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Abstract

Resonant dark matter annihilation drew much attention in the light of recent measure-

ments of charged cosmic ray fluxes. Interpreting the anomalous signal in the positron

fraction as a sign of dark matter annihilation in the galactic halo requires cross sections

orders of magnitudes higher than the estimates coming from thermal relic abundance.

Resonant dark matter annihilation provides a mechanism to bridge the apparent contra-

diction between thermal relic abundance and the positron data measured by PAMELA

and FERMI satellites.

In this thesis, we analyze a class of models which allow for dark matter to annihilate

through an s-channel resonance. Our analysis takes into account constraints from ther-

mal relic abundance and the recent measurements of charged lepton cosmic ray fluxes,

first separately and then simultaneously.

Consistency of resonant dark matter annihilation models with thermal relic abun-

dance as measured by WMAP serves to construct a relationship between the full set of

masses, couplings and widths involved. Extensive numerical analysis of the full four

dimensional parameter space is summarized by simple analytic approximations. The

expressions are robust enough to be generalized to models including additional annihi-

lation channels.

We provide a separate treatment of resonant annihilation of dark matter in the galac-

tic halo. We find model-independent upper limits on halo dark matter annihilation rates
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and show that the most efficient annihilation mechanism involves s-channel resonances.

Widths that are large compared to the energy spread in the galactic halo are capable of

saturating unitarity bounds without much difficulty. Partial wave unitarity prevents the

so called Sommerfeld factors from producing large changes in cross sections. In ad-

dition, the approximations made in Sommerfeld factors break down in the kinematic

regions where large cross section enhancements are often cited.

Simultaneous constraints from thermal relic abundance and halo annihilation serve

to produce new limits on dark matter masses and couplings. Past considerations of

only a part of the resonant annihilation parameter set to motivate large annihilation

cross section enhancements in the halo while maintaining correct relic abundance are

generally incomplete. Taking into account only the resonance mass and width to show

that large cross section enhancements are possible does not in principle guarantee that

the enhancement will be achieved. We extend the calculation to include the full resonant

parameter set. As a result, we obtain new limits on dark matter masses and couplings.

iv



Contents

Abstract iii

List of Figures viii

List of Tables xiii

1 Introduction 1

1.1 Brief History of Dark Matter . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Resonant Annihilation of Dark Matter - Motivation and Outline . . . . . 3

2 Resonant (Breit-Wigner) Annihilation Cross Section 9

2.1 Thermally Averaged Cross Section . . . . . . . . . . . . . . . . . . . . 10

2.2 General Form of the Resonant Annihilation Cross Section . . . . . . . . 11

2.3 Non-Relativistic Form of the Resonant Annihilation Cross Section . . . 14

3 Relic Abundance of Dark Matter 17

3.1 Relic Abundance Calculation . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Boltzmann Equation . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Temperature Dependence of Resonant Thermally Averaged Cross Sec-

tion and its Effects on Relic Abundance . . . . . . . . . . . . . . . . . 23

4 Analytic Mass-Width Relations 27

v



4.1 Mass-Width Relations: Pole Below Threshold (mY < 2mX ) . . . . . . . 28

4.1.1 Analytic Representation . . . . . . . . . . . . . . . . . . . . . 29

4.1.2 Replacement Rule for Adding Non-Resonant Channels . . . . . 31

4.1.3 Calculable Widths Constrain the Masses . . . . . . . . . . . . 34

4.1.4 Dark Matter and Pole Mass Relations . . . . . . . . . . . . . . 38

4.2 Mass-Width Relations: Pole Above Threshold (mY > 2mX ) . . . . . . . 39

5 Constraints on Resonant Dark Matter Annihilation from Indirect Detec-

tion Experiments 46

5.1 Experimental Searches for Dark Matter Signals in Charged Particle Fluxes 48

5.2 General Limits on the Resonant Velocity Averaged Resonant Cross

Section in the Galactic Halo . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.1 Metastable Bound States, and Narrow Resonances . . . . . . . 55

5.2.2 Comparisons with Previous Work of Resonant Dark Matter An-

nihilation in the Galactic Halo . . . . . . . . . . . . . . . . . . 58

5.3 Sommerfeld Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.1 Motivation for Re-summation . . . . . . . . . . . . . . . . . . 60

5.3.2 A Derivation of Sommerfeld Factors . . . . . . . . . . . . . . . 63

5.3.3 Multiplicative Factors Must Fail . . . . . . . . . . . . . . . . . 65

6 Combined Constraints from Relic Abundance and Indirect Detection 68

6.1 Useful Scaling Relations . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 Previous Considerations of Simultaneous Relic and Halo Constraints

on Resonant Dark Matter Annihilation . . . . . . . . . . . . . . . . . . 71

6.3 Dark Matter Mass and Coupling Limits . . . . . . . . . . . . . . . . . 73

Appendices 81

vi



A.1 Derivation of the Boltzmann Equation . . . . . . . . . . . . . . . . . . 81

A.2 Relic Abundance Code . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.2.1 Main Program . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.2.2 MadDM darkmatter class . . . . . . . . . . . . . . . . . . . . 89

A.2.3 Numerical Recipees code . . . . . . . . . . . . . . . . . . . . . 95

Bibliography 101

vii



List of Figures

2.1 s-channel dark matter annihilation diagrams into all possible final states.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Thermally averaged cross section for a pole below threshold (blue line

on the bottom) and above threshold (red line on the top). Parameters

used for the purpose of the graphics are mX = 300GeV , gXXY = 0.1,

ΓY = 3GeV . The resonance below threshold lies 30GeV below the

threshold 2mX , while the above threshold case is just 30GeV above

the threshold. Notice that in both cases 〈σv〉 ≈ a+ b/x+ ... is not a

good approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Thermal evolution of dark matter number density. Red dashed line rep-

resents the thermal evolution for a case of a constant 〈σv〉. Thermal

evolution for resonant dark matter annihilation is the blue line. For

the purpose of the graphic, the resonance was tuned to a value slightly

below 2mX , and a width of O(1)GeV was assumed. Resonant and non-

resonant cases were arranged so that they decouple from equilibrium at

roughly the same time for better presentation. The thick gray line is the

equilibrium distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 26

viii



4.1 Intersection of the mesh plane representing Ωh2 = 0.1 and the surface

Ωh2(ΓY ,mY ,m∗,α∗) gives a unique curve Γ(mY ). m∗ = 100GeV , α∗ =

0.01 for the purpose of the graphic. Contours of Ωh2 = 0.1 for a set of

different dark matter masses are presented in Fig. 4.2 . . . . . . . . . . 27

4.2 Relation of the s-channel width ΓY and mass mY for a pole below

threshold consistent with cosmological relic density Ωh2 = 0.1. Dashed

curves (black) are the numerical calculation. Solid curves (blue) are the

analytic relation of Eq. 4.3. Each curve is evaluated with a fixed dark

matter mass mX =100-500 GeV in 100 GeV increments. . . . . . . . . . 29

4.3 Upper limits on ΓY assuming s-channel annihilation (pole below thresh-

old) plus other channels increasing the cross section. Shaded regions to

the left and above the contours are not allowed. Curves show different

couplings αXXY b f = g2
XXY/4π; mY = 400GeV is used for the purpose

of the graphic. Larger mY pushes contours to the right. . . . . . . . . . 32

4.4 Generalization of the mass-width relation to include “Born-like” chan-

nels. Black dashed curves show numerical evaluation. Solid curves

(magenta) are the revised fit of Eq. 4.6. Thick solid curves (blue)

are the approximations of Eq. 4.3, consistent with the role as an up-

per bound. Different curves use different masses mX = 100−500GeV ,

from left to right. Parameter αXXY b f = 10−2 and ∑i α i
e f f = 10−4 for

the purpose of the graphic. . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 Combining the below-threshold width-v-mass mY relation of Fig. 4.2

with ΓY = αΓmY represented by solid thin curves (red). Intersections

of the curves predict a non-linear relation between mX and mY (text).

Values of αΓ = 10−1 (top curve) range to αΓ = 10−4 (bottom curve) in

factor of 10 increments. . . . . . . . . . . . . . . . . . . . . . . . . . 37

ix



4.6 Mass of dark matter mX versus the mass of the particle in the s-channel

mY . Red lines represent αΓ = 0.001,0.01,0.1 from top to bottom.

αXXY = 0.01 for the purpose of the graphic. Small widths (αΓ small)

require fine mass tuning, mY ≈ 2mX to accommodate correct relic abun-

dance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.7 Same as Fig. 4.6 but for an extended range of mX . Red lines represent

αΓ = 0.001,0.01,0.1 from top to bottom. αXXY = 0.01 for the purpose

of the graphic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.8 Relation of the s-channel width ΓY and pole mass mY above threshold

consistent with cosmological relic density Ωh2 = 0.1. Dashed curves

(black) are the numerical calculation. Solid curves (blue) are the an-

alytic relation of Eq. 4.13. Each curve is evaluated with a fixed dark

matter mass mX =100-500 GeV in 100 GeV increments. . . . . . . . . . 41

4.9 Mass of dark matter mX vs. the mass of the s-channel particle mY for a

pole above threshold, mY > 2mX Red lines represent αΓ = 0,0.01,0.05,0.1

from top to bottom. αXXY = 0.01 for the purpose of the graphic. Small

widths (αΓ small) require very fine tuning of masses, mY ≈ ηmX to

accommodate correct relic abundance. . . . . . . . . . . . . . . . . . . 42

4.10 Typical upper limits on ΓY given a mass mY for different masses of dark

matter mX assuming both s-channel annihilation (pole above threshold)

and other non-resonant channels. Shaded regions to the left and above

the contours are not allowed. mY = 1.5 TeV was used for the purpose

of the graphic; larger mY pushes contours to the right. . . . . . . . . . 44

x



5.1 The integral IN(γ0, δ0) (dark shaded) and upper limits cited in the text

(transparent mesh). By Eq. 5.3 the rate constant is related via 〈σv〉res∼

vN−1
0 IN/m2

X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Upper limits (diagonal lines) of resonantly enhanced annihilation rate

〈σv〉res in the isothermal halo distribution. Solid curves (black) are

computed with fixed Γ/mX . Gray triangle in upper right the unitar-

ity bound. The thick dashed curve (blue) is the maximum value for

the cross section for N = 1. Thin dashed curves (red) show 〈σv〉res

computed for bound state processes using Γ = α5
X mX/2 and Eres =

−mX α2
X/4. Middle curve (orange ) is the neutrino-based upper limit

of Ref. [59]. Horizontal line (green) is a conventional lower bound

〈σv〉 ∼ 3×10−26cm3/s. . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Ratio of I1/I0 (shaded area) compared to the uniform value of 1 (mesh). 55

6.1 Desired boost factor in the galactic halo as a function of the rescaled

width γ ′ = ΓY/mX and the distance of the resonance mass from the

threshold δ ′=(2mX−mY )/mX . Different contours represent a constant

value of the boost factor BF in the halo. Boost factors of O(100) or

more are achievable only for δ ′ ≤ 10−4 and γ ′ ≤ 10−3.5. . . . . . . . . 72

6.2 Limits on dark matter mass requiring a boost factor BF ≥ 100 with

gXXY = 0.1. The grey shaded regions are regions where BF ≥ 100 is

achievable. The red lines are contours of Ωh2 = 0.1 for different dark

matter masses. Top panel is for the pole below threshold. Bottom panel

is for a pole above threshold. Smaller couplings push the red contours

up. Fermionic dark matter coupling a vector resonance was used for

the purpose of the graphic. . . . . . . . . . . . . . . . . . . . . . . . . 74

xi



6.3 Scaling of the factor 4πg2
min/m2

max as a function of the minimal desired

boost factor. Blue dots are different values of the factor 4πg2
min/m2

max

given a desired boost factor. The red line is a fit of the form a
√

BFmin. . 76

xii



List of Tables

2.1 Value of the t j j′ factor for some commonly found combinations of ini-

tial states and intermediate states. “S” stands for scalar, “ f ” for fermion,

“V ” for vector, “S̃” for pseudo-scalar and “Ṽ” for a pseudo-vector. . . . 13
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Chapter 1

Introduction

1.1 Brief History of Dark Matter

Existence of dark matter was proposed nearly half a century ago as an explanation for

the anomalous behavior of the galaxy rotation curves [1–3]. To date, no experiment

has been able to directly observe dark matter, although indirect evidence such as large

structure formation and gravitational lensing in the backgrounds of galaxy clusters offer

hints of its existence.

Other than knowing that dark matter must couple to gravity, the true nature of dark

matter interactions at particle physics scales remains largely unknown. The Standard

Model of particle physics describes three generations of matter and their interactions

through electro-magnetic, weak and strong forces, while gravity has not yet been suc-

cessfully implemented. A tremendous amount of experimental data has been explained

by the Standard Model to a very high level of accuracy. Yet, despite its enormous

success, the Standard Model does not contain a dark matter candidate capable of ac-

commodating all astro-physical and cosmological data 1. For the last few decades, this

1Neutrinos could constitute a fraction of dark matter, but cannot account for the entire dark matter
content as estimated by the Wilkinson Microwave Anisotropy Probe (WMAP) [4].
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fact has driven the massive experimental and theoretical effort to discover particle dark

matter.

With the discovery of the anisotropies in the cosmic microwave background (CMB),

cosmology has become an active experimental field. Given a model of the universe, the

CMB anisotropies can be mapped into cosmological parameters, one of them being the

relic density of dark matter. WMAP [4] estimates dark matter to provide ∼ 25% of the

energy content of the universe in the context of the Standard Cosmological Model.

At present, a diverse spectrum of experimental dark matter searches is underway.

Direct dark matter detection experiments such as CDMS [5], DAMA/LIBRA, DAMA

/ NaI [6], COGENT [7] and XENON100 [8,9] are looking for signals of possible inter-

actions of galactic halo dark matter with atomic nuclei. Both XENON100 and CDMS

have recently claimed events in the dark matter signal region. However, at this point it

is hard to determine whether the observed events are truly dark matter due to very low

statistics. COGENT has claimed a statistically significant excess of events in the low

energy nuclear recoil region. Uncertainties about the nature of backgrounds and their

levels in the COGENT signal region make it difficult to confirm that the excess is truly

due to dark matter interactions. For some time now, DAMA has observed an annual

modulation in the event rate. The group attributes the signal to the annual changes in

the flux of dark matter as the Earth moves around the Sun. Meanwhile, many back-

grounds relevant to DAMA show annual modulations in phase with the signal [10].

Dark matter could in principle be produced in collider experiments. The Large

Hadron Collider (LHC) will search for possible signals of dark matter produced in

ultra-high energy proton proton collisions.

Earth based indirect detection experiments, such as AMANDA [11], IceCube [12,

13] and ANTARES [14] are searching for neutrino signals coming from dark matter

annihilation in the Sun or the Earth. At this time, no signal has been reported. Satellite

2



based indirect detection experiments PAMELA [15], FERMI [16] and PPB-BETS [17]

suggested a significant signal in excess positron production in galactic halos, as long

suggested by the HEAT [18] and ATIC [19] experiments. Possible explanations range

from exotic mechanisms [20, 21], uncertain features of pulsars [22–25], to dark matter

decays [26–28] and dark matter annihilation [29–34]. FERMI is also looking for dark

matter signatures in the diffuse gamma ray fluxes. So far, no significant excess has been

reported [35].

Much of our work in this thesis is focused on recent results from PAMELA and

FERMI. We will discuss these results in much more detail in Chapter 5.

1.2 Resonant Annihilation of Dark Matter - Motivation

and Outline

The excess in the positron fraction relative to the galactic background measured by

PAMELA and FERMI sparked a significant interest in dark matter models which in-

clude resonant annihilation channels. In order for dark matter annihilation to produce

the observed halo positron excess, a large thermally averaged dark matter annihilation

cross section, 〈σv〉 is needed. The order of magnitude estimates show that required

〈σv〉 needs to be O(100− 1000) larger than the canonical 〈σv〉0 ∼ 10−9GeV−2 re-

quired in the early universe by the estimates of dark matter relic abundance 2.

Dark matter annihilation through an s-channel resonance is a mechanism able to

reconcile the conflict between the large cross section enhancements, or boost factors,

needed to produce the positron excess in the halo and the small cross sections needed

in the early universe to yield the correct relic abundance. The non-trivial velocity de-

2Estimates of dark matter relic abundance are in the context of the Standard Cosmological Model
(ΛCDM), as measured by WMAP.
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pendence of resonant cross section allows for the thermally averaged cross section in

the early universe to be small, while enhancing the cross sections in the halo by orders

of magnitude.

Long before the positron data was available, Griest and Seckel [36] noticed that

resonant dark matter annihilation is a rich problem in the context of thermal relics.

Typically, analytic calculations of relic abundance involve expansions of dark matter

annihilations cross sections in partial waves. The expansions are usually presented

as truncated polynomials in powers of velocity and are particularly useful for find-

ing simple analytic solutions for relic abundance. Simple polynomial expansions of

resonant annihilation cross sections however, cannot be used for calculations of dark

matter relic abundance. The truncated series approximations are never accurate over

the wide range of velocities needed, contradicting the standard estimate of a constant

〈σv〉0 ∼ 10−9GeV−2. Analytic solutions are difficult for the same reason. Conse-

quently, the effects of dark matter annihilation through a resonance could possibly have

drastic effects on the magnitude of dark matter abundance in the present universe.

Resonant dark matter affects two very distinct areas of dark matter physics. One

area concerns the dark matter relic abundance calculation and the early universe reso-

nant annihilation processes. The other area concerns signals of dark matter annihila-

tion today, in our own galactic halo. Simultaneously requiring fixed relic densities and

accepting the possible signals of dark matter in the galactic halo creates a highly con-

strained problem on a multi-dimensional parameter space, with additional difficulties

regarding multiple scales involved. We confront the problem of resonant dark matter

annihilation by first analyzing relic abundance and halo annihilation separately. Sep-

arating the analysis this way allows for more controllable treatment of simultaneous

relic abundance and halo annihilation constraints.
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Most of the past work on resonant dark matter annihilation has been largely numer-

ical and limited to a discussion of only a part of the resonant annihilation parameter

set. In this work, we derive constraints on resonant dark matter annihilation parameters

from relic abundance and the indirect detection experiments. We take into account the

full set of resonant annihilation parameters and analyze it over a wide range of the mul-

tidimensional parameter space. We develop a number of novel analytic constraints, as

well as perform an extensive numerical analysis of the multidimensional resonant dark

matter annihilation parameter space.

Much of our work in dark matter is devoted to design and implementation of a com-

prehensive numerical package for particle dark matter physics called MadDM [37]. Our

multi-purpose code is built on top of the existing MadGraph [38] architecture which

provides the framework for calculating Feynman diagrams and the corresponding scat-

tering amplitudes. At the present stage, given a model of dark matter, MadDM is able to

automatically select dark matter candidates, generate all relevant annihilation processes

and calculate the resulting relic abundance. Future versions of the code will include the

capability to calculate cosmic ray fluxes relevant for indirect detection experiments and

dark matter-nucleon scattering rates used in direct detection experiments. In addition,

recently developed packages designed to include next-to-leading-order (NLO) Feyn-

man diagrams in MadGraph could be used in MadDM as well. Ability to include NLO

diagrams, and thus loop induced processes, will give MadDM a significant edge over

all other publicly available dark matter codes.

The MadDM project continues to develop beyond the scope and timeline of this

dissertation. With this in mind, only a portion of the MadDM code relevant for the

work in the thesis is included in the Appendix.

The thesis is organized in four distinct units:
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• In Chapter 2 we discuss a general form of the resonant annihilation cross section

used for relic abundance calculations as well as the non-relativistic approxima-

tions appropriate for the analysis of dark matter annihilation in the galactic halo.

Using the optical theorem, we derive the total resonant annihilation cross section

which does not explicitly depend on the number or type of final state particles.

Our form of the cross section allows for any general dependence on the spins of

initial and intermediate states. In Section 2.3 we develop a non-relativistic ap-

proximation of the resonant annihilation cross section in the galactic halo as well

as define the thermally averaged annihilation cross section 〈σv〉.

• Chapter 3 contains a detailed discussion of our model independent relic abun-

dance calculation and the limits on resonant dark matter annihilation from relic

abundance. We present the technology needed to perform relic abundance cal-

culations and explicitly list the assumptions made during its derivation. Section

3.2 deals with the effects of resonance poles on the temperature dependence of

thermally averaged cross sections and consequently on relic abundance.

• In Chapter 4 we develop new analytic expressions describing the relationship be-

tween the dark matter mass, resonance mass, resonance width and couplings, as

required by correct relic abundance. Our analytic relations give useful bounds for

a wide spectrum of dark matter models which involve resonant s-channel annihi-

lation. We make no assumptions about the location of the resonant pole relative

to the dark matter production threshold nor the number or type of additional an-

nihilation channels. The relations are robust enough to account for additional

assumptions about the relevant parameters and additional channels specific mod-

els may require.
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• In Chapter 5 we consider the requirements on cross section enhancements in or-

der to explain the PAMELA and FERMI data. We first find model-independent

upper limits on rates of dark matter annihilation in galactic halos. The Born

level cross section generally fails to produce the desired enhancements. We show

that exotic threshold enhancements akin to “Sommerfeld factors” [39, 40] are

also innapropriate. Unitarity shows the Sommerfeld factors cannot produce large

changes in cross sections, and serves to identify where those approximations

break down. The most efficient annihilation mechanism involves perturbatively

small decay widths that have largely been ignored. Widths that are very small

compared to TeV mass scales, but large compared to the energy spread in the

galactic halo suffice to cause large enhancements in the velocity averaged cross

sections. Bound state formation in weakly coupled theories produces small ef-

fects due to wave function normalizations.

• In Chapter 6 we consider both the relic abundance constraint and the large cross

section enhancements to obtain new limits on dark matter masses and couplings.

Our results show that a significant degree of fine tuning is required in order to

account for both the large enhancements and relic abundance. We find that pre-

vious attempts to fully analyze resonant dark matter annihilation in the galactic

halo are flawed and concern only a subset of relevant parameters. Using only

the width and the mass of the resonance in order to motivate large cross sec-

tion enhancements, or boost factors, in the galactic halo never guarantees that the

enhancements will actually be achieved. To correct this, we revisit the calcula-

tion including the complete parameter set. Previously overlooked limits on dark

matter masses and couplings appear as a result.
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• Appendix A.1 contains a detailed derivation of the Boltzmann equation com-

monly found in dark matter literature. We identify the approximations made

during the derivation and explicitly list all the associated assumptions. Appendix

A.2 contains a description and samples of the MadDM code used in this thesis.
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Chapter 2

Resonant (Breit-Wigner) Annihilation Cross Section

Particle physics plays a major role in determining the properties of cosmological and

astrophysical signatures of dark matter. In the current application of particle physics to

Big Bang cosmology, relic abundance of thermal dark matter is largely determined by

the total annihilation rate of dark matter in the early universe. In addition, dark matter

annihilation rate in the galactic halo can be used to predict charged particle fluxes rele-

vant to indirect detection experiments. None of these calculations can proceed without

the input about dark matter annihilation cross sections coming from particle physics.

There are many models of particle dark matter, leading to a wide range of cosmo-

logical and astrophysical dark matter signatures. Here, we are interested in a class of

models in which dark matter can annihilate via an s-channel resonance. Before we can

perform any calculations and derive any limits, we first must discuss general forms of

the resonant annihilation cross section and the corresponding thermally averaged cross

section. In considering resonant dark matter annihilation, we do not put any assump-

tions on the type or the number of final states and we take into account many possible

combinations of the initial states and the intermediate resonance spins. For the pur-

pose of relic abundance calculations we use a general form of the resonant annihilation

cross section derived in Section 2.2 from the optical theorem. Dark matter annihilation
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in the galactic halo is highly non-relativistic, allowing for the use of a more practical

non-relativistic approximation of the Breit-Wigner cross section.

2.1 Thermally Averaged Cross Section

Calculations of astro-particle fluxes and relic abundance are typically expressed in

terms of the thermally averaged cross section 〈σv〉, making it one of the central quan-

tities in dark matter particle physics. In general, the thermally averaged cross section

〈σv〉 can be defined as [41]

〈σXX̄→y1...yn
|v|〉 ≡ 1

n2
EQ

∫
dPSX dPSX̄

n

∏
i=1

dPSyi(2π)4

× δ
4(pX + pX̄ −

n

∑
i

pi)|MXX̄→y1...yn
|2

× exp(−EX/T )exp(−EX̄/T ), (2.1)

where

nEQ =
gi

2π2
m3

x
K2(x), (2.2)

is the equilibrium number density of the species X , X̄ expressed in terms of the dimen-

sionless variable x≡ m/T , and m is the mass of X , X̄ . Here gi is the number of internal

degrees of freedom of dark matter, β =
√

1−4m2/s and Kn is the modified Bessel

functions of the second kind.

In Eq. 2.1 dPS stands for the Lorentz invariant phase space element

dPS≡ 1
(2π)3

d3 p
2E

. (2.3)
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For the purpose of numerical calculations, it is often useful to rewrite Eq. 2.1 as a

one dimensional integral [41]:

〈σv〉= 1
n2

EQ

m
64π2x

∫
∞

4m2
4EX EX̄ σvg2

i β
√

sK1

(
x
√

s
m

)
ds, (2.4)

where EX ,X̄ is the energy of initial state particles and σ is the total annihilation cross

section, and v is the relative velocity of the colliding particles.

The form of 〈σv〉 in Eq. 2.4 is appropriate for relic abundance calculations which

span a wide range of energies. Dark matter in the galactic halo is highly non-relativistic,

moving at velocities of only v0 ∼ 10−3 1. It is then appropriate to use non-relativistic

approximation of the thermal distributions and 〈σv〉 for the purpose of halo dark matter

calculations 2.

2.2 General Form of the Resonant Annihilation Cross

Section

Resonant cross sections are characterized by rapid energy dependence and multiple

scales that require special analysis.

+ + +   ...x

X

X

Y

Figure 2.1: s-channel dark matter annihilation diagrams into all possible final states.

1Throughout this thesis, we use the term “velocity” to mean velocity rescaled by the speed of light c,
in natural units: c = h̄ = 1.

2We postpone a more detailed discussion of the non-relativistic approximations of the thermally av-
eraged annihilation cross section until Chapter 5.
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Let MXX̄→ f be the amplitude for XX to go to a final state f . The cross section σ

goes like the amplitude-squared, summed over all final states (Fig.2.1), and integrated

over final state phase space dPS:

dσ ∼ 1
f lux ∑

f
|MXX̄→ f |2 dPS.

The total cross section into all possible final states is given by the optical theorem:

σtot =−
1

2kECM
Im(M(s, t = 0)).

Here k is the momentum of either particle in the center of mass frame, and M is the

elastic scattering amplitude. For a given total center of mass energy ECM and its square

s, the forward propagators of intermediate states Y go like (s−m2
Y + imY Γ)−1, where

Γ is the total width. Let g2
XXY t j j′ be the component of the elastic amplitude containing

the couplings of the initial/final states of spin j to an s-channel particle of spin j′. Then

the optical theorem predicts the total cross section σtot to be

σtot(s) = − 1
2kECM

Im

(
g2

XXY t j j′

s−m2
Y + imY ΓY

)

=
b f g2

XXY
2kECM

mY ΓY t j j′

(s−m2
Y )

2 +m2
Y Γ2

Y
. (2.5)

Here we included the branching ratio

b f ≡ 1−Bi, (2.6)
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where Bi is the branching ratio for the elastic channel to ensure that we account only

for the events which change the number of dark matter particles 3. We choose to leave

b f as a free parameter. Note that in many models, b f and gXXY can be combined since

Bi ≡ Bi(gXXY ). Furthermore, in many models, Bi is small and slowly varying function

of dark matter velocity allowing us to extract b f as an overall constant. The symbol ΓY

represents the total width of Y to all final states, which allows us to describe numerous

models with a single parameter.

In standard convention for amplitudes, the Feynman rules contain in/out state po-

larization and vertex factors compiled into the symbol t j j′ . For heavy dark matter an-

Initial State Intermediate State t j j′

SS S′ m2
X/2

SS V 4|~k|2

f f S m2
X/4

f f V 2(3m2
X +2|~k|2)

f f Ṽ 2(m2
X +2|~k|2)

f f S̃ 2(m2
X + |~k|2)

Table 2.1: Value of the t j j′ factor for some commonly found combinations of initial
states and intermediate states. “S” stands for scalar, “ f ” for fermion, “V ” for vector,
“S̃” for pseudo-scalar and “Ṽ” for a pseudo-vector.

nihilation, we can extract the mass (mX) dependence of these factors for analysis. We

define

t j j′ = 4m2
X

w j j′

(2 j+1)2 = 4m2
XC j j′, (2.7)

whereby C j j′ is typically a number of order unity. Scaling like m2
X is expected from

dimensional analysis, and inevitable when the initial state is dominated by the mass as

the largest scale. We emphasize that C j j′ is a definition that allows for any model while

3From here on, we will take symbols σ and σtot to mean annihilation cross section into all channels
but the elastic channel.
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postponing spin-sums and vertex factors until a model is chosen. For example, the

annihilation of unpolarized Dirac Fermions via a γµ vertex produces C1/21 = 3/2. The

coupling and spin factors then appear in the combination 4πaXXYC j j′ , where αXYY =

g2
XXY/(4π). A list of different values of t j j′ depending on different spin combinations

are listed in Table 2.1

2.3 Non-Relativistic Form of the Resonant Annihilation

Cross Section

Since they are gravitationally bound, relic particles trapped in galactic halos will be

non-relativistic, with velocities v ∼ 10−3. There are several distinctly different non-

relativistic resonant formulas. Most non-relativistic cross sections σres can be cast into

the form

σres =
4πvN

k2
(Γ/2)2BiB f

(E−Eres)2 +(Γ/2)2 =
4π

k2 BW (Γ, Eres).

(2.8)

Here Bi and B f are the branching fractions to the initial and final state, and k is the

momentum of an initial state particle in the center of mass frame. Different values of

the parameter N = 0, 1 distinguish two classic limits:

Phase Space Limited Case, N = 0: It is common for 2→ 2 non-relativistic physics

to be quasi-elastic. In particular, the final state phase space may be severely limited

by the initial state velocity v. Ignoring spin and matrix elements, the Lorentz-invariant
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phase space integral dPS for two particles of momentum p f , p′f and mass m f : is

dPS =
∫ d3 p f

2p0
f

d3 p′f
2p′0f

δ
4(Q− p f − p′f )

= 2π

√
1−4m2

f /Q2 = 2πv f . (2.9)

Here v f is the final state velocity of either particle. When initial and final state masses

are comparable, and the 2-body states dominate, the total width Γ ∼ κv f ∼ κv, where

κ absorbs coupling constants and matrix elements. Incorporating the explicit velocity

dependence with an s-channel propagator leads to Eq. 2.8 with N = 0. Note that the

peak of the cross section scales like 1/(m2v2), making this case potentially capable of

saturating elastic unitarity bounds.

Relativistic Phase Space Case, N = 1: Anihillation may also proceed to final states

which are ultra-relativistic. Then the square root in Eq. 2.9 approaches 1, and the

partial width Γ f ∼ constant in this limit. Any other kinematic situation where Q2/m2
f

goes to a finite constant as v→ 0 will produce the same outcome. This includes the

“exoergic” resonances long known in low-energy nuclear physics, and associated with

the "1/v law" of low energy cross sections. These cross sections do not increase as fast

as unitarity would allow as v→ 0.

The difference between 1/v and 1/v2 velocity dependence is dramatic. Yet it is only

part of the story, because resonances may produce large cross sections either way. For

example, neutron absorption cross sections on Gadolinium-157 exceeding one hundred

million barns have been observed. [42]. This comes in the seemingly “mild” 1/v case

not impinging on a unitarity limit. The experimental stunt simply exploits neutrons

with grossly small velocities of order 3 meters per second. In much the same way,

galactic halo velocities of order 10−3 are grossly small on the scale of particle physics.
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The combination of low speed halo kinematics and very ordinary widths produces sur-

prisingly large enhancements.
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Chapter 3

Relic Abundance of Dark Matter

Models of particle dark matter can be divided into two distinct groups:

Thermal dark matter scenario assumes that in the early universe the number density

of dark matter was in thermal equilibrium. As the universe expanded, the annihila-

tion rate of dark matter was eventually surpassed by the expansion rate of the universe

making it difficult for dark matter particles to continue to annihilate. Consequently, the

number density of dark matter particles reached a constant asymptotic value, and thus

led to a presence of dark matter in the current universe.

Non-thermal dark matter scenario assumes that the abundance of dark matter in

the current universe was produced by a mechanism other than the thermal evolution of

number density. For instance, axion dark matter could be produced during the QCD

phase transition in the early universe, without much regard for the thermal evolution

of cold relics. In this chapter, we will consider only resonant annihilation models of

thermal dark matter.

Cosmological data offers a way to determine the relic abundance of dark matter

in the present universe. Big bang cosmology predicts the existence of the cosmic mi-

crowave background (CMB) as a result of the recombination epoch. The CMB was

first observer long ago by Penzias and Wilson [43, 44], who estimated the temperature
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of the background radiation to be ≈ 3K. Since then, the Cosmic Background Explorer

(COBE) [45] and later the Wilkinson Microwave Anisotropy Probe (WMAP) [4] mea-

sured anisotropies in the CMB which allowed for extraction of cosmological parameters

given a cosmological model.

One of the parameters which can be extracted from the CMB data is the relic abun-

dance of dark matter. It is common to express dark matter relic abundance through a

parameter

Ωχh2 = ρχ/ρc,

where ρχ is the mass density of dark matter and ρc is the critical density

ρc = 1.29×10−29g/cm3 h2. (3.1)

In the last eqution h is the reduced Hubble parameter. In the context of the Standard

Cosmological Model, WMAP estimates dark matter relic abundance in the current uni-

verse to be

Ωχh2 ≈ 0.1.

Viable particle physics models of thermal dark matter should naturally be able to ac-

commodate the WMAP constraint on relic abundance.

3.1 Relic Abundance Calculation

In order to constrain particle models of dark matter using the WMAP results, we first

need a way to calculate dark matter relic abundance in the present universe given a

particle physics model. Statistical mechanics offers necessary tools. The Boltzmann

equation of statistical mechanics relates time evolution of macroscopic phase space
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distributions of dilute gasses with microscopic interaction rates between the gas and its

environment. A cosmological version of the Boltzmann equation should also take into

account the effects of the expanding universe. From the equation for phase space distri-

butions, it is possible to obtain a rate equation for number densities and thus calculate

the relic density of dark matter in the present universe. In the next section, we discuss

a form of number density rate equation commonly found in dark matter literature. A

more detailed derivation is given in the Appendix.

3.1.1 Boltzmann Equation

Dark matter relic abundance is calculated by solving a rate equation which relates the

number density of dark matter with its annihilation rate and the expansion rate of the

universe. Here we outline a procedure used to motivate such an equation 1.

In statistical mechanics, the statement of conservation of phase space volume is

expressed by the Boltzmann equation:

d f
dt

=

(
∂

∂ t
+

∂~x
∂ t

∂

∂~x
+

∂~p
∂ t

∂

∂~p

)
f =

∂ f
∂ t col

, (3.2)

where

f ≡ f (~x,~p, t), (3.3)

is a phase space distribution and ∂ f
∂ t col is a collision term. For a non interacting system

∂ f
∂ t col = 0. Defining the number density for a spatially isotropic distribution f to be

n≡
∫

d3 p f (~p, t), (3.4)

1Throughout this thesis, and for consistency with the rest of dark mater literature, we will refer to the
number density rate equation as the Boltzmann equation.
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leads to an equation for number density and thus relic abundance. The standard form of

the number density rate equation found in many cosmology textbooks [41] makes the

following assumptions:

1. There is only one species of dark matter.

2. The phase space distribution of the initial state particles in uncorrelated.

3. The dynamics is even under time reversal.

4. The metric is of a Robertson-Walker form.

5. The universe is expanding adiabatically.

6. All final state species are in thermal equilibrium.

7. The only species modeled to go out of equilibrium is the dark matter species.

8. There is no particle-antiparticle number asymmetry.

9. Effects of spin degeneracies are neglible.

The above assumptions reduce the collision term into a form

∂n
∂ t col

=−〈σv〉(n2−n2
EQ), (3.5)

where nEQ is the equilibrium distribution of the dark matter particle species. Taking into

account the assumptions about the expanding universe, in terms of number density, Eq.

3.2 takes the form [41]:

dn
dt

+3Hn =−〈σv〉(n2−n2
EQ), (3.6)
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where H is the Hubble parameter. For the purpose of both numerical and analytical

calculations, the left side of Eq. 3.6 is somewhat cumbersome. It is often useful to

redefine the Boltzmann equation in a more “calculation friendly” form. Defining Y ≡

n/s, where s is the entropy density defined below, and replacing time with x = m/T

produces the standard form of the cosmological Boltzmann equation from Ref. [41]:

dY
dx

=−xs(x)〈σv〉
H(m)

(Y 2−Y 2
EQ). (3.7)

Here

Y ≡ n
s

; YEQ =
45

4
√

2π7/2

gi

g∗
x3/2e−x. (3.8)

This particular form of YEQ is valid for x ≥ 3, the region of x relevant for relic density

calculations. In Eq. 3.8 s(x) is the entropy density defined as

s(x) =
2π2 g∗S

45

(m
x

)3
, (3.9)

where g∗S is the number of relativistic degrees of freedom that contribute to the entropy

density defined as

g∗S = ∑
i=bosons

gi

(
Ti

T

)3

+
7
8 ∑

i= f ermions
gi

(
Ti

T

)3

, (3.10)

and H(m) is the hubble parameter

H(m) =

√
4π3

45

√
g∗ m2

mpl x2 . (3.11)
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In Eq. 3.11 mpl = 1.22×1019GeV is the Planck mass and g∗ is defined as

g∗ = ∑
i=bosons

gi

(
Ti

T

)4

+
7
8 ∑

i= f ermions
gi

(
Ti

T

)4

. (3.12)

Note that the difference between g∗ and g∗S is negligible for T ≥ 10−4GeV .

At very early times (x ∼ O(1)), YEQ ≈ Y , making the contributions of small x re-

gions to Y (∞) miniscule. To a very good approximation, the asymptotic solution to the

Boltzmann equation is then

Y∞ =

(∫
∞

xd

dx
xs(x)〈σv〉

H(m)

)−1

, (3.13)

where we define the decoupling time xd as the time where |Y (xd)−YEQ(xd)|=YEQ(xd).

It is also common to refer to xd as the freeze-out time for cases where σ is a slowly

varying function of energy.

In terms of the asymptotic solution Y∞ the relic abundance parameter can be written

as

ΩDMh2 ≡ ρDM

ρcrit
=

mY∞s0

ρcrit
, (3.14)

where s0 is the entropy density in the present universe.

The approximate solution of Eq. 3.14 can be further simplified for cases where

the annihilation cross section is a slowly varying function of energy. In this case, the

thermally averaged cross section 〈σv〉 can be factored out of the integral, while the rest

of the integrand integrates out trivially giving a closed form solution for relic density

of dark matter. Using the WMAP estimate of Ωh2 ≈ 0.1 in Eq. 3.14 then yields an
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estimate for a dark matter thermally averaged annihilation cross section

〈σv〉= 3×10−26cm3/s≈ 10−9GeV−2. (3.15)

The numerical value of Eq. 3.15 coincides with dark matter of electro-weak scale

mass and couplings, prompting a label “the WIMP2 miracle.” At this point, we stress

that Eq. 3.15 is an estimate of the dark matter annihilation cross section with the tra-

ditional assumption of 〈σv〉 6= 〈σv〉(x). A part of our goal in this thesis is to break

this tradition and explore more challenging and interesting alternatives. As we will

show in the following sections, resonant dark matter annihilation strongly contradicts

the estimates of Eq. 3.15.

3.2 Temperature Dependence of Resonant Thermally

Averaged Cross Section and its Effects on Relic Abun-

dance

Resonant annihilation of dark matter can have dramatic effects on the thermal evolu-

tion of its number density and consequently on relic abundance. In many ways, reso-

nant dark matter annihilation contradicts the standard assumptions of Born-level cross

sections.

The thermally averaged cross section 〈σv〉 can be seen as a measure of the overlap

of the annihilation cross section σ and the distribution of dark matter speed Φ(v). For

the purpose of illustration, we can thus rewrite Eq. 2.1 as

2Weakly Interacting Massive Particle (WIMP)
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〈σv〉=
∫

dv σ v Φ(v,x). (3.16)

Born-level estimates of dark matter annihilation cross sections usually assume par-

tial wave expansions of the form

σv = a + bv2 + ... , (3.17)

resulting in

〈σv〉= a′ + b′/x + ... (3.18)

It is important to point out that expansion in Eq. 3.18 commonly used to evaluate

relic densities inevitably fails if the cross section is of the resonant form in Eq. 2.5 or

similar. To justify, consider a series approximation of 〈σv〉, for a pole below threshold,

obtained by integration by parts:

〈σv〉 ∼ 2
x

BW (E = 0,ΓY ,mY )+
4
x2 BW ′(E = 0,ΓY ,mY )

+
8
x3 BW ′′(E = 0,ΓY ,mY )+ ... , (3.19)

where E is the kinetic energy of dark matter particles in the center of mass frame and

BW is the dimensionless Breit-Wigner form-factor

BW ≡
mY ΓY t j j′

(s−m2
Y )

2 +m2
Y Γ2

Y
. (3.20)

Looking at the derivatives of BW with respect to E shows that this expansion is valid

only where ΓY/mX ,(2mX−mY )/mX & 1/x. Take for example ΓY/mX ,(2mX−mY )/mX =

10−2. The approximation fails for x≤ 100, a region crucial for the relic abundance cal-

culation. In conclusion, if the width of the Breit-Wigner distribution is less than the
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width of the velocity distribution, the magnitudes of higher derivatives cannot be guar-

anteed to be small, making any expansion in powers of x unreliable over a wide range

of integration.
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Figure 3.1: Thermally averaged cross section for a pole below threshold (blue line on
the bottom) and above threshold (red line on the top). Parameters used for the purpose
of the graphics are mX = 300GeV , gXXY = 0.1, ΓY = 3GeV . The resonance below
threshold lies 30GeV below the threshold 2mX , while the above threshold case is just
30GeV above the threshold. Notice that in both cases 〈σv〉 ≈ a+b/x+ ... is not a good
approximation.

The effects of resonances on 〈σv〉 can be dramatic. Consider a case in which only

the s-wave component is relevant. Then the Born level estimate gives 〈σv〉 ∼ const.

An s-wave resonance is almost never this simple. Fig. 3.1 illustrates the result for

a resonance below and above threshold. In the case of a resonance below threshold,

〈σv〉 is an increasing function of x, which can have drastic effects on the resulting relic

abundance of dark matter. A resonance above threshold can cause 〈σv〉 to increase for

a period of time and then decrease to a constant level. This is to be expected because

the overlap between the cross section σ and the velocity distribution Φ(v,x) will be the

greatest when mY ≈ T .
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Figure 3.2: Thermal evolution of dark matter number density. Red dashed line repre-
sents the thermal evolution for a case of a constant 〈σv〉. Thermal evolution for resonant
dark matter annihilation is the blue line. For the purpose of the graphic, the resonance
was tuned to a value slightly below 2mX , and a width of O(1)GeV was assumed. Res-
onant and non-resonant cases were arranged so that they decouple from equilibrium at
roughly the same time for better presentation. The thick gray line is the equilibrium
distribution

In addition, identifying the temperature at which the number density of dark matter

decouples from the equilibrium distribution as the freeze-out temperature is not appro-

priate in the case of resonant dark matter annihilation. Consider again a resonant pole

below threshold. Since 〈σv〉 increases with x, the expansion rate of the universe takes

longer to “catch up” with the annihilation rate of dark matter. As a result, dark matter

could in principle annihilate long after its number density decouples from the equi-

librium distribution. Fig. 3.2 illustrates this point. Thermal evolution of dark matter

number density decouples from the equilibrium distribution at roughly xd ≈ O(10) in

both the resonant and non-resonant case. However, in the non-resonant case the num-

ber density freezes out at xd , while the number density for a resonant case continues to

decrease until x f ≈ 1000.
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Chapter 4

Analytic Mass-Width Relations

Finding an analytic solution to the Boltzmann equation using the cross section in Eq.

2.5 is non-trivial. In this section we show how to find simple relations between all

the parameters of Eq. 2.5 given correct relic abundance. The procedure involves a

combination of numerical and analytical calculations we develop here.

Figure 4.1: Intersection of the mesh plane representing Ωh2 = 0.1 and the surface
Ωh2(ΓY ,mY ,m∗,α∗) gives a unique curve Γ(mY ). m∗ = 100GeV , α∗ = 0.01 for the
purpose of the graphic. Contours of Ωh2 = 0.1 for a set of different dark matter masses
are presented in Fig. 4.2
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In our numerical work we first choose a particular dark matter mass mX = m∗

and coupling α∗. We then compute thousands of relic densities covering the ΓY , mY

plane. The condition Ω(ΓY , m∗, mY ,α∗)h2→ 0.1 produces a unique curve ΓY versus

mY , namely the function ΓY = ΓY (mY ; m∗,α∗). An example is shown in Fig. 4.1. With

the scaling relations in hand, the curves are extended to numerical predictions for the

general functional dependence of Γ = Γ(mY ; mX ,αXYY ) consistent with Ωh2 = 0.1.

In the next section, using a combination of kinematics, limiting behavior of resonant

cross sections and intuition we show how to compress the extensive multi-parameter

numerical calculation into simple analytic approximations.

4.1 Mass-Width Relations: Pole Below Threshold (mY <

2mX)

Finding an analytic solution for relic abundance in the case of resonant annihilation

is difficult. Rapid energy dependence of the cross section as well as the presence of

multiple scales complicates the problem beyond the analytic estimates of relic density

using either constant or polynomial 〈σv〉. In this section, we show that even though

the problem cannot be solved analytically exactly, it is possible to derive very good

analytic approximations which constrain the full resonant annihilation parameter set

given a fixed relic abundance.

Fig. 4.2 shows the mass-width relation as a family of curves plotted for selected

mX . The trend is that the further the mY is from the threshold, the larger ΓY must be

needed to keep relic densities constant, and vice versa. This is because the proximity

to threshold (rather than the absolute size) of mY is the dominant effect. Poles closer to
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the threshold make for larger cross sections, which need to be compensated by smaller

width.

This quantitative understanding leads to useful analytic formulas relating parame-

ters of resonant dark matter annihilation over a wide range of parameter space.
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Figure 4.2: Relation of the s-channel width ΓY and mass mY for a pole below threshold
consistent with cosmological relic density Ωh2 = 0.1. Dashed curves (black) are the nu-
merical calculation. Solid curves (blue) are the analytic relation of Eq. 4.3. Each curve
is evaluated with a fixed dark matter mass mX =100-500 GeV in 100 GeV increments.

4.1.1 Analytic Representation

Observe in Fig. 4.2 that each dashed (black) curve moving to the right terminates in

a region of ΓY → 0. Near the threshold everything is determined by the degree of the

zero of the function, ΓY ∼ (mY − 2mX)
n. The power n = 2 can be gotten analytically,
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but was also fit directly with numerical work. Then we know ΓY ∼ (1−mY/2mX)
2,

times a known factor of mX

In the opposite extreme of mY << 2mX the velocity averaged cross section 〈σv〉

reduces to another simple analytic result:

〈σv〉(mY << 2mX)→
παXXY b fC j j′

4m4
X

mY ΓY . (4.1)

Notice the dependence going like mY ΓY . Inverting the equation gives

ΓY →
4m4

X
παXXY b fC j j′mY

〈σv〉. (4.2)

The limit of small resonance mass mY → 0 with ΓY << 2mX approaches the Born

approximation, and for us is the unique case where the Born cross section is relevant.

In the Born limit we know 〈σv〉→ 3×10−26cm3/s, which fixes one overall scale. Then

accounting for factors of mX gives

ΓY ∼
4m3

X
πC j j′αXXY b f

(2.6×10−9GeV−2)

×
(

1− mY

2mX

)2 mX

mY
g(mY/mX).

The dimensionless interpolating function g(mY/mX) remains. It must obey g→ 1 when

mY << 2mX , suggesting a polynomial expansion g ∼ 1+∑k gk(mY/mX)
k. Two terms

suffice with g1 = 2. Our analytic formula for the pole below threshold mass-width
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relation is then

ΓY =
8
π

1GeV
C j j′αXXY b f

( mX

730GeV

)3

×
(

1+
mX

2mY

)(
1− mY

2mX

)2

,

f or mY < 2mX . (4.3)

The fit of the formula to the numerical work is extremely good. Fig. 4.2 shows a typical

example1. We have already noted that Eq. 4.3 generalizes and replaces the traditional

formula 〈σv〉 = 3× 10−26cm3/s. The formula accounts for the fact that intermediate

states of all particles coupling to dark matter are either absolutely stable or have a finite

lifetime. To underscore the difference, compare the traditional counting rules, mo-

tivated on dimensional analysis, using annihilation cross sections of order 1-picobarn.

Under the assumption 〈σv〉∼α2
X/m2

X ∼O(1)pb, a typical upper limit α2
X . 10−4 would

imply mX . 200 GeV. This well-known result needs a finely tuned mass-couping rela-

tion to make a Universe. Our formula contains far more information, and reveals the

hidden assumption that mY << mX was implicitly assumed for the traditional formula

to be consistent.

4.1.2 Replacement Rule for Adding Non-Resonant Channels

Many models of dark matter annihilation include more than one channel. No matter

how many channels are involved, as long as the s-channel is a part of the model, the

mass-width relation of Eq. 4.3 leads to a useful, more general bound.

For definiteness, suppose the addition of other processes increases the annihilation

rate. Then the theory keeping Ωh2 fixed will require smaller ΓY , all other things fixed.

1We have used the γµ vertex throughout this chapter for the purpose of the graphics
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Figure 4.3: Upper limits on ΓY assuming s-channel annihilation (pole below threshold)
plus other channels increasing the cross section. Shaded regions to the left and above
the contours are not allowed. Curves show different couplings αXXY b f = g2

XXY/4π;
mY = 400GeV is used for the purpose of the graphic. Larger mY pushes contours to the
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That condition rules out all contours to the right and above the contours shown in Fig.

4.2 created by s-channel dominance. The allowed region to the right and below each

line implies an inequality (Fig. 4.3) :

ΓY ≤ 8
π

(
1GeV

C j j′αXXY b f

)( mX

730GeV

)3

×
(

1+
mX

2mY

)(
1− mY

2mX

)2

. (4.4)
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While cross sections often increase when channels are added, destructive interference

occurs in some models. In that case the inequality reverses the sign.

To illustrate the use of Eq. 4.4, suppose a new vector boson (Z′ perhaps) is dis-

covered at the LHC [46–48]. Measuring the resonance observed in any channel will

give its mass mY , and the total width ΓY . Applying Eq. 4.4 then gives the consistent

mX , αXXY b f parameter space regions consistent with relic abundance without a need

for an extensive numerical parameter space scan. These predicted coupling relations

are then compared to the information from production rate and branching ratio into

particular channels seen in the experiment.

A new relation comes from a “replacement rule.” Let the total velocity averaged

cross section be expressed as

〈σv〉tot = 〈σv〉s + 〈σv〉other.

Suppose 〈σv〉other happens to be consistent with the traditional Born-style of approxi-

mation, by which

〈σv〉other = ∑
i

α
i
e f f /m2

X ,

where α i
e f f is an effective coupling to the ith channel. (An example model in the context

of heavy hidden sector dark matter can be found in Ref. [49].) Matching the extreme

limits produces the replacement rule. If the s-channel pole is near the threshold, the

mass width relation should approach Eq. 4.3. If the pole is far from threshold the

resonant cross section approaches an effective Born-level cross section, and adds to it.

That implies a boundary condition of 〈σv〉s+ 〈σv〉other ≈ 10−9GeV−2 at this endpoint.
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Reviewing how that scale previously entered the analysis suggests a replacement rule:

2.6×10−9GeV−2→ 2.6×10−9GeV−2−
∑i α i

e f f

m2
X

. (4.5)

The revised mass-v-width relation then becomes

Γ(mY ) =
8
π

1GeV
C j j′αXXY b f

[
1−∑

i
α

i
e f f

(
730GeV

mX

)2
]

× (
mX

730GeV
)3
(

1+
mX

2mY

)(
1− mY

2mX

)2

.

(4.6)

Fig. 4.4 shows the replacement rule performs quite well. Not surprisingly, the differ-

ence relative to a pure s-channel annihilation model increases for smaller mX . This is

because the individual cross section contributions from other channels shown in Eq.

4.6 scale uniformly like 1/m2
X .

4.1.3 Calculable Widths Constrain the Masses

Up to here the width ΓY has been used as an independent parameter. We now go a step

further and consider widths as quantities which can be calculated. When we say that

“widths are calculable” it emphasizes the facts that (1) most theories are perturbatively

coupled, and (2) most of the width will usually occur in a finite number of channels.

Since we are developing a method for relating observables, we are not concerned with

a model, and it suffices that widths exist as “trivial” once any particular model is de-

fined. Whatever the model, combining the calculation of the width with the mass-width

relation creates a new relation.

34



Σ i = 10-4

200 400 600 800 1000

α  = 0.01

 - 3

 - 2

 - 1

0

1

2

mY (GeV )

L
o

g
1

0
(Γ
/ G

e
V
)

XXY

α
i

2
0

0
 G

e
V

3
0

0
 G

e
V

4
0

0
 G

e
V

5
0

0
 G

e
V

Figure 4.4: Generalization of the mass-width relation to include “Born-like” channels.
Black dashed curves show numerical evaluation. Solid curves (magenta) are the revised
fit of Eq. 4.6. Thick solid curves (blue) are the approximations of Eq. 4.3, consistent
with the role as an upper bound. Different curves use different masses mX = 100−
500GeV , from left to right. Parameter αXXY b f = 10−2 and ∑i α i

e f f = 10−4 for the
purpose of the graphic.

The differential rate dΓ of a general decay of a particle of mass mY is given by

dΓ∼ 1
2mY
|M|2dPS.

Symbol M is the amplitude. The final state phase space of two identical particles yield∫
dPS2 ∼ v f where v f is the velocity of either final state particle in the center of mass

frame. In many cases the width is dominated by relativistic final states, v f → 1. It

would be unusual, and a case of rather fine tuning, for all channels with phase space

limitations v f << 1 to dominate the total width.
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Barring that event, by dimensional analysis, the width of a heavy particle with di-

mensionless coupling always depends on at least one overall power of its mass, which

can be factored out:

ΓY ∼ αΓmY . (4.7)

We make this an equality by definition allowing symbol αΓ to absorb coupling con-

stants, the number of important channels, and model details.

In general, αΓ can still be a function of the mass mY , but this is a trivial effect which

can be taken into account on a model by model basis. For example, ΓY ∼ m3
Y occurs

in many theories with a Higgs-type Yukawa coupling. We will then spare the reader

separate sections and subsections for each dimensionful case, assuming it is agreed that

symbol αΓ stands for the width actually calculated in a particular model.

We continue by illustrating the method graphically for αΓ ∼ constant. The formula

for ΓY is an increasing function of mY . Meanwhile the s-channel mass-v-width re-

quirements are all decreasing functions of mY (Fig. 4.2, Eq. 4.3, Eq. 4.6). Then the

width-v-mass relation always crosses the s-channel mass-v-width relation at a definite

point. Fig. 4.5 shows ΓY = αΓmY as red curves, whose intersections with the blue

curves constrain the masses.

Inspection finds a useful fact. Rather weakly coupled theories (αΓ . 10−4) only

intersect the relic curves in the region where mY ≈ 2mX . In minimal supersymmetry,

this result corresponds to the so called higgs "funnel" region of m0,m1/2 parameter

space [50, 51]. However, our result is much more general and extends beyond the

assumptions of SUSY.

The two couplings, αΓ and αXXY act in the same direction. Smaller αΓ makes

smaller widths that force the system into the threshold region to be viable. Smaller
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Figure 4.5: Combining the below-threshold width-v-mass mY relation of Fig. 4.2 with
ΓY = αΓmY represented by solid thin curves (red). Intersections of the curves predict a
non-linear relation between mX and mY (text). Values of αΓ = 10−1 (top curve) range
to αΓ = 10−4 (bottom curve) in factor of 10 increments.

αXYY worsens the situation by pushing the contours of constant Ωh2 up in the ΓY −mY

plane. The trend of both pushes masses into very near coincidence of mY ∼ 2mX , which

we call a “finely-tuned threshold.”

Except for bound state formation we have no reason to consider finely-tuned thresh-

olds very plausible, but we include it for completeness. Bound states have been dis-

cussed in detail in Refs. [52,53]. Some basic relations between bound state widths and

masses are reviewed in Ref. [54]. Bound state relations are very specific and require

separate treatment that is not our topic here.

Our mass-width relation allows for classification of models according to the degree

of fine tuning. For example, Fig. 4.5 shows a theory with αXXY b f = 0.1. The in-
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tersections are not very demanding, and the theory is not finely tuned for αΓ ≥ 10−3.

However the same theory using αXXY b f = 10−3 will require widths 100 times bigger

for the same mY to keep Ωh2 constant. At that point all contours are pushed up to such

a degree we’d find the theory finely-tuned for all reasonable ΓY .
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Figure 4.6: Mass of dark matter mX versus the mass of the particle in the s-channel
mY . Red lines represent αΓ = 0.001,0.01,0.1 from top to bottom. αXXY = 0.01 for the
purpose of the graphic. Small widths (αΓ small) require fine mass tuning, mY ≈ 2mX
to accommodate correct relic abundance.

4.1.4 Dark Matter and Pole Mass Relations

So far we have looked at an mY - ΓY relationship, given mX . It is very interesting to

consider the relation between mY and mX given αΓ. Fig. 4.6 shows the mass relation-

ships for different values of αΓ. Once again αΓ→ 0 forces the resonance into the finely

tuned region of mY ≈ 2mX .
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Solving Eq. 4.3 yields a cubic equation fixing mY = mY (mX ,αXXY b f ,αΓ). The

relationship is nearly linear for a wide range of mX . Collect the couplings into a new

symbol

α
2
κ =

αXXY αΓC j j′

10−4 .

Note the symbol has been re-scaled in units of αXXY/10−2, αΓ/10−2 we find reason-

able. The series expansion for large mX is found to be

mY ≈ 2mX −313GeV ακ +40.2GeV α
2
κ (

730GeV
mX

)

−5.87GeV α
3
κ (

730GeV
mX

)2 + · · · . (4.8)

Eq. 4.8 with only the first two terms kept is essentially exact for ακ . 1, mX & 100

GeV, while for ακ & 1 a numerical evaluation is preferable.

Analyzing Fig. 4.6 and 4.7 we notice that the mass range of 100-500 GeV does

not require extreme fine tuning for a reasonable range of perturbative couplings. On

the other hand the regime of mX >> 100GeV seems to require a pole tuned very finely

according to Eq. 4.8.

4.2 Mass-Width Relations: Pole Above Threshold (mY >

2mX)

The relic abundance calculation for a pole above threshold is complicated by a saddle

point in the integration of 〈σv〉. To begin we again consider the extreme limits. For
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mY >> 2mX the velocity averaged cross section reduces to

〈σv〉(mY >> 2mX)→
4παXXY b fC j j′

m3
Y

ΓY . (4.9)

By construction this limit reproduces the Born-level estimate, 〈σv〉 ≈ 10−9GeV−2. In-

troduce a dimensionless function h to describe other limits, expressed by

ΓY ∼
m3

Y
4παXXYC j j′

(6.4×10−9GeV−2)

×h(mY , mX , A, αXXY b fC j j′).
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Figure 4.8: Relation of the s-channel width ΓY and pole mass mY above threshold
consistent with cosmological relic density Ωh2 = 0.1. Dashed curves (black) are the
numerical calculation. Solid curves (blue) are the analytic relation of Eq. 4.13. Each
curve is evaluated with a fixed dark matter mass mX =100-500 GeV in 100 GeV incre-
ments.

We have normalized h→ 1 for mY >> 2mX by absorbing the overall normalization into

6.4×10−9GeV−2, suggesting the ansatz

h = 1− η mX

mY
, (4.10)

where η is the measure of the "offset" of mY from the threshold 2mX . Unlike the case

of pole below threshold, the saddle point causes η to be a function of mX and a relic

scale parameter, which we call A.
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Figure 4.9: Mass of dark matter mX vs. the mass of the s-channel particle mY for a
pole above threshold, mY > 2mX Red lines represent αΓ = 0,0.01,0.05,0.1 from top to
bottom. αXXY = 0.01 for the purpose of the graphic. Small widths (αΓ small) require
very fine tuning of masses, mY ≈ ηmX to accommodate correct relic abundance.

The extreme of Γ→ 0 gives more information about the function h. The Breit-

Wigner factor can be approximated as

ΓmY

(s−m2
Y )

2 +(mY Γ)2 → πδ (s−m2
Y ). (4.11)

The Boltzmann equation is then solved analytically in terms of error functions, predict-

ing h and η in this limit:

η(mX ,αXXY b f ,C j j′)≡ 2

√
1+

2
xd

er f c−1(
Am2

X
αXXY b fC j j′

), (4.12)
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where A = 1.3×10−11GeV−2 gives a good fit for all reasonable mY and ΓY . The lower

integration limit xd is computed in a self consistent way and we find that the standard

value of xd = 30 is appropriate.

Eq. 4.12 involves the inverse complementary error functions (er f c−1), which is

somewhat cumbersome. While many numerical packages (including Mathematica)

compute it, a simpler analytic formulation of η is useful. Let z = Am2
X/αXXY b fC j j′ .

We find the approximation

η(z)≈ 1.978−0.521z−0.051log(z),

is almost exact in the range 10−8 ≤ z≤ 1.

Our analytic formula for a pole above threshold is now:

ΓY =
1GeV

4παXXY b fC j j′

( mY

589GeV

)3
(

1− η(z)mX

mY

)
,

f or mY > 2mX . (4.13)

Once again, the analytic approximation matches numerical work remarkably well. Fig.

4.8 shows an example.

Eq. 4.13 reveals more finely tuned parameter regions for a pole above threshold.

In the limit ΓY → 0, mY is finely tuned to ηmX , as seen in Fig. 4.9. The competition

between the pole position, width, and thermal Gaussian are all summarized by this

generalization of the pole below-threshold relation.

As before, eliminating ΓY = αΓmY produces an mX −mY relation:

mY =
η(z)mX

2
+

1
2

√
η2(z)m2

X +16πµ2αΓαXXYC j j′,
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where µ2 = 5893GeV 2.
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Figure 4.10: Typical upper limits on ΓY given a mass mY for different masses of dark
matter mX assuming both s-channel annihilation (pole above threshold) and other non-
resonant channels. Shaded regions to the left and above the contours are not allowed.
mY = 1.5 TeV was used for the purpose of the graphic; larger mY pushes contours to
the right.

Upper Limit on mX

The particular form of the “offset function” η yields an upper limit on mX . From the

derivation the argument of er f c−1 must be less than one, which implies

mX ≤ 2.77×105GeV
√

αXXY b fC j j′. (4.14)
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This formula is more precise than supposing mY is bounded by a Born-level estimate

and 2mX < mY . Consider for example a small coupling αXXY b f = 10−4. Consistency

with relic abundance requires dark matter masses mX . 2.8TeV .

Inequalities for Non-Resonant Channels

Generalization of the above-threshold mass width relation to allow for non-resonant

channels is similar to the below-threshold case. When 〈σv〉tot ≥ 〈σv〉s the mass width

relation becomes

ΓY ≤
1GeV

4παXXY b fC j j′

( mY

589GeV

)3
(

1− η mX

mY

)
. (4.15)

An illustration of the inequality can be seen in Fig. 4.10. Notice that for large cou-

plings, i.e. αXXY b f > 0.1 major portions of the parameter space can be ruled out. The

termination point (ΓY → 0) is simply the ηmX = mY point, giving us another bound on

mX . By inspection, a coupling αXXY b f = 0.1 and mY = 1.5TeV requires mX . 600GeV .
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Chapter 5

Constraints on Resonant Dark Matter Annihilation

from Indirect Detection Experiments

As we already mentioned in Section 1.2, resonant dark matter annihilation drew much

attention in the light of the recent measurements of charged cosmic ray fluxes. In con-

sidering dark matter annihilation in the galactic halo there are puzzles from comparing

predictions of thermal relic densities with rates of particle production in the current era.

In order to explain the PAMELA excess in positron fraction with a dark matter model,

the annihilation cross section needed has to be orders of magnitude larger than the

canonical 〈σv〉0 ∼ 10−9GeV−2 of the WIMP miracle. In the literature, this is usually

expressed via a “boost factor”

BF ≡ 〈σv〉
〈σv〉0

. (5.1)

The apparent contradiction between early universe and halo annihilation creates a need

for a mechanism which allows for a small annihilation cross section in the early uni-

verse while enhancing the annihilation rate in the galactic halo. Since dark matter in

the galactic halo is non-relativistic, the search for a viable enhancement mechanism has

been largely focused in the threshold region 2mX .

Two popular classes of threshold enhancement mechanisms emerged:
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In Section 3.2, we argued that dark matter annihilating through an s-channel res-

onance can produce thermally averaged cross section which increase as the universe

cools down. Non-relativistic s-channel resonances can be motivated by either new par-

ticles or meta-stable bound states. Scattering amplitudes in non-relativistic scattering

theory can be classified by their analytic properties in the complex momentum plane.

Stable bound states are described by poles on the positive imaginary axis. It follows

that stable bound states produce no remarkable enhancement of annihilation rates in

the physical region of real momentum k. Metastable particles or resonances, described

by poles of finite width, are in no way comparable with stable bound states, because

everything observable (and potentially large) is a strong function of the width. We will

discuss resonant dark matter in the context of halo annihilation in more detail in Section

5.2.

Threshold enhancements under the catch-phrase of “Sommerfeld factors” were also

proposed [39, 55]. Sommerfeld factors are close cousins to s-channel bound state reso-

nances, but there are significant differences in the dynamics which governs them. Of-

ten cited as “re-summations” of ladder diagrams, Sommerfeld factors serve as effective

normalizations of asymptotic plane wave solutions in scattering theory, which take into

account effects of long range interactions. As we show in Section 5.3 there are several,

rarely discussed issues regarding Sommerfeld factors.

In this chapter, we will consider only constraints from indirect detection experi-

ments. The consistency between thermal relic density and large boost factors in the

halo is discussed in more detail in Chapter 6. Before we derive constraints on resonant

dark matter annihilation from indirect detection, we proceed to first review in more

detail the most important experimental contributions.

47



5.1 Experimental Searches for Dark Matter Signals in

Charged Particle Fluxes

The Balloon borne Experiment Superconducting Solenoidal Spectrometer (BESS) ex-

periment made several balloon flights and provided first measurements of anti-proton

fluxes in the range of 200MeV to 3GeV [56]. The results confirmed a peak in the

anti-proton flux at ≈ 2GeV as predicted by many cosmic ray flux models, while no

anomalous signal that could be interpreted as dark matter was reported. Early measure-

ment of the 4− 50GeV anti-proton region was provided by the Cosmic Anti-Particle

Ring Imaging Cherenkov Experiment (CAPRICE) [57]. No significant excess relative

to background estimates was observed in the data.

The High-Energy Antimatter Telescope (HEAT) [18] measured positron fluxes in

the region of 1− 30GeV . Although the uncertainties in the data were significant, the

results showed an excess in positron fluxes relative to the galactic background starting

at ≈ 10GeV and extending to higher energies. Subsequent flights of HEAT confirmed

the signal [58].

The Polar Patrol Balloon (PPB) [17] and the Advanced Thin Ionization Calorimeter

(ATIC) [19] made first accurate measurements of the electron fluxes in the region above

100GeV . Both experiments reported an excess of five sigma in the 500− 700GeV

region relative to the galactic background. The authors of Ref. [19] were hesitant to

interpret the excess as a result of dark matter annihilation, pointing to a possibility that

a nearby dark object such as a pulsar could mimic the signal.

Perhaps the most interesting recent data came from PAMELA [15] and FERMI

[16]. Both experiments measured an excess in the positron fraction in the region up to

100GeV to a high level of accuracy compared to previous experiments. The measured

positron fraction was approximately 10 times larger than the expected background,
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requiring dark matter interpretations of the signal to produce annihilation cross section

orders of magnitude larger than the canonical 10−9GeV−2. Dark matter was not the

only possible interpretation as pulsars could also produce large enhancements in the

positron fraction. [22–25]. Neither experiment reported an excess in the anti-proton

flux up to approximately 100GeV .

It is important to address the apparent lack of a signal in anti-proton fluxes. Data

tells us that if the excess in the charged lepton fluxes is due to dark matter annihilation,

dark matter must not efficiently annihilate into quarks. This fact has to be taken into

account on a model by model basis.

5.2 General Limits on the Resonant Velocity Averaged

Resonant Cross Section in the Galactic Halo

In Section 2.3, we discussed the non-relativistic form of the resonant annihilation cross

section, appropriate for the purpose of halo annihilation. The charged particle fluxes

in the halo are dependent on non-relativistic form of the thermally averaged resonant

annihilation cross section of dark matter, which we now develop.

The halo annihilation rate via a single s−wave resonance is governed by the velocity-

weighted cross section 〈σv〉res by

〈σv〉res =
∫

dvv
4πvN

m2
X v2

×
(Γ/2)2BiB f

(mX v2/2−mX v2
res/2)2 +(Γ/2)2 Φhalo(v).

Here Φhalo(v) = dN/dv3 is the normalized dark matter relative velocity distribution,

assumed from astrophysics to be a smooth function on the scale of 100-500 km/s. In
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an isothermal halo model the velocity distribution is in equilibrium,

dN
d3kd3x

=
constant

E0
e−E/2E0;

dN
dv

= 4π
v2

(2πv2
0)

3/2 e−v2/2v2
0. (5.2)

While the actual velocity distribution is uncertain, the phase space factors of v2 are

general. The isothermal halo will illustrate the method. Note however, that our upper

bounds do not depend on the halo distribution.

The rate 〈σv〉res is a function of E0, Eres, Γ and mX . If other scales are expressed in

units of mX ∼ TeV the conjunction of several rapidly varying functions makes analysis

troublesome [36]. However in the present universe the halo energy mX v2
0/2∼ 10−6mX

is rather small on particle physics scales. It is natural to rescale variables in units of the

halo characteristic energy, defining

γ0 =
Γ

2E0
; δ0 =

Eres

E0
.

Assuming the equilibrium distribution, some algebra gives

〈σv〉res =
22−N(2π)

N+1
2 vN−1

0

m2
X

IN(γ0, δ0), (5.3)

where

IN(γ0, δ0) =
1

21−N(2π)N/2

∫
∞

0
dz z

N
2

γ2
0 e−z/2

(z−δ0)2 + γ2
0
. (5.4)

Note that IN(γ0, δ0) is analytic for all γ0 > 0 and δ0 regardless of the sign of δ0. It

can be computed exactly in terms of Exponential Integral (Ei) functions. We found it

more useful to observe that IN(γ0, δ0) has certain absolute upper limits for all possible
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values of γ0 > 0 and δ . Consider the derivative ∂ I0(γ0, δ0)/∂γ0:

∂ I0(γ0, δ0)

∂γ0
=
∫

dz
2γ0(δ0− z)2(

γ2
0 +(δ0− z)2

)2 e−z. (5.5)

Since the integrand above is positive definite, the integral achieves its maximum at

γ0→∞. For γ0 >> 1 the integration becomes trivial, yielding IN(γ0, δ0)≤ 1. A stronger

limit notes the integrand of Eq. 5.4 is cut off for z . γ0 when γ0 . 1, δ0 . 1, imply-

ing IN(γ0, δ0) . 1− e−C γ0 , where C is a constant. Numerical work shows that for all

parameters

I0(γ0, δ0)≤ 1− e−
π

2 γ0, (5.6)

I1(γ0, δ0)≤ 1− e−
π

4 γ0.

These are close to equality for positive δ0 << 1. Fig. 5.1 shows a plot of IN(γ0, δ0)for

a wide range of γ0, δ0 and how the integral approaches the upper bound.

The positivity property of Eq. 5.5 holds for all halo distributions. The upper limit

BW → 1 produces a universal inequality:

〈σv〉res <
4π〈1/v1−N 〉

m2
X

. (5.7)

The expected value 〈1/v〉 is relative to the distribution Φhalo(v), not dN/dv. If the

equilibrium distribution is assumed, then

〈σv〉res <
22−N(2π)

N+1
2 vN−1

0

m2
X

(1− e−πγ0/2N+1
). (5.8)

The result is a significant enhancement factor (EF) (“boost factor”) for annihila-

tion rates. The enhancement factor is defined relative to a typical Born approximation
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Figure 5.1: The integral IN(γ0, δ0) (dark shaded) and upper limits cited in the text
(transparent mesh). By Eq. 5.3 the rate constant is related via 〈σv〉res ∼ vN−1

0 IN/m2
X .
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σBorn = 4πα2
X/m2

X v2−N :

EF =
〈σv〉res

〈σv〉Born
≤ 1

α2
X
. (5.9)

Note that the inequality does not depend on the position of the resonance nor on

any halo properties.

N = 0 Enhancement Factors

For N = 0, Eq. 5.9 leads to substantial enhancements approaching the unitarity bound

when the fundamental width Γ is large enough. Obtaining a “large enough” width from

a weakly coupled theory might appear special. Yet remember that halo annihilations

are driven by the width in units of the rather small scale E0 ∼ 10−6mX . For TeV-scale

dark matter a width Γ & MeV is large enough to dominate the halo width and make

BW (Γ, Eres)∼ 1. Recall that the J/ψ has a width of order 0.1 MeV and is exceedingly

“narrow”. For an elementary particle on any mass scale of GeV-TeV not to have widths

exceeding 10−6mX requires special conspiracies or selection rules. As shown in Fig.

5.2, even a tiny value of Γ/mX ∼ 10−8 can produce rates much larger than the oft-cited

value 〈σv〉 ∼ 3× 10−26cm3/s. It is a new insight that merely including physics of

widths tends to saturate unitarity bounds in halo annihilation.

N = 1 Enhancement Factors

Equation 5.7 highlights a factor of 〈1/v〉 absent with a relativistic phase space (N = 1).

To a first approximation the ratio of the N = 1 case relative to the N = 0 case is of O(v0).

This is made more precise using Fig. 5.3, which shows a plot of the calculated ratio

of integrals I1/I0 that remains. This ratio is of order unity for most of the parameter
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Figure 5.2: Upper limits (diagonal lines) of resonantly enhanced annihilation rate
〈σv〉res in the isothermal halo distribution. Solid curves (black) are computed with
fixed Γ/mX . Gray triangle in upper right the unitarity bound. The thick dashed
curve (blue) is the maximum value for the cross section for N = 1. Thin dashed
curves (red) show 〈σv〉res computed for bound state processes using Γ = α5

X mX/2 and
Eres =−mX α2

X/4. Middle curve (orange ) is the neutrino-based upper limit of Ref. [59].
Horizontal line (green) is a conventional lower bound 〈σv〉 ∼ 3×10−26cm3/s.
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Figure 5.3: Ratio of I1/I0 (shaded area) compared to the uniform value of 1 (mesh).

space, except the regions where γ0 << 1. Once again, only when widths are very tiny

do resonance widths not tend to swamp the halo distribution.

While representing stronger limits, the bottom panel of Fig. 5.2 again shows signif-

icant enhancements over a broad range of parameters of current interest. The difference

between the N = 0 and N = 1 cases tends to disappear whenever Γ/mX is not excep-

tionally small. In the next Section we turn to the metastable bound state case, which

does happen to exhibit exceptionally small widths on general grounds.

5.2.1 Metastable Bound States, and Narrow Resonances

The case of annihilation passing through intermediate metastable bound states has gen-

erated great interest. This case is different and deserves a separate discussion. Suppose

dark matter interacts with a light messenger particle of mass µ , with coupling-squared

αX . If the interaction is attractive, which is readily arranged for particular spins, then

non-relativistic physics predicts there is always a bound state for sufficiently large cou-
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pling. The conditions are

αX ≥ κ
µ

mX
,

where κ is a constant of order one. The demonstration is an easy variational calculation

using a ground state Hydrogenic wave function. A helpful discussion is also given

in Ref. [52]. For parameters mX ∼ TeV and µ ∼ GeV bound state formation needs

αX & 10−3, which is well within the electroweak-scale couplings of most models.

Yet just as above, everything about any significant enhancement depends strongly

on the width, and won’t proceed without it. To estimate widths, first note that bound

states are spatially large for small coupling constant αX . The size of a weakly coupled

bound state is roughly estimated by the “Bohr radius” a0, where

a0 ∼ 1/mX αX .

Similarly, the binding energy Eres ∼ mX α2
X . Next recall that the Schroedinger wave

function at the origin ψ(0) determines the width via Γ∼ |ψ(0)|2σc where σc is a con-

tinuum cross section. The wave function at the origin is set by the inverse of the size of

the bound state:

|ψ(0)|2 ∼ a−3
0 ∼ α

3
X .

The continuum annihilation cross section σc∼α
1+A
X for A> 0 depending on the model.

For reference the annihilation rates of ortho (para) positronium via three (two) photons

go like α6
em(α5

em). Thus bound state widths go by a general pattern

Γ∼ α
4+A
X mX . 10−8mX .
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The right hand side is a fair upper limit for αX ∼ 10−2. Restricted phase space fac-

tors and branching ratios can only reduce this. Comparing E0 ∼ 10−6mX , we find that

γ0 << 1 is by far the generic case for annihilation from a bound state. As a consistency

check, consider the definite case of spin-1/2 dark matter interacting with vector parti-

cles. Nature has already done this calculation with the J/ψ decay via gluons, which

has ΓJ/ψ/mJ/ψ . 10−4. The J/ψ is sufficiently heavy that the perturbative phase space

factors are driven by dimensional analysis, as expected for TeV-scale physics. The raw

J/ψ ratio needs to be re-scaled by (αX/αs)
4+A ∼ 10−4, which gives satisfactory agree-

ment.

When γ0 << 1 it is a good approximation to replace BW (Γ, Eres)∼ π(Γ/2)δ (E−

Eres). A short calculation then gives

EF(γ0 << 1) =
πΓ/2

α2
X mX v2−N

res

Φhalo(vres)

〈 1
v1−N 〉

, (5.10)

where Eres =mX v2
res/2. This formula has no singularity as vres→ 0 because Φhalo(vres)∼

v2
res has compensating factors from phase space (Eq. 5.2). If a metastable bound state

resonance lies above threshold in an expected electroweak range the effects are quite

small. Taking Eres = mX α2
X/2 ∼ 10−4mX , and the equilibrium halo model with scale

v0 = 10−3, the factor e−Eres/E0 ∼ e−100 is too small to consider further. When the res-

onance is below threshold it must have width Γ & |Eres| to intrude into the physical

region. Since Γ is proportional to several powers of αX compared to Eres this case can

also be set aside. If Eres → 0 with Γ >> Eres is contemplated, it implies the decay

time scale is much less than a binding (orbital) time scale, which is not consistent with

bound states forming in the first place.

The exponentially small suppression can be avoided by adjusting the coupling into

the range probed by the halo velocity. For example choose αX ∼ 10−3. This device
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rapidly loses consistency because the bound state criterion αX & µ/mX needs cou-

plings not too small. If a bound state is tuned to the vicinity of the peak, then the

halo factors will be of order unity. Meanwhile there remains in Eq. 5.10 an overall

factor of Γ/(mX α2
X) << 1. Fig. 5.2 compares the upper limits from annihilation of

continuum processes (γ0 & 1 generically) to processes proceeding via the bound state

(γ0 . 106α5
X ) using the isothermal halo and conservative values BiBF → 1. Viable en-

hancement mechanisms should also respect the neutrino-based bounds of Mack, Bea-

com and Bell [59] included in the Figure. In case of N = 0, a bound state could cause

large cross section enhancements, but only for couplings αX ≥ 0.1 which are beyond

the stable perturbative regime. In case of N = 1 the limits for bound states are even

tighter.

Fig. 5.2 shows that a single bound state with perturbative couplings has no chance

of causing significant enhancements. Except for strong coupling, there is no dynami-

cal mechanism to generate large enhancement factors from non-relativistic bound state

resonances in the current universe. The conclusion does not depend on the spin or

quantum numbers of new physics, and is too strong to escape by adding up several res-

onances, unless they are so numerous their numbers alone overcome small couplings,

as for KK modes.

5.2.2 Comparisons with Previous Work of Resonant Dark Matter

Annihilation in the Galactic Halo

Ibe, Murayama, and Yanagida [60], and Guo and Wu [61] focus on calculating ther-

mal evolution for the case of a state just below threshold. In their model the width

is proportional to the final state velocity (equivalent to N = 1). The resonance po-

sition is close enough to threshold for its effects to overlap into the physical region
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during evolution. They find that even a tiny ratio of width to resonance invariant mass,

denoted by γ = Γ/Mres . 10−3, produces significantly larger relic densities than tra-

ditional constant cross section approximations. To keep the relic density ΩX fixed,

avoiding over-closure, parameters must then be adjusted to produce relatively larger

cross sections. We will discuss the consistency between large boost factors in the halo

and relic abundance further in Chapter 6.

Our emphasis is annihilation rates observed in the present universe. This is deter-

mined by γ0 = γ(Mres/2E0) rather than Γ/Mres. Since they are based on Γ/Mres, which

has no halo information in it, the boost factors of Refs. [60], [61] do not capture the

Breit-Wigner effects of the halo. Instead, the assumed halo boost factors for constant

cross sections were estimated from the re-scaling factors keeping ΩX fixed. The impli-

cations of those boost factors that very small Γ/Mres is necessary or tends to enhance

halo rates are not general. Despite this problem, a window exists that significant halo

rate enhancements will be present over a broad compatible range 10−3 >Γ/mX > 10−6.

5.3 Sommerfeld Factors

In the previous section, we have shown that Breit-Wigner width effects of typical par-

ticle physics type can be surprisingly large, while bound state effects have little chance

to compete. Sommerfeld factors have also been claimed as a mechanism of large halo

enhancements not involving particle widths [39]. In the scenario where non-relativistic

dark matter particles are allowed to interact through massless t-channel exchanges, the

Sommerfeld factors are usually defined as

S(v, α) =
α

v
2π

1− e−2πα/v
. (5.11)
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There are several issues with the motivation and derivation of Eq. 5.11, which we

discuss in much detail in this section.

Sommerfeld factors are often cited as non-perturbative re-summations of ladder

diagrams [40, 62, 63]. In Section 5.3.1, we show that wave function normalizations

used in Sommerfeld factors can not in principle be equivalent to ladder diagram re-

summations in all kinematic regions. In addition, we point out that the approximations

assumed in Sommerfeld factors break down in the exact kinematic regions where large

enhancements are expected.

Actual derivation of Sommerfeld factors and consistency checks with general scat-

tering theory is typically absent from the literature. Hisano et. al. [40] offer a rare

detailed derivation of Sommerfeld factors. We discuss their work further in Section

5.3.2.

Notice that S(v, α) has a threshold (v → 0) singularity. In Section 5.3.3, using

partial wave unitarity, we show that threshold singularities can not be generated by

multiplicative factors such as S(v, α) for any individual partial wave. To generate a

singularity of this type, we show that a sum of infinite number of partial waves is

required.

5.3.1 Motivation for Re-summation

Non-relativistic QED has complicated logarithmic and power-behaved infrared singu-

larities. The Sommerfeld factor is associated with re-summing an infinite series [64] in

(α j/vk) selected by matching j = k. Here α is the fine structure constant. By definition

sub-leading terms are dropped. These terms are higher order in α for a given power

of 1/v. Since it is always possible to add a photon exchange loop to any diagram, and
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all loops have some integration region not singular as v→ 0, sub-leading terms always

exist, in huge variety.

Sommerfeld prescriptions hold that the leading singularities appear as follows1.

Given an s−wave cross section σ0, which has been computed with plane waves, the

Sommerfeld-based recipe to include Coulomb wave effects is

σ0→ σGS = σ0S(v, α), (5.12)

where S(v, α) was defined in Eq. 5.11. In modern parlance the formula is a leading-

order, leading power factorization, as explained momentarily.

Some examples illustrate the function and limitations of re-summation. Expand

S(v, α)∼ 1+π(α/v)+π2α2/3v2+ ... . For α = 10−2, and v = 5×10−2 the third term

is π2/75∼ 0.13. It is larger than a typical non-singular term of order α , and retaining

it is motivated and credible. The series is also stable, as a high order term (πα/v)10 ∼

0.0096 is small. A sub-leading term α11(π/v)10 is 100 times smaller, and negligible.

But at v = 5/1000, the neglected sub-leading correction α11(π/v)10 → 958956.0 is

hardly negligible. One should not imagine that corrections should be straightforward:

after powers of v are managed, there are generally infinitely many powers of log(v).

Self-consistency breaks down in the region α/v & 1, exactly where S(v, α)& 1.

Yet recent treatments of dark matter annihilation have imagined the Sommerfeld

factor to be very general, and responsible for large enhancement factors of S >> 1 from

any interaction involving light Yukawa particles [66]. The perception comes from iden-

tifying the leading order Sommerfeld factor with continuum Coulomb normalization

factors |ψC|2(0). Then since ψC(0) is known exactly, the procedure has been thought

“exact.” There are many logical and historical contradictions. First, Guth and Mullin

1Many papers, e.g. Ref. [65] quote results without derivation or approximations. We have not actually
found a proof in the literature.
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had already highlighted the approximations in 1951 [67]. In lowest order approxima-

tion, but while using Coulomb wave functions ψC i for a basis, one encounters matrix

elements M of the form

M =
∫

d3x
ψ
∗
C 2V ψC 1.

Insert complete sets of momentum eigenstates |k〉:

M =
∫

d3k d3k′ψ∗C 2(k)Vkk′ψC 1(k′).

The Coulomb wave functions are sharply peaked in the vicinity of certain momenta

k1, k2, identified by taking the limit α = 0. Assume the plane-wave matrix elements

Vk1,k2 = 〈k1|V |k2〉 are relatively smooth functions of momentum transfer. Make a rough

approximation moving Vk1k′2
outside the integral:

M → Vk1,k2

∫
d3k ψ

∗
C 2(k)

∫
d3k′ψC 1(k),

→ Vk1,k2ψ
∗
C 2(x = 0)ψC 1(x = 0).

In the last line ψC(x = 0) appears as the coordinate-space wave function at the origin,

“improving” the plane wave calculation. This is just the same factorization approxi-

mation of separating “hard” and “soft” regions of leading power perturbation theory,

without even attempting control of corrections. Careful work with positronium annihi-

lation [68] is done by avoiding the factorized approximation. The authors [68] recog-

nize that “Coulomb effects are included by this (factored) method to all orders in e2,

though only, of course, approximately.” (Italics are ours.)

What did Sommerfeld actually do? His 1931 article, in German, introduced exact

Coulomb wave functions to calculate bremsstrahlung, but never suggested factoriza-

62



tion. While a tour de force of early quantum theory, consulting it for a renormalization

factor actually perpetuates a normalization mistake. The overall normalization of phys-

ical states cancels out in total cross sections. Cross sections are defined by ratios rel-

ative to a flux computed with given normalization. Elwert’s 1939 dissertation [69, 70]

recognized this, as as did Guth in 1941 [71]. These papers abandoned Sommerfeld’s

calculation and used the ratio of two in- and out- Coulomb factors as an approximate

factorized ansatz. “Elwert factors” are used in atomic and molecular physics to cancel

spurious pre-factors going like v from other approximations and only when their effects

are not too large. Experimental confrontation of the Elwert factor finds errors of rela-

tive order unity in the region where the factors are of order unity [69, 70, 72]. Elwert

and collaborators find breakdown reasonable [69, 70], and in no event are very large

corrections ever credited. The history is scant in particle physics because superficial

citation of Sommerfeld cut the links to the main literature on the subject.

5.3.2 A Derivation of Sommerfeld Factors

It appears that derivations of Sommerfeld Factors in dark matter physics typically in-

volve assuming the answer beforehand. Hisano et. al. [40] provided a very detailed and

often cited derivation of the re-summation implied in the multiplicative Sommerfeld

enhancement

σ = Sσ0, (5.13)

where σ0 is the Born level cross section and S is the Sommerfeld factor. However, the

mechanism through which the authors of Ref. [40] seem to generate enhancements is

quite different from Eq. 5.13 and the validity of the derivation is flawed for a number

of reasons which we now discuss.
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After starting with a relativistic, hermitian field theory, the authors reduce the prob-

lem to beginning quantum mechanics. The method of reduction is presented as a sub-

stitution of the desired answer after stating that different degrees of freedom of the

relativistic theory are integrated out. The actual threshold enhancement is motivated by

solving the Schroedinger Equation for the non-relativistic Green’s function and evaluat-

ing the amplitude, which is in no way similar to attaching a form factor to a Born-level

cross section. A crucial step in the derivation is the replacement of all the interactions

in the theory with a complex potential

V ′(~r) =V (~r)+ iΓδ (~r). (5.14)

There seems to be a discontinuity in the derivation once Eq. 5.14 is introduced. None of

the previous work in the paper was used to motivate the effective potential of Eq. 5.14.

The authors start with a Hermitian theory, which somehow turns into a non-Hermitian

one once the interactions are replaced by a complex potential. Knowing this, the paper

might as well begin with the non-Hermitian effective hamiltonian. The use of complex

potentials is nothing new, but Hamiltonians with complex potentials are used only as

phenomenological tools to fit data, with no real predictive power. The action of Eq.

5.14 is equivalent to the statement “there exists a resonance,” which means that a pole

was planted into the theory before hand. It did not appear as a consequence of the

derivation.

Replacing interaction terms with the complex potential of Eq. 5.14 is not “illegal”,

but it is under no circumstances a “universal” prescription. Also, generating threshold

singularities through the use of complex potentials is in principle completely different

from the multiplicative rule σ → Sσ
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The mechanism of threshold enhancements employed in Ref. [40] is by no means

exact either, as there are a number of questionable steps involved. The authors integrate

out the gauge bosons to obtain the effective action. The approximation of the interaction

terms with the green’s functions is one of classical physics and there is no explanation

why such a step is valid. As a result, any claim about the inclusion of all possible terms

of the effective action is invalid. Finally, replacing the entire relativistic, hermitian, field

theory with Eq. 5.14 which contains a complex potential, makes the time evolution of

the model non-unitary. Eq. 5.14 cannot in principle exactly follow from any previous

calculation in the Ref. [40]. Resonances and the effects of bound states orthogonal to

the continuum do not in general appear as imaginary delta function potential terms in

Schroedinger theory. The exact formalism is formally Hermitian, but inherently non-

local in time. All approximations made by Hisano et. al. discard any possible non-local

terms.

5.3.3 Multiplicative Factors Must Fail

The concept behind generating singularities via multiplicative factors is incorrect on

general grounds. The reasons are simple yet overlooked due to gaps in literature.

A general scattering amplitude has the partial wave expansion

f (θ , k) =
1
k ∑

l
(2l +1) fl(k)Pl(cosθ).

For each partial wave cross section σl of angular momentum l, elastic unitary gives the

upper limit

σl =
4π(2l +1)| fl(k)|2

k2 ≤ 4π(2l +1)
k2 .
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This summarizes the unitarity bound of Ref. [73]. Since each partial wave has a finite

cross section, no partial wave can possibly have a singularity. “Improving” the s-wave

cross section - or any particular partial wave cross section - by singular terms of order

αX/v then contradicts unitarity for αX/v & 1. This is just the same region where the

claimed Sommerfeld factor S(v, α)>> 1.

It is not possible to escape the contradiction by appealing to small αX . No special

value for αX was specified in developing the Sommerfeld-cited argument: it is based on

“exact” normalization. Small coupling is also no protection from internal inconsistency.

Unitarity and analyticity in perturbation theory are exact facts maintained in a system-

atic way, order by order, regardless of the size of the coupling constant, small or large.

When violated, it shows the re-summation was bad, just as suggested by sub-leading

terms that were dropped2.

This problem is different from the one previously recognized. Dark matter inter-

actions have finite range, while the infrared singularities of re-summation come from

infinite range. To account for this the authors of Ref. [39] argued that for a finite range

potential, a non-resonant enhancement would saturate when the deBroigle wavelength

of colliding particles would be larger than the range of the force (i.e. v < µ/mX ).

Note that this criterion does not depend on any coupling constant. Yet the singulari-

ties of scattering amplitudes, and particularly Coulomb singularities, do depend on the

coupling. Whatever the scale where analogies between massless and massive models

break down, the facts of partial wave unitarity are more general, and take precedence.

Unitarity precludes large enhancement in every particular channel of fixed angular mo-

mentum.
2Work by Cassel [66] and Iengo [66] seek normalization pre-factors of the form σl → σlSl from the

start. Those assumptions then contradict unitarity, as Cassel noticed.
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Since each partial wave is finite, how do some Coulomb-dominated processes, such

as Rutherford scattering, actually become singular as v → 0? The answer leads to

another useful bound. Replace every partial wave by the one with largest magnitude

| fmax|2 = 1. Sum them up to an order lmax: The result is

σ ≤ 4π

k2

lmax

∑ (2l +1) =
4π(lmax +1)2

k2 .

This is a strict upper limit. The Sommerfeld factor is not a resonance, and in the ab-

sence of resonances | fmax|2 for every partial wave is small in weakly coupled theories,

making σ small. The notion of canceling a perturbative factor of α2
X with an enhance-

ment of 104 (say) needs lmax >> 102 partial waves. This is highly unlikely, since the

angular momentum involved in annihilation is strictly limited by the quantum numbers

of intermediate states, seldom consisting of more than a few elementary particles.

As Wigner [74] and many others have noted, the Coulomb singularity itself is very

special. On semi-classical grounds (actually the facts of Legendre series), the upper

limit lmax ∼ rmaxk, where rmax is the range of the potential. Take lmax to be a very large

number. This gives

σ ≤ 4πr2
max| fmax|2 = 4πr2

max.

The Coulomb singularity occurs because (1) the effective range rmax → ∞, and (2)

an infinite number of partial waves do contribute. Closely related is Wigner’s classic

theorem [74] that power-law potentials V (r)& 1/r2 are needed to develop any kind of

singularity.
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Chapter 6

Combined Constraints from Relic Abundance and

Indirect Detection

A combination of halo constraints and relic abundance allows for a new set of limits

on dark matter masses and couplings. In order to explain the halo positron excess with

a dark matter model, an annihilation cross section enhancement, or boost factor, of

order BF ∼ 100−1000 is needed. In Chapter 5 we argued that such large boost factors

are possible for dark matter annihilating through an s-channel resonance. Requiring

simultaneously BF ∼ 100 in the halo and the correct relic abundance allows us to put an

upper limit on dark matter mass given the coupling of dark matter to the resonance and

vice versa. In order to derive the new limits, we begin with scaling relations discussed

in the next section.

6.1 Useful Scaling Relations

A textbook-style relic abundance scaling law states that for a velocity averaged cross

section

〈σv〉= α2
X

m2
X
, (6.1)
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the relic abundance will scale as

Ωh2 ∼ m2
X/α

2
X , (6.2)

where α is some effective dimensionless coupling.

As we will show momentarily, it is important to note that the product

〈σv〉×Ωh2 6= f (mX ,αx). (6.3)

Eq. 6.3 is particularly useful, since it allows us to reduce any multidimensional

parameter space by eliminating dependence on mX and αX . Reducing parameter spaces

to fewer dimensions can in effect greatly simplify both analytic and numerical analysis.

It is possible to extend Eq. 6.3 to dark matter annihilation scenarios beyond the

simple Born approximation. As it turns out, the function f contains crucial informa-

tion needed to derive new limits on dark matter masses and couplings, which we now

develop.

To illustrate, we use our general form of the resonant cross section in Eq. 2.5 1.

Consider the case mY ∼ 2mX . Then t j j′ ∼m2
Y and the velocity averaged cross section

can be cast into the form

〈σv〉= g2
XXY

m2
X

BW (ΓY ,mY ,x), (6.4)

where BW is the Breit Wigner form factor. The relic abundance will then take the form

Ωh2 =
m2

X

g2
XXY

ω(ΓY ,mY ). (6.5)

1It is straightforward to generalize the argument to any velocity averaged cross section where the
dependence on the coupling and the mass of dark matter can be effectively factored out.
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The product of Eq. 6.4 and Eq. 6.5 is then

〈σv〉(x)
〈σv〉0

×Ωh2 = f (ΓY ,mY ,x), (6.6)

where we can write x = m/T ≈ 1/v2
0 ≈ 106 in the halo. In the last step, we rescaled

〈σv〉 by the canonical cross section 〈σv〉0 ∼ 10−9GeV−2 in order to obtain a dimen-

sionless product f . Taking x = 3× 106 in Eq. 6.6 represents the product of the boost

factor in the galactic halo and the relic abundance. Again, notice that f does not explic-

itly depend on the mass of dark matter or the coupling gXXY .

What useful information can we extract from Eq. 6.6? Assume that f has already

been calculated. Requiring Ωh2 ∼ 0.1 then gives

BF ≈ 10 f (ΓY ,mY ,3×106). (6.7)

Eq. 6.7 gives us a relationship between the boost factor BF required in the halo for

a given resonance mass mY , width ΓY and the correct relic abundance. A plot of Eq.

6.7 as a function of rescaled dimensionless variables

γ
′ =

ΓY

mX
, δ

′ =
2mX −mY

mX
, (6.8)

can be seen in Fig. 6.1 for a pole below threshold. The color map represents the increase

in the required boost factor from lower (dark) to higher (light). It is clear from the plot

that consistency with relic abundance allows for large boost factors only in the regions

of small δ ,γ . For instance, in order for the parameter set γ = δ = 10−4 to give correct

relic abundance, the boost factor in the halo should be of O(10). The assumption of the

correct relic abundance is crucial in this statement.
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Notice that Eq. 6.7 gives only the enhancement assumed to occur at x = 3× 106.

The calculation does not guarantee that the enhancement will be achieved, because

it was computed under the assumption that ΩDMh2 = 0.1 for all γ,δ . There are two

independent calculations which must be reconciled to proceed.

Consider a pair of values γ∗ = 10−3, δ ∗ = 10−3. Eq. 6.7 then predicts the cross

section needs to be 〈σv〉 ≈ 100×〈σv〉C at x = 3×106 for relic abundance to be consis-

tent. Desire for the boost factor to have this value, however, does not mean a calculation

has yet given it. This fact has previously been overlooked. Information about the de-

pendence of ΩDM and 〈σv〉 on mass, couplings, etc. is necessary for the argument to

proceed. That is just the information we have developed with Fig. 6.2.

6.2 Previous Considerations of Simultaneous Relic and

Halo Constraints on Resonant Dark Matter Anni-

hilation

Refs. [60,61] contain plots very similar to the one in Fig. 6.1. However, the authors in-

terpret the results as the actual rather than the desired boost factors. This interpretation

cannot possibly be accurate, as the resonant cross section is a function that depends on

more than the width and the resonance mass. Cross sections are also explicit functions

of couplings and the mass of dark matter. Demanding a certain magnitude of the boost

factor, Fig 6.1 can give limits on the mass of the resonance and the width relative to

the mass of dark matter. For instance, if we demand BF ≥ 100 it is clear that we must

choose parameters in the region δ ′ ≤ 10−4,γ ′ ≤ 10−3.5. However, knowing the limit on

the width and the mass of the resonance simply does not contain enough information

to actually predict the boost factor in the halo. Essential information about the depen-
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Figure 6.1: Desired boost factor in the galactic halo as a function of the rescaled width
γ ′ = ΓY/mX and the distance of the resonance mass from the threshold δ ′ = (2mX −
mY )/mX . Different contours represent a constant value of the boost factor BF in the
halo. Boost factors of O(100) or more are achievable only for δ ′ ≤ 10−4 and γ ′ ≤
10−3.5.
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dence of the boost factor on the mass of dark matter and the coupling gXXY is absent

from Fig. 6.1. In the next section, we take into account a full set of parameters to derive

new limits on dark matter masses and couplings.

6.3 Dark Matter Mass and Coupling Limits

In the previous section we have shown that the information in Eq. 6.7 is not sufficient

to predict large boost factors in the galactic halo. Instead, Eq. 6.7 provides us with a

desired boost factor, given correct relic abundance, but doesn’t guarantee that such a

boost factor is achievable. To determine whether large boost factors are possible at all,

we must add information about the other relevant parameters such as the mass of dark

matter and couplings. Given the interest in recent positron excess data from indirect

detection experiments, we illustrate our calculations using BF ≥ 100.

Boost factors of any particular size are not guaranteed by stating how big we’d like

them to be. The further conditions of Eq. 6.7 produce the real restrictions. Using a

complete set of parameters, here we develop a new bound on the mass of dark matter

by combining the joint information from indirect detection and relic abundance.

We proceed as follows. Contours of constant relic abundance in the γ,δ plain serve

to identify the limits. Recall that Eq. 6.7 and Fig. 6.1 were constructed under the as-

sumption that Ωh2 = 0.1 for all γ ′,δ ′. Selecting a particular pair of values (mX ,gXXY )

then produces a unique curve of Ωh2 = 0.1 in the γ ′,δ ′ plane. The intersection of

the curve with the region where large boost factors are possible determines the consis-

tency between relic abundance and indirect detection constraints. The critical value of

mX ,gXXY for which the relic curve barely enters the large boost factor region of γ ′,δ ′

then serves as an upper limit on the mass of dark matter or lower limit on the coupling

strength.
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Figure 6.2: Limits on dark matter mass requiring a boost factor BF ≥ 100 with gXXY =
0.1. The grey shaded regions are regions where BF ≥ 100 is achievable. The red lines
are contours of Ωh2 = 0.1 for different dark matter masses. Top panel is for the pole
below threshold. Bottom panel is for a pole above threshold. Smaller couplings push
the red contours up. Fermionic dark matter coupling a vector resonance was used for
the purpose of the graphic.
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Fig. 6.2 shows the results for fermionic dark matter with a coupling gXXY = 0.1 to

a vector resonance. Solid lines represent contours of Ωh2 = 0.1 for different masses

of dark matter. The gray shaded region is where BF ≥ 100 is possible. Larger masses

push the contours up into the region with no overlap between the desired BF ≥ 100

region and Ωh2 = 0.1. The combined information thus produces a new upper limit on

the dark matter mass of mX ≈ 8TeV , for a coupling gXXY = 0.1. Dependence on the

coupling strength is inverse of the dependence on mass. The scaling rule of 6.5 tells us

that larger couplings push the contours of correct relic abundance down into the desired

region of boost-factors, making heavier dark matter masses accessible. In other words,

for dark matter mass of 8TeV the minimal coupling which allows for a BF ∼ O(100)

is gXXY = 0.1.

From Fig. 6.2, we can obtain an analytic approximation for the relationship between

the upper limit on the mass and the lower limit on the coupling to be

4πg2
min

m2
max

=
4π (0.1)2

(7.5TeV )2 ≈ 10−9GeV−2. (6.9)

Eq. 6.9 has the familiar form of the Born level estimate of the velocity averaged

cross section required to obtain the correct relic abundance. In this case it serves an en-

tirely new purpose as a relation between the upper and lower limits on relevant parame-

ters, given a boost factor of O(100). For instance, a dark matter with mass mX = 1TeV

has to have a minimal coupling to the resonance of gXXY ≈ 0.0025 in order to both

achieve the boost factor of O(100) and the correct relic abundance.

Larger boost factors will inevitably change Eq. 6.9. While our illustration deals

only with BF = 100, the same procedure can be used for any desired boost factor. In

general, the right side of Eq. 6.9 will be a function f ≡ f (BFmin), while at this point it

is not clear what this function should look like. For an answer, we turn to the region of
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δ ′→ 0, which essentially defines the limiting ratio between gXXY and mX . Consider for

instance the top panel of Fig. 6.2. The slope of the Ωh2 = 0.1 lines in the region δ ′→ 0

is essentially 0, while for larger δ ′ it is positive. The slope of the Ωh2 = 0.1 lines in the

small δ ′ region is also nearly 0, while for larger δ ′ it becomes sharply negative. Thus,

the condition of intersection between the Ωh2 = 0.1 lines and the boost factor contours

is purely determined by the region δ ′→ 0.

Focusing on this region, we perform a numerical fit to g2
min/mmax2 for a set of dif-

ferent boost factor in the region of BF = 10−104. Fig. 6.3 shows the result. Blue dots

represent the numerical estimates of the factor 4πg2
min/m2

max for a set of given desired

boost factors. Fit to the numerical estimates of 4πg2
min/m2

max using different values of

BF shows a clear scaling as f (BF)∼
√

BF in the region BF = 10−104. The solid red

line is the fit f (BF) = 1.86×10−10GeV−2√BFmin.

Scaling the boost factor out of 6.9 then gives a more general formula:

4πg2
min

m2
max

≈
√

BFmin 10−10GeV−2. (6.10)
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Eq. 6.10 is not valid over the whole range of parameter set, but is a very good

approximation in the region of BF = 10− 104. Recall that this is the region of boost

factors needed to explain the PAMELA positron excess. Eq. 6.10 allows for a variety

of different models of resonant dark matter annihilation to be tested for consistency

between relic density and indirect detection constraints in a remarkably simple way.

Note however that specifics of initial/intermediate spins, etc. still have to be taken into

account on a model to model basis and could in principle change the form of Eq. 6.10.
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Conclusions

The dynamical effects of resonant processes and finite particle widths might play an

important role in dark matter evolution in the early universe. Recognizing that there

are many types of resonant dark matter annihilation revises the problem of relic abun-

dance. Organizing the calculation in terms of observable quantities gives new relations

between the masses and widths of intermediate states that will be consistent with fixed

relic abundance.

Given that particle widths are generally calculable, our mass-v-width relations de-

velop into mass-v-mass consistency relations between the dark matter with a given

relic density and the mass of an s-channel connector. Depending on the model, this

produces a significant revision of a traditional rule 〈σv〉0 ∼ 3× 10−26 cm3/s. The re-

lation between mX and mY depends on the way the width is calculated, but in a broad

class of models permits an unlimited range of both masses. Our relations can be used to

test candidates for dark matter, while also eliminating much of the need to re-compute

relic evolution on a model-by-model basis.

Furthermore, we have explored significant effects in halo annihilation rates due to

natural widths of intermediate states. The problem is intricate due to subtle interplay

of energy scales. Tiny values of galactic halo velocities reverse an assumption that

propagator widths might be “small corrections.” Given that TeV-scale particles with

typical electro-weak couplings may easily have Γ/E0 >> 1, Breit-Wigner factors of
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ordinary radiative corrections must generally be taken into account. Consistency of

rates in particular channels, such as the apparent dominance of leptons, still needs to

be considered model by model. We find exotic “Sommerfeld factors” to have no strong

foundation in particle theory. Approximations made to produce large enhancements

at low velocity typically break down in the regions where the enhancement is much

greater than O(1).

Combining relic density and halo constraints produced further limits. Past analy-

ses of resonant dark matter annihilation typically focused on a subset of the complete

parameter set, overlooking the intricate relationships between the masses, widths and

couplings in the problem. Taking into account the full parameter set allowed us to use

combined constraints to develop new limits on dark matter mass and couplings. Our

result revises the standard 〈σv〉0 = 4πg2/m2
x ∼ 10−9GeV−2 from an estimate of the

annihilation rate to the useful limit on the mass of dark matter and the couplings.
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Appendices
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A.1 Derivation of the Boltzmann Equation

The form of the Boltzmann equation in Eq. 3.7

dY
dx

=−xs(x)〈σv〉
H(m)

(Y 2−Y 2
EQ), (A.1)

is commonly found in dark matter literature. However, it is very rare that authors dis-

cuss the assumptions made during derivation. In this appendix, we present a full deriva-

tion of Eq. 3.7 and clarify all the necessary assumptions, following the conventions and

notation of Ref. [41].

To begin, let us first look at the general form of the non-relativistic Boltzmann

equation. A statement of conservation of phase space volume, the Boltzmann equation

for a collision-less system can be written in the form

d f
dt

=

(
∂

∂ t
+

∂~x
∂ t

∂

∂~x
+

∂~p
∂ t

∂

∂~p

)
f = 0, (A.2)

where

f ≡ f (~x,~p, t) (A.3)

is a phase space distribution.

The equivalent equation in curved space-time takes the form

(
pµ ∂

∂xµ
−Γ

µ

να pν pα ∂

∂ pµ

)
f = 0. (A.4)

Here Γ
µ

να is the Christoffel symbol

Γ
µ

να =
1
2

gµλ (∂α gλν +∂ν gλα −∂λ gνα) . (A.5)
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In the presence of interactions, the right side of Eq. A.4 is non-zero. For illustration

we will only consider 2→ 2 interactions.

Adding an interaction term, Eq. A.4 becomes

(
pµ ∂

∂xµ
−Γ

µ

να pν pα ∂

∂ pµ

)
f =

∂ f
∂ t col

. (A.6)

We first look at the left side of the equation Eq. A.6. Assuming the Robertson-

Walker (RW) metric, which is spatially isotropic and homogeneous, allows us to elim-

inate all spatial derivatives. Furthermore, taking into account that Γ0
i j = Ṙ/Rgi j where

R is the scale factor from the RW metric, we get

E
∂ f (E, t)

∂ t
−Γ

0
i j pi p j

∂ f
∂E

= E
∂ f
∂ t
− Ṙ

R
|~p|2 ∂ f

∂E
=

∂ f
∂ t col

. (A.7)

Ultimately, we are interested in number density of particles

n(t) = dN/dV =
1

(2π)3

∫
d3 p f (E, t). (A.8)

Integrating Eq. A.8 by parts gives

n(t) =− 1
(2π)3

∫
d3 p

1
3
|~p|∂ f (E, t)

∂ |~p|
=− 1

(2π)3

∫
d3 p

1
3
|~p|2

E
∂ f (E, t)

∂E
. (A.9)

Integrating Eq. A.7 and using Eqs. A.8 and A.9, we can now rewrite the Boltzmann

equation as
∂n
∂ t

+3H n =− 1
(2π)3

∫ d3 p
E

∂ f
∂ t col

. (A.10)

In the last step we’ve introduced the Hubble parameter H ≡ Ṙ/R.
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It is common and useful to introduce a dimensionless variable

Y ≡ n
s
, (A.11)

where s is the entropy density. We assume the universe is expanding adiabatically. Then

by conservation of entropy in the co-moving volume, sR3 = const and so

∂Y
∂ t

=
1
s
(ṅ+3H n) =

1
s

1
(2π)3

∫ d3 p
E

∂ f
∂ t col

. (A.12)

In standard cosmology the time and temperature T are related by

t =
0.301
√

g∗

mPL

T 2 , (A.13)

where g∗ is the number of relativistic degrees of freedom and mPL is the Planck mass.

Introducing x=m/T, and transferring the time derivative in Eq. A.12 to x then gives

dY
dx

=− x
H(m)s

× 1
(2π)3

∫ d3 p
E

∂ f
∂ t col

. (A.14)

Here H(m) = 1.67g1/2
∗ m2/mPL. The integral on the right side of Eq. A.14 represents

the rate at which the number density is changing. In general, for a 2→ 2 process, the

interaction term can be written as

∂ f
∂ t col

=
G

(2π)12

∫
∏

i=b,c,d

d3 pi

2Ei
(2π)4

δ
4(pa + pb− pc− pd)

×
(
|Mab→cd|2F(pa, pb, t)−|Mcd→ab|2F(pc, pd, t)

)
, (A.15)

where G = ∏i gi is the factor stemming from internal degrees of freedom of particles

involved and F is the two particle phase space distribution of the initial/final state.
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Depending on the density of the interacting gas, the strength and form of the interaction,

F can in principle have almost any form of a reasonable probability distribution with

any level of correlation between the two initial state particles. To proceed, we make

an important assumption that the initial state particles are uncorrelated. In statistical

mechanics, this is usually referred to as Boltzmann’s assumption of “Molecular Chaos,”

and is justified by either weak interaction strength between the particles or low density.

The assumption of uncorrelated distributions expresses F as

F(pa, pb) = fa fb and F(pc, pd) = fc fd. (A.16)

Next, we make an assumption that the process we consider is even under time re-

versal. In other words

|Mab→cd|2 = |Mcd→ab|2. (A.17)

By the CPT theorem, the process is then also CP even. Eq. A.15 can be generalized

to processes which are CP violating by keeping track of the individual ab→ cd and

cd→ ba amplitudes.

With these assumptions, we can simplify the form of Eq. A.15 to

∂ f
∂ t col

=
G

(2π)9

∫
∏

i=b,c,d

d3 pi

2Ei
(2π)4

δ
4(pa + pb− pc− pd)

×|Mab→cd|2 ( fc fd− fa fb) . (A.18)

To continue, we assume that all final state particles have the ability to interact

through forces much stronger than the interaction with dark matter, forcing them into

thermal equilibrium. The distribution of final state particles then takes the form

fc,d = e−Ec,d/T . (A.19)
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By conservation of energy, we can replace the term fc fd in Eq. A.18 with

fc fd → f EQ
a f EQ

b . (A.20)

Next, we need to integrate Eq. A.18 to get an expression in terms of number density

n(t):

∂n
∂ t col

=
1

(2π)3

∫ d3 pa

Ea

∂ f
∂ t col

=
1

(2π)12

∫
∏

i=a,b,c,d

d3 pi

2Ei
(2π)4

δ
4(pa + pb− pc− pd)

×|Mab→cd|2
(

fa fb− f EQ
a f EQ

b

)
. (A.21)

In the first step of Eq. A.21 we attached an index a to the integration variable to clar-

ify the momentum which should be integrated. The same holds for the left side of the

Boltzmann equation we derived earlier. Neglecting the spin effects of Bose-Einstein

vs. Fermi statistics, we assume a simple Maxwell-Boltzmann type distribution. This

approximation is valid for non-relativistic species. Assuming classical, spin-less distri-

butions allows us to write

fa,b = eµ/T f EQ
a,b , (A.22)

where µ is the chemical potential, assumed to be a slowly varying function of ~p.

Plugging Eq. A.22 into Eq. A.21 turns the integral into

∂n
∂ t col

=
1

(2π)12

(
e2µ/T −1

) n2
EQ

n2
EQ

×
∫

∏
i=a,b,c,d

d3 pi

2Ei
(2π)4

δ
4(pa + pb− pc− pd)

×|Mab→cd|2 f EQ
a f EQ

b . (A.23)
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Note that by definition, the thermally averaged cross section is

〈σv〉 ≡ 1
(2π)12

1
n2

EQ

∫
∏

i=a,b,c,d

d3 pi

2Ei
(2π)4

δ
4(pa + pb− pc− pd)|Mab→cd|2 f EQ

a f EQ
b .

(A.24)

Here we only considered a two particle final state. Notice that adding more annihilation

channels will simply modify 〈σv〉. The rest of the derivation is unaffected. Substituting

the definition of 〈σv〉 into Eq. A.23 then gives

∂n
∂ t col

= 〈σv〉(n2−n2
EQ). (A.25)

Finally, substituting Eq. A.25 into the right side of Eq. A.10 gives us the usual form

of the Boltzmann equation

∂n
∂ t

+3H n =−〈σv〉(n2−n2
EQ). (A.26)

From here, using the definition of Y ≡ n/s it is trivial to transform the equation into

the desired form:
dY
dx

=−xs(x)〈σv〉
H(m)

(Y 2−Y 2
EQ). (A.27)

To summarize, we obtained a widely cited rate equation in Eq. 3.7 starting from a

general form of the Boltzmann equation in curved space-time. It is important to note

that during the derivation we made the following assumptions:

1. There is only one species of dark matter.

2. The phase space distribution of the initial state particles in uncorrelated: F(pa, pb)=

fa fb.

3. The process is even under T and CP: |Mi f |2 = |M f i|2.
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4. The metric is of a Robertson-Walker form: f 6= f (~x).

5. The universe is expanding adiabatically: sR3 = const.

6. All final state species are in thermal equilibrium: f ∼ e−E/T .

7. The only species going out of equilibrium is the dark matter species.

8. There is no particle-antiparticle number asymmetry: fX = fX .

9. Effects of quantum degeneracy are negligible: fX = eµ/T fEQ, µ 6= µ(~p).

A separate treatment of the Boltzmann equation is required whenever any of the

above assumptions is violated. For instance, introducing more dark matter species will

in general require a system of coupled differential equations. A strongly interacting or

overly dense dark matter gas will violate assumption of uncorrelated initial state particle

distributions. Furthermore, CP odd processes require a careful and separate treatment of

|Mi→ f |2 and |M f→i|2. If dark matter annihilates into species that are weakly interacting,

it becomes questionable to assume that all final state species are in thermal equilibrium.

A.2 Relic Abundance Code

To calculate relic abundance we have in part used MadDM v0.1 code [37]. MadDM is

a python package designed as an extension of MadGraph [38] for the purpose of dark

matter physics. MadDM is an ongoing project, with a scope and timeline beyond the

work in this thesis. The use of the MadDM v0.1 code here was primarily intended

as a proof of principle that the code can accurately incorporate resonant poles into the

relic abundance calculations. The original code was modified to accommodate resonant

annihilation cross sections, which are currently not an intrinsic part of MadDM v0.1.
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MadDM is envisioned to heavily rely on the existing MadGraph architecture for

diagram and matrix element generation. The general algorithm of the MadDM code

can be summarized in the following steps

1. Load MadGraph model

2. Find the dark matter candidates by looking for the stable, electrically neutral,

colorless particles in the model.

3. Generate annihilation diagrams to standard model particles and the correspond-

ing matrix elements.

4. Calculate the annihilation cross section and the corresponding 〈σv〉(x).

5. Solve the Boltzmann Equation to obtain Ωh2.

A.2.1 Main Program

The following is the main program used to calculate dark matter relic abundance. The

code is designed to perform a sequential parameter scan over a two dimensional param-

eter space of resonant widths and masses. The couplings, mass of dark matter as well

as the initial and intermediate state spins are inputs of the code. Generalizations of the

code to scan over any number of parameters is trivial.

from darkmatter import *

coupling= 0.1
DMmass = 300.0
cjj = 1.0

dm = darkmatter()

dm.gxxy = coupling
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dm.mDM.append([DMmass, DMmass])
dm.gDM.append([3.0,3.0])

steps = [1.0+ 0.5*x for x in range(0, 18)]
steps2 = [1.0+ 0.5*x for x in range(0, 18)]
steps3 = [1.0+ 0.5*x for x in range(0, 18)]
steps4 = [1.0+ 0.5*x for x in range(0, 18)]

deltas = [10.0**(-6)*i for i in steps]+\
[10.0**(-5)*i for i in steps2]+\
[10.0**(-4)*i for i in steps3]+\
[10.0**(-3)*i for i in steps4]

gammas = [10.0**(-5)*i for i in steps]+\
[10.0**(-4)*i for i in steps2]+\
[10.0**(-3)*i for i in steps3]+\
[10.0**(-2)*i for i in steps4]

widths = [gamma*DMmass for gamma in gammas]
ymasses = [2.0*DMmass*(1.0 - delta) for delta in deltas]

for Ymass in ymasses:

for GammaY in widths:

dm.Gy = GammaY
dm.My = Ymass
dm.tjj = cjj*dm.My**2 #tjj is now Cjj

dm.init_sigv()

omega = dm.relicdensity\
(0.1, 10000, 1, 51.0, 15.0, 50, 0.1)[2]

print str(dm.My) \
+" "+str(dm.Gy) \
+" "+str(omega)

A.2.2 MadDM darkmatter class

This section contains the code of the darkmatter class used in the main code. We

only present the parts of code relevant for the calculations in this thesis, as the entire

code is too long. The darkmatter class is a part of the MadDM v0.1 package. The

89



structure of the class consists of a darkmatter object which contains all the relevant

information needed to calculate relic abundance as well as methods which perform the

relic abundance calculation. There are only two relevant methods used directly in our

main program: init_sigv which initializes calculates and sets up the velocity averaged

cross section for a given parameter set, and relicdensity which calculates the relic

density and other parameters in the form (x f ,Y∞,Ωh2,g∗(x f )). For examples of how to

use the class and the associated methods look at the main code in Section A.2.1

from phasespace import *
from nr import *
from math import pi
from math import exp
from math import atan
from math import sqrt

#Conversion factor for the cross section. WRONG!
pbtogev = 0.3894/(10.0**9)

class darkmatter:

#initializion of a DM object.
def __init__(self):

#Read in array of g_* from a file
try:

inputfile = open(’g_star.txt’, ’r’)
inputfile.seek(0)
data = inputfile.readlines()

inputfile.close()

except OSError:
print "Could not find or open g_star.txt!"
exit

gx = []; gy = []
# store data pairs in lists x and y
for line in data:

xval, yval = line.split()
gx.append(float(xval))
gy.append(float(yval))
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#Initialize the object elements
self.paramcard = ’NONE’
self.gDM = []
self.mDM = []
self.pdgID = []
self.mpl = 1.2209*(10.0**(19))
self.g_star_x = gx
self.g_star_y = gy
self.modelname = ’NONE’
self.Wij = [’NONE’,’NONE’] #Matrix of cross sections
self.SigmaV = [’NONE’,’NONE’]
#where each element has the form [[s], [sigma]]

self.gxxy = 0
self.Gy = 0
self.My = 0
self.sigvtoday = 0
self.tjj = 0
self.gamma = 0
self.delta = 0

#Needed for numerical calculations
self._x = 1.0

#miscelaneous MadGraph object elements
self.full_model = None
self.Model = None
self.helas_writer = None
self.helas_multi_proc = None
self.stored_quantities = {}
self.matrixelements = None

#-------------------------------------------------
# METHODS:
#-------------------------------------------------

def init_sigv(self):

#Calculate Wij

#THIS SHOULD BE SUPPLIED BY THE USER!!!!!!!
steps = 10000

srange = []
for j in range(1, steps):

beta = 1-exp(-float(j) / float(steps))
srange.append(float(4*self.mDM[0][0]*self.mDM[0][0] \
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/ (1 - beta*beta)))

sigma = []

for s in srange:
#print "!!!!!!"

bf = 1.0

vcm = sqrt(1 - 4.0*self.mDM[0][0]**2 / s)

#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#HERE IS THE CROSS SECTION
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
wij = bf*self.gxxy**2/(4.0*self.mDM[0][0]**2 * vcm)\

*(self.tjj*self.My*self.Gy) \
/((s - self.My**2)**2 + (self.My*self.Gy)**2) \

*2.0*s*vcm #to convert sig to wij

#romberg_mod(self.ResonanceME, s)
sig = 1.0/(2.0*sqrt(s**2-4*self.mDM[0][0]**2*s))\

*3.89391e8*wij

# Call to return numerical value of the matrix element
#at cos(theta) = 0
# self.MatrixElement(1.0, s)

sigma.append(wij)

#SET UP Wij elements of the dark matter object
self.Wij[0] = srange
self.Wij[1] = sigma

xsteps = 200
#Calculate and set sigmav
x_range = []
for j in range(1, xsteps):

x_range.append(1.0+1.0*j)

#print "Now calculating sigmav..."
sigv = []
t0prim = time.time()
for xprim in x_range:

self._x = xprim
sigv.append(romberg_mod(self.taacs, xprim))

t1prim = time.time()

#print "---Finished calculating sigmav in "+\
str(t1prim - t0prim)+" seconds."

self.SigmaV[0] = x_range
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self.SigmaV[1]= sigv

self.sigvtoday = romberg_mod(self.taacs, 1.0e6)

#----------------------------------------------------------
# Thermally Averaged Annihilation Cross Section (sigma*v)
#----------------------------------------------------------
def sigmav(self):

return lineint(float(self._x), self.SigmaV[0],\
self.SigmaV[1])

#return romberg(self.taacs)
#return 2.3*10.0**(-9)

#---------------------------------------
# Interpolating points for getWij
#---------------------------------------
def getWij(self,svalue):

#print cubeint(float(svalue),self.Wij[0],self.Wij[1])
return lineint(float(svalue),self.Wij[0],self.Wij[1])

-----------------------------------------------
# integrand for sigma*v
#-----------------------------------------------

def taacs(self, beta, xx):
coeff = (xx)**(3.0/2.0)/(self.mDM[0][0]**2*(pi)**(0.5))
s = 4.0*self.mDM[0][0]**2/(1.0-beta**2)
Wij_value = self.getWij(s)
middle = beta**2/(1.0-beta**2)**(2.25)*exp(-2.0*(xx)*\

(1.0/(1.0-beta**2)**(0.5)-1.0))

return coeff*middle*Wij_value

#-------------------------------------------------------
# Interpolate points for getgstar(T)
# WARNING: This function is in terms of temperature!
#-------------------------------------------------------
def getgstar(self,temp):

return cubeint(temp,self.g_star_x,self.g_star_y)

def Yeq(self):
if self._x > 100.0:

return 10**-30

return 45/(4.0*pi**4)*(pi/2.0)**0.5*self.gDM[0][0]/self.\
getgstar(self.mDM[0][0]/self._x)*\
(self._x)**(1.5)*exp(-self._x)

def H(self):
return (4*pi**3.0 / 45.0)**0.5*\

self.getgstar(self.mDM[0][0]/self._x)**0.5*\
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self.mDM[0][0]**2.0/self.mpl

def s(self):
return 2*pi**2/45*self.getgstar(self.mDM[0][0]/self._x)*\

(self.mDM[0][0]/self._x)**3

#-----------------------------
#Define the Boltzman equation
#-----------------------------
def dydx(self, x, y):

self._x = x
#print (y[0]**2.0-self.Yeq()**2.0)
#print "{"+str(self._x)+","+str(self.sigmav())+"},"
return [-1*self._x*self.sigmav()*self.s()/self.H()*\

(y[0]**2.0-self.Yeq()**2.0)]

#-------------------------------------------------------
#Calculates Omega at infinity. Returns an array [xf, Yf],
#where xf is the freezeout
#defined by the condition |Y - Yeq| > 1/2 Yeq
#Yprecission = Yf[i] - yYf[i-1])/Yf[i]
#xfin - where to stop integration
#x0max, x0min, Nx0 - creates an array of x values from
# which to start the
# integration. array starts at x0max goes to x0min
# and has Nx0 values in between
#xfprec - precision in estimation of xf
#x0min, x0max MUST BE IN FLOAT FORMAT!
#--------------------------------------------------
def relicdensity\
(self,Yprecission, xfin, dx0, x0max, x0min, Nx0, xfprec):

#Check if cross section is calculated before
#calculating Omega.
if self.Wij == []:

print "Matrix element has not been calculated yet!"
exit

#Set up initial conditions and params for ode solver.
#WARNING: y0 must be in an array! y must always be
#indexed as an array!
nvar = 1
#x values to start integration from
xstart= [float(x0max) - (float(x0max)-float(x0min))\

/float(Nx0)*k\
for k in range(Nx0)]

yfs=[]

#Solve the Boltzman Equation.
#yf -final value of Y
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#yp - intermediate values of Y
#xp - intermediate values of x
#kount - how many intermediate points in xp, yp

i=0
for x0 in xstart:

self._x = x0
y0 = [self.Yeq()]
[yf,nok,nbad, kount, xp, yp] = odeint(y0, nvar, \

float(x0),float(xfin), float(dx0), self.dydx, \
eps = 1e-2, hmin = 1e-60,\
kmax = 10000, dxsav=xfprec)

yfs.append(yf[0])

if ((i > 0.0) & (abs(yfs[i] - yfs[i-1])/yfs[i] \
< Yprecission)) :

break
i=i+1

#Calculate the freezeout time
j = 0
xf = 1.0
#xp[j] - removed from Yeq

#print yp[0][j], self.Yeq(), yp[0][j] - self.Yeq()
self._x = xp[0]
while (abs(yp[0][j] - self.Yeq()) < 0.5*self.Yeq()):

#print xp[j], yp[0][j], self.Yeq()
xf = xp[j]
j=j+1
self._x = xp[j]

OmegaDM = yf[0]*self.mDM[0][0]*2889.2/(1.05*10**(-5.0))

#array to return
results = [xf, yf[0], OmegaDM, \

self.getgstar(self.mDM[0][0]/xf)]

return results

A.2.3 Numerical Recipees code

This section contains the code for the numerical recipees used in the darkmatter class.

The functions defined in this code can be grouped as follows:
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• Interpolating functions (cubeint, lineint) - Used to interpolate numerically

evaluated functions.

• ODE solvers (odeint) - A Runge Kutta ODE solver used to solve the Boltzmann

equation.

• One dimensional integrators (romberg, romberg_mod) - Romberg method

integrators.

from math import copysign

def getindex(xvalue,x,y):
if (xvalue < x[0]):

return 1
if (xvalue > x[len(x)-1]):

return (len(x)-2)

lowindex = 0
highindex = len(x)
while ((highindex-lowindex) > 1):

mid = (highindex+lowindex)//2
if (x[mid] <= xvalue): lowindex = mid
if (x[mid] > xvalue): highindex = mid

return lowindex

def cubeint(xval,xs,ys):
i = getindex(xval,xs,ys)
if (i == 0):

x = [xs[0],xs[1],xs[2],xs[3]]
y = [ys[0],ys[1],ys[2],ys[3]]

elif (i == len(xs)-2):
x = [xs[len(xs)-4],xs[len(xs)-3],xs[len(xs)-2],xs[len(xs)-1]]
y = [ys[len(xs)-4],ys[len(xs)-3],ys[len(xs)-2],ys[len(xs)-1]]

else:
x = [xs[i-1],xs[i],xs[i+1],xs[i+2]]
y = [ys[i-1],ys[i],ys[i+1],ys[i+2]]

A = y[3]/((x[3]-x[0])*(x[3]-x[1])*(x[3]-x[2]))
B = y[2]/((x[2]-x[0])*(x[2]-x[1])*(x[2]-x[3]))
C = y[1]/((x[1]-x[0])*(x[1]-x[2])*(x[1]-x[3]))
D = y[0]/((x[0]-x[1])*(x[0]-x[2])*(x[0]-x[3]))
result = A*(xval-x[0])*(xval-x[1])*(xval-x[2]) \

+B*(xval-x[0])*(xval-x[1])*(xval-x[3]) \
+C*(xval-x[0])*(xval-x[2])*(xval-x[3]) \
+D*(xval-x[1])*(xval-x[2])*(xval-x[3])
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return result

def rkck(y,dydx,n,x,h,derivs):
c = [1.0/5.0,3.0/10.0,3.0/5.0,1.0,7.0/8.0]
a = [[1.0/5.0,0.0,0.0,0.0,0.0],\

[3.0/40.0,9.0/40.0,0.0,0.0,0.0],\
[3.0/10.0,-9.0/10.0,6.0/5.0,0.0,0.0],\
[-11.0/54.0,5.0/2.0,-70.0/27.0,-35.0/27.0,0.0],\
[1631.0/55296.0,175.0/512.0,575.0/13824.0\
44275.0/110592.0,253.0/4096.0]]

b = [37.0/378.0,0.0,250.0/621.0,125.0/594.0,0.0,\
512.0/1771.0]

b_star = [2825.0/27648.0,0.0,18575.0/48384.0\
,13525.0/55296.0,277.0/14336.0,1.0/4.0]

K = [[0.0 for i in range(n)] for j in range(6)]
ytemp = [0.0 for i in range(n)]
yout = [0.0 for i in range(n)]
yerr = [0.0 for i in range(n)]
for i in range(n):

K[0][i] = dydx[i]
for i in range(5):

for j in range(n):
ytemp[j] = y[j]
for k in range(5):

ytemp[j] += h*a[i][k]*K[k][j]
dydxtemp = derivs(x+h*c[i],ytemp)
for j in range(n):

K[i+1][j] = dydxtemp[j]
for i in range(n):

yout[i] = y[i]
for j in range(6):

yout[i] += h*b_star[j]*K[j][i]
yerr[i] += h*(b[j]-b_star[j])*K[j][i]

results = [yout,yerr]
return results

def rkqs(y,dydx,n,x,htry,eps,yscal,derivs):
[safety, pgrow, pshrink, errcon, flag] =\

[0.9, -0.2, -0.25, 1.89e-4, 1]
h = htry
while True:

[yout,yerr] = rkck(y,dydx,n,x,h,derivs)
errmax = 0.0
for i in range(n):

errmax = max(errmax,abs(yerr[i]/yscal[i]))
errmax = errmax/eps
if errmax > 1.0:
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htemp = safety*h*(errmax**pshrink)
h = copysign(max(abs(htemp), 0.1*abs(h)), h)
xnew = x + h
if (xnew == x): print ’stepsize underflow in rkqs’

else:
if (errmax > errcon):

hnext = safety*h*(errmax**pgrow)
else:

hnext = 5.0*h
hdid = h
x = x + h
for i in range(n):

y[i] = yout[i]
results = [x,yout,hdid,hnext]

return results

def odeint(ystart, nvar, x1, x2, h1, derivs, \
eps = 1e-20, hmin = 1e-50,\
kmax = 0, dxsav = 0.1):

[nok, nbad, kount] = [0, 0, 0]
xp = [0.0 for i in range(kmax)]
yp = [[0.0 for i in range(kmax)] for j in range(nvar)]
x = x1
h = copysign(h1,x2-x1)
y = [0.0 for i in range(nvar)]
yscal = [0.0 for i in range(nvar)]
for i in range(nvar):

y[i] = ystart[i]
if kmax > 0: xsav = x-2.0*dxsav
while True:

dydx = derivs(x,y)
for i in range(nvar):

yscal[i] = abs(y[i])+abs(h*dydx[i])+1e-30
if kmax > 0:

if (abs(x-xsav) > abs(dxsav)):
if(kount < kmax-1):

xp[kount] = x
for i in range(nvar):

yp[i][kount] = y[i]
xsav = x
kount += 1

if ((x+h-x2)*(x+h-x1) > 0.0): h = x2 - x
[x,y,hdid,hnext] = rkqs(y,dydx,nvar,x,h\

,eps,yscal,derivs)
if hdid == h:

nok += 1
else:

nbad += 1
if (x-x2)*(x2-x1) >= 0.0:
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if kmax != 0:
xp[kount] = x
for i in range(nvar):

yp[i][kount] = y[i]
kount += 1
results = [y,nok,nbad,kount,xp,yp]
return results

results = [y,nok,nbad]
return results

if (abs(hnext) < hmin): print ’stepsize \
smaller than minimum in odeint’

h = hnext

def lineint(xval,x,y):
index = getindex(xval,x,y)
return y[index] + (y[index+1]-y[index])\

/(x[index+1]-x[index])*(xval-x[index])

def romberg(f, eps = 1e-3):
R = [[0.5*(f(0.0)+f(0.99999))]]
n = 1
while True:

h = 0.99999/2.0**n
R.append((n+1)*[None])
R[n][0] = 0.5*R[n-1][0] + h*sum(f((2*k-1)*h) \

for k in range(1,2**(n-1)+1))
for m in range(1,n+1):

R[n][m] = R[n][m-1] + (R[n][m-1] - \
R[n-1][m-1]) / (4**m - 1)

if abs(R[n][n-1] - R[n][n]) < eps:
return R[n][n]

n += 1

def print_row(lst):
print ’ ’.join(’%11.8f’ % x for x in lst)

def romberg_mod(f, var, eps = 1E-3):

R = [[0.5*(f(0.0,var)+f(0.9999999999,var))]]
n = 1

# print ’NEW INTEGRATION’
while True:

# h = 1.0/2.0**n
h = 0.99999/2.0**n
R.append((n+1)*[None])
R[n][0] = 0.5*R[n-1][0] + h*sum(f((2*k-1)*h,var)\

for k in range(1,2**(n-1)+1))
for m in range(1,n+1):

R[n][m] = R[n][m-1] + (R[n][m-1] - \
R[n-1][m-1]) / (4**m - 1)

# print_row(R[n])
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if abs(R[n][n-1] - R[n][n])/(R[n][n] + 1.0e-50)\
< eps:

return R[n][n]
n += 1
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