. The software for the MTS mini Bionix machine has built in tuning 

parameters that include a proportional-integral-derivative (PID) controller, feed 

forward and feed backward input, and a forward loop (FL) filter, which are used to 

control the hydraulics of the servo motors. 

The linear actuator attached to the frame of the MTS machine (Figure B 1) is 

also run with the same tuning parameters; however, it was under force control during 

the gait cycle and then displacement control at the beginning and end of each test.  

A PID controller is a control loop feedback mechanism designed to correct the 

error between a measured process variable and a preferred setpoint. For example, 

with the DBSJFS, the PID software reduces the error between the actual rotational 

positions of each shaft versus the desired rotations for which each were programmed. 

A generic PID controller uses three basic components in its algorithm to correct this 

error. The proportional gain, P, changes the output proportional to the current error 

value. The larger the P value the more change will occur for a given increase in error 

and vice versa. However, the proportional gain alone will not allow the system to 

reach its target value, and if it is set too high, it can cause the system to become 

unstable. With P gain only, at best, the system will remain continually in a steady 

state error because as the error is reduced so is the proportional output. The second 



 

25 

component integral gain, I, helps correct the error in the system by calculating the 

integral term of the area under the error curve over time. This accelerates the process 

towards its desired setpoint, which eliminates the steady state error produced with P 

gain only. However, the I gain can cause the process to overshoot the setpoint 

because it works by responding to the buildup of past errors. This overshoot is 

controlled by the derivative, D, gain setting. D gain calculates the rate of change of 

the process error. For the DBSJFS, D determines how fast the hydraulic rotary motors 

spin the pendulum around the X’ and Y’ axes. D gain reduces ringing effects but can 

cause the system to become unstable if it is set too high. 

Feed forward control is a mechanism by which a system can adjust the input 

signal to compensate for a known external disturbance. For example, feed forward 

input can be used to reduce continuous lag in the system by sending an input signal 

early. To improve control even more, input signals can also be adjusted with a feed 

backward control. The feed backward control changes the input signals based on the 

output obtained. The DBSJFS uses both feed forward and feed backward to alter the 

input rotational angles of the hydraulic rotary actuators. This allowed signal 

adjustment based on the dynamic loading patterns the motors experienced which 

reduced lag in the system. 

A FL filter adjustment compensates for noise in a feedback signal. The noise 

typically originates from sensor feedback. For the DBSJFS control system, noisy 

sensor feedback was not a problem, and this parameter was not altered from the 

preset values.  
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Chapter 3 Materials and Methods  
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Chapter 3 Materials and Methods 

 

3.1 Introduction 

 HIP98 was the first study to synchronously measure the forces in the hip joint 

with ground reaction forces and movement [42]. It, thus, served as the foundation for 

the loading profiles developed to test hip stems in the DBSJFS. The X, Y, and Z 

forces that Bergmann collected in his study were used to calculate resultant forces 

and the corresponding rotation angles that would allow the simulator to run each gait 

cycle with three dimensional constraints. 

 Dynamic loading patterns that mimic the joint force produced in walking 

normally, going up and down stairs, sitting down, and standing up were all 

mathematically developed. Each loading profile consists of three parts: 1) the 

resultant load applied vertically through the femoral head, 2) the X’-axis rotation, and 

3) the Y’-axis rotation. 

 

3.2 Preparation of Femur 

An analog model was used in the DBSJFS to obtain the approximate PID and 

control settings needed to safely run the machine. The analog model used in 

validating the DBSJFS was a 3
rd

 generation saw bone that had a cemented femoral 

stem placed within it. The saw bone was cut to a length of approximately 9.5 inches 

as measured along the axis of the diaphysis from a point that is perpendicular to the 
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femoral head to a distal point on the shaft of the bone. To place the cemented femoral 

stem, the steps listed below were followed. 

1. Remove the femoral head with a transverse cut through the femoral neck. 

2. Make two subsequent cuts on the proximal femur to resect additional material 

of the femoral neck to provide room for placement of the stem. 

3. Ream out the inner material representing the cancellous bone to the 

appropriate size so that the femoral stem can be placed within the diaphysis. 

4. Mix the bone cement and place it on the femoral stem. 

5. Insert the femoral stem into the saw bone. 

6. Take radiograph images with a C arm to confirm proper placement of the 

stem. 

Figure 2 on the following page shows the proximal end of the 3
rd

 generation saw bone 

with the femoral stem inserted into it. 
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Figure 2. Image of the proximal end of a 3
rd

 generation saw bone with a 

cemented femoral stem inserted. 

 

3.3 Potting Process 

After the stem was cemented in the saw bone, the distal end of the femur was potted 

in the aluminum cup fixed to the pendulum of the DBSJFS. To ensure proper 

alignment of the femur, the following steps were taken. 

1. Attach the femoral head alignment jig to the universal ring. 

2. Place the distal end of the femur in the aluminum cup attached to the bottom 

half of the pendulum. 

3. Slide the bottom half of the pendulum and femur into place so that the femoral 

head is held within the alignment jig. 

4. Insert bolts to fix the swing arms of the pendulum. 
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5. Using a level, rotate the pendulum so that the swing arms are vertical to both 

the Z-X and Z-Y planes. 

6. Manipulate the femur so it is correctly oriented. Align the axes by visual 

inspection. Right femurs are placed in the simulator so that the X and Y axes 

of the femoral head are aligned with the Y and X axes of the MTS machine. 

Left femurs are placed in the simulator so the X and Y axes of the femoral 

head are aligned with the -Y and X axes of the MTS machine.  

7. Tighten the thumb screws on the sides of the aluminum cup to hold the femur 

in the correct position. 

8. Grease the inside of the aluminum cup and then mix and pour bone cement 

into it. 

9. After the bone cement has dried, remove the femoral head alignment jig. 

Figure 3 on the following page shows the femoral head in the alignment jig described 

in step 3, and Figure 4 on the following page shows the assembly of the pendulum 

and potted distal femur with the DBSJFS. The thumbs screws used to hold the femur 

in place during step 5 can be seen around the outside of the aluminum pot.  
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Figure 3. Image of the femoral head within the alignment jig. 

 

 

Figure 4. Image of the potted distal femur attached to the pendulum. 
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3.4 Loading Profile 

Ten loading profiles were generated for the DBSJFS, five for the right hip and 

five for the left hip. The profiles produced for right and left hips were walking 

normally, going up stairs, going down stairs, standing up, and sitting down. As 

explained in Chapter 2, the X’ and Y’ rotations and the axial loading patterns for each 

gait cycle used data from HIP98. However, these gait cycles could not be used for 

testing without modification because they were misaligned. First, the data used was 

an average of the participants of the HIP98 study. Second, the swing phase of each 

gait was not recorded and included only the data from the time right before heel strike 

to just after toe off. Third, the average values for the sitting down cycle did not 

include the female participant although the average values for standing up did. This 

caused a discrepancy in magnitude and location of the hip forces at the beginning and 

end of these cycles because females have a different anatomical structure. These three 

factors necessitated slight adjustments to the beginning and end of each cycle to 

achieve a smooth transition, which is important for safely operating the DBSJFS. 

Smooth transitions allow the machine to have more fluid motion and better stability. 

The PID control can also be tuned more accurately leading to greater control of the 

machine. 

After the input profiles were created, each was entered into a procedure made 

using the MTS software, which controlled the DBSJFS. Graphs of the input data for 

the left hip are provided in Figure 6, Figure 8, and Figure 10 on the following pages. 

Figure 5, Figure 7, and Figure 9 show the original data before modification. Original 
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and smoothed gait profiles for the right hip are provided in appendix D in Figure D 16 

through Figure D 21. Three cycles of the each gait are shown in each of these figures, 

demonstrating the transition between the beginning and end of a cycle. Comparing 

the original profile and the smooth profile of any given gait illustrates the corrected 

gap between cycles. These gaps had to be reduced so the machine could run 

smoothly. The three cycles are differentiated by a solid line followed by a dashed line 

followed by another solid line. 
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Figure 5. Walking normally original gait profile of the left hip. 

 

 

Figure 6. Walking normally smoothed gait profile of the left hip.  
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Figure 7. Going up and down stairs original profile of the left hip. 

 

 

Figure 8. Going up and down stairs smoothed profile of the left hip.  
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Figure 9. Standing up and sitting down original gait profiles for the left hip. 

 

 

Figure 10. Standing up and sitting down smoothed gait profiles for the left hip.  
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3.5 Data Collected 

To validate the DBSJFS, data was collected for the left femur only. However, 

future tests should be run with a right femur using these procedures. The gait patterns 

for WN, GU & DS, and SU & SD were run at frequencies equivalent to 1/10
th

, 1/5
th

, 

and 1/3
rd

 physiological speeds. At 1/10
th

 and 1/5
th

 physiological speeds, tests used 

body weights of 100 N, 175 N, 250 N, 325 N, 400 N, 500 N, 600 N, 700 N, 800 N, 

and 900 N. At 1/3
rd

 physiological speed, tests used body weights of 800 N and 900 N. 

The data gathered during each test included the following: average axial force 

absolute error, maximum axial force absolute error, average upper angle absolute 

error, maximum upper angle absolute error, average lower angle absolute error, and 

maximum lower angle absolute error. Each gait was run for 100 cycles. Data was 

collected during cycles 20, 40, 60, 80, and 100. An average for each of these cycles 

was calculated to indirectly analyze the machine for repeatability, and an average of 

the five cycles was calculated and reported.  

 

3.6 Tuning Parameters 

To tune each of the channels for the DBSJFS, a guess, test, and revise method 

was used first for each individual channel and then with multiple channels running at 

the same time. Individually, the hydraulic rotary actuators were tuned unloaded to a 

ramp function and a sine wave. The rotary actuators were then tuned together while 

running simultaneously with each following off-setting sine waves to create a circular 
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pattern. The linear actuator was then tuned without the rotary actuators in motion for 

both displacement control and force control.  

Next, all the channels were tuned, with having the rotary actuators turning the 

pendulum in a circle while the linear actuator applied a constant load through the 

femoral head. Once tuning parameter values were obtained that did not greatly affect 

the control of the DBSJFS as loads changed or circular motion varied, validation 

testing of the DBSJFS began, running the gait cycles created. Tuning parameters used 

during testing are reported in Chapter 4. 
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Chapter 4 CAPABILITIES AND PERFORMANCE  
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Chapter 4 CAPABILITIES AND PERFORMANCE 

 

4.1 Results 

 For the procedure of walking normally the maximum and average error 

produced by the linear actuator were directly related to both the speed of the gait and 

the applied body load; the values increased together in a positively sloping linear 

trend line. Additionally, the average force error recorded for all tests run at a body 

weight of 600 N deviated downward from the trend line; however, the maximum 

force error did not deviate from the trend line for those same tests. This can be seen in 

Error! Reference source not found. and Figure 14. 

 The upper angle, Y’ rotation, average error during tests on walking normally 

followed a flat linear trend for all speeds and loads between 200 and 900 N and depended only on 

speed. The body weight at which the DBSJFS was loaded did not affect the error produced in 

this channel. The average error for all recorded tests between 200 and 900 N was within a range 

of 0.6 to 0.75 degrees. The upper angle max error also increased with increasing speeds but also 

depended on the body weight load as error increased with increasing body weights. This can be 
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seen in 
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Figure 12 and Figure 15. 

 The lower angle, X’axis rotation, average error for the tests on walking 

normally demonstrated behavior similar to the Y’ axis rotation for loads up to 700 N. 

However, as the applied body weight load increased beyond 700 N, both the average 

and maximum lower angle errors increased greatly. This increase in error was a 

limiting factor in the performance of the DBSJFS (Figure 13 and Figure 16). 

 Except for tests with 600 N body loads, the repeatability for walking normally 

average and maximum error in all channels was acceptable; the data followed flat 

linear trend lines. For the tests run at 600 N at 1/10
th

 physiological speed, the 

repeatability for the maximum force absolute error and the upper angle absolute error 

was not as predictable as other tests. The maximum force absolute error varied from 

approximately 17 to 23 N of error where the repeatability at all other loads at the 

same frequency did not vary by more than 1.5 N. This data is shown in Figure 17 

through Figure 22. Walking normally repeatability data for frequencies at 1/5
th

 and 

1/3
rd

 physiological speed are shown in Figure F 13 through Figure F 24 in Appendix 

F. 

  

 

Figure 23 through Figure 28 display the force/upper angle/lower angle command, 

output, and absolute error for each channel at the frequency and body weight loads 

specified. These figures show how the error changes in each channel throughout the 

entire cycle. The error tended to increase with increasing load throughout the cycle; 

however, the rate of change of the applied force was directly related to the error 
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generated in the channels. Additionally, the rate of change of the upper and lower 

angles was positively related to the error generated in those channels. The data shows 

that some of the largest error values occurred in the cycle when the rotatory and linear 

actuators changed position and force the fastest. 

 The test results for going up and down stairs and standing up and sitting down 

followed similar trends with slightly different ranges; they are shown in Figure F 1 

through Figure F 12 in Appendix F. Exceptions include the following:  

1. GU & DS average force error showed decreases in error at loads of 400 and 

600 N (Figure F 1).  

2. SU & SD average force error was extremely high for the tests that used loads 

of 400 N. The high average and maximum error appear to be load dependent; 

each occur at both 1/5
th

 and 1/10
th

 physiological speeds (Figure F 7 and Figure 

F 10). 

 Comparing the walking normally force error data to the command load values 

instead of using the data as absolute values demonstrated a low percentage error. The 

WN average force error was approximately 1% of the average commanded force over 

the entire cycle when the DBSJFS operated at 1/10
th

 physiological speed with loads 

equivalent to a 400 N individual. Moreover, at the instant during the cycle when the 

maximum error is reached, the WN maximum force error was approximately 1.2% of 

the commanded force. 

 The DBSJFS operated most effectively with the smallest acceptable error for all 

channels under loads representing a 700 N individual at a frequency of 1/5
th

 physiological speed. 
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At these parameters, the hydraulic rotary motors tended to produce approximately the same 

amount of average and maximal error as at lower loads. If the load and frequency increased, the 
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slope of the average and maximum lower angle error significantly increased (
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Figure 12 and Figure 15). The error charts of the linear actuator also became slightly 

steeper, with the frequency lines beginning to deviate away from each other. The 

DBSJFS can operate at loading cycles representing a 900 N individual at 1/3
rd

 

physiological speed. It was not tested at parameters higher than this. 
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4.2 Walking Normally Average Error Frequency Charts  
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Figure 11. WN Avg FR Err frequency chart.  
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Figure 12. WN Avg UA Err frequency chart.
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Figure 13. WN Avg LA Err frequency chart. 
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4.3 Walking Normally Maximum Error Frequency Charts 
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Figure 14. WN Max FR frequency chart.
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Figure 15. WN Max UA Err frequency chart.
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Figure 16. WN Max LA Err frequency chart. 
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4.4 Walking Normally Average Error Repeatability 
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Figure 17. WN Avg FR Abs Err repeatability at 1/10th Phys.
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Figure 18. WN Avg UA Abs Err repeatability at 1/10th Phys.
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Figure 19. WN Avg LA Abs Err repeatability at 1/10th Phys. 
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4.5 Walking Normally Maximum Error Repeatability 
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Figure 20. WN Max FR Abs Err repeatability at 1/10th Phys.
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Figure 21. WN Max UA Abs Err repeatability at 1/10th Phys.
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Figure 22. WN Max LA Abs Error repeatibility at 1/10th Phys.
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4.6 Command, Output, and Error Charts 
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Figure 23. Axial force command, output, and Abs Err for WN at 1/10

th
 physiological speed 

with BW=400 N.  
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Figure 24. UA command, output, and Abs Err for WN at 1/10

th
 physiological speed with 

BW=400 N.  
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Figure 25. LA command, output, and Abs Err for WN at 1/10
th

 physiological speed with 

BW=400 N.  
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Figure 26. Axial force command, output, and Abs Err for WN at 1/10
th

 physiological speed 

with BW=700 N.  
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Figure 27. UA command, output, and Abs Err for WN at 1/10
th

 physiological speed with 

BW=700 N.  



 

70 

 

Figure 28. LA command, output, and Abs Err for WN at 1/10
th

 physiological speed with 

BW=700 N. 
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4.7 Tuning Parameters 

Tuning parameter values were experimentally obtained for each channel of the 

DBSJFS. The exact parameter settings were derived after extensive testing, focusing 

on parameters that provided the most stability to the system, allowed the smoothest 

pendulum movement, and limited the amount of error produced (see Table 1). The 

axial channel was controlled through force commands through the actual gait cycle; 

however, at the beginning and end of each procedure, the axial channel was 

controlled with point-to-point displacement. This gave the system more stability and 

limited the risk of inadvertently breaking a specimen. Both the upper and lower 

channels were controlled using point-to-point displacement for each procedure. 

 

Table 1. Tuning Parameter Values. 

  Channel 

  Axial 

(Force) 

Axial 

(Displacement) 

Upper Lower 

Tuning 

Parameters 

P 40.0000 15.2500 0.38590 0.60000 

I 1.8220 1.5000 0.02300 0.06000 

D 0.0019 0.0000 0.03678 0.00359 

F 0.0000 0.0000 0.09923 0.07241 

F2 0.0000 0.0000 0.00307 0.00000 

FL Filter 1044.6 Hz 2048 Hz 2048 Hz 2048 Hz 
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Chapter 5 DISCUSSION 

 

5.1 Analysis of Performance 

 The decrease in the average force error for walking normally at a body load of 

600N may be caused by optimizing the tuning parameters (Error! Reference source 

ot found.). The values used were the same for all the tests but may have been better 

for that particular loading pattern. Ideally, the DBSJFS should be tuned separately for 

each loading pattern to achieve the lowest error. This may also be the cause of the 

reduced error in GU and DS average force error at body loads of 400 and 600 N 

(Figure F 1). Further testing and tuning optimization may show errors in the other 

tests can be reduced if proper adjustments are made to the PID, F, F2, and FL filter 

settings. 

Maximum errors in the hydraulic rotary actuators also correlated with peak 

loads being applied to the femoral head because, as the load applied through the head 

of the femur increases, the friction force between the linear actuator and the femoral 

head also increases. This resulted in more femoral deflection away from the 

intersection of the X’ and Y’ axes. Thus, because of these two affects, the rotary 

actuators must operate under sufficient force to oppose their motion. The center of the 

femoral head tended to deviate from the rotational center point of the rotary actuators 

when maximal errors were produced by the force applied by the linear actuator. The 

linear actuator had to adapt to a larger vertical adjustment as the center of rotation for 

the femur changed, causing the femur to displace along the Z axis. These effects are 
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minimal at low loads and frequencies, but they amplify each other as demands no the 

DBSJFS increase. 

Repeatability of the gait cycles in the DBSJFS was high. The absolute error 

produced by each channel throughout the gait cycles was nearly the same in every test 

for a given load and frequency as can be seen in the error repeatability charts. 

However, the repeatability of the maximum force and upper angle error for walking 

normally for the test run at 600 N and at 1/10
th

 physiological speed was not as high as 

the other tests (Figure 20). The reason remains unknown; however, an increase in 

maximum error in either channel may have contributed to increased maximum error 

in the other. Note, however, the average force and upper angle error for walking 

normal in this same test was reliable and consistent.  

The direction of the error for each channel was the same; all the actuators 

tended to under-shoot maximum and minimum values. Because of this high level of 

repeatability, the error charts can accurately estimate the error that will occur during a 

given test with specified loads and frequencies. This valuable information can 

determine if the DBSJFS functions at a required level of accuracy. 

The maximum error produced by the both the linear actuator and the hydraulic 

rotary actuators tends to occur at points in each gait cycle where the actuators must 

reach the highest velocities. Again, the exact cause remains unknown; it is most likely 

a multi-factorial issue. However, lag in the system may contribute to maximum error 

because the slope of the command positional values is nearly the same as the slope of 

the actual positional data recorded. Thus, the speed at which the actuators can operate 
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was most likely not exceeded. However, this cannot be confirmed because torque 

values during the gait cycles were not recorded. Therefore, we do not know if the 

actuators were ever commanded to operate beyond their physical limitations. 

 Finally, the average and maximum error occurring during SU and SD at a load 

of 400 N at both recorded frequencies was due to abnormally large amount of 

vibration in the DBSJFS. These particular tests were repeated several times, and the 

vibrations occurred each time. Why the DBSJFS vibrated to the extent that it did 

during this test we do not know; however, the vibrations appear to be load dependent 

and may have been caused by singularities in the MTS control algorithm. 

 

5.2 Limitations 

The DBSJFS is limited by several factors. The range of motion of the rotary 

actuators is only +/- 60 degrees, and while it was not a limiting factor for reproducing 

the gait cycles of WN, GU and DS, and SU and SD, in a study of the extremes of 

human range of motion it could be an issue. The columns of the MTS machine also 

pose a significant limitation to the range of motion that the pendulum could swing 

though, requiring a careful review of the motion envelope before testing to prevent 

broken or damaged equipment. Another limitation of the system is the ability of the 

actuators to respond quickly. To increase responsiveness, the pressure of the 

hydraulic fluid can be increased and/or the size of the valves can be increased to 

allow more flow of fluid and thus increase responsiveness. New hydraulic rotary 

actuators could improve the design and are discussed in the following section. The 
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tuning parameters are significant to how the system responds. The system could 

achieve low error in all three channels throughout most of the testing but could still 

be improved. The current PID algorithm in the MTS software does not adaptive to a 

dynamic system; therefore, any deviation from the particular setting will cause an 

increase in error. Moreover, deflection of the femur began to cause errors at loads 

surpassing 700 N. This was minimized by shortening the length of the femur so that 

less deflection would occur at any given load. Lastly, although the resultant force 

applied through the head of the femur is accurately reproduced when compared to in 

vivo forces, the shear stresses experienced by the femoral component are not the same 

because the DBSJFS does not replicate the forces produced by the muscles 

surrounding the hip joint. The deviation caused by this is unknown and was not 

analyzed. 

 

5.3 Suggested Design Improvements 

Many aspects of the DBSJFS could be improved. First, the pendulum could be 

made out of a lighter and stronger material like carbon fiber or titanium. This would 

reduce the inertia of the pendulum, enabling the hydraulic rotary motors to move it 

more quickly. Second, the rotary motors could be upgraded. Currently, the hydraulic 

motors are model number SS.2A 1V made by Flow Products Company. They are 

single vane, weigh 1.6 lbs, have a max torque of 510 in-lbs @ 3000 psi, and can reach 

an angular velocity of 11.02 rad/sec. Two different models are being reviewed to 

improve the DBSJFS performance.  
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The first is model number SS.5A 1V, a single vane unit weighing 3.0 lbs and 

producing 760 in-lbs of torque at 2000 psi. However, it can only reach an angular 

velocity of 4.30 rad/sec. It also has a high range of motion because it can rotate +/-

140 degrees. The second model, SS.5A 2V, is a double vane unit weighing 3.2 lbs 

and producing 1620 in-lbs at 2000 psi. However, the SS.5A 2V can only rotate +/-50 

degrees and has an angular velocity of only 2.15 rad/sec. The disadvantage of the 

reduced angular velocity could be significantly improved by doubling the ports and/or 

enlarging the port area, which would increase flow rate and speed. 

An additional improvement would be to redesign the swing arms of the 

pendulum so that shoulder bolts are used for the vertical adjustment connections. This 

would strengthen the design by taking force off the bolt threads. 

 

5.4 Testing in Future Studies 

The DBSJFS could be used to study implant micromotion for both hip and 

shoulder prosthetics or any other ball and socket joint. Initial design of these studies 

should use differential variable reluctance transducers (DVRT) to record the 

micromotion at the bone-implant interface. These devices are sensitive enough to 

detect motion as small as 6 µm. Additionally, the gait cycles developed for the 

DBSJFS validation can also be used. However, preliminary work must be done to 

ensure the proper performance of the devices. 

 

5.4.1 Specimen Desciption 
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Parameters that need to be recorded on specimens used in future studies are 

age, sex, fresh frozen tissue or embalmed, cause of death, height, weight, and bone 

density. 

 

5.4.2 Preparation of Specimens 

After being harvested in the procedure room within the orthopedic research 

laboratory at the University of Kansas Medical Center, the femurs used should be 

prepared in the following way. Each specimen must bagged, sealed, and placed in a 

freezer kept at -31°F. When the femurs are needed, the thighs can be removed from 

the freezer and allowed to thaw overnight. The following day, the soft tissue can be 

excised, and the stem implanted according to the manufacturer specifications. The 

surgical procedure should follow the Mayo Design femoral component instructions, 

given in Appendix E. Placement of each stem must be checked after implantation 

using a Flouroscan to assure correct positioning. 
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5.4.3 Potting Process 

Once all the soft tissue from the femur is excised and the stem implanted, the 

distal end of the femur should be potted in the aluminum cup of the pendulum 

described in section 2 of Chapter 3. 

 

5.4.4 Micromotion Measurements 

The movement between the implant and the bone can be measured at the 

bone-implant interface with DVRTs. This motion can be captured by fixing the 

casing of the DVRTs to the outside of the bone with the stainless steel probe tip 

passing through prepared holes and placed in direct contact with the surface of the 

implant. These instruments would be placed in different planes around the femur to 

collect data on motion in the X, Y, and Z axes. 

 

5.4.5 Loading Profiles 

The procedures for WN, GU and DS, and SU and SD may be used for both right 

and left hips. These procedures can be run at a known maximum of 900 N at 1/3
rd

 

physiological speed. The number of cycles completed and the order of the profiles 

can be adjusted to mimic actual use. To help determine these parameters, the 

following pedometric studies can be reviewed: 
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1. Atkinson, J., R.B. Goody, and C.A. Walker, Walking at Work, A Pedometric 

Study Assessing The Activity Levels of Doctors. Scottish Medical Journal, 

2005. 50(2): p. 73-74. 

2. Miller, R. and W. Brown, Steps and Sitting in a Working Population, 

International Journal of Behavioral Medicine, 2004. 11(4): p. 219-224. 

3. Morlock, M., E. Schneider, A. Bluhm, M. Vollmer, G. Bergmann, V. Müller, 

and M. Honl, Duration and frequency of every day activities in total hip 

patients. Journal of Biomechanics, 2001: p. 873-881. 

4. Schmalzried, T.P., E.S. Szuszczewicz, M.R. Northfield, K.H. Akizuki, R.E. 

Frankel, G. Belcher, and H.C. Amstutz, Quantitative Assessment of Walking 

Activity after Total Hip or Knee Replacement. The Journal of Bone and Joint 

Surgery, 1998: p. 54-59. 

 

5.4.6 PID Tuning 

The PID setting for future studying should be slightly adjusted because the 

stiffness of real bone differs from the 3
rd

 generation saw bone used in this validation 

of the DBSJFS. However, the values should to be similar because the saw bone was 

made to mimic real tissue. 



 

81 

 

References 

 

1. Dutton, M., Orthopedic Examination, Evaluation, & Intervention. 2004: 

McGraw Hill. 1459. 

2. Sanfilippo, J.A. and M.S. Austin, Implants for total hip arthroplasty. Expert 

Rev Med Devices, 2006. 3(6): p. 769-76. 

3. Morrey, B.F., R.A. Adams, and M. Kessler, A conservative femoral 

replacement for total hip arthroplasty. A prospective study. J Bone Joint Surg 

Br, 2000. 82(7): p. 952-8. 

4. Kurtz, S., et al., Trend shows growing orthopedic surgery case load. Will 

surgeons be able to keep up? Mater Manag Health Care, 2006. 15(7): p. 61-2. 

5. Kurtz, S., et al., Projections of primary and revision hip and knee arthroplasty 

in the United States from 2005 to 2030. J Bone Joint Surg Am, 2007. 89(4): p. 

780-5. 

6. Hailer, N.P., G. Garellick, and J. Karrholm, Uncemented and cemented 

primary total hip arthroplasty in the Swedish Hip Arthroplasty Register. Acta 

Orthop. 81(1): p. 34-41. 

7. Omlor, G.W., et al., A stature-specific concept for uncemented, primary total 

hip arthroplasty. Acta Orthop. 81(1): p. 126-33. 

8. Cutts, S. and P.B. Carter, Hip resurfacing: a technology reborn. Postgrad Med 

J, 2006. 82(974): p. 802-5. 



 

82 

 

9. Effenberger, H., et al., A model for assessing the rotational stability of 

uncemented femoral implants. Arch Orthop Trauma Surg, 2001. 121(1-2): p. 

60-4. 

10. Hirakawa, K., et al., Mechanisms of failure of total hip replacements: lessons 

learned from retrieval studies. Clin Orthop Relat Res, 2004(420): p. 10-7. 

11. Mont, M.A. and D.S. Hungerford, Proximally coated ingrowth prostheses. A 

review. Clin Orthop Relat Res, 1997(344): p. 139-49. 

12. Dobzyniak, M., T.K. Fehring, and S. Odum, Early failure in total hip 

arthroplasty. Clin Orthop Relat Res, 2006. 447: p. 76-8. 

13. Callaghan, J.J., et al., The effect of femoral stem geometry on interface motion 

in uncemented porous-coated total hip prostheses. Comparison of straight-

stem and curved-stem designs. J Bone Joint Surg Am, 1992. 74(6): p. 839-48. 

14. Dujovne, A.R., et al., Mechanical compatibility of noncemented hip 

prostheses with the human femur. J Arthroplasty, 1993. 8(1): p. 7-22. 

15. Ratner, B.D., Biomaterials Science: An Introduction to Materials in Medicine. 

2nd Edition ed. 2004, San Diego: Elsevier Academic Press. 

16. Oonishi, H., et al., The effect of hydroxyapatite coating on bone growth into 

porous titanium alloy implants. J Bone Joint Surg Br, 1989. 71(2): p. 213-6. 

17. Cohen, R., A porous tantalum trabecular metal: basic science. Am J Orthop, 

2002. 31(4): p. 216-7. 

18. Stiehl, J.B., Trabecular metal in hip reconstructive surgery. Orthopedics, 

2005. 28(7): p. 662-70. 



 

83 

 

19. Monti, L., L. Cristofolini, and M. Viceconti, Methods for quantitative analysis 

of the primary stability in uncemented hip prostheses. Artif Organs, 1999. 

23(9): p. 851-9. 

20. Harman, M.K., et al., Initial stability of uncemented hip stems: an in-vitro 

protocol to measure torsional interface motion. Med Eng Phys, 1995. 17(3): 

p. 163-71. 

21. Incavo, S.J., R. Schneider, and J. Elting, The effect of surface coating of 

femoral prostheses implanted without cement: a 2- to 4-year follow-up study. 

Am J Orthop, 1998. 27(5): p. 355-61. 

22. Kuiper, J.H. and R. Huiskes, Friction and stem stiffness affect dynamic 

interface motion in total hip replacement. J Orthop Res, 1996. 14(1): p. 36-43. 

23. Hua, J. and P.S. Walker, Relative motion of hip stems under load. An in vitro 

study of symmetrical, asymmetrical, and custom asymmetrical designs. J Bone 

Joint Surg Am, 1994. 76(1): p. 95-103. 

24. Baleani, M., L. Cristofolini, and A. Toni, Initial stability of a new hybrid 

fixation hip stem: experimental measurement of implant-bone micromotion 

under torsional load in comparison with cemented and cementless stems. J 

Biomed Mater Res, 2000. 50(4): p. 605-15. 

25. Viceconti, M., et al., Discussion on the design of a hip joint simulator. Med 

Eng Phys, 1996. 18(3): p. 234-40. 

26. Goldsmith, A.A. and D. Dowson, Development of a ten-station, multi-axis hip 

joint simulator. Proc Inst Mech Eng [H], 1999. 213(4): p. 311-6. 



 

84 

 

27. Dowson, D. and B. Jobbins, Design and development of a versatile hip joint 

simulator and a preliminary assessment of wear and creep in Charnley total 

replacement hip joints. Eng Med, 1988. 17(3): p. 111-7. 

28. Saikko, V.O., A three-axis hip joint simulator for wear and friction studies on 

total hip prostheses. Proc Inst Mech Eng [H], 1996. 210(3): p. 175-85. 

29. Saikko, V., A 12-station anatomic hip joint simulator. Proc Inst Mech Eng 

[H], 2005. 219(6): p. 437-48. 

30. Saikko, V., A hip wear simulator with 100 test stations. Proc Inst Mech Eng 

[H], 2005. 219(5): p. 309-18. 

31. Bragdon, C.R., et al., The importance of multidirectional motion on the wear 

of polyethylene. Proc Inst Mech Eng [H], 1996. 210(3): p. 157-65. 

32. Medley, J.B., et al., Kinematics of the MATCO hip simulator and issues 

related to wear testing of metal-metal implants. Proc Inst Mech Eng [H], 

1997. 211(1): p. 89-99. 

33. Mejia, L.C. and T.J. Brierley, A hip wear simulator for the evaluation of 

biomaterials in hip arthroplasty components. Biomed Mater Eng, 1994. 4(4): 

p. 259-71. 

34. Green, A.S., et al., The design and development of a triaxial wear-testing joint 

simulator. Biomed Sci Instrum, 1999. 35: p. 379-84. 

35. Stamatakis, M., et al., Clinical, radiographic, and scintigraphic comparison of 

the mechanical stability of Mueller and Zweymueller total hip prostheses. 

Orthopedics, 1999. 22(11): p. 1037-43. 



 

85 

 

36. Sugiyama, H., L.A. Whiteside, and A.D. Kaiser, Examination of rotational 

fixation of the femoral component in total hip arthroplasty. A mechanical 

study of micromovement and acoustic emission. Clin Orthop Relat Res, 

1989(249): p. 122-8. 

37. Gortz, W., et al., Spatial micromovements of uncemented femoral components 

after torsional loads. J Biomech Eng, 2002. 124(6): p. 706-13. 

38. Naidu, S.H., et al., Initial stability of a modular uncemented, porous-coated 

femoral stem: a mechanical study. Am J Orthop, 1996. 25(12): p. 829-34. 

39. Engh, C.A., et al., Quantification of implant micromotion, strain shielding, 

and bone resorption with porous-coated anatomic medullary locking femoral 

prostheses. Clin Orthop Relat Res, 1992(285): p. 13-29. 

40. Kligman, M., A. Rotem, and M. Roffman, Cancellous and cortical morselized 

allograft in revision total hip replacement: A biomechanical study of implant 

stability. J Biomech, 2003. 36(6): p. 797-802. 

41. Schneider, E., et al., A comparative study of the initial stability of cementless 

hip prostheses. Clin Orthop Relat Res, 1989(248): p. 200-9. 

42. Bergmann, G., et al., HIP98. 2001, Berlin. 

43. Hallab, N.J., Biomaterials Science: An Introduction to Materials in Medicine. 

2nd ed. `, ed. B.D. Ratner. 2004, San Diego: Elsevier Academic Press. 851.  



 

86 

 

 

 

APPENDICES 

 

 

 

  



 

87 

 

APPENDIX A 

 

Implant Photos and Experimental Setup Diagrams 
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A.1. Implants 

 

 

Figure A 1. Implant surface coatings [43]. 
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A.2. Hip Wear Simulators 

 

 

Figure A 2. Schematic of the HUT-3 hip joint simulator [28]. 
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Figure A 3. Hip simulator loading configuration from Mejia [33]. 
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Figure A 4. Photo of hip simulator from Mejia [33]. 
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A.3. Joint Force Simulators 

 

Figure A 5. Experimental setup used by Sugiyama [36]. 

 

 

Figure A 6. Fixture used by Gortz for his experimental setup [37]. 
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Figure A 7. Fixure used by Naidu for his experiment in evaluating initial stability of cementless 

femoral stems [38]. 

 

 

Figure A 8. Schematic of loading conditions used by Engh [39]. 
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Figure A 9. Experimental setup used by Monti in testing femoral stem primary stability [19]. 

 

 

Figure A 10. Fixture used by Kligman implant stability study [40]. 
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Figure A 11. Fixture used for torsional loading by Hua [23]. 

 

 

Figure A 12. Torsional stability test setup by Baleani [24]. 



 

96 

 

 

Figure A 13. Experimental fixture used by Schnieder for testing the initials stability of a hip 

prosthesis [41]. 
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APPENDIX B 

 

Hip Simulator Images 
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Figure B 1. Hip Simulator mounted in MTS machine.  
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Figure B 2. Hip Simulator mounted in MTS machine.  
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Figure B 3. View of the DBSJFS showing the hole pattern used to connect the DBSJFS to 

the MTS machine and the eye bolt used during testing to tether the pendulum 

as a safety precaution.  
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Figure B 4. View of the ring assembly.  
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Figure B 5. Bottom view of the pendulum assembly.  
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Figure B 6. Photos of the assembled pendulum with the potted femur. 
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APPENDIX C 

 

Sample Calculations 
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C.1. Frame Deflection 

 

Figure C 1. Drawing of hip simulator showing exaggerated induced deflection under 

loading. 

 

Total Induced Displacement at Point (A) 

Eq. 1 D = FS * δTotal = 2*0.0336 in = 0.0672 in 

 D = displacement at point A in Figure C 1 

 FS = factor of safety = 2 

Eq. 2 δTotal = δ1 + δ2 + δ3 = 0.0299 in +0.0004 in + 0.0033 in = 0.0336 in 

  δ1 = Flexural Deflection of the Beam (Eq. 3) 

  δ2 = Axial Compressive Deflection of the Frame (Eq. 5) 

  δ3 = Elongation of the pendulum (Eq. 6)  
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Flexural Deflection of the Beam, δ1 

Eq. 3 
  

   
0.0299in 

4.46in psi 000,000,1048

in 40lbs 000,1

48 2

33

max
max1 

IE

LP

Al

  

 Pmax = maximum load = 1,000 lbs 

 L = length of aluminum channel = 40 in 

 E = elastic modulus of aluminum = 10,000,000 psi 

 I = moment of inertia for the aluminum beam = 4.46 in
2 

 

Moment of Inertia Calculation, I 

 

Figure C 2. Cross section of aluminum channel showing the centroid axis x. Note figure is 

not to scale. 

 

Eq. 4 4

21 46.4 inIII xx  
 

 
  2

1111 2 xxAII x   

  
3

111
12

1
hbI   

  b1 = base of A1 = 0.25 in (Figure C 2) 

  h1 = height of A1 = 3.5 in (Figure C 2) 



 

107 

 

  
      

   inin

inininin

AA

xAxA
x

375.2875.02

125.0375.275.1875.02

2

2
2

22

21

2211









  

  inx 8144.0  

  inx 75.11  

  inx 125.02   

  Area 1 (A1) = (3.5 in)(0.25 in) = 0.875 in 

  Area 2 (A2) = (9.5 in)(0.25) = 2.375 in 

  22222 xxAII x   

  
3

222
12

1
hbI   

  b2 = base of A2 = 9.5 in (Figure C 2) 

  h2 = height of A2 = 0.25 in (Figure C 2) 

    2222

2

1112 xxAIxxAII   

   222

3

22

2

11

3

11
12

1

12

1
2 xxAhbxxAhbI 








  

     

22

3223

)125.08144.0)(375.2(

25.05.9
12

1
)75.18144.0)(875.0(5.325.0

12

1
2

ininin

inininininininI













 

446.4 inI   

  



 

108 

 

Axial Compressive Deflection of the Frame, δ2 

 

Figure C 3. Drawing of hip simulator showing exaggerated induced deflection under loading 

and lengths of members in axial compression. 

 

Eq. 5 
 

in 0004.0
22 21

max
max2 




EAA

PH

AE

LP

Al

  

 Pmax = maximum applied load = 1,000 lbs 

 L = H = h1 + h2 = 5.44 + (22.67)*sin (65°) = 26.00 in → 30 in 

 A = cross sectional area of both frame members angled at 65° 

 E = modulus of elasticity of aluminum = 10,000,000 psi 

 
  

   
in 0004.0

psi 000,000,10in 375.2875.0*22

in 30lbs 000,1
2max2 




in
  
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Elongation of the Swing, δ3 

 

Figure C 4. Drawing of hip simulator showing the maximum distance from the base mount to 

the X' and Y' rotational axes. 

 

Eq. 6 
  

  
in 0033.0

psi 000,000,10in 701.0

in 23lbs 000,1
2

max
max3 

AlpEA

LP
  

Pmax = maximum applied load = 1,000 lbs 

L = maximum length of swing arms = 23in 

Ap = cross sectional area of both pendulum arms = 0.701 in
2 
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C.2. Derivation of x  and y  

The rotation of x  about the X’ axis of the gimbal (Figure B 4) is defined as: 

 
   
    
























xx

xxxr

cossin0

sincos0

001

 

The rotation of 
y  about the Y’ axis of the gimbal (Figure B 4) is defined as: 
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The rotation of 
z  about the Z axis (Figure B 1) is defined as: 
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The rotational matrix, R, is the product of xr  , yr  , and zr . However, matrix 

multiplication does not commute; therefore, the order by which the axes are rotated 

does affect the result. The matrices should be multiplied in the opposite order of 

rotation. For the DBSJFS, zyx rrrR  . 

 To find x  and y  , Eq. 7 was set up. R, the rotational matrix, was 

multiplied by F1, a matrix comprising of the in vivo force data from one time segment 

of a given activity out from the HIP98 study. The product of these two matrices 

produces F2. The x2 and y2 components of F2 always have a value of zero, and the z2 
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component is always equal to the result force of (x1, y1, z1). This is true because the 

actuator can only load the femoral head along the Z axis of the MTS machine. Eq. 7 

was solved for each data point for each activity so that input profiles could be 

produced. The full derivation of x  and y  is given below: 

Eq. 7 12 RFF   
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The transpose of xr  , 
T

xr  , multiplied by xr  equals the identity matrix: Irr x

T

x   
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C.3. Transformation Derivation to graph pendulum motion in relation to 

MTS coordinate system 

The coordinate system of the DBSJFS is rotated 40° in the clockwise direction 

to the coordinate system of the MTS machine. To graph the points on the pendulum 

throughout the various gait cycles, the position data for each path must be 

transformed to be in relation to the X and Y axes of the MTS machine. Figure C 5 is a 

drawing with a view looking down on the MTS machine showing the relationship 

between these two coordinate systems. The circles represent the columns of the MTS 

machine. 
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Figure C 5. Drawing showing the coordinate systems of the MTS machine (X and Y) and the 

DBSJFS gimbal (X' and Y'). 

 

The following diagrams in Figure C 6 and Figure C 7 help to show how the positions 

of P1, P2, P3, and P4 are derived.  
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Figure C 6. Side views of the pendulum showing the points graphed in the figures of Appendix 

B. 

 

 

Figure C 7. Top view of pendulum depicting the points graphed in the figures of Appendix B. 
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The following shows the transformation equation used to calculate the coordinates to 

a rotated X’ and Y’ axis in relation to the MTS machine X and Y coordinate system. 
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After the initial points were graphed, the columns of the MTS machine were found to 

interfere with parts of the desired movements in a few of the gait patterns. Therefore, 

the decision was made to pot right femurs at an angle of -20 degrees in relation to the 

X-axis and to pot left femurs at angle of +20 degree angle in relation to the Y-axis. 

The final step in obtaining the new projected displacements of points P1, P2, P3, and 

P4 on the pendulum was to manipulate X2 and Y2 from the equations above. 
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APPENDIX D 

 

Average Hip Contact Forces, Pendulum Displacement, X’ and Y’ axes Rotations, 

and Gait Profiles 
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Figure D 1. Average hip contact forces walking normally. 
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Figure D 2. Walking normally pendulum displacement with a left femur. 
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Figure D 3. Walking normally pendulum displacement with a right femur. 
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Figure D 4. Average hip contact forces going up stairs. 
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Figure D 5. Going up stairs pendulum displacement with a left femur. 
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Figure D 6. Going up stairs pendulum displacement with a right femur. 
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Figure D 7. Average hip contact forces going down stairs. 
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Figure D 8. Going down stairs pendulum displacement with a left femur. 
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Figure D 9. Going down stairs pendulum displacement with a right femur. 
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Figure D 10. Average contact forces standing up. 
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Figure D 11. Standing up Pendulum displacement with a left femur. 
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Figure D 12. Standing up pendulum displacement with a right femur. 
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Figure D 13. Average hip contact forces sitting down. 
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Figure D 14. Sitting down pendulum displacement with a left femur. 
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Figure D 15. Sitting down pendulum displacement with a right femur.
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Figure D 16. Walking normally original gait profiles for the right hip. 

 

 

Figure D 17. Walking normally smoothed gait profiles for the right hip.  
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Figure D 18. Going up and down stairs original profile for the right hip. 

 

 

Figure D 19. Going up and down stairs smoothed profiles for the right hip.  
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Figure D 20. Standing up and sitting down original profiles for the right hip. 

 

 

Figure D 21. Standing up and sitting down smoothed profiles for the right hip.  



 

137 

 

APPENDIX E 

 

Surgical Technique for Mayo Stem 
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Step 1: Surgical Exposure 

The lateral decubitus position is used, and the anterior approach is preferred. 

 

Step 2: Femoral Neck Osteotomy 

The system for femoral head resection by anatomic implant is used for this 

device. A guide is inserted down the femoral canal, and the resector template is used 

to determine proper level and orientation of femoral neck resection for the implant. 

The tip of the greater trochanter must be co-linear with the center of the femoral head 

to assure optimum abductor muscle tension (Figure E 1). This resection can be done 

with a single cut that does not violate the trochanter. If the line of osteotomy is 

correctly placed, the orientation of the femoral neck cut is used to guide the 

preparation of the proximal femur (Figure E 2). 

 

Figure E 1. The femoral neck resection should balance the abductors, which typically 

occurs when a line from the superior aspect of the greater trochanter passes 

through the center of the femoral head.  
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Figure E 2. The anatomic femoral resection guide is used to resect the femoral neck using 

either the anterior or the posterior approach. 

 

Step 3: Femoral Preparation 

A T-handle reamer is placed down the lateral aspect of the medullary canal to 

determine the orientation of the lateral aspect of the femur. This becomes the 

landmark for inserting the rasp. 

The smallest femoral rasp is used first. Particular care should be taken to 

assure that the tail of the rasp is parallel with the lateral cortex by allowing the rasp to 

begin in a slight varus position. As the rasp is inserted down the canal, the rasp will 
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become more valgus in position because its tail is guided by the lateral femoral cortex 

(Figure E 3). Serial rasping occurs until the rasp can no longer be advanced down the 

canal. The rasp should be tapped cautiously so the top row of teeth are 1 to 2 mm 

below the level of resection. 

 

 

Figure E 3. Rasping the proximal femur begins with the rasp in slight varus, ultimately 

going into valgus position.  
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Step 4: Stability and Trial Reduction 

With proper preparation, when the teeth of the rasp are even with or slightly 

countersunk distal to the level of neck resection, the rasp handle can be rotated and 

maneuvered in varus/valgus to evaluate the anticipated stability of the implant. The 

rasp handle is then removed, and the trial femoral head and neck is inserted (Figure E 

4). The length dimensions are identical to those of the anatomic system. As with other 

designs, the usual resection, approximately a finger breadth above the lesser 

trochanter, is consistent with the standard-length femoral neck modular component. I 

prefer a 28-mm-diameter head for all cases with acetabular components of 50 mm or 

more in diameter. For acetabuli less than 50 mm in diameter, the 22-mm head is used. 

 

Figure E 4. Optimum orientation occurs when the tail of the rasp parallels the lateral 

femoral cortex. The rasp is typically countersunk about one row of teeth below 

the level of resection. The trial of the femoral head and neck is important with 

this implant for optimum tension and stability.  
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Step 5: Component Insertion 

The implant is inserted so the dimple on the proximal portion of the device is 

at or just below the level of neck resection (Figure E 5). As noted, this level of 

implant position is safely obtained if the rasp has been inserted to or just past the row 

of teeth. Fractures from excessive hoop stresses are rare if these two technical 

considerations are followed. Impaction of the femoral component should not continue 

if no progress is made down the canal. If the implant remains proud, then trial 

reduction with the shorter neck implant is used. 

 

Figure E 5. The implant is inserted to the point where the dimple coincides with the level of 

the resected femoral neck. (A) The short-stemmed implant with modular head 

and necks. (B) The location of the dimple in relation to the implant is shown, 

along with the trial femoral heads that may be used to confirm optimum length 

after inserting the implant.  
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Femoral rasping does not require formal consideration of the femoral 

anteversion because the rasp can follow only one line down the canal. The femoral 

anteversion of the implant is dictated by the orientation of the femoral neck. The 

modular head is then tapped on the implant and reduction is routine. Stability is 

checked in all planes with extension-external rotation and flexion-internal rotation. 

Once the abductors have been secured with No. 5 nonabsorable sutures through bone, 

closing the incision is left to the surgeon’s choice. 
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APPENDIX F 

 

Results 
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F.1. Going Up and Down Stairs Average Error Frequency Charts 
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Figure F 1. GU&DS Avg FR Err frequency chart.  
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Figure F 2. GU&DS Avg UA Err frequency chart.  
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Figure F 3. GU&DS Avg LA Err frequency chart. 



 

149 

 

F.2. Going Up and Down Stairs Maximum Error Frequency Charts 

 



 

150 

 

 

Figure F 4. GU&DS Max FR Err frequency chart.  
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Figure F 5. GU&DS Max UA frequency chart.  
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Figure F 6. GU&DS Max LA Err frequency chart. 
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F.3. Standing Up and Sitting Down Average Error Frequency Charts 
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Figure F 7. SU & SD Avg FR Err frequency chart.  
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Figure F 8. SU & SD Avg UA Err frequency chart.  



 

156 

 

 

Figure F 9. SU & SD Avg LA Err frequency chart. 
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F.4. Standing UP and Sitting Down Maximum Error Frequency Charts 
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Figure F 10. SU & SD Max FR Abs Err frequency chart.  
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Figure F 11. SU & SD Max UA Err frequency chart.  



 

160 

 

 

Figure F 12. SU & SD Max LA Err frequency chart. 
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F.5. Walking Normally Average Error Repeatability 
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Figure F 13. WN Avg FR Abs Err repeatability at 1/5
th

 Phys.  
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Figure F 14. WN Avg UA Abs Err repeatability at 1/5
th

 Phys.  
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Figure F 15. WN Avg LA Abs Err repeatability at 1/5
th

 Phys.  
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Figure F 16. WN Avg FR Abs Err repeatability at 1/3
rd

 Phys.  
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Figure F 17. WN Avg UA Abs Err repeatability at 1/3
rd

 Phys.  
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Figure F 18. WN Avg LA Err repeatability at 1/3
rd

 Phys. 
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F.6. Walking Normally Maximum Error Repeatability 
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Figure F 19. WN Max FR Abs Err repeatability at 1/5
th

 Phys.  
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Figure F 20. WN Max UA Abs Err repeatability at 1/5
th

 Phys.  
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Figure F 21. WN Max LA Abs Err repeatability at 1/5
th

 Phys.  
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Figure F 22. WN Max FR Abs Err repeatability at 1/3
rd

 Phys.  
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Figure F 23. WN Max UA Abs Error repeatability at 1/3
rd

 Phys.  
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Figure F 24. WN Max LA Abs Err repeatability at 1/3
rd

 Phys. 


