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ABSTRACT 

 The Visual Word Form Area is a portion of the occipitotemporal cortex which has been 

shown to respond specifically to visually presented words, leading to it being implicated as a 

significant region in the process of reading.  The VWFA seems to display a great deal of 

plasticity, as the ability to read has been proposed to be based on a functional reorganization of 

this area during the process of learning to read and becoming attenuated to language specific 

word-formation regularities.  The effect of familiarity with an orthographic system and the way 

in which it modulates the N170 ERP response originating in the Visual Word-Form Area is still 

largely uncertain.  Previous research by Maurer et al. (2008) has demonstrated a left-

lateralization for familiar orthographies which is absent in novel orthographies which tend to 

demonstrate either a lack of lateralization in this response, or a slight right-lateralization.   

 Based on Maurer et al. (2008), we have conducted a study which built upon their 

approach but adjusted their methodology and stimuli in several ways.  Firstly, a single 

experiment was designed, including all 3 language conditions of interest: English, Japanese 

Hiragana, and a non-linguistic symbol set.  The experiment was further randomized across all 

three conditions rather than presented in block format.  This allowed for the direct comparison of 

language conditions for participants within the same experiment, allowing comparisons across 

conditions tested within the same experimental context with the same participants.  In addition, 

our study included tighter controls for word length, bigram frequency, character size and spacing 

to further ensure the veracity of our data.   

 Our results confirm the left-lateralization observed for familiar language conditions, but 

also demonstrate an amplitude modulation of the N170 response for familiarity, in which novel 
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orthographies create a more negative response than familiar orthographies in the N170 time 

window.  This pattern was later reversed in subsequent time windows as lexical processes were 

engaged, prompting a much more negative response for familiar orthographic conditions over 

novel ones.  This indicates that the amplitude of the N170 response is directly affected by 

experience with orthographic systems.   
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Introduction 

 While language has been a facet of human culture for an extraordinarily long time, and 

underlying neural architecture seems to be specifically disposed toward speaking/signing and 

understanding, one facet of our modern use of language is, on an evolutionary timeline, 

extremely recent: the ability to read and write.  Writing has only been a function of human 

culture for the last 5,000 years.  Each individual society‟s definition of literacy, and its spread 

throughout the populace has been a dynamic factor throughout the course of human history, but 

widespread literacy among a majority of the populace was not possible until the mid-19
th
 century 

with the advent of the moving-type press and the ability to quickly reproduce written documents.  

It seems anyone not impaired by a neurological disorder which would prevent them from doing 

so is capable of learning to read.  This obviously demonstrates the fact that reading is clearly not 

a skill developed by evolution, because processes of natural selection work on much longer 

timelines and illiteracy has not been selected out of the human population, but rather 

systematically eliminated through education.  This suggests that, from a cortical standpoint, the 

ability to read is a modular adaptation of some previously existing neural circuitry. 

 This of course begs a question of how reading is possible, what neurological circuitry is 

at work to connect an image with a word or sound in the human mind, and whether specialized 

neurological architecture is at work behind this process.  As we will examine throughout this 

section, the same localizations of the human cortex seem to be consistently implicated in the task 

of reading.  If these regions are specifically tuned to this task yet occur outside the process of 

human evolution, another mechanism must be at work to allow these processes to occur. 
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 Dehaene & Cohen (2007) posit that this is possible through their theory of „Neuronal 

Recycling‟, wherein cultural tasks such as reading or arithmetic, through learning, functionally 

adapt a specific part of the human cortex to their task.  In order for this to occur, the specialized 

task must be functionally similar to the original purpose of this cortical area, and the cortical area 

in question must inherently have enough plasticity to be capable of adapting to this task.  

Reading, by this reasoning, specifically adapts a portion of the cortex responsible for medium 

range visual detection in the center field of vision, in order to discern specific „word forms‟ and 

encode them such that language related processing in the brain may occur. 

 Identifying the degree to which this plasticity remains in adulthood and may be useable in 

learning a novel orthographic system is the ultimate goal of this line of research. As a first step 

toward examining experience-dependent changes in orthographic processing at the brain level, 

we will measure responses to cross-linguistic stimuli: those that are familiar, and those that are 

unfamiliar to participants in the current study.  In the following sections, we will first discuss 

candidate electrophysiological responses associated with reading to determine which will be 

relevant for this study, as well as regional localizations associated with these responses.  Then, 

background literature regarding familiar versus novel orthography will be examined and 

discussed at length, noting, where applicable, problems related to this field of research which 

require further addressing.  Finally, we will present our current study in brief overview before 

examining the specific methodology of our study, its results, and the interpretation of these 

results. 
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Brain Responses Associated with Orthographic Processing 

 Magnetoencephalography (MEG) and electroencephalography (EEG) data are excellent 

in terms of temporal resolution in detecting the time course of neural responses but generally 

poor in terms of spatial localization for detecting the source of these responses.  These 

techniques measure magnetic waves and electrical signals respectively, originating largely from 

the cortical surface of the brain.  While these techniques are capable of millisecond by 

millisecond tracking of said neural responses, localizing the signals based on signals received 

from sensors outside the brain is still at best an estimate based on source modeling.  The opposite 

can be said for imaging techniques such as functional magnetic resonance imaging (fMRI), 

wherein spatial localization is very high, but determining the time course of neural responses is 

generally poor.  This is because fMRI tracks the magnetic resonance of red blood cells as they 

supply oxygen to neurons in the human brain, also referred to as the Blood-Oxygen-Level 

Dependence (BOLD) signal, which change their response to an externally applied magnetic field 

as a consequence of the loss of oxygen in supplying neurons.  The use of the BOLD response as 

a dependent measure for comparing brain activation across conditions provides excellent spatial 

resolution, on the order of millimeters, and is thus very precise in terms of determining the 

location of an effect, but because this signal takes several seconds to reach full strength, it is very 

poor in terms of determining the time course of the processes underlying this effect.  

In an fMRI study, Cohen et al. (2002) investigated the process of word recognition, using 

stimuli consisting of words, consonant strings, and checkerboards.  This study confirmed greater 

activation in the left fusiform gyrus (also referred to as the occipitotemporal gyrus, BA 37) for 

words over either consonant strings or checkerboards, and greater activation for consonant 

strings over checkerboards.  Stimuli were presented in either the left or right visual fields, and 
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subjects were instructed to indicate by button-press which field the stimulus occurred in.  The 

increase in activation for words and consonant strings over checkerboards was interpreted to 

indicate a specialization for language related processing over general visual complexity.  The 

increased activation for words over consonant strings was interpreted to represent a language-

specific process at work, but they caution that this response may not be a lexical process at work 

so much as a response to well-formed words.  Based on the observed sensitivity of this region to 

words, this region of the left occipitotemporal cortex has been referred to as the Visual Word-

Form Area (VWFA) 

 Dehaene et al. (2002) further investigated this region, by comparing French words and 

well-formed pseudowords in a combined auditory/visual same-different task.  Participants were 

presented with a stimulus pair either auditorily or visually and asked to indicate via button press 

whether these stimuli were the same or different while neural responses were monitored via 

fMRI.  The results of this study suggested that these cortical regions demonstrate no difference in 

activation between words and well-formed pseudowords.   This would seem to indicate that 

processing in the left-fusiform gyrus is a pre-lexical process, occurring after general visual 

feature and letter recognition but before lexical processes become active.    

 Recent work by Dehaene et al. (2010) demonstrates encouraging possibilities in relation 

to the plasticity of the occipitotemporal cortex.  In a series of several auditory and visual tasks, 

involving lexical decision for auditory tasks and finding a target star symbol for visual tasks, 

groups of Brazilian and Portuguese illiterate, adult-literate and childhood-literate subjects were 

examined via fMRI, seeking both localizations of activation for reading, and BOLD signal 

response strength.  There was a demonstrated increase in activation in the VWFA for words in 

both literate subject groups compared to the illiterate subject group, and this increase extended 
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into the V1 primary visual cortex.  Further, in regressions which removed factors such as reading 

ability and socioeconomic status, these increased activations in the VWFA for words were 

statistically similar for both the early and late literates compared to illiterate subjects.  This 

indicates that there exists a potential for literacy to selectively reorganize cortical structures 

regardless of when the skill is acquired. 

 Early MEG responses to written words were investigated by Tarkiainen and colleagues in 

a series of experiments (1999, 2002), the first of which tested 1 letter and 2 letter strings, as well 

as 4 letter strings which formed words, all of which were presented with 4 different levels of 

noise caused by Gaussian diffusion.  The study also included 3 string lengths of geometric 

symbols and 4 character letter-like symbols (Latin capitals rotated 90, 180 or 270 degrees), all of 

which were presented without noise.  Subjects were instructed to focus on the stimuli and 

occasionally (1.5% probability) a question mark would appear onscreen directing the subject to 

repeat the most recent stimulus.  The second study incorporated the same stimuli as the first, 

adding line drawings of faces with four degrees of noise, as well as line drawings of common 

household objects and scrambled faces presented with no noise.  Photographs of faces and 

common household objects were also included.  The task was likewise the same, with the 

exception that participants were now asked to name either the previous stimulus (for letters), or 

the facial expression (for line drawings of faces).  These studies found two specific patterns of 

activity.  The first of these was a response peaking approximately 100ms post stimulus onset, 

occurring predominantly in the primary visual cortex, which displayed no distinct preferences for 

words or faces, and with an even hemispheric distribution of both. 

 The second response peaked at 180ms post stimulus onset, responding most strongly to 

words, but also responded strongly to letter-like symbols (capital letters rotated to various novel 
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orientations).  This response was strongly left-lateralized, in contrast to the recognition of faces 

which demonstrated a right-lateralized response.  Using dipole localization, these responses were 

traced to specific regions of the inferior occipitotemporal cortex.  This is the same localization as 

the VWFA, identifying this electrophysiological response as a candidate for tracking language-

specific orthographic processing. 

 The M170 is a response specific to MEG.  Using EEG, specifically for the study of 

Event-Related Potentials (ERPs), an analogous response originating from the same underlying 

cortical activity exists referred to as the N170.  Other research by Dehaene and colleagues 

(2004), which tracked ERP responses to a letter detection task using words created with similar 

or dissimilar capital/lowercase letter forms, demonstrated case and location invariance for the 

N170.  These findings essentially mean that these responses do not discriminate between upper 

and lowercase letters, including both relatively transparent case pairs (such as „O‟ and „o‟) and 

relatively opaque case pairs (such as „G‟ and „g‟) where the two cases share very few common 

features.  Further, the location of the word‟s presentation in the subject‟s visual field makes no 

difference in the course of processing, as processing always occurs in the left occipitotemporal 

cortex.  This demonstrates that the N170 response is capable of recognizing words regardless of 

superficial differences in letter case, and is independent of simple visual recognition processes 

(such as the ~100ms peaking response reported by Tarkiainen et al. (2002)) wherein the visual 

field the stimulus was presented in directly affected the region in which it was processed, 

indicating that the VWFA, which produces this response, is specialized for the task of word 

recognition. 

 An earlier study by Dehaene et al. (2001), which included an ERP measure, studied 

imageable nouns with and without a masked prime, while subjects were instructed to categorize 
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the nouns as either being natural or man-made.  This study demonstrated an effect for priming, 

wherein a word, when repeated even at such a rate to be only subliminally visible to the subject, 

created a decreased activation in the N170 response with subsequent repetition.  This indicates 

that the N170 response occurs autonomically, without conscious choice, or in this case even the 

awareness of the reader.   

 Pylkkänen and Okano (2010) further demonstrated a priming effect between the two 

syllabary orthographies of Japanese, Katakana and Hiragana (details concerning these 

orthographic systems and their relation to a third Japanese orthography, Kanji, to follow in a 

later section), finding that a word still produced a priming effect even if it was presented first in a 

syllabary in which it did not typically occur.  This study comprised 3 experiments, a masked 

priming behavioral task, an unmasked priming behavioral study, and an MEG study utilizing 

unmasked priming.  All three experiments involved a lexical decision task.  This, they argue, 

demonstrates a connection between an orthographic stimulus and its phonological correspondent. 

  

Studies on Novel versus Familiar Language Conditions  

 In contrast to studies which have determined the N170 to be a pre-lexical component, 

Maurer et al. (2005) conducted an ERP study comparing words, pseudowords and symbol strings 

and found an increased activation for words over pseudowords.  This would seem to indicate a 

lexical process at work which preferentially discriminates for real words.  However, as the 

experimenters include no information with regards to controls on the well-formed nature of their 

pseudo-word stimuli, this may instead simply be the same response to well-formed letter strings 

(see Cohen et al. (2002) & Dehaene et al. (2002), above) which has been mentioned previously. 
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 The majority of research on the topic of visual word recognition indicates that lexical 

access occurs subsequent to the N170 component.  For instance, research by Bentin et al. (1999) 

demonstrated two ERP responses active during lexical decision and semantic tasks in single-

word reading studies (lexical decision tasks were odd-ball tasks asking participants to make 

decisions to words interspersed between illegal nonwords, words interspersed between legal 

pseudowords, and pseudowords interspersed between words, while semantic tasks required 

participants to count abstract words interspersed between concrete words, pseudowords and 

illegal nonwords).  The N350 response, active in lexical decision tasks and peaking in the mid-

temporal electrode areas, but this response was found to be larger for both words and 

pseudowords compared to illegal nonwords.  This was taken to indicate a level of phonological 

processing at work which was not strictly a lexical process.  In contrast, the N450, an ERP 

component starting approximately at 350ms and peaking at 450ms and more anterior and 

superior than the N350, demonstrated greater activation for pseudowords over real words during 

the semantic processing task.  This data would therefore indicate that while well-formedness can 

be determined by a number of different processes earlier in the processing stream, responses 

reflecting lexical access do not emerge before approximately 350ms. 

 Other studies have implicated additional components; all subsequent to the N170, such as 

the N400, which has been shown to be sensitive to lexical effects such as word frequency, 

priming, and semantic category membership (see Kutas & Federmeier, 2000 and Lau et al., 2008 

for a review of these findings).  Further research by Proverbio et al. (2004) in a single-word 

reading study (using a unique paradigm wherein participants were presented with an auditory 

phone and asked to determine by button-press whether the phone was present in a visually 

presented word) demonstrated an earlier ERP component showing lexical sensitivity.  Termed 



9 
 

the N3, this component lasted between 250-350ms occurring in frontal and temporal regions and 

demonstrated greater negativity for nonwords (including both pseudowords and illegal 

nonwords) than words.  The greater response for nonwords, including pseudowords, over real 

words would therefore indicate that lexical access may occur starting as early as 250ms, as 

simple phonological probability would not create differences between valid pseudowords and 

real words.  Taken together, these studies suggest that lexical effects typically emerge after the 

N170, consistent with the view of the N170 as a prelexical response. 

 A later study by Maurer et al. (2008) greatly informs the present study.  As this study 

forms the basis for our present study, and our present study is created to expand upon their 

findings, it is extremely valuable to discuss this study in detail.  In a series of 3 experiments, two 

separate sets of orthographic stimuli were compared in a blocked one-back task design.  The one-

back task is a simple task which is aptly suited to the study of unfamiliar orthographic 

processing, as a subject is only directed to push a response button when detecting an immediate 

repetition of a stimulus.  This alleviates a need for the subject to have previous experience with 

an orthographic system as simple visual recognition is sufficient for the task.  While the repeated 

stimuli appear infrequently and in a randomized order, participants must evaluate each stimulus 

to determine whether it was a repetition of the previous stimulus, although overt button-press 

responses are only made to stimuli they decide have been repeated.  The orthographic systems 

used in this series of experiments include 3 separate Japanese orthographies, the English Latin 

alphabet, and a geometric symbol set. 

Kanji, Hiragana and Katakana are the three orthographic systems used in written 

Japanese.  Kanji are logographic characters borrowed directly from Chinese, such that the 

information encoded by them is semantic rather than phonological.  Due to successive waves of 
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borrowing from the Chinese language, many Kanji are in fact subject to multiple readings, 

depending on the time period during which the borrowing occurred, yielding semantically 

synonymous but phonologically distinct oral representations for a single character.  Hiragana and 

Katakana, in contrast, are syllabaries derived from the same logographic Chinese symbols and 

largely simplified from them.  In contrast to Kanji, each character in Hiragana or Katakana 

corresponds to a specific phonological value; either a single vowel, a CV combined unit, or a 

nasal sonorant coda.  As such, Hiragana and Katakana provide a transparent phonological 

representation in contrast to Kanji‟s highly opaque phonological representation.  Each of these 

orthographies also has a distinct function within the system of written Japanese as a whole, with 

Hiragana being used primarily for the dual purposes of adding inflection to logographic Kanji 

and representing words of Japanese origin which lack a Kanji representation in the lexicon, while 

Katakana is used primarily to represent foreign loanwords of approximately the last century as 

well as onomatopia and scientific terminology. 

 Maurer et al. (2008)‟s first experiment compared 2 character Kanji stimuli to 2-3 

character Hiragana stimuli in a blocked one-back design, using 40 stimuli of a particular 

condition, each repeated once, in separate blocks.  12% of these stimuli were presented twice in 

succession, constituting a stimulus repetition which the participants were expected to detect.  

Participants included 18 native speakers of Japanese who could also read English, and 17 native 

speakers of English who were inexperienced with the Japanese language.  There was found to be 

a significant left-lateralization of the N170 response for Japanese speakers for both conditions, 

while English speakers demonstrated a bilateral response.  Further, a greater response for 

Hiragana characters was demonstrated than for Kanji amongst Japanese speakers.  This was 

speculatively interpreted to be a difference caused by the variable length amongst stimulus types, 
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with Hiragana strings being longer in some cases than Kanji strings.  The effect of length on 

N170 responses remains unclear, but one study which did control for length as a specific factor 

in the response of the N170, Hauk & Pulvermüller (2004) found the opposite effect as would be 

predicted by Maurer et al. (2008), namely that shorter stimuli produced a greater amplitude 

response than longer stimuli.  This mismatch complicates the analysis of results from Maurer et 

al. (2008), and seems to suggest an effect unrelated to length at play in this data. 

Maurer et al. (2008)‟s second experiment compared two Katakana stimulus types, words 

that are typically rendered in Katakana, and words typically rendered in Kanji that had been 

transcribed into Katakana.  Other than stimuli, procedures for this experiment were the same as 

experiment one.  Much like experiment one, a left-lateralized response was noted for Japanese 

speakers while a bilateral response was noted for English speakers.  No significant differences 

were noted between the two types of Katakana for Japanese speakers. 

In experiment three, English strings were compared to a geometric symbol set, consisting 

of 8 characters, a circle, triangle, square and diamond, and these 4 symbols with a descender line 

attached.  With only 8 symbols in their non-linguistic condition, it naturally follows that this 

symbol set was both not matched to any one language set, nor did it attain the depth or variability 

of a full orthographic system used by a natural language.  This experiment resulted in a left-

lateralized response for both speaker groups for the English language stimuli, and a bilateral 

response for symbol strings.  The N170 response for English words was significantly increased 

for native Japanese speakers compared to their native English speaking counterparts.  This was 

tentatively attributed to an effect of “novice vs. expert learning”.  The increased N170 response 

was absent for English non-words however. 
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Taken together these three experiments suggest a lateralization effect for familiar versus 

novel orthographic stimuli, wherein familiar stimuli are processed in the left-hemisphere while 

unfamiliar stimuli are processed bilaterally.  It should be noted that while all language conditions 

were present in the study across the three experiments, the experiments themselves only allowed 

paired comparisons between their two specific orthographic stimuli types. 

Another study which examined the effect of experience was Baker et al. (2007), an fMRI 

study comparing English words, English consonant strings, Hebrew words, Chinese words, line 

drawings, and number strings, among groups of English readers and native speakers of English 

who were also native readers of Hebrew.  While English-only readers demonstrated a larger 

response for English words and consonant strings, Hebrew readers showed the same pattern, 

with an additionally even stronger response for Hebrew characters.  This indicates, based on the 

language & orthographic backgrounds of the participants, a very strong role of experience in 

modulating responses. 

The experimenters proposed two potential hypotheses to account for this processing 

difference.  The first was that this processing is dependent on language-specific experience.  

While this explanation does account for the difference in processing between English-only 

readers and readers of Hebrew, it does not account for the greatly increased response for Hebrew 

strings over English strings.  Their second hypothesis was that the increased activation for 

Hebrew strings over English strings in Hebrew readers was the result of increased attention to 

the Hebrew stimuli over the course of testing.  However, this hypothesis was problematic for the 

researchers to adopt as increased attention alone would have created the same effect for non-

Hebrew readers as well in the blocked one-back trials, where their novelty to inexperienced 

readers would have resulted greater difficulty processing them.  We will return to these 
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alternative hypotheses regarding the findings of Baker et al. (2007), and how they relate to the 

findings of the current study, in the Discussion section. 

A behavioral study by Wong et al. (2011), comparing Latin, Chinese and pseudo-letters 

during a rapid serial visual presentation task found an additional effect of orthographic 

familiarity.  Participants were presented with two characters before each trial sequence of 20 

images, and asked to identify which of the two characters was presented during the sequence 

afterward.  The presentation rate was modulated by a staircase design, wherein threshold speed 

of the presentation rate was modulated by the participants‟ responses, such that correct responses 

increased the presentation speed of subsequent trial sequences.  Each condition (e.g. Latin letters 

with Chinese character distracters and pseudo-letters with Latin distracters as reported below) 

comprised a block of 30 trial sequences.  During the presentation of Latin letters to English 

speakers and Chinese-English bilinguals, distracter Chinese characters created a slow-down 

response for bilingual speakers, limiting the threshold presentation rate of images per second 

they viewed based on their number of correct responses, but this effect was absent for 

monolingual English speakers.   This indicates both an effect for familiarity and the recruitment 

of the same underlying neurological architecture for both orthographies.  However, the same was 

not seen for a similar pseudo-letter seeking task with Latin letter distracters, which the 

researchers claim indicates this difference is not based strictly on familiarity, as Latin letter 

distracters should have had a similar effect for both groups as Chinese characters did for 

bilinguals.  However, as this study was behavioral in nature, there exists no direct neurological 

data to compare with other related findings in the field. 
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Current Study 

The first step in this research, and the basis of the current paper, was to replicate and 

extend Maurer et al. (2008)‟s findings with an English-only control group who have no prior 

experience with Japanese orthography.  We have elected to adapt the methodology of Maurer et 

al. (2008), testing Hiragana, English and an enhanced non-linguistic symbol set, along with 

pseudo-word controls for each language condition, all of which were presented in the same 

experiment and used a randomized presentation order such that no two subjects saw the same 

order of stimuli.  Additional controls on stimuli were utilized in order to further understand the 

effect of familiarity on the N170 response.  As length speculatively affected the amplitude of the 

N170 in Maurer et al. (2008)‟s first experiment, we investigated potential length effects among 3 

and 4-character stimuli.  Likewise, to continue testing the pre-lexical status of the N170 brain 

response, words and non-words were directly comparable, matched tightly for bigram frequency 

to ensure that non-words followed realistic letter combination patterning, for which research has 

indicated the N170 response may be sensitive.   

 

Methods 

Participants 

 16 native speakers of English with no background in Japanese were recruited for the 

purposes of this study from the university community.  Participants had a mean age of 29.3 years 

and a female to male ratio of 13:3.   Participants provided full and informed consent and were 

paid for their participation in the study.  Prior to the experiment, participants completed the 

Edinburg Handedness Inventory.  Participants who used corrective lenses for any form of visual 
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impairment were instructed to bring their lenses and wear them during the course of the 

experiment.  Participants also completed a short survey asking them to self-rate their knowledge 

of English and Japanese, to confirm that the participants were native speakers of English with no 

prior background in Japanese. 

 

Materials 

English Non-Linguistic Hiragana 

3 Character 4 Character 3 Character 4 Character 3 Character 4 Character 

Word Non Word Non Word Non Word Non Word Non Word Non 

fit ane main herg fit ane main herg bjz 0de 4;de nh_4 

bus ong from gath bus ong from gath bna *ue bq%. h;.e 

gun ont more lind gun ont more lind xjr G.e qhxy 4bm, 

his ent west vean his ent west vean x8l eyp c;to #Tlw 

but fon will sten but fon will sten Ay* 4sl 6ede SbuW 

Table 1.  Example stimuli.  See Appendix I for full list of stimuli. 

Each language set had 150 3 character strings and 150 4 character strings to control for 

possible length-specific effects in processing.  Controlling length in this manner prevents any 

differences between orthographic stimuli types due to possible length related effects.  Further, 

such a fine-grained difference in length allows for the testing of the effect of subtle length 

manipulations in the amplitude of the N170 as speculated by Maurer et al. (2008). 

Further, each language included 150 real words and 150 pseudowords specifically 

designed for the purposes of this experiment, in order to ensure that this process is occurring 

prelexically.  This allows us to directly compare the effects of real words versus a well-formed 

non-word, testing the contentious findings of lexical sensitivity within the N170 response. 
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The 300 non-linguistic stimuli were likewise split between 3 and 4 character strings.  

Thus they are as evenly matched to our real orthographic stimuli conditions as possible in terms 

of quantity and length.   

Within each orthographic condition of 300 stimuli, the stimuli were evenly divided 

among 4 groups, between 3 and 4 word conditions and word and non-word conditions, such that 

each orthography included a set of 75 stimuli (5 of which are visible in Table 1, above) for each 

of the following conditions:  3 character words, 3 character non-words, 4 character words, and 4 

character non-words.  10 stimuli from each group of 75 target stimuli were used as triggers for 

the one-back behavioral measure, yielding 120 total triggers balanced equally across all groups.  

The total triggers comprised 13.3% of the token stimuli set, which is nearly the same 13% ratio 

of triggers to total targets as seen in Maurer et al. (2008)‟s study.  To avoid potential priming 

effects in the analysis of our data, the second repetition of these stimuli were excluded from 

analysis, as priming has been shown to affect the amplitude of the N170 response.  As such, 

including these repetitions in the analysis data would only confound results with task-related 

artifacts. 

Hiragana real word strings were culled from Nakama 1: Japanese Communication, 

Culture, Context (Makino, Hatasa & Hatasa ‟98), a textbook for introductory level Japanese 

language.  The purpose of using an introductory level textbook was to locate frequently 

occurring words which would be familiar to a learner of Japanese as a second language, which 

allowed for the extension of this study to L2 learners of Japanese in the future.  This yielded 139 

3 character strings and 118 4 character strings.  Words using glides or geminates, both of which 

utilize a smaller subscript Hiragana character, were excluded in order to keep all character sizes 

equal.  The lists for each string list were further narrowed based on lexical frequency statistics 
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from the NTT corpus (Amano & Kondo, 2003) to 75 of each.  Each of the final strings was 

predominantly occurring in Hiragana (as opposed to Katakana or Kanji) and/or was heavily 

represented across all orthographic systems (> 10,000 occurrences), such that none of them were 

occurring in an orthographically unfamiliar form. 

Bigram frequencies for each string were calculated based on the co-occurrence of 

characters within the NTT corpus, providing an additional control on stimuli absent in Maurer et 

al. (2008)‟s study.  This was accomplished using a Perl script which converted the original text 

encoding to the most recent version of Unicode (UTF-8) making it readable within the Perl 

programming language. Next, tabulations of the co-occurrence of characters within the corpus 

could be computed.  This allowed us to automatically and systematically extract bigram 

frequencies for all of the Japanese stimuli, making it possible to match the Japanese words and 

nonwords on this property.  Using these calculations, nonword strings were generated as foils to 

their real word counterparts (75 each of 3 and 4 character strings).  A one-way ANOVA was 

performed to ensure that the bigram frequencies of real and nonwords of both lengths were all 

statistically similar (F=1.377, p=0.25). 

English real word strings were likewise culled from Insights for Today (Smith & Mare, 

2004), an English as a Second Language textbook.  This was to ensure that English word strings 

would be frequently occurring and familiar to learners of English as a second language, as this 

study would as previously mentioned be extended to other subject populations, including native 

speakers of Japanese who had learned English as a second language.  This yielded 129 3-letter 

and 193 4-letter words.  These lists were further narrowed to the 75 most frequently occurring in 

each list based on lexical frequency calculations in the CELEX corpus (Baayen et al. 1993). 
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75 nonword foils for each string length were generated from the ARC Nonword Database 

(Rastle, Harrington & Coltheart, 2002).  Bigram frequencies of these nonwords were compared 

against the English real words using the MCWord Orthographic Wordform Database (Medler & 

Binder, 2005) to ensure they were not significantly different from each other.  Another one-way 

ANOVA was performed on English stimuli as with the Hiragana stimuli previously to ensure 

bigram frequency was not significantly different between stimuli types (F=0.768 p=0.513). 

A non-linguistic symbol set was created in the laboratory utilizing FontCreator 4.0 

software by HighLogic, Inc. and provided to the researchers consisting of 26 letter-like symbols 

intended to match the complexity of a natural orthographic system, enhancing this Non-

Linguistic control from the 8 geometric figures utilized by Maurer et al. (2008).  English word 

and non-word strings of both lengths were copied and rendered in this symbol set to ensure that 

the use of non-linguistic symbols would follow a naturalistic bigram patterning.  This allows our 

Non-Linguistic stimuli set to additionally follow natural usage patterns of an orthography for a 

natural language, such that some characters are naturally more commonly used than others, just 

as the individual letters in the English conditions do. 

English strings were rendered in Courier New font.  Japanese Hiragana strings were 

rendered in Malgun Gothic.  Both fonts are normally monospaced and highly legible, which in 

turn simplified further controls between orthographies.  HighLogic‟s FontCreator 4.0 software 

was utilized to correct differences between the size and width of characters between the three 

orthographic sets, to ensure no one symbol string would be significantly different in size, 

orientation or line thickness from its cross-condition pairs. 
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As the stimuli in the Maurer et al. (2008) study were subtended at 1.8 degrees of visual 

angle (that is, the amount of the visual field occupied by the stimulus, taking into account not 

only size on the computer screen, but also distance between the stimulus presentation computer 

and the subject‟s eye) for English and Non-linguistic strings, and a visual angle of 1.9 for 

Hiragana strings, the researchers of this study elected to normalize across all three conditions to a 

standard 1.8 degrees of visual angle for all of them as this was the value of two of three 

conditions and reasonably close in value to the measure for Hiragana stimuli. 

It was also found that rendering black text on a grey background was too straining for 

pilot participants and created an excessive number of blink artifacts; thus, turquoise text on a 

black background was selected for use in the current study. 

 

Procedure 

Participants were seated in a comfortable chair approximately 75cm from a cathode-ray 

tube display monitor with a 100 kHz refresh rate.  After placing the electrode cap and keeping 

scalp impedances below 5 kOhms, participants were given a practice session for the one-back 

response paradigm which lasted approximately 3 minutes, during which time the participants 

were asked to press a button on the response device (a Microsoft SideWinder Plug & Play Game 

Pad) when a stimulus was repeated immediately, as in the main task of the experiment.  Brain 

responses were recorded using a 64-channel cap (details to follow in subsequent section).  

The main task consisted of the 900 target stimuli, which included non-repeated stimuli 

and first-occurrence of one-back trigger stimuli.  The 120 second-occurrence trigger stimuli 

(those to which the subject was instructed to respond via button-press) were also included, each 
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of which directly followed their matched counterpart in the target stimuli set.  Each stimulus was 

displayed as in the Maurer et al. (2008) study for 250ms, followed by a randomized inter-

stimulus interval of between 1500 and 2500ms, again following the procedure of the Maurer et 

al. (2008) study.  All stimuli were presented using Paradigm software created by Perception 

Research Systems, Inc.  Participants were given 5 breaks spaced evenly among the target stimuli 

in order to help them remain focused on the task.  Breaks lasted until the participant directed the 

program to continue by means of a button press response.  Not counting breaks, the total length 

of the experiment was approximately 40 minutes. 

 

Data Recording and Analysis 

 ERP data was recorded on a Neuroscan SynAmps2 system, using an Ag/AgCl cap made 

by Electro-Cap International Inc.  The cap included 59 active scalp sites, arranged based on an 

extension of the international 10-20 system.  Electrodes were placed at frontal (FZ, FPZ, FP1, 

FP1, F1, F2, F3, F4, F5, F6, F7, F8, F3A, F4A), central (CZ, C1, C2, C3, C4, C5, C6, C1A, 

C2A, C1P, C2P), temporal (T3, T4, T5, T6), parietal (PZ, P1, P2, P3, P4, P5, P6, P1P, P2P, P3P, 

P4P) and occipital (OZ, O1, O2) regions, as well as Fonto-central (FCZ, FC3, FC4) Centro-

parietal (CPZ, CP3, CP4), Fronto-temporal (FT7, FT8), Tempero-central parietal (TCP1, TCP2), 

Tempero-parietal (TP7, TP8) and cerebellum (CB1, CB2) additional sites.  Impedances were 

kept below 5 kOhms.  Data was recorded referenced to the left mastoid channel, and separately 

re-referenced to both mastoid channels later during analysis.  Bipolar electrode montages were 

also placed vertically above and below each eye, as well as a horizontal montage placed just 
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outside the lateral canthi.  Recordings were sampled at 1000 Hz, with an online band pass filter 

of 0.15 Hz to 200 Hz. 

ERP data was analyzed across target types.  ERP data from the second repetitions, which 

directly followed their matched target stimuli, were excluded from analysis as the ERP data from 

these second repetitions would necessarily be corrupted by priming effects.  Additionally, the 

ERP data was also marked such that repeated stimuli which were missed by the participants and 

target stimuli which were falsely identified as repeated by the participants would be recognizable 

as an incorrect response during analysis.  Data was baseline corrected, averaged across target 

type, low-pass filtered to 30kHz and mean amplitude values were extracted for the following 

time windows:  90-160ms and 250-375ms.  The 90-160ms time window was identified as the 

primary focus of inquiry for the purposes of this study based on existing literature and cursory 

examination of the data, but later time window of 250-375ms was also of interest during the 

analysis of lexical properties. 

Electrodes were grouped for regional analysis in terms of right and left anterior and 

posterior electrode groups, with right and left occipitotemporal regions created from a subset of 

the posterior electrode groups.  The left anterior region consisted of electrodes F1, F3, F3A, F5, 

F7, C1, C1A, C3, C5, FC3, FT7, and T3.  The left posterior region consisted of electrodes T5, 

TCP1, TP7, C1P, CP3, P1, P1P, P3, P3P, P5, O1, and CB1.  From this region, electrodes P3P, 

O1, and CB1 were selected to form the left occipitotemporal region.  Right regions consisted of 

the even-numbered analogues to the electrodes of the left regions of analysis.  Finally, for late 

lexical effects, the electrodes F7, FT7, and T3 were selected for a Left Anterior analysis group. 

 



22 
 

Predictions 

If the pattern of lateralization for familiar vs. unfamiliar orthography observed in Maurer 

et al. (2008) extends to the current design, we expect to find a lateralization difference among 

familiar and novel stimuli, namely that familiar orthographic stimuli will elicit a left-lateralized 

response, while novel will elicit a bilateral response.  Should the amplitude difference recorded 

in the first experiment of Maurer et al. (2008) which was taken to reflect length differences 

between Kanji and Hiragana stimuli, we would expect the longer 4-character strings to elicit a 

greater amplitude response than the 3-character strings.  However, we could also predict, based 

on the findings of Hauk and Pulvermüller (2004), a smaller amplitude response to 4-character 

strings over 3-character strings.  Finally, based on the findings of Maurer et al. (2005), lexical 

differences may be detectable in the N170 response.  Results of other studies, such as Bentin et 

al. (1999) and Proverbio et al. (2004), would indicate processing differences between words and 

nonwords would only occur subsequent to the N170. 

 

Results 

 Data was analyzed in terms of four principal areas of inquiry: Cross-language amplitude 

effects, lateralization, length and lexicality effects. In the following, we present the results for 

each property, focusing on earlier (90-160 ms) and a later (250-375 ms) time windows of 

interest.   
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Cross-Language Effects 

 Amplitude differences across languages demonstrated a clear distinction in terms of the 

effect of familiarity across languages, as seen in Figure 1, below.  When comparing across 

languages in the 90-160ms time window, the left-occipitotemporal region showed significantly 

less activation for the familiar English stimuli when compared to either novel Japanese or Non-

linguistic stimuli types (t(15) = 2.473, p = 0.026 and t(15) = 5.298, p < 0.001, respectively), 

while Japanese and Non-linguistic stimuli were not significantly different from each other (t(15) 

= -1.723, p = 0.105) 

  

Figure 1.  ERP waveforms for English, Non-Linguistic, and Japanese from averages of the 

electrodes in the Left-Occipitotemporal Region group. 

 

 In the later 250-375ms time window a reversal in this trend is recorded, with English 

stimuli showing significantly greater activation than either Japanese or non-linguistic stimuli 

within the same region (English vs. Japanese: t(15) = -5.226, p < 0.001, English vs. Non-
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Linguistic: t(15) = -4.297, p = 0.001) while no significant differences were recorded between 

Japanese and non-linguistic stimuli (t(15) = -0.412, p = 0.686).  These differences between 

familiar and novel orthographic systems will be discussed at length in a later section.  

Differences between the three language conditions are further demonstrated with topoplots, 

graphical representations of voltages over all of the scalp electrodes during a specific time 

window, using subtraction waveforms (subtracting the value of one condition from the value of a 

second condition, thus displaying the difference between two conditions over time) as illustrated 

in Figure 2, which shows greater posterior negativities (depicted in blue) for the Japanese  than 

English (leftmost column) and the Non-Linguistic than English conditions (middle column); no 

similar difference is observable for the Japanese vs. Non-Linguistic comparison (rightmost 

column). 

Figure 2.  Topoplots demonstrating subtractions of two stimuli in two separate time windows: 

90-160ms (top row) and 250-375ms (bottom row) 
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Lateralization 

 Analysis was expected to yield lateralization differences across languages as presented in 

Maurer et al. (2008), and these findings were largely consistent with that study. Within the 90-

160ms time window, collapsing across all within-language stimuli types, English was found to 

be significantly left lateralized in the occipitotemporal region analysis (t(15) = 2.329, p = 0.034), 

as seen in Figure 3 (leftmost waveform), below. 

  Japanese and non-linguistic stimuli both showed no significant lateralization effects 

within the occipitotemporal region (Japanese, t(15) = 1.156, p = 0.266, non-linguistic, t(15) = 

1.294, p = 0.215, see Figure 3 (center and rightmost waveforms, respectively), )  The 

lateralization effect can be seen in Figure 4, topoplots of the various language conditions in the 

90-160ms time window which demonstrate these differences.  As these findings run largely 

congruent to those of Maurer et al. (2008), brief mention of them will be made in the subsequent 

discussion section. 

 

Figure 3.  ERP waveforms comparing responses to English, Japanese and Non-Linguistic stimuli 

taken from averages of electrodes in the Left Occipitotemporal Region group to Right 

Occipitotemporal group 
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Figure 4.  Topoplots for all 3 Language conditions in the 90-160ms time window, demonstrating 

the greater degree of left-hemisphere negativity in the occipitotemporal region for English, and a 

broadly distributed negativity in the occipitotemporal regions for Japanese and non-linguistic 

conditions. 

 

Length 

No significant differences for length were recorded in any within language pair-wise 

comparison were recorded for either word or non-word conditions, or when collapsed across 

lexical conditions as shown in the figure below.  The lack of length differences will be addressed 

in the discussion section.   Figure 5 shows length comparisons for English, Japanese and Non-

linguistic stimuli respectively. 

 

Figure 5. ERP waveforms taken from averages of electrodes in the Left Occipitotemporal region, 

comparing 3-character words and nonwords to 4-character words and nonwords for English, 

Japanese and Non-Linguistic stimuli. 
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Lexicality 

 Lexicality effects would only be expected to emerge in this study for English, as 

participants only had knowledge of English, and therefore lacked lexical representations for any 

stimuli from the Japanese language group.  However, whether these effects would be expected to 

emerge at the N170, or subsequent to the N170, is a matter of debate.  Recall that a majority of 

the literature on this topic indicates that the N170 response is prelexical, suggesting that lexical 

effects should not be evident for the N170 time window, even for the English stimuli .  However, 

some findings in the literature which do suggest potential lexical effects emerging at N170 (e.g., 

Maurer et al. 2005) make this an area of inquiry worth examining. 

 In the 90-160ms time window, no lexical effects for either the familiar English stimuli or 

the novel Japanese Hiragana stimuli were found to be significant.  (English: t(15) = 0.027 p = 

0.979, Japanese: t(15) = 0.249 p = 0.806)  See Figure 6 for lexical comparisons in the 

occipitotemporal region group (leftmost column). 

 

Figure 6.  ERP waveforms taken from averages of electrodes from the Left Occipitotemporal and 

Left Anterior region groups, comparing words and nonwords for English and Japanese stimuli. 
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 However, in the 250-375ms time window, a significant effect for lexicality was noted in 

the familiar English conditions for the Left Anterior group (t(15) = 3.886 p = 0.002), as shown in 

Figure 6 (upper right waveform).  As predicted for novel orthographic stimuli this difference 

caused by lexical status was absent for the Japanese conditions (t(15) = -0.442 p = 0.665), 

demonstrated in Figure 6, (lower right waveform).  This activation in left anterior areas during 

this time window appears roughly analogous to the N3 component reported in Proverbio et al. 

(2004), showing increased amplitude responses for pseudowords over words in the same time 

window.   

 

Behavioral Data 

 Although the behavioral task was not designed to reveal differences in processing across 

conditions, but rather serves to keep the participants‟ attention focused on the stimuli, we provide 

a description of participants‟ performance here, in order to demonstrate that the participants were 

indeed attending to the stimuli and performing with high accuracy.  Of the 120 second-repetition 

trigger stimuli for the one-back task, subjects missed on average 6.1 targets, or 5.1%.  In the 

remaining 900 first-iteration stimuli, subjects falsely identified 9.9, or 1.1% as repetitions, 

leaving 93.8% correct responses across all stimuli. 

 Broken down across languages, subjects performed better in the familiar English 

condition than they did in the unfamiliar Japanese or non-linguistic conditions.  In English 

conditions, subjects averaged 0.2 missed second-repetitions (0.5%) and 1.2 falsely identified 

first-iterations (0.4%).  Japanese stimuli in contrast displayed an average of 2.5 missed second-

repetitions (6.3%) and falsely identified 4.2 (or 1.4%) of first-iterations.  In the non-linguistic 
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stimuli condition, subjects missed an average of 3.4 (or 8.6%) second-repetition targets and 

falsely identified 4.6 (or 1.5%) of first-iterations as repetitions. 

 

Discussion 

 Our results have demonstrated a clear N170 response congruent with studies conducted in 

the reading and visual processing fields.  Further, these results have demonstrated a strong effect 

of familiarity in relation to the amplitude of this response, in an experiment wherein these stimuli 

were randomized across stimulus type, and tightly controlled for length, lexical properties, and 

bigram combinatorics.  The finding of this amplitude distinction occurring in addition to the 

lateralization effect for familiarity noted by Maurer et al. (2008) provides an intriguing new 

dimension to our knowledge of the role of experience in orthographic processing.  Likewise, the 

fact that the lateralization effect noted by Maurer et al. (2008) was replicated in the present study 

even with numerous controls for length, lexicality, bigram frequency, as well as being 

randomized across stimuli, demonstrates the robustness and reliability of this pattern of effects. 

 In terms of cross-language effects, for which there is an emerging literature in terms of its 

effects on the N170 response, our findings are fairly consistent with other literature on the 

subject.  Maurer et al. (2008) reported a lateralization effect for familiar versus novel stimuli 

wherein familiar stimuli demonstrated a left-lateralized response while novel stimuli were 

elicited a bilateral or right-lateralized response.  This expected pattern was evident in this data as 

hypothesized.  This pattern of lateralization is fairly straightforward to understand in terms of 

neurological processing.  The VWFA is localized to the left occipitotemporal cortex, and has 

been „tuned‟ to recognize familiar orthographic stimuli as meaningful units of information.  
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Therefore processing of a familiar orthography would occur predominantly in this specialized 

region.  In contrast, the VWFA would not be tuned to process novel orthographic stimuli as 

meaningful and specialized processing would not be available.  Instead, we would expect a much 

more generalized response, employing wider cortical regions which could be brought to bear on 

the task of recognition. 

 In contrast to Maurer et al. (2008), the present study found a greater amplitude N170 

response for novel stimuli than for familiar stimuli as well.  It is possible that the difference 

demonstrated between our data and that of Maurer et al. (2008) represents an effect of attention 

created by task related differences.  Maurer et al. (2008) utilized a blocked design, wherein 

stimuli were not mixed between types.  This would have allowed participants to quickly realize 

whether or not stimuli in an entire block would be linguistically meaningful very rapidly, 

allowing them the ability to adopt an alternate recognition strategy which would not rely as 

heavily on language-specific processing.  As our stimuli were randomized across stimuli types, 

participants had no way of predicting whether a given stimulus would be linguistically relevant 

before it was presented, and thus had less opportunity to adopt alternate recognition strategies.  

As has already been mentioned, the one-back response paradigm requires constant evaluation on 

the part of participants to detect repetitions.  As such, more attention may have been required of 

the participants because of the potential for linguistically meaningful information in any potential 

stimulus, despite the fact that the one-back paradigm is designed not to require familiarity with 

the orthographic conditions being tested.  

 Explanations for this amplitude difference demonstrated by our study are difficult to 

explain fully, mainly due to the limited literature to date on the effect on familiarity on lexical 

processing.  A similar response was found in Baker et al. (2007) an fMRI study utilizing both 
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blocked design one-back paradigm and an event-related paradigm comprised of groups of 5 

stimuli of the same type mixed randomly.  The study compared two known orthographies 

(English and Hebrew) among speakers who were effectively bilingual readers of both.  As the 

Hebrew stimuli elicited a much greater response than English stimuli for bilingual Hebrew 

readers but not for English only speakers, one hypothesis for the response difference was that 

this response difference was based on prior experience.  While there is certainly a role being 

played by prior experience, Baker et al. (2007) presents data which demonstrates an effect 

moving in the opposite direction as that shown in our findings, wherein, for English-only 

readers, the novel Hebrew characters showed no greater activation than number strings.  Our 

findings, in contrast, demonstrate novel orthographic conditions causing a greater amplitude 

response when compared to familiar orthographic conditions.  What Baker et al. (2007) initially 

consider in order to explain why Hebrew characters yielded a larger response than English 

letters, in Hebrew/English bilinguals, provides a concrete explanation as to why the Japanese and 

non-linguistic stimuli in our study yielded a greater amplitude response, namely that the 

increased response is the result of increased attention to Hebrew stimuli over English stimuli 

during the task.  This attentional argument is in fact a poor fit for their data, in that a novel 

language stimulus of Chinese characters was also included, and this created a much lower 

response than either the English and Hebrew words, or the Latin letter strings.  Further, this 

greater response was only present for Hebrew words in Hebrew readers, but absent in English-

only readers.  One would expect greater responses for Chinese characters in both groups and an 

equally large response for Hebrew in the English-only group comparable to the observed 

response for Hebrew in Hebrew readers, while Hebrew readers would likely have a response to 

Hebrew strings similar to the English word stimuli.   While this attentional hypothesis is a poor 
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fit for the data presented in Baker et al. (2007), our data does show a greater amplitude response 

for novel stimuli over familiar stimuli as would be predicted by this hypothesis, strongly 

indicating that these increased amplitudes reflect an effect of increased attention to novel stimuli 

in the current study.  

 Returning to one of the results of experiment three in Maurer et al. (2008), native 

Japanese speakers, who were also experienced speakers of English, were found to have an 

increased amplitude N170 response to English words compared to native English speakers.  This 

increase in response was posited to be due to “novice vs. expert learning”, however as 

participants had begun studying English at an average 9.9 years of age and had been living in an 

English-speaking country for an average of 9.4 years at the time of testing, the participants were 

likely more experienced than the term „novice‟ would typically imply.  As in the Baker et al. 

(2007) study, applying the attentional hypothesis to this data is problematic as the previous two 

experiments which tested Japanese orthographic conditions showed no increase in the N170 for 

native English speakers while viewing Japanese orthographic conditions which were completely 

novel to them.  However, our previously stated hypothesis that the blocked design of the 

experiments in Maurer et al. (2008) could have reduced the attention of participants by allowing 

them to quickly predict whether all stimuli of an entire block were linguistically meaningful or 

not after the presentation of a limited number of stimuli would explain the lack of an increased 

N170 response for native English speakers to Japanese orthographic stimuli.  If the increased 

amplitude response of the N170 for native Japanese speakers to English words is in fact an effect 

of attention, this would seem to indicate that non-native orthographies retain a degree of the 

novel quality which modulates this amplitude difference even with a large amount of experience. 
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 Our study tested responses to familiar and novel orthographic stimuli in adult readers, 

however controls on our study also allowed for us to test for effects of lexicality and length 

effects of stimuli on the N170 response.  In terms of lexical effects, our findings were largely in 

line with the majority of the established literature wherein the N170 response is demonstrably a 

pre-lexical process.  While Maurer et al. (2005) found a greater effect for words over 

pseudowords in their study, no such effects were found in the 90-160ms time window isolated 

for our analysis.  As Maurer et al. (2005) report no controls for bigram frequency between words 

and pseudowords or other such controls which might inform a pre-lexical process on the well-

formed quality of the presented stimulus, it is entirely possible that their lexical effects were in 

fact an effect of the response discriminating between well-formed words and poorly formed 

pseudowords. 

 With regards to lexicality, our data seems most analogous to the data presented in 

Proverbio et al. (2004), in that the lexical effects presented by our data, occurring in the left 

anterior portions of the cortex between 250 and 375ms, most closely match with the N3 

component presented in their study.  This demonstrates that the N170 response is, as the majority 

of existing literature states, a prelexical process, with lexical access occurring during later 

processing.   

 Unlike the previously mentioned Hauk & Pulvermüller (2004) study, no effects for 

stimulus length were apparent in our results.  While their length difference compared words 

averaging 4.1 letters in length in the short condition to words of 6.2-6.3 average letters in length 

in the long conditions, our stimuli were simply a comparison of 3 and 4 letter words.  Overall the 

difference in length in the Hauk & Pulvermüller (2004) study was greater than ours and occurred 

in greater string lengths in general, whereas our „long‟ string length condition is 0.1 letters 
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shorter than the Hauk & Pulvermüller (2004) „short‟ condition.  Taken together, the lack of 

length effect in the present study is not particularly surprising.  The purpose of including such a 

minor length effect was not to test the effect of string length on the N170 response in general, but 

specifically to examine Maurer et al.‟s (2008) hypothesis that the greater negativity observed in 

their Experiment 1 for Hiragana strings over Kanji was due to a length difference, where Kanji 

were always 2 characters long and Hiragana strings were 2-3 characters in length.  Considering 

the lack of a length response in the present study for a similarly small difference, and Hauk and 

Pulvermüller (2004)‟s observations that shorter strings elicited a greater N170 response than 

longer strings, this evidence indicates that it is unlikely that the observed significant difference 

between the two conditions in the Maurer et al. (2008) study was caused by such a minor 

difference in string length.  It is worth noting that as length effects are still largely understudied 

in the N170 response literature, which would prevent this explanation from being ruled out 

completely.  Rather, this should be considered along with other possible explanations for the 

anomalous processing difference noted in the Maurer et al. (2008) study. 

  

Conclusions 

 Our study has demonstrated the existence of an amplitude based modulation in the N170 

response to the familiarity of orthographic stimuli in a reading task.  This amplitude based 

modulation was found in addition to the reports of effects of familiarity on lateralization.  The 

present study differed from Maurer et al. (2008), in that stimuli were randomized between 

conditions, the notion that this increase in amplitude for unfamiliar language stimuli is a result of 

increased attention during the task is perhaps the most obvious explanation for this amplitude 

related difference.   
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 The most obvious next step in this line of research is of course to continue this 

experiment with the second participant group present in Maurer et al. (2008), namely the 

Japanese speakers with English language experience.  Based on these findings, we would expect 

speakers with experience in Japanese and English to show the increased amplitude only for non-

linguistic stimuli, if indeed the attentional effect on the N170 amplitude is strictly one of novel 

vs. familiar orthographic systems.  However, if the increased amplitude of the N170 for native 

speakers of Japanese for English words does in fact reflect a persistent novel characteristic which 

is retained despite considerable experience with a non-native orthography, we would expect to 

see an effect similar to the native English speakers of the present study, albeit with an increased 

amplitude to the completely novel non-linguistic symbol set and the non-native English words 

compared to the native Japanese Hiragana conditions.   

 A third experimental group, English speaking learners of Japanese, would allow us to 

examine both the canonical lateralization and amplitude based effects for familiarity by studying 

participants in the process of acquiring a novel orthography.  These learners could be expected to 

show either a reduced amplitude N170 for Japanese stimuli compared to that of the English only 

group, or an 170 amplitude analogous to the N170 for English demonstrated by English-only 

speakers, depending on their level of experience with Japanese and the rate at which familiarity 

modulates this response.  Additionally, as Maurer et al. (2008) reported left-lateralization for 

both native and non-native orthographies, this participant group would allow us to study the 

effect of learning on this lateralization and at what rate this lateralization occurs. 

 Along with the left-lateralization presented by Maurer et al. (2008) for familiar 

orthographic conditions, we are now presented with two potential vectors for studying the effects 

of familiarity in modulating the N170 response in ERP.  The degree of connection between the 
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left-lateralization for familiarity as demonstrated by Maurer et al. (2008) and the familiarity-

based amplitude differences demonstrated by the present study are also potentially of interest.  

Namely, are the two familiarity effects linked, based on the same adaptation of the VWFA to 

expertise with a new orthography, or do these two familiarity effects demonstrate different rates 

of modulation, with one occurring faster than the other?  Extending the current study to both of 

the participant groups suggested would allow for a strong initial examination of the possible 

connection between these two effects by examining data from participants with varying degrees 

of familiarity with novel orthographic systems and thus allowing for examination of the way 

these effects change as a result of L2 learning involving novel orthographic systems.  

 Further evaluation could be taken by broadening the stimuli types to a number of familiar 

and unfamiliar language conditions, as was done in the Baker et al. (2007) study, but using 

equipment which allows for high degrees of temporal resolution, namely EEG or MEG, allowing 

for stimuli to be completely randomized across conditions as we have done with the Maurer et al. 

(2008) study, rather than in small groups of stimuli as was done in the event-related portion of 

Baker et al. (2007)‟s study, and measuring the results of event-related potentials rather than the 

BOLD signal (the measurement of brain activity provided by fMRI, which while precise in terms 

of localization, provides very poor temporal resolution).  Findings analogous to those of this 

present study would strongly support a task-specific attention-based modulation of the N170 

response.   

 The fact that this study failed to find lexical differences in the N170 response is not 

particularly surprising as a lack of lexical differences during this response has been noted 

numerous times.  When comparing studies wherein lexical effects emerged during the N170, 

such as Maurer et al. (2005), to those studies wherein no lexical effects were observed, such as 
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Dehaene et al. (2002), the absence of controls for sublexical combinatorics such as bigram 

frequency in Maurer et al. (2005) suggests that these may be an effect of sublexical differences, 

which would maintain the status of the N170 response as a pre-lexical process.  The findings of 

the current study thus converge with previous reports identifying lexical effects emerging 

subsequent to the N170 (e.g. Bentin et al., 1999, Proverbio et al., 2004)   

 Likewise, our lack of length effects in the N170 response was not surprising, due to the 

small differences in length.  The paucity of research directly comparing length modulations of 

the N170 response is a strong justification that future studies incorporate more stringent length 

controls as demonstrated in this study, in order to understand the potential contributions of length 

to the response itself. 

 Taken together, these results demonstrate both lateralization and amplitude effects of the 

familiarity of an orthographic system, reflected in the N170 ERP component.  Further, the direct 

comparison of English words to nonwords, in which the two stimulus types were tightly matched 

for sublexical properties such as length and bigram frequency, yielded lexical effects only 

subsequent to the N170, consistent with the view of the N170 as a prelexical response.  

Moreover, this experiment presents a design applicable for tracking the acquisition of an 

unfamiliar orthography in adulthood, including both lexicalized and novel stimuli in both the 

first and second language, as well as a rich, complex non-linguistic stimulus set, which are tested 

within the context of the same experiment.  Further research using this paradigm has the 

potential to increase our understanding of the process of acquisition of a novel orthography as an 

adult in the process during the course of second language learning. 
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Appendix I - Stimuli 

English Non-Linguistic Hiragana 

3 Character 4 Character 3 Character 4 Character 3 Character 4 Character 
Word Non Word Non Word Non Word Non Word Non Word Non 
fit ane main herg fit ane main herg bjz 0de 4;de nh_4 

bus ong from gath bus ong from gath bna *ue bq%. h;.e 

gun ont more lind gun ont more lind xjr G.e qhxy 4bm, 

his ent west vean his ent west vean x8l eyp c;to #Tlw 

but fon will sten but fon will sten Ay* 4sl 6ede SbuW 

not ede like linz not ede like linz dgl Dyc 'xde 2Ddy 

she wha some stis she wha some stis dH; ~yt Re"y dFlj 

her ces time veat her ces time veat r.l jep fD/w TyTo 

one hof only tous one hof only tous pE( 4tl eaFy 'Flz 

out ked very toof out ked very toof #uq ,Tl t0ee dGtz 

him nof over tofe him nof over tofe Sao 4ay qewe eayz 

who esh well stev who esh well stev bao :ql xyXy pTle 

can wis even trep can wis even trep sql '0l qe^y eeay 

now hab down mesc now hab down mesc rBe (th sgSg uedx 

two yat back whap two yat back whap tue otj Wrto /gTl 

any tem most woul any tem most woul vSe 'jl xVde W.aj 

our mof many rass our mof many rass fTg ckl bs0X pBb4 

way yed good loof way yed good loof bsd 'jr qQej )=lW 

how nis such chif how nis such chif 0qd #0. 6f)4 Tlw= 

new hir also mofe new hir also mofe eho Wms tude VyBd 

man gis work neld man gis work neld h_e xj, m4_4 pyJn 

May esk long porm May esk long porm uet hna Pypy FQl1 

off tef life vebe off tef life vebe ehz txd qkde ]peB 

day jis same wras day jis same wras S4m e'l gque pujl 

old arf last ceag old arf last ceag nSl zFl qec4 :.qe 

why bem each ghax why bem each ghax 6ut Wt; 6ssd Jrmd 

few sef look sove few sef look sove S4C Qlg mqmq e#l, 

far lep fact dorg far lep fact dorg s6l 4md dypg Qyqh 

end alc year nime end alc year nime q"y iml smQa mk4r 

use seg part teig use seg part teig g;e Wjz iyDy smih 

saw vez home blec saw vez home blec #cb ryB e:Fu Jj;y 

set rov room tiew set rov room tiew gk4 1ml dexe muxe 

per bef need borf per bef need borf #eQ WFl rg'g a0lm 

war gom less yedd war gom less yedd goe em, ]oxg f,Gz 

lot mab hand farl lot mab hand farl 4Sy gcl q~mk npS4 

big fra head palk big fra head palk esb qo4 dy"y 1bm4 

car pow kind barl car pow kind barl 6su baF 66ge 4imy 

god wev face psem god wev face psem tFy ncW #t.e eKj; 

air hoy case salc air hoy case salc 're jac haV. kbmS 

age cak help kois age cak help kois fdt hn_ pyqh t;Sm 
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bed div high meff bed div high meff _4t rji 24py ,Fld 

job gur love snom job gur love snom t(e dmi ehr4 flde 

bit fac best gwad bit fac best gwad #dq JlS 6meW cyjG 

top wep half weef top wep half weef xs4 #Q; 'cdj aBlr 

run ceb four zarp run ceb four zarp rbd (2y eR;m deyz 

ten cla real spom ten cla real spom dje 4=v nDte aeFr 

boy gac sure oope boy gac sure oope 4d_ %d= em4s kcml 

six cid open hizz six cid open hizz qyr 1Dg 6s4s ec4g 

bad yur body spad bad yur body spad ee% 2cl rRde )npe 

pay pab five fows pay pab five fows xtu .it qwmk mkz; 

red wut soon smic red wut soon smic 2.e 2Vd 4yS4 rmkt 

act yec play pems act yec play pems "S4 F;n qj,G 0Bde 

cut caz girl womn cut caz girl womn /Hn cQl "yTh deQe 

sir nam book deug sir nam book deug lyB oaF xtu' vayc 

law gid past sosc law gid past sosc 6yu _F, QeTh -jtl 

art foz idea spoo art foz idea spoo eqe j,d hzdq j,ml 

sea aib week foab sea aib week foab qqn %Ts 6yTh 4apB 

son ows form dwot son ows form dwot nty Vxw re%e 4S4g 

low osp hard cuic low osp hard cuic )4D Hc/ 6t%d _zde 

hot gwi name milv hot gwi name milv c4D r=a Thpe dejc 

eye woc true nilv eye woc true nilv eaB ;ji py*z Qlml 

oil dav food solp oil dav food solp qjB %f; nXe_ iGTe 

tax wob land maph tax wob land maph uTe pGj slih 4yBa 

arm yog call cavs arm yog call cavs dRt pam ~yBd bm0p 

due plu live aigs due plu live aigs #6e :.j FyB4 ToVd 

hit jid show twif hit jid show twif pte ;.j r4Th 4S4d 

dry psa poor keer dry psa poor keer qte 4dx ge_e jeQ; 

tea oab view sheg tea oab view sheg ath lQr xjXj ,djl 

fat yoz word rond fat yoz word rond dBs :.e ehFh uet; 

lie zos line onde lie zos line onde tRh dyp dTon )Flg 

box ith city lerg box ith city lerg 6me sku dgql pkje 

sky thu road derd sky thu road derd %eB ijl bkB_ ,d)e 

dog ine wife hesc dog ine wife hesc -y" edx bksg pBd~ 

key rin late iche key rin late iche ;gd xea bkjj tez; 

gas ain area uche gas ain area uche 6sb Tlt x)4Q dtlw 

 


