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Abstract 

Rapid accumulation of the experimental data on protein-protein complexes 

drives the paradigm shift in protein docking from “traditional” template free 

approaches to template based techniques. Homology docking algorithms based on 

sequence similarity between target and template complexes can account for ~ 20% of 

known protein-protein interactions. When homologous templates for the target 

complex are not available, but the structure of the target monomers is known, docking 

through structural alignment may provide an adequate solution. Such an algorithm was 

developed based on the structural comparison of monomers to co-crystallized 

interfaces. A library of the interfaces was generated from the biological units. The 

success of the structure alignment of the interfaces depends on the way the interface is 

defined in terms of its structural content. We performed a systematic large-scale study 

to find the optimal definition/size of the interface for the structure alignment-based 

docking applications. The performance was the best when the interface was defined 

with a distance cutoff of 12 Å. The structure alignment protocol was validated, for 

both full and partial alignment, on the DOCKGROUND benchmark sets. Both 

protocols performed equally for higher-accuracy models (i-RMSD ≤ 5 Å). Overall, the 

partial structure alignment yielded more acceptable models than the full structure 

alignment (86 acceptable models were provided by partial structure alignment only, 

compared to 31 by full structure alignment only). Most templates identified by the 

partial structure alignment had very low sequence identity to targets and such 

templates were hard to detect by sequence-based methods. Detailed analysis of the 

models obtained for 372 test cases concluded that templates for higher-accuracy 



iv 
 

models often shared not only local but also global structural similarity with the targets. 

However, interface similarity even in these cases was more prominent, reflected in 

more accurate models yielded by partial structure alignment. Conservation of protein-

protein interfaces was observed in very diverse proteins. For example, target 

complexes shared interface structural similarity not only with hetero- and homo-

complexes but also, in few cases, with crystal packing interfaces. The results indicate 

that the structure alignment techniques provide a much needed addition to the docking 

arsenal, with the combined structure alignment and template free docking success rate 

significantly surpassing that of the free docking alone. 
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CHAPTER 1: INTRODUCTION 

Most proteins are made of more than one polypeptide chain [1]. Among these 

proteins, many, if not all, tend to interact with other proteins to form binary or higher 

order complexes responsible for an array of cellular processes. Genome-wide studies 

of several organisms have found that most proteins are part of multi-molecular 

assemblies [2-4] and alterations in protein interactions can lead to diseases [5]. 

Protein-protein interactions are important to the biological processes such as cellular 

regulation, signal transduction, etc. Thus, the study of principles governing protein-

protein interactions (PPIs) along with structural details of protein complexes is 

essential for defining the cellular network of proteins and development of new drugs. 

The interest in PPIs is as old as our ability to measure the weight of biological 

macromolecules, such as proteins. Pioneering work by Svedberg, determining the 

molecular weights of biomolecules, led to the realization that proteins in solution exist 

as aggregates of subunits and this state can be altered by changing the pH of the 

solution. His experiments with the ultracentrifuge defied the contemporary belief that 

hemoglobin is a single molecule of molecular weight 67000 daltons (Da), and 

described it as an aggregate of four subunits in the solution with molecular weight ~ 

16000 Da for each subunit [6, 7]. Works of Svedberg have drawn attention to the fact 

that proteins have a tendency to interact and the interactions can be transient in nature. 

However, these studies failed to give any lead to the biochemical importance of 

subunit interactions. 
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Biochemical importance of protein quaternary structure was showcased in 

1960, by Changeux, Gerhart, and Monod [8-11]. Their study of “allosteric 

interactions” and experiments on L-threonine deaminase showed that the functional 

forms of the proteins can be aggregates of non-active subunits. They further elucidated 

that association of substrates to protein subunits can change their inter-subunit 

interactions and relative conformations. Similar results were obtained for hemoglobin, 

where binding of oxygen leads to ~ 19% reduction in the distances between the heme 

molecules. 

These and other studies led to the realization that cellular control mechanisms 

and regulation of enzyme activities are influenced by protein subunit interactions, 

which generated a widespread interest in protein interaction mechanisms and their 

quaternary structures.  

1.1 Classification of protein-protein complexes 

Development of experimental techniques detecting PPIs and the structures of 

protein assemblies has greatly increased our understanding of protein complexes. The 

increase of the number of protein complex structures in the Protein Data Bank (PDB) 

[12, 13] allows statistically significant analysis of the properties of protein complexes. 

Systematic studies of the nature of protein complexes and the diversity of their 

interfaces place protein interactions into several different classes [14]. A multi-subunit 

protein may have identical or non-identical subunits (polypeptide chains). An 

“oligomer” is a multi-subunit protein with a definite number of subunits, whereas a 
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“polymer” is defined as a collection of an indefinite number of subunits. The subunits 

of oligomeric proteins are called “protomers”, and a protomer consists of either a 

single polypeptide chain or multiple polypeptide chains.  The extent of interactions 

between protomers is observed to correlate with their expression profiles (Figure 1.1).      

Protein complexes can be classified on the basis of the following properties: 

A- Nature of protomers 

In an oligomeric protein, if the protomers are identical in nature then the 

complex is known as “homo-oligomer”, otherwise called “hetero-oligomer”. In the 

case of homo-oligomers, when protomers interact through identical surface patches the 

mode of interaction is defined as “isologous”, otherwise termed as “heterologous” 

[11]. 

B- Stability of individual protomer 

Protein complexes can be classified either as “obligate” or “non-obligate” 

according to the stability of their protomers. In an “obligate complex” protomers are 

co-expressed and do not exist as independent structures in vivo. However, protomers 

in “non-obligate complexes” exist independently in their folded functional forms and 

interact to carry out their functions. Non-obligate complexes are often hetero-

oligomeric in nature and perceived to have weak transient interactions. However, they 

have diverse affinities and localization (Figure 1.1). For example, non-obligate 

interactions such as antibody-antigen have subunits with different locations of origin 

but show strong binding affinity [14]. 
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C- Lifetime of a complex 

Protein complexes have different lifetimes in the cellular environment. 

Depending on its lifespan, a protein complex is either described as “permanent” or 

“transient”. Permanent complexes are stable in vivo whereas transient complexes 

dissociate to their individual protomers after a short-lived interaction. Few transient 

complexes are considered strong because they need a molecular trigger to switch their 

oligomeric states. For example, the heterotrimeric guanosine triphosphate (GTP)-

binding protein dissociates into the Gα and Gβγ subunits upon GTP binding, but forms 

a stable trimer with bound guanosine diphosphate (GDP) [15].  

 
Figure 1.1: Characterization of protein interactions on the basis of the localizations and 

binding strengths. The obligate oligomers are always strongly attached but the non-obligate 

complexes show diverse binding strengths. Figure is obtained from [14]. 
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Transient interactions play a significant role in the cellular regulatory system 

[16]. Their structures are hard to solve by X-ray crystallography; therefore, 

computational methods are often necessary for their characterization. Transient 

interactions affect the cellular regulations in the following ways:  

 Transition of oligomeric state provides an allosteric control over the protein 

activity. 

  A transient switch from monomer to dimer turns on the protein function. For 

example, lambda phage cro repressor (DNA-binding protein) is only active in their 

dimeric state. 

 A transient interaction may lead to chemical modifications or exchange reactions, 

e.g. enzyme-substrate and electron transfer. 

 Proteins may undergo a transient phase of aggregation to generate the 

concentration gradient. 

Physiological conditions and environment change continuously inside the cell 

and play an important role in the control of transient interactions. The pH or ionic 

strength, concentration of proteins and other regulatory effector molecules (ions, 

chemical compounds) are regulated by the cell to control the oligomeric equilibrium 

of proteins. 
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1.2 Techniques to study protein-protein complexes 

Most proteins in vivo, exist either as stable complexes or interact transiently 

with other proteins to perform metabolic and regulatory activities. Following are the 

common methods to study protein complexes. 

1.2.1 Detection of protein-protein interactions 

Proteins interact with other proteins while carrying out their cellular functions. 

The PPI networks are very large and it is estimated that a single protein interacts with 

~ 10 other proteins [17-19]. Therefore, it is important to detect protein interaction 

partners prior to the systematic structure elucidation of the protein complexes. 

Detection of PPIs requires high-throughput experimental as well as computational 

methods [20-22] to detect all possible PPIs. 

1.2.1.1 Experimental methods 

Common experimental techniques for discriminating between the interacting 

and non-interacting protein pairs are affinity chromatography, affinity blotting, 

immunoprecipitation, cross-linking, and yeast two-hybrid. PPI data obtained through 

experimental techniques are stored in databases like DIP [23] and BIND [24]. These 

experiments have a significant number of false positive predictions and require 

additional experiments to confirm the results. 
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1.2.1.2 Computational methods 

Experimental techniques providing PPI data are labor intensive and have a 

high share of false positive predictions [25-27]. Computational methods that detect 

PPIs complement and validate the experimental studies [28]. A study by Dandekhar 

[29] shows that for the 75% of co-localized gene pairs there are physical interactions 

between the encoded products. Proteins can be identified as functionally related if they 

share a similar phylogenetic profile [30].  Proteins with co-crystallized structures are 

an important resource for the prediction of new protein interactions. Protein pairs that 

are homologous to the co-crystallized proteins tend to interact similarly provided the 

interacting residues on the interface are conserved [30-33]. A few studies calculate the 

statistical probability of interaction for a given pair of domains, to predict PPIs [34-

36]. To recognize new PPIs, conserved but short signature segments taking part in the 

interactions were derived from the experimentally defined protein interaction pairs 

through Support Vector Machine (SVM) techniques [37, 38]. The program PIPE 

defines proteins as interacting if they have a set of short polypeptide fragments that 

have been observed in known interacting protein pairs [39]. These common sets of 

protein fragments are assumed to be responsible for the interactions. 

1.2.2  Describing the structures of protein-protein complexes 

1.2.2.1  Experimental methods 

X-ray crystallography is the most widely used technique to provide the 

structural details of protein complexes. The second most common method for studying 

protein structures is Nuclear Magnetic Resonance (NMR). It provides valuable 
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information on the dynamics of the proteins. Macromolecules larger than 100KDa are 

difficult to analyze using NMR, and NMR also requires large quantities of samples for 

the analysis. Electron microscopy (EM) provides a low resolution image of protein 

molecules and the resolution ranges between 5-15Å. Thus, to provide a reasonable 

atomic model of a protein complex, EM requires high-resolution structures of the 

subunits of the complex to fit the low resolution image. 

1.2.2.2  Computational methods 

Despite advances in experimental methods, the total number of co-crystallized 

complexes is still very low compared to the known PPIs. Therefore, there is a need for 

the development of methods to surmount the limitations of experimental techniques. 

With the rapid advancement in the computing power, computational methods 

modeling structures of protein complexes offer an adequate solution and complement 

experimental methods.  

Computational methods of modeling protein complexes accept either 

sequences or structures of the subunits as input with the aim of producing an atomic 

model of the complex. Computational approaches predicting protein-protein 

complexes can be classified into the following major categories:  

(A) Free modeling 

(B) Template based modeling 

(C) Hybrid approaches  
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A- Free modeling 

The “Free modeling” category in Critical Assessment of protein Structure 

Prediction (CASP), a blind test for modeling structures of individual proteins, contains 

targets for which there are no templates available. Such targets are considered “new 

folds” [40]. Similarly, in computational modeling of protein-protein complexes, where 

the procedure does not depend on the presence of co-crystallized complexes 

(templates) such approaches are considered “Free modeling”.  

Protein-protein docking methods came into the picture with the early works of 

Greer & Bush [41] and Wodak & Janin [42]. These studies were bound-bound 

docking experiments based on a simple surface complementarity search. Since then 

protein-protein docking has come a long way in terms of algorithms and scoring 

functions. Present docking methods still face the challenge of conformational changes 

upon complex formation. Existing “free modeling” protocols can be placed in one of 

the following types:  

(1) Rigid body docking 

(2) Flexible docking 

1- Rigid body docking 

Rigid body docking is defined as a docking protocol, which does not take into 

account the conformational changes in target proteins during the docking process. 

Such procedures work well for the bound-bound targets but their predictive power for 

the unbound protein structures is limited.  



10 
 

With the growth of the number of co-crystallized protein complexes in PDB it 

has been revealed that PPIs involve a varied degree of conformational changes. 

Protein-protein docking benchmark sets [43-45] represent the diversity of protein 

complexes and show that for > 50% of the complexes, the all-atom root mean square 

deviation (RMSD) between bound and unbound forms is < 2.0 Å. This is an indication 

that docking techniques which account for minor conformational changes can be 

reasonably successful. 

The cubic grid model, proposed by Jiang & Kim [46], provides a low 

resolution representation of proteins. It has the softness necessary to accommodate 

minor conformational changes of proteins. Similar models are still relevant for rigid 

body docking and applied in docking programs, such as GRAMM [47], ZDOCK [48], 

etc. 

A typical rigid body docking algorithm has two main steps:  

1.A- Global search 

The algorithm generates millions of binding modes for a pair of proteins. In the 

case of “free docking” there are six degrees of freedom (three translations and three 

rotations). Coverage of such a huge search space in a time efficient manner is essential 

for practical applications of docking methods. 

Techniques like correlation by Fast Fourier Transform (FFT) [49] have made 

the coverage of protein-protein conformation space a feasible task. Such algorithms 

calculate protein surface cross correlations with proteins projected onto a grid. Monte- 
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Carlo, simulated annealing [50], and genetic algorithm [51] are alternative approaches 

to docking. They start with a random orientation and attempt to minimize the energy 

of the system. Simulated annealing allows selection of higher energy orientations 

based on certain probability, helping to avoid local minima. To minimize the search 

time and explore protein surface complementarity, “geometric hashing” is applied. 

Designed for matching three-dimensional objects, geometric hashing is an efficient 

docking approach. It also works with low resolution representation of proteins and 

therefore accommodates the minor conformational changes [52, 53]. 

1.B- Scoring  

Protein-protein interfaces are not simple enough to apply only shape 

complementarity to discriminate between binding and non-binding patches. Numerous 

binding modes generated through the above search algorithms require additional 

parameters to bring the best model to the top. Most existing docking procedures apply 

various scoring parameters to rank predicted models. An efficient and accurate scoring 

function is essential for the practical application of a docking experiment. A free 

docking procedure generally applies physics-based energy functions to calculate the 

interaction energy of the protein molecules. Different types of force fields with various 

contributing factors are used to score the predicted complexes. Commonly used 

scoring functions may involve electrostatic interactions based on the Poisson-

Boltzmann equation for the electrostatic energy contribution. To simplify the 

computation, only Poisson’s equation can be applied [54, 55]. Other major parameters 

are hydrophobic interactions, hydrogen bonds and van der Waals interactions [56]. 
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2- Flexible docking   

Flexible docking methods take into account the conformational changes in 

protein molecules. Flexible docking is required due to two main reasons. First, 

proteins are flexible molecules and change their conformations while interacting with 

other proteins. The degree of flexibility ranges from small side-chain movements [57, 

58] to big domain shifts [59]. When these conformational changes are relatively large 

(>2.0 Å), rigid body docking tends to fail. Second, with the advances in computational 

structural biology there are reasonably accurate models for the proteins when the 

experimental structures are not available. Such models may have certain degrees of 

conformational deviations from their bound as well as unbound forms. Thus, protein 

docking methods require incorporation of the structural flexibility. 

Flexibility of the main chain is accounted for either by allowing movement 

during minimization or by docking an ensemble of protein conformations which are 

either generated computationally or obtained by NMR [60-62].  

High resolution modeling of a protein complex requires an accurate sampling 

of side-chain conformations at the protein interface. There are studies reflecting 

improvement in docking predictions with the incorporation of the side chain flexibility 

[63-65].  

B- Template based modeling 

Large scale experimental efforts initiated by second generation structural 

genomics, focus on protein complexes. Examples of such efforts are SPINE2Complex 
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and 3D Repertoire. SPINE2 (http://www.spine2.eu/SPINE2/) focuses on complexes in 

signaling pathways linking immunology, neurobiology and cancer. 3D Repertoire 

(ended in Jan 2010) focused on protein complexes from yeast proteome. Such 

experimental efforts along with Protein Structure Initiative (PSI) in the US, led to the 

exponential growth of PDB data in terms of heteromeric complexes [66]. 

  

Figure 1.2: Growth of heteromeric protein complexes in PDB. Figure is obtained from [66]. 

 

Template based methods are defined as modeling of protein complexes on the 

basis of existing co-crystallized structures of proteins. Increase of the numbers of 

protein complexes in PDB (Figure 1.2) encourages extending the template based 

modeling paradigm from single chain structure prediction to the protein complex 

modeling. Homology modeling requires a certain degree of sequence identity to 

transfer the structural information from template to target molecule. An early work of 
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Aloy & Russell [67] demonstrated that the domains sharing > 30% of sequence 

identity interact similarly. However, the study also found that the similarities of folds 

between the proteins do not ensure similar interactions.  

In continuation of the above work, protein complexes from the yeast proteome 

(102 protein complexes) were subjected to homology modeling [68]. Low resolution 

EM data were used for the cross validation of the models. Templates were primarily 

selected through sequence homology. In the absence of homology, complexes sharing 

similar folds with target components were used as templates. Out of 102 cases, nearly 

complete models were generated for 42 protein complexes. 

Similarly, Davis et al. [69] modeled ~ 1250 higher order protein complexes 

from yeast. Target domains were aligned to the template proteins and interfaces were 

scored by statistical potentials. For higher order complexes, proteins with more than 

two domains were taken as templates and predicted complexes were merged if they 

contained different domains of a single protein. Predictions were validated against the 

DIP [23] and BIND [24] datasets and successfully validated structures were deposited 

into MODBASE [70]. This study was different from Aloy’s [68] in terms of the 

template source PIBASE [71], and performed the structural alignment of the targets to 

the template structures instead of the comparative modeling.  

With increasing evidence that protein binding patches are more conserved than 

the global folds of the proteins [72], structural similarities with binding  patches were 

detected and applied to model new protein complexes [73]. It showed reasonable 

success on a benchmark set of 59 complexes. Prediction of PPIs through structural 
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similarity of protein interfaces, has increased the focus on geometric properties of 

protein binding sites [74]. Alloy & Russell  [75] calculated the upper limit of the types 

of quaternary structures as ~ 10,000 types of protein complex structures. Skolnick & 

Gao [76] concluded in their study that interface structural space is ~ 80% complete.  

Comparative modeling of protein complexes faces the challenge of limited 

availability of the templates. To extend the template space, M-TASSER applied 

multimeric threading to detect remotely related templates [77]. The procedure input is 

protein sequences which are individually modeled through threading and then 

subjected to iterative threading in the dimers library. The method was tested to predict 

the quaternary structures on a set of ~250 dimers. About 80% of the dimer interactions 

were correctly predicted with an impressive RMSD average of 1.3 Å. Similarly, 

profile based alignment was applied to detect the remotely related template sequences 

[78] performing better than PSI-BLAST [79] detection of templates. General protocol 

of template based modeling of protein complexes is summarized in Figure 1.3. 
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Figure 1.3: A generalized diagram of template based modeling of protein complexes. Input is 

either sequence or structure of the target proteins. Targets are aligned to template complexes 

through sequence or structure alignment, and a template showing significant alignment is used 

to model new protein complex. 

C- Hybrid approaches 

Experimental methods providing high resolution structural data, due to their 

intrinsic limitations, cannot cover the protein interaction network. On the other hand, 

computational methods have their own challenges, such as an enormous degrees of 

freedom, limited template pool, etc. A natural approach would be the use of 

experimental data (other than binding modes of the co-crystallized structures) as 

constraints to drive the computational modeling procedures. Such approaches have 

seen many successes in the recent past [80]. The following are cases in which 

experimental data was applied to assist computational modeling.  
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C.1- Modeling higher order complexes 

A combination of biophysical data with computational approaches has helped 

in modeling macromolecular assemblies like nuclear pore complex (NPC), RNA 

polymerase II and ribosome. NPC is a 50 MDa macromolecule with ~ 30 subunits and 

a total of 450 proteins (Figure 1.4). To solve the structure, experimental data was 

translated into spatial constraints and the energy function was generated and optimized 

to maximize the compliance with constraints [81]. Since most of the biochemical 

mechanisms are carried out through large protein assemblies, their successful 

modeling improves our understanding of cellular machinery [82]. 

 
Figure 1.4: A low resolution image of Nuclear Pore Complex (NPC). Figure is obtained from 

[81] 
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C.2- Statistical potentials     

Practical implementation of the Boltzmann distribution law allows one to 

derive residue pair potentials. Statistical data is obtained from solved structures of 

protein complexes. Statistical potentials are important because they implicitly take 

care of thermodynamics and solvation effects. Potentials derived for residue-residue 

contacts can be applied at the scan stage (the initial docking stage performed with 

computationally inexpensive scoring functions such as shape complementarity). 

Boltzmann distribution for a specific pair of residues is represented as: 

 

 (   )
  

 
 
 (   )
 

  

 
                      (1.1) 

                        Z = ∑   
 (   )
 

  
  

                     (1.2)              

A-B - residue pair at a specific distance 

E
i
(A-B) - energy of the i

th
 state, related to residue pair 

(A-B) at a specific distance 

k - Boltzmann constant: 1.38 10
-23

 J/K 

T - absolute temperature 

N - total number of energy states 

P
i
(A-B) – the probability of the i

th
 state 

Z - Partition function 

 

Equation 1.1 can be inversed and solved to the following form: 

  (   )
 =       

 (   )
 

 (   )
                      (1.3) 
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  (   )
  - energy contribution of the i

th 
energy state 

in the total energy of the system. 

P(A-B)  - the probability of the reference state. 

 

Equation 1.3 provides energy contribution of residue pair (A-B) to the overall 

interaction energy of the system. The residue pair interaction data is extracted from 

known co-crystallized structures. 

C.3- Docking with constraints  

Protein complexes can be modeled incorporating experimental data (other than 

binding modes of the co-crystallized structures) to the free docking protocols with the 

aim of either restricting the global search space or filtering docking predictions. 

HADDOCK [83], a data driven docking protocol, uses multiple types of biochemical 

and biophysical data such as site directed mutagenesis, NMR (chemical shift, Residual 

Dipolar Couplings), mass-spectroscopy and computational interface predictions to 

guide the conformational search. Other programs like GRAMM-X [84], Zdock [48], 

PyDOCK [85, 86] and PatchDock [87] can filter their results based on experimental 

constraints. Multifit [88] uses EM data to fit the docking output. 

In summary, computational methods are vital for the study of PPIs. Parallel to 

the maturing free docking methodologies, there are efforts to develop template based 

modeling techniques. It is evident that the success of the template based approach is 

dependent on the richness of the template pool. Along with PDB there are additional 

repositories providing information of the template structures; secondary databases, 

such as DOCKGROUND [89] and Protein Quaternary Structure (PQS) [90] contain 
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structural information on the biological units. As per PQS statistics, there are a 

significant number of protein complex structures to evaluate the modeling abilities of 

template based methods on the genomic scale (Table 1.1). 

Table 1.1: The number of biological units in PQS. 

Oligomer size 

 

Number of 

generated 

oligomers
a 

Number of 

homo-oligomers 

Number of 

hetero-oligomers
 

Monomer/complex 22514   

Dimer 18708 13974 4734 

Trimer 4055 1922 2133 

Tetramer 6495 4205 2351 

Pentamer 459 213 246 

Hexamer 2019 1257 762 

Heptamer 103 49 54 

Octamer 865 508 357 

Nanomer 95 11 84 

Decamer 171 98 73 

Undecamer 28 18 10 

Dodecamer 511 233 278 

Tetradecamer 52 37 15 

Hexadecamer 101 18 83 

Octadecamer 27 7 20 

a
Biological units available for each class of oligomers. 

Data is obtained  from [90]. 
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1.3 Research presented in this thesis 

Typical free docking methods suffer from the following limitations:  

(1)  They are largely dependent on the surface complementarity, which makes them 

sensitive to the structural details of the target proteins. Conformational changes 

and modeled structures pose a great challenge to these protocols.  

(2) Scoring functions for ranking the predicted models often fail to rank the near 

native predictions to the top. 

(3) Additional experimental information or constraints to add confidence to the 

predictions are required.  

The limitations make way for the development of template based methods, 

which have an edge over the free docking.  

This thesis presents the study of the application of template based modeling to 

predict new protein complexes through structural alignment of target and template 

proteins. It also demonstrates the applicability of structural alignment methods to 

genome-wide high-throughput docking experiments.  

The importance of template based modeling of protein interactions grows with 

the increasing number of solved co-crystallized protein structures. Unlike free 

docking, template based docking is relatively less sensitive to the structural details of 

the target proteins and has an evolutionary basis for the predictions. Therefore, it 

provides a greater degree of confidence in the predictions. 
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Since the docking problem assumes a priori knowledge of the structures of the 

participating proteins, templates may be found by structural (rather than sequence) 

alignment of the target monomers and the co-crystallized complexes. This thesis 

establishes structure alignment protocol as a method ready to be applied on the 

genome-wide scale to model new protein complexes. 

The work presented in this thesis is broadly divided into three parts. In the first 

part a structural definition of the protein interface is obtained. It determines the 

optimum distance cutoff to define the interfaces for structural alignment. In the second 

part, the ability of the interface structure alignment method to model new protein 

complexes is tested. The results demonstrate that the success of the structural 

alignment method increases the ability to go beyond the template space covered by 

sequence based prediction methods. Further, the structure alignment method 

complements the free docking protocol and provides a significantly higher number of 

near native models. Previously structure alignment (global structural match) was 

applied to predict PPIs and protein complexes’ structures [69, 91]. However, for the 

first time we benchmark its ability to provide acceptable models of protein complexes. 

The third part of the work describes the pros and cons of aligning global folds vs. the 

alignment of interfaces. It shows the extent of structural conservation across the 

protein-protein complexes and its impact on the applicability of full structure 

alignment (FSA) and partial structure alignment (PSA) methods.  
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This study improves the ability to model new protein complexes and to better 

understand the role of structural alignment in modeling the networks of protein-protein 

complexes. 
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CHAPTER 2: ALGORITHMS AND RESOURCES 

2.1   Protein structure alignment 

2.1.1 Structure alignment protocol 

We use TM-align [1] as the structural alignment method. The procedure 

reflects the degree of structural similarity through TM-score [2]. TM-align performs a 

fast and exhaustive search to find the optimum alignment of two given protein 

structures and the alignment with the highest TM-score is the final output. Since 

alignment of the structures is a nondeterministic polynomial time hard (NP-hard) 

problem, TM-align takes different start points and systematically maximizes the TM-

score to find the best alignment. 

TM-align performs alignment of Cα atoms and thus is independent of the 

rotameric states of the side chains. Since it is mainly the side chains that change their 

conformation during binding [3], the Cα alignment solves the problem of minor 

conformational differences between the template (unbound) and target (bound) 

proteins. 

TM-align takes several initial alignments and the initial alignments are 

obtained through the following methods: 

(1) Dynamic programming, where residues are represented by their secondary 

structure (SS) elements. The score matrix is a binary matrix (1, 0). Aligned 

residues with identical SS elements score 1, otherwise 0.  
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(2) Gapless threading of the smaller protein against the larger protein. Alignment with 

the best TM-score is selected. 

(3) Dynamic programming is used to obtain the best alignment. The scoring matrix is 

a combination of the SS matrix and the matrix used in gapless threading. 

(4) The optimum alignment of the fragmented proteins, e.g. protein interfaces. In such 

cases only the largest fragment of the smaller protein is considered for threading.  

Once an initial alignment is obtained, iterative dynamic programming is 

applied to obtain the optimum structure alignment. The TM-score matrix is used as the 

scoring matrix during iterations of dynamic programming.  

2.1.2 Measuring degree of structural similarity     

RMSD is a traditional measure of the structural similarity between two 

proteins. Despite being intuitive in nature, RMSD is sensitive to the degree of 

alignment or the alignment coverage. A target-template alignment with 2 Å RMSD 

and 50% alignment coverage provides a poorer template than an alignment with 3 Å 

RMSD and 80% alignment coverage [2].  

Another problem in scoring the structural similarity is the dependence on 

protein size for randomly related proteins. It is observed that proteins with smaller 

sizes can generate a significantly higher score in the alignment. TM-score is designed 

to tackle the above problems. The TM-score for an aligned pair of proteins is defined 

as:   
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TM-score    Max [   
⁄ ∑    (

  

        
)
 

⁄
  
   ]                                       (2.1) 

  

       LN - length of the target protein 

       LT - length of aligned residues 

di - distance between the i
th
 aligned 

residues. 

                    Lmin - length of the smaller protein 

The equation to calculate d0 is optimized to the following form: 

d0(Lmin )   =       √                                 (2.2)  

In the case of RMSD, residues with a poor or high degree of structural 

alignment are both averaged with the same weight, whereas in TM-score the degree of 

contribution changes with the quality of alignment.  

The value of d0(Lmin) (Equation 2.2) is very efficient in differentiating random 

alignments with good quality alignments. The d0 values of 5 and (     √       
 

 

   ) are compared in Figure 2.1. For d0 = 5 the TM-score is dependent on the length of 

proteins, whereas the modified equation (Equation 2.2) restricts the TM-score to 0.17 

for the random alignments irrespective to the length of proteins.  
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Figure 2.1: Performance of TM-score for different values of d0. Scoring functions with raw 

value of d0=5 (rTM-score) and d0(Lmin)=      √             (TM-score) are compared. The 

raw score is not able to discriminate between the random and good structural matches and it 

depends on the length of proteins. Figure is obtained from [2].  

TM-scores of structural alignments range between 0 and 1. While a score ≥ 0.5 

signifies the fold similarity between the target and template protein, an alignment 

score ≤ 0.17 is regarded as random alignment. Cutoff values defining degree of 

structural similarity are empirically derived.  
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2.2   Generation of template library using DOCKGROUND 

   We selected biological units as the source of templates which helped us to 

increase the diversity of templates. Asymmetric units, the conventionally deposited 

structures in PDB, are the smallest subunit of a protein crystal lattice that can be 

transformed to generate the unit cells of the protein crystal (however, asymmetric units 

do not necessarily correspond to the biologically functional forms). Along with PDB, 

there are other resources which offer biological units of proteins with second degree of 

annotations: ProtBuD [4], PQS [5] and DOCKGROUND [6, 7]. 

  DOCKGROUND uses the symmetry operations suggested by the structure 

authors to generate the biological units. For such a method it is hard to discriminate 

between the real functional units and the crystal packing. In our case we decided to 

use biological units since we did not want to miss any template from the pool. 

  We generated libraries of interfaces where interface definition is based on the 

distance between any atoms across the interface. The X-ray resolution of the template 

structures has to be < 3 Å, structures have to come from at least a dimeric biological 

unit, and the sequence identity between different complexes has to be < 90%. The 

selection resulted in 11,932 complexes. The interface backbone atoms of the selected 

complexes were extracted and stored in the libraries of interfaces. Interface residue is 

defined as the one having at least one atom within a certain distance (varied from 6 to 

16 Å) of any atom of the other protein in the complex. 
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2.3   Structure prediction protocol  

As stated above we use TM-align to align the target proteins with the template 

proteins from our library. Not all alignments lead to the prediction of models. Figure 

2.2 describes the flow of the template selection protocol, which tends to select the 

alignment with a certain degree of significance (defined in the next section).  

The docking program is implemented in C and requires five command line 

arguments (receptor.pdb, ligand.pdb, path of the template library, alignment protocol 

FSA/PSA and number of top ranked model files as output). It makes its first call to 

function surface( ) which runs DSSP [8] and returns surface residues of target files in 

PDB format to the working folder. The second call goes to the TM-align program, 

which runs for each template in the library and returns the TM-score, alignment 

length, aligned residues and a transformation matrix. For each template, function 

surf(_) is called to decide the significance of the alignment. If the alignment is 

significant, function wrt( ) writes the information (template name, TM-scores, 

transformation matrix)  to the output file. If the alignment is not significant, wrt( ) 

writes to the "log" file, describing the reasons of the failure. Then functions rtMAT( ) 

and rtPDB( ) are called to read the   transformation matrix from the output file and 

generate the model complex file in the PDB format. 
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Figure 2.2: Flowchart of structure alignment and model prediction protocol. 
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2.4   Significance of the alignment 

Structure alignment protocols tend to produce a model for each template in the 

library, so it is essential to discard the random alignments between the target and 

template proteins and retain only good quality matches. TM-score is adequate in 

characterizing degree of structural similarity but provides no information on the 

location of alignment (surface or core of target proteins). To avoid the structural 

clashes in the model complexes, alignments involving a significant amount of surface 

residues are selected for further processing. Following are the criteria used to call an 

alignment “significant”.  

An alignment is defined as significant when: (i) TM-score of at least one of 

the alignments i s  ≥  0.4, (ii) at least 50% of the aligned residues ( for both receptor 

and ligand) are on the protein surface, and (iii) at least 40% of the interface 

residues are aligned to target proteins. 

2.5   Assessing the quality of model complexes 

A significant alignment of template and target molecule structures, results in a 

putative model for the target protein complex. While benchmarking, it is essential to 

assess the quality of the models by comparing them to an already solved native 

complex. The quality of the resulting models are assessed by RMSD between ligand 

interface Cα atoms in the model and in the native complex (i-RMSD), based on the 

optimal alignment of the receptor structures (the larger molecules). The distance 

threshold for the interface residues in the i-RMSD calculations is 6 Å.  
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Analysis of the intermolecular energy funnels [9] suggests that the models with 

i-RMSD up to 8-10 Å can be locally minimized/refined to the near native structures. 

Therefore, in the present work a model with i-RMSD < 10 Å is considered 

acceptable.  

The rank of a model complex is based on the sum of the alignment scores 

(TM-score) of the target monomers and template components. 

2.6   Classification of the models 

The resulting models are classified based on the parameters of the structural 

alignments between the target and the template monomers (Table 2.1). The alignments 

are performed on the entire structures of both the target and the template, rather than 

on the interface fragments used to generate the model. If the model is redundant with 

the template (Table 2.1) then it is considered as a self-match and not counted in the 

docking success rate (not evaluated). 

Table 2.1: Classification of models. 

Model class TM-score 

Alignment 

coverage, % 

Sequence 

identity, %
a
 

Redundant  0.9 – 1 80 – 100 95 – 100 

Structural homolog  0.5 – 0.9 80 – 100 –  

Partial structural homolog  0.5 – 0.9 0 – 80 –  

Non-homolog  < 0.5 –  –  

a
Sequence identity by TM-align corresponding to the optimal structural alignment of proteins. 
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To compare the structure alignment methods with homology modeling, 

sequence identities between the template and target proteins are determined. The 

model complexes are classified on the basis of difficulty for homology modeling to 

detect the corresponding template: easy (sequence identities of both target-template 

pairs > 40%), medium (sequence identity of at least one target-template pair from 20% 

to 40%), and difficult (sequence identity of at least one target-template pair < 20%). 

The sequence alignments are performed using ClustalW [10].    

2.7   Characterizing surface residues on the target proteins 

We use the DSSP program to define the surface residues of the target proteins. 

It defines the surface residues on the basis of their accessible surface area (ASA). 

DSSP uses Lee & Richard’s method [11] to find the ASA.  

2.8   Benchmark sets used in the study 

To validate the docking, we used the DOCKGROUND benchmark set 

containing 99 protein-protein  complexes  (27 enzyme-inhibitor,  6 antibody-antigen,  

2 cytokine  or hormone/receptors,  and 64 other complexes),  for which both 

monomers  have both bound and unbound structures available (referred as DG99). 

To enhance statistical reliability of the results we also used an extended set of 372 

non-redundant two chain bound complexes at 30% sequence identity level, extracted 

from DOCKGROUND (referred as DG372). 
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CHAPTER 3: PROTEIN DOCKING BY THE INTERFACE 

STRUCTURE SIMILARITY: HOW MUCH STRUCTURE 

IS NEEDED? 

 
3.1  Research summary 

Methodology described in this chapter is based on the structure alignment using 

protein interfaces as templates. The  success  of the  approach  by  definition  hinges  

on  the  way  the  interface is defined in terms of its structural content. A number of 

definitions of the interfaces are most often based on the change in solvent accessible 

surface area upon binding or on various types of distance cutoffs across the interface. 

Varying definitions significantly influence the size and the composition of the 

interfaces, thus having a major effect on the interface alignment. This chapter 

describes a systematic large-scale study to find the optimal definition/size of the 

interfaces for the structure alignment-based docking applications [1]. 

3.1.1    Structural description of protein interfaces 

Defining interfaces for structural alignment based on the residues in direct 

physical contact only may lead to wrong results due to the loss of significant structural 

details at the interface. On the other hand, large distance cutoffs may impair t h e  

ability to find local structural similarity at the interface due to the presence of large 

non-interface parts (in the extreme case, the entire protein structure). Thus, selection of 

the cutoff distance for the interface definition in the context of the structural alignment 

can be considered as an optimization. 

To find the optimal distance, we used five interface libraries with different 
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values of the distance: 6 Å, 8 Å, 10 Å, 12 Å and 16 Å (see Chapter 2 for details). Figure 

3.1 shows an example of interface fragments in the 1bp3 complex corresponding to 

different cutoff distances. One can clearly see the gradual appearance of the secondary 

structure elements as the cutoff value increases. The interface of the first protein in the 

complex (blue ribbons in Figure 3.1) largely consists of two α-helices (residues G161–

S184 and H18–Y28) interacting with β-sheet (β-strands W272-V279 and D291–V297) 

and loop fragments (residues  Y240–M248,  K385-W391,  L202–I209  and P329–E366)  

from the second protein (red ribbons in Figure 3.1). However, the fragment from the 6 

Å library (Figure 3.1A) contains only a short fragment (residues D171–I179) of one of 

the α-helices and the  β-sheet  structure  of  the  second  component  is  indiscernible  

with  only  short fragments (S270-T274 and E292-Y294) visible. Such representation is 

clearly inadequate for the successful structural alignment that involves secondary 

structure elements. The fragment from the 8 Å library (Figure 3.1B) has t h e  longer 

α-helix (D171- R183) in the first protein and a visible β-sheet-like structure in the 

second component, but the second α-helix of the first protein still remains obscure. The 

fragment from the 10 Å library (Figure 3.1C) already shows one full α-helix of the first 

protein and the complete β-sheet structure of the second protein. Yet, the second α-helix 

from the first protein (residues Q22-D26) is only partially visible. Only the fragment 

from the 12 Å library reveals the complete structural details of the interface (Figure 

3.1D). Further increasing the distance leads to the inclusion of significant non-interface 

parts of protein structure (the effect already seen in Figure 3.1C and D). A similar trend 

was observed in other interface library entries. 
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3.1.2    Structural alignment with interfaces  

3.1.2    Structural alignment with interfaces 

The modeling procedure (see details in Chapter 2) is applied to the libraries with 

different cutoff values.  The Cα-only alignment was performed by TM-align [2]. For 

comparison, we also carried out structure alignment for several targets by another 

popular program SKA [ 3 ]  and found no essential differences in the resulting 

models. 

Structural deficiencies in the fragments from smaller cutoff libraries are 

reflected in the lower TM-score values for the alignments between such fragments and 

the target structures, thus substantially reducing the rank of the correct models. For 

example, 1bp3 complex (interface shown in Figure 3.1) is structurally homologous to 

a target complex 3hhr (TM-scores 0.8 and 0.7 for structural alignments of entire 

Figure 3.1: Example of interface fragments corresponding to  different cutoff

Fragments of 1bp3 complex were extracted using interface cutoffs: (A) 6 Å, (B) 8 (C) 10 

Å, and (D) 12 Å. Ligand (the smaller protein in the complex) is in blue Receptor (the 

larger protein in the complex) is in red.
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1bp3 and 3hhr receptors and ligands, respectively, with corresponding sequence 

identities 31% and 66%). However, the 1bp3 interface fragment from the 6 Å library did 

not generate any  models  for  the  3hhr  target  due  to  TM-scores  that  were  below  

the statistical significance threshold (0.15 and 0.2 for the receptors and ligands, 

correspondingly). On the other hand, models generated using 1bp3 fragments from 

the 8 Å, 10 Å, 12 Å and 16 Å libraries had RMSD between ligand interface Cα
 

atoms in the model and in the native complex (i-RMSD) 4.18 Å, 4.22 Å, 4.22 Å and 4.3 

Å correspondingly. However, the 8 Å library model was ranked 42
 
among all 8 Å library 

models generated for this target, whereas model the ranked 1  had i-RMSD = 38.0 Å. 

Only models built using interface libraries with adequate structural details (10 Å, 12 

Å and 16 Å libraries) were ranked 1 by the TM-score. Interestingly, a  similar trend 

holds even for highly similar proteins. For example, the 1eay template complex is very 

similar to the target complex 1a0o (TM-scores 0.8 and 0.9 for structural alignments 

of the entire 1a0o and 1eay receptors and ligands respectively, w i t h  corresponding 

sequence identities 96% and 100%).  However, 1eay interface fragments from the 

6Å library could not generate statistically significant alignments for the 1a0o target 

(TM-scores 0.35 and 0.07). Models generated using the 1eay fragments from 8 Å, 10 

Å, 12 Å and 16 Å libraries had i-RMSD = 1.5 Å, 1.7 Å, 2.0 Å and 2.2 Å, respectively. 

However 8 Å and 10 Å library models were ranked 818 and 35 respectively, whereas 

the 12 Å and 16 Å library models were ranked 5 and 1.  Thus 12 Å and 16 Å libraries 

provided correct models for the 1a0o target within top 10 predictions. The i-RMSD 

values for the 12 Å and 16 Å libraries’ models were similar to RMSD between the 

entire structures of bound 1eay and unbound 1a0o complexes (2.2 Å). 
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Relatively poor ranking of models from the small cutoff libraries was due to 

the fact that the small fragments lacking well defined secondary structure elements can 

be aligned to a random place in the target structure (thus generating models with 

high TM-score but large i-RMSD).  At the same time, alignment of such fragments of 

a bound protein to the unbound target interface may have a significantly lower TM-

score. This is especially true if there is a significant conformational change between 

bound and unbound structures.  As  shown  in  Figure 3.1,  the  distance  of  12  Å  and  

above provides full structural details of the interfaces. Thus, it reduces the possibility of 

the “good” random alignment and enhances the TM-score of the correct alignment by 

increasing parts of well aligned interface areas. 

3.1.3    Modeling success rates for different interface libraries 

To validate the docking, DG99 set was used [4] (see description in Chapter 2). 

The  models  were  generated  and  evaluated  using  our  five  interface  libraries. The 

results presented in Figure 3.2 are the success rates defined as a  percentage  of 

target complexes for which at least one model within a certain pool (top 10, top 100, and 

all models generated for the target) has i-RMSD ≤ 5, 8, and 10 Å. The i-RMSD ≤ 5 Å is 

comparable to the criteria for discriminating acceptable-quality  models of protein- 

protein complexes in CAPRI [5] . Models with i-RMSD < 10 Å are considered 

acceptable in the present study.  

The data in Figure 3.2 shows that the success rates for the 10 Å, 12 Å and 16 Å 

libraries  are  significantly  higher  than  those  for  the  6  Å  and  8  Å  libraries  (see 

discussion above). The 12 Å library models consistently had high success rates. In the 
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case  of relaxed  acceptance  criteria  for 16 Å library  docking,  the  matches  with  i- 

RMSD ≤ 10 Å were in top 10 predictions, whereas models from the 12 Å library had 

ranks significantly  worse than 10. This was the case for t h e  1he8 docking  using 

16 Å (model ranked 4 with i-RMSD 6.3 Å) and 12 Å (model ranked 19 with i-RMSD 

6.0 Å)  template  fragments  from  1k8r,  and  for  the 2g45  docking  using  16  Å  

template fragments  from  1nbf  (model  ranked  4  with  i-RMSD  9.5  Å)  and  12  Å  

template fragments from 1tgz (model ranked 74 with i-RMSD 9.7 Å). 

 

 

Figure 3.2: Docking success rates for different interface libraries. The docking was performed 

on the DG99 benchmark set. The success rate is defined as percentage of target complexes for 

which at least one match is in the  top 10, top 100, and in all matches generated for the target 

and has i-RMSD ≤ 5, 8, and 10 Å. The results are shown for 6, 8, 10, 12, and 16 Å interface 

libraries [1] (see the text for details). 
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For some targets, the 16 Å library was unable to generate an acceptable model 

while the 12 Å library (smaller fragments) succeeded. An example of such a  case 

is shown in Figure 3.3 where models for the ligand in 3sic were generated using ligand 

fragments from 1oyv. As the figure shows, the structures of 3sic and 1oyv ligands 

have dissimilar folds (TM-score for the alignment of the entire ligand structures is 0.7 

with overall sequence identity 66%). The 3sic ligand is a trypsin inhibitor with the 

“classic” binding loop (residues E67-D76, marked 1 in Figure 3.3D). The secondary 

structure elements closest to this loop are α-helix and β-sheet (marked 2 and 3 in 

Figure 3.3D). The 12 Å library fragment from the 1ovy ligand (red ribbons in Figure 

3.3C) contains a α-helix-like loop (residues T88-G93), which aligns well with the α- 

helix in the 3sic ligand (Figure 3.3A). The orientation of two other binding loops in the 

1oyv ligand relative to this α-helix-like loop is similar to the relative orientations of 

the binding loop and α-helix in the 3sic ligand, yielding an accurate model for the 3sic 

target (i-RMSD 1.1 Å with rank 3). The 1oyv fragment from the 16 Å library (red 

ribbons in Figure 3.3E) contains a significant part of the non-interface β-sheet, which 

aligns with the β-sheet in the 3sic ligand (Figure 3.3B). Since orientations of these β-

sheets relative to the binding site are different for the 3sic and 1oyv ligands, the 

resulting model has significantly larger i-RMSD = 7.0 Å. The model was not acceptable 

because more than 50% of the structural alignment contains non-surface residues of 

the target protein (this criterion is required to insure that the interface fragments do 

not align with the core of proteins producing random output). Increasing the distance 

cutoff defining the interface eventually leads to the inclusion of the entire monomer 

structures, thus transforming partial structural alignment into full structure alignment. 
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The detailed comparison of the partial (interface only) and the full protein structure 

alignment is discussed in the next two chapters. In the context of this chapter it is worth 

mentioning that the overall success rates there follow essentially the same trend as 

shown in Figure 3.2 for the 12 Å and 16 Å libraries, i.e. tend to decrease for the full-

structure alignment models, especially with relaxed model acceptance criteria (larger i-

RMSD and less demanding top ranking). Generally, the partial and the full structural 

alignments are applicable to different types of target/template similarity. 

General utility of the docking approaches requires applicability to 

experimentally determined  as  well  as  modeled  structures  of  monomers of  limited  

accuracy, especially in large-scale (e.g., genome-wide) modeling of protein networks. 

Such approaches  have  to be fast (high-throughput)  and  tolerant  to significant  

structural inaccuracies of the monomers [6] . Overall, the 12 Å cutoff appears to be 

optimal for the relaxed model acceptance criteria needed for docking of modeled 

structures.  It also provides faster alignment than the one with larger cutoffs. Thus it is 

well suited for the high-throughput structural modeling of protein-protein complexes in 

large PPI networks. 
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Figure 3.3:  Example of docking based on 12 Å and 16 Å interface libraries. 3sic ligand (gray 

ribbons in A, B, D) was aligned with fragments of 1oyv ligand (red) extracted using 12 Å (A) 

and 16 Å (B) interface cutoffs. For comparison, the entire structure of 1oyv ligand is shown 

with 12 Å (C) and 16 Å (E) fragments (red). The entire structure of 3sic ligand with the loop 

participating in binding (blue) is shown in D. T h e  binding loop in 3sic ligand is marked 1, 

and t h e  α-helix and t h e  β-sheet closest to this loop are marked 2 and 3, respectively. 
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CHAPTER 4: DOCKING BY STRUCTURAL SIMILARITY AT 

PROTEIN-PROTEIN INTERFACES 

 

 

4.1  Research summary 

This chapter addresses the issues related to the development of docking 

through structure alignment. Structural similarity of proteins at varying degrees 

(global or interface) can be extrapolated to the similarity in their binding modes. Thus, 

the true potential of the structural alignment methods can be established through 

benchmarking the protocol at both local as well as global scales of structural similarity 

(FSA and PSA). At the same time a high-throughput application of the structure 

alignment method would ride on its ability to detect the templates hard to detect by 

sequence based methods (e.g. homology docking) which account for only a fraction of 

known PPIs. 

In order to take into account the above, a systematic benchmarking and 

analysis of the interface alignment was performed on both DG99 and DG372 

benchmark sets [1]. The performance was compared with FSA. The ability of the 

structure alignment method was assessed to extend the template space beyond 

detectable sequence similarity. Additionally, the present work also explored the idea 

of supplementing free docking protocol with the structure alignment method and 

measured their collective coverage of protein-protein complexes present in the 

benchmark sets [2]. 
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4.1.1 Benchmarking global and local structural alignment methods 

Both protocols (FSA and PSA) are systematically evaluated on the DG99 and 

DG372 benchmark sets. There are two categories of predicted models: (i) higher-

accuracy models (i-RMSD ≤ 5Å) and (ii) lower-accuracy models (i-RMSD between 5-

10 Å). Performances of both protocols are summarized in Table 4.1.  

Both alignment protocols performed about equally well on both datasets for the 

higher-accuracy models. Significant parts of the datasets (42% and 56% of targets in 

the DG99 and DG372 datasets, respectively) had the best models produced by both 

protocols within the same accuracy range. The majority of the best FSA and PSA 

higher-accuracy models were built using the same template (Table 4.1, numbers in 

parenthesis for the common models). Thus, local structural similarity at the interfaces 

of target and template complexes is often accompanied by the global structural 

similarity between target and template monomers. However, a significant part of both 

datasets has the best model built by only one of the protocols.  

In summary, the results show that the partial and the full structural alignment 

methods are complementary to each other and their combination significantly expands 

the number of identified templates for protein docking. 
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Table 4.1:  Comparison of Full and Partial structure alignment. 

Model i-RMSD 

                       Number of targets modeled by 

both PSA and FSA
a
 PSA only

b
 FSA only

b
 

DG99 DG372 DG99 DG372 DG99 DG372 

0 – 5 Å 26 (26) 130 (125) 0 13 (11) 2 (0) 15 (14) 

5 – 10 Å 10 (4) 38 (2) 14 73  5 16 

a
Number of targets for which the best models produced by both partial structure alignment 

using the 12Å library (PSA) and full-structure alignment (FSA) protocols using the same 

(number in parentheses) or different templates have i-RMSD in a given accuracy range. 

 

b
Number of targets for which the best model produced by one of the protocols (PSA or FSA) 

has i-RMSD value in a given accuracy range, whereas the other protocol either yielded the 

best model (based on the same or different template) with i-RMSD value in a lower-accuracy 

range (number in parentheses) or failed to produce any statistically significant structure 

alignment for one or both target monomers. 

4.1.2 Modeling protein complexes with “Partial Structure Alignment” 

 Out of 100 targets for both datasets for which the best model at all accuracy 

levels was built by PSA only, significant sequence identity (> 20%) between one pair 

of target-template monomers was observed in just 14 cases. An example is shown in 

Figure 4.1A for the target complex of bovine chymotrypsin with eglin C and the 

template complex of pig trypsin with its inhibitor. The receptors of both complexes 

have similar conformation (RMSD of aligned structures only 0.9Å) with 45% 

sequence identity. On the other hand, the ligands have only 5% sequence identity and 

are so structurally different that FSA did not produce a statistically significant model 

for this template (TM-score [3] of the global ligand alignment < 0.2). However, both 
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ligands share similar trypsin inhibitor-like loops that make up the entire ligand binding 

interface. Thus, in this case PSA produced an accurate model with i-RMSD = 1.3Å. 

The remaining 86 PSA-only targets had sequence identity with the identified 

templates < 20% for both monomer pairs. An example is shown in Figure 4.1B for a 

PSA model of the complex between human cyclophilin and snRNP proteins built 

using an interface fragment between two chains (out of 4 identical chains in the 

asymmetric unit) of human transcription factor. The interface fragments used to build 

the model consisted of 71 and 89 residues for the template monomers, but the common 

structural motif (two short -strands highlighted in magenta and red, Figure 4.1B) 

consists of only 4 residues for both the target and the template. Despite the significant 

difference in the shape of these -strands, the PSA model has i-RMSD = 4.9Å. The 

overall structures of the target and the template are very different (with sequence 

identities 5% and 4% between receptors and ligands, respectively) and the FSA model 

for this target with the same template has i-RMSD = 37.0Å (i-RMSD = 6.8Å using a 

different template).  
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B 

TARGET TEMPLATE 

Model X-ray 

Figure 4.1: Examples of docking results by partial structural alignment. (A) Non-homologous 

ligands: target 1acb, chains E and I, and template 1ldt, chains T and L; match i-RMSD = 1.3Å. (B) 

Non-homologous receptors and ligands: target 1mzw, chains A and B, and template 1m1l, chains B 

and C; match i-RMSD = 4.9Å. Structural elements responsible for the alignment are in magenta and 

red and/or are indicated by arrows. 
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4.1.3 Performance of the model ranking scheme 

Protein docking procedures need adequate scoring functions for the predicted 

matches. Here we did an analysis of the performance of our ranking scheme (see 

Chapter 2) for both FSA and PSA protocols. The results (see Supplementary data 

Table S1-S4) showed that for lower-accuracy models, the scoring function tends to 

assign low ranks to the near-native predictions generated by either PSA or FSA. 

Lower-accuracy models often have structural similarity only between interfaces of the 

target and the template, thus decreasing TM-scores of the entire monomer alignments 

(if any such alignment is found at all). At the same time FSA may find a template 

complex where one of the monomers is similar to the target monomer (TM-score close 

to 1.0), but binds a dissimilar protein at another binding site. This enhances the 

aggregate TM-score, bringing the incorrect model to the top of the prediction pool. A 

similar reason causes low ranking of the PSA models. In addition there are many small 

interface fragments in the template library which may align well (high TM-score) to 

non-interface parts of the target complex, thus decreasing the rank of the near-native 

PSA models even further than the corresponding FSA models. However, the situation 

is significantly different for higher-accuracy models, where not only the interfaces of 

the target and the template complexes are similar but often also the entire structures. 

Out of 143 targets, for which the best PSA models had i-RMSD < 5 Å, 108 predictions 

were ranked 1, and only 5 had rank below 1000. Among the 145 best FSA models 

with i-RMSD < 5 Å, 116 had rank 1, and no models were ranked below 1000. For 130 

targets both protocols yielded the best models with i-RMSD < 5 Å and 125 of those 

models were built using the same template (same-template models). For 102 of those 
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targets, the best model was ranked 1 by both protocols. For the remaining 23 same-

template models, ranking by PSA and FSA was the same in 5 cases, 10 PSA models 

had better ranking, and 8 FSA models had better ranking. Out of 5 common targets 

with different templates for the best PSA and FSA models, in one case (target 1f5q, 

chains A and B) the best model was ranked 1 by both protocols, in two cases PSA 

ranking was better, and in two cases FSA ranking was better. Thus, for ranking such 

models both methods perform equally well and placed the best models at the top of the 

prediction pool. 

4.1.4 Structure and sequence homology 

Structure alignment procedures are computationally demanding (although to a 

lesser extent than sophisticated multi-template modeling of individual proteins). Thus, 

for high-throughput structural modeling where computational speed is essential, it is 

necessary to understand how many of the structural alignment models can be obtained 

by a computationally less expensive homology docking approach. For this purpose, we 

performed the sequence based analysis of target-template proteins when acceptable 

models were produced (see Supplementary data Table S1-S4).  

Distribution of higher-accuracy models at different levels of the homology 

docking complexity (Figure 4.2) showed that the easy cases make up a small part 

(9.4%) of DG372 dataset, whereas the majority of the models are medium (13.7%) 

and difficult (19.4%) cases. Interestingly, in a significant number of medium (22 

models) and difficult (16 models) cases, the target and the template complexes 

corresponded to multi-binding proteins, where the same (or similar, with sequence 
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identity > 70%) protein binds dissimilar partners (with sequence identities 

corresponding to medium or difficult cases for the homology modeling) at the same 

binding site. 

 

Figure 4.2: Success of structure alignment in terms of complexity for homology modeling. 

Numbers of targets in the DG372 dataset with higher-accuracy FSA and/or PSA models are 

shown for different levels of complexity for the homology docking. Dashed regions in the bars 

correspond to the number of targets with high sequence identity (larger than 70%) between 

one sequence pair.  

 

Out of 127 lower-accuracy models, only 2 were of medium difficulty: (i) FSA 

model (6.9 Å i-RMSD) for the target 1fle (chains E and I) with the template 1eja 

(chains A and B) with the sequence identities 39% and 25% between receptors and 

ligands, correspondingly (note that PSA model for the same target with 5.6 Å i-RMSD 

was built using another template, chains A and I of the 1tx6 complex, with even lower 
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sequence identities, 39% and 15%, for receptors and ligands); and (ii) FSA (7.3 Å i-

RMSD) and PSA (5.8 Å i-RMSD) models for the target 1g3n (chains A and C) with 

the template 1f5q (chains A and B) with sequence identities 45% and 22% for the 

receptors and ligands. All other FSA and PSA lower-accuracy models were difficult 

cases for the homology docking, with sequence identities as low as 2% in some cases. 

However TM-scores even for such low sequence identities indicate significant 

structural similarity between the target and the template (see Supplementary data 

Tables S1 and S2). 

4.1.5 Comparison to free docking 

As shown above, the structural alignment is a useful tool in finding templates 

hardly detectable by fast sequence based methods. On the other hand, it is important to 

understand where the structural alignment stands with respect to the well-established 

and widely used free docking techniques. Since the docking techniques are usually 

tested on the set of unbound structures, we compared the performance of PSA and the 

free docking GRAMM-X server [4] on the DG99 unbound set.  

GRAMM-X is a protein-protein docking web-server derived from original 

GRAMM [5]. It performs FFT based global search followed by refinement and 

rescoring through multiple knowledge-based potentials. 

The results are shown in Figure 4.3. A significant part of the targets 

successfully docked by GRAMM-X was modeled by PSA as well, in the case of both 

higher- and lower-accuracy models (60% and 71% of all successful free docking 



  

62 

 

models for higher- and lower-accuracy models, respectively). In turn, PSA produced 

14 higher-accuracy and 4 lower-accuracy models for targets where GRAMM-X failed 

in any acceptable-accuracy docking.  

 

Figure 4.3: Comparison of the success rates in template-based and free docking. The success 

rates are defined as the percentage of targets in DG99 unbound dataset for which higher-

accuracy only (i-RMSD < 5Å) and all acceptable (i-RMSD < 10Å) models were produced by 

free docking only (GRAMM-X), template-based only (PSA), and both.  

 

The structure alignment approach was also tested on previous Critical 

Assessment of Prediction of Interactions (CAPRI) [6] targets, with limited success, 

which is in sharp contrast with the significantly higher success rate for the docking 

benchmark sets. The obvious reason is that the CAPRI targets are usually hand-picked 

to avoid, with few exceptions, close homologies with co-crystallized complexes 

(needed as templates for structural alignment). However, for a typical biological 
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problem, the existence of homologous co-crystallized complexes, of course, is not to 

be avoided but welcomed. Thus, in this respect the docking benchmarks, which do not 

preclude the increasingly available co-crystallized homologous complexes, are more 

representative of the ‘real world’ biology. 

The structural alignment algorithm is generally more reliable than the free 

docking methodology. Its utility is increasing with more structural templates being 

determined by crystallography and NMR. Thus the emerging docking strategy should 

involve a search for available docking templates prior to the free docking modeling. 

This paradigm is especially valid in genome-wide high-throughput modeling, where 

most structures of the monomers will be models with structural accuracy lower than 

that obtained by the X-ray/NMR. 
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CHAPTER 5: GLOBAL AND LOCAL STRUCTURAL SIMILARITY 

IN PROTEIN-PROTEIN COMPLEXES 

5.1 Research summary 

Chapter 4 described our efforts to benchmark structure alignment protocol on 

the scale of both local as well as global fold similarity (FSA and PSA). It showed that 

both protocols provide a significant degree of success in modeling protein complexes. 

Comparable successes of FSA and PSA protocols for higher-accuracy models 

and higher success of PSA in modeling lower-accuracy complexes raises the challenge 

to determine the extent of structural conservation in the protein-protein complexes. 

Thus, the goal of this chapter is to understand how frequently interface similarity of 

two proteins is not extended to their global fold similarity. 

Here we addressed this fundamental issue by modeling 372 protein complexes 

by full and partial structural alignment and analyzing the results in terms of the degree 

of structural similarity between the target and the template complexes and its impact 

on the quality of the model complexes [1].  

Model complexes were classified into the following three categories:  

(1) Complexes with both full and local structure similarities 

(2) Complexes with only local structure similarity 

(3) Complexes with only full structure similarity 
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5.1.1 Complexes with both full and local structure similarities 

We compared models for 372 protein complexes (see Chapter 2 for structure 

generation protocol and test set) built by PSA with the corresponding models obtained 

by the FSA. The comparison is summarized in Chapter 4, Table 4.1.  

For significant parts of the dataset (126 targets or 34%) the structural similarity 

between the target and the template is not only substantial for the interface but also for 

the entire structure. However, most of the PSA models, belonging to this group, have 

systematically lower i-RMSD values compared to the corresponding FSA models (see 

Supplementary data Table S3 and S4). In total, there are 92 such models, out of which 

17 have i-RMSD differences > 1 Å. Only in 19 cases FSA model has a lower i-RMSD 

compared to the corresponding PSA model (in 4 cases the differences are > 1 Å). This 

implies that structures of the protein-protein interfaces tend to be more conserved 

compared to the rest of the proteins, which correlates with the previous observations 

of higher sequence conservation at the protein-protein interfaces [2-4]. As discussed in 

Chapter 4, the majority of these models are either medium or difficult cases for 

sequence based methods.  

 The advantage of PSA is discussed here through the following two examples: 

The first example is illustrated in Figure 5.1 for the models of subtilisin BPN from 

Bacilus amyloliquefaciens complex with synthetic protein (chains L and R from 3sic), 

modeled on subtilisin Carlsberg from Bacilus lichaniformis complex with ovomucoid 

protein from Meleagris gallopavo (chains R and L from 1r0r). Both subtilisins have 

similar global structures with high sequence identity (70%). Thus their FSA and PSA 
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alignments are similar too (Figure 5.1A and B). However, the aligned sequences of the 

inhibitors have only 12% sequence identity. Only the “classic” inhibitor loops are 

similar, whereas the rest of the structures are quite different (yellow and magenta 

ribbons in Figure 5.1C). Thus, PSA correctly aligns the interface parts of the target 

and the template (Figure 5.1D) yielding an accurate model with only 0.9 Å i-RMSD. 

FSA seeks to find the minimal distance between all Cα atoms of the target and the 

template. Thus the alignment of the interface loops becomes less accurate (Figure 

5.1C) and resulting model has 4.9 Å i-RMSD.  
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Figure 5.1: Example (#1) of the local alignment more accurate than the full alignment. FSA 

(A and C) and PSA (B and D) alignments between target 3sic (in yellow) and template 1r0r (in 

magenta) complexes. The alignments of the receptors (chains E of the 3sic and 1r0r) are 

shown in A and B, and the alignments of the ligands (chain I) are shown in C and D.  

 

The second example is illustrated in Figure 5.2 for the models of human 

signaling complex (chains B and A from 1ki1), built on another human signaling 

complex (chains A and B from 2nz8). Ligands of both the target and the template 

share near identical overall structure with high 78% sequence identity (Figure 5.2C). 

Receptors of both the target and the template have clearly distinguishable two-domain 

structures, with only one of the domains participating in the binding. The structures of 

separate domains are very similar (although with low 18% sequence identity), but their 
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orientation in the target and the template is different (yellow and magenta ribbons in 

Figure 5.2A). Thus FSA yielded a model with 5.0 Å i-RMSD. PSA correctly aligned 

the interface parts of the target and the template (Figure 5.2B) producing a model with 

0.6 Å i-RMSD. However, such extreme cases are not very common in our dataset; 

they were observed only in 5 targets with higher-accuracy models. 

 

 

Figure 5.2: Example (#2) of local alignment more accurate than the full alignment. FSA (A 

and C) and PSA (B and D) alignments between target 1ki1 (in yellow) and template 2nz8 (in 

magenta) complexes. The alignments of the receptors (chains B of the 1ki1 and 2nz8) are 

displayed in A and B, and the alignment of ligands (chains A) are shown in C and D. 
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Similar structures of one of the target and the template monomers accompanied 

by dissimilar structures of the other monomers are a common feature of all higher-

accuracy PSA models. Thus, if it is known that a protein binds different proteins at the 

same binding site (e.g., above enzyme-inhibitor complexes), the PSA is a better 

alternative. 

5.1.2 Complexes with only local structure similarity  

For the targets with lower-accuracy models (5 Å < i -RMSD ≤ 10 Å) the 

interface-only conservation was even more prominent. PSA produced models for a 

significant part of the dataset (73 PSA-only targets, 19.6%) while FSA failed to yield 

any model of reasonable accuracy. Similar structural fragments may involve a small 

part of the interface, as illustrated by the PSA model (Figure 5.3A) of mice protein 

signaling complex (1vet) built based on interfacial fragments between two chains of 

RUVA protein from E. coli (4otc, Figure 5.3C). The interface fragments used to build 

the model consist of 45 and 53 residues for template monomers however; the common 

structural motif consists of two short -strands (in magenta and red in Figure 5.3). The 

shape of these -strands differs slightly in the target and the template X-ray structures 

(Figure 5.3B and C), thus the PSA model has 6.0 Å i-RMSD (Figure 5.3A) due to the 

wrong tilt of the ligand. The overall structures of the target and template are so 

different (with sequence identities 4% and 3% between receptors and ligands, 

respectively) that FSA failed to produce any statistically significant models for this 

target. 
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Figure 5.3: Local alignment on a small part of the interface. (A) Model and (B) X-ray 

structure of the target complex (1vet, chains A and B), and (C) X-ray structure of the template 

complex (4otc, chains B and C). Receptors are in yellow and ligands are in blue. Parts of the 

structures responsible for a near native PSA model are shown for receptors (in magenta) and 

for ligands (in red).  

 

Interestingly, the majority of the PSA-only targets (67 targets) were modeled 

using homo-dimeric template complexes, primarily from different organisms. Only 

one template for higher-accuracy models and three templates for lower-accuracy 

models were from the same species. Three templates for lower-accuracy models 

shared a common organism with the target for one of the monomers. In 14 cases (two 

higher-accuracy and twelve lower-accuracy models) the interfaces of the homo-

dimeric templates were present only in biological units built from the asymmetric 

units (often a single protein chain) in the PDB entries using translational/rotational 

matrices (in all cases templates are from the different organisms). Moreover, 
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sometimes a biological interface was modeled using similarity with the crystal packing 

interface as shown in Figure 5.4 for the complex of colicin E3 with its immunity 

protein (Figure 5.4B). PSA yielded the best model for this complex based on the X-ray 

structure of colicin E3 homo-dimer (Figure 5.4C). The biological function of colicin is 

to kill excess E. coli cells by binding and cleaving the enemy cell DNA. To prevent 

the host cell suicide the colicins form complexes with their immunity proteins 

inhibiting the DNA binding site [5]. In either case colicins do not exist in vivo as 

homo-dimers. The colicin E3 and its immunity protein are quite dissimilar (19% 

sequence identity and TM-score for the alignment of entire structures < 0.2). Thus 

FSA failed to produce a statistically significant model while PSA produced a lower-

accuracy model with 7.3 Å i-RMSD (Figure 5.4A).  

Because of the absence of unambiguous criteria for distinguishing biological 

and crystallographic interfaces it is hard to provide the exact number of such cases. In 

general, the results correlate with the conclusions of the recent study [6] that only 

localized regions on protein-protein interfaces are conserved among structural 

neighbors. 

5.1.3 Complexes with only full structure similarity 

A significant part of the dataset (31 targets or 8.3%) was modeled by the FSA 

protocol only (see Chapter 4, Table 4.1). Analysis of those models revealed three main 

causes for the worse PSA performance (or its complete failure). The first reason is 

related to differences in length of interface loop(s) connecting the otherwise similar 

interface -strands in the target and the template (in total, 7 such cases in the dataset). 
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Figure 5.4: Local alignment on a crystal packing interface. (A) Model and (B) X-ray 

structures of the target complex (1e44, chains A and B), and (C) X-ray structure of template 

complex (3eip, chains A and B). Receptors are in yellow and ligands are in blue. Arrows 

indicate parts of the structures responsible for the near-native PSA model. 

This leads to a shift in the alignment of the structural fragments. Thus PSA, while still 

capable of building a near-native model based on the same or different template, 

yields a model in the lower-accuracy range compared to the FSA model, where the 

entire structure ensures the alignment of correct parts of the interface -strands. Figure 

5.5 shows an example of target 1itb (ligand complex with human interleukin-1 beta) 

and template 1cvs (ligand complex with human fibroblast growth factor 2). Overall the 

ligand structure of the target (yellow and magenta ribbons in Figure 5.5B) and the 

template (gray and white ribbons in Figure 5.5A) are quite similar. Thus FSA protocol 

correctly aligns the full structures (Figure 5.5D) yielding the best model with 4.8 Å i-

RMSD. Both ligands belong to the cytokine superfamily in SCOP [7] classification. 

However sequence identity between the ligands and receptors is 15% and 14% 

respectively, which makes it a difficult case for homology modeling. The main 

difference is in the length of the interface loop connecting two -strands that are 
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partially at the interface (magenta and white ribbons in Figure 5.5 for target and 

template, respectively). This loop is longer and the interface part of the -strand is 

shorter in the target structure. Thus PSA aligns the wrong loop and strands parts 

(Figure 5.5C), generating the best model with 7.3 Å i-RMSD.  

 

Figure 5.5: Example (#1) of the full alignment more accurate than the local alignment. (A) 

The X-ray structures of template (1cvs, chains A and C) and (B) the target (1itb) complexes, 

along with (C) PSA and (D) FSA alignments of the target ligand. The receptors are in cyan 

while ligands for the target and template are in gray and yellow, respectively. Arrows indicate 

parts of ligand -strands essential for the model building, highlighted in magenta and white for 

the target and template. 
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The second source for the PSA failure stems from the presence of the four-

helix bundle structure motif in the target and the template monomers where only parts 

of the helices participate in binding. In such cases the interface helix fragments from 

the template are aligned to a random place on the target helices resulting in a wrong 

model, whereas the FSA protocol correctly aligns the entire helix bundles. Figure 5.6 

illustrates such a case of target 1f6f (ligand complex with Ovis aries placental lactogen 

Figure 5.6B) and template 1pvh (ligand complex with human leukemia inhibitor 

factor, Figure 5.6A). Both monomers have α-helical structures and belong to the same 

long-chain cytokines SCOP family with the sequence identity between them only 7%. 

The overall structure of these monomers is very similar (see the superimposed 

structures in Figure 5.6F), resulting in the best FSA model (Figure 5.6C) with 4.5 Å i-

RMSD. However, PSA aligns the interface parts of the template helices (white ribbons 

in Figure 5.6) to non-interfacial parts of the target helices (magenta and yellow 

ribbons in Figure 5.6) producing an incorrect model with 15.0 Å i-RMSD (Figure 

5.6E). PSA was capable of producing the best model with 7.8 Å i-RMSD based on 

another template structure (2aux). 
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Figure 5.6: Example (#2) of the full alignment more accurate than the local alignment. (A) X-

ray structures of the template (1pvh) and (B) target (1f6f) complexes along with (C) FSA 

model of the target complex and (F) FSA-alignment of the target ligand. (D) PSA-alignment 

of the target ligand with (E) the PSA model of the target complex. The receptors are in cyan 

while ligands for the target and template are in gray and yellow, respectively. Interfacial parts 

of ligand helices are highlighted for the target (in magenta) and template (in white). 

 

In the third group of the FSA-only targets, there is a local structural similarity 

between the target and the template away from the interface. These similar pieces are 

not large enough to produce higher-accuracy FSA models, but sufficient to dominate 

FSA alignments, thus correctly orienting the target monomers. The sequence identities 

between the target and the template monomers in all such cases were < 10%, implying 

that such templates are hardly detectable by ordinary sequence-homology algorithms. 

Due to the absence of structural similarities between the target and the template 

interfaces, PSA yields the near-native model with substantially higher i-RMSD or no 
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near-native model at all. An example is shown in Figure 5.7 for the complex of 

Colicin D with its immunity protein (chains A and B in 1v74, Figure 5.7A). FSA 

produces a near-native model with 5.8 Å i-RMSD. The model was based on the 

alignments (Figure 5.7B and C) with the monomers from the template complex 

Colicin E5 with its immunity protein (chains A and B in 2vhz, Figure 5.7D). As one 

can see, despite the biological function similarity of the target and the template, their 

overall structures, including interfaces, are quite dissimilar with low target-template 

sequence identities (9% and 7%, for the receptors and ligands, respectively). However, 

the same mutual orientations of non-interface helices and part of a -strand (shown by 

arrows in Figure 5.7) in the target and the template yielded the near-native FSA 

model.  
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Figure 5.7: Example (#3) of the full alignment more accurate than the local alignment. (A) X-

ray structures of the target (1v74, chains A and B) and (D) template (2fhz, chains A and B) 

complexes, along with (B) FSA alignment for the ligands and (C) receptors. Arrows indicate 

parts of the target monomers essential for the near-native FSA-model. 
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CHAPTER 6: CONCLUSIONS 

A systematic study of the docking methodology based on the structural 

alignment of protein interfaces was performed to determine the optimal size of the 

structure in the alignment. The results showed that structural areas corresponding to 

cutoff values ≤ 10 Å across the interface inadequately represented structural details 

of the interfaces. The use of such areas in the modeling significantly reduced 

docking success rates. Increasing the cutoff beyond 12 Å did not significantly 

increase the success rate for higher-accuracy models and decreased the success 

rate for lower-accuracy models. While larger structural segments (full structures at 

the extreme) could provide better alignment for some of the complexes, the 

modeling time for aligning larger fragments increased. Thus the 12 Å cutoff appears 

to be optimal overall for the interface alignment-based docking and the best choice 

for the large-scale (e.g., on the scale of the entire genome) applications to protein 

interaction networks. Such systems contain only a limited number of experimentally 

determined monomer structures and by necessity are populated by monomer models 

of limited accuracy obtained by high-throughput computational techniques. Thus 

these monomer models require relaxed docking acceptance criteria (i-RMSD ≤ 10 

Å) where the 12 Å cutoff provides the best results. 

Template-based protein-protein docking was performed by taking advantage of 

the structural similarity between template and target proteins at different scales (global 

and local). A library of 11,932 interfaces was generated from the biological units 

derived from the PDB, and used as a template resource to model new complexes. 
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Protein-protein interfaces were defined on the basis of the optimum distance cutoff (12 

Å) obtained from the first part of the work. The structure alignment protocol was 

validated on the DOCKGROUND benchmark sets (DG99 and DG372). Results 

showed that the templates for higher-accuracy models often share not only local but 

also global structural similarity with the targets, regardless of the degree of sequence 

identity between the target-template. However, the templates for lower-accuracy 

models typically had only local structural similarity with the target structures. Overall, 

the PSA approach yielded more accurate models than the FSA. Most of the templates 

identified by the PSA had low sequence identity with the target, which makes them 

hard to detect by sequence-based methods. Thus the application of structural 

alignment appears to perform better than typical docking protocols in producing 

acceptable near-native models and shows a significantly high success for the 

DOCKGROUND benchmark sets. Evidently, the structure alignment method expands 

the template space beyond the easily detectable sequence similarity range.  

Trends obtained from the second part of the work elucidated a greater 

correspondence between FSA and PSA protocols in providing higher-accuracy models 

but the same trend did not continue in lower-accuracy models. A high-throughput 

implementation of structural similarity protocols (both global and local) at genome 

wide scale requires a clear demarcation of their individual applicability. The third part 

of the thesis addressed this issue by understanding the extent of structural conservation 

in protein-protein complexes.  
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Application of structure alignment method on the statistically significant test 

set (DG372) sheds light on the following facts: For a majority of higher-accuracy PSA 

only models only one component of the template shared global structural similarity 

with the target protein while the other component had dissimilar global fold and 

significantly lower sequence identity with the corresponding target protein. Thus, if it 

is known that a protein in question binds different proteins at a single binding site (like 

many enzyme-inhibitor complexes) the PSA is a better alternative. Interestingly the 

majority of the lower-accuracy models through PSA were modeled using homo-

dimers as templates and insignificant sequence and structural similarities (at global 

scale) were observed between homo-dimeric templates and target proteins. This 

suggests that the majority of the space of interface geometries is probably covered by 

homo-oligomers.  

The results presented in this thesis conclude that the structure alignment 

techniques significantly improve the predictive power of computational techniques 

modeling protein interactions, drastically expanding template space. Many target 

template pairs identified by the structural alignment are from distant organisms and 

perform diverse functions, again suggesting that conservation of structural elements in 

biological macromolecules is related to physical properties of individual atoms rather 

than to “generic” properties of larger atom groups. The utility of the approach is 

increasing with the greater availability of the docking templates - co-crystallized 

protein complexes. With the growing abundance of the computationally modeled 

protein subunits the future of the structure alignment methods would depend on their 

ability to accommodate the structural inaccuracies present in the monomers modeled 
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in silico. Thus, in future, the structure alignment methods are required to be developed 

and benchmarked to work with computationally modeled proteins. 
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