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Abstract 

 Urban gardens produce a growing portion of food consumed in U.S. cities and 
throughout the world.  Spreading out food production means less reliance on 
centralized food industries, making the food system less vulnerable to external stresses 
brought about by climate change and other challenges.  Yet, urban food production 
may occur in soils that need some revitalization before they produce safe, healthy 
food.  Some urban soils contain a record of poor environmental practices in the form of 
accumulated toxins like heavy metals.  Certain heavy metals can be toxic to plants, 
enter plant parts that people consume, or they can affect a person’s health through 
direct ingestion, dermal contact, or breathing in contaminated dust or soil.  Gardeners 
often seek solutions to problems proactively; the goal of this work is to provide the 
proactive gardener tools that can be used to assess the potential for toxins to be 
present, give suitable methods for detecting heavy metals, and provide guidance on 
making appropriate plans based on these findings. 
 This work investigates whether land use and environmental histories for a 
garden plot scaled up to a region can predict which heavy metals are present in the 
garden plot.  Case studies are presented for Lawrence, Kansas including a broad 
environmental history of the town and site specific land use histories for ten urban 
gardens.  Soil samples were collected and elemental analyses were performed using x-
ray fluorescence.  These results were used to demonstrate that predictions based on 
Lawrence land use and environmental histories were effective for arsenic, copper, 
lead, and zinc, but cadmium, chromium, mercury, and nickel were difficult to predict.  
Soil organic carbon was determined for a portion of the samples and a model for 
estimating organic carbon based on soil color is provided. 
 A discussion of the policy landscape for urban gardening in Lawrence, Kansas 
and Flint, Michigan provided material for a tool for determining what policy barriers 
may exist in any given city, and actions a gardener can take to address these barriers.  
Finally, a decision support tool was prepared based on lessons learned from the case 
study that will help gardeners gather relevant information, analyze the information, 
and make appropriate decisions in land management.  Addition of organic matter is 
lauded as the simplest urban soil treatment that addresses many toxins as well as 
increasing soil tilth, nutrient status, and water holding capacity.  Because urban 
gardening holds great potential for adding resiliency to the food system, urban soil 
health must be improved to protect public health.      



iv 
 

Acknowledgements 

 I am forever grateful to my husband, Bobby, and two beautiful children, Maiya and Eli.  Their 

very presence in my life transformed me into the strong, driven woman I have become.  Special heart-

felt thanks to Bobby for providing the support and flexibility I needed to fulfill my academic obligations 

with a willing and encouraging heart.  Thank you to mentors that have become dear friends, Bill Woods 

and Steve Egbert and to collaborators in research that taught me well, Johan Feddema and Maril 

Hazlett.  I have treasured debates and conversations with my peers, especially Lilian Rebellato, Ashley 

Zung, and Mark Bowen.  Other helpers along the way that deserve an enthusiastic thanks include Barney 

Warf for joining my committee late, but with full engagement and detailed, expert editing, Brittany 

Keegan and Mary Wallace, the Acting Curator and Archives Volunteer, respectively, at the Watkins 

Community Museum who expertly guided me through mountains of materials, and the gardeners I 

interacted with who provided inspiration for the evolution of the research and a willingness to share 

their knowledge and gardens with me.  I have grown to appreciate the C-HANGE IGERT steering 

committee for misunderstanding my project, which improved the research and my communication of it 

greatly.  Finally, through interactions with other students in the IGERT program, I truly learned the 

challenges and rewards of interdisciplinary work, so thanks to the Department of Geography and the 

National Science Foundation for funding my graduate experience. 

 



v 
 

Contents 

Chapter 1. Introduction -------------------------------------------------------------------------------------------- 1 

Chapter 2. Global Change and U.S. Food Production ------------------------------------------------------- 5 

2.1. Food system science and sustainability ---------------------------------------------------------------------- 5 
2.1.1. System form ------------------------------------------------------------------------------------------------------------------ 6 
2.1.2. Resiliency ---------------------------------------------------------------------------------------------------------------------- 9 
2.1.3. Natural constraints -------------------------------------------------------------------------------------------------------- 10 
2.1.4. Social constraints, economic drivers, and policy considerations --------------------------------------------- 10 

2.2. Development of urban landscapes related to food production --------------------------------------- 15 
2.2.1. Urban and agricultural revolutions ----------------------------------------------------------------------------------- 16 
2.2.2. “Landesque capital” and palimpsests in urban settings -------------------------------------------------------- 17 
2.2.3. Ancient agricultural techniques --------------------------------------------------------------------------------------- 19 
2.2.4. Modern agriculture techniques --------------------------------------------------------------------------------------- 25 

2.3. Urban climatology ------------------------------------------------------------------------------------------------- 28 

2.4. Climate change and soils ----------------------------------------------------------------------------------------- 30 

2.5. Soil formation processes and land use ----------------------------------------------------------------------- 30 

2.6. Adaptive capacity, resiliency, and soil health -------------------------------------------------------------- 33 

Chapter 3. U.S. Land Use History, Urban Soils, and Urban Gardening ------------------------------- 36 

3.1. History of mining and metallurgy ----------------------------------------------------------------------------- 37 

3.2. History of waste management --------------------------------------------------------------------------------- 38 

3.3. History of industrial and agricultural pollution ------------------------------------------------------------ 41 
3.3.1. Industrial pollution -------------------------------------------------------------------------------------------------------- 41 
3.3.2. Spatial patterns of pollution -------------------------------------------------------------------------------------------- 42 
3.3.3. Pollution from agriculture ----------------------------------------------------------------------------------------------- 43 

3.4. Heavy metals in soils ---------------------------------------------------------------------------------------------- 45 
3.4.1. Soils as a geochemical sink for heavy metals ---------------------------------------------------------------------- 45 
3.4.2. Measurement and behavior of heavy metals in soil ------------------------------------------------------------- 49 
3.4.3. Soil-plant interactions and heavy metals --------------------------------------------------------------------------- 55 
3.4.4. Heavy metals and climate change ------------------------------------------------------------------------------------ 57 

3.5. Urban soils as anthrosols ---------------------------------------------------------------------------------------- 58 

3.6. History of urban gardening in the U.S. ----------------------------------------------------------------------- 59 

3.7. Urban food production and public health ------------------------------------------------------------------ 65 
3.7.1. Fusion of environmental and public health issues --------------------------------------------------------------- 66 
3.7.2. Environmental activism and policy ----------------------------------------------------------------------------------- 67 
3.7.3. Heavy metals and public health --------------------------------------------------------------------------------------- 69 
3.7.4. Best practices in urban gardening ------------------------------------------------------------------------------------ 70 

Chapter 4. Lawrence Gardens Case Studies ----------------------------------------------------------------- 72 

4.1. Project description and purpose ------------------------------------------------------------------------------- 72 

4.2. Research design ---------------------------------------------------------------------------------------------------- 73 



vi 
 

4.3. General study area description -------------------------------------------------------------------------------- 74 

4.4. Land use histories -------------------------------------------------------------------------------------------------- 78 
4.4.1. Environmental history of Lawrence ---------------------------------------------------------------------------------- 78 
4.4.2. Garden plot histories ----------------------------------------------------------------------------------------------------- 91 

4.5. Environmental analysis with Geographic Information Systems ------------------------------------ 108 

4.6. Sampling and laboratory analysis --------------------------------------------------------------------------- 117 

4.7. Results and discussion ------------------------------------------------------------------------------------------ 118 
4.7.1. Summary of detected metals of interest -------------------------------------------------------------------------- 118 
4.7.2. Comparison to analogous rural soils ------------------------------------------------------------------------------- 121 

4.8. Garden physical and chemical soil characteristics ------------------------------------------------------ 126 
4.8.1. Garden plots 3 and 8: Eudora-Kimo Association ---------------------------------------------------------------- 129 
4.8.2. Garden plots 1 and 7: Woodson soils ------------------------------------------------------------------------------ 134 
4.8.3. Garden plots 2, 4, and 9: Pawnee soils ---------------------------------------------------------------------------- 139 
4.8.4. Garden plots 6 and 10: Martin soils -------------------------------------------------------------------------------- 143 

4.9. Evaluation of land use history as predictor of heavy metal presence ----------------------------- 147 

4.10. Evaluation of soil color for estimating soil organic matter ---------------------------------------- 149 

4.11. Conclusions ----------------------------------------------------------------------------------------------------- 151 

Chapter 5. Helping Gardeners Navigate the Policy and Urban Soil Landscapes------------------ 153 

5.1. Policy environment for urban gardening in the U.S. --------------------------------------------------- 153 

5.2. Lessons from two cities ---------------------------------------------------------------------------------------- 157 
5.2.1. Lawrence policies that affect urban gardening ------------------------------------------------------------------ 157 
5.2.2. Lessons about urban garden policy from Flint, Michigan----------------------------------------------------- 161 

5.3. Best practices in plot management for gardeners ------------------------------------------------------ 162 

Chapter 6. Future Work ----------------------------------------------------------------------------------------- 173 

Chapter 7. Bibliography ----------------------------------------------------------------------------------------- 176 

Appendix A --------------------------------------------------------------------------------------------------------- 188 

Appendix B --------------------------------------------------------------------------------------------------------- 202 
 



1 
 

Chapter 1. Introduction 

 Food or hunger touches the lives of many people every day.  Family food security refers to the 

idea that all individuals in a family receive sufficient food for health and vitality.  Moving beyond the 

family to the community, national, and global scales add more complexity to the meaning of food 

security.  Within these pages, the term “food security” will rarely appear, but the concept is inherent in 

the overarching goal of the work, i.e., to aid efforts that add resiliency to food systems at every scale.  

 Global socio-economic trends influence food system form and efficiency through population 

growth, rising incomes, changing levels and patterns of consumption, urbanization, and economic 

growth, which lead to increased demand (FAO 2009).  At the same time, environmental challenges add 

difficulty to achieving a sustainable food supply (Figure 1) (FAO 2009).  Climate change in human history 

has led to stressed agricultural systems and social unrest, at times even leading to war (Zhang et al. 

2007, Burke et al. 2009, Büntgen et al. 2011).  Climate change exacerbates existing challenges of 

biodiversity loss, water scarcity, and land degradation, all relevant to agriculture.  These global 

challenges call for efforts to increase resiliency in all systems related to human and environmental 

health, starting with those providing food and water to people.  A sustainable food system coupled with 

healthy soils equals a high level of resiliency, even when faced with challenges like climate change.   

 While the global socio-economic and environmental pictures of food security may appear bleak, 

small, expanding pockets of positive change appear throughout the world.  In the U.S., local 

achievements in sustainable agriculture, soil rehabilitation, increased urban and peri-urban food 

production, along with efforts to consume less, have made gains toward a more sustainable food 

system.  Yet, existing policy structures that favor a centralized, vertically integrated food industry hinder 

widespread change, leading to the supposition that significant change will likely sprout from the efforts 

of local farmers and gardeners.   
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 The centralized form of the food production system causes it to be vulnerable to socio-economic 

shifts, natural forces, and other factors such as shrinking groundwater reserves.  With less dependence 

on centralized nodes, a system gains resiliency and the ability to weather adversity.  One city’s 

sustainable food system adds resiliency to the broader food system by removing some pressure from 

centralized production, processing, and distribution nodes.  Incremental decentralization of the food 

system through local food production and distribution is occurring now in many U.S. cities, indicating 

progress toward resiliency.  

 If a sustainable system feeds a city, a major portion of the food consumed must be produced, 

processed, and distributed from within or near the city.  Serving as harbingers of sustainable cities is the 

growing popularity of urban gardening and more locavores, consumers of local foods (Martinez 2010). 

More urban gardens mean more locavores, even if the gardeners are only eating their own garden 

produce.  Yet, since sustainability implies a continued source of food without harm to people or the 

environment, urban soil health must be part of the conversation. 

 

 
Figure 1. Socio-economic trends and environmental challenges result in a complex role for agriculture and a 
unique position to effect positive change. Source: FAO’s Profile for Climate Change (FAO 2009). 
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 Soils are not just a foundation for food production; soils provide protection for people, animals, 

microorganisms, and plants by filtering and storing a host of pollutants from water, air, and point 

sources like lead paint chips.  This duality, emphasized in urban areas where more sources of pollution 

exist, means that urban gardeners must know their soils to participate effectively in sustainability.  

Gardeners must investigate and implement methods for promoting soil and plant health in order to 

ensure human health.   

 Soils rich with organic matter and free of toxins like heavy metals provide nutrient rich, 

bountiful yields of produce.  These same soils continue filtering air and water contaminants, improving 

the microenvironment.  If one shifts the effect from one garden to a multitude in a city, and a 

sustainable system is within reach.  In this future vision of a city, a majority of fruits and vegetables 

eaten come from local gardens or peri-urban agriculture; gardens peppered throughout the urban 

landscape provide cool islands on hot days; air, water, and wildlife habitats are cleaner; even urban 

flooding has been diminished with more green spaces.  These benefits are experienced locally, but the 

interconnectedness in the global food system means that the city’s food system enjoys ramifications 

well beyond its limits.   

 Urban gardening will continue to play a major role in creating sustainable cities, triggering 

efforts to modernize local, state, and federal food policies, eventually leading to a higher level of 

resiliency for the U.S.  Urban gardening is the focus of this work since it holds immeasurable potential 

for affecting change to the U.S. food system.  Unfortunately, urban soils also hold immeasurable 

potential for contamination due to urban land use history. 

 Since individual gardeners and farmers will, in large part, catalyze food system change, these 

folk should be armed with information about how to detect soil toxins, increase soil health, and 

implement these strategies in land management.  The following pages describe an effort to articulate 

how gardeners can gather enough information for making educated choices in sustainable land 
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management.  Links between past land uses and patterns of heavy metals in soils are explored for 

potential use as a predictive tool of soil health.   

 Garden case studies for one typical Midwestern city include the collection and analysis of the 

city’s and each garden’s land use histories and physical features (i.e. soil qualities, topography, proximity 

to flood zones and pollution sources, etc.).  A series of Geographical Information System analyses 

provide insight into spatial and temporal patterns.  Soil samples were collected from each garden and 

analyzed, providing insight into patterns of heavy metals and other soil characteristics relative to past 

and present land uses and landscape position.  Results from these case studies provide evidence 

supporting some of the proposed heavy metal prediction and soil health monitoring procedures, but not 

others.  In this way, physical and policy barriers for urban gardens, e.g., contaminated soils, land access, 

and food policy landscapes, are explored.  The findings culminate in decision support tools for use by 

gardeners to help in synthesizing and applying gathered information.  The tools provide straightforward 

advice to gardeners for planning next steps, both in the long-term and short-term.  

 Assessing food system form and resiliency, navigating policy obstacles for urban food production 

and distribution, and seeking linkages between land use and soil toxin patterns will take a life’s work to 

grasp.  The surface has now been tilled, seeds have been planted, and some concepts have sprouted.   
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Chapter 2. Global Change and U.S. Food Production 

2.1. Food system science and sustainability 

 Food system science is the study of each arm of food production, processing, and distribution, 

as well as these parts in combination.  The science looks at causes and effects of change in food systems 

from the perspectives of policy, economics, and natural systems such as climate change and soil 

degradation.  The scale at which a problem is studied influences our grasp of the problem as well as 

which solutions can addressed.  Food systems must be looked at from every scale or at least several 

scales to address problems as food production and distribution are simultaneously global and local (or 

“glocal”) in practice.  The interconnectedness of local systems to global systems creates unique 

problems; for example, a local weather phenomenon can affect a product’s global trade network 

because of decreased availability and subsequently higher prices.  An ample illustration of this point 

involves global wheat production.  Drought in Russia, Ukraine, and parts of Europe in 2010 and in China 

in 2011, along with floods in Australia, have disrupted wheat production and reduced U.S. wheat 

reserves, leading to an 81% jump in wheat prices in one year (Wilson and McFerron 2011).  Other local 

problems, particularly soil degradation, have gained global concern because of their ubiquity throughout 

the world’s arable lands. 

 One way to study food system science is through the lens of sustainability (Tilman et al. 2002, 

Turner et al. 2003).  Sustainability is defined in a number of ways, but here it is meant as the ability to 

maintain a system (e.g., food production and distribution) without negative impacts on people or the 

environment.  A sustainable food system will provide an adequate food supply that is nutritious for 

people and not harmful to the environment, including people.   

 Sustainability science encompasses concepts of sustainable development, sustainability 

indicators, resilience theory, human-environment interactions, feedback loops, thresholds, and 

ecosystem services.  Each of these concepts will be discussed in the context of food systems as they 
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become relevant.  The concepts of sustainability science provide a broader look at problems, avoiding 

traps of reductionism (i.e., avoiding complexities or oversimplifications at the finest scales), but they 

synthesize science discovered through reductionist methods to solve problems nonetheless.  The 

concepts of sustainability science therefore provide tools for addressing the challenges of long-term 

survival of people along with Earth’s other inhabitants, as well as how to flourish as interdependent 

communities. The crux of the challenge is at the surface of the planet, where human populations 

continue to swell while resources continue to dwindle. 

 As global population levels steadily rise, so does our understanding of how we have affected and 

continue to affect the Earth’s surface.  Continued success measured by the ability for everyone to 

survive and lead healthy, productive lives depends ultimately on our ability to provide an adequate 

supply of nutritious food for everyone on Earth.   Stressors from war, shifts in climate, and natural 

disasters require attentive study for ways to achieve sustainability, with special attention toward adding 

resiliency in food systems to absorb these stressors without upsetting the system.  Local and global 

attentiveness to these issues has increased in recent years, notably from grassroots efforts (SARE 2005).  

Achievement of food system resiliency and sustainability at all scales will need cooperation from 

producers to federal policymakers because the current food system is not sustainable.  Proof of its 

unsustainability comes from degraded soils, chemical inputs at scales that cause harm to ecosystems, a 

decreasing number of farmers and increasing average farm sizes, and a slow motion avalanche of food 

safety and quality issues. 

2.1.1.    System form 

 At the most basic level, the form of a system dictates its function and functionality.  The food 

system of the United States has shifted along a continuum of forms, a spectrum that has centralized 

production at one end and distributed production at the other (Figure 2).  Reasons the U.S. food system 

has a centralized form stems from forces, e.g., the oligopolization of industrial agriculture, federal 
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subsidies, and reliance on fossil fuels, among others (Feenstra 1992).  System resiliency increases toward 

the distributed end, as stresses can be absorbed or contained at a small node, decreasing its negative 

effect on the entire system.  By contrast, a minor disruption in a centralized system can cripple the 

system for an extended period, such as occurred during the U.S. egg recall of 2010, where a salmonella 

outbreak in one of the largest egg production facilities led to the recall of 380 million eggs 

(MyFoxNY.com 2010).  The egg producer sent infected eggs to food wholesalers in eight states, who 

passed on the infected eggs to the entire nation.  Generally, because most eggs consumed in the U.S. 

come from centralized production facilities (i.e., factory farms), a localized problem led to a nationwide 

outbreak of illnesses. 

 

Figure 2. Illustration of continuum from centralized to distributed systems based on Baran’s work (1964), with 
resiliency increasing as the system becomes less centralized. 
 
 The food systems of the first European settlers in America had a distributed form out of 

necessity and due to the absence of centralized government.  Because of food scarcity, most families 

produced much of their own food for direct consumption or for trade for other consumables.  Only 

when urban areas began to grow rapidly, i.e., in the nineteenth century, did food production become 

less distributed, as more people made a living in the city and could purchase food at local markets.  Yet 

this system still had a decentralized form (Figure 2), as most production occurred in exurban locations or 

Increasing system resiliency 
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on nearby farms, and urbanites often knew the farmer who produced and handled their food (Lawson 

2005).  

 The twentieth century witnessed many changes to the form of the U.S. food system.  From 

1890-1930, urban gardening was promoted in places like Detroit, where the mayor provided space to 

make Potato Patches to help people stave off hunger during difficult economic times (Lawson 2005). 

World Wars I and II led to a surge in backyard gardens, as the U.S. government campaigned for less 

consumption at home in order to provide more resources to Allied forces abroad.  By 1942, the U.S. 

Department of Agriculture (USDA) estimated that almost half of the fresh vegetables consumed by 

Americans were produced in over 20 million garden plots (Basset 1981).  This is an ideal example of a 

distributed food production system concentrated where the most people reside, i.e., in urban settings. 

 After World War II, the U.S. Congress commissioned two studies that helped evaluate the 

impact of increasing farm size (Goldschmidt 1946, Mills and Ulmer 1946).  Both reports concluded that 

small farms are more beneficial to the community, the farmer, and food quality.  Despite these findings, 

Congress took action to encourage industrialized agriculture, leading to centralized food production, 

processing, and distribution (Ikerd 2010).  Mechanization in the form of heavy equipment for plowing, 

planting, harvesting, processing, and packaging led to a greater capital intensity of agricultural 

production and productivity (Cochrane 1979, Kislev and Peterson 1981).  Furthermore, advances in 

agricultural chemicals and plant breeding enabled this system, leading to record crop yields (Cochrane 

1979).   

 At the same time, the successes of centralized agriculture have their costs, not the least of 

which are decreasing food quality, stressed water supplies, and widespread soil loss and degradation 

(Pierce and Furuseth 1983).  Today, however, more people are producing their own food in gardens or 

even in containers on apartment balconies (National Gardening Association 2001).  Commercial urban 

agriculture operations are going a long way toward reviving food production in the most densely 
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populated areas.  These trends are shifting the U.S. food system, albeit slightly, toward a less centralized 

form, increasing the system’s resiliency.  

2.1.2.    Resiliency 

 The concept of resiliency has been most commonly studied in the context of social work 

(DuPlessis VanBreda 2001).  Applying the concept broadly to systems theory, particularly with 

environmental systems, has gained traction in recent years (Gunderson and Pritchard 2002).  In general, 

the term “resilience” in systems theory refers to a system’s capacity to manage stress without disrupting 

the functionality of the system (Gunderson and Pritchard 2002).  In applying this concept to food 

systems, resilience retains this meaning of a system’s relative capacity to absorb stresses, which varies 

among scales in the system, from soil health to food distribution patterns. 

 Consider the example of urban gardening.  Once an initial level of sustainability is achieved 

(indicated by minimal degradation to Earth systems and sufficient food for everyone) through 

ecologically sound, distributed food production and trade, increasing resiliency is the next step in 

enhancing food security for urban residents.  This goal can be achieved through more robust social 

networks (e.g., broader trade networks for access to a greater variety foods, sharing of gardening 

strategies) and through more robust ecological systems, such as permaculture, which maximizes 

productive capacity using primarily renewable resources and perennial crops.   

 At the foundation of ecological systems, particularly those utilized for food production, is the 

soil.  To name a few factors, healthy soil has higher levels of organic matter and, therefore, more plant 

available nutrients; it has higher rates of infiltration and greater water holding capacity, which help 

crops survive floods and droughts; it produces higher yields of more nutritious crops, which feed more 

people and help fend off illness and disease (in both plants and people) (Culman et al. 2009).  Increasing 

soil health serves to increase food system resilience in urban gardens and any agricultural system 

subject to stressors like climate change and market volatility.  From a social perspective, higher quality, 
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more copious food supplies coupled with a strong community and social network serve to increase 

resilience on an individual and household basis. 

2.1.3.    Natural constraints 

 Agriculture exists where there is arable land and a suitable climate or the ability to subsidize 

these factors to create an area utilizable for agriculture (e.g., with irrigation, soil amendment, using 

raised beds, etc.).   When contemplating a shift toward a distributed system, constraints in the natural 

systems must be considered, including spatial distributions of arable land (determined as a function of 

soil quality, topography, accessibility, and climate), availability of water, weather patterns, and how all 

of these may shift or intensify with climate change, and the competition of these resources among 

people (e.g., municipal water needs) and between people and ecosystems (Blaikie and Brookfield 1987).  

The link between human health and ecosystem health, often described as “ecosystem services” has 

been increasingly recognized as an important consideration in sustainable development and economic 

development (Collins and Larry 2007).  Further, since sustainability requires that there is no degradation 

of environmental health, ecosystem health (repair and) maintenance is considered a natural constraint 

to realizing a distributed food system. 

2.1.4.    Social constraints, economic drivers, and policy considerations 

 Agricultural change is driven and constrained through internal and external factors, both social 

and natural.  It can be sparked or shaped by external forces, e.g., advances in technology or population 

growth (see Malthus 1798, Boserup 1965) or through external forces manifested through political 

economies.  In Stone’s (2001, 329) discussion of Agricultural Change Theory, he states:  

…most farmers have to contend with economic factors that affect the cost of inputs and 
value of output beyond local energetics …  Few small farmers today grow crops 
exclusively for subsistence or sale; most do both, and they often favor crops that can be 
used for food or sale. 
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While Stone’s point is better applied to less developed countries, it raises a point that is increasingly 

becoming relevant for small farmers and urban agriculturalists in the United States, i.e., considering 

crops that can have dual value for subsistence and sales and recognizing a need to address their own 

family’s food security.  The economic framework of diversifying one’s portfolio, or in this case, crops for 

home and market, will help farmers and their urban counterparts gain financial resilience.  With rising 

energy and fuel costs, along with myriad other uncertainties, farmers and gardeners must find ways, 

such as crop diversification, to align their cultural beliefs with economic realities. 

 From the perspective of social change, an intensification of agriculture (i.e., gardening) in urban 

areas can be described as a form of agricultural involution (Geertz 1963).  This idea states that external 

pressures (i.e., climate change, market forces, population growth) lead to an increase in agricultural 

labor (i.e., more gardeners) within a limited area (i.e., urban lots), leading to higher productivity per 

area, but not necessarily per person.  As Turner and Brush point out, “The concept of involution seems 

particularly useful for understanding intensive subsistence agriculture that supports large and dense 

populations” (Turner II and Brush 1987, 20).  They go on to say that when agricultural involution occurs, 

it often leads to a labor bottleneck, where there is insufficient labor at critical times in the crop cycle 

(Turner II and Brush 1987).  From this perspective, the success of a start-up urban garden will hinge on 

the resourcefulness of the gardeners (i.e., reliance on tools, expert advice, etc.), and their access to 

family members and friends willing to share in the labor during more challenging phases of growing food 

crops. 

 The increasing incidence and popularity of gardening marks a shift in ethos, or a shift in cultural 

beliefs and attitudes surrounding gardens.  This attitudinal shift is occurring despite how recent and 

rapid advances in technology (particularly in the ways people communicate over the last decades) have 

disrupted some of the continuity associated with passing ethos from one generation to the next.  This 

change is also apparent in the U.S. food ethos, characterized by the way Americans prepare and 
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consume food.  As children, the Baby Boomer generation and earlier generations had a better 

understanding of food origins compared to today’s children, whose experience with food may be limited 

to packaged, processed items (Schlosser 2002).  An allegorical case in point is the children’s movie 

WALL-E (Stanton 2008), where Americans had become so disconnected from food origins that they 

believed in pizza trees. 

 Consider the American ethos of farming.  The majority of U.S. farmers are over the age of 55 

(EPA 2009a), so the post-World War II belief in the superiority of industrial-scale agriculture is pervasive.  

These farmers witnessed the successes of the Green Revolution in the 1970s, where crop yields 

dramatically increased and agriculture expanded into lands that were previously thought to be 

unsuitable (Jain 2010).  It follows that many of today’s farmers work thousands of acres (much of this 

acreage leased from absentee land owners) and rely on chemical inputs and advances in seed varieties 

to maintain yields (EPA 2009a).  Because farmers comprise less than one percent of the U.S. population 

(EPA 2009a), but manage about 41% of U.S. land (Economic Research Service 2010), they are a key 

group of actors in transforming the food system.   

 Yet the entrenched system form, both socially and systematically, is difficult to overcome.  One 

way to overcome this entrenchment is by changing the demographics of the farming community by 

enticing young people into farming.  While still limited, there is a growing interest among young 

Americans in returning to the land, running small farms (SARE 2009).  They are faced with typical 

challenges of farm life, such as vulnerability to weather, and they have the added challenge of 

attempting to renew family farms in a system designed to favor large farms (section 2.1.1). 

 Another way to track changes in American agriculture is through tracking American soil ethos, 

i.e., the way people think about soil and the way land managers treat soil, which shift over time.  For 

instance, starting with the Dust Bowl in the 1930s, soil enjoyed a period in which it was recognized as a 

valuable resource, something to be preserved and maintained, even treasured; while previously it was 
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considered simply as a resource to be extracted (Berry 2010).  While the idea of soil conservation 

remained important to farmers after the Dust Bowl, it was conceived primarily in terms of keeping 

topsoil in place, not necessarily preserving soil health (Berry 2010).  The trends of resource extraction, 

measureable in nutrient depletion and loss of soil biodiversity have been masked by chemical inputs 

(Jain 2010).  More farms are now utilizing no- or low-tillage management or are converting to organic 

farming practices (Clark 2010).  These developments highlight a recent, albeit not widespread shift in 

soil ethos; an ethos that recognizes how healthy soil produces more nutritious foods and maintains 

ecosystem health – a win-win scenario for people, plants, and animals. 

 Unlike most farmers, urban gardeners are subject to municipal rules and regulations.  Access to 

land for growing and selling in light of zoning restrictions and food safety regulations comprise two 

examples of complexities faced by urban food growers who intend to sell their products.  Usually, 

backyard gardens for household consumption are not party to these limitations, unless gardens conflict 

with the restrictive covenants of a neighborhood association.  Another difficulty has been when small 

food gardens have at times been considered as “eyesores” in the United States, leading to efforts to 

remove them.  This attention to aesthetics in urban areas occurred during the City Beautiful Movement 

at the turn of the 20th century, where some upper and middle class people were disturbed by urban 

blight (Basset 1981).  The movement led to destruction of some food gardens in favor of English-style 

formal gardens.  The paternalistic thought was that lower class urbanites would take greater pride in 

their beautified neighborhoods, but in reality the removal of gardens relied upon for sustenance did 

more harm than good for the poor population (Williamson 2002). 

 Some cities in the United States have made gardening part of their future vision, expressed in 

plans such as climate change adaptation strategies (City of Kansas City 2009).  Other municipal 

involvement comes in the form of financial donations to existent urban garden non-profit entities (e.g., 

Denver Urban Gardens), progressive zoning laws (e.g., Cleveland), or regulations that are seen as a 
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hindrance to existent gardening efforts (e.g., Chicago) (Denver Urban Gardens 2010, FindLaw 2011, Eng 

2011, respectively).  What is not clear from these efforts is how cities will handle liability issues, e.g., 

those that may arise due to soil toxins on public property.  In Lawrence, produce from one garden has 

been avoided by some consumers that suspect contaminated garden soil (Grimes 2009), but the 

municipal government has not intervened or established soil testing requirements in response to these 

concerns.  Urban soils’ relatively higher potential for contamination based on past and present land use, 

while rarely considered by municipal governments (e.g., not including designated polluted sites, e.g., 

brownfields), is an issue worth considering for protection of local growers and consumers alike.   

 Part of the difficulty for municipal governments is how to define contamination since thresholds 

vary depending on the medium (i.e., soil, water, air) and rules governing required actions, if any, can 

vary from state to state.  Furthermore, remediation measures are typically expensive and/or time 

consuming.  An attempt to detect and then trace a contaminant through the food system requires 

skilled workers with broad knowledge of physical systems and food networks.  In addition, each case of 

potential contamination is significantly influenced by local factors including physical (i.e., weather, 

climate, soils, water, topography), economic (i.e., access to and willingness to fund clean-up activities), 

and social (i.e., value placed on the contaminated resource by the community).  Within this document, 

the term “contaminated” in the context of heavy metals is meant as any level above normal background 

levels from weathering of geologic strata, which varies widely from place to place.  Furthermore, a soil is 

considered to be contaminated when the natural background level exceeds safe levels as determined by 

the EPA, where applicable.  With state and federal agencies establishing definitions of “safe levels” of 

certain contaminants appears a first example at how policy affects soil management and therefore, 

gardening activities. 

 Social factors and dynamics of the local economy play large roles in setting the tone for the local 

policy environment.  From this account it is clear that the local policy environment has the greatest 
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impact on how local food is produced and sold in urban areas, including food safety nets that are 

present or absent.  The policy framework for any place dictates the ease with which urban food 

production can successfully expand to become an important part of the local economy.  As urban 

gardening seems to be a grassroots movement that is gaining traction, in most cases it seems to be 

garnering support from local governments due to its positive impacts in education (e.g., through 

schoolyard gardens), environmental and human health (e.g., fewer food miles, less packaging, exercise 

and fresher produce for consumption), and local economies (burgeoning small businesses, farmers 

markets, community supported agriculture).  These trends indicate a shift in the American ethos 

surrounding food production and consumption. 

2.2. Development of urban landscapes related to food production 

 Once people starting living in one place for extended periods, two events followed: they realized 

a need to manage their waste and they became gardeners.  Human waste, either by design or by 

chance, typically enriched the soil during these early times (Woods 2008).  The growth and success of 

ancient civilizations was highly dependent on the ability to capture the nutrients in waste and reapply 

them on agricultural fields (Denevan 1998).  For instance, ancient Amazonian cultures converted poor 

soils into rich agricultural soils by using wastes effectively (Woods and McCann 1999).  Early farmers 

eventually shifted to a system of exporting nutrients from their fields to nearby urban centers, where 

soils became enriched from daily activities (McNeill and Winiwarter 2006).  This trend has continued and 

farmers have tried to alleviate the nutrient extraction with soil amendment (Jain 2010).  

 Another prevalent land management technique both then and now has been burning, either to 

clear woody vegetation or to keep out unwanted species in an agricultural landscape (Pyne 1998). 

Intentional burning perhaps marks the onset of intensive resource management to maximize the 

landscape potential for food production (Woods 2008).  As ancient societies improved landscapes year 

after year, they became more productive and therefore more valuable, a concept known as “landesque 
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capital” (Widgren 1997).  A modern farmer’s ability to improve landesque capital is typically limited by 

what technology is available and affordable within his operation.  Either way, the historic land 

management has resulted in anthropogenic soils in both urban and rural areas with a vast variety of 

characteristics due to their different anthropogenic landscape histories (Woods 2008). 

 Two central differences exist between ancient and modern agricultural techniques: (1) the 

capital-intensity and labor-intensity of the work, and, (2) soil management.  By reviving some ancient 

techniques of soil and land management, coupled with the productivity of highly mechanized work, 

modern farmers can boost production in a sustainable fashion.  By contrast, urban gardeners typically 

rely on human labor rather than machines; thus the concept of landesque capital in the ancient sense, 

i.e., gained through human labor, is more applicable in this context.  Additionally, urban gardeners can 

more easily implement ancient strategies involving nutrient management, building productive soils, as 

well as water management and other techniques.  Worth noting is that while ancient societies tended to 

enrich urban soils with nutrients, modern urban soils have experienced a multitude of land use histories, 

either harmful or beneficial, resulting in a heterogeneous anthropogenic soil at even the finest scale 

(Woods 2008, NRCS 2008). 

2.2.1.    Urban and agricultural revolutions 

 Vernacular gardens became common when people became sedentary (Doolittle 2000, Doolittle 

2004, Kimber 2004).  The same ingenuity and resourcefulness that permitted a sedentary lifestyle lent 

its cleverness to creating kitchen or dooryard gardens filled with useful and favorite plants.  These 

gardens supplemented diets and provided a ready source of medicinal herbs (Doolittle 2004). Gardens 

for food and medicine were commonplace beginning with early settlements, and became urban gardens 

as our settlements became cities (Doolittle 2000, Doolittle 2004, Kimber 2004). 

 Ancient civilizations known for sophisticated agriculture developed in most parts of the world, 

including Asia, New Guinea, Europe, Africa, and The Americas (UNDP 1996).  The agricultural practices of 
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these societies can be characterized by their innovative methods of utilizing waste to increase soil 

productivity, water management practices (e.g., terracing, irrigation, aqua-terra farming), and use of 

urban space (UNDP 1996).  Also notable, and a common factor among these societies, is where they 

located their cities and their agricultural sectors within naturally favorable landscapes.  The Nile River 

delta, Amazon River bluffs and floodplain, or the western slopes of the Andes, for instance, all have 

distinctive advantages for agriculture.  Each landscape in these success stories, although unique in 

availability and quality of resources, was improved to enhance its long-term natural productivity, 

increasing its landesque capital (Woods 2008).  

2.2.2.    “Landesque capital” and palimpsests in urban settings 

 The term, “landesque capital” was introduced by Amartya Sen in 1960, and was later refined by 

Australian geographer Harold Brookfield (1984) to describe a type of land improvement that “once 

created persists with the need of only maintenance.”  Prior to Sen, Marx had described the idea of la-

terre capital or land-capital as capital that “was fixed in the land, incorporated in it” (Marx 1959).  

Brookfield expanded the definition of landesque capital to include more innovations, including more 

types of lasting land improvement, but limited the definition to include only investments with lasting 

benefits “well beyond that of the present crop, or crop cycle” (Blaikie and Brookfield 1987).  This 

definition excludes short-term management techniques, e.g., spraying crops for pest control (Widgren 

1997).  So, it is Brookfield’s definition that is most widely used today (Widgren 1997), encompassing 

items like irrigation structures, agroforestry, and anthropogenic soils that demonstrate improved, lasting 

quality (Brookfield 2001).  

 Widgren (1997) makes the point that although soil and climate comprise the most obvious 

factors in current agricultural productivity, landesque capital, i.e., land use history, is the next most 

important factor explaining global disparities in land productivity.  Widgren goes on to say that 

landesque capital is best understood by looking at its spatial rather than economic aspects: 
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Unlike monetary capital, which is fluid in space but fixed in time, landesque capital is 
fixed in space but “fluid” in time. The chronological and social contexts of its use, 
management and further development, can differ significantly from the contexts that 
once shaped it (1997, 8). 

 Important to understanding landesque capital, especially in urban settings, is the idea of adding 

layers over time, layers of value and/or layers of differing land uses.  This notion is akin to the law of 

superposition, where layers of sediments are deposited in a temporal sequence, meaning that older 

layers are positioned below younger layers (Hamblin 1978).  Generally speaking, this concept may be 

applied to urban settings, where new structures are built upon old.  Here the concept of palimpsest 

becomes helpful, as often a shadow of the old structure is reflected in the new structure (Whittlesey 

1929, Bailey 2007).  If not recorded in structures, changes in land use are often recorded in the physical 

or chemical structure of a soil (Brady and Weil 2002).   It follows that land inhabited or otherwise used 

by people over generations can be thought of as a palimpsest, whereby different uses and histories are 

recorded in layers of soil (Bailey 2007), each layer potentially reflecting qualities of other layers.  Regular 

improvements of a landscape result in a layers of landesque capital improvements.  On the other hand, 

urban soils by their very nature are often disturbed, e.g., from urban flash flooding and consequent 

erosion, construction, or bringing in new material.  With digging or mixing, the law of superposition is 

nullified, and the palimpsest concept may only apply in specific cases.   

 The idea of landesque capital, applied to modern urban settings, encounters some problems as 

well.  Brookfield’s treatment of the term implies an agricultural land use.  Setting aside this implication, 

modern urban land use satisfies the general idea: “once created persists with the need of only 

maintenance” (Blaikie and Brookfield 1987), because urban infrastructure provides a wide range of long-

term benefits to society.  Increasing urban landesque capital by implementing, intensifying, and 

maintaining agricultural land use would expand opportunities for landesque capital investments in 

urban settings.  Accordingly, by studying successful ancient urban societies, who were experts at 
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melding agriculture with urban land use, we can evaluate past methods of generating landesque capital 

and their appropriateness for the present. 

2.2.3.    Ancient agricultural techniques 

 Many examples exist of societies that were able to build empires around successful land 

management technologies (Castillo 2003).  Archaeologists and aerial imagery have helped uncover 

massive earth and waterworks at the edges and within urban areas of ancient civilizations.  This 

infrastructure provided food for people and animals, wood for fuel, buildings, shade, windbreaks, and 

fences.  It provided plants for ornamental, medicinal, and ceremonial uses and land for livestock, 

transport, and trade (Mougeot 1994, Castillo 2003).  The ingenuity and consequent effectiveness of 

these infrastructures and systems demonstrate how the success of the ancient cities was reliant on 

urban agriculture (Mougeot 1994).  Some illustrations of the ingenuity and practice of building 

landesque capital in ancient civilizations throughout the world follow. 

 Uruk, with an estimated population of possibly 50,000 in fourth-millennium Mesopotamia, 

extended over 1100 acres, a third of which was in palm groves (Adams 1994).  In addition to their 

primary occupation, most of the working adults in Uruk practiced agriculture, either on their own land, 

their allotted land, or as dependent retainers on large estates (Adams 1994).  Knossos, the Neolithic 

Minoan settlement, developed mixed farming of wheat, barley, lentils, sheep, goats, pigs, and a few 

cattle (Rodenbeck 1991).  Spread over 75 acres, the population of 12,000 was organized into a central 

court surrounded by grouped storage and production areas. Just outside the city, about 2,500 acres 

were in production, likely controlled by the Minoan ruling class (Rodenbeck 1991).  In 1500 BC, Thebes 

was covered with walled gardens for the flourishing Egyptians, hence fresh pomegranates, apples, 

almonds, dates, and other fresh produce was common (Jellicoe 1989).  The Egyptian city of Akhenaton 

was also covered in gardens with additional space designated for food storage, breweries, and animal 

keeping (Courtlandt and Kocybala 1990).   
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 Urban agriculture was probably limited by water shortages in ancient Greece, but ingenious 

water management, e.g., the use of aqueducts, cisterns, and terraces with irrigation allowed for 

agricultural production in a typically arid climate (Rodenbeck 1991).  Greek city-states supplied their 

own olive oil fuel for house lighting and their own goat milk (Rodenbeck 1991).  The Romans also 

innovated to maximize their landscapes.  In the ancient port of Ostia, near the mouth of the Tiber River, 

archaeologists discovered a planned complex of garden houses, erected in approximately AD 128 (Watts 

and Watts 1994).  Housing around 400-700 people in 40 to 100 apartments, the complex was likely 

constructed for the lower and middle classes.  Water was supplied from six fountains in the complex 

(Watts and Watts 1994).  Other examples where imperial Romans influenced the landscape can be 

found in Timgad in Algeria and Volubilis in Morocco, where extensive agricultural drainage schemes 

were built (Watts and Watts 1994).  Later, at its height around 100 BC, the Roman city of Cosa included 

a fish farm that was linked to the harbor through artificial and natural channels (McCann 1994). 

 Medieval European food issues, including quantity, freshness, and price were a source of 

constant anxiety (Reynolds 1984).  Tapestries from the era depict castle gardens with raised beds and 

rabbitries (Jellicoe 1989).  In addition, crop rotation systems were tested and improved in and around 

many of the larger building compounds, e.g., monasteries, walled cities, and castles. Sometimes 

buildings were erected encompassing a garden, with orchards nearby, such as the 15th century College 

of the Vicars Choral in York, England (Hall et al. 1988).  The medieval Russian city of Novgorod was built 

with well-spaced housing, gardens, and orchards inside the city and outside its walls (Yanin 1994). 

 There are also examples of ancient societies developing landesque capital in the Americas.  

North America’s Mississippian culture, at its peak in AD 1050-1250, inhabited rich alluvial valleys of 

several large rivers and their tributaries including the Mississippi, Arkansas, Tennessee, Ohio, and Red 

Rivers (Coe, Snow and Benson 1986).  The rich soils allowed for productive horticulture, defined by 

growing a variety of cultigens in a relatively small area (Woods 1986).  The largest pre-Columbian urban 
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settlement north of Mexico was Cahokia, in southern Illinois. With a population estimated to be at its 

peak 10,000 to 15,000 (Coe et al. 1986, Fowler 1997, Milner 1998, Dalan et al. 2003), the success of 

Cahokia relied on its ability to feed its citizenry.  While Cahokians employed a number of adaptive 

agricultural techniques, e.g., raised beds and ridging, the particular genius of this urban settlement had 

to do with choosing its strategic location with sufficient resources, which in this case included good 

surface drainage, arable soils, access to water, and availability of fuel wood (Woods 1986).  Cahokia’s 

central location along a major river system also means that it likely served as a hub for trade and 

possibly as a center of ceremony (Woods 2008).  Later, mismanagement of these resources was part of 

the stress that led to eventual failure of the city (Woods 2004). 

 South of Cahokia, the Moundville site in Alabama utilized pits for storing live fish (Coe et al. 

1986).  The American Southwest is dotted with earthworks such as terraces and irrigation systems to 

maximize agricultural production (Doolittle 2000).  Further south, in Central America, steep hills were 

terraced, and swamps drained into fields at the edge of Nohmul, a late Pre-Classic city near the Belize-

Mexico border (Hammond 1994).  The nearby city of Edzna (in the present day state of Campeche, 

Mexico), waterworks were built capable of storing 2.25 million m3 of water.  These waterworks were 

needed to support a highly organized agricultural economy (Hammond 1994).  In the Valley of Mexico, 

four thousand years ago, small towns, e.g., Tlatilco and Ticomán were constructed atop stone-faced 

terraces, where people grew vegetables and raised dogs and turkeys (Burland 1976). 

 Also in Central America the Aztecs developed a variety of techniques to build landesque capital 

depending on the character of the place.  They constructed an artificial island of over 20 square miles on 

Lake Mexico, where their capital city of Tenochtitlán was located (Anton 1993).  Equally impressive was 

the Aztec metropolis of Teotihuacán, at its height in 500 BC (Millon 1994), which was larger than 

imperial Rome and had a population five times that of Henry VII’s London at the time (Redclift 1987).  

While both cities relied at least partially on food production within and at the edge of the urban settings, 
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Tenochtitlán’s unique location led to invention of chinampas, a unique form of wetland agriculture (Coe 

1964, Armillas 1971, Deneven 2001).  Artificial islands were created within shallow lakes; then nutrient-

rich sediments from the lake bottom were regularly placed atop these plots (Coe 1964, Armillas 1971).  

Because of the rich nutrients and the microclimate created by this aqua-terra system, the farmers of the 

chinampas were able to produce three harvests per year (Coe 1964, Armillas 1971).  Also, a system of 

artificial canals allowed easy distribution of the foods to the inner parts of the city of Tenochtitlan (Coe 

1964, Armillas 1971).  Today, a few of the chinampas are still in operation in the shallow waters of Lakes 

Chalco and Xochimilco and in most of the island of Tenochtitlan-Tlateloco (Deneven 2001).  To protect 

Lake Texcoco chinampas from inundation with saltwater in the rainy season, the society constructed a 

15 km long dike (Coe et al. 1986).  Northeast of Tenochtitlan, an aqueduct brought water to a hilltop 

orchard (Haas 1993).  Burland notes that the well-spaced layout of the city likely meant that each home 

had its own garden (Burland 1976).  A nineteenth-century painting of Mexico City, reprinted in Haas’ 

Gardens of Mexico portrays a woman and her attendants in her rooftop garden, with a water seller 

nearing the group (Haas 1993).  Haas observes that rooftop container gardening is a lasting trend in 

many parts of Mexico.   

 To the south, in the Colombian 

Sierra Nevada, the Tairona people built a 

sophisticated landscape of retention 

walls, canals, and drainage systems to 

employ urban agriculture at the Buritaca 

site (Burland 1976, Coe et al. 1986).  The 

ingenuity of this system brings to mind 

the famous terraces of Machu Picchu 

located in the Peruvian Andes.  Origins 

 

Figure 3. Stone terraces near these homes in the ancient Inka 
city of Choquequirao took advantage of the nearby water 
source while protecting soils (Calvert 2008). 
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of terracing in the Andes are pre-Incan, and there may be a connection between the Spanish word for 

bench terraces, andenes, and the name of the mountain range (Deneven 2001).  The terraces served 

and continue to serve many purposes, including reduction of soil erosion on the steep slopes (Error! 

Reference source not found.).  Depending on the form of the landscape and the need for irrigation, 

ancient farmers made a variety of improvements, including retention walls, terrace gravel beds, stone-

lined drainage and other earth works (Francisco, Clay and Smeltekop 2010).   Less obviously, Incans were 

able to use irrigation with some terrace systems (Deneven 2001) to control the microclimate, which 

extended the growing season in the higher latitudes by fending off frost (Francisco et al. 2010).  Incans 

also understood effects of latitude on plants, and would select crops that fared best in different 

latitudes (Francisco et al. 2010). 

 A final example involves the terra preta do Indio, or “black soil from the Indians” of the Brazilian 

Amazon (e.g., Sombroek 1966, Woods and McCann 1999, Glaser and Woods 2004).  Faced with 

extremely poor soils, the indigenous tribes learned over centuries which land management practices led 

to soil enrichment.  These black soils contain high concentrations of nutrients and a high quantity of 

archaeological remains (i.e., pottery, lithics, fauna bones, human burial remains, and charcoal).  The pH 

tends to be neutral (around 6-7) and the high cation exchange capacity and richness of organic materials 

provides excellent conditions for crops (Sombroek 1966, Woods and McCann 1999, Glaser and Woods 

2004).  Unintentional soil enrichment led to an intentional soil building method.  Remarkably, the soils 

built hundreds to thousands of years ago (Erickson 2003) have maintained their structure and high 

nutrient status (Sombroek 1966, Woods and McCann 1999, Glaser and Woods 2004, Lehmann and 

Joseph 2009).  

 From these examples, two points become clear.  First, that some ancient societies were 

successful because their cities were planned with urban and peri-urban food production in mind.  “Being 

more vulnerable to supply disruption or insufficiency, malnutrition or famine, food provision throughout 
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history has been a pervasive concern of city populations” (Mougeot 1994).  It is clear that throughout 

human history, urbanites have been directly involved in food production to varying extents.  It is also 

clear that this food production typically occurred nearby personal residences, and/or in or near the city 

boundary.  These nucleated populations needed a reasonably reliable source of food and nonfood items 

to ensure continued subsistence and trade, a possible explanation for the complex earth- and 

waterworks (Mougeot 1994), which are forms of landesque capital, sound investments in food security.  

The second point is that many ancient landesque capital investments have continued to pay off; for 

instance, the chinampas of Mexico, the terraces of the Peruvian Andes, and terra preta do Indio have 

continued to be productive and have intrigued farmers, earth scientists, and archaeologists into learning 

from these technologies. 

 A counter perspective, i.e., that not all landesque capital has value for modern agricultural 

production, reveals two more points.  First, some areas have likely been abandoned due to social or 

natural factors (e.g., war, shortage of labor, soil degradation, climate change, etc.).  Second, there has 

been a breakdown in knowledge transfer from older societies to modern times.  In places that seeded 

ancient populations, knowledge and practices from the past often shape how urban agricultural systems 

perform today (UNDP 1996).  The continuation of historical practices in concert with the industrial 

agricultural revolution and rapid urbanization during the post-World War II era have molded urban 

agricultural systems throughout much of the world (UNDP 1996).  The United States, by contrast, has 

generally not benefited from ancient knowledge of the climate and landscape from native peoples of 

the continent.  Since the hemisphere was virtually emptied of indigenous people before European 

colonization was well established, there were few people left to transfer such knowledge (Dobyns 1966, 

Denevan 1976).  The first European settlers brought some skill sets with them, e.g., pläggen cultivation 

(Conry 1974), but very little knowledge transfer from indigenous American societies is apparent in the 

current urban agricultural system present in the U.S.  Evidence for advanced Native American land 
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management techniques including terracing, irrigation, site selection, soil enrichment, among others has 

received little attention or study outside archaeological circles (Doolittle 2000).  

2.2.4.    Modern agriculture techniques 

 Unlike ancient techniques, modern agriculture typically places little value in landscape-scale 

modifications for the enhancement of productive capacity and resiliency at one site.  There are some 

exceptions, but generally, the U.S. agricultural landscape looks very similar from state to state, even in 

fields thousands of miles apart.  This modern landscape of U.S. agriculture is filled with rows of 

monoculture, harvested with intensive mechanization.   Modernity in agriculture here is defined by 

mechanization, advances in plant breeding and genetics, and extensive application of chemicals for 

fertilizer, pest control, and weed control.  Mechanization began with the plow, and has progressed 

through history to entail enormous motorized equipment, capable of plowing, planting, and harvesting 

hundreds of acres per day (Paarlberg and Paarlberg 2000).  Modernization in agriculture also means that 

fewer people are needed for daily or seasonal farm operations; weeding by hand has been replaced by 

chemicals, harvesting has become a widely mechanized instead of a human endeavor, and computers in 

tractors have raised efficiency in fertilizer application and time management enough to allow one 

farmer to perform more tasks (Oden 2010). 

 Yet at what cost has agriculture made these gains?  Advances in genetically engineered crops, 

for instance, have enabled these landscapes of monocultures, where yields may be high, but soil 

nutrient levels must be subsidized to account for the extractive nature of these engineered crops.  

Additionally, monocultures are often more susceptible to disease (Zhu et al. 2000) or pest issues 

(Conway and Pretty 1991).  Crops engineered for gains in one aspect such as pest resistance are often 

less favorable in another aspect, e.g., damage to beneficial insect populations (Losey, Rayor and Carter 

1999).  Increases in crop yields over the past several decades may be attributable to advances in plant 

sciences, but some experts argue that improved land management may account for a large part of yield 
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increases (Gurian-Sherman 2009).  Plant engineers have advanced perennial crop yields, lauding the 

benefits of planting a crop and enjoying many years of harvests while reducing fuel, water, chemical, 

and electricity costs and increasing overall soil and ecosystem health (Glover et al. 2010). 

 Soil and ecosystem health in concert with agriculture rely on proper land management.  Modern 

agriculture also means advances in how land is managed, paying attention to soil type and landscape 

position, for instance.  The USDA’s Conservation Reserve Program (CRP) for decades has paid farmers 

not to crop acreage that was most susceptible to erosion (NRCS 2009).  This program is being phased out 

(Farm Service Agency 2010); consequently, many marginal lands are returning to production (Roberts 

and Lubowski 2007).  With proper planning and management, e.g., implementation of no-till practices, 

some experts claim that even marginal lands can enjoy some productive capacity while maintaining soil 

and ecosystem health (Loomis and Connor 1991).   Yet this point has been contentious, including how to 

define “marginal land” (Dale et al. 2010). 

 In comparing ancient to modern agricultural techniques, one can ask, “Which has more 

resiliency?”  Is it the enhanced landscape, improved over decades to millennia of use and climate shifts, 

or is it the monocultured landscape, gradually sapped of its topsoil and nutrients and inundated with 

chemicals?  More farmers are beginning to acknowledge and address these issues.  As a result, many 

improvements are being made in land management techniques, including awareness of soil health, and 

efforts to improve it. 

 Along these lines, one aspect of the modernization of agriculture involves advances in soil 

science.  While soil science has come a long way toward understanding and quantifying soil 

characteristics (e.g., factors of soil genesis, which qualities constitute a healthy soil, carbon fluxes to and 

from a soil, and biogeochemical processes), modern soil building practices are no better than those used 

by ancient societies.  Scientists are uncovering ancient soil building methods that are being revived by 

modern farmers, and evaluating their efficacy with modern soil science techniques.  For example, in 
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many countries scientists are uncovering how biochar was used by past societies in a variety of ways to 

increase soil health (International Biochar Initiative 2011).  Farmers in northeastern Spain appreciated 

several benefits of charring soil, including its weed-killing properties, soil fertilization, and interestingly, 

the disinfecting benefits helping control or eliminate diseases or infections (e.g., fungi) that could harm 

crops (Masip 2003).  Amazonians mixed biochar and manure into soils to change hard, nutrient-poor 

rainforest soils to organic-rich soils ideal for agriculture (Sombroek 1966).  As a result of these and other 

technological rediscoveries, an international effort to study biochar for use in modern and provincial 

settings is underway (i.e., International Biochar Initiative).  

 With mechanization of agriculture, engineered perennial grains, and a broader understanding of 

what makes a soil healthy, scientists and farmers are working together to simultaneously increase farm 

efficiency while maintaining yields and increasing soil and ecosystem health (SARE 2005).  Modern 

agriculture increasingly means embracing sophisticated technology combined with knowledge from the 

past, and intensifying less traditional locations for food production such as urban rooftops and vacant 

lots.  Urbanites are making gains in using space and resources more wisely with rooftop gardens, 

rainwater capture, vertical gardens, and more.  In this way, modern cities are revealing a shadow of 

ancient urban functionality, a sort of palimpsest of distributed urban food production, and an 

investment in landesque capital.   Investments in landesque capital demonstrate ways that people can 

effect positive change by creatively managing and improving land.  The next section explores how 

people influence climate through land use change in urban settings.  
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2.3.  Urban climatology 

 Urbanization is one of the most dramatic types of land cover change.  Not only does it influence 

climate directly through temperature changes (i.e., urban heat island), but it also modifies the 

hydrology, vegetation, wildlife habitat, and biogeochemical exchanges of a location (Svirejeva-Hopkins 

2008).  With a swath of mostly impermeable surfaces, flooding in urban areas is comparably more 

intense than in rural areas.  Likewise, heat-storing building materials mean that hot days are even hotter 

in urban areas (Landsberg 1981), leading to higher urban death tolls during heat waves (Luber and 

McGeehin 2008).   

 Anthropogenic influences on climate have been observed for some time.  For instance, scientists 

now attribute the Little Ice Age to tropical forest regrowth after the introduction of disease in the 

Americas led to the death of 90-95% of the population (Dull et al. 2010).  On a city scale in urban 

environments, scientists first acknowledged how changing from rural to urban land cover influenced 

climate in 1820 London.  Luke Howard observed that the city was 2.1°C warmer in the daytime than the 

adjacent rural areas, a phenomenon later described as the urban heat island.  Howard also noted that 

the effect is more dramatic at night, as buildings and pavement release stored heat (Landsberg 1981). 

 Perhaps the urban heat island affect was first noted in London because the extent of an urban 

heat island is related to population size (Oke 1982, Viterito 1989).  Specifically, the difference in 

temperatures of urban and adjoining rural areas increases as a logarithmic function of population size 

(Bonan 2002).  City size and population largely dictate heat island extent as people tend to create 

environments that store and release heat.  For instance, since impervious surfaces, e.g., roads, buildings, 

and sidewalks cover soil, a source of water vapor, there is a reduced latent heat flux.  Additionally, the 

materials that make up the impervious surfaces (e.g., asphalt) store heat, thereby storing, redistributing 

and typically increasing sensible heat flux to the atmosphere (Grimmond and Oke 1995). 
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 Impervious surfaces are a main driver of heat islands, but heat island development and intensity 

are subject to weather conditions (Kidder and Essenwanger 1995a).  The greatest temperature 

differences between urban and nearby rural areas generally occur on clear, calm evenings while 

minimum heat islands occur under cloudy and windy conditions (Kidder and Essenwanger 1995b).  Wind 

helps mix adjoining air masses and reduces the thickness of the urban boundary layer, thereby 

diminishing the urban heat island effect (Kidder and Essenwanger 1995b). 

 Within-city temperature variations can be attributed to topography, proximity to bodies of 

water, types of building materials, and differences in land use including density of development and the 

amount and types of vegetation present.  For example, land use accounted for 17-25% of air 

temperature variations within Lawrence (Henry, Dicks and Marotz 1985, Henry and Dicks 1987).  Similar 

studies using high-resolution satellites confirm these findings by determining that commercial-industrial 

areas are warmer while parks have cooler temperatures (Carlson et al. 1981, Vukovich 1983, Roth, Oke 

and Emery 1989, Nichol 1996).  Now city planners are using this information to mitigate increasingly 

hotter urban heat islands due to warmer temperatures (MacDonald 2010), often by adding “green 

spaces” or areas of vegetation. 

 Like parks, urban gardens cool surrounding temperatures, creating a more pleasant 

microclimate.  Gardens are usually irrigated, elevating cooling effects from evapotranspiration and 

related heat fluxes.  Container gardens and rooftop gardens cover materials that would normally absorb 

and store solar radiation.  Instead of adding to the city’s heat, these operate as cooling islands within 

city boundaries.  

  



30 
 

2.4.    Climate change and soils 

 Soil scientists use soils to study past climate change, so it follows that modern soils are 

influenced by climate and its fluctuations.  Conversely, soils affect climate through factors, e.g., albedo, 

soil moisture and related heat fluxes, and fluxes of greenhouse gases between soil and the atmosphere.  

Because of these relationships, soils can potentially act as a positive or negative feedback to climate 

change by adding or subtracting from the balance of greenhouse gases.  For example, as melting 

permafrost releases greenhouse gases, more warming leads to more melting of permafrost, an example 

of a positive feedback mechanism.  An example of a negative feedback mechanism is soil management 

that leads to gains in soil organic matter, which sequesters atmospheric carbon in the soil and plants, 

leading to richer soils and healthier plants that store even more carbon.  Scientists are struggling to 

understand the intricacies of these and other mechanisms in order to discover ways to mitigate 

greenhouse gas levels in the atmosphere with soil management.    

2.5.     Soil formation processes and land use 

 Jenny’s (1941) state factors of soil formation determine rates and pathways of soil genesis.  

These factors include climate, organisms, relief (i.e., topography), parent material, and time (i.e., 

ClORPT).  When considering how land use may influence these factors, it is clear that some are more 

easily tweaked (e.g., topography via terracing, local climate via irrigation) than others (e.g., time, parent 

material).  One way to measure soil change is by monitoring soil carbon stocks (Post et al. 2004) (Error! 

Reference source not found.).  Primary factors influencing the soil carbon cycle include climate, soil 

physical and chemical properties, vegetation, and land use.   

  



31 
 

Table 1.  Jenny’s (1941) state factors of soil formation describe soils genesis.  Elements that influence soils 
genesis coupled with land use impact soil characteristics, including how soils capture and store carbon. Adapted 
from Post, Izaurralde et al. (2004). 

State Factor 
Influences of state factors and land use activities 
on soil carbon stocks and overall soil characteristics 

Climate 
Temperature and precipitation constrain plant production, decomposer activity, and 
weathering of soil minerals.  Irrigation, addition/removal of shade plants, or aeration, for 
instance, can affect these soil processes. 

Organisms 

Vegetation controls input rates, depths, timing, and form of carbon (surface litter versus 
belowground input), affects decomposition through the inputs’ decomposability, and 
competes with decomposers for water and nutrients. Soil biota control decomposition and 
the cycling and availability of nutrients.  Activities affecting soil biota health and 
composition, e.g., addition of pesticides and fertilizers, or tillage, influences soil 
characteristics. 

Topography 

Topography affects erosion, deposition, infiltration, moisture, and temperature, influencing 
soil and vegetation type at the landscape scale; it affects temperature, moisture 
availability, and soil texture at finer spatial scales.  Terraforming the landscape (e.g., 
terracing, mound building, construction) affects these physical parameters, and therefore, 
will change soil characteristics over time.  

Parent Material 

Soil type, degree of weathering, mineralogy, texture, and structure influence pH, water and 
nutrient supply, aeration, organo-mineral complexation, and the habitat for soil biota, 
affecting both plant production and decomposition.  Addition of material, e.g., gypsum to 
clayey soils or biochar and organic wastes to rainforest soils, affects the biogeochemical 
structure of the soil, which can dramatically change soil character (e.g., change a latosol to 
a mollisol). 

Time 

The temporal scale influences the relative importance of other state factors, which affect 
productivity and decomposition and the balance of carbon input and loss.  Land use is 
important at all temporal scales, from seasonal (e.g., crop type and tillage system) to 
millennial (e.g., continuously inhabited soils as a sort of palimpsest of anthropogenic 
influence). 

 

 Land use affects soil genesis and characteristics, for example its capacity to sequester and store 

carbon.  A disturbed soil loses soil organic matter mainly through mineralization, but a beneficial change 

in land management can reverse this trend (Figure 4).  The more degraded a soil becomes, the less 

capacity it has to support plant life.  Once plants die or are removed, soil often becomes eroded, losing 

organic-rich top layers.  For these reasons, no-till or low-till agriculture has become more commonplace, 

allowing soil to maintain its structure and, consequently, more of its organic matter (Johnson 1995).  

This process, in turn, provides higher levels of productivity, water holding capacity, and pest and disease 

resistance, furnishing more ideal conditions for soil decomposers and other biota, which builds soil 

organic matter, comprising a beneficial negative feedback mechanism (Culman et al. 2009).  A 
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contrasting example is slash and burn practices common in tropical forest settings, which implement a 

detrimental positive feedback.  Removal of plant cover and subsequent mining of minimal soil nutrients 

often results in clay pan conditions, where the soil surface becomes hardened, leading to marginal levels 

of productivity (Alegrea and Cassel 1996).  Once a tropical soil reaches this state, it is very difficult to 

reverse; subsequently, farmers move on to another plot where they start the cycle again by clearing the 

area with slash and burn (Alegrea and Cassel 1996). 

 
Figure 4. Changes in soil organic matter levels with disturbance and change in land 
management practices. Levels of soil organic matter reach a new steady state after 
disturbance or new management.  With beneficial management, soil may either reach the 
same level of organic content as in Time I (B), or organic content may be increased above the 
levels in Time I (A). Adapted from Johnson (1995). 

 Historically, the spectrum of agricultural land use has resulted in an equally wide spectrum of 

consequent soil quality.  Landesque capital, added by many successful past societies, gives examples of 

how people have maximized a landscape’s productivity potential.  At the opposite end of the spectrum 

are those areas that are deforested with slashing and burning, farmed for a short period, and then 

abandoned after a rapid decline in productivity.  But many examples exist of societies that have 

overcome environmental difficulties through innovative adaptation strategies, like the Amazonian 

cultures that created terra preta (i.e., dark earth) out of latosols (i.e., highly leached tropical soils).  The 
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existence of terra preta provides an ideal illustration of how people can intentionally modify soil genesis 

pathways and, consequently, dramatically influence soil quality.  

 By increasing agricultural land managers’ awareness of relationships between soil organic 

matter and crop yields, for instance, gains in resiliency for all or part of the food system are possible.  

Stresses stemming from climate change, for instance, are more readily absorbed in areas with land 

management practices designed to build and protect soil health.  For example, a recent drought in the 

Amazon led to a large tree mortality event (Lewis et al. 2011).  Likely, where terra preta is present, trees 

did not die since the organic-rich soil could maintain higher levels of available moisture compared to the 

predominant soils of the region, latosols.  Where latosols are exposed because shade trees have died, 

there will likely be carbon fluxes to the atmosphere as material decomposes and organic matter 

mineralizes.  The Amazon is a net carbon source in drought years, and a sink otherwise; estimates of 

carbon loss are difficult because of differences in soils and the vegetation they support (Lewis et al. 

2011).  This example provides evidence of how healthy soils can shift the balance in favor of plants, 

helping reduce plant mortality due to extreme weather events. 

2.6. Adaptive capacity, resiliency, and soil health 

 From observing how human activities influence soils, vegetation, and climate, and how the 

environment provides limitations on human activities, an understanding takes shape of humankind’s 

capacity to influence these systems.  In climate change language, the term “adaptive capacity” has been 

used to describe a society’s or species’ ability to adapt to change, and the speed at which it might adapt.  

From this framework, resiliency takes a central role, as any action that increases a system’s or species’ 

resiliency will increase its adaptive capacity.  Soil health, being central to the success of many Earth and 

social systems, is a starting point for working toward gains in resilience. 

 One area of soil health intersects directly with human health and, as a result, concerns food 

system resiliency.  It is the prevalence of heavy metals such as arsenic, lead, and mercury that have been 
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released into the environment through mainly human activities, and are subsequently found at 

detectable levels in most soils.  While levels of heavy metals in most soils are not phytotoxic (i.e., plants 

can still grow normally), the soil serves as an exposure pathway, allowing heavy metals to enter a 

person’s body through direct ingestion, through the skin or lungs, or through eating plant parts that 

have concentrated the metal.  Heavy metal toxin exposure is more likely in an urban environment, 

where more activities (e.g. metal smelting, chemical manufacturing, coal burning), past and present, 

have led to the release of heavy metals.  Urban centers are defined by denser populations, so incidence 

of exposure to heavy metals is higher.  For urban agriculturalists to be involved in improving soil health 

while adding resiliency to the food system, heavy metals in soils is an issue that must be addressed. 

 Although media coverage of urban soil health seems to be increasing (Murphy 2009), few viable 

solutions, if any, have been offered.  Gardeners must have certain qualities to be successful, including 

patience, determination, and the ability to solve problems.  Add to this list the idea that many gardeners 

(in urban settings especially) have an interest in changing the food system, or at the very least, their 

personal relationship with food.  These are people that are engaged in at least one issue concerning 

food and they regularly work at finding solutions to gardening issues.  Furthermore, gardening 

knowledge and practical advice is readily shared within the local gardening community.  Because of 

these characteristics, educating urban gardeners about soil health, particularly how to detect and 

manage heavy metals, should be well-received by a thoughtful audience.  Providing gardeners with 

information in a way that encourages continued participation in the food system will ensure that 

knowledge about heavy metals in soils will not detract from anyone’s desire to garden.  Some suggested 

first steps include: 

• Increase public awareness of the issues in concert with potential solutions. 

• Educate urban gardeners (and other land managers) about how to protect their 
health by detecting and managing environmental toxins such as heavy metals. 
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• Provide resources through local organizations including policy support and 
access to services (e.g., offer advice, and/or equipment for soil sampling, 
analysis, and building soil health). 

 Potential solutions can be specific, e.g., selecting crops that do not concentrate a detected 

metal, or solutions can be universal, e.g., composting.  The most basic metric for soil health in 

agricultural settings is how much organic matter it contains.  Addition of organic matter increases a soil’s 

ability to support plant life, but it also dilutes any toxins that are present, helps maintain a neutral pH, 

and it promotes formation of soil microaggregates and a chemical environment that keep metal cations 

in the soil, physically and chemically.  From this it can be argued that composting has many benefits for 

soil health, as it adds organic matter to the soil.  Beyond soil health, composting helps gardeners take a 

step toward a circular resource usage pattern, recycling nutrients much like the successful societies of 

the past.  Addition of organic matter to increase soil health and circular resource usage adds resiliency 

to the food system, increasing our society’s adaptive capacity. 

 The agricultural techniques of past societies illustrate our potential resourcefulness and 

innovation in managing modern challenges.  Not only must we overcome food, water, and energy 

scarcity, but we must do this in an increasingly toxic world.  Changing from a linear to circular resource 

usage is a step in the right direction, yet true solutions will demonstrate efficiency as well the capacity to 

avoid additional environmental and human exposure to toxins.  Only then will agriculture make gains 

toward greater resiliency. 
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Chapter 3.  U.S. Land Use History, Urban Soils, and Urban Gardening 

 Environmental and human health are directly linked to soil health, as soils serve the dual 

purposes of a geochemical sink and a buffer for many toxic substances.  A soil acting as a geochemical 

sink means that polluting land uses coupled with persistence of toxins have recorded a legacy of poor 

waste management practices, inadvertent point sources (e.g., lead paint chips), pollution arriving via 

aerial and/or hydrological sources, or a combination of these factors.  Soils containing toxins (i.e., 

substances harmful to biota, including humans) often act as a buffer by protecting people, plants, and 

animals from exposure to toxins by chemically or physically “holding” it in the soil (Kabata-Pendias and 

Pendias 1984).   

 With about 15% of the world’s food supply grown in urban areas (USDA 2007), an awareness of 

how to detect soil toxins and then properly manage urban soils for food production is a matter of public 

health.  A first step is the study of land use history; a plot’s history provides clues as to what 

environmental issues are of greatest concern (i.e., potential toxin sources).  In this chapter the focus is 

on human activities that have historically been linked to heavy metal pollution, as heavy metals 

collectively make up the group of toxins that are most common and dangerous to people, plants, and 

animals (ATSDR 2009).  Next, the focus shifts to properties of heavy metals and their behavior in soils, 

especially regarding soil properties that affect plant uptake of heavy metals.  The chapter ends with a 

history of urban gardening and the importance of understanding and managing urban soil health from a 

public health perspective. 
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3.1.  History of mining and metallurgy 

 As civilization expanded industrial activities through time, so did the human capacity to pollute 

the environment.  It was the mining of ores and the processing of these ores that marked the onset of 

human-induced environmental toxification.  Metal mining began around 7000 B.C. and processing of 

metals commenced soon after (Aitchison 1960).  Human innovation in the use of copper and gold 

helped society’s transition out of the Paleolithic. Many ancient civilizations succeeded in large part due 

to their expert metallurgy, e.g., the Inka and their bronze tools, jewelry and other art pieces (Bingham 

1922).  The primary metals of antiquity, i.e., gold, silver, lead, tin, iron (smelted), and mercury, were all 

discovered by 750 B.C. (Aitchison 1960).  Metal discovery and use accelerated dramatically during the 

Industrial Revolution.  Before the 19th century humans had knowledge of only 24 metals, 12 of which 

were discovered in the 18th century (Aitchison 1960).  With 9,000 years of metal mining, the quality of 

ores remaining today has declined (Buck and Gerard 2001).  Because of this decreased quality, 

processing ores creates more byproducts even though smelting and other ore processing techniques 

along with byproduct management have improved with time (Buck and Gerard 2001).   

 

Figure 5. Image of Asarca copper smelter that once operated near Tacoma, Washington. This image 
appears of the Department of Ecology's website for the State of Washington, entitled "Dirt Alert."  
The website provides information, including maps, on levels of arsenic and lead in soils in relation to 
children’s play areas and schools, for instance (State of Washington Department of Ecology 2011). 
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 Even with improved metal-related operations, abandoned operations of the past have left 

persistent problems.  Abandoned mines continue to pollute, often because of the heavy metals that are 

present and discharges of acids end up in water supplies, with deleterious effects on residential usage 

and wildlife, especially fish populations (Buck and Gerard 2001).  A specific example of this phenomenon 

concerns the Asarco copper smelter in Tacoma, Washington (Figure 5).  Operating for over 100 years, 

the smelter left a plume of high levels of arsenic and lead in the soils that extends over 1,000 square 

miles (State of Washington Department of Ecology 2011).  The communities that live there are 

struggling to manage exposure levels of children and other sensitive populations and to find ways to 

clean up the contaminated soils (State of Washington Department of Ecology 2011).  As we gain an 

understanding of past mistakes such as this, technology for managing waste and pollution improves.  

Nonetheless, many toxins persist in the environment; hence the history of waste management is very 

relevant to the current status of soils, air, and water. 

3.2. History of waste management 

 Throughout most of U.S. history, the country was focused on survival and building a government 

rather than environmental health.  Like the European cities from which they originated, people in urban 

settings usually managed waste by throwing refuse into the streets and alleyways or by burying it 

(Melosi 2005).  The first refuse management system in New York City included 200,000 horses, each of 

which produced 24 pounds of manure daily (Figure 6) (ASTC and SITES 1998).  By the mid-1800s, 

American city streets were littered with animal carcasses, human refuse, and pigs rooting through the 

garbage, conditions that encouraged diseases e.g., cholera, yellow fever, and malaria (Melosi 2005).  In 

1874, a waste incinerator was first built in Europe, and the U.S. soon followed suit, constructing 180 

incinerators between 1885 and 1908 (ASTC and SITES 1998).  Thus began the American version of linear 

resource consumption; a lack of recycling organic wastes (e.g., for agricultural use) combined with wider 
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acceptance of the germ theory around 1900, promoted the “out of sight, out of mind” mentality (ASTC 

and SITES 1998, Melosi 2005). 

 

 The linear resource trend, consumerism, and an “out of sight, out of mind” mentality are 

reflected on today’s American landscape of municipal waste centers.  One example is one of the largest 

waste facilities in the world, Puente Hills Landfill, commonly referred to as “Garbage Mountain.”  

Covering 1,365 acres, the facility accepts and processes 12,000 tons of garbage per day from Los Angeles 

County, California (Los Angeles County 2006).  Garbage Mountain is only atypical because of its size, but 

this designation is diminishing; municipal waste facilities in the U.S. are decreasing in number, but they 

are increasing in size (EPA 2009b). 

 

Figure 6. Nineteenth century waste management in New York City (artist unknown). 
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 Most important perhaps, is what is being thrown away, how much of it, and its fate in the 

environment.  Americans disposed of 243 million tons of solid waste in 2009, with about one third of 

this total being offset through recycling or other means of recovery (EPA 2009b).  Over half of what is 

discarded is organic, most of which is compostable (EPA 2009b) (Figure 7).  While gains in recycling have 

reduced the overall volume of waste generated since its peak in 2007, there are still difficulties in 

recovering some more harmful wastes such as metals.  For instance, only 34.5% of metals discarded are 

recovered, including 69% of lead, mostly from lead-acid car batteries (EPA 2009b).  While car batteries 

have the highest rate of recycling (96%), an unacceptable portion of lead is remaining in waste facilities, 

where it can potentially leach into soils and the 

water supply or become airborne through 

incineration (EPA 2009b).   

 The potential of waste to pollute 

depends on its source and how it is managed 

after it is discarded.  Human excreta, even after 

treatment, can be a source of biological and 

chemical contamination (e.g., from 

pharmaceuticals) in the environment (Jones, 

Voulvoulis and Lester 2001); oil and paint 

dumping has led to release of heavy metals and 

volatile organic carbons in soil, air, and water (Yan et al. 2007); wood rubbish removed during 

renovation projects releases large amounts of carcinogenic formaldehyde when burned (Gamlin and 

Price 1988); a combination of waste material, when incinerated, can be transformed into dioxins, 

eventually settling on soil (Shibamoto, Yasuhara and Katami 2007).  Another potent example comes 

from crematoria.  In addition to toxins that may be stored in a person’s tissues, dental fillings and other 

 

Figure 7. Depiction of what comprises municipal solid 
waste in the U.S. before recycling (EPA 2009b). 
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metallic components are volatilized during the cremation process, typically resulting in a plume of 

contamination downwind of the crematory (Ottesen and Langedal 2001).  The history of waste 

management is filled with such examples of toxin release into the environment, an effect concentrated 

in urban areas.   

 Even with the bulk of waste from municipal sources, it seems trivial in comparison to other 

sources.  Agricultural, industrial, and mining wastes make up 95% of the solid waste produced annually 

in the United States (Net Industries 2011).  Solid waste is only one component of industrial and 

agricultural waste, which can also take on the forms of liquid, gas, or even waste heat.  Its many forms 

add to the complexities of managing it presently and cleaning up areas polluted in the past.  

 

3.3. History of industrial and agricultural pollution 

3.3.1.    Industrial pollution 

 Pre-dating the Industrial Revolution were cottage industries, an effort to fill farmers’ free time 

during winters with profitable activities like cloth making, tanning hides, and metal working, each with 

varying levels of environmental consequences (Mendels 1972).  These activities mark the onset of 

 

Figure 8. Life cycle of industrial contaminants in the environment (EPA 2006b). 
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pollution from manufacturing and industry near or in human settlements.  Like these small operations, 

larger scale industry works toward conversion of raw materials into usable products.  This process 

requires many steps, most of which are energy intensive and result in byproducts, wastes, and 

atmospheric emissions (Figure 8) (EPA 2006b).  All industrial sectors, including extraction, refining, 

production, distribution, transport, storage, and consumption pollute the environment (Shen 1999).  Of 

course, different industries and their sectors pollute in different ways and at different rates, but 

chemical plants are among the worst polluters (Shen 1999).   

 United States history shows a progression in attempts to control pollutants during the 

manufacturing process, but little effort towards reducing or eliminating production of environmentally 

damaging products, often due to high costs of changing or altering established manufacturing practices 

(Shen 1999).  Products such as asbestos, DDT, leaded gasoline, certain plastics, and some pesticides and 

herbicides are all known to harm the health of the environment and people by contaminating air, water, 

soil, and food with detrimental substances (Shen 1999).    Although production of some of these 

products has ended in the U.S. (e.g., leaded gasoline), their damaging effects often persist in the 

environment regardless (Shen 1999).   Lead from gasoline, for instance, is quite immobile in soils, so it 

can be constantly re-introduced to the air in the form of dust from contaminated soil (ATSDR 2007). 

3.3.2.    Spatial patterns of pollution 

 Historically, industrial facilities were built at the edges of urban settlements, where the 

expanding cities eventually encompassed them (Von Eckardt and Gottman 1964).  In some cases, 

industrial operations near rail lines attracted skilled workers; accordingly, urban areas were centered on 

the industrial campus, typically extending along railroad routes (Brush 1994).  This pattern of settlement 

means that some of the densest populations of the past and present were and are exposed to pollution 

from industrial activities in urban or peri-urban environments.  Railroads, roadways, and rivers provide 

corridors for dispersing pollutants.   
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 One example of a pollution corridor spawned the Greenway Program of Oregon, implemented 

in 1968 (Penn 2001).  Waste from pulp and paper mills, untreated industrial effluents, and raw sewage 

were causing increasing levels of toxins, including trace metals in the Willamette River.  As more fish 

began to die, the issue became visually alarming, activating people to call for change (Penn 2001).  In 

this case, the river carried toxins away from the industrial sites, distributing them downstream.  At the 

same time, environmental consequences allowed people to trace the pollution back to the source.  

Industrial pollution can be released into waterways, such as in this instance, or into the air, creating a 

more dispersed pattern of contaminants, depending on local conditions.  Either way, air and water serve 

as media for the transfer of contaminants to soils. 

 While industry is one of the largest polluters, it differs from agriculture in its proximity to urban 

environments.  Pollution from agriculture can be either concentrated or dispersed in the environment.  

Consider feedlots.  Some large feedlot operations that are involved with animal agriculture produce the 

equivalent waste of a town or city (USGAO 1999).  This is mainly because animals associated with U.S. 

agriculture produce 130 times more waste than one person (USGAO 1999).  Besides manure, many 

agricultural practices use intensive chemical applications of fertilizers and pesticides, which affect the 

environment and food supply, often detrimentally.  Use of agricultural chemicals typically takes on a 

more dispersed spatial pattern, although transport of chemicals via runoff, groundwater, airborne 

particles, etc. can concentrate pollutants in certain forms and locations (e.g., river sediments). 

3.3.3.    Pollution from agriculture 

 Like industry, agricultural practices have improved with time, but not before making some 

environmentally devastating mistakes.  For instance, arsenic and lead were major components of 

pesticides and herbicides commonly used in orchards in the past (Kenyon et al. 1979).  Because of their 

ability to tolerate arsenic, potatoes are often planted where orchard trees have been removed (Benson 

1968).  Potatoes may tolerate arsenic, but they also accumulate available arsenic in their leaves and peel 
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(MacLean and Langille 1981).  In cases like this, where even a slight change in land use is made, heavy 

metals residing in the soil can become plant available, soils can erode into waterways, or people can be 

exposed to toxins simply by coming into contact with contaminated soils.   

 Arsenic compounds were also popular insecticides during the 1930s Dust Bowl years, when a 

scourge of locusts covered the Great Plains (Egan 2006).  Aided by the National Guard and the Civilian 

Conservation Corps (CCC), farmers would use a seeding machine to dust a mixture of arsenic, bran, and 

molasses on fields to kill locusts.  With as much as 175 tons of toxins spread per acre (Egan 2006), there 

are likely many areas in the Great Plains where the soils contain a record of this activity.  Although 

arsenic-containing pesticides are no longer available for use in the United States, commercial use of 

arsenic is still high, with the U.S. being the largest global consumer of arsenic as recently as 2003 (ATSDR 

2010).  Most of the commercial arsenic is used for weatherizing wood products in the form of 

chromated copper arsenate (CCA), so urban environments with wooden decks, fences, poles, and some 

children’s play equipment often are a source of arsenic, copper, and chromium in urban soils (Chirenjea 

et al. 2003). 

 Fertilizers used by farmers often contain traces of heavy metals (Al-Shawi and Dahl 1999), 

primarily due to the characteristically higher levels of these metals in the phosphate rocks that fertilizers 

are made from (Hodge and Popovici 1994).  Cadmium is one of these metals and industry professionals 

have worked to remove some cadmium during the process of generating fertilizer (Hodge and Popovici 

1994).  Even at trace levels, continued use of fertilizers leads to accumulation of heavy metals in soils 

with time.  Urban agriculture is not immune to this problem, as many gardeners rely on some form of 

commercially produced fertilizer to feed their crops.  Herein lies another argument for composting; it 

will simultaneously fertilize a garden, not add significant (if any) toxins to the soil, and generally help 

keep heavy metals in the soil, reducing human exposure and limiting plant uptake. 
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3.4. Heavy metals in soils 

 The term “heavy metal” can be misleading since elements included under this term may be light 

or heavy (atomic density > 6 g cm-3), and may or may not be a metal (Alloway 1995).  Because no 

consensus on an alternative term has been reached, “heavy metal” is used here and includes the 

following elements (listed alphabetically by chemical symbol):  

3.4.1.    Soils as a geochemical sink for heavy metals 

 Metals occur naturally in the earth’s crust, thus they are constituents of soils, natural waters, 

and living matter.  On the other hand, heavy metals are persistent and common environmental 

pollutants, mainly due to their mining and use in industrially and technologically advanced countries 

(Alloway 1995).  The primary anthropogenic origins of heavy metals in soils are: 

1. Atmospheric pollution from motor vehicles, lawn mowers, and other machines powered by 
petrol (especially leaded petrol). 

2. Combustion of fossil fuels, including both the dispersion of many elements into the atmosphere 
and the disposal of coal ash. 

3. Agricultural fertilizers and pesticides, either as active ingredients or impurities. 
4. Organic manures, e.g., pig and poultry manures and sewage sludge. 
5. Disposal of urban and industrial wastes, including deposition of aerosol particles from 

incinerators, dumping or disposal of metal-containing items (e.g., dry cell batteries, abandoned 
cars or car components), and burning or burial of waste in domestic settings.  

6. Metallurgical industrial activities, e.g. emissions of contaminated fumes and dusts, release of 
effluents into waterways, and through creation of waste dumps and scrap yards where metals 
may leach into underlying soils. 

7. Mining and smelting of non-ferrous metals, which can disperse metals through dusts, effluents, 
and seepage water (Alloway 1995). 

 

silver (Ag) mercury (Hg) tin (Sn) 
arsenic (As) manganese (Mn) thallium (Tl) 
gold (Au) molybdenum (Mo) uranium (U) 
cadmium (Cd) nickel (Ni) vanadium (V) 
cobalt (Co) lead (Pb) tungsten (W) 
chromium (Cr) antimony (Sb) zinc (Zn) 
copper (Cu) selenium (Se) 
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 The seven categories detailed above are mainly associated with agriculture, industry, 

transportation, and urban waste management, all of which have been practiced over time spans ranging 

from decades to millennia.  As mentioned, heavy metal accumulation in soils is predicted to continue 

globally as current industrial and agricultural practices continue (Purves 1977).  Pollutants migrate 

through the environment via several pathways, and soils serve as a sort of geochemical sink for many 

pollutants (Kabata-Pendias and Pendias 1984).  Soils become polluted via atmospheric deposition, from 

contaminated water percolating through the soil column, or through direct dumping of toxic materials 

onto (or into) the soil.  The top layers of soil have been accumulating heavy metal pollutants throughout 

human history; consequently, management and remediation of toxic soils is required for continued 

support of human and environmental health, particularly when considering food and water safety.  

Recent efforts to further understanding of soil biogeochemistry and soil-plant interactions highlight this 

need.   

 Soil and sediment surveys conducted in the past decades indicate anomalously high heavy metal 

concentrations, especially in urban and industrial areas (Bowen 1979, Kabata-Pendias and Pendias 1984, 

Adriano 1986, Nriagu 1978, 1979a, 1979b, 1980a, 1980b, 1980c).   Global estimates of primary 

production of metals and the rate at which these metals reaches the soils were estimated by Nriagu, 

who states that we may be experiencing a “silent epidemic of environmental metal poisoning” because 

of the increasing levels of metals reaching the biosphere (Table 2) (1988).  Past efforts to measure heavy 

metal levels in soils focused on total concentrations instead of levels available under conditions that 

create an environmental hazard (e.g., crop uptake) (McLaughlin et al. 2000).   
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Table 2. Changes in primary production of selected metals and the rate of heavy metal emissions reaching the 
soil in the 1980s (103 t/yr) (Nriagu 1988). 
 

  
Year 

Global emissions rate  Metal 
 1930 1950 1980 1985 1980s  

Al             120           1,500        15,396        13,690  —  
Cd                  1                   6                 15                 19                 22   
Cr             560           2,270        11,248           9,940              896   
Cu          1,611           2,650           7,660           8,114              954   
Fe       80,180      189,000      714,490      715,440  —  
Pb          1,696           1,670           3,096           3,077              796   
Mn          3,491           5,800        26,720  —          1,670   
Hg              3.8               4.9               7.1               6.8               8.3   
Ni                22              144              759              778              325   
Sn             179              172              251              194  —  
V —                  2                 35              134              132   
Zn          1,394           1,970           5,229           6,024           1,372    

 

 Public awareness of the accumulation of heavy metals in soils gained traction in the 1970s 

because combustion of leaded gasoline was leading to air, water, and soil pollution.  A fuel additive 

since the 1920s to reduce engine wear, billions of tons of lead were released into the environment 

before the EPA eventually phased it out between 1973 and 1996 (EPA 1996).  Because of this deposition, 

soil lead levels are especially high near highly traveled roadways, such as any urban area.  Automobiles 

are a source for other heavy metals, primarily from wearing parts, e.g., tires and brakes.  In one 

representative study, roadside agricultural soils were found to have elevated levels of Pb, Cu, Zn, and Cd 

compared to background levels, which were attributed to automobile traffic (Wu et al. 2010).  Still, lead 

is the main culprit, the heavy metal that has been most prevalent, persistent, and toxic to human health.  

Once lead was largely removed from gasoline, paint, and food cans, the percentage of U.S. children 1 to 

5 years of age with higher than acceptable blood lead levels decreased from 88.2% to 4.4% within a few 

years (Mahaffey et al. 1982).  Despite this dramatic decrease, the American Association of Pediatrics 

estimates that 25% of U.S. children are at risk for exposure to lead in their environment (American 
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Association of Pediatrics 2005) and even more exposure occurs in summer months when children play 

outside (Yiin, Rhoads and Lioy 2000).  This example demonstrates how a long history of poor 

environmental management has led to long-term ramifications for environmental and public health. 

 Arsenic also seems to have received an increasing level of attention from the public, as 

measured by the frequent mention of arsenic in conjunction with lead, especially in the gardening 

literature, since these metals bioaccumulate in food plants.  Anthropogenic sources of arsenic indicate 

that the likelihood that urban areas contain elevated levels of arsenic is great.  As previously stated, 

wood products such as decks, posts, and children’s play structures commonly have been treated with 

chromated copper arsenate (CCA), which makes up 70% of world arsenic production (Ng et al. 2001).  

Another 22% is and has been used in agricultural chemicals, e.g., herbicides and pesticides (Ng et al. 

2001).  Lawrence harbors its fair share of privacy fences, posts, and other wooden structures, and its 

history of agriculture in the area leads to the supposition that arsenic will be a common component of 

both urban and rural soils in the region.  Since wood products treated with CCA may also leach copper 

and chromium into soils, these components are more likely to be found in elevated levels in urban 

rather than rural soils.  The exception to this pattern is rural roadsides that have telephone or power 

lines mounted on CCA-treated poles, or even fences with CCA-treated posts.  Because of the prevalence 

of these items in the human landscape, and their potential as a continuing source of metals, scientists 

seek ways to effectively monitor their behavior, as discussed in the next section.  
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3.4.2.    Measurement and behavior of heavy metals in soil 

 Each metal behaves differently in soils, complicating detection and remediation procedures 

(Table 3).  Earliest analytical techniques of soils, stream sediments, and natural vegetation were 

developed for mineral exploration, but were subsequently applied to agricultural and regional patterns 

of soil pollution (Alloway 1995).  Traditionally, soil chemists had focused on plant macronutrients (i.e., 

nitrogen (N), phosphorus (P), and potassium (K)), but a shift occurred with enhanced public concern of 

environmental toxins.  Analytical techniques, e.g., atomic absorption spectrophotometery and other 

leaps forward in technology developed in the 1970s allowed for rapid analysis of large numbers of 

samples (Lepp 1981, Alloway 1995).  This trend continued into the 1980s along with greater concern and 

study of toxic effects of heavy metals on animals and plants (Alloway 1995).  More on analytical 

techniques used in this study can be found in section 4.6. 

Table 3. Natural and anthropogenic sources, chemical properties, and interactions within the soil column for select 
metals.  Summarized based on Alloway (1995) and Berkowitz, Dror and Yaron (2008) unless otherwise noted. 

 

Select Metals Sources, Properties, and Interactions 

Arsenic, As 

So
ur

ce
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Arsenic occurs throughout Earth’s crust, and trace quantities can be found in all rock, 
soil, water, and air. More concentrated, natural sources of As in soils mainly come 
from oxysalts and S containing minerals.  As-compounds have been widely used as 
pesticides, desiccants, and wood preservatives (i.e., CCA) although this trend has 
declined.  Coal combustion, waste from oil shales, smelting, and irrigation with As-
rich water are other sources. Anthropogenic activities can lead to high levels of As in 
sewage sludge and dredged material from waterways.     
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Arsenic does not display all the typical chemical behaviors of a metal so it is 
considered a metalloid. It is often found in the +5 (in oxygenated environments) or 
+3 (in reducing environments) oxidation states in soils.  Research suggests that 
because of the similar chemistry of As(V) with phosphate, plants and people can 
accumulate As in their tissues(Obinaju 2009), potentially leading to serious health 
problems (see Table 5 for effects on human health).  Uptake and toxicity of As for 
plants depends on the species of As present, thus “available” As content in soil is 
better indicator of toxicity rather than total As concentration. 
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Clay minerals of Fe and Al oxides and organic matter can influence As solubility and 
rate of oxidation.  Levels of As in edible plant parts are typically low, although higher 
levels occur in sands or sandy loams because these soils have weaker sorption 
capability for As.  In general, roots take up more arsenic than the stems, leaves, or 
fruits, indicating a barrier in the root for further uptake.  Toxic effects of As on plants 
increases with decreasing pH, noted by decrease in water mobility and arrested seed 
germination. Average As soil level = 5-10 ppm 



50 
 

Select Metals Sources, Properties, and Interactions 

Cadmium, Cd 

So
ur

ce
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Cd is typically found in higher concentrations at the surface horizon of soils because 
of the usual sources of atmospheric deposition (from volcanic activity, metal 
production, fossil fuel combustion, refuse incineration, smelting), phosphate 
fertilizers, manure, sewage sludge, and through mining zinc, lead, and copper ores.  
Human exposure usually occurs through topsoil, via uptake into tobacco leaves and 
food plants. 
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Cd is more mobile than Pb and Cu, making it more available for plant uptake.  pH 
strongly controls Cd sorption in soil and bioavailability, with more basic conditions 
favoring both sorption and plant uptake. Cd content of plants is inversely 
proportional to the cation exchange capacity (CEC) in the soil. Total Cd in soil is one 
of the major factors affecting how much Cd enters plants.  The origin of Cd also 
affects its bioavailability.  Cd from inorganic sources (e.g., mining and smelting) 
compared to organic sources (e.g., sewage sludge) tend to be more available for 
plant uptake because of adsorption of Cd with organic matter. 
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 Cd competes with other metal ions for adsorption in a soil, especially Zn and Ca, and 
excesses of Cu, Ni, Se, Mn, and P can reduce plant uptake of Cd.  In other words, Cd 
found with carbonate minerals, coprecipitated with hydrous iron oxides, or 
precipitated as stable solid compounds is likely to remain in place, and is therefore 
less likely to be bioaccumulated or released in a dissolved state.  The opposite is true 
with Cd is sorbed to mineral surfaces or organic materials. 

Chromium, Cr 

So
ur

ce
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Cr(III) is an essential nutrient and is found in trace amounts throughout the 
environment.  Cr(IV) and Cr(0) are created generally as byproducts of industrial 
processes.  Cr is released through mining of certain ores.  In its metal form, Cr(0) is 
used in steel making while Cr (VI) and Cr(III) are used for chrome plating, wood 
preservatives, tanning leather, and making dyes and pigments. 
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Chromium toxicity varies widely depending on the species, therefore it is regulated 
differently depending on its oxidation state.  It is most commonly found in the 
environment as Cr+3(Cr(III)) or Cr+6(Cr(IV)), or hexavalent Cr, the most toxic form.  Cr 
can strongly sorb to soil, yet even the smallest quantity can be dissolved in water, 
mobilizing it in the soil column and eventually entering the water table. Cr(IV) are 
the most common form of dissolved Cr found in alkaline waters. 
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Cr(III) is the most stable form found in the environment as it occurs under typical 
environmental and biological conditions of redox potential and pH.  Cr(III) has low 
solubility and reactivity, meaning that it is not very mobile or toxic to living 
organisms.  But Cr(III) can be transformed into CrO4 and Cr2O7 through oxidation 
(especially where pH>5), which are both mobile and toxic.  Cr(IV) has vastly different 
chemical behavior because it exists as an anion and is a strongly oxidizing species.  In 
the presence of soil organic matter, Cr(IV) is reduced to Cr(III); this reaction occurs 
more readily in soils of lower pH. 
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Select Metals Sources, Properties, and Interactions 

Lead, Pb 

So
ur

ce
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Lead is one of the earliest metals used by humans, used widely since 5000 BC.  Pb is 
seldom found in elemental form in nature, yet Pb-containing compounds are 
common worldwide.  It is found in the ores galena, cerussite, and anglesite; the 
smelting of these ores is a source of Pb in air, soils, and water.  The most common 
use of lead has been in lead-acid batteries.  A large percentage of these batteries are 
recycled (EPA 2006a). The most environmentally important use of Pb in the 20th 
century was as a gasoline additive, leading to widespread contamination of soils 
near roadways.  Lead paint was phased out in the 1970s, but it remains on many 
buildings, and is a source of Pb in soils and water (Clark, Brabander and Erdil 2006). 
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Pb in soil is generally in the form of hydroxide complexes and carbonates.  Pb has a 
long residence time compared to most other pollutants, as it strongly sorbs to soil 
minerals and forms complexes with humus.  This in concert with its low solubility 
and lack of appeal for microbes (for degradation) means that Pb accumulates in soil, 
where it increasingly becomes available to the food chain and to human metabolism.  
Human blood lead levels correlate directly to soil lead levels near people’s homes 
(Mielke et al. 1997). Topsoil contains an average Pb content of 10 ppm, and ranges 
from 7 to 12.5 ppm in sedimentary rock. Soil lead levels in U.S. urban areas have 
been reported up to 5300 ppm; the EPA safe level for soil lead is below 400 ppm in 
bare soils where children play. 
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CEC and pH are the primary controllers of Pb bioavailability and mobility. In a soil of 
lower pH, Pb acts primarily as a cation and forms some complexes with organic 
molecules.  In calcareous soils, those with a higher pH, organic complexes are 
dominant with some cationic activity.  High soil Pb inhibits soil microbial activities, 
slowing organic matter breakdown and decomposition, resulting in lower 
productivity.  Pb can enter a plant through foliar or root uptake, and the rate at 
which this occurs depends on the physiological status of the plant the season. It is 
generally not very bioavailable due to its low solubility and mobility, but it can pose a 
potential health risk near lead-using industries and in cities, where Pb levels are high. 

Mercury, Hg 

So
ur

ce
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Mercury has been used by people for at least 3500 years, many with pharmaceutical 
applications until 1643 with Torricelli’s invention of the barometer and with 
Fahrenheit’s invention of the Hg thermometer in 1720.  Throughout the past 
century, the use of Hg has changed rapidly, and its use has declined substantially in 
the past 30 years.  Main sources of Hg in the environment are mining and smelting 
of ores, burning fossil fuels (mainly coal), industry, agricultural applications, and 
waste incineration. 
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Hg has no known biologic function; it is one of the most toxic elements to humans 
and other higher organisms.  All Hg-containing compounds are toxic to humans, but 
Hg does not cause any toxic symptoms to plants.  Hg in plants is typically 
concentrated in the roots, perhaps demonstrating that the roots provide a barrier to 
transporting it to the shoots.  However, Hg0 can volatilize from the soil, leading to 
foliar uptake.  Hg may occur in three valence states, Hg0, Hg2+, and Hg2

2+, the former 
two normally occurring in soil.   
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Hg2+ readily forms complexes with hydroxides, chlorides, and humic matter so under 
natural conditions it rarely occurs in free ionic form.  The primary controllers of Hg 
speciation and chemical behavior in soils are redox potential, pH, Cl- concentration, 
and microbial activity.  In acid soils, Hg2+ is mainly attached to organic matter.  
Adsorption is the primary process that retains Hg in soil, and the level of adsorption 
is determined by the chemical form of Hg, grain size distribution of the soil, 
character of the soil colloidal fraction, pH, and redox potential.  Below pH 5.5, 
organic matter sorbs HgCl2; in more neutral soils (pH 5.5 to 7), iron oxides and clay 
minerals adsorb Hg2+. 



52 
 

Select Metals Sources, Properties, and Interactions 

Nickel, Ni 

So
ur

ce
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Nickel is primarily comes from sulfide and oxide ores, and it is released into the 
environment during the mining and smelting of these ores. Ni is used in stainless 
steel production, and nickel alloys and platings in vehicles, machinery, armaments, 
tools, electrical equipment, appliances, and coins. Ni-containing compounds are also 
used in catalysts, pigments, and in Ni-Cd batteries, but the largest anthropogenic 
source of Ni is released through burning fossil fuels, which becomes concentrated in 
the organic residue (sewage sludge) of treatment plants. Ni concentrations in soil 
vary widely, mainly dependant on whether the parent material contains Ni; this also 
determines whether the topsoil (anthropogenic source) or the subsoil is more 
enriched with Ni. 
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Nickel occurs in five forms in air, water, soil, and plants: elemental nickel and its 
alloys, inorganic soluble and insoluble compounds, organic water-insoluble 
compounds, and nickel carbonyl (Ni(CO)4), the most toxic form to humans.  Acid rain 
can mobilize Ni from soil, leading to water contamination, enhanced uptake by plant 
roots, and possible toxicity to animals, plants, and microorganisms.  Ni(II) is the most 
stable form over a wide range of pH and redox conditions. Its ionic radius is similar 
to those of Fe, Mg, Cu, and Zn, hence it can replace essential metals in certain 
enzymes, disrupting metabolic pathways. 
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Ni is taken up by plants through their root systems in amounts determined by soil pH 
and humidity, organic matter content, clay content, amount of hydrous Fe and Mn 
oxides, and extractable Ni concentration. Mobility of Ni increases with decreasing pH 
and CEC. Under oxic conditions in acid soils, Ni will most likely be present as Ni2+, 
NiSO4, NiHCO3+, and organic complexes.  In alkaline soils Ni will most likely be as 
NiCO3, NiHCO3+, NiHCO3+, Ni2+, and NiB(OH)4+. High Ni content in soils leads to 
diminished soil microbial activity, and deleterious effects on seed germination and 
plant growth.  

 

 Key soil properties involving or affecting heavy metals in soils include soil pH, soil organic 

matter, clay minerals, and oxidation and reduction chemical reactions (i.e., redox reactions) in soils 

(Alloway 1995).  These factors are discussed in general, but in vivo, because soils are heterogeneous at 

even the finest scale, precise interactions between these elements is difficult to generalize. The 

heterogeneity of urban soils is further pronounced, offering additional complexity to the study of urban 

soil properties. 

  How soil properties influence the soil solution has been studied extensively (Barrow 1987, 

McBride 1989, Schindler and Sposito 1991, McBride 1991).  The soil solution determines a soil’s pH, 

which is a primary controller of bioavailability of heavy metals in soils (McLaughlin et al. 2000, Clark et 

al. 2006).  Bioavailability of heavy metals, or the amount of a metal that a plant can take up from the 

soil, is a complex topic.  Bioavailability depends upon the metal species, its interaction with soil colloids 
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present, soil physical and chemical characteristics, and 

the time the metal has been in contact with the soil 

(Naidu, Oliver and McConnell 2003). 

 The pH of a soil describes the hydrogen ion 

(H+) concentration of soil solution in dynamic 

equilibrium with the predominantly negatively 

charged surfaces of soil particles (Bache 1979, Wild 

1988).  These negative surfaces strongly attract 

hydrogen ions, which have the power to replace most 

other cations.  Several mechanisms can buffer soil pH 

with varying success such as hydroxyaluminum ions, 

CO2, carbonates and cation exchange capacity (CEC) 

(Alloway 1995).  Heavy metal cations generally 

become most mobile under acid conditions 

(McLaughlin et al. 2000).  Under certain specialized 

conditions the opposite relationship can be true (i.e., 

for CrO4
2- and AsO4

3-) (McLaughlin et al. 2000).  Raising 

the pH (e.g., by adding lime) usually reduces the 

bioavailability of most heavy metals (Alloway 1995) (Figure 9).   

 One way to stabilize soil pH to help control bioavailability of most heavy metals is through 

promoting soil organic matter (SOM). The definition of soil that distinguishes it from rock fragments is 

the presence of living organisms, organic debris, and humus, which comprise SOM (Alloway 1995).  

Initially, organic matter enters the soil as plant and animal litter.  Organic compounds released through 

decomposition include sugars, starches, proteins, carbohydrates, cellulose, fats, lignins, waxes, resins, 

 

Figure 9. Chart by Zhang et al. on solubility of 
heavy metals and P in soil amended with 
differing proportions of compost in relation to 
pH (Zhang et al. 2004).  Note that in the neutral 
pH zone, most heavy metals have limited 
solubility and therefore limited mobility and 
bioavailability, but solubility increases under 
more acidic conditions. 
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and organic acids (Brady and Weil 2002, Ponge 2003).  The most resistant of these organic compounds 

make up humus: cellulose, fats, waxes, resins, lignins, and some organic acids (Brady and Weil 2002, 

Ponge 2003).  As decomposition continues, the relative content of humus increases (Schlesinger 1997).  

The precise composition of humus remains elusive, largely because the organic inputs and dominant soil 

processes determine its composition.  It is characterized as the amorphous, colloidal material of 

complex organic substances (Brady and Weil 2002).   

 Colloidal soil organic material significantly influences chemical properties of the soil (Alloway 

1995).  Once SOM takes the form of humus, it is stabilized via three primary processes: adsorption, 

complexation, and physical protection.  Adsorption of humus to clay minerals occurs due to their 

attraction to electrostatic sites on the clays.  Many clay minerals (e.g., 2:1 and 1:1 layer silicates) hold a 

permanent negative charge from isomorphous substitution for ions of lesser valence (e.g., Al3+ for Si4+, 

Mg2+ for Al3+) (Verburg et al. 1995, Brady and Weil 2002).  This negative charge attracts soil colloids, e.g., 

humus.  Also, cations (e.g., heavy metals) may provide the venue of interaction of polar molecules and 

the presence of oxygen at the mineral surface may lead to hydrogen bonding with humus (Verburg et al. 

1995).  A purely chemical method of holding humus and associated metal cations in soil involves 

incorporating organic molecules as ligands to metal ions present on the clay mineral surface.  This 

reaction is pH-dependent and typically more stable than adsorption reactions.  It often occurs on metal 

oxides (Al and Fe) and amorphous minerals (Verburg et al. 1995).   

 These primary mechanisms for humus adsorption provide physicochemical means for protection 

of humus and subsequently, heavy metals, within the soil profile (Table 3). Generally speaking, metals in 

solution bind to soil colloids (or other charged particles), therefore the physico-chemical factors 

associated with this soil component directly affect concentrations of metals in soil solution and 

subsequently, bioavailability (Alloway 1995, McLaughlin et al. 2000).  
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 Many of the chemical reactions described above fall under the broad category of redox 

chemistry or the gain (reduction) or loss (oxidation) of electrons.  The redox status of soils mainly 

concerns the elements C, N, O, S, Fe, and Mn, but some heavy metals can be affected including Ag, As, 

Cr, Cu, Hg, and Pb (Alloway 1995).  Redox chemistry in soils typically occurs at a slow rate, and is 

catalyzed by soil microorganism activities, e.g., respiration and decomposition of organic materials, 

either in the presence or absence of oxygen.  If oxygen becomes exhausted (e.g., due to waterlogging, 

compaction, consumption via respiration of soil organisms) anaerobic respiring microorganisms 

predominate.  Anaerobic conditions favor a reducing environment, hence susceptible elements (Mn, Cr, 

Hg, Fe, Cu, and Mo) are gradually reduced (Sposito and Page 1985, Rowell 1981).  Reducing conditions 

can drastically change soil physical and chemical properties through dissolution or precipitation of Fe 

oxides or production of sulfate ions, which may lead to precipitation of metal sulfides, e.g., FeS2, HgS, 

CdS, CuS, MnS, and ZnS (Sposito and Page 1985). 

3.4.3.    Soil-plant interactions and heavy metals 

 Heavy metal pollution is a complex problem that requires an understanding of the origin and 

nature of the pollutants, the substrate being polluted, and knowledge about the conditions where these 

items interact.  Soil-plant interactions become the next area of study, as this is where the pedosphere, 

atmosphere, and biosphere converge.  Thus far heavy metals have been broadly discussed as pollutants, 

but certain metals are essential for plant growth (i.e., Cu, Mn, and Zn).  In this way, heavy metal 

deficiencies and/or pollution are intrinsically linked to crop yield and crop composition (Alloway 1995). 

 Anthropogenic sources of heavy metals are typically concentrated on the upper soil horizon, 

mainly because pedogenic processes have not been acting long enough to redistribute the metals 

through the soil profile (Alloway 1995).  As a result of cycling through vegetation, atmospheric 

deposition, and adsorption by SOM, certain elements are concentrated in surface horizons, including Ag, 

As, Cd, Cu, Hg, Pb, Sb, and Zn (Bowen 1979).  In cultivated soil, this upper horizon that is worked is called 
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the Ap horizon, or plow layer.  The Ap horizon contains the majority of the root mass and so is where 

plants typically uptake bioavailable heavy metals.  By contrast, Al, Fe, Ga, Mg, Ni, Sc, Ti, V, and Zr are 

located in lower soil horizons and tend to be associated with accumulations of translocated clays and 

hydrous oxides (Bowen 1979). 

 Plants can concentrate heavy metals in their tissues through root uptake and foliar absorption.  

For root uptake, factors that control the amount of metals absorbed into a plant’s tissues have to do 

with (1) concentration and speciation of the metal in the soil solution, (2) the ability to the metal to 

move from soil to the root surface, (3) the ability of the plant to move the metal from the root surface to 

its interior, and (4) the plant’s ability to move the metal from the root to the shoot (Wild 1988, Chaney 

and Giordano 1977).  Some plants can prevent movement of metals from roots to shoots, hence foliar 

absorption becomes the dominant pathway of heavy metal concentrations of stems and leaves (Table 

3). 

 Plant uptake has much to do with the amount of metal ions present in the soil solution, but this 

can be mediated by the surface area of the plant’s roots (Wild 1988).  Mechanisms by which absorption 

occurs can vary for different metal ions, but metal ions that use the same absorption pathway compete 

with each other. For instance, Zn absorption is diminished by Cu and H+, but not by Fe and Mn, which 

use a different pathway (Barber 1984, Graham 1981).  Microbiological and chemical activity occurring in 

the rhizosphere due to exudates from the roots, mucilage, sloughed-off cells and their lysates can 

liberate metals from soil, increasing absorption into plant tissue (Marschner 1986).  Foliar absorption of 

heavy metals uses the same pathway that agriculturalists use when spraying plant foliage with 

micronutrients (Hovmand, Tjell and Mossbaek 1983).  Levels of absorption depends on the plant species, 

its nutritional status, cuticle thickness, leaf age, presence or absence of stomata guard cells, humidity of 

the leaf surface, and the nature of the solutes (Marschner 1986, Chamel 1986).   
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Table 4. A selection of studies investigating food crop bioaccumulation of heavy metals. 
 

Metal Metal accumulating food crops 
 (Davis and Calton-Smith 

1980) 
(Samsøe-Petersen et al. 
2002) 

(Mattina et al. 2003) 
(Food Standards Agency 
of the United Kingdom 
2007) 

Cd 
Lettuce, spinach, celery, 
cabbage 

Hazelnut, blackberries, 
carrots (more in peel), 
lettuce 

Zucchini, spinach, 
lettuce, tomato, thistle 

Pine nuts, mushrooms 

Pb 

Kale, ryegrass, celery Hazelnuts, black and 
red currants, carrots 
(more in peel), potatoes 
(mostly in peel), radish 

No significant 
bioaccumulation 

Carrots, licorice, 
mushrooms, honey, 
root vegetables, nuts,  

Cu 
Sugar beets, certain 
barleys 

Not analyzed Spinach Root vegetables, dried 
fruit, mushrooms 

Ni Sugar beets, ryegrass, 
mangold, turnips 

Hazelnut, blackberry, 
beans 

Not analyzed Not analyzed 

Zn 

Sugar bees, mangold, 
spinach, beetroot 

Not analyzed Zucchini, spinach, 
tomato, pumpkin 
(leaves), cucumber 
(leaves), thistle (leaves) 

Mushrooms, nuts 

 All in all, bioavailability is a complex relationship between the soil and mainly the roots of the 

plant, although metal-containing detritus can provide a new or recycled source of heavy metals to the 

soil (McLaughlin et al. 2000).  Thus, different plant species bioaccumulate heavy metals at different rates 

under different conditions.  Because of this complexity, there is no comprehensive list of crop 

bioaccumulation rates, although there are many studies that look at this topic using various approaches 

in different soil types and levels of contamination (Table 4). 

3.4.4.    Heavy metals and climate change 

 Heavy metal bioavailability may also be influenced by global climate change.  For instance, with 

higher levels of atmospheric CO2, precipitation becomes more acidic as water combines with CO2 to 

form carbonic acid.  More acidic rain falling on soils can increase metal mobility and therefore its 

availability to plants (Alloway 1995) (Error! Reference source not found.).  Whether considering 

contaminated soils, urban garden soils, or soil parent material containing heavy metals, shifting 

precipitation regimes and more acidic rainfall can liberate heavy metals from soils, resulting in higher 

toxicity to plants, animals, microorganisms, and ecosystems in general. 
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 Current research in soil 

remediation focuses on removal and 

control techniques, e.g.,  

phytoremediation (i.e., use of plants and 

fungi that hyperaccumulate heavy metals 

in their tissues) (Meagher 2000, Mendez 

and Maier 2008) and pH control (e.g., 

Stevens, Dise and Gowing 2009) to limit 

bioavailability of heavy metals.  But even 

with remediation technology, the heavy 

metals are simply displaced, not removed from our environment.  Proper waste management in this 

case requires long-term containment of harmful constituents.  Global pollution levels coupled with 

climate change require an interdisciplinary approach to identify adaptive strategies in urban food 

production that protect human and environmental health. 

3.5. Urban soils as anthrosols 

  After centuries of polluting Earth’s air, water, and soils, humankind today is reaping the 

consequences.  Urban soils (Figure 10), which have been altered by human activities, differ from their 

rural counterparts in several ways, including greater heterogeneity within a small area and typically 

higher pH (Kabata-Pendias and Pendias 1984, Marcotullio, Braimoh and Onishi 2008).  Anthrosols, soils 

formed or profoundly modified by humans over long periods and Technosols, soils of recent deposits of 

artificial origin or mixed with alien products (Spaargaren 2006), are new classes of soils according to the 

International Union of Soil Scientists (IUSS) (2007).  Urban soils often fall under one of these definitions, 

as they are typically characterized by accelerated erosion, land filling, land leveling, surface removal, 

contamination, sedimentation, severe compaction, and/or artificial saturation (NRCS 2008).  These 

 

Figure 10. Layers of urban land use are apparent in this 
trench on the University of Kansas campus in Lawrence, KS.  
Pipes shown are approximately four inches in diameter.  
Photograph by T. Jackson. 
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urban soil characteristics complicate toxin detection and 

management, as any physical or chemical soil 

characteristic has the potential to influence the behavior 

of contaminants in a soil. 

 Urban soils are particularly susceptible to 

contamination due to their past and present proximity to 

polluting industries, automobile exhaust, and poor waste 

management practices.  Many contaminants persist in 

the system; subsequently, surface soils have become 

progressively more polluted throughout human history 

(Kabata-Pendias and Pendias 1984).  Besides heavy 

metals, other toxins introduced through human agency 

include pharmaceuticals, MTBE (methyl tert-butyl ether), 

benzene, and chlorinated hydrocarbons (CFH), e.g., solvents, pesticides (e.g., DDT), and PCBs 

(polychlorinated biphenyls) (Alloway 1995).  The U.S., along with the rest of the world, has a long, 

complicated history of polluting practices that differs from place to place on the microscale, a history 

that should be considered when planning land uses, e.g., a children’s play area or urban garden. 

3.6. History of urban gardening in the U.S. 

 A notable contrast between the United States and much of the rest of the world is the differing 

conceptual frameworks for urban food production.  In some circles, the terms “urban gardening” and 

“urban agriculture” are used interchangeably.  Yet the distinction seems to be in the primary motivation 

behind the activity and not the activity itself that differs.  The United States typically refers to food 

production in cities as “urban gardening,” which implies a relatively low level of production (i.e., less 

dependence on it for subsistence) compared to the intensive “urban agriculture” of Taiwan, China, or 

 

Figure 11. Intensive urban agriculture of 
Caracas, Venezuela, where the city depends 
on urban food production for a significant 
portion of its food supply (UNDP 2007). 
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Caracas, Venezuela (Figure 11), for instance.  While urban gardeners usually garden for pleasure or 

perhaps for environmental reasons (such as in the United States), urban agriculturalists usually work 

toward intensive food production to fend off hunger or to make a living.  It seems that the distinction 

often can be drawn based on income or class, although certain exceptions exist.  Still, history tells us 

that American have not always fit easily in to this generalization. 

 Americans of the 18th and 19th centuries certainly relied on gardens for subsistence, and they 

differed substantially from modern Americans in their enthusiasm for using human and animal wastes as 

fertilizer (Melosi 2005).  Gardens were ideally located in suburban or exurban locations where there was 

available space as well as ready access to wastes (Lawson 2005).  From 1890 to 1930, gardening was 

promoted by municipal governments such as the aforementioned example of Detroit, where the mayor 

provided space for Potato Patches to help people 

help themselves during difficult economic times 

(Lawson 2005).   

 Despite hard economic times around the 

turn of the 20th century, the U.S. population 

surged, and almost half of the population lived in 

cities (Lawson 2005).  Inner cities became 

destitute and crime-ridden as poverty created 

desperation for food and housing.  Railways 

constructed around this period facilitated the 

migration of the upper and upper middle classes 

to suburban and exurban locations (Lawson 2005).  

The state of U.S. cities, including poor sanitation, 

crime, and over-population, spurred the upper and 

 

Figure 12. “Every Garden a Munitions Plant.” 1918 
war garden promotional poster by James  
Montgomery Flagg (Pack 1919). 
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middle classes to lead the City Beautiful Movement from 1890 to 1910 (Basset 1981).  The thinking 

behind the movement was that creating beauty would inspire “civic loyalty” and “moral rectitude,” 

leading to lower crime rates (Basset 1981).  As previously noted, in some cases elegant parks or 

promenades replaced kitchen gardens that were nourishing the poor (Williamson 2002).  The plan for 

the National Mall of Washington, D.C. was passed by Congress in 1901 as a part of this movement 

(Basset 1981). 

 Civic loyalty and moral rectitude were replaced by patriotic duty as an impetus for urban 

gardening during World Wars I and II.  In 1914, as European farmers left to fight in the war, much of the 

burden of providing for 120,000,000 Europeans living in Allied countries fell on the United States 

(Heimer 2008).  In response, Americans reduced consumption, or at the very least, shifted consumption 

patterns.  Prices were elevated for products like butter, eggs, and coffee, and many Americans started 

small kitchen gardens to subsidize their meager food supply (Pack 1919).  Anticipating that the United 

States would join the war, the National War Garden Commission was established by Charles Lathrop 

Pack in 1917.  Pack produced propaganda to enlist citizens to help Allied forces by growing Liberty 

Gardens (Figure 12) (Pack 1919).  

 The federal government of the time also promoted gardening.  President Woodrow Wilson 

proclaimed “Everyone who creates or cultivates a garden helps…This is the time for America to correct 

her unpardonable fault of wastefulness and extravagance” (Krochmal 2005).  The response of the 

American public was enormous.  Nationally, there were three million garden plots in 1917 and well over 

five million in 1918 (Pack 1919).  As gardeners increased their knowledge of and enthusiasm for 

gardening, the harvests became more abundant.  In 1918, over half a billion tons of produce were 

harvested, along with the birth of the “city farmer” (Pack 1919). 

 It must have been helpful to have established spaces and knowledge of gardening when the 

economic and environmental hardships of the 1930s came about.   The period 1930 to 1938 marks the 
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era of Depression Relief Gardens.  Unlike Liberty Gardens, this movement was led by city governments 

to fend off hunger, poverty, and emotional stress (Williamson 2002).  Gardens lifted spirits and 

increased health much like the Potato Patches of the 1890s by offering participants opportunities for 

food and work, giving them feelings of usefulness and productivity (Tucker 1993). 

 The groundwork laid by Liberty Gardens and Depression Relief Gardens helped kick start the 

next gardening trend at the beginning of World War II.  This time the War Food Administration, a federal 

government agency, created the Victory Garden Program (Basset 1981).  During this era in American 

gardening, it was an activity for almost everyone, not just for the poor (Figure 13).  It became a popular 

activity to promote mental and physical health and to garner a sense of community (Basset 1981).  

Under wartime duress, gardening provided an outlet for the fears, anxieties, and stresses and served as 

an expression of patriotism (Basset 1981).  In 1942, approximately 5.5 million Americans grew Victory 

Gardens, increasing seed sales by 300% and producing 44% of the fresh vegetables consumed in the 

United States (Basset 1981). 

 

Figure 13.  A resident of Washington, D.C. stands beside her Victory Garden in 1943 (left).  More affluent 
Americans also participated in the movement; gardeners work the grounds of the Charles Schwab estate in New 
York, NY, 1944 (right) (Library of Congress 1943 and 1944). 
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 Liberty Gardens of World War I and Victory Gardens of World War II meant that many 

Americans were learning to garden in any available plot (Lawson 2005).  The five main goals for Victory 

Gardens concerned: 

• Vegetable supply: Reduce demand for commercial supplies to increase availability to Armed Forces 
and lend-lease programs. 

• Strategic materials: Lessen demand for materials used in food processing and canning.  

• Transport: Free up railroads to carry war munitions rather than produce. 

• Vitality and morale: Produce nutritious vegetables; provide outdoor activity. 

• Food stockpiling: Preserve fruits and vegetables for use when food shortages might worsen (Figure 
14) (Basset 1981). 

 With the end of World War II came the end of the patriotic view of gardening.  It was the 

beginning of the Baby Boomer era in America, when consumption and the suburban lifestyle became 

the norm (Roberts 2006).  Some Victory Gardens were located on borrowed land that needed to be 

returned to owners (Lawson 2005).   

Gardening in the 

United States dramatically 

changed along with American 

culture in the post-war era 

(Lawson 2005).  The Baby 

Boomer years following the 

war reshaped the American 

countryside and its culture. 

The U.S. Interstate Highway 

System was constructed 

starting in 1956, marking the 

onset of trends in fast food, 

 

Figure 14. Jeffersontown, Kentucky had a community cannery, shown here 
in June, 1943. The cannery was started by the Works Projects 
Administration (WPA) to handle the large amounts of Victory Garden 
produce (Hollem 1944). 
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shopping malls, and the decline of urban retail centers (Roberts 2006).  Already in 1930 over half of 

American families owned automobiles, so after World War II ended and the GI bill was passed (allowing 

many families to buy their first homes), the American dream was intimately connected with cars and the 

suburban lifestyle (Roberts 2006).  Instead of gardens, a beautiful lawn became fashionable (Fort 2000).  

 A desire to connect with the Earth, protect the environment, and connect with one’s neighbors 

promoted a surge in community gardening in the 1970s, which continues today (Lawson 2005).  Cities 

throughout the United States started urban renewal gardening projects and in 1978 they banded 

together to establish the American Community Gardening Association (ACGA) (Lawson 2005).  By 1973, 

garden hobbyists numbered about 80 million (2005).  It once again became a trend in healthy living to 

tend a garden.  Gardeners had long sung the praises of gardening as a way to relax and soothe the 

tensions of daily life.  A 1973 study quantified this effect, showing that gardening and viewing green 

spaces produces a restorative effect on one’s health (Kaplan 1973).  

 Besides community spirit, stress relief, and physical activity, other motivations drew Americans 

to gardening in the 1970s.  Economic benefits of gardening arose since food prices had risen, partly due 

to the oil embargo (Lawson 2005).  There was an activist mentality in the 1970s, and gardening provided 

one way of exercising control over one’s daily life.  In 1976, 51% of American families had vegetable 

gardens, 10% of these in community gardens (Gallup 1976).  By 1982, gardening was listed as America’s 

top leisure activity (Francis, Cashdan and Paxson 1984).  The same poll noted that 18 million households 

would have gardens if they had space suitable for gardening (Francis et al. 1984). 

 Gardening as a form of social activism was especially prevalent in America’s inner cities, which 

were continuing the decline that commenced following World War II, particularly in the aftermath of 

deindustrialization (Lawson 2005).  While many buildings had become vacant, run-down, and 

vandalized, the plight of inner city urban communities continued as poverty increased.  In response, 

select city dwellers chose to convert vacant lots into community gardens.  By enlisting the 
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disenfranchised youth who were primarily responsible for crime and vandalism, urban communities 

were able to restore a sense of neighborhood pride.  This pride translated into crime reduction, a source 

of nourishment, physical activity, socialization, and an overall beautification of the immediate and 

surrounding areas (Lawson 2005). 

 Gardening as activism has recently evolved into a new vein.  Widespread concerns over climate 

change and environmental degradation have provided new strength to ideas sprouted in the 1970s.  

History shows that more people gardened during difficult times, both through economic hardship and 

wartime, to experience a sense of purpose, productivity, and control over their immediate environment 

(Lawson 2005).  Many contemporary urban gardeners in the United States have propagated the 1970s 

activist mentality, evoking the same sense of empowerment by fighting against the heavy resource 

consumption promoted by large-scale commercial food producers and even tackling the local and global 

issue of climate change.   

 Recently, concern about climate change has inspired some U.S. citizens to grow “New Victory 

Gardens,” borrowing the terminology of the World War II Victory Gardens (ReviveTheVictoryGarden.org 

2009).  Like their predecessors, the benefits of contemporary gardens include reducing dependence on 

commercial foods, decreasing energy needs, increasing individual health through physical activity, and 

garnering a sense of family and community (Basset 1981, ReviveTheVictoryGarden.org 2009). Today’s 

gardening activists also seek to “fight global warming” through reducing (or eliminating) one’s carbon 

footprint via carbon sequestration and waste reduction (2009).  At the heart of these efforts is the idea 

that personal and community health is related to environmental health.  Although the idea is not new, 

recent concerns over food quality and climate change have reignited this discussion. 

3.7. Urban food production and public health 

 Connections between food quality and personal health have gained wider attention in science 

and policy in recent years, driven largely by concerns over the U.S. obesity epidemic (Mokdad et al. 
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1999).  Evolving out of this public discussion is the realization that a key to personal health relies on 

sound food policies that support quality food in an environmentally sustainable system.   

3.7.1.    Fusion of environmental and public health issues 

 First Lady Michelle Obama has taken on the issue of childhood obesity as her mission, hailing 

the importance of daily exercise and healthy eating (Lee 2009).  A first step was to implement a White 

House spring vegetable garden, promoting gardening as physical activity and as a way to renew 

children’s connection with food (White House staff 2010).  Mrs. Obama’s effort to renew interest in 

gardening may be working, with a 19% increase in the number of gardens in the U.S. and a 30% increase 

in seed sales in 2009 (White House staff 2010).  Interestingly, although Mrs. Obama hails the healthful 

benefits of gardening, she has not taken the opportunity to educate people about soil testing for heavy 

metals.  This failure is despite the fact that the White House soils were tested, and lead was found above 

normal levels before the garden was implemented (Swarns 2009).  A White House spokesman defended 

the health of the soils, simply stating that they were completely safe (Swarns 2009).  Fortunately, the 

first mention of lead in the White House garden in the press appeared in a New York Times article about 

lead in urban gardens, and how gardeners should be aware of the ubiquity of lead in urban areas and 

have their soil tested (Murphy 2009).  The reluctance of Michelle Obama to mention soil health in 

connection with healthful eating through gardening is an opportunity lost.  Nonetheless, her successful 

promotion of gardening has brought up soil health as a side issue, where it was rarely mentioned in the 

past. 

 As another illustration of the national conversation about personal and ecosystem health as it 

relates to food, consider the debate about the 2012 Farm Bill.  Scheduled to move through Congress in 

2012, debates over fresh, local food for schools, sustainable agriculture, and food stamps started 

escalating in 2010.  The Slow Food USA website discusses opportunities to change the current food 

system with the 2012 Farm Bill: 
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• Could there be more incentives for farmers to 
grow fruits and vegetables, and not just commodity 
crops? 

• Could accepting food stamps at farmers’ 
markets help to combat obesity? 

• Should sodas be banned from the food stamp 
program, similar to the program’s existing bans on 
tobacco and alcohol? 

• Could a “whole-farm revenue” concept for 
crop insurance replace the present system that 
encourages production of a single crop, and instead 
encourage more diverse crops? 

• Could an expansion of the green payments 
program incentivize sustainable farming rather than 
overproduction? (Slow Food USA 2010) 
 
Based on these suggestions from Slow Food USA, a 

sustainable food system proponent, there appears to be an 

emerging awareness of the connection between the public health (i.e., obesity), environmental health 

(i.e., sustainable farming through crop diversity, for instance), economic health (i.e., farmers growing 

subsistence crops in addition to commodity crops), and local food production. 

3.7.2.    Environmental activism and policy  

 Perhaps the growing awareness of how food systems and ecosystems relate stems from a 

recent resurgence in environmental concerns that has its roots in the 1960s.  Although some notable 

environmentally progressive events occurred prior to the 1960s (e.g., the establishment of the Audubon 

Society, Wilderness Society, and the National Park Service), it was the publication Silent Spring by Rachel 

Carson (1962) that triggered a national conversation, further awakening Americans’ interest in the 

environment (Weiss 2005).  The movement gained strength in the 1960s and 1970s as the U.S. 

Environmental Protection Agency was established, environmental disasters brought more anger and 

 

Figure 15. The Love Canal disaster of the 
late 1970s added rigor to the 
environmental movement (EPA 1978). 
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fear from the public (Figure 15), and 

organizations like the Sierra Club 

took on the powerful corporations 

who sought to exploit our country’s 

national resources (Weiss 2005).   

 Like today, Americans in the 

1970s displayed increasing concerns 

about the wasteful nature of the 

food system, as well as negative 

environmental impacts of 

agricultural practices, especially pesticides and herbicides (Weiss 2005).  Americans had become more 

aware of the health risks associated with chemical residues on commercially produced foods (Weiss 

2005), which prompted amendments to the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) 

in 1972 (Conner et al. 1987).  The 1972 FIFRA amendments empowered the EPA to classify pesticides 

and regulate pesticide residues on raw agricultural commodities (Conner et al. 1987).  These changes 

along with coincident amendments to the Food, Drug, and Cosmetic Act (FDCA) led to development of 

the EPA’s toxicity testing strategy (Gad and Chengelis 2001).  

 Regulation of industrial chemicals has followed a different path.  In 1976, Congress passed the 

Toxic Substances Control Act (TSCA) to regulate new and existing industrial chemicals that were not 

addressed by other statutes (Kraska 2001).  Unfortunately, while TSCA requires reporting of chemical 

information, no specific toxicity testing is required, nullifying much of the EPA’s ability to protect public 

and environmental health from industrial chemicals (Kraska 2001). 

  

 

Figure 16. A Depression Relief Garden located in Youngstown, OH, 
1932 before federal or state policies were passed protecting public 
health and the environment.  Note the proximity of the gardens to 
polluting industries in the background (artist unknown 1932). 
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3.7.3.  Heavy metals and public health 

 Before the world gained a better understanding of environmental health and its relationship to 

public health, there was little thought about how pollution might affect air, water, and food quality 

(Figure 16).  With a grasp on environmental science and a desire to protect public health, the U.S. 

government began to regulate pollution, efforts eventually leading to the formation of the U.S. 

Environmental Protection Agency (EPA).  The EPA’s charge, “to protect human health and to safeguard 

the natural environment – air, water, and land – upon which life depends” (EPA 2005) involves many 

complicated facets.  An advisory agency to the EPA on whether people will suffer harmful health effects 

from their exposure to hazardous substances, the Agency for Toxic Substances and Disease Registry 

(ATSDR), was established as part of the Superfund Law of 1980 (EPA 1998).  One service of this agency is 

to compile a list of substances most hazardous to human health in the U.S., called the Completed 

Exposure Pathway (CEP) (ATSDR 2009).  The items are prioritized based on risk to human health and 

incidence of exposure.  Topping the list are arsenic, lead, and mercury (ATSDR 2009), all of which are 

heavy metals commonly found in urban soil.  Ten of the top 18 most hazardous substances to human 

health in the environment are heavy metals (ATSDR 2009). 

 Any activity that disturbs soil contaminated with heavy metals, e.g., gardening or construction, 

can release these toxins, in effect allowing them to harm people, animals, and plants.  Heavy metals in 

soil can enter people and animals via direct ingestion, breathing contaminated dust, and through skin 

contact (ATSDR 2007).  Urban gardeners are at risk even when using known strategies to avoid plant 

uptake, e.g., pH control.  This method limits the toxins entering plant tissue, while disregarding other 

exposure pathways, which can be exceedingly toxic to the human body (Table 5).  When working with 

soil during gardening or any similar activity on bare soil, all three routes of exposure are possible, 

including inhalation, skin or eye contact, and ingestion (ATSDR 2007).  Because of this possibility, “safe” 

levels of lead are lower for bare soil compared to soil covered by vegetation or a sidewalk (EPA 2010b).  
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Adding further complexity to the issue are stricter state policies in some cases.  For example, Minnesota 

established safe levels of bare soil below 100 parts per million (ppm) of lead compared to the federal 

bare soil maximum of 400 ppm (State of Minnesota 1993, EPA 2010b).  In light of these regulatory 

complexities, together with heterogeneous soil characteristics, the safest policy for a gardener is soil 

testing and site-appropriate management strategies. 

3.7.4.    Best practices in urban gardening 

 With significant urban populations in the United States, a growing trend towards using local 

produce and its significance as a cultural tradition, urban gardening has become a symbol of community, 

individual worth, and survival.  These meanings in American gardening are repeated from past in times 

of war or economic strife.  The different theme occurring this time is the desire to address moral issues 

regarding consumption and stewardship, personal health, and environmental concerns including global 

climate change, one garden at a time.  The gardening community strives to do this by resisting the 

degenerate food system to create a sustainable food system based on intensified local food production.   

 To accomplish this goal, Americans must learn some lessons from history.  First, they should 

accept the country’s history of flawed resource management, environmental deterioration, and poor 

waste management, especially in urban systems, due to the presence of environmental toxins.  Then, 

they should look to the past for ways to reinvent circular resource usage, while keeping in mind the 

present situation (i.e., potential for contaminated soils).  The growth and success of ancient civilizations 

was often dependent on their ability to capture nutrients in waste to reapply them on their agricultural 

fields (Denevan 1998).  By emulating the more innovative of ancient civilizations in their ability to create 

an efficient, circular system of resource usage for sustainable food systems, while emphasizing soil 

health and quality, U.S. urban gardeners will be able to effect change at the global level. 
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Table 5.  Heavy metals, anthropogenic exposure, and health effects of chronic exposure. CEP stands for 
Completed Exposure Pathway, which is based on how hazardous the substance is to human health and 
incidence of exposure, which is higher for substances more ubiquitous in the environment. Compiled from Naidu 
et al. (2003) and ATSDR ToxFAQs (2011). 
 

Element 
CEP 
Rank 

Primary 
anthropogenic 
sources 

Human health effects 

Arsenic, As 2 

Pesticides, 
fertilizers, copper 
smelting, sewage 
sludge, coal 
combustion, 
detergents, treated 
wood 

Ingesting high levels of As can result in death. Lower exposure 
causes nausea and vomiting, decreased red and white blood 
cells, abnormal heart rhythm, and damage to blood vessels. 
Long-term, low-level exposure by breathing or ingesting can 
cause a hyperpigmentation and excessive skin growth. 
Ingestion of certain As compounds can cause diarrhea and 
damage to the kidneys. As is carcinogenic. 

Cadmium, Cd 6 

Fertilizers, industry, 
fossil fuel burning, 
sewage sludge, Pb & 
Zn smelting, mine 
tailings 

Breathing Cd severely damages the lungs and can cause death. 
Long-term exposure to lower levels of cadmium in air, food, or 
water leads to a buildup of cadmium in the kidneys and 
possible kidney disease, high blood pressure, iron-poor blood, 
liver disease, and nerve or brain damage. Cd is carcinogenic. 

Chromium, Cr 7 

Fertilizers, 
metallurgic 
industries, iron & 
steel production, 
cement, sewage 
sludge 

Breathing Cr can cause nosebleeds, ulcers and holes in the 
nasal septum. Ingesting large amounts can cause stomach 
upsets and ulcers, convulsions, kidney and liver damage, and 
even death. Skin contact can cause skin ulcers or allergic 
reactions consisting of severe redness and swelling of the skin. 
Cr is carcinogenic. 

Copper, Cu 13 

Fertilizers, 
fungicides, sewage 
sludge, industry, 
mine tailings, 
copper dust 

Cu is essential to human health, but too much is toxic. 
Breathing high levels of copper can cause nose and throat 
irritation. Ingesting high levels of copper can cause nausea, 
vomiting, and diarrhea. Very-high doses of copper can cause 
damage to your liver and kidneys, and can even cause death. 

Lead, Pb 1 

Mining, smelting, 
sewage sludge, 
fossil fuel 
combustion, 
pesticides, batteries, 
paint, solder in 
water pipes 

Pb can affect almost every organ in the human body, but the 
main target is the nervous system.  Chronic exposure may 
result in birth defects, mental retardation, autism, psychosis, 
allergies, dyslexia, hyperactivity, weight loss, shaky hands, 
muscular weakness, arthritis, colic, hyperactivity, mood swings, 
nausea, numbness, lack of concentration, seizures, weight loss, 
and paralysis. Pb is a probable carcinogen.  

Nickel, Ni 17 

Fertilizers, fuel & 
residual oil burning, 
alloy manufacture, 
nickel mining and 
smelting, sewage 
sludge, batteries 

The most common harmful health effect of nickel in humans is 
an allergic reaction after skin contact or asthma attack after 
breathing it. Chronic exposure leads to chronic bronchitis and 
reduced lung function. Ingesting it causes stomach ache and 
suffered adverse effects to their blood and kidneys.  Likely 
affects the blood, liver, kidneys, immune and reproductive 
systems. Ni is carcinogenic.  

Zinc, Zn 12 

Fertilizers, 
pesticides, fossil fuel 
combustion, 
nonferrous metal 
smelting, alloys, 
brass, sewage 
sludge, batteries. 

Zn is essential to human health, but too much is toxic. 
Swallowing large doses can cause stomach cramps, nausea, 
and vomiting. Over longer periods it can cause anemia and 
decrease the levels of your good cholesterol. May cause 
infertility. Inhaling large amounts of Zn can cause metal fume 
fever.  Causes skin irritation.  
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Chapter 4. Lawrence Gardens Case Studies 

 A case study of Lawrence is presented for the purpose of exploring issues, environmental, social, 

and policy-related; to help illuminate what is being done locally to improve the national food system.  By 

looking at a sample of gardens from the community scale to backyard gardens, both land use and soil 

properties can be examined to evaluate methods of detecting and managing soil health in a variety of 

settings.  The purpose of the case study is to guide the development of a process that helps local 

producers make informed decisions to ensure healthy soil, food, and gardening practices.  The ultimate 

aim is to improve the U.S. food system one garden at a time.   

4.1. Project description and purpose 

 In the spring of 2009, ten urban gardens were systematically sampled in the Lawrence, KS area, 

totaling 500 soil samples.  The goals for this field-based case study are twofold.  The first goal is to 

investigate the discrete and broad patterns of heavy metal contamination, if any, (and other soil 

characteristics, e.g., organic matter content) on the Lawrence garden landscape.  This process requires a 

fine-scale grid sampling approach for gardens at two depths, a much higher resolution sampling scheme 

than currently recommended by most entities offering soil analyses for heavy metals.  Then, by 

comparing heavy metal levels to site-specific and city-wide land use histories, two questions can be 

answered: (1) what is an appropriate resolution for soil sampling to effectively capture both broad and 

discrete sources of heavy metal contamination?  And, (2) is land use history a good predictor of which 

heavy metals are present?  Another part of the soils analysis evaluates soil color as a proxy for organic 

matter content of a garden soil.  Generally speaking, organic matter forms complexes with heavy metal 

cations, helping to immobilize contaminants in the soil, reducing their plant availability.  By encouraging 

soil health through adding organic matter (amounts roughly estimated via soil color), gardeners can reap 

multiple benefits of improved yields, lower water needs, and especially important, lower their potential 

for exposure to heavy metals from their soil.   
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 The second goal of this case study is to use the lessons learned from the soils analyses and land 

use histories to develop decision support tools for urban gardeners and policy makers. This will be 

described in Chapter 5.  Both groups, broadly speaking, are seeking ways to encourage local food 

production while maintaining health and safety.  By providing simple methods for detection, 

management, and remediation of heavy metals in urban soils, this barrier can be removed and urban 

gardening can become a larger contributor toward distributed food production.  

4.2. Research design 

 Gardens included in the study were selected using opportunistic sampling, guided by the desire 

of gardeners to be a part of the study usually due to soil contamination concerns.  Some gardens were 

sought out due to their interesting land use history (i.e., Vermont Street garden) or community garden 

status (i.e., North Lawrence Community Garden), or both (i.e., Eastside Community Garden).  Soil 

samples were collected in March and April of 2009 with the goal of retrieving samples before gardens 

were planted.  Where garden plots had been planted, every effort was made to avoid disturbing garden 

plants.  Soil cores about 2.5cm in diameter at a length of about 35-40cm were collected using a T-

handled soil sample device a fine spatial scale (i.e., a minimum of one core per five square meters).  

Subsamples were collected from the cores to account for variation in soil characteristics and metal 

concentrations in different soil layers.  A more detailed description of soil sample preparation and 

analyses is provided in 4.6.   

 Garden plot histories were investigated at two scales (plot and city) and from two perspectives 

(environmental and human factors) affecting soils at each plot.  A variety of Geographical Information 

System layers (i.e., soils, land use, water features, pollution sources) overlaid with historic maps 

provided a spatial and temporal tool for understanding, predicting, and characterizing risk of soil 

contamination.  Predictions from this process were tested against qualitative and quantitative soils 

analyses with the goal of evaluating the approach for use by a gardener.  Finally, during the sampling 
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process and again when sharing results, interactions with gardeners provided insight into general 

perceptions about soil health, contamination sources and levels, and remediation processes.  While 

formal interviews were not performed, these conversations guided the design process of the items in 

section 5.3, which were created to convey information on addressing soil health issues to a general 

audience. 

4.3. General study area description 

 Lawrence provided an ideal study area for examining the 

relationship between land use history and heavy metals in soils.  It 

has a long history of human occupation and is characterized by 

differential land uses and variable terrain.  For instance, Lawrence has a rich history of industrial 

activities, sits near a U.S. Interstate highway and railroad system, and is intersected by the Kansas River.  

These factors, in addition to Lawrence’s mid-range size (population and areal extent) among U.S. cities 

and vibrant history of agriculture and gardening, provide a superior setting for understanding how a 

typical Midwestern city may be influenced by past and present land uses. 

 Lawrence is located in the central Midwest of the United States at 38˚58’N, 95˚16’W (Figure 17) 

at an elevation of approximately 980 feet (299m).  In the Köppen climate classification system, Lawrence 

fits within the Dfa category, characterized by hot summers in a continental locale where winters are 

drier than summers.  Lawrence has a mean annual temperature of about 56 ˚F (13 ˚C), ranging from a 

daily average of 80 ˚F (27 ˚C) in the hottest month to 30 ˚F (-1 ˚C) in the coldest month.  In a typical year, 

precipitation totals dramatically increase in the spring, peaking in the warmest months, with an annual 

average of about 40 inches (102 cm) (Figure 18).  The climatic profile of the area provides superior 

conditions for development of mollic epipedons, ideal topsoil for agriculture.  Nearly all of the soils in 

Douglas County (in which Lawrence is located) are Mollisols, soils naturally rich in organic matter, 

Figure 17. Location of Lawrence, 
KS (red star) in the U.S. Midwest. 
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typically having a loamy texture, low bulk density, and high cation exchange capacity.   These soils were 

formed under prairie vegetation. 

Figure 18. The climate of Lawrence, KS shows higher precipitation totals at the beginning of the growing season, 
a helpful feature for the success of agriculture in the region.  Data (1971-2000) is from the National Climatic Data 
Center (2006). 

 Lawrence is situated between and just north of two rivers, the Kansas (Kaw) River to the north, 

and the Wakarusa River to the south.  Lawrence sits at the southernmost extent of North American 

glaciation (Lyle 2009).  The two rivers vary extensively in character, primarily due to the differing 

underlying geology.  The Kansas River has a more meandering form with a much wider basin, as it moves 

through more sandy substrates including sandstone.  The Wakarusa River travels through an area less 

affected by continental glaciation, consisting mostly of shale, silt, and limestone.  Because of this 

geology, it has steep, muddy banks and thus its channel is more resistant to movement.   

 The differing qualities of these two rivers illustrate differing character of soils between north 

Lawrence (north of the Kansas River) and the rest of Lawrence.  Soils north of the Kansas River are rich, 

deep soils formed on glacial till or river terraces. Soils to the south of the Kansas River contain 
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significantly more clays, although most contain enough organic matter to provide a reasonable level of 

tilth to allow mixing in of soil amendments for improved texture.  

 

Figure 19. The city of Lawrence is situated between and just north of the Kansas and Wakarusa rivers in 
northeast Douglas County.  The soil associations are characterized primarily by landscape position and effects 
from glaciation for the soils in the northeastern portion of the county.  Soil layer from USDA NRCS (SSURGO 
version 2.1) (2010).  Urban areas, water, and road layers from USGS and ESRI (2002). 
  

 The city occurs within or near the tall grass prairie-hardwood forest ecotone, but this is difficult 

to discern since the vegetative cover of the area has mostly been replaced by urban or suburban land 

uses surrounded by industry (e.g., concrete production and distribution) and agriculture (e.g., soybean 

and corn production) (Figure 19).  Lawrence flourished and expanded in the 1860s and 1870s as a town 

brimming with various industries surrounded by agriculture (Middleton 1937).  This heritage has 

continued, as various industries have continued to thrive in the area, the mix of industries changing 
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Figure 20. Google Earth image with locations of urban gardens in the case study (yellow dots) and some potential 
pollution sources (red tacks).  Gardens plots are concentrated near the oldest parts of the Lawrence, where soil 
contaminants are more likely to be present.  Image created on March 28, 2011. 

through time.  Industry is now less central to the town’s success, as it houses a major university, the 

University of Kansas, among other vibrant organizations and businesses.  The population of 87,600 is 

supplemented by the influx of about 26,000 college students annually (U.S. Census 2010, University of 

Kansas 2010, respectively). 

  Lawrence’s electricity comes from an adjacent coal burning power plant, and its emissions along 

with those from the nitrogen fertilizer plant, interstate highway, and railroad activities have settled on 

surrounding soils for decades (Figure 20).  The Kansas River that intersects the town is one of the most 

polluted waterways in the state, downstream from farms and ranches where pesticides, fertilizers, 

herbicides, animal wastes, and possibly leachate from an abandoned Lawrence landfill drain into the 

river (Stover 2010).  Douglas County falls within the 80-90th percentile rank in the U.S. for number of 
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housing units with high risk of having lead paint (Scorecard 2005).  This sampling of regional factors 

combined with the specific land uses of each garden site give a variety of potential heavy metal 

contamination sources and patterns.  More detailed environmental and land use histories of the city and 

each plot follow. 

 
 

4.4. Land use histories 

4.4.1.    Environmental history of Lawrence 

 Lawrence’s history is uniquely tied to national history because it was platted as an abolitionist 

town site in 1854 despite its proximity to pro-slavery settlements and the slave state of Missouri 

(Caviness 1988).  Original settlers, many associated with the New England Emigrant Aid Society, hoped 

that by populating the area with abolitionists, Kansas would be admitted to the Union as a free state 

Figure 21. Ruins of the Free State Hotel after an attack by Sheriff Jones, May 21, 1856 (Robinson 1856). 
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(i.e., one in which slavery was illegal) (Caviness 1988).  Multiple raids damaged the growing city, such as 

the 1856 raid where Sheriff Sam Jones burned the main hotel on Massachusetts Street (Figure 21).  

Abolitionist efforts were rewarded when Kansas gained statehood in 1861 as a free state (Caviness 

1988).  Several current Lawrence businesses reflect this heritage, containing “Free State” in their 

business names.   Yet, with statehood, the violence only escalated, as the U.S. Civil War began just three 

months later.  In 1863, William C. Quantrill raided Lawrence, resulting in the burning of a large 

proportion of homes and businesses, including part of the Lawrence House, where the Vermont Street 

garden plot is now located (see Figure 31), and the killing of most of the male population (Caviness 

1988).   

 By the end of the Civil War in 1865, a railroad had already been constructed through Lawrence, 

expanding in every direction during the decade from 1864-1874 (Middleton 1937).  In 1874, Bowersock 

Dam construction was completed, harnessing the hydraulic power of the Kansas River (Caviness 1988).  

These two features of Lawrence provided shipping services and access to inexpensive power, an ideal 

environment for manufacturing businesses to blossom (Middleton 1937).   

 By the turn of the 20th century, Lawrence had become a major agricultural and manufacturing 

force in northeastern Kansas (Middleton 1937).  Factories produced wire, boxes, agricultural equipment, 

musical instruments, metal castings, nails, pottery, paint, patent medicines, steam donkey-engines 

(steam-powered winches for logging and mining), textiles, paper products, canned and processed foods, 

clothing, shoes, beer, leather, wagons, and carriages.  There were also sawmills, icehouses, grist mills, 

and brickyards (Caviness 1988) (Figure 22).   
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Figure 22. Early Lawrence industries that helped the town prosper in the late 1800s.  The Lawrence Paper Mills 
(bottom, right) previously housed the Consolidated Barbed Wire Company until 1898.  It was placed on the 
Kansas Register of Historic Places in 1990 (Brack 1991).  Photograph courtesy of the Watkins Community 
Museum in Lawrence. 
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Figure 23. This portion of an Sanborn map (1883) shows the beginnings of industry in Lawrence.  Note the 
presence of potential sources of heavy metals, including the Kimball Brothers Foundry (far left), the chemical 
manufacturing company and iron company (near "2”). 
 

  

 

Figure 24. This portion of an 1889 Sanborn map near Pinckney (6th) and New Hampshire shows that in only six 
years industry had expanded significantly in Lawrence.  See map references of building sizes for scale. 
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 The more energy intensive businesses that also needed ready access to freight services, e.g., the 

Consolidated Barbed Wire Company, Jenny Wren Flour Mill, and the Lawrence Paper Mill, were located 

on the south side of the Kansas River, near the ready sources of power and freight (Figure 23) (Caviness 

1988).  Industry expanded eastward along the river and rail, so that area became more industrialized, 

while many businesses began populating Massachusetts and nearby streets to the south (Figure 24).  

The growth and success of Lawrence industry was interrupted by a flood in 1903 that caused major 

damage to Bowersock hydropower infrastructure and buildings on the river banks (Figure 25).  

Underground tunnels in the 600 block of Massachusetts Street had transmitted inexpensive mechanical 

power to businesses, but this changed when the dam was rebuilt in 1903-1905 (Retzlaff 1987).  After 

repairs were completed, the dam provided power to Bowersock’s factory and then sold electricity 

(rather than mechanical power) to the other businesses.  As a result, the underground tunnels were 

sealed (Retzlaff 1987).   

 

Figure 25. The flood of 1903 caused extensive damage to infrastructure along the Kansas River, including the 
Bowersock Dam. Many houses in North Lawrence were flooded, and some were swept away (left).  In the right 
image (looking southeast), an onlooker watches debris pile up against the Massachusetts Street bridge, which 
eventually led to the destruction on its northern span (USGS 1903, Kansas Water Science Center 2009). 

 Within a short period, industrial activities blossomed, and the areal extent of Lawrence and its 

population also expanded (Caviness 1988).  A comparison of the 1883 and 1889 maps (Figure 23 and 

Figure 24) illustrates some of these changes.  Over the decades, the central infrastructure of Lawrence 
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business and industry kept a similar form, while the building uses may have changed.  For instance, in 

1912 Bowersock mills added grain elevators, but then ceased operations at the beginning of World War 

II (The Outlook 1954).  After the war, the building “was leased for the manufacture of alcohol, which was 

used for synthetic rubber products” (The Outlook 1954).  By 1954, the main building stood vacant, while 

the grain elevator had been expanded with additional plans to add new access for semi-trailers.  Other 

notable industries in Lawrence at this time included popcorn and seeds, canning (lima beans), industrial 

chemicals, fertilizer, metal fabrication, printing, ammonia nitrate products, pipe organs, alfalfa 

dehydrating and processing, milk processing, beverage bottling, and corrugated boxes (The Outlook 

1954). 

 Change continued in Lawrence business and industry, as many followed a national trend where 

industry moved to the edges of town, partly because urban areas in the U.S. were shifting from 

manufacturing industries to more services-based economies (Bradbury, Downs and Small 1982).  This 

change is apparent in the dilapidated state of the Lawrence river front buildings, spurring public outcry 

in the 1970s.  A 1977 headline that appeared in the local newspaper captures this attitude: “Bowersock 

area gets a ‘Yecch!’ (Peterson 1977).  Legal disputes, changes of ownership, and the eventual transfer of 

most the riverfront property to the City of Lawrence led to the eventual demolition or refurbishing of 

the historic area.  City offices are now at the site of the old Bowersock Mill at 6th St. and Massachusetts 

St., the grain elevators have been demolished, and a “Riverfront Plaza” houses adjacent businesses to 

the east (Brack 1991). 

 Changes occurring at Lawrence’s river front were not isolated, as the rest of the city was 

growing and changing as well.  The population of the city increased dramatically in the height of the 

manufacturing boom from 11,500 in 1897 to 16,000 in 1918 (Sanborn Perris Map Company Ltd. 1897, 

Sanborn Map Company 1918).  The areal extent of Lawrence has expanded from about four square 

miles in 1940 to about 33 square miles today (City of Lawrence 2007).  Other major floods on the Kansas 
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River in 1951 and 1993 led to extensive damage to river front areas, especially in North Lawrence.  The 

1951 event exceeded levels of the 1903 flood, and the 1993 flood levels were less than this.  However, 

because of extensive development over time, property damages from the 1993 flood were much greater 

(Juracek, Perry and Putnam 2008).   

 From an environmental perspective, the expansion of industrial activities, especially the 

manufacture of dangerous items, e.g., hand grenades at the foundry, or the manufacture with 

potentially toxic materials, such as processing various metals to make wire and nails, can lead to 

contamination of air, water, and soils.  While air and water serve mainly as temporary conduits for 

pollutants, soils likely still contain some record of these activities.  Major floods, e.g., those in 1903, 

1951, and 1993 stir up contaminants that have settled in soils and sediments, reintroducing them to the 

built and natural environments.  Because of this, the spatial extent of flood waters can be a predictor of 

soil contaminants from past and present industrial land uses and other polluting activities. 

 Other notable industries that may have broadly impacted the Lawrence area include the 

Lawrence Iron Works (1855-1922), which operated at several locations (Lawrence Journal-World 1950), 

the TRW Industrial Operations group that manufactured steel armor for petroleum pump cables 

(starting in 1975) (Lawrence Journal World 1975), and the nitrogen fertilizer plant in East Lawrence, with 

a daily capacity of 3,700 tons of fertilizer, in operation from 1954 to 20 (Tele-Shopper 1979, Lawrence 

Daily Journal-World 1951, Biofuels Journal 2001).  The fertilizer plant was lauded at the time as a key 

national industry, captured in this quote from Howard Cowden, the President of the company building 

the plant: 

The demands of our defense program and our steadily growing population are straining 
the productive capacity of our farms.  We cannot continue to take more away from our 
land without putting more and more back to maintain its fertility (Lawrence Daily 
Journal-World 1951). 
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 In 2010, the City of Lawrence purchased the now polluted 375 acre tract with an $8.5 million 

fund from the seller for environmental cleanup of contaminated water and soil (Lawhorn 2010).  Part of 

the cleanup involves pumping contaminated groundwater through existing pipes to agricultural land in 

North Lawrence (Lawhorn 2010).  This is disquieting news for gardeners considering the possible 

presence of trace metals in the groundwater from the fertilizers (Rui, Shen and Zhang 2008).  Copper, 

zinc, and nickel releases achieved reportable levels at the fertilizer plant from 1990-2000 (EPA 2011b).   

 The cable manufacturer has expanded significantly since 1975 and is now one of the largest 

polluters in Lawrence.  In 2009, the manufacturer (now Schlumberger) reported releases of 700 pounds 

of copper, lead, and zinc (and compounds containing the metals), 92% of which is lead and lead 

compounds, of which 103 pounds (16%) are released into Lawrence air (EPA 2011b).   Just south of the 

 

Figure 26. Google maps image of Penny's Concrete in Lawrence, KS.  Note the sand harvesting to the east 
of the plant and the effluent being discharged into the Kansas River (retrieved 7 March 2011). 
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Lawrence Energy Center near U.S. Interstate 70 and within a mile of the Kansas River (Figure 20), the 

location means that lead particles likely reach the river and the nearby soils, especially those downwind 

(typically) in the western part of North Lawrence.  

 Several other potentially large sources of soil contamination include the railroads, in continuous 

operation since 1864 (Caviness 1988), and the coal burning power plant, opened in 1955 and expanded 

in 1960 and 1961 (Westar Energy 2008).  The power plant burns sub-bituminous coal (Energy 

Information Administration 2008), which is one of the less efficient types of coal, but attractive because 

of its low sulfur content (Hong and Slatick 1994).  The power plant also must dispose of byproducts, 

including fly ash, bottom ash, boiler slag, and flue gas emission control residues.  Liquids are evaporated 

and solid wastes are stored in an on-site landfill (Bridson 2008).  Solid wastes from these types of 

operations commonly contain trace metals, e.g., antimony, arsenic, barium, boron, cadmium, cobalt, 

lead, mercury, molybdenum, and selenium (RTI International 2007).  Reported air emissions from the 

Lawrence Energy Center indicate that the coal burning plant emits about 77% of the county’s mercury, 

reaching 172 pounds in 2009 (EPA 2011b).  Mercury accumulates in water bodies, soils, the organisms 

that inhabit them, and in people and animals that eat these organisms (EPA 2010a). 

 Mercury is also a source of concern in the manufacture of cement.  Lawrence houses a major 

concrete company, which uses cement to make concrete (Figure 26).  The cement industry has been in 

the national news lately for releases of mercury during production (often from using byproducts from 

coal burning, e.g., fly ash).  The EPA attempted to put in place regulation on mercury emissions from 

concrete manufacturers, but the U.S. House of Representatives passed an amendment on February 17, 

2011 that suspended EPA funding for enforcing the regulation (Thompson 2011).  With the Senate’s 

approval of this amendment, cement manufacturers will likely maintain the option of continuing to emit 

mercury.  Fortunately, there are no reportable levels of toxic releases by Penny’s Concrete of Lawrence 

(EPA 2011b). 
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 The public has been given access to data on industrial release of toxic substances for the past 25 

years with the passage of the Emergency Planning and Community Right-to-Know Act (EPCRA), enacted 

in 1986 (EPA 2011b).  Now available online, the compilation of these data is called the Toxic Release 

Inventory (TRI).  While annual reporting has been constant, rules governing who is required to report, 

how often they report, and minimum release levels to be reported have changed frequently (EPA 

2011b).  As cited, the EPA’s Toxic Release Inventory provides access to toxic releases from Lawrence 

industries (EPA 2011b) (Figure 27), as well as the fate of the contaminants (Figure 28).   

Figure 27.  Frequently changing reporting requirements for the EPA’s Toxic Release Inventory (TRI) has led to 
sporadic data, as shown here with no heavy metals reported for the same businesses that report releases in 
adjacent years.  This can be due to alternate year reporting (after 2005) or changing minimum levels at which 
reporting becomes required (EPA 2011b).  Totals include arsenic, copper, lead, mercury, nickel and zinc. 
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Figure 28.  Out of the 10 metals of interest in this study, six have been reported as toxic releases in Lawrence.  
Here they are partitioned into air releases, water releases, or "other," which indicates transport to another site 
for disposal or storage.  Totals also include compounds that contain these metals, in addition to metals in 
elemental form (EPA 2011b). 

 The fate of contaminants illustrated in Figure 28 emphasizes how a significant portion of 

industrial waste is either stored or transported elsewhere for management and disposal.  Nonetheless, a 

portion of the thousands of pounds of metals released annually into the air and water accumulate in 

Lawrence soils over time.  Additionally, waste from past activities adds to the contaminant burden of 

Lawrence soils.   

 As pointed out in the history of U.S. waste management (section 3.2), solid waste management 

is environmentally relevant, especially since industrial and waste management practices of the past did 

not sufficiently hinder contaminants from entering the ecosystem.  Lawrence has two active solid waste 

facilities, one of which handles household hazardous waste (Figure 29).  Another nine facilities in the 

Lawrence area have been closed, one of which was an illegal dump site in East Lawrence.    
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Figure 29.  Solid waste facilities 
associated with the City of Lawrence, KS.  
The active municipal landfill for the city 
is located about 25 miles south of the 
city (not shown).  Also, a previous city 
landfill that closed in 1999 is located 
about 45 miles to the north (not shown).  
The easternmost site was an illegal dump 
near the Kansas River.  The only closed 
waste site that is under “post closure 
care” is the northernmost facility shown 
on the map.  It was a Lawrence city 
landfill that closed in 1976 (Kansas 
Department of Health and Environment 
2011).  Note its upstream location 
relative to Lawrence. 
 

 Finally, environmental pollution can take on more subversive forms, such as via leaky 

underground fuel tanks.  Locations of leaking underground storage tanks (LUSTs), spills of hazardous 

substances, superfund sites, and a list of major polluters by city, among other data are available from 

Homefacts.com with environmental data mined from the EPA and state websites, which for Kansas is 

housed at the Kansas Department of Health and Environment (KDHE).  Lawrence has five superfund sites 

(three in residential areas), 220 leaking underground storage tanks, and reports of 18 spills of hazardous 

substances on the city’s soils (Homefacts.com 2011).  While it is unlikely that LUSTs will directly affect 

topsoil quality in gardens, the superfund sites (all reporting mercury contamination) and the spills 

certainly hold significance for current and future land use at these sites.  On the other hand, LUSTs 

contaminate groundwater sources; hence water treatment policies and practices come into play for 

protection of public and environmental health.  Water sources for Lawrence come from the Clinton Lake 

reservoir, the Kansas River, and occasionally from Kansas River sediments (City of Lawrence 2009).  

Lawrence has a solid record of adhering to EPA water quality guidelines, but trace metals and other 

contaminants occur at measureable levels due to anthropogenic activities, e.g., LUSTs (City of Lawrence 

2009).  
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 Considering the predominant south-southwesterly to north-northwesterly wind direction (AWS 

Truewind LLC 2008), and west-to-east flow of both rivers, both downstream areas to the east and 

downwind areas to the north are likely more influenced by major polluters, e.g., the coal burning power 

plant and Schlumberger manufacturing activities.  Nonetheless, Kansas experiences frequent storms 

with high winds, especially in the spring and summer months, along with associated floods and 

tornadoes, which stir up contaminants and their typical patterns (e.g., plume), further dispersing them 

into other parts of the landscape.  For instance, a 1911 tornado caused heavy damages to the Lawrence 

Paper Mill, sending parts of the building and its heavy machinery down the Kansas River (Associated 

Press 1954).  High winds combined with loading the river with large debris provide two physical 

mechanisms for stirring up contaminants.  Add to this the potential of chemical mobilization through 

flood waters, and contaminant transport can be even more significant.   

 As mentioned earlier, Lawrence experienced several major floods after its inception, including 

the floods of 1903, 1951, and 1993 (Kansas Water Science Center 2009), which certainly mixed up 

contaminated sediments and redeposited them.  Sediments of the Kansas River contain a record of 

these flood events, both in its natural erosion-deposition cycle, as well as chemical traces of 

anthropogenic activities.  Contaminants deposited in the Lawrence area likely include a mix of local and 

upstream sources.  In fact, a study conducted by the United States Geological Survey (USGS) of 

contaminants in sediments from the 1993 flood of the Missouri and Upper Mississippi river basins 

quantified the levels of pollution, including pesticides and trace metals, among other components, many 

of which were from upstream sources of agricultural chemical (Schalk, Holmes and Johnson 1998)  

Therefore, it would be relevant for a gardener to learn if his or her plot was inundated with past flood 

waters, as flooding increases likelihood of contaminants in soils. 

 In summary, Lawrence’s history of successful industries (especially those involving metals), the 

coal burning power plant, the city’s close proximity to major transportation corridors, the frequency of 
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hazardous substance spills and leaky underground fuel tanks, the high potential for homes to contain 

lead paint, and the presence of several closed solid waste facilities means that Lawrence soils have the 

potential to harbor contaminants from these and other sources.  The metals of greatest concern based 

on this history include arsenic, copper, mercury, lead, and zinc.  Furthermore, Lawrence’s physical 

location between two rivers lends a higher potential of flood related mobilization and redeposition of 

local and upstream sourced contaminants.  The additional threat of high winds and tornadoes adds to 

this mixing effect.  A GIS-based analysis (section 4.5) of these risks aids decision making, especially in 

estimating risk from contaminants to determine subsequent action levels, for both gardener and 

policymaker.   

4.4.2.    Garden plot histories 

 Each Lawrence garden plot harbors a unique history.  Certainly those located in the older parts 

of the city will also have longer, more significant histories of human impact.  This section focuses on 

three gardens with longer histories and in closer proximity to potential pollution sources through time.  

The history of Garden Plot #1 (GP-1), on the 800 block of Vermont Street, is perhaps the most 

interesting, as it clearly reflects the national and local history.  Garden Plot #2 (GP-2), at 9th and 

Pennsylvania is situated in a historically and currently industrial area of Lawrence.  Finally, Garden Plot 

#3 (GP-3), located in North Lawrence just a few hundred feet from the Kansas River, sits in the 

floodplain and is near the fertilizer plant, railroad, major roadways, cable manufacturer (Schlumberger), 

and power plant.  A brief history for the remaining seven gardens will be presented, focusing on 

proximity to broad pollutant sources, presence of treated wood, and the date of construction of 

buildings at each site, especially relevant for predicting lead levels and potential for continuing 

contamination. 
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Figure 30.  Locations of Lawrence, KS garden plots (GPs) in study.  Satellite imagery (2009) courtesy of Douglas 
County. 

 

 The notable history of GP-1 (Figure 30), the Vermont Street garden, begins in 1863 when 

construction of a three-story brick building commenced on the west side of the street.  Originally 

conceived to be a retail store, it soon became the Lawrence House (Figure 31), advertised to be among 

the fanciest hotels in Lawrence (author unknown, Watkins Community Archives).  The 50- by 75-foot 

hotel contained 35 rooms, and was advertised to be “refurnished in the best style, and no pains will be 

spared to make guests comfortable” (author unknown, Watkins Community Archives). It was known as 

the “Women’s Rest Room” in 1919, and became vacant in 1929-1930 (author unknown, Watkins 

Community Archives).  Redecorated and re-plumbed in 1931, half of the building was converted into a 
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roofing company.  At the time of this remodel, “rust eaten bayonets” were discovered in the back of the 

building (Lawrence Daily Journal World 1931). 

 

Figure 31. The Lawrence House, where the Vermont Street garden is now located, is pictured here in the late 
19th century.  It was close to the main street, Massachusetts Street, but not on it, "so that visitors could avoid 
the noise, dust, and discomforts of the crowded business area" (Caldwell 1898). 

 History derived from the Sanborn Maps shows a fast-changing suite of neighborhood businesses 

over the years.  In 1883, the Lawrence House was situated on the west side of Vermont Street (between 

8th and 9th Streets) between small dwellings and an abandoned livery a few lots south (Sanborn Map & 

Publishing Company Ltd. 1883).  To the north at the end of the block at 8th and Vermont Streets was a 

grocer and shops selling meat, upholstery, and paint.  On the corner of 9th and Vermont Streets sat 

another hotel, and north of it along Vermont were a few dwellings interspersed with businesses 

included the Turkish Bath Hotel, a grain warehouse, and a furniture varnishing business.  By 1889, the 

first building to the north of the Lawrence House housed a dentist, and the first building to the south 
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was a “negro school.”  Across the street, the corner hotel, named the “Central Hotel” had expanded to 

take up several lots with buggy storage, a feed yard, and sheds (Sanborn Map & Publishing Company 

Ltd. 1889).  Also, new businesses appeared along that east side of Vermont Street, including the A.F.C. 

Wiedemann Pop Bottling & Mineral Water Works, the Kansas Dehorning Company, a wagon shop, a 

carriage house, furniture store, feed shop, and a “hearse house” (Sanborn Map & Publishing Company 

Ltd. 1889).  Not much changed in the businesses along 8th Street at Vermont until 1897, when the map 

shows that a bowling alley had opened two lots north of the Lawrence House and the “negro school” 

was again labeled as a dwelling (Sanborn Perris Map Company Ltd. 1897).  The Central Hotel, bottling 

company, wagon shop, carriage house, and furniture store were still present, but the Turkish Bath 

House was now labeled “tenements” and the dehorning company was gone (Sanborn Perris Map 

Company Ltd. 1897).   

 After the turn of the century, and perhaps partly due to the flood of 1903, many changes are 

noted in the subsequent Sanborn maps (1905).  The Lawrence Hotel still had the dentist as a neighbor to 

the north, but the bowling alley building was gone, replaced by a paint shop (Sanborn Map Company 

1905).  The furniture store and mattress maker on 9th had become a tin shop, and the paint shop and 

grocer were still present.  On the east side of Vermont Street, the Central Hotel and bottling company 

remained and at the corner of 8th and Vermont Streets.  The map displays that a suite of offices and 

auditorium (the Fraternal Aid Building) had been added and a previous building interestingly was now 

labeled “geologist lodge room” (Sanborn Map Company 1905).  Seven years later, the Central Hotel was 

gone and a new hotel had appeared just to the south of the Lawrence Hotel, labeled “King Hotel 

(negro)” (Sanborn Map Company 1912).  The dentist to the north was gone, while the building was now 

used for rooming.  On the southwest corner of 9th and Vermont Streets, the Lawrence City Library had 

been constructed (Sanborn Map Company 1912).  
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 The next Sanborn Map for Lawrence (1918) reflects the then-recent inception of mass-produced 

automobiles.  On the east side of Vermont Street, the 1918 map notes taxi stations, a delivery company, 

an auto repair shop, and an auto paint shop.   Not much changed in the near vicinity of the Lawrence 

Hotel, other than a plumber and a cobbler starting businesses just to the south.  One more significant 

change occurred just across the street, where a new plumbing and tin works business was added.  

Almost a decade later, the auto flavor to businesses had strengthened, as the long vacant area a few lots 

to the south of the Lawrence House had become a lot for auto storage next to a large filling station, 

complete with “vulcanizing & tire service,” washing, and greasing (Sanborn Map Company 1927).  Across 

the street the map notes a new ice cream factory next to an auto junk storage and near the rug 

manufacturer and cleaner.  Numerous auto-related businesses peppered the east side of the street in 

1927 along with a feed and produce company.  By 1949, the Lawrence Hotel had been closed for many 

years; the back half of the old hotel was being used as a warehouse and the front half for rooming 

(Sanborn Map Company 1927, rev. 1949).  Connected buildings to the south were used for selling 

produce and printing.  The neighboring building to the north, which housed the dentist for many years, 

was now listed as “veterinary” (Sanborn Map Company 1927, rev. 1949).  

 The building that once housed the Lawrence Hotel burned down in the Christmas Eve fire of 

1990, which also gutted two neighboring buildings (Taylor and Brack 1990).  The buildings housed 

several businesses, including a printing shop, record shop, and antique and collectibles shop (Taylor and 

Brack 1990).  In 2005, long after the rubbish from the fire was removed, the Vermont Street lot became 

a community garden (Oldridge 2006).  Named the Kansas Mutual Aid Community Garden, it was 

manned by volunteers to grow fresh produce for the needy (Oldridge 2006).  When the community 

garden effort faltered, a local gardener asked the owner for permission to continue the garden.  Today, 

that same gardener works the plot (Figure 32), making extensive efforts to compost on-site and to add 

manure from a friend’s goat farm early every spring (Grimes 2009).   
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 As a result of the age of the buildings and the contents of the buildings that once sat on the 

garden plot, there is a relatively high potential for heavy metals to be present in the soil, including lead 

(from paint and pipes), copper (from pipes, printing equipment), and nickel (from Ni-alloys, e.g., antique 

cutlery).  While neighboring land uses may be relevant, it is more likely that the building that once 

housed the Lawrence House protected the soil while it stood.  Ironically, it later became a likely source 

of heavy metals when it burned down.  An adjacent printing business that burned in the 1990 fire could 

have been a source of lead, arsenic, selenium, mercury, cadmium, and hexavalent chromium, all metals 

once common in printing inks (Fuchs 2008).  Modern printers use different ink compositions and drying 

processes that make contain cobalt, copper, aluminum, barium, and manganese (Fuchs 2008). 

Figure 32. Vermont Street garden in March 2009.  Photo by T. Jackson. 
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 If the building had not covered the soil for about a century, the garden plot may have been 

exposed to silver, gold, platinum, copper, and zinc from the neighboring dentist (Ferracane 2001), 

although any waste released from the dentist’s activities would likely have traveled downslope toward 

the Kansas River, away from the plot.  Upslope activities would be more likely sources of soil 

contamination via storm runoff.  The auto storage and fuel station would have been an upslope source 

of pollutants for the plot, especially lead.  Coal burning from neighboring businesses: the hotels, 

factories, and processing facilities would have been a source of mercury in the soils.  The paint and tin 

shops were downslope, but there was one period when a plumber was located just uphill to the south of 

the lot.  Metals from plumbing activities around 1918 would likely have contained ample lead and some 

zinc (Dunn 2008).  

  Based on the site-specific land use history, especially considering the building as a protector 

from then source of contamination, metals of concern that are most likely to be present in GP-1 are 

lead, zinc, and copper.  However, because the current land use involves adding large amounts of organic 

matter, contaminants will have been diluted, especially in the upper 10 cm, where tilling and mixing in 

of organic matter occurs. 

 Garden Plot #2 (GP-2) (Figure 30) also got its start in gardening as a community garden, and now 

maintains that status as the Eastside Community Garden (Figure 33).  Once a gravel parking lot for boats 

in disrepair, the City of Lawrence granted use to the neighborhood for a community garden along with a 

load of topsoil, spread over the gravel (Swift 2008).  Established in 2003, the garden is comprised of 19 

individual plots, separated by railroad ties or other scrap wood with grassy walkways and a central 

communal herb garden (Mortinger 2009).  The back of the lot houses a shed for tools, picnic tables, and 

a compost area, including one slot for hauled in City compost (Swift 2008).   
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Figure 33. Eastside Community Garden on Pennsylvania Street in the early spring of 2011. Photo by T. Jackson. 

  A land use history based on the Sanborn maps reveals that the garden may be 

influenced by a rich history of industry in Lawrence’s East Side, especially because of its proximity to the 

railroad.  In 1883 the garden lot was empty.  One and one half blocks northeast was the railroad 

passenger depot and one block north sat the Kansas Fruit Vinegar Company (Sanborn Map & Publishing 

Company Ltd. 1883).  The adjacent lot to the north gained a building by 1889 and a half block to the 

north was the Hauber Brothers Cooperage (barrel making) near the fruit vinegar company (Sanborn Map 

& Publishing Company Ltd. 1889).  The “gas works” had been built near the river and railroad at 8th and 

Pennsylvania Streets, with large storage areas for coal and some sizeable areas marked “coke.”  The 

neighborhood also included McFarland’s Planing Mill and the Reedy Brothers Feed and Cider Mill.  At 

this time the New York School had been built as well as several churches and homes in the surrounding 

area, especially toward the west, closer to the center of town.  By 1905 a building was noted on the 
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Sanborn map near the location of the current community garden.  More homes had been built, 

especially toward the south on Pennsylvania Street.  To the southeast, near McFarland’s Planing Mill, 

there was now the Kaw Valley Canning Company.  To the north, the fruit vinegar company had changed 

to W.H. Pendleton, Elevator, & Vinegar Works next to an ammunition and fireworks business (Figure 

34).  The gas works label changed to Lawrence Gas, Fuel, & Electric Light Company and a grocery store at 

8th and Pennsylvania Streets housed a fire proof banana room. To its south sat a “wooden ware, 

matches, and barbed wire” store (Figure 34).  

 From 1912-1918, the garden plot area still showed that the same building and the businesses of 

1905 were still present, although some had changed owners or, at least, names.  The gas plant was no 

longer operational in 1912, and the large coal shed was now labeled as a repair shop.  The coal shed had 

been vacated and by 1918 and the area labeled as the Citizens’ Light Heat & Power Company.  Closer to 

the garden plot, across 9th Street on Pennsylvania was the Standard Oil Company, and just east of this 

was a junk yard.  Notable changes shown on the 1927 map include addition of new businesses, e.g., a 

poultry and egg shipping facility, poultry warehouse (with cold storage), and a “candling” facility (for 

quality checks on eggs).  Just to the east, near 9th and Delaware Streets, another bulk oil station had 

been added with 50,000 gallons of on-site oil storage capacity.  The oil company and junk yard just 

across 9th Street on Pennsylvania expanded operations and were now called the Standard Oil Company 

Bulk Oil Station (including an area for oil and gas storage) and “auto wrecking and junk yard.”  The 1935 

map updates indicate that the auto wrecking and junk yard facility performed radiator repairs and 

included a pipe shop.  The corner of 9th and Delaware Streets still included the bulk oil station and to the 

south there was a lumber storage yard.   

Of all the fossil fuel related industries in the area, perhaps those of greatest concern are near 

10th and Delaware Streets, just two blocks away.  According to the 1927 map last updated in 1935, a coal 

yard next to a canning facility, a National Refining Company, and Richardson Oil Company sat near the 
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railroad tracks to the east.  The junk yard had expanded significantly, taking up much of the available 

space toward the railroad tracks.  Throughout the decades for which Sanborn maps exist, coal storage 

near the railroad within a few blocks of the site may indicate a historic and ongoing source of coal dust, 

a source of trace metals.      

 

  

Figure 34.  A portion of a Sanborn map from 1905 near 8th and Pennsylvania in Lawrence, KS.  The parallel 
lines at the top right corner of the map mark the location of the railroad (Sanborn Map Company 1905). 
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 The likelihood of metals or other toxins being present in this garden plot’s soils also reflects its 

on-site history, much like the Vermont Street garden.  The Sanborn maps show a building located 

adjacent to the garden lot, but no permanent structure is located there now.  One of the current 

gardeners reports that the building had been demolished in recent years (Swift 2008).  Also significant 

for this lot is the potential for deposited contaminants from past flood events, storm runoff, and aerial 

sources for past and present industrial and transportation corridors.  Its recent land use as a boat 

parking lot means that there is a high likelihood that fuel, paint, and other toxic materials entered the 

soils there.  Mr. Swift, a community garden member who requested soil testing, knew of the recent 

history, but was unsure whether the City of Lawrence removed the gravel from the boat parking lot 

before adding the layer of soil (Swift 2008).  Soil testing revealed a layer of gravel at a shallow depth, as 

shallow as 5 cm in some beds.  Boat fuel, oil, batteries, and antifouling bottom paints may contain toxic 

metals, especially lead, zinc, and copper.  Considering the boat parking, destruction of a building at the 

site, proximity to fossil fuels and the junk yard and auto salvage, metals that are most likely present 

include lead, copper, and zinc.  It is possible that cadmium, chromium, and arsenic will also be detected 

due to treated wood at the site and fossil fuel combustion, coal dust, and industrial processes near the 

site.  Each bed within the community garden has undergone differing gardening techniques: some 

gardeners have added compost; others have used commercial fertilizers, etc.  It is expected that there 

will not be continuity in results from plot to plot, both in basic their physical characteristics and in heavy 

metals detected. 

 Garden plot 3 (GP-3) differs considerably from the first two sites because of its soil type, history 

of flooding, no history of a building on or near the garden site, and close proximity to some of the 

highest polluters in Lawrence.  Named the North Lawrence Community Garden, it is the largest of the 

ten gardens in the study.  It is nestled in a residential neighborhood just north of the Kansas River.  For 
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this low lying area, both upslope and upstream land uses can be significant contributors to soil 

contamination, so these will be the focus of the Sanborn map study. 

 Starting with the 1883 Sanborn map, the area was vaguely labeled with four dwellings and three 

stables.  Just upslope, on the block to the north (5th and Locust Streets), three hotels dominated the 

landscape.  On the nearby river bank to the south sat a grain warehouse.  The railroad runs on a north-

south axis just about a block and a half to the east, then makes a quick turn to the west, so it is also 

within two blocks of the garden plot to the north.  By 1889, the largest of the hotels at 5th and Locust 

Streets had gone out of business; consequently, the main building was vacant and some of the other 

areas had been filled with a billiards room, meat seller, and grocer (it was a barber in 1897).  This area 

also housed a coal shed with scales, presumably for selling coal to homes and businesses.  More homes 

appear on both the 1889 and 1897 maps, many on Elm Street, which is just to the north of the plot; alley 

access to Elm Street homes comes within a few feet of the plot.  Upstream businesses include a vinegar 

and cider works, broom factory, and ice houses.  By 1905, the status of North Lawrence buildings 

showed the detrimental effects of the 1903 flood.  Only one business remained on the once busy strip 

on Locust.  One building was labeled “tenement, old and very dilapidated;” the remainder of buildings 

were vacant.  Upstream, the vinegar works and broom factory had persisted.  Remarkably, the 1905 and 

1912 Sanborn maps display the extent of the 1903 flood, which extended into North Lawrence much 

farther in the western portion, sparing the homes on Elm Street just north of the garden plot (Figure 35).  

Fortunately, a sizeable coal yard between Bridge and Rhode Island streets on the north side of Elm 

Street just barely escaped inundation with flood waters (Sanborn Map Company 1912). 
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Figure 35. Portion of a 1905 Sanborn map depicting North Lawrence (1905).  The green area approximates the 
current location of the North Lawrence Community Garden.  Red arrows point to the line depicting the extent of 
the 1903 flood.  Based on the scale of the map, flood waters came within 20-25 linear feet of the garden plot. 
  

 By 1918, the house on the west end of the lot with the community garden had been 

constructed, but few other notable changes were marked.  Most of the nearby buildings, including those 

on Locust Street, were now dwellings.  The 1927 map, by contrast, illustrates more emphasis on freight 

and coal in near-railroad infrastructure, whereas before the landscape had been dominated by a 

passenger depot and grain elevator (built in 1912).  The most notable map update for 1935 includes 

addition of one more coal company near the railroad (Sanborn Map Company 1927, rev. 1949).  No 

flooding occurred at GP-3 in the 1903 event (Sanborn Map Company 1905) or during the 1993 event 

(Hanson 2011), but it may have flooded in 1951, the most extensive of the three floods (Juracek et al. 

2008).   

 The site specific history of this plot reveals less potential for discrete sources of heavy metal 

contaminants or from deposition of contaminated sediments.  Its relative position to the coal burning 

plant, interstate highway, and Schlumberger, and downslope and proximate location to the railroad and 

old coal yards add up to more potential from storm water runoff than aerial sources of related 
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contaminants.  Considering that the garden sits outside of the main contaminant plume (Figure 41), it 

likely has escaped aerial contaminants from the coal burning power plant and the Schlumberger 

company, including lead, copper, mercury, and zinc (EPA 2011b).  However, runoff from coal yards 

would likely contain trace amounts of cadmium, chromium, lead, and nickel, therefore these metals are 

expected to be detected in higher levels than in an upslope soil.  Since the North Lawrence Community 

Garden is not directly downslope of the locations of the old coal yards, but it is near railway and 

roadway transportation corridors, the metals most likely to be detected at elevated levels include lead, 

copper, and zinc. 

 Similarly, just to the east of the North Lawrence Community Garden (GP-3), sits GP-8, a 

strawberry patch at the edge of town that periodically may have been under agricultural production in 

the past.  While the area is not included on a Sanborn map of Lawrence until 1927, it appears to be 

outside of the flood zone of 1903 (Sanborn Map Company 1905).  Because of its nearby location to 

several transportation corridors, it may also have elevated levels of lead, and, potentially, zinc and 

copper.  GP-8 levels are expected to be less than GP-03, which is closer to the pollution sources. 

 Near GP-1 in Old East Lawrence, GP-7 is a communal garden at 1113 New York Street worked by 

several individuals from the area, in addition to an ancillary location just to the north.  The primary 

location is the former residence of Bill Hatke, a legendary local gardener whose friends have devoted a 

website to his memory (Lassman and Bentley 2009).  Mr. Hatke built a house on the lot mostly from 

scrap materials after the previous house burned down (Alsgaard 2009).  Mr. Hatke apparently utilized 

dubious land management techniques, e.g., diverting storm runoff from the alley into a pit near his 

backdoor, where he would enjoy long soaks on hot summer days (Alsgaard 2009).  Mr. Hatke died of 

pancreatic cancer in 2007 and now his home is used by communal group of people sharing 

responsibilities for upkeep and gardening (Alsgaard 2009).  The gardeners use composting (including 

human waste) to increase the quality of the clayey loam soils typical of the area (Alsgaard 2009).  Their 
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concern about toxins in the soil may be founded, as the building that burned down likely had been 

constructed in the period 1883-1889 (Sanborn Map & Publishing Company Ltd. 1883, 1897) when lead 

was common in plumbing and paint.  Contaminants transported to the garden soil from the alley runoff 

could have contained any combination of the ten metals of interest in this study.  Because of this land 

use history, all metals are anticipated to be detected at higher levels than other gardens in the study. 

 Garden plots 4 and 9 (GP-4 and GP-9) sit in neighborhoods that are considered to be parts of 

East Lawrence.  The housing development for GP-4 was constructed after World War II, meaning that 

most of the homes, including the house on the lot with GP-4 are small, ranch-style homes on small lots 

built in the mid 1950s.  The neighborhood of GP-9 appears on the Sanborn Map in 1912, although it 

remains unclear which dwellings have been built as no details are presented, other than a phrase noting 

six buildings on the block.  No buildings were added for the 1918 or 1927 maps, although updates for 

the 1927 maps completed in 1935 show that all the homes currently on the block had been constructed.  

Recall that two small plots are included in GP-9, both very close to adjacent homes, both of which are 

likely sources of lead paint.  The small patch at 2116 New Hampshire Street during sampling appeared to 

contain higher levels of organic matter due to its darker color, and since the gardener had added 

compost several years in a row (Kern 2009).  The next door garden, located only a few feet away and 

separated by a concrete driveway at 2120 New Hampshire Street, also contained added compost, but it 

had been added only recently (Kern 2009).  Garden plots at GP-4 and GP-9 have had few modern 

opportunities for aerial sources of contamination other than road traffic until the 1970s, but they share 

lots with homes that likely contain lead paint.  Because the plots at GP-9 are closer to the homes, it is 

expected that lead levels will be higher here than at a comparable rural soil, although the small plot 

where compost has been added may not show as high a signal. 
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 GP-6 sits downslope of the University of Kansas campus (Figure 36).  The owner of GP-6 noted 

that in previous years, she had difficulty getting any plants to grow in her front lawn (Roth 2009).  She 

suspected that contaminants from an upslope construction site on the campus may have played a role in 

this problem.  The area sampled includes a portion of Ms. Roth’s backyard garden, near a composting 

area and wooden fence where she grows tomatoes.  The University appears on the 1905 Sanborn Map, 

but there were no dwellings on the block where GP-6 is located until four are vaguely noted, but not 

mapped, in 1912.  The same is true on the 1918 and 1927 maps and the 1935 update.  Automobile fluids 

in conjunction with tire and brake wear can be sources of lead, copper, zinc, and cadmium (Wu et al. 

2010).  Because of its landscape position, approximate age of the home, and proximity to potentially 

 

Figure 36. GP-6 is downslope of the university campus, making stormwater runoff a potential source of soil 
contamination, especially because of the direct upslope location of parking lots.  Satellite image courtesy of 
Douglas County, Kansas.  Contours calculated from a digital elevation model (USGS and EROS Data Center 
1999). 
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treated wood posts and fencing, elevated levels of arsenic, cadmium, copper, lead, and zinc are 

predicted.  This garden has also been managed with the addition of City compost; as a result, these 

signals may be weakened by dilution, although the tilth and color of the soil varied somewhat (as noted 

during sampling) from the first to the last sample location. 

 Garden plots 5 (GP-5) and 10 (GP-10) are situated in the southwestern and western parts of 

Lawrence, respectively.  Both of these areas contain newer housing, with the West Lawrence location 

(GP-10) in the newest development in the study.  GP-5 had not been tilled when samples were taken, 

and the gardener added soil and compost after sampling.  The house was built in 1981 and was 

remodeled in 1999-2000 (Williams 2011).  A new wooden fence had just been built previous to 

sampling, but it was unknown as to whether the wood was treated with arsenic-based chemicals.  GP-10 

also sits near a treated wood deck and a portion of the sampled area was in a raised bed surrounded by 

stones, while the remaining area sampled was in the untilled lawn.  A soil sample was also collected near 

a children’s play area characterized by a wooden play structure.  Both GP-5 and GP-10 sit at a relatively 

safe distance from aerial sources of contaminants and newer construction alleviates risk from lead paint.  

However, arsenic remains a potential concern due to the incidence of treated wood near both gardens 

and the plausibility that the plots had been historically used for agriculture when arsenic-containing 

pesticides, including lead arsenate, were prevalent. 

 Geographical Information Systems provide a way to visualize these histories, along with an 

environmental analysis of the region, to help make predictions about where, what, and how much of 

certain metals may be present at a location.  An environmental GIS-based analysis for Lawrence 

comprises the next section, followed by a table that summarizes predictions for the likelihood of certain 

metals to be present for each garden. 
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4.5. Environmental analysis with Geographic Information Systems 

 A Geographic Information System (GIS) was built for the Lawrence study area and for each 

garden.  The Lawrence GIS includes county-level layers on soils (NRCS 2008), elevation, roadways, urban 

areas, rivers, water bodies (ESRI 2002), depth to flood (Kanas Applied Remote Sensing 2009), satellite 

imagery (courtesy of Douglas County), and locations of gardens and soil series type locality sample sites.  

In addition, some of the more significant current and historic sources of environmental toxins are 

included.  Historic land use maps from the Sanborn Fire Insurance Company were digitized for areas of 

Lawrence where the gardens in this study are located.  By taking into account landscape position (e.g., 

elevation relative to potential contaminant source or downwind position), even nearby land uses may 

be a significant source of environmental toxins in a garden.  Because of this factor, a broad scale look at 

the land use history is important, if not equally relevant to the history of a specific lot where a garden is 

now situated. 

 Each garden GIS was designed to help visualize garden size, type, and location, soil sample sites, 

and test results.  Site specific historic land uses derived from the Sanborn maps provides a temporal 

aspect to each garden site, illustrating how land use changed through time, culminating in the snapshot 

of land use captured in a satellite image from 2009.  Regional GIS maps and garden maps, including 

sampling schemes, are provided throughout the following sections. 

 To assess risk of contaminant deposition from past flooding, maps of flooding extent are often 

available from local or state governments or from historic maps, e.g. the Sanborn Maps.  When the 

extent of past flooding is not available, it is reasonable to look at current flooding potential based on 

topography, although past flood events usually change the surrounding landscape of a flooded river.  

The assumption that bank elevation and surrounding topography have not changed significantly is 

reasonable since most gardens will not be located at the river bank.  If a garden were located there, the 

assumption should be made that the soil contains potentially contaminated sediments.   
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 Figure 37 can be used to estimate potential from past and future floods in contaminated 

sediment deposition on each garden plot.  While a few gardens on the south side of the Kansas River 

may be inundated by an extreme flood event, the North Lawrence garden sites are much more likely to 

be flooded in the future due to their lower “depth to flood” (Figure 37).  As previously mentioned, the 

flood waters of 1903 and 1993 did not reach any of the gardens in this study, yet came very close to the 

North Lawrence Community Garden (GP-3) in 1903 and may have flooded it in 1951. 

 

 

Figure 37. Flooding potential estimated from the Kansas Applied Remote Sensing and the Kansas Biological 
Survey "Depth to Flood" layer in relation to garden plot locations (2009).   



110 
 

 Contaminant transport and deposition from air pollution is less straightforward.  A simple 

methodology for making a fair estimate of soil pollution extent from an aerial point source (e.g., a coal 

burning plant’s stack emissions) can be made by taking into consideration wind speed, wind direction 

and frequency (percent from cardinal direction).  A more detailed modeling effort requires additional 

information e.g., stack height, effective height (i.e., height plume extends above the stack), buoyancy of 

the effluent, and air density (Figure 38).  The EPA offers a list of preferred models for studying and 

modeling plumes from a variety of aerial pollution sources (EPA 2010c).  Even within the more complex 

models, wind power and directional time are the strongest predictors of contaminant plumes (Figure 

39).  For the purposes of this study, a prediction of the direction and extent of air pollution (and, 

therefore, the potential pattern and extent of soil contaminants) is made based on wind data from AWS 

Truewind (2008) for Lawrence, KS (summarized in Figure 40).   

 

 

Figure 38. Conceptual model of a Gaussian dispersion model for estimating 
plumes from a point source (Beychok 2007). 
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Figure 39.  Footprint map of arsenic plume from Tacoma smelter (State of Washington Department of Ecology 
2004).  Note the correlation between wind speed and direction (as illustrated by scaled directional arrows) with 
the arsenic contamination pattern and extent. 
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  Plumes in Lawrence extend primarily to the N/NNE direction from the main sources of air 

pollution, including the Lawrence Energy Center and the Schlumberger Company (Figure 41).  

Historically, there were other sources of air pollution, e.g., the Kimball Brothers’ Foundry, but the effects 

were more localized since stacks did not extend high into the air (Figure 41).  The plume pattern and 

extent displayed in Figure 41 as “wind factor” was estimated by the equation  

(2 * Frequency) * Speed * 0.1 (scaling factor) = approximate extent of plume 

 for the cardinal directions.  This formula simply weights frequency at twice the rate of speed to 

characterize the likeliest area containing the densest contaminant plume, a sort of contaminant rose 

rather than wind rose.  The scaling factor is based on the assumption that most pollution occurs within 

one mile (1.6 km) of source stacks (Pullen et al. 2005).  By keeping the calculation simple, the method 

can be used by an individual wishing to estimate levels of potential contaminant fallout from a point 

source of air pollution.  Wind factor calculations extending more than one mile were included on the 

Figure 40.  Wind roses for Lawrence, KS area.  Winds typically blow from the S/SSW direction with the greatest 
energy (including the stormy seasons) and time (AWS Truewind LLC 2008). 
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map as scaled arrows.  While none of the garden plots and very little of the Lawrence urban area appear 

to be influenced by the extent of the mapped plume, these sources of air pollution intersect the nearby 

Kansas River, which can transport contaminants through ground and surface water, both sources of 

municipal water in Lawrence. 

 

 

Figure 41.  Estimated contaminant plume from the two main point sources of air pollution in Lawrence, KS.  
Plume pattern and extent based on wind speed, wind direction and frequency data.  Most of the Lawrence 
urban area is generally unaffected, at least directly, by these air contaminant plumes, including the gardens in 
this study.  Scale of the map is approximately one inch to one mile.  
 

 Finally, other significant sources of air pollution and subsequent contaminant deposition on 

soils, plants, and other surfaces include roadways and railroads.  As discussed in Chapter 3, decades of 

lead additives to fuels created high levels of soil lead that has persisted throughout the U.S. despite the 

phasing out of leaded gasoline from 1973 to 1996 (EPA 1996).  The section of U.S. Interstate 70 (I-70) 

west of Topeka toward Lawrence was the first stretch of interstate highway constructed under the 
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Federal-Aid Highway Act of 1956 (Weingroff 2010).  As a result, for up to forty years, exhaust from 

automobiles traveling along I-70 deposited lead on the surrounding landscape.  Of course, automobiles 

became a significant part of the Lawrence scene before this period, surging in the 1920s, as depicted in 

businesses noted on Sanborn maps of the period (Sanborn Map Company 1918).  Lead additives were 

blended with gasoline starting in the 1920s (EPA 1996); the main roadways in Lawrence would have 

been a source of lead in adjacent soils since this time.  To characterize the potential for lead pollution 

from leaded gasoline, a buffer of the main roadways was constructed.  Since a recent study 

demonstrated that effects from road traffic in an area with similar topography caused elevated levels of 

lead, cadmium, and copper beyond 300m, this buffer distance was used for these metals (Wu et al. 

2010).  Traffic elevates levels of zinc up to 200m, therefore a separate buffer was created for zinc (Wu et 

 

Figure 42. Annex map of "Lawrence Before 1980" used to 
eliminate more modern roadways that would not be significant 
sources of lead from gasoline (City of Lawrence 2007). 
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al. 2010).   Most of the lead from gasoline combustion would have accumulated before 1980, so an 

annexation map for Lawrence for this period (City of Lawrence 2007) is used to eliminate more modern 

roadways where leaded fuel would not have been a source of contamination (Figure 42).  

 The railroad that passes through Lawrence, which was once crucial to the town’s industrial 

development, is now the City of Lawrence’s vehicle for coal transport for the Lawrence Energy Center 

(Westar Energy 2008).  The railroad and a 300m buffer is included on the corridor risk map to account 

for coal dust blowing from the train over the past decades and from coal combustion from early steam 

driven trains (Figure 43).  While the railroad corridor only affects GP-2 and GP-3, every garden in the 

study is within the zone of influence for roadway traffic, meaning that cadmium, copper, lead, and zinc 

may be elevated in the gardens relative to a comparable rural soil (Figure 43). 

 
Figure 43.  Transportation corridors (railroads and roads) have been and continue to be a source of certain 
heavy metals in nearby soils.  The 300m road buffer marks the area of greatest likelihood of finding 
elevated levels of copper, cadmium, and lead whereas the 200m buffer shows where elevated levels of 
zinc are more likely.  Every garden in the study is in an area influenced by transportation corridors.   
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 Although unique to Lawrence, the town’s history shares many environmental components in 

common with other cities across the U.S.  As with this Lawrence case study, Geographic Information 

Systems allow the collection and analysis of historic and modern data to help planners make informed 

decisions regarding next steps in managing the possibility of heavy metals in garden soils.  Prepared 

using qualitative designations (i.e., high, medium, low), Table 6 summarizes predictions for the 

likelihood of detecting metals of interest in each garden plot based on the land use and environmental 

histories.  An evaluation of how these predictions matched results from the x-ray fluorescence 

procedure is presented in Table 16. 

Table 6.  Predictions for detecting heavy metals in garden soils based on general and site specific land use 
histories for each garden plot.  “Low” means that no prior or current land use indicates that the metal will be 
present; “Med” means that one or more prior or current land use or proximity to a pollution source indicates 
that the metal may be present, but not at high levels if it is detectable at all (e.g., a garden near a roadway that 
is not and has never been very busy would receive a “Med” prediction for Pb); “High” indicates that one or more 
prior or current land use or proximity to a pollution source indicates a high likelihood for the metal to be present 
(e.g., a garden on a site where a building had burned down would receive a “High” prediction for Cu). 
 

  
Likelihood of detecting elevated levels of metal 

Site Description Ag As Cd Cr Cu Hg Ni Pb Se Zn 

GP-1 
Vermont Street garden, 
old building burned down Low Low Low Low High Low High High Low High 

GP-2 

Eastside Community 
Garden, was boat parking 
lot Low Med Med Med Med Med Med High Low Med 

GP-3 

North Lawrence 
Community Garden, near 
railroad Low Low Low Low Med Med Low Med Low Med 

GP-4 
1950s ranch-style home 
with backyard garden Low Low Low Low Low Low Low Med Low Low 

GP-5 
1970s development - new 
garden, new wood fence Low Med Low Med Med Low Low Med Low Med 

GP-6 

Down slope from 
University, near wood 
fence Low Med Med Med Med Low Low Med Low Med 

GP-7 
Bill Hatke's old residence, 
old house burned down Med Med Med Med High Med Med High Low High 

GP-8 
North Lawrence garden 
plot near agriculture Low Low Low Low Med Low Low Med Low Med 

GP-9 
Two gardens near old 
homes in East Lawrence Low Low Low Low Med Low Low High Low Med 

GP-
10 

Newest house, but a lot of 
treated wood Low Med Low Med Med Low Low Med Low Med 
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4.6. Sampling and laboratory analysis 

 Soil sampling occurred in March, 2009 for ten gardens in the Lawrence urban area.  Two 

community gardens, one previous community garden (now a private garden producing vegetables for 

the farmers’ market), and seven private gardens were sampled.  Soil characteristics varied widely, as five 

soil series were represented, not to mention vastly different gardening practices and land use histories.  

A representative sample from the county type locality for these five soil series were collected in 

November 2010 for comparison. 

 

 Samples were collected in the Lawrence gardens at a minimum resolution of one per five square 

meters of garden area in a grid pattern (Figure 44); subsamples were collected at two depths, one in the 

plow layer (5-15 cm) and one deeper (25-35 cm) to account for discontinuities laterally and with depth.  

In some cases, shallow soils did not allow for collection at these depths.  In these instances, either a 

single sample was collected at 5-15cm, or the second sample was collected at a deeper depth (e.g., 20-

30cm).  Sampling depths are reported in Appendix A. 

 Once collected, a total of 500 samples was transported to the University of Kansas soils 

laboratory, where they were air dried and stored.  Preparation of samples for analysis occurred in 

Figure 44. GP-3 sampling 
grid established through 
regularly spaced tape 
measures.  Samples were 
taken along tape at 
designated points.  Note 
the differences in garden 
management between 
the cardboard area (left, 
east) compared to the 
right side (west), which 
has been recently tilled. 
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November, 2010 with oven drying (at 60˚C for 24 hours), grinding, and sieving to less than a 2 mm grain 

size.  Next, an x-ray fluorescence (XRF) hand-held device was used for total elemental determination of 

Ag, As, Ba, Cd, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se, Sn, Ti, Zn, and Zr.  The Innov-X XRF Alpha 4000 Classic 

was regularly standardized and calibrated during the elemental analysis.  Tests were conducted at least 

twice per sample for 30 seconds per test.  Longer testing times improve precision (i.e., reduce the 

margin of error), while repeating the test improves both precision and accuracy (EPA 2006c).  Test 

results were then averaged and are reported in Appendix A with standard range of error for each 

element. 

 XRF technology is not only simple to use (point and click), but it is also non-destructive and has 

undergone field tests by the EPA to demonstrate its efficacy for field and laboratory analysis of soil 

toxins (EPA 2006c).  After completing XRF analysis, Munsell colors (both dry and moist) were recorded 

based on Schoenberger et al. (2002), followed by percent weight loss on ignition (LOI) for 100 samples 

(Appendix B).  To prepare samples for LOI, they were again oven dried, and 5-10 g samples were 

weighed in crucibles.  Based on an EPA report (Schumacher 2002), a reasonable LOI program to avoid 

volatilizing inorganic carbonates was to ramp furnace temperatures to 375 ˚C and soak for four hours.  

Once cooled, samples were reweighed; the loss of weight gives a semi-qualitative estimate of organic 

carbon in the samples (Appendix B); this step provided data that allowed evaluation of Munsell color as 

a proxy for estimating organic matter content of garden soils. 

4.7. Results and discussion 

4.7.1.    Summary of detected metals of interest 

 The “RCRA 8 metals,” (Resource Conservation and Recovery Act) are those metals that have 

been determined by the EPA to be the most ubiquitous and toxic, including arsenic, barium, cadmium, 

chromium, lead, mercury, selenium, and silver (National Archives and Records Administration 2011).  

While this list provides a starting point, nickel, copper, and zinc can also be toxic to plants, humans, and 
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other organisms at elevated levels, thus these metals are included in the analysis.  No silver or selenium 

was detected in any of the samples, and toxic barium exposure is unlikely from urban soils.  Barium in 

soils usually occurs as barium sulfate (barite) and barium carbonate (witherite) ores, neither of which is 

particularly toxic to humans (EPA 1998, rev. 2005).  Toxic barium exposure may occur from 

contaminated drinking water or from inhaling barium-rich dust in certain industrial settings (EPA 1998, 

rev. 2005).  These exposure pathways are unlikely to occur during gardening activities; barium is 

subsequently excluded from this analysis.  Therefore, Ag and Se are only included in the summary and 

the metals receiving close scrutiny are: As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn.   

Table 7. Summary of results from XRF elemental analysis, typical metal concentrations found in surface soils, 
levels at which adverse effects occur, and typical detection limits for XRF handheld devices. Values reported in 
ppm (mg kg-1).  Typical surface soil ranges, phytotoxic levels, levels adverse to human health, and typical XRF 
detection limits come from the Environmental Protection Agency study of XRF handheld devices (EPA 2006c). 
 

  Ag As Cd Cr Cu Hg Ni Pb Se Zn 

# samples, 
metal 

detected 0 74 5 13 168 17 19 500 0 500 

Mean n/a 17 70 191 51 28 76 54 n/a 105 

Median n/a 13 71 194 40 22 76 33 n/a 75 

Minimum n/a 9 65 160 32 16 55 14 n/a 32 

Maximum n/a 51 73 227 493 78 100 1108 n/a 1193 
U.S. surface 

soil range 
.01 - 5 1 - 50 .06 - 1.1 1 - 1000 2 - 100 0.01 - 0.3 5 - 500 2 - 200 0.1 - 2 10 - 300 

Phytotoxic 
effects at 

2 10 4 1 100 0.3 30 50 1 50 

Adverse to  
human 

health at 
390 0.39 37 30a 3100 6.1c 1600 400 390 23,000 

 Typical XRF 
detection 

limit 
10 - 45 10 - 20 10 - 50 10 - 50b 10 - 50 10 - 20 10 - 60 10 - 20 10 - 20 10 - 30 

 

a Value for hexavalent chromium.  Level is 10,000 ppm for trivalent chromium. 

 

b Value for total chromium. Neither XRF nor ICP-AES can detect species of chromium. 

 

c Value for methyl mercury.  Level is 23ppm for elemental mercury. 

 A statistical summary of the elemental analysis of these ten metals is provided in Table 7.  Actual 

detection limits reported by the instrument used in the analysis and error ranges are provided in Table 

8.  The XRF detection limit of some metals is high (i.e., As and Hg) relative to levels that are toxic to 
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people and plants, which limits the efficacy of the technology for these metals except as a pre-screening 

technique or where the soil levels are high enough for detection.  Copper and zinc were found to be at 

above-normal levels in some samples at which phytotoxic effects may occur, but not at levels dangerous 

for people.  Nickel was detected within the normal range, but in at least one case at a phytotoxic level.  

No silver or selenium was detected, which may be the result of high detection limits relative to typical 

soil abundances of these elements.  The maximum value detected for arsenic falls just above the normal 

range found in all soils.  However, even a minute level of arsenic is toxic to humans; hence with 15% of 

samples containing detectable levels of arsenic, this finding is cause for concern.   

Table 8.  Limits of detection specific to the XRF instrument and time of test used in this experiment (minimum of 
two tests with 30 seconds of analysis time each).  The XRF instrument provides error range for each reading.  
These values have been averaged to provide a general idea of precision level. 
 

  As Cd Cr Cu Hg Ni Pb Zn 

actual limit of 
detection (ppm) 10 - 11 60 - 65 145 - 150 30 - 33 13 - 15 50 - 65 11 - 15 10 - 30* 

error range when 
detected (+/- ppm)  5 21 57 12 7 22 6 8 

error range when 
detected (+/- %) 28% 30% 30% 27% 27% 30% 16% 10% 

 
*Detection limit never reached. 

     

 Cadmium and chromium were detected in 5 and 13 samples, respectively, but the detection 

limit was higher than typical ranges according to the EPA (2006c) indicating a need for a longer test time 

or perhaps that concentrations where these elements were detected were relatively high.  Cadmium 

was detected at levels toxic to both people and plants, but only in five samples.  Chromium in thirteen 

samples may indicate toxicity, but further testing is required to discover the species of chromium 

present.  A similar conundrum occurs with the results for mercury, as the toxic level for elemental 

mercury (23 ppm) is much higher than that for methyl mercury (6.1 ppm).  Since the soils in this study 

would not provide the typical conditions for methylation of mercury (i.e., oxygen poor, saturated soils), 

the level for elemental mercury (23 ppm) is used as the toxic level for people in this study.  Several soil 
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samples hover near the level toxic for humans and any detectable mercury is phytotoxic.  Finally, lead 

occurred in every sample, mostly within the EPA-designated normal range.  Because some U.S. states 

and other countries have set maximum acceptable levels for lead in bare soil as low as 40 ppm (Murphy 

2009), any value between 100-399 ppm will be considered to be an elevated risk for sensitive 

populations, while 400 ppm and above will be classified as high risk for the purposes of this study.  A 

total of 45 samples fall into the medium risk category, while five samples contained lead levels above 

400 ppm, four of these from Mr. Hatke’s previous residence (GP-7).  Here, one sample measured over 

1100 ppm (well over the bare soil and child play area level of 400 ppm) at a level approaching 1200 ppm. 

Vegetated areas (as opposed to bare soils) are considered hazardous by the EPA at 1200 ppm, so a bare 

soil measurement approaching 1200 ppm at GP-7 is cause for concern (2010b).  

4.7.2.    Comparison to analogous rural soils 

 Five soils representing the type locality of a series within Douglas County were sampled for 

comparison to garden soils of the same series.  Most of the type localities were rural, but every sample 

site was disturbed by human activities, including agriculture, addition of fences and telephone poles, 

road construction, and/or unknown previous uses.  Table 9 demonstrates that while some metals of 

interest were detected in more rural locations, the overall picture shows that urban garden soils contain 

higher levels of these metals than adjacent rural soils from the same series.   
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Table 9. Results for detected metals of interest in five rural type locality series at two depths (A: 5-15cm, B: 25-
35cm).  Compared to urban garden soils, the rural type localities show lower levels of As, Cu, Hg, Pb, and Zn, 
which are common metals associated with anthropogenic activities. Values are in ppm (mg kg-1). “ND” indicates 
that the metal was either not present or below the detectable limit.  Neither silver nor selenium were detected 
in garden soils or in type locality soils. 
 

 

  

 Soils in the most remote locations (i.e., most rural), determined by greatest distance from an 

urban setting, were Pawnee (at the side of a gravel road in an unplowed field, Figure 45) and Martin 

  As Cd Cr Cu Hg Ni Pb Zn 

WoodsonA ND ND ND ND ND ND 26 32 
WoodsonB 11 ND ND ND ND ND 21 70 
MartinA ND ND ND ND ND ND 24 47 
MartinB ND ND ND ND ND ND 25 49 
EudoraA ND ND 197 ND ND ND 23 49 
EudoraB 10 ND ND ND ND ND 27 47 
PawneeA 11 ND ND ND ND ND 14 36 
PawneeB ND ND ND ND ND ND 18 70 
MorrillA 10 ND ND ND ND ND 14 42 
MorrillB ND ND ND ND ND 79 16 40 
Garden mean 17 70 191 51 28 75 55 106 
Garden median 14 71 187 40 22 75 33 75 

Figure 45. Area of Pawnee soil series type locality for Douglas County. 
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(near the intersection of a paved road and a dirt access road, next to a plowed field) returned results 

generally indicating uncontaminated soil.  The one exception is the plow layer of the Pawnee type 

locality where arsenic was detected at 11 ppm (Figure 47).  

  

 

Figure 46. Woodson type locality sample was taken in a wheat field (top left) near a major roadway, 
located about 275 m to the north (top right, looking north).  The Eudora type locality sample for 
Douglas County is also located near a plowed field (middle left), but construction associated with 
high power transmission lines and the plume coming from the Lawrence Energy Center (middle 
right) have likely impacted soil characteristics.  A profile of the Eudora soil is shown, bottom.  
 



124 
 

 

 Arsenic was also detected in the 5-15 cm layer at the Morrill type locality, in the median of 

Kansas State Highway 10 (K-10) (Figure 47), at 10 ppm and in the Eudora B sample at 10 ppm.  This level 

of arsenic falls within the normal range for the United States and the detected levels in the type locality 

samples are near the limit of detection for XRF.  Arsenic was only detected in 15% of all samples for 

Lawrence, but it likely occurs near this level for all Lawrence soils due to the underlying mineralogy.  

Many limestones in shales in the area (Kanas Geological Survey 1999) contain bits of pyrite, a mineral 

that is mostly FeS2, but that often contains other elements, e.g., arsenic, antimony, and bismuth (Ralph 

and Chau 2011).  Thus, it is concluded that while anthropogenic sources of arsenic are plausible in rural 

areas, especially from pesticides, treated wood does not appear to be the source of arsenic in the rural 

soils due to the absence of associated elements of copper and chromium in treated wood products.  

Thus, a county background level of arsenic of geologic origin at 10-11 ppm is more likely.  In urban soils 

Figure 47. Soil associations of Douglas County (NRCS 2010) in relation to type localities for the soil series 
of the gardens in the study.  Type locality sample sites (squares) are coded the same color as their garden 
soil counterparts (circles). 
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with levels above 11 ppm, anthropogenic sources of arsenic are suspected, especially due to the 

prevalence of CCA treated wood products such as fences, decks, and poles. 

 The Morrill type locality sample site (in the median of K-10 near Eudora), appears to be one of 

the most disturbed soils out of the type locality group (Figure 47).  The sample site sits about 30 feet 

west of a highway overpass, therefore the soil was likely intensively mixed during construction of the 

exit, overpass, and highway.  Of the type locality soils, it is the only site to indicate the presence of 

nickel.  Nickel was only detected in 4% of all samples; an anthropogenic origin would likely concentrate 

the metal at the surface (e.g., from burning fossil fuels, incinerating municipal waste, Ni-Cd batteries, 

etc.).  Its detection in the lower layer supports the idea that the Morrill site has been disturbed; another 

plausible explanation is nickel’s increased mobility in mineral soils of higher pH.  Morrill soils have the 

lowest soil organic carbon of all type localities measured (0.6 % by weight), which helps immobilize 

nickel deposited at the soil surface (Tyler and McBride 1982), and this soil series is characterized by 

slight acidity at the surface with gradually increasing acidity at depth (Table 11).  Like the Morrill site, the 

Woodson site series type locality is located near a highway, although rather than in the median, the 

Woodson site sits in the middle of a plowed field (Figure 46).  Woodson contains the highest lead values 

of the type localities, potentially because it is the closest site to a major roadway (about 275 m away), 

within the 300 m zone where pollution from road traffic affects soils (Wu et al. 2010). 

 The Eudora type locality site sits in an urban-rural transition zone just south of the Kansas River 

(Figure 48).  The landscape is dominated by a large swath cleared for high voltage power lines coming 

from the Lawrence Energy Center located a short distance to the northeast.  The transmission lines pass 

through an agricultural field, bordered by a deep ditch (Figure 46).  The site’s proximity to the river and 

recent rains explains the black, saturated soils at the time of sampling.  Samples were retrieved just 

outside of the plowed zone in the agricultural field on the west side of the gravel roadway.  Notable 

detected metals in the Eudora soil include arsenic and chromium.  This was the only sample taken within 
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Figure 48. Relative location of the Eudora series type locality sampling site (orange square) in relation to 
the Lawrence Energy Center and the Kansas River.  It is possible that chromium detected at the Eudora site 
came from the coal burning plant.  Image courtesy of Douglas County. 
 

the estimated air contaminant plumes (Figure 41), which provides a plausible explanation for chromium 

at this site.   A secondary explanation could be CCA on the wooden poles supporting the high voltage 

lines coming from the power plant.  A more detailed analysis of findings comparing series type localities 

to their urban garden counterparts follows. 

 

 

4.8. Garden physical and chemical soil characteristics 

 Findings for each garden site are presented here, including physical and chemical soil 

characteristics and land management techniques.  Table 10 lists garden locations and associated soil 

series, for which Table 11 provides a list of typical series characteristics for Douglas County.  To give 
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context to the results, garden plots are discussed in conjunction with series type locality data.  While 

organic matter levels are discussed here, more information may be found in 4.10 and Appendix B. 

 

Table 10. Garden locations and associated soil series.  Five soil series are represented, all loamy soils with 
varying degrees of clay (National Cooperative Soil Survey 1973).   

Site Soil Series Lawrence Address Description 

GP-1 Ws - Woodson silt loam 809 Vermont Street 
Vermont Street garden, old building burned 
down 

GP-2 Pc - Pawnee clay loam 903 Pennsylvania Street 
Eastside Community Garden, was boat 
parking lot 

GP-3 Ev - Eudora-Kimo complex 226 North 4th Street 
North Lawrence Community Garden, near 
railroad 

GP-4 Pc - Pawnee clay loam 1736 Brook Street 
1950s ranch-style home with backyard 
garden 

GP-5 Mr - Morrill clay loam 2515 Morningside Drive 
1970s development - new garden, new 
wood fence 

GP-6 Mc - Martin silty clay loam 1632 Alabama Street 
Downslope from University, near wood 
fence 

GP-7 Ws - Woodson silt loam 1113 New York Street 
Bill Hatke's old residence, old house burned 
down 

GP-8 Ev - Eudora-Kimo complex 800 block of Oak Street 
North Lawrence garden plot near agriculture 
and old house 

GP-9 Pc - Pawnee clay loam 2116/2120 New Hampshire St 
Two gardens near old homes in East 
Lawrence 

GP-10 Mc - Martin silty clay loam 4600 Grove Street 
Newest house, but a lot of treated wood 
(fences and children’s play structure) 
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Table 11. Gardens soils in the Lawrence, KS case study include five soil series.  Some typical characteristics that 
have been surmised from the representative sample for Douglas County (i.e., type locality) are listed here for 
the uppermost layers (National Cooperative Soil Survey 1973).   
 

Soil series 
Parent 

material horizon color structure other characteristics 

Eudora 
(silt loam) 

Loamy 
alluvium 

Ap - 0 to 7 
in (0 to 18 

cm) 

very dark 
grayish brown 

(10YR 3/2) 

moderate medium 
granular structure; very 
friable 

slightly acid; gradual smooth 
boundary 

A - 7 to 12 
in (18 to 
30 cm) 

very dark 
grayish brown 

(10YR 3/2) 

moderate medium 
granular structure; very 
friable 

many worm casts; slightly 
acid; gradual smooth 
boundary 

Martin 
(silty clay 

loam) 

Residuum 
from silty 

and clayey 
shale 

A1 - 0 to 9 
in (0 to 23 

cm) 

very dark 
brown (10YR 

2/2) 
moderate medium 
granular structure; firm 

medium acid; gradual 
smooth boundary 

AB - 9 to 
14 in (23 
to 36 cm) 

very dark 
brown (10YR 

2/2) 

moderate to strong 
fine and medium 
subangular blocky 
structure; firm;  

most peds have shiny 
surfaces; medium acid; 
gradual smooth boundary 

Morrill 
(clay 

loam) 

Glacial till 
and 

glaciofluvial 
deposits 

A1 - 0 to 
10 in (0 to 

25 cm) 
very dark gray 

(10YR 3/1) 

moderate medium 
granular structure; 
friable 

slightly acid; gradual smooth 
boundary 

B1 - 10 to 
16 in (25 
to 41 cm) 

dark brown 
(7.5YR 4/2) 

very fine and fine 
subangular blocky 
structure; firm;  

medium acid; gradual 
smooth boundary 

Pawnee 
(clay 

loam) 

Glacial till 
and 

glaciofluvial 
deposits 

Ap - 0 to 7 
in (0 to 18 

cm) 
very dark gray 

(10YR 3/1) 

moderate fine and 
medium granular 
structure; friable 

many fine roots; slightly 
acid; gradual smooth 
boundary 

A - 7 to 14 
in (23 to 
30 cm) 

very dark 
grayish brown 

(10YR 3/2) 

moderate fine granular 
to subangular blocky; 
friable 

many fine roots; slightly 
acid; clear smooth boundary 

Woodson 
(silt loam) 

Clayey 
sediment 

Ap - 0 to 8 
in (0 to 20 

cm) 
very dark gray 

(10YR 3/1) 

weak-moderate fine 
granular structure; 
friable 

common fine roots; strongly 
acid; clear smooth boundary 

A1 - 8 to 
11 in (20 
to 28 cm) 

very dark gray 
(10YR 3/1) 

weak-moderate fine 
platy structure to 
moderate fine 
subangular blocky; 
friable 

few fine black concretions; 
common fine roots; medium 
acid 
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Figure 49. The Eudora-
Kimo Association is 
found on the 
floodplain of the 
Kansas River, as 
shown in this figure 
from the Douglas 
County Soil Survey 
(National Cooperative 
Soil Survey 1973).  
The organic rich, 
loamy soil provides 
excellent tilth and 
fertility for agriculture 
and gardening. 

4.8.1.    Garden plots 3 and 8: Eudora-Kimo Association 

 The Eudora-Kimo soil association characterizes floodplain soils developed on alluvium (Figure 

49).  Eudora soils (65%) are typically found on higher parts of the floodplain, while Kimo is found on 

lower, concave areas (25%) (National Cooperative Soil Survey 1973).  Garden plots 3 and 8 are higher on 

the floodplain, thus samples from the Eudora series are used here for comparison. 

 

 As described in Table 11, the “very dark” color of Eudora soils indicates high organic matter 

content.  Laboratory analyses confirmed this high level, with about 1.5% organic matter by weight at the 

type locality and an average of 1.3% for “A” garden samples (i.e., 5-15 cm).  Gardeners at both plots (3 

and 8) had not added compost or other organic matter in recent years, perhaps explaining the slightly 

lower organic matter content of garden soil and demonstrating the extractive nature of gardening 

and/or how tilling leads to mineralization of organic matter.  Organic matter levels at 25-35 cm for both 

gardens averaged 0.6%, still rich in organic matter, indicative of the depositional environment and 

horizon development.  Hand texturing revealed a loamy texture, confirming the soil survey description 

for Eudora soils. 
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 Every metal of interest was detected in the combined results for Eudora garden soils, despite 

the absence of Cd, Cu, Hg, and Ni from the type locality samples (Table 12).  Arsenic was only detected 

in GP-3 (not GP-8), reaching a maximum of 17 ppm in three samples, two of these at B depths (25-

35cm).  Arsenic was also detected in the B depth for the type locality sample, which may indicate that 

arsenic deposited at the surface has moved down through the soil column or that the arsenic is of 

geologic origin.  Arsenic’s mobility increases with increasing pH leading to the possibility that the slightly 

acidic Eudora soils may also provide an explanation of detecting arsenic lower in the soil profile.  GP-8, 

pictured in Figure 53, resides farther away from the industries and main transportation corridors of 

North Lawrence, perhaps protecting the garden from major contaminant sources.    

Like arsenic, cadmium and chromium are only detected in GP-3 (Figure 50). Cadmium appears in 

two samples, over twenty meters apart, one at each depth (A and B), while chromium is only detected 

at the B level.  Mercury was detected in a single sample in GP-8 at the B level and not detected in GP-3.  

Detected levels of As, Cd, Cr, and Hg in GP-3 and GP-8 are potentially detrimental to plants and humans, 

while Ni and Zn (average of 80 ppm) levels may affect only plant health.  

Table 12. Summary of results for the Eudora soil series, including GP-3 and GP-8 and the type locality results (“A” 
subsamples taken at 5-15cm depth and “B” subsamples taken at 25-35cm depth.) 
 

Eudora series As Cd Cr Cu Hg Ni Pb Zn 

Type locality A ND ND 197 ND ND ND 23 49 
Type locality B 10 ND ND ND ND ND 27 47 
Garden statistics n = 206               
Mean 13 72 164 38 16 62 36 77 
Median 11 72 164 37 16 60 33 70 
Min 10 71 160 32 16 55 15 33 
Max 17 73 168 51 16 72 158 329 
detection rate 1.5% 1.0% 1.5% 22% 0.5% 1.5% 100% 100% 
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Figure 51. GP-3, the North Lawrence Community Garden, looking southwest toward the only building on 
the lot.  The Kansas River is located just beyond the homes in the background. The tilled soil at the right 
of the image is associated with the contaminated zone shown in the above figure.  Photo by T. Jackson. 
 

 

Figure 50. Graphic illustrating detected metals of interest in GP-3 (North Lawrence Community Garden) for A, 5-
15cm depth and B, 25-35 cm depth.  A-Lead values were kriged to aid visualization of spatial pattern.  Only one 
sample contained lead above 100ppm, which is also in an area containing chromium and cadmium.  Arsenic 
values range from 10-17 ppm, a level detrimental to human health.   
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 Lead averages are elevated for the garden soils compared to the type locality samples, but they 

are all within a relatively safe concentration range.  GP-8 lead concentrations were in the range of 17-31 

ppm, while GP-3 levels were slightly higher, with only two samples above 100 ppm.  Lead values for the 

top layers of GP-3 (Figure 50) and GP-8 (Figure 52) were kriged (ordinary kriging using exponential 

semivariogram model with fixed search radius of 6m) for spatial pattern analysis.  The result shown in 

Figure 50 illustrates a likely source of lead in GP-3 to the west of the garden.  An old home sits to the 

west and south of the garden, but at a distance where lead paint chips are an unlikely source (Figure 51).  

Alternatively, the main roadway from Lawrence to North Lawrence across the Kansas River is about 

400m to the west of the garden, and a smaller, albeit old residential road (4th Street) runs north and 

south just 50m to the west of the garden.  Another potential source is the railroad, at its closest point 

about 200m to the north.  Leaded fuel is the likeliest culprit for slightly higher lead levels on the side of 

the garden nearest the road, while the one site with significantly higher lead level is likely caused by lead 

paint chipping off a tool or some other point source.  

 The gardens (GP-3 and GP-8) located on Eudora soils contain high levels of organic matter, and 

safe levels of lead.  There are discrete locations of elevated metals including Cd, Cr, Ni, and As for GP-3 

and Hg, Ni, and Zn for GP-8.  Overall, because of the neutral pH, loamy texture, and high organic matter 

content, garden plants and their gardeners are believed to be safe from harmful exposure to noted 

heavy metals. 
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Figure 52. Metals of interest detected in GP-8, a garden located in north Lawrence on Eudora soils.  While most 
metals were not detected, single incidences mercury and nickel correspond to slightly elevated lead and zinc 
levels.  The nearest roadway is situated about to the south (bottom edge) of the map, which likely explains the 
pattern of metals displayed, especially higher levels of Cu (not shown), Zn, and Pb. 
  

 

Figure 53. The GP-8 garden was covered with a cornucopia of strawberries at the time of sampling on 
May 31, 2009. Photo by T. Jackson. 
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4.8.2.    Garden plots 1 and 7: Woodson soils 

 Woodson soils’ upland position and clayey sediment parent material show how varied mollisols 

can be when comparing Woodson to Eudora soils (Figure 54).  The clayey nature of the soils makes 

gardening or otherwise working the soils a difficult task.  Gardeners from both plots (1 and 7) on this soil 

series add organic matter at least annually to build soil tilth, neutralize the moderately acid pH (6-7), and 

increase nutrient availability.  Addition of organic matter in the gardens is confirmed by significantly 

higher organic matter content by weight (2.0% and 1.4% in A and B, respectively) than 1.2% for the A 

layer of the type locality sample as determined by weight loss on ignition.  GP-7 soils had been tilled and 

were dry and structureless (i.e., loessy); consequently, samples were collected at one depth, 15-25 cm. 

 

Table 13. Summary of results for the Woodson soil series, including GP-1 and GP-7 and the type locality results 
(“A” subsamples taken at 5-15cm depth and “B” subsamples taken at 25-35cm depth.) 
 

Woodson series As Cd Cr Cu Hg Ni Pb Zn 

Type locality A ND ND ND ND ND ND 26 32 
Type locality B 11 ND ND ND ND ND 21 70 
Garden statistics n = 153               
Mean 17 68 207 51 22 80 74 124 
Median 13 67 211 43 22 77 29 68 
Min 9 65 180 34 18 67 16 40 
Max 51 72 227 219 27 100 1108 679 
#ND 116 150 149 85 142 142 0 0 
detection rate 24% 2.0% 2.6% 44% 7.2% 7.2% 100% 100% 

Figure 54.  Woodson soils 
are upland soils developed 
on clayey parent material, 
here labeled as loess in this 
figure from the Douglas 
County Soil Survey 
(National Cooperative Soil 
Survey 1973) 
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 No Cd, Cr, Cu, Hg, or Ni were detected in the type locality samples (Table 13) and lead levels 

were within a normal range.  In contrast, all of these metals were detected in GP-1 (Figure 56 and Figure 

57) and GP-7 (Figure 60).  While arsenic was detected in the B level of the Woodson type locality, it was 

found in nearly a quarter of Woodson garden samples, including detection in nearly half of the samples 

from GP-7, Bill Hatke’s previous residence; At this site, detected lead levels averaged three times more 

(34 ppm) than the type locality B level (11 ppm) (Figure 60).   

 Lead and zinc values in GP-1 B level demonstrated a similar pattern of contamination at the 

easternmost edge of the garden, closest to the sidewalk and roadway, with a particularly contaminated 

site at the northeast corner (high in Hg and As) (Figure 56). This corner is closest to the neighboring 

building, which was constructed in the late 1800s (Sanborn Perris Map Company Ltd. 1897) (Figure 58).  

GP-1 contains levels of As, Hg, and Cd that are of concern for human health, while Zn and Ni levels may 

be problematic for plant life.  Copper is detected in 62% of GP-1 samples, whereas it is undetected in the 

type locality samples, pointing to an anthropogenic source, likely from automobiles (Wu et al. 2010).  A 

reading of 195 ppm of chromium (in the A level) is unlikely to be dangerous due to the health status of 

these garden soils, including high levels of organic matter (about 2% in the plow later).  Further testing 

would be needed to determine the species of chromium present, but this is not recommended.  Since 

the shallowest soils correspond to the most contaminated soils near the sidewalk and roadway, it is 

likely that less organic matter has been placed in this area, hence the metal signal is not diluted.  In 

some samples, a record of the 1990 fire is evident (Figure 55). 

 

Figure 55.  A soil profile from GP-1 shows a clear indication of a burn layer about 30cm deep. 
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Figure 56.  GP-1 soils 
below the plow layer 
in the B level (25-
35cm) show high 
values for some toxic 
metals (above), 
especially at the front 
of the garden (eastern 
edge) near the 
sidewalk.  The same 
pattern holds true for 
lead (left), but even 
the relatively high 
levels of lead are 
considered safe for 
bare soil by the EPA 
(2010b). 
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Figure 57. Vermont Street garden (GP-1) plow layer (A, 5-15 cm) values for zinc show one hot spot along with 
discrete incidences of arsenic, nickel, and chromium. 

 

Figure 58. Looking southeast at the Vermont Street Garden in November of 2008.  At the far end of the 
garden near the red car is a large compost heap, which helps to dilute contaminant levels since the 
gardener regularly broadcasts compost over the garden.  Photo by T. Jackson. 
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 GP-7 contains elevated levels of lead with average readings of 350 ppm, a rate ten times greater 

than the GP-7 lead average of about 35 ppm.  GP-7 results for lead indicate a maximum reading of 1108 

ppm, which is cause for concern and appropriate protective action, which is discussed in Chapter 5 

(Figure 60).  With about one third of the GP-7 garden area containing over 400 ppm of lead, care must 

be taken to avoid contact of sensitive populations with the soil until action can be taken to ensure safety 

(e.g., addition of organic matter, phytoremediation, cover crops).  In addition, presence of As, Hg, Cd, 

and high levels of Zn call for corrective land management.  In this soil series, the garden soils clearly 

show evidence of anthropogenic contamination of certain metals (Figure 59), especially when 

considering the absence of most metals of interest in the Woodson type locality samples.  

Figure 59. A gardener down the street from GP-7 reuses discarded materials in his garden for a chicken 
coop and self composting outhouse (left).  Arsenic, chromium, and copper were detected here, 
indicating that some of the wood has been treated with chromated copper arsenate (CCA).  Photo by 
T. Jackson. 
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4.8.3.    Garden plots 2, 4, and 9: Pawnee soils 

 Pawnee soil characteristics closely follow those of the Martin and Woodson soils, as they are 

clayey loams, found in upland areas often on ridgetops, with high natural fertility and water capacity, 

but slow permeability.  Gardens on the Pawnee soil series include the Eastside Community Garden (GP-

2), and two other sites in East Lawrence, the 1950s neighborhood (GP-4), and the older neighborhood 

 

 

Figure 60. Bill Hatke’s old residence site (GP-7) contains several metals of interest (top), including high levels of lead 
(kriged values, top) and zinc (kriged values, bottom).  While bare soil lead levels above 400ppm may be harmful to 
the health of sensitive populations, the high levels of zinc are of concern for plant health. 
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where the gardens sit directly adjacent to the homes (GP-9).  Cadmium was not detected in any Pawnee 

soils, while arsenic, lead, and zinc were detected at fairly typical values for the area in the type locality 

samples (Table 14).  Notably, all metals except cadmium were detected in garden soils, while most of 

these observations occurred in GP-2, the plot with the longest land use history and the garden closest to 

industrial activities of the past and present. 

   Recall that the Eastside Community Garden (GP-2), began with workers from the City of 

Lawrence spreading a layer of soil over a gravel boat parking lot (Swift 2008).  Raised beds were later 

constructed, resulting in its current form (Figure 61).  Some numbered beds in the map were divided 

into two beds at the time of sampling, and the “communal herbs” section was also sampled, totaling 20 

beds with two sample sites each.  In addition, seven samples were taken outside the beds (Figure 61), to 

provide an additional baseline of soil characteristics, especially helpful since every bed appeared to be 

managed differently and the source of soil for the raised beds is unknown. Results indicate that bed soils 

generally contain more of the metals of interest than soils outside the bed, although lead levels exceed 

100 ppm in the two outer sites on the west side of the garden.  Zinc levels outside the beds average 136 

ppm, following the trend of above-average zinc for the whole garden including beds.  Zinc levels above 

50 ppm can begin to be detrimental to plant health. 

Table 14. Summary of results for the Pawnee soil series, including GP-2, GP-4, and GP-9 and type locality results 
("A" subsamples taken at 5-15cm depth and "B" subsamples taken at 25-35cm depth). 
 

Pawnee series As Cd Cr Cu Hg Ni Pb Zn 

Type locality A 11 ND ND ND ND ND 14 36 
Type locality B ND ND ND ND ND ND 18 70 
Garden statistics n = 103               
Mean 19 n/a 182 65 49 70 70 142 
Median 16 n/a 178 43 50 69 60 113 
Min 10 n/a 174 34 17 65 15 37 
Max 50 n/a 194 493 78 76 290 1193 
detection rate 20% n/a 2.9% 46% 3.9% 2.9% 100% 100% 
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Figure 62. The Eastside Community Garden, GP-2, contains about 20 plots that are managed by an equal number 
of people. Photo by T. Jackson. 

Figure 61. Site map of the Eastside Community Garden (GP-2) provided by one of the gardeners (Mortinger 2009).  
The community garden is comprised of raised beds, some of which are further subdivided, such as plot 18.  Purple 
“X” marks have been added to indicate where a sample was taken outside a raised bed.  
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Figure 63. Metals of 
interest for GP-2 in the 
plow layer ("A", 5-15cm 
depth).  Top and 
bottom maps share 
symbology except 
kriged zinc values (top) 
and kriged lead values 
(left).  A clear area of 
contamination occurs in 
the central southern 
beds (nos. 8 and 12), 
even though none of 
the metals occur above 
background levels at 
the nearby sample 
taken outside the beds 
(green dot). 
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Figure 64.  GP-2 metals from 25-35 cm "B" depth.  Zinc, copper, mercury, and arsenic contamination occurs 
predominately in one discrete location.  Bold numbers shown on the map are lead values above 100ppm.  
Although lead levels for the garden are generally below 100ppm, but the highest values occur adjacent to the 
contaminated bed.  
 

4.8.4.    Garden plots 6 and 10: Martin soils 

 Martin soils are also clay loams found in upland locations, but are developed from weathered 

shales, responsible for their high natural fertility combined with slow permeability.  Two gardens on 

Martin soils include GP-6, located downslope from the University of Kansas campus, and GP-10, a 

backyard garden of the newest home in the study.  Organic matter was significantly higher for both 

garden soils than the Martin type locality (2.0% compared to 1.5% by weight, respectively), 

corroborating the gardeners’ reports of adding compost to the gardens.  No metals were detected in the 

Martin type locality samples except for low levels of lead and zinc (Table 15).  The opposite case is true 

for GP-6 and GP-10, where every metal of interest is detected with the exception of cadmium, although 

most of these incidences occur in GP-10.  Lead levels in GP-10 fall just above the type locality levels, 

while GP-6 includes an average of 47 ppm lead, about twice the type locality average (Figure 65). 
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 GP-6 metals of interest are elevated near the treated wood fence, where the highest lead and 

arsenic values occur in both gardens (Figure 65).  Yet, the southernmost sample in GP-6 also contains 

lead, arsenic, copper, and chromium, likely due to its location at the inner edge of the gravel driveway 

and its position at the lowest elevation sampled.  Since the sampled area of GP-6 contains several 

tomato plants, which are known to accumulate arsenic (Burló et al. 1999), action should be taken by the 

gardener to reduce soil arsenic or dilute the signal with organic matter or new soil.  Replacing the fence 

is not recommended since there is no evidence of copper or chromium along with the arsenic; the fence 

may well not be a source of arsenic.  Even if the fence is a source of arsenic, older wood products 

treated with CCA leach less through time, so few gains would be made, if any, by replacing the fence 

(Chirenjea et al. 2003).  A more likely explanation for the high arsenic and lead near the fence is that 

lead arsenate was used as a crabgrass killer at the site or upslope of GP-6 (Folkes 2001). 

 

Table 15. Summary statistics for type locality and garden samples on Martin soils. 
 

Martin series As Cd Cr Cu Hg Ni Pb Zn 

Type locality A ND ND ND ND ND ND 24 47 
Type locality B ND ND ND ND ND ND 25 49 
Garden statistics n = 21               
Mean 15 n/a 213 39 18 85 39 97 
Median 15 n/a 213 39 18 85 28 93 
Min 9 n/a 207 37 18 85 14 51 
Max 24 n/a 219 42 18 85 204 175 
detection rate 38% n/a 10% 29% 4.8% 4.8% 100% 100% 
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Figure 65. Metals detected in GP-6.  Note the dark line across the top of the map, which is a treated 
wood fence.  This may explain the elevated level of arsenic at the sample site nearest the fence.  The 
contaminated site at the south end of the garden is part of a gravel driveway. Satellite image courtesy 
of Douglas County. 
 

 

  
Metals of interest besides Pb and Zn detected in GP-10 include As, Cr, Cu, Hg, and Ni (Figure 66).  

The sample site containing As, Cr, Cr, and Hg occur near a deck (Figure 67), probably built with lumber 

treated with chromated copper arsenate (CCA) to prevent decay (Chirenjea et al. 2003).  In a separate 

sample taken near the children’s play area, arsenic was detected under the swing (away from posts) at 

13 ppm, indicating the potential for arsenic on the surface of the wooden play structure, although 

neither copper nor chromium were detected, and arsenic is near the county background level (Figure 

66).  While the soil arsenic level may not be of concern, it is recommended that children wash their 

hands after playing on the structure.  Mercury and arsenic in the soil can be managed through continued 

addition of organic matter and avoidance of arsenic accumulating crops.  Chromium is likely at a safe 

level and in a safe form (i.e., trivalent chromium) due to the biogeochemical conditions of this soil 

(Barnhart 1997).  However, the deck can be a continuing source of chromium, copper, and arsenic 

(Chirenjea et al. 2003), thus caution should be taken in planting food crops near the deck. 
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Figure 66. Metals of interest detected in a backyard garden in west Lawrence (GP-10).  The yellow 
streak near the center of the image is a slide from a children's play area, where arsenic was detected 
(13ppm) in a separate sample. Image courtesy of Douglas County. 
 

 Figure 67. The GP-10 transect passes through several different areas from lawn to raised beds near a 
wood deck. Photo by T. Jackson. 
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4.9. Evaluation of land use history as predictor of heavy metal presence 

 At the end of the section about garden plot land use histories (4.4.2), predictions were made 

regarding which metals of interest would be elevated compared to type locality samples (Table 6).  Table 

16 outlines an evaluation of these predictions.  Discrete incidences of cadmium, chromium, mercury, 

and nickel were generally not expected, but occurred in a seemingly unpredictable pattern.  Like lead, 

copper and especially zinc were elevated in most garden settings, with typically higher values in areas 

with longer human land use histories, probably due to their association with automobile traffic (Wu et 

al. 2010).  Arsenic patterns were difficult to predict, except in gardens with wood products that have 

probably been treated with CCA.  The presence of arsenic in four out of five type locality soils indicates a 

background level of 10-11 ppm, which is near the lower detection limit for XRF hand-held devices.  Lead 

was predicted to be elevated in all urban garden soils relative to the more rural type locality sample 

locations, which occurred with the exception of GP-8, the most rural garden in the study. 

   Overall, land use history provided a good baseline for predicting which metals might be elevated 

at a given urban location, especially for arsenic, copper, lead, and zinc, which were detected in fairly 

predictable dispersion patterns in Lawrence.  Because the XRF device only detected five incidences of 

cadmium, all within 65-73 ppm, and cadmium is also typically associated with road traffic, it seems that 

the XRF technology in this case failed to record cadmium at levels that would allow for contaminant 

pattern attribution.  Chromium, nickel, and mercury contaminant patterns were not predictable in 

Lawrence, namely because there are few indicators that these metals have been released into the local 

environment (EPA 2011b).  Environmental and land use histories were effective in predicting which 

metals would be detected and, in many cases, effective in qualitative predictions of urban levels relative 

to rural soils (Table 16). 
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Table 16. Evaluation of predictions (see Table 6) of metal levels based on land use history.  Blue shading 
indicates a correct prediction and pink indicates an incorrect prediction.  Green shading indicates a prediction 
that is neither right nor wrong.  For instance, if a metal was not predicted to be elevated, but it was detected in 
few samples at a low level, the prediction is categorized as green.  “TL” stands for type locality. 
 

 
Likelihood of detecting elevated levels of metal 

 Site Ag As Cd Cr Cu Hg Ni Pb Se Zn Comments 

GP-1 

Low Low Low Low High Low High High Low High 

Cu, Ni, Pb, and Zn were expected to 
be elevated, which was the case.  As 
was elevated, and Cd, Cr, and Hg 
were detected twice each, all of 
which were not predicted.  

GP-2 
Low Med Med Med Med Med Med High Low Med 

As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn 
were predicted to be elevated, 
which was the case, although Hg was 
only detected in one sample.  

GP-3 

Low Low Low Low Med Med Low Med Low Med 

Elevated Cu, Hg, Pb, and Zn were 
predicted and only Hg did not occur. 
Cr values were similar to TL.  Two 
incidences each of Cd and Ni 
occurred, but were not predicted. 

GP-4 
Low Low Low Low Low Low Low Med Low Low Only Pb was predicted to be 

elevated, which was the case. 

GP-5 

Low Med Low Med Med Low Low Med Low Med 

As, Cu, and Cr were anticipated to be 
higher because of possibly CCA 
treated wood, but no Cr was 
detected. Pb and Zn were elevated, 
as predicted, relative to TL. 

GP-6 
Low Med Med Med Med Low Low Med Low Med 

As, Cd, Cr, Cu, Pb, and Zn were 
predicted to be elevated and only Cd 
was not.  A single incidence of Hg 
occurred, but was not predicted. 

GP-7 
Med Med Med Med High Med Med High Low High 

All metals were predicted to be 
elevated, and were except Ag, which 
may have been elevated, but below 
the detectable level. 

GP-8 

Low Low Low Low Med Low Low Med Low Med 

Zinc and copper were slightly 
elevated, although Pb was not 
compared with the TL. Single 
incidences of Hg and Ni occurred, 
which were not predicted. 

GP-9 
Low Low Low Low Med Low Low High Low Med 

Pb, Cu, and Zn were elevated, as 
predicted, but As was also detected, 
which was not predicted. 

GP-10 

Low Med Low Med Med Low Low Med Low Med 

As was detected with Cu and Cr 
(CCA), as predicted.  Zn and Pb were 
elevated, as predicted.  Single 
incidences of Ni and Hg occurred but 
were not predicted. 
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4.10. Evaluation of soil color for estimating soil organic matter 

 Munsell soil color has been used for decades for estimating organic matter content.  

Quantification of soil organic matter can be expensive, time consuming and, at times, inaccurate 

(McCauley et al. 1993).  Recent efforts to quantify this relationship have shown that there is a 

relationship between texture, color, and organic content, but the predictive capability of texture and 

color for organic matter is not strong (Schulze et al. 1993, Konen, Burras and Sandor 2003).   Using a 

chromameter may improve the precision of predictions, but the equipment is expensive, hence it is not 

a feasible solution for an urban gardener or municipality.   A recent study evaluated Munsell color from 

a color book as well as a chromameter to evaluate the ability to quantify organic matter based on color 

and sample depth at a regional level for prairie soils and agricultural soils (Wills, Burras and Sandor 

2007).  Using a simple stepwise linear regression model, the authors found that Munsell value and 

chroma with sample depth provided the best model for estimating soil organic carbon.   

 Here the Wills, Burras, and Sandor procedure (2007) is used to build a model for predicting soil 

organic carbon (SOC).   XRF analysis for heavy metals gives volumetric concentration of iron and 

manganese, which have long been understood to affect soil color (Murti and Satyanarayana 1971).  

Starting with the factors of dry and moist Munsell HVC (i.e., Hue, Value, Chroma), sample depth, and 

iron and manganese content (mg kg-1) for all soil samples, a simple step-wise linear regression was 

performed to determine which factors were most significant for Lawrence garden soils.  The statistical 

analysis calls for a normally distributed dataset, an often unrealistic possibility for soil datasets.  To 

overcome this obstacle, SOC values (% by weight determined by Loss on Ignition) were log10 

transformed to give a more normal distribution.  Then, outliers were removed from the dataset (e.g., 

city compost was eliminated since it is not representative of a local soil and other samples that 

appeared to contain high levels of compost were also removed), and iron and manganese values were 
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normalized.  The best model (R2 = 0.634) (Figure 68) took into consideration normalized iron content 

(nFe), sample depth midpoint (depth), and moist Munsell value (mMV) to give: 

y = 1.108 + 0.6693(nFe) - 0.01105(depth) - 0.06919(mMV) 

 

Figure 68. Linear regression model for predicting soil organic carbon (%) in Lawrence gardens using moist 
Munsell values, sample depth midpoint, and normalized iron content.   
  
 The feasibility of creating one predictive model for garden soils across the United States is 

unlikely due to the vast differences in soil characteristics from place to place.  Add to this the infinite 

variety of management procedures used by gardeners.  That said, the creation of localized models is 

possible with sufficiently high quality data.  Perhaps a municipality or local gardening group, collecting 

data through time, would eventually have a large enough dataset to create a localized model for 

predicting soil organic carbon in the area.  Meanwhile, gardeners can continue to observe Munsell color, 

particularly value (lightness and darkness), to estimate organic content of soils.  A simple goal, e.g., 

attainment of a field moist Munsell value greater than three, simplifies the procedure while 

accomplishing the task of ensuring sufficient organic matter to offer protective mechanisms against 

toxic metals.  The Munsell value of three was derived from data for agricultural soils in Wills, Burras and 

Sandor (2007), since soils with Munsell values nearing 3.5 typically approached 1.5 to 2% organic 

content.    
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4.11. Conclusions 

 The variety of gardens and soil characteristics in this study demonstrates an equally diverse 

range of land use histories.  Land use history proved to be a fair predictor of certain metals (namely As, 

Cu, Pb, and Zn), while others seemed to randomly appear or not appear in samples (Cd, Cr, Hg, Ni).  

Since As and Pb are among the most toxic metals to humans that can bioaccumulate in foods, this is 

promising for the technique.  Yet, Cd is also high on this list, and it was difficult to predict its occurrence 

using land use history, at least for Lawrence.   

 Metals of interest occurred in every garden, either with elevated levels across the extent of the 

garden or in elevated levels at discrete locations.  Additionally, metals were detected in differing 

patterns at two depths that were only separated by 10 cm.  The broad and discrete patterns of heavy 

metal contamination and different patterns at depth demonstrate the need for better sampling 

procedures than is typically recommended, especially at finer scales.  Representative samples do not 

capture discrete contaminant patterns, or at least the signal would be dampened, especially in mixed 

samples from discrete locations.  Even in broader contaminant patterns, such as occurred with zinc, the 

range of values across a garden varied up to an order of magnitude.  The sampling scheme employed 

here, where a minimum of one sample was taken per five square meters, indicates an effective starting 

point for characterizing a general contaminant pattern.  In gardens with more discrete polluted areas, 

additional sampling at a finer scale can provide a detailed map of the extent of the contamination.   

 Sampling and analyzing soils from series type localities is useful for estimating local background 

levels of trace elements, especially arsenic, copper, lead, and zinc.  Lead and zinc occurred in all samples 

while arsenic levels hovered near the limit of detection.  It is supposed that arsenic likely occurs in most 

soils of the county from geologic sources at or near 10 ppm.  Type localities in this case were all affected 

by anthropogenic activities, but their rural locations demonstrated a contrast between urban and rural 

trace metal levels, particularly noticeable in levels of Pb, Zn, and Cu.   
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 Soil color in conjunction with sample depth and iron content predicted soil organic carbon with 

a fair level of precision, but the statistical procedure used to formulate the relationship is not feasible 

for a typical urban gardener.  Only with the support of a group of gardeners or a municipality would one 

be able to attain a large enough dataset to create a predictive model using step-wise linear regression.  

Until more work can be done in this area, gardeners can ensure a level of protection from most toxic 

metals through sufficiently high soil organic carbon based on field moist Munsell values greater than 

three.  These case study findings guide the form and direction of decision support procedures for 

gardeners and policy makers (Chapter 5), while evidence from the soil analyses and land use histories 

validates the need for such procedures. 
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Chapter 5. Helping Gardeners Navigate the Policy and Urban Soil Landscapes  

 A current rebirth in urban agriculture in the United States stems from several converging ideas.  

Old ideas have reemerged, like stewardship, connection to nature, improved health in physical, mental, 

and spiritual realms, and a desire to consume less and to pollute less.  Add to this the emergence of new 

ideas, e.g., moderating urban microclimates (i.e., creating urban cool islands), a focus on local food and 

people, and a way to connect children with the food they eat.  These old and new ideas intersect within 

the urban and policy landscapes where most people live.  Urban landscapes and their soils demonstrably 

contain higher levels of certain metals that can damage plants, animals, and people.  These same urban 

landscapes are governed by layers of rules imposed by governments, communities, and property 

owners.  Information about how to traverse potential physical barriers like unhealthy soil and access to 

land and how to overcome rules such as garden-unfriendly policies, will aid gardeners and policymakers 

in promoting the resiliency of the U.S. food system through local food production.  Help with these 

issues is provided here, in the form of a general policy briefing and decision support procedures, 

designed to overcome some of the more significant obstacles to healthy urban food production.   

5.1. Policy environment for urban gardening in the U.S.  

 National policies that affect urban gardening do so by either facilitating the growth of local food 

markets or by encouraging the current food system status quo of vertically integrated food production, 

processing, and packaging, increasingly centralized ownership, and overproduction of commodities, e.g., 

corn and soy, which heighten prices for fresh produce, for instance (American Planning Association 

2007).  Local policies affecting urban agriculture vary widely across the United States, and can also serve 

to hinder or facilitate local food markets.  Local policies that encourage development of the local food 

market usurp the national food system status quo by decentralizing food production, processing, 

packaging, land access and ownership, and by increasing production and access of fresh produce  

(American Planning Association 2007).  Because of these circumstances, local planners and policymakers 
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may be best suited to effect change to the food system and to allow grassroots efforts to thrive.  Three 

policy areas have been identified that require attention by gardeners and policy makers wishing to 

enliven local food production:  access to land, clarity of relevant laws and regulations, and the ability to 

sell produce (Erickson et al. 2009). 

 The policy and planning landscape of a particular community is outlined in the zoning 

ordinances and land development codes of the governing municipality.  These codes and ordinances 

concern the first two factors, including access to land (in the sense of allowed land uses) and clarity of 

governing rules.  A first step to understanding rules governing land use is to understand that a plot of 

land is subject to laws of different levels of government.  Especially important are city and county rules, 

although state and federal rules may also come into play.   

 For gardeners wishing to establish a garden while following rules and regulations, they can 

determine most applicable rules by visiting the county’s planning commission website or offices.  The 

county planning commission can provide information about allowed land uses (i.e., zoning codes and 

regulations) and any development regulations that are in place.  For instance, the Douglas County 

Planning Commission website lists the usual land development code, subdivision regulations, 

commercial design standards, and zoning regulations, but it also lists local phenomena, e.g., the KU-City 

land use agreement (Douglas County 2011).   Although the legal verbiage of these documents may seem 

intimidating, it is important to understand whether gardening is allowed by determining allowed land 

uses at one’s garden plot. 

 Zoning documents provide general regulations governing land use, building requirements, and 

the health and safety of the public.  For a particular site, the first step is to identify the property of 

interest on a zoning map like the one shown for Douglas County (Figure 69) to determine the designated 

zoning code or base district (i.e., Agriculture, Residential, Commercial, Industrial, etc.). Each base 

district/zone has specific guidelines for allowed and disallowed activities or land uses outlined in the 
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zoning documents.  Exceptions may be granted for particular land uses by the zoning board of a 

municipality, called Conditional Use Permits, which allow land uses outside the regulatory framework of 

the designated use.   

 

 Many municipalities, especially those in the Midwest, allow agricultural uses (i.e., gardening) in 

most land use categories, but this observation should be determined on a case-by-case basis.  Many 

larger cities have historically asserted more restrictions on agriculture in certain zones, e.g., Historic 

Districts or Historic Landmarks.  These “overlay districts” superimpose existing zones and have special 

rules meant to protect the cultural value, aesthetics, functionality, or specified future land use (i.e., 

transportation development).  The special rules applying to overlay districts are sometimes called 

 

Figure 69. Zoning map for Douglas County depicting zones of allowed land uses outside Lawrence 
city limits.  An interactive zoning map for inside city limits is available on the county planning office 
website (Douglas County 2011). 
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restrictive covenants or declarations, but this term is more accurately used to refer to rules established 

by neighborhood associations or similar entities (New York City Department of Planning 2011).  

Residential restrictive covenants range from banning unsightly activities (which can sometimes include 

gardens) to establishing acceptable exterior paint colors.  In the United States, restrictive covenants 

differ from zoning regulation because covenant creation and enforcement lies between landowners 

whose properties are subject to the covenants compared to governmental policing power with zoning 

ordinances (Bevans 2009).  Commercial restrictive covenants govern such things as heights of buildings 

which may hinder views of/from culturally significant buildings, building heights near airports, or limiting 

businesses or business practices that are considered dirty, unhealthy, or unsightly for a particular area 

(Bevans 2009).  Finally, easements or areas designated for access or use by entities other than the land 

owner (i.e., rights-of-way, power lines, access to public areas, etc.), can influence where a garden is 

located (Bevans 2009).  While gardening in easements is technically allowed in most cases, since the rule 

primarily concerns access, the garden must not hinder access and the gardener must be aware that it 

can be damaged by digging, trampling, or paving.  

 In the U.S., there is a growing effort not only to add urban gardening as a permissible use in 

some zones, but to promote the practice as a part of urban revitalization.  For instance, Cleveland, Ohio 

has established a zoning code designated as “Urban Garden District” to “meet needs for local food 

production, community health, community education, garden-related job training, environmental 

enhancement, preservation of green space, and community enjoyment” (FindLaw 2011).  Boston was at 

the forefront of this movement by creating “Open Space Subdistricts” in 1988 providing a 

“comprehensive means for protecting and conserving open spaces through land use regulations” (City of 

Boston 1988).  Seattle has a 5-year strategic plan for expansion of community gardens (City of Seattle 

2000), Milwaukee has studied community garden trends and recommendations (Bremer, Jenkins and 

Kanter 2003), and Portland has a Diggable City Plan (Balmer et al. 2005).  These advances and 
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accomplishments promoting urban gardening highlight two points:  first, that the policy landscape 

differs from city to city, and second, that urban dwellers, governments, and planners generally are 

becoming more accepting and even advocating gardens in urban settings.  Sustainability in urban design, 

which often includes more green space, has become a central goal for urban planners who seek to 

reduce resource consumption, pollution, ecosystem damage, social inequality, and urban heat islands 

(American Planning Association 2007).  Sustainable designs such as the eco-village theme strive for 

designs that provide services while achieving a harmonious balance among all living things (Dawson 

2006).    

5.2. Lessons from two cities 

 As urban gardeners have struggled to overcome obstacles to growing and selling produce within 

city limits, many have reported lessons learned to help continue advancement in improving our food 

system.  This section focuses on two cities, including Lawrence, Kansas, where forward thinking 

individuals found ways to encourage progress, even when local policies seemed to be blocking their path 

forward.  Flint, Michigan has a long history of urban gardening efforts and currently maintains a vibrant 

urban gardening scene despite some policy barriers.  Just as we can learn from a land use history, a 

policymaking history can streamline decision making and planning for the future. 

5.2.1.    Lawrence policies that affect urban gardening 

 The City of Lawrence combines its efforts with the related Douglas County offices in planning 

arenas that concern both entities.  One such area includes the future vision for the City and County, as 

well as the topic of sustainability.  The County recently added a Department of Sustainability and the 

Sustainability Coordinator, Eileen Horn, started her position sharing time between the County and City 

offices.  One of Ms. Horn’s responsibilities includes acting as facilitator of the new Food Policy Council, 
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established in September of 2009 by the Douglas County Commission (Douglas County Department of 

Sustainability 2011).  

 The City’s and County’s emphasis on sustainability is not exceptional in the United States, but it 

is unusual for a Midwestern city of its size.  With Lawrence’s agricultural surroundings combined with a 

history of environmental concern (relative to surrounding cities), the addition of sustainability to a local 

governmental office is not surprising.  According to the Department of Sustainability website (2011), the 

Food Policy Council (FPC): 

Will serve as a forum for discussion and coordination for community-wide efforts to 
improve the Douglas County community’s access to local food supply and distribution 
networks. Therefore, the FPC will focus on the following priority areas:  

• Economic development and entrepreneurial opportunities related to local food 
production and consumption 

• Improved health outcomes 

• Positive environmental quality impacts 

• Increased access to, and distribution of wholesome, local food 

• Support for local producers of sustainable food products 

• Identification, preservation, and/or sustainable development of local resources 
including soil, agricultural land, important breeds/cultivars, water, skilled labor, 
capital, and markets 

• Increased education and awareness on the part of Douglas County residents 
regarding the benefits of locally produced foods 

 The first meetings of the FPC involved forming subcommittees and discussing the group’s 

charges as listed above (Douglas County Department of Sustainability 2011).  The FPC’s first year has 

seen efforts to measure and map the “foodshed” of the region, meaning land in or available for 

production within 100 miles of a city (Thompson Jr., Harper and Kraus 2008).  Unfortunately, the model 

does not appear to take into consideration soil health.  The policy/infrastructure subcommittee has 

been working to map the foodshed, while the DIRT subcommittee focuses on preserving land (Douglas 

County Department of Sustainability 2011).  
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 Very few policy barriers, if any, exist for urban gardeners in Lawrence.   Table 17 outlines each 

ordinance that directly or indirectly influences gardening practices, including operating a garden on a 

site, use of sewage sludge, composting, greenhouses, and farmers’ markets.  Lawrence is surrounded by 

rich agricultural land and this pervades the policy environment within the city limits.  Every zoning 

district allows agriculture (i.e., here agriculture includes plant propagation or gardening) with the 

exception of I-1, limited industrial.  Of the industrial and manufacturing uses allowed in this zone, no 

agriculture is mentioned.  Other industrial districts, I-2, I-3, and I-4 allow agriculture, but because of the 

polluting industries also allowed, gardening may not be appropriate in these zones.  

 Additional guidelines are found in the City of Lawrence Land Development Code (City of 

Lawrence Planning and Development Services 2006).  This document provides detailed rules related to 

development and implementation of the Lawrence/Douglas County Comprehensive Land Use Plan, 

Horizon 2020 (City of Lawrence 2011).  Authored by a joint group representing City and County officials, 

the Horizon 2020 Comprehensive Land Use Plan “allows the decision makers to look at the entire 

community and the effects of land use decisions on the community as a whole to determine whether 

individual proposals are consistent with the overall goals of the community.”  A proposed environmental 

chapter starts with the mission statement:  

Identify environmental resources present in Douglas County, and draft goals, policies 
and strategies to support protection, conservation, and management of these resources 
in the context of development activity, planning, and government operations, to achieve 
a livable, vibrant, and healthy community. 

 Lawrence, like many towns and cities across the U.S., is experiencing a gardening renaissance.  

In 2008, a sub-group of the Lawrence Sustainability Network was formed, called SLUG – Support for 

Local Urban Gardeners (Lawrence Sustainability Network 2008).  The goal of SLUG involves various tasks 

from education through tilling yards, whatever it takes to help local folks start and maintain a garden.  

Considering the lack of zoning restrictions, establishment of a Department of Sustainability, the above-
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referenced vision for a healthy, vibrant community, as well as the existence of the Farmers’ Market and 

organizations like SLUG, urban gardening in Lawrence has a bright future.  

Table 17. City of Lawrence zoning ordinances affecting gardening practices. 
 

Article Section Explanation relative to gardening 
4. General provisions, 
districts, and district maps 

4-1 Districts 
established 

Defines land use designations, called “zones” or “districts” 

 4-6.10.02 Sewage 
disposal systems 

Use of sewage sludge prohibited 

 4-6.10.03 Disposal 
of garbage, 
rubbish, & refuse 

Language prohibits composting practices that were done in a 
manner where “health hazards and offensive odors” were 
produced 

6. “A” Agricultural district 
regulations 

6-1 Purpose of district is to provide full range of agricultural 
activities. 

7. “A-1” Suburban home 
district regulations 

7-1 and 7-2 Use 
regulations 

Allow same uses as “A” but with low density development 
on land not served by public sewer facilities. 

8. “R-1” Single-family 
residential district 

8-1 and 8-2 Use 
regulations 

Allows same uses as “R-1,” but with limitations on raising 
birds, bees, animals, fish or other creatures to objectionable 
to surrounding residences. No retail, wholesale office/store. 

9. “B-1” Neighborhood 
business district 

9-1 and 9-2 Use 
regulations 

District provides retail shopping and personal service uses. 
Allows same uses as “R-1.” 

9A. “B-3” Limited business 
district 

9A-1 District permits and encourages grouping of certain retail 
activities and services.  Item 11 allows for a greenhouse. 

10. “B-2” General business 
district 

10-1 and 10-2 Use 
regulations 

Provides sufficient space in appropriate locations for a wide 
variety of activities.  Allows same uses as “B-1” and more. 

11. “I-1” Limited industrial 
district 

11-1 and 11-2 Use 
regulations 

Provides sufficient space in appropriate locations, usually in 
planned industrial subdivisions, for certain types of business 
and manufacturing, none of which include agriculture. 

12. “I-2” Light industrial 
district 

12-1 and 12-2 Use 
regulations 

Intended primarily for light manufacturing, fabricating, 
warehousing, and wholesale distributing.  Allows any use in 
“B-1” or “B-2” and more.  

13. “I-3” and “I-4” Heavy 
industrial district 

13-1 and 13-2 Use 
regulations 

Provides for industrial operations of all types. Protected 
from intrusion by commercial uses, signs, and dwellings.  
Item 4 allows for propagation of plants and seasonal sales of 
these products.  

14. “V-C” Valley channel 
district 

14-1 and 14-3 Use 
regulations 

Prevents development in flood prone areas. Item 1 allows 
for gardening & Item 7 allows one farm dwelling per five 
acres. 

19. Supplemental use 
regulations – Conditional 
Uses – Temporary Uses 

19-1 and 19-1.01 
Conditional uses 
and conditional 
use permits 

Permits awarded in any district in which certain uses are 
prohibited when these uses are recognized as desirable 
because they are in the interest of the public health, safety, 
morals and general welfare of the community. 

 19-4 Conditional 
Uses Enumerated 

Enumerates Farmer’s Market, Fruit and Vegetable Stand, 
Retail Nursery, and Value-added Agricultural Business (e.g., 
milling wheat, making jam, etc.). 

25. Certificate of Occupancy 25-1 and 25-2 No vacant land and no buildings used until a certificate of 
occupancy and compliance has been issued except for 
strictly agricultural purposes. 
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5.2.2.   Lessons about urban garden policy from Flint, Michigan 

 A study outlining recent policy and planning hurdles encountered by urban gardeners in Flint, 

Michigan provides guidelines for others experiencing similar trials (Masson-Minock and Stockmann 

2011).  One topic that emerged from public discussions focused on the differing planning and regulating 

requirements for urban gardening (i.e., community or backyard gardens) versus urban agriculture, which 

is perceived as consisting of larger-scale, for-profit operations that require more municipal services e.g., 

trash pick-up, parking, and access to municipal water and a source of electricity.  Flint commissioners 

made the point that the distinction is important from a policy standpoint because more demand for city 

services and effects on neighbors calls for closer scrutiny of planned operations (Masson-Minock and 

Stockmann 2011). 

 Although the planning commission so far has resisted major policy changes, they took away 

some of the administrative barriers to building permit approval for structures, e.g., hoop houses 

(Masson-Minock and Stockmann 2011).  Hoop houses are composed of a metal or plastic frame of 

hoops covered in plastic, which allows an extension of the growing season during cold temperatures.  

Hoop houses fell under regulations as permanent structures since they would be in place longer than 

180 days, even though the structures can be easily moved or disassembled.  This status meant that an 

expensive, lengthy permitting process was required, a difficult task for a non-profit organization wishing 

to erect a hoop house in Flint (Masson-Minock and Stockmann 2011).  Other issues receiving public 

scrutiny were rules about keeping animals including chickens, goats, and bees.  While certain allowances 

were made by the commissioners, they left major changes for the next phase of city master planning. 

 Authors of the Flint urban agriculture study provided a policy change guidebook of sorts, 

applicable to planners, policymakers, and gardeners alike (Masson-Minock and Stockmann 2011).  Their 

recommendations have been adapted into a decision tree found in Figure 70.  In addition, the authors 
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provide a list of suggested amendments to ordinances that need to be changed (Masson-Minock and 

Stockmann 2011, 104). 

 

Figure 70.  A selection of assessment questions that help urban gardeners and agriculturalists determine the 
policy landscape of their city and what actions will need to be taken where change is called for.  Adapted from 
Appendix A of Masson-Minock and Stockmann (2011). 
 

5.3. Best practices in plot management for gardeners 

 Many gardeners continually educate themselves about topics related to gardening, e.g., ways to 

increase yields or natural pest control.  Because of this embedded desire for improvement, it seems 

reasonable that gardeners, once they become aware of a potential threat to their personal and plant 

health, would proactively seek solutions just as they have done for other garden issues.  The following 

procedure presumes the proactive nature of the user, while, at the same time, considers various levels 

of resource availability, including time, money, information, and access to information.  Clearly urban 
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gardeners must first become aware of the issue for the procedure to achieve the goal of informed 

gardeners and working for increased soil resiliency and ultimately, improved community and ecosystem 

health.  Since 2008, at the inception of this project, information on urban soil contamination available 

on the internet has increased substantially.  But as awareness has increased, there is yet no accessible 

advice for gardeners to detect and manage soil toxins themselves.  The following procedure attempts to 

fill this gap.  It is made accessible by its decision tree form and because it offers alternative pathways 

depending on resource availability.   

 Step 1: Define goals 

 Important questions for the gardener to ask include, “What is the scope of this garden?  Will the 

produce be offered for sale at a local market?  Will the garden area be expanded?”  The answers to 

these questions establish which policies may affect gardening activities and how to proceed with soil 

assessment and land management. 

 Step 2: Understand the relevant policies 

 If the gardener intends to grow produce for sale, s/he will need to look into rules governing 

where sale of products can occur.  Sometimes antiquated rules place burdens on gardeners wishing to 

sell produce.  A variety of solutions, from offering delivery through the Community Supported 

Agriculture (CSA) model to trading produce for services or other goods, may be a more achievable goal 

in the short term.  Gardeners wishing to consume their own produce will not encounter restrictive 

policies in most cases.  On the other hand, some neighborhood associations enforce strict guidelines 

regarding aesthetics, which can affect where a garden may be placed.  By initially determining what 

gardening activities are allowed and where the garden can be legally sited will ensure fewer hurdles.  

Finally, in order to achieve certain goals, laws and regulations may need to be amended.  The guidelines 

presented in Figure 70 provide a starting point, while the publication by Masson-Minock and Stockmann 

offers more specific advice (2011). 
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 Step 3: Construct an environmental land use history for your plot  

 All soils under human occupation for any significant period show a record of that occupation.  

Since a large majority of soils in the United States have been impacted by human activities at one time 

or another and many of these activities have left a chemical signature, even in rural garden plots a land 

use history is worthwhile in planning efforts.  The myriad online resources available to the public can aid 

in making a general assessment for the region or city, while a more concerted effort will be required to 

reconstruct a more detailed history.  General and site-specific information can be derived from Sanborn 

Maps, often available through the public library system.  Many communities store archived historic 

records, available either through community museums or libraries, city archives, or even individual 

collectors.   

 An equally important component to reconstruct is the environmental history of the region.  

Scorecard.org and Homefacts.com provide compiled environmental data for many cities, searchable by 

zip code (Scorecard 2005, Homefacts.com 2011).  In addition, state health and environment 

departments maintain public searchable databases, sometimes in interactive map form.  The home page 

of the EPA provides a searchable component (by zip code) that links the user directly to the 

environmental topic of interest for that region, including water and air quality, national priority sites 

(e.g., Superfund sites), and other relevant statistics (EPA 2011a).  A summary of resources used to 

reconstruct the environmental and land use history of Lawrence garden is listed in Table 18.  The 

sources listed for air pollution and water quality can also be used to assess continuing sources of 

contamination, vital information for constructing a feasible plan for safety and resiliency of a garden 

plot. 
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Table 18. Suggested sources for constructing an environmental and land use history of a plot. 
 

Information type Application Potential sources 

Historic land use Date buildings constructed Sanborn maps, county registry, building title 

 
Onsite, nearby land uses over time Sanborn maps, city archives 

  Dates and extent of fires, floods, etc. Newspaper archives, community museum 
Air pollution 
sources 

Prevailing wind speed & direction for 
plume estimates 

Windroses from 
EPA.gov/ttn/naaqs/ozone/areas/wind.htm 

 
Type, amount of stack pollution, etc Scorecard.org, Homefacts.org, EPA.gov/TRI 

  Transportation corridor pollution Historic maps of railroads, roadways, etc. 
Water pollution 
sources Quality of municipal water supply Local municipal water supplier, EPA.gov 

  Contaminated flood waters Historic maps; FEMA flood insurance maps 

Waste facilities 
Past, present municipal, hazardous waste 
sites EPA.gov/waste 

National priority 
sites 

Location of known and hazardous 
contaminated places Homefacts.org, EPA.gov/superfund/ 

Climate data 
Dates, intensity of floods, droughts, 
climatic averages 

National Climatic Data Center at 
NCDC.noaa.gov 

 

 Step 4: Know your soil 

 County soil surveys are available for virtually every county in the United States, a majority in 

digital format from the USDA Natural Resource Conservation Service.  By simply determining which soil 

series a garden soil belongs to will provide general information about the parent material (which can be 

used to estimate background metal levels) and typical physical and chemical characteristics.  Even 

knowing the texture of the soil can help assess mobility of metals (the coarser the soil, the more mobile 

the metal, in general).  Furthermore, where XRF or other semi-quantitative or quantitative soil testing is 

inaccessible, estimating organic matter content through Munsell value provides a measure of soil 

resiliency and its ability to sorb metal cations, i.e., keeping them in the soil rather than accumulating in 

plant tissue. 

 Step 5: Use the decision support tool 

 Armed with information, including a land use history, current and past environmental concerns, 

and basic soil characteristics, the gardener can use the decision support tool (Figure 71) for determining 
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what the next steps should be.  For instance, a gardener in West Lawrence, whose house was built in the 

1980s and has an organic rich soil, may determine that the best course of action is to compost his/her 

own food and yard waste (which allows for knowledge of what constituents are contained in the organic 

matter) and add the organic matter to his garden soil.  On the other hand, a gardener in the plume of 

the biggest polluters in Lawrence may determine that extensive soil testing is necessary to learn about 

current contamination levels.  Furthermore, this gardener may conclude that gardening in the 

contaminant plume (or living in it) is not in his/her best interest.  Once the gardener uses the decision 

support tool (Figure 71) to find the logical next steps (e.g., further testing, addition of organic matter, 

appropriate plant selection), the supplemental information will aid in planning (Table 19, Figure 72, and 

Table 20). 
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Figure 71. Decision support tool for urban gardeners wishing to assess level of soil contamination for deciding 
next steps.  Action levels and advice on sample collection are available in Table 20 and Figure 72, respectively.  
Creating recommendations for mitigation or remediation and offering a list of preferred soil testing laboratories 
are areas of future work.  

 

  

Are there any 
new sources of 
contamination 
(air, water, etc)?

Is the (suspected) 
pattern of pollution 
discrete or broad?

Continue to 
maintain and 
build soil 
health 
through 
addition of 
known and 
safe sources 
of organic 
matter.

Analyze soils in the root 
zone, at least one sample 
per 5m2 (7 yd2).  Did you 
find  action levels of  
heavy metals?

With no new 
contamination, 
soil management 
and plant 
selection will 
suffice in most 
cases of broad 
contamination of 
As, Cu, Pb, & Zn.

Hold off on 
gardening 
directly in the 
soil until testing 
can be done 
and/or the 
pollution source 
can be stopped.  
Consider bringing 
in new soil.

Does the land use history hint at 
possible soil contamination?URBAN GARDEN SITE ASSESSMENT 

DECISION TREE FOR URBAN GARDENERS

No Yes

Does your soil 
contain at least 1% 
organic matter?

No
Yes

YesNo

Occasional soil 
monitoring is 
called for where 
resources allow.

Add organic 
matter and work 
into the soil. 

Do you have access 
to XRF technology?

YesNo

Broad Discrete Yes No

Is the source a 
continuing risk?

No Yes

Map the area  of 
contamination by XRF 
analysis at a finer spatial 
scale (i.e. One sample per 
1m2).  For now, plant a 
cover crop (e.g. grass) in 
this zone. Do you have Cr 
or Hg?

Do you have access 
to XRF technology?

Yes

YesNo

Laboratory 
testing is 
required to 
determine 
metal 
species.

No

Consider 
contacting your 
local 
government  for 
assistance in 
soil analysis and 
remediation, if 
needed.   In the 
absence of help, 
then

With a map 
of problem 
areas, you 
can now 
create a 
remediation 
plan and 

For information on action levels, remediation 
plans, and laboratory testing, see supplement.
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Table 19. Action levels and levels at which an expert should be consulted for select metals as determined by 
toxicity to human and plant health and typical soil ranges.  Recommended actions include further testing (FT), 
plant selection (PS), addition of organic matter (OM), and pH control with liming (Keep pH below ~8; see Error! 
Reference source not found. for more information).  
   

 
Ag As Cd Cr Cu Hg Ni Pb Se Zn 

Typical 
range in 

surface soils 0.01 - 5 1 - 50 
0.06 - 

1.1 
1 - 

1000 2 - 100 
0.01 - 

0.3 5 - 500 2 - 200 0.1 - 2 
10 - 
300 

Phytoxic 
effects at 2 10 4 1 100 0.3 30 50 1 50 

Adverse 
human 

health at 390 0.39 37 30a 3100 6.1b 1600 400 390 23,000 

Action levels 
of metals 5 20 1 1 100 1 150 200 2 150 

Recommend
-ed action(s) OM PS, OM 

PS, 
OM, 
pH FT, pH 

OM, 
pH FT 

OM, 
pH 

PS, 
OM, 
pH OM 

OM, 
pH 

Seek expert 
advice at 10 40 2 30 200 1 300 400 4 300 

 

a Value for hexavalent chromium.  Level is 10,000 ppm for trivalent chromium. 

 

b Value for methyl mercury.  
Level is 23ppm for elemental 
mercury. 
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SOIL SAMPLE COLLECTION PROCEDURE 

1. Gather equipment. 
2. Calculate area to be tested: (area = length x width) 
3. Calculate number of sample sites: (#samples = area(ft2) / 50) or (#samples = area(m2) / 5) 
4. Determine grid pattern of sample sites; number the rows for labeling ease. 
5. Lay out measuring tape for each column to locate sample sites. 
6. Collect samples from just below the surface at each grid point; note depth 

 If using XRF, take reading at each grid point. Repeat for higher precision. 
7. Place samples in labeled bags. 
8. Send samples to appropriate testing facility. 

 
Optional steps 
 

1. Besides a written record, picture taking provides another record of the sampling procedure 
and observations. 

2. Use the Munsell soil color book to determine soil color throughout the garden (not 
necessarily at every sample site; a few would be sufficient, especially where differences are 
observed). 

3. Use a hand texturing chart to determine soil texture class.  Note moisture content (i.e., dry, 
moist, or saturated). 

4. Take note of current and recent weather conditions (e.g., has it rained recently? Is it sunny 
today?). 

 

 
Equipment list   Optional items 

• Notebook, pencil  - Camera 
• Measuring tape  - Munsell color book 
• Ruler    - Hand texturing chart 
• Small, sealable plastic bags - Calculator 
• Shovel or spade  - XRF handheld device 
 

Figure 72. Soil sampling instructions, a supplement to the decision support tool. 
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 Step 6: Plan next steps 

 Gardeners using the decision support tool will be directed to take one or more of several 

actions, including: 

1. Continue to build and maintain soil health through addition of known and safe sources of 
organic matter. 

2. Continue to monitor soil health where continuing sources of contamination exist. 
3. Utilize appropriate plant selection to avoid root uptake and subsequent ingestion of certain 

metals. 
4. Contact a soil expert or local government for assistance in soil analysis and remediation. 
5. Do not garden until the soil can be tested and the pollution source can be stopped. 
6. With a map of soil contamination, a risk mitigation plan can be formulated.  Utilize plant 

selection, pH control, and addition of organic matter for managing known problem areas. 

 Action number one from the above list mentions “known and safe sources of organic matter.”  

While much of this document advocates for addition of organic matter to increase overall soil health and 

resiliency, some products that contain organic matter may also contain harmful constituents, including 

toxic metals.  By composting food items and yard waste from known sources, the gardener controls the 

quality of organic matter placed on his soil.  Action two also takes into consideration new or continuing 

sources of contamination.  The information gathered by the gardener up to this point reveals whether 

there is a current source and the new awareness includes continued monitoring with ongoing pollution.  

This is where water and air quality become central themes.  For example, even the well-meaning 

gardener collecting rainwater from his/her roof may need to consider heavy metals that are leaching 

from asphalt shingles or the consideration that when a neighbor removed lead paint from his house 

with a pressure washer, some of the contaminated water and paint chips entered the soil. 

 Plant selection, the third potential recommended action, can help mitigate risk in slightly 

contaminated soil.  Since plants differ physiologically in the way they interact with soil, water, and air 

contaminants, a list of which plants concentrate which metals in their tissues is helpful (see Table 4).  

Even with a long history of studying plant uptake of certain metals, many experiments do not mimic in 

vivo conditions, limiting the applicability of the results.  However, even a general understanding, e.g.,  
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that leafy vegetables should not be planted in soils high in lead or cadmium, can help gardeners 

minimize consumption of toxic metals.  Lead in the home garden is discussed at several websites and at 

least one offers practical advice specifically geared toward home gardeners (Rosen 2002).  More 

information is available for certain metals than others (Table 20).  For instance, since mercury typically is 

not taken up by plant roots, it was not part of the bioaccumulation studies.  Exposure to mercury and 

chromium will more feasibly happen with touching or breathing contaminated soil.  Lead, arsenic, and 

cadmium are the stronger bioaccumulators, while high levels of nickel, zinc, and copper cause more 

problems for plants than people.  Further collection and synthesis of known bioaccumulation research is 

needed to aid gardeners in appropriate plant selection.  Meanwhile, general advice, such as the example 

above, will have to suffice.   

Table 20. Summary of information on plant bioaccumulators presented in Table 4 and elsewhere in this 
document.  While a “yes” indicates that an aforementioned research study found bioaccumulation of the metal 
in the plant, the absence of “yes” does not mean the particular plant is not a bioaccumulator of the metal. 
 

Bioaccumulators As Cd Cu Ni Pb Zn 

Leafy vegetables   yes yes yes yes yes 

Celery and cabbage yes yes         

Root vegetables (mainly peels) yes yes yes yes yes   

Tomato yes yes         
Squash (e.g., zucchini, 

cucumber)   yes   yes   yes (leaves) 

Mushrooms     yes     yes 

Pine nuts   yes         

Nuts           yes 
 

 Finally, action step six rewards the highest level of information gathering and synthesis, 

facilitating advanced planning for risk management and increased soil health.  The absence of soil 

remediation from the action steps is indicative of its challenges.  For instance, phytoremediation, (the 

intentional planting of bioaccumulators to remove a certain metal from the soil) is typically a very slow 

process, and the plants must be regularly trimmed and plant waste disposed of properly (in a landfill or 
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hazardous waste facility).  The process has been demonstrated to be quite effective, but it precludes 

gardening during the years that phytoremediation is occurring.  Since the goal here is to promote 

gardening, other actions are favored to tackle contaminated soil, e.g., soil removal, addition of new soil, 

or dilution of the contaminated signal with addition of organic matter.  Beyond depression of a signal of 

contamination, addition of soil organic carbon via biochar provides supreme conditions for the dual 

benefits of soil rejuvenation and reductions in bioavailability of certain metals such as arsenic (Hartley et 

al. 2009).  Biochar is being hailed as a panacea that will revitalize degraded soils, sequester atmospheric 

carbon, increase crop yields, and mitigate soil toxins, matters relevant to urban gardening (International 

Biochar Initiative 2011).  Current and future work to quantify these effects from biochar will provide 

another layer of options for urban gardeners seeking to produce a safe and healthy crop. 
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Chapter 6. Future Work 

 A resilient food system requires healthy soil and a distributed production pattern.  Resiliency 

provides more opportunities and a greater capacity to adapt to change.  The design of this project, 

exploring ways to encourage urban gardening, emphasizes a holistic approach, maintaining the need for 

healthy soils as a foundation to affect change at the community level, eventually extending to the 

national level.  Without resilient soils, both gardening and efforts to modernize food policy fail.   

 The overarching goals of this project, to help individuals produce safe, healthy food to create 

bottom-up change on the U.S. food system comprises a life’s work.  What this project has accomplished 

is to provide proof-of-concept of some key ideas, including: (1) using land use and environmental 

histories to predict what metals are most likely present in a plot, (2) establishing a minimum garden soil 

sampling resolution of one sample per 5 m2 to effectively capture overall patterns and concentrations of 

detected metals, (3) rejecting, for now, that Munsell soil color may act as an effective proxy for 

estimating soil organic matter by gardeners, and (4) developing decision support tools to help gardeners 

apply these concepts for increasing soil health and provide guidance in navigating policy landscapes. 

 While proof-of-concept has been established, only a scratching of the surface of applicable 

procedures has been achieved.  More work will be required to make any positive impact on garden soil 

management and local and national food systems.  For the idea of using history to estimate occurrence 

of metals, the results here provide only guidance for Lawrence gardeners.  Repeating the study for 

multiple cities in a variety of settings with different histories will serve to establish general patterns that 

can then be applied broadly.  A deeper investigation into prior land use linkages to certain metals can be 

started by conducting a local environmental history for each metal.  A local history connected to a GIS 

analysis of known areas of pollution from anthropogenic and geologic sources can be a powerful tool for 

land use managers, policymakers, and planners. 
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 The repetition of the Lawrence garden study format will also shed light on new ideas and 

relationships between the natural and anthropogenic histories of a place.  The palimpsest concept will 

become a lens for interpreting GIS-based soil, garden, human, environmental, and policy landscapes.  At 

the same time, there will be a growing number of gardeners who employ these techniques; as a 

welcome consequence, decision support tools can evolve as lessons are learned.  For example, further 

work on proxies for estimating soil organic matter will fill a gap in the current tool, which fails to provide 

a good estimator.  A connection was made during the course of this work with the lead author of the 

Wills, Burras and Sandor soil color study (2007) that successfully predicted soil organic carbon using soil 

color.  Dr. Wills has agreed to collaborate on a study that builds on this concept, using data mined from 

the National Soil Information System. 

 Addition of organic matter is endorsed throughout this work as a simple way of immobilizing 

toxic metals, so communicating effective ways to add healthy sources of organic matter is essential.  

More work in the field of biochar research will help fill this void, including research on effective 

production  and application procedures (see International Biochar Initiative 2011 for overview, see 

Odesola and Owoseni 2011 for review of production technologies) as well as how biochar can address 

toxic metals (Uchimiya et al. 2010, Uchimiya et al. 2011, Cao et al. 2011, e.g., Hartley et al. 2009).  

Furthermore, more research in the area of organic matter quality in general will be helpful.  Biochar is 

unique in its variable levels of stability and increased purity of composition (Lehmann and Joseph 2009), 

while compost purchased from a gardening center may contain an array of components including 

undesirable trace metals.  Quantifying the components of biochar and commercially available composts, 

then educating the public about the results, can further gardeners’ understanding of varying qualities of 

sources of organic matter.  This may also provide an incentive for garden composting, which gives 

ultimate control over what constituents are added to the soil by the gardener. 
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 While adding soil organic matter to a garden soil can help immobilize heavy metals and reduce 

bioavailability, the metals remain in the soil and can still be ingested, breathed, or enter the body 

through the skin.  More work in the area of exposure pathways of individual metals for urban 

populations would inform decision making of gardeners and policymakers.  Additionally, there is a need 

for more in vivo studies of plant uptake of heavy metals, especially for common garden plants.  While 

some of this has occurred, the contrast in results between studies gives no consensus, no master list of 

what plants to avoid, for instance, when a garden contains high concentrations of a certain metal.  And 

disagreement among state and federal policies that set “safe” levels of metals in soils adds another layer 

of complexity to the issue.  Some of the disagreement or even lack of established standards occurs 

because metals behave differently under different conditions.  Yet, the same complicated reality occurs 

in Europe, where many more countries have established soil safety standards. 

 A major barrier for urban gardeners wanting to make informed decisions remains: the 

inaccessibility of XRF technology.  While it is accessible in the sense of ease of use, the devices are cost-

prohibitive (i.e., ~$37,000 to buy or $1000/week to rent based on spring, 2011 prices) for gardeners and 

most municipal governments.  One suggestion for municipal governments suspecting toxic levels of 

metals in their jurisdiction is purchase the device so that gardeners can request a soil metal analysis for 

a modest fee, or the device can be rented or borrowed by gardeners.  XRF handheld technology is 

relatively new, so perhaps, as is often true of new technology, the price will drop over time.  In any case, 

the problem of cost of soil analyses has not been addressed in this work, as hoped.  Because of this 

shortcoming, efforts will be redoubled to establish known linkages between land use history, 

environmental history, and the soil characteristics of a plot, and gardeners will be encouraged to enlist 

plant selection, composting, and pH control.  These components of the study are accessible to all 

gardeners, serving the goal of increasing resiliency of soils, and ultimately, the U.S. food system.
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Appendix A 

Garden 
Plot     
(GP) 

sample 
# 

sample 
depth 

(cm) 

As         
+/- 
5 

ppm 

Cd         
+/- 
21 

ppm 

Cr          
+/- 
57 

ppm 

Cu          
+/- 
12 

ppm 

Fe          
+/-  
300 
ppm 

Hg          
+/- 
7 

ppm 

Mn          
+/- 
46 

ppm 

Ni          
+/- 
22 

ppm 

Pb          
+/- 6 
ppm 

Zn          
+/- 8 
ppm 

1 1 5 to 15 ND ND ND 36 16645 ND 369 ND 42 101 
1 2 25 to 35 12 ND ND 40 25052 18 357 ND 40 88 
1 3 5 to 15 14 ND ND ND 22187 ND 338 ND 31 88 
1 4 25 to 35 ND ND ND 42 22335 ND 416 ND 36 63 
1 5 5 to 15 ND ND ND ND 24160 ND 594 ND 43 74 
1 6 25 to 35 ND ND ND ND 18786 ND 280 ND 22 40 
1 7 5 to 15 ND ND ND 66 26879 ND 496 ND 21 53 
1 8 25 to 35 ND ND ND 46 22894 ND 261 ND 18 44 
1 9 5 to 15 ND ND ND 37 21848 ND 496 ND 31 74 
1 10 25 to 35 13 ND ND 54 27842 ND 435 ND 20 58 
1 11 5 to 15 ND ND ND 35 22460 ND 493 ND 38 65 
1 12 25 to 35 ND ND ND ND 23283 ND 382 ND 37 67 
1 13 5 to 15 ND ND ND ND 19404 ND 435 ND 33 89 
1 14 25 to 35 ND ND ND 43 19382 ND 340 ND 44 41 
1 15 5 to 15 ND ND ND ND 22503 ND 474 ND 28 57 
1 16 25 to 35 ND ND ND ND 22724 ND 466 ND 33 60 
1 17 5 to 15 10 ND ND 35 21076 ND 431 ND 22 62 
1 18 25 to 35 ND ND ND 37 26349 ND 472 ND 30 64 
1 19 5 to 15 ND ND ND ND 21665 ND 388 ND 31 62 
1 20 25 to 35 ND ND ND ND 24811 ND 217 ND 22 54 
1 21 5 to 15 ND ND ND 38 18000 ND 428 ND 34 108 
1 22 25 to 35 35 ND ND 58 67591 24 598 ND 265 509 
1 23 5 to 15 ND ND ND ND 17324 ND 305 ND 28 53 
1 24 25 to 35 ND ND ND 44 21348 ND 438 ND 23 70 
1 25 5 to 15 ND ND ND ND 23450 ND 415 ND 21 57 
1 26 25 to 35 ND ND ND ND 21210 ND 372 ND 16 51 
1 27 5 to 15 10 ND ND ND 23312 ND 451 ND 22 75 
1 28 25 to 35 ND ND ND ND 24001 ND 390 ND 30 58 
1 29 5 to 15 10 ND ND ND 23423 ND 340 ND 22 65 
1 30 25 to 35 ND ND ND ND 19595 ND 200 72 22 40 
1 31 5 to 15 ND ND ND ND 21067 ND 680 ND 27 101 
1 32 25 to 35 ND ND ND ND 21343 ND 414 ND 21 51 
1 33 5 to 15 ND ND ND ND 22272 ND 584 ND 32 67 
1 34 25 to 35 ND ND ND 35 26408 ND 418 ND 26 70 
1 35 5 to 15 13 ND ND ND 20096 ND 446 ND 35 106 
1 36 25 to 35 13 ND ND 47 23810 ND 381 ND 31 63 
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Garden 
Plot     
(GP) 

sample 
# 

sample 
depth 

(cm) 

As         
+/- 
5 

ppm 

Cd         
+/- 
21 

ppm 

Cr          
+/- 
57 

ppm 

Cu          
+/- 
12 

ppm 

Fe          
+/-  
300 
ppm 

Hg          
+/- 
7 

ppm 

Mn          
+/- 
46 

ppm 

Ni          
+/- 
22 

ppm 

Pb          
+/- 6 
ppm 

Zn          
+/- 8 
ppm 

1 37 5 to 15 12 ND ND 35 24113 ND 404 ND 24 61 
1 38 25 to 35 ND ND ND 37 27076 ND 549 ND 22 64 
1 39 5 to 15 11 ND ND ND 20642 ND 326 ND 26 70 
1 40 25 to 35 ND ND ND ND 26695 ND 890 ND 28 56 
1 41 5 to 15 10 ND ND 37 24251 ND 532 ND 28 63 
1 42 25 to 35 ND ND ND ND 27226 ND 336 ND 18 58 
1 43 5 to 15 ND ND ND 48 18314 ND 615 ND 35 86 
1 44 15-22 ND ND ND ND 42136 ND 943 ND 107 373 
1 45 5 to 15 11 ND ND ND 19154 ND 341 ND 30 70 
1 46 25 to 35 ND ND ND 50 23274 ND 1008 ND 28 64 
1 47 5 to 15 ND ND ND ND 20672 ND 398 ND 25 74 
1 48 25 to 35 ND ND ND ND 21657 ND 419 ND 32 62 
1 49 5 to 15 ND ND ND ND 20673 ND 852 ND 33 81 
1 50 25 to 35 ND ND ND ND 21184 ND 347 ND 27 50 
1 51 5 to 15 ND ND ND 40 19450 ND 254 ND 20 51 
1 52 25 to 35 ND ND ND 34 20823 ND 330 ND 25 54 
1 53 5 to 15 11 ND ND ND 21162 ND 394 ND 24 53 
1 54 25 to 35 ND ND ND 36 26485 ND 306 ND 22 66 
1 55 5 to 15 ND ND 195 ND 20024 ND 458 ND 36 49 
1 56 25 to 35 ND ND ND ND 27542 ND 449 ND 28 63 
1 57 5 to 15 ND ND ND ND 20661 ND 423 ND 28 78 
1 58 25 to 35 ND ND ND ND 21300 ND 282 ND 18 43 
1 59 5 to 15 ND ND ND ND 22096 ND 1176 ND 26 73 
1 60 25 to 35 ND ND ND 45 29379 ND 1030 ND 22 70 
1 61 5 to 15 12 ND ND ND 21527 ND 561 ND 25 69 
1 62 25 to 35 ND ND ND 40 28010 ND 460 ND 19 59 
1 63 5 to 15 ND ND ND 42 24619 ND 600 77 32 75 
1 64 25 to 35 ND ND ND ND 24827 ND 363 ND 24 63 
1 65 5 to 15 13 ND ND ND 22161 ND 493 76 37 75 
1 66 5 to 15 ND ND ND 43 15209 ND 411 ND 29 102 
1 67 25 to 35 ND ND ND 59 26500 ND 922 ND 48 67 
1 68 5 to 15 11 ND ND 52 22439 ND 681 ND 28 64 
1 69 25 to 35 ND ND ND 45 20328 ND 367 ND 27 75 
1 70 5 to 15 ND ND ND ND 20636 ND 374 ND 28 76 
1 71 25 to 35 ND ND ND ND 21861 ND 283 ND 19 56 
1 72 5 to 15 ND ND ND 36 19396 ND 406 ND 41 72 
1 73 25 to 35 ND ND ND ND 19345 ND 269 ND 31 55 
1 74 5 to 15 11 ND ND ND 22094 ND 341 ND 18 60 
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Garden 
Plot     
(GP) 

sample 
# 

sample 
depth 

(cm) 

As         
+/- 
5 

ppm 

Cd         
+/- 
21 

ppm 

Cr          
+/- 
57 

ppm 

Cu          
+/- 
12 

ppm 

Fe          
+/-  
300 
ppm 

Hg          
+/- 
7 

ppm 

Mn          
+/- 
46 

ppm 

Ni          
+/- 
22 

ppm 

Pb          
+/- 6 
ppm 

Zn          
+/- 8 
ppm 

1 75 15-19 ND ND ND ND 23398 ND 400 91 26 65 
1 76 5 to 15 ND ND ND ND 23511 ND 392 ND 38 57 
1 77 25 to 35 ND ND ND 40 24016 ND 549 ND 27 65 
1 78 5-15 15 ND ND 42 22375 ND 489 ND 24 61 
1 79 25 to 35 ND ND ND 42 21773 ND 537 ND 45 98 
1 80 5 to 15 12 ND ND ND 27380 ND 544 ND 27 65 
1 81 25-32 ND ND ND ND 20457 ND 513 ND 50 77 
1 82 5 to 15 10 ND ND ND 20702 ND 466 ND 29 75 
1 83 25 to 35 ND ND ND 35 27200 ND 408 73 19 82 
1 84 5 to 15 ND ND ND ND 21289 ND 360 ND 27 50 
1 85 25 to 35 11 ND ND ND 25939 ND 558 ND 24 68 
1 86 5 to 15 ND ND ND ND 19418 ND 483 ND 51 102 
1 87 15-18 15 ND ND ND 21032 ND 1202 67 50 62 
1 88 5 to 15 ND ND ND ND 17050 ND 546 ND 23 95 
1 89 25-32 13 ND ND ND 21698 ND 388 ND 42 56 
1 90 5 to 15 ND ND ND ND 21286 ND 423 ND 29 69 
1 91 25 to 35 ND ND ND ND 24991 ND 486 ND 28 69 
1 92 5 to 15 ND ND ND 35 23986 ND 504 ND 26 63 
1 93 25 to 35 ND ND ND ND 20945 ND 433 ND 26 50 
1 94 5 to 15 10 ND ND ND 22548 ND 420 ND 22 74 
1 95 15-23 ND ND ND ND 20501 ND 430 ND 24 53 
1 96 5 to 15 ND ND ND 35 20817 ND 395 77 21 69 
1 97 25 to 35 ND ND ND ND 20973 ND 404 ND 30 55 
1 98 5 to 15 ND ND ND 48 26109 ND 426 ND 60 228 
1 99 25 to 35 ND ND ND ND 19128 ND 522 ND 29 64 
1 100 5 to 15 ND ND ND ND 20677 ND 672 ND 26 67 
1 101 25 to 35 ND 67 ND ND 20009 ND 478 ND 23 56 
1 102 5 to 15 ND ND ND ND 19091 ND 318 ND 28 67 
1 103 25 to 35 ND ND ND ND 21034 ND 377 ND 62 72 
1 104 5 to 15 ND ND ND ND 17798 ND 481 ND 24 97 
1 105 20 to 30 10 ND ND 41 22437 ND 276 ND 20 56 
1 106 5 to 15 ND ND ND ND 22219 ND 328 ND 31 48 
1 107 25 to 35 ND ND ND 38 26178 ND 550 ND 18 61 
1 108 5 to 15 ND ND ND ND 23840 ND 750 ND 29 58 
1 109 15 to 22 ND ND ND 36 22885 ND 453 ND 24 70 
1 110 5 to 15 ND ND ND ND 21228 ND 382 72 25 79 
1 111 25 to 35 ND ND ND 43 22440 ND 514 ND 27 59 
1 112 5 to 15 ND ND ND ND 25507 ND 562 ND 22 61 
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Garden 
Plot     
(GP) 

sample 
# 

sample 
depth 

(cm) 

As         
+/- 
5 

ppm 

Cd         
+/- 
21 

ppm 

Cr          
+/- 
57 

ppm 

Cu          
+/- 
12 

ppm 

Fe          
+/-  
300 
ppm 

Hg          
+/- 
7 

ppm 

Mn          
+/- 
46 

ppm 

Ni          
+/- 
22 

ppm 

Pb          
+/- 6 
ppm 

Zn          
+/- 8 
ppm 

1 113 25 to 35 ND ND ND ND 23958 ND 699 ND 53 92 
1 114 5 to 15 ND ND ND 50 21529 ND 527 ND 24 58 
1 115 25 to 35 ND ND ND 39 22154 ND 385 ND 36 57 
1 116 5 to 15 9 ND ND ND 23851 ND 411 ND 19 68 
1 117 25 to 35 ND ND ND ND 25190 ND 407 ND 34 77 
1 118 5 to 15 ND ND ND ND 21090 ND 682 ND 29 84 
1 119 25 to 35 ND 65 ND ND 22114 ND 687 ND 22 66 
1 120 5 to 15 ND ND ND ND 22594 ND 457 ND 27 58 
1 121 25 to 35 ND ND ND 35 20477 ND 366 ND 29 65 
1 122 5 to 15 ND ND ND ND 22141 ND 561 ND 29 71 
1 123 25 to 35 ND ND ND ND 22543 ND 295 ND 23 50 
1 124 5 to 15 ND ND ND 37 20726 ND 473 ND 20 53 
1 125 25 to 35 ND ND ND ND 21331 ND 459 ND 27 48 
1 126 5 to 15 ND ND ND ND 20688 ND 365 ND 27 67 
1 127 25 to 35 ND ND ND ND 21361 ND 461 ND 26 68 
1 128 5 to 15 ND ND ND 36 21963 ND 469 ND 42 83 
1 129 25 to 34 ND ND ND ND 23110 ND 400 ND 45 78 
1 130 5 to 15 22 ND ND ND 23467 ND 530 ND 96 96 
1 131 15 to 23 24 ND ND 36 22679 ND 426 ND 126 105 
1 132 5 to 15 ND ND ND 181 18059 ND 1760 100 180 158 
1 133 25 to 35 ND ND 180 219 17667 ND 1665 ND 144 141 
2 134 5 to 15 11 ND ND ND 17923 ND 495 ND 59 83 
2 135 25 to 35 ND ND ND ND 16068 ND 272 ND 164 160 
2 136 5 to 15 ND ND ND 46 15204 ND 337 ND 148 152 
2 137 15 to 25 ND ND ND ND 13949 ND 291 ND 119 124 
2 138 5 to 15 ND ND ND ND 15105 ND 264 ND 103 109 
2 139 15 to 21 ND ND ND ND 14888 ND 301 ND 38 72 
2 140 5 to 15 ND ND ND ND 15931 ND 262 ND 38 87 
2 141 15 to 20 ND ND ND 35 15813 ND 273 ND 38 87 
2 142 5 to 15 ND ND ND ND 17371 ND 289 ND 31 66 
2 143 15 to 20 ND ND ND 58 14427 ND 263 ND 45 126 
2 144 5 to 15 ND ND ND 52 15901 ND 406 65 64 105 
2 145 15 to 20 ND ND ND ND 14515 ND 325 ND 60 113 
2 146 3 to 13 ND ND ND ND 14954 ND 297 ND 60 106 
2 147 3 to 13 ND ND ND ND 15783 ND 331 ND 147 99 
2 148 5 to 15 ND ND ND 41 14336 ND 275 ND 147 78 
2 149 10 to 14 ND ND ND ND 13189 ND 296 ND 55 80 
2 150 5 to 15 ND ND ND ND 14030 ND 396 ND 58 119 
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Garden 
Plot     
(GP) 

sample 
# 

sample 
depth 

(cm) 

As         
+/- 
5 

ppm 

Cd         
+/- 
21 

ppm 

Cr          
+/- 
57 

ppm 

Cu          
+/- 
12 

ppm 

Fe          
+/-  
300 
ppm 

Hg          
+/- 
7 

ppm 

Mn          
+/- 
46 

ppm 

Ni          
+/- 
22 

ppm 

Pb          
+/- 6 
ppm 

Zn          
+/- 8 
ppm 

2 151 25 to 35 ND ND ND 40 16936 ND 506 ND 110 176 
2 152 5 to 15 ND ND ND 44 17186 ND 468 ND 100 141 
2 153 25 to 35 ND ND ND 39 15655 ND 373 ND 42 104 
2 154 5 to 15 ND ND ND ND 15152 ND 316 ND 44 92 
2 155 17 to 27 ND ND ND ND 14479 ND 221 ND 49 73 
2 156 5 to 15 ND ND ND ND 14417 ND 245 ND 54 68 
2 157 20 to 30 ND ND ND 36 14788 ND 267 ND 31 75 
2 158 5 to 15 ND ND 194 34 15059 ND 242 ND 38 61 
2 159 15 to 20 ND ND ND 37 15152 ND 300 ND 52 84 
2 160 5 to 15 ND ND ND ND 15297 ND 235 ND 65 113 
2 161 25 to 35 ND ND ND ND 14930 ND 302 ND 39 102 
2 162 5 to 15 ND ND ND ND 14642 ND 250 69 42 82 
2 163 15 to 20 22 ND ND 51 15951 ND 346 ND 45 108 
2 164 5 to 15 ND ND ND ND 17166 ND 343 ND 55 104 
2 165 15 to 20 ND ND ND ND 15773 ND 391 ND 46 82 
2 166 5 to 15 ND ND ND ND 15673 ND 427 ND 51 102 
2 167 25 to 35 ND ND ND ND 16249 ND 353 ND 46 102 
2 168 5 to 15 ND ND ND ND 13828 ND 321 ND 35 79 
2 169 15 to 27 ND ND ND ND 13572 ND 394 ND 52 76 
2 170 5 to 15 11 ND ND ND 14217 ND 348 ND 46 83 
2 171 15 to 19 ND ND ND ND 12856 ND 323 ND 38 98 
2 172 5 to 15 ND ND ND 42 12792 ND 340 ND 57 132 
2 173 15 to 25 ND ND ND 42 13643 ND 324 ND 69 164 
2 174 5 to 15 ND ND ND 48 13717 ND 360 ND 75 161 
2 175 18 to 28 ND ND ND 40 15794 ND 307 ND 56 109 
2 176 5 to 15 ND ND 174 ND 15548 ND 204 ND 39 91 
2 177 25 to 35 20 ND ND 54 21252 24 355 ND 83 194 
2 178 5 to 15 ND ND ND 55 25118 ND 424 ND 96 218 
2 179 25 to 35 20 ND ND 493 34938 ND 345 ND 115 339 
2 180 5 to 15 28 ND ND 478 31174 ND 296 ND 109 296 
2 181 5 to 15 ND ND ND ND 16768 ND 290 ND 35 88 
2 182 15 to 22 ND ND ND ND 16697 ND 231 ND 56 94 
2 183 5 to 15 ND ND ND 48 16168 ND 294 ND 73 117 
2 184 25 to 35 16 ND ND 37 16842 ND 379 ND 82 134 
2 185 5 to 15 ND ND ND 34 18098 ND 320 ND 91 132 
2 186 25 to 35 ND ND ND 42 14755 ND 298 ND 65 148 
2 187 5 to 15 ND ND 178 43 15201 ND 360 ND 72 195 
2 188 15 to 22 ND ND ND ND 15965 ND 361 ND 69 179 
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Garden 
Plot     
(GP) 

sample 
# 

sample 
depth 

(cm) 

As         
+/- 
5 

ppm 

Cd         
+/- 
21 

ppm 

Cr          
+/- 
57 

ppm 

Cu          
+/- 
12 

ppm 

Fe          
+/-  
300 
ppm 

Hg          
+/- 
7 

ppm 

Mn          
+/- 
46 

ppm 

Ni          
+/- 
22 

ppm 

Pb          
+/- 6 
ppm 

Zn          
+/- 8 
ppm 

2 189 5 to 15 ND ND ND 34 15141 ND 334 ND 35 114 
2 190 5 to 15 ND ND ND ND 14480 ND 366 ND 48 124 
2 191 25 to 35 ND ND ND 39 12927 ND 409 ND 53 147 
2 192 5 to 15 ND ND ND 45 15703 ND 333 ND 61 154 
2 193 15 to 25 ND ND ND 39 18047 ND 443 ND 73 169 
2 194 6 to 16 16 ND ND 43 16931 ND 422 ND 71 128 
2 195 5 to 15 ND ND ND ND 16910 ND 261 ND 67 141 
2 196 25 to 35 50 ND ND 162 67491 78 290 ND 164 992 
2 197 7 to 17 36 ND ND 80 71432 75 429 ND 290 1193 
2 198 5 to 15 ND ND ND 50 20645 ND 314 ND 197 300 
2 199 25 to 35 ND ND ND ND 23153 ND 368 ND 107 240 
2 200 5 to 15 18 ND ND 44 25127 ND 338 ND 135 257 
2 201 25 to 35 18 ND ND 41 21280 ND 332 ND 115 171 
2 202 5 to 15 18 ND ND ND 21685 ND 355 ND 118 201 
2 203 25 to 35 ND ND ND ND 18968 ND 352 ND 78 170 
2 204 5 to 15 11 ND ND ND 16159 ND 544 ND 46 93 
2 205 25 to 35 ND ND ND 37 17382 ND 570 ND 101 136 
2 206 5 to 15 ND ND ND 49 19166 ND 352 ND 117 175 
2 207 25 to 35 ND ND ND ND 18313 ND 469 ND 73 116 
2 208 5 to 15 ND ND ND ND 16121 ND 468 ND 118 134 
2 209 5 to 15 ND ND ND ND 18089 ND 368 ND 151 215 
2 210 5 to 15 ND ND ND ND 17050 ND 289 ND 63 125 
2 211 5 to 15 ND ND ND ND 16835 ND 335 ND 51 106 
2 212 5 to 15 ND ND ND ND 17045 ND 358 ND 63 101 
2 213 5 to 15 ND ND ND 43 16227 ND 294 ND 85 140 
2 214 5 to 15 ND ND ND ND 15801 ND 362 ND 86 134 
3 215 5 to 15 ND ND ND ND 14128 ND 362 ND 71 130 
3 216 25 to 35 ND ND ND 51 13166 ND 333 ND 46 126 
3 217 5 to 15 ND ND ND 36 10356 ND 269 ND 53 103 
3 218 25 to 35 ND 73 ND 42 11178 ND 273 ND 36 84 
3 219 5 to 15 ND ND ND 39 10503 ND 243 ND 45 103 
3 220 25 to 35 ND ND ND 33 9707 ND 266 ND 28 61 
3 221 5 to 15 ND ND ND ND 10393 ND 237 ND 53 110 
3 222 25 to 35 ND ND ND ND 8910 ND 232 ND 24 56 
3 223 5 to 15 ND ND ND 47 11211 ND 290 ND 57 137 
3 224 25 to 35 ND ND ND 37 11499 ND 313 ND 158 123 
3 225 5 to 15 ND ND ND ND 11518 ND 339 ND 56 119 
3 226 25 to 35 ND ND ND ND 10422 ND 265 ND 47 92 
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Garden 
Plot     
(GP) 

sample 
# 

sample 
depth 

(cm) 

As         
+/- 
5 

ppm 

Cd         
+/- 
21 

ppm 

Cr          
+/- 
57 

ppm 

Cu          
+/- 
12 

ppm 

Fe          
+/-  
300 
ppm 

Hg          
+/- 
7 

ppm 

Mn          
+/- 
46 

ppm 

Ni          
+/- 
22 

ppm 

Pb          
+/- 6 
ppm 

Zn          
+/- 8 
ppm 

3 227 5 to 15 ND ND ND 37 11448 ND 209 ND 40 112 
3 228 25 to 35 ND ND ND ND 9700 ND 244 ND 44 76 
3 229 5 to 15 ND ND ND ND 10602 ND 182 ND 45 106 
3 230 25 to 35 ND ND ND ND 9472 ND 204 ND 32 66 
3 231 5 to 15 ND ND ND ND 9240 ND 179 ND 36 83 
3 232 25 to 35 ND ND ND ND 9199 ND 155 ND 32 60 
3 233 5 to 15 ND ND ND ND 8751 ND 215 ND 33 78 
3 234 25 to 35 ND ND ND ND 7542 ND 117 ND 29 55 
3 235 5 to 15 ND ND ND 33 9069 ND 147 ND 37 79 
3 236 25 to 35 ND ND ND 33 7952 ND 128 ND 32 59 
3 237 5 to 15 ND ND ND ND 9131 ND 188 ND 35 89 
3 238 25 to 35 ND ND ND ND 8595 ND 110 ND 25 43 
3 239 5 to 15 ND ND ND ND 9568 ND 180 ND 21 72 
3 240 25 to 35 ND ND ND 33 10511 ND 149 ND 21 47 
3 241 5 to 15 ND ND ND 34 8946 ND 171 ND 32 64 
3 242 25 to 35 ND ND ND ND 9683 ND 142 ND 33 63 
3 243 5 to 15 ND ND ND ND 8744 ND 195 ND 31 65 
3 244 25 to 35 ND ND ND 33 8972 ND 115 ND 21 55 
3 245 5 to 15 ND ND ND ND 9165 ND 172 ND 33 73 
3 246 25 to 35 ND ND ND ND 8908 ND 136 ND 25 60 
3 247 5 to 15 ND ND ND ND 9264 ND 146 ND 25 66 
3 248 25 to 35 ND ND ND ND 9400 ND 151 ND 20 45 
3 249 5 to 15 ND ND ND ND 9841 ND 200 ND 34 73 
3 250 25 to 35 ND ND ND ND 9278 ND 180 ND 29 54 
3 251 5 to 15 ND ND ND 43 8898 ND 136 ND 25 59 
3 252 25 to 35 ND ND ND ND 9217 ND 171 ND 22 55 
3 253 5 to 15 ND ND ND ND 8908 ND 156 ND 35 67 
3 254 25 to 35 ND ND ND ND 9220 ND 110 ND 16 37 
3 255 5 to 15 ND ND ND ND 9780 ND 158 ND 29 67 
3 256 25 to 35 ND ND ND ND 9631 ND 117 ND 21 46 
3 257 5 to 15 ND ND ND ND 9440 ND 182 ND 38 69 
3 258 25 to 35 ND ND ND ND 9728 ND 183 ND 20 47 
3 259 5 to 15 ND ND ND ND 10913 ND 284 ND 75 147 
3 260 25 to 35 ND ND ND ND 9920 ND 316 ND 29 76 
3 261 5 to 15 ND ND ND 34 12411 ND 335 ND 67 156 
3 262 25 to 35 ND ND ND ND 9820 ND 250 ND 29 61 
3 263 5 to 15 ND ND ND ND 10983 ND 300 ND 152 139 
3 264 25 to 35 ND ND 164 36 9486 ND 252 ND 26 52 
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Garden 
Plot     
(GP) 

sample 
# 

sample 
depth 

(cm) 

As         
+/- 
5 

ppm 

Cd         
+/- 
21 

ppm 

Cr          
+/- 
57 

ppm 

Cu          
+/- 
12 

ppm 

Fe          
+/-  
300 
ppm 

Hg          
+/- 
7 

ppm 

Mn          
+/- 
46 

ppm 

Ni          
+/- 
22 

ppm 

Pb          
+/- 6 
ppm 

Zn          
+/- 8 
ppm 

3 265 5 to 15 ND ND ND ND 10560 ND 283 ND 57 105 
3 266 25 to 35 ND ND ND ND 10630 ND 281 ND 46 104 
3 267 5 to 15 ND ND ND 40 10449 ND 260 ND 58 137 
3 268 25 to 35 ND ND ND ND 8652 ND 230 ND 18 38 
3 269 5 to 15 ND ND ND ND 9817 ND 192 ND 53 112 
3 270 25 to 35 ND ND ND ND 8975 ND 180 ND 28 41 
3 271 5 to 15 ND ND ND ND 10478 ND 215 ND 50 107 
3 272 25 to 35 ND ND ND ND 9060 ND 213 ND 36 81 
3 273 5 to 15 ND ND ND ND 9899 ND 261 ND 43 93 
3 274 25 to 35 ND ND ND ND 9203 ND 158 ND 31 62 
3 275 5 to 15 ND ND ND ND 10560 ND 173 ND 46 90 
3 276 25 to 35 ND ND ND ND 7748 ND 160 ND 23 46 
3 277 5 to 15 ND ND ND ND 9845 ND 221 ND 37 90 
3 278 25 to 35 ND ND ND ND 9581 ND 209 ND 41 76 
3 279 5 to 15 ND ND ND 39 9261 ND 228 ND 39 81 
3 280 25 to 35 ND ND ND ND 7173 ND 135 ND 19 36 
3 281 5 to 15 ND ND ND ND 9229 ND 181 ND 40 75 
3 282 25 to 35 ND ND ND 34 9711 ND 184 ND 21 56 
3 283 5 to 15 ND ND ND 32 9562 ND 194 ND 36 84 
3 284 25 to 35 ND ND ND ND 9107 ND 167 55 26 46 
3 285 5 to 15 ND ND ND ND 8907 ND 176 ND 32 62 
3 286 25 to 35 ND ND ND ND 8291 ND 119 ND 21 44 
3 287 5 to 15 ND ND ND 38 10329 ND 180 ND 35 75 
3 288 25 to 35 ND ND ND ND 9563 ND 191 ND 33 79 
3 289 5 to 15 ND ND ND ND 9969 ND 99 ND 24 46 
3 290 25 to 35 ND ND 160 42 8617 ND 104 ND 15 36 
3 291 5 to 15 ND ND ND 44 8958 ND 144 ND 31 67 
3 292 25 to 35 ND ND ND ND 8996 ND 137 ND 18 36 
3 293 5 to 15 ND ND ND ND 9160 ND 175 ND 23 71 
3 294 25 to 35 ND ND ND ND 9217 ND 173 ND 24 87 
3 295 5 to 15 ND ND ND ND 9022 ND 161 ND 24 60 
3 296 25 to 35 ND ND ND ND 9211 ND 157 ND 23 53 
3 297 5 to 15 ND ND ND ND 8530 ND 137 ND 37 62 
3 298 25 to 35 ND ND ND 36 9749 ND 144 ND 21 38 
3 299 5 to 15 ND ND ND ND 8718 ND 200 ND 32 63 
3 300 25 to 35 ND ND ND 35 8919 ND 156 ND 25 55 
3 301 5 to 15 ND ND ND ND 9252 ND 141 ND 33 67 
3 302 25 to 35 ND ND ND ND 10335 ND 109 ND 29 41 
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3 303 5 to 15 ND ND ND ND 10978 ND 230 ND 76 131 
3 304 25 to 35 ND ND ND ND 8509 ND 218 ND 29 60 
3 305 5 to 15 ND ND ND ND 10707 ND 223 ND 58 121 
3 306 25 to 35 ND ND 168 ND 16631 ND 212 ND 35 84 
3 307 5 to 15 ND ND ND ND 10647 ND 282 ND 59 120 
3 308 25 to 35 ND ND ND ND 9014 ND 226 ND 27 51 
3 309 5 to 15 ND ND ND ND 10292 ND 232 ND 51 114 
3 310 25 to 35 ND ND ND 41 9129 ND 231 ND 28 63 
3 311 5 to 15 ND ND ND 37 10330 ND 237 ND 49 108 
3 312 25 to 35 ND ND ND ND 9754 ND 154 ND 48 80 
3 313 5 to 15 ND ND ND 40 9592 ND 189 ND 38 97 
3 314 25 to 35 ND ND ND ND 13610 ND 260 ND 46 110 
3 315 5 to 15 ND ND ND ND 9848 ND 197 ND 52 97 
3 316 25 to 35 ND ND ND ND 9223 ND 177 ND 32 80 
3 317 5 to 15 ND ND ND 34 10114 ND 228 ND 43 93 
3 318 25 to 35 ND ND ND ND 10112 ND 265 ND 52 98 
3 319 5 to 15 ND ND ND 34 9336 ND 268 ND 49 87 
3 320 25 to 35 ND ND ND ND 9342 ND 190 ND 37 70 
3 321 5 to 15 ND ND ND ND 9802 ND 192 ND 55 100 
3 322 25 to 35 ND ND ND ND 8442 ND 160 ND 19 43 
3 323 5 to 15 ND ND ND 49 9552 ND 212 ND 43 84 
3 324 25 to 35 ND ND ND ND 9488 ND 201 ND 39 79 
3 325 5 to 15 ND ND ND ND 9165 ND 167 ND 26 80 
3 326 25 to 35 ND ND ND ND 10384 ND 220 ND 44 73 
3 327 5 to 15 ND ND ND ND 9815 ND 152 ND 32 86 
3 328 25 to 35 ND ND ND ND 10702 ND 152 ND 19 33 
3 329 5 to 15 ND ND ND ND 9691 ND 173 ND 38 82 
3 330 25 to 35 ND ND ND ND 10674 ND 194 ND 26 59 
3 331 5 to 15 ND ND ND ND 8979 ND 126 ND 32 72 
3 332 25 to 35 ND ND ND ND 9730 ND 179 ND 34 68 
3 333 5 to 15 ND ND ND ND 9475 ND 152 ND 39 79 
3 334 25 to 35 ND ND ND ND 9654 ND 214 ND 38 65 
3 335 5 to 15 10 ND ND ND 9509 ND 149 ND 24 84 
3 336 25 to 35 ND ND ND ND 9156 ND 157 ND 39 68 
3 337 5 to 15 ND ND ND ND 8627 ND 182 ND 28 79 
3 338 25 to 35 ND ND ND ND 9052 ND 150 ND 30 58 
3 339 5 to 15 ND ND ND 34 9580 ND 183 ND 30 75 
3 340 25 to 35 ND ND ND ND 10275 ND 163 ND 34 66 
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3 341 5 to 15 ND ND ND ND 9272 ND 177 ND 29 69 
3 342 25 to 35 ND ND ND ND 8880 ND 151 ND 34 65 
3 343 5 to 15 ND ND ND ND 8535 ND 179 ND 31 70 
3 344 25 to 35 ND ND ND ND 9598 ND 161 ND 20 50 
3 345 5 to 15 ND ND ND ND 9161 ND 149 ND 29 68 
3 346 25 to 35 ND ND ND 34 9330 ND 138 ND 24 42 
3 347 5 to 15 ND ND ND ND 10761 ND 227 ND 70 146 
3 348 25 to 35 ND ND ND ND 9807 ND 262 ND 43 89 
3 349 5 to 15 ND ND ND ND 10589 ND 221 ND 67 127 
3 350 25 to 35 ND ND ND ND 10298 ND 224 ND 49 110 
3 351 5 to 15 ND ND ND 36 10772 ND 236 ND 63 118 
3 352 25 to 35 ND ND ND ND 8464 ND 230 ND 22 49 
3 353 5 to 15 ND ND ND 39 9236 ND 209 ND 56 115 
3 354 25 to 35 ND ND ND ND 8554 ND 239 ND 32 77 
3 355 5 to 15 ND ND ND ND 11062 ND 211 ND 54 124 
3 356 25 to 35 ND ND ND ND 9908 ND 220 ND 50 98 
3 357 5 to 15 ND ND ND ND 10119 ND 272 ND 53 100 
3 358 25 to 35 ND ND ND ND 9323 ND 266 ND 36 83 
3 359 5 to 15 ND ND ND ND 10663 ND 233 ND 55 110 
3 360 25 to 35 ND ND ND ND 8742 ND 190 ND 29 59 
3 361 5 to 15 ND ND ND ND 9836 ND 210 ND 61 100 
3 362 25 to 35 17 ND ND 38 17090 ND 206 ND 52 122 
3 363 5 to 15 ND ND ND ND 9599 ND 237 ND 45 99 
3 364 25 to 35 11 ND ND ND 9955 ND 261 ND 38 94 
3 365 5 to 15 ND ND ND ND 9531 ND 221 ND 46 92 
3 366 25 to 35 ND ND ND ND 10143 ND 207 ND 51 102 
3 367 5 to 15 ND ND ND ND 9403 ND 191 ND 41 99 
3 368 25 to 35 ND ND ND ND 10319 ND 236 ND 52 85 
3 369 5 to 15 ND ND ND ND 9372 ND 187 ND 44 88 
3 370 25 to 35 ND ND ND ND 9544 ND 195 ND 45 83 
3 371 5 to 15 ND 71 ND ND 10103 ND 235 ND 35 83 
3 372 25 to 35 ND ND ND ND 9963 ND 216 ND 42 92 
3 373 5 to 15 ND ND ND ND 9768 ND 188 ND 40 81 
3 374 25 to 35 ND ND ND 41 9275 ND 213 ND 33 69 
3 375 5 to 15 ND ND ND 37 9404 ND 205 ND 37 80 
3 376 25 to 35 ND ND ND ND 9728 ND 184 ND 41 76 
3 377 5 to 15 ND ND ND ND 8773 ND 169 ND 38 78 
3 378 25 to 35 ND ND ND ND 9465 ND 210 72 37 70 



198 
 

Garden 
Plot     
(GP) 

sample 
# 

sample 
depth 

(cm) 

As         
+/- 
5 

ppm 

Cd         
+/- 
21 

ppm 

Cr          
+/- 
57 

ppm 

Cu          
+/- 
12 

ppm 

Fe          
+/-  
300 
ppm 

Hg          
+/- 
7 

ppm 

Mn          
+/- 
46 

ppm 

Ni          
+/- 
22 

ppm 

Pb          
+/- 6 
ppm 

Zn          
+/- 8 
ppm 

3 379 5 to 15 ND ND ND ND 9498 ND 228 ND 40 68 
3 380 25 to 35 ND ND ND ND 9819 ND 160 ND 38 73 
3 381 5 to 15 ND ND ND ND 8827 ND 148 ND 28 61 
3 382 25 to 35 ND ND ND ND 11138 ND 165 ND 75 329 
3 383 5 to 15 ND ND ND ND 8987 ND 188 ND 30 70 
3 384 25 to 35 ND ND ND ND 9182 ND 174 ND 26 83 
3 385 5 to 15 ND ND ND ND 8449 ND 167 ND 31 76 
3 386 25 to 35 ND ND ND ND 9151 ND 188 ND 35 65 
3 387 5 to 15 ND ND ND ND 9032 ND 202 ND 34 72 
3 388 25 to 35 ND ND ND ND 9029 ND 156 ND 43 72 
3 389 5 to 15 ND ND ND ND 9400 ND 158 ND 28 67 
3 390 25 to 35 ND ND ND ND 8057 ND 161 ND 28 54 
4 391 5 to 15 ND ND ND ND 21039 ND 724 ND 31 58 
4 392 25 to 35 ND ND ND ND 17379 ND 316 ND 21 42 
4 393 5 to 15 ND ND ND ND 19706 ND 429 ND 19 47 
4 394 25 to 35 ND ND ND ND 14825 ND 312 ND 26 37 
4 395 5 to 15 ND ND ND ND 17784 ND 388 ND 15 44 
4 396 25 to 35 10 ND ND ND 19088 ND 437 ND 21 52 
4 397 5 to 15 ND ND ND ND 21091 ND 974 ND 30 54 
4 398 25 to 35 ND ND ND ND 21733 ND 647 ND 19 41 
5 399 5 to 15 ND ND ND ND 20110 ND 209 ND 20 45 
5 400 25 to 35 12 ND ND ND 24177 ND 327 ND 19 58 
5 401 5 to 15 ND ND ND ND 22583 ND 189 ND 16 48 
5 402 25 to 35 ND ND ND ND 20259 ND 352 ND 17 50 
5 403 5 to 15 ND ND ND ND 23577 ND 322 ND 23 54 
5 404 25 to 35 ND ND ND 39 19688 ND 299 ND 22 52 
6 405 5 to 15 24 ND ND ND 26413 ND 409 ND 204 157 
6 406 25 to 35 ND ND ND ND 24142 ND 251 ND 40 81 
6 407 5 to 15 ND ND ND ND 25046 ND 319 ND 34 98 
6 408 25 to 35 ND ND ND 38 22467 ND 346 ND 20 64 
6 409 5 to 15 ND ND ND ND 22016 ND 249 ND 34 100 
6 410 20 to 30 ND ND ND ND 23602 ND 369 ND 21 68 
6 411 5 to 15 ND ND ND 37 23870 ND 483 ND 39 92 
6 412 25 to 35 ND ND ND ND 22929 ND 371 ND 22 53 
6 413 3 to 13 ND ND ND ND 22645 ND 297 ND 41 98 
6 414 16 to 26 ND ND ND ND 24438 ND 460 ND 31 139 
6 415 5 to 15 15 ND 219 39 25312 ND 439 ND 47 93 
6 416 25 to 35 ND ND ND ND 22752 ND 319 ND 30 82 
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7 417 15 to 25 27 ND ND 61 28558 ND 432 ND 196 469 
7 418 15 to 25 ND ND ND 41 31833 ND 512 ND 124 270 
7 419 15 to 25 ND ND ND 50 25341 ND 325 ND 178 348 
7 420 15 to 25 ND ND ND 41 28542 21 522 ND 164 314 
7 421 15 to 25 ND ND ND ND 27772 ND 597 ND 177 343 
7 422 15 to 25 ND ND ND 62 26074 ND 397 ND 358 406 
7 423 15 to 25 51 ND ND ND 42806 ND 664 ND 470 306 
7 424 15 to 25 ND ND ND 64 33080 ND 344 ND 1108 646 
7 425 15 to 25 ND 72 ND 44 32688 20 481 ND 241 559 
7 426 15 to 25 30 ND ND 61 45242 26 400 ND 345 679 
7 427 15 to 25 28 ND ND 50 35548 22 345 77 197 474 
7 428 15 to 25 24 ND ND 107 31694 ND 401 ND 285 527 
7 429 15 to 25 32 ND ND 75 28656 21 360 ND 342 531 
7 430 15 to 25 ND ND ND 63 29719 23 327 93 410 597 
7 431 15 to 25 49 ND 226 57 34726 27 322 ND 720 654 
7 432 15 to 25 ND ND ND 49 17108 ND 393 ND 285 340 

7S1 433  5 to 15 ND ND 227 47 29192 ND 355 ND 187 133 
7S 434 5 to 15 23 ND ND 72 32142 20 378 ND 262 629 
7S 435 5 to 15 ND ND ND ND 20532 ND 466 ND 477 375 
7S 436 5 to 15 ND ND ND 72 35352 22 501 ND 235 420 
8 437 5 to 15 ND ND ND ND 11457 ND 226 ND 24 54 
8 438 25 to 35 ND ND ND 36 12001 ND 256 ND 26 56 
8 439 5 to 15 ND ND ND ND 11418 ND 209 ND 25 56 
8 440 25 to 35 ND ND ND ND 12000 ND 202 ND 22 47 
8 441 5 to 15 ND ND ND ND 10625 ND 193 ND 17 54 
8 442 25 to 35 ND ND ND 38 12041 ND 231 ND 17 54 
8 443 5 to 15 ND ND ND 35 12457 ND 201 ND 25 67 
8 444 25 to 35 ND ND ND ND 11910 ND 243 ND 29 45 
8 445 5 to 15 ND ND ND ND 12702 ND 244 ND 22 64 
8 446 25 to 35 ND ND ND 37 12269 ND 267 ND 30 49 
8 447 5 to 15 ND ND ND ND 12618 ND 265 ND 26 65 
8 448 25 to 35 ND ND ND ND 11369 ND 236 ND 20 57 
8 449 5 to 15 ND ND ND 47 11835 ND 248 ND 26 69 
8 450 25 to 35 ND ND ND ND 11711 ND 216 ND 24 60 
8 451 5 to 15 ND ND ND ND 11585 ND 235 ND 21 52 

                                                           

1 Samples taken a few lots north of GP-7 in a few areas of concern in and around a backyard garden. 
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8 452 25 to 35 ND ND ND 45 12186 ND 224 ND 20 57 
8 453 5 to 15 ND ND ND ND 11599 ND 235 ND 24 48 
8 454 25 to 35 ND ND ND ND 11447 ND 288 ND 28 57 
8 455 5 to 15 ND ND ND ND 12058 ND 280 ND 25 60 
8 456 25 to 35 ND ND ND ND 11411 ND 234 ND 25 50 
8 457 5 to 15 ND ND ND ND 12223 ND 293 60 31 63 
8 458 25 to 35 ND ND ND ND 12015 ND 255 ND 26 48 
8 459 5 to 15 ND ND ND ND 12991 ND 353 ND 28 65 
8 460 25 to 35 ND ND ND ND 12089 16 255 ND 27 152 
8 461 5 to 15 ND ND ND ND 12785 ND 263 ND 26 53 
8 462 25 to 35 ND ND ND ND 12341 ND 262 ND 33 69 
8 463 5 to 15 ND ND ND ND 11693 ND 236 ND 27 58 
8 464 25 to 35 ND ND ND ND 11467 ND 254 ND 19 64 

8pole2 465  0 to 10 ND ND ND 33 7268 ND 137 ND 24 47 
8pit3 466  10 to 20 ND ND ND ND 8226 ND 172 ND 33 54 
9A4 467  5 to 15 ND ND ND 37 21826 ND 432 ND 96 143 
9A 468 25 to 35 ND ND ND ND 29821 ND 1130 ND 27 65 
9 469 5 to 15 ND ND ND 34 21931 ND 453 ND 71 264 
9 470 25 to 35 ND ND ND ND 17807 ND 247 ND 26 58 
9 471 5 to 15 ND ND ND 46 20087 ND 501 ND 93 169 
9 472 25 to 35 ND ND ND 43 16227 ND 172 ND 25 58 
9 473 5 to 15 15 ND ND 36 21361 ND 681 ND 82 202 
9 474 25 to 35 15 ND ND 39 32694 ND 1754 ND 25 65 
9 475 5 to 15 14 ND ND ND 21424 17 738 ND 104 181 
9 476 25 to 35 ND ND ND 44 30536 ND 1617 76 35 72 
9 477 5 to 15 ND ND ND ND 20584 ND 507 ND 90 161 
9 478 25 to 35 12 ND ND 36 27815 ND 690 ND 30 77 
9 479 5 to 15 16 ND ND ND 21950 ND 398 ND 74 162 
9 480 25 to 35 14 ND ND 48 31334 ND 983 ND 28 73 

10 481 5 to 15 9 ND ND ND 14883 ND 226 ND 21 51 
10 482 25 to 35 ND ND ND ND 14316 ND 229 ND 24 79 
10 483 5 to 15 9 ND ND ND 17339 ND 317 ND 14 75 
10 484 25 to 35 23 ND ND 42 34284 ND 547 85 60 175 
10 485 5 to 15 15 ND 207 ND 25252 ND 573 ND 25 134 

                                                           

2 Sample taken near a pole downslope of an area used as a burn pit for electronics in the vicinity of GP-8. 
3 Sample taken at the approximate site of a burn pit for electronics in the vicinity of GP-8. 
4 Sample taken in a lettuce patch in the lot just south of the main sample area. 
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10 486 25 to 35 ND ND ND 38 31311 18 828 ND 26 77 
10 487 5 to 15 ND ND ND ND 25254 ND 512 ND 28 97 
10 488 20 to 30 15 ND ND 42 25709 ND 455 ND 28 115 

10pg5 489  0 to 10 13 ND ND ND 26033 ND 519 ND 25 120 

compost 490 n/a ND ND ND 35 7841 ND 338 ND 33 148 

WoodsonA 491 5 to 15 ND ND ND ND 13287 ND 322 ND 26 32 

WoodsonB 492 25 to 35 11 ND ND ND 24082 ND 421 ND 21 70 

MartinA 493 5 to 15 ND ND ND ND 19871 ND 421 ND 24 47 

MartinB 494 25 to 35 ND ND ND ND 32005 ND 636 ND 25 49 

EudoraA 495 5 to 15 ND ND 197 ND 18000 ND 562 ND 23 49 

EudoraB 496 25 to 35 10 ND ND ND 20820 ND 439 ND 27 47 

PawneeA 497 5 to 15 11 ND ND ND 22992 ND 228 ND 14 36 

PawneeB 498 25 to 35 ND ND ND ND 21636 ND 347 ND 18 70 

MorrillA 499 5 to 15 10 ND ND ND 20839 ND 444 ND 14 42 

MorrillB 500 25 to 35 ND ND ND ND 21758 ND 817 79 16 40 
 

                                                           

5 Refers to sample taken in vicinity of GP-10 near child’s wooden play structure. 
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Appendix B 

Garden 
Plot      
(GP)  sample# 

LOI       
% SOC 

by 
weight 

Hue 
(shade) 

 Dry    
Value 

(lightness) 
Chroma 
(intensity) 

Hue 
(shade) 

 Moist   
Value 

(lightness) 
Chroma 
(intensity) 

1 1   10YR 4 3 10YR 3 3 
1 2   10YR 5 4 10YR 4 4 
1 3   2.5Y 4 4 10YR 3 3 
1 4   2.5Y 5 4 10YR 3 3 
1 5 2.24 10YR 4 3 10YR 3 3 
1 6   2.5Y 6 4 10YR 4 4 
1 7   2.5Y 5 3 10YR 3 3 
1 8   10YR 6 4 10YR 4 4 
1 9   10YR 4 3 10YR 3 3 
1 10 2.26 10YR 5 3 10YR 3 3 
1 11   2.5Y 4 3 10YR 3 3 
1 12   10YR 5 4 10YR 3 3 
1 13   10YR 4 2 10YR 2 2 
1 14   2.5Y 5 4 10YR 3 3 
1 15 1.61 10YR 5 3 10YR 3 3 
1 16   10YR 5 3 10YR 3 3 
1 17   10YR 4 2 10YR 2 2 
1 18   10YR 5 3 10YR 3 3 
1 19   10YR 4 3 10YR 2 2 
1 20 1.78 10YR 5 4 10YR 3 3 
1 21   10YR 4 2 10YR 3 3 
1 22   10YR 4 2 10YR 2 2 
1 23   2.5Y 5 4 10YR 3 3 
1 24   2.5Y 6 4 10YR 4 3 
1 25 1.61 2.5Y 5 4 10YR 5 3 
1 26   2.5Y 6 4 2.5Y 4 4 
1 27   2.5Y 5 3 2.5Y 3 3 
1 28   2.5Y 6 4 2.5Y 4 4 
1 29   2.5Y 5 3 2.5Y 4 4 
1 30 1.30 2.5Y 6 4 2.5Y 5 4 
1 31   2.5Y 4 4 2.5Y 3 3 
1 32   2.5Y 6 4 2.5Y 4 4 
1 33   2.5Y 5 4 10YR 4 3 
1 34   2.5Y 5 3 2.5Y 3 3 
1 35 4.01 2.5Y 4 4 10YR 3 3 
1 36   2.5Y 6 4 2.5Y 4 4 



203 
 

Garden 
Plot      
(GP)  sample# 

LOI       
% SOC 

by 
weight 

Hue 
(shade) 

 Dry    
Value 

(lightness) 
Chroma 
(intensity) 

Hue 
(shade) 
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1 37   2.5Y 5 3 10YR 3 3 
1 38   2.5Y 5 4 10YR 3 3 
1 39   2.5Y 4 3 10YR 3 3 
1 40 1.78 2.5Y 6 4 2.5Y 3 3 
1 41   2.5Y 4 3 2.5Y 3 3 
1 42   2.5Y 5 4 2.5Y 4 4 
1 43   2.5Y 4 3 10YR 3 3 
1 44   2.5Y 3 3 10YR 2 2 
1 45 2.19 2.5Y 4 3 10YR 3 3 
1 46   2.5Y 4 3 10YR 3 3 
1 47   2.5Y 4 4 10YR 3 3 
1 48   10YR 4 3 10YR 3 3 
1 49   10YR 5 3 10YR 3 3 
1 50 0.95 10YR 5 4 10YR 4 4 
1 51   10YR 5 4 10YR 3 3 
1 52   10YR 5 4 10YR 4 3 
1 53   10YR 5 3 10YR 3 3 
1 54   10YR 5 4 10YR 3 3 
1 55 1.30 10YR 5 4 10YR 3 3 
1 56   10YR 5 4 10YR 3 3 
1 57   10YR 5 3 10YR 3 3 
1 58   10YR 7 4 10YR 5 4 
1 59   10YR 5 3 10YR 4 3 
1 60 1.60 2.5Y 6 3 2.5Y 4 4 
1 61   2.5Y 5 3 10YR 3 3 
1 62   2.5Y 5 4 2.5Y 4 4 
1 63   2.5Y 5 4 2.5Y 3 3 
1 64   10YR 5 4 10YR 3 4 
1 65 1.26 10YR 5 3 10YR 3 3 
1 66   10YR 4 3 10YR 2 2 
1 67   10YR 4 2 10YR 2 2 
1 68   10YR 4 3 10YR 3 3 
1 69   10YR 4 2 10YR 3 3 
1 70 2.47 10YR 5 3 10YR 3 3 
1 71   2.5Y 6 6 2.5Y 4 4 
1 72   2.5Y 5 3 2.5Y 3 3 
1 73   2.5Y 5 3 2.5Y 4 4 
1 74   2.5Y 5 4 2.5Y 4 4 
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1 75 1.22 2.5Y 5 3 2.5Y 4 3 
1 76   2.5Y 5 3 2.5Y 4 3 
1 77   2.5Y 5 3 2.5Y 4 4 
1 78   2.5Y 5 3 2.5Y 4 4 
1 79   2.5Y 5 2 2.5Y 3 3 
1 80 1.88 2.5Y 5 4 2.5Y 4 4 
1 81   2.5Y 5 4 2.5Y 3 3 
1 82   2.5Y 4 3 2.5Y 3 3 
1 83   2.5Y 6 4 2.5Y 4 4 
1 84   2.5Y 5 4 2.5Y 4 4 
1 85 1.09 2.5Y 6 3 2.5Y 4 4 
1 86   2.5Y 5 3 2.5Y 3 3 
1 87   2.5Y 5 3 2.5Y 4 4 
1 88   2.5Y 4 4 2.5Y 3 3 
1 89   2.5Y 6 3 2.5Y 4 4 
1 90 2.42 2.5Y 5 3 2.5Y 3 3 
1 91   2.5Y 6 4 2.5Y 4 4 
1 92   2.5Y 6 4 2.5Y 4 4 
1 93   2.5Y 6 4 2.5Y 4 4 
1 94   2.5Y 5 3 2.5Y 4 4 
1 95 1.12 2.5Y 6 4 2.5Y 4 4 
1 96   2.5Y 5 3 2.5Y 3 3 
1 97   2.5Y 6 3 2.5Y 4 3 
1 98   2.5Y 6 4 2.5Y 4 4 
1 99   2.5Y 5 2 2.5Y 3 3 
1 100 2.88 2.5Y 5 3 2.5Y 4 3 
1 101   2.5Y 5 3 2.5Y 4 3 
1 102   2.5Y 5 3 2.5Y 4 4 
1 103   2.5Y 5 3 2.5Y 4 4 
1 104   2.5Y 5 4 2.5Y 3 3 
1 105 1.08 2.5Y 5 3 2.5Y 4 4 
1 106   2.5Y 6 4 2.5Y 4 4 
1 107   2.5Y 5 4 2.5Y 4 4 
1 108   10YR 5 3 10YR 4 3 
1 109   10YR 5 3 10YR 4 4 
1 110 1.41 10YR 5 3 10YR 3 3 
1 111   10YR 5 2 10YR 2 2 
1 112   10YR 5 3 10YR 4 3 
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1 113   10YR 5 2 10YR 3 2 
1 114   10YR 5 3 10YR 3 3 
1 115 0.95 2.5Y 5 3 2.5Y 4 4 
1 116   2.5Y 6 4 2.5Y 4 4 
1 117   2.5Y 5 3 2.5Y 4 4 
1 118   2.5Y 5 3 2.5Y 4 4 
1 119   10YR 6 4 10YR 4 4 
1 120 1.33 10YR 5 4 10YR 3 4 
1 121   10YR 5 3 10YR 4 3 
1 122   10YR 6 3 10YR 3 3 
1 123   10YR 6 4 10YR 4 4 
1 124   10YR 5 3 10YR 4 4 
1 125 1.10 10YR 6 4 10YR 4 4 
1 126   10YR 5 3 10YR 3 2 
1 127   10YR 6 4 10YR 4 4 
1 128   10YR 4 2 10YR 3 2 
1 129   10YR 6 3 10YR 3 3 
1 130 2.02 10YR 5 2 10YR 4 3 
1 131   10YR 5 2 10YR 4 3 
1 132   10YR 4 2 10YR 2 1 
1 133   10YR 5 2 10YR 3 2 
2 134   10YR 4 2 10YR 2 2 
2 135 1.38 10YR 5 2 10YR 3 2 
2 136   10YR 5 2 10YR 2 2 
2 137   10YR 6 2 10YR 2 2 
2 138   10YR 5 2 10YR 3 2 
2 139   10YR 5 2 10YR 3 2 
2 140 1.74 10YR 5 2 10YR 3 2 
2 141   10YR 6 2 10YR 3 2 
2 142   10YR 5 2 10YR 2 2 
2 143   10YR 5 2 10YR 3 3 
2 144   10YR 4 2 10YR 2 2 
2 145 2.05 10YR 4 3 10YR 2 2 
2 146   10YR 4 3 10YR 3 3 
2 147   10YR 4 2 10YR 3 3 
2 148   10YR 4 3 10YR 3 3 
2 149   10YR 5 2 10YR 3 2 
2 150 2.99 10YR 4 3 10YR 3 3 
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2 151   10YR 4 3 10YR 2 2 
2 152   10YR 5 2 10YR 2 2 
2 153   10YR 5 2 10YR 3 3 
2 154   10YR 4 3 10YR 3 3 
2 155 0.97 10YR 5 3 10YR 3 3 
2 156   10YR 4 3 10YR 3 3 
2 157   10YR 5 3 10YR 3 3 
2 158   10YR 5 3 10YR 3 3 
2 159   10YR 5 3 10YR 3 3 
2 160 4.89 10YR 4 3 10YR 2 2 
2 161   10YR 4 3 10YR 3 3 
2 162   10YR 5 3 10YR 3 3 
2 163   10YR 5 3 10YR 3 3 
2 164   10YR 4 3 10YR 3 3 
2 165 1.11 2.5Y 5 3 2.5Y 4 4 
2 166   10YR 4 3 10YR 3 3 
2 167   10YR 5 3 10YR 3 3 
2 168   10YR 4 3 10YR 2 2 
2 169   10YR 5 2 10YR 3 3 
2 170 4.37 10YR 4 2 10YR 2 2 
2 171   10YR 4 2 10YR 2 2 
2 172   10YR 3 3 10YR 2 2 
2 173   10YR 4 2 10YR 2 2 
2 174   10YR 4 2 10YR 2 2 
2 175 1.44 10YR 5 3 10YR 3 3 
2 176   10YR 4 3 10YR 2 2 
2 177   10YR 4 2 10YR 2 2 
2 178   10YR 5 3 10YR 3 3 
2 179   10YR 5 3 10YR 3 3 
2 180 1.35 10YR 4 3 10YR 3 3 
2 181   10YR 5 3 10YR 3 3 
2 182   10YR 4 3 10YR 3 3 
2 183   10YR 4 3 10YR 2 2 
2 184   10YR 4 3 10YR 3 3 
2 185 9.36 10YR 4 2 10YR 2 1 
2 186   10YR 4 3 10YR 2 2 
2 187   10YR 4 2 10YR 2 2 
2 188   10YR 4 3 10YR 3 3 
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Garden 
Plot      
(GP)  sample# 

LOI       
% SOC 

by 
weight 

Hue 
(shade) 

 Dry    
Value 

(lightness) 
Chroma 
(intensity) 

Hue 
(shade) 

 Moist   
Value 

(lightness) 
Chroma 
(intensity) 

2 189   10YR 4 3 10YR 3 3 
2 190 7.97 10YR 4 3 10YR 2 2 
2 191   10YR 4 3 10YR 2 2 
2 192   10YR 4 2 10YR 2 2 
2 193   10YR 5 3 10YR 3 3 
2 194   10YR 4 3 10YR 3 2 
2 195 2.01 10YR 4 3 10YR 3 2 
2 196   10YR 4 2 7.5YR 2.5 2 
2 197   10YR 4 2 7.5YR 2.5 3 
2 198   10YR 4 2 10YR 2 2 
2 199   10YR 4 3 10YR 3 2 
2 200 3.11 10YR 4 3 10YR 2 2 
2 201   10YR 4 4 7.5YR 3 3 
2 202   10YR 4 3 10YR 3 3 
2 203   10YR 4 3 10YR 2 2 
2 204   10YR 4 3 10YR 2 2 
2 205 1.56 10YR 3 3 10YR 2 2 
2 206   10YR 4 3 10YR 2 2 
2 207   10YR 4 4 10YR 2 2 
2 208   10YR 4 3 10YR 2 2 
2 209   10YR 4 3 7.5YR 2.5 2 
2 210 1.57 10YR 4 2 7.5YR 2.5 2 
2 211   10YR 4 3 10YR 3 3 
2 212   10YR 4 3 10YR 3 3 
2 213   10YR 4 3 7.5YR 2.5 3 
2 214   10YR 4 3 10YR 3 2 
3 215 1.59 10YR 4 2 10YR 2 2 
3 216   10YR 4 2 10YR 3 2 
3 217   10YR 4 2 10YR 2 2 
3 218   10YR 4 2 10YR 2 2 
3 219   10YR 4 2 10YR 2 2 
3 220 1.13 10YR 4 2 10YR 2 2 
3 221   10YR 4 2 10YR 2 2 
3 222   10YR 4 3 10YR 2 2 
3 223   10YR 4 2 10YR 2 2 
3 224   10YR 4 3 10YR 2 2 
3 225 1.91 10YR 4 2 10YR 2 2 
3 226   10YR 4 3 10YR 2 2 
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LOI       
% SOC 

by 
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Hue 
(shade) 

 Dry    
Value 

(lightness) 
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(intensity) 

Hue 
(shade) 

 Moist   
Value 

(lightness) 
Chroma 
(intensity) 

3 227   10YR 4 3 10YR 2 2 
3 228   10YR 4 3 10YR 2 2 
3 229   10YR 4 2 10YR 2 2 
3 230 0.51 10YR 4 3 10YR 2 2 
3 231   10YR 4 2 10YR 2 2 
3 232   10YR 4 3 10YR 2 2 
3 233   10YR 4 2 10YR 2 2 
3 234   10YR 4 3 10YR 3 2 
3 235 0.90 10YR 4 2 10YR 3 2 
3 236   2.5Y 4 3 2.5Y 3 3 
3 237   2.5Y 5 2 10YR 3 2 
3 238   10YR 5 3 10YR 3 3 
3 239   10YR 4 2 10YR 3 2 
3 240 0.51 10YR 4 3 10YR 3 3 
3 241   10YR 4 2 10YR 3 2 
3 242   10YR 4 3 10YR 3 2 
3 243   10YR 4 2 10YR 3 2 
3 244   10YR 5 3 10YR 3 2 
3 245 0.86 10YR 4 3 10YR 3 2 
3 246   10YR 5 3 10YR 3 3 
3 247   10YR 4 3 10YR 3 2 
3 248   10YR 5 3 10YR 3 3 
3 249   10YR 4 2 10YR 3 2 
3 250 0.43 10YR 5 3 10YR 3 3 
3 251   10YR 4 3 10YR 3 2 
3 252   10YR 4 3 10YR 3 3 
3 253   10YR 4 2 10YR 3 3 
3 254   10YR 5 4 10YR 3 3 
3 255 0.87 10YR 5 3 10YR 3 2 
3 256   10YR 5 3 10YR 3 3 
3 257   10YR 4 3 7.5YR 3 3 
3 258   10YR 5 3 10YR 3 3 
3 259   10YR 4 2 10YR 2 2 
3 260 0.65 10YR 4 2 10YR 2.5 2 
3 261   10YR 4 2 10YR 2 2 
3 262   10YR 4 2 10YR 2 2 
3 263   10YR 5 2 10YR 2 2 
3 264   10YR 4 2 10YR 3 2 
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Plot      
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LOI       
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by 
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Hue 
(shade) 

 Dry    
Value 

(lightness) 
Chroma 
(intensity) 

Hue 
(shade) 

 Moist   
Value 

(lightness) 
Chroma 
(intensity) 

3 265 1.42 10YR 4 2 10YR 2 2 
3 266   10YR 4 2 7.5YR 2.5 2 
3 267   10YR 4 2 7.5YR 2.5 2 
3 268   10YR 4 2 7.5YR 2.5 3 
3 269   10YR 4 2 10YR 3 2 
3 270 0.50 10YR 4 3 10YR 3 2 
3 271   10YR 4 2 10YR 3 2 
3 272   10YR 4 3 10YR 3 2 
3 273   10YR 4 2 10YR 3 2 
3 274   10YR 4 3 10YR 3 2 
3 275 0.84 10YR 4 2 10YR 3 2 
3 276   10YR 4 3 10YR 3 3 
3 277   10YR 4 3 10YR 3 2 
3 278   10YR 4 3 10YR 3 2 
3 279   10YR 4 3 10YR 3 3 
3 280 0.26 10YR 4 3 10YR 3 3 
3 281   10YR 4 2 10YR 2 2 
3 282   10YR 4 3 10YR 3 3 
3 283   10YR 4 3 10YR 3 2 
3 284   10YR 4 3 10YR 3 3 
3 285 1.64 10YR 4 3 10YR 3 2 
3 286   10YR 4 3 10YR 3 3 
3 287   10YR 4 3 10YR 3 3 
3 288   10YR 4 3 10YR 3 3 
3 289   10YR 5 3 10YR 3 3 
3 290 0.36 10YR 5 3 10YR 3 3 
3 291   10YR 4 3 10YR 3 2 
3 292   10YR 4 3 10YR 3 3 
3 293   10YR 4 3 10YR 2 2 
3 294   10YR 4 3 10YR 3 3 
3 295 1.59 10YR 4 3 10YR 3 2 
3 296   10YR 4 3 10YR 3 3 
3 297   10YR 4 3 10YR 3 2 
3 298   10YR 5 3 10YR 3 3 
3 299   10YR 4 3 10YR 3 2 
3 300 0.42 10YR 5 3 10YR 3 3 
3 301   10YR 4 3 10YR 3 2 
3 302   10YR 5 3 10YR 3 3 
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(GP)  sample# 

LOI       
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by 
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Hue 
(shade) 

 Dry    
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(lightness) 
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(intensity) 

Hue 
(shade) 

 Moist   
Value 

(lightness) 
Chroma 
(intensity) 

3 303   10YR 4 2 10YR 2 2 
3 304   10YR 4 2 10YR 3 2 
3 305 2.59 10YR 4 2 10YR 2 2 
3 306   10YR 4 3 10YR 3 2 
3 307   10YR 4 2 10YR 3 2 
3 308   10YR 4 2 10YR 3 2 
3 309   10YR 4 2 10YR 2 2 
3 310 0.63 10YR 4 2 10YR 3 2 
3 311   10YR 4 2 10YR 2 2 
3 312   10YR 4 3 10YR 3 2 
3 313   10YR 4 2 10YR 2 2 
3 314   10YR 4 3 10YR 3 2 
3 315 1.60 10YR 4 2 10YR 3 2 
3 316   10YR 4 2 10YR 3 2 
3 317   10YR 4 3 10YR 2 2 
3 318   10YR 4 2 10YR 3 3 
3 319   10YR 4 3 10YR 3 2 
3 320 0.38 10YR 4 3 10YR 3 3 
3 321   10YR 4 2 10YR 3 2 
3 322   10YR 4 3 10YR 3 3 
3 323   10YR 4 2 10YR 3 2 
3 324   10YR 4 3 10YR 3 3 
3 325 1.06 10YR 4 3 10YR 3 3 
3 326   10YR 4 3 10YR 3 3 
3 327   10YR 4 3 10YR 3 3 
3 328   10YR 4 3 10YR 3 3 
3 329   10YR 4 3 10YR 3 2 
3 330 1.09 10YR 5 3 10YR 3 3 
3 331   10YR 4 3 10YR 3 3 
3 332   10YR 4 3 10YR 3 2 
3 333   10YR 4 3 10YR 3 2 
3 334   10YR 4 3 10YR 3 3 
3 335 0.50 10YR 4 3 10YR 3 3 
3 336   10YR 4 3 10YR 3 2 
3 337   10YR 4 2 10YR 2 2 
3 338   10YR 4 3 10YR 3 2 
3 339   10YR 5 2 10YR 3 2 
3 340 0.55 10YR 5 3 10YR 3 3 
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LOI       
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by 
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 Dry    
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(lightness) 
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Hue 
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 Moist   
Value 

(lightness) 
Chroma 
(intensity) 

3 341   10YR 4 3 10YR 3 3 
3 342   10YR 4 3 10YR 3 2 
3 343   10YR 4 3 10YR 3 3 
3 344   10YR 4 3 10YR 3 3 
3 345 0.83 10YR 4 2 10YR 3 2 
3 346   10YR 5 3 10YR 3 3 
3 347   10YR 4 2 10YR 2 2 
3 348   10YR 4 3 10YR 3 3 
3 349   10YR 4 2 10YR 2 2 
3 350 0.57 10YR 4 2 10YR 2 2 
3 351   10YR 4 2 10YR 2 2 
3 352   10YR 4 3 10YR 3 3 
3 353   10YR 4 2 10YR 2 2 
3 354   10YR 4 2 10YR 2 2 
3 355 1.28 10YR 4 2 10YR 2 2 
3 356   10YR 4 3 10YR 3 2 
3 357   10YR 4 2 10YR 3 2 
3 358   10YR 4 2 10YR 3 3 
3 359   10YR 4 2 10YR 3 2 
3 360 0.69 10YR 4 2 10YR 3 2 
3 361   10YR 4 2 10YR 2 2 
3 362   10YR 4 3 10YR 3 2 
3 363   10YR 4 2 10YR 2 2 
3 364   10YR 4 2 10YR 3 2 
3 365 1.03 10YR 4 3 10YR 3 2 
3 366   10YR 4 3 10YR 3 2 
3 367   10YR 4 3 10YR 3 2 
3 368   10YR 4 3 10YR 3 2 
3 369   10YR 4 2 10YR 3 2 
3 370 0.56 10YR 4 3 10YR 3 2 
3 371   10YR 4 2 10YR 2 2 
3 372   10YR 4 3 10YR 3 2 
3 373   10YR 4 3 10YR 2 2 
3 374   10YR 4 3 10YR 3 2 
3 375 0.74 10YR 4 2 10YR 3 2 
3 376   10YR 4 3 10YR 3 2 
3 377   10YR 4 2 10YR 2 2 
3 378   10YR 4 3 10YR 3 3 
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LOI       
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by 
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Hue 
(shade) 

 Dry    
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(lightness) 
Chroma 
(intensity) 

Hue 
(shade) 

 Moist   
Value 

(lightness) 
Chroma 
(intensity) 

3 379   10YR 4 2 10YR 2 2 
3 380 0.30 10YR 4 3 10YR 3 2 
3 381   10YR 4 2 10YR 3 2 
3 382   10YR 4 3 10YR 3 2 
3 383   10YR 4 2 10YR 2 2 
3 384   10YR 4 2 10YR 3 2 
3 385 1.06 10YR 4 2 10YR 3 2 
3 386   10YR 4 3 10YR 3 3 
3 387   10YR 4 2 10YR 3 2 
3 388   10YR 4 3 10YR 3 2 
3 389   10YR 4 2 10YR 3 2 
3 390 0.47 10YR 4 3 10YR 3 3 
4 391   10YR 4 3 10YR 2 2 
4 392   10YR 3 3 10YR 2 2 
4 393   10YR 4 3 10YR 3 2 
4 394   10YR 4 2 10YR 2 2 
4 395 1.45 10YR 4 3 10YR 2 2 
4 396   10YR 4 3 10YR 2 2 
4 397   10YR 4 3 10YR 2 2 
4 398   10YR 4 3 10YR 3 2 
5 399   10YR 5 4 10YR 3 4 
5 400 0.55 10YR 4 4 10YR 3 4 
5 401   10YR 5 4 10YR 3 4 
5 402   10YR 5 4 10YR 3 4 
5 403   10YR 5 4 10YR 4 4 
5 404   10YR 5 4 10YR 4 4 
6 405 1.92 10YR 4 2 10YR 2 2 
6 406   10YR 4 3 10YR 2 2 
6 407   10YR 4 2 10YR 2 2 
6 408   10YR 4 2 10YR 2 2 
6 409   10YR 4 2 10YR 2 2 
6 410 1.60 10YR 4 3 10YR 2 2 
6 411   10YR 4 2 10YR 2 2 
6 412   10YR 4 2 10YR 2 2 
6 413   10YR 4 2 10YR 2 2 
6 414   10YR 4 3 10YR 2 2 
6 415 2.33 10YR 4 2 10YR 2 2 
6 416   10YR 4 3 10YR 2 2 
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LOI       
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by 
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Hue 
(shade) 

 Dry    
Value 

(lightness) 
Chroma 
(intensity) 

Hue 
(shade) 

 Moist   
Value 

(lightness) 
Chroma 
(intensity) 

7 417   10YR 4 2 10YR 2 2 
7 418   10YR 4 3 10YR 3 2 
7 419   10YR 4 2 10YR 2 2 
7 420 1.69 10YR 4 2 10YR 3 2 
7 421   10YR 4 2 10YR 2 2 
7 422   10YR 4 2 10YR 3 2 
7 423   10YR 4 3 10YR 3 2 
7 424   10YR 5 2 10YR 3 2 
7 425 2.09 10YR 4 2 10YR 2 2 
7 426   10YR 4 2 10YR 2 2 
7 427   10YR 4 2 10YR 3 2 
7 428   10YR 3 2 10YR 2 2 
7 429   10YR 4 2 10YR 2 2 
7 430 2.06 10YR 3 2 10YR 2 2 
7 431   10YR 4 2 10YR 2 2 
7 432   10YR 3 2 10YR 2 2 

7S6 433    10YR 5 3 10YR 3 3 
7S 434   10YR 4 2 10YR 3 2 
7S 435 1.62 10YR 3 2 10YR 2 2 
7S 436   10YR 4 2 10YR 2 2 
8 437   10YR 4 2 10YR 3 2 
8 438   10YR 4 2 10YR 2 2 
8 439   10YR 3 2 10YR 2 2 
8 440 0.76 10YR 4 2 10YR 2 2 
8 441   10YR 4 2 10YR 2 2 
8 442   10YR 4 2 10YR 3 2 
8 443   10YR 4 2 10YR 3 2 
8 444   10YR 4 3 10YR 3 2 
8 445 1.39 10YR 4 2 10YR 3 2 
8 446   10YR 4 3 10YR 3 2 
8 447   10YR 4 3 10YR 2 2 
8 448   10YR 4 2 10YR 2 2 
8 449   10YR 4 2 10YR 3 2 
8 450 0.89 10YR 4 2 10YR 2 2 
8 451   10YR 4 2 10YR 2 2 

                                                           

6 Samples taken a few lots north of GP-7 in a few areas of concern in and around a backyard garden. 
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LOI       
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by 
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Hue 
(shade) 

 Dry    
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(lightness) 
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(intensity) 

Hue 
(shade) 

 Moist   
Value 

(lightness) 
Chroma 
(intensity) 

8 452   10YR 4 2 10YR 2 2 
8 453   10YR 4 3 10YR 2 2 
8 454   10YR 4 3 10YR 2 2 
8 455 0.91 10YR 4 2 10YR 2 2 
8 456   10YR 4 2 10YR 2 2 
8 457   10YR 4 2 10YR 2 2 
8 458   10YR 4 2 10YR 3 2 
8 459   10YR 4 2 10YR 2 2 
8 460 0.79 10YR 4 2 10YR 2 2 
8 461   10YR 4 2 10YR 2 2 
8 462   10YR 4 2 10YR 2 2 
8 463   10YR 4 3 10YR 3 2 
8 464   10YR 4 3 10YR 3 2 

8pole7 465  0.70 10YR 4 3 10YR 3 3 
8pit8 466    10YR 4 2 10YR 3 2 
9A9 467    10YR 4 3 10YR 3 3 
9A 468   2.5Y 6 3 2.5Y 3 3 
9 469   2.5Y 4 2 7.5YR 2.5 2 
9 470 0.56 2.5Y 7 2 2.5Y 4 2 
9 471   10YR 4 3 10YR 2 2 
9 472   2.5Y 4 2 2.5Y 4 2 
9 473   2.5Y 4 3 10YR 3 2 
9 474   2.5Y 4 3 2.5Y 3 3 
9 475 1.83 2.5Y 4 3 10YR 3 2 
9 476   2.5Y 5 3 2.5Y 3 2 
9 477   2.5Y 4 3 10YR 3 2 
9 478   2.5Y 5 3 2.5Y 3 2 
9 479   2.5Y 5 3 2.5Y 3 2 
9 480 1.07 2.5Y 4 3 2.5Y 3 2 

10 481   10YR 3 2 10YR 2 2 
10 482   10YR 4 3 10YR 2 2 
10 483   10YR 3 2 10YR 2 1 
10 484   2.5Y 5 3 2.5Y 3 3 
10 485 2.06 2.5Y 4 3 2.5Y 3 2 

                                                           

7 Sample taken near a pole downslope of an area used as a burn pit for electronics in the vicinity of GP-8. 
8 Sample taken at the approximate location of a burn pit for electronics in the vicinity of GP-8. 
9 Sample taken in a lettuce patch in the lot just south of the main sample area of GP-9 
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Garden 
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LOI       
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by 
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Hue 
(shade) 

 Dry    
Value 

(lightness) 
Chroma 
(intensity) 

Hue 
(shade) 

 Moist   
Value 

(lightness) 
Chroma 
(intensity) 

10 486   2.5Y 5 4 10YR 3 3 
10 487   2.5Y 4 3 10YR 3 3 
10 488   2.5Y 5 4 10YR 3 3 

10pg10 489    2.5Y 5 3 10YR 3 2 

compost 490 11.35 10YR 2 2 10YR 2 1 

WoodsonA 491 1.17 10YR 4 2 10YR 2 2 

WoodsonB 492   10YR 4 3 10YR 2 2 

MartinA 493 1.43 10YR 4 2 10YR 2 2 

MartinB 494   2.5Y 5 4 10YR 3 3 

EudoraA 495 1.55 2.5Y 5 3 10YR 3 3 

EudoraB 496   2.5Y 5 4 2.5Y 4 4 

PawneeA 497 1.53 10YR 3 2 10YR 2 2 

PawneeB 498   10YR 4 2 10YR 2 2 

MorrillA 499 0.56 2.5Y 6 4 2.5Y 5 4 

MorrillB 500 0.57 10YR 6 4 10YR 4 4 
 

 

 

                                                           

10 Refers to sample taken in vicinity of GP-10 near child’s wooden play structure. 
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