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Abstract 
 
 Nonbenzenoid aromatic isocyanides feature attractive structural and electronic properties 

for the potential design of optoelectronic devices.  Prior to the work of Barybin and coworkers, 

examples of nonbenzenoid isocyanides were limited to isocyanoferrocene and 1,1’-

diisocyanoferrocene.  This thesis describes the design of nonbenzenoid isocyanides featuring 

ferrocene and/or azulene moieties. 

 The first nonbenzenoid aromatic isocyanide featuring both azulene and ferrocene in one 

molecule is described.  Electrochemical results indicate stable redox activity leading to the 

potential use in the design of redox-addressable materials.  A new bis-iridium complex of 1,1’-

diisocyanoferrocene was synthesized and showed the possible existence of two isomeric forms 

when in solution.  Redox properties indicate reversibility which is likely iron-based.  Preliminary 

crystallographic data for this complex features a symmetrical structure with C-N-C angles of 

approximately 176°. 

 A synthetic pathway for the formation of 2,2’-diisocyano-6,6’-biazulenylacetylene π-

linker is documented.  This diisocyanide exhibits a relatively stable stepwise two-electron 

reduction process on the electrochemical time scale indicating the likelihood of a closed shell 

dianion.  Coordination chemistry of the mono and dinuclear tungsten diisocyanide complexes 

illustrates evidence for a metal-to-bridge charge-transfer. A self assembled monolayer of the 

ligand coordinated to Au(111) indicates an upright orientation when on the surface.  Synthesis of 

a tetranuclear(I) gold rectangle featuring the 2,2’-diisocyano-6,6’-biazulenyl linker is presented 

and its interesting luminescent properties will be compared to relevant complexes.  A 

crystallographically defined half gold ring featuring the 2-isocyanoazulenyl moiety exhibits an 

aurophilic interaction between two Au(I) centers. 
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 An optimized regioselective amination of 2,2’-biazuene is presented in good yield.  This 

ligand undergoes a stepwise, reversible two-electron reduction according to an electrochemical 

study .  This ligand acts as a precursor to the targeted 6-isocyano-2,2’-biazulene.  The formation 

of a self assembled monolayer featuring 6-isocyano-2,2’-biazulene coordinated in an upright 

fashion on a Au(111) surface is mentioned.  

 The first accessible planar-chiral isocyanide ligand is presented in high enantiomerically 

purity.  This ligand exhibits robust redox activity upon coordination on the electrochemical time 

scale.  Results from the electrochemical studies in addition to the other spectroscopic evidence 

will be presented.    
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CHAPTER I 
 
 

I. Redox-active Organic Isocyanides Featuring Azulenyl and Ferrocenyl Moieties in One 
Molecule 
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I.1.  Introduction 
 
 Organic isocyanides are isolable molecules that feature a lone pair of electrons on a 

terminal carbon atom of the functional group.  Isocyanides are isoelectronic with the carbonyl 

ligand (Figure I.1), which also has a lone pair of electrons on its carbon atom. Isocyanide 

complexes of transition metals play an important role in organic and organometallic synthesis, 

catalysis, and radiological medicine.1-7  

 

 
 
 

Figure I.1. Resonance structures of isocyanide (top) and carbonyl (bottom) ligands. 
 
 
 Isocyanides as ligands exhibit several noteworthy structural characteristics.  The most 

obvious is associated with the possibility of tuning the nature of the substituent “R”.    In 

addition, the cylindrical symmetry of π-electron density of the isocyano group is well suited for 

supporting metal-to-ligand electron delocalization.  The metal-isocyanide bonding in transition 

metal complexes can be considered in terms of two synergic interactions: σ-donation of the 

carbon atom’s lone pair to vacant metal-based orbitals and transfer of electron density from the 

filled metal d-orbitals of π-symmetry into the isocyanide π*-antibonding orbitals.  The latter 

interaction is known as π back-bonding (Figure I.2), which in the case of aryl isocyanide ligands 

can delocalize metal electron density into the π*-system of the aryl fragment.  The vast majority 

of aryl isocyanides known by the turn of the last century contain benzenoid aromatic 

C N R C N R

C O C O
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substituents.  Such ligands are commonly quite air and thermally sensitive under ambient 

conditions, more so compared to their alkyl congeners.8  A fundamental advantage of the aryl 

isocyanides over their alkyl counterparts is the electronic coupling between the π-systems of the 

isocyanide group and the organic fragment in the former.3-5, 9-15 Thus, there has been an interest 

in designing stable isocyanide complexes that would feature electron delocalization mediated by 

the isocyano junction(s). 

 

 
 
 

Figure I.2. Synergistic metal-ligand interactions allow an isocyanide to act as a σ-donor 
and a π-acceptor. 

 
 
 Recently, a new class of aryl isocyanide molecules, which incorporate nonbenzenoid 

aromatic substituents, has been popularized by Barybin et al.16 The first two examples of 

nonbenzenoid isocyanides were isocyanoferrocene and 1,1’-diisocyanoferrocene.  Until a few 

years ago, the chemistry of isocyanoferrocene had remained scarcely developed since the 

discovery of the compound in the late 1980s.1, 17-19 This is most likely due to the tedious and low-

yielding synthesis of aminoferrocene available at the time as well as a somewhat unreliable 

conversion of its amino group to the isocyano substituent originally reported in the 1980s.  

Recently, significantly more efficient synthetic routes to aminoferrocene have emerged.20 Heinze 

and coworkers were able to obtain nearly quantitative yields for the formation of aminoferrocene 

σ bond π back-bond

C N R:M
empty 

d or p-orbital
filled 

σ∗-orbital

C N RM
::

filled 
d-orbital

M

empty 
π∗-orbital
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on the gram scale.20 However, formylation of aminoferrocene followed by dehydration of the 

resulting formamidoferrocene remained problematic.  In 1990, Knox et al. described the 

synthesis of isocyanoferrocene from aminoferrocene in poorly reproducible yields of 25-90%.15 

 In 2002, Barybin and coworkers published an substantially improved and highly reliable 

synthesis of isocyanoferrocene.1 Based on the similar values of the Hammett constants for the 

methyl and ferrocenyl substituents, it was thought for a long time that isocyanoferrocene would 

behave akin to methyl isocyanide as a ligand.17-18 Thus, despite many parallels in the chemistries 

of ferrocene and arenes, consideration of ferrocenyl’s π-system as a potential electron acceptor 

has not been addressed experimentally prior to the work done by Barybin and coworkers.21 In 

their work, the studied homoleptic complexes of isocyanoferrocene and low-valent chromium 

exhibited properties which made the ferrocenyl substituent comparable to an aryl moiety.21   

 In 2001, Hessen and coworkers published the synthesis of 1,1’-diisocyanoferrocene that 

avoids the use of unstable 1,1’-diaminoferrocene as a precursor.19 The route is reproducible and 

yields 50% of 1,1’-diisocyanoferrocene at the conclusion of the synthesis. (Scheme I.1).  This 

ligand should be an attractive redox-active linker for multi-metallic ensembles and coordination 

polymers.19   
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Scheme I.1. Synthetic route to 1,1’-diisocyanoferrocene.19  
 

 

 Siemeling and coworkers have pioneered the efforts towards the construction of 

organometallic systems where the 1,1’-diisocyanoferrocene linker was involved in coordination 

to gold(I) and copper(I) metal centers (Figure I.3).22-25 The 1D organometallic polymer formed 

by the interaction of diisocyanoferrocene with gold(I) chloride (Figure I.3, right) is particularly 

interesting as it may serve as a model for understanding the interaction of diisocyanoferrocene 

with the gold(111) surface.22  In addition, the interplanar distance between the cyclopentadienyl 

rings in the ferrocene moiety is about 3.3 Å, which is quite similar to many M-M single bond 

lengths, including the Au-Au interaction.  This suggests that 1,1-diisocyanoferrocene should 

indeed be a useful building block for constructing organometallic molecular rectangles that 

incorporate the ferrocene motif.   
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Figure I.3. Examples of 1,1’-diisocyanoferrocene coordination chemistry. 16, 22-25 
 
 
 Nonlinear optics (NLO) is a field that has become increasingly important during the 

electronic age as technology uses the movement of electrons to acquire, store, and process 

information.26 When light from the near-infrared to the blue end of the visible range impinges on 

the NLO material, electrons will oscillate in response to an optical field.26 Light intensity can 

play a factor.  For instance, a high light intensity will lead to the oscillation of the electrons to be 

antiharmonic in turn leading to potential emission at frequencies different than that of the 

incident light.  A considerable amount of research related to the design of nonlinear optical 

materials and devices has been done in the past twenty years.27-30 A well-established strategy to 

obtain materials with high values of hyperpolarizability is to connect a donor fragment and an 

acceptor moiety with a conjugated bridge.31  Hermann reasoned that the combination of an 

organometallic fragment with well-known donor properties such as ferrocene with an aromatic 

compound exhibiting unusual electron distribution, e.g., azulene, might lead to molecular 

systems with unique properties and potentially enhanced NLO coefficients.31  Another intriguing 

property of such materials would be their redox activity.  Ferrocene is well known for its stability 

and robust redox behavior.  Thus, the electronically coupled ferrocene/azulene combination 

could very well lead to interesting results. 
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 Farrell and coworkers studied azulenylium and guaiazulenylium cations (Figure I.4) to 

develop understanding of mutual donor-acceptor electronic influence using cyclic voltammetry.32 

 

 
 
 

Figure I.4. Ferrocene azulenylium and guaiazulenylium carbocations.32 
 
 

Cyclic voltammetry helped uncover a greater extent of ground state electronic 

communication between the azulenylium based acceptors and the ferrocenyl termini compared to 

the system containing the electronically and structurally related tropylium and ferrocenyl units.32 

The experiment also indicated that the HOMO of these molecules is primarily ferrocene-based 

whereas the LUMO is azulenylium-based and there is an increased negative shift of the reduction 

potential upon decreased donor-acceptor separation.32 
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 I.2. Work Described in Chapter I 
 
 In this Chapter, the synthesis and properties of the isocyanide ligand featuring both 

azulenyl and ferrocenyl moieties is presented.   Preliminary results pertaining to the coordination 

chemistry of this novel ligand are discussed as well.  In addition, new aspects of the coordination 

chemistry involving 1,1’-diisocyanoferrocene are described. Future directions based on the 

research reported herein are outlined at the conclusion of the Chapter. 
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I.3. Experimental Section 
 
I.3.1 General Procedures and Starting Materials 
 
 Unless specified otherwise, all operations were performed under an atmosphere of 99.5% 

argon further purified by passage through columns of activated BASF catalyst and molecular 

sieves.  All connections involving the gas purification systems were made of glass, metal, or 

other materials impermeable to air.  Solutions were transferred via stainless steel cannulas 

whenever possible.  Standard Schlenk techniques were employed with a double manifold 

vacuum line.  CH2Cl2 and Et3N were distilled over CaH2.  THF and toluene were distilled over 

Na/benzophenone.  Following purification, all distilled solvents were stored under argon. 

 Solution infrared spectra were recorded on a PerkinElmer Spectrum 100 FTIR 

spectrometer with samples sealed in 0.1mm gas tight NaCl cells.  NMR samples were analyzed 

using Bruker DRX-400 and Bruker Avance 500 spectrometers.  1H and 13C chemical shifts are 

given with reference to residual 1H and 13C solvent resonances relative to Me4Si.  UV-vis spectra 

were recorded in CH2Cl2 at 24°C using a CARY 100 spectrophotometer. 

 Cyclic voltammetric (CV) and differential pulse voltammetric (DPV) experiments on 

2×10-3 M solutions of selected compounds in CH2Cl2 were conducted at room temperature using 

an EPSILON (Bioanalytical Systems, INC., West Lafayette, IN) electrochemical workstation.  

The electrochemical cell was placed in an argon-filled Vacuum Atmospheres dry-box.  

Tetrabutylammonium hexafluorophosphate (0.1 M solution in CH2Cl2) was used as the 

supporting electrolyte.  CV data were obtained using a three component system consisting of a 

platinum working electrode, platinum wire auxillary electrode, and a glass encased non-aqueous 

silver/silver chloride reference electrode.  The reference Ag/Ag+ electrode was monitored with 

the ferrocenium/ferrocene couple.  IR compensation was achieved prior to each CV scan by 
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measuring the uncompensated solution resistance followed by incremental compensation and 

circuit stability testing.  Background CV scans of the electrolyte solution were recorded before 

adding the analytes.  The half-wave potentials (E1/2) were determined as averages of the cathodic 

and anodic peak potentials of reversible couples and are referenced to the external FcH+/FcH 

couple.33  

2-Amino-6-bromo-1,3-diethoxycarbonylazulene, acetic-formic anhydride and 1,1’-

diisocyanoferrocene were prepared according to literature procedures.19, 34-35  The synthetic 

procedures leading up to ethynylferrocene constitute modified versions of the published 

syntheses involved in the preparation of this compound.36 Other reagents were obtained from 

commercial sources and used as received.   
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I.3.2 Synthesis of Acetylferrocene (1.1) 
 
 Acetyl chloride (0.942 g, 12.0 mmol) was added to a solution of ferrocene (2.046 g, 

11.00 mmol) in 10 mL dichloromethane and the resulting mixture was immediately cooled to 

0°C.  Aluminum(III) chloride (1.467 g, 11.00 mmol) was added in small increments over a 20 

minute period.  The reaction was allowed to stir for 2 hr while warming to room temperature.  

The reaction was quenched by slowly adding 4×0.5 mL portions of cold deionized water.  An 

additional 3 mL of cold water was added and the contents were transferred into a separatory 

funnel.  The organic layer was collected and the aqueous layer was extracted with 50 mL 

dichloromethane.  The combined organic fractions were washed with 50 mL brine and dried over 

anhydrous Na2SO4.  The drying agent was filtered off and the filtrate was concentrated via 

rotatory evaporation under vacuum.  The residue was subjected to column chromatography on 

silica using 9:1 hexanes/ethyl acetate as eluent.  An orange band was collected.  The product was 

dried at 10-2 Torr to afford an 89% yield of 1.1 (2.23 g, 9.78 mmol) as a red-orange powder.  1H 

NMR (400MHz, CDCl3, 25°C): δ 2.40 (s, 3H, CH3), 4.22 (s, 5H, C5H5), 4.51 (s, 2H, C5H4), 4.78 

(s, 2H, C5H4) ppm. 

   
I.3.3 Synthesis of 1-chlorovinylformylferrocene (1.2) 
 
 Phosphorous(V) oxychloride (3.92 g, 25.6 mmol) was added to a flask containing 2.34 

mL of cold (0 °C) DMF and the resulting solution was stirred for 30 minutes at 0 °C while 

acquiring a red color..  The resulting red mixture was transerred to a flask containing a 

suspension of acetylferrocene (2.16 g, 9.47 mmol) in 2.34 mL of DMF at 0 °C over a 30-minute 

period.  The reaction mixture stirred for 2 hrs at 0 °C.  Then, 7.5 mL of diethyl ether was added 

and the mixture was stirred for an additional 20 minutes.  Sodium acetate trihydrate (10.95 g, 

80.49 mmol) was added to this cold mixture and it was vigorously stirred for 1 hr while warming 
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up to room temperature.  The color of the reaction mixture turned from blue to purple to wine-

red during this period..  After stirring for 3 additional hours, the deep red mixture was transferred 

into a separatory funnel.   Deionized water (50 mL) was added and the mixture was extracted 

with diethyl ether until the organic extracts were colorless.  The combined organic extracts were 

washed with 50 mL of saturated aqueous sodium bicarbonate and dried over anhydrous Na2SO4.  

The drying agent was filtered off and all solvent was removed from the filtrate under vacuum  to 

afford an 81% yield of 1.2 (2.11 g, 7.68 mmol) as purple needles.  1H NMR (400MHz, CDCl3, 

25°C): δ 4.26 (s, 5H, C5H5), 4.58 (s, 2H, C5H4), 4.77 (s, 2H, C5H4), 6.41 (s, 1H, CH), 10.3 (s, br, 

1H, CHO) ppm.   

   
I.3.4 Synthesis of ethynylferrocene (1.3) 
 
 1-Chlorovinylformylferrocene (1.00 g, 3.64 mmol) dissolved in 15 mL of dioxane was 

was heated to reflux in a side-armed round-bottom flask equipped with a reflux condencer.  Then, 

15 mL of boiling 1 N aqueous NaOH was added to the flask and refluxing was continued for 25 

additional minutes.  The mixture was then allowed to cool to room temperature, poured 

intoice,and neutralized to pH of 7 using 1 N aqueous HCl.  After extraction with 100 mL of 

hexanes, the organic extract was separated, washed with 5 mL of saturated aqueous sodium 

bicarbonate, and dried over anhydrous Na2SO4  The drying agent was filtered off and the filtrate 

was concentrated on a rotary evaporator.  The resulting residue  was chromatographed on silica 

gel using 100% hexanes to collect an orange band.  Solvent removal and drying of the product at 

10-2 Torr afforded an 86% yield of 1.3 (0.655 g, 3.12 mmol) as orange microcrystals.  1H NMR 

(400MHz, CDCl3, 25°C): δ 2.71 (s, 1H, CH), 4.27 (s, 7H, C5H4 ,C5H5), 4.51 (s, 2H, C5H4) ppm.  
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I.3.5 Synthesis of 2-amino-1,3-diethoxycarbonyl-6-azulenylethynylferrocene (1.4) 

 An orange mixture of tetrakis(triphenylphosphine)palladium(0) (0.157 g, 0.136 mmol), 

copper(I) iodide (0.052 g, 0.273 mmol), triphenylphosphine (0.065 g, 0.246 mmol), 2-amino-6-

bromo-1,3-diethoxycarbonylazulene (0.500 g, 1.36 mmol), and ethynylferrocene (0.301 g, 1.43 

mmol)  in 150 mL of toluene was treated with 6 mL of freshly distilled triethylamine via syringe.  

The resulting mixture was allowed to stir for 21 hrs.  The red reaction mixture was poured into 

150 mL of 10% aqueous NH4Cl and the organic layer was separated.  The aqueous layer was 

extracted with dichloromethane (2×75 mL).  The combined organic fractions were washed with 

150 mL of deionized H2O, dried over anhydrous MgSO4, and filtered through a short bed of 

Celite.  The resulting solution was concentrated on a rotary evaporator to give a residue that was 

subjected to column chromatography on silica gel (10:1 hexanes/ethyl acetate).  A red band was 

collected.  All solvent was removed in vacuo to afford a 97% yield of 1.4 (0.660 g, 1.33 mmol) 

as a red powder.  MP: 178-182°C.  1H NMR (400MHz, CDCl3, 25°C): δ 1.49 (t, 6H, CH3, 3JHH = 

8 Hz), 4.28 (s, 5H, C5H5), 4.32 (t, 2H, C5H4, 2 Hz), 4.48 (q, 4H, CH2, 8 Hz), 4.56 (t, 2H, C5H4, 2 

Hz), 7.72 (d, 2H, H5,7, 12 Hz), 7.84 (s, 2H, NH2), 9.02 (d, 2H, H4,8, 12 Hz) ppm.  13C{1H} NMR 

(100.6MHz, CDCl3, 25°C): δ 14.87 (CH3), 60.14 (CH2), 64.76, 69.58, 70.31, 71.88 

(cyclopentadienyl C atoms), 89.83, 92.27 (alkyne C atoms), 100.68, 129.09, 130.15, 135.34, 

145.45, 162.50 (aromatic C), 166.66 (CO2R) ppm.  UV-Vis (CH2Cl2): λmax(log ε) 499 nm (3.34), 

437 nm ( 3.67), 344 nm ( 3.98), 249 nm ( 3.87).   

I.3.6 Synthesis of 2-formamido-1,3-diethoxycarbonyl-6-azuleneferrocenyl acetylene (1.5) 

A red solution of 2-amino-1,3,-diethoxycarbonyl-6-azuleneferrocenylacetylene (0.660 g, 

1.33 mmol) in 100 mL of dichloromethane was treated with  formic acid (25 mL) and acetic-

formic anhydride (8.5 mL) while being vigorously stirred..  The resulting dark purple reaction 
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mixture was stirred for 2 hrs and then quenched with 10% aqueous Na2CO3.  The organic layer 

was separated and the light purple aqueous layer was extracted with dichloromethane (2×75 mL).  

The organic fractions were combined, washed with 150 mL of deionized H2O, and dried over 

anhydrous Na2SO4.  The drying agent was filtered off and the filtrate was concentrated  via 

rotary evaporation.  The product was recrystallized from dichloromethane/pentane to afford a 

98% yield of 1.5 (0.684 g, 1.31 mmol) as a purple powder.  1H NMR (400MHz, CDCl3, 25°C): 

δ 1.47 (t, 6H, CH3, 3JHH = 7 Hz), 4.30 (s, 5H, C5H5), 4.39 (s, 2H, C5H4), 4.48 (q, 4H, CH2, 7 Hz), 

4.61 (s, 2H, C5H4), 7.84 (d, 2H, H5,7, 12 Hz), 8.66 (s, br, 1H, NH), 9.25 (d, 2H, H4,8, 12 Hz), 

10.26 (s, br, 1H, CHO) ppm.  UV-Vis (CH2Cl2): λmax(log e) 537 nm (3.82), 419 nm ( 4.34), 351 

nm ( 4.55), 348 nm (4.55), 250 nm (4.33), 228 nm (4.34).   

 
I.3.7 Synthesis of 2-isocyano-1,3-diethoxycarbonyl-6-azuleneferrocenyl acetylene (1.6) 

A cold (0° C) purple solution of 2-formamido-1,3,-diethoxycarbonyl-6-

azuleneferrocenylacetylene (0.265 g, 0.506 mmol) and 1 mL of triethylamine in 30 mL of 

dichloromethane was treated via cannula with a cold (0 °C) solution of triphosgene (0.165 g, 

0.556 mmol) in 25 mL of dichloromethane .   Gas evolution was observed as the reaction 

mixture changed from purple to blue-green over the course of a minute.  After 15 minutes of 

stirring, the reaction mixture was quenched with 25 mL 10% aqueous Na2CO3.  The organic 

layer was separated and the aqueous layer was extracted with dichloromethane (2×50 mL).  The 

combined organic fractions were washed with 50 mL of deionized H2O and dried over anhydrous 

Na2SO4.  The drying agent was filtered off and the filtrate was concentrated via rotary 

evaporation.  The residue was passed through a plug of neutral alumina using neat 

dichloromethane.  Recrystallization from dichloromethane/pentane afforded a 71% yield of 1.6 

(0.181 g, 0.358 mmol) as a green powder.  MP: decomposes at 150 °C.  FTIR (CH2Cl2): νCN 
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2125 cm-1.  1H NMR (400MHz, CDCl3, 25°C): δ 1.52 (t, 6H, CH3, 3JHH = 8 Hz), 4.31 (s, 5H, 

C5H5), 4.45 (t, 2H, C5H4, 2 Hz), 4.52  (q, 4H, CH2, 8 Hz), 4.65 (t, 2H, C5H4, 2 Hz), 7.90 (d, 2H, 

H5,7, 11 Hz), 9.64 (d, 2H, H4,8, 11 Hz) ppm.  UV-Vis (CH2Cl2): λmax(log ε) 577 nm (3.90), 411 

nm ( 4.42), 348 nm ( 4.44), 289 nm ( 4.22), 237 nm (4.44).  MS (ESI+): 506.1 [M-H]+.   

 
I.3.8 Synthesis of bis(2-isocyano-1,3-diethoxycarbonyl-6-azuleneferrocenyl 
acetylene)Palladium(II) iodide (1.7) 
 
 A mixture containing 2-isocyano-1,3-diethoxycarbonyl-6-azuleneferrocenylacetlylene 

(0.120 g, 0.237 mmol) and palladium(II) iodide (0.043 g, 0.119 mmol)  in 30 mL of 

dichloromethane was stired for 105 minutes at room temperature.  The resulting forest green 

mixture was then filtered through a plug of Celite.  The filtrate was concentrated via rotary 

evaporation and the residue was recrystallized from dichloromethane/pentane to afford a 42% 

yield of 1.7 (0.069 g, 0.050 mmol) as purple microcrystals.  FTIR (CH2Cl2): νCN 2198 cm-1.  1H 

NMR (400MHz, CDCl3, 25°C): δ 1.61 (t, 6H, CH3, 3JHH = 8 Hz), 4.33 (s, 5H, C5H5), 4.48 (t, 2H, 

C5H4, 2 Hz), 4.59 (q, 4H, CH2, 8 Hz), 4.68 (t, 2H, C5H4, 2 Hz), 7.96 (d, 2H, H5,7, 12 Hz), 9.78 (d, 

2H, H4,8, 12 Hz) ppm.   

 
I.3.9 Preliminary small scale synthesis of hexakis(2-isocyano-1,3-diethoxycarbonyl-6-
azuleneferrocenyl acetylene)chromium(0 and I) (1.8a and 1.8b) 
 

A solution of bis(naphthalene)chromium(0) (0.018 g, 0.058 mmol) in 3 mL of THF was 

added dropwise to a solution of 2-isocyano-1,3,-diethoxycarbonyl-6-azuleneferrocenylacetylene 

(0.175 g, 0.346 mmol) in 10 mL of THF at room temperature.  After stirring for ca. 15 hrs, 40 

mL of heptane was added to the reaction mixture to crashed out the product, which was filtered 

off, washed with heptane, and dried at 10-2 Torr   to afford a 78% yield of 1.8a (0.139 g, 0.045 

mmol) as a dark green-brown powder.  FTIR (CH2Cl2): νCN 1967 cm-1. 
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The above dark green-brown solid was dissolved in 50 mL of dichloromethane.  A 

solution of silver hexafluoroantimonate (0.012 g, 0.036 mmol) in 20 mL of dichloromethane was 

added to this solution via cannula at room temperature.  The reaction mixture was stirred for 1hr 

while acquiring a light green color.  The mixture was then passed through a short plug of Celite.  

The Celite was washed with dichloromethane until the washings were colorless.  The filtrate was 

concentrated under vacuum and layered with pentane for recrystallization to afford a 62% yield 

of 1.8b (0.066 g, 0.020 mmol) as a dark green microcrystalline powder.  FTIR (CH2Cl2): νCN 

2058 cm-1. 

 

I.3.10 Synthesis of 1,1’-diisocyanoferrocenebis(pentamethylcyclopentadienyl-
dichloroiridium(III)) (1.9) 
 
 A solution of 1,1’-diisocyanoferrocene (0.045 g, 0.193 mmol) and 

bis(pentamethylcyclopentadienyldichloroiridium(III)) (0.154 g, 0.193 mmol) in 50 mL of 

dichloromethane was stirred for 2 hrs at room temperature.  About 25 mL of the solvent was 

removed under vacuum and the product was then crashed out with about 50 mL of pentane.  The 

resulting yellow-orange solid was dried and recrystallized from dichloromethane/heptane to 

afford a 76% yield of 1.9 (0.100 g, 0.097 mmol) as golden microcrystals.  FTIR (CH2Cl2): νCN 

2159 (s), 2181 cm-1(s).  FTIR (nujol): νCN 2147 (s), 2176 (w) cm-1.  1H NMR (400 MHz, CDCl3, 

25 °C): δ 1.86 (s, 15H, C5(CH3)5), 4.45 (t, 2H, C5H4, 4 Hz), 4.76 (t, 2H, C5H4, 4 Hz) ppm.  MS 

(ESI+): 997.1 [M-Cl]+. 
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I.4. Results and Discussion  
 
 
 
  

 
 

 
 

 
 

Scheme I.2. Synthesis of ethynylferrocene adopted from Polin and co-workers.36 
 
 

 The synthesis of the novel isocyanide ligand 1.6 from ferrocene begins with the 

preparation of ethynylferrocene 1.3 via the modified procedures of Polin and co-workers 

(Scheme I.2).36  It should be noted that the modifications  of the procedures for the reaction steps 

summarized in Scheme I.2  provide somewhat higher yields of the products compared to the 

corresponding original syntheses.36   

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Scheme I.3. Synthesis of the isocyanide ligand featuring ferrocenyl and azulenyl moieties. 
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Scheme I.3 illustrates the synthetic pathway for the preparation of the 2-isocyanoazulene 

derivative 1.6 that involves Sonogashira coupling of ethynylferrocene to the azulenic moiety as 

the critical step.  This Sonogashira cross-coupling affords the ferrocenyl/azulenyl-substituted 

acetylene 1.4 in a nearly quantitative yield.  The brick-red compound 1.4 contains a primary 

amine functionality that undergoes facile formylation with excess acetic-formic anhydride and 

formic acid to provide the corresponding formamide in a yield of 97%.  Following 

recrystallization, the formamide is subjected to dehydration with triphosgene and triethylamine 

to give the isocyanide ligand 1.6 in a 71% yield.  The dehydration process is accompanied by an 

obvious color change and can be conveniently monitored by TLC and IR spectroscopy.  Unlike 

its formamide precursor, the isocyanide 1.6 can be purified by column chromatography on 

neutral alumina.  The presence of the isocyanide group in 1.6 is unambiguously indicated by the 

characteristic νCN band at 2125 cm-1 observed in the FTIR spectrum of this compound.   

 
 

Figure I.5. Cyclic voltammogram of 1.6 in CH2Cl2 referenced to the FcH/FcH+ couple.  
Scan rate = 100 mV/sec. 
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The cyclic voltammogram (CV) of a solution of 1.6 is shown in Figure I.5.  This CV 

profile exhibits two main features.  the wave at E1/2 = + 0.183 V corresponds to the fully 

reversible oxidation of the iron center of the ferrocenyl moiety.  The positive E1/2 value for this 

process indicates that the substituted ethynyl moiety in 1.6 has a slightly electron-withdrawing 

effect with respect to the ferrocenyl fragment.  The feature with  E1/2 = -1.32 V reflects the 

largely reversible one-electron reduction of the azulenic portion of the compound.  Thus, the 

scaffold of 1.6 can be oxidized and reduced without compromising its structural integrity, at least 

on the electrochemical time scale.  It is interesting to compare the redox behavior of 1.6 with 

those of ethynylferrocene 1.3 and 2-isocyano-1,3-diethoxycarbonylazulene, which are the 

building blocks used to assemble 1.6. 

 
 
 

Figure I.6. Cyclic voltammogram of 1.3 in CH2Cl2 referenced to the FcH/FcH+ couple.  
Scan rate = 100 mV/sec. 
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Figure I.7. Cyclic voltammogram of 2-isocyano-1,3-diethoxycarbonylazulene in CH2Cl2 
referenced to the FcH/FcH+ couple.  Scan rate = 100 mV/sec. 

 
 
            Figure I.6 illustrates the cyclic voltammogram for 1.3 recorded under the conditions 

identical to those used to obtain the CV for 1.6. The E1/2 for the oxidation of 1.3 is +0.136 V.  

This value is 45 mV less positive than the corresponding half-wave potential observed for the 

oxidation of 1.6.  This indicates that (a) the ferrocenyl and azulenyl π-systems in 1.6, separated 

by the –C≡C– linker, are mutually electronically coupled and (b) the 6-azulenyl moiety in 1.6 is 

somewhat electron-withdrawing with respect to the ferrocenylethynyl fragment.    Figure I.7 

displays the cyclic voltammogram for 2-isocyano-1,3-diethoxycarbonylazulene.  Unlike 1.6, this 

compound undergoes an irreversible one-electron reduction at Ep,c = -1.55 V vs. FcH/FcH+ in 

CH2Cl2.  The marked difference in the reduction reversibility between 1.6 and 2-isocyano-1,3-

diethoxycarbonylazulene clearly indicates that the π-system of the ferrocenylethynyl moiety in 

1.6 stabilizes the azulene-based radical anion forming upon the reduction of 1.6.  Thus, 

compound 1.6 incorporates both donor (ferrocenyl) and acceptor (azulenyl) functionalities.  An 
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internal charge transfer involving these functional groups may be represented by the zwitterionic 

resonance structure shown in Figure I.8. 

 
 

 
 
 

Figure I.8.  A zwitterionic resonance form of compound 1.6. 
 

 
 Similar to other aryl isocyanides, compound 1.6 reacts with palladium(II) iodide in a 2:1 

molar ratio to yield the corresponding complex trans-PdI2(1.6)2 (compound 1.7).  Upon 

complexation of 1.6 to Pd(II), the νCN band shifts to 2198 cm-1, an increase of 75 cm-1 compared 

to the free isocyanide 1.6.  The rather high isocyanide stretching frequency observed for 1.7 

suggests that the ligand 1.6 behaves primarily as a σ-donor in the complex.   

Preliminary small-scale experiments indicate that treatment of 

bis(naphthalene)chromium(0), a storable source of atomic Cr,37 with 6 equivalents of 1.6 under 

O2- and H2O-free conditions afforded the green-brown, zero-valent homoleptic complex 1.8a 

(Scheme I.4).  This species can be oxidized with one equivalent of Ag+[SbF6]- to give light 

green, low-spin d5 complex 1.8b (Scheme I.4).  The transformations 1.6 → 1.8a → 1.8b can be 

conveniently followed by FTIR spectroscopy in the νCN stretching region (Figures I.9, I.10, and 

I.11).  Indeed, upon coordination of 1.6 to the Cr(0) center to form 1.8a, the νCN value decreases 

from 2125 to 1967 cm-1 due to the substantial extent of back-bonding interaction within the 

electron-rich complex 1.8a.  On the other hand, oxidation of 1.8a is accompanied by a decrease 
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in the extent of backbonding, which is reflected by the 91 cm-1 shift of νCN to higher energy upon 

proceeding from 1.8a to 1.8b.   

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

 
Scheme I.4. Preliminary syntheses of neutral and cationic homoleptic complexes of 

compound 1.6. 
	  
	  
 The above FTIR observations correlate well with several other studies of homoleptic 

isocyanide complexes of chromium published by the Barybin group.1,16,21,38  Once greater 

quantities of the pure paramagnetic, low-spin d5 complex 1.8b are available, this species will be 

subject to detailed 1H, 13C, and 14N NMR studies to gain insight into the mechanism and extent 

of the unpaired electron spin delocalization from the Cr(I) center into the entire π-system of the 

ligand 1.6.21,34 
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Figure I.9. FTIR spectrum of compound 1.6 in CH2Cl2 at 25 °C. 
 
 

	    
 

Figure I.10. FTIR spectrum of compound 1.8a in CH2Cl2 at 25 °C. 
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Figure I.11. FTIR spectrum of compound 1.8b in CH2Cl2 at 25 °C.  
 

The remainder of this Chapter is dedicated to the discussion of new coordination 

chemistry of 1,1’-diisocyanoferrocene, a ditopic redox-active building block that has been 

drawing increasing interest in the past few years  .22-25 

Scheme I.5 illustrates the complexation of 1,1’-diisocyanoferrocene with 

pentamethylcyclopentadienyliridium(III) dichloride dimer ([Cp*IrCl2]2).  One equivalent of 1,1’-

diisocyanoferrocene was mixed with one equivalent of [Cp*IrCl2]2 over the span of two hours in 

dichloromethane.  The yellow-orange product, compound 1.9, was precipitated with pentane and 

purified by recrystallization to provide a 76% yield.   

 
 

Scheme I.5. Synthesis of a bis(iridium(III)) complex of 1,1’-diisocyanoferrocene. 
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 Interestingly, the FTIR spectrum of compound 1.9 in dichloromethane solution features 

two bands in the νCN stretching region (Figure I.12).  This observation is certainly not consistent 

with the structure of 1.9  drawn in Scheme I.5 as only one isocyanide C-N stretching band would 

be expected.  While the energy of the band at 2159 cm-1 is in the typical range for complexes of 

the type Cp*IrCl2(CNR),39 the second band occurring at 2181 cm-1 suggests isocyanide 

coordination to a less electron-rich Ir center.  Repeated attempts to obtain solution IR spectra of 

1.9 that included thorough protection of the samples from air and moisture invariably yielded the 

same results.  The IR spectrum of 1.9 in the solid state (as a Nujol mull) is shown in Figure I.13.  

This spectrum features a very strong νCN band at 2147 cm-1 and a significantly weaker peak at 

2176 cm-1.  Remarkably, the 1H NMR spectrum of 1.9 in CDCl3 at room temperature exhibits 

only one Cp* and one C5H4NC environments (Figure I.14).  Thus, this compound probably 

exists in solution as a mixture of two isomers that interconvert rapidly on the NMR time scale 

but this interconversion is slow on the IR time scale.  A reasonable pair of such interconverting 

isomers is shown in Figure I.15.  One of these corresponds to the expected neutral structure of 

1.9, while the other constitutes an ionic substance with a chloride-bridged “Ir2” cation and a Cl- 

anion.  The higher energy νCN band in the IR spectra of 1.9 would be consistent with such a 

cation.  Interestingly, the ESI mass spectrum of 1.9 in the positive regime features a strong peak 

with m/z = 997.1.  This peak has the largest m/z value and formally corresponds to the molecular 

ion of 1.9 that lost one Cl (i.e., the cationic portion of the ionic form of 1.9 in Figure I.15).   
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Figure I.12. FTIR spectrum of compound 1.9 in CH2Cl2 at 25 °C.  
 
 

 

	    
 

Figure I.13. FTIR spectrum of compound 1.9 in Nujol  at 25 °C.  
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Figure I.14. 1H NMR spectrum of compound 1.9 in CDCl3 at 25 °C. 
 
 
 
 

 

 
 

 
Figure I.15. Possible isomeric structures of 1.9 in solution. 
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A cyclic voltammogram of compound 1.9 recorded in dichloromethane is shown in 

Figure I.16.  This CV features  a reversible oxidation wave with E1/2 = 0.543V that corresponds 

to the oxidation of Fe(II) to Fe(III) within the coordinated 1,1’-diisocyanoferrocene ligand.  This 

E1/2 potential is somewhat more positive than that observed for the oxidation of “free” 1,1-

diisocyanoferrocene, which is consistent with the νCN data and also reflects the fact that the the 

diisocyanide ligand in 1.9 functions primarily as a σ-donor.  In addition, the CV of 1.9 exhibits 

two irreversible oxidations at 1.019 V and 1.337 V that are likely Ir-based.   

 
 

 
 

Figure I.16. Cyclic voltammogram of 1.9 in CH2Cl2 referenced to the FcH/FcH+ couple.  
Scan rate = 100mV/sec. 

 
 

Small crystals of compound 1.9 were grown by slow diffusion of pentane into its solution 

in dichloromethane.  Repeated attempts to acquire X-ray diffraction data for these crystals 

indicated twinning complications.  Nevertheless, a preliminary crystal structure of 1.9 was 

Potential, V 

C
ur

re
nt

, µ
A

 

!"#$

!"%$

!&#$

!&%$

!#$

%$

#$

!'$!"$!&$%$&$"$



	   29	  

obtained with the R-factor value around 10% (Figure I.17).  While the quality of this X-ray 

structure is marginal at best at this point, it clearly indicates that this crystalline form of 1.9 

features both isocyanide junctions in identical chemical environments and both Ir-centers 

carrying a pair of terminal chloride ligands.  The C-N-C angles of 176° documented for 1.9 are 

quite similar to those observed for a few other bimetallic complexes of 1,1’-diisocyanoferrocene 

(Table I.1). 

 
Figure I.17. Preliminary X-ray structure of compound 1.9. 

 
Table I.1. C-N-C bond angles in bimetallic complexes of 1,1’-diisocyanoferrocene.22-25 

 
Compound C-N-C Bond Angle (°) 
1.9 176.0 
[Cr(CO)5]2(µ-(CNC5H4)2Fe) 170.2 

[AuCl]2(µ-(CNC5H4)2Fe) 
 

178.9 

[Cu2(µ-(CNC5H4)2Fe)3]2+ 
	  

176.9 
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I.5. Conclusions and Outlook  
 
 In this Chapter, the chemistry of the new nonbenzenoid aromatic isocyanide ligand 1.6 

featuring both azulene (acceptor) and ferrocene (donor) moieties was introduced.  This species 

can be reversibly oxidized and reduced, at least on the electrochemical time scale.  The stable 

redox activity of 1.6 offers the possibility of electrochemical modification of its properties as a 

ligand (e.g., electron donor/acceptor characteristics).  This will allow designing new redox-

addressable substances and materials in the future.  In particular, self-assembly of molecular 

films of 1.6 on various metal surfaces will be pursued and studied in the context of potential 

electronics and optical applications.  The electron delocalization within the entire π-system of 1.6 

will be studied by analyzing the 1H, 13C, and 14N NMR spectra of its paramagnetic octahedral 

homoleptic complexes with Cr(I).  

 The new bis-iridium complex of 1,1’-diisocyanoferrocene described herein appears to 

exist in two interconverting isomeric forms, at least in the solution phase.  Both of these forms 

are very attractive as building blocks for assembling either novel redox-active polymers or 

compact three-dimensional organometallic electron reservoirs containing the ferrocene moieties.   

In addition, synthesis and coordination and surface chemistry of the bis-(isocyanoazulenyl) 

ligand shown in Figure I.18 will be developed in the future.   
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Figure I.18. Proposed redox active complex featuring two isocyanoazulenic motiffs. 
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CHAPTER II 
 
 

II.  Chemistry of a Linear Symmetric π-Linker Featuring Isocyanide Termini and Two 
Azulenic Moieties Separated by an Acetylene Spacer 
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II.1. Introduction 
 

The azulenic framework constitutes an edge sharing combination of 5-and 7-membered 

sp2-carbon rings.  This motif occurs naturally as a defect in carbon nanotubes and is believed to 

be responsible for enhancing conductivity of these nanostructures.1 Recently, the Barybin group 

has become engaged in the design of linear 2,6-azulenic pi-bridges for future nanotechnological  

applications.2  The general structure of the targeted systems is illustrated in Figure II.1.  The π* 

system of the azulenic unit(s) in this design is exceptionally well suited for supporting charge 

delocalization between the electron-rich termini.  Depending on the nature of the metal termini, 

the junction groups X could be isocyanides, thiolates, or carboxylates.  It is important to note that 

for n =2, three different combinations of the azulenic moieties can be envisioned: two symmetric 

with 2,2’- or 6,6’-connectivities and one asymmetric with 2,6’-connectivity of the azulenic 

fragments.  The above three biazulenic bridges will have fundamentally very different electron 

delocalization and transport profiles as well as different responses to reductive doping.  For 

example, reduction of the 6-6’ biazulenic unit would force the biazulenyl moiety to adopt a more 

planar geometry,3 which should have a profound effect on its absorption characteristics. 

 

Figure II.1. A homologous series of linear diisocyanoarene linkers based on the 
nonbenzenoid 2,6-azulenic framework.3 

 

 While many reports involving 1,3-polyazulenes have been published to date,4-5 the 

chemistry of biazulenic derivatives of any connectivity remains extremely scarce.  Hanke and 

Jutz described the first synthesis of 6,6’-biazulene summarized in Scheme II.1.6 This synthetic 
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protocol was inspired by Hafner’s azulene synthesis,7 affords 6,6-biazulene in a 30% yield, and 

does not rely on transition metal catalysis.    Very limited information is available regarding 

functionalized 6,6’-biazulenes.Sugihara and coworkers synthesized a 2,2’-diamino-6,6’-

biazulene derivative using a Miyaura borylation / Suzuki cross-coupling approach for a 

combined yield of 17%.8  Last year, Barybin and coworkers published a dramatically improved, 

one-pot route to 2,2-diamino-1,1’,3,3’-tetra(ethoxycarbonyl)-6,6’-biazulene and converted this 

species into the corresponding structurally characterized diisocyanide as summarized in Scheme 

II.2.3  

 
 

 

  
 

 
 
 
 
 
 
 
 
 
 

 
 

Scheme II.1. Hanke and Jutz’s 6,6’-biazulene synthesis.6 
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Scheme II.2. Synthesis of 2,2’-diisocyano 6,6’-biazulene.3 
 
 

The 2,2’-diisocyano-6,6’-biazulene exhibits a reversible 2 electron reduction on the 

electrochemical time scale which makes it attractive for materials applications.  The crystal 

structure of this ligand indicates an interplanar angle of approximately 67° due to crystal packing 

forces involving the tetraethoxycarbonyl substituents.3 A way to make the linear 6,6’-biazulene 

more planar would be to introduce a spacer group between the seven membered rings. 

Ito and coworkers synthesized the first 6,6’-biazulenylacetlyene ligand in a series  
 
of three steps beginning with azulene halogenated at the 6 position.9 The coupling of  
 
6-ethynylazulene with 6-bromoazulene was made possible with the use of Sonogashira  
 
conditions.  The yields for each of the reactions were reported to be greater than 80%.   
 
Cyclic voltammetry studies by Ito showed that the 6,6’-biazulenylacetylene ligand forms  
 
a two electron closed shell dianion upon electrochemical reduction.9 This discovery is  
 
indeed similar to the electrochemical data recently obtained in the Barybin group for the  
 
6,6’-biazulene system and for the data supported by Hunig and Ort (Figure II.2).3,10-11   
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DFT studies of the 2,2’-6,6’-biazulene system indicated the formation of the singlet  
 
dianion upon reduction would lead to the shortening of the central C-C bond leading to  
 
double bond character with a 30 degree decrease in angle between the rings.3 

 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure II.2. Cyclic Voltammogram of 2,2’diisocyano 6,6’-biazulene.3 
 

 Recent efforts by the Barybin and Ito groups have opened the door for the construction of 

the linear 2,2’-diisocyano-6,6’-biazulenylacetylene electronic bridge.3,9,12-14  This molecule is 

expected to be intriguing due to its coplanar character that should allow for better orbital overlap 

and enhanced conjugation.  To the best of the author’s knowledge, there is only one example of 

the non-benzenoid 6,6’-biazulene used for coordination to metals in a linear fashion.3 

 Aromatic benzenoid ligands have been used in the design of organogold complexes 

during the past two decades.  These complexes exhibit rich luminescent properties and have the 

ability to form rigid polymer networks in some cases.15-26 Luminescence of linear gold (I) 

complexes is thought by many to originate from aurophilic interactions.  These secondary gold-

gold interactions have the same bond energy as that of a hydrogen bond.27-28 Strength of these 

in the electronic spectra of 3, 4, and 5 in CH2Cl2 appears to increase
upon proceeding from 314 to 4 (474 nm) to 5 (509 nm). This trend
parallels the order of decreasing e--donating/increasing e--
withdrawing strength of the groups at the 2,2′-positions in these
6,6′-biazulenyls: NH2 > sNHCHO > sNtC. At the same time,
however, λmax of the more intense higher energy band, which we
tentatively assign as S0fS2, increases in reverse order 5 (390 nm)
< 4 (421 nm) < 3 (459 nm). Thus, the 2,2′-substitution of the 6,6′-
biazulenyl scaffold provides an opportunity to simultaneously tune
the wavelengths of both S0fS1 and S0fS2 excitations in mutually
opposing directions in the visible region.

The solid state structure of 5 depicted in Figure 1 is remarkably
symmetric with only 1/4 of the molecule being crystallographically
independent. The C3-N1 bond length of 1.165(3) Å observed for
5 is typical for an isocyano NtC triple bond.8 Every carboxylate
unit in 5 is essentially coplanar with the azulenic moiety to which
it is attached. The long axis of 5 spans 17.1 Å, as defined by the
C3 · · ·C3′ distance. The C6-C6′ bond connecting the azulenyl rings
in 5 is 1.512(4) Å long. This distance is statistically shorter than
the C(sp3)-C(sp3) bond of 1.535(4) Å connecting the two seven-
membered rings in 1,1′,6,6′-tetrahydro-6,6′-biazulene-1,1′-diide,
[H8C10-C10H8]2-,15 but only marginally longer than the central
C-C bond length documented for biphenyl (1.494(3)-1.507
Å).16,17

The 66.9° torsion angle between the azulenic planes in crystalline
5 is almost certainly significantly influenced by crystal packing
forces. Our density functional theory (DFT) analysis of 2,2′-
diisocyano-6,6′-biazulenyl (5a), a truncated analogue of 5 that lacks
all ester substituents, predicts the equilibrium interplanar angle of
52.0° for this model compound with the barriers to internal rotation
about the C6-C6′ bond to achieve the planar and orthogonal
conformations being ∆E(0°) ) 8.2 kcal/mol and ∆E(90°) ) 1.3
kcal/mol, respectively. Notably, both experimental and recent DFT
studies of biphenyl indicate that the H5C6-C6H5 molecule exhibits
the torsional angle of ca. 45° with the rotational barriers ∆E(0°) ≈
∆E(90°) e 2.0 kcal/mol in the gas phase.18 While the ∆E(90°)
values for both 5a and (C6H5)2 are similar, the higher ∆E(0°) value
for 5a reflects greater steric congestion about the central C-C bond
connecting the two seven-membered rings in the planar conforma-
tion of 5a compared to the environment of the central C-C linkage
in the planar orientation of biphenyl.

Compound 1, the structure of which may be viewed as one-half of
that of 5, undergoes an irreversible one-electron reduction at Ep,c )
-1.55 V vs Cp2Fe+/Cp2Fe in CH2Cl2. In sharp contrast, the cyclic
voltammogram (CV) of 5 in the same solvent features a nicely
reversible (ip,c/ip,a ) 1.0) two-electron reduction wave at the substan-
tially less negative potential of E1/2 ) -1.02 V (Figure 2). This
observation echoes the reduction behavior of the “parent” 6,6′-
biazulenyl addressed by Hünig and Ort in a series of their pioneering

redox studies of various biazulenic motifs.19 The persistence of 52-,
at least on the electrochemical time scale, can be attributed to the
closed-shell nature of its 6,6′-biazulenide dianion framework (Figure
3, left).10b,19d,20 The singlet electronic configuration of 52- is also
suggested by our DFT examination of its model 5a2-. The singlet (S)
state of 5a2- is predicted to be nearly 0.7 eV less energetic than the
triplet (T) state. The DFT calculations show that the reduction process
5af5a2- (S) is accompanied by appreciable shortening of the central
C-C bond, as well as by a 30° decrease in the interplanar angle
between the two azulenic moieties (Table 1). The HOMO of 5a2- (S)
illustrated in Figure 3 clearly implies the significant double bond
character of the dianion’s central C-C linkage. Similar to 5, the CV
of 3 also features one reversible reduction wave, which occurs at a
more negative potential (E1/2 ) -1.64 V) compared to that of 5 due
to the electron-donating nature of the -NH2 termini.

The molecule of 5 can be readily used to bridge metal centers.
For example, treatment of in-situ-generated W(CO)5(THF) with 0.5
equiv of 5 in THF provided fuchsia-colored [(OC)5W]2(µ-5) that
features two “(OC)5W” units linked through the 6,6′-biazulenyl
bridge by means of the NtC junctions. Complex [(OC)5W]2(µ-5)
undergoes a reversible reduction at E1/2 ) -1.01 V in CH2Cl2. This
reduction potential is almost identical to that of 5 thereby indicating
that the LUMO of [(OC)5W]2(µ-5) is largely bridge-based. The
lowest energy band (λmax ) 496 nm) in the electronic spectrum of
[(OC)5W]2(µ-5) can be assigned to the metal-to-bridge charge
transfer (MBCT), and its molar extinction coefficient (ε) is ca. 35
times greater than that documented for the S0fS1 transition for 5.
Notably, the analogous MBCT for [(OC)5W]2(µ-2,6-diisocyano-
1,3-diethoxycarbonylazulene) has a λmax value of 515 nm,8 whereas
the corresponding transition for [(OC)5W]2(µ-1,4-diisocyanoben-
zene) occurs in the UV region (λmax ) 370 nm).21

Exposure of a gold-coated mica substrate to a 2 mM solution of
5 in CH2Cl2 without protection from air led to adsorption of 5 on

Figure 1. Molecular structure of 5 (50% thermal ellipsoids).

Figure 2. Cyclic voltammogram of 5 in 0.1 M [nBu4N][PF6]/CH2Cl2 vs
internal Cp2Fe+/Cp2Fe (1 equiv) at 25 °C. Scan rate ) 100 mV/s.

Figure 3. Left: bis(cyclopentadienide)-like resonance form of 52-. Right:
DFT-generated HOMO of 5a2-(S).

Table 1. DFT-Generated Relative Energies in the Gas Phase
(∆Egas) and in Dichloromethane (∆EDCM), Interplanar Dihedral
Angles (R), and the Central C-C Bond Length (d) for 5a, 5a2-(S),
and 5a2-(T)

Model species ∆Egas, eV ∆EDCM, eV R, deg d, Å

5a 0 0 52.0 1.50
5a2-(S) -1.58 -5.92 21.9 1.43
5a2-(T) -0.91 -5.23 58.5 1.51

B J. AM. CHEM. SOC. 9 VOL. xxx, NO. xx, XXXX
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aurophilic interactions are enhanced by relativistic effects.27-28 Organogold(I) complexes are 

considered to be emissive due to these strong aurophilic interactions.  Up to this point, the only 

known examples of organogold(I) complexes seem to be mostly benzenoid in nature.   

In this chapter, the synthetic scheme for the first 2,2’-diisocyano-6,6’-biazulenylacetylene 

is shown.  Electrochemical studies on a series of ligands from the diisocyanide synthetic scheme 

will also be addressed.  Synthesis of mono and bistungsten pentacarbonyl complexes using the 

2,2’-diisocyano-6,6’-biazulenyl bridge will be discussed.  Metal to bridge charge transfer results 

from the tungsten coordination studies will be compared to other known systems involving 1,4-

diisocyanobenzene and 2,6-diisocyanoazulene. 

 The first examples of azulenic gold(I) architectures will be showcased.  These Gold 

complexes exhibit luminescent emission due in part to aurophilic interactions. The subsequent 

synthesis of a large tetranuclear gold(I) rectangle of the 2,2’-diisocyano-6,6’-biazulenylacetylene 

linker will be addressed.  The luminescent results of this complex will be compared with a few 

other complexes prepared in our lab.  
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II.2. Work Described in Chapter II 
 
 This Chapter is focused on the chemistry of a symmetric linear biazulenic pi-linker 

featuring two isocyanide termini and an ethynylene spacer between the azulenic moieties.  

Syntheses, characterization, redox behavior, complexation, and formation and properties of self-

assembled monolayer films of this novel nonbenzenoid pi-bridge on metallic gold are discussed.  

In addition, some relevant coordination chemistry of a 2-isocyanoazulene derivative is presented 

as well 
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II.3. Experimental Section 
 
II.3.1 General Procedures and Starting Materials 
 
 Unless specified otherwise, all operations were performed under an argon atmosphere of 

99.5% argon further purified by passage through columns of activated BASF catalyst and 

molecular sieves.  All connections involving the gas purification systems were made of glass, 

metal, or other materials impermeable to air.  Solutions were transferred via stainless steel 

cannulas whenever possible.  Standard Schlenk techniques were employed with a double 

manifold vacuum line.  CH2Cl2 and Et3N were distilled over CaH2.  THF and Toluene were 

distilled over Na/benzophenone.  Following purification, all distilled solvents were stored under 

argon.   

 Solution infrared spectra were recorded on a PerkinElmer Spectrum 100 FTIR 

spectrometer with samples sealed in 0.1mm gas tight NaCl cells.  NMR samples were analyzed 

using Bruker DRX-400 and Bruker Avance 500 spectrometers.  1H and 13C chemical shifts are 

given with reference to residual 1H and 13C solvent resonances relative to Me4Si.  UV-vis spectra 

were recorded in CH2Cl2 at 24°C using a CARY 100 spectrophotometer.  Emission spectra were 

recorder in CH2Cl2 at 24°C using a CARY Eclipse fluorimeter. 

 Cyclic voltammetric (CV) and differential pulse voltammetric (DPV) experiments on 2 x 

10-3M solutions of selected compounds in CH2Cl2 were conducted at room temperature using an 

EPSILON (Bioanalytical Systems, INC., West Lafayette, IN) electrochemical workstation.  The 

electrochemical cell was placed in an argon-filled Vacuum Atmospheres dry-box.  

Tetrabutylammonium hexafluorophosphate (0.1M solution in CH2Cl2) was used as the 

supporting electrolyte.  CV data was recorded at room temperature using a three component 

system consisting of a platinum working electrode, platinum wire auxillary electrode, and a glass 
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encased non-aqueous silver/silver chloride reference electrode.  The reference Ag/Ag+ electrode 

was monitored with the ferrocenium/ferrocene couple.  IR compensation was achieved prior to 

each CV scan by measuring the uncompensated solution resistance followed by incremental 

compensation and circuit stability testing.  Background CV scans of the electrolyte solution were 

recorded before adding the analytes.  The half-wave potentials (E1/2) were determined as 

averages of the cathodic and anodic peak potentials of reversible couples and are referenced to 

the external FcH+/FcH couple.29  

Elemental analysis was carried out by Chemisar/Guelph Chemical Laboratories Ltd, 

Ontario, Canada. 

 Compounds 2-amino-6-bromo-1,3-diethoxycarbonylazulene30, acetic formic anhydride31, 

[bis(dcpmAu21,4’-diisocyanodurene)]4+4OTF- 32, and 

[dcpmAu21,1’diisocyanoferrocene)]2+2OTF- 33 were prepared according to literature procedures.  

Other reagents were obtained from commercial sources and used as received. 
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II.3.2 Synthesis of 2-amino-6-trimethylsiylylacetylene-1,3-diethoxycarbonylazulene (2.1) 
 
 Dichlorobis(triphenylphosphine)palladium(II) (0.143 g, 0.204 mmol), copper(I) iodide 

(0.052 g, 0.272 mmol), triphenylphosphine (0.071 g, 0.272 mmol), and 2-amino-6-bromo-1,3-

diethoxycarbonylazulene (0.500 g, 1.36 mmol) were placed into a 250 mL single armed round 

bottom flask. 100 mL of toluene was added to the flask providing a yellow mixture.  While 

stirring, 5 mL of freshly distilled triethylamine was added to the flask via cannula. Then, 

trimethylsiylylacetlyene (0.334 g, 3.4 mmol) was added to the flask via syringe.  The reaction 

was allowed to stir for 4 hr.  The dark red-orange reaction mixture was poured into 100 mL 10% 

NH4Cl and the organics were collected.  The aqueous layer was extracted with chloroform (2 x 

50 mL).  The combined organic extracts were washed with 100 mL H2O.  Dried over Na2SO4 

and filtered.  This solution was concentrated via rotary evaporation and subjected to silica gel 

column chromatography (5:1 hexanes/ethyl acetate) followed by solvent removal to afford a 86% 

yield of 2.1 (0.447 g, 1.16 mmol) as an orange powder. MP: 127-130°C. 1H NMR (CDCl3, 

400MHz, 25°C): δ 0.29 (s, 9H, CH3), 1.48 (t, 3H, CH3, 3JHH = 8 Hz), 4.46 (q, 4H, CH2, 3JHH = 8 

Hz ), 7.69 (d, 2H, H5,7, 3JHH = 12 Hz), 7.87(s, br, 2H, NH2), 8.99(d, 2H, H4,8, 3JHH = 12 Hz) ppm.  

    
II.3.3 Synthesis of 2-amino-6-ethynyl-1,3-diethoxycarbonylazulene (2.2) 
 
 2-amino-6-trimethylsiylylacetylene-1,3,-diethoxycarbonylazulene (0.447 g, 1.16 mmol) 

was placed into a 250 mL round bottom flask.  30 mL of THF was added to dissolve the powder. 

While stirring, 13.5 ml of freshly distilled N,N’-dimethylformamide was added to the flask 

followed by the addition of a potassium fluoride/DI H2O (0.271 g, 4.66 mmol, 2.5 mL) solution.  

The reaction was allowed to stir for 2 hr.  The dark red reaction mixture was poured into 300 mL 

of DI H2O.  The reacton mixture was extracted with hexanes (3 x 100mL) and dried over Na2SO4.  

This was then filtered and the solvent was removed via rotary evaporation to afford a 70% yield 
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of 2.2 (0.253 g, 0.813 mmol) as a red-brown powder. MP: 125°C dec.  1H NMR (CDCl3, 

400MHz, 25°C): δ 1.50 (t, 3H, CH3, 3JHH = 7 Hz), 3.27 (s, 1H, CH), 4.48 (q, 4H, CH2, 3JHH = 7 

Hz ), 7.70 (d, 2H, H5,7, JHH = 11 Hz), 7.90 (s, br, 2H, NH2), 9.00 (d, 2H, H4,8, 3JHH = 11 Hz) ppm.           

 
 
II.3.4 Synthesis of 2,2’-diamino-1,1’,3,3’-tetraethoxycarbonyl-6,6’-biazulenylacetylene (2.3) 
 
 2-amino-6-bromo-1,3-diethoxycarbonylazulene (0.225 g, 0.615 mmol), 2-amino-6-

ethynyl-1,3-diethoxycarbonylazulene (0.201g, 0.646 mmol), triphenylphosphine (0.032 g, 0.123 

mmol), copper(I) iodide (0.023 g, 0.123 mmol), and tetrakis(triphenylphosphine)palladium(0) 

(0.071 g, 0.0615 mmol) were placed into a 250 mL single armed round bottom flask and placed 

under an argon atmosphere.  150 mL of toluene was added to the flask. While the contents were 

being stirred, 5 mL of freshly distilled triethylamine was added via cannula.  The reaction was 

allowed to stir for 18 hr.  The deep blood red colored mixture was poured into 100 ml 10% 

NH4Cl. This mixture was extracted with dichloromethane (3 X 100 mL).  Washed with 100 mL 

DI H2O.  Dried over Na2SO4 and filtered.  All of the solvent was removed under vacuum using a 

rotary evaporator and  recrystallized from dichloromethane/hexanes to afford a 85% yield of 2.3 

(0.311 g, 0.521 mmol) as a brick red powder.  1H NMR (CDCl3, 400MHz, 25°C): δ 1.50 (t, 3H, 

CH3, 3JHH = 8 Hz), 4.49 (q, 4H, CH2, 3JHH = 8 Hz ), 7.77 (d, 2H, H5,7, 3JHH = 12 Hz), 7.91 (s, br, 

2H, NH2), 9.04 (d, 2H, H4,8, 3J HH = 12 Hz) ppm. UV-Vis (CH2Cl2) λmax(log ε): 505 nm ( 4.84), 

357 nm ( 4.79), 348 nm ( 4.77), 250 nm (4.943).     

             
II.3.5 Synthesis of 2,2’-bisformamido-1,1’,3,3’-tetraethoxycarbonyl-6,6’-
biazulenylacetylene (2.4) 
 
 2,2’-diamino-1,1’,3,3’-tetraethoxycarbonyl-6,6’-biazulenylacetylene (0.311 g, 0.521 

mmol) was placed into a 250 mL round bottom flask and dissolved with 100 mL 
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dichloromethane.  While stirring, formic acid (9.8 mL) and acetic formic anhydride (3.3 mL) 

were added to the flask.  The reaction was allowed to stir for 4hr.  The burgundy colored reaction 

mixture was quenched with 10% Na2CO3 and the organic material was dried over Na2SO4.  The 

filtrate was filtered and the solvent was removed via rotary evaporation.  Recrystallization from 

dichloromethane/pentane afforded a 77% yield of 2.4 (0.263 g, 0.403 mmol) as a red-brown 

powder.  1H NMR (CDCl3, 400MHz, 25°C): δ 1.50 (t, 3H, CH3, 3JHH = 8 Hz), 4.53 (q, 4H, CH2, 

3JHH = 8 Hz ), 7.93 (d, 2H, H5,7, 3JHH = 12 Hz), 8.67 (s, 1H, NH), 9.31(d, 2H, H4,8, 3JHH = 12 Hz), 

10.40 (s, br, 1H, CHO) ppm.  UV-Vis (CH2Cl2) λmax(log ε): 470 nm (4.79), 354 nm ( 4.80), 348 

nm (4.85), 251 nm (4.83), 235 nm (4.82).     

  
II.3.6 Synthesis of 2,2’-diisocyano-1,1’,3,3’-tetraethoxycarbonyl-6,6’-biazulenylacetylene 
(2.5) 
 
 2,2’-bisformamido-1,1’,3,3’-tetraethoxycarbonyl-6,6’-biazulenylacetylene (0.263 g, 

0.403 mmol) was placed into a 250 mL single armed round bottom flask and dissolved in 100 

mL of dichloromethane.  0.585 mL of distilled triethylamine was added to the flask and stirred 

for 10min at 0°C.  In a 100 mL single armed round bottom flask, triphosgene (0.251 g, 0.846 

mmol) was dissolved with 25 mL of dichloromethane while being cooled to 0°C.  The 

(COCl2)3/DCM solution was transferred via cannula to the 250 mL flask.  The reaction was 

allowed to stir for 2 hr.  The reaction mixture was poured into 250 mL of ice cold water.  

Collected organic material and dried over Na2SO4.  The filtrate was filtered and the solvent was 

removed via rotary evaporation.  Recrystallization from dichloromethane/pentane afforded a 

54% yield of 2.5 (0.133 g, 0.215 mmol) as a brown powder.  Anal. Calcd. for C36H28N2O8: C: 

70.12; H: 4.58; N: 4.54.  Found: C: 69.82; H: 4.97; N: 4.10.  FTIR (CH2Cl2): νCN = 2124 cm-1; 

νalkyne = 2189 cm-1. 1H NMR (CDCl3, 400MHz, 25°C): δ 1.54 (t, 3H, CH3, 3JHH = 7 Hz), 4.54 (q, 
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4H, CH2, 3JHH = 7 Hz ), 8.05 (d, 2H, H5,7, 3JHH = 11 Hz), 9.78 (d, 2H, H4,8, 3JHH = 11 Hz) ppm.  

13C{1H } NMR (CDCl3, 125.7MHz, 25°C): δ 14.3 (CH3), 61.4 (CH2), 98.2 (alkyne C atoms), 

113.9, 131.9, 134.7, 136.1, 139.4, 141.3 (aromatic C), 163.2 (CO2R), 178.9 (CNR) ppm.  UV-

Vis (CH2Cl2) λmax(log ε): 555 nm ( 3.80), 444 nm ( 4.76), 417 nm ( 4.68), 344 nm ( 4.79), 244 

nm ( 4.76).     

 
II.3.7 Synthesis of a dinuclear tungsten pentacarbonyl complex featuring 2,2’-diisocyano-
1,1’,3,3’-tetraethoxycarbonyl-6,6’-biazulenylacetylene (2.6) 
 

 [W(CO)5(THF)] was generated according to a literature procedure with the use of 

W(CO)6 (0.206 g, 0.585 mmol) in 100 mL of THF.6 Diisocyanide (0.180 g, 0.292 mmol) was 

dissolved in 50 mL of THF using a 250 mL single armed round bottom flask giving a red-brown 

color.  The Yellow-orange [W(CO)5(THF)] solution was slowly cannulated to the diisocyanide 

solution over a period of 30 minutes.  The reaction was left to stir for 18 hr at room temperature 

which resulted in a fuschia colored solution.  THF was removed in vacuo and dried then 

sublimed at 40°C to afford a 57% yield of 2.6 (0.210 g, 0.166 mmol) as a dark purple-black 

microcrystalline powder.  FTIR (CH2Cl2): νCO = 1957 vs. 2043 cm-1; νCN = 2137 cm -1 ;νalkyne = 

2184 cm-1.  1H NMR (CD2Cl2, 400MHz, 25°C): δ 1.51 (t, 3H, CH3, 3JHH = 8 Hz), 4.57 (q, 4H, 

CH2, 3JHH = 8 Hz ), 8.08 (d, 2H, H5,7, 3JHH = 12 Hz), 9.76 (d, 2H, H4,8, 3JHH = 12 Hz) ppm.  

13C{1H} NMR (CDCl3, 125.7MHz, 25°C): δ 14.9 (CH3), 61.4 (CH2), 98.6 (alkyne C atoms), 

113.9, 132.4, 135.1, 135.6, 138.7, 142.0 (aromatic C), 163.2 (CO2R), 165.1 (CNR), 194.0 (W 

CO cis), 196.2 (W CO trans) ppm.  UV-Vis (CH2Cl2) λmax(log ε): 531 nm (4.21).     

 

 



	   48	  

II.3.8 Synthesis of a mononuclear tungsten pentacarbonyl complex featuring 2,2’-
diisocyano-1,1’,3,3’-tetraethoxycarbonyl-6,6’-biazulenylacetylene (2.7) 
 

A yellow orange solution of [W(CO)5(THF)] was generated according to a literature 

procedure with the use of W(CO)6 (0.024 g, 0.068 mmol) in 50 mL of THF. Diisocyanide (0.167 

g, 0.271 mmol) was dissolved in 50 mL of THF using a 250 mL single armed round bottom flask 

giving a red-brown color.  The [W(CO)5(THF)] solution was slowly cannulated to the 

diisocyanide solution over a period of 30 minutes.  The reaction was left to stir for 40 hr at room 

temperature giving a dark colored solution.  THF was removed via rotary evaporation and dried 

via a schlenk line yielding a dark powder which was subjected to florisil column chromatography.  

Three fractions were collected.  The first was a minimal amount of the purple dinuclear product, 

the second was the red violet mononuclear fraction, and the third was unreacted free ligand.  

Solvent was removed via rotatry evaporation to afford a 20 % yield of 2.7 (0.013 g, 0.0138 

mmol) as a dark reddish purple powder.  FTIR (CH2Cl2): νCO = 1955 vs. 2045 cm-1: νCN = 2127, 

2140 cm-1(sh) ; νalkyne = 2188 cm-1.  1H NMR (CDCl3, 400MHz, 25°C): δ 1.53 (t, 12H, CH3, 3J 

HH = 8 Hz), 4.57 (q, 8H, CH2, 3J HH = 8 Hz), 8.05 (d, 4H, H5,5’,7,7’, 3J HH = 12 Hz), 9.79 (d, 4H, 

H4,4’,8,8’, 3J HH = 12 Hz) ppm.  13C { 1H}  NMR (CDCl3, 125.7MHz, 25°C): δ 14.8, 14.9 (CH3), 

61.3, 61.4 (CH2), 98.2, 98.5 (alkyne C atoms), 113.8, 113.9, 129.5, 132.4, 134.7, 135.0, 135.6, 

135.8, 138.7, 139.4, 141.4, 142.0 (aromatic C), 163.2 (CO2R), 165.2 (MCNR), 178.9 (CNR), 

194.0 (W CO cis), 196.2 (W CO trans) ppm.  UV-Vis (CH2Cl2) λmax(log ε): 517 nm (4.17).     

 
II.3.9 Synthesis of [dcpm(Au)1

2bis(1,3-diethoxycarbonyl-2-isocyanoazulene]2+([OTF]-)2 (2.8) 
 

Silver triflate (0.060 g, 0.233 mmol) was added to a 100 mL single arm round bottom 

flask with 25 mL acetone.  Bisdicyclohexylphosphinomethanebis(gold(I)chloride), dcpm(AuCl)2, 

0.103 g, 0.118 mmol) was added to a separate 100 mL single arm round bottom flask with 25 mL 
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of dichloromethane.  With stirring, the silver trifilate mixture was transferred to the gold(I) 

mixture via cannula.  After 30 minutes, the reaction mixture was cloudy and bluish white in 

appearence.  This was then filtered through a schlenk frit providing a colorless filtrate.  The 

solvent was removed under vacuum yielding a colorless solid residue on the inner walls of the 

flask.  The solid was re-dissolved in 50 ml dichloromethane and 1,3-diethoxycarbonyl-2-

isocyanoazulene (0.070 g, 0.236 mmol) in 50 mL dichloromethane was added via cannula.  The 

reaction mixture was stirred for 2 hr.  The reaction mixture was then concentrated down via 

vacuum and the product was crashed out with pentane and dried to afford a 50% yield of 2.8 

(0.099 g, 0.058 mmol) as pink crystals.   MP: 97-101°C.  FTIR (CH2Cl2): νCN = 2231 cm-1.  

 
II.3.10 Synthesis of bis[dcpm(Au)1

2(2,2’-diisocyano-1,1’,3,3’-tetraethoxycarbonyl-6,6’-
biazulenylacetylene]4+([OTF]-)4 (2.9) 
 

Silver triflate (0.050 g, 0.195 mmol) was added to a vial and wrapped in foil.  10 mL of 

diethyl ether was added to dissolve the silver salt. 

Bisdicyclohexylphosphinomethanebis(gold(I)chloride), dcpm(AuCl)2, 0.085 g, 0.097 mmol) was 

added to the vial followed with the addition of 20 ml dichloromethane.  The reaction mixture 

was stirred for 40 minutes.  This mixture was then passed through celite and the resulting filtrate 

was added to a 100 mL round bottom flask which contained 2,2’-diisocyano-1,1’,3,3’-

tetraethoxycarbonyl-6,6’-biazulenylacetylene (0.060 g, 0.097 mmol) dissolved in 25 mL 

dichloromethane.  The reaction mixture was stirred for 2 hr.  the solvent was removed via rotary 

evaporation to afford a 78% yield of 2.9 (0.131 g, 0.038 mmol) as a brown powder.  FTIR 

(CH2Cl2): νCN = 2233 cm-1.  
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II.4. Results and Discussion  
 
 
  
 
 
 
 
 
 

 
 

 
 
 

 
Scheme II.3. Synthesis of precursors for the 6,6’-biazulenylacetylene chemistry 

 
 

 Synthesis begins with the 2-amino-6-bromoazulene which was in itself prepared 

following a modified prep of the original Nozoe procedure.30 In order to couple the molecules 

via Sonogashira conditions, 10 mol% palladium catalyst with 20 mol% of copper iodide and 

triphenylphosphine were added with the halogenated aminoazulene and dissolved in toluene.  

Triethylamine and trimethylsiylylacetylene were then added to commence the reaction.  This 

reaction is highly reproducible with an 86% yield.  This orange powder (compound 2.1) is then 

dissolved in minimal tetrahydrofuran and subjected to potassium fluoride and N,N’-

dimethylformamide resulting in the terminal alkyne (compound 2.2) with a yield of 70%.  

Purification of this red-brown powder is best done via recrystallization.  Compound 2.2 is an 

important piece for construction of the biazulenyl motif utilizing an acetylene spacer connected 

through the 6 and 6’ carbon position of the azulene rings.   
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Scheme II.4. Synthesis of the 2,2’-diamino-6,6’-biazulenylaceylene scaffold. 
 
 
 10 mol% palladium catalyst in the presence of 20 mol% copper iodide and 20 mol% 

triphenylphosphine were added to a flask with 2.2 and 2-amino-6-bromoazulene. After 18 hours, 

the reaction was worked up and 85% of brick red powder (Compound 2.3) was obtained after 

recrystallization from dichloromethane/hexanes.  Numerous purification attempts were initially 

carried out in the early stages of optimization.  All attempts in purification of compound 2.3 

using silica gel column chromatography led to the loss of the brick red product on the column.  

Thus, recrystallization proved to be the best method for purification.  It also proved to be 

important for this reaction to be conducted under strict anaerobic conditions to arrive to a purely 

coupled material.  Homo coupling (two acetylene bridges) was observed when the reaction was 

carried out in ambient conditions while being exposed to air consequently resulting in an 

inseparable mixture.  This was seen by Ito and others in 2001.9 
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Scheme II.5. Synthesis of the 2,2’-diisocyano-6,6’-biazulenylacetylene linker. 
 
 
 Compound 2.3 was formylated using excess acetic-formic anhydride and formic acid for 

4 hours.  Gentle heating could also be used to help speed up the reaction if desired.  Another 

acceptable method for formylation involved the in-situ preparation of acetic-formic anhydride.  

After 4 hours, red-brown powder (Compound 2.4) was prepared in a 77% yield.  Purification was 

completed via recrystallization from dichloromethane/pentane. 

 Dehydration of compound 2.4 was carried out using triphosgene and triethylamine over 

the course of 2 hours.  Washing the reaction mixture with excess water following completion 

proved to be critical for getting rid of triethylammonium salts. Brown powder (Compound 2.5) 

was prepared in a yield of 54%.  Purification is best done via recrystallization from 

dichloromethane/pentane.   
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Table II.1. 1H NMR data in ppm of selected azulenic based compounds in CDCl3 and/or 
CD2Cl2 at 25°C.3,30 

 
 

Compound 4/8, 4’/8’ 5/7, 5’/7’ CH2 CH3 
2H2NAzBr6E2 8.78 7.77 4.45 1.47 
2CNAzNC6E2	   9.80 7.79 4.53 1.52 
2H2N6,6’(Az)2

2’H2NE4 9.17 7.78 4.47 1.48 
2NHCHO6,6’(Az)2

2’NHCHOE4	   9.50 7.97 4.53 1.50 
2CN6,6’(Az)2

2’CNE4	   9.93 8.03 4.55 1.54 
2.1 8.99 7.69 4.46 1.48 
2.2 9.00 7.70 4.48 1.50 
2.3 9.04 7.77 4.49 1.50 
2.4 9.31 7.93 4.53 1.50 
2.5 9.78 8.05 4.54 1.54 

 
 
 1H NMR was an effective method of characterization.  Table II.1 summarizes  
 
NMR data for the compounds 2.1 through 2.5 and for a series of other relevant azulenic  
 
compounds.  This data clearly shows that the functional group at the terminal ends of the  
 
azulenic framework has an influence on the chemical shifts of the azulenic ring.   
 
Evidence for this claim is seen while analyzing the chemical shifts for compounds 2.3  
 
through 2.5.  There is an increase of 0.74ppm for H4,8/4’,8’ when going from the diamino  
 
to the diisocyanide.  Furthermore, a 0.28 ppm shift downfield is observed for H5,7/5’,7’  

 

when converting to the diisocyanide.  This downfield shift is indicative of a deshielding    
 
effect upon changing the functionality at the 2 and 2’ positions on the azulenic ring.  This  
 
effect is felt, albeit slightly, in the diethyl ester region as well.  This offers further support  
 
for an extended conjugated π system for these compounds.  A similar relationship was  
 
observed for the 6,6’-biazulenyl analogue.3  
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Figure II.3. Cyclic voltammogram of 2.5 in CH2Cl2 with an internal FcH/FcH+ ref. at a 
scan rate of 50mV/sec. 

 
 
 

 
 
 

Figure II.4. Differential pulse voltammogram of 2.5 in CH2Cl2 with an internal FcH/FcH+ 
ref. 
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Figure II.5. Cyclic voltammogram of 2.3 in CH2Cl2 with an internal FcH/FcH+ ref. at a 
scan rate of 500mV/sec. 

 
 
 

 
 
 

Figure II.6. Cyclic voltammogram of 2.4 in CH2Cl2 with an internal FcH/FcH+ ref. at a 
scan rate of 500mV/sec. 
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Table II.2. Reduction and oxidation potentials of 1.3, 1.6, and selected compounds from the 
literature in CH2Cl2 versus FcH/FcH+ in volts. aIrreversible.3,9,30 
 
 
 
 
  

 

 

 

  

 

 

 

F 

 

Figures II.3 through II.6 feature cyclic and differential pulse voltammograms for  

compounds 2.3, 2.4, and 2.5 acquired in dichloromethane where ferrocene was used as an 

internal standard.  CV and DPV data for 2.5 indicate that two redox processes occur.  This data 

suggests a stable stepwise two-electron reduction of the biazulenic π system as noted by two 

distinct reversible redox potentials of -0.982 and -1.056V on the electrochemical timescale.  

Precursors (2.3 and 2.4) exhibit two electron processes as well but they occur at identical 

potentials.  The more negative redox potentials for these precursors indicate that electron 

donating groups, such as amines, at the 2 and 2’ positions make the biazulene ring more difficult 

to reduce.  This is due to the stabilizing isocyanide groups decreasing the band gap of the 

biazulene and allowing for the easier addition of electrons into the LUMO.  Figure II.7 illustrates 

Compound E1/2 (red1, red2) E1/2, ox 1 

2CNAzE2 -1.55a -0.10a 

2CN6,6’(Az)2
2’CNE4 -1.02  

6,6’BiAzE4 (w/ alkyne spacer) -0.96, -1.15   

2.3 -1.585  

2.4 -1.265  

2.5 -0.982, -1.056   



	   57	  

a simple Hückel calculation for the LUMO of compound 2.5 showing its extended conjugated π-

system.  Figure II.8 shows a possible illustration for the suspected closed shell dianion of 2.5 

based on electrochemical data. 

 

 

 
 
 

Figure II.7. LUMO of 2.5 using a simple Hückel calculation. 
 
 
 
 
 
 

 
 
 

Figure II.8. Potential representation of the closed shell dianion for 2.5. 
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 Electronic spectra were obtained to determine the effect of substituents on the 2 and 2’ 

positions of the 6,6’-biazulenylacetylene framework (Table II.3).  The data depicted in the table 

are representative of the believed S0 to S1 transitions for each listed compound.  The LUMO has 

orbital density at the 2-position unlike the HOMO; thus, varying the nature of substituent at the 

2-position should only effect the LUMO.3 The λmax value for a relatively weak S0 to S1 transition 

in the electronic spectra of compounds 2.3 through 2.5 in dichloromethane increases upon 

progressing from 2.3 to 2.5.  This trend parallels the order of decreasing electron 

donating/increasing electron withdrawing strength of the groups at positions 2,2’ of the 6,6’-

biazulenylacetylene and also correlates with the chemistry for the 6,6’-biazulenyl analogoue.3 

Energy of the more intense band (S0 to S2) increases in reverse order where 2.5 < 2.4 < 2.3.  This 

indicates that the choice of substituent at the 2,2’ positions provide a way to tune both the S0 to 

S1 and S0 to S2 transitions.3 

 
Table II.3. Electronic transititons for azulenic compounds in CH2Cl2 and pentane.34  
 
 
Compound λmax (nm) Energy of Transition (cm-1) 
Azulene 575 17,391 
2CNAz 560 17,857 
2CNAzE2 522 19,157 
2CNAzE2NC6 535 18,892 
6,6’-BiAzE4 592 16,892 
2CN(AzE2)2NC2’ 531 18,832 
6,6’-BiAzE4 w/ alkyne bridge 551 18,149 
2.3 505 (shoulder) 19,802 
2.5 555 18,018 
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Coordination chemistry of compound 2.5 was initially examined with tungsten 

pentacarbonyl.  The resulting bis and mono tungsten complexes, 2.6 and 2.7 respectively,  

provided evidence for metal to ligand charge transfer (MLCT).  Previously, the Barybin group 

reported on other azulenic systems featuring this type of MLCT.  The 2,6-diisocyanide published 

in 2006 shows a great energy of binucleation after complexation of both ends of the 

diisocyanide.  This binucleation energy indicates a relatively large involvement of the aromatic 

π-system compared to a similar benzenoid-based system published by Bennett.36 

 Preparation of the bistungsten complex (Figure II.9) was performed using a tungsten 

pentacarbonyl THF adduct prepared from tungsten hexacarbonyl following an established 

preparation.35 These reactions were treated as air sensitive and followed via IR using 

dichloromethane (Figure II.10).  IR is a powerful tool for characterization of the organometallic 

complexes since a change of symmetry around the metal center causes obvious shifts in the 

stretching frequencies of CO’s as well as isocyanide, due to σ-donation and π-backbonding.  For 

instance, the free unbound isocyanide has a stretch of 2124 cm-1, whereas, compound 2.6 has an 

isocyanide stretch of 2137 cm-1.  2.6 also has carbonyl stretches of 1957 and 2043 cm-1. 

Complexation provided 57% of purple powder.  A MLCT band for 2.6 was observed at 531nm.  

 The synthesis of the monotungsten analogue (compound 2.7, Figure II.9) was more 

difficult to isolate than the bistungsten complex.  In order to prepare the monocomplex, an 

excess of free ligand (4:1) and slow transfer of all reagents is required.    
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Figure II.9. Coordination of the diisocyanide with tungsten pentacarbonyl. 
 
 
The most difficult step of this synthetic pathway was the purification step.  For instance, column 

chromatography was a method tried on several occasions.  A good amount of material stuck to 

the column during these trials.  The best yield using this method to date is 20% of reddish-purple 

powder (2.7).  IR indicated that compound 2.7 has two isocyanide stretches of 2127 cm-1 and 

2140 cm-1 and carbonyl stretches of 1955 and 2045 cm-1 (Figure II.11).  A MLCT band for 2.7 

was observed at 517nm.  
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Figure II.10. FTIR of compound 2.6 in CH2Cl2 at 25°C.  
 

 

 
 
 

Figure II.11. FTIR of compound 2.7 in CH2Cl2 at 25°C.  
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 The measured metal to bridge charge transfer (MBCT) depicts the ability of electronic 

communication of a given substrate bridged by metal termini.  The MBCT for compound 2.6 

was 18,832 cm-1 (531nm).  Compound 2.7 had a metal to bridge charge transfer of 19,342.4 cm-1 

(517nm). The energy of binucleation, which is the measured difference in charge transfer 

maxima, in going from 2.6 to 2.7 was calculated to be 510 cm-1.  This suggests that the effect of 

binucleation is not as great as seen in the 2,6-diisocyanoazulene case where the complexation 

was occurring at the 2 and 6 positions on the azulene ring. Both of these diisocyanobiazulene 

complexes are conjugated due to good orbital overlap, therefore, it is not surprising to observe 

red shifted MBCT bands for the complexes.  Table II.4 showcases some relevant energies of 

binucleation for select aromatic compounds. 

 
 
Table II.4. MBCT and binucleation energies for selected compounds conducted in 
CH2Cl2.3, 30, 36 
 
 

 
Compound 

 
E (MBCT) (cm-1) 

 
ΔBinucleation (cm-1) 

 
((OC)5W)CNC6H4NC(W(CO)5) 

 
27,027 

 
1,221 

 
((OC)5W)2CNAzNC6(W(CO)5) 

 
19,417 

 
2,042 

 
((OC)5W)2CN(AzE2)2NC2(W(CO)5) 

 
20,161 

 
? 

 
2.6 

 
18,832.4 

 
510 
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Figure II.12. Cyclic voltammogram of 2.6 in CH2Cl2 with an internal FcH/FcH+ ref. at a 
scan rate of 100mV/sec. 

 
 
 Cyclic voltammetry was performed on compound 2.6 using a scan rate of 100 mV/sec in 

dichloromethane (Figure II.12).  This figure illustrates a stepwise reversible two-electron 

reduction process featuring an E1/2 value of -0.98 V and an irreversible oxidative half wave at 

1.00V attributed to tungsten oxidation.  Reduction of 2.6 occurs at almost the same exact 

potential as the first reduction in compound 2.5.  The two-electron reductive process for 

compound 2.6 and that its redox properties are fairly close to that seen in compound 2.5 seems to 

indicate the LUMO is mostly bridge-based.  This potential is almost the same as the analogous 

bistungsten complex from Dr. Tiffany Maher’s electrochemical experiment for the 2,2’-

diisocyano-6,6’-biazulenyl.3 
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Scheme II.6. Synthesis of the 1,4-diisocyanodurene tetragold(I) rectangle.39 
 
 
 A keen interest of researchers has involved the design and study of gold complexes for 

rheumatoid arthritis.  Over the past couple of decades, an interest in the design of organogold 

complexes as potential electronic devices has taken shape due to the interesting electronic 

properties associated with the aurophilic, or gold-gold, interactions.15-28,32 These interactions are 

typically 3 Å in length and the strength is  comparable to the strength of a hydrogen bond. 

Gold(I) complexes have shown the ability for emission, which is intriguing for the design of 

devices.15-28  Emission studies have begun to carry over to Au(I) rectangles that would force 

aurophilic interactions.  It is of interest to design an organogold(I) rectangle featuring the 2,2’-

diisocyano-6,6’-biazulenylacetylene linker. 

 Scheme II.6 illustrates a synthetic route from Puddephatt and coworkers.32 This  
 
was the first tetragold(I) rectangle to be published and the crystal structure provided  
 
evidence for aurophilic interactions.  The first step involved making the gold(I) synthon.   
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This was followed by methathesis with silver triflate and followed by coordination with  
 
the diisocyanodurene.  Emission studies have not been reported to the best of the author’s  
 
knowledge for this complex.  Therefore, the diisocyanodurene complex offered  
 
precedence for the development of organogold(I) chemistry with non-benzenoids  
 
developed by Barybin and coworkers (Scheme II.7, Deplazes).33  This was one of the few  
 
known examples featuring a 1,1’-diisocyanoferrocene coordinated to gold in an  
 
organometallic architecture. 
 
 
 

 
  

 
 
 

 
 
 

Scheme II.7. Synthesis of the 1,1’-diisocyanoferrocene digold(I) rectangle.33 

 
  
 The first azulenic-based gold(I) rectangles were prepared.  Synthesis of compound 2.8 

was conducted using a modified procedure of Puddephatt’s original preparation for the 1,4-

diisocyanodurene (Scheme II.8).  Dcpm(AuCl)2 (dcpm = dicyclohexylphosphinomethane) was 

stirred with silver triflate in the presence of dichloromethane for 30 minutes to prepare the 

intermediate using metathesis.  The near colorless isolated intermediate was mixed with a 

solution of the isocyanide for approximately 2 hours.  The resulting pink crystalline material was 

isolated in a yield of 50% and characterized by IR and X-ray crystallography.   
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Scheme II.8. Synthesis of compound 2.8. 

 
 
 

 
             

 
Figure II.13. X-ray structure of compound 2.8. 
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Figure II.14. X-ray structure of the 1,1’-diisocyanoferrocenyl gold rectangle 

and  compound 2.8.33 
 
 
 
 

 
 
 

Figure II.15. X-ray structure of Puddephatt’s tetragold(I) rectangle.32 
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 A single crystal of compound 2.8 was grown from diffusion of dichloromethane/pentane 

at 4°C over the period of a few days.  X-ray diffraction provided the first crystal structure of an 

azulenic based organogold(I) dinuclear complex.  An illustration is depicted in Figure II.13 and 

compared with two other compounds featured in Figures II.14 and II.15.  Interestingly, 

compound 2.8 features an aurophilic interaction of 3.062 Å.  This type of interaction was also 

seen in the 1,1’-diisocyanoferrocene complex (3.047 Å) shown in Figure II.14 and Puddephatt’s 

gold rectangle (3.133 Å) featured in Figure II.15.  Excitingly, the aurophilic interaction remains 

intact for compound 2.8 even though it has an interplanar azulene angle of 3° where the azulene 

rings do not directly lie on top of one another.  This is a reasonable result considering the natural 

repulsion that would occur having two azulene molecules oriented on top of one another in the 

same direction.   Table II.5 summarizes some of the crystallographic results.  

 
 
Table II.5. Selected bond distances and/or angles from X-ray diffraction.33 

 

 
 2.8 [1,1’-

Fc(NC)2dcpmAu2 ] 
[OTf-]2 

[(CNC6H4NC)2(dcpmAu2)
2][OTf-]4 

Au-Au (Å) 3.062 3.047 3.133 
P-P (Å) 3.096 3.155 3.214 
C-C (Å) 3.541 3.236 3.557 
N-N (Å) 3.709 3.281 3.632 
P-Au-C (°) 174 169 171 
Au-C-N (°) 172 174 171 
Interplanar 
angle (°) 

3 1.5  
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Scheme II.9. Synthesis of compound 2.9. 

 
 
 The synthesis of compound 2.9 began with the mixing of 2,2’-diisocyano-6,6’-

biazulenylacetylene with the digold(I) precursor (Scheme II.9).  This reaction was completed in 

2 hours yielding brown powder in a 78% yield.  IR proved to be an effective method of 

characterization.  Compound 2.9 had an IR stretch of 2231 cm-1, which is indicative of sigma 

donation from the isocyanide to the gold(I) center.   

Emission experiments were conducted for several complexes.  These studies were  
 
done with a fluorimeter at room temperature using distilled dichloromethane as a solvent (table 

II.6). Four of the five complexes listed in table II.6 exhibited emissive properties after being 

excited at all of the electronic transitions for the given compound.  Compound 2.8 was the only 

one that did not exhibit emission in solution.  To the best of the author’s knowledge, the 

compounds prepared from published preparations have yet to provide documented emission data 

in the literature. 

Compound 2.9 was the first to be studied and showed an emission of 596 nm.  This is a 

considerable red shift when considering excitation was at 297 nm.  To help gain an 

understanding for this phenomenon, a few other complexes were studied.  After the study, it was 
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Table II.6. Emission data of selected gold-gold based compounds in CH2Cl2 at 24°C. 
 

 
Compound λexcitation	  (nm) λemission	  (nm) 

	  

247 495 

	  

266 532 

	  

247 495 

	  

 No emission 
observed 
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determined that the aurophilic interaction plays a strong part in the luminescence of the 

complexes.  These aurophilic interactions are intramolecular in nature and allow for the observed 

σ to σ* transitions.20 The same type of transition may play a role for some of the other gold ring 

compounds from table II.6. This result for 2.9 matches up well with the gold rectangle featuring 

1,4-diisocyanodurene which had an emission of 532 nm.  

 Self assembled monolayers featuring coordination to Au(111) surfaces were completed 

for compound 2.5 and for the 2,2’-diisocyano-6,6’-biazulenyl analogue by Brad Neal and Dr. 

Tiffany Maher.3  The results for 2.5 correlate with those of the analogue (Figure II.16).  From 

Figure II.16, compound 2.5 (left) indicates favorable formation of the SAM based on the 

experimental thickness of 27(3) Å measurement  

 
 

 Figure II.16. SAM of 6,6’-biazulenyl ligands on Au(111).  Left: SAM   
            of compound 2.5. Right: SAM of 2,2’-diisocyano-6,6’-biazulenyl.3 

 
  
when compared to the calculated theoretical height of 23 Å.  The formation of the SAM  
 
can be followed by IR and spectra from the gold surface can be compared with that of the  
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higher in energy upon binding to the gold surface.  The alkyne stretch of 2189 cm-1 falls  
 
underneath the broad stretch for the gold isocyanide interaction.  Remarkably, the SAM  
 
appears to be stable at ambient conditions and stands upright in a linear fashion while  
 
being bound to the gold surface making it a good candidate for further studies on the gold  
 
surface. 
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II.5. Conclusions and Outlook  
 
 2,2’-diisocyano-1,1’,3,3’-tetraethoxycarbonyl-6,6’-biazulenylacetylene ligand was 

prepared in a reasonable yield via a novel synthetic pathway and characterization methods offer 

support for its formation.  Cyclic voltammetry experiments were performed for the diisocyanide 

as well as for the diamino and bisformamide ligand precursors.  Results from these experiments 

indicated a reversible stepwise two-electron reduction of the biazulenic π-system.  A potential 

resonance structure for the proposed coplanar diamagnetic biazulenide dianion was illustrated.   

Coordination chemistry involving the use of electron rich tungsten pentacarbonyl units 

with the diisocyanide to prepare bis and monotungsten complexes was presented. Electronic 

absorption data suggested that the diisocyanide is involved in metal-to-bridge charge-transfer 

when complexed to tungsten pentacarbonyl.  

 Di and tetragold(I) complexes featuring a dcpm gold(I) backbone were made using 

isocyano bridging ligands.  A crystal structure of the first gold half ring featuring 1,3-

diethoxycarbonyl-2-isocyanoazulene and the dcpm gold(I) backbone was documented and 

showed a coplanar angle of 3° for the azulene motifs.  Four of the gold complexes presented in 

this chapter were emissive during the solution-based photoluminescence experiments.  A stable 

SAM featuring the diisocyanide was prepared on a Au(111) surface. 

 Future work should involve the pursuit of growing a crystal suitable for X-ray diffraction.  

This is of the utmost importance where it will help definitively prove the linear coplanar 

diisocyanide structure and would be the first of its kind.  Based on the electrochemical results 

from this chapter, chemical reduction of the diisocyanide should be investigated.  It would be 

expected that the cyclopentadienyl rings of azulene would partake in the reduction allowing for 

the possibility of η5 complexes.  Solubility of such complexes may be limited.   Continuation of 
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the coordination chemistry featuring this ligand should be addressed.  For instance, the 

monotungsten diisocyanide complex should be used to prepare a SAM since this complex would 

have a capped isocyanide hand and serve as an IR handle.  Also, more gold complexes should be 

made featuring different backbones to determine its effect on emission.  Lastly, metal organic 

frameworks could be prepared using the ligand in order to take advantage of it as a symmetrical 

bridge. 
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CHAPTER III 
 
 

III.  Regioselective Monofunctionalization of the 2,2’-Biazulenyl Scaffold: Chemistry of the 
6-Isocyano-2,2’-biazulenyl Ligand 
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III.1. Introduction 
 
 Bicyclo[5.3.0]decapentaene, known as azulene, was not recognized for its  

nonbenzenoid character until the mid 1930s.1,2  This polar, blue-colored compound is isomeric 

with naphthalene and has a dipole moment of 1.08 Debye (Figure III.1). 

 
   

 
 
 

Figure III.1. Azulene: atom numbering scheme and the resonance form emphasizing its 
polar nature. 

 
 

The polar nature of azulene and the remarkably low aromatic delocalization energy associated 

with its π-system (Figure III.2)3 make this nonbenzenoid aromatic scaffold an attractive building 

block for the design of electronic and optical materials.4   

  

 

 

 

 

Figure III.2. Aromatic delocalization energies for select aromatics in kcal/mol.3 

 

Many functionalized azulenes have been synthetically accessible, albeit usually in small 

quantities, for over fifty years thanks to the pioneering efforts of Haftner and Nozoe.5,6  New 
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Figure 2.3:  Comparison of aromatic delocalization energies (kcal/mol) for several aromatic species26 

Since the discovery of azulene, great progress has been made in understanding 

its unusual physical and chemical properties, which arise from the electronic 

inhomogeneity of the nonbenzenoid framework.6-24  However, the structure-property 

relationships in azulene chemistry are somewhat fragile,6 and some are currently 

being debated.27,29-31  While the azulene scaffold has been at the forefront in the 

development of several advanced organic materials,6-24 its use in functional 

organometallic systems has been rather limited, primarily due to the propensity of the 

azulenic nucleus to undergo multi-hapto and, frequently, unpredictable bonding with 

transition metal atoms and ions (e.g., Figure 2.4).32-34 

Me

Pri
Pri

Me

Me

Me
M

L

L

Me

Me
Me

Me Lu

O

O

Me

Me

 

Figure 2.4. (Courtesy of Prof. M. V. Barybin). Examples of the multihapto coordination of azulene: A) 
!5-!3  35 B) !6  34 C) !5  36  D) !2  36 

S

20.0                           16.1                               30.5                          4.2 

A) B) C) 

D) 



	   80	  

azulenic derivatives featuring isocyanide substituents have recently emerged and are being 

considered as molecular building blocks for charge delocalization and transport at the 

nanoscale.7,8 

Treboux and coworkers theorized that the linear 2,6-azulenic motif could serve as an 

effective charge transport mediator between electron reservoirs and even function as a 

“molecular switch” due to its structural asymmetry  (Figure III.3).9 The first experimental reports 

on such systems are credited to the groups of Barybin and Chisholm.7,10-12 

 

 
 

Figure III.3. The hypothetical 2,6-azulenic linker.9 

 

The first examples of azulenic self assembled monolayer (SAMs) films were reported by 

Barybin, Berrie and co-workers in 2006.13 These were formed by the adsorption of various 

isocyanoazulene derivatives on the gold(111) metal surface.  The π-conducting isocyanide 

junctions serve as effective “alligator clips” to couple (both structurally and electronically) the 

azulenic scaffolds to the metal surface.  Such one molecule-thick films are of keen interest to 

researchers in the field of molecular electronics.13   

 Adsorption of isocyanoarenes to the Au(111) surface occurs in the terminal upright 

fashion (i.e., nearly parallel to the surface normal) as suggested by infrared and ellipsometric 

analyses of aryl isocyanide SAMs.13-15  Optical ellipsometry is a technique that allows estimating 

thickness of a film formed above the substrate surface.  It has been recently demonstrated that a 
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number of isocyanoazulenic SAMs on Au(111) appear to have enhanced stability in air as 

compared to SAMs of benzenoid isocyanoarenes.13 

 The chemistry of linear π-bridges containing more than one azulenic unit was introduced 

in Chapter II of this Thesis.  Three linear biazulenyl scaffolds can be envisioned that differ from 

each other by connectivity of the azulenic units through carbon atoms 2,2’, 6,6’, or 2,6’ (Figure 

III.4). 

 
 

 
 

Figure III.4. Three possible linear diisocyanobiazulene frameworks. 
 
 
 The isocyanide-terminated linear biazulenyl linkers would feature quite different azulene-

azulene interplanar angles, depending on the connectivity of the azulenic moieties (Figure III.4).  

Of the three possibilities, the 2,2’-coupled biazulenic framework should experience the lowest H-

H repulsion in the vicinity of the central C-C bond.  In fact, a gas-phase DFT study of the 

hypothetical 6,6’-diisocyano-2,2’-biazulenyl linker predicted the azulenyl-azulenyl dihedral 

angle to be less than  5°, while the interplanar angle in the crystallographically characterized 

2,2’-biazulenyl is a perfect 0° (T. R. Maher, Ph.D. Thesis, The University of Kansas, 2009).  
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Thus, the 2,2’-biazulenic bridge would provide the highest extent of π-conjugation within the 

linker.   

The synthesis of 2,2’-biazulene was first reported by Morita and Takase in 1982 and 

involves the Ulmann coupling of 2-haloazulene derivatives.16 High temperatures are needed for 

this process, which employs highly activated copper metal, to proceed. Reasonable yields were 

reported by Morita and Takase for accessing 1,1’,3,3’-tetra(ethoxycarbonyl)-2,2’-biazulene.  All 

four ester functionalities can be efficiently removed to afford the unsubstituted 2,2’-biazulene.16 

 Surprisingly, the reactivity of 2,2’-biazulene has not been explored at all since the 

publication of its synthesis nearly 30 years ago, which may be associated with the relatively 

difficult synthetic access of the compound.  In 2001, Makosza and coworkers published a 

convenient selective method for the amination of azulene and a few of its derivatives at carbon 

atom 6 using aminotriazole.17 This report inspired our efforts to access the first functionalized 

2,2’-biazulenes. 

 Dr. Tiffany Maher, a former graduate student in the Barybin group, attempted double 

functionalization of the 2,2’-biazulenyl scaffold at 6 and 6’ positions with the amino groups in 

hope to subsequently convert these substituents into the isocyano groups.18 Her efforts in this 

regard suggested that only one amino group can be installed at best, perhaps, because the 6’-

position of the 2,2’-biazulenyl scaffold becomes deactivated toward nucleophilic substitution 

upon introduction of the electron-donating –NH2 substituent at the opposite end of the molecule 

(position 6).  Amination attempts were carried out on both the unsubstituted 2,2’-biazulene and 

its 1,1’-3,3’-tetra(ethoxycarbonyl) derivative.  Only the “parent” 2,2’-biazulene appeared to 

undergo reasonably clean amination, which occurred exclusively at the 6-position.  Dr. Maher 

was also able to isolate very small quantities of what appeared to be 6-isocyano-2,2’-biazulene 
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and obtain FTIR and elemental analysis evidence consistent with this formulation.  However, the 

preliminary syntheses of both 6-formamido-2,2’-biazulene and 6-isocyano-2,2’-biazulene proved 

to be poorly reproducible at best and the unambiguous characterization of these compounds was 

yet to be accomplished.   
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III.2. Work Described in Chapter III 
 
 
 In Chapter III, highly reproducible, optimized regioselective syntheses of 6-amino-, 6-

formamido-, and 6-isocyano-2,2’-biazulenes are reported.  Preliminary X-ray crystallographic 

characterization of 6-amino-2,2’-biazulene is presented.    The redox behavior of the above novel 

derivatives of 2,2’-biazulene, addressed by cyclic voltammetry, is described.  In addition, 

interaction of 6-isocyano-2,2’-biazulene with the Au(111) surface to form the first 2,2’-

biazulenic SAMs anchored to the metal via the isocyanide junctions is discussed.    
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III.3. Experimental Section 
 
III.3.1 General Procedures and Starting Materials 
 
 Unless specified otherwise, all operations were performed under an argon atmosphere of 

99.5% argon further purified by passage through columns of activated BASF catalyst and 

molecular sieves.  All connections involving the gas purification systems were made of glass, 

metal, or other materials impermeable to air.  Solutions were transferred via stainless steel 

cannulas whenever possible.  Standard Schlenk techniques were employed with a double 

manifold vacuum line.  CH2Cl2 and Et3N were distilled over CaH2.  THF and Toluene were 

distilled over Na/benzophenone.  Following purification, all distilled solvents were stored under 

argon.   

 Solution infrared spectra were recorded on a PerkinElmer Spectrum 100 FTIR 

spectrometer with samples sealed in 0.1mm gas tight NaCl cells.  NMR samples were analyzed 

using Bruker DRX-400 and Bruker Avance 500 spectrometers.  1H and 13C chemical shifts are 

given with reference to residual 1H and 13C solvent resonances relative to Me4Si.  UV-vis spectra 

were recorded in CH2Cl2 at 24°C using a CARY 100 spectrophotometer. 

 Cyclic voltammetric (CV) and differential pulse voltammetric (DPV) experiments on 2 x 

10-3M solutions of selected compounds in CH2Cl2 were conducted at room temperature using an 

EPSILON (Bioanalytical Systems, INC., West Lafayette, IN) electrochemical workstation.  The 

electrochemical cell was placed in an argon-filled Vacuum Atmospheres dry-box.  

Tetrabutylammonium hexafluorophosphate (0.1 M solution in CH2Cl2) was used as the 

supporting electrolyte.  CV data was recorded at room temperature using a three component 

system consisting of a platinum working electrode, platinum wire auxillary electrode, and a glass 

encased non-aqueous silver/silver chloride reference electrode.  The reference Ag/Ag+ electrode 
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was monitored with the ferrocenium/ferrocene couple.  IR compensation was achieved prior to 

each CV scan by measuring the uncompensated solution resistance followed by incremental 

compensation and circuit stability testing.  Background CV scans of the electrolyte solution were 

recorded before adding the analytes.  The half-wave potentials (E1/2) were determined as 

averages of the cathodic and anodic peak potentials of reversible couples and are referenced to 

the external FcH+/FcH couple.19 Elemental analysis was carried out by Chemisar/Guelph 

Chemical Laboratories Ltd, Ontario, Canada. 

 All work related to self-assembled monolayer formation and characterization (SAMs) 

was conducted by Mr. Brad M. Neal.   

  2,2’-Biazulene16 and acetic-formic anhydride20 were prepared according to literature 

procedures.  Other reagents were obtained from commercial sources and used as received.  

Preliminary syntheses and limited characterization of compounds 3.1, 3.2, and 3.3 were 

originally described by Dr. Tiffany Maher, a former member of the Barybin group (T. R. Maher, 

Ph.D. Thesis, The University of Kansas, 2009).18 
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III. 3.2 Synthesis of 6-amino-2,2’-biazulene (3.1) 
 
 A solution of potassium tert-butoxide (1.36 g, 12.1 mmol) in 50 mL of DMSO was added 

via cannula to a solution of 2,2’-biazulene (0.510 g, 2.01 mmol) and 4-amino-1,2,4-triazole 

(0.506 g, 6.02 mmol) in 25 mL DMSO at room temperature.  The reaction mixture was 

vigorously stirred for 5 hrs and  then poured into 300 mL.  The resulting solution was stirred for 

10 minutes and then extracted with dichloromethane (5×75 mL).  The organic fractions were 

combined and washed with water (5×100 mL).  All solvent was removed via rotary evaporation 

and the residue was recrystallized from dichloromethane/pentane affording a 74% yield of 3.1 

(0.400 g, 1.49 mmol) as a red-brown powder.  MP: 152-155°C dec.  HRMS (ES+, m/z) calc. for 

C20H16N: 270.1283, found: 270.1271.18 1H NMR (Acetone-d6, 400MHz, 25°C): δ 6.52 (s, br, 2H, 

NH2), 6.55 (d, 2H, H5,7, 3JHH = 8 Hz), 7.13(t, 2H, H5’,7’, 3J HH = 10 Hz ), 7.43 (t, 1H, H6’, 3JHH = 

10 Hz), 7.51(s, 2H, H1,3), 7.74(s, 2H, H1’,3’), 7.92(d, 2H, H4,8, 3JHH = 12 Hz), 8.21(d, 2H, H4’,8’, 

3JHH = 12 Hz) ppm.  

  
III.3.3. Synthesis of 6-formamido-2,2’-biazulene (3.2) 
 
 Under argon atmosphere, formic acid (0.24 g, 5.2 mmol, 0.29 mL) was added to a 1 mL 

flask containing acetic anhydride (0.43 g, 4.2 mmol, 0.40 mL) cooled to 0 °C and equipped with 

a microscale reflux condenser and a magnetic stir bar.  The resulting mixture was heated to 60 °C 

and stirred at this temperature for 3 hrs to form acetic-formic anhydride.  The mixed anhydride 

was then cooled to room temperature and transferred with 5 mL of dichloromethane into a 100 

mL single arm round bottom flask under argon.  A red-orange solution of 6-amino-2,2’-

biazulene (0.273 g, 1.01 mmol) in 50 mL of THF was transferred via cannula to the above 

solution of mixed anhydride with stirring.  After one hour of stirring at room temperature, the 

color of the reaction mixture changed to cherry-red.  The mixture was stirred for an additional 17 
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hrs while gradually turning green-brown.  Then, the reaction mixture was poured into 50 mL of 

water to crash out the product.  The solid was filtered off and washed with diethyl ether (2×100 

mL).  After drying at 10-2 Torr,  3.2 (0.225 g, 0.757 mmol) was isolated in a 75% yield as a 

forest green powder.  MP: 125°C dec.  This product is very poorly soluble or insoluble in most 

organic solvents. 

 
III.3.4 Synthesis of 6-isocyano-2,2’-biazulene (3.3) 
 
 6- formamido-2,2’-biazulene (0.200 g, 0.674 mmol) was added to a 250 ml single arm 

round bottom flask using 75 ml THF.  Triethylamine (0.341 g, 3.37 mmol, 0.470 mL) was added 

to a suspension of 6- formamido-2,2’-biazulene (0.200 g, 0.674 mmol) in 75 mL of THF and the 

resulting mixture was frozen using a liquid nitrogen bath.  A solution of triphosgene (0.220 g, 

0.741 mmol) in 30 mL of THF was added via cannula to the above frozen mixture  over a period 

of 30 minutes.  This reaction mixture was allowed to warm to room temperature and stirred for 6 

hrs.  Then, it was poured into 100 mL of water.  After stirring for 10 minutes,  the quenched 

reaction mixture was extracted with dichloromethane (5×50 mL) and the combined extracts were 

dried over anhydrous Na2SO4.  The drying agent was filtered off and all solvent was removed 

from the filtrate by means of rotary evaporation under vacuum.  The residue was recrystallized 

from dichloromethane/pentane to afford a 54% yield of 3.3 (0.102 g, 0.366 mmol) as a lime-

green powder.  FTIR (CH2Cl2): νCN 2115 cm-1.  1H NMR (THF-d8, 400 MHz, 25 °C): δ 7.22 (m, 

4H, H5,7/H5’,7’, 3J HH = 8 Hz), 7.51 (t, 1H, H6’, 3JHH = 8 Hz), 7.90 (s, 2H, H1’,3’), 8.01 (s, 2H, H1,3), 

8.27 (d, 2H, H4’,8’, 3JHH = 8 Hz), 8.31(d, 2H, H4,8, 3JHH = 8 Hz) ppm.  
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III.4. Results and Discussion  
 
 

 
 

 
 
 
            
 
 
 

Scheme III.1. Synthesis of 2,2’-biazulene.16 

 
 

The synthesis of 2,2’-biazulene was performed following a slightly modified procedure 

of Morita and Takase (Scheme III.1).16 2-Amino-1,3 di(ethoxycarbonyl)azulene was chlorinated 

in the presence of HCl(g) and isoamyl nitrite for a 97% yield of red crystals having a melting 

point of 70°C after recrystallization from ethanol.  2-Chloro-1,3-di(ethoxycarbonyl)azulene was 

then mixed with activated copper and the mixture was  heated at 220°C to effect Ulmann 

coupling of the azulenic moieties.16 After 9 hours of heating and subsequent workup of the 

reaction mixture, long purple needles of 1,1’,3,3’-tetra(ethoxycarbonyl)-2,2’-biazulene were 

isolated in 62% yield. Treatment of this compound with H3PO4 at 105 °C effected clean de-

esterification to give green microcrystals of 2,2’-biazulene in an 80% isolated yield. 

Attempts to functionalize the 2,2’-biazulene scaffold with (an) amino group(s) were 

conducted using 4-amino-1,2,4-triazole, methoxyamine hydrochloride, or trimethyl hydrazinium 

iodide in the presence of potassium tert-butoxide and dimethyl sulfoxide.17  All of these reagents 

have previously been shown to aminate azulene with varied efficiencies and regioselectivities.17  

Notably, the best yields of 6-aminoazulene have been obtained by employing 4-amino-1,2,4- 
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Scheme III.2. Synthesis of the 6-isocyano-2,2’-biazulene. 
 
 
triazole as the aminating agent in the presence of a large excess of potassium tert-butoxide.17 

Treatment of 2,2’-biazulene with excess 4-amino-1,2,4-triazole and a large excess of 

potassium tert-butoxide in dimethyl sulfoxide afforded a dark red-orange mixture.  Following a 

somewhat laborious workup and recrystallization, red-brown microcrystalline 6-amino-2,2’-

biazulene (3.1) was isolated in a 74% yield.  Remarkably, only mono-amination of the 2,2-

biazulenic framework exclusively at position 6 was observed.  The 1H NMR resonance for the 

NH2 hydrogen atoms of 3.1 occurs at 6.52 ppm in acetone-d6.  This value is nearly 2 ppm 

downfield compared to δ(NH2) observed for 6-aminoazulene in CDCl3 (4.55 ppm), which 

probably indicates a more planar (or less pyramidal) geometry of the nitrogen atom in 3.1.  A 

resonance form of 3.1 featuring the sp2-hybridized nitrogen atom is shown in Figure III.5.  It 

appears that attaching the electron-donating NH2 group at the 6-position of the 2,2’-biazulenyl 

framework completely shuts down the nucleophilic substitution reactivity at the other end of the 

molecule, i.e., at the 6’-position.   

4-amino-1,2,4-triazole
KOtBu
DMSO

Acetic Anhydride
Formic Acid
THF

(COCl2)3
Et3N, THF
-1960C

NH2 NHCHO NC

  3.1  3.2  3.3 



	   91	  

 

 

 

Figure III.5. Neutral and zwitterionic resonance forms of compound 3.1. 

 

Combining 3.1 with acetic-formic anhydride, carefully prepared in situ by the recent 

method of Figueroa et al,20 in THF afforded a very poorly soluble forest green powder of 6-

formamido-2,2’-biazulene (3.2) in a 75% yield.  

 Multiple attempts to optimize the dehydration of formamide 3.2 have led to the following 

rather unusual synthetic protocol.  A green suspension of 3.2 and excess triethylamine in THF 

needs to be frozen using a liquid nitrogen bath (ca. -196 °C) and then slowly treated with 

triphosgene dissolved in THF.  After thawing and warming up to room temperature, the reaction 

mixture should be stirred for 6 hrs. Quenching of the mixture with water to remove any salt by-

products followed by a simple reaction workup affords air-stable 6-isocyano-2,2’-biazulene (3.3) 

as a lime-green powder in a 54% yield(Scheme III.2). 

 The IR spectrum of 3.3 in CH2Cl2 features a prominent band at 2115 cm-1, which is a 

signature of the isocyano group.  In fact, the energy of this νCN band is practically identical to 

those documented by the Barybin group for other 6-isocyanoazulene derivatives (Table III.1).    

Interestingly, all 6-isocyanoazulene derivatives isolated to date exhibit νCN which is about 10 cm-

1 lower in energy compared to any 2-isocyanoazulenes.     This can be explained by the fact that 

the seven-membered ring of the azulenic moiety carries a partially positive charge and, hence, is 

electron-withdrawing with respect to the isocyano group.  In addition, one can envision a minor 
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“cyclopentadienide”-like resonance form as illustrated for the case of 3.3 in Figure III.6, which 

features a reduced C-NR bond order. 

Table III.1. Isocyanide stretching frequencies for selected isocyanoazulene derivatives.13 

 
 

Compound νNC (cm-1) 
2-isocyanoazulene 2127 
6-isocyanoazulene 2117 
6-isocyano-1,3-dibromoazulene 2115 
6-isocyano-1,3-di(ethoxycarbonyl)azulene 2115 
2,6-diisocyano-1,3-
di(ethoxycarbonyl)azulene6 

2116, 2125 

2-formamido-6-isocyano-1,3-
di(ethoxycarbonyl)azulene 

2116 

3.3 2115 
 
 
 
 

 
 
 

 
Figure III.6.  Neutral and zwitterionic resonance forms of compound 3.3. 

 
 
 
 The redox properties of biazulenylamine 3.1 were assessed by cyclic voltammetry and 

differential pulse voltammetry (Figures III.7 and III.8).  The CV and DPV profiles of 3.1 clearly 

indicate a stepwise two-electron reduction with both steps being reversible on the 

electrochemical timescale. 
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Figure III.7. Cyclic voltammogram of 3.1 in CH2Cl2 versus 
FcH/FcH+.  Scan rate = 100mV/sec. 

 
 

 
 

Figure III.8. Differential pulse voltammogram of 3.1 in CH2Cl2 
with internal FcH/FcH+ reference. 
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 Table III.2 compares the redox properties of 3.1 and 3.3 with those of several other 

azulenic derivatives.    From this table it is clear that 3.1 is harder while 3.3 is easier to reduce 

than the “parent” 2,2’-biazulene.  This is consistent with the electron-donating nature of the 

amino group and the electron-withdrawing nature of the isocyano substituent.  Also, attaching 

the 2-azulenyl moiety at the 2 position of 6-isocyanoazulene to give 3.3 makes the reduction 

potential less negative by virtue of significantly extending the conjugated π-system of the 

molecule.   

 
Table III.2.  Half-wave redox potentials for 3.1, 3.3, and several other azulenic derivatives 
in CH2Cl2 versus FcH/FcH+.8,18,21 

 
 

Compound E1/2, red1 E1/2, red2 

6-isocyanoazulene -1.75 not observed 

1,1’,3,3’-tetra(ethoxycarbonyl)-
2,2’-biazulene 

-1.82 -2.14 

2,2’-biazulene -1.63 irreversible 

3.1 -1.80 -2.00 

3.3 -1.54 irreversible 
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Figure III.9. Top: FTIR spectrum of 3.3 in CH2Cl2.  Bottom: FTIR spectrum 
of 3.3 absorbed on Au(111). 
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Exposure of a Au(111) substrate to a solution of isocyanide 3.3  leads to the formation of 

a 2,2’-biazulenic film on the gold surface. The ellipsometric thickness of this film measured by 

Mr. Brad Neal is 25 Å, whereas the calculated thickness assuming the terminal upright 

coordination of the molecule to the gold surface through the isocyano group is only 16.5 Å.  This 

discrepancy could arise from neglecting absorption of 3.3 at 632.4 nm (HeNe laser used in the 

experiment) and/or multilayer rather than monolayer formation due to some physisorbed 

molecules of 3.3.  Figure III.9 illustrates that the adsorption of 3.3 to the gold surface results in 

the shift of the νCN band from 2115 cm-1 to 2175 cm-1.  The latter νCN energy is typical for 

isocyanoazulenes adsorbed on Au(111) in the terminal upright fashion.13,22  Importantly, the 

surface FTIR spectrum of 3.3 exhibits only one isocyanide environment (corresponding to the 

isocyanide group bound to gold).  While the lack of any features in this spectrum that might 

correspond to the uncoordinated or “free” isocyanide group does not completely discount the 

possibility of a multilayer formation, it certainly suggests that such an arrangement is not likely.	  

A small twinned crystal of 6-amino-2,2’-biazulene was grown by slow evaporation of its 

solution in acetone.  Preliminary X-ray analysis of 3.1 indicated that the two azulenic moieties in 

this compound are essentially coplanar (Figure III.10).  The torsion angle of < 2° observed for 

3.1 is very similar to that in the unsubstituted 2,2’-biazulene.18  The central C-C bond length, C2-

C12, of 1.440(13) Å compares well to the corresponding value of 1.455(4) Å documented for the 

unsubstituted 2,2-biazulene.  The overall length of the molecule from N2 to H16 is about 1.42 

nm.  
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Figure III.10. Preliminary X-ray crystal structure of compound 3.1. 
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III.5. Conclusions and Outlook 
 
 The highly regioselective, optimized mono-amination of 2,2’-biazulene described herein 

constitutes the only example of direct derivatization of the 2,2’-biazulenic framework.  This fully 

characterized aminobiazulene undergoes stepwise, reversible 2-electron reduction and functions 

as a convenient precursor to 6-isocyano-2,2’-biazulene, which can be reproducibly prepared in a 

moderate yield.  

 The latter compound was employed to form the first self-assembled monolayer films of 

2,2’-biazulene.  The isocyanide group serves as an effective “alligator clip” that couples the 

biazulenic framework to the gold surface and orients the molecule approximately parallel to the 

metal surface normal. 

 Future efforts will involve completing structural characterization of all 

monofunctionalized 2,2’-biazulenes reported in this Chapter and developing strategies for 

accessing hitherto unknown 6,6’-diisocyano-2,2’-biazulene, which would be a very intriguing 

linear linker relevant to molecular electronics applications.  Complexation of 3.3 to the Cr(I) 

center to give a homoleptic octahedral low-spin d5 adduct will allow studying unpaired electron 

spin delocalization within the 2,2’-biazulenic framework by 1H, 13C, and 14N NMR.  
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CHAPTER IV 

IV. Synthesis, Properties and Complexation of (pS)-1-Isocyano-2-methylferrocene, the First 
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IV.1.  Introduction 

Isocyanides, RN≡C, incorporating chiral substituents R are found in the structures of 

numerous natural products1 and constitute important building blocks in contemporary polymer 

chemistry2 and materials science.2,3 To the best of this Thesis author’s knowledge, all synthetic 

and naturally occurring organic isocyanides known to date exhibit central chirality.  Recent 

progress in the chemistry of η5-stabilized organometallic isocyanocyclopentadienides,4 such as 

isocyanoferrocene (FcNC, Fc = ferrocenyl group), has created an opportunity to pursue a new 

class of chiral isocyanide compounds featuring planar-chiral substituents immediately attached 

to the isocyano functionality.  Substances of this type are particularly intriguing given the vast 

and ever-growing role of planar chiral metallocene-based organometallics in synthesis, catalysis, 

and materials applications.5 Notably, a few central chiral isocyanide compounds incorporating 

the ferrocenyl moiety are known.6,7 
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IV.2. Work Described in Chapter IV 

In this Chapter, the synthesis and properties of the first planar-chiral isocyanide ligand, 

namely (pS)-1-isocyano-2-methylferrocene, as well as those of its crystallographically 

characterized bis adduct with PdI2 are described.  Redox behavior of several new planar-chiral 

ferrocene-based compounds is discussed.  This Chapter constitutes an important 

revision/expansion of the original work of Dr. Stephan F. Deplazes (Ph.D. 2007), a former 

graduate student in the Barybin group. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	   104	  

IV.3. Experimental Section 
 
IV.3.1 General Procedures and Starting Materials 
 

Unless specified otherwise, synthetic operations were performed under an atmosphere of 

99.5% argon purified by passage through columns of activated BASF catalyst and molecular 

sieves.  Standard Schlenk techniques were employed with a double manifold vacuum line.  

Solvents, including deuterated solvents, were freed of impurities by standard procedures and 

stored under argon.8 

Solution infrared spectra were recorded on a PerkinElmer Spectrum 100 FTIR spectrometer 

with samples sealed in 0.1 mm gas-tight NaCl cells.  NMR samples were analyzed on a Bruker 

Avance 400 spectrometer.  1H and 13C NMR chemical shifts are given with reference to residual 

1H solvent resonances relative to SiMe4.  Chiral HPLC was performed using a Chiralpak OD 

column (0.46 cm × 25 cm, Dancel Chemical Ind., LTD) installed on a Shimadzu LC-10AD 

HPLC with a Shimadzu SPD-10 VP UV-Vis Detector.  Optical rotation data were obtained using 

an AUTOPOL IV polarimeter (Rudolf Research Analytical).  High resolution mass-spectral 

(HRMS) analyses were performed in the MS laboratory of the University of Kansas.  Elemental 

analyses were carried out by Desert Analytics (currently Columbia Analytical Services), Tucson, 

Arizona.  Melting points are uncorrected and were determined for samples in sealed capillary 

tubes.   

Cyclic voltammetry (CV) experiments on ca. 2×10-3 M solutions of 4.2, 4.3, 4.4 were 

conducted using an EPSILON (Bioanalytical Systems INC., West Lafayette, IN) electrochemical 

workstation.  The electrochemical cell was placed in an argon-filled Vacuum Atmospheres dry-

box.  Tetrabutylammonium hexafluorophosphate (0.1 M solution in CH2Cl2) was used as a 

supporting electrolyte. Cyclic voltammograms were recorded at 22 ± 2 °C using a three 
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component system consisting of a platinum (for 4.4) or a glassy carbon (for 4.2 and 4.3) working 

electrode, a platinum wire auxiliary electrode, and a glass encased non-aqueous silver/silver 

chloride reference electrode.  The reference Ag/Ag+ electrode was monitored with the internal 

Cp2Co+/Cp2Co (E1/2 = -1.33 V vs. Cp2Fe+/Cp2Fe in CH2Cl2) couple for 4.2, 4.3 and 

isocyanoferrocene and with the external Cp2Fe+/Cp2 couple for 4.4.9  IR compensation was 

achieved before each CV run by measuring the uncompensated solution resistance followed by 

incremental compensation and circuit stability testing.  Background cyclic voltammograms of the 

electrolyte solution were recorded before addition of the analytes.  The half-wave potentials 

(E1/2), referenced to the Cp2Fe+/Cp2Fe couple, were determined as averages of the cathodic and 

anodic peak potentials of reversible couples.  The X-ray crystallographic analysis of compound 

4.4 was performed by Dr. Douglas Powell. 

Acetic-formic anhydride was prepared as previously published.10 (pS)-1-Phthalimido-2-

methylferrocene was synthesized by Dr. Stephan Deplazes.11 All other reagents were obtained 

from commercial sources and used as received. 
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IV.3.2 Synthesis of (pS)-1-amino-2-methylferrocene (4.1) 

Hydrazine monohydrate (3.8 mL, 77.5 mmol) was added via syringe to a stirring solution of 

(pS)-1-phthalimido-2-methylferrocene (0.705 g, 2.04 mmol) in 30 mL of deoxygenated absolute 

ethanol.  The resulting mixture was refluxed for 2 hr.  Then, 20 mL of H2O was added to cause 

precipitation of a light orange solid.  This mixture was transferred into a separatory funnel 

containing 50 mL of H2O and 30 mL of Et2O to dissolve all of the solid.  The organic layer was 

separated and the aqueous layer was extracted with additional Et2O (4 × 20 mL).  The combined 

organic fractions were dried over anhydrous Na2SO4 for 2 hr and filtered.  All solvent was 

removed from the filtrate in vacuo to afford a 92% yield of 4.1 (0.404 g, 1.88 mmol) as a yellow 

powder.  Mp: 101-103 °C (dec).  [α]D
22 = -48 (c 0.2, CH2Cl2).  1H NMR (400 MHz, CDCl3, 25 

°C): δ 1.91 (s, 3H, CH3), 2.41 (s, 2H, NH2), 3.77 (s br, 1H, C5H3), 3.90 (s, br, 1H, C5H3), 4.00 (s, 

1H, C5H3), 4.03 (s, 5H, C5H5) ppm.  13C{1H} NMR (100.6 MHz, CDCl3, 25 °C): δ 12.6 (CH3), 

58.3, 61.0, 65.7, 69.4, 72.48 (cyclopentadienyl C atoms) ppm. 

 

IV.3.3 Synthesis of (pS)-1-formamido-2-methylferrocene (4.2) 

Acetic-formic anhydride (0.503 g, 5.71 mmol) dissolved in 10 mL of CH2Cl2 was added 

dropwise to an orange solution of 4.1 (0.350 g, 1.63 mmol) at room temperature.  After stirring 

for 1 hr, all solvent was removed from the reaction mixture under vacuum to give an orange-

brown oil.  This oil was then subject to flash column chromatography on silica gel using neat 

Et2O as eluent to collect a yellow-orange band.  Removal of all solvent under vacuum provided 

an orange oil that solidified upon cooling to -15 °C for several hours to afford yellow-orange 4.2 

(0.286 g, 1.18 mmol) in a 72% yield.  Mp: 118 °C (dec).  [α]D
 23 = -479 (c 0.2, CH2Cl2).  HRMS 

(m/z, ES+): found for [M]+ 243.0340; calcd for C12H13FeNO 243.0347.  FTIR (CH2Cl2): νCO 
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1693 cm-1.  In dichloromethane solutions (c ≈ 0.015 g/mL) at 25 °C, 4.2 exists as a 1.7:1 mixture 

of two conformational isomers due to hindered rotation about the formamide N-C bond.  1H 

NMR (400 MHz, CD2Cl2, 25 °C): δ 2.01 (s, 3H, CH3), 2.02 (s, 3H, CH3), 3.93 (dd, 3JHH(1) = 

3JHH(2) ≈ 2.5 Hz, 1H, C5H3), 3.96 (dd, 3JHH(1) = 3JHH(2) ≈ 2.5 Hz, 1H, C5H3), 4.00 (s br, 1H, C5H3), 

4.07 (s br, 1H, C5H3), 4.08 (s, 5H, C5H5), 4.14 (s, 5H, C5H5), 4.26 (s br, 1H, C5H3), 4.69 (s br, 

1H, C5H3), 6.88 (s br, 1H, NH), 7.74 (dd br, 3JHH ≈ 12 Hz, 1H, NH), 8.25 (s br, 1H, formyl H), 

8.35 (d, 3JHH ≈ 12 Hz, 1H, formyl H) ppm.  13C{1H} NMR (100.6 MHz, CD2Cl2, 25 °C): δ 12.56, 

12.81 (CH3), 63.20, 63.80, 63.92, 64.02, 66.93, 67.92, 70.32, 70.46, 77.34, 78.35, 91.80, 92.74 

(cyclopentadienyl C atoms), 160.15, 165.24 (formyl C) ppm. 

 

IV.3.4 Synthesis of (pS)-1-isocyano-2-methylferrocene (4.3) 

Phosphorus oxychloride (0.100 mL, 0.997 mmol) was added dropwise to a stirring solution 

of 4.2 (0.240 g, 0.987 mmol) and diisopropyl amine (0.420 mL, 2.96 mmol) in 25 mL of CH2Cl2 

over a 5 minute period.  The reaction mixture was stirred for 4 hr at room temperature while 

changing from orange to orange-brown in color.  Then, the mixture was quenched with 100 mL 

of aqueous K2CO3 (10 % by weight).  The organic layer was separated, washed with water (2 × 

50 mL), and dried over anhydrous MgSO4 for 2 hr.  The drying agent was removed by filtration 

and the filtrate was concentrated under vacuum.  The resulting residue was subject to flash 

column chromatography on silica gel using a 1:1 Et2O/hexanes mixture as eluent.  The first 

eluted band provided a yellow-orange solution, from which all solvent was removed under 

reduced pressure.  The product was dried at 10-2 Torr to give yellow-orange 4.3 (0.188 g, 0.835 

mmol) in an 85% yield.  Mp:  = 44 – 46 °C.  [α]D
 23 = +21.5 (c 0.2, CH2Cl2).  HRMS (m/z, ES+): 

found for [M]+ 225.0237; calcd for C12H11FeN 225.0241.  FTIR (CH2Cl2): νCN 2127 cm-1.  1H 
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NMR (400 MHz, CDCl3, 25 °C): δ 2.14 (s, 3H), 3.99 (s br, 1H, C5H3), 4.10 (s br, 1H, C5H3), 

4.21 (s, 5H, C5H5), 4.48 (s br, 1H, C5H3) ppm.  13C{1H} NMR (100.6 MHz, CDCl3, 25 °C): δ 

12.44 (CH3), 64.93, 65.65, 67.83, 71.27, 81.81 (cyclopentadienyl C atoms), 164.3 (-NC) ppm. 

 

IV.3.5 Synthesis of trans-[PdI2{(pS)-1-isocyano-2-methylferrocene}2] (4.4) 

A solution of 4.3 (0.110 g, 0.489 mmol) in 10 mL of CH2Cl2 was added to a stirring grey 

slurry of PdI2 (0.088 g, 0.244 mmol) in 10 mL CH2Cl2 via cannula.  The resulting mixture was 

stirred at room temperature for 2 hr, while changing from orange to red-orange in color.  The 

mixture was then filtered through a plug of Celite to give a red-orange filtrate.  All solvent was 

removed in vacuo from the filtrate and the product was dried at 10-2 Torr to afford red 

microcrystalline 4.4 (0.160 g, 0.197 mmol) in an 81% yield.  Mp: 180 °C (dec).  [α]D
 22 = +136 

(c 0.2, CH2Cl2).  Anal. Calcd. for C24H22Fe2I2N2Pd: C, 35.57; H, 2.74; N 3.46.  Found: C, 35.61; 

H, 2.51; N, 3.51.  FTIR (CH2Cl2): νCN 2204 cm-1.  1H NMR (400 MHz, CDCl3, 25 °C): δ 2.27 (s, 

3H), 4.13 (dd, 1H, 3JHH(1) = 3JHH(2) ≈ 2.5 Hz, 1H, C5H3), 4.22 (dd br, 1H, 3JHH =2.6 Hz, 4JHH =1.5 

Hz), 4.35 (s, 5H), 4.65 (dd, 1H, 3JHH =2.5 Hz, 4JHH =1.5 Hz) ppm.  13C{1H} NMR(100.6 MHz, 

CDCl3, 25 °C): δ 12.73 (CH3), 65.97, 66.19, 68.91, 71.79, 83.49 (cyclopentadienyl C atoms) 

ppm. 
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IV.4. Results and Discussion 

Aminoferrocene, FcNH2, has been known for more than fifty years.12 However, the 

tedious multi-step procedures and very low overall yields associated with its preparation had 

prevented further development of aminoferrocene’s chemistry until the turn of the century when 

several improved syntheses of this compound emerged.13-15 A particularly facile route to FcNH2, 

published by Bildstein and coworkers in 1999,13 involves a high yielding sequence ferrocene → 

lithioferrocene → iodoferrocene → N-ferrocenyl phthalimide and constitutes a greatly improved 

modification of Nesmeyanov’s original procedure.16  Dr. Deplazes of the Barybin group applied 

the above method to the preparation of optically pure planar-chiral (pS)-1-amino-2-

methylferrocene and its (pR)-congener (Scheme IV.1).  Accordingly, refluxing enantiopure (pS)-

1-bromo-2-methylferrocene, the synthesis of which has been developed by Richards et al.,17 with 

phthalimide in the presence of Cu2O afforded golden crystalline (pS)-1-phthalimido-2-

methylferrocene in a 55% yield.  Reductive cleavage of (pS)-1-phthalimido-2-methylferrocene 

with hydrazine monohydrate in EtOH quantitatively provided yellow (pS)-1-amino-2-

methylferrocene (4.1).  Interestingly, compound 4.1 exhibits somewhat better air- and thermal 

stability compared to FcNH2.  The (pR) congener of 4.1 can be prepared from (pR)-1-bromo-2-

methylferrocene following the procedure identical to that described in Scheme IV.1. 
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Scheme IV.1.  Synthesis of compounds 4.1 – 4.4 from (pS)-1-bromo-2-methylferrocene. 
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Figure IV.1.  Chiral HPLC traces (identical conditions) for rac-1-amino-2-methylferrocene (A), 
(pS)- 1-amino-2-methylferrocene (B), and (pR)- 1-amino-2-methylferrocene (C).  Adapted from 

S. F. Deplazes, Ph.D. Thesis, The University of Kansas, 2007. 
 

 
Figure IV.1 compares chiral HPLC traces of (pS)-1-amino-2-methylferrocene and (pR)-1-

amino-2-methylferrocene with that of a nearly racemic mixture thereof.  The excellent 

enantiomeric purities (> 99% ee) of our samples of 4.1 and its (pR)-analogue stem from the 

retention of (pS) or (pR) planar chiralities of their 1-bromo-2-methylferrocene precursors,17a 

which in turn originate from the highly diastereoselective (100:1) ortholithiation of the 

corresponding central-chiral isopropyl-substituted ferrocenyloxazolines.18  Notably, a non-
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racemic mixture of (pR)- and (pS)-1-amino-2-methylferrocene with presumed 56% ee, prepared 

from the corresponding partially resolved (pR)-methylferrocene-α-carboxylic acid in four steps 

in an overall 26% yield, has been previously described.19  This procedure involved alkaline 

hydrolysis of the N-ferrocenylbenzylurethan intermediate product obtained via a Curtius 

rearrangement of ferrocenylcarbonyl azide in benzyl alcohol.19a   

Formylation of 4.1 with excess acetic-formic anhydride under mild conditions gave yellow-

orange (pS)-1-formamido-2-methylferrocene (4.2) (Scheme IV.1).  Formamide 4.2 exists as a 

mixture of two conformational isomers in dichloromethane solutions because of restricted 

rotation about the amide C-N bond.20 The more abundant rotamer of 4.2 in solution features 

trans relationship of the hydrogen atoms within the H-N-C-H unit (or mutually cis orientation of 

the N-H and C=O bonds) as judged by the relatively large value of 3JHH = 12 Hz associated with 

its formamido moiety.  While, generally speaking, this is not the thermodynamically preferred 

orientation of the formamido group,21 such geometry is, in principle, well-suited for supporting 

intermolecular interactions between the molecules of 4 in solution through hydrogen bonding 

akin to the dimer formation postulated for solutions of FcNHCHO by Knox et al.22 Dehydration 

of 4.2 with 1.0 equiv of POCl3 provided yellow-orange (pS)-1-isocyano-2-methylferrocene (4.3) 

(Scheme IV.1).  As in the case of the synthesis of FcNC,23 it is important to avoid using excess 

dehydrating agent to achieve a high yield of the isocyanide.  The spectroscopic signatures of the 

isocyano group in 5 (νCN = 2127 cm-1 in CH2Cl2 and δ(13C) = 164.3 ppm in CDCl3) are very 

similar to those documented for FcNC (νCN = 2122 cm-1 and δ(13C) = 163.9 ppm) under the same 

conditions.22,23 
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Treatment of PdI2 with 2 equiv of 4.3 affords air- and thermally stable, red crystalline trans-

[PdI2{(pS)-1-isocyano-2-methylferrocene}2] (4.4) in a high yield (Scheme IV.1).  The frequency 

of the νCN band documented for 4.4 is 77 cm-1 higher compared to that observed for 

uncoordinated 4.3 which indicates that the isocyanide ligands in 4.4 function essentially as σ-

donors.  Similar changes in the energy of νCN occur upon coordination of a number of other aryl 

isocyanides to PdI2
24 and are caused by the fact that the lone pair of the terminal isocyanide 

carbon atom in R-N≡C is antibonding with respect to the N≡C bond.4 

 
 

 
Figure IV.2.  ORTEP diagrams of two independent molecules A (top) and B (bottom) in the 

asymmetric unit of 4.4.  Thermal ellipsoids are drawn at the 50% probability level. 
 

Compound 4.4 crystallizes in the chiral space group P21.  The asymmetric unit contains two 

crystallographically independent chiral molecules of 4.4 (A and B) that feature trans attachment 

of the (pS)-1-isocyano-2-methylferrocene ligands to the Pd(II) center (Figure IV.2).  Selected 

bond distances and angles for both molecules are provided in Table IV.1.  The metric parameters 
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of their square planar “PdI2(CN)2” cores are quite similar to those documented for a number of 

other crystallographically characterized trans-PdI2(CNAryl)2 complexes.24  All C-N-C angles are 

essentially linear (175-178°).  For 4.4, the isocyanide N-C bond lengths vary from 1.144(5) to 

1.164(6) Å and are comparable to the corresponding value of 1.157(3) Å found for “free” 

isocyanoferrocene.25 The mutual orientation of the two ferrocenyl groups with respect to the C-

N-C-Pd-C-N-C axis is best described as anticlinal for molecule A and antiperiplanar for 

molecule B because the dihedral angles defined by the centroids of the four cyclopentadienyl 

rings are 139° and 154° for molecules A and B, respectively.  The cyclopentadienyl ring pairs 

sandwiching the iron atoms Fe(1A), Fe(2A), Fe(1B), and Fe(2B) deviate from the perfectly 

eclipsed conformation by 2°, 2°, 16°, and 4°, respectively. 

 

Table IV.1.  Selected bond distances (Å) and angles (°) for 4.4. 

 Molecule A Molecule B 
Pd-I(1) 
Pd-I(2) 
Pd-C(1) 
Pd-C(2) 
C(1)-N(1) 
C(2)-N(2) 
N(1)-C(3) 
N(2)-C(14) 
C(4)-C(8) 
C(15)-C(19) 

2.5975(8) 
2.5981(8) 
1.953(4) 
1.977(4) 
1.156(6) 
1.144(5) 
1.389(5) 
1.394(5) 
1.491(6) 
1.497(7) 
 

2.5939(7) 
2.6000(7) 
1.961(4) 
1.946(4) 
1.144(6) 
1.164(6) 
1.400(6) 
1.378(6) 
1.482(6) 
1.486(8) 

I(1)-Pd-I(2) 
C(1)-Pd-C(2) 
Pd-C(1)-N(1) 
Pd-C(2)-N(2) 
C(1)-N(1)-C(3) 
C(2)-N(2)-C(14) 

172.54(2) 
173.1(2) 
176.5(4) 
172.4(4) 
177.2(4) 
176.4(4) 

179.48(2) 
178.1(2) 
177.6(4) 
176.1(4) 
174.5(4) 
178.2(4) 
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Figure IV.3.  Cyclic voltammogram of 4.2 in 0.1 M [nBu4N][PF6]/CH2Cl2 vs. Cp2Fe+/Cp2Fe.  

Scan rate = 100 mV/s.  Internal Cp2Co+/Cp2Co reference. 
 

 

 
 

Figure IV.4.  Cyclic voltammogram of 4.3 in 0.1 M [nBu4N][PF6]/CH2Cl2 vs. Cp2Fe+/Cp2Fe.  
Scan rate = 100 mV/s.  Internal Cp2Co+/Cp2Co reference. 
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Figure IV.5.  Cyclic voltammogram of 4.4 in 0.1 M [nBu4N][PF6]/CH2Cl2 at positive potentials 

vs. Cp2Fe+/Cp2Fe.  Scan rate = 100 mV/s.  External Cp2Fe+/Cp2Fe reference.  Adapted from S. F. 
Deplazes, Ph.D. Thesis, The University of Kansas, 2007. 

 

Figures IV.3, IV.4, and IV.5 show the cyclic voltammograms of solutions of 4.2, 4.3, and 4.4 

in CH2Cl2.  The half-wave potential (E1/2) corresponding to the Fe2+/Fe3+ couple increases in the 

order 4.2 < 4.3 < 4.4 (Table IV.2).  This trend is a consequence of (a) the isocyano substituent 

being more electron-withdrawing / less electron-donating compared to the formamido substituent 

and (b) the 1-isocyano-2-methylferrocene ligands functioning primarily as σ-donors upon 

coordination to the Pd(II) center to form 4.4.  Indeed, engaging the lone pair of the terminal 

isocyanide carbon atom of 4.3 in bonding with the Pd(II) ion enhances the electron-withdrawing 

nature of the isocyanide junction with respect to the ferrocenyl moiety and, hence, makes the 

latter more difficult to oxidize.  While the Fe2+/Fe3+ couples for 4.2 and 4.4 are fully reversible 

(ip,c/ip,a = 1.0), this process for 4.3 is only partially reversible (ip,c/ip,a ≈ 0.6) under the same 

conditions.  Such electrochemical behavior of 4.3 appears to parallel the incomplete reversibility 
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of the Fe2+/Fe3+ couple documented for its “parent” analogue, FcNC7,23a (Table IV.2).  Notably, 

the E1/2 value corresponding to the Fe2+/Fe3+ couple for 4.3 is 33 mV less positive compared to 

that observed for FcNC due to the electron-donating influence of the methyl substituent in the 

former. 

 

Table IV.2.  Cyclic voltammetry data for FcNC, 4.2, 4.3, and 4.4.a 

 

Compound E1/2(Fe2+/Fe3+), V ΔEp,c-p,a, mV ip,c/ip,a 

FcNCb 0.265 190 0.88 

4.2 -0.071 168 1.0 

4.3 0.232 103 0.62 

4.4 0.368 89 1.0 
 

a All measurements were performed in CH2Cl2/[nBu4N][PF6] at 22±2 °C to ensure quantitative 

comparison, scan rate = 100 mV/s. b Ref. 23a. 
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IV.5 Conclusions and Outlook 

The work described herein has capitalized on the recent advancements in the syntheses of 

planar-chiral ferrocenyl halides, aminoferrocene, and isocyanoferrocene to access the first 

example of a planar-chiral isocyanide, 4.3, in high enantiomeric purity.  Upon complexation, this 

non-benzenoid aromatic isocyanide ligand exhibits robust redox activity, at least on the 

electrochemical time scale.  Future efforts will include expanding the hitherto unavailable class 

of planar-chiral isocyanide ligands to include RNC species featuring “piano-stool” substituents R 

(e.g., see T. C. Holovics, Ph.D. Thesis, The University of Kansas, 2006) and applications of 

complexes of 4.3 and its derivatives in enantioselective catalysis. 
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Appendix 1 

 

Crystallographic Data for compound 2.8 
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Table 1.  Crystal data and structure refinement for Compound 2.8 
 
Identification code  k34f 
Empirical formula  C61.50 H77 Au2 Cl F6 N2 O14 P2 S2 
Formula weight  1737.69 
Temperature  100(2) K 
Wavelength  0.71073 Å 
Crystal system  Triclinic 
Space group  P-1 
Unit cell dimensions a = 12.7241(10) Å α= 94.3280(10)°. 
 b = 14.4095(11) Å β= 97.6300(10)°. 
 c = 19.5432(15) Å γ = 113.3680(10)°. 
Volume 3227.7(4) Å3 
Z 2 
Density (calculated) 1.788 Mg/m3 
Absorption coefficient 4.779 mm-1 
F(000) 1726 
Crystal size 0.35 x 0.32 x 0.16 mm3 
Theta range for data collection 2.45 to 30.53°. 
Index ranges -18<=h<=18, -20<=k<=20, -27<=l<=27 
Reflections collected 37150 
Independent reflections 18761 [R(int) = 0.0296] 
Completeness to theta = 30.53° 95.0 %  
Absorption correction Multi-scan 
Max. and min. transmission 1.000 and 0.582 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 18761 / 3 / 821 
Goodness-of-fit on F2 1.006 
Final R indices [I>2sigma(I)] R1 = 0.0380, wR2 = 0.0903 
R indices (all data) R1 = 0.0553, wR2 = 0.0948 
Largest diff. peak and hole 2.663 and -2.280 e.Å-3 
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Table 2.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 
103) for Compound 2.8  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 
 
________________________________________________________  
 x y z U(eq) 
________________________________________________________________________________   
Au(1) 986(1) 2490(1) 2326(1) 16(1) 
Au(2) 3621(1) 3532(1) 2390(1) 16(1) 
P(1) 1278(1) 3088(1) 3486(1) 15(1) 
P(2) 3522(1) 2769(1) 3386(1) 15(1) 
O(11) 462(3) 3453(2) 455(1) 20(1) 
O(12) 67(3) 3699(2) -646(2) 29(1) 
O(13) 1743(3) -363(2) -401(2) 23(1) 
O(14) 1703(3) 323(2) 662(2) 26(1) 
O(31) 3078(3) 5944(2) 1134(1) 22(1) 
O(32) 2647(3) 6677(2) 226(2) 24(1) 
O(33) 4175(3) 2866(2) 350(2) 23(1) 
O(34) 4264(3) 2715(3) -786(2) 30(1) 
N(1) 967(3) 1874(3) 748(2) 19(1) 
N(2) 3586(3) 4307(2) 930(2) 17(1) 
C(1) 911(3) 2028(3) 1317(2) 19(1) 
C(2) 3667(3) 4102(3) 1485(2) 19(1) 
C(3) 2660(3) 3128(3) 3946(2) 17(1) 
C(11) 704(3) 2395(3) -415(2) 19(1) 
C(12) 989(3) 1786(3) 40(2) 17(1) 
C(13) 1280(3) 1058(3) -318(2) 18(1) 
C(14) 1428(4) 683(3) -1572(2) 22(1) 
C(15) 1389(4) 826(3) -2269(2) 24(1) 
C(16) 1083(4) 1500(3) -2619(2) 24(1) 
C(17) 720(4) 2229(3) -2367(2) 24(1) 
C(18) 603(4) 2475(3) -1684(2) 23(1) 
C(19) 808(3) 2053(3) -1088(2) 18(1) 
C(20) 1172(3) 1218(3) -1032(2) 18(1) 
C(21) 373(4) 3240(3) -234(2) 20(1) 
C(22) 114(4) 4256(3) 676(2) 22(1) 
C(23) 176(4) 4314(3) 1453(2) 26(1) 
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C(24) 1599(3) 319(3) 38(2) 20(1) 
C(25) 2066(4) -1132(3) -103(2) 22(1) 
C(26) 3363(4) -752(3) 90(2) 26(1) 
C(31) 3157(3) 5276(3) 25(2) 18(1) 
C(32) 3471(3) 4504(3) 244(2) 17(1) 
C(33) 3664(3) 3951(3) -316(2) 18(1) 
C(34) 3513(4) 4014(3) -1592(2) 23(1) 
C(35) 3280(4) 4343(3) -2212(2) 26(1) 
C(36) 2929(4) 5124(4) -2329(2) 28(1) 
C(37) 2705(4) 5756(3) -1865(2) 24(1) 
C(38) 2785(4) 5804(3) -1149(2) 22(1) 
C(39) 3103(3) 5194(3) -715(2) 18(1) 
C(40) 3431(3) 4364(3) -924(2) 17(1) 
C(41) 2933(3) 6037(3) 452(2) 18(1) 
C(42) 2890(4) 6685(3) 1597(2) 27(1) 
C(43) 3914(4) 7704(3) 1730(2) 31(1) 
C(44) 4055(4) 3114(3) -291(2) 20(1) 
C(45) 4640(4) 2095(3) 415(2) 25(1) 
C(46) 4605(4) 1855(3) 1147(2) 26(1) 
C(51) 133(3) 2273(3) 3925(2) 17(1) 
C(52) 38(4) 1179(3) 3840(2) 20(1) 
C(53) -992(4) 488(3) 4144(2) 22(1) 
C(54) -861(4) 872(3) 4911(2) 28(1) 
C(55) -735(4) 1974(3) 5019(2) 24(1) 
C(56) 271(4) 2680(3) 4696(2) 21(1) 
C(61) 1386(3) 4393(3) 3668(2) 16(1) 
C(62) 2358(4) 5171(3) 3362(2) 20(1) 
C(63) 2422(4) 6244(3) 3530(2) 22(1) 
C(64) 1266(4) 6303(3) 3290(2) 24(1) 
C(65) 284(4) 5520(3) 3592(2) 26(1) 
C(66) 212(4) 4440(3) 3424(2) 19(1) 
C(71) 2752(3) 1373(3) 3171(2) 16(1) 
C(72) 3004(4) 976(3) 2482(2) 20(1) 
C(73) 2325(4) -171(3) 2294(2) 25(1) 
C(74) 2548(4) -734(3) 2880(2) 27(1) 
C(75) 2251(4) -365(3) 3553(2) 25(1) 
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C(76) 2949(4) 791(3) 3763(2) 20(1) 
C(81) 4915(3) 3111(3) 3951(2) 16(1) 
C(82) 5715(4) 2704(3) 3643(2) 20(1) 
C(83) 6850(4) 2997(3) 4157(2) 25(1) 
C(84) 7474(4) 4150(3) 4360(2) 24(1) 
C(85) 6690(3) 4595(3) 4643(2) 21(1) 
C(86) 5534(3) 4279(3) 4136(2) 19(1) 
S(1A) 3427(1) 2781(1) 5831(1) 32(1) 
F(1A) 4786(3) 1942(3) 6362(3) 71(1) 
F(2A) 4907(3) 3278(3) 6998(2) 45(1) 
F(3A) 3423(3) 1842(3) 6923(2) 59(1) 
O(1A) 2782(3) 3245(3) 6161(2) 37(1) 
O(2A) 2715(4) 1817(3) 5394(2) 62(1) 
O(3A) 4372(4) 3460(3) 5539(2) 52(1) 
C(1A) 4171(4) 2444(4) 6569(3) 36(1) 
S(2A) 7657(1) 1711(1) 2186(1) 22(1) 
F(4A) 5463(2) 686(2) 2277(2) 40(1) 
F(5A) 6192(3) -167(2) 1711(2) 54(1) 
F(6A) 6634(3) 159(3) 2828(2) 54(1) 
O(4A) 8583(3) 1377(2) 2212(2) 33(1) 
O(5A) 7749(3) 2408(3) 2780(2) 35(1) 
O(6A) 7319(3) 1983(2) 1526(2) 30(1) 
C(2A) 6429(4) 552(4) 2264(3) 31(1) 
Cl(1S) 4240(2) -353(2) 5501(1) 87(1) 
C(1S) 5213(9) 740(2) 5204(4) 71(5) 
________________________________________________________________________________ 
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Table 3.   Bond lengths [Å] and angles [°] for Compound 2.8. 
_____________________________________________________  
Au(1)-C(1)  2.010(4) 
Au(1)-P(1)  2.2910(10) 
Au(1)-Au(2)  3.0621(3) 
Au(2)-C(2)  2.002(4) 
Au(2)-P(2)  2.3007(10) 
P(1)-C(61)  1.833(4) 
P(1)-C(51)  1.833(4) 
P(1)-C(3)  1.841(4) 
P(2)-C(81)  1.819(4) 
P(2)-C(3)  1.832(4) 
P(2)-C(71)  1.839(4) 
O(11)-C(21)  1.339(5) 
O(11)-C(22)  1.450(5) 
O(12)-C(21)  1.199(5) 
O(13)-C(24)  1.340(5) 
O(13)-C(25)  1.459(5) 
O(14)-C(24)  1.208(5) 
O(31)-C(41)  1.345(4) 
O(31)-C(42)  1.459(5) 
O(32)-C(41)  1.210(5) 
O(33)-C(44)  1.335(5) 
O(33)-C(45)  1.457(5) 
O(34)-C(44)  1.202(5) 
N(1)-C(1)  1.135(5) 
N(1)-C(12)  1.386(5) 
N(2)-C(2)  1.148(5) 
N(2)-C(32)  1.392(5) 
C(3)-H(3A)  0.9900 
C(3)-H(3B)  0.9900 
C(11)-C(12)  1.406(6) 
C(11)-C(19)  1.410(5) 
C(11)-C(21)  1.471(6) 
C(12)-C(13)  1.411(5) 
C(13)-C(20)  1.428(5) 
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C(13)-C(24)  1.472(6) 
C(14)-C(15)  1.390(6) 
C(14)-C(20)  1.408(5) 
C(14)-H(14A)  0.9500 
C(15)-C(16)  1.375(6) 
C(15)-H(15A)  0.9500 
C(16)-C(17)  1.389(6) 
C(16)-H(16A)  0.9500 
C(17)-C(18)  1.397(6) 
C(17)-H(17A)  0.9500 
C(18)-C(19)  1.396(6) 
C(18)-H(18A)  0.9500 
C(19)-C(20)  1.457(6) 
C(22)-C(23)  1.505(6) 
C(22)-H(22A)  0.9900 
C(22)-H(22B)  0.9900 
C(23)-H(23A)  0.9800 
C(23)-H(23B)  0.9800 
C(23)-H(23C)  0.9800 
C(25)-C(26)  1.501(6) 
C(25)-H(25A)  0.9900 
C(25)-H(25B)  0.9900 
C(26)-H(26A)  0.9800 
C(26)-H(26B)  0.9800 
C(26)-H(26C)  0.9800 
C(31)-C(32)  1.400(5) 
C(31)-C(39)  1.431(5) 
C(31)-C(41)  1.468(5) 
C(32)-C(33)  1.411(5) 
C(33)-C(40)  1.417(5) 
C(33)-C(44)  1.477(6) 
C(34)-C(35)  1.372(6) 
C(34)-C(40)  1.396(5) 
C(34)-H(34A)  0.9500 
C(35)-C(36)  1.389(6) 
C(35)-H(35A)  0.9500 



	   129	  

C(36)-C(37)  1.374(6) 
C(36)-H(36A)  0.9500 
C(37)-C(38)  1.384(6) 
C(37)-H(37A)  0.9500 
C(38)-C(39)  1.401(6) 
C(38)-H(38A)  0.9500 
C(39)-C(40)  1.462(6) 
C(42)-C(43)  1.502(6) 
C(42)-H(42A)  0.9900 
C(42)-H(42B)  0.9900 
C(43)-H(43A)  0.9800 
C(43)-H(43B)  0.9800 
C(43)-H(43C)  0.9800 
C(45)-C(46)  1.499(6) 
C(45)-H(45A)  0.9900 
C(45)-H(45B)  0.9900 
C(46)-H(46A)  0.9800 
C(46)-H(46B)  0.9800 
C(46)-H(46C)  0.9800 
C(51)-C(52)  1.527(5) 
C(51)-C(56)  1.536(5) 
C(51)-H(51A)  1.0000 
C(52)-C(53)  1.525(5) 
C(52)-H(52A)  0.9900 
C(52)-H(52B)  0.9900 
C(53)-C(54)  1.521(6) 
C(53)-H(53A)  0.9900 
C(53)-H(53B)  0.9900 
C(54)-C(55)  1.526(6) 
C(54)-H(54A)  0.9900 
C(54)-H(54B)  0.9900 
C(55)-C(56)  1.534(6) 
C(55)-H(55A)  0.9900 
C(55)-H(55B)  0.9900 
C(56)-H(56A)  0.9900 
C(56)-H(56B)  0.9900 
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C(61)-C(62)  1.530(5) 
C(61)-C(66)  1.536(5) 
C(61)-H(61A)  1.0000 
C(62)-C(63)  1.524(6) 
C(62)-H(62A)  0.9900 
C(62)-H(62B)  0.9900 
C(63)-C(64)  1.520(6) 
C(63)-H(63A)  0.9900 
C(63)-H(63B)  0.9900 
C(64)-C(65)  1.537(6) 
C(64)-H(64A)  0.9900 
C(64)-H(64B)  0.9900 
C(65)-C(66)  1.530(6) 
C(65)-H(65A)  0.9900 
C(65)-H(65B)  0.9900 
C(66)-H(66A)  0.9900 
C(66)-H(66B)  0.9900 
C(71)-C(76)  1.530(5) 
C(71)-C(72)  1.545(5) 
C(71)-H(71A)  1.0000 
C(72)-C(73)  1.517(6) 
C(72)-H(72A)  0.9900 
C(72)-H(72B)  0.9900 
C(73)-C(74)  1.512(6) 
C(73)-H(73A)  0.9900 
C(73)-H(73B)  0.9900 
C(74)-C(75)  1.530(6) 
C(74)-H(74A)  0.9900 
C(74)-H(74B)  0.9900 
C(75)-C(76)  1.535(6) 
C(75)-H(75A)  0.9900 
C(75)-H(75B)  0.9900 
C(76)-H(76A)  0.9900 
C(76)-H(76B)  0.9900 
C(81)-C(82)  1.524(5) 
C(81)-C(86)  1.537(5) 
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C(81)-H(81A)  1.0000 
C(82)-C(83)  1.531(6) 
C(82)-H(82A)  0.9900 
C(82)-H(82B)  0.9900 
C(83)-C(84)  1.523(6) 
C(83)-H(83A)  0.9900 
C(83)-H(83B)  0.9900 
C(84)-C(85)  1.521(6) 
C(84)-H(84A)  0.9900 
C(84)-H(84B)  0.9900 
C(85)-C(86)  1.539(5) 
C(85)-H(85A)  0.9900 
C(85)-H(85B)  0.9900 
C(86)-H(86A)  0.9900 
C(86)-H(86B)  0.9900 
S(1A)-O(1A)  1.429(4) 
S(1A)-O(3A)  1.435(4) 
S(1A)-O(2A)  1.449(4) 
S(1A)-C(1A)  1.822(6) 
F(1A)-C(1A)  1.336(6) 
F(2A)-C(1A)  1.330(6) 
F(3A)-C(1A)  1.322(5) 
S(2A)-O(4A)  1.436(3) 
S(2A)-O(6A)  1.436(3) 
S(2A)-O(5A)  1.437(3) 
S(2A)-C(2A)  1.813(5) 
F(4A)-C(2A)  1.321(5) 
F(5A)-C(2A)  1.351(6) 
F(6A)-C(2A)  1.319(5) 
Cl(1S)-C(1S)  1.770(3) 
Cl(1S)-C(1S)#1  1.771(3) 
C(1S)-Cl(1S)#1  1.771(3) 
C(1S)-H(1SA)  0.9900 
C(1S)-H(1SB)  0.9900 
 
C(1)-Au(1)-P(1) 174.04(12) 
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C(1)-Au(1)-Au(2) 85.46(11) 
P(1)-Au(1)-Au(2) 88.59(3) 
C(2)-Au(2)-P(2) 176.12(11) 
C(2)-Au(2)-Au(1) 99.98(11) 
P(2)-Au(2)-Au(1) 78.81(3) 
C(61)-P(1)-C(51) 107.14(17) 
C(61)-P(1)-C(3) 104.97(18) 
C(51)-P(1)-C(3) 106.51(18) 
C(61)-P(1)-Au(1) 114.57(13) 
C(51)-P(1)-Au(1) 112.44(13) 
C(3)-P(1)-Au(1) 110.64(12) 
C(81)-P(2)-C(3) 104.09(17) 
C(81)-P(2)-C(71) 110.33(18) 
C(3)-P(2)-C(71) 104.38(18) 
C(81)-P(2)-Au(2) 114.91(12) 
C(3)-P(2)-Au(2) 111.72(13) 
C(71)-P(2)-Au(2) 110.73(12) 
C(21)-O(11)-C(22) 115.4(3) 
C(24)-O(13)-C(25) 117.7(3) 
C(41)-O(31)-C(42) 115.7(3) 
C(44)-O(33)-C(45) 114.4(3) 
C(1)-N(1)-C(12) 172.6(4) 
C(2)-N(2)-C(32) 177.1(4) 
N(1)-C(1)-Au(1) 172.2(4) 
N(2)-C(2)-Au(2) 171.2(4) 
P(2)-C(3)-P(1) 114.9(2) 
P(2)-C(3)-H(3A) 108.5 
P(1)-C(3)-H(3A) 108.5 
P(2)-C(3)-H(3B) 108.5 
P(1)-C(3)-H(3B) 108.5 
H(3A)-C(3)-H(3B) 107.5 
C(12)-C(11)-C(19) 106.9(4) 
C(12)-C(11)-C(21) 127.3(3) 
C(19)-C(11)-C(21) 125.8(4) 
N(1)-C(12)-C(11) 124.4(3) 
N(1)-C(12)-C(13) 124.1(4) 
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C(11)-C(12)-C(13) 111.5(3) 
C(12)-C(13)-C(20) 105.8(3) 
C(12)-C(13)-C(24) 122.2(3) 
C(20)-C(13)-C(24) 131.9(4) 
C(15)-C(14)-C(20) 128.2(4) 
C(15)-C(14)-H(14A) 115.9 
C(20)-C(14)-H(14A) 115.9 
C(16)-C(15)-C(14) 130.4(4) 
C(16)-C(15)-H(15A) 114.8 
C(14)-C(15)-H(15A) 114.8 
C(15)-C(16)-C(17) 129.1(4) 
C(15)-C(16)-H(16A) 115.5 
C(17)-C(16)-H(16A) 115.5 
C(16)-C(17)-C(18) 128.1(4) 
C(16)-C(17)-H(17A) 115.9 
C(18)-C(17)-H(17A) 115.9 
C(19)-C(18)-C(17) 129.3(4) 
C(19)-C(18)-H(18A) 115.3 
C(17)-C(18)-H(18A) 115.3 
C(18)-C(19)-C(11) 124.2(4) 
C(18)-C(19)-C(20) 128.0(4) 
C(11)-C(19)-C(20) 107.8(4) 
C(14)-C(20)-C(13) 125.1(4) 
C(14)-C(20)-C(19) 126.9(4) 
C(13)-C(20)-C(19) 108.0(3) 
O(12)-C(21)-O(11) 123.0(4) 
O(12)-C(21)-C(11) 125.1(4) 
O(11)-C(21)-C(11) 112.0(3) 
O(11)-C(22)-C(23) 107.2(3) 
O(11)-C(22)-H(22A) 110.3 
C(23)-C(22)-H(22A) 110.3 
O(11)-C(22)-H(22B) 110.3 
C(23)-C(22)-H(22B) 110.3 
H(22A)-C(22)-H(22B) 108.5 
C(22)-C(23)-H(23A) 109.5 
C(22)-C(23)-H(23B) 109.5 
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H(23A)-C(23)-H(23B) 109.5 
C(22)-C(23)-H(23C) 109.5 
H(23A)-C(23)-H(23C) 109.5 
H(23B)-C(23)-H(23C) 109.5 
O(14)-C(24)-O(13) 123.8(4) 
O(14)-C(24)-C(13) 123.1(4) 
O(13)-C(24)-C(13) 113.0(3) 
O(13)-C(25)-C(26) 111.1(3) 
O(13)-C(25)-H(25A) 109.4 
C(26)-C(25)-H(25A) 109.4 
O(13)-C(25)-H(25B) 109.4 
C(26)-C(25)-H(25B) 109.4 
H(25A)-C(25)-H(25B) 108.0 
C(25)-C(26)-H(26A) 109.5 
C(25)-C(26)-H(26B) 109.5 
H(26A)-C(26)-H(26B) 109.5 
C(25)-C(26)-H(26C) 109.5 
H(26A)-C(26)-H(26C) 109.5 
H(26B)-C(26)-H(26C) 109.5 
C(32)-C(31)-C(39) 106.3(3) 
C(32)-C(31)-C(41) 128.1(4) 
C(39)-C(31)-C(41) 125.6(4) 
N(2)-C(32)-C(31) 124.4(3) 
N(2)-C(32)-C(33) 123.9(4) 
C(31)-C(32)-C(33) 111.6(4) 
C(32)-C(33)-C(40) 106.7(4) 
C(32)-C(33)-C(44) 127.8(4) 
C(40)-C(33)-C(44) 125.4(3) 
C(35)-C(34)-C(40) 128.8(4) 
C(35)-C(34)-H(34A) 115.6 
C(40)-C(34)-H(34A) 115.6 
C(34)-C(35)-C(36) 128.6(4) 
C(34)-C(35)-H(35A) 115.7 
C(36)-C(35)-H(35A) 115.7 
C(37)-C(36)-C(35) 129.7(4) 
C(37)-C(36)-H(36A) 115.2 
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C(35)-C(36)-H(36A) 115.2 
C(36)-C(37)-C(38) 129.7(4) 
C(36)-C(37)-H(37A) 115.1 
C(38)-C(37)-H(37A) 115.1 
C(37)-C(38)-C(39) 128.0(4) 
C(37)-C(38)-H(38A) 116.0 
C(39)-C(38)-H(38A) 116.0 
C(38)-C(39)-C(31) 125.2(4) 
C(38)-C(39)-C(40) 127.1(4) 
C(31)-C(39)-C(40) 107.7(3) 
C(34)-C(40)-C(33) 124.3(4) 
C(34)-C(40)-C(39) 128.1(4) 
C(33)-C(40)-C(39) 107.6(3) 
O(32)-C(41)-O(31) 123.1(4) 
O(32)-C(41)-C(31) 124.7(4) 
O(31)-C(41)-C(31) 112.3(3) 
O(31)-C(42)-C(43) 111.7(4) 
O(31)-C(42)-H(42A) 109.3 
C(43)-C(42)-H(42A) 109.3 
O(31)-C(42)-H(42B) 109.3 
C(43)-C(42)-H(42B) 109.3 
H(42A)-C(42)-H(42B) 107.9 
C(42)-C(43)-H(43A) 109.5 
C(42)-C(43)-H(43B) 109.5 
H(43A)-C(43)-H(43B) 109.5 
C(42)-C(43)-H(43C) 109.5 
H(43A)-C(43)-H(43C) 109.5 
H(43B)-C(43)-H(43C) 109.5 
O(34)-C(44)-O(33) 123.7(4) 
O(34)-C(44)-C(33) 124.1(4) 
O(33)-C(44)-C(33) 112.2(3) 
O(33)-C(45)-C(46) 106.2(3) 
O(33)-C(45)-H(45A) 110.5 
C(46)-C(45)-H(45A) 110.5 
O(33)-C(45)-H(45B) 110.5 
C(46)-C(45)-H(45B) 110.5 
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H(45A)-C(45)-H(45B) 108.7 
C(45)-C(46)-H(46A) 109.5 
C(45)-C(46)-H(46B) 109.5 
H(46A)-C(46)-H(46B) 109.5 
C(45)-C(46)-H(46C) 109.5 
H(46A)-C(46)-H(46C) 109.5 
H(46B)-C(46)-H(46C) 109.5 
C(52)-C(51)-C(56) 111.1(3) 
C(52)-C(51)-P(1) 110.6(3) 
C(56)-C(51)-P(1) 113.8(3) 
C(52)-C(51)-H(51A) 107.0 
C(56)-C(51)-H(51A) 107.0 
P(1)-C(51)-H(51A) 107.0 
C(53)-C(52)-C(51) 110.1(3) 
C(53)-C(52)-H(52A) 109.6 
C(51)-C(52)-H(52A) 109.6 
C(53)-C(52)-H(52B) 109.6 
C(51)-C(52)-H(52B) 109.6 
H(52A)-C(52)-H(52B) 108.2 
C(54)-C(53)-C(52) 110.5(4) 
C(54)-C(53)-H(53A) 109.6 
C(52)-C(53)-H(53A) 109.6 
C(54)-C(53)-H(53B) 109.6 
C(52)-C(53)-H(53B) 109.6 
H(53A)-C(53)-H(53B) 108.1 
C(53)-C(54)-C(55) 111.7(4) 
C(53)-C(54)-H(54A) 109.3 
C(55)-C(54)-H(54A) 109.3 
C(53)-C(54)-H(54B) 109.3 
C(55)-C(54)-H(54B) 109.3 
H(54A)-C(54)-H(54B) 107.9 
C(54)-C(55)-C(56) 111.3(3) 
C(54)-C(55)-H(55A) 109.4 
C(56)-C(55)-H(55A) 109.4 
C(54)-C(55)-H(55B) 109.4 
C(56)-C(55)-H(55B) 109.4 
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H(55A)-C(55)-H(55B) 108.0 
C(55)-C(56)-C(51) 110.6(3) 
C(55)-C(56)-H(56A) 109.5 
C(51)-C(56)-H(56A) 109.5 
C(55)-C(56)-H(56B) 109.5 
C(51)-C(56)-H(56B) 109.5 
H(56A)-C(56)-H(56B) 108.1 
C(62)-C(61)-C(66) 111.2(3) 
C(62)-C(61)-P(1) 112.9(3) 
C(66)-C(61)-P(1) 111.0(3) 
C(62)-C(61)-H(61A) 107.1 
C(66)-C(61)-H(61A) 107.1 
P(1)-C(61)-H(61A) 107.1 
C(63)-C(62)-C(61) 111.1(3) 
C(63)-C(62)-H(62A) 109.4 
C(61)-C(62)-H(62A) 109.4 
C(63)-C(62)-H(62B) 109.4 
C(61)-C(62)-H(62B) 109.4 
H(62A)-C(62)-H(62B) 108.0 
C(64)-C(63)-C(62) 112.3(4) 
C(64)-C(63)-H(63A) 109.1 
C(62)-C(63)-H(63A) 109.1 
C(64)-C(63)-H(63B) 109.1 
C(62)-C(63)-H(63B) 109.1 
H(63A)-C(63)-H(63B) 107.9 
C(63)-C(64)-C(65) 111.1(4) 
C(63)-C(64)-H(64A) 109.4 
C(65)-C(64)-H(64A) 109.4 
C(63)-C(64)-H(64B) 109.4 
C(65)-C(64)-H(64B) 109.4 
H(64A)-C(64)-H(64B) 108.0 
C(66)-C(65)-C(64) 111.4(3) 
C(66)-C(65)-H(65A) 109.3 
C(64)-C(65)-H(65A) 109.3 
C(66)-C(65)-H(65B) 109.3 
C(64)-C(65)-H(65B) 109.3 
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H(65A)-C(65)-H(65B) 108.0 
C(65)-C(66)-C(61) 111.4(3) 
C(65)-C(66)-H(66A) 109.4 
C(61)-C(66)-H(66A) 109.4 
C(65)-C(66)-H(66B) 109.4 
C(61)-C(66)-H(66B) 109.4 
H(66A)-C(66)-H(66B) 108.0 
C(76)-C(71)-C(72) 111.7(3) 
C(76)-C(71)-P(2) 114.0(3) 
C(72)-C(71)-P(2) 111.8(3) 
C(76)-C(71)-H(71A) 106.2 
C(72)-C(71)-H(71A) 106.2 
P(2)-C(71)-H(71A) 106.2 
C(73)-C(72)-C(71) 111.3(3) 
C(73)-C(72)-H(72A) 109.4 
C(71)-C(72)-H(72A) 109.4 
C(73)-C(72)-H(72B) 109.4 
C(71)-C(72)-H(72B) 109.4 
H(72A)-C(72)-H(72B) 108.0 
C(74)-C(73)-C(72) 111.7(4) 
C(74)-C(73)-H(73A) 109.3 
C(72)-C(73)-H(73A) 109.3 
C(74)-C(73)-H(73B) 109.3 
C(72)-C(73)-H(73B) 109.3 
H(73A)-C(73)-H(73B) 107.9 
C(73)-C(74)-C(75) 111.0(4) 
C(73)-C(74)-H(74A) 109.4 
C(75)-C(74)-H(74A) 109.4 
C(73)-C(74)-H(74B) 109.4 
C(75)-C(74)-H(74B) 109.4 
H(74A)-C(74)-H(74B) 108.0 
C(74)-C(75)-C(76) 110.8(3) 
C(74)-C(75)-H(75A) 109.5 
C(76)-C(75)-H(75A) 109.5 
C(74)-C(75)-H(75B) 109.5 
C(76)-C(75)-H(75B) 109.5 
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H(75A)-C(75)-H(75B) 108.1 
C(71)-C(76)-C(75) 110.9(3) 
C(71)-C(76)-H(76A) 109.4 
C(75)-C(76)-H(76A) 109.4 
C(71)-C(76)-H(76B) 109.4 
C(75)-C(76)-H(76B) 109.4 
H(76A)-C(76)-H(76B) 108.0 
C(82)-C(81)-C(86) 109.8(3) 
C(82)-C(81)-P(2) 113.9(3) 
C(86)-C(81)-P(2) 109.5(3) 
C(82)-C(81)-H(81A) 107.8 
C(86)-C(81)-H(81A) 107.8 
P(2)-C(81)-H(81A) 107.8 
C(81)-C(82)-C(83) 110.8(3) 
C(81)-C(82)-H(82A) 109.5 
C(83)-C(82)-H(82A) 109.5 
C(81)-C(82)-H(82B) 109.5 
C(83)-C(82)-H(82B) 109.5 
H(82A)-C(82)-H(82B) 108.1 
C(84)-C(83)-C(82) 111.1(4) 
C(84)-C(83)-H(83A) 109.4 
C(82)-C(83)-H(83A) 109.4 
C(84)-C(83)-H(83B) 109.4 
C(82)-C(83)-H(83B) 109.4 
H(83A)-C(83)-H(83B) 108.0 
C(85)-C(84)-C(83) 111.6(3) 
C(85)-C(84)-H(84A) 109.3 
C(83)-C(84)-H(84A) 109.3 
C(85)-C(84)-H(84B) 109.3 
C(83)-C(84)-H(84B) 109.3 
H(84A)-C(84)-H(84B) 108.0 
C(84)-C(85)-C(86) 111.7(3) 
C(84)-C(85)-H(85A) 109.3 
C(86)-C(85)-H(85A) 109.3 
C(84)-C(85)-H(85B) 109.3 
C(86)-C(85)-H(85B) 109.3 
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H(85A)-C(85)-H(85B) 107.9 
C(81)-C(86)-C(85) 111.0(3) 
C(81)-C(86)-H(86A) 109.4 
C(85)-C(86)-H(86A) 109.4 
C(81)-C(86)-H(86B) 109.4 
C(85)-C(86)-H(86B) 109.4 
H(86A)-C(86)-H(86B) 108.0 
O(1A)-S(1A)-O(3A) 115.6(2) 
O(1A)-S(1A)-O(2A) 114.3(3) 
O(3A)-S(1A)-O(2A) 114.9(2) 
O(1A)-S(1A)-C(1A) 102.3(2) 
O(3A)-S(1A)-C(1A) 102.8(3) 
O(2A)-S(1A)-C(1A) 104.6(3) 
F(3A)-C(1A)-F(2A) 108.7(5) 
F(3A)-C(1A)-F(1A) 106.9(4) 
F(2A)-C(1A)-F(1A) 107.5(4) 
F(3A)-C(1A)-S(1A) 111.3(3) 
F(2A)-C(1A)-S(1A) 110.7(3) 
F(1A)-C(1A)-S(1A) 111.7(4) 
O(4A)-S(2A)-O(6A) 115.0(2) 
O(4A)-S(2A)-O(5A) 115.2(2) 
O(6A)-S(2A)-O(5A) 114.3(2) 
O(4A)-S(2A)-C(2A) 102.1(2) 
O(6A)-S(2A)-C(2A) 104.4(2) 
O(5A)-S(2A)-C(2A) 103.5(2) 
F(6A)-C(2A)-F(4A) 107.8(4) 
F(6A)-C(2A)-F(5A) 107.1(4) 
F(4A)-C(2A)-F(5A) 106.1(4) 
F(6A)-C(2A)-S(2A) 112.0(3) 
F(4A)-C(2A)-S(2A) 113.1(3) 
F(5A)-C(2A)-S(2A) 110.4(3) 
C(1S)-Cl(1S)-C(1S)#1 70.57(13) 
Cl(1S)-C(1S)-Cl(1S)#1 109.43(13) 
Cl(1S)-C(1S)-H(1SA) 109.8 
Cl(1S)#1-C(1S)-H(1SA) 109.8 
Cl(1S)-C(1S)-H(1SB) 109.8 
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Cl(1S)#1-C(1S)-H(1SB) 109.8 
H(1SA)-C(1S)-H(1SB) 108.2 
_____________________________________________________________  
Symmetry transformations used to generate equivalent atoms:  
#1 -x+1,-y,-z+1       
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Table 4.  Anisotropic displacement parameters  (Å2x 103) for Compound 2.8.  The anisotropic 
displacement factor exponent takes the form:  -2π2[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 
______________________________________________________________________________  
 U11 U22  U33 U23 U13 U12 
______________________________________________________________________________  
Au(1) 19(1)  22(1) 9(1)  1(1) 5(1)  10(1) 
Au(2) 20(1)  21(1) 9(1)  3(1) 6(1)  10(1) 
P(1) 18(1)  21(1) 9(1)  1(1) 5(1)  10(1) 
P(2) 17(1)  20(1) 9(1)  1(1) 5(1)  10(1) 
O(11) 31(2)  26(2) 11(1)  1(1) 8(1)  17(1) 
O(12) 47(2)  37(2) 15(2)  2(1) 8(1)  29(2) 
O(13) 27(2)  30(2) 16(1)  -1(1) 5(1)  17(1) 
O(14) 36(2)  36(2) 13(1)  4(1) 7(1)  20(2) 
O(31) 34(2)  25(2) 11(1)  3(1) 10(1)  16(1) 
O(32) 31(2)  28(2) 18(2)  2(1) 4(1)  16(1) 
O(33) 32(2)  29(2) 15(1)  6(1) 9(1)  19(1) 
O(34) 46(2)  40(2) 19(2)  4(1) 12(1)  29(2) 
N(1) 21(2)  24(2) 13(2)  0(1) 3(1)  11(1) 
N(2) 19(2)  22(2) 13(2)  2(1) 8(1)  10(1) 
C(1) 21(2)  24(2) 14(2)  2(2) 7(2)  11(2) 
C(2) 19(2)  20(2) 17(2)  0(2) 4(2)  9(2) 
C(3) 19(2)  27(2) 8(2)  1(1) 5(1)  12(2) 
C(11) 22(2)  29(2) 8(2)  -1(2) 5(1)  11(2) 
C(12) 17(2)  22(2) 12(2)  -1(1) 5(1)  9(2) 
C(13) 18(2)  26(2) 11(2)  -1(2) 3(1)  11(2) 
C(14) 24(2)  27(2) 16(2)  -1(2) 5(2)  11(2) 
C(15) 28(2)  31(2) 16(2)  -3(2) 7(2)  13(2) 
C(16) 30(2)  30(2) 12(2)  -1(2) 8(2)  13(2) 
C(17) 29(2)  31(2) 14(2)  4(2) 5(2)  13(2) 
C(18) 28(2)  26(2) 16(2)  1(2) 8(2)  13(2) 
C(19) 21(2)  23(2) 13(2)  -3(1) 5(2)  9(2) 
C(20) 17(2)  23(2) 14(2)  2(2) 4(1)  8(2) 
C(21) 20(2)  23(2) 18(2)  -1(2) 6(2)  7(2) 
C(22) 29(2)  23(2) 16(2)  -1(2) 6(2)  14(2) 
C(23) 35(2)  30(2) 20(2)  3(2) 10(2)  18(2) 
C(24) 18(2)  25(2) 16(2)  -1(2) 5(2)  9(2) 
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C(25) 29(2)  22(2) 21(2)  4(2) 9(2)  13(2) 
C(26) 27(2)  27(2) 28(2)  5(2) 5(2)  14(2) 
C(31) 20(2)  20(2) 17(2)  4(2) 6(2)  10(2) 
C(32) 19(2)  22(2) 10(2)  1(1) 4(1)  8(2) 
C(33) 21(2)  22(2) 11(2)  1(1) 6(2)  7(2) 
C(34) 27(2)  25(2) 17(2)  3(2) 6(2)  11(2) 
C(35) 32(2)  31(2) 13(2)  0(2) 9(2)  10(2) 
C(36) 32(2)  38(3) 13(2)  6(2) 6(2)  12(2) 
C(37) 28(2)  27(2) 19(2)  8(2) 5(2)  12(2) 
C(38) 27(2)  22(2) 18(2)  4(2) 6(2)  10(2) 
C(39) 18(2)  21(2) 14(2)  1(1) 6(2)  6(2) 
C(40) 18(2)  19(2) 14(2)  2(1) 5(1)  5(2) 
C(41) 19(2)  23(2) 11(2)  4(1) 6(1)  8(2) 
C(42) 42(3)  31(2) 14(2)  0(2) 12(2)  20(2) 
C(43) 41(3)  31(2) 23(2)  0(2) 10(2)  16(2) 
C(44) 21(2)  24(2) 14(2)  2(2) 6(2)  9(2) 
C(45) 30(2)  25(2) 26(2)  4(2) 14(2)  15(2) 
C(46) 30(2)  31(2) 21(2)  8(2) 3(2)  17(2) 
C(51) 18(2)  22(2) 14(2)  0(1) 8(1)  9(2) 
C(52) 25(2)  24(2) 16(2)  2(2) 8(2)  13(2) 
C(53) 27(2)  20(2) 20(2)  6(2) 11(2)  8(2) 
C(54) 35(3)  32(2) 23(2)  9(2) 15(2)  17(2) 
C(55) 30(2)  26(2) 21(2)  6(2) 14(2)  14(2) 
C(56) 27(2)  25(2) 14(2)  2(2) 9(2)  13(2) 
C(61) 19(2)  20(2) 11(2)  -2(1) 2(1)  11(2) 
C(62) 19(2)  25(2) 16(2)  2(2) 7(2)  8(2) 
C(63) 28(2)  22(2) 17(2)  1(2) 7(2)  10(2) 
C(64) 31(2)  21(2) 22(2)  4(2) 8(2)  10(2) 
C(65) 29(2)  27(2) 26(2)  5(2) 9(2)  15(2) 
C(66) 23(2)  23(2) 15(2)  4(2) 7(2)  12(2) 
C(71) 20(2)  20(2) 11(2)  1(1) 6(1)  10(2) 
C(72) 26(2)  25(2) 10(2)  -1(1) 3(2)  13(2) 
C(73) 35(2)  25(2) 15(2)  2(2) 6(2)  12(2) 
C(74) 43(3)  20(2) 21(2)  1(2) 15(2)  14(2) 
C(75) 31(2)  25(2) 22(2)  7(2) 14(2)  12(2) 
C(76) 27(2)  21(2) 14(2)  3(2) 8(2)  11(2) 
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C(81) 18(2)  22(2) 12(2)  4(1) 8(1)  10(2) 
C(82) 25(2)  28(2) 13(2)  3(2) 7(2)  15(2) 
C(83) 25(2)  38(2) 17(2)  4(2) 6(2)  18(2) 
C(84) 16(2)  38(2) 15(2)  4(2) 4(2)  8(2) 
C(85) 22(2)  26(2) 12(2)  1(2) 1(2)  8(2) 
C(86) 21(2)  21(2) 15(2)  2(2) 3(2)  9(2) 
S(1A) 56(1)  28(1) 15(1)  4(1) 13(1)  16(1) 
F(1A) 43(2)  41(2) 144(4)  14(2) 36(2)  27(2) 
F(2A) 36(2)  59(2) 43(2)  8(2) 3(1)  23(2) 
F(3A) 39(2)  83(3) 65(2)  58(2) 20(2)  24(2) 
O(1A) 46(2)  46(2) 27(2)  5(2) 2(2)  29(2) 
O(2A) 100(4)  37(2) 28(2)  -8(2) 14(2)  6(2) 
O(3A) 88(3)  34(2) 32(2)  9(2) 40(2)  15(2) 
C(1A) 27(2)  40(3) 50(3)  17(2) 18(2)  18(2) 
S(2A) 22(1)  24(1) 20(1)  -1(1) 6(1)  11(1) 
F(4A) 27(2)  59(2) 49(2)  30(2) 18(1)  25(1) 
F(5A) 42(2)  33(2) 71(2)  -12(2) 18(2)  1(1) 
F(6A) 40(2)  67(2) 64(2)  46(2) 11(2)  24(2) 
O(4A) 20(2)  25(2) 52(2)  0(2) 7(2)  7(1) 
O(5A) 45(2)  41(2) 22(2)  -6(1) 3(2)  23(2) 
O(6A) 35(2)  38(2) 19(2)  4(1) 11(1)  15(2) 
C(2A) 25(2)  43(3) 32(3)  10(2) 5(2)  22(2) 
Cl(1S) 85(1)  59(1) 121(2)  8(1) -9(1)  41(1) 
C(1S) 102(12)  43(7) 70(9)  -17(6) -36(8)  51(8) 
______________________________________________________________________________ 
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Table 5.   Hydrogen coordinates ( x 104) and isotropic  displacement parameters (Å2x 10 3) 
for Compound 2.8. 
________________________________________________________________________________  
 x  y  z  U(eq) 
________________________________________________________________________________  
  
H(3A) 3135 3829 4190 20 
H(3B) 2488 2665 4304 20 
H(14A) 1655 158 -1444 26 
H(15A) 1609 389 -2548 29 
H(16A) 1127 1460 -3102 29 
H(17A) 526 2609 -2701 29 
H(18A) 347 3006 -1616 27 
H(22A) -688 4097 441 26 
H(22B) 642 4916 556 26 
H(23A) -55 4850 1622 40 
H(23B) 975 4472 1679 40 
H(23C) -350 3656 1565 40 
H(25A) 1760 -1760 -446 27 
H(25B) 1711 -1305 317 27 
H(26A) 3557 -1284 285 40 
H(26B) 3664 -140 439 40 
H(26C) 3715 -586 -326 40 
H(34A) 3765 3476 -1622 27 
H(35A) 3372 3989 -2615 31 
H(36A) 2829 5237 -2801 34 
H(37A) 2457 6232 -2065 29 
H(38A) 2602 6314 -924 26 
H(42A) 2753 6424 2046 32 
H(42B) 2187 6768 1386 32 
H(43A) 3756 8182 2041 46 
H(43B) 4045 7968 1287 46 
H(43C) 4607 7626 1950 46 
H(45A) 5449 2361 327 30 
H(45B) 4161 1475 76 30 
H(46A) 4911 1337 1218 39 



	   146	  

H(46B) 3800 1596 1226 39 
H(46C) 5081 2477 1476 39 
H(51A) -620 2253 3682 21 
H(52A) -65 929 3339 24 
H(52B) 764 1162 4081 24 
H(53A) -1722 474 3884 26 
H(53B) -1039 -217 4094 26 
H(54A) -168 828 5176 33 
H(54B) -1551 430 5094 33 
H(55A) -594 2213 5525 28 
H(55B) -1468 2005 4805 28 
H(56A) 1019 2727 4954 25 
H(56B) 286 3374 4735 25 
H(61A) 1581 4587 4186 19 
H(62A) 3112 5159 3556 24 
H(62B) 2215 4982 2850 24 
H(63A) 2659 6463 4040 27 
H(63B) 3023 6722 3301 27 
H(64A) 1075 6171 2774 29 
H(64B) 1333 6998 3441 29 
H(65A) 423 5706 4104 31 
H(65B) -466 5535 3397 31 
H(66A) -26 4219 2914 23 
H(66B) -387 3963 3655 23 
H(71A) 1903 1218 3088 20 
H(72A) 2792 1320 2102 23 
H(72B) 3847 1145 2530 23 
H(73A) 1483 -332 2188 30 
H(73B) 2549 -407 1871 30 
H(74A) 3376 -623 2960 32 
H(74B) 2069 -1476 2746 32 
H(75A) 2429 -727 3932 30 
H(75B) 1408 -527 3485 30 
H(76A) 2708 1019 4183 24 
H(76B) 3787 944 3881 24 
H(81A) 4758 2818 4393 19 
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H(82A) 5890 2988 3205 25 
H(82B) 5316 1951 3530 25 
H(83A) 6678 2671 4581 30 
H(83B) 7364 2741 3943 30 
H(84A) 8173 4313 4718 29 
H(84B) 7734 4468 3946 29 
H(85A) 7097 5349 4726 25 
H(85B) 6528 4357 5096 25 
H(86A) 5023 4536 4352 23 
H(86B) 5687 4590 3705 23 
H(1SA) 5864 1152 5588 86 
H(1SB) 4804 1167 5050 86 
________________________________________________________________________________ 
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Table 6.  Torsion angles [°] for Compound 2.8. 
________________________________________________________________  
C(1)-Au(1)-Au(2)-C(2) 41.71(16) 
P(1)-Au(1)-Au(2)-C(2) -138.72(12) 
C(1)-Au(1)-Au(2)-P(2) -134.54(12) 
P(1)-Au(1)-Au(2)-P(2) 45.03(4) 
C(1)-Au(1)-P(1)-C(61) 88.8(11) 
Au(2)-Au(1)-P(1)-C(61) 84.71(14) 
C(1)-Au(1)-P(1)-C(51) -148.5(11) 
Au(2)-Au(1)-P(1)-C(51) -152.65(14) 
C(1)-Au(1)-P(1)-C(3) -29.6(11) 
Au(2)-Au(1)-P(1)-C(3) -33.70(14) 
C(2)-Au(2)-P(2)-C(81) 115.5(17) 
Au(1)-Au(2)-P(2)-C(81) -172.40(14) 
C(2)-Au(2)-P(2)-C(3) -126.2(17) 
Au(1)-Au(2)-P(2)-C(3) -54.11(14) 
C(2)-Au(2)-P(2)-C(71) -10.4(17) 
Au(1)-Au(2)-P(2)-C(71) 61.78(13) 
C(12)-N(1)-C(1)-Au(1) -64(5) 
P(1)-Au(1)-C(1)-N(1) -42(4) 
Au(2)-Au(1)-C(1)-N(1) -38(3) 
C(32)-N(2)-C(2)-Au(2) -27(10) 
P(2)-Au(2)-C(2)-N(2) 25(4) 
Au(1)-Au(2)-C(2)-N(2) -47(2) 
C(81)-P(2)-C(3)-P(1) 169.7(2) 
C(71)-P(2)-C(3)-P(1) -74.5(2) 
Au(2)-P(2)-C(3)-P(1) 45.2(2) 
C(61)-P(1)-C(3)-P(2) -120.6(2) 
C(51)-P(1)-C(3)-P(2) 125.9(2) 
Au(1)-P(1)-C(3)-P(2) 3.5(3) 
C(1)-N(1)-C(12)-C(11) 0(3) 
C(1)-N(1)-C(12)-C(13) -179(100) 
C(19)-C(11)-C(12)-N(1) -178.6(4) 
C(21)-C(11)-C(12)-N(1) 2.0(7) 
C(19)-C(11)-C(12)-C(13) 0.2(5) 
C(21)-C(11)-C(12)-C(13) -179.1(4) 
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N(1)-C(12)-C(13)-C(20) 178.8(4) 
C(11)-C(12)-C(13)-C(20) 0.0(5) 
N(1)-C(12)-C(13)-C(24) -0.5(6) 
C(11)-C(12)-C(13)-C(24) -179.3(4) 
C(20)-C(14)-C(15)-C(16) -1.0(8) 
C(14)-C(15)-C(16)-C(17) -0.3(8) 
C(15)-C(16)-C(17)-C(18) 1.7(8) 
C(16)-C(17)-C(18)-C(19) -0.6(8) 
C(17)-C(18)-C(19)-C(11) 177.3(4) 
C(17)-C(18)-C(19)-C(20) -1.8(8) 
C(12)-C(11)-C(19)-C(18) -179.6(4) 
C(21)-C(11)-C(19)-C(18) -0.2(7) 
C(12)-C(11)-C(19)-C(20) -0.3(4) 
C(21)-C(11)-C(19)-C(20) 179.0(4) 
C(15)-C(14)-C(20)-C(13) -177.1(4) 
C(15)-C(14)-C(20)-C(19) -0.2(7) 
C(12)-C(13)-C(20)-C(14) 177.3(4) 
C(24)-C(13)-C(20)-C(14) -3.5(7) 
C(12)-C(13)-C(20)-C(19) -0.2(4) 
C(24)-C(13)-C(20)-C(19) 179.0(4) 
C(18)-C(19)-C(20)-C(14) 2.1(7) 
C(11)-C(19)-C(20)-C(14) -177.1(4) 
C(18)-C(19)-C(20)-C(13) 179.5(4) 
C(11)-C(19)-C(20)-C(13) 0.3(4) 
C(22)-O(11)-C(21)-O(12) 2.5(6) 
C(22)-O(11)-C(21)-C(11) -178.0(3) 
C(12)-C(11)-C(21)-O(12) -175.1(4) 
C(19)-C(11)-C(21)-O(12) 5.7(7) 
C(12)-C(11)-C(21)-O(11) 5.5(6) 
C(19)-C(11)-C(21)-O(11) -173.7(4) 
C(21)-O(11)-C(22)-C(23) 175.1(3) 
C(25)-O(13)-C(24)-O(14) -1.3(6) 
C(25)-O(13)-C(24)-C(13) 179.8(3) 
C(12)-C(13)-C(24)-O(14) -4.6(6) 
C(20)-C(13)-C(24)-O(14) 176.3(4) 
C(12)-C(13)-C(24)-O(13) 174.4(4) 
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C(20)-C(13)-C(24)-O(13) -4.8(6) 
C(24)-O(13)-C(25)-C(26) -88.2(4) 
C(2)-N(2)-C(32)-C(31) 149(8) 
C(2)-N(2)-C(32)-C(33) -32(8) 
C(39)-C(31)-C(32)-N(2) -178.2(4) 
C(41)-C(31)-C(32)-N(2) 2.5(7) 
C(39)-C(31)-C(32)-C(33) 2.1(5) 
C(41)-C(31)-C(32)-C(33) -177.2(4) 
N(2)-C(32)-C(33)-C(40) 178.5(3) 
C(31)-C(32)-C(33)-C(40) -1.7(5) 
N(2)-C(32)-C(33)-C(44) -2.6(7) 
C(31)-C(32)-C(33)-C(44) 177.2(4) 
C(40)-C(34)-C(35)-C(36) 1.7(8) 
C(34)-C(35)-C(36)-C(37) -1.2(8) 
C(35)-C(36)-C(37)-C(38) 1.2(8) 
C(36)-C(37)-C(38)-C(39) -1.2(8) 
C(37)-C(38)-C(39)-C(31) -179.2(4) 
C(37)-C(38)-C(39)-C(40) 0.3(7) 
C(32)-C(31)-C(39)-C(38) 178.0(4) 
C(41)-C(31)-C(39)-C(38) -2.6(7) 
C(32)-C(31)-C(39)-C(40) -1.6(4) 
C(41)-C(31)-C(39)-C(40) 177.8(4) 
C(35)-C(34)-C(40)-C(33) 178.3(4) 
C(35)-C(34)-C(40)-C(39) -1.9(7) 
C(32)-C(33)-C(40)-C(34) -179.5(4) 
C(44)-C(33)-C(40)-C(34) 1.6(7) 
C(32)-C(33)-C(40)-C(39) 0.7(4) 
C(44)-C(33)-C(40)-C(39) -178.3(4) 
C(38)-C(39)-C(40)-C(34) 1.1(7) 
C(31)-C(39)-C(40)-C(34) -179.3(4) 
C(38)-C(39)-C(40)-C(33) -179.0(4) 
C(31)-C(39)-C(40)-C(33) 0.6(4) 
C(42)-O(31)-C(41)-O(32) -1.2(6) 
C(42)-O(31)-C(41)-C(31) 179.0(3) 
C(32)-C(31)-C(41)-O(32) -178.9(4) 
C(39)-C(31)-C(41)-O(32) 1.9(7) 
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C(32)-C(31)-C(41)-O(31) 0.8(6) 
C(39)-C(31)-C(41)-O(31) -178.4(4) 
C(41)-O(31)-C(42)-C(43) -77.9(5) 
C(45)-O(33)-C(44)-O(34) 2.8(6) 
C(45)-O(33)-C(44)-C(33) -175.7(3) 
C(32)-C(33)-C(44)-O(34) -175.6(4) 
C(40)-C(33)-C(44)-O(34) 3.1(7) 
C(32)-C(33)-C(44)-O(33) 3.0(6) 
C(40)-C(33)-C(44)-O(33) -178.3(4) 
C(44)-O(33)-C(45)-C(46) -174.9(4) 
C(61)-P(1)-C(51)-C(52) -176.3(3) 
C(3)-P(1)-C(51)-C(52) -64.4(3) 
Au(1)-P(1)-C(51)-C(52) 56.9(3) 
C(61)-P(1)-C(51)-C(56) -50.5(3) 
C(3)-P(1)-C(51)-C(56) 61.4(3) 
Au(1)-P(1)-C(51)-C(56) -177.2(2) 
C(56)-C(51)-C(52)-C(53) 58.2(4) 
P(1)-C(51)-C(52)-C(53) -174.5(3) 
C(51)-C(52)-C(53)-C(54) -58.2(5) 
C(52)-C(53)-C(54)-C(55) 56.9(5) 
C(53)-C(54)-C(55)-C(56) -54.9(5) 
C(54)-C(55)-C(56)-C(51) 53.9(5) 
C(52)-C(51)-C(56)-C(55) -56.0(4) 
P(1)-C(51)-C(56)-C(55) 178.4(3) 
C(51)-P(1)-C(61)-C(62) 177.1(3) 
C(3)-P(1)-C(61)-C(62) 64.1(3) 
Au(1)-P(1)-C(61)-C(62) -57.5(3) 
C(51)-P(1)-C(61)-C(66) -57.3(3) 
C(3)-P(1)-C(61)-C(66) -170.2(3) 
Au(1)-P(1)-C(61)-C(66) 68.2(3) 
C(66)-C(61)-C(62)-C(63) 54.9(4) 
P(1)-C(61)-C(62)-C(63) -179.6(3) 
C(61)-C(62)-C(63)-C(64) -55.3(5) 
C(62)-C(63)-C(64)-C(65) 54.9(5) 
C(63)-C(64)-C(65)-C(66) -54.4(5) 
C(64)-C(65)-C(66)-C(61) 54.8(5) 
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C(62)-C(61)-C(66)-C(65) -55.1(4) 
P(1)-C(61)-C(66)-C(65) 178.3(3) 
C(81)-P(2)-C(71)-C(76) 34.8(3) 
C(3)-P(2)-C(71)-C(76) -76.5(3) 
Au(2)-P(2)-C(71)-C(76) 163.1(2) 
C(81)-P(2)-C(71)-C(72) -93.1(3) 
C(3)-P(2)-C(71)-C(72) 155.6(3) 
Au(2)-P(2)-C(71)-C(72) 35.3(3) 
C(76)-C(71)-C(72)-C(73) 53.3(5) 
P(2)-C(71)-C(72)-C(73) -177.6(3) 
C(71)-C(72)-C(73)-C(74) -54.9(5) 
C(72)-C(73)-C(74)-C(75) 57.1(5) 
C(73)-C(74)-C(75)-C(76) -57.2(5) 
C(72)-C(71)-C(76)-C(75) -53.8(4) 
P(2)-C(71)-C(76)-C(75) 178.3(3) 
C(74)-C(75)-C(76)-C(71) 55.7(5) 
C(3)-P(2)-C(81)-C(82) 169.2(3) 
C(71)-P(2)-C(81)-C(82) 57.7(3) 
Au(2)-P(2)-C(81)-C(82) -68.3(3) 
C(3)-P(2)-C(81)-C(86) -67.4(3) 
C(71)-P(2)-C(81)-C(86) -178.9(2) 
Au(2)-P(2)-C(81)-C(86) 55.1(3) 
C(86)-C(81)-C(82)-C(83) 58.5(4) 
P(2)-C(81)-C(82)-C(83) -178.3(3) 
C(81)-C(82)-C(83)-C(84) -57.6(4) 
C(82)-C(83)-C(84)-C(85) 54.8(4) 
C(83)-C(84)-C(85)-C(86) -53.6(5) 
C(82)-C(81)-C(86)-C(85) -57.0(4) 
P(2)-C(81)-C(86)-C(85) 177.2(3) 
C(84)-C(85)-C(86)-C(81) 54.8(4) 
O(1A)-S(1A)-C(1A)-F(3A) 57.3(4) 
O(3A)-S(1A)-C(1A)-F(3A) 177.5(4) 
O(2A)-S(1A)-C(1A)-F(3A) -62.1(5) 
O(1A)-S(1A)-C(1A)-F(2A) -63.7(4) 
O(3A)-S(1A)-C(1A)-F(2A) 56.5(4) 
O(2A)-S(1A)-C(1A)-F(2A) 176.9(4) 
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O(1A)-S(1A)-C(1A)-F(1A) 176.6(4) 
O(3A)-S(1A)-C(1A)-F(1A) -63.2(4) 
O(2A)-S(1A)-C(1A)-F(1A) 57.2(4) 
O(4A)-S(2A)-C(2A)-F(6A) 55.7(4) 
O(6A)-S(2A)-C(2A)-F(6A) 175.7(3) 
O(5A)-S(2A)-C(2A)-F(6A) -64.3(4) 
O(4A)-S(2A)-C(2A)-F(4A) 177.7(3) 
O(6A)-S(2A)-C(2A)-F(4A) -62.2(4) 
O(5A)-S(2A)-C(2A)-F(4A) 57.8(4) 
O(4A)-S(2A)-C(2A)-F(5A) -63.6(4) 
O(6A)-S(2A)-C(2A)-F(5A) 56.5(4) 
O(5A)-S(2A)-C(2A)-F(5A) 176.5(3) 
C(1S)#1-Cl(1S)-C(1S)-Cl(1S)#1 0.0 
________________________________________________________________  
Symmetry transformations used to generate equivalent atoms:  
#1 -x+1,-y,-z+1       
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Preliminary Crystallographic Data for compound 3.1 
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Table 1.  Crystal data and structure refinement for 3.1. 
Identification code  q68a 
Empirical formula  C20 H15 N 
Formula weight  269.33 
Temperature  100(2) K 
Wavelength  1.54178 Å 
Crystal system  Orthorhombic 
Space group  Pna2(1) 
Unit cell dimensions a = 12.7468(9) Å α= 90°. 
 b = 14.3461(11) Å β= 90°. 
 c = 7.4079(6) Å γ = 90°. 
Volume 1354.66(18) Å3 
Z 4 
Density (calculated) 1.321 Mg/m3 
Absorption coefficient 0.585 mm-1 
F(000) 568 
Crystal size 0.24 x 0.05 x 0.04 mm3 
Theta range for data collection 6.73 to 67.79°. 
Index ranges 0<=h<=14, 0<=k<=16, 0<=l<=8 
Reflections collected 1248 
Independent reflections 1248 [R(int) = 0.0000] 
Completeness to theta = 67.79° 93.8 %  
Absorption correction Multi-scan 
Max. and min. transmission 1.000 and 0.836 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 1248 / 13 / 190 
Goodness-of-fit on F2 1.090 
Final R indices [I>2sigma(I)] R1 = 0.1289, wR2 = 0.2980 
R indices (all data) R1 = 0.1407, wR2 = 0.3047 
Absolute structure parameter 1(5) 
Largest diff. peak and hole 1.004 and -0.553 e.Å-3 
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 Table 2.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 
for 3.1.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 
________________________________________________________________________________  
 x y z U(eq) 
________________________________________________________________________________   
N(1) 2025(7) 515(7) 6301(14) 44(3) 
C(1) 2763(8) 4512(7) 6714(14) 32(2) 
C(2) 3740(6) 4850(7) 5953(13) 24(2) 
C(3) 4250(7) 4049(7) 5200(14) 28(2) 
C(4) 3880(8) 2337(8) 5056(14) 33(3) 
C(5) 3381(8) 1529(8) 5341(15) 31(2) 
C(6) 2392(7) 1378(8) 6210(15) 31(2) 
C(7) 1710(7) 2098(8) 6932(12) 28(2) 
C(8) 1820(7) 2996(8) 7053(13) 32(3) 
C(9) 2686(7) 3593(7) 6496(12) 25(2) 
C(10) 3655(6) 3253(6) 5484(13) 22(2) 
C(11) 3536(7) 6554(7) 6722(13) 28(2) 
C(12) 4092(7) 5804(7) 5985(14) 27(2) 
C(13) 5008(6) 6178(7) 5293(14) 25(2) 
C(14) 5822(6) 7746(6) 4998(12) 18(2) 
C(15) 5905(8) 8696(8) 5168(16) 36(3) 
C(16) 5190(7) 9304(7) 6017(16) 33(2) 
C(17) 4232(8) 9095(8) 6852(16) 35(2) 
C(18) 3738(7) 8242(7) 7014(15) 30(2) 
C(19) 4033(7) 7363(7) 6515(13) 27(2) 
C(20) 5051(7) 7124(7) 5526(13) 27(2) 
________________________________________________________________________________ 
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 Table 3.   Bond lengths [Å] and angles [°] for 3.1. 
_____________________________________________________  
N(1)-C(6)  1.325(14) 
N(1)-H(1N1)  0.8800 
N(1)-H(1N2)  0.8800 
C(1)-C(9)  1.333(15) 
C(1)-C(2)  1.450(13) 
C(1)-H(1)  0.9500 
C(2)-C(3)  1.433(13) 
C(2)-C(12)  1.440(13) 
C(3)-C(10)  1.387(13) 
C(3)-H(3)  0.9500 
C(4)-C(5)  1.340(15) 
C(4)-C(10)  1.381(14) 
C(4)-H(4)  0.9500 
C(5)-C(6)  1.431(13) 
C(5)-H(5)  0.9500 
C(6)-C(7)  1.452(14) 
C(7)-C(8)  1.300(15) 
C(7)-H(7)  0.9500 
C(8)-C(9)  1.457(13) 
C(8)-H(8)  0.9500 
C(9)-C(10)  1.525(12) 
C(11)-C(19)  1.331(14) 
C(11)-C(12)  1.400(13) 
C(11)-H(11)  0.9500 
C(12)-C(13)  1.384(13) 
C(13)-C(20)  1.369(14) 
C(13)-H(13)  0.9500 
C(14)-C(15)  1.373(14) 
C(14)-C(20)  1.383(13) 
C(14)-H(14)  0.9500 
C(15)-C(16)  1.410(14) 
C(15)-H(15)  0.9500 
C(16)-C(17)  1.401(15) 
C(16)-H(16)  0.9500 
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C(17)-C(18)  1.382(15) 
C(17)-H(17)  0.9500 
C(18)-C(19)  1.367(14) 
C(18)-H(18)  0.9500 
C(19)-C(20)  1.530(14) 
 
C(6)-N(1)-H(1N1) 120.0 
C(6)-N(1)-H(1N2) 120.0 
H(1N1)-N(1)-H(1N2) 120.0 
C(9)-C(1)-C(2) 110.3(9) 
C(9)-C(1)-H(1) 124.9 
C(2)-C(1)-H(1) 124.9 
C(3)-C(2)-C(12) 128.8(8) 
C(3)-C(2)-C(1) 105.8(8) 
C(12)-C(2)-C(1) 125.3(8) 
C(10)-C(3)-C(2) 110.7(8) 
C(10)-C(3)-H(3) 124.6 
C(2)-C(3)-H(3) 124.6 
C(5)-C(4)-C(10) 133.5(10) 
C(5)-C(4)-H(4) 113.3 
C(10)-C(4)-H(4) 113.3 
C(4)-C(5)-C(6) 128.4(10) 
C(4)-C(5)-H(5) 115.8 
C(6)-C(5)-H(5) 115.8 
N(1)-C(6)-C(5) 118.4(10) 
N(1)-C(6)-C(7) 115.7(9) 
C(5)-C(6)-C(7) 125.8(9) 
C(8)-C(7)-C(6) 131.8(9) 
C(8)-C(7)-H(7) 114.1 
C(6)-C(7)-H(7) 114.1 
C(7)-C(8)-C(9) 130.1(9) 
C(7)-C(8)-H(8) 114.9 
C(9)-C(8)-H(8) 114.9 
C(1)-C(9)-C(8) 127.1(9) 
C(1)-C(9)-C(10) 108.4(8) 
C(8)-C(9)-C(10) 124.5(9) 
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C(4)-C(10)-C(3) 129.4(9) 
C(4)-C(10)-C(9) 125.8(9) 
C(3)-C(10)-C(9) 104.7(8) 
C(19)-C(11)-C(12) 112.6(9) 
C(19)-C(11)-H(11) 123.7 
C(12)-C(11)-H(11) 123.7 
C(13)-C(12)-C(11) 105.9(9) 
C(13)-C(12)-C(2) 128.7(9) 
C(11)-C(12)-C(2) 125.4(8) 
C(20)-C(13)-C(12) 111.8(9) 
C(20)-C(13)-H(13) 124.1 
C(12)-C(13)-H(13) 124.1 
C(15)-C(14)-C(20) 132.0(9) 
C(15)-C(14)-H(14) 114.0 
C(20)-C(14)-H(14) 114.0 
C(14)-C(15)-C(16) 127.3(10) 
C(14)-C(15)-H(15) 116.4 
C(16)-C(15)-H(15) 116.4 
C(17)-C(16)-C(15) 128.9(10) 
C(17)-C(16)-H(16) 115.5 
C(15)-C(16)-H(16) 115.5 
C(18)-C(17)-C(16) 128.7(10) 
C(18)-C(17)-H(17) 115.7 
C(16)-C(17)-H(17) 115.7 
C(19)-C(18)-C(17) 132.0(10) 
C(19)-C(18)-H(18) 114.0 
C(17)-C(18)-H(18) 114.0 
C(11)-C(19)-C(18) 130.0(10) 
C(11)-C(19)-C(20) 105.3(9) 
C(18)-C(19)-C(20) 124.7(9) 
C(13)-C(20)-C(14) 129.2(9) 
C(13)-C(20)-C(19) 104.4(8) 
C(14)-C(20)-C(19) 126.4(9) 
_____________________________________________________________  
Symmetry transformations used to generate equivalent atoms:  
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 Table 4.   Anisotropic displacement parameters  (Å2x 103) for 3.1.  The anisotropic 
displacement factor exponent takes the form:  -2π2[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 
______________________________________________________________________________  
 U11 U22  U33 U23 U13 U12 
______________________________________________________________________________  
N(1) 39(5)  52(6) 40(6)  1(5) 1(5)  6(4) 
C(1) 34(5)  44(6) 18(5)  9(5) 10(4)  14(4) 
C(2) 13(4)  47(6) 10(4)  7(4) -3(3)  11(4) 
C(3) 24(5)  45(6) 14(5)  2(4) -1(4)  3(4) 
C(4) 27(5)  55(7) 16(6)  4(5) -8(5)  -1(4) 
C(5) 30(5)  47(6) 17(5)  3(5) 0(5)  5(4) 
C(6) 16(4)  52(6) 24(5)  -6(5) 4(4)  -12(4) 
C(7) 12(4)  65(7) 5(5)  6(5) 2(4)  -4(4) 
C(8) 16(4)  71(8) 8(5)  4(5) 5(4)  7(5) 
C(9) 20(4)  46(6) 8(5)  5(4) 5(4)  -1(4) 
C(10) 16(4)  36(5) 15(5)  1(4) -7(4)  10(4) 
C(11) 27(5)  49(6) 7(4)  4(4) -2(4)  14(4) 
C(12) 22(4)  45(6) 13(5)  2(4) 3(4)  7(4) 
C(13) 13(4)  43(6) 18(5)  6(4) 0(4)  1(3) 
C(14) 11(3)  31(4) 14(4)  1(3) -7(3)  -2(3) 
C(15) 28(5)  51(7) 29(6)  0(5) -2(5)  10(5) 
C(16) 29(5)  40(6) 30(6)  0(5) 0(5)  6(4) 
C(17) 33(5)  44(6) 26(6)  -4(5) -1(5)  9(4) 
C(18) 21(4)  46(6) 23(5)  -3(5) -7(4)  9(4) 
C(19) 29(4)  33(4) 19(4)  -1(3) -11(3)  3(3) 
C(20) 26(4)  47(6) 7(5)  -1(4) -8(4)  7(4) 
______________________________________________________________________________ 
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 Table 5.   Hydrogen coordinates ( x 104) and isotropic  displacement parameters (Å2x 10 3) 
for 3.1. 
________________________________________________________________________________  
 x  y  z  U(eq) 
________________________________________________________________________________  
  
H(1N1) 2387 52 5834 52 
H(1N2) 1419 406 6829 52 
H(1) 2251 4892 7286 38 
H(3) 4905 4062 4589 33 
H(4) 4525 2266 4426 39 
H(5) 3727 986 4911 38 
H(7) 1066 1870 7402 33 
H(8) 1244 3314 7589 38 
H(11) 2876 6493 7306 33 
H(13) 5542 5821 4725 30 
H(14) 6402 7463 4407 22 
H(15) 6513 8975 4658 43 
H(16) 5384 9943 6023 40 
H(17) 3875 9609 7377 41 
H(18) 3070 8272 7578 36 
________________________________________________________________________________ 
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 Table 6.  Torsion angles [°] for 3.1. 
________________________________________________________________  
C(9)-C(1)-C(2)-C(3) 1.4(12) 
C(9)-C(1)-C(2)-C(12) -178.5(9) 
C(12)-C(2)-C(3)-C(10) 178.8(9) 
C(1)-C(2)-C(3)-C(10) -1.1(11) 
C(10)-C(4)-C(5)-C(6) 1(2) 
C(4)-C(5)-C(6)-N(1) 178.0(11) 
C(4)-C(5)-C(6)-C(7) 1.6(19) 
N(1)-C(6)-C(7)-C(8) -179.8(11) 
C(5)-C(6)-C(7)-C(8) -3.4(19) 
C(6)-C(7)-C(8)-C(9) -0.2(19) 
C(2)-C(1)-C(9)-C(8) -179.2(9) 
C(2)-C(1)-C(9)-C(10) -1.2(11) 
C(7)-C(8)-C(9)-C(1) -177.6(11) 
C(7)-C(8)-C(9)-C(10) 4.7(17) 
C(5)-C(4)-C(10)-C(3) 176.8(11) 
C(5)-C(4)-C(10)-C(9) 0.3(18) 
C(2)-C(3)-C(10)-C(4) -176.7(10) 
C(2)-C(3)-C(10)-C(9) 0.4(11) 
C(1)-C(9)-C(10)-C(4) 177.7(10) 
C(8)-C(9)-C(10)-C(4) -4.3(15) 
C(1)-C(9)-C(10)-C(3) 0.5(11) 
C(8)-C(9)-C(10)-C(3) 178.6(9) 
C(19)-C(11)-C(12)-C(13) 0.8(12) 
C(19)-C(11)-C(12)-C(2) -178.0(9) 
C(3)-C(2)-C(12)-C(13) 0.1(16) 
C(1)-C(2)-C(12)-C(13) 180.0(11) 
C(3)-C(2)-C(12)-C(11) 178.7(10) 
C(1)-C(2)-C(12)-C(11) -1.4(15) 
C(11)-C(12)-C(13)-C(20) -1.0(12) 
C(2)-C(12)-C(13)-C(20) 177.8(9) 
C(20)-C(14)-C(15)-C(16) 1.8(19) 
C(14)-C(15)-C(16)-C(17) -1(2) 
C(15)-C(16)-C(17)-C(18) -2(2) 
C(16)-C(17)-C(18)-C(19) 3(2) 
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C(12)-C(11)-C(19)-C(18) 178.7(11) 
C(12)-C(11)-C(19)-C(20) -0.4(11) 
C(17)-C(18)-C(19)-C(11) 178.9(11) 
C(17)-C(18)-C(19)-C(20) -2.2(18) 
C(12)-C(13)-C(20)-C(14) -178.8(10) 
C(12)-C(13)-C(20)-C(19) 0.8(11) 
C(15)-C(14)-C(20)-C(13) 179.0(11) 
C(15)-C(14)-C(20)-C(19) -0.5(17) 
C(11)-C(19)-C(20)-C(13) -0.3(11) 
C(18)-C(19)-C(20)-C(13) -179.4(9) 
C(11)-C(19)-C(20)-C(14) 179.4(9) 
C(18)-C(19)-C(20)-C(14) 0.3(16) 
________________________________________________________________  
Symmetry transformations used to generate equivalent atoms:  
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 NMR Spectra of Selected Compounds from Chapter I 
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1H NMR Spectrum of Compound 1.4 in CDCl3
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13C NMR Spectrum of Compound 1.4 in CDCl3 
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1H NMR Spectrum of Compound 1.5 in CDCl3 
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1H NMR Spectrum of Compound 1.6 in CDCl3 
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 1H NMR Spectrum of Compound 1.7 in CDCl3 
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Appendix 4 

 

NMR Spectra of Selected Compounds from Chapter II. 
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1H NMR Spectrum of Compound 2.1 in CDCl3 
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1H NMR Spectrum of Compound 2.2 in CDCl3 
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1H NMR Spectrum of Compound 2.3 in CDCl3 
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1H NMR Spectrum of Compound 2.4 in CDCl3 
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1H NMR Spectrum of Compound 2.5 in CDCl3 
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13C NMR Spectra of Compound 2.5 in CDCl3 
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1H NMR Spectra of Compound 2.6 in CD2Cl2 
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13C NMR Spectra of Compound 2.6 in CDCl3 
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1H NMR Spectra of Compound 2.7 in CDCl3 
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13C NMR Spectra of Compound 2.7 in CDCl3 
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Appendix 5 

 

NMR Spectra of Selected Compounds from Chapter III 
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1H NMR Spectra of Compound 3.1 in Acetone-d6 
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1H NMR Spectra of Compound 3.3 in CDCl3 

 

 
 

 

 
 


